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How can someone create a breakthrough game for a mobile phone or a 
compelling work of art for an immersive three-dimensional (3D) envi-
ronment without understanding that the mobile phone and the 3D envi-
ronment are different sorts of computing platforms? The best artists, 
writers, programmers, and designers are well aware of how certain plat-
forms facilitate certain types of computational expression and innovation. 
Computer science and engineering have likewise long considered how 
underlying computing systems can be analyzed and improved. As impor-
tant as scientific and engineering approaches are, and as significant as 
work by creative artists has been, there is also much to be learned from 
the sustained, intensive, humanistic study of digital media. We believe it 
is time for humanists to consider seriously the lowest level of computing 
systems, to understand their relationship to culture and creativity.

The Platform Studies series has been established to promote the 
investigation of underlying computing systems and how they enable, con-
strain, shape, and support the creative work that is done on them. The 
series investigates the foundations of digital media—the computing 
systems, both hardware and software, that developers and users depend 
on for artistic, literary, and gaming development. Books in the series will 
certainly vary in their approaches, but they all will also share certain 
features:

•  A focus on a single platform or a closely related family of platforms.

•  Technical rigor and in-depth investigation of how computing technolo-
gies work.

Series Foreword
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•  An awareness of and discussion of how computing platforms exist in a 
context of culture and society, being developed based on cultural con-
cepts and then contributing to culture in a variety of ways—for instance, 
by affecting how people perceive computing.



Although my name is on the jacket of this book, its contents reflect many 
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I must first of all thank Nick Montfort and Ian Bogost, who envisioned 
and brought into being the Platform Studies series to which this book 
belongs and provided the example of Racing the Beam: The Atari Video Com-
puter System to show how exhilarating and useful this way of approaching 
digital culture can be. Nick and Ian not only entertained the first pitch 
from an unproven author and researcher but also helped me to formulate 
a workable scheme for the book as a whole and delivered invaluable feed-
back on my first chapters before leaving me in the able hands of Douglas 
Sery, the MIT Press acquisitions editor who shepherded this book through 
to completion. Along the way, the press’s anonymous manuscript readers 
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Much of the Amiga’s history survives thanks to the efforts of the Neti-
zens who have archived software and even entire books and magazines that 
are now very difficult to find in their original forms. These digitized trea-
sures from the past were key to much of my research. The magnificent 
Ultimate Amiga Emulator (UAE) similarly gave me access to virtually any 
model or configuration of Amiga I could imagine through the magic of 
emulation. Indeed, some of the deepest software explorations in this book 
would have been virtually impossible if I had been restricted to real Amiga 
hardware, without access to the additional tools UAE provides the digital 
archaeologist. UAE was created by Bernd Schmidt, but it includes contri-
butions from a list of programmers far too long to include here. I would 
be remiss, though, not to mention Toni Wilen, longtime maintainer of the 
Microsoft Windows version of UAE that I use.

The current Amiga community is smaller than it once was, yet it 
remains a rather shockingly friendly and helpful bunch, something I 
relearned time and time again when drawing upon their experience and 
expertise in online resources such as the Amiga Addicts Sanctuary. Ernie 
Wright and Bob Eaton were particularly wonderful in helping to seek out 
and recover software from aging floppy disks, a process that was compli-
cated by my living in Denmark.

Finally, I must once again thank my wife, Dorte, who saw me through 
the long process that has finally resulted in this book and through a tran-
sitional time in my life that saw me moving to an unfamiliar country and 
contending with a new language as well as all the other challenges that 
accompany immigration. Dorte is the very picture of my imagined reader: 
one very smart cookie, but not schooled in computer science or engineer-
ing. She read the whole manuscript, telling me where I overexplained and 
underexplained and prompting much revision and improvement. Tak, 
min skat. Du er den bedste kone i hele verden.



 

What do you do with your computer today?
Perhaps you store and view your albums of photographs there after 

transferring them from a digital camera or scanning them in from the 
original prints or negatives. Perhaps you go further, processing and 
manipulating these photos with an application such as Adobe Photoshop. 
Perhaps you integrate your computer with a video camera to create films 
or presentations for sharing with friends or associates or with the world 
via services such as YouTube. If you own a Macintosh, perhaps you have 
tried your hand at music creation via Apple’s GarageBand, and if you are a 
professional musician or even a serious amateur, you have likely made use 
of Pro Tools to mix, edit, and even perform your compositions. Musician 
or not, you have almost certainly collected some MP3 files containing your 
favorite music, and perhaps you have moved beyond compact disks (CDs) 
entirely, using your computer as your CD rack and stereo in one. If you are 
younger than a certain age—and, increasingly, even if you are not—you are 
almost guaranteed to spend at least a little bit of time most days gaming, 
whether you do it via simple but addictive casual games such as Zuma or 
immersive audiovisual extravaganzas such as Crysis. If you are technically 
informed, and particularly if you choose to compute on an open-source 
platform such as Linux, perhaps you volunteer some of your time and 
expertise to one of the many open-source software projects, such as the 
Mozilla Firefox Web browser that now rivals corporate giant Microsoft’s 
Internet Explorer in popular acceptance and that is enabled by the par-
ticipation of thousands of volunteers spread all over the world. And of 
course you surf the World Wide Web, enjoying crisp, realistic pictures 
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alongside the text you find there even on the lowest-end computers. It is 
very likely that you use your computer for more than one of these common 
applications (or the many others available) at the same time: surfing the 
Web while you listen to music, for instance, or sneaking in a quick game 
of solitaire while you chat online with a friend. None of these scenarios is 
extraordinary as I write these words; they are everyday life in the second 
decade of the twenty-first century.

If we glance back more than a quarter of a century to early 1985, 
however, we find a world with a very different perception of computing 
technology. Personal computers (PCs) in those days came in two general 
categories: the boring, beige, very adult box, personified by the products 
of IBM, and the friendly, fun, childish game machine, personified by the 
Atari Video Computer System (also known as the 2600) and the Commo-
dore 64. The former category of machines generally booted, after an 
unpleasant beep or two, into a green or amber display boasting little more 
than a blinking command prompt. Once one had learned the requisite 
string of esoteric commands and keystrokes, one could do many useful, 
businesslike things with the beige box: drafting and editing letters and 
reports, updating spreadsheets and databases, keeping track of accounts 
receivable and payable. But it all was done in that same depressing green 
or amber text and always felt like the work it was. The game machines were 
much more fun. With them, the family could gather around the television 
to play early, graphically spare, but surprisingly compelling videogames 
such as Space Invaders and Pac-Man as well as more conceptually rich 
games such as Impossible Mission or the early textual interactive fictions 
from Infocom. Talented programmers took these machines to places 
never dreamed of by their designers. But their blocky displays, painfully 
slow tape or floppy-disk-based storage, and extremely limited memory 
and processing power could not be completely overcome. They stood—and 
still stand today—as fascinating technical and artistic platforms, but plat-
forms of limited real-world utility nevertheless. The IBMs of the world, 
meanwhile, placed little emphasis on the aesthetics of their platforms and 
essentially none on the even more amorphous concept of fun, feeling such 
concerns had little bearing on their businesslike focus.

The one outlier in the computing world of early 1985 was Apple’s 
recently introduced Macintosh line, which promised to be the “computer 
for the rest of us” and to make productivity fun by replacing the command 
line with a mouse-based graphical user interface (GUI). The Macintosh cer-
tainly deserves the credit that is so often bestowed upon it for introducing 
a new, user-friendly paradigm to computing, a paradigm that even the 
IBM world would finally—albeit only after years of dismissive 
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snorting—embrace. As elegant, intuitive, and, yes, revolutionary as the 
Macintosh’s operating system (OS) and accompanying applications were, 
however, the machine was profoundly limited in many ways, being saddled 
with a tiny black-and-white display and, in its initial 128-kilobyte (KB) 
version, starved for memory. The early Macintosh made a wonderful plat-
form for paper-document authoring and processing, but its suitability for 
other applications was at best limited, and its extremely high price rather 
belied its populist advertising campaign. Thanks perhaps to these factors, 
Macintosh sales, after an initial surge, had gone quite flat by 1985.1 
Although they would recover somewhat with the introduction of higher-
powered models and eventually color, the Macintosh would remain for 
years largely a desktop-publishing tool, a niche it created and one for 
which it was superlatively suited.

It was into this environment that the Commodore Amiga 10002 arrived 
during the latter half of 1985. It is interesting to look back upon the con-
siderable press that greeted that arrival. Virtually all of this press excitedly 
regurgitated the same set of technical specifications—and small wonder, 
for these specifications were very impressive indeed in 1985: a palette of 
4,096 colors, screen resolutions of up to 640 × 400, four-channel digital 
stereo sound, true preemptive multitasking, and the user’s choice of a GUI 
similar to that of the Macintosh or a more traditional command prompt. 
All of these features were powered by a 7.16 megahertz (MHz) Motorola 
68000 microprocessor and a set of sophisticated custom chips to relieve 
the central processing unit (CPU) of much of its normal burden and thus 
vastly increase the system’s overall processing potential. These chips even 
included a unique pair of powerful custom coprocessors useful for fast 
animation as well as other tasks. Yet these numbers and bullet points are 
not the most intriguing aspect of the press notices. Before, after, and 
among the technical details, one can see the writers grappling with more 
abstract questions, groping to understand what these features, delivered 
together in this package, meant.

Byte Magazine, among the most sober and respected members of the 
technology press at the time, was, if one can draw a conclusion from its 
devoting thirteen pages to a description of a pre-release version of the 
machine, tremendously excited by the Amiga. But it remained relatively 
restrained in its conclusions, mentioning “a complexity of hardware 
design that we have not seen before in personal computers,” and stating 
that “the Amiga will probably have a great effect on other personal com-
puter companies and the industry in general.”3 So many others, though, 
were inspired to take off on flights of rhetoric (or hyperbole) unusual to 
find in mere product reviews. Creative Computing, always the technology 
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dreamers to complement Byte’s realists, invoked Marshall McLuhan’s 
famous “the medium is the message” slogan and called the Amiga nothing 
less than “a new communications medium—a dream machine.”4 Compute! 
not only proclaimed the Amiga “a pivotal machine that will shatter the 
traditional boundaries and prejudices which for years have divided the 
microcomputer marketplace” but also called it “the first true personal 
computer,” meaning it could become an important part of the owner’s 
daily lifestyle rather than existing as a mere toy or tool.5 Electronic Arts 
(EA), a young, innovative, and artistically ambitious software publisher, 
stated that “for the first time, a personal computer is providing the visual 
and aural quality our sophisticated eyes and ears demand” and was inspired 
to dream of the time coming soon when “the home computer will be as 
important as radio, stereo, and television today” as a medium for bringing 
the world into the home.6 The premiere issue of AmigaWorld echoed these 
sentiments, saying the Amiga “is the first to go beyond the clunky graphics 
and animation heretofore seen on personal computers, and in so doing, 
merits the admiration of the refined eye and ear.”7 All of these sentiments 
can be summed up in the phrase found on the cover of that magazine: “The 
Future Is Here.”

Of course, not everyone understood the Amiga’s transformative poten-
tial. Said a representative of one business-oriented franchise store that had 
elected not to carry the Amiga: “What’s important is doing basic jobs in a 
simple, straightforward way. There are products now that address every 
need of the business person. Why add another one unless there is a compel-
ling reason[?] And in this case, that compelling reason doesn’t exist.”8 The 
lack of vision or understanding of the potential for computing technology 
beyond the spreadsheet and the word processor is disconcerting, particu-
larly in retrospect, but is also in its own way prophetic. The Amiga, built by 
a company known as a manufacturer of toys in the business computing 
world, would have an uphill struggle to win respect from that quarter.

Nevertheless, it is remarkable that so many genuinely visionary per-
spectives of the Amiga existed in so many places, even if their expression 
was sometimes delivered in rather muddled language. There is a term they 
all were groping toward, one that had not yet entered common English 
usage under its modern meaning: multimedia. The term itself was not 
precisely new even in 1985, having cropped up from time to time, albeit 
often in a hyphenated form (“multi-media”) in reference to artistic works 
and performances. It even enjoyed a brief cultural vogue of sorts during 
the late 1960s, when “multimedia happenings” incorporating (at a 
minimum) live music and visuals were common. The Exploding Plastic 
Inevitable shows put on in 1966 and 1967 by Andy Warhol and the Velvet 



1	 “The Future Is Here”� [5]

Underground were an early example of this genre, and Pink Floyd was 
perhaps its most long-lived practitioner, embellishing their musical per-
formances for decades with projected visuals, lasers, elaborate lighting 
effects, smoke, and such physical props as enormous inflatable pigs that 
hovered over the audience.

The term multimedia came to be commonly associated with computing 
technology, however, only in 1989, when the arrival of reasonably good 
graphics cards, affordable sound cards, and CD read-only memory (CD-
ROM) drives first began to transform the heretofore bland beige world of 
IBM and Apple. It became a favorite in those companies and others’ mar-
keting literature and was soon one of the buzzwords of the era. The hype 
that surrounded it for a number of years did little to lend it a coherent 
meaning because it seemed to be applied to virtually everything new and 
shiny in the world of computers. Commodore did attempt to provide a 
usable definition in 1990: “[Multimedia is] a method of designing and 
integrating computer technologies on a single platform that enables the 
end user to input, create, manipulate, and output text, graphics, audio, 
and video utilizing a single-user interface.”9 Tony Feldman put it more 
elegantly and succinctly in a 1994 book on the subject: “Multimedia is the 
seamless integration of data, text, images of all kinds and sound within a 
single, digital information environment.”10 The word digital is key here; a 
multimedia computer entails the digitization of the analog world of image 
and sound into the world of discrete numbers inside the machine.11 The 
birth of the multimedia age begot nothing less than a revolutionary change 
in the way that all forms of media are stored and transmitted, marking the 
end of the analog era and the beginning of the digital, the end of an era of 
specialized devices capable of dealing with only one form of media and the 
beginning of our era of smart, programmable devices that can deal with 
many media.

My central claim in this book is that the Amiga was the world’s first 
true multimedia PC.

Although earlier computers existed in isolation from the world, 
requiring their visuals and sound to be generated and live only within 
their memory, the Amiga was of the world, able to interface with it in all 
its rich analog glory. It was the first PC with a sufficient screen resolution 
and color palette as well as memory and processing power to practically 
store and display full-color photographic representations of the real 
world, whether they be scanned in from photographs, captured from film 
or video, or snapped live by a digitizer connected to the machine. It could 
be used to manipulate video, adding titles, special effects, or other post-
production tricks. And it was also among the first to make practical use of 
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recordings of real-world sound. The seeds of the digital-media future, of 
digital cameras and Photoshop and MP3 players, are here.

The Amiga was the first aesthetically satisfying PC. Although the gen-
eration of machines that preceded it were made to do many remarkable 
things, works produced on them always carried an implied asterisk; 
“Remarkable,” we say, “. . . for existing on such an absurdly limited plat-
form.” Even the Macintosh, a dramatic leap forward in many ways, never-
theless remained sharply limited by its black-and-white display and its lack 
of fast animation capabilities. Visuals produced on the Amiga, however, 
were in full color and could often stand on their own terms, not as art pro-
duced under huge technological constraints, but simply as art. And in 
allowing game programmers to move beyond blocky, garish graphics and 
crude sound, the Amiga redefined the medium of interactive entertainment 
as being capable of adult sophistication and artistry. The seeds of the aes-
thetic future, of computers as everyday artistic tools, ever more attractive 
computer desktops, and audiovisually rich virtual worlds, are here.

The Amiga empowered amateur creators by giving them access to 
tools heretofore available only to the professional. The platform’s most 
successful and sustained professional niche was as a video-production 
workstation, where an Amiga, accompanied by some relatively inexpen-
sive software and hardware peripherals, could give the hobbyist amateur 
or the frugal professional editing and postproduction capabilities equiva-
lent to equipment costing tens or hundreds of thousands. And much of the 
graphical and musical creation software available for the machine was 
truly remarkable. The seeds of the participatory-culture future, of YouTube 
and Flickr and even the blogosphere, are here.

The Amiga brought many developments from the world of the larger 
institutional computer to the personal computer for the first time. For 
instance, programmers and artists experimented extensively with three-
dimensional (3D) modeling and ray tracing on the Amiga, popularizing 
and democratizing these techniques that had heretofore been confined to 
universities and corporate research facilities. The result was a revolution 
in the way that animations and cartoons were developed as well as in the 
aesthetics of videogames. And the Amiga’s most well-known application, 
Deluxe Paint, was a direct heir to the pioneering research conducted at 
Xerox’s Palo Alto Research Center (PARC), written by someone who had 
worked closely with the PARC researchers. Even its OS had more in 
common with sophisticated institutional OSs such as Unix than it did with 
the primitive PC OSs of its competition. The seeds of the future, of desktop 
systems that no longer seemed like toy versions of their larger cousins, 
that, indeed, would soon make most of the room-filling colossi of old 
obsolete, are here.
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As the first mainstream PC OS to support multitasking, the Amiga’s OS 
(“AmigaOS”) redefined the way we interact with computers. The idea of a 
single-tasking computer today is almost unthinkable, but that was the 
norm prior to the Amiga. With the Amiga, one all of a sudden could run 
multiple applications simultaneously, moving data among them via the 
system clipboard; one could listen to music while one worked on a letter 
or report; or one could play a game while waiting for a long download to 
complete. This new mode of working and even thinking, which has become 
particularly marked among the young today, has prompted reams of psy-
chological analysis of both an approving and a concerned character. The 
seeds of the multitasking future, of surfing the Internet while chatting 
with a friend while playing a game while listening to music, are here.

And the Amiga impacted the culture of computing in another signifi-
cant way: in drawing together a community of users who shared code and 
labor in an effort to further and sustain the platform. If there was one 
article of faith among Amiga users, it was that Amiga’s corporate parent, 
Commodore, was incompetent and unworthy of the technology it had 
managed to acquire. Through projects such as Fred Fish’s extensive disk 
library of free software, which he distributed to all and sundry for the cost 
of shipping, these users attempted to bypass Commodore’s bumbling 
interference and assume de facto ownership of the platform. Their efforts 
prefigure the later Internet-enabled efforts of the free-software commu-
nity that began to gather around the Linux OS in the early 1990s. (A fair 
number of the old Amiga guard wound up as Linux converts.) The seeds 
of the open-source future, of high-quality, freely distributed, commu-
nity-developed software, are here.

I have just made a series of rather bold statements, and most are cer-
tainly worthy of the further qualifications that will come later in this book. 
Although the Amiga could acceptably display photographic images on 
screen, for instance, their fidelity was certainly not what we are accus-
tomed to today; and although multitasking worked well enough in many 
scenarios, the Amiga’s lack of virtual memory and memory-protection 
technology could make the platform a crash-prone house of cards in 
others. The Amiga was far from a perfect creation even in its time. The 
critical disk operating system (DOS) component of AmigaOS was clunky 
and ill matched, for instance, and the platform’s interlaced video modes 
with their omnipresent flicker were a constant annoyance and distraction 
to everyone not engaged in the video production that they enabled. These 
points become especially important to make when one confronts a certain 
narrative about the Amiga that has become the dominant one in many 
computing circles, which almost deifies the platform as a perfect creation 
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and lays all of the blame for its ultimate downfall at the feet of Commo-
dore’s mismanagement. Although Commodore did the Amiga very few 
favors, I believe many of the reasons for the Amiga’s downfall can be found 
not in external factors, but within its core design—ironically, the very 
same design that made it such a remarkable machine in 1985. I address 
these issues, like so many others I have introduced here, at greater length 
later in this book. For now, I just want to state that I believe the Amiga 
deserves a place alongside such earlier computing platforms as Colossus, 
the Digital Electronic Corporation Programmed Data Processor 1 (PDP-
1), the Keyboard Input Monitor 1 (KIM-1), the Commodore Personal Elec-
tronic Transactor (PET), and the Apple Macintosh as a pioneering machine 
and a signpost to the future.

This book is an attempt to situate the Amiga within its historical and 
cultural context, to explain what made it unique and why it is important, 
and to do so in a fairly technically rigorous way. Each of its chapters exam-
ines one important historical facet of the platform. At the core of each 
chapter, I examine one or two specific programs, companies, or commu-
nities in considerable detail and, by the end of the book, use them as 
exemplars to draw a holistic picture of the Amiga platform and the com-
munities of practice that surrounded it. I explain the ways in which the 
machine’s technical qualities made it useful or even ideal for various pur-
poses and how engineers, programmers, artists, and others harnessed 
these qualities to push back boundaries and transform the culture of com-
puting. My position here is certainly not one of strict technological deter-
minism; although the Amiga’s hardware design made it remarkable, most 
of the credit for the vibrant, creative culture that sprang up around this 
platform must go to the people who saw the potential in the hardware and 
made it sing. Indeed, most of the superior technical specifications that 
made the Amiga so remarkable upon its 1985 release were surpassed by 
competing platforms as early as 1989. The unique spirit of creativity and 
innovation that surrounded the platform for years after that date are thus 
more a cultural than a technical phenomenon. Another important goal I 
have for this book, therefore, is to credit and properly document the work 
of some of these visionaries who played such a role in shaping the world 
we currently live in. I also hope to offer some more general insights into 
the technical, cultural, and economic factors that bear on the life cycle of 
a platform and its ultimate fate. Finally, although many of the problems 
and restrictions that the engineers, programmers, and artists whose work 
I analyze in this book are no longer with us today, the fundamental prin-
ciples of computing upon which their work was based certainly are. I 
therefore hope you will gain through these “worked examples” not only an 
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appreciation of the cleverness these engineers, programmers, and artists 
brought to bear upon their work, but also an increased understanding of 
those fundamental principles and how they can be applied to accomplish-
ing practical tasks even on modern platforms with their own sets of 
strengths and weaknesses.

In a study of this nature, a certain level of technical depth is absolutely 
necessary. I can promise, however, that I expect of you only a basic level 
of computer literacy and perhaps sometimes a willingness to read slowly 
and carefully. As you may have noticed already, technical terms and acro-
nyms not in everyday modern English usage are printed in italics when an 
understanding of them first becomes critical to an understanding of the 
text as a whole. Although the more esoteric and Amiga-specific terms are 
also clarified in the main text, all of them can be found in the glossary at 
the back of the book. Most of the chapters contain one or more detailed 
case studies that attempt to convey some of the experience of an Amiga 
user programming a demo or game, creating a piece of art, or solving a 
problem. You should follow along with these “worked examples” in what-
ever depth suits your knowledge and interest level. On this book’s accom-
panying Web site (http://amiga.filfre.net), you will find a variety of 
resources that should help you to do just that, as well as more general 
materials that should also aid in your appreciation of each chapter. These 
materials include images and movie clips as well as programs that you can 
download and run on a real Amiga or an Amiga emulator.12 Programmers 
will also find some C and assembly-language source code there that may be 
of interest, although a knowledge of those programming languages is cer-
tainly not a prerequisite to understanding the contents of this book.

It is difficult indeed to come to a full understanding of a multimedia 
computer such as the Amiga through a traditional linear text alone. I 
therefore encourage you to make active use of the Web site to put yourself 
in the shoes of the multimedia pioneers who used the Amiga and to use 
the book that you hold in your hands now as a guide, but not the sum total 
of your journey into this important corner of computing history. Although 
Amiga’s pioneers were sketching the future, they always seemed to manage 
to have a great deal of fun also. The Amiga remains such a beloved platform 
to so many at least in part because programming and working with it could 
be such a sublime pleasure, in a way that has perhaps been lost to the 
enormously complex computing platforms of today. Remember this as you 
explore the Amiga’s history and technical workings, and remember to have 
some fun of your own exploring this book, its accompanying Web site, and 
whatever other resources they prompt you to uncover.



 

During the 1980s, when Internet access was not yet commonplace and the 
World Wide Web did not yet exist, trade shows assumed enormous impor-
tance to computer hardware and software producers. Here they could 
announce and demonstrate their latest and greatest to the public and, even 
more important, to industry insiders and the technology-related press. 
Perhaps the most important stop on the technology-show circuit was also 
the first of the year: the Winter Consumer Electronics Show (CES), begun 
in 1967 and held every January from 1978 to the present in Las Vegas. The 
list of technologies debuted at the CES through the years is impressive, 
including as it does the videocassette recorder (VCR, 1970), affordable 
digital watches (1976), the CD (1981), and the digital video disk (DVD, 
1996), just for starters. Early PC manufacturers also made good use of the 
show and its attendant publicity. Many of the first affordable home com-
puters debuted there in the late 1970s, as did Atari’s landmark Pong home 
videogame in 1975 and video computer system (VCS) game console in 
1977, the massively popular Commodore 64 computer in 1982, and the 
Nintendo Entertainment System in 1985—all harbingers of major cultural 
and economic changes in the world of home computers and videogames. 
Virtually all computing magazines devoted space—often considerable 
space—to the products, opinions, and rumors they found at CES. A 
company that failed to make an appearance or that appeared toting old or 
disappointing products to display could find its name tarnished for the 
remainder of the year. Conversely, a company that brought a fresh, com-
pelling product there could generate major momentum that could carry it 
right through that year and beyond.

Boing 2
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The 1984 edition of Winter CES was fairly typical of its era. Although 
there were no obvious bombshells like the Commodore 64, many new 
machines and products were on display, and the industry press covered 
them in the usual detail. Coleco had a new computer, the Adam, and Com-
modore had a new machine, which it called at that time “the 264”;1 both 
were greeted with justified skepticism by the savvy press, and, indeed, 
both were destined to be commercial failures. More intriguing were some 
of the first IBM PC compatibles, the beginning of a landslide that would 
eventually steal the business-computing leadership role away from IBM. 
Also present, as usual, were seemingly endless quantities of games and 
other software from companies large and small. If nothing else, the 1984 
Winter CES demonstrated that just months after the bottom had dropped 
out of the home-videogame-console market, the home-computer market, 
while decidedly weakened by that related industry’s failure, was facing 
nothing like the same sort of apocalypse.

In one corner of the show floor a tiny company called “Amiga, Incor-
porated” had on display its line of peripherals for Atari’s aged 2600. The 
display garnered little interest from the public or the press; Amiga seemed 
like just another console bandwagon jumper left high and dry by the vid-
eogame crash. There was, however, a private space behind the Amiga 
booth into which only selected members of the industry and the press 
were invited. In this space was the prototype of an entirely new computer 
that Amiga called the “Lorraine.” The motley mass of breadboards and 
exposed wiring looked like a mad scientist’s experiment, but the graphical 
demonstrations it produced were nothing less than jaw dropping even to 
jaded industry veterans. Some in fact refused to believe that the Lorraine 
was the source of the graphics and persisted in attempting to peak under 
the table on which the prototype rested to find their “real” source.2 Most 
impressive of the Lorraine demos was an animation of a large rotating 
red-and-white-checkered soccer ball that bounced fluidly over a static 
background and even cast a realistic shadow behind it.

The idea of demonstrating a computer’s graphical capabilities using a 
bouncing ball was hardly a new one in 1984. Charly Adama in 1949 or 1950 
wrote a simple bouncing-ball demo for the Whirlwind, the first computer 
capable of real-time processing; this demo later served as direct inspira-
tion to the creators of Spacewar!—generally regarded as the first real-time 
videogame.3 Bouncing balls continued to crop up regularly at trade shows 
during the early years of the PC era in such places as demonstrations of 
the MOS Technologies video interface chip (VIC) for graphics that would 
eventually find a home in the popular Commodore VIC-20.4 Nevertheless, 
the Boing demo took on a life of its own as the most enduring symbol of 
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the Amiga, as one of the most famous graphical demos ever created, and 
as a lovely piece of minimalist digital art in its own right. And the com-
puter that ran it should be recognized as one of the most important prod-
ucts ever brought to Winter CES.

Lorraine, Paula, Denise, and Agnus

The man universally considered the “father of the Amiga” was a bearded, 
soft-spoken hardware engineer named Jay Miner.5 Even had Miner never 
worked on the Amiga, his place in the history of computing would be 
secure, for during his tenure at Atari from 1975 to 1979 his was one of the 
key engineering minds behind the first videogame console to achieve 
widespread popularity in homes, the Atari Video Computer System (later 
rebadged the “Atari 2600”).6 After completing that project, Miner became 
lead designer of Atari’s first general-purpose home computers, the Atari 
400 and 800. In these machines, we can already see the emergence of a 
design philosophy that would come to fruition in the Amiga.

In most PC designs of this era, the CPU is not just the central process-
ing unit, but really the only processing unit. Absolutely every task the 
computer performs must be performed by the CPU, including not only the 
processing of whatever program the user is actually running, but also all 
of the little maintenance tasks that generally go unremarked by the user: 
updating the screen, handling data transfers to and from disk or tape, 
scanning the keyboard and other peripherals for the user’s inputs, just to 
begin the list. In Miner’s Atari machines, however, many of these tasks are 
offloaded from the CPU to one or more of three custom chips that can then 
do the job relatively autonomously while the CPU simultaneously works 
on other tasks. Two chips, the Alpha-Numeric Television Interface Circuit 
(ANTIC) and the Color Television Interface Adaptor (CTIA), take over 
much of the responsibility for generating the machine’s display, and 
another, the POKEY chip (whose name derives from a combination of the 
terms potentiometer and keyboard), generates sound and performs many 
input/output functions. Thanks to these custom chips, the MOS 6502 
microprocessor at the heart of the machine can devote many, many more 
of its cycles to the core task of running the user’s programs.7 Although 
most of the Atari machines’ direct competitors used this same CPU, the 
Atari’s unique design delivered a considerable performance advantage for 
most applications—particularly for applications, such as games, that made 
extensive use of graphics and sound. In fact, the Atari 400 and 800 offered 
by far the most impressive graphics and sound in the nascent home-
computer industry at the time of their late 1979 release. They offered, for 
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instance, a potential palette of 256 colors at a time when few other 
machines could display even 16.

The machines did not, however, achieve commercial success to match 
their technical superiority. The Atari VCS, after a couple of years of only 
sporadic sales, was finally gaining major traction that 1979 holiday season 
and was on the way to becoming a full-fledged cultural phenomenon. In 
the face of this fact, coupled with the promising new standup arcade 
machine division Atari had just launched, the 400 and 800 became a hor-
rendously mismanaged afterthought for the company. For instance, Atari 
did not just fail to encourage the third-party software development that 
any computer depends on for popular acceptance but actually threatened 
to sue some developers who attempted to create software for the platform 
for infringing on Atari’s intellectual-property rights.8 Perhaps surpris-
ingly in light of such bizarre corporate logic, the machines were in no way 
a complete failure—Atari would eventually sell two million of the 400 and 
800 and their successor models by 1985,9 and these machines would 
attract a fanatically loyal core of users—but they would remain second-tier 
players in comparison to the 6502-based competition from Apple and 
Commodore. The 400 and 800 would not, alas, be the last Jay Miner–
designed machines to fail to sell in the numbers their technical superior-
ity would have seemed to ensure.

By the time the Atari 400 and 800 debuted, Miner, disenchanted like 
many of the company’s pioneers by the changes that had followed Atari’s 
acquisition by Warner Communications and founder Nolan Bushnell’s 
departure, had already left Atari and the home-computer industry to 
design chips for pacemaker medical devices. He was still working in that 
field in 1982 when an old colleague from Atari, Larry Kaplan, contacted 
him to ask if he would be interested in designing a new videogame console 
for a startup company Kaplan was putting together with the support of a 
group of venture capitalists and investors. In spite of being outdated even 
by the technological standards of 1982, the Atari VCS in that year was at 
the height of its popularity. Videogames were hot, and investors searched 
for a piece of the proverbial action with an eagerness that reminds one 
somewhat of the dot.com bubble of the late 1990s. Kaplan had thus had 
little trouble finding investors—mostly dentists, as it happened—to con-
tribute to his scheme of producing the next-generation videogame console 
to take the market-leading place of the aging Atari VCS. Now he needed 
Miner’s talents to design said console for his company, which he had 
named “Hi-Toro.” Miner agreed, but with two conditions: this proposed 
game machine must be at least expandable into a full-fledged PC, and it 
must be built around an exciting new microprocessor, the Motorola 
68000.
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The 68000 was something of a wunderkind of the computing world 
in 1982. First introduced in 1979, the 68000 was, as is still normal today 
in the world of microchip production, initially quite expensive and thus 
saw its first applications mainly in high-end Unix-based workstations such 
as those produced by Sun Microsystems.10 By 1982, its price had come 
down enough that designers such as Miner (not to mention his peers at 
companies such as Apple and Atari) could seriously consider incorporat-
ing the chip into consumer-level, general-purpose computers.

Microprocessors and the computers that employ them are often 
described in terms of their bit count, which represents not only the largest 
number they can natively understand, but also, even more important, the 
amount of data they can move in a single operation, a critical factor in such 
multimedia scenarios as fast graphical screen updating. A 32-bit proces-
sor running at the same clock speed as an 8-bit processor is, all else being 
equal, effectively capable of four times the throughput. A simple thought 
experiment might best explain why. Imagine watching two men digging 
separate holes side by side. Both work at exactly the same speed. After a 
time, though, you notice that one of the holes is four times as deep. A 
further look at the two men reveals the reason: one man is working with a 
shovel four times as large! This man, of course, represents the 32-bit 
processor, whereas the other represents the 8-bit processor.

Thirty-two-bit processors have been the most common type in home 
and small-business computers since the early 1990s, but in recent years 
they have been slowly giving way at last to a new generation of 64-bit 
machines. The home-computing market of 1982, however, was still domi-
nated by the 8-bit MOS 6502-equipped Apple II and Commodore 64, and 
the business-computing world had just been shaken up by the release of 
the soon-to-be industry-standard IBM PC, equipped with an Intel 8088 
that is something of a hybrid between an 8-bit and a 16-bit processor. The 
new 68000 was likewise a hybrid—but a hybrid between a 16-bit and a 
32-bit processor. It is capable of transferring data to and from main-
system memory only 16 bits at a time, but it performs many internal oper-
ations like a full 32-bit processor.11 Consumer-level 68000s could be 
easily clocked at up to 8 MHz, a figure that could be matched among the 
competition only by the even newer and more expensive Intel 80286. The 
68000 also boasted an extensive instruction set designed specifically to 
support programming in high-level languages such as C rather than the 
tedious assembly code that was the norm of the time12 and was capable of 
addressing no less than 16 megabytes (MB) of memory, an unheard of 
figure at a time when few computers sold with more than 64 KB onboard. 
Its extensive system of interrupts also made it a natural choice for the 
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event-driven programming paradigm of the new generation of GUI-equipped 
PCs that would begin shortly with the Apple Lisa and Macintosh and con-
tinue with the Atari ST and, of course, Miner’s own Amiga.

Changes came quickly at Hi-Toro after Miner came onboard. Kaplan 
suddenly grew disillusioned with the venture and left just weeks after 
founding it. His role as business and financial leader was assumed by a 
new arrival from Tonka Toys, Dave Morse. Concerned about the resem-
blance of the name “Hi-Toro” to the named used by the Japanese lawn-
mower manufacturer, “Toro,” the company’s investors asked for a new 
one. The name “Amiga,” from the Spanish word meaning “female friend,” 
was chosen based on its friendly yet elegant and “sexy” sound, not to 
mention the fact that it would be listed before both Apple and Atari in 
telephone and corporate directories.13 While Miner was doing preliminary 
design work on the new machine with another former colleague from 
Atari, Joe Decuir, the newly christened Amiga, Incorporated designed and 
released a few hardware peripherals for the Atari 2600 as a way of bringing 
in some income and disguising its real plans from rivals.

A team of young and precocious engineers and programmers was soon 
assembled around Miner and set to work developing the machine that 
would become the Amiga. Miner, fully a generation older than most of his 
charges, presided over this brilliant but idiosyncratic group as a sort of 
benevolent father figure. He was a fair, warm, tolerant man as well as an 
innovative engineer, and the former qualities perhaps contributed as 
much as the latter to giving the Amiga its finished character. Speaking of 
his management philosophy, he said, “Allowing people to be different is 
terribly important. Who cares, as long as you get the work done?”14

These early years of an independent Amiga, Incorporated have come 
to occupy a storied place in Amiga lore, serving the platform as a founding 
myth in which a group of visionaries gathered together to create the perfect 
computer. R. J. Mical, an early employee who became one of the principal 
architects of AmigaOS as well as a coauthor of the Boing demo, solidified 
the story by repeating it in unabashedly sentimental presentations at 
Amiga meet-ups and trade shows beginning just a few years after the 
historical events themselves. Mical said of the company’s hiring policy, 
“We were looking for people who were trying to make a mark on the world, 
not just on the industry but on the world in general. We were looking for 
people that really wanted to make a statement, that really wanted to do an 
incredibly great thing, not just someone who was just looking for a job.”15 
The most memorable anecdotes from this period have become indelible 
parts of Amiga lore: Miner drawing circuits with his beloved cockapoo 
Mitchie always at his feet;16 hardware engineer Dave Needle wandering 
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through the office in fuzzy bedroom slippers;17 Mical and fellow program-
mer Dale Luck dancing to Led Zeppelin in the middle of the night to stay 
awake while waiting for their software to compile;18 Miner and others 
mortgaging their houses to keep the lights on and the dream alive for a few 
more weeks.19

In keeping with a tradition inherited from Atari of naming machines 
in development and even their internal components after women at or 
around the office, the machine was christened the “Lorraine,” after 
company president Dave Morse’s wife. The Lorraine, like Miner’s previous 
design for Atari, was built around three custom chips that take much of 
the load off of the CPU.20 Each of these chips, Denise, Paula, and Agnus,21 
performs very specific tasks: Denise managing the display, Paula manag-
ing sound and input and output to disks and other peripherals, and Agnus 
managing the other two and ensuring that they do not conflict with the 
CPU. Agnus also provides a home for two unique coprocessors, the copper 
and the blitter; these coprocessors gave the Lorraine remarkable anima-
tion capabilities, in ways that I explain later in the book.

The Lorraine’s hardware design was fairly well along, and an OS was 
also in the works when the Great Videogame Crash of 1983, which almost 
brought an end to the videogame industry, suddenly gave Amiga’s inves-
tors reason to bless Miner’s dogged insistence that the Lorraine be a viable 
basis for a full-fledged computer as well as a videogame console. Over-
saturated with too many incompatible consoles and too many uninspired 
games, many of them from industry leader Atari itself, the console market 
collapsed that year, an event forever symbolized by Atari’s ignominious 
dumping of trailer loads of its E.T. cartridges into a New Mexico landfill. 
Undaunted, Amiga simply began describing the Lorraine as a computer 
rather than a videogame console and continued full speed ahead with a 
sigh of relief that Miner and his team had designed its circuits from the 
start to interface with a mouse, keyboard, and disk drive as well as a joy-
stick and television. The Lorraine’s planned coming-out party at Winter 
CES was drawing near, and there was still much to do. In fact, the show 
was assuming ever greater importance, for Amiga, Incorporated was 
quickly running out of money and desperately needed to demonstrate 
something to the potential additional investors who might keep it afloat 
long enough to complete the Lorraine.

Enter Boing

The Lorraine was made ready in time for the show, but only barely and 
only for a fairly generous definition of “ready.” The machine that the 



[18]

Amiga team brought with them was a cobbled collection of circuit boards 
and wires that failed constantly. The hardware technicians brought piles 
of chips and other spare parts with them and learned to repair the machine 
on the fly during demonstrations. The software situation was also prob-
lematic because Amiga’s team of programmers had had access to the pro-
totype for just a few days before the show began and thus precious little 
time in which to prepare and test demonstrations of the machine’s capa-
bilities. Mical and Luck worked furiously at the show itself to improve 
upon the software the team had brought with them. They created the first 
version of the Boing demo in Amiga’s little rented back room on the CES 
show floor in an all-night hacking session fueled by “a six-pack of warm 
beer.”22

The experience of programming on that Lorraine prototype was very 
different from that of programming a production Amiga. Although the 
custom chips’ specifications and operation were mostly the same, the Lor-
raine had neither an OS nor any of the tools and utilities available to an 
Amiga programmer a couple of years later. In fact, the Lorraine did not 
even have a keyboard or, indeed, any user interface at all; it could be oper-
ated only by uploading a program from a remote terminal connection.23 
Mical and Luck wrote the Boing demo as well as many AmigaOS libraries 
and tools on a high-end development computer known as the “SAGE IV,” 
manufactured by the small company Sage Computer.24 Like the Lorraine, 
the SAGE had a 68000 CPU and ran an OS known as “Idris” that was a sort 
of stripped-down version of the institutional Unix OS, also a major inspi-
ration behind AmigaOS. Because the SAGE used the 68000, it was pos-
sible to write a C program on that machine, compile it into an executable 
the 68000 that could run using a customized C compiler, and transfer it 
over to the Lorraine via a cable for execution.25

There is some confusion in the existing documentation of that Winter 
CES as to the exact state of the Boing demo when it was presented there. 
Quite a number of histories speak of the demo as being essentially in its 
final state there, and various interviewees who were present mention 
being able to hear clearly the booming noise of the demo from out on the 
show floor. Luck, however, stated in an interview that the version of the 
demo presented there had the ball bouncing only up and down, not left to 
right, as in the final version, and, further, that the demo had no sound at 
all at the time.26 I tend to accept Luck’s recollection; as one of the program-
mers of the demo, he certainly ought to know. Further, one wonders how 
the Amiga team would have been able to digitize the real-world sounds 
that were the source of the demo’s “booming”—a very cumbersome process 
in 1984—amid the confusion of CES. Certainly, though, both the sound 
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and the left-to-right motion had been added to the demo by the time it 
was presented (behind closed doors once again) at the Summer CES show 
in Chicago in June 1984. My belief is that those who speak of hearing the 
Boing demo in January are likely conflating memories of two separate CES 
appearances.

Whatever the state of the Boing demo there, Amiga’s Winter CES 
appearance more than succeeded in its main purpose of attracting favor-
able press exposure and, most important, moneyed interests to a company 
that desperately needed both. By the time the Lorraine and the Boing 
demo made their next appearance at Summer CES, two of the “big four” 
North American PC manufacturers of the time, Commodore and Atari, 
were deeply interested in acquiring the company and its technology. Atari 
injected some much needed funding into Amiga while negotiations pro-
ceeded and looked likely to win the prize as a result, but it was mired in 
complications of its own in the wake of the Videogame Crash of 1983 and 
was in the process of being sold by communications giant Warner to a 
private investment group headed ironically by Commodore’s recently 
ousted founder Jack Tramiel. A last-minute deal finalized on August 15, 
1984, therefore made Amiga a fully owned subsidiary of Commodore. 
Bitter recriminations and a fruitless lawsuit from Atari followed, but those 
issues were for Commodore’s management to deal with. Properly funded 
at last thanks to Commodore’s relatively deep pockets, the Amiga team 
could concentrate on packaging the mad scientist’s experiment that was 
the Lorraine into a mass-produced computer.

The Commodore Amiga 1000 that debuted in a lavish presentation at 
New York’s Lincoln Center on July 23, 1985, was not quite everything the 
team behind it had dreamed of. Like most commercial products that must 
conform to economic as well as technical realities, it contained plenty of 
compromises that were painful for its engineers to behold. Everyone 
agreed, for instance, that the machine’s standard 256 KB of random-access 
memory (RAM) was hopelessly inadequate, barely enough to boot the OS; 
users hoping to do any sort of real work (or play, for that matter) simply 
had to expand it to at least 512 KB. And the machine lacked internal expan-
sion slots; seriously expanded Amiga 1000s would inevitably end up 
looking almost as homemade and chaotic as the old Lorraine prototype, 
with peripherals daisy chained across the desk from the single expansion 
port. Nevertheless, the Amiga 1000 was a surprising product from Com-
modore, previously the producer of lumpy, almost endearingly unattract-
ive case designs such as the “breadbox” Commodore 64. By far the most 
stylish Amiga model that would ever be produced, the Amiga 1000 still 
looks sleek and attractive even today. And it bore, literally as well as 
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figuratively, the imprint of the unique personalities that had created it; on 
the top of the inside of its case were stamped the signatures of the entire 
team, including a paw print from Mitchie.

Virtually the entire Amiga team also attended the debut. And another 
old friend was there. Near the end of his presentation of the machine, Bob 
Pariseau introduced an “old standby,”27 the Boing demo, by now rewritten 
yet again to run politely under AmigaOS. When Commodore demonstrated 
the Amiga 1000 on the influential PBS television show Computer Chronicles, 
the Boing demo was likewise in prominent evidence.28 In fact, the demo 
now had an additional appeal as a demonstration of AmigaOS’s multitask-
ing capabilities; demonstrators delighted in showing the ball bouncing and 
booming merrily away in one virtual screen, while one or more other pro-
grams ran in another. The Boing ball had by now become so identified with 
the Amiga that it very nearly became the machine’s official logo, even 
appearing on pre-release versions of Amiga hardware. One can clearly see, 
for instance, a Boing ball on the external floppy drive of the machine in 
Commodore’s official video of the Lincoln Center debut. Very shortly 
before the debut, however, Commodore suddenly decided to replace the 
Boing ball with a rainbow-colored checkmark that bore a strong resem-
blance to Commodore’s logos for its successful eight-bit machines such as 
the Commodore 64, thus situating the Amiga as a continuation of Com-
modore’s earlier efforts rather than as an entirely new creation.29

Before delving into the technical details of the Boing demo, I need to 
introduce (or reintroduce) the concept of binary representation because 
this concept is essential not only to understanding the material that 
immediately follows, but to understanding much of the technical material 
in this book. After that, I provide some foundational information on the 
way the Amiga creates its display.

Thinking Binary

As every beginning computer literacy student learns, computers are ulti-
mately capable of dealing only with binary numbers: a series of off-or-on 
switches, or bits, represented respectively as 0 and 1. In fact, these arrange-
ments of bits must stand in for absolutely everything stored in a com-
puter’s memory, whether numbers, text, other forms of data, program 
instructions, or even addresses of other locations in memory. For conve-
nience and simplicity, humans generally group these bits into larger units. 
The smallest of these units, representing eight bits, is the byte. A byte can 
store any unsigned number from 0 to 255, there being 256 possible com-
binations of the eight off/on switches that make up the byte; it can store, 
in other words, an eight-digit binary number.
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We can quickly convert a 68000-processor byte from binary to decimal 
by making use of table 2.1. We simply add together the decimal counterpart 
of each binary digit that is a 1. Let us consider the binary byte 00001011. 
We can find its decimal equivalent by calculating 8 + 2 + 1 = 11.30 Numbers 
larger than 255 can be represented only if we devote more bits to the task: 
“bit 8” representing the decimal value 256, “bit 9” the value 512, and so 
on. Two bytes (16 bits) taken together are frequently called a word and can 
contain any unsigned number up to 65,535; four bytes (32 bits) are called 
a long word and can contain any unsigned number up to 4,294,967,295. A 
bit sequence might also represent something other than a number. The 
American Standard Code for Information Interchange (ASCII), used by 
the Amiga and virtually all other small computers,31 encodes a unique 
byte-size bit sequence to every glyph in common English usage. The glyph 
A, for instance, is represented by the binary sequence 01000001, or the 
decimal number 65. ASCII thus provides a means of encoding text on the 
computer, with each character represented by a single byte. Program 
instructions are encoded in a similar way, using schemes specific to the 
microprocessor in use, with each bit sequence corresponding to a single 
assembly-language command.

A computer’s memory is indexed not by bits, but by bytes, with every 
single byte in RAM having its own unique address. These addresses, num-
bered from 0 to the limit of the computer’s memory, allow the OS and the 
programmer to keep track of what is stored where. Engineers and pro-
grammers generally try to align their data with word or even long-word 
boundaries for reasons of efficiency and simplicity, for microprocessors 
deal more quickly and efficiently with data aligned with these boundaries. 
Bytes are also grouped together in much larger units to represent the 
overall storage capacity of a computer or a subsystem thereof: 1,024 bytes 
equal a kilobyte(KB); 1,024 KB equal a megabyte (MB); 1,024 MB equal a 
gigabyte (GB); and 1,024 GB equal a terabyte (TB). Although commonly 
spoken of today, gigabytes and terabytes were of only theoretical import to 
Amiga engineers and programmers in the 1980s.

The Amiga’s Display System

Before, after, and during the Amiga’s debut, the aspect of it that received 
by far the most discussion was of course its remarkable graphical capabili-
ties. As all of the machine’s reviewers and promotional literature excitedly 
trumpeted, the original Amiga was capable of displaying 32 colors on 
screen at once from a palette of 4,096 colors in its low-resolution modes 
(320 × 200 and 320 × 400), and 16 colors from the same palette of 4,096 
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in its high-resolution modes (640 × 200 and 640 × 400). Further, users 
gradually discovered that the Amiga was also possessed of two more modes 
that could be used to place 64 or even all 4,096 colors on the same screen. 
Although these numbers might not sound overly impressive today, they 
were remarkable at the time. Apple’s massively hyped Macintosh, for 
instance, could display exactly 2 colors, black and white, and even the 
Amiga’s most obvious competitor, the Atari ST, was limited to 16 colors 
out of 512 in low resolution and 4 colors out of 512 in high resolution. The 
IBM PC, meanwhile, was saddled with the primitive 4-color Color Graph-
ics Adaptor (CGA) for nontextual displays.

With the previously given foundation in binary representation, we 
find that the Amiga’s color-selection process works in a fairly straightfor-
ward way. Each of the 4,096 possible colors can be described as a mixture 
of 3 primary colors: red, green, and blue, with the relative proportion of 
each defined by a number from 0 to 15. These numbers form the color’s 
“red green blue” (RGB) value. For example, pure white has an RGB value of 
red 15, green 15, blue 15; sky blue has a value of red 6, green 15, blue 14. 
Because each component can have a value from 0 to 15, each can be stored 
in 4 bits of memory; combined, then, we need 12 bits to store each color. 
Because it is easier for the CPU to deal with data aligned to word boundar-
ies, two bytes (or a word) are devoted to the storage of each color, simply 
leaving the extra four bits unused. These words are placed into a table of 
registers used by Denise, numbered (as is normal in computer applica-
tions) not from 1, but from 0 and ending at 31. (In cases where the current 
screen is configured to display fewer than 32 colors, the latter parts of the 
table simply go unused.) Let us say, for example, that we have stored the 
RGB value for tan—red 13, green 11, blue 9—at position 15 in the table. 
When Denise receives a request to paint a particular pixel with color 15, 
she accesses register 15 to learn that this register represents tan and 
therefore sends that color to the screen. A program is free to modify the 
color registers at any time. In our example, we could change all on-screen 
occurrences of tan to black very quickly by changing register 15 to red 0, 
green 0, blue 0. As we are about to see, the Boing demo made good use of 
exactly this property.

Table 2.1

Converting an eight-bit binary number to decimal

Binary Position 7 6 5 4 3 2 1 0

Decimal Value 128 64 32 16 8 4 2 1
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Before we can appreciate the specifics of the Boing demo, though, we 
also need to understand how this table of colors is used to build the image 
seen on the monitor screen. This concept is somewhat more challenging. 
Although the image obviously exists on the screen of the monitor used to 
view it, it also exists within the memory of the computer itself. The latter 
image is in fact the original of the image that is mirrored to the monitor 
and is changed as needed by the programs running on the computer when 
they wish to modify the image on the screen. On the Amiga, the area of 
memory representing the screen display is called the playfield, a legacy of 
the machine’s origins as a pure game machine. The playfield is translated 
into a signal the monitor can understand and painted onto the monitor by 
Agnus and Denise, working in tandem.

We can represent a 320 × 200 two-color display in memory using just 
64,000 bits, or 8,000 bytes. Each bit stands in for one pixel, 0 being the 
first color on the color table and 1 the second, and we simply work our way 
across and down the screen, one row at a time. This is called a one-bitplane 
playfield. Of course, such a display would not be the most aesthetically 
pleasing. If we wish to add more colors, we must devote more memory to 
the task. Devoting 2 bits to each pixel will allow us to encode each as 1 of 
4 colors, at a cost of (((320 pixels across × 200 pixels down) × 2 bitplanes) 
/ 8 bits per byte) or 16,000 bytes of memory; devoting 3 bits gives us 8 
possible colors at a cost of (((320 × 200) × 3) / 8) or 24,000 bytes. In its 
normal low-resolution modes, the Amiga can devote up to 5 bits to each 
pixel; in other words, it can generate up to a five-bitplane display, allowing 
each pixel to be any of 32 colors. These bitplanes are not, however, arranged 
together in a linear fashion; the Amiga is like all computers in that it 
hugely prefers to deal with data at least one full byte at a time, and writing 
and retrieving screen information in such odd quantities as just five (or 
for that matter three) bits at a time would be a huge performance bottle-
neck and programming nightmare. Each bitplane is stored separately in 
memory, and only when the time comes to send the display to the screen 
is the whole collection combined together by Agnus, one overlaid upon 
another. Each set of five bytes—one from each bitplane—encodes eight 
pixels. An example is certainly in order.

Let us imagine a 32-color screen as it is stored in the Amiga’s memory. 
Thirty-two colors requires five bitplanes. Let us further say that the fol-
lowing are the first byte of each of the five bitplanes respectively, begin-
ning with the first: 11101000, 11000001, 00011101, 01011110, 00011010. 
To determine the color for the first pixel on the screen, Agnus pulls the 
first bit from each bitplane beginning with bitplane 5 and ending with 
bitplane 1, resulting in the five-bit binary number 00011—or decimal 3 
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(figure 2.1). (In other words, bitplane 5 holds the most significant digit of 
the binary number, bitplane 1 the least.) Agnus passes that value to Denise, 
who looks in color register 3, finding there whatever RGB value was last 
assigned to it. Finally, Denise sends that color to the screen for that first 
pixel. The pair then repeats the process for the next pixel, albeit drawing 
the second bit from each bitplane, ending up with binary 11010, or decimal 
11, and therefore sending to the screen the color found in color register 
11. After working through all 8 pixels in this way, Agnes and Denise move 
on to the next byte of each bitplane. And they continue this process, 
working across the screen and downward, until the display is completely 
painted. Throughout, Agnus is the hand that guides the paintbrush, and 
Denise is the paintbrush that paints the image to the monitor screen.32

Although the original Amiga can process five bitplanes for 32 colors 
in its lower resolution modes, it can manage only four bitplanes and 16 
colors in its higher-resolution modes of 640 × 200 and 640 × 400. This 
limitation is purely one of system performance; Denise and Agnus simply 
cannot work through a five-bitplane high-resolution playfield fast enough 
to keep the monitor screen up to date. Four bitplanes, though, they can 
manage.

An alternative to the so-called planar method of screen representation 
employed by the Amiga is the much more intuitive chunky system, in which 
all of the bits needed for each pixel are grouped together; bits that do not 
line up conveniently with byte boundaries are simply left unused. (For 
example, representing a 32-color, 320 × 200 screen using a chunky system 
would require (((320 × 200) × 8) / 8) or 64,000 bytes—in fact, the exact 
same number that would be required to represent a 256-color screen of 
the same resolution.) Virtually all modern computers opt for the chunky 
representation.33 The Amiga’s designers chose a planar system in part due 
to considerations that no longer apply today. Memory at the time was 

2.1  The encoding of a five-bitplane pixel
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precious and expensive; the 37.5 percent total memory savings for a (for 
example) 32-color planar display versus a 32-color chunky display was 
vastly more significant than it would be today. The planar method also 
allows the creation of some impressive visual effects at limited processing 
cost through the manipulation of only one or some of the playfield’s total 
bitplanes rather than of the playfield as a whole. In fact, the Boing demo 
itself does this, as we are about to see. Set against these advantages, 
however, must be the planar system’s confusing memory layout, which can 
make many simple graphical programming tasks much more difficult than 
one thinks they ought to be. Jay Miner actually mentioned the choice of 
planar rather than chunky graphics as one of his major Amiga design 
regrets, although it is by no means certain that all of the programmers who 
took advantage of the planar system over the years would agree with him.34

Deconstructing Boing

Viewers looking at the Boing demo today may see a spare piece of digital 
art that is quite appealing aesthetically, but they may be hard pressed to 
understand why it stunned so many technically savvy show attendees. The 
key facet of the demo here is the sheer size of the ball. In an era when PC 
and game-console animation relied almost entirely on small, Pac-Man-
like sprites, the Boing ball, about 140 × 100 pixels at its widest and tallest, 
was absolutely, unprecedentedly enormous. Further, it moved about the 
screen with complete fluidity; no jerkiness or hesitation could be seen as 
it realistically gained and lost speed over the course of each bounce. Its 
appearance and motion are so realistic that many viewers today might 
simply assume it to have been rendered with a 3D animation engine such 
as those that are used for many modern videogames. Such engines, though, 
were hardly more than dreams in 1984.

The biggest surprise I encountered in my analysis of the Boing demo’s 
technical operation is its relative simplicity. Unlike later Amiga games and 
demos that rely on customized copper lists, hardware sprites, dual play-
fields, and other advanced wizardry, the Boing demo operates in a fairly 
basic way while still taking clever advantage of some unique properties of 
the Amiga’s hardware. It therefore provides an ideal subject around which 
to frame our first plunge into the technical details of an Amiga program 
in action. For this discussion, I am indebted to Antti Pyykko, who located 
and hosted an apparently early version of the demo executable that still 
has its debugging symbols, and to Harry Sintonen, who did an initial dis-
assembly of this executable and inserted some useful commentary. To aid 
your understanding of its workings, I have reimplemented the Boing 
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demo in a step-by-step fashion using the same techniques that Luck and 
Mical employed in the original. Doing so allows us to view and discuss 
each of its techniques in isolation as we gradually layer them upon one 
another. Video clips of each stage of the process are available on this 
book’s Web site, as are executables and C source code for those readers 
with the knowledge and interest to explore this subject in even greater 
depth. I encourage you at a minimum to have a look at the short clip of the 
original Boing demo in action, also on the Web site, before reading on.

Stage One: Ball

One of the first decisions the creator of a graphical demo must make—not 
only on the Amiga, but on most other computing platforms as well—is what 
combination of screen resolution and number of colors to employ. In the 
abstract, of course, a higher resolution is always better than a lower, as are 
more on-screen colors, because higher numbers in both categories allow 
the display of sharper, more natural-looking images and more on-screen 
detail. However, having more pixels and more colors on screen not only 
consumes more memory but also taxes computing resources in another 
way: the 68000 and the custom chips must manipulate that additional 
memory and must do so quite rapidly to achieve the appearance of realistic 
animation. Programmers of games and other graphically intense Amiga 
software in the 1980s therefore generally chose the lowest resolution and 
bitplane count that would yield acceptable results. For performance and 
other reasons, colors and resolution often had to be balanced against one 
another. The Amiga’s high-resolution modes, for instance, are limited to 
just 16 colors rather than 32, a considerable disadvantage that often out-
weighed their greater quantity of horizontal pixels. These considerations 
doubtlessly influenced Luck and Mical to choose the Amiga’s lowest reso-
lution of 320 × 200, with five bitplanes (numbered 0 to 4) for the machine’s 
normal maximum of 32 colors. This mode was the most commonly used 
by programmers of games and demos during the platform’s early years. 
Although an absurdly low resolution by the standards of today, it could be 
made to look more than acceptable by the standards of the Amiga’s day 
when constantly in motion and painted in plenty of bright, striking colors.

Although the Boing demo runs in a mode that allows 32 colors, it actu-
ally shows just 7. Luck and Mical were not being wasteful; they made good 
use of the registers available to them. For now, let us set aside bitplane 4 
entirely and thus deal only with color registers 0 to 15. As soon as the Boing 
demo begins, it maps these registers to the RGB values shown in table 2.2.

Having defined the color-register table, the Boing demo clears the 
playfield to the light-gray color in register 0 by filling all of the bitplanes 
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that make it up with 0s. Next, the ball itself is drawn into the newly blank 
playfield. A programmer working on the Amiga after it became an estab-
lished computing platform would most likely have drawn the ball in one 
of the many available paint programs, such as EA’s Deluxe Paint series (the 
subject of chapter 3), and then saved the image data for importation into 
her program. I in fact took this approach in re-creating the demo in prep-
aration for this chapter. However, applications such as Deluxe Paint did 
not yet exist in early 1984, so Luck and Mical were forced to do things the 
hard way, drawing the ball programmatically in the demo itself using trig-
onometry functions.

Stage Two: Rotation

Regardless of how the ball is generated, the encoding behind the ball is 
not quite what it appears to be when viewed on screen. Figure 2.2 shows 
two versions of the ball. The first version shows the ball as it normally 
appears, but in the second the ball’s normal color palette has been replaced 
with a new palette that consists of a series of unique, graduated shades of 
red and white. The actual data that form the image have been left com-
pletely unchanged.

Table 2.2

The Boing demo’s initial color-register table, colors 0 through 15

Color Register Red Value Green Value Blue Value Resulting Color

0 10 10 10 light gray
1 6 6 6 dark gray
2 15 0 0 red
3 15 0 0 red
4 15 13 13 reddish white
5 15 15 15 white
6 15 15 15 white
7 15 15 15 white
8 15 15 15 white
9 15 15 15 white
10 15 15 15 white
11 15 0 0 red
12 15 0 0 red
13 15 0 0 red
14 15 0 0 red
15 15 0 0 red
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These images illustrate that what appear to be fairly large, solid blocks 
of color are actually not encoded as such. Each of the checks making up 
the ball is actually divided into six narrow slices, with each slice given over 
to a separate color number. The checks appear to be monolithic blocks of 
colors because the colors encoded into each of those registers happen to 
be the same. The ball thus uses 14 color registers, even though those 14 
registers encode among them only three unique colors. It is on this fact 
that the ball’s rotation animation relies.

The rotation is generated without manipulating the playfield that con-
tains the image of the ball at all, but rather entirely by manipulating the 
color registers. The registers are cycled with every frame, thus changing 
the RGB values associated with the colors in the playfield, which itself goes 
unchanged. These changes produce the appearance of rotation and do so 
at minimal cost in system resources. Changing 14 color registers to gener-
ate each frame of the rotation animation requires the 68000 to alter just 
28 bytes of memory, a fairly trivial amount even in the 1980s and vastly 
less than would be required to manipulate the playfield itself. Although 
the ball appears to move, a closer representation of what is actually hap-
pening internally can be had by picturing waves of color moving over a 
static surface. By frame 5 of the rotation animation, the color registers are 
as shown in table 2.3.

Only the first two registers, used for the background and the shadow 
of the ball, remain unchanged. The reddish white color that always occu-
pies just a single register (register 14 on table 2.3) is always placed at the 
border between white and red checks and creates an impression of motion 
blur in the view that makes the ball’s rotation look more believable. With 
frame 14, the color table is returned to its initial state to repeat the cycle 

2.2  The right-hand image of the Boing ball has had its normal pal-
ette replaced with a series of graduated hues of red and white
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again; thus, speaking in conventional animation terms, we can say the 
rotation animation is a repeating cycle consisting of 14 cells.

Stage Three: Bounce

We have now seen how one of the ball’s two motions is accomplished by 
taking advantage of certain properties of the Amiga’s display system. The 
second motion, the vertical and horizontal bounce, is implemented even 
more cleverly and once again while avoiding the difficult and expensive 
task of manipulating the contents of the playfield itself. Figure 2.3 illus-
trates the block of memory the Boing demo reserves as its playfield imme-
diately after starting.

This block of memory totals 40,824 bytes, with 9,072 bytes going to 
each of the four bitplanes and an additional 4,536 bytes filled with 0s 
going unused at the beginning of the block when the demo begins.

AmigaOS conceptualizes its display system’s view into the playfield via 
a software construct called a viewport. Contained within a viewport is a 
great deal of information about the current display and its relationship to 
the Amiga’s memory, among which are pointers to the address in memory 

Table 2.3

The Boing demo’s color-register table on the fifth frame of the ball-rotation 
animation, colors 0 through 15

Color Register Red Value Green Value Blue Value Resulting Color

0 10 10 10 light gray
1 6 6 6 dark gray
2 15 15 15 white
3 15 15 15 white
4 15 15 15 white
5 15 15 15 white
6 15 15 15 white
7 15 0 0 red
8 15 0 0 red
9 15 0 0 red
10 15 0 0 red
11 15 0 0 red
12 15 0 0 red
13 15 0 0 red
14 15 13 13 reddish white
15 15 15 15 white
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where each bitplane in the playfield begins. We might think of a viewport 
as a camera lens looking down into selected areas of the Amiga’s memory 
and transmitting what it sees there to the monitor screen. Picture a camera 
set up on a tripod; its initial facing direction, height, and zoom correspond 
to the information the programmer passes to AmigaOS when she first sets 
up her playfield. Like a camera mounted on a tripod, though, a viewport 
can be moved about even after “filming” has begun, by specifying an X and 
Y adjustment from its starting location. This feature was included to allow 
the programmer to scroll through playfields much larger than the actual 
monitor screen. In the Boing demo, Luck and Mical moved their camera 
up, down, right, and left as necessary, shifting the ball about within the 
frame of the screen and thus creating the illusion that the ball itself—
rather than the “camera” capturing the ball—was in motion. The technique 
is similar to those employed by many stop-motion-miniature and spe-
cial-effects filmmakers. By carefully arranging the memory allocated to 
their playfield, Luck and Mical minimized the amount of memory they 

2.3  The Boing demo’s display memory 
immediately after the demo starts
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needed. When the ball is at the extreme bottom of its vertical bounce, the 
block of playfield memory now looks as shown in figure 2.4.

The viewport has now moved upward fully 100 lines, or half of a 
screen, with the result that the ball now stands near the bottom of the 
frame. The importance of the extra 4,536 bytes of memory that were left 
unused before now becomes clear: if this buffer were not there—or not 
filled with 0s to yield a blank background—Agnus would interpret what-
ever data happened to be contained in the 4,536 bytes before the previous 
beginning of bitplane 0 as the first half of the contents of bitplane 0. The 
result would be ugly, random garbage on the screen. And if the bitplanes 
were not contiguous in memory, the results would be similarly undesir-
able. Mical and Luck therefore took pains in the initialization stages of the 
demo to make sure the bitplanes were contiguous, thus ensuring that the 
viewport, when processing bitplanes 1 through 3, captured only the blank 
regions that previously belonged to the bitplane above.

2.4  The Boing demo’s display memory 
with the ball at the bottom of its bounce
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As the viewport is moved up and down, it is also shifted left and right 
to yield the horizontal part of the ball’s motion. (To allow for this, each line 
of the playfield is 336 rather than 320 pixels wide.) The Boing demo once 
again accomplishes a seemingly complex animation in a way that places 
surprisingly little burden on the 68000 or even on the custom chips; 
changing the orientation of the viewport entails little more than changing 
a few numbers stored in a special area of memory, which define the view-
port’s current X and Y scroll as an offset from the playfield’s starting loca-
tion. And the actual contents of the playfield once again go completely 
unchanged.

Stage Four: Background

But there is of course a part of the playfield that does not scroll along with 
the ball in the finished demo: the latticelike background (figure 2.5).

This background exists in bitplane 4, which I have heretofore ignored. 
Each bit of bitplane 4 represents the most significant binary digit of one 
pixel of the five-bitplane display. Therefore, any pixel that contains a 1 in 
this bitplane must have a color in the range of 16 to 31. Look at the RGB 
values initially defined for this range of colors, shown in table 2.4. And 
consider this section of bitplane 4 shown as a collection of binary digits, 
as it exists in memory, shown in figure 2.6. The 1s here represent the lines 
of the grid, the 0s its absence. Now consider the possible results of com-
bining bitplane 4 with the other four bitplanes. Comparing tables 2.2 and 

2.5  The Boing demo frozen during execution
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2.4, we can see that the latter 14 colors in each range, those that are used 
to draw the ball itself, are identical. Thus, in the drawing of the ball, the 
presence or absence of a bit in bitplane 4 is effectively meaningless. A 
pixel containing either a 2 or an 18, for instance, will result in the same 
on-screen color red. The effect for the viewer, then, is of the ball overlying 
whatever exists in bitplane 4, obscuring it entirely. This important fact 
will remain true as long as these register ranges remain in synchroniza-
tion, which indeed they do throughout the Boing demo’s execution; colors 
18 through 31 are cycled in exact parallel with colors 2 through 15 to gener-
ate the rotation effect. Therefore, I was able to ignore bitplane 4 in the 
earlier stages of this reconstruction.

But of course colors 16 and 17 do not correspond with colors 0 and 1. 
These four registers are not cycled but rather remain constant throughout 
the demo’s execution and are not used to draw the ball itself but rather to 
draw the background. Nevertheless, registers 0 and 16 as well as registers 
1 and 17 are linked in other ways. Consider a pixel that when decoded 
through the first four bitplanes results in color 0, or light gray. If that pixel 
is set in bitplane 4, the result is 16, or light purple, the color of the back-
ground grid. A pixel that decodes through the first four bitplanes to color 
1, the dark gray used to represent the ball’s shadow, will similarly decode 
to a darker purple if the corresponding bit in bitplane 4 is set, 

Table 2.4

The Boing demo’s initial color-register table, colors 16 through 31

Color Register Red Value Green Value Blue Value Resulting Color

16 10 0 10 light purple
17 6 0 6 dark purple
18 15 0 0 red
19 15 0 0 red
20 15 13 13 reddish white
21 15 15 15 white
22 15 15 15 white
23 15 15 15 white
24 15 15 15 white
25 15 15 15 white
26 15 15 15 white
27 15 0 0 red
28 15 0 0 red
29 15 0 0 red
30 15 0 0 red
31 15 0 0 red
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representing the same shadow cast over a section of the grid. Bitplane 4 
thus can be conceptualized as existing somewhat independently of its sib-
lings, even though its appearance is of course affected by them. It is this 
independence that makes it possible to hold bitplane 4, the background, 
in place while its siblings, making up the ball, appear to move about. The 
adjustments necessary to accomplish this combination are once again 
made via the viewport structure.

In addition to panning over the playfield as a whole by adjusting a 
viewport’s X and Y scrolling numbers, a programmer can also manipulate 
a viewport on a more granular level by adjusting the pointers that define 
the beginning of each individual bitplane. After calculating the appropri-
ate X and Y scroll for the current position of the ball in its bounce, the 
pointer to bitplane 4 is readjusted to account for this scroll and effectively 
return the beginning of bitplane 4 to its original starting address. Thus, 
the background, encoded into bitplane 4, remains motionless while the 
ball appears to move. As you read the description of this process below, it 
is important to remember that what we conceptualize as a grid of rows and 
columns exists inside the Amiga’s memory only as an unbroken stream of 
bytes, 42 of which (336 pixels per line / 8 pixels per byte) make a single 
line on the monitor screen. Thus, to adjust a bitplane’s starting position 
upward by one line, we must subtract 42 from its current starting address; 
to shift it to the right by 16 pixels, we add 2 to the starting address.

Although relatively simple conceptually, the process is complicated by 
certain attributes of the Amiga’s display system. Adjusting a viewport’s X 
and Y scrolling values allows the programmer to move the beginning of 
the part of a playfield to be painted onto the screen to any arbitrary X and 
Y coordinate pair on that playfield. Directly adjusting the pointer that 
defines the start of a bitplane, however, is subject to more restrictions. 
Not only must the pointer begin on a byte boundary, but due to the 68000’s 
architecture, which makes it prefer to read from and write to memory two 
bytes at a time, the pointer must contain an even-numbered address. 

2.6  A snapshot in binary notation of part of the Boing demo’s bitplane



2	 Boing� [35]

Therefore, a programmer can horizontally adjust an individual bitplane 
using this method only in increments of 16 pixels, far too coarse for an 
application like this one. Luck and Mical’s somewhat memory-expensive 
solution to the problem was to create no fewer than 16 individual bitplane 
4s, each containing a background grid that is the same as its siblings 
except for one important detail: the grid drawn into each of these bitplanes 
is staggered one horizontal pixel over from the one drawn into the previ-
ous bitplane. The scrolling adjustment is then done in two stages: first, 
the appropriate member of the set of 16 bitplane 4s is chosen, accounting 
for the fine adjustment, and then that member’s pointer is adjusted to 
reverse the viewport’s X and Y scroll, accounting for the coarse adjust-
ment. An example may help to clarify the workings of the process as a 
whole.

Figure 2.5 shows the Boing demo at an arbitrary point in its execution. 
At this point, the ball has moved considerably from its initial state near 
the top center of the screen to a position closer to the bottom right. The 
viewport at this instant has an X scroll of -37, which has the effect of shift-
ing the view to the left 37 pixels and thus makes the ball appear to have 
moved to the right; and a Y scroll of -54, which has the effect of shifting 
the view upward 54 lines and thus makes the ball appear to have shifted 
toward the bottom of the screen. Note that this Y scroll is given in the 
opposite of normal mathematical notation, with numbers increasing 
rather than decreasing in value as they move downward on the Y axis.

Dividing the X scroll of -37 by 16 yields a remainder of -5; therefore, 
the program selects from among the 16 possible bitplane 4s the one whose 
grid is shifted 5 pixels to the left (or 11 pixels to the right) from the grid of 
the starting bitplane 4 used as the initial background. The needed bitplane 
happens to be located at address 225,032 in memory. However, this value 
cannot be simply inserted into the viewport as the starting point of bit-
plane 4; the X and Y scroll of the viewport means that doing so would result 
in an effective bitplane starting address of (225,032 - ((42 bytes of memory 
consumed by each line × Y scroll of 54 lines) - (X scroll of 37 pixels / 16 
pixel fine adjustment that is made through choosing the correct bit-
plane))), or 222,762. Therefore, the program instead places 227,302 into 
the viewport as the address of bitplane 4. When Agnus applies the X and 
Y scroll, the resulting effective starting point for bitplane 4 is 225,032.

This example and the numbers used in it of course represent just one 
frame of animation. For the next frame, the X and Y scroll of the viewport 
must again be adjusted as needed to reflect the appropriate next position 
of the ball in its bounce, and the correct bitplane 4 address must be cal-
culated and inserted into the viewport to continue the illusion of a single, 
nonmoving backdrop.
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Introducing Sound

I have now described how all of the visual elements of the Boing demo are 
accomplished, but there remains another component to discuss, one that 
is responsible for much of the demo’s impact: the booming sound the ball 
makes as it bounces off the screen’s “walls” and “floor.” Just as explaining 
the visual elements of the demo required that I first provide some general 
background information on the Amiga’s display system, explaining its 
audio elements must first entail an explanation of computer sound gen-
eration in general and of its specific implementation in the Amiga, where 
it, along with certain other more mundane tasks related to device manage-
ment, falls to Paula.

The generation and storage of sound on a computer are a complex 
subject about which plenty of books much larger than this one have been 
written. A few basic concepts should suffice for our present purpose. What 
the human ear perceives as sound is a repeating cycle of air-pressure 
variations that travel to it through the atmosphere. These variations can 
be graphed as a series of waves showing changes in the sound’s amplitude 
(or volume) on the Y axis over the course of time, which is represented by 
the X axis. A sound can be recorded and stored on a computer for later 
playback by sampling a sound wave’s amplitude many times per second and 
storing the result as a series of numbers, a process performed by a special-
ized electronic component known as an analog-to-digital converter (ADC). 
Two principal factors dictate the fidelity of the resulting recording to its 
source: the sample rate, or number of discrete samples taken per second, 
and the sample resolution, or the range of possible amplitude values. The 
latter is often given in bits; an eight-bit ADC, for instance, encodes each 
amplitude as a number between 0 and 255. In the case of both sample rate 
and resolution, higher is obviously better in terms of sound quality, albeit 
also more taxing on computer-processing power and storage. Multiple 
channels of audio can be encoded together, to be played through separate 
speaker channels or blended together into one. A CD, for instance, is 
recorded and played back at a sample rate of 44,100 samples per second, 
using 16-bit resolution, in two channels (for stereo sound). Digitally 
encoded sound is ubiquitous in the modern world, being found not only 
in computers and CDs, but in all manner of other consumer devices, from 
cellular phones to televisions to portable music players such as the Apple 
iPod. The Amiga, though, appeared at a time when the audio world was 
still largely an analog one, with CD players still a new, pricey technology 
embraced primarily by audiophiles.

Connected to Paula are four channels for sound output; this means 
that she can play up to four sounds at once, whether they be synthesized 
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tones or digitized samples of real-world sounds. Each of these channels 
houses an eight-bit digital-to-analog converter (DAC), a device that, as its 
name implies, performs the opposite function of an ADC in converting a 
string of digital numbers into analog voltage fluctuations to be sent on to 
an amplifier and from there to a speaker. The Amiga does support stereo 
sound; channels 0 and 3 go to the right stereo channel, 1 and 2 to the left. 
A programmer wishing to output the same sound to both speakers must 
thus send the sound simultaneously to two of the available four audio 
channels; no other facility for stereo mixing is provided. Playing a basic 
sound from a programming standpoint consists of filling a block of 
memory with eight-bit sample data and requesting that Agnus and Paula 
play said sample at a given sample rate through a given sound channel. 
They will then process the request autonomously; in a process akin to that 
of painting the display, Agnus fetches the sample data from memory and 
passes them to Paula one byte a time, who in turn passes them through her 
DACs and on to the external speakers. (Agnus plays the musical instru-
ment; Paula is the instrument.)35

Step 5: Boom

The sounds of the Boing ball hitting the “floor” and “sides” of the screen 
are digitized samples of Bob Pariseau hitting the outside of a closed alu-
minum garage door with a foam baseball bat. An Apple II computer inside 
the garage was used to digitize the sound as it reverberated through the 
enclosed space, yielding a suitably big and echoing sound.36 The right 
sound was found only after considerable experimentation.

Sound sampling technology was somewhat primitive in early 1984 but 
extant—although expensive. The exact details of the computing setup used 
to sample the sounds have been lost, but it is likely that the Amiga team 
used a hardware product called the DX-1 Effects II from Decillionix, which 
consisted of two hardware components, one to sample sound and one to 
play that sound back. (The latter component was imminently necessary 
because the Apple II to which the DX-1 was connected ironically had one 
of the worst internal sound systems of the early PC era.) Running on an 
eight-bit computer with as little as 48 KB of memory, the DX-1 was limited 
to recording extremely short, monophonic samples. It was not designed 
to be used to record and play back long sequences of sound in the manner 
of a conventional recording, but rather to furnish the programmer or 
musician with short bursts of sound, such as a single guitar chord or a 
thunderclap, that could be manipulated and incorporated into musical 
compositions or games. Although the Boing recording is rather lengthy by 
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DX-1 standards, Luck and Mical also indulged in some programmatic 
manipulation to stretch it even farther.

The sound data are housed in an external file that contains about 25 
KB of eight-bit samples. Because each sample occupies one byte, the file 
contains about 25,000 individual samples, each encoding an amplitude in 
the range of 0 to 255. The data are thus in the perfect format to be fed (via 
Paula) through one or more of the eight-bit DACs and on to external 
speakers. Although the DACs are fairly strict in demanding sample data in 
eight-bit format, the programmer has more flexibility with other aspects 
of sound playback. Most notably for our purposes, she is free to play the 
sample data back at any rate she desires. A sample played back at a lower 
rate than that at which it was recorded results in a sound that is deeper 
and longer than its real-world antecedent; a higher playback rate has the 
opposite effect. (The effect is the same as that of playing a vinyl record 
album at a lower or higher number of revolutions per minute than its 
specified rate—for example, playing a 33-RPM record at 45 RPM.) When 
the ball bounces off the floor, the Boing demo plays its samples at a rate 
of approximately 14,000 per second, resulting in a deep tone that lasts 
slightly more than 1.5 seconds; when the ball bounces off a wall, it plays 
the samples at a rate of 22,375 per second, resulting in a somewhat higher 
tone that lasts just more than 1.0 second. (The rate at which the samples 
were originally recorded is unfortunately unknown.)

Although the sample data themselves are monophonic, the Amiga’s 
stereo capabilities are nevertheless also used to good effect. When the ball 
bounces off the floor, the sound is fed simultaneously through two of the 
Amiga’s four sound channels, one on the right and one on the left, so that 
the listener hears it from both speakers; when it bounces off a wall, the 
sound is fed through only one channel, on the appropriate side. The sound 
programmer is also free to vary the relative volume at which she plays 
sampled sounds, and Luck and Mical took advantage of this freedom as 
well. The floor-bouncing sound is played at maximum volume, the side-
bouncing sound at about two-thirds volume. Luck and Mical were thus 
able to coax two distinct sounds out of the same set of sample data: a loud, 
dramatic, almost menacing sound when the ball hits the floor and a softer, 
shorter sound that emanates only from the appropriate speaker when it 
hits a wall. This difference contributes immensely to the sense of kinetic 
verisimilitude that is one of the demo’s most striking features.

None of this process is terribly taxing to the 68000 because Paula and 
Agnus do virtually all of the work of sound playback. When the viewport X 
or Y scroll reaches a limit and is about to begin moving in the other direc-
tion, playing the bounce sound requires of the 68000 little more than that 
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it request that sound playback begin on a given channel and supply some 
basic information: the location of the sample data in memory, the length 
of the sample data, the playback rate, the playback volume, and the sound 
channels to be used. Paula and Agnus then take over, leaving the CPU to 
focus on other aspects of the demo—or on other programs currently 
running. The fact that the demo as a whole does not unduly strain the 
hardware is one of its key attributes because this feature makes it ideal for 
running in tandem with other programs to demonstrate the Amiga’s mul-
titasking capabilities.

Lessons from the Boing Demo

As the first Amiga program that many future users ever saw, the Boing 
demo presaged a vast body of work that would follow from coders of Amiga 
demos, games, and creativity and productivity applications. It thus seems 
appropriate to end this detailed technical analysis of its workings with 
some higher-level precepts we can see demonstrated through those work-
ings—precepts that so many of the Amiga programmers who followed Luck 
and Mical would take to heart. These precepts are also worth remembering 
and thinking about as you read further in this book, for they will be dem-
onstrated in action again and again.

Effects can often be accomplished in unexpected ways that take good 
advantage of the machine’s design and even design quirks. Moving an ani-
mated object the size of the Boing ball fluidly and believably about the 
screen in the obvious, straightforward way would have been extremely 
taxing even for the Amiga, a computer with almost unprecedented anima-
tion capabilities for its time. By taking advantage of the Amiga’s viewport 
system, the workings of its palette selection system, and its planar graph-
ics system, however, Luck and Mical accomplished the same effect while 
taxing the Amiga’s hardware resources fairly minimally. Indeed, one of the 
factors that made the Boing demo such a favorite of marketing in the early 
days was that it left enough of the machine’s horsepower unused that the 
demo could be shown running in parallel with other tasks, thus demon-
strating in one shot not only the Amiga hardware’s graphics and sound 
capabilities, but also AmigaOS’s multitasking capability. In short, the 
obvious way to implement a visual or audio effect is very often not the best 
way, at least when performance is an overriding concern.

Animation is about creating a perception in the viewer’s eyes, not about 
simulating reality. When one understands fully how the Boing demo oper-
ates, one must inevitably be impressed with the sheer cleverness of its 
implementation. Yet one perhaps also feels a bit disappointed when the 
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whole bag of sleight-of-hand tricks stands fully revealed, and one realizes 
that the machine is not quite doing what it seems to be doing. And I 
suspect that the privileged insiders who saw the demo at early trade shows 
would have been even more disappointed to learn that the Lorraine was 
not “really” performing the animation feats it seemed to be. Nevertheless, 
the attributes that Luck and Mical took advantage of are as much a part of 
the Amiga as its (for the time) powerful CPU or unprecedentedly fast 
memory-shuffling blitter. Luck and Mical’s only goal was to impress the 
viewer, not to simulate the physical reality of a bouncing soccer ball within 
the Amiga’s memory.

Visual and audio assets are precious and expensive and should be con-
served and reused wherever possible. By cycling the color registers rather than 
attempting to alter the appearance of the Boing ball in the playfield itself, 
Luck and Mical were able to reduce a 14-frame animation to just one. 
Similarly, they were able to use the same set of sound samples to create 
three distinct bouncing noises by adjusting the playback rate, volume, and 
stereo channel(s) to which those same data were sent. Such creative reuse 
of assets might never even occur to a programmer working on a modern 
machine, but on a machine with such limited resources as the Amiga it is 
sometimes essential. An Amiga programmer’s mantra might be: use as few 
assets as possible, and maximize what you do use.

Aesthetic qualities are as important as technical qualities. Countless 
demos and games eventually followed Boing, many of them vastly more 
impressive in their technical sophistication, but few had anything like the 
same visceral or cultural impact. There is an elegance about the Boing 
demo’s spare simplicity and even about the relatively relaxed pace at which 
it runs that for many users came to symbolize the machine on which it ran. 
Boing stands up today better than many other more showy and manic 
Amiga creations. Luck and Mical did not just blunder into such a pleasing 
final effect, as is demonstrated by their spending a great deal of time and 
energy to find just the right sound for the bounces. The Boing demo is 
certainly interesting and pleasing technically for those with the knowledge 
and desire to peek behind the curtain, but it is also interesting and pleas-
ing aesthetically for the casual viewer, even one with no technical interest 
in it or knowledge about its place in computing history.

One must on occasion do things the “wrong” way to achieve the desired 
results. Boing flagrantly breaks the rules of “proper” AmigaOS program-
ming and does so repeatedly. Luck and Mical often bypassed the OS 
entirely to poke and prod at the innards of the Amiga’s display system, 
manipulating with abandon the color registers and many details of the 
current viewport configuration. Their constant changing of the pointer to 
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bitplane 4—done behind the OS’s back, as it were—would elicit horror 
from most systems programmers. Commodore’s official series of pro-
grammer’s bibles—documentation to which Luck and Mical actually con-
tributed—is filled with admonitions against exactly these sorts of 
practices.

A Computing Icon

As time went on, the Boing demo was inevitably replaced in Commodore’s 
promotional efforts by other more flashy and impressive demonstrations 
of the Amiga’s audiovisual capabilities. Even as this happened, though, 
frustration was steadily mounting within the Amiga community at Com-
modore’s perceived mishandling of and lack of respect for the Amiga and 
its original creators. Many perceived Commodore to have plainly demon-
strated its shortsightedness in 1986, when it made the decision to close 
down Amiga’s California offices, effectively fire the entire visionary Amiga 
team, and bring all future Amiga engineering to an in-house group accus-
tomed to working only on simpler eight-bit machines such as the Com-
modore 64. Others would point the accusatory finger to an even earlier 
point, focusing on Commodore’s ham-fisted early attempts to market the 
Amiga 1000, with the result that its cheaper but technically inferior 
68000-based rival the Atari ST, which had been put together quickly at 
Atari when the company realized it would not be able to get Amiga’s tech-
nology, gained the initial upper hand in hardware sales and software 
support. To the hardcore Amiga faithful, the Boing ball became a symbol 
of the original, pure vision of the Amiga that predated Commodore’s clue-
less interference. From their perspective, Commodore’s last-minute 
decision to replace the Boing ball with the rainbow-colored checkmark as 
the official Amiga logo thus took on a deep symbolic significance as the 
first step in Commodore’s dilution of the Amiga vision. Some Amiga fans 
went so far as to re-replace the checkmark logo on their machines with 
the Boing ball, and Amiga stores did a thriving business in T-shirts, coffee 
mugs, hats, and other merchandise sporting the Boing ball rather than the 
official checkmark. Boing balls also turned up in countless Amiga-created 
pictures, animations, demos, and even games in what public-domain 
software distributer Fred Fish referred to as the “boing wars” in his notes 
for Fish Disk Number 54.

After Commodore’s 1994 bankruptcy left the Amiga an orphan, the 
Boing ball assumed if anything an even greater importance to the dwin-
dling Amiga community, who continued to hold out hope for new Amiga 
hardware and a return to what now looked like the comparatively 
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successful golden age of the Commodore years. For them, the Boing ball 
came to symbolize this hope for a rebirth. Amiga, Incorporated, a new 
company with no relation to the first that went by this name, consciously 
attempted to evoke this hope when, having acquired the Amiga intellec-
tual-property rights, it chose a modernized version of the Boing ball as its 
official logo fourteen years after Commodore had rejected that image.

Amiga, Incorporated has enlisted various partners in its attempted 
revival of the platform, but its efforts have yielded only sparse fruit and 
little interest outside of the existing Amiga faithful. The Boing ball there-
fore seems destined to continue its gradual passage from a living symbol 
to a piece of computing history. Its place in the latter is, however, secure 
forever.



 

As badly as Commodore mismanaged the Amiga’s marketing and further 
development virtually from the moment it became available as a real 
product, the company’s actions in the months before that were often 
thoughtful and even clever. One of these actions was holding the splashy 
if expensive Lincoln Center launch party; another was to get a prototype 
or two into the hands of legendary pop artist Andy Warhol and to convince 
him to appear at the launch along with Debbie Harry, former lead singer 
of popular rock band Blondie. Warhol made a portrait of Harry using an 
onstage Amiga, first capturing her image using a digitizer and then manip-
ulating it with some simple patterns and flood fills. Although Warhol was 
obviously not completely comfortable with the machine and indeed had to 
be led by the hand through much of the act of creation by a Commodore 
representative, Warhol and Harry’s presence added interest to the launch, 
giving it a cultural caché that transcended a mere computer industry event 
and winning it coverage in places that would otherwise have ignored it, 
such as the mainstream New York magazine. The Lincoln Center party 
stands as an almost singular event in Commodore history, a rare bit of 
elegance and promotional style from a company that generally seemed 
clueless about its own image and aesthetics in general. But Warhol’s pres-
ence in particular was emblematic of more than just shrewd marketing; it 
reflected a real, deeply held belief in the Amiga as a new kind of artistic 
tool.

That is not to say, however, that Warhol himself always made the most 
convincing or even coherent spokesman. When AmigaWorld visited him at 
his studio shortly after the premiere, Warhol, doodling all the while with 
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apparent interest if not skill on an Amiga, answered the magazine’s ques-
tions disinterestedly and often monosyllabically. Only one subject seemed 
to truly interest him, and he came back to it again and again: how to get 
images onto paper looking as good as they did on the screen.1 We might be 
tempted to dismiss this fixation as simply a legendary eccentric being 
eccentric, but perhaps it should not be dispensed with so readily. For the 
same “creative issue,” AmigaWorld interviewed four respected contempo-
rary artists about the potential of the Amiga as an artistic tool, and the 
same concerns arose again. Paula Hible: “What gets me is what do you get 
for your trouble after this? You get this thin sheet of shitty paper with a 
printout on it. I don’t respond to that.”2 Warhol, Hible, and other artists 
might have been intrigued by the Amiga, but they nevertheless saw it as 
an adjunct tool to use in creating their traditional prints on canvas or 
paper. They were too trapped within their traditional artistic paradigms to 
recognize computers as a whole new medium of artistic exchange in their 
own right. Rodney Chang, the first Amiga artist to receive a listing in the 
Encyclopedia of Living American Artists, described the frustration of working 
in this new, not quite legitimate medium: “When I work on the monitor, 
I consider the work a completed piece in light; a first-generation image. 
The actual art is on the disk. However, to make a living at this, I have to 
produce a sellable hard copy. I can’t use a printer because the fine arts 
quality is not there.” One bizarre solution was to paint the image seen on 
the monitor using traditional oil and canvas, but, Chang stated, “that 
would make the monitor image only a design tool, even though I consider 
it the final product.”3 Such was life in this era as an art world whose values 
(and economy) revolved around physical “originals” struggled to come to 
terms with a medium defined in part by its reproducibility. Only years 
later would the advent of new-media art as a school of practice in its own 
right make monitor screens a common sight in galleries. Indeed, a 
common theme that emerged again and again in these early discussions 
of computer-created art was whether it is art at all, as if having its origin 
on a computer somehow invalidates the experience. The very question 
seems absurd today, as absurd as asking whether music created with the 
aid of synthesizers is still music, but such was the skepticism that still 
surrounded the idea of computer technology among all too many artists of 
the era.

To their credit, other authors writing in that unusually thoughtful, 
even philosophical issue of AmigaWorld do recognize the Amiga’s transfor-
mative potential. Vinoy Laughner stated that the screen, rather than being 
a mere mechanism for viewing art that must ultimately be captured on 
paper, opens up new visual possibilities of its own because of the way it 
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glows with light, and he noted that the Impressionists struggled end-
lessly—and never entirely successfully—with capturing exactly this quality 
of light while working with oil and canvas.4 And Scott Wright was down-
right prophetic in predicting a future where PCs would provide everyone 
with the ability to become personal artists in any of a host of mediums.5 
AmigaWorld continued to demonstrate its commitment to the Amiga as a 
visual-arts platform by featuring a gallery of Amiga-produced artwork in 
each of its early issues, certainly an audacious (if not bizarre) practice for 
a practical computer magazine.

In these editorial practices, AmigaWorld followed clues from the Amiga 
design team itself, who saw the artistic potential of their creation early. In 
fact, members of the team considered a paint program to be a software 
product that was absolutely essential to the Amiga’s identity, one that 
simply had to be available from the day the machine itself entered stores. 
When the work of the contracted third-party programmers of such a paint 
program proved underwhelming, OS (and Boing demo) programmer R. J. 
Mical himself devoted three precious weeks to developing the program.6 
The result, GraphiCraft, was indeed available from Commodore from day 
one. Although an acceptable enough initial effort, GraphiCraft would 
quickly be overshadowed by another program released just weeks later, 
this time from EA. Deluxe Paint7 quickly became the most commonly used 
Amiga artistic tool of all and retained that status through the next 10 years 
and five major revisions. By 1989, a magazine would be able to write that 
“every computer has one program that exemplifies its capabilities—Lotus 
1-2-3 on the IBM, PageMaker on the Mac, and Deluxe Paint on the Amiga.”8

Electronic Arts

EA is today among the largest and most conservative of videogame pub-
lishers and is often criticized for the dampening effect its predatory busi-
ness practices and seemingly endless strings of licensed titles and sequels 
have on the artistic vitality of the industry as a whole. In the years imme-
diately following its 1982 founding by former Apple marketing executive 
Trip Hawkins, though, EA could hardly have espoused a corporate phi-
losophy more different from its (apparent) current one. EA was, as its 
early advertisements idealistically announced, “a new association of elec-
tronic artists united by a common goal—to fulfill the enormous potential 
of the personal computer.”9 These EA artists placed themselves on the 
same level as such traditional artists as “writers, filmmakers, painters, 
musicians” and famously asked, “Can a computer make you cry?”10 EA 
treated its artists like rock stars; its games and other software were pack-
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aged in gatefold sleeves that resembled nothing so much as album covers 
and always featured photos and capsule biographies of the teams behind 
the creations. Its progressive vision reaped rewards for EA, at least in 
those early years, as many of its releases won not only lavish critical praise 
for innovation, but also major sales success.

In another clever early move, Commodore began giving specifica-
tions, development tools, and full-blown prototype Amigas to EA well 
before the launch party. Its generosity garnered great rewards: Hawkins, 
more than any other executive in the industry, saw the Amiga’s potential 
and made the highly respected EA the machine’s earliest and most enthu-
siastic supporter among software publishers. EA did important founda-
tional technical work for the Amiga during this pre-release period.

In the modern computing world, we take for granted that we can move 
data about from application to application and even between very dispa-
rate hardware devices, such as when we upload MP3 files from a computer 
to an iPod or similar player, or when we download photos from a digital 
camera into our desktop machine. This is made possible by the existence 
of stable, well-documented standards that define how various types of 
data should be encoded within files. Even the World Wide Web is depen-
dent on standards for page markup (hypertext markup language [HTML]) 
as well as for image-storage formats and, increasingly, video and sound. 
Such standards were largely absent in the computing world of 1985. Not 
only were file formats legion and undocumented, but many software 
designers deliberately obfuscated their data storage under the notion that 
doing so would lock users into using only their products.11 EA recognized 
that if the Deluxe line of creativity applications it was developing for the 
Amiga were to be true artistic tools rather than toys, artists needed to be 
able to share their work even with those who had not purchased the soft-
ware used to create it. Further, they should have the option of moving data 
freely from application to application: importing their Deluxe Paint pic-
tures into Deluxe Video to serve as the individual frames of an animation, 
for example, or moving real-world sound samples into Deluxe Music Con-
struction Set to serve as background effects or the basis of new instru-
ments. And if they wished to or needed to mix and match tools from 
competing companies to achieve their desired results, they should be able 
to do that as well.

EA’s Jerry Morrison therefore defined, implemented, and freely 
shared the Interchange File Format (IFF), a sort of container file that could 
hold images, sounds, music, animations, and even documents, all in a 
standard format. Prompted perhaps by IFF’s inclusion in Commodore’s 
own standard Amiga reference manuals, other developers quickly adapted 
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it, and it remained the standard throughout the Amiga’s lifetime.12 The 
flexibility that IFF brought in allowing an artist to move a project from 
application to application as necessary and to feel confident that other 
Amiga users could enjoy the project when it was complete was critical to 
the Amiga’s success as a serious artist’s computer. EA even allowed and 
encouraged software designers working on other platforms to use the IFF 
format, a harbinger of the standards-guided computing world of today 
where (for instance) both a Microsoft Windows machine and a Macintosh 
can read and edit many of the same data files.

A steady stream of EA products, both games and creativity applica-
tions, followed the first Amigas’ arrivals in stores in October 1985. The 
most important of these applications, Deluxe Paint (hereafter referred to 
as “DPaint”), was the creation of an “electronic artist” named Dan Silva.

Deluxe Paint I and II

The standard for paint programs had been set in 1984 by the revolutionary 
and massively influential MacPaint, written by Bill Atkinson and included 
with all early versions of MacOS. A host of clones of varying levels of 
quality followed it on virtually all platforms that could reasonably support 
such an application as well as on some that perhaps reasonably could not, 
such as the graphically primitive, mouseless IBM PC. In fact, MacPaint 
stands as one of the most influential programs of the PC era; the Paint 
application included with all versions of Microsoft Windows through the 
release of Windows XP in 2001, for instance, is itself little more than a 
slavish MacPaint clone, notable only for its addition of color and, more 
surprisingly, its lack of some useful features from the 1984 original.

A quick glance at DPaint, with its menu of pictographic icons repre-
senting real-world painting and drawing tools to one side, might lead one 
to believe that it was simply the latest of this string of MacPaint clones 
(figure 3.1). Unlike so many of its contemporaries, however, DPaint’s 
superficial similarity to MacPaint had more to do with a shared heritage 
than outright copying. MacPaint was like all of the Macintosh’s bundled 
software in that it took its initial inspiration from a visit by Apple’s Steve 
Jobs to Xerox PARC in late 1979.13 Silva, meanwhile, had also worked for 
Xerox, on its Star project, a pioneering effort that, although marketed as 
a document-processing workstation rather than a traditional computer, 
offered a GUI, a “what you see is what you get” on-screen document 
display, and effortless networking with laser printers and other worksta-
tions years before Apple debuted the same innovations in the Lisa and 
Macintosh. Inspired by an earlier program titled “SuperPaint” by Richard 
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Shoup of Xerox’s PARC,14 Silva designed an in-house paint program, 
Doodle, for the Star, which eventually became a part of the Star’s core 
systems software package.15 When Silva left Xerox in 1983 to join EA, he 
ported Doodle to the Microsoft Disk Operating System (MS-DOS) for the 
in-house use of EA’s development teams; this incarnation he named 
“Prism.” DPaint started as a simple port of this in-house tool to the Amiga, 
but it was such a natural fit for the machine that Silva and EA decided to 
develop and bring it to market as a commercial product in its own right.16 
It was released as such in November 1985, becoming one of the first com-
mercial applications available for the new machine.

Interface similarities aside, one need spend only a short period of 
time with MacPaint and DPaint to realize that they are very different in 
their capabilities and intent. MacPaint is wonderfully straightforward and 
easy to use, ideal for doodling or making quick sketches to be imported 
into MacWrite documents. Although DPaint can be approached in a similar 
way, it is deeper, richer, and, yes, more daunting; those who took the time 
to explore these qualities when it was first released were rewarded with 
the ability to create professional quality work by the standards of the 
Amiga’s day. DPaint’s origin as a practical tool for working artists becomes 
more and more evident as one spends more time with it, discovering 
thoughtful little touches born of hard-won experience. At the risk of 
stretching beyond the breaking point the real-world analogy upon which 
both interfaces rely, one might say that MacPaint is, in spite of its name, 
actually a drawing program, whereas DPaint is truly a painting application. 
In addition to its obvious capability to produce full-color illustrations, 
DPaint also offers a wealth of painterly tools for working with those colors, 
such as “smear,” “shade,” and “blend,” and allows the user to mix her own 

3.1  MacPaint and Deluxe Paint side by side.
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colors just as a painter does in her studio. MacPaint simulates a sketcher’s 
pencils and paper; DPaint simulates brushes, oils, and canvas.

Unfortunately, a number of glaring problems in DPaint I—such as a 
tendency to crash on Amigas with more than 512 KB of memory, the 
inability to choose a resolution mode other than through esoteric com-
mand-line switches, and a manual that essentially consists of (in the 
words of reviewer John Foust) “menus and a mouse, so go for it!”17—bear 
witness to a program that, for all its elegance and power, probably should 
have remained in development for at least another month or two. Most 
embarrassingly of all for a product from the company that defined the IFF 
standard, DPaint I makes many assumptions about the layout of IFF image 
files it attempts to load rather than properly parsing them, thereby reject-
ing or loading in corrupted form images from other applications that actu-
ally conform perfectly well to the IFF standard but merely implement it 
slightly differently.18 Silva and EA fortunately followed up with Deluxe 
Paint II within a year, which fixed all of these problems in addition to 
adding a modest slate of new features. Perhaps most notable of these new 
features were the “stencil” and “background” effects, which allow the user 
to mask off parts of the image from being affected by her changes, a pre-
cursor to the layers that would revolutionize image editing with their 
arrival on Adobe’s Photoshop in the early 1990s. It was in this form that 
DPaint truly entrenched itself as the most commonly used Amiga creative 
tool as well as a computer industry standard and benchmark. Virtually 
everyone using the Amiga for any sort of graphical design purpose—
whether in video production, game development, desktop publishing, 
photo processing, demo design, or just painting and sharing pictures—
owned and used DPaint. Thanks to the well-understood IFF, DPaint was 
even used to create the artwork for many games on other platforms, 
whether ports of Amiga originals or games that were not released on the 
Amiga itself.19

A DPaint artist, much more so than an artist working with a modern 
graphical application, becomes familiar—perhaps more than she desires—
with the underlying hardware running the application. She has, for 
example, exactly 32 colors to work with in lower resolutions (320 × 200 
and 320 × 400) and 16 in higher resolutions (640 × 200 and 640 × 400), 
paralleling the display hardware’s limitations. In order to make all possible 
colors available to the artist, DPaint draws the menu bar and interface 
gadgets in colors 0 and 1, whatever the colors happen to be. And when the 
user accesses the menu at the top of the screen, several colors in the palette 
are changed to bright, primary colors to ensure that the text there can be 
clearly seen, distorting any picture that uses those colors (figure 3.2).
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As soon as the user ceases working with the menu, the palette of 
course returns to normal. Another hardware-centric feature of DPaint 
echoes a technique used by Luck and Mical in the Boing demo. DPaint 
allows the user to create some simple movement effects by cycling the RGB 
values stored in the color registers, exactly as Luck and Mical did to create 
the Boing ball’s rotation. Although the technique is obviously a sharply 
limited one, it can be used to create the appearance of shifting shadows or 
rippling water—or for that matter a rotating soccer ball. This early proto-
animation presaged the much more sophisticated animation features that 
were to come in later versions of DPaint.

In many other places, though, DPaint’s use of its unique underlying 
hardware is elegantly abstracted from the user. Consider the screen that 
the user works with, containing the picture being worked on and the 
interface elements. It is, as expected, a single playfield stored and trans-
mitted to the monitor exactly as described in chapter 2. Nevertheless, a 
logical separation between the interface and the picture must be main-
tained; when the user saves her work to disk, for instance, she certainly 
does not want to include the interface elements in the image. And there 
is a further problem: users expect to be able to use DPaint to create artwork 
that completely fills the monitor screen, yet when they are developing the 
artwork in DPaint, the interface obscures some of that vital screen space. 
To solve these problems, the image being worked on is also stored—without 
the obscuring interface elements—in a separate playfield elsewhere in 
memory. We might think of this stored image as the master copy of the 

3.2  Deluxe Paint I displaying one of its most commonly used promotional pictures, of 
King Tutankhamen’s burial mask. A comparison of the left image with figure 3.1 shows 
that the colors of the interface elements vary with the palette of the picture being worked 
on, and the right image shows the distortions that occur when a few colors of the palette 
are changed to facilitate easy reading of the program’s menu bar.
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image, whereas the on-screen image is the working copy. When the user 
makes changes to the working copy, these changes are not only reflected 
there but also copied into the master copy. And when the user saves her 
work to disk, it is the master copy that is saved, not the working copy with 
the interface overlaid. To work with obscured areas of the image, the user 
has two options. First, she can temporarily remove all of the interface ele-
ments by hitting the F10 function key. When she does so, the master copy 
is copied over all of the interface elements in the working area; these ele-
ments are in turn copied back into the working area when she hits F10 
again. The user can also shift the picture horizontally or vertically using 
the arrow keys. When she does this, the master copy is copied back into 
the working area but shifted to reflect these manipulations. This feature 
became even more critical with the release of DPaint II, which permitted 
(for those computers with sufficient memory) pictures much larger than 
the physical screen, up to 1,008 × 1,024 pixels, giving the ability to make, 
for instance, a scrolling background for a game. (Unsurprisingly, a 1,008 
× 1,024 playfield is also the largest playfield that the Amiga hardware can 
support under any circumstances; thus, DPaint continues to parallel the 
capabilities and limitations of its underlying hardware in a very direct 
way.) An example may help to clarify this aspect of the program.

Let us say that we are working with DPaint II in its low-resolution (320 
× 200) mode. We decide to load from disk one of the lovely sample pictures 
that came with the program: Seascape, which also has a size of 320 × 200. 
When we do so, DPaint first loads this image into the area of memory 
reserved for the master copy. Next, most of this memory is copied into the 
playfield that Agnus and Denise use to construct the actual display we see 
on our monitor—the working copy. However, not all of the master copy is 
copied there, for DPaint ’s menu bar occupies the top 10 rows of the screen, 
and its toolbar occupies the rightmost 25 columns. Thus, the screen area 
left for the picture is just 295 × 190. The bottom 10 rows and the rightmost 
25 columns of the master copy are not copied into the working copy (figure 
3.3).

Now we decide that we wish to see the bottom and right edges of the 
image, so we use the arrow keys to shift the image all the way in those 
directions. When we have done so, other portions of the master copy—the 
top and the left—are no longer shown on the monitor screen, being stored 
in the master-copy memory area only (figure 3.4).

We can continue to shift the image as needed to view and make changes 
to any portion we desire. When we save our work to disk, the image stored 
as the master copy is of course used as the source, ensuring that its whole 
320 × 200 size is stored, without the interface elements.
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Silva’s design is an elegant one, but also one that would have been 
untenable on most computers because constantly copying such large 
blocks of memory can be a very taxing operation. The jerkiness or hesita-
tion that would have resulted on most computers would have been unac-
ceptable for a serious artist’s tool such as DPaint, where the user is so 
dependent on fluid feedback. Although MacPaint, for instance, used a 
similar technique, it could manage it only by working with the one-bit-
plane images that were all its black-and-white display hardware was 
capable of. And there is another problem to deal with beyond the simple 
copying of blocks of data. As I discussed in chapter 2, bitplanes on the 
Amiga must begin on an even-numbered byte boundary; if DPaint relied 
on simple block copying, then its user would be restricted to shifting the 
image horizontally only in chunks of 16 pixels, which is far too coarse for 
practical use. When the user’s manipulations do not line up neatly with 
bitplane boundaries, DPaint therefore transforms the playfield data as 
they are copied, shifting them left or right to make them line up with the 
appropriate boundaries. Again, this sort of manipulation is normally very 
expensive in CPU time. The Amiga, however, fortunately has a saving 
grace: the blitter.

Although initially designed to accomplish the fast playfield updates 
necessary for smooth animation, the blitter proved immensely useful to 
even a static paint program such as DPaint as well as to countless other 
applications. It is in fact a full-fledged coprocessor that lives inside Agnus, 

3.3  On the left is the Deluxe Paint screen as the user sees it; on the right is the master 
copy of the image being worked on, which is stored elsewhere in memory. Those parts 
of the master copy that are darkened are not copied into the screen that the user sees but 
nevertheless are still part of the image.
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albeit a very limited one, able to copy blocks of memory from one location 
to another as well as to perform certain specialized transformations on 
that memory in the process. Among these transformations are exactly the 
sort of shifting operations that DPaint requires. At its own specialized 
tasks, the blitter excels, being able to copy memory at a rate of one MB per 
second, fully twice the speed of the 68000. Transformations performed 
on memory as it is being copied, such as DPaint’s shifts, consume no extra 
time whatsoever.

The CPU passes the blitter a set of instructions and turns its attention 
to other things while the blitter carries out these instructions indepen-
dently. Each of these “work orders” is called a “blit.” When a blit is com-
plete, the blitter notifies the CPU and awaits further orders. In DPaint, 
then, the 68000 effectively turns over to the blitter the expensive task of 
keeping the master copy and work copy in sync, for the blitter performs 
these tasks far faster than the 68000 ever could.

There are other uses for the working copy/master copy scheme that 
Silva employed with the aid of the blitter. Perhaps most significant is 
DPaint ’s implementation of the Undo button, which, as its name implies, 
allows the user to reverse the change she has most recently made to the 
image. When the user makes changes to the working copy of the image, 
they are not immediately copied to the master; this happens only just as 
the user begins another operation or saves the image to disk. The master 
copy is thus usually one step behind the working copy. Should the user 

3.4  The left screen shows Deluxe Paint’s working area, and the right shows the master 
copy of the image being worked with. Once again, those parts of the master image that are 
darkened are not copied into the working area.
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click the Undo button, the two copies are swapped in memory via the 
blitter; the master copy becomes the working copy, and vice versa. And 
that is essentially all of the logic needed to implement “undo.” Let us 
imagine that we make a change to the seascape image we have been working 
with. This change now exists in the working copy, but not in the master 
copy. If we continue working and make another change to the image, the 
working copy as it exists just as we begin to make that change is copied 
into the master; our previous change has now become, in effect, a perma-
nent alteration. Meanwhile, the change we are now making is (again) 
reflected in the working copy, but not in the master. After looking at the 
change, we decide it does not agree with us, so we click the Undo button, 
and the two memory areas are swapped, erasing the change from our 
monitor screen. If we decide we would like to have our change after all, we 
can click Undo again, and the two memory areas will be swapped again. 
Our change—or our undoing of that change—becomes permanent only 
when we begin to make another change. All in all, DPaint Undo is a logi-
cally clean and elegant implementation of single-level undo, even if it 
does have its quirks; for instance, because both the master copy and the 
working copy are needed to effect the removal or replacement of the inter-
face elements that occurs when the user presses the F10 key, pressing this 
key effectively commits any changes, making undo impossible. And, of 
course, saving an image to disk also makes the most recent change per-
manent because the current working copy must then be copied over the 
master copy to ensure that the latest version of the image is saved.

DPaint also allows its user to work with two images simultaneously, 
switching between them via the Swap menu. This feature is immensely 
useful because it allows the user to copy and paste pieces of images, to do 
various blending and combining actions, and to match colors and palettes. 
The user can also copy her current work into the spare area before making 
major changes, thus keeping an original readily available if those changes 
should go wrong beyond the single-level Undo function’s ability to correct. 
Once again, this feature is enabled by the master copy/working copy 
scheme. Blocks of memory are reserved not for one master copy when 
DPaint begins, but for two. Only one of these copies is active at any time, 
however, in the sense that it is linked to the working area on the user’s 
screen. When the user swaps images, any changes to the current image are 
first committed by copying them into the active master copy; then the 
other master copy is made the active one, and it is copied into the working 
area. The only major drawback to this scheme is that the user cannot 
implement Undo after swapping images—another quirk she simply has to 
get used to.
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Deluxe Paint III

DPaint I arrived in late 1985 into a community of enthusiastic early adopt-
ers who expected the Amiga, so much better than anything that had come 
before, to remake the computing world in its image almost overnight. Not 
only did they expect it to revolutionize gaming and to become the first 
affordable computer to be a serious artistic and musical tool, but they also 
expected it to replace the stodgy, ugly IBM PC in offices around the world20 
and to cause even bigger problems for the vastly more expensive and vastly 
less capable Macintosh.21 Big players in the world of business software 
such as Borland and WordPerfect had, after all, already started developing 
their products for the Amiga.

By the time DPaint II arrived in late 1986, the faithful believed in the 
machine as strongly as ever but were justifiably worried about its future. 
The overnight revolution they had predicted had not come. The Macintosh 
soldiered on and had even begun carving out a successful niche for itself 
as a desktop-publishing tool; the business world remained either com-
pletely ignorant of the Amiga or scornful; and many software publishers, 
Borland included, had already canceled their planned Amiga products due 
to low Amiga sales and perceived lack of interest. Even in the games 
market, always Commodore’s forte, things had not worked out as expected 
for the Amiga; the cheaper Atari ST had won the first round there, with 
many more units sold and many more games available.22 In fact, only about 
100,000 Amigas in total were sold in that first year.23 Most blamed Com-
modore’s inept marketing department, which did not seem to understand 
the revolutionary nature of the machine it was promoting but rather traded 
in tired banalities that treated the Amiga as just another everyday com-
puter—albeit one expensive for home use and incompatible with most of 
the software used in the office.24 It is hard not to compare Commodore’s 
feeble efforts with the creative and inescapable media blitz with which 
Apple introduced the Macintosh in early 1984, not to wonder what Apple’s 
marketing department could have done with a machine like the Amiga. As 
it was, some wondered whether the Amiga had a future at all or was des-
tined to go down as a footnote in computing history, victim of an inept and 
financially unstable Commodore.25

The fact that a Deluxe Paint III eventually appeared in early 1989 is of 
course proof that these worst fears were not realized. Commodore made 
perhaps its single smartest move ever with the Amiga in 1987 when it 
replaced the Amiga 1000, elegant in appearance but too expensive for 
most home users and too impractical and unexpandable for many profes-
sional users, with two new models, the 500 and the 2000. Even in 500 and 
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2000 form, the Amiga did not conquer the world, at least not in the tan-
gible way its users in 1985 had so confidently predicted,26 but it did carve 
out for itself some relatively stable and even profitable niches. These two 
models in fact defined an odd split personality that persisted throughout 
the Amiga’s remaining lifetime. In its 500 form, the Amiga was the inex-
pensive game and home-hobbyist machine par excellence of its era, an 
identity driven home by its compact if hardly beautiful all-in-one case 
that looked like a sort of pumped-up Commodore 64. In its 2000 form, 
the Amiga was a serious, professional artistic tool used in a variety of 
fields, in particular video production. Although the 2000 also lacked the 
trim elegance of the 1000, its big case, similar in appearance to the IBM 
PC AT (“Advanced Technology”) of the era, accommodated a generous 
array of internal expansion slots for hard drives, processors, and memory 
as well as more specialized tools such as generator locks (genlocks) and 
frame grabbers. Neither machine fundamentally improved upon the tech-
nological capabilities of the original Amiga design, but together they did 
resituate the machine in the market in a more satisfactory way. And at least 
to a reasonable extent the market responded. Although the Borlands of the 
world would never give the Amiga serious attention again, 1987 through 
1990 were its best overall years in North America,27 years of huge excite-
ment and energy among the faithful and even of considerable if not 
breathtaking, commercial success; by early 1989, more than one million 
Amigas had been sold.28

A huge variety of creativity tools was available for the Amiga by 1989, 
with more appearing almost weekly. Remarkably in this fast-evolving 
market, the venerable DPaint II remained the standard tool for general-
purpose drawing, painting, and image manipulation. Although many 
applications had tried, none had yet equaled its combination of power and 
elegant ease of use—or, at least, managed to do so and also overcome 
DPaint’s entrenched status as the Swiss army knife of Amiga graphical 
tools. The belated arrival of DPaint III, written once again by Dan Silva, 
was therefore greeted with real excitement as a potential raising of the bar 
in this area. Silva did not disappoint. He had recruited a team of profes-
sional artists and animators making use of the Amiga in such fields as 
video postproduction and graphic design, and their input assured that the 
DPaint tradition of being a realistic, practical tool for working artists con-
tinued.29 In addition to its collection of new features and conveniences, 
DPaint III supported two special video modes that artists had been 
requesting for a long time, one involving colors, the other resolution: 
Extra-Half-Brite (EHB) mode and overscan mode.
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EHB mode was a last-minute addition to the Amiga, so last minute in 
fact that the first batch of Amiga 1000s produced did not support it at all; 
the users who purchased these machines were punished for their early 
adoption of the Amiga by needing to purchase the revised Denise and have 
it installed to gain access to the mode. Key to EHB mode is another capa-
bility given to Denise: the ability to process not just five but six bitplanes 
in low-resolution modes (320 × 200 and 320 × 400) only. In spite of this 
ability, the original Amiga’s color table is always restricted to a maximum 
of 32 entries. In EHB mode, Denise therefore makes use of bitplane 5 
somewhat differently than she does its companions. First, she processes 
the other bitplanes and the color table normally to derive the color for a 
pixel. Before sending the pixel to the screen, however, she looks at bit-
plane 5. If the bit she finds there is 0, she sends the pixel in the normal 
way. But if it is 1, she halves each of the pixel’s RGB values and drops the 
remainders. For example, imagine that the processing of the first five 
bitplanes and the color table result in an RGB color of bright red: red 15, 
green 0, blue 0. Denise then finds that the relevant bit of bitplane 5 is set 
to 1. She therefore halves all three values, resulting in red 7, green 0, blue 
0—a much darker, less intense shade of red. This shade, rather than the 
original, is then sent to the display. EHB mode thus allows 64 colors on 
the screen at once, with the significant detail that each of the last 32 colors 
corresponds to one of the first 32 at half-intensity (figure 3.5). Although 
this limitation obviously somewhat restricts the mode’s usability in many 
situations, for some common scenarios, such as the creation of shadows 
cast behind objects or letters, it is ideal. DPaint III even makes the cre-
ation of shadows and certain other effects in EHB mode easier through a 
special EHB brush that partially automates the process.

As the name “overscan” suggests, this area is the part of a screen image 
above, below, or to one side of its normal boundaries. Its existence on 
computers of the Amiga’s era is an artifact of television. Early televisions 
varied by a considerable degree in the size, shape, and proportions of the 
images they showed. These variances occurred even among examples of 
the same model and even within the very same television due to such 
factors as temperature, wear, and the precise voltage level of the house-
hold power. Even most cathode-ray tube (CRT) monitors are beset by 
similar—but far less extreme—variations, although most do offer controls 
to adjust them. The makers of early television broadcast standards thus 
stipulated an overscan area: a generous border around the screen on which 
nothing critical should be displayed, because some viewers may not be 
able to see it at all. Early computers, many of which were designed to 
operate with unpredictable televisions in lieu of specialized monitors, 
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generally had a generous border around their display, not only to ensure 
that even the user viewing their display on the oldest television could see 
absolutely everything, but also for aesthetic reasons; the border created a 
framing effect for the display and served as a slightly sneaky way to reduce 
the size of the low-resolution displays typical of the time, thus making 
them look less coarse and unattractive. In this characteristic, the Amiga 
followed the lead of its contemporaries, but it is unique in also allowing 
the programmer to turn off the border and extend the playfield to fill the 
entire display, thus increasing potential maximum resolutions as far as 
704 × 480, albeit with the understanding that some of the image may spill 
past the border of poorly adjusted or poor-quality displays. This increase 
is obviously useful in itself and was employed by plenty of game and appli-
cation programmers as a way of squeezing more detail onto the screen, but 
overscan mode is even more important in the video-production realm 
because the large borders around most computer displays of the time were 
unacceptable for professional presentations. The Amiga’s ability to elimi-
nate them was thus a godsend and a key to its success in this field.30 It is 
possible to create overscan-size images even in DPaint II; one simply 

3.5  Deluxe Paint III running in EHB mode, displaying all 64 possible colors. The top 
half of the image consists of the 32 colors defined in the color table; the bottom half con-
tains the “half-brite” equivalent of each. One can clearly see from this image how useful 
the mode can be to create shadows.



3	 Deluxe Paint� [59]

stipulates an image size equal to the size of the desired overscan mode, 
then pans around the image using the arrow keys. One can later view the 
image in its full-screen, overscanned glory using a separate utility or 
import it into an animation or video-production application that supports 
overscan. Yet being able to view an image in full size within DPaint III 
rather than guess at its final appearance was quite a convenience for the 
many artists and media producers who worked virtually exclusively in 
overscan mode.

If EHB mode and overscan were much appreciated features, they were 
also fairly standard features for Amiga creativity software by 1989, features 
that DPaint II had rather conspicuously lacked. Their inclusion in DPaint 
III was thus somewhat to be expected. The “killer feature” in DPaint III, 
however—the one that surprised everyone—was its capability to do 
animation.

It should not be difficult to imagine how animation might be produced 
on the Amiga without relying on trickery such as the cycling of color reg-
isters or the viewport manipulations of the Boing demo. Because the image 
on the screen is a copy of the playfield stored in the Amiga’s memory, 
repainted 60 times per second, changes introduced into that playfield will 
necessarily appear on the screen almost the instant they are made. It is 
therefore possible to produce the illusion of movement using the same 
principle of motion blur as does a film or a child’s flip book. And, indeed, 
DPaint III approaches animation in exactly this way. Its artist creates a 
series of still frames, each an individual picture of the sort she might have 
created with DPaint I or II. DPaint III, however, allows her to combine 
these frames to create animations. The technique, often called “page-
flipping animation,” is the same one used for the creation of cartoons 
since the dawn of film.

But even a brief animated production created using such traditional 
methods—for example, one of the classic shorts produced by Disney in its 
golden age—requires the efforts of dozens of artists and weeks or months 
of time, for every single frame of the animation must be laboriously drawn 
and colored by hand. By default, a DPaint III animation runs at 30 frames 
per second; drawing all of those frames one by one is clearly an untenable 
proposition for a single user. And, of course, even computerized imple-
mentations of traditional techniques must improve upon their inspira-
tions, or there is a little reason for their existence. DPaint III, however, 
provides its would-be animator with quite a number of tools to aid her in 
generating all of those frames. First and most obvious, the change from 
frame to frame in an animation is very small; the animator can therefore 
work by simply modifying the previous frame rather than continually 
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starting over from scratch. More surprising are the quantity and depth of 
tools DPaint III provides for automating the process of animation. The 
artist can select a section of a picture—known (rather oddly) in DPaint 
terminology as “a brush”—and request that specific transformations be 
performed on it over a number of frames of her choosing: it can be gradu-
ally moved, flipped, rotated, accelerated or decelerated, and so on. The 
artist can also create and place “animbrushes,” which are themselves made 
up of a number of cycling frames of animation. Using DPaint III’s other 
tools, one can create, for instance, an animbrush of a bird with flapping 
wings and then send it flying across the sky. Each frame of an animation 
created using such automated techniques is always accessible as an indi-
vidual picture, to be further modified by hand as necessary.

Silva faced quite a challenge in implementing such a system on the 
Amiga. His most obvious problem was memory. A single frame of even a 
low-resolution, 32-color animation occupies a little more than 39 KB; a 
single second of animation—30 frames—would thus seem to require more 
than one MB—a daunting amount at a time when the average Amiga owner 
probably had about one MB total in her entire machine. Granted, serious 
artists and animators were likely to have much more memory, perhaps as 
much as nine MB; but, on the other hand, such users were also much more 
likely to need to use the Amiga’s higher-resolution modes to create work 
that would look acceptable when transferred to video. And even vast amounts 
of memory could not overcome certain facets of the Amiga’s design.

Agnus is a direct memory access (DMA) device, meaning that it reads 
and writes directly to the Amiga’s RAM without passing its requests 
through the CPU. Having to do so would of course defeat Agnus’s key 
purpose of removing from the CPU the burden of having to process most 
graphical and sound data. This independence does, however, introduce 
considerable design complications, for under absolutely no circumstances 
can two devices access the same memory at the same time. Thus, during 
those times that Agnus is accessing memory—for instance, to send a play-
field through Denise on its way to the monitor screen or to send sample 
sound data through Paula on their way to the speakers—the CPU’s access 
to memory is blocked. Agnus in fact serves as a memory gatekeeper of 
sorts, allowing access by the CPU only when such access will not interfere 
with her own operations (figure 3.6). Because the design of the 68000 
series dictates that it will access memory every other cycle at most, the 
performance bottleneck is normally not huge; during the 50 percent of the 
time that the CPU does not attempt to access memory, Agnus has adequate 
time to perform her functions. That does not, however, always hold true: 
“There are some occasions though when the custom chips steal memory 
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cycles from the 680×0. In the higher resolution video modes, some or all 
of the cycles normally used for processor access are needed by the custom 
chips for video refresh.”31 Agnus was initially able to access—and to prevent 
the CPU from accessing—only the first 512 KB of memory, known as “chip 
RAM.” At the time of DPaint III’s release, Commodore was just beginning 
to distribute an upgraded version of Agnus, known as “Fatter Agnus,” that 
increased this number to 1 MB.32 Memory beyond these limits and there-
fore within the CPU’s exclusive domain is known as “fast RAM.”

The chip RAM/fast RAM divide has particular ramifications for 
graphical applications such as DPaint III because it means that data that 
need to be accessible to the custom chips, such as the playfield that Denise 
paints onto the monitor screen, must be placed within chip RAM, no 
matter how much additional fast RAM is available. Although fast RAM 
cannot be accessed by the custom chips, it does have another advantage, 
from whence it gets its name: the custom chips can never block the CPU 
from accessing this space, even during the most audiovisually intense 
operations. Thus, clever programmers and even users learned to segregate 
their data within the Amiga’s memory by their category, placing multime-
dia data in chip RAM and placing program code and other types of data in 
fast RAM, in this way keeping Agnus and the CPU from stepping on one 
another’s toes as much as possible. (This segregation, of course, assumes 
the existence of fast RAM; the original Amiga 1000, for instance, sold with 
only 256 KB of RAM total, rendering such distinctions moot until the user 

3.6  The Amiga’s memory scheme and Agnus’s role as “gatekeeper” to the chip RAM for 
the CPU
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decided to invest in some expansions.) As 68020-, 68030-, and 68040-
based Amiga models and accelerator boards appeared, these consider-
ations took on even more significance: these CPUs might run at clock 
speeds of 40 MHz or more, but they are forced to slow down to the 7.16MHz 
of the Amiga’s original 68000 when accessing chip RAM in deference to 
the still unaccelerated Agnus. When accessing fast RAM, however, they 
can make use of their full potential speed. Thus, on a seriously perfor-
mance-oriented Amiga, the more fast RAM the better because the goal 
must be to keep the CPU’s access to chip RAM to an absolute minimum.

But what of DPaint III, an application that, like so many on the Amiga, 
deals exclusively with the sort of multimedia data that would seem to 
require the intervention of the custom chips? Silva had to use some clever 
programming to take advantage of additional fast RAM while also making 
sure that data are available to the custom chips when they need it. Further, 
he had to find a way to store an animation in a more compact way than as 
a simple series of complete frames.

When the user works with any given frame of an animation, or, for 
that matter, when she simply works with a still image with no expectation 
of animating it, that frame is stored in DPaint III exactly as I have already 
described for DPaint I or II: as a working copy visible to the user and a 
master copy separate in memory. Further, the user still has available 
DPaint’s swap area where a master copy of another picture or frame may 
be stored for her to manipulate, whether separately or conjointly with the 
first picture. All of these playfields are stored in chip RAM, allowing Agnus 
and Denise to constantly paint the working copy to the monitor screen and 
allowing the blitter to make the rapid memory copies and transformations 
necessary to keep the copies in sync. The other frames of the animation, 
if extant, are meanwhile stored in fast RAM (if available), accessible to the 
CPU but not to the custom chips. When the user chooses to work with 
another frame, the master copy of the previous frame is moved into fast 
RAM by the CPU and then replaced with the new frame she has chosen to 
work with. The frames stored in fast RAM are not kept there as complete 
images; only the parts that changed from the previous frame are stored, 
with the necessary ancillary information telling the CPU where to apply 
these changes on the previous frame. The CPU can thus reconstruct an 
animation frame for editing by starting from the first frame and applying 
the subsequent changes until it arrives at the frame the user desires to 
edit. These calculations are the source of the usually brief but noticeable 
delay that often ensues when the user requests a new frame, particularly 
if that frame is deep within a lengthy or complex animation—for just as an 
Amiga artist must sometimes make compromises in choosing between 
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color depth and resolution, so must an Amiga programmer sometimes 
choose between storage space and processing speed. When the user is 
done working with a given frame, it is compared with the frame immedi-
ately previous, and the changes are recorded; the frame immediately fol-
lowing must of course also be updated. None of these abstract data 
manipulations requires the custom chips and thus can be conducted by 
the CPU in fast RAM.

Further complications arise, however, when the user wishes to view 
her complete animation because the frames must be generated quickly, 30 
times per second. Here DPaint III uses a technique known as double buffer-
ing. Two separate playfields are reserved in chip RAM. The first frame of 
the animation is generated into one of these playfields, and Agnus and 
Denise begin to paint it to the screen. As they do so, the CPU generates 
the second frame into the second playfield. On a North American Amiga, 
Agnus and Denise paint the currently active playfield to the screen 60 
times per second; therefore, when they have painted the first playfield 
twice, and the second frame is now ready in the second playfield, they are 
asked to begin painting this second playfield, and the CPU returns to the 
first playfield to generate the third frame. The user sees only smooth, fluid 
animation, with no jerking or tearing, and can be blissfully unaware of the 
work going on behind the scenes.

This process ironically illustrates some of the limits of the Amiga’s 
custom hardware, limits that were already becoming noticeable in 1989 as 
faster processors and larger RAM configurations were becoming more 
common. When playing back an animation, DPaint III makes no use of the 
blitter that is so useful for so many other graphical tasks, for the frames 
must be copied to chip RAM from fast RAM, an area the blitter is unable 
to access. The CPU must do all of the copying work, just as it would on a 
competing machine without a blitter. And even if the CPU is a 68020, 
68030, or 68040 running at 25 MHz or more, it must still slow down 
dramatically when actually writing data to chip RAM. An operation like 
this one, involving both chip RAM and fast RAM, is the worst of all sce-
narios, able to take full advantage of neither the blitter nor a more power-
ful CPU. To ensure that the frames are copied quickly enough for the 
animation to play smoothly, DPaint III must therefore disable any other 
programs that might be running and effectively take complete control of 
the Amiga for itself during animation playback.

A Deluxe Paint III Project

A very simple sample project illustrates how DPaint III’s innovative ani-
mation features work. The same project also gives me the opportunity to 
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show some of DPaint’s static painting features. The project’s basis is a 
tutorial written by Barry Solomon and published in the January 1990 issue 
of Amazing Computing. Solomon’s goal was to provide practical instruction, 
but I have quite different goals. I wish, first of all, to convey some of the 
experience of a working artist using DPaint for a real-world application; 
and, second, I wish to introduce or reinforce relationships between the 
operation of DPaint and the design of the hardware platform on which it 
runs. As with the Boing demo reconstruction in chapter 2, this section is 
best read in company with the supporting materials on the book’s Web 
site, which include a video of the finished product and, even more useful, 
a video of the construction process that I am about to describe.

The project is the creation of a very simple animated title. Postpro-
duction titling was one of the Amiga’s mainstay uses in video production; 
quite a number of specialized programs that performed only this function 
were on the market by 1989. For our simple project, though, DPaint III 
will more than suffice.

Just like a programmer coding a demo such as Boing, an artist working 
with an application such as DPaint must first of all decide what combina-
tion of resolution and bitplanes is appropriate for her work. And once 
again, although “as many as possible of each” may seem the appropriate 
answer in the abstract, increasing both the resolution and the bitplane 
count carries costs—in memory and, especially if we wish to do animation, 
in processing time. Therefore, the more appropriate real-world answer 
is, “As few of each as will allow me to achieve my goals.” In the Boing demo, 
Luck and Mical used the Amiga’s lowest resolution with the maximum 
number of easily manipulated colors; for this project, we will use its 
highest resolution, with just two bitplanes for a total of four colors. The 
Amiga’s high-resolution mode is an interlaced resolution, which is of 
critical importance for transferring our work to video (I discuss this factor 
in detail in chapter 5). We will also turn on overscan for a final resolution 
of 704 × 480. We will use overscan because we want to create the illusion 
of a title flying onto the screen from below it; this effect would be spoiled 
by a border.

The normal DPaint working screen now opens, with the default color 
palette that can be seen at the bottom right of figure 3.7. We now change 
these colors to ones more appropriate for our project by using the palette 
adjustment tool, which allows us to make adjustments using either the 
RGB model native to the Amiga or the “hue, saturation, value” (HSV) 
model developed by Alvy Ray Smith as a more intuitive alternative to RGB 
for DPaint’s distant ancestor SuperPaint at Xerox’s PARC;33 DPaint auto-
matically converts the HSV values to RGB. We use standard RGB values, 
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adjusting the four available colors respectively to red (red 15, green 0, blue 
0), white (red 15, green 15, blue 15), blue (red 0, green 0, blue 15), and a 
tinted green (red 6, green 15, blue 3). Changing these colors that are also 
used to draw the interface results in a rather ugly working screen, but we 
have to accept it.

At this point, DPaint still assumes that we are working with just a 
single image. We wish, however, to create an animation. We inform DPaint 
of this goal now, setting the frame count for our animation to 30. DPaint 
then proceeds to build our animation in fast RAM. The animation uses 
very little space there right now because only changes from frame to frame 
are stored there—changes that are in this case nonexistent because the 
animation consists of 30 identically blank frames.

The (still blank) image that was created for us when we started the 
program still remains in chip RAM and in our working area on the screen, 
but DPaint now understands it to be the first frame of a 30-frame anima-
tion rather than an image designed to stand alone. We wish, for reasons 
that will become clear, to edit a different frame—the very last one, in fact. 
When we jump to this last frame, a number of background transforma-
tions occur, transparently to us. The image we have just been editing is 
recorded in fast RAM as the first frame of the animation stored there. 

3.7  The Deluxe Paint III working screen with the palette adjustment gadget up. Note that 
due to our use of overscan mode, the program uses every bit of screen area.
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Next, the contents of frame 30 are calculated by invisibly paging through 
the animation, applying changes frame by frame. (In this case, again, 
those changes are nonexistent, making this process very quick.) And 
frame 30 is finally copied into the areas of chip memory reserved for our 
working and master copies and thus displayed on the screen for us to edit 
just like any other DPaint image.

DPaint III provides quite a variety of tools for drawing and painting 
on images or animation frames, many of which would likely be immedi-
ately familiar to you if you have spent any time at all working with modern 
painting or image-manipulation applications. We can, for instance, insert 
text into images in a typeface, size, and style of our choosing; draw simple 
shapes such as rectangles; perform color gradient fills; cut out sections of 
an image to place elsewhere; and add colored outlines to sections of our 
image. In fact, these capabilities are exactly the ones we will use to create 
a simple logo centered on the frame, as shown in figure 3.8.

Our goal is to have the logo we just created appear to fly in from in 
front of and below the screen. We might, of course, attempt to accomplish 
this effect by hand, laboriously repositioning and rotating the logo on each 
of our 30 frames. DPaint III provides a better way, though, allowing us to 
perform automated transformations of sections of the screen (figure 3.9).

3.8  The logo we wish to animate, which we have drawn into the thirtieth frame. 
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The Move function allows us to work either forward or, as in this case, 
backward, specifying where we want a section of our image to end up. 
DPaint then recalculates all of the affected frames of our animation to 
include the movement we have requested. Doing so is computationally 
intense and can thus take some time, particularly on a stock 68000-based 
Amiga model; the result, though, is a complete animation created with no 
further intervention on our part at all (figure 3.10).

Of course, the result is not breathtaking by any means. It does, 
however, provide a plausible foundation for a more ambitious project. 
Every individual frame of the animation remains always accessible as a 
static image. We can therefore further modify the animation at any level 
of granularity we desire, painting by hand in the frames or adding more 
automated transformations to some or all of the frames. We can also, of 
course, add more frames at any time to continue or precede the existing 
animation sequence.

If you have made use of modern two-dimensional (2D) animation 
applications such as the one found in Adobe Flash, much of what I have 
just described likely struck you as familiar. Indeed, Flash and DPaint III 
often operate in remarkably similar ways. If Flash offers features that 
DPaint III lacks, notably the options of using sound and layers, DPaint III 
can point in return to its rich library of painting and image-processing 

3.9  Deluxe Paint III’s Move requestor
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tools that have no direct equivalent in Flash. DPaint’s ability to stand 
alongside Flash and other modern animation applications without embar-
rassment is a remarkable testimony to Silva’s vision and technical finesse—
as well as, of course, to the Amiga itself.

Deluxe Paint IV

By the time of Deluxe Paint IV’s arrival in late 1991, the stodgy green-
screened IBM PC clone had finally disappeared, replaced by a new genera-
tion of “multimedia PCs” running Microsoft Windows and featuring sound 
cards capable of CD-quality audio, video graphics array (VGA) and Super 
Video Graphics Array (SVGA) cards capable of displaying hundreds of 
colors on screen at once, and, increasingly, CD-ROM drives capable of 
storing almost inconceivable quantities of music, video, or pictures. 
Against such monumental improvements, Commodore offered the new 
Amiga 3000 and 500+ with their Enhanced Chip Set (ECS) architectures, 
which included such welcome improvements as a full two MB of chip RAM 
and some new, extremely high-resolution video modes. These modes, 
however, were limited in their utility by their restriction to just four colors, 
and ECS otherwise offered only the most incremental of gains over the 
architecture Jay Miner and team had begun designing almost a decade 
earlier. Amiga loyalists might point to certain qualities that still set the 
platform apart, such as its multitasking OS, but for the first time the Amiga 
was clearly behind in a whole range of critical technical areas, many of 
them in its traditional strongholds, graphics and sound. Amiga publica-
tions from this period reflect growing justifiable concern and dismay over 
Commodore’s seemingly lackadaisical attitude toward research and devel-

3.10  Our Deluxe Paint III animation in progress. See this book’s Web site for a video of 
the animation in its complete form.
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opment. With a new generation of CD-ROM-based games beginning to 
appear for MS-DOS and Windows machines and a new generation of game 
consoles such as the Sega Genesis and Super Nintendo Entertainment 
System to compete with, the Amiga’s reputation as the ultimate game 
machine was fading fast, taking with it whatever general consumer cachet 
it had managed to garner, eating into sales of low-end machines, and 
sending many game developers scurrying for healthier platforms. Com-
modore had always ridden a financial rollercoaster, but it was now also 
bereft of the cushion of the virtually effortless revenue that the Commo-
dore 64, once seemingly evergreen but now dying at last, had generated 
for years. Now the bad quarters and accompanying management shakeups 
were no longer followed by better ones, only worse.

Thanks to capabilities that do not show up so well on a comparison 
chart as well as a library of powerful, professionally tested hardware and 
software adjuncts, the higher-end Amiga models nevertheless continued 
to survive and even thrive in various sorts of video-production applica-
tions. In fact, one can see the focus on this one remaining profitable niche 
becoming even more pronounced in the North American Amiga maga-
zines of this latter period, which at times read more like video-production 
journals than general-interest computer magazines. It is hard not to wax 
a bit wistful when contrasting Doug Barney’s February 1992 AmigaWorld 
editorial, which states that the Amiga is a “specialized machine” applicable 
only to certain purposes,34 with founding editor Guy Wright’s 1985 pre-
miere issue statement that the Amiga is nothing less than “a catalyst for 
the future of computing.”35 Still, without its specialized niche, the Amiga 
would likely have been dead already.

DPaint’s corporate parent, EA, was also in a very different situation 
in late 1991. Trip Hawkins had just left the company he founded to begin 
another, and with him departed the last vestiges of the old EA of rock star 
programmers, high-minded rhetoric, and the view that “we see farther”36—
all replaced by less visible leaders who instilled the pragmatic, conserva-
tive approach that stills marks the company today. The Amiga, the same 
machine to which Hawkins and EA had once committed themselves so 
strongly, was fading in prominence in the mainstream computer market 
and fast becoming little more than an occasional afterthought for EA’s 
game-development divisions. It is therefore a sign of the Amiga’s contin-
ued viability in certain artistic fields that EA developed yet another greatly 
expanded version of DPaint at this time just for that platform. DPaint IV 
offered artists yet more new painting and animating features, many of 
considerable power and sophistication. Once again, though, one new 
feature was discussed more than all the rest: its belated, oft-requested 
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support for yet another special Amiga graphics mode, Hold-and-Modify 
(HAM) mode.

Like EHB mode, HAM mode relies on Denise’s capability to process a 
sixth bitplane when drawing low-resolution screens, but it uses that sixth 
bitplane in a very different way. Here, only 16 base colors are defined in 
the color table, even though with six bitplanes we can actually store any 
number from 0 to 63 for each pixel. If a given pixel is less than 16, Denise 
simply places the appropriate base color from the color table there. If it is 
16 or greater, however, she uses this value to modify the color she has just 
previously output; from this process comes the mode’s name. If the pixel’s 
value is between 16 and 31, Denise will modify that color’s blue compo-
nent; between 32 and 47, the red; between 48 and 63, the green. In the 
first case, Denise first subtracts 16 from the value; in the second, 32; in 
the third, 48. She now has a number between 0 and 15, which she substi-
tutes in the RGB component of the previously output pixel as appropriate. 
Finally, this modified color is output to the screen and can be further 
modified by the next pixel if necessary. I can best illustrate how all this 
works in practice with an example.

The first pixel on the screen should always be a base color because the 
color modifications that give HAM mode its name need to start from 
something. (If this first pixel is not a base color, an error message or crash 
will not result, but the output will be unpredictable and undefined.) So, 
then, let us say that Denise, after combining the six bitplanes to derive the 
first pixel, ends up with the number 5. Seeing that this number is less than 
16, she takes it as a base color and turns to the color table. There, she finds 
that color 5 equates to a dark shade of purple: red 7, green 0, blue 7. She 
therefore outputs this color to the monitor for the top left pixel. As she 
moves to the next pixel, the six bitplanes decode to 55. Because this 
number is greater than 16, Denise knows that she must modify the color 
previously output rather than use the color table. Further, she knows from 
the fact that the number is between 48 and 63 that she must modify the 
green component of that color. She therefore subtracts 48 from the 
number, yielding 7, and substitutes that number for the green component 
of the color just previously output. The end result is red 7, green 7, blue 7: 
a neutral gray. Denise sends this color to the screen for the second pixel 
and continues on. The third pixel might contain a value that further modi-
fies the gray she has just output, or it might contain another of the base 
colors. It might even contain a 23, 39, or another 55, numbers that would 
“modify” the previously output pixel to arrive at the exact same color.

Although HAM mode has the potential to display every one of the 
Amiga’s 4,096 colors somewhere on the screen, only about one-third of 



3	 Deluxe Paint� [71]

them are available for any given pixel due to this encoding scheme that 
favors—even to some extent requires—the gradual blending of shades 
rather than sharp transitions. This limitation can make the mode a very 
difficult one for artists and programmers to work with. Indeed, it is com-
pletely unsuitable for many applications. It is simply too awkward, for 
instance, to be of much use to game developers.

HAM was born of a long-standing fascination Jay Miner had with flight 
simulators. In investigating the design of the large commercial units used 
for pilot training, he discovered that their graphics operated on essentially 
the same principals I have just described. At this stage of the Amiga’s devel-
opment, it was still seen as primarily a game machine and thus likely to be 
connected to a television rather than to a monitor. Miner believed that the 
restrictions that accompanied HAM would not matter a great deal under 
this scenario because televisions lacked the ability to display sharp color 
transitions under any circumstance; adjacent pixels bleeding into one 
another was the norm there, as anyone with memories of early home-
computer or game consoles can likely attest. When it became clear that the 
Amiga would be a higher-end computer connected to a proper monitor, 
Miner regarded HAM as of little practical utility and requested that it be 
removed. However, as Miner himself stated, “The guy who was doing the 
actual drawing of the chip layout itself said, ‘If we take that off, it’s going to 
leave a hole in the middle of the chip, and we don’t have time to re-layout 
the whole chip to take advantage of that hole. So let’s just leave it in, and if 
nobody uses it that’s fine.’”37 This is a classic example of a platform design-
er’s failure to see the potential of his own creation as well as a very isolated 
instance of Miner’s vision failing him, for HAM mode proved to be critical 
to the Amiga, being well nigh perfect for at least one very important appli-
cation: the display of photographic images, which are made up of just the 
sort of gradual color transitions around which HAM mode is designed.

To say that DPaint was late to the HAM party would be rather an under-
statement. The first HAM-mode painting programs, Photon Paint by 
MicroIllusions and Digi-Paint by NewTek, had appeared in 1987, and 
HAM mode digitizers, the forerunner to modern scanners and digital 
cameras, were on the market before that. For years, artists had clamored 
for the addition of HAM mode to DPaint, but Silva, perhaps unwilling to 
clutter his elegant, intuitive design with HAM’s fussiness, refused to 
accommodate them. Thus, DPaint, although always regarded as the best 
all-around Amiga paint program, always carried the implied asterisk, “as 
long as you do not need to work in HAM mode.” In the end, Silva never did 
give in and add HAM support; its existence in DPaint IV is likely due to 
the fact that Silva had left EA after finishing DPaint III, putting his code 
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into the hands of two other programmers, Lee Ozer and Dallas J. Hodgson, 
to be expanded.38

Painting in HAM mode can unquestionably be cumbersome. When 
HAM mode is activated, the simple palette at the bottom right of the screen 
becomes a complicated affair of multiple pages. Further, when painting in 
any but the first 16 primary colors, the artist will often find that the results 
are not quite what she expects. Because it can often take up to three pixels 
to transition completely from one color to another in HAM, she is likely 
to see her hard edges become a blurry mixture of tints, resulting in an 
appearance rather like that of an old or poorly adjusted television screen.

HAM mode is perhaps more useful for manipulating and adjusting 
images, in particular photographic images, than for creating them from 
scratch, for here DPaint IV’s suite of blending, stenciling, shading, and 
transparency effects truly come into their own. And HAM can be surpris-
ingly useful for solving other problems. For instance, artists working on 
the Amiga, like artists working on other platforms today, often wished to 
combine images or sections of images into one, something DPaint always 
encouraged and facilitated through its “Spare” picture area. Even so, the 
process is greatly complicated by color-palette considerations; if one 
wishes to combine parts of two 32-color pictures with nonidentical pal-
ettes, for instance, one must reduce the total number of colors used to just 
32, a tedious process that involves some painful compromises. With HAM 
mode, though, such combinations are much easier to accomplish, even 
though HAM’s unique restrictions also mean that the result will likely still 
not have complete fidelity to its originals (figure 3.11).

Even those who chose not to do their DPaint IV editing in HAM mode 
were in fact still using it, for Ozer and Hodgson also made use of HAM, 
along with certain other unique features of the Amiga’s hardware, on the 
color-mixing gadget used by painters working in all graphics modes. 
Figure 3.12 shows a low-resolution, 32-color image being edited in DPaint 
IV. The user has brought up the color-mixing gadget at the bottom of the 
screen.

The horizontal line of 32 colored boxes there show the colors used in 
the picture and therefore necessarily also used to draw the bulk of DPaint’s 
interface. The color mixer itself, though, is drawn in colors not found in 
this palette of 32—for instance, the greenish blue shades the user is cur-
rently working with within the mixer. The user can experiment with colors 
here as much as she likes, choosing to incorporate each one into the 
palette of the picture (and the rest of the interface) only when she has 
absolutely settled upon it. This feature for allowing experimentation is a 
nice improvement to the old mixer shown in figure 3.7, in which every 
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slight change was immediately reflected in the image and interface. But 
how is it accomplished, given the restrictions of the Amiga’s hardware and 
given that the picture itself and the main DPaint working interface are 
allowed only 32 colors? The answer lies with the other custom coprocessor 
housed within Agnus: the copper.

The copper—short for “coprocessor”— is like the blitter in that it is a 
full-fledged custom coprocessor capable of carrying out tasks simultane-
ously with the main CPU. That said, in contrast to even the blitter’s limited 
functionality, the copper is an extremely simple processor indeed; whereas 
the blitter can be programmed to perform a fair variety of memory moving 
and transforming tasks, the copper offers just three opcodes, or program-
mable instructions, to the programmer. As Commodore’s own system 
documentation says, however, “you can do a lot with [these instruc-
tions].”39 Only one of them actually does anything in the immediate sense: 
MOVE. Again as stated by Commodore’s documentation: “The MOVE 

3.11  Eight images from earlier versions of Deluxe Paint, all originally with very different 
color palettes, combined into one using Deluxe Paint IV’s HAM mode. The results are not 
perfect, but they are acceptable enough for many applications. Note also the gadget just 
below the color selection at the bottom right, indicating that this grid of 16 colors is just 
grid A of many grids available to the artist. However, because this grid represents the 16 
primary HAM colors, they are the only ones guaranteed to show up with perfect fidelity 
when the artist uses them.
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instruction transfers data from RAM to a register destination.”40 A register 
is a special location in memory that holds certain values critical to the 
Amiga’s operation. I have already used the term register to refer to entries 
in the color table, which consists of 32 registers, each defining one of the 
current RGB color values. Other registers are involved with disk access, 
peripheral control, and audio. Most, though, are like the color table in 
containing essential information about the current display. The copper, 
then, can alter these critical values independently of the CPU. This inde-
pendence may seem a useful convenience, but hardly earth shattering. 
The copper’s real value and power actually stems from another of its 
instructions, one that does not actually do anything at all: WAIT. WAIT tells 
the copper to go to sleep until Agnus has reached a certain position—
specified in horizontal or vertical coordinates or both—in her ceaseless 
scanning of a playfield and only then to continue to the next instruction 
in the program. Synchronization with the screen-painting process is in 
fact so critical to the copper that the program, called a “copper list,” is 
started again at the beginning of every paint.

One of the most often cited examples of the Amiga’s unusual video 
capabilities stems directly from the copper: the ability, still unique even 
today, to display multiple virtual screens of varying color depths and  
resolutions simultaneously on the same physical display. In my earlier 

3.12  Deluxe Paint IV’s color-mixing gadget
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discussion of the Amiga’s display, for the sake of simplicity I spoke of 
screens as monolithic, singular entries inside the computer’s memory. 
This description is not completely accurate. Like most modern comput-
ers, but unlike its contemporaries, the Amiga supports multiple virtual 
screens of varying resolutions and color depths.41 These screens are stored 
in memory using the encoding already described, but only the currently 
active playfield is actually painted to the display—again, just like on a 
modern computer. Under AmigaOS, these screens can be envisioned as 
being stacked one behind another. By grabbing a screen’s title bar with the 
mouse, the user can pull it down to reveal screens underneath it, even if 
those screens are of radically different resolutions or color depths (figure 
3.13).

When Agnus reaches a boundary between virtual screens in her 
relentless scanning of the playfield, the copper steps in to reconfigure 
various registers to point her to an entirely new playfield with its own 
resolution, color table, and so on. Agnus then continues to scan the 
remainder of the screen to completion—unless, of course, yet another 
screen is visible farther down, in which case the copper steps in again. 

3.13  An Amiga display showing two radically different virtual screens on the same phys-
ical monitor screen. The AmigaOS Workbench screen at the top is 640 × 200 resolution, 
with just four colors. The picture of the sports car is in overscanned 384 × 480 resolution 
and HAM mode.
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Before Agnus and Paula begin the painting cycle anew, the copper once 
again adjusts the appropriate registers to return Agnus to the uppermost 
screen. There is a significant limitation to the manipulation of virtual 
screens: screens can be dragged up or down and thus appear above and 
below one another, but they cannot be moved left or right to appear beside 
one another. Because the physical screen is painted left to right and then 
top to bottom, two virtual screens arranged side by side this way would 
require thousands of copper interventions per paint, a hopelessly taxing 
and unworkable situation.

The DPaint IV palette mixer is actually a separate virtual screen, as 
wide as the monitor but just 67 pixels tall. As a separate screen, it is not 
bound to the color or resolution of the main application screen; in fact, it 
always runs in HAM mode regardless of the format of the image the user 
has chosen to work with, thus giving her access to all 4,096 colors to mix 
and match and choose between, all without altering the palette of the actual 
image until she is ready. A very close look at figure 3.12 reveals the telltale 
traces of HAM. In particular, the colored boxes representing the 32 colors 
currently in use are not completely solid, but rather display the fringing 
typical of HAM at their borders, where they come into closest contact with 
the very different colors used to draw the mixer interface. However, HAM 
mode is almost ideal for much of the work that takes place on the palette 
mixer—the mixing of shades together to form new, blended hues.

Deluxe Paint IV AGA and Deluxe Paint V

The moribund Amiga platform received a tremendous shot of life in late 
1992, when Commodore introduced yet two more models, the 1200 and 
the 4000. Unlike their predecessors, these machines at long last repre-
sented a true next generation for the Amiga; two of the three custom chips 
were brand new, with Lisa replacing Denise and Alice replacing Agnus. 
These Advanced Graphics Architecture (AGA) Amigas offered a vastly 
upgraded suite of display modes, with horizontal resolutions potentially 
exceeding 1,200, vertical resolutions potentially exceeding 600, and a 
color palette numbering in the millions.42 These modes at last, in other 
words, brought the Amiga back at least to rough parity with most models 
of the Macintosh and Windows multimedia PCs, even if they were still 
lacking in some very significant respects that I address later. Although 
most Amiga users would agree that the AGA machines ideally should have 
appeared at least three years earlier, their belated arrival was greeted with 
an almost audible sigh of release by an Amiga community that had been 
deeply concerned by Commodore’s years of inaction.
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For all of its vastly improved capabilities, AGA was actually a fairly 
straightforward next step for the Amiga, expanding on the original archi-
tecture rather than revolutionizing it. The planar graphics system 
remained, but the new Lisa chip now allowed playfields to contain up to 
eight bitplanes, for 256 colors on screen at once, in virtually all of the 
standard graphics modes; and those colors were now defined via RGB 
values in the range of 0 to 255 rather than just 0 to 15, for no less than 
16,777,216 possible colors in lieu of the original 4,096. Of the special 
graphics modes, EHB was now largely unnecessary but remained in the 
new chip set as a legacy mode to support older software. The more signifi-
cant HAM mode, however, was in much stronger evidence; AGA features 
the HAM8 mode, the “8” referring to the number of bitplanes used in its 
creation. (The older HAM mode was thus retroactively renamed “HAM6.”) 
Not only does HAM8 mode use eight rather than six bitplanes, with the 
last two modifying the color contained in the first six in a way effectively 
identical to that of HAM6, but it can operate in virtually any of AGA’s avail-
able resolutions.

A revised AGA version of DPaint IV followed the 1200 and 4000 in 
fairly short order. EA’s continuing support of such a decidedly minority 
platform was perhaps encouraged by Commodore, who in these latter 
years began bundling copies of DPaint with many of its Amiga models. 
Although offering only a handful of other new features, this version sup-
ported virtually all of the Amiga’s AGA and legacy (now dubbed the Origi-
nal Chip Set, or OCS) color and resolution combinations.

As happened so frequently in the Amiga’s history, the new hope of AGA 
was immediately followed by the bitterest of disappointments. Commo-
dore desperately needed the mass-market-oriented Amiga 1200 in par-
ticular to be a successful heir to the Amiga 500’s legacy if the company and 
the platform were to remain viable. The company had for once done most 
of the right things, pricing the unit at an aggressive $599, which made it 
an attractive alternative to the pricier Windows and Macintosh machines 
of the era, and making sure it was ready in time for the all-important 1992 
Christmas buying season. Due to parts and manufacturing snafus that were 
a direct result of Commodore’s perpetually poor management, however, 
production slowed to a virtual standstill shortly after the new machine got 
off to a relatively promising start.43 There were vastly fewer Amiga 1200s 
available than there were consumers wanting to buy them, and sales of 
older models, still in plentiful supply, dried up as consumers now consid-
ered them obsolete and undesirable. Commodore’s sales for November 
1992 were actually higher than its sales for December, a phenomenon 
unprecedented in consumer electronics, and sales plummeted again in 
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January, falling off by another 70 percent.44 This period was, in short, a 
financial disaster for Commodore—the event that, more than any other 
single incident, sealed the company’s fate. Although Commodore would 
survive for another year, its financial situation became so precarious that 
it could do little but struggle fruitlessly to keep its head above the rivers of 
debt it had accrued. Further Amiga research and development came effec-
tively to a halt as the engineering staff was cut to the bone, and the 1200 
and 4000, greeted with such hope and excitement as a second wind for the 
platform, instead became the Commodore Amiga’s swansong.

It is surprising, therefore, that Ozer and Hodgson were allowed to 
continue to work on yet another version of DPaint even as Commodore 
sunk into insolvency and finally, in April 1994, declared bankruptcy, 
spelling the end of the Amiga as a viable, significant computing platform, 
at least in North America. DPaint V snuck out of EA in early 1995, the last 
product EA would release for the Amiga—appropriately enough, as DPaint 
I had been the first. DPaint V sported the usual variety of new features and 
thoughtful touches, most notably including support for the new 24-bit 
graphics boards that were becoming increasingly common among the 
Amiga diehards (and about which I have more to say in chapter 9). Released 
with no promotion or real interest by EA, DPaint V marked the end of this 
line of remarkable software that had been such a fixture and even symbol 
of the Amiga through the previous decade.

In the years that immediately followed, rights to the Amiga name and 
intellectual property changed hands several times, going to the German 
company Escom, then moving on to the American company Gateway 2000, 
and finally ending up in 1999 with the startup Amiga, Incorporated. 
Although the latter did license the Belgian software company Hyperion 
Entertainment to produce the first complete revision of AmigaOS since 
1992, a project that Hyperion remarkably managed to complete in 2006, 
new Amiga hardware is available today only in expensive, semiassembled 
kit form, and the sense of community that used to mark the Amiga now 
also lives in other, noncorporate=managed platforms such as Linux. And 
although old Amiga games remain popular to play via emulators such as 
the Ultimate Amiga Emulator (UAE),45 the number of people still using 
Amiga hardware for everyday computing would seem to be fairly minus-
cule, at least in comparison with the number of those who use other com-
puting platforms. Rumors of accounting irregularities and an obvious lack 
of financial resources dog Amiga, Incorporated, which was recently 
involved in an ugly lawsuit with former software partner Hyperion that 
raises serious doubts about future support for AmigaOS. Although hope 
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springs eternal among the Amiga faithful, the objective observer would be 
hard-pressed to construct an argument for the Amiga as a truly viable 
general-purpose computing platform either now or in the future. The best 
Amiga ideas have been so thoroughly woven into other, better-supported 
platforms that it can offer most users today little beyond the evocative, 
nostalgic name “Amiga.”

The Legacy of DPaint

It is difficult to express how different the computing world of DPaint I was 
from that of DPaint V. In the former, most people still regarded computers 
as mysterious, esoteric machines, with little of value to offer the serious 
artist; in the latter, almost everyone accepted them as essential everyday 
design tools in a multitude of fields. DPaint, in its quiet way somewhat 
akin to its creator Dan Silva, forced a significant portion of that transition 
until, like the platform on which it ran, the snowball it had begun to form 
overtook it under the guidance of companies better managed, better 
funded, and more visionary than Commodore. Throughout its lifespan, 
DPaint remained intimately connected to its host, many of its strengths 
and weaknesses mirroring the Amiga’s own, and its marketplace success 
and ultimate failure also symbiotically linked to the Amiga’s fortunes. 
DPaint’s evolution can be seen in the rich body of work created with it, as 
Rodney Chang noted in 1989: “I see my evolution as an Amiga artist going 
hand in hand with the improvements in the software. My work helps docu-
ment the progress the software makes.”46 And just as with the Amiga, 
DPaint’s legacy to the computing world is in evidence everywhere to those 
with the historical perspective to see it. Adobe Photoshop and the GNU 
Image Manipulation Program (GIMP), among many other applications, 
burst through the graphics industry doors first cracked open by DPaint. 
Even the term computer art, bandied about and debated so heatedly in the 
days of DPaint I, has ceased to be a useful signifier in today’s world, where 
much or most art is computerized in one way or another. Artist David Em 
noted as early as 1990 that “the computer has become another accessible 
tool, like a pencil.”47

Perhaps the most important artistic trend of the postmodern era has 
been a turning away from the ideal of the artist as a “pure” creator sitting 
down in front of a blank canvas to create something from nothing toward 
modification, recontextualization, and reclamation of existing materials. 
This trend is notable not only in the visual arts, but also in many other art 
forms as well—perhaps most notably music. Andy Warhol was at the fore-
front of this emerging trend in the 1960s, as illustrated by works such as 
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his iconic series of portraits of Marilyn Monroe, painted not from scratch 
but rather created from rather banal publicity shots of the actress. Those 
images are more refined than the hurried portrait of Debbie Harry that 
Warhol created on that Amiga at Lincoln Center, yet the final effect is not 
hugely dissimilar. Now consider how the images were created. Warhol 
described the creation of the Marilyn series thus: “In August 62 I started 
doing silkscreens. I wanted something stronger that gave more of an 
assembly line effect. With silkscreening you pick a photograph, blow it up, 
transfer it in glue onto silk, and then roll ink across it so the ink goes 
through the silk but not through the glue. That way you get the same image, 
slightly different each time. It was all so simple quick and chancy. I was 
thrilled with it. When Marilyn Monroe happened to die that month, I got 
the idea to make screens of her beautiful face the first Marilyns.”48 Warhol 
may have described the process as “quick” and “simple,” but how much 
quicker and simpler was it to create Harry’s portrait, done in a matter of 
moments on an Amiga and with the same element of chancy unpredict-
ability in the automated functions used to process it? It was in allowing 
the artist to combine and alter existing images easily, whether taken from 
the real world via a digitizer or from some other source, that DPaint and 
its many worthy competitors on the Amiga most obviously affected every-
day artistic practice. Warhol scholar Donna De Salvo writes that “more 
than any other artist of his generation, Andy Warhol understood how the 
reproduced image had come to reflect and shape contemporary life.”49 
What better way to “reflect” and “shape” that imagery than via a tool such 
as DPaint and its modern successors?

And yet, after looking at a large number of classic DPaint images in 
researching this chapter, I also found myself feeling a certain sense of loss 
about the path computerized art has largely chosen not to take. Most com-
puter-generated imagery today is either created computationally, such as 
in the 3D-modeling packages that have become so ubiquitous in the games 
industry, or is based on the manipulation and recombination of already-
existing images. The Amiga was a pioneer in both fields, as parts of this 
chapter and all of the next describe. Yet I also admire the work of classic 
Amiga artists such as Jim Sachs, who simply loaded up DPaint and created 
his works by hand using the painterly strokes seldom seen in computer-
generated visuals today. Many of DPaint’s painterly metaphors may seem 
quaint to the Photoshop professional of today, yet they evince a certain 
purity that has a charm all its own. Like so much of the best Amiga soft-
ware, DPaint is simply fun, inspiring many who would never have their 
work featured in a gallery or a game or a video production to load it up at 
idle moments to play, to doodle, to see what they could do with this thing. 
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One dedicated user called it “the greatest videogame ever devised” and 
frankly admitted to buying an Amiga just to run it.50 The days when the 
very existence of an aesthetically appealing image on a computer screen 
was cause for surprise, excitement, and (perhaps) concern are long gone, 
but this sea change merely makes some of the finest work done with 
DPaint—some of which can be seen on this book’s accompanying Web 
site—easier to appreciate on its own intrinsic merits. For a computer that 
was so celebrated for its visuals, the Amiga was such an appealing tool for 
artists paradoxically because the very quality of those visuals let, in Chang’s 
words again, “people see the art and not the computer”51 for the first time.



 

Behold the robot juggling silver spheres. He stands firmly on the 
landscape and gleams in the light. He is only a microchip phantom, 
yet he casts a shadow. You see his reflection in the refined orbs he so 
deftly tosses. He inhabits space, in a pristine computer’s dreamscape. 
Though he looks strangely real, he exists only in the memory of the 
Amiga.—Eric Graham, “Graphics Scene Simulations” (1987)

In November 1986, a time when the Boing demo was still considered an 
impressive demonstration of the Amiga’s capabilities, Commodore began 
distributing a new demo to dealers, electronic bulletin-board systems 
(BBSs), and public-domain software collections. This demo, known simply 
as “the Juggler,” had been written by a self-described “ex-astronomer and 
software developer living in the mountains of New Mexico”1 named Eric 
Graham. It consisted of a single looping animation of just 24 frames and 
less than one second’s duration that portrayed a toylike robot juggling 
three glass spheres while standing in a highly stylized environment con-
sisting of a checkerboard floor and a painterly blue sky. The animation was 
brief indeed and in many ways very simple—but it was also the most 
impressive demonstration of an everyday computer’s multimedia capa-
bilities that anyone had yet seen. And not only did the Juggler play on an 
Amiga, but it had also been entirely created on a standard Amiga 1000 with 
just 512 KB of memory. Many people’s first reaction to this information 
about the demo’s creation was simple disbelief. When Graham first sent 
the demo to Commodore, for instance, the staff insisted he must have 
rendered the images on a mainframe or specialized graphical workstation 
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and refused to believe in its veracity until he sent them the source code 
and tools he had used in its creation.2

Oddly enough in light of its stylized design, the Juggler demo impressed 
so much because it looked so real (figure 4.1). At a time when HAM mode 
was still imperfectly understood and of limited projected utility, the 
Juggler displayed its full potential for perhaps the first time. The robot 
stands amid the countless shades and gradients that mark a real environ-
ment as opposed to the solid blocks of uniform color that were the norm 
for computer graphics of the time. A light source glints off his metallic 
torso and casts a realistic shadow behind him, and, as the final coup de 
grace, each of the spheres is actually a mirror, reflecting back an appro-
priately distorted and ever-changing image of its surroundings as it flies 
through the air. The verisimilitude of the whole was astounding in its day 
and can still impress even today. Certainly no other PC of 1986 would have 
been remotely capable of displaying anything like it—thus, the Juggler’s 
prominent place in Commodore’s marketing of the Amiga.

In fact, the Juggler was easily one of the best promotional tools in the 
Amiga’s arsenal and likely sold more Amigas than the entirety of Com-
modore’s other confused and ineffectual promotional efforts combined. 
It became a fixture in the display windows of Amiga dealers around the 
world for years; as late as 1989, Victor Osaka first had his interest in the 

4.1  Eric Graham’s Juggler demo (1986)
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Amiga’s artistic potential piqued by a Juggler in the display window of a 
Software Etc. store in Los Angeles. “There was a colorful animation of a 
Juggler fashioned in sort of a ‘Michelin Man’ model,” he recalled.3 Osaka 
soon purchased the top-of-the-line Amiga of that year, an Amiga 2500, 
and became one of the most prominent members of the Amiga’s commu-
nity of artists. The Juggler also turned up in other, more surprising places, 
such as the 1987 video for the Tom Petty song “Jammin’ Me,” for which 
Graham received all of $100 and a copy of the video on tape.4 In the Amiga 
community, Graham became a veritable celebrity. Curiosity about the pro-
gramming techniques behind the Juggler was so intense that the glossy 
flagship publication AmigaWorld, never noted for its in-depth technical 
coverage, devoted a cover and a considerable number of pages to an expla-
nation of the demo’s creation and its implementation by Graham, with 
lengthy source-code extracts.

For all that, a discussion of how the Juggler demo actually plays can be 
dispensed with rather quickly. Unlike the Boing demo, which is generated 
programmatically as it plays, the Juggler consists only of a series of pre-
rendered animation frames and a utility to play them back. To save disk 
space and memory, these frames are stored using the same technique that 
Deluxe Paint III would later employ for its animations, with only the 
changes from frame to frame being recorded. These frames are likewise 
played back using the same double-buffering technique used by DPaint 
III and later editions, as described in chapter 3. Of course, the Juggler 
appeared two and a half years before DPaint III, when animation tech-
niques on the Amiga were still in their comparative infancy. Its superb 
implementation of page-flipping animation was therefore significant in 
itself and inspiring to many, quite possibly including Dan Silva.

But the truly revolutionary aspect of the Juggler demo is not how its 
frames are played back, but rather how those frames were generated in the 
first place. As Graham himself described the demo in early 1987, “This 
colorful automaton is not your everyday computer graphics robot. He 
wasn’t carefully rendered with a paint program, nor was his image cap-
tured by a video frame grabber from a picture or a model. He and his sur-
realistic world were ‘automatically’ created with a C program.”5

From 2D Painting to 3D Modeling

DPaint and programs like it are often referred to as either 2D paint pro-
grams or, perhaps more usefully, raster-graphics editors, the term raster 
meaning the grid of many pixels that make up a single image. (Raster and 
the Amiga-specific term playfield refer to essentially the same thing.) 
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DPaint has no understanding of the images its user creates beyond the 
color of these pixels. Although it includes many useful functions to aid the 
artist in drawing shapes and lines, filling areas with colors or gradients, 
and (particularly in later versions) even rotating sections of an image 
along three dimensions, its understanding of these tasks is strictly in the 
moment. As soon as the artist is done drawing a line using the built-in 
tool, for instance, that line is integrated back into the grid of colored pixels 
that form the image, with no independent existence. DPaint has no under-
standing of line as a concept from that point on, any more than it can 
distinguish Venus’s eye from her hair in one of DPaint’s most famous 
promotional pictures—or any more than it can understand the concept of 
Venus herself, for that matter. Venus exists to DPaint merely as colored 
points of light. The burden thus rests entirely with the artist to arrange 
those points to create a believable image of Venus, just as a conventional 
painter uses strokes of color on canvas for the same purpose. And like that 
painter, she can use the geometrical rules of perspective, well understood 
in the visual arts since the Italian Renaissance, to arrange those points of 
light in such a way as to create the illusion of three dimensions—of depth 
in addition to width and height—on the 2D monitor screen. Nevertheless, 
her creations remain to DPaint just a 2D grid of colored pixels. There is 
nothing else “behind” the image.

Now let us consider a very different way of creating an image on the 
computer, one in which the computer understands the shapes and objects 
that form the image as well as the environment in which they exist as 
distinct entities. In such a scenario, we can describe to the computer the 
details of these objects—their size, shape, material—along with certain 
other important details about the environment, such as the location, 
intensity, and shade of light sources and the location of the “camera” that 
will capture the scene. In effect, we are not creating an image, but rather 
a virtual reality, a universe to be simulated inside the computer. Our output 
consists of “photographs” of that universe that we have asked the com-
puter to take for us to provide us with our only visual window into it and, 
indeed, our only tangible evidence of its existence. To create one such 
photograph, the computer translates the model universe into a raster of 
pixels, a process known as 3D rendering.

Such an approach is inevitably much more demanding of memory and 
processing power than the alternative, not to mention requiring some 
unique technical skills of the artist who designs the universe being simu-
lated. But in return we stand to gain a great deal. For instance, we can 
quickly generate new versions of any given scene by changing the light 
source or sources, camera location, or the locations of an object or two in 
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our universe. Because we take into account the interactions of light with 
the objects in our universe, we can create scenes with a verisimilitude that 
would be almost impossible to re-create by hand, featuring realistic 
shading and shadows. If we set our objects in motion and make the camera 
that captures our universe a motion-picture camera rather than a single-
frame camera, this sense of realism becomes even more pronounced, as 
is shown so well by the Juggler demo. And finally, if we add an interactive 
element and at least a modicum of physical simulation, we can make our 
simulated universe one that can be truly lived in and manipulated by the 
viewer; this is the basis of many modern videogames.

Three-dimensional modeling was hardly a new concept even in 1986. 
In fact, its origin can be traced back to the early 1960s. Sketchpad, a 
program developed by Ivan Sutherland at MIT at that time, is generally 
considered the first interactive graphics-creation program and thus the 
first ancestor of DPaint, MacPaint, and the many other programs like 
them. The way that Sketchpad stores and displays its image data is, 
however, fundamentally different than the system employed by these 
raster-graphics editors. The shapes and other geometrical constructs that 
make up its images are stored not merely as a raster of pixels, but rather 
as individual objects. If a Sketchpad user creates a line, a square, and a 
circle, for instance, Sketchpad understands each of these shapes as its own 
unique entity: its location, its size, its line thickness, its rotation angle, 
and so on. Such a system is known as a vector-graphics system. Vector 
graphics are ideal for a program such as Sketchpad, which was designed 
not to be a tool for fine art with all its subtleties and irregularities, but 
rather to be (as its name would imply) a sketching or drafting tool for 
engineers. Because the program retains an understanding of the indi-
vidual components of the image, those components can be modified at any 
time: expanded or shrunk, stretched or squeezed, pulled from place to 
place, rotated along the X or Y axis. As changes are made, Sketchpad cal-
culates and “store[s] the locations of all the spots of a drawing in a large 
table in memory and . . . produce[s] the drawing by displaying from this 
table.”6 Sketchpad is, in other words, mapping its model environment 
onto raster-oriented display hardware, just as Graham would later do in 
translating his model universe into an animation.7 Sketchpad thus repre-
sents not so much the first painting program as the genesis of computer-
aided design (CAD) tools as well the origin of 3D modeling systems such 
as that used to create the Juggler demo and those that are omnipresent in 
computer graphics work in many different fields today. That said, if 
Sketchpad can be said to simulate a universe, that universe must be akin 
to that in Edwin A. Abbott’s Flatland, for the original program has no 
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notion of depth. Later research, however, much of it conducted by Suther-
land himself, remedied this problem soon enough. In the process, Suther-
land and other researchers invented many of the technologies, theories, 
and algorithms that still drive 3D graphics today.

This research was of limited initial utility for designers and program-
mers of early PCs due to those machines’ sharply limited memory, pro-
cessing power, and display hardware. Although remarkable early games 
such as Flight Simulator (Bruce Artwick, 1980) and Elite (David Braben and 
Ian Bel, 1984) took advantage of some of this research to showcase simple 
3D environments of their own, the first truly physically believable and 
aesthetically pleasing, albeit noninteractive, 3D universe to appear on a 
PC was that of the Juggler demo. The Juggler thus marks the point where 
the work of researchers such as Sutherland found a practical home on the 
PC. Indeed, Graham himself had been experimenting with 3D modeling 
for 20 years on large institutional computers by the time he purchased his 
Amiga and designed Juggler: “I always felt that computers were meant for 
more than just crunching numbers, first I thought in terms of physical 
simulations, then of course rendered images and virtual environments. 
There is always a sweet spot when affordable hardware becomes just 
capable of fulfilling a dream. The Amiga was that hardware and the Juggler 
took advantage of that moment.”8 Although the 68000 was a fairly power-
ful processor in 1986, other 68000-based computers were available. More 
important to the fulfillment of Graham’s dream was another, more unique 
element of the Amiga’s design: HAM mode, with its unprecedented 4,096 
available colors that allowed the subtle blending of shades and interac-
tions among light sources and objects that are key to rendering a realistic 
scene.

SSG

Graham created Juggler using a C-language program of his own devising, 
which he called “SSG,” most likely an abbreviation for “spherical solid 
geometry.”9 That program received very limited distribution beyond 
Graham himself and appears, along with the scene data used to render 
Juggler, to be lost to history in its complete form. Nonetheless, enough 
information remains—most notably from the large chunks of source code 
Graham published in the in-depth AmigaWorld article on Juggler and from 
Graham’s own recollections—to reconstruct its operation. SSG is strictly a 
command-line tool, with no user interface at all. Its user feeds it a scene 
file written separately in a text editor and then must wait patiently while 
it renders her image. At last, it outputs the results and saves them to disk. 
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Surprisingly in light of the Juggler’s kinetic realism, SSG has no built-in 
animation capabilities; Graham worked out the expected motion of the 
spheres and the Juggler from frame to frame by hand using sine-wave 
functions, then inputted each instance of the revised data into SSG one by 
one to render each screen singly, as an image in its own right. Finally, he 
used a separate utility to record the changes from frame to frame and 
output the animation file.10

In Principles of Three-Dimensional Computer Animation, a standard 
modern introductory text on the field, Michael O’Rourke breaks down the 
complete 3D-rendering process into six components: the object geome-
try, the camera, the lights, the surface characteristics, the shading algo-
rithm, and the rendering algorithm.11 The first four of these components 
consist of information that the user must supply to a 3D modeler; the 
modeler then performs the latter two calculations using this information, 
resulting in the final rendered scene. Although SSG is vastly more primi-
tive than even later 3D modelers written for the Amiga (not to speak of 
modern applications), it can be described in terms of each of these 
components.

As in a modern 3D modeler, each object in SSG’s universe must be 
defined in terms of its geometry and its location in the scene. Unlike 
modern applications with their complex polygons, however, SSG supports 
just one shape: a perfect sphere. The geometry and position of each sphere 
can thus be defined simply by its radius and a set of X, Y, and Z coordinates 
that mark the distance of its center from an arbitrarily chosen point of 
origin. These spheres stand alone to form the glass baubles that the Juggler 
throws as well as his eyes. In addition, they can be compacted together into 
something that Graham calls a “sphere-tube,” “a sequence of spheres 
along a line with slowly changing radius.”12 By overlapping spheres in a 
sphere-tube, SSG can form more complex, tubular shapes such as the 
Juggler’s torso and limbs.

SSG also requires that its user position a single virtual camera to 
capture the scene. Like an object, the camera is positioned in the scene 
via a set of X, Y, and Z coordinates. In addition, the user must state in what 
direction the camera points, via “two numbers, one for the number of 
degrees it is pointing away from north, and one for how many degrees it 
is pointing above or below the horizon.”13 Finally, she can set the focal 
length of her virtual camera, which has the effect of widening or narrowing 
its field of view and potentially magnifying the objects it captures, just like 
a zoom lens on a real camera.

With only the data just described, it would be possible to construct 
and display monochrome wire-frame 3D scenes. To go further, though, 
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and construct truly believable scenes rather than mere mock-ups, SSG 
requires more information about the virtual universe it is being asked to 
draw. Its user must address not just the objects in her universe, but also 
the qualities of the light that exists there and the ways in which the light 
and the objects interact.

The SSG user must therefore next define the “lamps” that light her 
scene. Each is another sphere positioned somewhere in the scene via X, 
Y, and Z coordinates. Like the other spheres, each lamp has a radius and 
can be seen if within the camera’s field of view. The user can specify the 
color of each lamp, which can be any of the Amiga’s 4,096 available colors, 
using a familiar RGB value; this chosen color will also be the color of the 
light that radiates outward from it equidistantly in every direction. (Each 
lamp, in other words, is akin to a bare light bulb rather than a spotlight.) 
Unlike a modern 3D modeler, SSG ties no concept of intensity to its lamps; 
every lamp is equally bright, meaning that the only way to increase the 
degree of illumination coming from a certain angle is to move the lamp 
closer to its target or simply add another lamp in that area. In addition to 
any number of lamps, SSG does allow the user to request some quantity 
and color of ambient lighting, “diffused light that comes from all direc-
tions” to “soften the shadows.”14 In the real world, of course, there is no 
such thing as true ambient lighting because every ray of light must ulti-
mately have a source. Like most modern 3D modelers, however, SSG 
allows such lighting as a way of simplifying a virtual reality that is already 
more than demanding enough on both the human who designs it and the 
computer that renders it.

Finally, the SSG user must describe how her lighting will interact with 
the other objects in her scene; she must, in other words, describe her 
spheres’ surface properties. Once again, her options here are very limited 
in contrast to later programs. She provides each sphere or sphere-tube 
with a single RGB value representing its color—or, stated more accurately, 
“the fraction of red, green, and blue light that is reflected from its 
surface.”15 And she defines the reflective properties of each sphere or 
sphere-tube as one of just three possibilities: “First, the surface can be 
dull, in which case light scatters in every direction; second, the surface 
finish can be shiny, with most of the reflected light being scattered, but a 
little being reflected in one specific direction; finally, the surface can be 
like a mirror, with no light being scattered and all reflected light going in 
one direction.”16 Each sphere or sphere-tube can have but a single color 
over all its surface, and that surface must have the same reflective proper-
ties everywhere.
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With all of this information available at last, SSG can calculate the final 
rendered image. Broadly speaking, there are two ways to approach this 
task. The first way, often referred to today as the rasterization approach, 
breaks this process into two stages that correspond neatly to the fifth and 
sixth components of O’Rourke’s outline of the 3D-modeling process. The 
modeler examines the relative properties of the lights and the objects in 
the scene and uses a shading algorithm to adjust the colors of the objects 
to reflect the lighting. The programmer of the 3D modeler has her choice 
of many, many algorithms to employ, from faceted shading, which gives 
every surface a single, consistent overall color, to more subtle (and com-
putationally intense) processes such as Gourad, Lambert, or Phong 
shading. (Or the programmer can even skip this step entirely if she has 
chosen not to implement lighting in her modeler; at least one early Amiga 
3D modeler, Videoscape 3D, took this approach.) The appropriately 
shaded objects are then rendered to the screen one by one by applying to 
them the well-understood geometrical rules of distance and perspective, 
with objects closer to the camera of course capable of obscuring objects 
behind them. Rasterization techniques are capable of producing very 
pleasing results when a suitable algorithm is paired to a suitable type of 
scene. In fact, they are used almost exclusively by modern 3D videogames 
as well as in many other applications.

But SSG uses a different approach. That approach, ray tracing, was first 
explicitly described in print by Turner Whitted in 1980,17 although others, 
including Graham himself, had been experimenting with the technique 
for years before this publication.18 Ray tracing combines O’Rourke’s 
shading and rendering components into a single algorithm. It simulates 
the play of light within a model universe to create an image of the scene 
viewed through the “window” of the monitor screen, the 2D surface—or, 
more correct, the projection plane—upon which we will draw our 3D uni-
verse. In addition to yielding the most lifelike images of any rendering 
method, ray tracing, in contrast to most 3D-graphics algorithms, is also 
very simple conceptually. In simulating the real properties of light, it 
brings a certain elegance all too absent from other algorithms. Shadows, 
for instance, appear automatically in a ray-traced scene rather than 
needing to be laboriously calculated as in other shading and rendering 
algorithms. And hidden-surface routines—methods of determining which 
parts of objects are obscured by other objects, for which there is a huge 
body of often baroque literature in the 3D-graphics field—are completely 
unnecessary in a ray tracer; again, they happen automatically as a result of 
the core ray-tracing algorithm.
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Like all ray tracers, SSG traces the path of rays of light between the 
viewer’s eye and the scene, passing through the projection plane in the 
process (figure 4.2). It does this, however, in reverse: tracing the rays not 
from the scene to the eye, as they travel in the real world, but rather from 
the eye back to the objects. Imagine that the camera lens that captures a 
scene is covered with a fine mesh; each square on this grid represents a 
single pixel on the monitor screen. A virtual viewpoint—our viewing 
“eye”—is slightly behind this screen, its exact position being determined 
by the chosen camera focal length. SSG traces a line from this point, 
through each of the squares on the grid, and on through the scene the 
camera is capturing; each line represents a single ray of light. Perhaps this 
ray strikes one of the objects in our scene. If so, there is work to do.

If the object’s surface is dull, SSG calculates the final color of the pixel 
in question by considering both the color of the object and the qualities 
of the light rays that the point receives from the various lamps in the scene: 
“We calculate the light by considering lines from the point to each of the 
lamps illuminating the scene. So long as nothing blocks a line, the illumi-
nation depends upon the brightness and color of the lamp and upon the 

Figure 4.2  Ray tracing
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distance from the lamp to the point. As the light striking an object becomes 
more oblique, the illumination per unit area decreases.”19 If the object’s 
surface is shiny, there is the added possibility of a glinting effect, which 
will occur if the amount of light the point receives from a single lamp 
exceeds a certain threshold. (One can clearly see this effect on the upper 
part of the robot’s torso in the Juggler demo.) Finally, in the most compli-
cated case, the object may be a mirror. In this case, the pixel’s angle of 
reflection is calculated and traced through the scene to determine its final 
color.

It is of course also possible that a ray may move all the way through 
the scene without striking any object at all. In this case, the appropriate 
section of either the checkerboard ground or the blue sky is placed there, 
depending on whether the pixel is below or above the horizon line. In the 
case of the ground, this (dull) pixel is shaded appropriately to reflect the 
light that reaches it, using the approach just described. However, the 
lighting is not considered in coloring a pixel to represent the sky; an arbi-
trary shade of blue is always chosen, the exact shade depending on the 
pixel’s position on the virtual horizon.

SSG is constrained by the limitations of HAM mode in realizing its 
idealized scene on the Amiga’s display hardware, for, as discussed in the 
previous chapter, the number of sharp color transitions that can be per-
formed in HAM is strictly limited. SSG must therefore sometimes make 
compromises in the colors of certain pixels. The choice of colors in the 16 
registers that define the base colors is critical to minimizing HAM’s color 
distortions. SSG is fairly sophisticated in its handling of these registers, 
though, as Graham explained in 1987: “At first I don’t use any of my 16 
direct colors. When I first encounter a sharp transition, I assign the color 
value to one of the free registers. As the display progresses, when I 
encounter another color transition I look to see if the contents of one of 
the color register values is close enough; if it is, I use that value rather than 
use up one of the remaining registers.”20 The key question here, then, is 
what constitutes “close enough.” This value is hard-coded into the SSG 
application itself, although the technically adept user can of course alter 
the source and recompile to better suit the demands of the scene she is 
creating. SSG should ideally use all 16 registers over the course of drawing 
the complete scene but should not use them up too early so that, for 
example, there are no registers still available to facilitate critical sharp 
transitions in the bottom half of the image.

Ironically, the conceptually simple ray-tracing algorithm is notori-
ously demanding of the computing hardware on which it runs. Even utiliz-
ing the Amiga’s lowest-resolution mode of 320 × 200, SSG must trace the 
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path of 64,000 individual rays of light through the scene, one for each 
pixel. And where those rays strike an object, it must further trace more 
rays—back to the lamps or back to the objects to be reflected in the case of 
a mirror—to determine the final color for that pixel. Each frame of the 
Juggler demo took about one hour to render.21 Because of its slow speed, 
ray tracing has generally been considered unsuitable for interactive 3D 
applications from the Amiga’s day to today.

SSG and the Juggler nevertheless spawned a veritable subculture of 
“render junkies”22 who created and distributed among themselves images 
and animations of often stunning quality. Although SSG itself remained a 
somewhat limited tool, with distribution also limited to the approximately 
1,000 disks Graham copied and mailed out by hand upon request,23 other 
Amiga programmers were soon enough inspired to author more flexible 
and powerful ray tracers. Perhaps the most notable of these programmers 
is David Buck, whose DKBTrace garnered a large following of enthusiastic 
users. Like SSG, DKBTrace and similar programs come equipped with no 
user interface at all; their users must describe their scenes entirely via text 
using a rather esoteric markup language. A single sphere in DKBTrace 
might be described like this24:

OBJECT

  SPHERE < 0.0 25.0 0.0 > 40.0 END SPHERE

  COLOR Blue

  AMBIENT 0.3

  DIFFUSE 0.7

  BRILLIANCE 7.0

END_OBJECT

Command-line-driven ray tracers, in spite of or perhaps because of 
their complexity and their steep learning curves, have come to hold an 
established place in hacker culture. The process of designing a scene in 
this way can be immensely appealing and addictive, and viewing a newly 
rendered image for the first time is rife with discovery and excitement.

DKBTrace was eventually ported to other platforms and still later 
morphed into POV-Ray (for “Persistence of Vision Ray Tracer”), the most 
popular free ray tracer of today, around which an active community still 
persists. Textually driven ray tracers, almost always distributed as free 
software, were not long the only option for the Amiga artist, however; 
Graham’s next project after SSG and the Juggler would allow users to 
design scenes interactively using a full GUI.
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Videoscape 3D and Sculpt-Animate

At the Second Amiga Developer’s Conference in November 1986, the same 
month that the Juggler made its debut, Allen Hastings presented two 
videos created entirely with an Amiga and a 3D modeling and animation 
program of his own devising.25 The sequences that Hastings displayed 
were much lengthier than Graham’s demo, running for minutes and con-
taining many thousands of frames, but the program used to create them 
possessed no lighting or shading algorithms at all and did not make use of 
HAM mode, and the images created with it were therefore less impressive 
than the Juggler. Having been spliced together and recorded onto video-
tape rather than running “live” on an Amiga, these sequences were also 
more difficult to exchange. For these reasons, they did not have the same 
sensational impact as the Juggler, but they were sufficient to attract pub-
lishers interested in the program used to create them. Hastings soon 
signed a contract with Aegis to develop his software into a full-fledged 
commercial product.

Graham elected to use his experience developing SSG and the Juggler 
for the same purpose and began work on what would become Sculpt 3D on 
December 26, 1986.26 His goals for the project were lofty: to build a full-
fledged, flexible, 3D modeler and ray tracer to replace the limited SSG and 
to build upon the modeler a full GUI that would allow the user to work with 
her scene interactively. Graham realized these goals in remarkably short 
order; the first working prototype was ready by “about April” 1987.27 There 
followed negotiations with a number of publishers, including EA, which 
“didn’t understand what Sculpt was all about,” and Aegis, which Graham 
rejected so as not to interfere with the plans of his friendly rival Hast-
ings.28 The choice came down to two: Byte by Byte, a small but early and 
prolific publisher of Amiga applications, and NewTek, another small 
company that I discuss more fully in the next chapter. Graham elected to 
go with Byte by Byte in the end because “they seemed more professional,” 
a decision he would eventually come to regret in light of Byte by Byte’s 
subsequent handling of his creation.29

Hastings’s program and Graham’s program were named Videoscape 
3D and Sculpt 3D, respectively, and reached stores virtually simultane-
ously in mid-1987. The two programs thus share the honor of being the 
first of their kind, not only on the Amiga, but on any PC. But Graham’s 
creation was the more sophisticated and innovative of the two. Although 
Videoscape offered animation, it still had no lighting or shading compo-
nent whatsoever and was also saddled with a scene- and object-design 
process that was little more intuitive than the text files used by SSG. 
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Moreover, Videoscape not only did not support HAM mode but actually 
locked the user into a single palette of colors hard-coded into the program 
itself. A review gamely tried to accentuate the positives but finally had to 
admit that “the images [Videoscape] produces tend to be a bit flat and 
lifeless.”30 Sculpt 3D was free from such compromises and restrictions, 
even if on its initial release it was only capable of rendering static scenes, 
a likely concession to the need to be first in what was rapidly turning into 
a race involving not just Aegis and Byte by Byte, but several other publish-
ers as well—a third 3D package, Forms in Flight from MicroMagic, appeared 
within days of the first two. Graham and Byte by Byte, meanwhile, released 
an animation add-on to Sculpt 3D well before the end of the year; the 
resulting hybrid was called Sculpt-Animate 3D. All this activity prompted 
Lou Wallace to write in AmigaWorld that “while 1986 was the year of paint 
and animation, 1987 is the year of 3-D.”31 By the time a considerably 
improved version of Sculpt-Animate 3D was released as Sculpt-Animate 
4D—with the fourth dimension apparently (and suddenly) representing 
motion—at the end of 1988, quite a number of other 3D-modeling applica-
tions were available, with more in the pipeline, all heirs to the excitement 
generated by the Juggler.

A Sculpt-Animate Project

To illustrate Graham’s approach to 3D modeling in depth, this section 
offers a practical demonstration of using Sculpt-Animate 4D, but most of 
it applies equally to Sculpt-Animate 3D—and almost as well to the other 
3D modelers that borrowed many of Graham’s innovations.

When one first boots Sculpt-Animate, one is greeted by the working 
area shown in figure 4.3. This screen always runs in the Amiga’s 640 × 200 
resolution mode, with three bitplanes for a total of eight on-screen colors. 
The final images and animations that Sculpt-Animate produces can, 
however, be in any of a large variety of resolution and color combinations. 
The abstract data that describe a scene, which the user works with using 
the interface shown in figure 4.3, are kept consistently separate from the 
final rendering process and from the display hardware used to create an 
image or animation from those data. This separation is so complete that 
Sculpt-Animate 4D can be used to render images with more colors or 
resolution than the Amiga on which it runs is capable of displaying; these 
images can then be moved to video equipment or graphics workstations 
for display and perhaps further manual editing.

Figure 4.3 also illustrates Graham’s solution to the most fundamental 
problem of designing a 3D modeler: although the application must model 
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4.3  Even this very simple model of a house shows some of the confusion that the Sculpt-
Animate 4D triview can bring. Only in the north view is the object recognizable for what 
it actually is; in the other views, it appears as a bewildering array of overlapping lines and 
vertices because no clipping is performed, and the viewer has no other way of determin-
ing what parts of the object lie in front of others in the projection plane.

a 3D scene, the screen on which the user works with that scene can display 
just two dimensions. Graham therefore employed an interface he called 
the “triview.” Each of the three small windows provides a view into the 
same area of space, but from a different perspective. The top left window 
shows the scene viewed from above and looking down; the bottom left 
from the south and looking north; and the right from the east and looking 
west. The user can use each of these windows to manipulate two of the 
scene’s three dimensions. Changes she makes in one window will always 
be immediately reflected in the other windows. The windows are always 
inextricably linked, not only looking into the same virtual universe but 
always viewing the exact same area of space in that universe. Only the 
perspectives from which they view that space vary.

Working with the triview is not, at least initially, a terribly intuitive 
process; only over time does one develop a feel for it. In addition to trying 
to adjust to working with the varying perspectives offered by the triview 
boxes, the user must also deal with the fact that objects in the triview appear 
not as solids, but as wire-frame outlines of the edges and vertices that form 
them. There is no concept of clipping; edges and vertices that should be 
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obscured by others (and that will be in the final rendered scene) appear 
unobscured in the triview. Particularly when the user is working with 
complex objects, this absence of clipping combined with the varying per-
spectives can make Sculpt-Animate enormously confusing for the begin-
ner. Nevertheless, at some point the program “clicks” with those who stick 
with it, as is proven by the large body of impressive work created with it.

As Graham did with SSG, he chose in Sculpt to build all of his objects 
from a single geometric primitive. Instead of the rather limiting sphere, 
though, he made that primitive the triangle. Every object in Sculpt-Ani-
mate, then, is formed from a series of triangles, each of which is further 
composed of three vertices or corners—each with an X, Y, and Z position 
in the scene—and the three edges or lines that connect them. These ver-
tices and lines together outline the faces of the triangles, the only part 
visible in the final rendered image. (Conversely, these faces are invisible 
within the triview windows, but the vertices and lines that form them are 
visible.) It may seem at first blush that attempting to build a scene entirely 
from triangles would ultimately be as limiting as building one entirely 
from spheres, but in fact this is not the case at all. First, vertices and edges 
can be shared by more than one triangle; a complex Sculpt object has more 
the appearance of an interwoven mesh of vertices and lines than of a 
network of triangles. Sufficient numbers of triangles, even though their 
vertices can be only straight lines, can produce something of an impres-
sion of a curved surface if packed tightly together. And in a partial excep-
tion to the general triangle rule, the user can request that certain edges be 
formed into splines, or vertices connected by smooth curves rather than 
straight lines. In the end, then, anyone sufficiently skilled and patient 
working on an Amiga with sufficient memory can construct almost any 
imaginable object in Sculpt-Animate.

A very simple sample project demonstrates how an artist might use 
Sculpt-Animate. We will create a pair of simple shapes, design a scene 
around them, and finally use Sculpt-Animate’s animation tools to set one 
of them in motion. Figure 4.4, showing a frame from the animation in its 
final form, should serve as a useful reference as we work through the 
process of creating it. The full animation is available for viewing on this 
book’s Web site, as are the Sculpt-Animate 4D data files used to build it 
and a small sampling of other work done in Sculpt-Animate during the 
program’s years as one of the premiere Amiga 3D-modeling packages.

Our first step must be to build the two objects in the scene. One 
approach would be the manual one: to lay down each vertex for each object 
and then connect them together with lines. Building objects of any com-
plexity in this way, however, can be both difficult and tedious. Luckily for 
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the user, Sculpt-Animate provides her with a collection of preformed geo-
metric primitives that she can use either on their own or as the building 
blocks of more complex objects. As an early 3D modeler, Sculpt-Animate’s 
options here are somewhat limited even in comparison to later Amiga 
modelers, but they are nevertheless hugely useful, for they allow us to 
insert spheres, hemispheres, cubes, prisms, disks, circles, cylinders, 
tubes, or cones automatically into our scene. We can in fact build the 
pyramid simply by choosing the cone shape from a menu. Upon doing so, 
Sculpt-Animate asks us how many points should be used to form the base. 
We choose just four, resulting in a very credible pyramid (figure 4.5).

Because our other shape—the orbiter—does not conform to any of 
Sculpt-Animate’s built-in primitives, its construction will be slightly 
more involved. We begin, surprisingly, by requesting a circle. By specify-
ing that the circle should consist of just five points around its circumfer-
ence, we end up with something that is not terribly circular at all—a 
pentagon, just what we need to begin to build our orbiter (figure 4.6).

Because we built the pentagon with the downward-facing window of 
the triview active, it floats horizontally in our scene, like a hula hoop on 
its side. It has as of yet no true physical existence in our scene because the 
vertices and lines that form it do not form triangles or, in turn, solid faces. 
Were we to render our scene at this point, the pentagon would therefore 
not appear at all. We decide, however, to use this pentagon as the basis of 

4.4  This chapter’s Sculpt-Animate 4D sample project in its final form



[100]

our orbiter. We carefully place two more vertices equidistantly above and 
below the pentagon using the west-viewing triview window (although the 
north-viewing window would work equally well) and then use Sculpt-
Animate’s drawing tools to connect these vertices with those of the pen-
tagon, forming triangles in the process. The result is a true solid object 
with ten individual faces that will show up in the final rendered image 
(figure 4.7).

Once we position the objects appropriately in relation to one another, 
the first and most complex stage of creating a 3D scene—designing and 
positioning the objects themselves—is complete. Even this simple example 
should demonstrate how a Sculpt-Animate artist must constantly switch 
from triview window to triview window in building her scene; becoming 

4.5  Building the pyramid in Sculpt-Animate 4D

4.6  Building the pentagonal base of our orbiter in Sculpt-Animate 4D using the “Circle” 
function
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a Sculpt-Animate expert thus largely involves practicing with the program 
enough to make the nonintuitive triview interface intuitive. And our use 
of the “circle” primitive to build a pentagon illustrates another facet of 3D 
modeling, particularly in this early era, that is important for the would-be 
3D artist to grasp: many program functions can be used in surprising ways. 
The artist working with Sculpt-Animate or a similar application collects a 
veritable treasury of such tricks as she gains experience.

Having built and positioned our objects, we must now place our 
camera. Thanks to Sculpt-Animate’s GUI, this procedure is considerably 
simpler than it was in SSG, for we can place the camera anywhere we wish 
in our scene by using the mouse. Rather than having to specify the hori-
zontal and vertical orientation of its lens using numbers, we place a second 
point, a target for the camera, within our scene with the mouse; this, then, 
is the point the camera will be aimed toward (figure 4.8).

In addition to allowing the user simply to position the camera, Sculpt-
Animate also allows her to change other settings relating to it. As in SSG, 
she can set a focal length; Sculpt-Animate, however, makes the photogra-
phy metaphor even more explicit in allowing her to choose to use either a 
normal, wide-angle, or telephoto lens or a custom setting that roughly 
corresponds to the focal length setting of a 35-millimeter camera. She can 
even manually set an exposure time for her camera and tilt it left or right 
in the hands of her (imaginary) photographer. For our project, we decide 
to use a wide-angle lens so as to capture the entirety of our scene. As 
amateur virtual photographers, we let Sculpt-Animate choose the best 
exposure time for our scene rather than try to set it manually, nor do we 
introduce any tilt to the camera.

4.7  Building the second object for our Sculpt-Animate 4D sample project



[102]

4.8  The camera positioned within our Sculpt-Animate 4D scene. In the active down-
ward-looking triview window, the camera itself is represented by the small circle almost 
at the window’s northern boundary. The camera’s target is the small X located between the 
two objects that make up the entirety of the scene itself.

Next we must place our lamps. Again, Sculpt-Animate simplifies this 
process even as it expands our available options. Using the mouse and the 
triview, we place two lamps in our scene (figure 4.9).

One lamp illuminates the scene as a whole, and the other is positioned 
lower and closer to the eventual path of the smaller, orbiting shape, which 
creates a glinting effect as well as shadows that will be particularly notice-
able when we animate the scene. Like SSG, Sculpt-Animate allows us to 
produce colored rather than bright white light from our lamps if we wish. 
Unlike SSG, it also allows us to set the intensity of each lamp; we can adjust 
the standard setting of 100 upward or downward for more or less intensity. 
In this sample project, however, we leave those settings alone, contenting 
ourselves with white lamps of the standard intensity. In an interesting 
twist, lamps in Sculpt-Animate have no physical existence in the scene 
outside of the light they produce, in marked contrast to SSG, where lamps 
are physical spheres that just happen to glow with light rather than merely 
reflect or absorb it.

Next we need to set the surface properties of our objects’ faces, which 
we can change by selecting the faces in the triview using the mouse and 
calling up the appropriate menu item (figure 4.10).
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The most obvious of these properties, of course, is color, which we can 
set to any of the Amiga’s available 4,096 colors using either the standard 
RGB system or the alternative HSV system described in the previous 
chapter. We choose a bright red for our pyramid: red 15, green 0, blue 0. 
For our orbiter, we choose a golden hue: red 15, green 11, blue 4. We can 
also choose a surface texture for each face, which dictates to a great degree 
how each face interacts with our light sources. Our available options here 
have been expanded from the three in SSG to six: dull, shiny, mirror, 
luminous, glass, or metal. We decide to make both objects shiny. Finally, 
we can choose to turn smoothing on for each object. Doing so causes 
Sculpt-Animate to use a special technique known as “Phong shading” on 
that object during the rendering process, which tends to smooth out edges 
and impart a more rounded appearance;32 it is, in other words, one more 
way for Sculpt-Animate to overcome the limitations of its triangular build-
ing blocks to render curved, natural-seeming shapes. In our case, however, 
natural realism is not a goal; we like our sharp edges just fine, and so we 
leave smoothing off.

Before rendering our scene, we must manipulate two more elements 
to achieve the appearance we wish. First, we add the ground, which Sculpt-
Animate models as a single horizontal face stretching into infinity. This 

4.9  Lamps added to our Sculpt-Animate 4D scene are represented by the two small 
white diamonds visible in both the westward- and downward-facing triview windows
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face can be either solid or a checkerboard pattern like that of the Juggler 
demo. We make ours a solid dark blue: red 0, green 0, blue 9. The ground 
shows up in the triview as a horizontal line (figure 4.11).

Finally, we adjust the ambient illumination of our scene. Sculpt-Ani-
mate allows this lighting to be of any color and intensity we wish, default-
ing to red 2, green 2, blue 2. We bump up this intensity to red 6, green 6, 
blue 6, producing a neutral gray background illumination to augment 
somewhat the effects of our two lamps and to prevent the contrast between 
the light and dark areas of our final image from being too extreme.

And so we are ready at last to render our scene. Like SSG, Sculpt-
Animate is capable of rendering using a ray-tracing algorithm ; indeed, 
doing so yields the best overall images. There are, however, good reasons 
why an artist might choose not to use ray tracing. Most obviously, ray 
tracing is, as discussed earlier, a very slow rendering technique, particu-
larly on a computer of the Amiga’s era. Even our scene consisting of just 
two simple objects and two lamps takes 40 minutes to render using ray 
tracing on a stock 68000-based Amiga; more complex scenes can take 
dramatically longer, stretching into hours or, in the case of complex ani-
mations, days or even weeks. Serious artists generally upgraded their 
Amigas to the more powerful members of the 68000 family that were 
developed later, but ray tracing nevertheless remains a slow process. One 
must also consider that developing a Sculpt-Animate scene is not really 
the straightforward process I have just described, but rather one that is 
fraught with trial and error even for the experienced artist—the general 
pattern being to add or modify elements and then perform a render to see 
how they appear, repeating these actions again and again and again. 

4.10  Setting the properties for each of our objects’ faces in Sculpt-Animate 4D. In the 
left image, we modify the central pyramid; in the right, the orbiting shape.
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Therefore, most artists took advantage of one of Sculpt-Animate’s other 
options while developing their project: using ray tracing only for the final 
image.

And, indeed, the Sculpt-Animate artist can choose to render her 
images in quite a variety of ways, balancing image quality against render-
ing time. The simplest and fastest rendering method is wire-frame mode, 
in which objects are drawn in just two colors, as vertices and the lines that 
connect them. There is no notion of lighting in this mode or of solid faces 
or clipping; lines and vertices that should be hidden by the solid faces of 
an object show through. This mode is essentially the same as the view 
shown in the triview windows themselves, albeit rendered in proper 3D 
perspective. The other modes render objects as solids but differ in the 
sophistication of their clipping routines and the realism of their modeling 
of the properties of light. Even some of the modes that do not use ray 
tracing are nevertheless often capable of producing very pleasing and 
realistic-looking images. Sculpt-Animate’s “scanline snapshot” render-
ing mode, for instance, uses a technique that is commonly found in the 3D 
engines used in games and other interactive virtual environments of today, 
where ray tracing remains unsuitable due to its slow performance.

4.11  Our Sculpt-Animate 4D scene with the ground added. The ground is represented by 
the horizontal line visible in the northern- and western-facing triview windows.
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In addition to choosing a rendering method, Sculpt-Animate also 
allows the option of using virtually any of the Amiga’s available resolution 
and bitplane-count combinations, including overscan modes. Of course, 
when rendering to a high-resolution screen, the artist loses the option of 
using HAM mode, thus making Sculpt-Animate’s ray-tracing ability effec-
tively useless; the available 16 colors simply are not enough to represent 
through ray tracing even a simple scene like the one we have created. 
Nevertheless, there are situations where an artist is willing to sacrifice ray 
tracing and HAM mode for a sharper, crisper, high-resolution image. For 
our project, we choose the 320 × 400 resolution, the highest nonoverscan 
resolution that allows us to use all 4,096 colors of HAM mode.

But there is still one more element to add to our project: animation. 
Sculpt-Animate is surprisingly flexible here, giving the user two com-
pletely different methods to choose from or—as is more likely for a real-
world professional—the option to mix and match according to the demands 
of an individual project. Key frame animation is the conceptually simpler 
of these methods; here, the artist essentially creates two scenes by hand, 
using the methods already described, and then asks Sculpt-Animate to 
generate automatically an arbitrary number of in-between frames that 
transition the scene from the first to the second state. Animators often 
refer to this process as “tweening.” The tweening process can be repeated 
as many times as necessary to create the final animation. For instance, we 
can create another scene by moving our orbiter one-fourth of the way 
around the pyramid using the triview, then ask Sculpt-Animate to extrap-
olate from these starting and ending points a seven-frame animation 
sequence. We can then repeat the process three more times, moving our 
orbiter farther and farther along its path until it eventually arrives back at 
its starting point on frame 28. We must create the animation in these four 
stages to ensure that Sculpt-Animate fully understands how to move the 
orbiter. If we create only the frame with the orbiter at the halfway point of 
its rotation, for example, Sculpt-Animate would choose the most direct 
path, running it straight through the pyramid. The key frame animation 
method is a perfectly valid approach to creating our animation. We, 
however, choose Sculpt-Animate’s other animation method: global 
animation.

In global animation, we define the path our object will follow in the 
animation within the triview. We begin by adding a circle, this time a 
proper one built from 28 vertices and line segments. We place it so that it 
surrounds the central pyramid. Rather than serving as the basis for an 
eventual solid object, this circle defines the path that the orbiter will 
follow. We logically tie the circle to the orbiter, telling Sculpt-Animate that 
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it should serve as the plan for a 28-frame animation—one frame for each 
vertex along its circumference. Finally, we render the whole as an IFF 
animation, with only the changes from one frame to the next recorded. 
The rendering is of course not a trivial process, consuming many hours of 
computing time on a 68000-based Amiga even for our rather trivial 
project. We must be thankful that Sculpt-Animate provides the option of 
previewing an animation relatively quickly using wire-frame graphics 
before we have to commit to the full rendering process.

We can set various options for the animation as a whole (figure 4.12). 
Most critical of these options for us is the duration for which each frame 
should be displayed. Duration is set in “jiffies,” each of which corresponds 
on a North American Amiga to one-sixtieth of a second. Sculpt-Animate 
defaults to 2 jiffies, or 30 frames per second. We prefer a slower, more 
stately appearance for our orbit, however, so we set this value to 7 frames 
per second, which has the effect of slowing down the orbiter, albeit at the 
cost of some fluidity to its motion. We can, of course, achieve the same 
effect without losing fluidity by leaving the duration variable alone and 
instead adding many more frames to mark the path of our orbiter, but that 
animation would require roughly three and a half times as long to render. 
Amiga artists had to make such difficult trade-offs constantly.

Of course, we can do much, much more to make our simple animation 
more impressive and effective. We might, for instance, define a “tumble” 
for our orbiter using the triview to make it rotate in its orbit. But what we 
have done already should suffice to give a basic understanding of how an 
artist would interact with Sculpt-Animate to create works of vastly greater 

4.12  Adding animation to our Sculpt-Animate 4D project. The left screen shot shows 
the triview with the path for our orbiter to follow added. The right shows one of the 
“Modify Take” requestors that let us set many options for our animation, preview it,  
and, finally, render it to an IFF file.
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scope, depth, and aesthetic appeal. It should also be remembered that 
Sculpt-Animate was by no means the only tool in the arsenal of most 
artists who used it, thanks largely to the portable IFF. For instance, an 
image or animation could and frequently was loaded into a raster-based 
paint and animation program such as DPaint for further additions and 
manipulations. Other tools could likewise be used to embed sound and 
music or even textual titling into a finished Sculpt-Animate animation. A 
typical creative project of any depth done on an Amiga would utilize many 
different tools of many different types.

There was a certain sense of adventure about 3D modeling, ray tracing, 
and animating on the Amiga, whether one chose to use a free command-
line-driven program such as DKBTrace or a pricey commercial product 
such as Sculpt-Animate and its many successors. Having only rather 
limited preview functions, one never quite knew how one would be 
rewarded for one’s work in putting together a scene and often could invest 
days or even weeks of computer time to a lengthy render that was ulti-
mately unacceptable. An extreme level of dedication and Zen-like level of 
patience were required to create an animation that might last no more 
than a few seconds. When the results are viewed in this light, the quality 
and quantity of 3D images and animations created on the Amiga rather 
astonish.

Sculpt-Animate’s Successors

The ultimate fate of the Sculpt-Animate line on the Amiga was anticlimac-
tic for such a pioneering application. By 1989, color-graphics boards were 
available for the Macintosh that gave it display capabilities to rival the 
Amiga, albeit at vastly higher prices. The Macintosh software market was 
also less sensitive to price than that of the Amiga, which meant that Byte 
by Byte could sell its products for the former platform for much more 
money. Eager to enter what it perceived to be greener (and perhaps less 
competitive) pastures, the company therefore ported the program to the 
Macintosh, a process doubtlessly simplified by Graham’s decision to keep 
the modeling interface and data scrupulously separate from the hardware 
used to display the finished product. Further development of Sculpt-Ani-
mate for Amiga was soon abandoned, although active development for the 
Macintosh continued under Graham’s guidance until 1995.33

In a sense, though, Sculpt-Animate’s defection hardly mattered, for 
by 1989 a large number of other 3D modelers and ray tracers had pushed 
through the door Graham had cracked open. And they just kept on coming 
for years in a bewildering blur of evocative names: Turbo Silver, Caligari, 
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Imagine, just to begin a list of the more usable and popular titles. Together 
they refined and expanded on the Sculpt-Animate template at a blistering 
pace, managing to make that program look almost quaint just a few years 
after its release. Hastings continued to build on the foundation he had laid 
with Videoscape 3D, sticking with the Amiga for many years after the 
Amiga version of Sculpt-Animate had been left an orphan. After a change 
in publishers from Aegis to NewTek, Videoscape begat LightWave 3D, 
perhaps the definitive Amiga 3D modeler and an application that remains 
(in its modern Windows and Macintosh incarnations) a beloved staple of 
the animation industry to this day.

All of these programs proved useful in a host of fields: video produc-
tion and postproduction, multimedia presentations, game development, 
product prototyping, educational applications. And plenty of amateur 
artists used Amiga modelers just for fun, distributing their creations for 
free via the BBS network and perhaps, if their creations were really good, 
competing in something like the annual Badge Killer Demo contest that 
prompted some of the most impressive Amiga multimedia creations. As 
Steven Blaize noted in AmigaWorld in 1992, 3D was “everywhere” by the 
early 1990s,34 and for a number of years the Amiga was the best overall 
platform on which to create it short of high-end, expensive workstations. 
Not only was Amiga 3D software often more mature than on other plat-
forms due to the Amiga’s head start in the field, but the Amiga had other, 
more subtle advantages. For instance, as discussed in detail in chapter 5, 
its unique video output made transferring creations to videotape almost 
effortless. And in light of the computational demands of the 3D-modeling 
process, the Amiga’s multitasking capability was another boon; artists—in 
particular amateur artists without access to another computer—could let 
their creations render away in the background while they used the machine 
for other work or play.

Other platforms, however, eventually took the Amiga’s leadership role 
away in this area as in others by steady, dogged improvement of their 
hardware and software. Autodesk’s 3D Studio, for instance, as first pub-
lished for MS-DOS-based machines in 1990, was a rather primitive, 
awkward program that seemed cause for little concern from the Amiga 
developers. By the time 3D Studio Max appeared in 1996, however, the 
program had improved immensely and was well on its way to becoming 
the game industry–dominating juggernaut it remains today. And yet for all 
its power, 3D Studio Max retains a surprising similarity to Sculpt-Ani-
mate, as is revealed by even a quick glance at the GUI of its latest incarna-
tion; the familiar triview remains at its heart.
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Of course, 3D is still everywhere today, even more so than in 1992. 
Most animated movies and television shows, including high-profile 
releases such as those from Pixar Studios, are modeled and animated 
completely in 3D, and even many nonanimated films, such as the Lord of 
the Rings trilogy, make extensive use of 3D graphics to augment their real-
world footage. Interactive 3D environments have come to dominate many 
forms of computer gaming and are key to the creation of persistent online 
worlds such as World of Warcraft and Second Life. Indeed, most modern 
computers now come equipped with specialized display hardware designed 
just for rendering 3D graphics. Interactive 3D applications have histori-
cally used rasterization techniques rather than ray tracing for reasons of 
performance, but even that practice may be changing soon; as of this 
writing (2011), ever more powerful computers are at last bringing interac-
tive ray tracing within the realm of practical possibility, and ray-traced 
games and virtual worlds may very well begin to appear soon.35 To say that 
this 3D revolution would not have happened without the Amiga and Eric 
Graham would be overstating the case, but certainly both the platform’s 
and the individual’s contributions were immense in bringing 3D from the 
expensive, dedicated workstation to the practical, affordable, everyday PC.



 

With the arrival of the Amiga, many people saw an opportunity to pursue 
an individual vision that had heretofore eluded them due to technological 
constraints. Trip Hawkins of EA, for instance, realized that he could 
employ the machine to advance his company’s artistic vision, to create at 
last aesthetically satisfying videogames worthy of refined appreciation, 
and Eric Graham realized that he now had access to technology that would 
let him tinker with 3D modeling and ray tracing in a practical rather than 
purely conceptual way. The principal figures behind NewTek, a company 
that would remain associated with the Amiga for some fifteen years and 
that would end up being the most important of all to the platform over the 
long term, have a similar story. The company’s eventual vice president, 
Paul Montgomery, had been toying for years with video production prior 
to the Amiga’s arrival but had been consistently dissatisfied with the tools 
available to those without access to a full-blown professional production 
studio.1 He wanted to create video productions on a budget, perhaps even 
in the home, that did not look like amateur creations. Yet he remained 
stymied in his quest—until the arrival of the Amiga.2 NewTek’s founder and 
president Tim Jenison had also dabbled in film and video production for 
years and even at the height of the company’s success would still consider 
himself something of a “frustrated filmmaker.”3 At the time of the Amiga’s 
debut, Jenison was working for a company called “ColorWare,” where he 
filled the roles of both hardware and software engineer in developing a 
variety of innovative products for the eight-bit Tandy TRS-80 Color Com-
puter. Perhaps the most notable (and forward-looking) of these products 
was a very impressive MacPaint-like paint program called “CocoMax.” 

NewTek 5
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With the arrival of the Amiga, however, Jenison left ColorWare and the 
Color Computer behind quickly to begin NewTek as a one-man garage 
startup from his home in Topeka, Kansas.

PCs and the nascent music CD aside, the 1980s was still largely a 
decade of analog consumer electronics—in fact, the last such decade—
marked by analog television and radio broadcasts, analog video and audio 
cassette tapes, and analog film-based cameras. To interface with such 
devices, a computer needs to be able not only to convert the analog into 
the digital for import into its memory, but also to convert the digital into 
the analog for export back into the wider world. And it also needs to be 
able to display (or, in the case of music, play) the digitized data it has col-
lected from the analog world with sufficient fidelity to the originals to have 
been worth the effort of digitizing it in the first place.

For all the impressive statistics quoted in those early previews and 
reviews of the Amiga 1000, the two features that most excited Jenison and 
Montgomery were therefore not the ones that generally made the head-
lines. One of these features, HAM mode, has already found a prominent 
place in previous chapters and does so again in this one. The other—the 
machine’s ability to output interlaced video suitable for use with standard 
video-production and broadcast equipment—is new to this chapter. 
Together, HAM and interlace were the keys to perhaps the most revolu-
tionary of all the changes wrought by the Amiga. The visual world of the 
PC was suddenly not a limited, primitive, isolated one, but one that had 
access to the rich visuals found not only in real life, but also in other tech-
nological means of expression, such as photographs, film, and video.

Interlace

Two of the original Amiga’s four standard resolution modes—those with a 
vertical count of 400 rather than 200 pixels—are interlaced modes. This 
design choice is one of the most significant on the Amiga, with both a 
negative and a tremendously positive impact on its history. As Oran J. 
Sands III wrote in a contemporary article on the subject, these modes were 
at the same time “one of the worst features ever offered on a computer” 
and “the best thing to happen to [the] computing world.”4 To understand 
these interlaced modes and all of their ramifications, we first must under-
stand more about how a screen image gets from memory to the monitor.

Both conventional televisions and the CRT computer monitors that 
were universal during the Amiga’s heyday operate on the same principles. 
The glass just behind the screen is coated with phosphors that can hold an 
electric charge for a very brief period, during which the phosphors glow, 
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their brightness depending on the strength of the charge. An electron gun 
is mounted in the base of the television; this device sweeps across the 
screen from left to right and top to bottom many times per second, firing 
charged electrons at the phosphors to cause them to glow in a pattern 
dictated by the television or monitor’s signal source, which might be a 
broadcast station, a computer, or something else. In a color display, the 
phosphors are actually of three different types, glowing either red, green, 
or blue, with each type responding to its own precisely aimed electron 
beam. These types are grouped closely together, so that when individually 
struck by electrons they seem to blend together to form single colors that 
vary with the relative charge of each phosphor.

The number of scan lines the electron gun draws in each of these 
cycles is a very important figure because it equates to the screen’s vertical 
resolution. From the standpoint of picture quality, a higher vertical reso-
lution is obviously better because it allows a sharper and more detailed 
image. Equally important is a screen’s refresh rate, a measure of the number 
of complete screen cycles the electron gun makes in a single second. Each 
of these cycles is a single hertz (Hz); thus, a 60 Hz display is refreshed 60 
times per second. Individual phosphors maintain their glow only very 
briefly before starting to fade, which can be perceived on a screen with a 
low refresh rate as a visible flicker. (However, this property of the phos-
phors is critical to the display of motion; if they held their charge too long, 
the result would be a visible streaking effect.) On a computer screen, with 
its requirement to display finely detailed, often textual images, a refresh 
rate of 60 Hz is generally considered an absolute minimum, and even this 
rate can introduce eye strain with prolonged viewing, particularly at higher 
resolutions; 75 Hz or even 85 Hz is more ideal.5 Even at the time of the 
Amiga’s introduction, computer monitors were often quite flexible in 
being able to lock onto quite a variety of vertical resolutions and refresh 
rates and operate correctly. Televisions and video equipment, however, 
were not so flexible, being bound tightly to the National Television System 
Committee (NTSC) format in North America and the Phase Alternate Line 
(PAL) format in Europe. I focus my discussion here on NTSC, but it should 
be noted that the PAL standard operates on the same fundamental prin-
cipals; only the details of its implementation are different, although suf-
ficiently so as to allow PAL in most situations to yield a somewhat 
better-quality image.6

The NTSC standard dates from the very dawn of television broadcast-
ing, having been defined in 1941 by the US government and then revised 
in 1953 to accommodate color signals while remaining backward compat-
ible with the original standard. Its designers wished to specify a 
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484-scan-line screen but soon encountered a problem in doing so. Early 
televisions needed an easy and inexpensive way to time their painting 
cycle and employed for this purpose the frequency of the alternating 
current that was their power source: 60 Hz. The primitive broadcasting 
and receiving equipment of the era, however, lacked the bandwidth to 
refresh fully a 425-line screen 60 times per second. The NTSC designers 
therefore chose to interlace the screen. Rather than painting the complete 
screen on each cycle, a technique known as progressive scanning, an NTSC 
television paints only every other line each time through. This alternate 
scanning allows a refresh rate of 60 Hz, albeit one that paints each line 
only 30 times per second, which during the early television era brought it 
within the available bandwidth of the available equipment. A certain 
amount of flicker inevitably results, but for television applications this 
does not present as much of an issue as it does for computer applications, 
for a number of reasons. First, viewers tend to sit much farther back from 
a television than from a computer monitor, and they do not focus so much 
on the details of the image there as the broader strokes; and no one reads 
large quantities of closely printed text from a television screen, as they 
often do from a computer monitor. And television screens almost con-
stantly display images in motion, which tends to mask flicker, whereas 
computer monitors frequently contain relatively static displays. Finally, 
televisions mostly display photographic images made up of many, many 
colors, which blend into one another somewhat gradually. Computer 
screens, especially in the Amiga’s era, display vastly fewer colors, with 
sharp contrasts between them; consider the contrast between the black 
characters and white background on a typical word-processing screen in 
comparison to the smooth blending of shades in a photograph or film 
frame. The computer screen’s sharp contrasts tend to emphasize flicker, 
whereas the television screen’s transitions smooth it away. For these 
reasons, computer designers have generally chosen to depart from the 
NTSC standard, outputting progressive-scan video rather than interlaced 
video at refresh rates of 60 Hz or greater for every line, with vertical resolu-
tions that vary according to machine and screen mode. The Amiga’s 
designers, though, were an exception.

As I researched this book, I often found myself asking questions 
regarding intentionality in relation to the Amiga’s design: To what extent 
were Miner and his team aware of the uses to which users would put this 
or that unique attribute of their creation? These questions become espe-
cially important to ask in light of the habit that many Amiga fans have of 
almost deifying the design team, gifting them with nearly superhuman 
wisdom and vision. Visionary as they undoubtedly were, in reality their 
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vision sometimes failed them. HAM mode, for instance, was, as described 
in chapter 3, almost a happy accident, an interesting hack that Miner 
inserted into the display hardware without having a firm justification in 
his mind for doing so and, indeed, that he later tried to remove. In the 
released machine, of course, HAM mode proved itself ideal for the display 
of digitized photographs as well as for the program-generated photoreal-
ism of ray-traced pictures, uses that never occurred to Miner. The situa-
tion with the Amiga’s support of interlaced video is even more 
complicated.

In the Amiga’s early design phase, when the platform was still envi-
sioned primarily as a game console rather than as a full-fledged PC, 
Miner’s team was faced with a dilemma. If the Amiga was to be a game 
console only, it absolutely had to be possible to connect it directly to a 
standard television rather than requiring an expensive, specialized 
monitor. Other computers that were designed to connect to a television, 
such as the Commodore 64, had a vertical resolution of about 200 lines. 
Miner and team wanted to allow Amiga programmers the possibility of 
doubling that figure—perhaps, in the minds of at least some of the design-
ers, to make the Amiga more useful for applications beyond the playing of 
games. For better or for worse, the only way to create 400 lines of vertical 
resolution on a standard NTSC television with its limited bandwidth was 
to interlace the screen.7

That said, there was also more than practical expediency behind the 
decision. As Miner and team labored on the Lorraine throughout 1983, a 
new game was causing a sensation in the otherwise moribund world of the 
stand-up arcade machine: Dragon’s Lair. Essentially a (minimally) interac-
tive cartoon, Dragon’s Lair operates entirely from a laser videodisc (the 
forerunner to the modern DVD), splicing together short animated 
sequences in response to the player’s inputs. As a ludic experience, it is 
problematic at best: the player must memorize and execute a series of 
precisely timed inputs to advance through the linear plot, with failure at 
any point leading to one of many admittedly amusing death sequences; no 
other possibilities are allowed beyond this total-success or total-failure 
dichotomy. The game did, however, get the Amiga team thinking about the 
possibilities for mixing conventional computer-generated imagery with 
video. Although they were still thinking largely in terms of videogames 
and certainly never anticipated how far NewTek and others would eventu-
ally take the merger, they were on the right track.8

Indeed, the NTSC format became bound up with the most fundamen-
tal design choices made by Miner and team. Most notably, the custom 
chips’ standard clock speed of 7.16 MHz is exactly twice the NTSC 
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color-subcarrier frequency of 3.58 MHz;9 this correspondence facilitated 
keeping Agnus and Denise synchronized with the demands of refreshing 
the screen on a timely basis. As the Amiga’s design evolved and it was 
resituated as a PC rather than a game console, the ability to use a television 
in place of a monitor as the primary display device lessoned in impor-
tance. Nevertheless, the basic format of the video signal, if not the ports 
and cables that carried it, remained uniquely compatible with the NTSC 
standard and thus uniquely sympathetic among computers of the era to 
interfacing with televisions, VCRs, video cameras, and other everyday 
video hardware.

But this sympathy does not extend equally to all of the available reso-
lutions. Two of the four standard modes, 320 × 200 and 640 × 200, are not 
interlaced; these modes operate on the progressive-scanning principle 
with a refresh rate of 60 Hz. In other words, only half as many scan lines 
are present as in a conventional television display, but each is refreshed 
60 times per second; the result is a solid, flicker-free display suitable for 
text. (Although even a 60 Hz refresh rate is less than ideal for more recent, 
higher-resolution displays, it was acceptable for the relatively small mon-
itors and low resolutions of the Amiga’s time.) The interlaced resolutions 
of 320 × 400 and 640 × 400, meanwhile, conform perfectly to the NTSC 
standard, with NTSC’s extra 84 vertical lines being used to form the border 
around the display.10 The interlaced modes can show much more vertical 
detail—thus allowing, for instance, twice as many lines of text on screen 
in a word-processing application—but each line is refreshed only 30 times 
per second, as in a television display. These modes therefore share with 
television the same flicker problem, exasperated hundredfold by the 
Amiga’s need to display detailed, high-contrast, static, textual images.

That flicker was certainly a constant bane to many Amiga users and 
probably eventually caused a fair number of purchasers or potential pur-
chasers to look elsewhere. One solution to the problem—albeit a pricey 
one—was to purchase a high-persistence monitor whose pixels held their 
electrical charge and maintained their glow for a much longer time than a 
standard monitor of the time would, thus eliminating flicker. Although 
this solution was acceptable for applications involving relatively static dis-
plays, such as word processing, it was problematic in the extreme for 
animation, games, or anything else involving rapid screen updates, for the 
very high persistence that eliminated flicker led to ugly streaking and 
tearing effects in these situations. Another, better solution was to buy a 
“flicker fixer,” a device that would intercept the video signal in transit to 
the monitor and convert it into a 60-Hz progressive-scan format before 
sending it on its way. Again, though, this solution required the purchase 
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of the flicker fixer itself as well as a potentially more expensive monitor 
able to accept the altered video that the fixer put out.

Another less immediately visible but no less taxing annoyance also 
stemmed from the compromises the Amiga’s designers had to make to 
support interlace: the machine’s pixels are not square. Although one might 
expect a rectangle of, say, 10 pixels wide by 10 pixels high to appear as a 
square on the Amiga’s monitor, this is not in fact the case. Further, the 
shape it will assume varies in conjunction with the exact resolution mode 
currently active: individual pixels are extremely horizontally elongated in 
620 × 200 mode, mildly horizontally elongated in 320 × 200 and 640 × 
400 modes, and vertically elongated in 320 × 400 mode.11 The counterin-
tuitive nature of this variation was a constant headache for Amiga artists 
and programmers alike.

But even without a high-persistence monitor, users willing to experi-
ment with color and monitor settings could do a great deal to minimize 
the annoyance of flicker even in textual applications. The 320 × 400 mode 
is particularly useful for HAM because the smooth blending of colors 
required in this mode also hides the presence of flicker almost completely. 
Its extra 200 lines of vertical resolution being too tempting to pass up, this 
mode became by far the most popular for working with photographic 
images. The benefits and importance of interlace to the Amiga are enor-
mous, for interlaced video was key to its dominance in the field of video 
production, a dominance that continued for a time even after Commo-
dore’s demise left the machine effectively an orphan. This dominance was 
enabled largely by an additional piece of hardware with which the Amiga 
is wonderfully suited to operate: the generator lock, or genlock.

Commodore introduced the first Amiga genlock in early 1987. This 
unassuming beige box could be used as a simple converter to interface 
between the Amiga’s RGB display connection and the component video 
connections of most television and video equipment of the time. One 
could then simply use the television in place of a monitor, perhaps for 
playing games; the image quality for serious productivity or creativity 
applications was mediocre at best, though.12 More interestingly, one could 
run the output through a VCR to record pictures, animations, or presenta-
tions created on the Amiga. Although this ability is certainly useful, the 
genlock got its name from yet other abilities. A second video source—
whether it be a video camera, a VCR, a laser-disc player, or something 
else—can also be fed into the genlock. The two images are then synchro-
nized—or locked—together and output as one to the receiving television or 
VCR, with the Amiga’s screen image overlaid on the other input source. 
This combination is possible only because both the Amiga and the other 
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video source share the interlaced NTSC format. (The genlock functions 
correctly only in the Amiga’s interlaced resolution modes.) When the 
genlock is used in this way, the first color in the Amiga’s current palette—
color 0, generally used for the screen background as a whole—becomes 
transparent, revealing whatever lies beneath from the other video source. 
This capability opens up boundless possibilities for video production. One 
can now—to take a simple, common, and obvious example—create custom 
titling text using one of the many software packages available for this 
purpose and overlay it on one’s personal video footage to surprisingly 
professional effect. It is even possible to mix the Amiga’s sound as well as 
video with that of the other source. Because the custom chips run at exactly 
twice the NTSC color subcarrier frequency, when genlock is used, they can 
actually synchronize themselves to the external video timings provided by 
the genlock rather than relying on the Amiga’s own internal clock, ensur-
ing absolutely precise synchronization with the external video source.

In addition to making it relatively easy to output Amiga video to any 
standard NTSC device and to combine that video with input from another 
NTSC source, the Amiga’s interlace support and its ability to synchronize 
itself to an external source also made it ideal, at least by the technological 
standards of its time, for importing, storing, editing, and displaying 
images captured from the real world by an NTSC video camera. This 
process was known as “digitizing,” and it was here that NewTek first estab-
lished its reputation.

Digi-View

A scant few months after the Amiga first appeared in stores in 1985, a 
handful of exciting images began to circulate in the platform’s public-
domain software-distribution channels. Like the Juggler, these images 
were not only stunning in their time, but also the first harbinger of a revo-
lution to come, for they were full-color photographs reproduced on the 
Amiga’s screen with a clarity easily the equal of many television broadcasts 
(figure 5.1).

Although the Juggler still remains impressive enough in its way even 
today, it is rather more difficult to convey adequately just how remarkable 
these images were in their time, a time when the idea of displaying pho-
tographs on a computer screen seemed almost the stuff of science fiction. 
Suffice to say, then, that what looks to us today like an innocuous gathering 
of random everyday images rather obviously culled from the pages of 
glossy mainstream magazines was a staggering sight at the time. They 
owed their existence to the Amiga’s HAM mode as well as to a piece of 
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hardware invented by the creator of these images, Tim Jenison. This 
invention was not only the Amiga’s first color digitizer, but also the first 
such device capable of importing color images from the outside world into 
an everyday PC of any stripe with truly satisfying results. When it arrived 
as a commercial product in late 1986, NewTek branded it “Digi-View.”

I do not, of course, mean to imply that the very concept of the digitizer 
originated with NewTek. In 1957, a team of engineers led by Russell A. 
Kirsch at the National Bureau of Standards developed the first image digi-
tizer, which consisted of “a rotating drum and a photomultiplier to sense 
reflections from a small image mounted on the drum.”13 From this device, 
the image data were sent to the Standards Electronic Automatic Computer 
(SEAC) to be stored in memory and displayed on an oscilloscope screen. 
The resulting image was hardly a perfect reproduction of its original con-
taining as it did only one bitplane and thus reducing all colors to either 
black or white, but it was sufficient to produce recognizable analogs of at 
least some carefully chosen real-world images. From this beginning 
sprang a whole field of image-capture and image-processing research 
conducted on large computers at many institutions.

Like similar research into 3D graphics, this body of research found its 
way onto early PCs, but only slowly, constrained as those machines were 
by their limited memory, processing power, and display capabilities.  
By 1985, though, various consumer-grade digitizers were available for 

5.1  Sample images distributed by Tim Jenison to promote NewTek and its upcoming 
video digitizer. Created very early in 1986, these images represent the first quality color 
photographic reproductions ever seen on an everyday PC screen.
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machines such as the Apple II and Commodore 64. These devices were 
remarkable for existing at all and could create black-and-white images 
that were recognizable and even attractive when their sources were care-
fully chosen and captured. The systems were, however, ultimately almost 
as limited as the system employed on the SEAC mainframe so many years 
earlier.14 Although other digitizers capable of producing more pleasing 
results were available for machines such as the IBM PC, they “cheated” by 
replacing their hosts’ primitive display hardware with their own self-con-
tained display systems. This configuration made them not only very 
expensive, but, again, of very limited utility because their output could not 
be incorporated into or manipulated with other software on their hosts. 
Perhaps the most practical digitizer of the pre-Digi-View era was Koala’s 
MacVision, which was both reasonably priced and took advantage of the 
Macintosh’s relatively advanced display capabilities to produce images of 
quite acceptable quality. But it, like its host, was limited to black and white 
only.

Digi-View was not even the first digitizer for the Amiga. In the months 
before the Amiga’s launch, Commodore worked closely with another small 
startup that called itself “A-Squared Systems” to develop the Live! digi-
tizer,15 which marked a major step forward for the contemporary state of 
the art in being able to digitize in color and, remarkably, in being able to 
capture real-time images “live” from a video camera or other video source. 
By contrast, even a relatively advanced digitizer such as MacVision 
required, depending on the quality mode selected, 6 to 22 seconds to 
complete an image scan,16 meaning that it could be used only to capture 
still frames from video, existing pictures, or live images that contained 
absolutely no movement. It was an early prototype of Live! that Andy 
Warhol used to capture Debbie Harry’s portrait at the Lincoln Center 
launch party described in chapter 3. In spite of A-Squared’s huge head 
start on NewTek, however, Live! did not come to the market until much 
later. The original plan had been for Commodore itself to sell Live! but the 
product was trapped in a limbo stemming from the rollercoaster ride that 
was Commodore’s month-to-month financial situation, endless manage-
ment shakeups, and the accompanying changes in direction.17 By the time 
A-Squared had disentangled itself from Commodore, launched the cus-
tomary lawsuit for breach of contract,18 and made other plans to distribute 
Live! the launch party was two years in the past, and Live! was no longer 
such a unique device in the burgeoning Amiga graphics market.

Business matters aside, Digi-View was quite different from Live! in 
its design and intent. Unlike digitizers such as Live! which were often 
called “frame grabbers” to reflect their emphasis on real-time video capture, 
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Digi-View was a slow-scan digitizer. Capturing images with Digi-View was 
a slow and somewhat laborious process more reminiscent of early 
daguerreotype photography than of the point-and-shoot capabilities of 
Digi-View’s descendent, the modern digital camera.19 In addition to an 
Amiga, the Digi-View hardware and software, and a black-and-white 
NTSC video camera (even for color digitizing, as I explain soon) , the 
serious Digi-View user also required a carefully designed studio space for 
her work, with properly positioned lighting. The Digi-View device itself 
would be almost unnoticeable in such a studio, being an unobtrusive box 
about the size of a pack of playing cards that hung from a port on the 
Amiga. Into this box was fed the signal from the video camera.

A video camera contains a lens that focuses light onto a grid of tiny 
diodes known as “photosites.” Each photosite is struck by a unique portion 
of the light arriving through the lens, the brightness of which it translates 
into an internal electrical voltage, with more light resulting in a higher 
voltage. Another portion of the camera’s circuitry incessantly scans the 
grid of photosites, left to right and top to bottom, outputting the results as 
series of voltage modulations to be captured and utilized by another NTSC-
compatible device, such as a television screen, a VCR, or, in this case, a 
Digi-View. The signal is an analog signal, and NTSC is an analog standard 
in that it does not consist of a series of discrete points of data, each poten-
tially representing a single pixel in the manner of an Amiga playfield, but 
rather of a continuous, undelineated stream of gradual variations. As just 
described, a single NTSC frame consists of 484 of these individual streams 
of analog data, sent interlaced at the rate of 242 streams per cycle over the 
course of two painting cycles. The lines are separated by a synchronization 
pulse that lets the receiver know where one ends and another begins. 
When the camera has completed a single frame, it starts again at the top 
to paint the next frame, working at a rate of 30 frames per second.

The Digi-View’s job, then, is to translate this analog stream into a 
digital grid of pixels that the Amiga can process and display. It accom-
plishes this translation by sampling from this fire hose at a series of dis-
crete points, piping the voltage captured at that instant through an ADC 
that operates in the same way as those described in chapter 2 in connec-
tion with sound sampling. Each of the sampled voltages represents a 
brightness level in one tiny area of the image source and thus becomes a 
number between 0 and 15, with 16 being the number of tonally neutral 
shades the Amiga is capable of displaying—0 being pure black, 15 being 
pure white, and the numbers in between being a series of graduated shades 
of gray. (In other words, if one insists that the red, green, and blue com-
ponents of a given shade in the Amiga’s RGB color system remain exactly 
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equal, one is left with a choice of 16 shades.) These numbers are fed to the 
Amiga itself, where the Digi-View software combines them into a grid of 
pixels in memory—a playfield, ready to be output to the monitor or saved 
to disk. Through its ADC, Digi-View has thus translated the analog world 
into a digital form suitable for a digital computer such as the Amiga, 
although some of the richness of the analog original is inevitably lost due 
to the Amiga’s limited screen resolution and color palette.

Digi-View has other sharp limitations, the most notable of which is 
its lack of speed. The video camera follows the NTSC standard in painting 
a complete representation of its source for Digi-View 30 times per second, 
but this rate is far, far faster than Amiga can process enough samples of 
those data to create an acceptable digital version. The Amiga thus must sip 
very judiciously indeed from the analog fire hose, taking in and converting 
only a very small portion of each successive paint. Specifically, it attempts 
to digitize just one column of each frame. Digi-View was most often used 
to digitize images for display in the Amiga’s lower-resolution modes, 
which have a horizontal resolution of 320 pixels. Each line from the video 
camera must therefore be sampled 320 times, at exactly equidistant inter-
vals, to form a single complete image. On the first frame received after the 
digitization process is begun, the Amiga samples only the first of these 
points for every line; on the second frame, it samples the second point, 
and so on, until a complete image of the whole has been captured after the 
320th repetition. Because frames are sent to Digi-View at 30 per second, 
this entire process requires 10.67 seconds (320 total frames / 30 frames 
per second). Any movement at all by the source completely spoils the 
results because the Digi-View will then be capturing not a single scene, 
but portions of a multitude of slightly different scenes. The Digi-View 
photographer, like the daguerreotypist, is therefore limited in his choice 
of subject matter to already extant static images (such as those magazine 
clippings whose images created such an initial stir in 1986), inanimate 
objects, or living subjects who are able and willing to hold absolutely still 
throughout the process.

If the Digi-View user wishes to scan in color and thereby take advan-
tage of HAM mode for true photorealism, as the vast majority did when 
Digi-View was introduced, the process becomes even more time consum-
ing. The same black-and-white camera is used in a process as ingenious 
as it is low tech. Digi-View comes with a set of colored filters, one each for 
red, green, and blue. Using these filters, the user captures each section of 
the color spectrum separately. First, she places the red filter over the lens 
of her camera, which allows only red light to reach the photosites, creating 
an image containing only that part of the light spectrum. She digitizes this 
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image in the normal manner, then repeats the process using the green and 
blue filters, leaving her with three grayscale images, each of which actually 
represents just a certain portion of the entire spectrum. Once these three 
images are safely stored in the Amiga’s memory, the Digi-View software 
combines them into one full-color HAM display, using the first image as 
the source of the red component of each pixel, the second for the green 
component, and the third for the blue component. Of course, as in the 
HAM-mode applications described in previous chapters, occasional com-
promises must be made due to the very limited number of sharp color 
transitions allowed in HAM. However, because such transitions are actu-
ally quite uncommon in the real world of analog color, these compromises 
become an issue less often when working with photorealistic digitized 
images than they do when working with many other kinds of graphics. 
Perhaps more significantly, digitizing in color requires more than half a 
minute just for the digitizing process itself, plus the time used in swapping 
color filters. And again, the slightest movement in the scene or a signifi-
cant change in the light falling on that scene or, for that matter, even a 
slight movement of the camera itself spells disaster for the resulting 
image.

Many of Digi-View’s restrictions are the result of its being a “dumb” 
device, consisting of little more than the ADC itself. All of the computa-
tionally intense work of digitizing must be done by the Amiga. Later Amiga 
digitizers such as the Live! system that were capable of operating in real 
time or near real time were “smart” devices, capable of capturing an entire 
frame of data at once, storing it in their own internal memory, and then 
sending it to the Amiga at a manageable pace. These frame grabbers also 
had the significant advantage of being able, as their name would imply, to 
capture single full-color frames from a variety of video sources beyond a 
video camera, most notably from videotape. (Digi-View could actually 
capture from such devices as well, but only from a paused source and only 
in gray scale, the color filters obviously being unusable in such a scenario 
which provided no camera lens to cover.) Although often invaluable for 
the professional, such devices were also, of course, vastly more expensive 
than the simplistic little Digi-View. And in having to rush through the job 
of digitizing, they also often yielded results that were actually worse than 
the typical Digi-View image.

Digi-View, then, remained somewhat unique as an inexpensive  
digitizer for the everyday Amiga user. It retained its low price and focus 
on the everyday user, and the rewards it reaped were significant. Selling 
at a street price of less than $200, Digi-View remained the digitizer for  
the Amiga masses even as more advanced and expensive devices soon 
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surpassed most of its capabilities. More than 100,000 units were eventually 
sold, a remarkable number considering the relatively modest sales totals of 
the Amiga platform itself and enough that in May 1994 NewTek could claim 
Digi-View to be “the best-selling image capture device, on any platform, in 
the history of computing.”20 Digi-View was inexpensive enough that many 
could afford to buy it simply to experiment with and to use casually just for 
fun. Amiga BBSs were soon inundated with digitized images as users shared 
their favorite creations, a forerunner of modern services such as Flickr. And 
in another harbinger of the future, many of these images were sexually 
explicit and, indeed, constituted perhaps the first widely distributed high-
quality digital pornography.21

The first NewTek product to follow Digi-View was similarly affordably 
priced and made an ideal companion. At a time when a version of Deluxe 
Paint with support for HAM mode was still years away, NewTek’s Digi-
Paint allowed one to touch up and manipulate one’s newly digitized HAM 
images without first converting them to fewer colors. Again, many of the 
resulting images were harbingers of today’s world of Photoshopped visual 
mash-ups, a future when low-cost image-processing technology can make 
almost any photographic evidence suspect.

Desktop Video

HAM mode and interlace combined with digitizers and genlocks laid the 
groundwork for an Amiga-abetted revolution in video production. As dis-
cussed in chapter 3, the Amiga’s support for overscan modes was another 
boon of almost equal importance, for overscan allowed the user to do away 
with the chunky border around the display and work with the entirety of 
the screen. Like many revolutions, however, this one took some time to 
get off the ground; it was 1987 before practical digitizers and genlocks 
were widely available and before Amiga users as well as the computer 
industry press at large began to understand the true potential of this com-
bination of technology. When they did, though, they gave the technology 
a buzzword all its own: desktop video, a phrase deliberately evocative of the 
desktop-publishing phenomenon that had become the claim to fame of 
the Amiga’s 68000-based rival, the Apple Macintosh. This term describes 
the use of a PC to aid in serious, potentially professional-quality video 
production and postproduction. Just as the Macintosh and laser printer 
could replace the traditional typesetter and printing press at a vastly 
reduced cost, so could the Amiga, accompanied by a genlock, possibly a 
digitizer, and some modest consumer-grade video equipment, replace 
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professional video-production equipment costing tens or hundreds of 
thousands of dollars.

One could of course do visual arts on the Amiga with the intention of 
sharing one’s work only within the Amiga hobbyist community, perhaps 
distributing it as demos or simple still images over the BBS network or via 
disk collections of public-domain software. If one was more ambitious as 
well as sufficiently skilled, one could also sell one’s work to entertain-
ment-software publishers to be incorporated into the games that thrived 
for several years on the Amiga in North America and for considerably 
longer in Europe. If one wished to reach beyond the relatively small com-
munity of Amiga users, though, one had to face the harsh realities of being 
a digital artist trapped in a still-analog world. One could attempt to capture 
one’s work in print, but one would, as Paula Hible was quoted as saying in 
chapter 3, be left with a “thin sheet of shitty paper with a printout on it,”22 
a work of art deprived of the brilliant colors it possessed in its natural 
environment, the monitor screen, and deprived of even the potential for 
motion and sound, both as vital as still imagery to the Amiga’s identity as 
the first multimedia computer. The only medium that might satisfactorily 
capture one’s work from the monitor screen and enable others who had 
perhaps never even heard of the Amiga to appreciate it was video. Thus, a 
huge portion of Amiga-based creative work, including that done with 
paint and animation applications such as DPaint and 3D-modeling appli-
cations such as Sculpt-Animate, was ultimately widely distributed thanks 
to the technology described in this chapter. Having devoted considerable 
space in each of the previous two chapters to describing the experience of 
using the applications that were their main subjects in the abstract, I think 
it more appropriate here to focus on specific users who took advantage not 
only of the technology described in this chapter but also of pioneering 
applications such as DPaint and Sculpt-Animate to begin forging those 
connections between the computer and everyday life that have become so 
commonplace today.23

The simplest possible Amiga desktop video setup consisted of little 
more than an everyday Amiga system and some typical consumer elec-
tronics that virtually all Amiga users already had in their homes (figure 
5.2). The Amiga 1000 came equipped with a built-in port that output a 
color-composite video signal of the sort used by most consumer video 
equipment of the era, although the quality of this signal was not consid-
ered ideal. The composite video port of later Amigas output only gray-
scale video, albeit in much better quality. If one was dissatisfied with these 
options, however, one could purchase a composite video encoder for less 
than $100. This simple device accepted a signal from the Amiga’s standard 
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RGB-monitor output port and translated it to a composite video signal 
while also passing it on unmodified to the standard Amiga monitor. The 
composite signal is then fed into an everyday VCR for recording images 
and animations being played on the Amiga. This setup, which includes 
neither a genlock nor a digitizer, is quite limited; one cannot mix the 
Amiga’s video output with other video, nor can one capture and make use 
of external imagery. And there is also no facility for adding sound to the 
video. Nevertheless, for many applications of the era discussed in this 
book it could be very useful even with all its limitations.

Daniel J. Barrett used a setup similar to figure 5.2 to teach introduc-
tory programming and computer science concepts to students at Johns 
Hopkins University in 1991.24 Frustrated with the limited utility of the 
blackboard as a visual aid for demonstrating dynamic, evolving systems, 
Barrett took to creating simple animations on his Amiga, using general-
purpose graphics packages such as DPaint and Aegis Animator as well as 
simple demonstration programs he coded himself and recording the 
results on videotape. He could then play back these snippets of video at 
appropriate points in his lectures, adding live explanatory narration as 
they played. The limitations of his approach were of course significant, 
but Barrett was already dreaming of the next step: “[A] problem is that 
video projectors are not interactive; I currently need to plan the entire 
video in advance, and narrate it as it is displayed. Instead, I would like to 
bring an Amiga directly into the classroom and connect it to a projection 
unit, giving me greater flexibility during the presentation.”25 Although 
Barrett’s dream of bringing an Amiga into the classroom would have to go 

5.2  An extremely simple desktop video setup such as might have been used by Daniel J. 
Barrett for his classroom demonstration videos
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unrealized (not least because a laptop version of the machine was never 
produced), connecting a computer to a projector for just this purpose is 
not only possible but commonplace today. Barrett’s innovations thus pre-
saged the ubiquitous multimedia PowerPoint presentations now found in 
so many classrooms and boardrooms.

Figure 5.3 illustrates a setup that is much more flexible and capable 
than Barrett’s, if also considerably more expensive and complex. We now 
have a video camera with which we can shoot original footage in the real 
world. We can play this footage back on one of our two VCR’s, routing it 
through a genlock that allows us to superimpose on it postproduction 
titling or other effects we have created on our Amiga; we record the result-
ing combined video on our second VCR. We can also use the genlock to 
add music or sound effects, for, just like video, audio from the Amiga can 
be routed through the genlock, which combines it with the audio from our 
real-world footage and sends it on to be recorded by the second VCR. And 
we now have a digitizer at our disposal, which allows us to capture imagery 
from the real world to be altered or manipulated on the Amiga, then sent 
on to videotape just like imagery that originated within the computer. 
Although a setup like this, particularly if one invested in truly profes-
sional-quality equipment, would not have been a trivial investment for 
most people, it would have cost but a tiny fraction of the cost of similar 
capabilities before the arrival of the Amiga. In fact, many started video-
production businesses built around their Amigas, executing small-scale 
contracts for small businesses and civic organizations who could not pos-
sibly have afforded a traditional production. Amiga magazines of the day 
were filled with stories about and advice for beginning just such an 
endeavor.

One of those stories was Jane Baracskay’s.26 Having owned an IBM 
PC–centric independent computer-consulting business for several years, 
Baracskay hit upon the idea of producing a training video to help her 
clients with routine tasks and problems and ease her own telephone 
support burden. After receiving startlingly expensive price quotes from 
several traditional production companies, Baracskay began exploring the 
option of doing it herself using an Amiga. From this experience was born 
a new company, Kona-Kini Productions, which produced six complete 
videos in just its first year. Using a setup much like the one shown in figure 
5.3., Kona-Kini specialized in promotional and instructional videos, 
mostly for small businesses located close to Baracskay’s Brunswick Hills, 
Ohio, home: a fund solicitation tape for a private school, several instruc-
tional videos for a local builder, a motivational video for employees at the 
Akron/Canton branch of Merrill Lynch, and so on. Presaging the more 
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personal video culture of today, Kona-Kini also produced short video 
résumés for individuals. Such a production might begin with a short video 
interview of the subject, over which titling could be superimposed via the 
genlock, stating the individual’s name, qualifications, and important 
points from the interview. (By the time Kona-Kini was formed in late 
1988, titling had become such a common use for the Amiga that several 
specialized software packages competed with one another to perform that 
task alone, and many more would soon follow.) The interview might then 
fade into a scrolling list of the subject’s accomplishments, with an attrac-
tive image representing the subject or her field as a background. This 
image might have been drawn from scratch using a program such as DPaint 
or digitized via Digi-View and perhaps modified via Digi-Paint or another 
image-manipulation program to suit the production. Kona-Kini still 
exists today and still does largely the same kind of low-cost productions 
for the same kind of clients, although the arrival of the digital age and the 
DVD of course means that the equipment it uses now is quite different.

Baracskay’s story was inspiring but not hugely unusual. By 1989, 
Amigas were to be found everywhere in the field of low- and midrange 
video production. They labored anonymously, behind the scenes, but for 
those with knowledge of the platform, the Amigas’ telltale technical fin-
gerprints were in plain evidence almost everywhere, not least on televi-
sion. Derek Grime described one late night’s channel surfing: “I saw a 
furniture store’s prices scroll by in twenty point diamond script. A real-
tor’s houses for sale appeared to have been scanned in with Digi-View. A 
used car dealer’s logo flipped around the screen, an effect that could only 

5.3  An intermediate-level desktop video setup such as might have been used by an 
ambitious amateur or a professional doing small-scale contract work
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have come from Deluxe Paint III. The Amiga was everywhere.”27 Amiga-
created animations were even shown on the Jumbotron during Super Bowl 
XXIII in Miami in January 1989.28

For all of the success of Kona-Kini and so many other small Amiga-
based video-production companies, they still had to operate under con-
straints that kept the most ambitious of video productions, such as series 
produced for network television, inaccessible to them. Such productions 
in the late 1980s still required the services of specialized and expensive 
hardware as well as specialized and expensive technicians to operate it. 
And yet Amigas frequently found a home even in these environments. 
Here they were not the centerpiece of the production studio but rather 
served as a useful, inexpensive source of graphics and effects to be incor-
porated with other elements in the completed production (figure 5.4). 
Already in 1986 Amigas were used to create graphical effects on the televi-
sion serial Amazing Stories,29 but they found their most publicized early 
home the following year, on a show built around a short-lived but intense 
pop-culture phenomenon known as “Max Headroom” (figure 5.5).30

An odd, lumpy mixture informed equally by cyberpunk science fiction 
such as William Gibson’s as by the vacuous Hollywood cult of celebrity, 
Max Headroom was a disembodied artificial intelligence from “20 minutes 
into the future” who lived in computer networks and communicated 
through a video screen. He first appeared as star of a one-off British tele-
vision drama in early 1985. Stints as the host of music-video and celebrity 
talk shows followed, first in Great Britain and then in the United States, 
as did his most prominent exposure as an advertising spokesman for New 
Coke. In 1987, Max was given his own weekly primetime television series 
in the United States, which followed from the original British drama to 

5.4  An Amiga integrated into a studio capable of doing professional television or film 
production
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chronicle the adventures of a team of investigative reporters living in a 
dystopian future. The show was a far cry from what one might have expected 
in light of the gimmicky character that provided its name, often presenting 
a surprisingly sophisticated and even brave satire of mass media while 
introducing for the first time to the mainstream television audience many 
ideas from the cyberpunk genre that had taken the world of written science 
fiction by storm with the publication of William Gibson’s landmark Neu-
romancer just a few years earlier. A brief trial season of just six episodes in 
the spring of 1987 pulled ratings that were good enough to convince ABC 
to bring the show back as a regular in its fall lineup. However, perhaps 
because the American public was not prepared for such ideas, or perhaps 
because the satire struck sufficiently close to home to make network exec-
utives set the show up to fail,31 or perhaps because people had just grown 
tired of Max’s trademark stuttering delivery and non-sequitur-laced 
speeches, ratings plummeted in this second season. In the end, only eight 
more episodes were produced before the show was quietly and ignomini-
ously canceled.

That second season made extensive use of Amigas, though, thanks in 
large part to the evangelism of technical consultant Jeff Bruette, a former 
Commodore employee and Amiga zealot. Many at the time believed that 
Max Headroom himself was computer generated (some people still believe 
it), but this was certainly not the case. Such sophisticated, realistic char-
acter animation was far beyond the capabilities of any computer of the 

5.5  Max Headroom. The shifting lines behind him were quite likely 
generated by an Amiga.
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mid-1980s, including the Amiga. Rather, Max was portrayed by actor Matt 
Frewer, wearing an elaborate, form-fitting latex mask sculpted and applied 
anew for each appearance by John Humphreys and a suit made from stiff, 
shiny fiberglass to convey the desired artificial look.32 Yet it is very likely 
that the patterns of colored lines that always waved “behind” Max on the 
screen were generated on Amigas during that second season as a replace-
ment for earlier non-computer-generated, hand-drawn animations.33 
This effect would have been accomplished using a common production 
trick known as chroma-key compositing, used then and still today to facili-
tate television news weather forecasts among many other functions. 
Frewer, dressed as Max, was filmed in front of a screen made from a single 
solid color, likely green in this case. This video feed was sent to a device 
known as a “video switcher” or “special-effects generator” (SEG), which 
was programmed to replace all green areas with video from another feed. 
(This means, of course, that Frewer himself could not have any green on 
his own person.) The alternate feed came from an Amiga and provided the 
shifting background pattern. The SEG also added other effects to the video 
and the audio, on occasion momentarily freezing the video or dropping a 
few frames to give Frewer’s motions a jerking, artificial appearance and 
looping and distorting brief snippets of the audio while skipping over 
others to create Max’s trademark stuttering speech patterns. Finally, the 
combined manipulated video and audio feed was sent on its ways to be 
recorded by a professional videotape recorder for later television 
broadcast.

The Amiga’s close association with Max Headroom even today is 
perhaps somewhat undeserved because the Amiga was never more than 
an ancillary (if useful) tool for his creators. Amigas were in fact most use-
fully employed in other aspects of the show that bore Max’s name, most of 
which centered on the living person whose memories and personalities 
provide the raw material for the Max construct, reporter Edison Carter. In 
keeping with the show’s cyberpunk setting, much of the action takes place 
on in-world video and computer screens; Carter, for instance, always 
carries an elaborate “camera” with him on his investigative missions, 
which provide to his “controller” back at his television station’s headquar-
ters not only a constant video feed, but also current information on his 
health, his exact location, and environmental conditions around him, 
overlaid on and framing the actual video. And many plotlines revolve 
around hacking into networks or keeping hackers out. These sequences 
are accompanied by fancifully animated computer displays and equally 
fanciful, if meaningless, technobabble from the characters involved. It is 
well documented that virtually all of these graphics, a very significant 
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portion of the show, were created on Amigas during that second season, 
using everyday software and genlocks. Producer Brian Frankish summed 
up the Amiga’s contribution to his show: “They [Amigas] are a necessary 
function in communicating the concepts of our show. We are dealing with 
information, where it comes from, its sources and where it’s going. That’s 
what these graphics are about. With a computer, we don’t need a keying 
video switcher because the computer has a built-in keying ability. The kid 
[Bruette] types in the stuff, the fellows hit the right keys, it goes together 
in the video trailer, it plays back on the stage, whoosh: it’s that simple.”34

In the wake of its prominent if short-lived usage on Max Headroom, 
the Amiga found a role in generating similar in-world computer graphics 
on quite a number of productions, including even substantial feature films 
such as Robocop 2.35 Yet its capabilities, remarkable as they were, remained 
too limited for it to challenge dedicated professional SEGs and graphical 
workstations for a role at the heart of such productions. In 1990, however, 
another revolutionary product from NewTek changed that.

The Video Toaster

As Tim Jenison was creating and shipping the first copies of Digi-View 
from Topeka, Paul Montgomery, living in the heart of Silicon Valley, had 
already given up a real-estate business to devote himself entirely to his 
new passion, the Amiga.36 Montgomery founded the first, largest, and 
most influential Amiga users group, the aptly named First Amiga Users 
Group, and got a job with EA working as a sort of liaison between that 
company and the Amiga creative community that used its Deluxe line of 
products. This role soon put him into contact with Jenison. Excited by 
Jenison’s vision of NewTek and the Amiga’s possible future and frustrated 
by EA’s already waning commitment to the platform, Montgomery left EA 
to join with Jenison in 1987.37 Together the two men formed a strong part-
nership not dissimilar to that of Steve Wozniak and Steve Jobs during the 
early years of Apple Computer. Jenison, like Wozniak, was a hardware 
hacker in the classic mode, turning out elegant, visionary designs, but he 
was also a quiet man, preferring to stay in his workshop and well away 
from the press and the trade-show circuit. Montgomery, meanwhile, was 
like Jobs, something of a born promoter, glib and articulate and never 
happier than when demonstrating an interesting new gadget for the tech-
nology press. Nor was he above using sex appeal to promote NewTek’s 
products. Soon after his arrival, NewTek premiered a demo that featured 
“Maxine Headroom,” in reality the company’s attractive sales manager 
Laura Longfellow in costume, complete with Max’s trademark stutter.38 
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Montgomery later hired a model, Kiki Stockhammer, to star in promo-
tional videos and demonstrate NewTek’s products at trade shows; she 
became a well-known celebrity and sex symbol among Amiga users.

With Jenison’s technical acumen and Montgomery’s business and 
promotional instincts, NewTek was poised to realize these men’s dreams 
of changing the world of video production by bringing to the masses tech-
nologies that had previously been accessible only to those working on 
major productions. Montgomery, never short of enthusiasm or hyperbole, 
spoke of this project in revolutionary, utopian terms. The agent of that 
revolution would be a gadget that Montgomery first began whispering 
about almost immediately after his arrival at NewTek: the Video Toaster.

But revolutions, especially technology revolutions, take time. Thus, 
the Toaster failed to appear in 1987, 1988, or even 1989. Would-be users 
had to content themselves with a series of eager previews in the trade 
press, each of which seemed to describe a more ambitious product than 
the last and most of which ended by saying that the Toaster was at last just 
a few months from release.39 The Video Toaster seemed a classic victim of 
feature creep and overoptimistic time scheduling, problems that small, 
engineering-driven companies such as NewTek are particularly prone to 
fall victim to. In the end, though, the Video Toaster story had a happier 
ending than many similar examples of “vaporware,” for in December 1990 
the Toaster shipped at last and promptly created a wave of excitement not 
just within the Amiga community, but also within the technology press—
an excitement that had not been prompted by the Amiga since the plat-
form’s launch more than five years earlier. Even magazines dedicated to 
competing platforms that were not accustomed to giving coverage to the 
Amiga, such as MacWorld and PC World, could not ignore this development, 
and celebrities such as the comedy magic duo Penn and Teller as well as 
musician and video producer Todd Rundgren were soon singing the Toast-
er’s praises in very public ways. And more mainstream media outlets also 
took serious notice; the Washington Post, Business Week, USA Today, Time, 
the Los Angeles Times, and Rolling Stone, among many others, gave the 
Toaster generous coverage. NewTek and the Toaster were the subject of a 
three-minute story on NBC’s Nightly News on June 10, 1992. The piece 
played like a preview of the many stories that would start appearing on this 
and similar programs in droves a few years later with the beginning of the 
Internet bubble, focusing on the “work hard/play hard” corporate culture 
espoused by Jenison and Montgomery and opening with the vaguely 
bemused, vaguely condescending title “Revenge of the Nerds.” Near its 
end, Jenison plainly stated NewTek’s vision for the Toaster: “What we are 
trying to do is to make it possible for ordinary Americans to make 
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network-quality television.” Indeed, most of NewTek’s promotional 
efforts of this period had exactly this ring of idealistic, populist evange-
lism, a tone that sometimes clashed with the other side of NewTek’s cor-
porate personality—the diehard, dog-eat-dog capitalist with a fondness 
for Ayn Rand’s objectivist philosophy.40

The Video Toaster was equal to the hype; it very nearly was a complete 
video-production studio on a card, just as NewTek claimed in that Nightly 
News segment. It was such a complex, ambitious device that it can be dif-
ficult to describe quickly or succinctly when one moves away from such 
abstracts. When it was introduced, there was an undercurrent of confu-
sion to much of the coverage both inside and outside the Amiga-focused 
press, a certain note of “yes, OK, it’s revolutionary—but what exactly is it?” 
First and most fundamentally, the Toaster was a replacement display board 
that bypasses the Amiga’s normal display hardware in favor of the hard-
ware built into the Toaster itself, allowing true 24-bit color, meaning up 
to 16.8 million colors on screen at once. Because it replaced a stock Amiga’s 
display hardware so completely, the Video Toaster could not utilize the 
rich library of graphics applications the Amiga had accrued by 1990. New-
Tek’s solution to this dilemma was simply to write its own applications and 
to include them with the Toaster. Most notable of these applications was 
Toaster Paint, the next logical evolution of Digi-Paint supporting full 
24-bit pictures, and LightWave 3D, a very impressive 3D-modeling and 
animation package designed by Allen Hastings, author of the earlier Vid-
eoscape 3D. Although NewTek never promoted the Toaster for such pur-
poses, a user could use this hardware and software combination as a 
standalone graphics workstation. However, the Toaster’s real purpose 
becomes clear when we consider how a user could mix these computer-
generated graphics with video from the real world. The Toaster could in 
fact accept as many as four incoming video feeds, to be manipulated and 
combined with one another or with computer graphics live, in real time. 
In the process, the Toaster user could apply a wealth of effects to them—
some striking, but many others quite subtle—that had previously been 
unavailable to low-cost video producers. The presence or absence of such 
effects had previously marked the boundary between the low-cost video-
production work that the Amiga had commonly been used for previously 
and the work of better-funded and equipped professionals working out of 
“proper” studios. With the arrival of the Toaster, that gap was erased.

For instance, consider transitions, or cuts, from one scene or feed to 
another. Professional productions such as those typically seen on televi-
sion generally accomplish such cuts through a variety of wipes and fades 
that make them less jarring. Desktop video productions, meanwhile, had 
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previously been marked by “hard” cuts that (perhaps subconsciously) 
marked them out in the viewer’s mind as low-cost or even amateur pro-
ductions. For the first time with the Toaster, desktop video producers had 
access to the same transition effects produced by a full professional-qual-
ity switcher found in a network news or sports studio. Some of these 
effects were quite striking; a scene might “shatter” to reveal the new scene 
behind it or shrink, spin, and finally fly off the screen. Many such effects 
were impressive enough to be included in video not as a transition aid, but 
as a special effect in their own right. The Toaster’s “Chroma F/X” module 
likewise allowed the user to manipulate the colors in a scene, giving it a 
blue or red cast to suit the mood of the production. Owing to such possi-
bilities, the Video Toaster lent itself particularly well to a certain type of 
slick, high-technology promotional video that NewTek, under Montgom-
ery’s guidance, was unsurprisingly very adept at making in order to market 
the Toaster. Various feeds could also be combined together in various 
ways, with graphics created in LightWave or Toaster Paint and titles created 
with the Toaster’s bundled titling software superimposed over the whole. 
The advance that the Toaster represented over previous Amiga desktop 
video software and hardware was remarkable indeed; Max Headroom, 
impossible to realize without the aid of a specialized SEG a few years 
earlier, would have been fairly trivial to re-create with a Toaster-equipped 
Amiga and its suite of effects.41

NewTek’s own populist rhetoric aside, Toasters probably ended up 
more often in already extant professional production environments than 
they did in the hands of hobbyists. For all the cost saving and newfound 
convenience the Toaster represented, making full use of it did require 
some fairly expensive equipment that was not commonly found even in 
small production businesses such as Kona-Kini. For example, keeping in 
synchronization multiple video sources to send to the Toaster required the 
use of external time-base correctors (TBCs) that could cost more than the 
Toaster itself. The Toaster’s effect on bigger-budget productions was, 
however, much more dramatic as Toaster-equipped Amigas quickly began 
to appear in roles that the Amiga alone had previously been unable to 
crack. Unsurprisingly in light of NewTek’s claim that it represented a tele-
vision studio on a card, many Toaster-equipped Amigas found homes in 
the television broadcast studios of network affiliates and cable providers 
across the country. They were a particular godsend to less-prosperous 
stations serving smaller markets, which could use them to produce slick 
effects that their limited budgets had not previously allowed. But televi-
sion stations were only one segment of Toaster users; the device had an 
impact in many more areas. For example, Toasters found a niche driving 
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the large video displays found in professional sports stadiums such as Joe 
Robbie Stadium, home of the Florida Marlins baseball team;42 here their 
ability to manipulate video on the fly and generate effects in real time 
made them ideal for tracking scores and keeping the crowd engaged over 
the course of an unpredictable ballgame. And as NewTek refined the 
Toaster’s hardware and software to address complaints and add frequently 
requested features, the Toaster gradually went Hollywood, taking a place 
at the vanguard of another revolution, this one in the way special effects 
were produced.

The pilot episode of Babylon 5, a science-fiction television series soon 
to become very familiar to Amiga and Toaster enthusiasts, premiered on 
February 22, 1993. The show took place mostly aboard a huge space station, 
the eponymous Babylon 5, and thus demanded many special-effects shots 
of the station’s exterior as well as of other spacecraft traveling, docking, 
or occasionally doing battle with either the station or one another. Such 
scenes had traditionally been created by filming meticulously crafted and 
painted model miniatures, adding in postproduction only relatively simple 
effects to simulate laser bursts, explosions, or the glow of spacecraft 
engines. The producers of Babylon 5 parted with tradition in hiring the 
small company Foundation Imaging to create the show’s space-borne 
sequences using a suite of Toaster-equipped Amigas. Such a use of com-
puter graphics imaging (CGI) in film was not precisely new; major Holly-
wood productions such as Tron and The Last Starfighter had previously 
made use of such techniques. As Foundation’s visual effects director Ron 
Thornton pointed out, though, The Last Starfighter’s CGI effects had 
required a $15 million Cray X-MP supercomputer. Foundation, less than 
a decade later, was able to produce equally impressive effects using a ren-
dering farm of twelve Toaster-equipped Amigas running LightWave 3D.43 
The entire visual effects budget for Babylon 5’s pilot episode was $250,000; 
Thornton estimated that figure to be about one-fourth the cost of an 
episode of Star Trek: The Next Generation, another space-based show of the 
same era produced using traditional models.44 The savings in time and 
added flexibility to make changes on little notice were equally impressive. 
Small wonder that the American Amiga community, by this time with little 
good news to read, talk, or write about outside the realm of video produc-
tion, greeted Babylon 5 with such excitement. Those beautifully animated 
3D sequences represented not only a vindication of NewTek’s years of 
labor on the Toaster, but also the fruition of the platform’s multimedia 
potential and especially of its 3D-rendering history, the culmination of a 
journey that had begun some seven years earlier, when Eric Graham began 
experimenting with the technique on his unexpanded Amiga 1000 in what 
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already in 1993 seemed like a more primitive world (figure 5.6). For Hast-
ings, who had been at the forefront of developments in Amiga-based 3D 
graphics almost from the moment he bought his Amiga 1000 in November 
1985,45 the moment must have been particularly sweet.

And Babylon 5 was certainly not the only prominent production to 
make use of Amigas in this era. Another science-fiction show that pre-
miered that year, seaQuest DSV, follows the exploits of a submarine in a 
dystopian future where environmental devastation has forced humankind 
to move almost entirely underworld; the show plays like “a combination 
of Star Trek and The Hunt for Red October.”46 The seaQuest itself, the subma-
rine at the heart of the show, was created and rendered entirely with Light-
Wave 3D, as was much of the rest of the underwater environment. Yet 
another show of the era, Quantum Leap, used the Toaster’s suite of effects 
to create two magical characters who continually morph “from old to 
young, and male to female” right before the viewer’s eyes.47 Nor were 
Amigas restricted to television productions; for instance, the admittedly 
B-grade horror fantasy Warlock: The Armageddon used Amigas for many of 
its special effects.48 More impressively, at least a few effects sequences in 
the 1993 summer blockbuster Jurassic Park were rendered with LightWave 
3D.49 It was a spectacular year for NewTek, a year of widespread acceptance 
of the Toaster throughout the Hollywood ecosystem, of more fawning 

5.6  An in-space scene from the pilot episode of Babylon 5, gener-
ated entirely in LightWave 3D running on Video Toaster–equipped 
Amigas
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mainstream media profiles, and even of an Emmy Award in the engineer-
ing category for “developing computer technology that has brought many 
editing tools out of high-priced editing suites, and made them available 
on desktops of the television creative community.”50 That same year, 
Foundation Imaging received its own Emmy for its visual-effects work on 
the Babylon 5 pilot. This was exactly the sort of mainstream coverage and 
acceptance the Amiga community had thought would come back in 1985 
and had continued to dream of in the years since.

How unfortunate, then, that neither the Amiga nor Commodore were 
often mentioned in discussions of the Toaster outside of the core Amiga 
community. Although some might consider it ungrateful, NewTek seems 
to have made a conscious effort after 1990 to distance itself from the plat-
form that formed both its own heritage and the Toaster’s host. From the 
beginning of the Toaster era, NewTek’s promotional materials never men-
tioned the Amiga or showed the logos on the host machines, preferring to 
cast the Toaster as a standalone turnkey solution not tied to any existing 
computing platform. NewTek even encouraged its dealers to sell the 
Toaster and its host as a single package under the NewTek banner, making 
no mention of the Amiga’s history and capabilities as a standalone PC. In 
support of this decision, NewTek might argue with some justification that 
a Toaster-equipped Amiga really owed much more to NewTek than it did 
to Commodore. Although NewTek did continue to take advantage of some 
unique aspects of the host platform, such as its internal timings that made 
it so easy to synchronize to NTSC video, the Toaster largely bypassed both 
the host’s unique custom-chip-driven display architecture and AmigaOS, 
the twin pillars that really defined the Amiga as a platform. In fact, the 
Toaster was every bit as complicated a piece of hardware—and a much 
more modern one—as the Amiga itself. Jenison and his small team at 
NewTek actually spent more time developing the Toaster and bringing it 
to market than Jay Miner and his team did in realizing the original Amiga, 
and NewTek certainly did a better job supporting and updating the Toaster 
than Commodore ever did with the Amiga. The Toaster arguably owed a 
greater debt to the vibrant Amiga community from which it sprang, with 
its new ways of thinking about the potential of multimedia computing, 
than to the now aging hardware that still formed its host.

The vision and spirit of possibility that always surrounded the Amiga 
even in its declining years were, however, by no means inconsequential 
to NewTek’s own corporate history. Montgomery said in 1994, “The best 
way to describe the Amiga market is that things you’re just hearing about 
on the PC and saw a year or so ago on the Macintosh, we were talking about 
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in 1986. Being from the Amiga market is like being from the future. We’ve 
gone through it all. We read MacWeek or PC Computing and say ‘Ha, ha, ha 
aren’t those companies cute. Look, they’re thinking what we thought. Boy, 
they’re in for a surprise.’”51 The Video Toaster was the very embodiment 
of the Amiga approach to computing in the abstract, but it had increasingly 
little to do with Jay Miner’s specific implementation of that approach. One 
can also speculate that NewTek, a creative, savvy, healthy company, wanted 
to tie its future as little as possible to Commodore, a company that was 
none of these things. Certainly by 1993, the NewTek–Commodore connec-
tion was an ironic one indeed, with the former experiencing its breakout 
year just as the latter plunged into its death spiral. As a further illustration 
of the two companies’ relative positions by this stage, there was some brief 
speculation that NewTek, for all its success still a relatively small company 
serving a fairly specialized market, might actually purchase the Amiga 
rights and intellectual property from Commodore, once one of the largest 
general-purpose PC manufacturers in the world, strictly to ensure that the 
Toaster would continue to have a viable host platform.52

NewTek did not buy Commodore, but it did manage to survive and 
flourish after the end of the Commodore era. Already in 1993 it introduced 
its first non-Amiga-based product: the Screamer, which allowed one to 
offload 3D rendering from the Amiga’s aging CPU to a Windows NT–based 
machine equipped with a much more powerful Intel 486 or Pentium pro-
cessor. The writing was clearly on the wall—and, indeed, NewTek gradually 
weaned itself from the increasingly aged and scarce Amiga hardware in 
the following years, porting its products to the PC and finally dropping the 
last vestiges of Amiga support starting in the new millennium. Amigas, 
some equipped with Toasters and some not, continued to be commonly 
used in television and video-production studios until then and well 
beyond. I am aware of at least one Video Toaster–equipped Amiga in 
active, daily use as a broadcast-title generator in a cable television studio 
in 2006, some 13 years after its initial acquisition by the station,53 and it 
is very possible that some remain in use even today in similar legacy roles.

Be that as it may, Amigas are certainly no longer in the front lines of 
Hollywood productions, as they suddenly, amazingly were for at least a 
short time. Foundation Imaging, for instance, in need of more computing 
horsepower than their aging and now unsupported Amigas could provide, 
made the decision to switch its Babylon 5 work to Windows-based machines 
in the summer of 1995, when NewTek introduced a version of LightWave 
3D for that platform.54 Many other providers of such high-end effects work 
were making similar decisions around the same time.
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From today’s perspective, we can place the productions of that land-
mark year 1993 in their proper historical context as being at the vanguard 
of nothing less than a revolution in the way special effects are created. 
Within a few years, the handcrafted models that had been used to create 
the special effects in such beloved and acclaimed films as 2001: A Space 
Odyssey, Star Wars, and Blade Runner became hopelessly passé. Today even 
the most casual filmgoer knows the abbreviation CGI, and some entire 
films, such as Sky Captain and the World of Tomorrow and Sin City, make 
virtually no use of traditional sets of any sort, instead placing their actors 
in elaborate digital environments that have no existence outside of a com-
puter’s memory. Many of these productions continue to rely on LightWave 
3D, now running on modern Windows and Macintosh machines. This 
popular program, which of course has its roots in Videoscape 3D, one of 
the first two proper 3D-modeling systems ever to appear on a PC, remains 
one of the most obvious modern legacies of the Amiga and its 
innovations.

In early 1994, just a year after their most dramatic success, Paul Mont-
gomery and several senior engineers suddenly left NewTek. The split was 
apparently due to a dispute with Jenison over corporate direction,55 
although to my knowledge no further details have ever surfaced. Mont-
gomery took with him a certain amount of NewTek’s shiny, revolutionary 
aura, but the company has remained a healthy concern to today. It is now 
a stable, mature company serving an existing market; the capabilities it 
offers that were once so revolutionary are now considered normal. 
Although it remains under Jenison’s careful guidance, its populist rhetoric 
has also been dampened somewhat, perhaps inevitably for a company 
whose products have been so embraced by the very big production com-
panies it once urged its customers to challenge. Nevertheless, NewTek, 
now an established quantity inside and outside of Hollywood, with a rack 
of Emmy and Oscar awards, is the greatest survivor of an Amiga market 
that did not produce very many such financial happy endings to go along 
with its innovations.

Whither Desktop Video?

Like a similar buzzword of the Amiga era, desktop publishing, the term 
desktop video has largely ceased to be a useful signifier today—not because 
either faded away, but because the technology they described has become 
so commonplace. The term desktop publishing described document-cre-
ation capabilities worthy of a professional publication, including the 
ability to mix many types, styles, and sizes of fonts, the ability to include 
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images, and the ability to flow text around said images or form it into 
columns. It further implied that all of these features should be presented 
to the user through an easy-to-understand, “what you see is what you get” 
interface, meaning that the representation of the document on her com-
puter screen should correspond as closely as possible with that document 
in its final printed form. All were radically advanced, revolutionary fea-
tures when they appeared on the Macintosh in the mid-1980s; today, of 
course, they are commonplace and are included (along with many even 
more sophisticated tools) in every serious word processor. The divide 
between the desktop-publishing application and the word-processing 
application has effectively disappeared. PCs today are likewise involved in 
every phase of the production process of not only low-budget video pro-
ductions, but also the most elaborate of Hollywood films. This combina-
tion of the computer and film and video has become so commonplace, so 
much the accepted way of doing so many aspects of production and post-
production, that it no longer requires a unique signifier to set it apart from 
the noncomputerized methods that are now hopelessly obsolete.

Because the Amiga, like all PCs of its era, lacked the memory and disk 
capacity to store large amounts of video and the processing power to play 
it back with adequate fidelity and speed, its unique suitability for video 
hinged only partially on its exceptional graphics capabilities for its era. 
Even more important was its unique ability to interface with the estab-
lished world of analog video production through devices such as digitizers, 
genlocks, and (eventually) the Video Toaster. Today, the world of video 
production itself has gone digital, rendering such abilities—and even 
NewTek’s dream of a Video Toaster in every would-be filmmaker’s living 
room—moot. An amateur video producer of today likely records her 
footage on a digital video camera with its own internal hard drive measur-
ing in the tens or hundreds of gigabytes, then transfers her footage to her 
computer for editing and postproduction using a nonlinear editing soft-
ware package such as Final Cut Pro. For someone who is used to working 
with such a clean, powerful system, the Rube Goldbergesque desktop 
video setups diagrammed earlier in this chapter must look painful indeed. 
Even the interlaced NTSC standard to which the Amiga had to conform is 
now largely a thing of the past, having been phased out of television trans-
mission in the United States in favor of digital signals in 2009. The elec-
tronic world of today is an almost completely digital one.

The Amiga provided a bridge from there to here, though—from an era 
when video production was accessible only to the professional or the 
wealthy to our age of podcasts and YouTube, an age when a group of 
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sufficiently dedicated amateurs can make a credible movie. The Amiga did 
so not only by interfacing so easily with the video equipment of its time, 
but also by providing a home for software such as DPaint, Sculpt-Animate, 
and so many others that gave artists the ability to create something worth-
while to put down on tape. This democratization of the means of cultural 
production is perhaps the most inspiring aspect of the technological 
developments of the past quarter-century and is certainly, at least in my 
opinion, the Amiga’s most exciting and lasting legacy.



 

Up to this point, I have focused my attention on the Amiga’s unique hard-
ware design, in particular its revolutionary graphical capabilities. But a 
user’s experience of a platform is dictated not only by that platform’s hard-
ware design, but also by its most fundamental enabling software: its OS. 
In fact, in the years since the Amiga’s introduction, a computer’s OS has 
steadily grown in importance in relation to its hardware design. For all the 
attention given to Apple’s stylish external designs, the real appeal of the 
modern Macintosh for most users lies with its attractive and intuitive OS 
X; likewise, both Microsoft’s corporate, proprietary OSs and open-source, 
community-developed OSs such as Linux run on the same commodity 
hardware in spite of their radically different design philosophies, distri-
bution models, and user experiences. This general trend holds true also 
for the Amiga. Years after the machine’s once remarkable multimedia 
capabilities were surpassed and its unique, tightly coupled hardware 
design became more a burden than an advantage, users clung to the Amiga 
for its elegant OS.1 AmigaOS is certainly the main remaining appeal of the 
Amiga for those stalwarts who continue to do their everyday computing 
with the platform. The latest major revision, version 4.0 released in 2004 
by Hyperion Entertainment, contains no support at all for the classic 
Amiga chip set and is instead designed to run on modern PowerPC-based 
hardware. And at least two other, newer OSs, known as AROS (for “Amiga 
Research Operating System”) and MorphOS, are essentially clones of the 
original AmigaOS design that run on modern hardware. Even at the time 
of its launch in 1985, the Amiga’s OS assumed unusual importance in 
comparison to most machines of its day. The Amiga 1000’s ability to mul-
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titask, perhaps its most widely trumpeted feature aside from its graphical 
capabilities, is a direct result not of the machine’s hardware, but of its OS 
design.

I have already occasionally tried in these pages to offer a more sober 
corrective to a certain idealized narrative of the Amiga’s development that 
has become the dominant one in many circles. An incredible collection of 
talent congregated at Amiga, Incorporated, and there was an unusual 
amount of camaraderie and dedication that swirled around them. That 
said, it is also worth remembering that Amiga, Incorporated was in the 
end a business enterprise that aimed to deliver the next big game machine 
or home computer or both and, it was hoped, to profit greatly from the 
enterprise; it was not a project for a utopian tomorrow. Nor was the Amiga 
creators’ vision of the final product quite as unified and complete as is 
often portrayed. Jay Miner, still spoken of in worshipful terms by Amiga 
zealots, was indeed a magnificent, creative engineer, but he did not provide 
the sort of holistic vision that one might expect from someone called the 
“father of the Amiga” or that, say, Steve Jobs did for the team that devel-
oped the original Macintosh. Miner was very much a hardware engineer; 
when asked to discuss the software side of the platform in later years, he 
sounded somewhat out of his depth and made a telling habit of referring 
to the “software guys” from time to time when discussing AmigaOS or the 
early demos, as if to people engaged in another field of endeavor entirely. 
In the words of Miner’s close colleague Joe Decuir, who worked with him 
not only on the Amiga, but on the Atari VCS, 400, and 800: “We learned 
with the [Atari] 2600 that we could not foresee the creativity of the rest of 
the community. We deliberately designed the hardware as a platform for 
other smart people.”2 It should be noted that Miner never sought the adu-
lation that was showered upon him—indeed, he always seemed to find it 
rather bemusing—and was always quick to grant others credit for their 
contributions to the Amiga. The vision behind AmigaOS’s multitasking 
capability, for instance, he attributed entirely to some of those “smart 
people” for whom he had designed the hardware, in particular software 
team head Bob Pariseau.3 (Most other accounts make multitasking the 
vision of Carl Sassenrath; Miner was perhaps not involved enough with 
the software team to know this.)

Although the Amiga’s hardware design was very much the creation of 
Miner, Decuir, and a third engineer, Ron Nicholson, the history of the 
creation of the software presents a more complex picture. There is no 
“father of AmigaOS” in the sense that Miner can be considered the father 
of the hardware design, for what emerged from the freedom that Miner 
granted to his charges was not so much a unified team working on a single 
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grand vision as several brilliant individuals pursuing their own most 
cherished computing dreams. The spirit of individuality that marked 
AmigaOS’s development comes through in R. J. Mical’s descriptions of 
those times: “We were trying to find people that had fire, that had spirit, 
that had a dream they were trying to accomplish. Carl Sassenrath, the guy 
who did the Exec for the machine . . . it was his lifelong dream to do a 
multitasking operating system that would be a work of art, that would be 
a thing of beauty. Dale Luck, the guy who did the graphics [library] . . . this 
was his undying dream since he was in college, to do this incredible graph-
ics stuff.”4 Some frustration with this team of individualists and dreamers, 
so empowered and perhaps also sometimes infected with the arrogance of 
youth, does creep through from time to time in other perspectives of the 
period. Tim King, in charge of an outside development house who pro-
vided one component of AmigaOS, said of Mical that he “was/is a larger-
than-life character who did Intuition ‘his way’ and it didn’t follow the 
‘official’ Amiga guidelines; for example intuiton.h was huge, and the 
guidelines said to keep header files small and to the point.”5 Some of the 
ideas that went into AmigaOS do tend to pull against one another some-
what or to pull against Miner’s hardware design. Although not necessarily 
offering a repeatable model for development, the team nevertheless did 
create a remarkable OS, indeed, the first to run on an everyday PC that the 
more sophisticated world of institutional computing would have consid-
ered worthy of the name. That this gestalt incorporated so many voices so 
successfully is a tribute to Miner’s low-key trust in his young colleagues 
and, of course, to the excellence of these colleagues themselves.

As of this writing (2011), AmigaOS has gone through three major 
rewrites and many smaller revisions and continues to be updated at least 
semiregularly. However, its general structure has remained consistent 
through the years. We can therefore often talk about AmigaOS in broad 
strokes in a non-version-specific way. Where I must deal in specifics, I 
bias my discussion toward the more historically important (if less capable) 
earlier versions of AmigaOS.

AmigaOS in Context

Computer scientist Brian L. Stuart uses what he calls the “Triangle of 
Ones” to describe the earliest computer systems: one user running one 
program at a time on one machine. In this early era, all programming was 
what programmers today refer to as bare-metal programming, meaning that 
programs operated by directly manipulating the hardware of the computer 
itself, with no intervening layer of software—in other words, with no OS. 
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The earliest true computer to go into operation in the United States, the 
Electronic Numeric Integrator and Computer (ENIAC, 1945) could origi-
nally be programmed only by physically rewiring the machine’s circuitry, 
although later revisions made it possible to enter programs by means of a 
simple switch panel. In either case, these early programs were noninter-
active, meaning they could be entered into memory and set to work on a 
given batch of data, but they could not be controlled by the programmer 
after that point; she could only wait until they completed and examine the 
resulting output.

But both then and now many programs must carry out very similar 
tasks in the course of their operation, and recoding these tasks again and 
again for every problem to be solved was both tedious and inefficient. 
Early computer scientists therefore soon began developing shared libraries 
of code to perform these tasks, which could be stored and called by pro-
grams when needed. For instance, if many programs needed to produce 
printed output, the series of steps required to do so could be encapsulated 
within a library, allowing a whole sequence of characters to be sent there 
with just a single call to the library in question. These libraries were the 
first step toward OSs as we know them today.

It can be argued that the first true OSs arrived in the mid-1950s with 
the advent of batch-processing systems. Because computers in this era were 
still rare and expensive, it was important to use them as efficiently as pos-
sible. Batch-processing systems allowed programmers to punch their 
programs onto cards using a separate, less expensive piece of equipment 
rather than having to waste time programming the computer directly. 
These programs could then be queued onto card readers attached to the 
computer itself, whose simple OS was programmed to run them quickly, 
one right after another, in sequence, thus maximizing the computer’s pre-
cious operating time and allowing many more programmers to share it. 
Batch processing did not really break the Triangle of Ones, however, 
because the computer continued to run just one program at a time and to 
do so noninteractively. Computing in this era was a very different experi-
ence from today, more akin to operating a mechanical than a digital device.

The widespread arrival of terminals consisting of CRT screens and 
keyboards in the early 1960s finally made computing an interactive expe-
rience. At last, programs could be written that could respond to user com-
mands as they were running. And yet the problem of scarce computing 
resources still remained. In response, a new generation of more sophisti-
cated OSs were written that allowed more than one user to share a com-
puter through separate terminals attached to the same machine. This 
greater sophistication also demanded that the computer be capable of 
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running more than one program at the same time because each connecting 
user would presumably be working on his or her own project. Thus, this 
new generation of time-sharing, multitasking OSs shattered two legs of the 
Triangle of Ones simultaneously: multiple users were now running mul-
tiple programs on one machine and doing so interactively. The modern 
computing paradigm was born. Over the ensuing years, research institu-
tions such as MIT as well as business interests developed many time-
sharing OSs of increasing sophistication. By far the most historically and 
technically significant of these OSs was Unix, developed at AT&T’s Bell 
Labs in the late 1960s. The team behind Unix incorporated many of the 
best ideas from the OSs that had proceeded Unix to create a flexible and 
expandable OS that was adopted by an entire generation of hackers.6 Unix 
still runs on countless institutional computers today, and Linux, an open-
source clone of sorts developed for PCs, runs on many servers, desktop 
computers, and electronic appliances in use today. Linux, though, dates 
back even in its earliest, most underdeveloped form only to 1991. At the 
time that Jay Miner and team were developing the Amiga in the early 1980s, 
nothing approaching the sophistication of Unix was available for a PC.

OSs are complex subjects worthy of years or a lifetime of study. We 
might, however, collapse their complexities down to a few fundamental 
functions: to provide an interface for the user to work with the computer 
and manage her programs and files; to manage the various tasks running 
on the computer and allocate resources among them; and to act as a buffer 
or interface between application software and the underlying hardware of 
the computer. Just before the Amiga’s 1985 launch, PC OSs were simplistic 
in the extreme, for these functions were either trivial or nonexistent. With 
the notable exception of Apple’s Macintosh, OS user interfaces consisted 
of little more than a blinking command prompt. And the PC world still 
functioned firmly within the Triangle of Ones that the institutional com-
puting world had shattered many years ago. In such an environment, the 
second and third functions of an OS were largely moot: with only one 
program allowed to run at a time, resource-management concerns were 
nonexistent, and, without the need to concern oneself with crashing or 
otherwise interfering with other programs, bare-metal programming was 
not only acceptable but expected. MS-DOS, for example, already the estab-
lished standard in the business world by 1985, provided just 27 function 
calls to programmers, the vast majority of them dealing only with disk and 
file management.7 Everything else the application programmer had to 
provide for herself, either by programming the hardware directly or 
through third-party software libraries. And MS-DOS, though it was little 
more than a shared library of interrupts that might arguably not even have 
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been blessed with the designation “OS” had it existed in the more sophis-
ticated institutional computing world, was quite advanced by PC stan-
dards, sufficiently so to become a mainstay of the “serious” world of the 
business PC. Even Apple’s new MacOS, by far the most sophisticated OS 
on the market in 1985, offered no multitasking capabilities and would not 
for many more years.8

When AmigaOS appeared, it marked a new standard of sophistication 
for PC OSs in offering not only a rich, full-featured (for the time) mouse-
driven GUI, but also a rich suite of accessible functions and libraries for 
the programmer as well as—most remarkably of all—true preemptive multi-
tasking that allows the user to run as many programs at the same time as 
she has memory and CPU power for. The latter capability shattered one 
leg of the Triangle of Ones—the others would fall in later eras of the PC—
and was nearly unprecedented.9 Although taken for granted today by 
everyone who listens to an MP3 file while browsing the Internet, the addi-
tion of multitasking to an OS complicated the designers’ job exponentially. 
AmigaOS could not allow to every program unfettered access to the com-
puter on which it ran; it had to manage and allocate resources—notably 
CPU time, memory, and hardware devices—to each. The designers of 
AmigaOS thus had to take their engineering inspiration more from OSs 
running on large institutional computers—most notably Unix—than from 
the primitive PC OSs of 1985.

The Exec

The heart of an OS, the part of it that is always running and always in 
memory, is known as the kernel. Most OSs have historically been built 
around monolithic kernels, meaning that virtually all of the OS’s functional-
ity—from process and memory management to disk and file management 
to networking and much more—resides within the kernel. As OSs and our 
expectations of them grew increasingly elaborate, many designers began 
to opt for microkernel designs instead, which move as much of this func-
tionality as possible out of the kernel and into other processes that can be 
updated or otherwise altered separately from the kernel at the core of the 
system and that can even be unloaded from memory entirely when not 
needed. The end result is an arguably more flexible and efficient design 
that is easier to modify and update and that does not consume resources 
for OS elements that are not in use.10

In addition to its many other innovations, AmigaOS represents one of 
the earliest implementations of a microkernel OS design on a PC. The 
microkernel—responsible for only the most basic, essential tasks of 
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resource, memory, and process management—is known as the Executive 
(Exec). The Exec is of course always running. It was created by a software 
engineer still in his midtwenties, Carl Sassenrath, who was lured to join 
Amiga Corporation by the promise, “If you come here, you can design 
whatever operating system you want.”11

Depending on the circumstance, each program running under 
AmigaOS might be referred to as a “task,” a “thread,” or simply a “program.” 
Instead, though, I use the term process.12 A process, then, is “a single 
instance of a running program,”13 a series of linear instructions to be 
executed. A theoretically infinite number of these processes—although 
obviously and inevitably bound by the machine’s memory and other 
resources—can be running on the Amiga at the same time from the user’s 
standpoint. When we view the Exec from the standpoint of a systems pro-
grammer, we quickly realize that this multitasking is in a sense an illu-
sion—albeit a very effective and practical illusion. The Amiga’s CPU, like 
virtually all microprocessors developed prior to about 2000, is capable of 
executing only one instruction at a time. Nothing AmigaOS does can 
change this fundamental fact, even though the Amiga’s hardware architec-
ture of course allows it to delegate certain subsidiary tasks to the custom 
chips. It therefore multitasks by prioritizing the running processes and 
switching among them very quickly, thus creating the impression that all 
run simultaneously. More recent OSs also operate on the same 
principle.14

It is the task of the Exec, which is running as the root process of every-
thing else, to allocate CPU time among all these other processes. Although 
it might seem most democratic simply to allow each process an equal slice 
of the CPU pie, in practice this solution is hardly desirable. Applications 
started by the user are not the only processes running on the machine; 
others are spawned by the Exec itself to help it to manage the machine’s 
resources. These processes, by their very nature, often need to be given 
priority over applications. Each disk drive installed on an Amiga, for 
example, has its own accompanying process to handle all input and output 
requests to that device. These processes should run at a relatively high 
priority, higher certainly than an application program, for such a program 
is dependent on them, for example, to open and read in a file containing 
the user’s document in a timely fashion. (As this example implies, pro-
cesses can and frequently must communicate with one another; our word 
processor would send a message to our disk-drive process requesting that 
it load a certain file.) Most processes actually have nothing at all to do the 
vast majority of the time; they spend most of their time waiting for a signal 
to be passed to them from AmigaOS—a signal that originates from the user, 
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from some piece of hardware, or from another process. Our hypothetical 
Amiga word processor, for instance, assuming it is properly programmed, 
simply goes to sleep between key presses or other user activity, allowing 
its CPU time to go to other processes.

Each process is accompanied by a changeable priority between −127 and 
127, with a higher number equating to greater relative priority. Only a rela-
tively small subset of this range, however, is commonly used. Critical OS 
processes often run at a priority of 10, 15, or 20; user processes such as our 
word processor run at a priority of 0 unless the user or the program explic-
itly requests otherwise. The Exec makes use of these numbers in quite a 
straightforward way. Any processes that are sleeping—waiting on a key-
stroke or a disk drive or something else—are discounted entirely. The CPU 
is then given over to the remaining process with the highest priority. 
Should another process with a higher priority enter into a running state, 
the previous process is supplanted by the new. If two or more processes 
with equal priority are at the top of the chain, the Exec simply allocates CPU 
time equally among them; and, of course, when a running process com-
pletes or goes into a waiting state, it immediately drops out of competition 
for the CPU, ceding it to other running processes of lower priority (if 
present). This scheme may seem surprisingly and perhaps even danger-
ously simplistic, but in practice it works quite well in most circumstances. 
Because in practice the vast majority of processes spend the vast majority 
of their time waiting, the Exec is normally constantly switching among 
processes rather than simply running the process with the highest priority. 
Assuming all processes are properly coded and given a reasonable prior-
ity—an assumption that admittedly does not always hold true, as we shall 
see—there should be few or no instances of a single process coming to 
dominate the machine as a whole. For example, the Amiga’s internal elec-
tronics are so much faster than its disk drives that the processes associated 
with these drives, even during intensive file input/output, still spend a 
considerable amount of time sleeping, waiting for the drives to do their 
work, thus allowing other processes access to the CPU. Running these disk 
processes at high priority assures that the Amiga takes maximum advantage 
of its drives’ transfer capacities, whatever they may be.

Clever users can make good use of the Exec’s scheduling system. A 
ray-tracing program, notorious for its intense, time-consuming calcula-
tions, might be set to run at a priority of -5; it will then happily work away 
in the background, using only computing power that would otherwise have 
gone to waste, not affecting the user’s foreground work at all (assuming 
she has sufficient memory to contain everything).
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Of course, each running process also consumes other machine 
resources beyond its CPU cycles. Most obviously, each process requires 
some amount of RAM to run. We can place the memory consumed by a 
process into two categories: the memory consumed by the actual instruc-
tions to be executed (code space) and the memory the process uses to store 
user data and information about its current state (data space). Our word 
processor, for instance, will have its code residing in its code space 
throughout its execution. In addition, that code will need to allocate 
memory through the Exec to contain the letter that we attempt to load after 
opening the word processor itself; this memory is the word processor’s 
data space. Only one address in the Amiga’s memory is always assigned the 
same information;15 everything else is allocated to AmigaOS and its 
running applications as needed by the Exec, which maintains a map of all 
this space and what lies where within it. As applications begin and end, 
memory to contain them is allocated and freed. Similarly, when we close 
our letter within our word processor, the memory that contained the letter 
is freed and returned to the general system pool; when we open another 
document or start an entirely new one, our word processor must again 
request the necessary memory from the Exec. When the Exec grants this 
request, it passes back to our word processor a pointer containing the 
address in the Amiga’s memory now reserved for our word processor’s use. 
It is now up to our word processor to make use of this block of memory—
and only this block of memory—as it sees fit and of course to communicate 
once again with the Exec to free that block when we close our new docu-
ment or close the word processor itself.

AmigaOS’s Libraries

The other elements of AmigaOS are built atop the Exec in layers that can 
be loaded and unloaded from memory as needed. These layers and some 
functions of the Exec itself are available to application programmers 
through a system of shared libraries; using these libraries, programs can 
make requests of AmigaOS. The system just described, by which applica-
tions can request memory of the Exec for the storage of their internal data, 
is one example of this application–OS communication, but AmigaOS pro-
vides many more functions, often built on one another in layers. Dale 
Luck’s “graphics.library,” which provides a suite of powerful if fairly low-
level functions for doing graphics and animation, for instance, sits below 
R. J. Mical’s Intuition library for building GUIs to applications. And built 
on both of these libraries is the Workbench, the Amiga’s standard GUI 
desktop from which the user can run programs, set her various system 
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preferences, and so on. (Workbench is essentially the equivalent of the 
Macintosh’s Finder or Windows’ desktop.) Although Intuition and Work-
bench were inevitably compared upon the Amiga’s release to the only 
mass-market GUI-based OS available during its development, MacOS, 
Mical claims that MacOS did not have as much influence on Intuition as 
one might expect; he points rather to the sophisticated Unix-based Sun 
workstations that were used in developing the Amiga as a stronger influ-
ence.16 The fact that the Intuition interface is quite different from and 
arguably more usable than the early Macintosh’s—employing, for example, 
a two-button rather than a single-button mouse—would seem to bear this 
out, as does the fact that the notoriously litigation-prone Apple never 
found cause to sue Commodore over the design.17

In addition to basic building blocks like those just described, AmigaOS 
also includes some surprisingly esoteric features for such an early PC OS, 
such as the “translation.library,” which translates written text into syn-
thesized speech suitable for output through the Amiga’s audio channels, 
as well as a suite of sophisticated high-precision math functions. Such 
features were made possible by AmigaOS’s microkernel design, which 
meant that they did not have to consume precious computing resources 
when they were not in actual use. In fact, this applies even to AmigaOS’s 
seemingly more core elements: a game that demands every bit of the 
Amiga’s resources and is not concerned about disallowing multitasking 
can dump higher-level, resource-hogging libraries such as Intuition and 
the Workbench to work with AmigaOS only at a lower level—a level that is 
admittedly more demanding on the programmers, but that can also be 
programmed more efficiently. Even everyday Amiga users could make 
similar choices; many experienced users, for instance, chose to work with 
the Amiga only through its alternate, less resource-hungry command-line 
interface (CLI) rather than the Workbench.

Easily the most unfortunate of these layered elements of AmigaOS, the 
one jarring aesthetic flaw in its design, is the AmigaDOS layer that is 
responsible for disk management and input and output. The Amiga team 
had originally conceived of a disk-management layer called “Commodore 
Amiga Operating System” (CAOS), the development of which they con-
tracted out to another company whose name has never surfaced to my 
knowledge. That project unfortunately collapsed under some combination 
of design and business disputes,18 leaving Commodore and Amiga desper-
ate to find an alternative they could incorporate quickly. They found it in 
the Trivial Portable Operating System (TRIPOS), owned by the British 
company MetaComCo, which already ran on other 68000-based hard-
ware. Much of TRIPOS was hacked into AmigaOS as AmigaDOS in 
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relatively short order,19 but it was an ugly fit; unlike the rest of AmigaOS, 
which was written in C, TRIPOS was written in a more primitive predeces-
sor to that language, Basic Combined Programming Language (BCPL), 
which has very different ways of structuring its data. Most serious Amiga 
applications were also written in C, and thus communicating with the 
TRIPOS-derived portion of AmigaOS’s identity became a constant head-
ache for system and application programmers alike. Perhaps in part due 
to the inefficiencies inherent in its BCPL-based design, AmigaDOS is also 
the only element of AmigaOS that tends to feel sluggish and clunky to work 
with, not only to programmers but also to users. Commodore rewrote 
certain elements of AmigaDOS in C for later revisions of AmigaOS, but 
much had to remain so as to avoid breaking compatibility with earlier 
programs.

The Guru Meditation Error

AmigaOS is imbued with the personalities of the tiny team that created 
it—to an extent that is not possible with most OSs, which are usually the 
product of large, conservative corporations or huge, dispersed teams of 
programmers or both. Its creators’ personalities are reflected not only in 
the sparely elegant designs of the core AmigaOS components themselves, 
but also in other, more obvious ways. When early versions of AmigaOS 
crash, for instance, they display a flashing red screen stating, “Guru Medi-
tation Error” (figure 6.1).

There is some discrepancy in the details of various accounts of the 
Guru’s origin, but the broad strokes remain the same. Mical and Luck, who 
along with Carl Sassenrath were the software engineers most important in 
AmigaOS’s development, were something of an inseparable pair at Amiga 
Corporation, working insanely long hours there together, to the extent 
that they effectively lived in the office at times. During the five to fifteen 
minutes it took the company’s Sun workstations to rebuild a new version 
of AmigaOS for testing, they would assume a lotus position and shut their 
eyes in hopes of catching a few minutes of sleep. Their colleagues began 
jokingly referring to them as “gurus,” and eventually their “guru medita-
tions” made their way into AmigaOS.20 Another version of the story, told 
on occasion by Mical, involves the Joyboard, an early controller produced 
by Amiga, Incorporated for the Atari 2600 game console to help fund 
development of the Amiga itself. An interesting forerunner of the Nin-
tendo Wii’s naturalistic controllers, the Joyboard is a broad, flat unit that 
the user stands on and controls by shifting her weight from side to side 
and back and forth. Although ideal for a limited subset of games, such as 
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the ski racing game that Amiga packaged with it, the Joyboard was too 
expensive, too fragile, and too limited in its application to catch on. One 
game involving the Joyboard, however, was never released commercially 
but nevertheless became quite popular at Amiga’s offices: Zen Meditation, 
in which the player must sit perfectly still for as long as possible. The Guru 
Meditation Error thus suggests that the user play this game, meditating to 
find a solution to whatever problem has caused her Amiga to crash.21

In addition to these inspirations, Sassenrath was motivated to create 
the Guru at least in part by the example of MacOS, which displayed a 
picture of a bomb when the machine crashed rather than simply freezing 
on a blank screen, as did most computers of the time. As Sassenrath said, 
“You’re going to want to have a sense of humor. If your machine fails like 
this, and you’ve lost two hours worth of editing, you’re going to want to 
laugh about it somehow.”22

A Hybrid OS

Before an OS can do anything, it must of course be placed into its host 
machine’s memory. Most computers today, as did a fair number even in 
1985, come from the factory with only a minimal amount of code stored 
in ROM. This code, known as the “bootstrap,” performs some very basic 
hardware initialization and then looks to disk—hard disk today, more 

6.1  The Guru Meditation Error screen, AmigaOS 1.x’s equivalent of the 
infamous Microsoft Windows “Blue Screen of Death”



6	 AmigaOS and ARexx� [155]

commonly floppy disk in 1985—for a proper OS to boot and turn over 
further control to. This approach has considerable advantages. Most 
notably, it allows the user to upgrade freely and even to choose among rival 
OSs that run on the same hardware, thus permitting, for instance, the 
same architecture to run either Microsoft Windows or the open-source 
Linux OS. It also carries certain disadvantages: an OS loaded from disk 
takes up precious space in both a computer’s RAM and disk storage, and 
the process of loading and initializing an OS from disk takes time, meaning 
the user cannot make instant use of the machine after turning it on. In this 
era of fast, cavernous hard disks and microprocessors capable of address-
ing almost infinite quantities of cheap RAM, these concerns do not carry 
as much weight as they did in 1985. Yet they weighed heavily enough with 
many computer manufacturers of that era—in particular manufacturers of 
less expensive, more limited machines—that they chose to place their 
entire OSs, such as they were, into their machines’ ROM memories. There, 
the OS was instantly available on power-on without the need to access the 
often slow floppy-disk-based or even cassette-based permanent storage 
typical of the era, and its code need take up none of the machine’s precious 
RAM. In fact, many home computers, such as the Commodore 64, sold 
with no permanent storage at all, making a ROM-based OS the only pos-
sible solution for making them even ostensibly useful to those who did not 
choose to buy additional peripherals.

Every Amiga ever sold included at least a single floppy drive, but the 
machine’s designers nevertheless chose something of a hybrid of the two 
OS-storage approaches just described. The core of AmigaOS, consisting 
of the Exec as well as essential libraries such as “graphics.library,” Intu-
ition, and much of AmigaDOS, resides in permanent internal storage on 
a single ROM chip, 256 KB in size in the machine’s early years and growing 
to 512 KB with the release of AmigaOS version 2.0 (1990) and beyond. 
Commodore referred to this part of AmigaOS as “Kickstart.”23 The suit-
ability of this approach to an OS of AmigaOS’s complexity is debatable, for 
although it carried with it the advantages named earlier, AmigaOS had 
enough intricate pieces that it could not be placed into ROM and forgot-
ten—like, say, the Commodore 64’s simplistic OS. It instead had to be 
upgraded occasionally to correct bugs and add new features necessary for 
keeping up with the times. AmigaOS 1.3 (1988), for instance, added such 
necessities as the ability to boot from one of the hard disks that were 
growing increasingly common as well as support for automatically recog-
nizing and configuring the multimegabyte memory expansions that cre-
ative professionals were finding increasingly invaluable. Upgrading 
AmigaOS was a hairy proposition indeed in comparison to the same 
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procedure for other computers because it required the user to open her 
Amiga physically and swap the motherboard-mounted Kickstart ROM 
chip. The difficulties involved likely kept AmigaOS upgrades from appear-
ing as quickly as they otherwise might have.

One might even say that the Amiga’s approach had the disadvantages 
of both the ROM- and RAM-based OS-storage approach without many of 
the advantages of either. Even though its OS is largely ROM based, the 
Amiga remains, like virtually all PCs more complex than eight-bit 
machines such as the 64, heavily reliant on disk storage. It must in fact be 
“booted” from either a floppy or hard disk, which Commodore referred 
to as a “Workbench Disk,” an odd choice of names considering that even 
Amiga users who chose to ignore the Workbench and work exclusively with 
the CLI had to make use of it still. On this disk are other, less commonly 
used libraries, such as the “translator.library” and the high-precision 
math routines, which AmigaOS loads into memory only when they are 
actually made use of.24 Also on this disk are disk- and file-management 
programs and other utilities that, like in MS-DOS and Unix, reside outside 
the OS proper as individual executable programs. Various custom routines 
can be inserted into one of these boot disks to change the behavior of 
AmigaOS or even to bypass it entirely either to program the hardware 
directly (as many games do) or to load a completely different OS (for 
instance, Commodore’s own short-lived Amiga Unix or one of the many 
Unix and Linux distributions that followed).

In hindsight, building so much of AmigaOS into ROM was arguably 
not the wisest choice. It is perhaps best explained by the platform’s heri-
tage. In its original incarnation as a game console, the OS (what there was 
of it) would of course be expected to live on a ROM chip, as the OSs of more 
modern game consoles still do today; OS upgrades are not such a concern 
for these more limited devices. Also, placing the OS in ROM was simply 
the way it had always been done, both for Jay Miner with his history of 
designing game consoles and inexpensive home computers and for Com-
modore with its own history of simple eight-bit machines such as the PET, 
the VIC-20, and of course the 64.

Implications of AmigaOS’s Design

The Amiga ROM Kernel Reference Manual: Libraries, one of Commodore’s 
series of official technical Amiga bibles, includes the following prominent 
plea or disclaimer in its introduction:
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The Amiga operating system handles most of the housekeeping 
needed for multitasking, but this does not mean that applications 
don’t have to worry about multitasking at all. The current generation 
of Amiga systems do not have hardware memory protection, so there 
is nothing to stop a task from using memory it has not legally acquired. 
An errant task can easily corrupt some other task by accidentally over-
writing its instructions or data. Amiga programmers need to be extra 
careful with memory; one bad memory pointer can cause the machine 
to crash (debugging utilities such as MungWall and Enforcer will 
prevent this).

In fact, Amiga programmers need to be careful with every system 
resource, not just memory. All system resources from audio channels 
to the floppy disk drives are shared among tasks. Before using a 
resource, you must ask the system for access to the resource. This may 
fail if the resource is already being used by another task.

Once you have control of a resource, no other task can use it, so 
give it up as soon as you are finished. When your program exits, you 
must give everything back whether it’s memory, access to a file, or an 
I/O port. You are responsible for this, the system will not do it for you 
automatically.25

In part due to the limitations of AmigaOS’s (by modern standards) 
rather primitive original hardware, in part due to its pioneering nature as 
a sophisticated multitasking PC OS at a time when that very concept was a 
new one, and also perhaps even in part due to a certain philosophical 
approach, a notion that everything on the computer should be accessible 
and elegantly tunable by the user, AmigaOS lacks a number of safeguards 
and features that have come to be considered indispensable on modern 
computers. The Amiga user is forced to depend on the programmers of 
the applications she uses to do things the right way and to follow the advice 
given in the manual—and much more—to the letter. When she fails to do 
so, or when bugs sneak in, in spite of her best efforts, the result is far too 
often a visit by the Guru.

To understand why running serious applications—in particular mul-
tiple serious applications—on AmigaOS can so often feel like building a 
house of cards, we need to return for a time to the Exec’s scheduling and 
memory-management functions. For the Exec to do its job properly, it 
requires certain behaviors from its programmers—behaviors that pro-
grammers in 1985 in particular were little used to abiding by because they 
were more accustomed to programming on much simpler, single-tasking 
OSs. Further, AmigaOS, unlike its successors, does nothing to enforce 
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those behaviors; its designers only plea for them, as in the quotation from 
the manual.

I have already noted that most programs running on a PC spend most 
of their time waiting. This fact holds true not only on the Amiga, but also 
on both its predecessors and its contemporaries. How a waiting program 
waits is of little importance on those other, single-tasking machines, but 
uniquely critical on the Amiga. Let us consider the common scenario of a 
program waiting on the user to press a key in response to an on-screen 
menu or simply to clear a message from the screen and continue the pro-
gram’s operation. The Commodore 64 Programmer’s Reference Guide recom-
mends the following simple construction in that earlier machine’s dialect 
of the Beginner’s All-Purpose Symbolic Instruction Code (BASIC) pro-
gramming language26:

10 GET A$: IF A$ =”” THEN 10

The GET command places the contents of the keyboard buffer into the 
variable A$; if the buffer is empty, indicating that the user has not yet 
pressed a key, A$ is also left empty. This code, then, simply loops again 
and again, constantly GETing A$ from the buffer and checking to see if 
something has been stored in that variable, indicating that the user has 
pressed a key at last. The entire CPU is devoted to this task of reading the 
keyboard buffer again and again, spinning its wheels with the same 
urgency it would use for complex, critical calculations. This approach is 
known as a busy wait and was not only quite common on early PCs, but, as 
the reference to it in the advice section of Commodore’s own official refer-
ence documentation indicates, officially sanctioned. The Commodore 
64’s limited OS and hardware actually supported no other approach. In the 
Amiga’s multitasking environment, however, busy waits are deadly to the 
performance of the system as a whole, for while a process spins its wheels 
in this manner, it is pointlessly consuming CPU cycles that might be 
needed by other processes to perform real work. If these processes are 
running at a lower priority, they will even be blocked from the CPU 
entirely—by a program doing nothing more than waiting for input from 
the user.

A properly written program on the Amiga does not busy wait, but 
rather requests that the OS notify it when certain events occur—the press-
ing of a key, the selection of a menu with the mouse, and so on—and then 
simply goes to sleep, consuming no CPU cycles at all while it waits to be 
notified of some event worthy of its attention. When such an event occurs, 
it wakes up to perform the appropriate processing and then quite likely 
goes back to sleep to await the next event. This approach is known as 
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“event-driven programming,” as contrasted with the older procedural pro-
gramming illustrated earlier and used by most programmers working on 
PCs in 1985. The Amiga employs it not only due to its multitasking capa-
bilities, but also due to its rich GUI, which creates the possibility for many 
active on-screen menus, buttons, text-entry fields, and other widgets at 
once. Trying to keep track of all these input possibilities through constant 
active polling is not practical for a single application; that task is better 
left to the OS as a whole. Indeed, the event-driven paradigm was pio-
neered on the PC not by the Amiga, but by the slightly earlier Apple Lisa 
and Macintosh, machines that did not initially support multitasking but 
did feature similarly rich GUIs. Not coincidentally, these machines as well 
as the Amiga were built around the 68000-series processors, whose 
extensive set of interrupts make them a natural choice for the event-
driven approach.

But habits are not always easy to break, and teaching programmers 
coming from other machines to embrace this new approach was often 
difficult. In fact, although AmigaOS’s “native tongue,” C, and many other 
advanced languages deployed on the machine support event-driven pro-
gramming quite well, AmigaBASIC, which shipped with every Amiga during 
the machine’s most commercially prominent years, offered only half-
hearted support for event-driven programming. AmigaBASIC program 
listings found in magazine articles and books make use of “busy waits” 
with disconcerting regularity in exactly the manner just illustrated and in 
violation of Commodore’s explicit advice. In many situations, AmigaBA-
SIC offered no other choice. Like AmigaDOS, AmigaBASIC was a poor, 
rushed fit for the Amiga, one that indoctrinated programmers with bad 
habits that they likely took with them when graduating to C or another 
language. Small wonder then that few Amiga users mourned AmigaBA-
SIC’s passing when Commodore chose to discontinue distributing it with 
AmigaOS 2.0 and beyond.

Modern OSs are of course not bereft of poor programmers who con-
tinue to employ busy waits. The event-driven paradigm is, however, much 
better understood and familiar to programmers today than it was during 
the Amiga’s time, thus making mistakes of this sort much less common. 
And to deal with programs that insist on employing busy waits, modern 
OSs sport more sophisticated process scheduling that does not give abso-
lute, unfettered CPU access to the running process with the highest prior-
ity. Although a busy-waiting process will still waste countless CPU cycles, 
it will at least not completely block all other processes from accessing the 
CPU, and the system as a whole will thus not grind to a complete halt—
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although performance of all other processes will of course be greatly 
degraded.

Memory management is another area where AmigaOS made new and 
somewhat unprecedented demands on its programmers. As already noted, 
an application program is expected to request from the Exec the memory 
that it requires for its operation. The Exec then returns a pointer to a block 
of memory of the requested size, and AmigaOS trusts the application not to 
write to memory outside of those bounds. However—and this is key—
nothing beyond the application programmer’s skill and good nature abso-
lutely prevents such unauthorized memory access from happening. Every 
application on the Amiga can write to any address in the machine’s memory, 
whether that address be properly allocated to it or not. Screen memory, 
unallocated memory, another program’s data, even another program’s code 
or for that matter its own—all are fair game to the errant program. The end 
result is usually a Guru or an even more spectacular crash.27 A nonmalicious 
programmer who wishes her program to be a good AmigaOS citizen would 
of course never intentionally write to memory she has not properly 
requested, but bugs of exactly this nature are notoriously easy to create and 
notoriously hard to track down, and on the Amiga a single instance of one 
can bring down not only the offending application, but the entire OS.28

Modern OSs avoid these problems through the use of virtual-memory 
addressing; when a program requests memory, it is returned not a true 
address within system memory as a whole, but rather a virtual address that 
is translated into a true address as an intermediary step each time the 
program accesses its data.29 Each program is thus effectively sandboxed 
from everything else, allowed to read and write only to its own data space; 
only the OS itself has access to the whole. All modern PC microprocessors 
feature a memory-management unit (MMU) that can automatically and 
quickly translate from virtual to real memory addresses and vice versa, 
making this constant process fast and fairly transparent even to the OS. 
Although MMUs are available for some models of the 68000 line as add-on 
accessories or (beginning with the 68040) even built in, AmigaOS, 
needing as it does to run on the full Amiga line, was never designed to take 
advantage of them. And although implementing virtual memory in soft-
ware is certainly not theoretically impossible, it is not terribly practical on 
limited hardware such as the original Amiga—hardware that the machine’s 
designers had already stretched to its limits. Thus, the Amiga user doing 
serious work, particularly if she makes extensive use of multitasking, must 
limit herself as much as possible to software she has tested extensively and 
believes she can trust and must leave the rest to fate—and learn to save her 
work regularly, of course.



6	 AmigaOS and ARexx� [161]

Virtual memory has another potential benefit that might have served 
AmigaOS well. In this discussion of the Exec’s memory management so 
far, the naive assumption has been made that any amount of memory 
requested by an application is always available. This, however, is obviously 
not the case, particularly when it comes to the Amiga’s precious chip RAM, 
which alone can contain certain types of multimedia data. If the Exec is 
unable to carve out a suitable contiguous block of memory to satisfy an 
application’s request, it must refuse that request, informing the request-
ing application of this refusal by returning what is known as a null pointer, 
a zero (0), in place of a valid memory address. Many programs written by 
sloppy or inexperienced programmers fail to confirm that their memory 
request was in fact granted. They rather try to write to the (invalid) 
returned pointer, which results in a Guru or similar disastrous failure.

Even if we discount concerns about sloppy programming, it would be 
nice if the Exec were able to allow the user to stretch the machine by not 
automatically refusing such requests. Modern OSs take advantage of their 
virtual-memory design to do exactly this: when an allocation request is 
made that exceeds the limits of the machine’s physical memory, a certain 
portion of that memory that the OS has judged to be infrequently accessed 
is copied into what is known as a “swap file” in the hard disk. The physical 
memory space these data occupied can then be cleared and allocated to the 
other application. When swapped memory needs to be accessed again, it 
is copied back into physical memory, potentially (thanks to virtual-mem-
ory addressing) at an entirely new location and potentially displacing 
some other block of seldom-accessed memory that is copied to hard disk 
in its stead. There is obviously a point of diminishing returns to such a 
scheme, when the amount of hard-disk access required bogs the entire 
system down to the point of unusability, and the observant user realizes it 
is time to close an application or two. Yet in many cases the user is willing 
to sacrifice some speed in return for being able to run all of the programs 
she wishes to at once, and in all cases it is certainly preferable to a crash 
caused by a sloppily programmed application. But even had the early 
Amiga models for which AmigaOS was first designed been able to imple-
ment some form of virtual memory, they would not have been able to use 
such a scheme because most were not equipped with hard disks. Thus, 
simple refusal became the Exec’s only option.

And AmigaOS places still further memory-management burdens on 
its programmers, burdens that are not quite such a concern for program-
mers working on other OSs. Once an AmigaOS application has been 
allocated some memory, it is responsible for freeing that same memory 
when the memory is no longer needed or before the application itself 



[162]

terminates. If it fails to do so due to design carelessness, bugs, or abnor-
mal termination, the memory it requested remains still in use in the 
Exec’s view. Because the only application that can free that block of memory 
is no longer running, this memory is lost entirely to AmigaOS and all other 
applications running—or that might begin running. It can be reclaimed 
only by rebooting the machine entirely. Memory leaks of this nature are 
unfortunately very common on the Amiga; users may literally see their 
free memory disappear over the course of several hours and various appli-
cations, until they are left with a machine incapable of running even a 
single relatively complex program and are forced to reset. Less technically 
informed users, of course, may never even understand how or why this is 
happening, much less be able to identify the specific guilty application(s). 
Although it is always good programming practice to free any memory pre-
viously requested, programmers coding on modern OSs do not have to be 
quite so concerned about doing so because these OSs come equipped with 
automatic “garbage-collection” routines to clean up after a sloppy applica-
tion and recover its allocated memory upon the application’s termination, 
whether it has crashed or just neglected to clean up after itself.

The Hardware/OS Divide

The Amiga’s hardware and OS designs were pioneering but were perhaps 
not always the most perfect of matches. As already noted, one of the most 
important functions of a multitasking OS is to control access to the com-
puter’s various hardware resources. These resources include not only CPU 
cycles and memory, but also all of its other hardware, from its video hard-
ware to its disk drives to its sound device to its printer. Once again, 
AmigaOS does a somewhat imperfect job, at least by modern standards. 
Commodore’s Amiga Hardware Reference Manual states that “for maximum 
upward compatibility, it is strongly suggested that programmers deal with 
the hardware through the commands and functions provided by the Amiga 
operating system.”30 Bare metal programming, then, is strongly discour-
aged but not absolutely prohibited by AmigaOS, as a later sentence makes 
clear: “If you find it necessary to program the hardware directly, then it is 
your responsibility to write code which will work properly on various 
models and configurations.”31 AmigaOS has all the hooks necessary for a 
polite, proper application to share the multitasking environment with 
others, but it does not absolutely enforce this behavior. Just as the Amiga’s 
full memory map is ultimately accessible to all and sundry, its hardware is 
laid bare for each and every program to access at any time. It is certainly 
safe to say that many Amiga game programmers in particular paid no 
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attention at all to the Hardware Reference Manual’s advice; their creations 
often took over every aspect of the machine in ways that would horrify a 
“proper” systems programmer. The results were something of a mixed 
blessing. On the one hand, and as chapters 7 and 8 in particular demon-
strate, these bare-metal programming techniques allowed Amiga pro-
grammers to get performance and effects out of the Amiga that would have 
been impossible strictly through the added abstraction and inefficiency 
of AmigaOS; on the other, though, their creations often break when run 
on hardware that varies only slightly from that for which they were 
designed.

Although game programmers were by far the worst offenders, many 
application programmers, tempted by the siren call of the directly acces-
sible hardware and the lure of improved efficiency, could not resist the 
temptation to take shortcuts around the “official” way of programming the 
Amiga. The result is a whole collection of applications that run properly 
only under certain AmigaOS revisions or that run only on certain Amiga 
models or configurations or that run properly as long as they are lucky and 
do not attempt to access a certain piece of hardware that another applica-
tion is already using in the correct, AmigaOS-approved way. And yet, just 
as with games, many of these applications achieve effects that might have 
been impossible through AmigaOS channels.

Modern OSs simply do not allow these sorts of shenanigans; just as 
they sequester each application within its own virtual-memory sandbox, 
they also allow hardware access only through library calls. Of course, 
cheap and powerful modern hardware makes such calls an easy luxury for 
modern programmers—a luxury that many Amiga programmers working 
on that machine’s limited hardware felt was too expensive by far.

A Hacker’s OS

Having documented AmigaOS’s limitations at considerable length, I now 
feel behooved to reiterate what a remarkable, forward-looking OS it truly 
was when viewed in its proper historical context. The designers of 
AmigaOS were working virtually without precedent in implanting a mul-
titasking OS truly worthy of the name into a small, relatively inexpensive, 
consumer-level computer. Far more remarkable than the things AmigaOS 
omits are the things it does do and does correctly. In fact, its very pared-
down nature gives AmigaOS an appealing elegance in this day when OSs 
feel the need to include everything from Web browsers to digital-rights 
management in their core code. To help ourselves understand what makes 
AmigaOS so unique and so beloved by a certain type of user even today, it 
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may be useful to compare it with the next most sophisticated PC OS avail-
able in the mid-1980s, MacOS.

Although AmigaOS perhaps shares a certain sense of whimsy with 
early versions of MacOS, the overall characters of the two OSs are mark-
edly different. The Macintosh “bomb” dialog displays little or no informa-
tion about what caused the error that was prompted or how it might be 
prevented in the future, presumably in line with the Macintosh’s design 
philosophy of being a “computer for the rest of us,” free of any technical 
jargon that might confuse the everyday user. The Guru Meditation screen, 
in contrast, “cute” as it may be, provides precious information about what 
caused the crash and how. The Guru screen shown in figure 6.1 includes 
two long numbers in hexadecimal, the base-16 numbering system fre-
quently used in programming: 00000005 and 00C05E10. The first 
number tells the user that a task has attempted to divide a number by 0, 
which is of course mathematically impossible; the second provides the 
address in memory of the task in question. Thus, the skilled programmer 
or even user can determine from this message what program caused the 
problem and what the nature of that problem was. Similarly, although the 
Amiga provides a mouse-driven Workbench similar to the Macintosh’s 
Finder that is very suitable for many everyday tasks, it also provides the 
more flexible and powerful CLI that MacOS lacked until the advent of OS 
X in 2001. Whereas the Macintosh tries not to bother its user with any 
technical details, expecting that user to go to Apple or to the publishers of 
her application software with any problems, AmigaOS, for all its friendli-
ness and whimsy, does not hesitate to expose its inner workings to its user 
where it judges it to be appropriate. This feature made the Amiga a favorite 
of many hackers who held the Macintosh in contempt for Apple’s per-
ceived condescension toward its users; Commodore engineer Dave Haynie 
spoke for many hackers when he called the Macintosh “the dumb blonde 
of the computing world.”32 But the other side of that coin, it must be said, 
is that many users genuinely prefer the Macintosh’s approach. They do not 
want to involve themselves in the technical details of the machine sitting 
on their desk, and they think of the computer as a simple tool rather than 
as an end in itself. For these users, AmigaOS perhaps exposes too much of 
its inner workings at times, such as when it asks its user to come to grips 
with the esoteric difference between chip and fast RAM or asks her to 
choose how much stack space to allocate to each program she starts. This 
“problem,” if indeed one considers it to be one, was perhaps one of the 
several that seemed to keep the Amiga perpetually on the edges of both the 
home- and business-computing mainstream.
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As touched on in chapter 2 in the context of the “logo wars,” Com-
modore itself had difficulty accepting the personality of the platform it had 
purchased, leading to repeated conflicts with Miner’s team. From the 
beginning, the team had been in the habit of embedding secret messages—
known as “easter eggs” in hacker parlance—into AmigaOS. These mes-
sages were generally harmless enough, whether listing the programming 
and engineering credits that Commodore was never eager to include in 
their official documentation or declaring the Amiga “still a champion.” By 
the time that the second minor revision (version 1.2) of AmigaOS shipped 
in 1986, however, the relationship between Commodore and the Amiga 
team had deteriorated enough that someone on the team saw fit to include 
a bitter message hardly in keeping with AmigaOS’s usual friendly 
demeanor: “We made Amiga, They f— it up.” Although there is every 
reason to consider this message a symptom of the worsening relationship 
between the team and Commodore rather than the cause of a final rupture, 
the fact remains that Commodore let go the last remnants of Miner’s origi-
nal team in Los Gatos, California, soon after the message appeared; all 
further Amiga software and hardware engineering was done either in 
Commodore’s West Chester, Pennsylvania, complex or in a West German 
affiliate. Some members of the West Chester team, notably the outspoken 
and articulate Dave Haynie, had a strong and quirky hacker ethic of their 
own, but Commodore did win some battles to give AmigaOS a more staid, 
buttoned-down character. The Guru, who had by that time become a 
beloved symbol of the Amiga in his own right, was one of the victims in 
these battles; he finally disappeared with the release of AmigaOS 2.0 in 
1990, replaced by the vanilla “system failure” message Commodore had 
wanted all along.

ARexx: The Ultimate Hacker’s Tool

As such an eminently “hackable” OS, AmigaOS hosted a lineup of inspired 
programs, many available for free via organs such as the Fred Fish disk 
catalog of public-domain software, that could take advantage of its flexi-
bility in surprising and innovative ways. Near the top of any list of impor-
tant Amiga software and a fine exemplar of the “Amiga way” is William 
Hawes’s ARexx programming environment.

ARexx is based on the programming language REstructured eXtended 
eXecutor (REXX), first created by an IBM researcher named Mike 
Cowlishaw around 1980. REXX comes from a computing world very dif-
ferent from the PC world and from the world from which so much of 
AmigaOS took its inspiration—that of smaller institutional systems com-
monly found in universities and research institutes running OSs such as 
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Unix and the Incompatible Timesharing System (ITS). It is rather a product 
of the third and generally least discussed world of computing: the main-
frame. These machines, by far the largest, most powerful, and most 
expensive in general production, are commonly found only at large com-
panies and government installations. The mainframe world of the 1950s 
through the 1970s, dominated by the conservative IBM, was made up of 
huge, building floor–spanning machines administered by a “priesthood” 
of lab-coated technicians trained and, one might even say, indoctrinated 
by that company.33 By the 1980s, the priesthood model had begun to break 
down, but the culture around the mainframe was still very different from 
the somewhat scruffy, free-spirited hacker culture of Unix. The focus of 
the mainframe, then and now, was not on interactivity, but on batch pro-
cessing, on churning through huge amounts of data—payroll, tax records, 
census data, bank transactions—as quickly as possible. Mainframes in 
1980, like mainframes today, most commonly ran one of two powerful but 
arcane batch-oriented OSs developed by IBM: the Multiple Virtual Storage 
(MVS) OS or the Virtual Machine (VM) OS.34

Although Cowlishaw was himself an IBM employee, his purpose in 
creating REXX was to transfer some creative potential from the priesthood 
to users who were perhaps not professionally trained as programmers. For 
many purposes, REXX could serve as a replacement for IBM’s notoriously 
cryptic and fiddly Job Control Language (JCL) for automating the flow of 
work—often called the “batch cycle”—through a mainframe. REXX’s 
straightforward, English-like syntax, not to mention its dropping of the 
requirement that every character line up to a certain column (a legacy of 
the punched cards that were once used to store JCL scripts), made REXX 
simplicity itself in comparison to the alternatives. It was, in Cowlishaw’s 
words, “tuned for what people wanted to do and the way they wanted to 
write programs,”35 as opposed to using a syntax that was biased toward the 
way a computer manipulates data and instructions. After several years of 
in-house development, REXX began shipping with VM as an official IBM 
product in 1983.36 The language was appealing and flexible enough that 
ports to various PCs soon began to appear. However, Hawes’s ARexx, which 
he began selling independently in 1987, stood out from this pack, taking 
advantage of AmigaOS’s unique capabilities to exceed even the original 
mainframe version in flexibility and power.

ARexx and other variants of REXX are examples of what is often called 
a “scripting language” or a “glue language.” ARexx programs, often called 
“scripts,” are not compiled into the binary code that the Amiga’s CPU can 
natively understand but rather are interpreted at runtime in the manner 
of MS-DOS batch (.BAT) files or Unix shell scripts. Like those languages, 
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ARexx is not designed to create large, complex applications such as those 
that were the subject of this book’s earlier chapters, but rather to aid the 
user in automating quicker, simpler operations. ARexx’s unique capabil-
ity, which sets it apart from all other versions of REXX and even from 
powerful scripting languages in use today such as Perl, Python, and Tcl, is 
its ability to talk to any of those more complex applications that provides 
an ARexx port, asking it to carry out tasks just as if the user had made the 
same request using the GUI. In effect, it lets the Amiga user program her 
system at the metalevel, taking automated control of an entire suite of 
installed applications.

I can demonstrate this control through a practical example that inte-
grates three disparate applications from three separate developers, all of 
which include ARexx support, but which were not explicitly designed to 
work together: Nag Plus, an appointment manager and personal-time 
scheduler from Gramma Software; ProWrite, a word processor from New 
Horizons Software; and Superbase Professional, a relational database 
from Precision Software.37 We will play the role of a person who must make 
a number of scheduled calls to clients or contacts during her working day; 
perhaps we are a salesperson or a project manager.

The heart of Nag Plus is its calendar, wherein we record the names of 
people we intend to call and the dates and times we intend to call them 
(figure 6.2).

Even when we are not actively inspecting or updating the calendar, 
Nag Plus continues to run, minimized quietly in the background. Like 
most processes, it spends the vast majority of its time sleeping when in 
this minimized state, thus freeing the CPU to focus on other tasks. It does, 
however, ask AmigaOS to wake it once every minute. When this happens, 
it checks if any “nags” are scheduled for that minute. If not, it simply goes 
back to sleep; if so, it announces the nag by popping up a textual alert on 
our screen and optionally playing a sampled sound or speaking the text of 
the alert in a synthesized voice using AmigaOS’s unique “translate.library” 
or both. At 3:00 PM, we receive a nag that it is time to call someone named 
Thomas West. We have configured Nag Plus to fire a custom ARexx script 
of our own devising when we right-click over a calendar entry like this 
one. Nag Plus passes to this script the text of the entry in question, where-
upon the script looks in a certain directory on our hard drive—the one 
where we keep the notes we make during calls—to see if a file named after 
the client in question exists. If so, the script starts our word processor, 
ProWrite, loads the file, places the cursor at the bottom of it—ready for us 
to make further notes during our call—and returns control of the computer 
to us.
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If the notes file does not exist, however, our script’s job becomes 
somewhat more complicated. It instead starts Superbase (if that applica-
tion is not running already) and searches our company’s mailing-list 
database for a client with the name in question. If the name is found, the 
client’s relevant information—title, company, address, the all-important 
phone number, and so on—is extracted, and ProWrite, if not running 
already, is started. Our script creates a new document in ProWrite to serve 
as our notes file, inserting into it as a header the client’s information 
(figure 6.3).

We can now make notes as needed during our call, saving the whole 
under the automatically generated file name when the call is complete. 
Should we need to call Dr. West again, our script will load this same file 
for the next call rather than generating a new one, thus allowing us to pick 
up right where we left off.

As with my previous case studies, this one is of course a somewhat 
simplistic example of ARexx automation; it does not account for many 
special cases and error conditions. That said, it should serve to convey 
some of ARexx’s potential. Certainly much more might be done here. We 
might, for example, use one of a number of ARexx-compatible applica-
tions and a modem to automatically dial the client in question, or we might 

6.2  Nag Plus’s calendar
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use another ARexx script, this one triggered from ProWrite, to insert our 
notes about a client back into the company’s database when our call is 
complete.

Automation like this, which leverages major GUI-based commercial 
applications against one another, is very difficult to accomplish on most 
modern OSs, even though those systems support a plethora of scripting 
languages; there is no equivalent to the ARexx port on Windows, MacOS, 
or even, for the most part, Linux. I can see two major reasons why the 
“ARexx way” never migrated to those systems: first, allowing scripts such 
thorough-going control of applications and even the OS as a whole inevi-
tably engenders serious security concerns; and second, it is very difficult 
to get a standard like the ARexx port accepted across the thousands of 
applications that modern OSs support. Although, as chapter 7 shows, the 
Amiga was certainly not without its share of viruses, I know of no seriously 
malicious uses of ARexx, even though the potential certainly existed; 
perhaps the segment of the Amiga community that commonly used ARexx 
was simply too different from that which spawned viruses and trojans. 
Acceptance of the ARexx standard, meanwhile, was indeed a problem in 
early years but was helped along immensely when Commodore chose to 

6.3  A call notes file prepared in ProWrite by an ARexx script, with the client’s informa-
tion automatically inserted and the cursor placed for us to make further notes over the 
course of the call
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make ARexx a standard part of AmigaOS beginning with AmigaOS 2.0 in 
1990. From soon after that date, an ARexx port was simply considered a 
basic requirement of any serious application, and those application devel-
opers who failed to include one could expect to hear about that failing in 
no uncertain terms from reviewers and potential customers. Even inde-
pendent-minded NewTek felt behooved to build ARexx support into its 
Video Toaster software suite. This kind of near-universal acceptance of a 
standard is of course difficult to create in the world of commercial soft-
ware and would be much more difficult to foster in the exponentially 
larger software market of today.

Thus, ARexx looks likely to remain a unique creation. Like AmigaOS 
itself, it requires an informed, careful user to take it to its full potential, 
but that potential is remarkable indeed. Neither AmigaOS nor ARexx 
suffers fools gladly, but in a way that, among modern OSs, only Linux and 
other Unix derivatives can bear comparison to, they also empower the user 
to do with the machine what and how she will. And seen from within, the 
way a programmer looks at it, much of AmigaOS is even aesthetically beau-
tiful, a collection of interlocking parts that do exactly what is necessary 
quickly and efficiently and nothing that is not. There is a feel of naive 
technical idealism about AmigaOS that places it within a certain strand of 
computing tradition and that perhaps explains some of its appeal to a 
community of hackers that still speak of it reverently even today. One is 
reminded of another pioneering OS: ITS, developed by the MIT Artificial 
Intelligence Laboratory in the institutional-computing era of the late 
1960s. Like AmigaOS and ARexx, ITS offered major innovations—the 
ability for a single user to run multiple programs simultaneously and the 
computing world’s first full-screen text editor among them—along with a 
trusting, empowering attitude toward its users that is perhaps problematic 
in the “real world.” ITS had no support for passwords at all and exposed 
every user’s files to every other user, all in service of the hacker ideals of 
sharing, openness, and transparency.38 Viewed in the light of this tradi-
tion, AmigaOS’s dogged assumption that its users and programmers know 
what they are doing and its refusal to waste precious memory and CPU 
cycles in policing them do not seem so striking. If modern OSs give their 
users a complete home to live and work from, AmigaOS provides its users 
with just the basic foundations and the necessary tools to construct what-
ever sort of edifice they desire. ARexx is but one of the more remarkable 
among such structures, all enabled by the creative and technical talents of 
their designers and by the friendly, empowering OS which served as their 
host.



 

In late 1987, a member of the staff of Info, a major Commodore 64 and 
Amiga magazine of the era, attempted to boot WordPerfect on one of the 
magazine’s Amigas. On this occasion, however, he was greeted not with 
the expected word processor, but with the strange, vaguely sinister message 
shown in figure 7.1.1 In full, it read, “Something wonderful has happened. 
Your AMIGA is alive!!! And, even better . . . some of your disks are infected 
by a VIRUS!!!” 

A computer virus was not a new concept even in 1987; the idea had 
been speculated on, although apparently without a concrete implementa-
tion, among hackers and computer scientists even prior to the birth of the 
PC.2 In 1982, a 15-year-old American high school student named Rich 
Skrenta used an Apple II to create what was quite possibly the first virus 
to be implemented: the oddly named Elk Cloner, which spread from floppy 
disk to floppy disk, displaying a mocking limerick on every fiftieth infec-
tion.3 Intended only as a practical joke among friends, Elk Cloner did not 
spread widely. By 1984, however, the abstract idea of the computer virus 
was threatening enough to be the subject of a major presentation at the 
Department of Defense/National Bureau of Standards Computer Security 
Conference of that year.4 The author of that presentation and the accom-
panying paper, Fred Cohen, was prescient, for in 1987 viruses suddenly 
began to appear in the wild in numbers, not only on the Amiga, but on 
MS-DOS machines, on the Macintosh, and even on large, critical institu-
tional computers. The situation was serious enough—or at least novel 
enough—to draw the attention of the New York Times, which announced in 
a rather fear-mongering article published on January 31, 1988, that 
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7.1  The SCA virus announces its presence



7	 The Scene� [173]

computer systems in many places and of many types were “under siege.”5 
Meanwhile, the Amiga community struggled to understand its own virus 
problem, and as fear and rumors spread through the community, Com-
modore soon felt the need to assign an employee, Bill Koester, to research 
the virus and try to determine how to stop it.6

An Examination of the SCA Virus

A virus must solve three essential problems: how to infect a system in the 
first place; how to preserve itself even through reboots; and how to spread 
itself to other disks and systems.

As described in the previous chapter, although much of AmigaOS is 
stored on a ROM chip inside the machine, at power-on an Amiga looks for 
a disk to boot that contains more OS components as well as the details of 
the user’s personal configuration. At the time that what became known as 
the “SCA virus”—from the last line of the message and standing for the 
puzzling “Swiss Cracking Association”—began to spread in 1987, this boot 
disk generally had to be in the first floppy-disk drive, the one that came 
with every Amiga sold, mounted into the case itself.7 After performing 
some self-checks and initializations, AmigaOS checks this drive for a disk 
containing what is known as a boot sector, a special area at the disk’s very 
beginning present only on bootable disks. If it does not find such a thing, 
or if no disk at all is in the drive, it requests, via a graphic that has become 

7.2  AmigaOS 1.2 requests that a boot disk be inserted
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one of the Amiga’s iconic images (figure 7.2), that the user insert a “Work-
bench disk” and waits for her to satisfy this request.

When the user inserts the disk, AmigaOS executes a very small bit of 
code that is found on the boot sector itself, which performs a tiny but 
important step needed to initialize AmigaDOS. AmigaOS then continues 
on to execute the user’s startup script that sets up her preferred computing 
environment and finally gives the user control of her now completely 
booted machine.

It is, however, possible to replace this boot-sector code with some-
thing else, and doing so was not at all uncommon. Many game makers in 
particular used the boot sector to completely change the Amiga’s normal 
behavior, booting into a custom environment that largely bypassed 
AmigaOS in the interest of maximum efficiency—and, of equal impor-
tance, that made copying and sharing their games much more difficult. 
The SCA virus insinuated itself into an Amiga using the boot sector. There 
is room for about 1,000 bytes of code in the boot sector, of which the 
normal boot code uses only a handful. When an Amiga booted from an 
infected disk that contained the SCA virus in its boot sector, the virus code 
executed first, copying itself from disk into a fairly out-of-the-way loca-
tion in the machine’s memory. It then executed the normal boot-block 
initialization code and returned control to AmigaOS. Thus, the user sim-
ply saw her machine boot in the normal way and was completely unaware 
that the virus now lived in her machine’s memory. And so the SCA virus 
solved the first of its three problems.

But the greater challenges were still ahead. Like most computers, an 
Amiga can be reset at any time, whereupon AmigaOS reinitializes itself 
and attempts to boot off the first floppy drive once again, as if the user had 
turned the machine off and back on. This process of “warm starting” does 
not deliver quite as clean a slate as does a “cold start.” Although the tables 
that AmigaOS uses to know what processes certain areas of memory are 
allocated to are cleared, the memory itself remains unaltered until it is 
overwritten by other processes. Thus, the SCA virus’s code remained 
where it copied itself in memory even after a warm start. But how to con-
vince the CPU to execute that code again?

For this, the virus relied on a feature of AmigaOS known as the “Cool-
Capture” vector. A program can place a directive into this special part of 
memory to notify AmigaOS that it would like it to execute certain code 
during AmigaOS’s initialization phase, before AmigaOS even looks for a 
disk to boot from. The CoolCapture vector is of course lost when the Amiga 
is shut down completely because all memory is necessarily cleared at that 
time; it thus provides a way for a program or at least some piece of a 
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program to survive warm—but not cold—starts. The CoolCapture vector 
has some very good, very useful applications, which explains why 
AmigaOS’s designers chose to provide it. Many users of the 1980s and 
1990s, for instance, made use of RAM disks, virtual disk drives that exist 
only in the Amiga’s memory, but that can be read from or written to just 
like real disks. Particularly for users with large memory expansions but no 
hard drives, working with RAM disks was often vastly preferable to having 
to deal with frequent accesses to the comparatively slow and balky floppy 
drives. Some RAM-disk implementations used the CoolCapture vector to 
reallocate the memory that contained them after a warm start, thus pre-
serving their contents even through crashes and resets. A user could now 
copy her frequently used programs and data into a RAM disk once at the 
beginning of her day and have lightning-fast access to them from then 
on—as long she did not power down her machine or experience a power 
failure, of course.

Like so many useful computing features, though, the CoolCapture 
vector is also vulnerable to misuse by the likes of viruses. The SCA virus 
used the CoolCapture vector to ask AmigaOS to execute at every reboot the 
code that the virus had tucked away in memory when the machine was 
booted from the first infected disk—thus solving the second of its three 
problems, that of surviving through reboots. Now, it needed only a mecha-
nism to spread itself to other disks.

When the virus executed, it modified one of the most fundamental 
functions of AmigaOS, known as “DoIO” (“Do Input/Output”), which 
reads or writes raw data on the surface of a disk. The modified version 
analyzed each request sent to DoIO, of which there were likely hundreds 
or thousands over the course of a computing session, to see whether it met 
the very specific criterion of being an attempt to read a disk’s boot sector 
during system startup. If this was not the case, as it was not the vast major-
ity of the time, DoIO functioned normally. If it was the case, however, the 
virus checked to see whether the disk in question was already infected. If 
not, it wrote a new copy of itself to the boot sector, with only one modifica-
tion: one byte, a counter, was incremented by one. If this counter was now 
evenly divisible by 15, the virus displayed its boasting message; the effec-
tive result of this process was that the message appeared with every fif-
teenth disk that was newly infected. Whether the message was shown or 
not, control was soon returned to AmigaOS, which booted normally.

Amiga users of the late 1980s tended to reboot their machines much 
more frequently than do most computers users of today, whether because 
of system crashes or simply because they were switching from one game 
to another. Also, in this era telecommunication was quite slow in most 
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circumstances, leading Amiga users to frequently pass around software 
and data on physical disks rather than through electronic networks. 
Finally, both pirate BBSs and more legitimate ones had various means of 
compressing an entire disk into a single file for storage and transfer, to be 
unpacked again onto a physical disk by the recipient. This method of com-
pression had the side effect of also preserving any viruses that might have 
been contained in the disk’s boot sector. These cultural factors helped the 
SCA virus to solve its third and final problem, spreading not only through 
the disks of an individual user’s collection, but also onto other systems 
and disk collections.

The SCA virus was only a proof of concept, designed to do nothing 
more malicious than attempt to survive and spread itself. It was born in 
July 1987, the product of a bet between two young European hackers: “The 
question was whether a virus would fit into the 1,024 bytes of the boot 
block of an Amiga floppy disk (well actually 1,024 minus some boot code 
which had to be present),” explained the virus’s creator recently. “He [the 
other hacker] said he doubted it, so I had to prove him wrong to save my 
honor.:) Once I found out the really simple concept of reproduction I used, 
there was plenty of room left. That’s why I put in the fancy graphics with 
the bar and all the text. Just to show that these 1,024 bytes are more than 
enough.”8 The “something wonderful has happened” tagline was inspired 
by the film Short Circuit, a science-fiction comedy about a sentient robot 
that had been in theaters a year earlier.9 The virus’s author traded pirated 
commercial software regularly by post with the friend with whom he had 
made the bet. He therefore decided to announce his success by sending 
the virus to the friend on one of these disks. This friend unfortunately had 
many more trading partners and thus unleashed the virus into the wild 
before realizing he had been infected. It spread through the underground 
software piracy network, reaching the other side of the world, Australia, 
within a couple of months.10 After reaching North America from Europe, 
by one report on a pirated copy of a German game called Mouse Trap,11 the 
SCA virus spread wildly there for some months, accompanied by fear and 
rumors out of all keeping with the reality of the virus’s operation. It even 
infiltrated at least one commercial-software house, which sold disks 
infected with the virus to customers.12

The SCA virus’s author had never heard of Elk Cloner and for that 
matter had no specific knowledge of any already extant virus. He was 
inspired only by more general articles on the idea of a virus.13 The SCA 
virus was, therefore, in its way quite an original piece of conceptual engi-
neering. It was an adolescent prank and an irresistibly interesting hacking 
idea rather than a truly malicious creation. That said, it did present a grave 
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danger if one of the disks to which it spread was not a normal AmigaOS 
boot disk but rather contained a custom boot sector of its own that the 
virus proceeded to overwrite. In this way, the virus could potentially ren-
der useless an entire library of commercial entertainment software as it 
spread through a user’s disks. And because the virus, whether out of the 
programmer’s desire for it to stay hidden or simply bad programming 
practices, did not properly allocate the memory it used, AmigaOS could 
give this memory to other processes for the storage of their code or data; 
the likely result was an ugly, unexplained crash.

Nevertheless, at least by the standard of later Amiga viruses, the SCA 
virus was easy to detect—after a certain point it literally announced its 
presence—and easy to eradicate; one needed only to cold-start the machine 
with a disk one was certain was not infected and then to use AmigaDOS’s 
“Install” command to rewrite the boot sectors on all infected disks. The 
virus’s programmer was as shocked as anyone at the progress of his cre-
ation. He attempted to rehabilitate SCA’s reputation somewhat by releas-
ing a “virus killer” that could examine disks and memory and eradicate 
the virus, if found, from both places and that would even immunize disks 
against reinfection.14 In an accompanying text file, he also took pains to 
explain that, contrary to some of the more fanciful rumors, the virus could 
not destroy program files not located in the boot block or destroy source 
code or other text files.

The SCA virus has attained some measure of infamy not so much for 
the destruction it caused as for being the first of a whole host of viruses to 
come, many of them much more insidious and much more destructive. 
Soon after the initial hysteria had begun to die down in the face of solid 
information from people such as Koester and even the SCA hackers them-
selves, the inevitable happened: a second virus appeared, created by 
someone who called himself the “Byte Bandit.” This virus did not helpfully 
announce its presence after a certain period of time but did periodically 
blank the screen during a computing session and ignored the user’s inputs 
unless she entered a secret code on the keyboard.15 It spread itself to any 
disk that was inserted into a floppy drive, not just to disks that the machine 
attempted to boot from. And from then on, the viruses just kept coming. 
Some—perhaps even most—were, like the original SCA virus, essentially 
elaborate and often crude practical jokes, such as the Revenge virus that 
turned the mouse pointer into a phallus.16 Others, however, were deeply 
and intentionally destructive. The Lamer Exterminator, for example, 
occasionally overwrote random disk sectors with the word Lamer!repeated 
again and again, corrupting whatever files happened to be using those 
blocks, and to guard against detection and eradication it intercepted any 



[178]

attempts to examine the boot sector on which it resided, returning to the 
caller an image of a clean, uncorrupted boot sector instead.17 Some later 
viruses abandoned the boot sector to attach themselves to individual files 
instead, which allowed them to spread through even hard-disk-based sys-
tems that were never booted from floppies.

So many viruses were soon at large that some hackers began to create 
viruses that would detect the presence of others and compete against them 
in various ways. SystemZ, for example, was an apparently well-intentioned 
if misguided effort that checked for other viruses on the boot sector of 
every disk inserted, politely notifying the user of infections and asking her 
if she would like to have it infected with SystemZ instead.18 More useful 
was the blizzard of more legitimate antivirus software—freeware, share-
ware, and commercial—that quickly appeared. In yet another harbinger of 
the computing world of today, AmigaWorld eventually began advising its 
readers that a “current virus checker should be installed on every Amiga 
system,”19 and enterprising software publishers made tidy profits with 
their elaborate inventions that promised to keep users safe from the latest 
scourges.

Technical details and solutions aside, many users who were forced to 
interrupt painting, ray tracing, video production, or programming to deal 
with these nuisances were still left asking just why they existed at all and 
where they came from. Who were the “Swiss Cracking Association” and 
the “Byte Bandit?” Who, for that matter, were the “lamers” that needed to 
be “exterminated”? These questions marked a collision between two very 
different Amiga cultures that, viruses aside, mixed to remarkably little 
degree.

A Split Personality

Previous chapters of this book have described an Amiga personality that 
was known by many North American artists, both amateur and profes-
sional, as well as by many programmers and engineers who came to the 
platform with a grounding in traditional computer science. The typical 
Amiga of this milieu was the Amiga 2000, professional in appearance and 
intentionality. With its cavernous case containing numerous slots for 
expansion and its detached keyboard, the 2000 looked little different 
from the businesslike IBM clones of its day—or, indeed, from a Dell or 
Hewlett-Packard system of today. The typical 2000 might have been owned 
by a video producer or software developer and by the end of the 1980s was 
likely to be considerably expanded beyond the machine that Miner and 
team had first designed: perhaps with a newer and faster CPU, a large hard 
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drive, several megabytes of additional fast RAM, and perhaps a networking 
card, a genlock, and (by a year or two later) a Video Toaster. This market, 
centered on if not exclusive to North America, was served by glossy, stylish 
“lifestyle” magazines such as AmigaWorld as well as by more nitty-gritty, 
scruffier technical journals such as Amazing Computing.

The Amiga’s alternate personality, meanwhile, was centered in Europe 
and was characterized by the simple, all-in-one-case design of the Amiga 
500, expanded, if the owner was lucky, with no more than a second floppy 
drive and perhaps an extra half- megabyte of RAM. The typical 500 was 
housed in a living room or a bedroom and was used most frequently, if not 
exclusively, to play games. This market was served by garish, excitable 
magazines such as the British Amiga Power and the German Amiga Joker, 
which focused entirely or almost entirely on the latest hot games. In this 
context, the Amiga was not a professional artist’s tool or a serious soft-
ware-development platform, but rather an inexpensive home computer 
and game machine, the logical evolution of the popular Commodore 64. 
As such, it sold in vastly greater numbers in Europe, racking up sales that, 
particularly in the last few troubled years of Commodore’s existence, the 
North American division of the company could only dream of. That a sin-
gle core design could become so beloved by two such different constituen-
cies is a strong tribute to its strength and flexibility.

The version of the Amiga that debuted in Europe just a few months 
after its North American counterpart was in fact a subtly different machine, 
designed to be compatible with the European PAL video standard rather 
than the North American NTSC standard.20 Its CPU was therefore clocked 
slightly slower, to 7.09 MHz rather than 7.16 MHz, to allow the machine to 
synchronize itself easily to the slightly different PAL video timings. A 
more exciting difference, though, was that its standard vertical screen 
resolutions were increased by a considerable amount, from 200 to 256 
lines in noninterlaced modes and from 400 to 512 lines with interlace. 
Welcome as the additional resolution was, these differences would prove 
a real headache for software developers who wished to distribute games 
and graphical applications on both sides of the Atlantic. PAL-designed 
software running on an NTSC machine would generally not crash, but the 
bottom one-fifth of the display would be cut off, hidden below the border 
of the NTSC screen. Likewise, running NTSC-designed software on a PAL 
machine would result in a display compressed into the upper four-fifths 
of the screen, with an ugly blank area below. And the slightly different 
clock speeds could play havoc with some types of programs, such as the 
fast-action game that depended on millisecond-precise timing.
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The Amiga 1000’s sales in Europe were at least as disappointing as 
those in North America and for similar reasons: it was a relatively expen-
sive machine sold by a company best known for its inexpensive home 
computers and was poorly promoted. These problems were in fact even 
more pronounced in Europe, where the markets were more sensitive to 
price than markets in North America and indeed were often content with 
systems that would have been considered hopelessly obsolete on the other 
side of the Atlantic. (For instance, slow and unreliable cassette tapes 
remained the standard mode of permanent storage in Europe on the Com-
modore 64 long after North America had adopted the floppy disk.) Begin-
ning with the release of the Amiga 500 in 1987, however, the Amiga began 
to gain real traction in Europe. By 1990—ironically, just as North American 
Amiga sales were passing their peak and entering a long, slow decline—the 
Amiga 500 was hugely popular there and considered the next step up for 
many children, adolescents, and adults who had begun computing with 
the Commodore 64. In the last quarter of that year, Europe accounted for 
a staggering 85 percent of Commodore’s total sales,21 and it is safe to say 
that the relative ratios did not improve in North America’s favor after that 
point. Thanks to production cost cutting that made the Amiga ever cheaper, 
a dazzling library of games, and the relative expense of the new generation 
of Microsoft Windows–based “multimedia PCs” that was coming to domi-
nate North America, the Amiga flourished as a game machine in Europe 
right up through the 1994 Commodore bankruptcy and continued as a 
significant player there for several years after that. Even the AGA Amiga 
1200, little more than a poorly distributed afterthought in North America, 
sold in significant enough numbers in Europe to attract considerable sup-
port from game publishers.

I would not for a moment claim that Amigas were not used for “seri-
ous” purposes in Europe or that suburban North American bedrooms dur-
ing the Amiga’s best years there did not contain a significant number of 
battered Amiga 500 game machines. I do believe, however, that the gen-
eral trends are tangible enough. As I was writing this book, I naturally had 
the opportunity to describe the project to a fair number of friends and 
colleagues in both North America and Europe. I learned quickly enough 
from these conversations that most North Americans have never heard of 
the Amiga; only the occasional serious hacker or artist knows the platform 
and its significance. In Europe, though, most people of a certain age are 
well aware of the Amiga and often have fond memories of playing games 
on their own or a friend’s machine. The Amiga’s history in Europe is  
thus very different and in many ways more successful and more satisfying  
than its history in North America. Bound up with that history is an 
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underground computing culture—amoral, chaotic, and often crude, but 
also vibrantly creative, exciting, and in its own way technically masterful. 
It was largely from this culture that the viruses came, but it was also this 
culture that spawned some of the most impressive technical and artistic 
creations that ran on the platform.

The “Scene” in Europe

The underground culture that came to be known as the “demoscene” pre-
dates the Amiga 500 and even the 1000, having been born on earlier 
platforms, most notably the Commodore 64. Its roots lie in the “cracking” 
and illegal trading of commercial software.

Software piracy is as old as the commercial-software market itself. A 
very young Bill Gates famously wrote an open letter to the nascent com-
puter hobbyist community in early 1976, berating its members for stealing 
what was both Microsoft’s first product and perhaps the first piece of com-
mercial software ever sold for a PC, a version of the BASIC programming 
language distributed on paper tape. As more practical and polished PCs 
reached the market in the years that followed, piracy only increased. 
Although piracy was (and remains) widespread among all types of soft-
ware, it was a particular problem for entertainment-software publishers, 
perhaps because games had such appeal to young people with limited 
income to purchase them. In response, software publishers began to 
employ a variety of countermeasures to protect their investment. Most of 
the time, such measures took the form of altered disk formats that could 
not be read by ordinary disk-copying software, but elaborate password-
lookup schemes that required the game’s manual or a physical code wheel 
packaged with it also became increasingly common as time went on. Some 
truly concerned (or paranoid) companies even employed both methods 
for the same game. Individuals, mostly teenagers, took it upon themselves 
to “crack” these measures and distribute the results. In response, software 
publishers implemented new and more complicated protection schemes, 
which were inevitably broken in time by these crackers in an ever-escalat-
ing cycle of challenge and response.

By the early 1980s, individuals and groups in North America and in 
particular Europe had begun to promote their skills and their ability to 
inject cracked versions of the hottest new software into pirate-distribu-
tion channels within days or hours of their release. They took fanciful, 
self-aggrandizing nicknames, or “handles,” and pooled their resources 
into collectives with names such as “Apple Mafia,” “Dirty Dozen,” “Ware-
lords,” and “German Cracking Service.” Fueled by angst and a nihilistic 
worldview inspired by heavy metal and punk rock as well as by an 
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adolescent need for acceptance and validation, a crude social Darwinism 
ruled the scene, with the most skilled and connected crackers almost wor-
shipped and lesser lights cruelly excluded and dismissed as “lamers.” 
Indeed, like so many subcultures, the cracking scene developed its own 
distinct vocabulary of odd phrasings, distorted spellings, and portman-
teau words that are still used in some segments of Internet culture today. 
They allegedly replaced the word software with warez, hacker with haxxor, 
and elite with eleet to circumvent electronic law enforcement filters that 
might be tracking their activities,22 but one senses that such constructions 
were in reality more important to these “sceners” as markers of inclusion 
and exclusion.

In Europe, games and other software were usually traded on disk via 
post rather than through the network of BBSs that sprang up in North 
America because even local calls in Europe were generally billed by the 
minute, which made impractical the large amounts of time online that the 
slow modems of the era required to upload and download large programs. 
In fact, the most prominent organs of communication within the scene 
soon became “diskmags,” electronic newsletters created and distributed 
on disk by one or more groups. Inside a diskmag, one could find all of the 
latest scene news: where the next “copyparties” would be held, who was 
cool and who was lame (that is, according to the group that put out the 
diskmag), who were now allied and who were now enemies (both of which 
could change with dizzying speed), and debates over such burning contro-
versies as whether girls should be allowed to participate in the scene. Later 
diskmags grew surprisingly sophisticated, booting into elegant interfaces 
to enable the reading of their content and featuring music and pictures in 
addition to text. Some were almost as technically impressive as the cracks 
and demos they covered.

Much about this underground culture, made up as it was almost 
entirely of adolescent males, is distasteful, even shocking to adult sensi-
bilities of both its time and our own, but to characterize its inhabitants as 
merely “boys acting out” does a real disservice to the technical genius of 
the best crackers, who managed again and again to break ever more 
sophisticated copy-protection systems, generally within hours, and all 
while working with no formal computer training and the most limited 
equipment. For this elite group, cracking soon transcended the desire to 
play games for free. The time they had to invest into cracking and the time 
that went into cultivating trading partners and maintaining their social 
position within the scene, combined with the day-to-day pressures of 
ordinary teenage life, in fact left most with little time for playing games. 
The addictive joy rather lay in the challenge of the crack itself, of pitting 
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their own skills against the best schemes that publishers could devise—
and, of course, in bragging at length about their accomplishments after 
the fact. Although crackers loved to play up a sort of gangster persona for 
themselves in the process, their outlaw status was at least theoretically 
genuine and sometimes had serious real-world consequences. Police in 
West Germany, France, and Scandinavia in particular were prone to swoop 
down on the dwellings of the largest traders, armed with search warrants 
and the full force of the law.23

Although one can safely say that software piracy has been common in 
every time and place with access to PCs, at the time of the Amiga 1000’s 
introduction the cracking scene was particularly vibrant in Europe, where 
it centered particularly on the Commodore 64, a hugely popular game 
machine for which a constant flood of new games provided ample grist for 
the crackers’ mill. Some crackers started to ply their trade on the Amiga 
in relatively short order; the first Amiga crack to appear was apparently of 
the game Tetris and was released by the Austrian collective Megaforce in 
February 1986.24 Only somewhat later, however, after the introduction of 
the less expensive Amiga 500 in 1987, did crackers begin to migrate to the 
platform in large numbers, in most cases moving to it from the Commo-
dore 64.

In the brutal meritocracy that was the cracking scene, it was of course 
important that crackers leave their marks somehow on the games they 
distributed so as to receive fair credit for their work. Such marks often 
initially consisted of no more than an individual or group’s initials entered 
into a game’s high-score leaderboard or perhaps a bit of altered in-game 
text,25 but crackers soon took to placing custom-programmed graphical 
introduction sequences on the disks that housed the cracked games. These 
sequences advertised the group and its prowess, sent out “greets” to the 
group’s friends, and perhaps dispatched some “flames” to those with 
which it was at war. Over time, these “crack intros,” or cracktros in the 
scene’s language, grew increasingly elaborate and impressive, soon 
becoming an art form and a field of competition in themselves. Many 
groups eventually began to “hire” members not to crack games, but rather 
to program the most impressive cracktros possible. Many groups were 
soon devoting more time and energy to their cracktros than to the cracking 
itself, and the results often audiovisually outshone the games to which they 
were attached. The next step was perhaps inevitable: groups began to 
release demos—noninteractive, computer-based multimedia pieces—to 
stand on their own merits as artistic and technical creations, a develop-
ment that began as early as 1988 and reached a sort of critical mass by 1990 
or 1991.26



[184]

This “demoscene” that evolved to supplement and eventually largely 
to replace the cracking scene carried much of the same underground feel 
as its predecessor, but it became in time a friendlier place, focusing as it 
did on creation rather than theft. Although crackers from a fairly early date 
had been in the habit of hosting occasional informal “copyparties” to 
exchange software and socialize, “demoparties” reached new heights of 
organization and participation. In 1991, the first instance of “The Party,” 
an annual event in Denmark that eventually ran for more than a decade, 
attracted more than 1,000 visitors,27 a record for a demoparty, and the 
numbers continued to increase from there. By 1994, the best-attended 
demoparties were attracting several thousand visitors. By this point, the 
swapping of pirated software, if it took place at all, was very much ancillary 
to these gatherings’ real purpose: for groups and individuals to display 
their latest demos and participate in contests judged by the other attend-
ees. A win or even just a high placing at a major demoparty could make 
one’s reputation in the scene. Indeed, by the early 1990s many collectives, 
some of them formerly crackers, limited their activities exclusively to cre-
ating ever more impressive demos. In an odd but satisfying turnaround, 
software piracy now became the afterthought of a vibrant and creative, if 
still very much underground, association of digital artists. The astonish-
ing aesthetic and technical evolution of this form of multimedia art can be 
demonstrated through an examination of two demos: one from 1989, 
when the stand-alone demo was just beginning to separate itself from the 
cracktro; and one from 1992, when the demoscene was fully established 
and already producing some dazzling work with an aesthetic vision to 
match its technical virtuosity.

Both of the demos, which I discuss in detail in the next two sections, 
as well as quite a number of other standout demoscene creations are avail-
able for viewing on this book’s accompanying Web site. As always, you will 
likely find the discussion of much greater value if you view the demos 
before or as you read on.

Red Sector’s Megademo

Red Sector Incorporated, a West German cracking group, produced their 
Megademo for the Tristar Party, which took place on September 9, 1989, in 
Venlo, a town in the Netherlands. Upon its release, Megademo was notably 
mainly for its sheer ambition and size, filling two floppy disks, more than 
the vast majority of commercial games of the era. As with most demos of 
this period, one views Megademo by booting an Amiga directly from the 
first of its disks, whereupon it uses some custom boot-sector code to take 
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complete control of the machine, bypassing entirely the OS and all of its 
trappings. It is bare-metal programming in its purest form, a fact that Red 
Sector advertises with pride in Megademo itself: “no DOS, no libraries.” 
Rather than use the standard AmigaDOS disk format and system of files 
and directories, the demo writes all data in raw form to specific tracks and 
sectors, which allows the data to be read back in with maximum efficiency, 
and it does so not by using the normal AmigaDOS libraries, but rather by 
directly controlling the drive’s read head. This technique also makes 
Megademo’s code and multimedia assets difficult to modify or even 
examine. The disks are completely unreadable by the usual AmigaDOS 
tools and copyable only by a “deep” copier that exactly mirrors the actual 
tracks and sectors of a disk rather than simply copying the files that its 
AmigaDOS file system claims it to contain. Megademo, like virtually all 
Amiga demos, is coded in pure assembly language, with no intervening 
compiler to introduce inefficiencies. Such techniques allow it to meet one 
of the key requirements of a respectable demo: to start doing something 
interesting as soon as possible after the user inserts the disk and to provide 
constant visual and auditory action from that point on. Thus, even as 
Megademo loads each of its eight distinct main parts from disk, it plays a 
catchy tune and displays some simple graphics to keep the user’s atten-
tion. The ability to do this type of “multitasking” was abetted by the Amiga’s 
custom chips. Paula, for example, in addition to handling sound, can also 
perform disk operations largely autonomously.

This continuous action set the Amiga’s demos apart from those cre-
ated for other machines and was thus a great source of pride to groups such 
as Red Sector. For all of the scorn that groups within the scene were apt to 
heap upon one another, they reserved their ultimate contempt for those 
too “lame” to recognize the Amiga’s superiority. Diskmags and other scene 
productions were littered with jabs at other platforms, with the Atari ST 
and IBM PC clones singled out for particular attention. The best demos, 
meanwhile, were revered within the scene not only as tributes to the 
groups that created them, but as proof of the Amiga’s status as the greatest 
computer ever made. This platform nationalism could get extreme indeed, 
prompting lengthy online flame wars with supporters of other platforms 
that could bring together groups who otherwise detested one another in 
the defense of their beloved Amiga. In embracing the Amiga so fervently 
and in so closing their minds to the possible virtues of other platforms, 
the members of the scene were perhaps not unlike other adolescents who 
identify equally strongly with their favorite music groups.

In addition to using Paula to load data from disk as animations and 
music play, Megademo displays the unique strengths of the Amiga’s 
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hardware in many other ways (figure 7.3). Its bracing hard-rock- and 
techno-inspired soundtrack, for instance, could have been matched by 
few other machines of the era and is also played by Paula autonomously as 
the screen is filled with animated visuals. And virtually the whole demo is 
presented in full overscan mode; being able to fill the whole screen in this 
way was quite a novelty among computers of 1989. The colored bands of 
color that strobe through much of the text and other visual elements are 
perhaps the most prototypical of all Amiga demoscene effects and, again, 
are a direct result of the hardware on which Megademo was created to run. 
To produce these “rasterbars,” the copper is programmed to change cer-
tain color registers at the end of every scan line. The result is not only 
visually striking, but trivially cheap in computing resources and quite easy 
for even a novice programmer to implement—thus, its popularity with the 
early demoscene, to the point of becoming something of a derided cliché 
even within the scene in later years. Megademo as a whole represents a 
superb encapsulation of the early demoscene look and attitude, which 
Anders Carlsson has aptly described as an “aesthetical maximalism”: 
“more graphical elements, more mathematical effects, and more sounds 
made a better demo.”28

But some unusual elements are to be found here as well. Two sequences 
make use of what the scene called “vectorgraphics,” a form of simple 3D 
modeling (see chapter 4). One, a sequence called “Vectorballs,” repre-
sents an example of the aboveground Amiga creative culture bleeding into 
this European underground because it shows strong evidence of having 
been inspired by Eric Graham’s groundbreaking 1987 AmigaWorld article 
on the Juggler and 3D modeling. Not only does its overall look correspond 
with images produced by Graham’s early modeler SSG, but it even features 
some of the SSG-generated balloon animals that were shown in that arti-
cle. The unusually moody music and smooth animation of this section, 
which also features many Boing balls grouping themselves into various 
figures, makes it the most aesthetically impressive sequence in 
Megademo.

Another surprising aspect of Megademo is the amount of control it 
gives to the viewer, allowing her to decide when she has seen enough of 
each sequence and even to control some aspects of the sequences using a 
joystick. Megademo concludes with a multiple-choice quiz that asks an odd 
mix of questions about the tempest-in-a-teacup social world of the scene 
(“Why did Red Sector and Defjam join together?”), the technical design 
of the Amiga (“In which chip is the blitter implemented?”), and even 
general computer history (“Who developed the first computer?”—a noto-
riously thorny question to which Red Sector unsurprisingly provides the 
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following answer: the German Konrad Zuse). A user who answered a suf-
ficient number of questions correctly was rewarded by having his name 
and information recorded onto the disk itself, immortalized there for 
whomever else that copy of Megademo was traded to. Interesting as this 
interactive element was, it appeared in few later demos, virtually all of 
which were designed to play nonstop, with no user intervention. The 
modern demoscene’s FAQ file even makes this absence of interactivity an 
explicit requirement, stating that demos “run linear from start to finish 
and are non-interactive.”29

Megademo is rather less impressive formally than it is technically. 
From its opening seconds, when a throaty cartoon villain’s voice announces 
without a hint of irony the demo’s title, we are confronted with a very 

7.3  Some scenes from Red Sector’s Megademo (1989). Clockwise from top left: the 
animated (and musical) loading display that appears between sections, featuring Iron 
Maiden’s mascot Eddie; a sequence featuring twin dancing and singing Arnold Schwar-
zeneggers; the unusual closing sequence, an interactive quiz; and Red Sector’s version of 
Eric Graham’s famous Juggler. Notice how the sequences take advantage of overscan mode 
to fill the screen to its physical borders.
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adolescent aesthetic. One can argue that Megademo is little more than a 
compilation of impressive but not always terribly innovative cracktros. A 
shamble of pop-culture artifacts of the sort typical of the scene’s teenage 
male demographic piles up over its course without much rhyme or reason, 
including Eddie, the cyborg mascot of heavy-metal band Iron Maiden, and 
Arnold Schwarzenegger in Terminator garb. Also present is some typical 
Amiga symbolism, such as the aforementioned Boing balls, the Juggler, 
and Max Headroom. As in the loading screen, many sections are accom-
panied by “scrolltexts,” yet another cracktro staple, in which Red Sector 
members make the grandiose pronouncement that “we disassociate our-
selves from the swapping of ‘Evil’”—“Evil” being an individual who appar-
ently failed to make good on some obligation; denounce another group, 
Curity, calling them “lamers,” the ever-popular staple insult of the scene; 
and expound on their drinking exploits and favorite beverages. There is 
also a bit of scatological humor, such as a brief sequence featuring a farting 
worm and the belches that accompany a wrong answer in the quiz that 
concludes Megademo. Most disturbing, the demo also includes a number 
of racist jabs. Most of the text is written in English, ironically the lingua 
franca of a scene that had relatively little participation from groups based 
in primarily English-speaking countries, but there are occasional lapses 
into the group’s native German.

State of the Art 

To see how far the Amiga demo came in a short time, one can look to State 
of the Art, released by the Norwegian group Spaceballs at the second 
edition of The Party, held in Aars, Denmark, December 27–29, 1992. Art 
is an astonishing achievement, displaying a mature aesthetic perspective 
in full flower. Unlike Megademo, whose effect on the viewer depends on an 
appreciation of the limited hardware on which it runs, even to some extent 
on a technical knowledge of said hardware and thus the difficulty of the 
specific techniques Red Sector employs, State of the Art gives an exciting 
show that is inspiring even to those with no knowledge of its technical 
underpinnings. Of course, when one learns that the demo runs and was 
created on a stock 1987-vintage Amiga 500 with one MB of memory, one 
can only be more impressed.

Like Megademo, State of the Art comes on a bootable disk—just one this 
time—and dispenses entirely with such niceties as AmigaDOS and OS 
calls. In fact, in its original form it would not even run on anything other 
than an Amiga 500 with exactly one MB of memory because it uses hard-
coded memory addresses rather than properly allocating memory from 
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the OS. Should those specific addresses not exist, should they not be chip 
RAM, or should they contain other needed information, as is likely on any 
Amiga configuration not identical to the one used to develop the demo, 
the result is a visit from the Guru.

Unlike Megademo, there is no interactive element to State of the Art; the 
viewer simply boots from the disk, sits back, and enjoys the show (figure 
7.4). That show is simple enough to describe: a stylized dancer’s silhouette 
gyrates through a series of varying backgrounds and effects as an increas-
ingly manic dance number plays. The demo takes obvious inspiration 
from the house music that was tremendously popular throughout Europe 
at the time, where huge numbers of young people gathered together, often 
illegally, for dance parties known as “raves.” In fact, there are interesting 
parallels between the demoscene and raves, both being underground, tre-
mendously creative subcultures created and inhabited almost entirely by 
people under the age of 25, and both being of essentially the same vintage. 
Not only would the music not sound out of place at a rave or house club, 
but many of the demo’s effects evoke the atmosphere of the dance floor. 
There is, for instance, a sequence where the image blinks on and off from 
frame to frame, the background going from white to black, evoking the 
strobe lights that are a dance club staple. The dancer is occasionally 
replaced by a series of evocative words and phrases in a stylish art deco 
script that flash on the screen so quickly that they make more of a subcon-
scious than an intellectual impression. These parts of the demo remind 
me of many modern electronic literature works, such as Yong-Hae Chang’s 
multimedia poem “Dakota.” As the approximately five-minute demo 
nears its end, the music speeds up to a tempo that is beyond the capability 
of any human musician (or dancer), finally exploding orgasmically into 
silence and a final credits screen: “Phew! Spaceballs: Simply State of the 
Art.” This light touch makes a marked contrast to Megademo’s heavy-
handed self-aggrandizing. State of the Art as a whole is a refreshing experi-
ence when played after earlier demos, replacing strident nihilism and 
“dark” bona fides with the joy of being young and alive. It is sexy and as 
stylish a piece of multimedia art as one can wish for. It succeeds so well 
today, when the technology used to create it is so absurdly dated, precisely 
because it is not about blitter or copper effects, not about self-referencing 
its programming techniques.

Even so, the techniques behind State of the Art do make an interesting 
study indeed. That the dancer’s silhouette moves with such verisimilitude 
is less surprising when one learns that it has its origin in a real dancer, a 
young former disco-contest champion who also happened to be the girl-
friend of one Lone Starr, the chief coder and creator behind the demo.30 
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Lone Starr developed essentially unaided a program to convert the outline 
of the videotaped dancer into the vector-graphic data used to construct 
State of the Art’s dancer: “Major Asshole [another member of Spaceballs] 
had some ideas of how to save animations from videotape as 2d-vector 
figures, and soon I began to write a program where I could make such 
animations. This program had many possibilities. I could morph, zoom 
and move objects, and it was able to do animations up to four planes. It 
took 5 months before the final version of this tool was finished.”31 It is 
amazing that Lone Starr was able and willing to develop such a program, 
equivalent in intent and, if we are to judge by the results, also in capability 
to some of the most sophisticated professional tools on the Amiga software 
market. He did so essentially alone and from scratch and all for the pur-
pose of creating a free piece of multimedia art likely to be seen only within 
a small subculture. I do not know of a better demonstration of the demo-
scene’s skill, ambition, and odd artistic idealism.

Although State of the Art won The Party’s demo competition in 1992 and 
is considered one of the demoscene’s all-time classics today, it was not 
greeted with universal adoration at the time. The technology used to cap-
ture the dancer was, as just noted, remarkable indeed, but a vocal part of 
the demoscene demanded that all effects must be created in real time 
computationally rather than played back from captured data. Members of 
another group in the scene, Skid Row, took it upon themselves to correct 
the memory-allocation problems that made State of the Art impossible to 
run on so many Amigas and in the process inserted a sour message into 
the final title placard: “How could this demo win????? Lame programming 
and useless trackloader.”32 Other commentators had similar sentiments, 

7.4  Scenes from Spaceballs’ State of the Art (1992)
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which they often delivered in the fractured diction still common to the 
scene: “Why does he do demos? He should get himself a videocamera and 
make music videos NOTHING is realtime in this prod”;33 “Is this a demo? 
We are still not sure”;34 “Mr. Lonestarrrrrrrr, you cannot convince me 
that a bunch of jumpin’ zombies make a winnerdemo”;35 “the filled vec-
torcube is nice, although it is precalculated.”36 Such commentators saw 
demos as essentially demonstrations of technical skill and thus were dis-
satisfied with the relative lack of flashy effects in State of the Art. Lone 
Starr replied that “we won because this demo had a new different style, 
and it was a demo all kinds of Amiga-owners would enjoy, not only the 
coders.”37

Retrospectively, of course, State of the Art was and is exactly that, and 
one of a cluster of demos released in 1991 and 1992 that ushered in an era 
of new aesthetic maturity. Creators were soon making use of ray tracers, 
3D modelers, and digitized images to supplement pure code. The AGA-
generation Amigas in particular gave them the power to create demos that 
work as short narratives or avant-garde films, and thus by 1995 the Amiga 
1200 had largely replaced the 500 as the standard demoscene machine. 
Some demos blurred the boundaries between demos and the video pro-
ductions I examined in chapter 5 in being produced on videotape, using 
the Amiga’s desktop video capabilities to combine computer-generated 
effects with real-world video. One example of this approach, Global Trash 
II by Swedish group The Silents, was even reportedly played on MTV 
Europe.38 For those who still hewed to the old, code-centric style, mean-
while, a subclass of demos, the “coder demo,” was born. Particularly popu-
lar with pure coders were the intro demo competitions many demoparties 
began to hold, which were open only to creations that occupied no more 
than 40 KB on disk, including code and data.

Trackers

Whatever their subcategory, virtually all demos created in the scene prom-
inently featured musical soundtracks, in most cases relying on their music 
just as much as their visuals to convey their message. Good demoscene 
musicians could win for themselves as much fame and respect as coders 
or artists and often released songs to stand on their own, unattached to a 
demo. The diskmags published charts of the most popular current hits, 
and demoparties generally hosted musical competitions to go along with 
their demo competitions. Even today the work of the best Amiga demo-
scene musicians is remembered and venerated on the Internet via such 
organs as the Amiga Music Preservation Web site.39 Like all of the works 
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of the demoscene, these musical creations are all the more remarkable in 
light of the constraints under which they were produced.

Even computers of the generation immediately before the Amiga that 
were possessed of exceptional sound capabilities, such as the Commodore 
64 with its three-voice Sound Interface Device (SID) chip, lacked the 
power to store and reproduce real-world sound. They instead could gen-
erate only quite simple, regular waveforms using software synthesis.40 
Although Paula could be and often was programmed using similar tech-
niques, the Amiga, along with its contemporaries the Atari ST and the 
first-generation Apple Macintosh, was among the first PCs capable of 
making any practical use of sampled sound. To understand the scale of the 
technical challenge in that usage, though, we might consider the amount 
of memory required to store one second of sampled CD-quality sound: 
(44,100 samples per second * 2 bytes per sample * 2 channels), or 176,400 
bytes, approximately 172 KB. A typical demoscene Amiga 500 with one MB 
of RAM that dedicated its memory to nothing but audio storage would thus 
be able to store less than six seconds of CD-quality sound, but a single 
Amiga floppy disk cannot even hold that much. Granted, modern music-
storage formats such as MP3 reduce required storage space dramatically 
(at varying loss of quality) using compression techniques, but the Amiga 
500 also lacks the processing power to decompress these data and send 
them to Paula fast enough for them to be of use. Actually, even the shortest 
chunks of uncompressed CD-quality sound are a nonstarter on the Amiga, 
for Paula can handle a maximum sample rate of only 28,867 samples per 
second and supports only eight-bit sound resolution. Therefore, the 
Amiga musician had to content herself with lower fidelity playback, 
although the sound quality is by no means atrocious even to the modern 
ear. More significant, the modern solution to storing a song on a com-
puter, which consists of recording it in its entirety as one long string of 
samples that, even when compressed, can span many megabytes, was not 
a possibility on the Amiga. The question, then, was how to make use of 
Paula’s ability to process sampled sounds, but at the same time keep the 
size of those samples within the limits of the Amiga’s small disk and mem-
ory capacities. The answer was the modular music file—the MOD.

A MOD song consists of two components: first, a collection of very 
brief samples representing the song’s various instruments and sound 
effects; and second, a score or timeline of when and how those samples 
should be played. Imagine a rock song played by a classic four-piece band 
consisting of an electric guitar, a bass guitar, an organ, and drums. To cre-
ate a MOD of the song, each of the first three of these instruments can be 
sampled playing a single note around the middle of its tonal range. A song 
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can then be constructed using only these samples. To represent a higher 
note than the original, a sample is sent through one of the Amiga’s DACs 
at a faster frequency than the original, thus increasing its pitch while 
retaining its waveform and therefore its fundamental character; for a 
lower note, the opposite is done. (This principle is in fact the same as that 
which the Boing demo uses to play two very different noises from the same 
sample.) The drum set might be a special case, possibly requiring differ-
ent samples for a bass drum, a snare, and a cymbal, although the pitch of 
those samples might of course be varied to represent a complex drum set 
with different types of each. There are significant limitations to this 
approach to computer music making. It works better for instruments such 
as pianos that produce discrete, individual notes than it does for instru-
ments such as violins that slide fluidly up and down the tonal scale. And 
on the Amiga the composer is limited to a maximum of four samples play-
ing at any one time because the hardware itself has just four sound chan-
nels. For certain types of music, though, including the hard-rock, techno, 
and house compositions the demoscene favored, this approach can pro-
duce impressive results indeed.

Given the Amiga’s sound capabilities and limitations, this basic 
approach to music making on the platform is a fairly obvious one. Indeed, 
it was the one chosen by the two earliest serious commercial music tools 
to reach the Amiga market, EA’s Deluxe Music Construction Set and Aegis’s 
Sonix. And yet both of these programs, although powerful enough in their 
way, were hampered by somewhat unwieldy interfaces modeled too slav-
ishly on traditional musical notation. Both programs also stored their 
scores and the often copyrighted samples used to play them in separate 
files, making it tricky to share creations or the samples used to make them 
with others who did not own the program. And both programs were ori-
ented toward the professional or serious amateur musician wishing to 
create music for recording onto other media, whether to stand alone or to 
accompany live performance or, via a connection with a musical synthe-
sizer having a Musical Instrument Digital Interface (MIDI), to be played 
without using the Amiga’s internal sound hardware at all. Yet many Amiga 
users wanted efficient tools and music-file formats that could be easily 
played on many Amigas and shared with others and that would be easier 
to incorporate into other programs. Game developers, who always needed 
catchy music for their creations, were one group that found programs such 
as Deluxe Music and Sonix particularly inadequate. The beginning of a 
solution to their needs arrived in December 1987 in the form of Ultimate 
Soundtracker.
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Ultimate Soundtracker was the creation of West German programmer 
and musician Karsten Obarski. Having already experimented for years 
with music on the Commodore 64 and other early home computers, Obar-
ski was asked, soon after acquiring an Amiga, to write the music for a 
Breakout-style action game, Amegas.41 At the time, music in Amiga games 
often consisted of a single long sample of perhaps 15 or 20 seconds, looped 
endlessly and monotonously. Obarski wished instead to be able to write 
proper, extended compositions and developed Ultimate Soundtracker to 
help him do that.42 Realizing the program’s potential as a tool for others, 
Obarski released it through the German publisher EAS Computer Tech-
nik. That first version had many limitations and idiosyncrasies and did 
not do well on the market.43 In March 1988, however, a Dutch cracker and 
demo programmer named “The Exterminator” disassembled and exten-
sively improved Ultimate Soundtracker, releasing the new version into the 
scene as Ultimate Soundtracker 2.0. This act, illegal and immoral as it may 
have been, ushered in the era of demoscene MOD music;44 countless 
groups were soon modifying or writing trackers of their own and making 
them available for free. All these trackers shared the MOD format origi-
nated by Obarski, and tracker music became omnipresent in the scene—in 
cracktros and demos and as stand-alone creations. What many regard as 
the definitive Amiga tracker, ProTracker, was released by the Norwegian 
group Amiga Freelancers in late 1990. Its source code was eventually made 
available, and it was steadily expanded and improved for years thereafter, 
first by the Amiga Freelancers and then by others. The evolution of sound 
tracking thus parallels the evolution of the scene itself, from being pri-
marily about trading and enjoying the creations of others to being a cre-
ative force in its own right. By the era of State of the Art, demosceners were 
making use of only a few standout commercial products such as Deluxe 
Paint and a handful of assembly-language authoring tools for their cre-
ations; for the most part, their own tools were simply better for their 
purposes.

ProTracker

Comparing figure 7.5 and figure 7.6 illustrates the contrast between a 
typical Amiga commercial music application such as Deluxe Music and the 
tracker. DMusic is written for a traditional analog musician and composer, 
preferably one used to sitting in classic Gershwin pose before a piano on 
which are perched reams of blank staff paper. This composer can use 
DMusic to tap experimentally on the provided keyboard, dragging notes 
onto the staff as she finds sequences that please her. DMusic is easy to use 
for those with a traditional musical education but perhaps little knowledge 
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of computers because it hews relentlessly to its chosen real-world meta-
phor and never exposes its computational inner workings. Unfortunately, 
this metaphor has little to do with the program’s underlying technology, 
and the intervening layers of abstraction between the fiction of the inter-
face and the reality of the Amiga’s sound hardware can make the program 
feel sluggish and clunky at times. DMusic is most useful for the transcrip-
tion of traditional pieces, such as the Bach fugue shown in figure 7.5, 
which can result in reasonable enough, if slightly stilted-sounding results.

ProTracker, in contrast, approaches music making as essentially a 
programming task. Typical of demoscene productions, ProTracker’s 
interface ignores not only DMusic’s composition metaphor, but also all of 
the rules of “proper” Amiga user-interface design in general to forge its 
own path, which consists of dozens of tiny, cryptically labeled buttons and 
many on-screen numbers, often presented in hexadecimal. This tool is a 
complex one that can require months of effort to truly master. Once it is 
mastered, however, its no-nonsense approach makes it a joy to work with 
in contrast to the labored user-friendliness of a DMusic. The difference 
between the two programs’ personalities is exemplified by the words they 
use to refer to their compositions: the DMusic composer creates “scores,” 
reflecting that program’s “high-brow,” traditional approach to music 
making, whereas the ProTracker musician creates “songs.” ProTracker 

7.5  EA’s Deluxe Music Construction Set (1986)
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excels at creating works of techno, house, and trance, genres that did not 
exist before the advent of computerized music and that, indeed, owe their 
sound to the possibilities and limitations of computerized music-making 
machinery. The best songs created with ProTracker have an artistic vitality 
that DMusic’s staid transcriptions cannot match. To provide a window into 
the tools with which a tracker musician worked, I construct here a very 
simple sequence using a mature version of ProTracker from 1993.45 The 
resulting fragment of audio is available on this book’s Web site, as is a 
video clip of its construction.

We begin by loading a sound sample of an oscillating shortwave radio 
signal from a file. Examining this sample in ProTracker (figure 7.6) tells 
us a great deal about it: we see its waveform and learn (among much else) 
that it is set to loop automatically again and again after first introduced to 
a sound channel. And we learn that it consumes 30,942 bytes of our pre-
cious chip RAM. Composers working on ambitious songs with many sam-
ples must watch this figure carefully, particularly if they want to incorporate 
their work into a demo or game that will make its own demands on chip 
RAM.

With our sample loaded, we can now set about adding it to a composi-
tion of sorts. A complete ProTracker song is constructed from some number 

7.6  Examining a sample in ProTracker
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of patterns, fragments that can be combined in any order and repeated as 
often as needed. This attribute is one among others that make it so ideal for 
constructing pop songs and especially dance songs because these forms are 
commonly built on repetition. In the case of a pop song, a number of sec-
tions are arranged into a verse–chorus–bridge structure, with the former 
two likely repeated several times, and the structure of a typical rave or 
techno number is even simpler, made of constant repetition and juxtaposi-
tion of a few short sequences, perhaps with minor variations.

We can now build the first of our patterns using ProTracker’s pattern 
editor (figure 7.7). Each pattern consists of a series of discrete sound com-
mands applying to each of the Amiga’s four channels. Channels 1 and 4 
play from the left speaker, channels 2 and 3 from the right. At the start of 
our pattern, we have requested that our shortwave sample begin to play on 
channel 1; this command is represented by the alphanumeric sequence 
(B-2010000) shown in that position in figure 7.7. One of the first chal-
lenges for the would-be ProTracker composer is learning to decode these 
cryptic sequences. In this case, the sequence means that we will play at a 
frequency appropriate for the note B in the second octave (“B-2”) the first 
(and so far only) sample we have included in our song (“01”). The remain-
ing digits (“0000”) can represent the various special effects we might 
apply to the sample. We are not currently making use of any of these 
effects—thus the zeros. Because our shortwave radio is a looping sample, 
it will continue to play again and again for the duration of the pattern 
unless we issue a command to channel 1 to stop it or to begin to play a 
different sample. Patterns can vary in length, but we have chosen to 
remain with the default of 64 command slots. The tempo for our song, 
meanwhile, is set to 125, using the standard dance-tempo measurement 
of beats per minute, with each beat consisting of about four command 
slots; this parameter can also, of course, be varied to suit the composition. 
With our current settings, our shortwave radio sample takes 16 slots to 
play through completely. Thus, it loops four times in the course of this 
pattern, coming only out of the left speaker. Notice that the other three 
channels are filled completely with zeros because they remain unused in 
this pattern.

For our second sample, we load a brief drum sequence that uses just 
7,932 bytes of chip RAM. We copy the pattern we just created into a second 
pattern of the same length, then add the drum sample to channel 2. 
Because this sample is not a looping sample, we must manually trigger it 
to be played again every four slots. The result is a classic dance four-on-
the-floor drumbeat that repeats 16 times over the course of the pattern, 
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or 125 times per minute. While the drum pounds away from the right 
speaker, our shortwave radio continues to cycle from the left.

We build our third and final pattern by first copying the second pat-
tern. We then add our drumbeat to channel 4; now the drums pound out 
of both speakers while the radio drones away from the left speaker. We can 
now combine our three patterns into a composition that begins with the 
shortwave radio noise alone, adds a drumbeat, and then adds additional 
drums. And so we have the bracing beginning of a techno or rave number 
of the kind that was so common in the demoscene. We may wish now to 
introduce a melody played through the third channel, and we will of course 
likely introduce many variations to the patterns already laid down over the 
course of developing this simplistic backing beat into a full-fledged 
composition.

As this example illustrates, a ProTracker user must be as much a pro-
grammer as a musician, for she does not work in a conventionally musical 
way at all but rather produces a song by finely controlling sampled snip-
pets. She has a large toolbox of effects that she can apply to these samples 
on the fly. The most basic of these effects is her ability to vary the playback 
frequency of a sample, which in turns varies the pitch of the sample and 
allows her to construct whole songs from a single sample of a given 

7.7  The heart of ProTracker, the pattern editor
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instrument. Many effects beyond that are also possible, however: she can 
add tone portamentos that slide smoothly from one pitch to another, add 
vibrato and oscillation, change the volume of the sample, even adjust the 
tempo of the composition at any point. ProTracker and many of its siblings 
are easily the most sophisticated musical tools ever made for the Amiga’s 
internal sound system.46

Post-Commodore Europe

The year that marked the end of the line for most North American Amiga 
users and software publishers, 1994, was ironically the year in which the 
Amiga demoscene peaked—at least in many sceners’ opinion—with a 
quantity and sophistication of demos not found in any previous year.47 
Meanwhile, the Amiga itself in 1994 still enjoyed a prominent place in 
European home computing, with relatively healthy sales of low-end 
machines such as the 500 and now the 1200, a large installed user base, 
and, particularly in the realm of games, commercial-software support to 
rival machines running Microsoft OSs or, for that matter, the new genera-
tion of 16-bit game consoles led by the Sega Genesis and Super Nintendo 
Entertainment System. Its success is a tribute not only to the design itself, 
but also to the business savvy of Commodore’s European subsidiaries, in 
particular those serving Great Britain and Germany, which were almost 
always more innovative and competent in selling and supporting Amigas 
than their ostensible master in the United States. Following Commodore’s 
bankruptcy, its British subsidiary even put together a serious proposition 
to acquire its failed parent’s intellectual property and continue to manu-
facture Amigas as an independent entity.48 In the end, though, this scheme 
fell prey to a better bid from German computer manufacturer Escom, 
which finally acquired the rights fully one year after the bankruptcy. 
Escom manufactured and sold new Amiga 1200s and 4000s in Europe for 
a brief period, only to fall victim itself to overexpansion and to declare 
bankruptcy in mid-1996, thus putting a final end to the Amiga’s presence 
in everyday computer shops in Europe. Although various pieces of new 
Amiga hardware, including even some complete systems, have been man-
ufactured at various times by various entities right up to this writing in 
2011, they have been sold as niche products only through specialized, 
generally mail-order shops.

The European Amiga software market inevitably went into decline in 
the face of these realities. That decline was, however, a remarkably slow 
one. Buoyed by a large installed base of machines that still stood up quite 
well even to many newer computers as well as by persistent rumors that 
Amiga production would soon be restarted and the technology improved 
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under this or that licensing scheme, European Amiga users enjoyed a 
fairly steady stream of new games until the new millennium. The last 
glossy newsstand magazine serving the Amiga stronghold in Britain did 
not fold until November 2001, more than five years after any Amiga hard-
ware had last been seen in High Street shops. By contrast, the Amiga’s 
newsstand presence in North America effectively ended with the folding 
of flagship publication AmigaWorld in April 1995.

Although many sceners either retired from the scene (a decision 
likely brought on as much by age and its attendant responsibilities as by 
technological change) or moved to Intel-based hardware, many others 
clung to their Amigas with even more fervor than gamers. In fact, many of 
the best Amiga-based demos postdate the Commodore bankruptcy by 
years. And although their quantity is not what it was in the halcyon days 
of the early to mid-1990s, a steady trickle of new Amiga demos continues 
to appear to this day, many running on elaborately, lovingly expanded 
boutique Amiga systems sporting PowerPC processor cards and new 
graphics cards. The scene itself has shrunk somewhat and changed. Gone 
almost entirely is its old underground and adolescent social character, 
unsurprisingly in light of the fact that it is still inhabited largely by the 
people who were present in the scene’s heyday, now much older and with 
careers and families of their own. This demographic change was under 
way even in 1995, when diskmag R.A.W. reported that the average age of 
sceners was 22 years,49 hardly “old” but likely considerably older than the 
average age just a few years earlier. The demoscene is thus a subculture of 
people who grew up together and remained together while it received only 
modest influxes of new members. It has gradually become identified with 
the retrocomputing culture, and many within it continue to code exclu-
sively for the Amiga or for the even more ancient Commodore 64.

The Scene in Context

Particularly in the 1980s, when the scene was largely about software piracy, 
it was regarded with disdain by the more mainstream elements of Amiga 
culture, especially in North America. This fact is hardly surprising in light 
of the persistent and frequently deadly viruses with which it plagued the 
Amiga for years. In addition, the software piracy that it facilitated was a 
major problem for Amiga commercial-software publishers. If piracy was 
hardly unique to the Amiga, it was perhaps unusually damaging to the 
machine’s always small, fragile toehold in North American mainstream 
computing; certainly a fair number of publishers that abandoned the 
Amiga cited widespread piracy as one of the reasons for doing so. Ironi-
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cally, though, it is thanks to the efforts of the crackers of yore that much 
Amiga software, stored as it was on the notoriously unreliable medium of 
the floppy disk, still exists for the study of digital historians like myself. 
By making it possible to copy software that was designed to be uncopyable, 
the cracking scene preserved, albeit largely inadvertently, countless pre-
cious digital artifacts for posterity. Even in their time sceners doubtlessly 
gave many people a reason to buy Amigas by making freely available the 
most audiovisually impressive library of games of its era, thus helping 
Commodore if not the platform’s software publishers.

And in reality, the physical and moral separation between the outlaws 
of the scene and the publishers was not always so great as either tended to 
imply. The demo coders’ skill sets—ultrafast graphics routines, music 
composition, a general maximizing of hardware capabilities without 
regard for “correct,” university-sanctioned approaches to programming—
were exactly those skills that publishers sought for creating games, the 
Amiga’s bread and butter in Europe. Thus, game publishers and the scene 
had a real, if often strained symbiotic relationship with one another. 
Sceners from a fairly early date circulated through game developers’ 
offices, helping to create the very titles that other sceners promptly 
cracked. Developers in Scandinavia, always a scene hotbed, were particu-
larly willing to employ sceners; the large Norwegian developer Funcom 
not only hired many sceners but went so far as to advertise for their ser-
vices in the demoscene diskmag R.A.W.50 Swedish demogroup The Silents 
inspired many sceners in the early 1990s when they went rejected the idea 
of merely working for developers and instead took control of their destiny 
to design and code under the name Digital Illusions a series of graphically 
spectacular pinball simulations that were very successful and that were 
even bundled with some editions of the Amiga 1200. Digital Illusions (and 
by extension The Silents) survive today as an EA subsidiary responsible 
for such recent games as the Battlefield series of military-themed first-
person shooters. Similarly, the core members of Finnish developer Rem-
edy Entertainment, responsible for the Max Payne series, were once the 
prominent demo group Future Crew. Such examples are only a few among 
many; the list of prominent sceners who worked or work in the videogame 
industry is long indeed.

This blurring of the lines did cause a certain amount of angst and even 
ethical debate within the scene, as when the group Fairlight cracked and 
widely distributed Digital Illusion’s first game, Pinball Dreams. Animal of 
Digital Illusions (née The Silents) stated, “I will never know how much 
more money we would have made if it would have been left uncracked, but 
considering the amount of people that played this game on copy parties, I 
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guess I could have been retired by now!”51 (Other developers whose works 
the scene had been copying and distributing for years might of course be 
forgiven for experiencing a certain schadenfreude at Digital Illusions’ 
sudden concern for intellectual-property rights.) By 1994, the diskmag 
R.O.M. was even complaining that the games industry was “destroying” the 
scene by snapping up its most talented members and keeping them too 
busy to work on new demos.52

Demoscene historian and blogger Anders Carlsson makes the heady 
but sustainable claim that the demoscene represents the “first digital 
global subculture,” which makes it of immense historical importance.53 
Beyond this, though, the scene tends to resist pithy summary and catego-
rization. Blogger Ville-Matias Heikkilä has cogently outlined three boxes 
within which the relatively few academics and digital historians who have 
seriously examined the scene have tried to place it, each of which has some 
merits and some failings.54

“The ‘digital underground box,’ along with the mainstream hacker culture, 
the open-source movement, political pirates, and many Internet-based com-
munities.” It is tempting indeed to make the demoscene a precursor of the 
open-source movement that changed personal computing in the late 
1990s. However, the scene’s social mores were quite different from those 
of traditional hacker culture, sufficiently so to make the drawing of overly 
direct connections between the two milieus feel strained at best. As Eric 
S. Raymond writes in his analysis of open-source culture, “Homesteading 
the Noosphere,” hackers have an aversion to the sort of blatant self-pro-
motion that was the norm in the scene.55 Nor was there any real overlap, 
the occasional individual aside, between the people of the scene and the 
hacker communities that developed complicated systems such as Linux. 
Indeed, I feel that the aboveground Amiga public-domain software com-
munity, which created and shared—often with source code—countless 
useful tools, has more of the personality of the modern open-source com-
munity than does the scene. The links between those first two communi-
ties, in the form of people who came to the Amiga from institutional 
computing’s hacker culture and went from the Amiga to Linux or other 
open-source OSs, are certainly much more tangible.

Although sceners were by no means unwilling to share their tools with 
others, as the history of ProTracker and many other applications attests, 
there was, especially in the early years when the scene was mostly about 
software piracy, a definite social hierarchy in place. One’s access to soft-
ware was determined by how “elite” or “lame” one was in the view of 
potential trading partners. We can safely attribute some of this attitude to 
typical teenage social politics. It is also worth noting, though, that the 



crackers had limited financial means in a world of scarce computing 
resources: unreliable physical disks shuffled around the world via post, 
expensive and slow telecommunications, and single-line BBSs. And theirs 
was of course an illegal culture, one that could not afford to be too trusting 
of all and sundry.56 In this light, the politics of exclusion and secrecy is 
somewhat more justifiable. Raymond claims in “Homesteading the Noo-
sphere” that crackers “hoard secrets rather than sharing them; one is 
much more likely to find cracker groups distributing sourceless executa-
bles that crack software than tips that give away how they did it.”57 This 
statement is not only unfair but factually incorrect; cracking manuals, 
distributed as text files sometimes running into the hundreds of kilobytes, 
abounded in the scene. And although most demo makers were not eager 
to expose their work to modification by others by distributing source code, 
for certain other types of projects sceners did prove quite willing to share 
their source, as is shown once again by the example of ProTracker.

The scene even in later years was hardly an ethically pure culture. 
Leaving aside the storm of viruses it unleashed and the frustration and 
data loss they caused to countless Amiga users, it was after all built on the 
theft of many hardworking developers’ intellectual property. Yet its ethics 
were more complex than the pure hoarder’s mentality that Raymond 
wishes to assign to it. Bruce Sterling’s description of the attitudes of mem-
bers of the “digital underground” of North America rings true of their 
European counterpart as well: “[They] perceive themselves as the elite 
pioneers of a new electronic world. Attempts to make them obey the dem-
ocratically established laws of contemporary American society are seen as 
repression and persecution. After all, they argue, if Alexander Graham 
Bell had gone along with the rules of the Western Union telegraph com-
pany, there would have been no telephones. If Jobs and Wozniak had 
believed that IBM was the be-all and end-all, there would have been no 
personal computers. If Benjamin Franklin and Thomas Jefferson had tried 
to ‘work within the system’ there would have been no United States.”58 
Some of these attitudes are not foreign to aboveground hacker culture, but 
the scene was more inclined simply to ignore legal niceties than to attempt 
to change them or to construct a better alternative system (as the open-
source movement has done).

“The ‘artistic movements box,’ in the same corner as experimental film and 
video art.” If the demoscene represents an artistic movement, it was 
unusual in its lack of self-awareness. Few sceners described their work in 
terms typical of artists, and most cracktros and demos, with their monoto-
nous parade of technical tricks and their concern with of-the-moment 
community politics, are of more historical than aesthetic interest today. 
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Even well into the 1990s much about the demoscene remained crude and 
adolescent, and many or most creators were clearly more interested in 
showing off their coding skills and impressing their peers than in affect-
ing hearts and minds. I believe, though, that State of the Art and a number 
of other demos transcend the scene’s insularity to attain the status of art. 
In fact, much of the new-media art that has found increasing acceptance 
within traditional art gallery culture in recent years shows a marked dem-
oscene aesthetic. I was particularly struck by this similarity when in early 
2010 I visited Decode: Digital Design Sensations, an exhibition held at 
London’s Victoria and Albert Museum that featured a number of real-time 
computational displays that would not have looked out of place at a 
demoparty. The sceners, scruffy adolescents as they were, were in front of 
trends just now coming to the fore in mainstream art. If they were perhaps 
unusual in their lack of self-awareness and introspection in contextual-
izing their work, this quality can make a nice contrast to a fine-arts world 
that has grown so fond of conceptual art that many artists seem to spend 
as much time explaining and justifying their work as they do in creating 
it. That said, the debates that swirled within the demoscene community 
over the increasing use of pre-rendered imagery in the 1990s and the 
legitimacy of non-real-time video productions such as those by The 
Silents reflect serious thought about what the demo was or should be as an 
art form, about where the boundaries of the form should lie, and about 
what restrictions should apply to creators.

The scene does not exist in isolation from other creative movements 
of recent times. The MOD format is particularly distinguished by its open-
ness; anyone can load an extant MOD song into ProTracker and tinker with 
it to her heart’s content, swapping out instruments, rewriting sections, or 
simply taking the samples for use in her own compositions. The sampling, 
remixing, and recontextualization that so distinguishes modern pop 
music is very much present here. And like most modern creative cultures, 
but unlike hacker culture, the demoscene promoted and celebrated the 
idea of the Creator who signs his name to his work, even if said Creator 
works with materials (sound samples, texts, images, and so on) that origi-
nated with others.

“The ‘youth subcultures box,’ just between the punks, the graffiti painters, 
and the LAN [local area network] gamers.” Certainly there are strong simi-
larities between the demoscene and the punk-rock ethos of do-it-yourself 
music making and promotion, and in the 1990s Europe’s rave culture in 
particular permeated the scene. The demoscene was thus one more area 
where the Amiga integrated computing with the real world. To dismiss the 
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scene as only a form of youthful rebellion, however, is to trivialize its very 
real cultural significance and aesthetic achievements.

In the end, the scene is a unique entity, fully understandable only on 
its own terms. In the context of the Amiga’s history, it stands as perhaps 
the purest of all artistic communities to make use of this artist’s computer. 
Demos were created not for any professional goals, but for personal sat-
isfaction and that often un-admitted goal of most artists, the admiration 
of one’s peers, the recognition that one has done good work. Sceners often 
expressed disdain for people who used their computers merely as passive 
devices for the consumption of games and other entertainment, who never 
learned to make the machine sing for themselves. In so taking to heart the 
spirit of cheerful empowerment that seemed woven into the Amiga’s very 
design, the scene forms an important part of the Amiga’s cultural legacy. 
The very first Amiga program to attract significant attention was after all 
itself a demo. State of the Art, like Megademo, even harkens back to that 
granddaddy of all Amiga demos: although infinitely more complex and 
impressive, its dancing silhouette is often projected over a static back-
ground using the same sort of bitplane manipulations that created the 
bouncing Boing ball and its realistic shadow.



 

If there was an obvious application for the Amiga upon its release, it was 
playing games; the machine, after all, had been initially conceived as a game 
console rather than a full-fledged PC. The Amiga’s combination of available 
on-screen colors and resolution, its unprecedented blitter-driven anima-
tion capabilities, its digital stereo-sound capabilities, and its custom-chip-
abetted processing power put it on another plane entirely from the other 
computers and game consoles of 1985. An EA press release conveys the 
excitement felt by some in the games industry, who saw in the Amiga a 
machine with the potential to change the nature of interactive entertain-
ment, making of it a cultural force to supplant or at least rival television:

Today, from your living room you can watch [through television] a 
championship basketball game, see Christopher Columbus sail to the 
New World, or watch a futuristic spaceship battle.

The computer promises to let you do so much more. Because it is 
interactive you get to participate. For example, you can play in that 
basketball game instead of just watching. You can actually be Christo-
pher Columbus and feel firsthand what he felt when he sighted the 
New World. And you can step inside the cockpit of your own 
spaceship.

But so far, the computer’s promise has been hard to see. Software 
has been severely limited by the abstract, blocky shapes and rinky-
dink sound reproduction of most home computers. Only a handful of 
pioneers have been able to appreciate the possibilities. But then, 
popular opinion once held that television was only useful for civil 
defense communications.1

Cinemaware and Psygnosis 8
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In heralding the arrival of the first multimedia computer, EA and oth-
ers relished the opportunity to unfold interactive experiences that could 
be immersive, aesthetically pleasing, and, most of all, real in a way that 
early videogames such as Space Invaders and Pac-Man could not. Here was 
yet another way for the Amiga to be a computer of the world.

Like so many aspects of the Amiga’s history, however, its trajectory as 
a game machine did not quite go as its early supporters expected. Games 
were given nary a mention at the Lincoln Center launch party and appeared, 
if at all, only as afterthoughts at the bottom of early advertisements touting 
the Amiga’s potential as a tool for business, creativity, and education. This 
reluctance to capitalize on an obvious strength is perhaps somewhat 
emblematic of Commodore’s consistently ineffectual marketing depart-
ment as a whole, which, in the words of a common Amiga community joke, 
used “Ready! Fire! Aim!” as its motto,2 but it is also reflective of the reali-
ties of the computing market and culture of the 1980s. IBM PCs and PC 
clones, the standard business computers of this era, made a virtue of their 
lack of audiovisual capabilities and general aesthetic ugliness, promoting 
these failings as signs of seriousness of purpose. Even Apple clearly was 
not concerned about games when a year before the Amiga came out it 
released its Macintosh with no color-display option and virtually nonex-
istent animation potential. These machines, so primitive in some ways 
compared even to the inexpensive Commodore 64, nevertheless cost sev-
eral times the 64—as did the Amiga 1000, which had an initial list price of 
$1,295, not including a monitor, second floppy-disk drive, or memory 
expansion, all of which were essential to a truly usable system. Granted, 
the Amiga was a bargain in comparison to the much less technically 
impressive Macintosh, but advertising a computer with such a relatively 
rarefied price tag for its ability to entertain risked, at least in the conven-
tional wisdom, rejection from the professionals looking for a “serious” 
machine. Meanwhile, the Amiga was judged to be far too expensive to 
attract buyers looking just to play games.3

In the end, Commodore’s efforts to avoid the game-machine stigma 
were of no avail, for this trap was exactly the one that the Amiga 1000 fell 
into, tarred anyway by Commodore’s reputation as a “toy” computer man-
ufacturer, its historically poor record of support, and its poor dealer net-
work. Most established business-software publishers shied away from the 
platform for these reasons, and game publishers were discouraged by its 
disappointing early sales. A fair number of games did reach the shelves in 
the Amiga’s first year, but most—including those from EA, which, like all 
businesses, had to temper artistic idealism with sound business deci-
sions—were ports from other popular entertainment platforms of the era, 
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and even those that were not ports were often modest in their multimedia 
ambitions. It was not until the Amiga was fully one year old that a game 
appeared that truly showed the machine’s potential and, by extension, the 
future aesthetic possibilities for the videogame as an artistic medium. 
That game was Defender of the Crown, and the company that developed it 
was Cinemaware.

Defender of the Crown 

We might usefully divide a game into two components: its mechanics and 
its fictional context.

A game’s mechanics are the network of rules and possibilities that 
define its play, a network that the player explores and often attempts to 
exploit in order to “win,” to bring the system to some desirable end state. 
Every game, whether played on a computer, a tabletop, or a sports field, 
has mechanics. These mechanics may be extremely simple, as in tic-tac-
toe, or enormously complex, as in a combat flight simulation that models 
all of the vagaries of air pressure, weather, and flight dynamics for dozens 
of aircraft. Whether simple or complex, however, they must be present, 
for this is what separates a structured, constrained game from free-form 
play. The quality of these mechanics, meaning both the scope of interest-
ing interactions they allow and the elegance of their implementation, does 
much to determine whether a given game is a good one. Tic-tac-toe, for 
instance, is generally not considered a very good game because its rules, 
although certainly simple enough, allow no scope for interesting interac-
tions; when played with even a modicum of intelligence, it will always end 
in a draw. Our flight simulation, meanwhile, may play elegantly on a com-
puter, but if we attempted to reimplement it as a board game, it would be 
a nightmare, requiring literally hours of manual calculation for every sec-
ond of action.

The fictional context of a game provides a setting and a motivation for 
its abstract mechanics. Some games do not have a context, existing purely 
as abstract systems. Most sports fall into this category, as do poker and 
many other card and board games. Even some computer games deal purely 
in abstracts, such as Tetris, called by Markku Eskelinen “probably the most 
successful abstract computer game ever.”4 Nevertheless, many tabletop 
games and most computer games do provide a context for their mechan-
ics, giving the player a reason to play them beyond the pleasures of explor-
ing their mechanics alone. This reason generally comes in the form of a 
narrative to enact or at least a fictional game world to explore. Context is 
sometimes done clumsily, apparently more as a belated addition to an 
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existing abstract design than as an integral part of the design process; 
“Eurogames,” a popular modern genre of strategic board games originat-
ing, as their name implies, mostly from Europe in general and Germany 
in particular, are often criticized for their “painted-on” themes, even as 
they include in their ranks such popular, mechanically elegant titles as The 
Settlers of Catan and Carcassonne. In other cases, though, context is much 
more integral to a game’s design and to a player’s experience of it, as, for 
instance, in a tabletop war game whose mechanics are designed to simu-
late as accurately as possible the circumstances of the historical battle that 
provides its context. Computer games are particularly unique in the 
emphasis they place on context, usually advertising themselves to poten-
tial players not on the basis of their mechanics, but as fictional experi-
ences. This was as true in 1986 as it is today. Glancing through EA’s 
advertisements of the period, we see Dr. J and Larry Bird Go One-on-One, 
which allows the player to “shoot as accurately as Larry Bird, dunk like the 
Doctor, while you’re cheered on by the victory chants of the Boston Garden 
crowd”; Skyfox, which lets the player “get in the spaceship and fly”; and 
Return to Atlantis, which lets her “play Indiana Cousteau, oceanic hero.” 
Although the PCs of the early 1980s were up to modeling even quite com-
plex mechanics, their tiny color palettes, limited screen resolutions, and 
primitive sound capabilities sharply restricted the contextual possibilities 
for computer games. Aside from interactive fictions such as those from 
Infocom, which presented their context using rich textual descriptions 
rather than graphics and sounds, computer game designers were forced 
to ask their players to take a great deal on faith, to fill in the audiovisual 
gaps and substitute blocky on-screen abstracts with images from the 
imagination, and often to find most of the context for their play in elabo-
rate manuals packaged with the games that contained all the story that 
developers were not able to squeeze into the computer’s memory. These 
demands meant that computer games, at least beyond the immediately 
accessible arcade favorites, necessarily appealed only to the pioneering 
and the patient who were willing to find—or imagine—the mechanical and 
contextual beauty underneath so much surface ugliness. With the arrival 
of the Amiga and Defender of the Crown, all of that changed, as the experi-
ential possibilities for computer games were suddenly blown wide open.

In terms of mechanics, Defender of the Crown is hardly a masterpiece 
of design. It is exactly what Cinemaware founder Bob Jacob originally con-
ceived it as: a simplified version of the classic strategy board game Risk in 
which the player’s cerebral strategizing is occasionally interrupted by a 
handful of action-oriented minigames that occur sometimes by player 
choice and sometimes by chance.5 Neither side of its gameplay is terribly 
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compelling in itself, with the strategic game marred by a dearth of real 
options, an opponent artificial intelligence that seems more random than 
considered, and minigames that are extremely simple and already unchal-
lenging after just the first few attempts. Indeed, Defender of the Crown is an 
almost absurdly easy game, to the extent that once the player is conversant 
with the basic rules of play, she will be hard pressed to lose. The computer 
game in general was still in its relative youth in 1986, but suffice to say 
that designers had already managed to produce many much more compel-
ling mechanical designs than this. To further exasperate the problem, 
Defender contains a serious bug that makes it even easier: if the player goes 
off in search of conquest and leaves her home castle entirely undefended, 
she is magically gifted with a retinue of soldiers equal in number to her 
current army abroad. If they succeed in defending the castle, these sol-
diers remain available for the player’s further use, effectively rewarding 
her irresponsibility with an army twice its original size.

What rescues Defender of the Crown and makes of it an at least briefly 
compelling experience even today is the context that overlays its muddled 
mechanics. The game’s setting is the romanticized English past of the 
Robin Hood legend, and from the moment the game boots, when a medi-
eval harpsichord tune begins to play over the opening credits, it never lets 
the player forget that. Every lushly hand-drawn screen and burst of music 
are evocative of its milieu (figure 8.1). The action minigames, in which the 
player competes in a horse-borne jousting tournament, lobs boulders at 
castle walls using a siege catapult, and fences with enemies in a daring 
night raid on a castle, may be mechanically trivial on their own merits, but 
they so perfectly reinforce the context that they are somehow entertaining 
in spite of themselves. The simplistic strategic game similarly gains 
immeasurable interest from the atmosphere with which the visuals and 
audio imbue it. Defender of the Crown is not so much a game in the sense of 
a ludic struggle as it is a rich multimedia experience, a quality that many of 
its mechanical failings ironically serve to reinforce.

Defender’s most famous sequence begins when the player is informed 
that “the Normans have kidnapped a Saxon lady!” If he chooses to attempt 
a rescue, there follows an instance of the fencing minigame. Once he suc-
cessfully completes this minigame, the rescue has been effected. After-
ward, “she accompanies you to your castle and during the weeks that 
follow, gratitude turns to love. Then, late one night . . . ”

There follows a mildly risqué and beautifully drawn seduction scene 
in front of a flickering fire, the maiden dressed only in a see-through 
nightgown (figure 8.2). Although earlier computer games had certainly 
traded in sexuality, Defender of the Crown marks the first attempt to present 
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a nuanced, romantic (as opposed to cartoonishly pornographic) vision of 
sexuality. Tellingly, this sequence is absolutely superfluous to completing 
the game and becoming king of England; it exists only to support the 
game’s context, to add to the fictional experience.

That said, Defender of the Crown is in no way a narrative masterpiece. 
Its obvious inspiration is Sir Walter Scott’s famous medieval romance 
Ivanhoe. It begins several years after the conclusion of that novel, as Rich-
ard I’s death has thrown his English kingdom once more into turmoil, with 
open warfare about to begin again among the various Anglo and Saxon 
aspirants to the throne. Defender’s sympathies, like Scott’s, clearly rest 
with the Saxons rather than the Normans; although the player can choose 
to control the fortunes of one of four lords, all these lords are Saxon. 
Included in the game are a number of characters from Scott’s novel: Cedric 
of Rotherwood, Brian de Bois-Guilbert, Reginald Front-de-Boeuf, 
Rebecca of York, and of course Wilfred of Ivanhoe himself. Even Robin of 
Locksley can be visited in his haunt of Sherwood Forest. Even so, Defender 
is more a pastiche of Ivanhoe than a coherent sequel, at least if we are to 

8.1  A Defender of the Crown gallery. At top left, the movie-style opening credits; at top 
right, the Risk-like strategic layer; at bottom left, one of the many hand-painted pictures 
created in Deluxe Paint for the game; at bottom right, the jousting minigame in progress.
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assume that the Templar knight Front-de-Boeuf has not arisen from his 
death at the end of the novel to assume the role of a Norman feudal lord 
and that his erstwhile lover, the Jewess Rowena, has not returned from her 
exile to become a noble princess in need of rescuing. And the game con-
cerns itself with historical fact even less than did Scott; King John, the 
historical successor to Richard I, is nowhere to be found in this historical 
romance that ideally ends with the very nonhistorical outcome of a Saxon 
restored to the throne. Defender rather borrows from Ivanhoe only the 
broader strokes: the contrast between the stolid Germanic Saxons and the 
effete French Normans; the pomp and pageantry of the tournaments at 
Ashby; damsels in distress; and assaults on castles. This is Ivanhoe filtered 
through the game’s more direct inspiration of many decades of Hollywood 
swashbucklers that both expanded on and distorted Scott’s original tale.

The Cinemaware approach to computer gaming, of which Defender of 
the Crown is the first and most famous example, was conceived by the 
company’s founder, Bob Jacob. Jacob was already a veteran of the games 
industry, having worked on a number of Commodore 64 titles, when he 

8.2  Rescuing and seducing a Saxon lady in Defender of the Crown
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was given one of the pre-release Amigas that Commodore offered to 
selected industry insiders.6 Realizing that (in his own words) “this is going 
to revolutionize everything,” Jacob promptly started pulling together 
resources to found Cinemaware.7 Jacob saw in the Amiga an opportunity 
to create games with what he called a “mass market sensibility,” games that 
could appeal to everyday people as casual entertainment. This meant not 
only that the games would take advantage of the Amiga’s multimedia capa-
bilities to be aesthetically pleasing, but also that they should be easy to pick 
up and play: “no typing, get you right into the game, no manual.”8 The 
Amiga’s capabilities were as key to the latter design goal as to the former: 
its mouse made simple “point and click” interfaces possible, and its rela-
tively spacious RAM allowed Cinemaware to move all of the fictional con-
text for their works out of the manuals and into the games themselves. The 
action sequences likewise would “require some timing and quick think-
ing” but would not be difficult to the point of frustration.9 Cinemaware 
was, in Jacob’s words, “my emotional reaction to the computer games of 
the era.”10 Looking for a structure around which to wrap this gentler 
approach to gaming, Jacob hit upon the movie metaphor: “I also decided 
that movies would be a great and creative motif for doing games—people 
like movies, right? It gave us virtually an inexhaustible supply of ideas. I 
was smart enough and cynical enough to realize that all we had to do was 
reach the level of copycat, and we’d be considered a breakthrough.”11 The 
metaphor would extend beyond the style of presentation used by the 
games; it would also be possible to play the games through in the time one 
might devote to a movie rather than asking players for the large chunk of 
time normal to strategy and adventure games of the day. The short dura-
tion of a single play-through would do a great service for Cinemaware 
games in letting the company give players a steady stream of fresh activi-
ties and multimedia content in that shorter period. Due to the limited 
disk-storage capacity of even an advanced platform of the era such as the 
Amiga, most games from other developers were very repetitive by com-
parison with Cinemaware’s titles.

Jacob was fortunate enough to recruit a stellar team to create Defender 
of the Crown, including game designers John Cutter and Kellyn Beeck, 
composer Jim Cuomo, and Intuition (and Boing demo) mastermind R. J. 
Mical. The man who left the most memorable mark on the game, however, 
was art director Jim Sachs, who supervised a team of artists who created 
the many gorgeous pictures that are so essential to the experience. For 
these pictures, Cinemaware could thank not only Sachs but also Dan Silva, 
creator of Deluxe Paint, the program on which this project, like so many 
others on the Amiga, absolutely depended.12
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Visually impressive as the final product is, it was hurried to market to 
be available for the Christmas buying rush, and the rush shows in the 
sometimes unsatisfying gameplay and bugs such as the magically doubling 
army described earlier. Sachs, who claimed to have worked “seven months 
at twenty hours a day average” under Jacob’s constant pressure and to have 
had a nervous breakdown as a result,13 was in the end left with many extra-
neous graphical sequences that there was not time to shoehorn into the 
final game.14 Both Sachs and Mical were left, rightly or wrongly, with a very 
sour impression of Cinemaware. Neither ever worked for the company 
again, and Mical went so far as to request that his name be scrubbed from 
the in-game credits.15 When Defender of the Crown was ported to other 
platforms, though, many of the team’s discarded original plans were 
implemented, ironically resulting in ports that looked uglier but played 
better than the Amiga original.

Whatever its shortcomings, Defender on the Amiga was a stunning 
success, selling 20,000 copies in its first six weeks to a total installed user 
base of just 150,000 machines.16 At a time when software that truly took 
advantage of the Amiga was thin on the ground indeed, Defender was, along 
with the Juggler demo, perhaps the best demonstration available of the 
machine’s capabilities, and many copies were likely sold on that basis 
more so than from the consumer’s desire to play the game. Gamer or not, 
every Amiga user simply had to have Defender in her or his library, and the 
game’s high sales combined with rampant piracy ensured that most did. 
Defender was the first hit game for the Amiga and ushered in an era lasting 
almost four years in North America and considerably longer in Europe in 
which the Amiga was simply the premiere gaming platform. Although the 
game’s gorgeously rendered atmosphere makes it worthy of an hour’s 
attention even today, it is thus most significant as a signpost to the rich 
multimedia future of computer gaming. In fact, Defender of the Crown is an 
early example of a change that the Amiga’s capabilities wrought in the very 
nature of the data that make up a computer game.

Just as we can at an abstract level divide a game into its mechanics and 
its fictional context, we can also divide the actual 0s and 1s that make up 
a computer game as it lives on disk or in a computer’s memory into two 
categories: (1) actual program code, or processes, that are executed by the 
hosting computer and (2) the data that those processes operate upon.17 
(There is an obvious correspondence here with the programming con-
cepts of code space and data space introduced in chapter 6.) The data can 
be further divided. First, there are the tables of data that describe and 
define a game’s world; in Defender, for example, this data category would 
include the capabilities and playing styles of the other computer-managed 
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lords with whom the player competes. And, second, there are what has 
come to be termed “multimedia assets” within the game industry: title 
screens, cut scenes, music scores, and digitized sound effects and speech. 
Prior to the Amiga’s arrival, processes and the first category of data made 
up the majority of virtually all games.

An excellent case study here is Elite, a classic 1984 game of space trad-
ing and combat by David Braben and Ian Bell. Its universe consists of eight 
galaxies, each of which houses 256 star systems. Each star system has its 
own name, economy, even system of government. Factoring in the immen-
sity of this universe as well as the variety of possible spaceship upgrades 
and enemies to fight, Elite, if produced by a modern games company, 
would likely contain gigabytes of multimedia assets. Bell and Braben’s 
version, however, contains essentially no assets, nor does it even contain 
much in the way of data tables defining the game’s world. It is virtually all 
process, with its universe—including all the details of economics, culture, 
and even names—procedurally generated during play from a series of 
mathematical Fibonacci sequences and its visuals drawn as wire frames by 
3D visualization routines that procedurally create the visuals as the player 
sees them.18 The entirety of the original Elite game fits into the 32 KB of 
RAM of the BBC Micro for which it was developed. Defender of the Crown, 
by contrast, filled two of the Amiga’s 880 KB floppy disks when released 
barely two years later. It is unlikely that Defender’s process component is 
substantially larger than Elite’s; Defender is in many ways a vastly less com-
plex and ambitious game. The difference, of course, lies in the multimedia 
assets that enable Defender’s fictional component to be so rich in compari-
son to the mathematically generated universe of Elite and that define the 
experience of the game for its players.

Games after Defender of the Crown grew dramatically in size from year 
to year, filling CDs, multiple CDs, and eventually DVDs. Today, they some-
times consist of tens of gigabytes of data, easily 99 percent of which con-
sist of multimedia assets. This trend has paralleled and facilitated another 
trend, in which a game’s fictional context has become increasingly impor-
tant to the player’s experience and even to the game’s reception within 
gaming culture. Bioshock, for instance, perhaps the most critically 
acclaimed and influential title of 2007, owes its status to the gloriously 
devastated environments the player explores and the implicit critique it 
offers of Ayn Rand’s philosophy of objectivism rather than to its standard 
first-person-shooter mechanics of play. A certain strand of gamer culture 
criticizes this trend, not entirely without justification, as a dumbing down 
of what is perceived as the purer “gamer’s games” of old. Nevertheless, as 
the best Cinemaware works and, indeed, Bioshock show, the emphasis on 
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context also raises the potential for a dramatic and cultural richness that 
cannot be found in Elite’s Fibonacci sequences.

Later Cinemaware Games

Having established Cinemaware so dramatically with their first title, Jacob 
and his growing company set about building on the success of Defender of 
the Crown with a series of similar “interactive movies.” Their next game, 
S.D.I., was a near-future science-fiction effort, with the player using a 
working version of Ronald Reagan’s Star Wars missile defense plan to 
protect the West from attack by rogue elements in the Soviet military. After 
that came King of Chicago, a classic gangster movie homage, with the player 
trying first to assume control of his Chicago gang by bumping off the 
current leader and then trying to take over of the entire city. Sinbad and 
the Throne of the Falcon, based on the Arabian Nights legends, is the most 
lengthy and ambitious of these early efforts and also the one that plays 
most like a traditional adventure game of the era, with the player guiding 
Sinbad about a large map and through a variety of adventures while also 
managing a war at the strategic level. All of these games follow the Defender 
of the Crown template in mixing light strategy with simple action sequences, 
and all feature the trademark Cinemaware dollop of romantic sex appeal. 
All are audiovisually rich and relatively simple to play, but none have quite 
the charm of their antecedent; although their graphics are impressive 
enough, they are not quite so striking or evocative as Sachs’s Defender 
creations. Perhaps stung by criticisms of Defender’s easiness, Cinemaware 
opted to increase the difficulty of these titles markedly, thus at least par-
tially abandoning Jacob’s original gaming vision. All can be very frustrat-
ing to play seriously, and the player can be exasperated by Cinemaware’s 
refusal to add a save game feature to let her preserve her precious prog-
ress. Sinbad is a particular offender here; not only is the game lengthy 
enough to be difficult to finish in one session for the adults with limited 
free time who were Cinemaware’s alleged target customers, but it con-
cludes with an action sequence that is all but impossible and that costs the 
player all of her hard-won progress should she fail at it. Sinbad, in other 
words, frustrates its player in exactly the way that Jacob claimed to want to 
avoid in Cinemaware games.

Cinemaware’s interactive movies from 1988 on are uniformly better 
designed and, although still not without challenge, much more pleasing to 
play while hewing to the same basic template. The Three Stooges, Cine-
maware’s only licensed title, is a genuinely funny comedy caper that makes 
good use of sound samples from the original films. It opens with one of 
Cinemaware’s best sequences: the game boots to the familiar title screen 
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and music from Defender of the Crown, which, just as the player is wonder-
ing if she got the wrong disks, is interrupted by Larry, Moe, and Curly 
marching on screen and declaring, “This looks like a kid’s game!” The 
music for this brief faux-Defender actually sounds much better than the 
original, a telling demonstration of Cinemaware’s increasing technical 
skill with the Amiga. Other games from this later period include Rocket 
Ranger, an old-time movie serial homage that takes place in an alternate 
World War II where rocket flight is a reality and Nazi Germany has a base 
on the moon; Lords of the Rising Sun, an unusually serious and strategic 
effort set in feudal Japan; and It Came from the Desert, a B-movie science-
fiction send-up in which the player must protect her town from an attack 
by giant radioactive ants.

The year 1988 also brought the first of a new series of games from 
Cinemaware whose influence would, like so many other Amiga creations, 
far exceed their sales. TV Sports: Football was the first football simulation 
to mimic the sport’s television presentation (figure 8.3). Each match 
opens with a pregame show from a television studio highlighting the 
teams’ respective strengths and weaknesses before the action shifts to the 
field, where significant plays are succeeded by sound clips of various com-
mentator clichés. At half-time, an on-field commentator (“John Badden”) 
sums up the action thus far, and during games there are occasional cut-
scene close-ups of the players, the coaches, and of course the inevitable 
buxom cheerleaders. At times, the game, with its caricature of John Mad-
den’s gung-ho persona and the advertisements of ridiculous fictional 
products it occasionally flashes, almost seems a satire of sports broadcast-
ing; certainly the impression it makes, probably due as much to the tech-
nical limitations of the Amiga platform as to the game designers’ intent, 
is much more cartoonlike than the earnest approach EA would later take 
with its hugely successful Madden series of football games. Nevertheless, 
TV Sports: Football plays quite well even today, offering a strategic depth 
that its cartoon surface perhaps belies as well as foreshadowing the 
approach EA would take to sports gaming beginning in earnest in the mid-
1990s. TV Sports: Football was followed by three more sports titles that 
brought the same approach to their sports—TV Sports: Baseball, TV Sports: 
Basketball, and TV Sports: Boxing.

Cinemaware’s richest and deepest game was the last of its interactive 
movies. Wings, released in 1990, grafts Cinemaware’s story-heavy 
approach onto a World War I flight simulator, placing the player in the role 
of a young British pilot just out of flight school and newly assigned to the 
western front in March 1916, a time when the air war was just beginning 
in earnest following the invention of synchronizers that allowed pilots to 
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fire on one another without blowing off their airplanes’ propellers. It then 
follows him through the remaining 30 months of the war and through 
some 250 missions that can take many hours to complete. As the months 
go by, airplanes, technologies, tactics, and of course aces come and go, 
giving the player an essentially accurate if somewhat romanticized educa-
tion on World War I in the air. As one might expect in a Cinemaware game, 
Wings is more interested in providing an entertaining than a scrupulously 
accurate experience of flight; Jacob said that it was created as a sort of 
reaction to Falcon, the premiere flight simulator of the time, which shipped 
with a 365-page manual.19 What makes Wings unique even among other 
simulators that have offered similarly lengthy campaigns is the attempt it 
makes not just to simulate a conflict or even a pilot’s career, but to tell the 
story of what the war was really like for a single young pilot.

Although Wings never explicitly acknowledges this, one obvious inspi-
ration for it is the 1927 silent-film classic that bears the same name. Wings 

8.3  Cinemaware’s TV Sports: Football. At top left, the pregame show; at top right, the 
player completes a successful field goal; at bottom left, the kicker waves to the “camera” 
to celebrate his achievement; at bottom right, “Don Badden” delivers a half-time  
report.
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the game even pays homage to Wings the film in telling some of its story 
through stylized silent-film intertitles. The pilot’s story is, however, told 
mostly through a long series of diary entries that are interspersed with the 
actual missions, describing conditions and events around the squadron’s 
base, the protagonist’s relations with his mates, and, in sometimes har-
rowing detail, the crushing burden of fear and stress at a time when the 
average pilot’s life expectancy was often numbered in days from his arrival 
on the front. The inspiration for this diary was that of the real-life Edward 
“Mick” Mannock, the greatest British ace of the war, who recorded the 
exhilaration and terror of a World War I fighter pilot, along with his guilt 
at the killing he did, in great detail before his own death in combat in July 
1918. The game manual’s introduction states: “There was much more to 
being a pilot in the Great War than surmounting the moments of battle. 
There were friendships, personal struggles, bouts with loneliness and 
longing for home. There were bars, brothels, and brawls. And most of all, 
there were the trying hours of being extremely young and having to grow 
up in a complex world that would never be the same.” Wings is like so many 
other games in being about violence and war, but unlike most it attempts 
to bring home to its player the cost of its subject matter. Its designer, John 
Cutter, was responsible for many other Cinemaware games, but this one, 
more than the others, feels like a product of personal passion, a desire to 
say something. The phrase “interactive storytelling” tellingly appears in 
several places in the manual, at a time when that phrase was not so in 
vogue as it is today. If the game’s message is sometimes undermined by 
the limited technical tools at its disposal, Wings still deserves credit as a 
noble, noteworthy effort to give its player a window onto lived historical 
experience.

Wings was unfortunately Cinemaware’s swansong. Damaged by an ill-
advised business relationship with a Japanese partner and ill equipped to 
capitalize on the increasing dominance of the Intel-based PC as a gaming 
platform in North America,20 the company closed its doors in 1991, leaving 
behind a rich if somewhat mixed legacy. On the one hand, Cinemaware’s 
term interactive movie has come to be regarded with a certain level of scorn 
today, courtesy of a generation of games from the 1990s that grew so 
obsessed with their audiovisual spectacle that they neglected to provide 
their players with interesting possibilities for interaction and agency. 
Indeed, even many of Cinemaware’s efforts cannot be entirely exempted 
from the latter charge. On the other hand, though, Cinemaware’s works 
showed the possibilities that the Amiga offered for creating games with a 
level of aesthetic nuance and storytelling depth that was virtually unprec-
edented in earlier years. And Jacob’s original design philosophy, even if 
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sometimes imperfectly maintained, was visionary in imagining a video-
game culture inhabited not just by the stereotypical young males with 
patience and time on their hands, but by a broad swath of the general 
public. Here Jacob anticipated perhaps the most significant postmillen-
nial development in gaming: the rise of the casual game and its community 
of players who are demographically very different from the stereotypical 
hardcore gamers.

In his 2010 book A Casual Revolution, videogame scholar Jesper Juul 
identifies five important qualities of casual games: they have bright, 
accessible, often humorous fictions in place of the dark, violent fictions 
of most hardcore games; they have interfaces that are simple and easy to 
understand without a manual or extensive training; they are easily inter-
ruptible, playable in bursts of just a few minutes on a coffee break or while 
dinner is cooking; they can be challenging but are never cruel in the frus-
tration they provoke; and they are “juicy,” meaning they reward the player 
with constant interesting multimedia feedback.21 Cinemaware’s most 
accessible titles do surprisingly well against these very modern criteria, 
falling down completely only on the third. (The slow disk drives of the late 
1980s and the demands such titles placed on even the multitasking Ami-
ga’s resources meant that games were not terribly easy to get in and out 
of.) Cinemaware’s games remain today unusually playable among those of 
their generation, due both to their simple mouse-driven interfaces and 
an audiovisual presentation that, if hardly as breathtaking as it was in the 
Amiga’s heyday, remains more than acceptable enough.

Psygnosis

Cinemaware’s works are wonderful examples of a certain type of high-
concept gaming that flourished on the Amiga, especially during the late 
1980s and especially from North American developers. They are ambi-
tious works, created by professional teams of established programmers 
and artists, and they are programmed in a methodologically sound way, 
using the easily maintainable C programming language and manipulating 
the Amiga’s sound and video hardware only through proper OS calls. R. J. 
Mical in fact did not so much program the game Defender of the Crown as 
create a game-playing engine that later programmers could employ across 
the entire line of Cinemaware games;22 this approach reflects the typical 
(and understandable) bias of the professional programmer toward creat-
ing robust, reusable systems and tools rather than trying to create every 
project afresh on an ad hoc basis. Such an approach means, however, that 
Cinemaware’s titles, for all their beautiful art and music, rarely used the 
Amiga to maximum efficiency, for the abstractions introduced by high-
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level programming languages, OS calls, and reusable game engines enacted 
an inevitable toll in performance.

The works published by the British company Psygnosis, meanwhile, 
reflect a very different approach to software development, one strongly 
reminiscent of the demoscene ideal of ignoring “proper” programming 
practices in favor of squeezing every last drop of performance out of the 
hardware. Jez San, programmer of the early British Amiga hit Starglider, 
summed up this culture’s attitude toward the programming practices of a 
company such as Cinemaware: “We don’t believe you can write perfor-
mance software in C. You can for little sprite games—like Marble Madness, 
where you just have to move the ball around and scroll the screen—but, for 
3-D with hidden line movement, it just can’t be written in C. Actually, we 
could, but it would run 4 times slower. . . . I don’t really understand why 
people write in C.”23 As this breed of programmers continued to learn 
from one another and from their own experimentation, they pushed the 
Amiga to audiovisual heights that made Cinemaware’s animations and 
action sequences pale in comparison, while also (and perhaps more 
regrettably) largely eschewing Cinemaware’s interest in storytelling, tex-
ture, and nontechnical innovation in favor of simple action-game tem-
plates. Psygnosis’s predilection for stylish, technically impressive visuals 
also shows the influence of the European cracktros and the later demo-
scene. Unsurprisingly, many of the creators behind Psygnosis’s games 
were drawn from that scene, as were some of their tools, most notably the 
indispensible trackers that created the thumping soundtracks that became 
almost as much a Psygnosis trademark as the striking visual effects.

Psygnosis rose from the failure of earlier game publisher Imagine 
Software. Imagine had been founded in 1982 by a team of programmers 
and had several big hits and a brief period of prosperity in the budding 
British videogame market before succumbing just two years later to a gen-
eral lack of business acumen, fractious infighting, and a single hugely 
ambitious project, the “mega-game” Bandersnatch, which was to ship with 
additional hardware to make the popular eight-bit Sinclair ZX Spectrum 
computer on which it ran capable of realizing the designers’ vision.24 In a 
story reminiscent of more recent instances of videogame industry excess 
and mismanagement such as the collapse of John Romero’s Ion Storm and 
its ill-fated Daikatana project, Imagine went bankrupt in 1984 without 
ever completing Bandersnatch. However, Imagine alumni Ian Hethering-
ton and Dave Lawson managed under somewhat questionable circum-
stances to gather what existed of the game together before the company 
was shut down by the British legal system for nonpayment of debts.25 They 
then founded Psygnosis to port the work-in-progress to the new 
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generation of 68000-based machines that were much better suited to host 
it: the Sinclair QL, the Atari ST, and, by early 1986, the Commodore Amiga. 
Renamed Brataccas to dodge the company-destroying reputation that 
dogged its original title as well as perhaps to dodge the financial trustees 
of the failed Imagine, this game was in fact one of the first available for the 
Amiga.

Brataccas does little to showcase the multimedia capabilities that 
made the Amiga so special, but it is nevertheless a fascinating, if flawed, 
effort. It is essentially an animated adventure game in which the player 
moves one Kyne about the titular mining asteroid using an interface remi-
niscent of later platform games such as the Prince of Persia franchise. She 
must collect items, fight, and of course solve puzzles. Within the world of 
the game are many other characters who move about autonomously and 
who can often be conversed with via comiclike bubbles. In the process, the 
player can make friends and enemies of them, resulting in a surprising 
amount of narrative variance from one play to another. It is, all told, a 
remarkably sophisticated simulated universe as well as a genuinely fresh 
approach to the adventure-game genre. As happens so often with pioneer-
ing efforts, though, Brataccas is more satisfying conceptually than it is to 
actively play because it is plagued with an unwieldy control system that 
makes every action the player takes more difficult than it ought to be. 
Psygnosis’s second game, Deep Space, was a space-exploration and combat 
game with a similarly ambitious concept and similar implementation 
problems to accompany it.

Psygnosis’s next game and the soon-to-be standard Psygnosis 
approach to game design that it pioneered were quite different from these 
early efforts. Barbarian, released in mid-1987, was another platform-style 
action-adventure game in which the player must guide a sword-wielding 
barbarian through screen after screen of monsters and traps. It is a very 
simple game in comparison to the superficially similar Brataccas, but also 
a punishingly difficult one. Its real appeal lies in its graphical look, its 
smooth animation, and its fast response to the player’s every action. 
Released almost simultaneously with the Amiga 500, which brought Ami-
gas for the first time within the financial reach of many of the young people 
who were the main videogame demographic of the era, Barbarian became 
Psygnosis’s first big hit, one of the games that every new Amiga 500 owner 
needed to have to show off his new machine, whether he acquired the 
game legitimately or via the piracy channels that also began to heat up in 
the wake of the 500. One is tempted to say that Psygnosis learned a lesson 
from Barbarian’s success, for the next six years brought from the company 
a blizzard of similar games, which expanded on the Barbarian template not 
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so much in their gameplay as in their audiovisual effects. Indeed, within 
a couple of years, Barbarian, once a real stunner, would look downright 
quaint in the light of Psygnosis’s later efforts. For every release such as 
Chrono Quest, an adventure game with a complex time-travel plot and rela-
tively sophisticated gameplay, there were half a dozen stylish action games 
with stylishly generic single-word titles: Ballistix, Obliterator, Menace, 
Agony, Awesome, Terrorpods, Leander. The basics of most of these games 
were designed and programmed by tiny outside groups of young coders 
working on a contract basis, after which Psygnosis’s in-house team of art-
ists used Deluxe Paint and other creativity applications to add graphics 
and animations and give them that distinctive Psygnosis visual flair. As the 
company frankly admitted in a magazine feature, “Graphics are all impor-
tant in Psygnosis games,” the foundation of its reputation and sales.26

Psygnosis’s distinct visual style extended beyond its simulated game 
worlds to its box art. While still at Imagine, Hetherington and Lawson had 
entered discussions with artist Roger Dean, most famous for the striking 
album covers he painted for progressive-rock groups such as Yes, to create 
box art for them, and carried that relationship along with the Bandersnatch 
design to Psygnosis.27 Although the only piece of in-game art Dean was 
responsible for was the memorable Psygnosis “owl” logo, he painted vir-
tually all of the company’s box art throughout its history. Dean’s distinct 
approach featured fantastic creatures and lurid landscapes with a bright, 
airbrushed sheen. He normally received his commissions long before the 
games they were to grace were complete and thus had to paint from imagi-
nation rather than from example.28 The boxes thus sometimes had little 
connection to the games they advertised. At times, this discordance could 
be jarring almost to the point of hilarity, as when one compares the elabo-
rate box art of Brataccas to the rather workmanlike visuals found in the 
actual game (figure 8.4).

Menace 

It seems appropriate to analyze a Psygnosis creation from the standpoint 
of the company’s position as a publisher known primarily for the technical 
excellence of its games rather than to focus on, as with Cinemaware’s 
works, the game’s more abstract qualities. The most important aspects of 
Menace—a nicely polished early Psygnosis effort designed and imple-
mented by just two people, programmer Dave Jones and artist Tony Smith, 
who together called themselves “DMA Design”—demonstrate this techni-
cal emphasis. Menace is an example of a space “shoot ’em up” (or, in demo-
scene language, a “schmup”), a genre that was immensely popular on the 
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Amiga and other game platforms of its era and that was, along with plat-
form-style action adventures such as Barbarian, Psygnosis’s main staple. 
In Menace, the player controls a spaceship that she views from the side as 
she guides it through a series of horizontally scrolling levels, collecting 
power-ups, dodging obstacles, and of course destroying as many of the 
organic and mechanical enemies that infest the levels as possible while 
not letting them kill her (figure 8.5). Should she make it to the end of a 
level, a final powerful “boss” awaits, whom she must destroy before pro-
ceeding to the next level. Menace is perhaps most notable, at least in North 
America, for having been demonstrated at considerable length by Amiga-
World magazine editor Lou Wallace and Commodore district manager Tom 
Stearns on an episode of the television program Computer Chronicles 
devoted to the Amiga that aired in mid-1989 and that provided the plat-
form with one of its painfully few flashes of mainstream computer indus-
try exposure in the years between the launch and the arrival of the Video 
Toaster.29

Upon first viewing the introduction screens, one is struck by their 
aesthetic similarities to the demoscene of the time; even DMA Design’s 
name and logo are reminiscent of a cracking or demo group. Jones, about 
21 years old when Menace was released in November 1988, could hardly 
have been unaware of the scene. Indeed, the European games industry at 
this time was almost as youth dominated as the demoscene; Jez San said 
in reference to the major game publisher for which he worked, Rainbird, 
that the average age was probably no more than 22 and that he knew of no 

8.4  To the left, the Brataccas box art painted by Roger Dean, with the Psygnosis “owl” 
logo (also designed by Dean) at the bottom; to the right, the Brataccas in-game graphics
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one involved with the company in any capacity who was older than 30.30 
Like his less legitimate scene counterparts, Jones worked purely in the 
68000 processor’s native assembly language and bypassed AmigaOS 
entirely in favor of coding directly to the hardware, all in the interest of 
maximizing performance.

The analysis that follows is built up like the analysis of the Boing demo 
in chapter 2, in layers leading to the relatively complete first level of Men-
ace. It makes an ideal capstone to the technical analyses that have preceded 
it throughout this book because it brings together in a single place much 
of what we have already learned about the Amiga’s design and how it can 
be exploited. For this analysis, I am hugely indebted to a series of articles 
that Jones wrote for the British magazine Amiga Format in 1990, in which 
he explained many of the game’s technical workings and provided much 
of its assembly-language source code, complete with invaluable com-
ments. Both a full play-through of the game and a number of shorter clips 
showing each layer as it is added are available on this book’s Web site, as 
are Jones’s original assembly source and my own more readable C adapta-
tion.31 Although the code will likely be of interest only to programmers and 
those exploring the Amiga’s design in considerable depth, I encourage  
all readers to use the video clips to enhance their understanding of the 

8.5  The complete Menace in action
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material that follows. We will now step into Jones’s shoes circa 1988, dis-
covering how he used the Amiga’s unique hardware as we reconstruct the 
first of Menace’s six levels, an underwater area called the “Sea of 
Karnaugh.”

Stage 1: The Scrolling Background

Like most Amiga games of the platform’s most popular period, Menace uses 
the lowest-resolution mode because this mode both allows the most color 
possibilities and limits the amount of playfield data that must be shifted 
about in memory at high speed. Also like many Amiga games, particularly 
during this period when many still hoped the Amiga could conquer the 
North American game market as it had Europe, Menace is—in spite of its 
European origin—essentially designed for an NTSC-based North Ameri-
can Amiga; it does not utilize the improved vertical resolution of the PAL-
based machines, with the result that when it is played on a PAL machine, 
a black border fills the bottom quarter of the screen. The alternative of 
designing for PAL would have made the game unplayable on an NTSC 
Amiga because part of the onscreen graphics would be cut off completely, 
extending as they would below the bottom edge of the monitor, and the 
other (and obviously best) alternative of maintaining separate versions for 
each market was at odds with the fundamentally ad hoc nature of high-
performance game programming in this era. Designing for NTSC also has 
another big advantage: like the choice of low-resolution mode, it limits 
the amount of memory that must be manipulated to generate the display. 
Menace does take advantage of the Amiga’s overscan capabilities for a final 
resolution of 352 × 224 and a display that, at least on a North American 
Amiga, nicely fills the monitor right to its edges.

If you closely observe the completed Menace, you will notice that it 
contains two levels of scenery graphics, a background and a foreground, 
each of which scrolls at a different speed. We will begin our reconstruction 
by implementing the slower-scrolling background layer. Readers who 
have attended closely to earlier technical discussions might already have 
an idea of how we can do this. You may recall from my discussion of the 
Boing demo that the “camera lens” that is the viewport can be shifted to 
focus on different locations in memory. It is therefore theoretically pos-
sible to set up the entirety of a Menace level in memory as a single hori-
zontally elongated playfield that will always fill the screen from left to right 
and that uses the first 192 lines of the display (leaving the bottom 32 lines 
for the status panel). Because the first level is as wide as approximately  
10 physical monitor screens, this playfield would need to have a resolution 
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of (10 screens × 352 pixels per screen-line) or 3,520 × 192. This figure 
unfortunately presents a problem for us, though. Storing our entire back-
ground in memory will consume (352 pixels per screen-line / 8 pixels per 
byte × 192 lines × 10 screens × 2 bitplanes) or 168,960 bytes of our precious 
chip RAM. Considering that we are targeting a generation of Amigas that 
possess only 512 KB of chip RAM in total and that we still have so much 
else to implement to arrive at a completed game, this consumption is 
untenable. But luckily for us, it is not necessary with a modicum of pro-
gramming cleverness.

We will instead define a playfield of just 800 × 192, which consumes 
just (800 pixels per line / 8 pixels per byte × 192 lines × 2 bitplanes) or 
38,400 bytes. Using Deluxe Paint, we create a two-bitplane image to dis-
play in this playfield, consisting of a roughly serrated pattern of gray, 
green, and black to underscore this level’s underwater environment. The 
image we create is 400 × 192. We insert it twice into our playfield, the two 
images sitting horizontally side by side. As the level begins, we see the 
extreme left edge of the playfield at the left edge of the screen. We then 
begin to scroll the background slowly to the left by panning the viewport 
slowly to the right, moving one pixel for every second painting of the 
screen, for a speed of 30 pixels per second on an NTSC Amiga (or 25 pixels 
per second on a PAL Amiga). Consider what happens when the left edge 
of the physical screen rests at the exact middle of our playfield (figure 8.6): 
because the two halves are exact duplicates of one another, we see on 
screen the same image that we began with. We therefore can move the 
viewport all the way back to its original starting point, and as long as this 
is done between screen paints, the viewer will notice nothing amiss. By 
cycling through the playfield in this way again and again, we can create the 
illusion of a lengthy background from a playfield that is in reality barely 
wider than two physical screens. This technique is often called a wrap 
scroll. When implemented this way on the Amiga, the wrap scroll is facili-
tated almost entirely by the copper, which autonomously reformulates the 
parameters of the display before each screen paint; the blitter need move 
no memory at all, and the 68000 need issue only occasional oversight 
instructions to the copper. Thus, we have a smooth scrolling background 
for very nearly free in terms of overall system load.

Before moving on, we make two modifications to the scrolling back-
ground with an eye toward the future. First, we add a third bitplane to the 
background playfield, leaving it for now filled entirely with 0s. Second, we 
implement double buffering on the background. As introduced in chapter 
3, “double buffering” means that we employ not just one playfield for the 
background, but two, switching between them after every painting of the 
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screen so that only one is active at a time. For now, both playfields contain 
the exact same pattern, making this switching as invisible to the user as it 
is currently unnecessary to us. Indeed, adding a bitplane and an entire 
extra playfield costs us a fair amount of precious memory for no apparent 
benefit, but both will facilitate additions we will make later, in Stage 5.

Stage 2: The Scrolling Foreground

If you just glance casually at Menace without thinking about its technical 
implementation, you will likely not even notice that its two layers of scenery 
(not including the player’s own ship and the animated enemies she fights) 
scroll at different speeds—simply because the scrolling feels so natural. It 
feels that way because it simulates a property of the everyday world of 
motion: parallax. Imagine that you are standing at the edge of a busy 
highway on a flat plain, with a second highway also in view beyond this one, 
perhaps half a kilometer or so in the distance. Cars on the highway imme-
diately before you whiz by very quickly, almost too quickly to track with the 
eyes. Those on the distant highway, however, appear to move through your 
field of view relatively slowly, even though they are traveling at roughly the 

8.6  The Menace background wrap scroll. The complete playfield is made of two identi-
cal images placed side by side. The top illustration shows the playfield as it exists at the 
beginning of the level, with the part actually visible on screen shaded more darkly. The 
middle illustration shows the scroll in action, and the bottom shows us ready to reposi-
tion the viewport back to the extreme left without the viewer’s perceiving it. Note that 
there is a small strip at the extreme right of the playfield that never appears on screen  
at all.
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same absolute speed as those closer to you. This difference is the parallax 
effect. Although its presence in Menace is noticeable only to the observant 
or technically thoughtful, its absence would most assuredly be noticed by 
everyone because movement through the levels would feel “off,” neither 
natural nor believable. The universe of the game would lack the illusion of 
depth, appearing instead like exactly what it is in reality, a flat strip of 
images being unrolled behind the screen “window.”

To simulate parallax in Menace, we make use of yet another of the 
Amiga’s special graphics modes, one that is designed with games in mind 
and that I have occasion to introduce here for the first time: dual-playfield 
mode. In this mode, the Amiga automatically overlays two separate play-
fields upon one another, with up to three of the available six bitplanes 
allocated to each. The two playfields interact with one another similarly to 
the way that a single playfield interacts with a genlocked video display: the 
foreground playfield, meaning the one that rests on top, completely 
obscures the background—except where its pixels are set to color 0, which 
signals that these areas of the foreground are transparent and should allow 
the background to show through. The two playfields can even be swapped 
at will to make the foreground the background and the background the 
foreground. Dual-playfield mode does carry with it at least one serious 
limitation: because only three bitplanes can be allocated to each playfield, 
and one color register in the foreground playfield is reserved to signal 
transparency, the programmer is limited to just 7 colors in the foreground 
and 8 colors in the background, or a maximum of 15 on the entire screen. 
The Amiga Hardware Reference Manual presents dual-playfield mode’s 
rationale thus: “A computer game display might have some action going 
on in one playfield in the background, while the other playfield is showing 
a control panel in the foreground. You can then change either the fore-
ground or the background without having to redesign the entire display. 
You can also move the two playfields independently.”32 The last sentence 
is the key to our use of dual-playfield mode in Menace.

We can manipulate our two playfields independently of one another 
and can do anything to either of them that we can do to a playfield running 
in the normal single-playfield mode, including scrolling either or both 
playfields. Our background playfield is already scrolling at a rate of 25 or 
30 pixels per second; our foreground playfield we scroll one pixel for every 
screen paint, or 50 and 60 pixels per second on a PAL and NTSC machine, 
respectively. The foreground playfield contains scenery, painted in its 
seven available colors. This scenery is concentrated largely along the play-
field’s top and bottom edges, with occasional vegetation jutting out well 
into its middle. Where scenery does not appear, the foreground playfield 
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is filled with the 0s that indicate transparency, which allows the four-color 
background pattern to show through. Because the two playfields will scroll 
smoothly at different speeds, we will get a nice impression of realistic 
motion. This technique is often referred to as a parallax scroll and is one 
that the Amiga’s dual-playfield capability makes it particularly suited for.

However, we still have a serious implementation problem to address. 
It is just as impractical to store our foreground playfield in memory as a 
single strip as it is to store the background that way; in fact, it is even more 
so because the foreground’s faster rate of scroll means that we need no less 
than 20 monitor screens for the complete level. Nor will the simple wrap-
scroll technique we used for the background suffice here; our game 
depends on a constant parade of new foreground scenery configurations 
for its visual and ludic appeal.

We begin to solve our problem by building the foreground from a 
series of scenery tiles, each 16 × 16 pixels in size, which we draw in Deluxe 
Paint. We can combine the 255 tiles we create there in various patterns to 
construct a wide variety of scenery; think of a tile-laying board game such 
as Carcassonne or even a jigsaw puzzle. By constructing our scenery from 
these larger patterns, we are able to avoid the necessity of storing every 
single pixel of it in memory and on disk. Instead, we combine our tile 
collection with a “map” of the foreground, which details which tile should 
be placed in each of the 16 × 16 pixel spaces that, stacked 12 high in a series 
of columns, make up our level. We can now reuse many tiles again and 
again in the course of constructing the full level. The most commonly used 
tile of all is filled completely with 0s, representing a space that shows only 
the background wall stored in the other playfield. Tile-based graphics is in 
fact a classic videogame technique, used by a wide variety of games in a 
wide variety of genres and platforms both before and after Menace.

Our foreground playfield is just slightly smaller than our background, 
736 × 192, and like the background possesses the maximum three bit-
planes of depth. As we scroll from its left to its right edge, we use the 
blitter to constantly copy new rows of tiles into the area of the playfield 
just to the right of the current physical screen. When the playfield scrolls 
a bit farther, those tiles become visible to the player, just as if they had 
been there all along. Yet when we reach the extreme right edge, we must 
reset our view all the way back to its original starting point. Because this 
reset creates an unacceptable jump in the player’s view of the scenery, we 
therefore also copy the same columns just to the left of the physical screen. 
When we now reset the view back to its starting point, the player sees an 
exact duplicate of the scenery that exists on the other side of the playfield 
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and notices nothing amiss at all. The result is an impression of continuous 
forward motion using a foreground playfield that, like the background, is 
actually only slightly more than two physical screens wide. The foreground 
scroll is obviously somewhat more taxing on computing power than the 
background, but we are able to use the blitter and its lightning-fast mem-
ory-copying ability along with the copper’s ability to facilitate the scroll to 
relieve the 68000 once again of most of the burden. And because we 
modify only parts of the playfield that are currently out of the player’s view, 
we do not need to double-buffer this part of the display, thus saving pre-
cious chip RAM.

Stage 3: The Status Panel

Our display currently has a blank area at its bottom because we are using 
only the first 192 lines of our 224-line screen for the scrolling environ-
ment. We wish to use this area for a status panel of sorts, which will even-
tually display the player’s score along with her shields and armaments 
status and the all-important DMA Design logo. At first blush, implement-
ing this panel seems a thorny proposition; unlike the rest of the screen, 
we do not want it to scroll, and we would like to be able to draw it using 
more and different colors than the 15 that are available between our two 
scrolling playfields. In fact, however, putting in the panel is relatively 
trivial, thanks once again to the copper.

You may recall from my introduction of the copper in chapter 3 that it 
can be programmed to adjust many parameters of the display not only 
between full screen paints, as we do to implement our scrolling playfields, 
but also at any arbitrary point during a paint. In this way, we can change 
the color palette, point Agnus and Denise to entirely new playfields, 
change resolution modes, turn dual-playfield mode on or off, and much 
more on the fly, thus effectively combining various logical displays onto 
one physical screen. In this case, we use the copper after line 192 to initi-
ate what amounts to an entirely new display setup, this one a single-play-
field configuration that looks to the place in memory where we have loaded 
the four-bitplane, 352 × 32 image of our status panel. When the screen is 
finished painting, the copper once again reconfigures the display hard-
ware to return to our dual-playfield scrolling environment before begin-
ning the next paint. In AmigaOS terms, we have combined two virtual 
screens onto a single physical screen; see chapter 3 and in particular the 
discussion of figure 3.13 for a refresher on this process.

Thus, we have our status panel, which we need only think about again 
when we need to update it occasionally to reflect changes in the player’s 
fortunes.
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Stage 4: The Player’s Ship

The next step is to add the spaceship that the player will control in the 
game. We will implement this ship using one more new piece of the 
Amiga’s graphical technology, sprites, whose introduction will complete 
the picture of the Amiga’s major components that I have been sketching 
throughout this book.

The Amiga is hardly unique among computers in offering sprites; the 
original Atari Video Computer System has them, as do other eight-bit 
computers and game consoles from Atari, Commodore, and many others. 
But the Amiga’s sprite system is unusually flexible and powerful. It sup-
ports up to eight sprites, each of which represents a moving object or 
character, such as the spaceship we wish to implement here—or for that 
matter the mouse pointer, which AmigaOS also implements as a sprite. 
Sprites are defined, positioned, and drawn separately from the rest of the 
screen. Each can be only up to 16 pixels wide—or 64 pixels on machines 
equipped with the AGA chip set—but as tall as desired and can normally 
be made up of up to three colors, along with transparent areas that allow 
the playfield(s) behind them to show through. The exact colors available 
for each of the sprites are drawn from the latter part of the screen color 
table: colors stored in registers 17, 18, and 19 can be used for the first and 
second sprites; in registers 21, 22, and 23 for the third and fourth; and so 
on, counting upward and always skipping one color register between 
sprite pairs. Because we make no use of these upper registers in our play-
fields, we are free to choose colors for our sprites from these registers 
without concerning ourselves about how those choices will affect the rest 
of our graphics. If we were using all 32 color registers for our playfields, 
we would obviously not have this freedom.

Critical to understanding the nature of sprites is knowing that they are 
not drawn into the playfield itself but are stored in memory separately, to 
be superimposed onto the real, physical screen only at the time when 
Denise outputs them to the display. In fact, sprites are so independent of 
the playfields that form the rest of the Amiga’s display that they do not even 
concern themselves with the resolution mode currently employed; sprite 
positions are always specified in low resolution (320 × 200 if overscan is 
not employed). Sprites are likewise the only part of the display that can 
freely cross playfield boundaries, an attribute that forces us to include in 
our Menace code special checks to prevent our sprites from moving down 
into the panel at the bottom of the screen.

A small, two-bitplane playfield encodes the size, shape, and colors of 
each sprite, with color 0 representing transparence and colors 1 through 
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3 being drawn from the appropriate parts of the regular color table. Each 
sprite’s current on-screen position is contained in attached X and Y coor-
dinate values. The use of sprites not only yields dramatic performance 
improvements but also eases the programmer’s burden immensely; with 
them, it is no longer necessary to modify the playfield constantly to reflect 
changes to the most dynamic parts of the display, and the programmer no 
longer needs to worry about drawing back in the background just vacated 
by her actors. To move a sprite, she merely changes either or both of two 
numbers in memory, those representing the X and Y coordinates, and lets 
Denise do the rest.33 The playfield that stores each sprite’s color and shape 
can be similarly adjusted as needed. We actually use three images of our 
spaceship right from the start, two showing it banking upward or down-
ward and one showing it flying level. We swap these images in and out to 
reflect the ship’s current motion prompted by the player’s positioning of 
the joystick. In the completed game, the player will be able to collect 
power-ups that not only improve her weapons and armor but also change 
the appearance of her ship. We have more images on hand to reflect these 
changes, all drawn in the graphical workhorse Deluxe Paint.

When we begin to consider the details of implementing our spaceship 
via a sprite, however, we run into two significant problems. One is the fact 
that we would like to make our spaceship sprite fully 25 pixels wide, 9 more 
than the normal maximum of 16 pixels; in addition, we would like to be 
able to draw it using more than three colors. Luckily for us, both problems 
are quite easily overcome, using in the former case a bit of programming 
sleight of hand and in the latter some of the more advanced capabilities of 
the Amiga’s sprite hardware. Nothing prevents two (or more) sprites from 
standing directly next to each other, close enough that they appear to be 
one. By using two sprites and moving them in lockstep, we can create the 
illusion of a single sprite up to 32 pixels wide. Further, the Amiga allows 
us to join two normal 3-color sprites into a single 15-color sprite; we need 
only place them directly on top of one another and turn on a register to 
inform Denise of our desire. The sprites’ four bitplanes are then com-
bined by Denise into a single image of 15 possible colors (plus transpar-
ency). By placing two of these 15-color “supersprites” next to one another, 
we can draw a large, colorful, and relatively detailed spaceship for the 
player to control. And just as we can decide which playfield in dual-play-
field mode appears atop the other, we can also decide where our sprites 
rest in this display hierarchy. We take advantage of this ability to place our 
spaceship “between” the two playfields so that it obscures the background 
playfield but is obscured by the foreground (figure 8.7).
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Implementing our spaceship in this way does carry the obvious draw-
back of consuming fully half of our available sprites, leaving precious few 
for the alien enemies we must still implement. That does not concern us, 
though, because we will create those enemies using other techniques and 
will in fact make no further use of sprites at all in Menace. It is worth not-
ing, however, that the Amiga’s modest total of eight sprites, like so much 
else about the machine, can be (and often were) stretched in surprising 
ways. Most significant, one can use the copper to manipulate the eight 
sprite channels on the fly during the screen-painting process, reconfigur-
ing any or all of them to point to different sprite definitions in memory at 
the end of any given line. Thus, the programmer can actually place many 
more than eight sprites on the screen as long as no more than eight ever 
come to occupy the same line at once. The sprite system might therefore 
be better described as supporting eight sprites per line rather than eight 
per screen. AmigaOS actually provides a great deal of support for maxi-
mizing the available sprite channels in the form of virtual sprites that are 
automatically assigned to hardware sprite channels as needed during 
screen painting, albeit at some inevitable loss of speed when compared to 
the hardware-banging approach we are using for Menace.

8.7  Stage 4 of the Menace reconstruction in action. Note that the player’s spaceship 
passes behind nontransparent areas of the foreground playfield but remains in front of 
the background.
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Stage 5: Enemies

The next stage is by far the most daunting: we must implement the various 
enemy aliens that the player must kill or avoid to complete a level. Much—
perhaps most—of this stage’s complexity involves instilling in the aliens 
some simple artificial intelligence to make them fly about the screen in 
various patterns and hunt the player’s ship. Although this topic is fascinat-
ing in itself, I do not discuss the logic in depth here because it is both 
daunting and abstracted from the unique details of the Amiga’s architec-
ture that are my primary concern. Suffice to say that over the course of the 
level on which a player is playing, enemies come at the player in a series 
of waves, each wave consisting of up to 12 aliens. Each alien’s behavior is 
controlled by a unique script, defining its movements and behavior from 
the moment it is spawned until it flies out of view or is killed. When one 
wave is completely finished, the next (along with its associated individual 
scripts) automatically begins. It is also worth noting that by freeing the 
68000 from many more mundane chores of display and system manage-
ment, the blitter, the copper, and the custom chips allow more cycles to 
be devoted to the aliens’ artificial intelligence, thus potentially making 
them more challenging and more believable. Thus, the Amiga’s unique 
architecture, far from being useful only for more and better eye candy, 
actually creates the potential to make better as well as prettier games.

Turning from artificial intelligence to the details of hardware imple-
mentation, the obvious way to render the aliens at first blush is via sprites. 
The sheer quantity of aliens, however, makes that a difficult proposition, 
indeed. Although we might attempt to shift the sprite channels about via 
the copper during screen painting, doing so would be a nightmare of com-
plexity, as would devising algorithms to assure that no more than eight 
sprites ever come to occupy the same line. And although we might use 
AmigaOS’s libraries to do some of this sprite-manipulating work for us, 
this approach is simply too slow for a complex action-game showcase such 
as Menace. We therefore decide to take another approach, using blitter 
object blocks (BOBs) for our aliens.

Unlike sprites, there is nothing conceptually new about BOBs; they are 
simply small areas that the blitter blits into and out of our playfields. We 
begin by drawing our various aliens in Deluxe Paint, producing a series of 
images, each within a rectangular frame 32 × 24 pixels in size. Each image 
uses three bitplanes for a maximum of eight colors. Of those eight colors, 
the first three must be the three that we are already using to paint the 
green, gray, and black backing texture, but the next five may be any that 
we choose for that particular wave. Before a wave begins, we adjust the 
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background palette to match the colors desired and then use the blitter to 
draw these images into the background playfield again and again, moving 
them through their trajectories until they finally disappear, whether 
through death or simple departure. It was to facilitate the aliens that we 
made the background playfield three bitplanes deep; that third bitplane, 
unused until now, gives us the extra colors we need to draw our aliens. 
When we begin implement this scheme, though, we find we have some 
problems.

You may recall from earlier sections of this book that the 68000 and 
many other Amiga components are only designed to access memory blocks 
that begin with even-numbered addresses and that they vastly prefer to 
deal with memory in chunks of two bytes (16 bits, often called a “word”) 
at a time. The blitter is no exception here; in fact, it can deal only with full 
words of memory. As our aliens move about the screen, though, they must 
occupy positions in the playfields that do not line up neatly to word or even 
byte boundaries. We move them into these positions by using a special 
shift register on the blitter, which allows us to skew the source data to the 
right or left as we copy, filling in the boundaries that are thereby exposed 
with 0s (figure 8.8).

The data shown in this figure might of course be one of our aliens 
being copied into a playfield—or, for that matter, a Deluxe Paint image 

8.8  A blitter shifting operation. The upper illustration shows the source blit, which con-
sists of three words (six bytes) that begin at an even-numbered address in memory. The 
bottom illustration shows the destination blit, in which four words are written, with the 
data skewed 13 bits (or pixels) to the right. The areas at the left and right in the bottom 
illustration that do not contain the source data are still part of the blit but are filled with 
0s during the shifting operation.
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being copied from the master-copy playfield into the working-copy play-
field, as described in chapter 3. The blitter’s shifting capabilities illustrate 
once again how, far from being “merely” a high-speed, general-purpose 
memory shuffler, it was designed from the start with the special require-
ments of graphics and animation in mind.

Alas, when we begin to draw our blitter-shifted aliens into the play-
fields, we see the results shown in figure 8.9.

The trails of aliens streaked across the screen stems from the fact that 
we are drawing our BOBs into our playfields but never taking them out 
again. To eliminate these streaks, we need to implement a three-step pro-
cess that takes advantage of our forethought in Stage 1 of this project in 
making the background playfield double buffered and thus actually two 
playfields. When a given playfield is no longer the active one, we first take 
a snapshot of the background areas into which we are about to draw our 
BOBs, copying them into another area of memory for safekeeping, using 
the blitter. We then blit the BOBs themselves into the playfield, as we did 
before; this playfield is now ready to be painted onto the screen. When 
this playfield is once again the inactive one, we copy the stored back-
grounds back into place before repeating the whole cycle again. Double 
buffering is essential to this process because it gives us time to make these 

8.9  Menace in action without a background-clipping algorithm for the on-screen BOBs
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alterations to the screen without the user seeing the bits and pieces being 
cut out and pasted in. Although there is a short period between successive 
paints of even a single-buffered screen, known as the “vertical blanking 
interval,” it is not sufficient for the quantity of operations we need to 
perform here, for the process just described is quite a taxing one. Twelve 
active aliens require no less than ((12 playfield background to holding area 
copies + 12 alien to playfield copies + 12 holding area to playfield back-
ground copies) × 3 bitplanes per copy), or 108 copy operations, for every 
round of movement, and the Amiga must of course also manage the fore-
ground and background scrolls, the player’s ship, and all of the artificial 
intelligence and game logic in a timely manner. All this is made possible 
only by the blitter’s ability to copy blocks of memory about fully twice as 
quickly as the 68000 itself.

Our aliens now look much better, but there is still another problem to 
be solved.

As illustrated in figure 8.10, our aliens appear as solid rectangular 
blocks that are obviously separate from the surrounding background. This 
appearance stems of course from the fact that solid rectangular blocks—
and not irregular alien shapes—are exactly what we are using the blitter to 
copy. Unfortunately, the blitter can only be programmed to deal with 

8.10  Menace with a background-clipping algorithm for the aliens in place, but without 
background masking implemented
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regular rectangular shapes. What we need, then, is a way of introducing 
transparency to our aliens. This task is somewhat trickier than it was with 
our ship sprite because now we are working with objects that are part of 
the playfield that we wish to show through as background, not with a sepa-
rate element of the display. The blitter, however, gives us a way.

Up to now we have used the blitter only to copy a single source block 
of memory to a single destination, possibly shifting left or right along the 
way. The blitter, though, is actually capable of accessing three sources and 
of merging and manipulating those sources in many ways beyond the 
shifts with which we are already familiar. We will use these possibilities 
to create the transparency effect we desire, in effect stenciling our aliens 
into the background playfields rather than simply copying them. We begin 
by making a fourth bitplane of sorts for each of our aliens. Each bit of this 
extra bitplane is set to 1 if that same bit in any of the other three bitplanes 
is set to 1; otherwise, it is set to 0. This setting provides us with a mask of 
the alien’s shape, showing where any color other than color 0, which we 
want to define as transparency, exists. Next, we program the blitter to 
access three sources in the course of each alien copy operation: the mask 
bitplane, defined as source A; the actual alien bitplane to be copied, 
defined as source B; and the data that already exist in that part of the des-
tination playfield, defined as source C. (Source C and the destination are, 
in other words, the same.) And we ask the blitter to perform some simple 
logic on these three sources to determine what is actually copied into the 
playfield. If a given bit is set to 1 in source A, that bit is copied from source 
B. If, however, a given bit is set to 0 in source A, that bit is copied from 
source C; in other words, it stays the same. Thus, we can have our irregu-
larly shaped aliens and even unusual creatures such as bubbles that are 
transparent in the middle (figure 8.11).

A remarkable advantage is that the blitter can access multiple sources 
and perform logical transformations like those described here in the 
course of a copy without using a single cycle more than would a straight 
source-to-destination copy. Although the aliens themselves are inevitably 
taxing on system resources, the calculations that enable their transpar-
ency are effectively made free by the blitter’s design.

Stage 6: Collision Detection

In order to turn Menace into a proper game, we still need to be able to 
detect when the player’s ship comes in contact with its deadly alien adver-
saries. Such contact should gradually drain the ship’s protective shields 
and, when the shields are exhausted, destroy the ship entirely. We need, 
then, what game programmers call a collision-detection routine.
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On most platforms of the Amiga’s era, the programming of such a 
routine would be a complex endeavor, indeed. The Amiga’s design, how-
ever, makes it almost trivial, for we can simply ask the Amiga to tell us 
when any sprites we choose come into contact with any other given ele-
ments of the display. In this case, we ask to be informed when one or more 
of the sprites that compose the player’s ship comes into contact with the 
third bitplane of the background playfield only; in other words, when the 
ship passes over an area of the third bitplane that is not filled with 0s. 
Because that bitplane is reserved for the alien BOBs only and has no part 
in the rest of the background, the Amiga will thus signal a collision only 
when the ship is in contact with an alien. Denise sets a flag in a special 
memory location after every paint in which the collision requirements we 
have specified are met. We only need write some relatively trivial routines 
to check that flag and if necessary respond to it by draining the ship’s 
shield energy and eventually destroying the ship and ending or restarting 
the level. Because Denise automatically handles collision detection as a 
preexisting part of her normal screen painting, collision detection is yet 
again effectively a free gift of the Amiga, one that adds no significant pro-
cessing drain to our game. Hardware-based collision detection is in fact 
one of the most often overlooked advantages of the Amiga because it 

8.11  The Menace aliens with bitplane masking used to achieve transparency
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reduces tasks that are thorny and processing intensive on other platforms 
to little more than a footnote on this one.

Stage 7: Weapons

Having made it possible for the aliens to destroy the player’s ship, fairness 
demands that we also give the player some weapons to respond in kind. 
Although the weapons can conceivably be implemented as sprites, we 
choose to make the bolts from the ship’s lasers by using BOBs. In a sig-
nificant wrinkle, we draw these BOBs not into the background playfield 
that houses the aliens, but rather into planes 0 and 1 of the foreground 
playfield. (We need no more than four colors to represent these simple 
bolts of energy.) As with the alien BOBs, we use an extra bitplane of mask 
data to stencil the bolts into place, allowing the background to show 
through, and use the blitter’s shifting capability to let us draw them into 
any arbitrary location on the screen. We must of course also erase the bolts 
before drawing them anew farther along their journey, just as we did with 
the aliens, by storing the old playfield backgrounds in a buffer in another 
part of memory until we draw them back in. Yet because we allow no more 
than three bolts on screen at any time, and because they are quite tiny—
only two bitplanes of 16 × 2 pixels in size—they do not dramatically tax the 
already very busy blitter. We therefore do not bother with double buffering 
the foreground playfield. Because these BOBs are so tiny, we have reason 
to hope that the laser bolt–drawing process can complete during the verti-
cal blanking interval, and even if it does not, the player is likely to construe 
a certain amount of bleeding or tearing as intrinsic to the nature of these 
bolts of energy—a visual effect rather than a defect, as it were.

Finally, we need to know when a laser bolt strikes an alien. This 
knowledge is somewhat more problematic than determining when an 
alien strikes the player’s ship, for the Amiga’s hardware collision detection 
checks only for collisions involving sprites. We will therefore press the 
blitter into service one more time in a somewhat surprising fashion.

As already discussed, the blitter is capable of combining data from any 
or all of three source channels in the process of writing to the destination. 
Just as we can choose to enable or disable these sources, we can also choose 
to disable the destination. This ability, combined with a special flag—the 
“BZERO” flag—that the blitter sets at a certain memory location, allows us 
to use the blitter as a tool for making logical determinations. We set one 
source channel to one plane of the BOB that represents the laser bolt that 
we have already drawn into the foreground playfield and set another to the 
area of plane 2 of the background playfield that the bolt is passing over; 
the third source channel and the destination channel go unused. We then 
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ask the blitter to perform what is known in computer science parlance as 
a logical “AND” on the two sources during the course of the copy, which 
means that we copy to the destination only those bits (or pixels) that are 
set in both of the sources—in other words, only those pixels that are occu-
pied by both the laser bolt and an alien. Because we have disabled the 
destination channel, this “copy” operation does not actually perform a 
copy at all. However, as a normal part of its operation, the blitter automati-
cally sets the BZERO flag any time that the result of its last operation was 
nothing but 0s. Therefore, we can check this flag immediately after our 
“copy” and, if it is not set, know that our laser bolt has indeed struck an 
alien. We must still proceed at this point to determine which alien was 
struck by comparing the on-screen position of each alien with the position 
of the laser bolt. By giving us a fast way to determine if a laser has struck 
anything at all, the blitter lets us avoid having to make these time-con-
suming calculations—which mostly yield no results—with every single 
frame; we make them only when we know there has indeed been a 
collision.

Menace: A Summing Up

I have heretofore in this book avoided discussing or including actual 
program code, but it seems worthwhile to make one exception here. What 
follows is the main loop of the original Menace, as written in 68000 assem-
bly language by Dave Jones, which gives an overview of how all of the parts 
I have just described interlock to form a finished, playable game.

vloop	bsr	 waitline223	 interrupt set at vertical

	 not.b	 vcount(a5)	 position 223 (panel start)

	 beq	 twoblanks	 alternate every frame

	 lea	 copperlist(pc),a1	 set up registers for routine

	 move.w		 pf2scroll(a5),d0	checkpf2

	 move.w		 pf1scroll(a5),d1

	 bsr	 checkpf2	 and branch to it

	 bsr	 moveship

	 bsr	 check.collision

	 bsr	 erase.missiles

	 bsr	 levels.code

	 bsr	 update.missiles

	 bsr	 drawfgnds

*	 bsr	 print.score

*	 bsr	 check.keys

	 bsr	 check.path
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	 bra	 vloop

twoblanks

	 bsr	 checkpf1	 the following routines are 	

	 bsr	 flipbgnd	 only executed every second frame

	 bsr	 moveship

	 bsr	 restorebgnds	 restore backgrounds behind 		

					    aliens

	 bsr	 process.aliens

	 bsr	 save.aliens	 save the backgrounds behind 		

					    aliens

	 bsr	 draw.aliens	 and then draw the aliens

	 tst.b	 kill.game(a5)

	 beq	 vloop

	 bra	 alldone

This main loop, like most action games on the Amiga, is built around 
Agnus and Denise’s ceaseless screen painting. Its first step is to wait for 
the beam to reach screen-paint line 223, which corresponds with pixel 
line 192, the end of the main action area and beginning of the status panel. 
The program thus avoids updating the main action area as much as pos-
sible while the beam is still painting it yet also grants the Amiga some extra 
time to perform updates beyond the vertical blanking period alone by 
beginning to process the next frame of action even while the beam con-
tinues to paint the static status panel. The loop performs one of two 
sequences that are alternated with every successive paint. Here I describe 
only the most significant and essential of the routines that make up these 
sequences.

One sequence scrolls only the foreground playfield by one step via 
“checkpf2”; checks the joystick controls and updates the player’s ship’s 
position and appearance accordingly via the “moveship” routine; checks 
for collisions between aliens and the ship via the “check.collision” rou-
tine; erases missiles drawn on the previous go-round by painting the 
stored background back into their positions via the “erase.missiles” rou-
tine; moves and paints the missiles in anew, checking for collisions 
between them and the aliens via the “update.missiles” routine; and, 
finally, via “check.path” checks to see if all currently active aliens are dead 
or have moved off screen, in which case more aliens are introduced. The 
other sequence scrolls both the background and foreground playfields by 
one step via “checkpf1”; swaps the active background playfield to facilitate 
double buffering there via “flipbgnd”; updates the player’s ship via 
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“moveship”; restores the stored backgrounds to positions just vacated by 
aliens via “restorebgnds”; uses the game’s simple artificial intelligence 
logic to determine the next move for each active alien via “process.aliens”; 
saves the backgrounds where aliens are about to be drawn into a buffer via 
“save.aliens”; and, finally, draws the alien BOBs into their new positions 
via “draw.aliens.” Note that only the movements of the player’s ship and 
the scroll of the foreground playfield are updated with every single paint; 
most elements are updated only every other paint, for an effective frame 
rate of 25 per second on a PAL machine or 30 per second on an NTSC 
machine. This rate is fast enough for the game’s purposes, and dividing 
the processing into two sequences like this allows it precious extra time 
to get everything done.

There is, of course, much more to the complete Menace than what I 
have described here. When killed, some aliens leave behind “power-ups” 
that the player can grab to improve her weapons or armor, and the player 
should receive points and occasional extra lives for killing aliens and 
making progress. Each level should end with an attack by a fearsome 
“boss” monster, and there should be six levels in all, each with different 
scenery and different alien challengers. And, of course, there should be 
sound effects and the omnipresent thumping tracker-composed 
soundtrack that was such a Psygnosis trademark. All of these elements are 
built on the foundation I have laid down here, though.

The Legacy of Psygnosis

Much as Commodore and even many Amiga users might have tried to 
downplay the Amiga’s original conception as a pure game console, those 
origins show through in the hardware in countless ways. A comparison to 
the Amiga’s most obvious 68000-based rivals, the Atari ST and the first-
generation Apple Macintosh, only underscores the point; neither of those 
platforms supports sprites or a dual-playfield mode, and, of course, 
neither has anything like the Amiga’s copper and blitter. The Amiga in its 
heyday hosted games that would literally have been impossible on any 
other platform. And remarkable as the Amiga’s core capabilities were even 
upon a cursory inspection, the teams of developers that worked for Psyg-
nosis kept finding ways to stretch them. Just one year after the release of 
Menace in 1988, Psygnosis published Reflections Interactive’s Shadow of 
the Beast, an action-adventure stunner that featured 12 music tracks to 
Menace’s one, 12 levels of parallax scrolling to Menace’s two, and many 
dozens of colors on screen at once thanks to some clever copper program-
ming. Shadow of the Beast was the most audiovisually impressive video-
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game one could play in one’s home at the time of its release and made 
Menace look painfully sparse. Packaged elaborately in a huge box with the 
usual striking Roger Dean artwork outside and a T-shirt inside, Shadow 
was a watershed for Psygnosis and Amiga gaming and spawned two sequels, 
the first in 1990 and the second in 1992, that raised the bar of multimedia 
excellence even farther. The three games also represented another, less 
fortunate Psygnosis trend, however: they seemed to hate their players, 
being almost inconceivably difficult to win fairly. “Trainers” and cheat 
codes circulated quickly enough through the Amiga’s gaming and cracking 
communities, though, thus allowing players at least to see everything the 
games had to offer and show off these elements to others.

Having perhaps seen the writing on the Amiga wall, Psygnosis allowed 
itself to be acquired by Sony Corporation in 1993, an event that marked 
the end of its time as an Amiga-focused games publisher; its last trickle 
of Amiga games that had already been in the pipeline at the time of acqui-
sition appeared in 1994. Sony transitioned the company into a console-
focused developer, with a particular emphasis on its Sony Playstation 
console, under development at the time en route to its 1995 premiere. 
With several titles available at launch, Psygnosis became a significant 
developer for the Playstation, with such popular titles as the Wipeout series 
of racing games to its credit, until its brand name was rather unceremoni-
ously eliminated in 1999 following a round of corporate reorganizations.

Some of the development teams that used Psygnosis as a publisher 
also transitioned successfully to the new generation of console platforms. 
Reflections, best known for the Shadow of the Beast series on the Amiga, 
came to specialize in racing games on the consoles, producing the Destruc-
tion Derby and Driver series; it released the fifth game of the latter in 2007. 
And DMA Design, the tiny team responsible for Menace and a number of 
other Psygnosis titles, eventually morphed into Rockstar North, the studio 
responsible for the innovative, massively popular, and massively contro-
versial Grand Theft Auto series. Dave Jones himself left shortly before the 
watershed game of that series, Grand Theft Auto III, but remains active in 
the videogame industry.

While DMA Design was still an Amiga developer, Jones was respon-
sible for designing and programming another long-lived franchise: Lem-
mings. It is the most atypical of Psygnosis games and the last thing one 
might have expected from Jones and DMA Design when one considers 
their earlier games such as Menace. Each of the 120 levels in Lemmings 
places the player in charge of a tribe of the titular rodents in some sort of 
hazardous environment. True to the popular myths if not the reality of 
their real-life inspiration, these cute but stupid creatures will walk off of 
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cliffs or into pools of acid with suicidal cheer. The player must guide as 
many as possible to the level’s exit, which she does by bestowing special 
abilities upon individual members of the tribe, turning them into diggers 
that tunnel through the earth, builders of bridges that can span cliffs or 
water, or simply blockers that prevent their mindless comrades from 
marching past them to their doom. Lemmings starts out easy but gets dif-
ficult soon enough. With dozens of lemmings marching among and into 
countless hazards, the pace of the higher levels becomes frenetic indeed, 
a challenge for the reflexes as well as the mind. Despite the challenge Lem-
mings can present, however, it never fails to feel welcoming and friendly, 
perhaps in part due to the charming little creatures themselves, who 
exclaim “Let’s go!” at the start of a level and let loose a forlorn “Oh, no!” 
when something goes wrong. Like a classic cartoon, Lemmings also includes 
a bit of dark humor to balance the cuteness; some levels require the player 
to sacrifice a few lemmings for the greater good by turning them into walk-
ing bombs, and the player always has the option to “nuke” a level and all 
of its inhabitants when the frustration gets too extreme. Lemmings is like 
a game from a later era in its kindness to its player; once a level is com-
pleted, the player receives a code that lets her start again at the next when-
ever she chooses, meaning that she is never forced to replay a difficult or 
frustrating level after she has finally conquered it. The levels themselves 
not only provide a variety of challenges but are often built around an 
amusing theme. One of my personal favorites is “A Beast of a Level,” which 
plays on a caricaturized version of the first level of Shadow of the Beast, 
including comically ominous background music. The sight of these ridic-
ulous cartoon creatures bobbling through this dark science-fiction world 
is hilarious. A similar absurdist sense of humor is in evidence everywhere; 
even the on-screen pause button is marked not with text, but with a set of 
tiny paws for a horrid pun.

Lemmings is easily Psygnosis’s best all-around game. In a pleasing 
example of quality receiving its just commercial reward, it also became a 
huge hit. It obsessed the Amiga community for months after its release, 
with many European magazines devoting pages in issue after issue to solv-
ing its more difficult levels. DMA and Psygnosis, recognizing that they had 
a good thing, were quick to follow up on Lemmings, first with an expansion 
pack and then with a full-fledged sequel, and Psygnosis also funded ports 
to virtually every other gaming platform of the era. Lemmings has remained 
continuously available in one form or another since its original 1991 
release, a rarity indeed in the fast-moving world of the videogame. The 
respected eldest member of an entire genre of quirky and challenging yet 
accessible puzzle games, it remains available today for the Playstation 3 
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console as well as for the handheld Playstation Portable. Its original 1991 
version, meanwhile, stands as yet another Amiga-based harbinger of 
gaming’s future in the way it jettisons the “dark” nerd bona fides of science 
fiction and high fantasy, challenges but never punishes, and remains 
indefatigably “juicy.”

One can certainly question whether the Amiga fully realized the almost 
utopian dream of its potential as expressed by Trip Hawkins and others in 
its heady early days, but its gaming legacy, in both titles themselves and 
developers to whom it gave a start, is a rich one. The popularity of Amiga 
games played through emulators is certainly still considerable today, per-
haps because the Amiga is the earliest gaming platform whose visuals and 
audio, at least in the more aesthetically pleasing titles, are good enough 
not to appear absurd to players of today, and because in the more complex 
titles its mouse-driven interface is vastly more intuitive than the key-
board-driven alphabet soup of other platforms from the era. In fact, some 
of the Amiga’s best titles look more contemporary today than they did 10 
years ago. Casual-game developers and independent developers, working 
in small teams much like those that developed for Psygnosis, have revived 
many old genres that were popular on the Amiga, having realized that 
enormous big-budget productions with their high system requirements 
and the major demands they make on their players’ time and expertise are 
not the only experience that players desire; indeed, such games are exactly 
what many casual gamers do not desire. The result has been a welcome 
return of games that reflect the individuality of the small teams who cre-
ated them, games that are as easy to pick up and play for a bit as they are 
to explore in depth, games that reward commitment but do not demand 
it. In other words, games like Lemmings.



 

In spite of achieving real success in certain niche markets in North America 
and in many living rooms and bedrooms in Europe, the Amiga did not 
quite conquer the world in the way that many believed it would in those 
heady days of 1984 and 1985. Having devoted a book to explaining why I 
believe the Amiga to be both a revolutionary piece of technology and the 
most important link between the pioneering early years of personal com-
puting and the ubiquitous digital culture of today, I feel behooved to ask 
here at book’s end why the Amiga is no longer a vital force in modern 
computing. To begin to answer that question, I would like to continue for 
a time with the subject of the previous chapter: games, the Amiga’s most 
sustained niche in Europe in the same way that video production was for 
the platform in North America.

Myst and Doom 

Two pivotal if very different games appeared on competing machines in 
1993 that marked the beginning of the end of the Amiga’s time as a pre-
miere gaming platform: Myst by Cyan Studios and Doom by id Software. 
Both were huge hits, the sort of titles that sell not only themselves, but the 
hardware on which they run, and both were—for very different reasons—
well beyond the capabilities of the vast majority of Amigas.

The Amiga’s basic storage format, a 3.5-inch floppy disk capable of 
holding up to 880 KB of data, was considered quite expansive at the time 
of the machine’s release in 1985. This judgment was, however, made in the 
absence of any previous experience with multimedia computing. As soon 
as game developers and others began to pack their offerings with the 
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graphics and sound data that were the platform’s calling card, the Amiga’s 
floppy disks began to feel restrictive indeed. Within a year, ambitious 
games such as Defender of the Crown were already requiring two disks. Yet 
simply shipping games on more and more disks was not an entirely viable 
solution. Although many Amiga users equipped their machines with two 
floppy drives for convenience, few had more than that; thus, playing games 
that spanned three, four, or more disks could turn into a nightmare of disk 
swapping. The obvious solution to that dilemma was to copy all of the 
floppy-disk content to a hard disk for actual play, but although hard disks 
did become increasingly common as the years went by, there unfortu-
nately remained plenty of floppy-only Amigas. In fact, these unexpanded 
systems were almost always the ones used primarily or exclusively for 
playing games.

Cinemaware found constant pausing to request that the user insert 
another disk incompatible with its aesthetic of constant, immersive activ-
ity and thus limited most of its titles to a maximum of two disks. This 
limitation necessarily restricted the amount and quality of visuals and 
audio Cinemaware could include in each game even as the company 
invested considerable effort into developing compression technology to 
maximize each disk’s potential. Rocket Ranger, for instance, could include 
only a few choice bits of the digitized speech that Bob Jacob would have 
preferred to have throughout, having to rely instead mostly on text to com-
municate its story to the player.1 Although not so thematically ambitious 
as Cinemaware, Psygnosis also ultimately found the 3.5-inch disk format 
restrictive; in contrast to early single-disk efforts such as Menace and 
Barbarian, 1992’s Agony spanned three, with all of the requisite annoying 
swapping. Indeed, many Amigas in Europe sported just a single floppy 
drive for storage, further exasperating the problem.

The Amiga was positively crying out for a new storage technology that 
was just starting to engender discussion within the computer industry at 
the time of the platform’s debut: the CD-ROM drive, which had a coming-
out party of sorts in March 1986, when Microsoft hosted a conference on 
the emerging technology that came to be called the “Woodstock of the 
computer industry” in the technology press.2 With its potential to store 
more than 500 MB on a single inexpensive and portable plastic platter, the 
CD-ROM seemed to many like the ideal distribution medium for multi-
media-intensive Amiga games; among those with this view was Jacob, 
whose Cinemaware invested considerable funds into developing the for-
mat.3 CD-ROM drives, however, remained very expensive for their first 
few years on the market and in the absence of any apparent interest or 
leadership from Commodore were painfully slow in making their way to 
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the Amiga at all because manufacturers tended to focus on the larger 
installed base of IBM PCs and PC clones, even though those machines 
lacked the audiovisual capabilities to take full advantage of a format that 
seemed tailor made for a multimedia computer such as the Amiga. After 
all, the Amiga’s very design, as recounted in chapter 5, had been partially 
inspired by the first videogame to take advantage of emerging optical-
storage technologies, Dragon’s Lair. Nevertheless, Commodore did not 
mate a CD-ROM drive to an Amiga until 1991 and even then did so only in 
the form of a product called CDTV (for “Commodore Dynamic Total Vision”), 
a multimedia appliance that housed Amiga hardware internally but was 
packaged externally as a television component similar in appearance to a 
VCR or laser-disc player. In a bizarre decision, Commodore studiously 
avoided using the Amiga name in connection with CDTV, promoting the 
latter instead as an entirely new product line. Although visionary in some 
ways, CDTV, like its close competitor the Philips CD-i, ultimately failed to 
take off in the face of the Microsoft Windows–based multimedia comput-
ing boom. CDTV’s successor CD32 was marketed more as a pure game 
console than as a general-purpose multimedia appliance, and with its 14 
MHz 68020 processor and AGA chip set would have seemed, at least tech-
nologically, to be poised to offer stiff competition to the first CD-ROM-
based consoles to arrive from Nintendo, Sega, and 3DO. Unfortunately, it 
was released in late 1993, by which time Commodore was in full freefall, 
and, despite encouraging early sales in Europe and especially Great Brit-
ain, was far from sufficient to save the company. In another incredible 
decision, considering that by the early 1990s CD-ROM-equipped multi-
media PCs running Windows were flying from the shelves, Commodore 
never offered an official Amiga model with a CD-ROM drive as standard 
equipment. As Commodore resolutely filed the Amiga serial numbers off 
of CDTV and CD32, actual Amiga users were forced to content themselves 
with a variety of cobbled-together and expensive CD-ROM solutions from 
small venders or even Macintosh products that used the same Small Com-
puter Systems Interface (SCSI) for disk drives that was common on the 
Amiga. The only exception was Amiga 500 users, who could purchase a 
balky and expensive CDTV add-on kit from Commodore.

As a new generation of CD-ROM titles expanded the possibilities for 
gaming on Windows and Macintosh machines in exactly the ways that 
Jacob had dreamed of when starting Cinemaware, the Amiga thus remained 
largely tied to its miniscule floppy disks. This disparity was made painfully 
evident with the release of Myst, an immersive if admittedly slow-paced 
adventure game that lets it player explore a beautifully rendered, almost 
photorealistic landscape of sight and sound. Key to Myst was its use of a 



[252]

first-person point of view; rather than view and manipulate an avatar on 
the screen, the player finds herself inside the environment, viewing it 
through the eyes of her alter ego. Myst’s graphics and sound were not 
beyond the capability of an AGA Amiga, but it used the CD-ROM format 
to store an unprecedented quantity of both. The ideal companion to show 
off a new multimedia PC, Myst undoubtedly sold many nontechnophiles 
on the potential of CD-ROM and also sold plenty of the Macintosh and 
Windows machines on which it ran en route to becoming the top-selling 
PC game of its generation.4 A belated port of Myst finally came to Amiga 
owners who had equipped their machines with CD-ROM drives in 1997, 
but by that time the game, like the Amiga platform itself, was already look-
ing dated.

Doom, meanwhile, had a long-term impact on the world of gaming far 
exceeding even that of Myst. The latest of a series of experiments with 
interactive 3D graphics by id programmer John Carmack, Doom shares 
with Myst only its immersive first-person point of view; in all other 
respects, this fast-paced, ultraviolent shooter is the polar opposite of the 
cerebral Myst. Whereas the world of Myst is presented as a collection of 
static nodes that the player can move among, each represented by a rela-
tively static picture of its own, the world of Doom is contiguous. As the 
player roams about, Doom must continually recalculate in real time the 
view of the world that it presents to her on the screen, in effect drawing 
for her a completely new picture with every frame using a vastly simplified 
version of the 3D-rendering techniques that Eric Graham began experi-
menting with on the Amiga back in 1986. First-person viewpoints had 
certainly existed in games previously, but mostly in the context of flight 
simulators, of puzzle-oriented adventures such as Myst, or of space-com-
bat games such as Elite. Doom has a special quality that those earlier efforts 
lack in that the player embodies her avatar as she moves through 3D space 
in a way that feels shockingly, almost physically real. She does not view the 
world through a windscreen, is not separated from it by an adventure 
game’s point-and-click mechanics and static artificiality. Doom marks a 
revolutionary change in action gaming, the most significant to come about 
between the videogame’s inception and the present. If the player directs 
the action in a game such as Menace, Doom makes her feel as if she is in the 
action, in the game’s world.

Given the Amiga platform’s importance as a tool for noninteractive 3D 
rendering, it is ironic that the Amiga is uniquely unsuited to Doom and the 
many iterations and clones of it that would follow. Most of the Amiga 
attributes that we employed in the Menace reconstruction—its scrolling 
playfields, its copper, its sprites—are of no use to a 3D-engine program-
mer. Indeed, the Intel-based machines on which Carmack created Doom 
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possess none of these features. Even the Amiga’s bitplane-based play-
fields, the source of so many useful graphical tricks and hacks when pro-
gramming a 2D game such as Menace, are an impediment and annoyance 
in a game such as Doom. Much preferable are the Intel-based machines’ 
straightforward chunky playfields because these layouts are much easier 
to work with when every frame of video must be drawn afresh from scratch. 
What is required most of all for a game such as Doom is sufficient raw 
processing power to perform the necessary thousands of calculations 
needed to render each frame quickly enough to support the frenetic action 
for which the game is known. By 1993, the plebian Intel-based computer, 
so long derided by Amiga owners for its inefficiencies and lack of design 
imagination, at last possessed this raw power. The Amiga simply had no 
answer to the Intel 80486s and Pentiums that powered this new, revolu-
tionary genre of first-person shooters.

Throughout its history, the Amiga had always to some extent replaced 
brute power with finesse and efficiency. Even the original machine’s 
68000 was, after all, clocked almost one full megahertz below that of the 
Atari ST and Apple Macintosh. The requirements of games such as Doom, 
however, were a problem the Amiga could not dance around, and as Doom 
exploded in popularity, these games became increasingly the only games 
many gamers wanted to play. The Intel platform was soon being tailored 
to them via special 3D-graphics cards that removed some of the mathe-
matical burden of 3D rendering from the CPU, just as, in an earlier era, 
Miner and team had designed the blitter and copper to help out with the 
2D games that were popular then. Versions of Doom did make their way to 
the Amiga after id released the source code to the engine in 1997, but even 
this relatively primitive 3D engine runs acceptably only on Amigas that 
have been dramatically expanded beyond their original capabilities. In a 
supreme irony, one might say that the 3D revolution that began on the 
Amiga ultimately killed its parent, for although the Amiga was the most 
suitable platform in existence for that purpose in 1986, it lacked the tools 
to make the great leap to interactive 3D. Without the mainstream exposure 
that cutting-edge games could offer and with only niche markets such as 
desktop video to continue to sustain it otherwise, the Amiga was in a tough 
spot indeed after Myst and Doom appeared, not only in North America but 
soon enough in Europe as well.

The Blame Game

But why was the Amiga not improved fast enough—if not to maintain the 
huge lead it had over other platforms in 1985, then at least to keep up with 
them?
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The standard response to such a question among current and former 
Amiga users is to place the blame squarely at the feet of the Commodore 
management team, whose neglect and incompetence finally led to the end 
not only of the Amiga, but of Commodore itself. And certainly there is a 
great deal of truth to this argument. At no point from the time Commodore 
acquired the Amiga in 1984 until its bankruptcy and liquidation in 1994 
was it anything but a confused and poorly managed organization. After a 
typically ineffective advertising campaign to accompany the launch of the 
Amiga, Commodore advertised it only in fits and starts and almost always 
poorly (at least in North America). Corporate strategies and reorganiza-
tions came and went even faster than CEOs, the general pattern being for 
Commodore to announce a bold new marketing direction for the Amiga—
positioning it as a business tool, an ideal home computer, or a multimedia 
workstation—and to indulge in a brief flurry of advertising. When this 
advertising failed to make an immediate impact on sales and on the fol-
lowing quarterly statement, the approach would be unceremoniously 
dropped and replaced at some future date by another approach that effec-
tively undercut everything Commodore had said about the Amiga in the 
previous campaign. These constant changes in message created the 
impression to the outsider that Commodore itself had no idea what the 
Amiga really was or what it was good for.

Such an impression was perhaps not far from the truth. Gifted with 
the most revolutionary computer of its era, Commodore failed to put its 
full corporate weight behind the Amiga until, all other revenue streams 
having dried up, there literally was no other choice. Commodore instead 
tried to hedge its bets, putting considerable resources into designing and 
marketing unexceptional Intel-based PC-clone computers. (To under-
stand the full extent of Commodore’s muddled thinking here, imagine 
Apple, after having developed the iPod, choosing to make handheld CD 
players a vital part of its corporate strategy.) An even more incredible 
Commodore decision was to continue into the 1990s to invest money and 
engineering effort into developing a new iteration of the Commodore 64, 
dubbed in-house “the 65.” Engineer Fred Bowen wrote of the planned 
Commodore 65 in a preliminary manual: “The C65 microcomputer is a 
low-cost, versatile, competitive product designed for the international 
home computer and game market. The C65 is well suited for first time 
computer buyers, and provides an excellent upgrade path for owners of 
the commercially successful C64. . . . The purpose of the C65 is to mod-
ernize and revitalize the 10 year old C64 market.”5 One might of course 
reply that Commodore already had a computer that met all of those crite-
ria, and it was called the “Amiga 500.” The 65 fortunately was canceled 
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before Commodore squandered more resources attempting to market it. 
Yet when one considers that these words were written in March 1991 and 
that the costly and distracting project itself persisted to the end of that 
year, a time when even the Amiga 500 was beginning to look aged and 
Commodore was already encountering serious financial problems, one 
wonders whether anyone involved with Commodore’s management was 
even aware of the state of the computer industry in the early 1990s. This 
quaint machine had no chance against the first wave of CD-ROM- and 
Windows-equipped multimedia PCs then beginning to flood the market. 
Like Commodore itself, the 65 seemed in 1991 a relic of another comput-
ing age. Such distractions as the 65 project undoubtedly funneled precious 
research-and-development funding, already in short supply at Commo-
dore, away from badly needed improvements to the Amiga line.

Miner’s team had been keenly conscious that the Amiga should be 
continually improved and had begun working on a new generation of cus-
tom chips for the “next” Amiga, dubbed the “Ranger project,” even as the 
Amiga 1000 was just coming to market. Information on Ranger’s exact 
specifications is incomplete, but at least one Miner interview from 1988 
indicates that the project made considerable progress indeed: “Commo-
dore now has a high resolution chip set of Amiga chips that I worked on 
when we were with Amiga in Los Gatos. These chips use video RAM and 
can produce a very high resolution ten twenty four display along with the 
present Amiga display simultaneously. They increase the display address 
range to two megabytes. These chips are completed and tested and require 
only a computer and memory to hold them together.”6

If the Ranger chips were indeed delivered to Commodore in such an 
advanced state prior to the dismissal of Miner and his team, they never 
found their way into a completed Amiga. For years afterward, Commodore 
contented itself with tinkering at the edges of the Amiga’s technology, cost 
reducing and repackaging it in the form of the 500 and 2000 and making 
modest architectural improvements such as slowly increasing available 
chip RAM, incorporating faster processors, and adding some of the most 
widely requested software features to AmigaOS. The platform’s core capa-
bilities—its 4,096 colors, its basic display resolutions, its sound capabili-
ties, its blitter and copper—meanwhile remained stagnant until the 
introduction of the AGA chip set in 1992, which brought the Amiga, once 
so far ahead of the field, only up to rough parity with standard offerings 
on other platforms. It is tempting to lay responsibility for this stagnation 
entirely at the feet of Commodore’s management, especially when one 
considers that Commodore’s engineering group initiated the AAA chip set 
in 1988.7 If completed in a timely fashion, AAA would likely have marked 
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as big a leap over the then-current state of the art in PC graphics as the 
original Amiga had in 1985. It even included simple 3D acceleration to 
support games exactly like those that would eventually undo the Amiga as 
a viable game machine. AAA, however, remained chronically under-
funded, and, like the Ranger chip set, it ultimately went unreleased in 
favor of the somewhat stopgap AGA solution.

Even in repackaging the Amiga technology, Commodore was often 
negligent. As a multimedia machine ideal for presentations and designed 
to integrate with video systems, the Amiga was positively crying out for a 
portable or laptop variant, and yet the idea seems never to have received 
any real consideration at Commodore, even as such models became 
increasingly common among the PC clones and as Amiga users lobbied for 
one of their own. And so the kids of the demoscene were forced to lug 
complete desktop systems with them to the demoparties, and Johns Hop-
kins professor Daniel J. Barrett, as described in chapter 5, was forced to 
content himself with recording his Amiga presentations onto videotape 
and showing them to his students that way, when what he really craved was 
the spontaneity of an interactive presentation.

Other aspects of Commodore’s business were run equally poorly. 
Familiar with selling inexpensive home and game computers through 
mass-market outlets such as Sears and Toys ’R’ Us, the company failed to 
cultivate or support the strong dealer network necessary for many profes-
sionals to take its higher-end machines seriously. Meanwhile, its cus-
tomer support in general was almost uniformly abysmal. If companies 
such as Apple, IBM, and Microsoft publically treated Commodore’s com-
puters as toys unworthy of their attention, this was perhaps because Com-
modore seemed to have a toy manufacturer’s attitude toward its products 
and its customers. The Bandito, an anonymous author who wrote about 
Commodore, the Amiga, and the computing industry in general with 
depth and insight through a long-running column in Amazing Computing, 
had this to say about Commodore in late 1993:

Commodore International’s roots are in manufacturing, not comput-
ing. . . . Commodore International isn’t really a computer company; 
they’re a company that happens to make computers. They have no 
grand vision of computing in the future. . . . Commodore International 
merely wants to make products that sell. Right now, the products 
they’re set up to sell happen to be computers and video games. Next 
year, it might be bicycles or fax machines. . . . Commodore Interna-
tional won’t do what’s good for the future of computing, it will do 
what’s good for the bottom line.8
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Although doing “what’s good for the bottom line” is of course what all 
for-profit companies presumably attempt, Commodore’s lack of comput-
ing vision and its congenital inability to see beyond the next financial 
quarter were ultimately fatal to it and to the Amiga. There is something 
both particularly pathetic and all too typical about Commodore’s attempts 
to market the Amiga in the early 1990s by jumping aboard the “multimedia 
computing” bandwagon that it had allowed more visionary companies 
such as Microsoft and Apple to launch. It is debatable whether Commo-
dore’s management even realized that Miner’s team had created the first 
multimedia computer years before the term entered common usage. Such 
promotion now just gave the Amiga the aura of an aging also-ran. Even as 
early as 1988 Miner himself felt that Commodore had likely mismanaged 
the Amiga into oblivion: “Amiga is so far behind Macintosh and IBM now 
[in public recognition and industry acceptance], and they’ve lost so much 
momentum and position, that I think it’s going to be almost impossible to 
recover.”9

I wish to make clear even as I criticize, however, that the failures I have 
just unspooled were entirely the result of poor management decisions, not 
of technical incompetence on the part of Commodore’s engineering staff. 
In fact, engineers such as Dave Haynie, the chief designer of the Amiga 
2000 and 3000 who in effect if not in title filled Jay Miner’s shoes after 
the ouster of the original Amiga team, accomplished remarkable feats in 
the face of scarce resources, confused directives, and constant layoff and 
hiring cycles that kept the whole engineering division perpetually on 
edge.10 If the Amiga never evolved as it should have because of poor man-
agement decisions, it also, thanks to Hayne and his colleagues, advanced 
much more than one would have any right to expect under the conditions 
that Commodore’s management created.

And it is also true that the difficulties that engineers such as Haynie 
faced in substantially upgrading the Amiga were considerable indeed due 
to factors inherent in the platform’s design. These difficulties do not 
absolve Commodore of responsibility for its inaction and lack of vision, but 
they are considerable enough to beg the question whether the platform 
would be with us in recognizable form today even if it had a better parent.

Limitations of the Amiga’s Design

Miner and his team designed the Amiga at a time when raw processing 
power was, at least by today’s standards, expensive and hard to come by. 
They therefore replaced brute power with elegance and efficiency through 
the tightly coupled network of specialized custom chips that is the Amiga 
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platform’s defining hardware characteristic. Yet such a design comes with 
a major drawback: it is very difficult to upgrade, very difficult to extract 
one piece of the system and replace it with an improved version, without 
breaking the entire design. Thus, even as the Amiga anticipated comput-
ing’s rich multimedia future, it was not well designed to grow along with 
that future. It was a fundamentally closed system. This fact must be rec-
ognized just as much as Commodore’s mismanagement in considering the 
reasons that the Amiga did not survive to dominate the future that its 
launch promised.

As demonstrated by the Ranger project, Miner and his team were 
thinking about future improvements to their design even when the Amiga 
1000 was still a shiny new product. There was room for growth built into 
AmigaOS from the start. The graphics libraries, for instance, are designed 
to support screens of up to eight bitplanes of depth, even though no pos-
sible configuration on the original hardware could support more than six. 
And the designers’ main motivation in requesting that programmers use 
proper OS calls rather than coding to the bare metal was their conscious-
ness that programs built around the former had a good chance of continu-
ing to work on future models and configurations, whereas changes to the 
hardware registers and other elements necessitated during major upgrades 
were almost guaranteed to cause programs which worked with the bare 
metal to fail. But programmers—including at times the designers them-
selves—did bypass AmigaOS, whether partially or entirely, in the name of 
speed and efficiency. This practice was most common in the world of 
games and in the underground scenes, but it was by no means confined to 
those areas. Thus, Commodore had to consider the fact that any major 
upgrade to the Amiga’s core capabilities would inevitably break compati-
bility with a huge swathe of its existing software base, including many of 
the games that were the machine’s bread and butter in Europe, by far its 
most successful market. And this break was exactly what happened when 
the AGA-based Amiga 1200 and 4000 finally arrived in 1992. Commodore 
essentially had to ask Amiga owners heavily invested in games to start 
over, to build their libraries anew on a brand-new platform, and at the 
same time convince developers to support this new platform with its lim-
ited user base. The degree to which these requests were acquiesced to was 
in both cases actually more considerable than one might have expected, 
which perhaps serves as a testament to the original Amiga’s lingering 
reputation as a great game machine, but even in Europe the Amiga 1200 
never came close to matching the 500’s popularity. In North America, 
meanwhile, the 1200 and 4000 barely made a blip on the general comput-
ing industry radar. Even had Commodore survived to complete and bring 
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to market the AAA chip set, it would once again have had to ask its users 
to buy an entirely new machine that was at least partially incompatible 
with the old in order to reap the benefits of the new chip set.

The root causes of these problems lay not just in the hardware design, 
but also in the beloved AmigaOS itself. Modern OSs simply do not allow 
their application programmers direct access to the hardware. AmigaOS, 
however, does while only asking that they resist the temptation of the bare 
metal. In giving its programmers such unfettered access to the underlying 
hardware if they insist on taking it, AmigaOS doubtlessly enabled many 
creations that would have been impossible through interfering layers of 
OS abstraction. Nevertheless, this facet of AmigaOS proved to be a double-
edged sword as time went on. Thus, some of the very qualities that made 
AmigaOS so beloved were key factors in the Amiga’s decline.

By 1992, the buzz in the computer and graphics-design industries was 
about 24-bit graphics, in which 24 bits are used to define each pixel on 
the screen, allowing it to be any of 16.7 million colors. In other words, the 
RGB value of each pixel is stored in the playfield itself, consuming three 
bytes there, with no separate table of color registers and no restriction on 
the total number of colors allowed on screen at once. The Amiga, mean-
while, remained absolutely bound, even in the new HAM8 mode that 
arrived with AGA, to storing its on-screen colors in a color table that had 
to be referenced to find the actual color for each pixel, a system that made 
sense in the 1980s when memory was expensive and processing power 
sharply limited, but that was becoming increasingly cumbersome by 1992. 
Of course, one might reply with some justification that the 256 color reg-
isters provided by AGA represent a pretty fair number to be allowed on 
screen at once, certainly more than the average painter working with oil 
and canvas has in her palette. Yet such a statement does not account for 
the subtle shading and blending such a painter does as she overlays colors 
on the canvas—techniques computer artists were always keen to emulate—
nor does it address the annoyance of having to constantly define and place 
colors and ranges of colors within the palette before one can make use of 
them. Further, computer-aided graphics design and image processing 
were moving farther and farther upscale. Having conquered the fields of 
home and low-cost video production and onsite presentations and having 
made significant inroads into television, they were now entering the 
realms of film and professional photo processing. High-fidelity output 
was absolutely essential in these fields. For many working in them, even 
the compromises of HAM8 mode were unacceptable. The Amiga thus 
looked likely to be shut out of the very computing niches it had created, at 
least at the high end.
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And so the Amiga aftermarket, always more creative and energetic 
than Commodore itself, did its best to respond. Nevertheless, in doing so 
it was battling difficulties that stemmed from the very nature of the Amiga 
platform itself. The Macintosh and especially the Intel-based PCs that ran 
Microsoft Windows were possessed of a fairly modular, open architecture 
that used retargetable graphics. In other words, their graphics subsystems 
were contained on separate boards that could be swapped as needs or 
technology changed, a far less efficient design than the Amiga’s, but also 
a far more flexible one. The aftermarket graphics boards that began 
appearing in quantity for the Amiga in 1992 had to rely on various hacks 
and trickery to bypass the Amiga’s tightly coupled custom chips, often by 
trying to intercept and reroute the CPU’s communications with its atten-
dants. Such solutions were often unstable and generally failed to work 
entirely with software that programmed the custom chips directly. To 
properly explain just what a morass this situation could become, I would 
like to return one more time to the Deluxe Paint series, specifically the last 
in the line released in early 1995, DPaint V.

DPaint V’s programmers, Lee Ozer and Dallas Hodgson, were faced 
with quite a dilemma. Twenty-four-bit graphics were increasingly regarded 
as a necessity, yet DPaint, more so even than most Amiga software, 
depended on being able to know the exact characteristics of its display so 
it could provide the user with appropriate palette requestors and perform 
such operations as blends and shades in a way that maximized that dis-
play’s potential. Further, since its 1985 DPaint I incarnation, DPaint had 
relied heavily on the unique properties of the Amiga’s custom chips for its 
operation. Trying to build in customized, individual support for each of 
the viable graphics boards was a lost cause, especially considering that the 
older boards were constantly being updated and new ones constantly 
released. Ozer and Hodgson therefore chose not to attempt it, designing 
DPaint V to work only with the Amiga’s normal chip set. They also chose, 
however, to give the user the option of working with 24-bit images by 
abstracting the data that make up the images from the physical screen and 
the playfields used to display them.

The IFF standard had been updated to support 24-bit images, stored 
as a rather staggering collection of 24 separate bitplanes, a considerable 
time before DPaint V appeared. In fact, even DPaint IV is capable of read-
ing these images, although upon its doing so they are condensed to a 
format the host machine can deal with, with the inevitable accompanying 
loss of quality. Nor can DPaint IV convert the images back to 24 bit. If the 
DPaint V user chooses the option of something called a “24-bit backing 
store” on that program’s initial menu, though, a 24-bit image can be 
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loaded and held in the Amiga’s memory in its original form, with no loss 
of fidelity. Holding or even manipulating these data is not a problem for 
any machine with sufficient memory and speed. Displaying them is a 
problem, though. DPaint V therefore abstracts the palette of the original, 
stored in fast RAM, into the normal master and working copies stored in 
chip RAM and allows the user to edit and paint on the image as usual. The 
new HAM-mode color-mixer gadget introduced with DPaint IV becomes 
even more useful here; the user can choose absolutely any of AGA’s pos-
sible 16.7 million colors, then use it to paint onto the image. If that color 
is not available in the color table of the playfield used to store the on-
screen version of the image, though, it will instead show up as the closest 
possible approximation. Thus, the artist can paint in absolutely any color 
onto the 24-bit image in the backing store, with the notable wrinkle that 
she may not be able to see exactly what she is doing. A brief example may 
clarify the whole process.

Let us say that we wish to edit the 24-bit image shown in the left part 
of figure 9.1, which we perhaps captured using one of the 24-bit scanners 
or frame grabbers that were widely available by 1995. We load it into 
DPaint V, choosing in the process the option of using the 24-bit backing 
store. We are running DPaint V in AGA’s 256-color mode, so the image we 
see on screen is not the original, but rather the best approximation of the 
original that DPaint V can manage, given just 256 colors to work with. 
Because we are using a resolution of 640 × 400, although the image was 
captured at 800 × 600, we also cannot see the image in its entirety, but 
must scroll around within it.

We now draw a red X over the top of the image (figure 9.2). The color-
mixer bar we have brought up shows that we will be drawing in a bright 
red. The screen that holds the image itself, however, has no such color 
available in its limited palette, so it makes the best approximation it can, 
resulting in a brownish green instead. Only when we have saved the image 
again and displayed it (perhaps using the specialized software that accom-
panied our 24-bit display board) can we see that the X is in fact the red 
that we intended.

Of course, requiring the artist to go through such permutations and 
to paint by faith rather than sight hardly makes things easy on her and 
seems far removed from Dan Silva’s intuitive early versions of DPaint. To 
add salt to Amiga loyalists’ wounds, 24-bit image editing was a painless 
process on contemporary Macintosh or Windows machines equipped 
with modern graphics cards. Even the 24-bit display boards that were 
available for the Amiga were based largely on chips developed for other 
computer lines and relegated the Amiga’s hardware, once so unique and 
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revolutionary, to little more than a fairly generic machine, albeit one sad-
dled with the host of annoyances and problems that arose from bypassing 
the original custom-chip-based hardware. The Amiga, once the artist’s 
computer, was simply no longer able to provide the image quality that so 
many professionals felt they needed, and it had already lost its leadership 
position in many areas of the graphic arts to the latest generation of the 
Macintosh, now reaching out from the desktop-publishing niche that had 
made its name and kept it alive and becoming a tool for other creative 
endeavors. The Amiga had little outside of the admittedly elegant AmigaOS 
to recommend it over a Macintosh or, indeed, an everyday Intel-based 
machine. And here we come to one of the greatest ironies regarding the 
Amiga: the clunky Intel-based architecture designed by IBM in 1980, so 

9.2  To the left, drawing onto a 24-bit image in Deluxe Paint V; to the right, the end 
result, displayed again in its full 24-bit glory. Color versions of these images are available 
on this book’s Web site and may illustrate this example more clearly.

9.1  To the left is a true 24-bit image. To the right, the same image loaded into Deluxe 
Paint V’s 256-color mode, with backing store enabled 
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inefficient and aesthetically ugly, butt of countless jokes from Amiga 
users, had exactly the open, modular architecture that let it take advantage 
of new technologies without breaking compatibility with previous itera-
tions of itself. This simple and easily copyable architecture also enabled 
an entire industry of PC-clone manufacturers, thus separating the plat-
form from the fate of its corporate parent—albeit unintentionally and 
much to IBM’s chagrin. By the early 1990s, new processors had brought 
with them such huge increases in available computing power that the 
Intel-based machines could easily overcome the inefficiencies of their 
design by, in computer science jargon, “just throwing more CPU at the 
problem.”

The Amiga did not have access to the computing power of the Intel-
based machines, thanks to a Motorola decision that, perhaps more than 
any other, sealed the Amiga’s fate. The last 68000-series processor that 
Motorola released was 1994’s 68060. By the time the 68060, little more 
than an afterthought in the 68000 line, appeared, Motorola had long since 
entered into a partnership with IBM and Apple to develop a brand-new 
processor to replace the 68000-line, the PowerPC. Unlike Intel, which 
scrupulously made certain every new processor generation was compati-
ble with the previous, accepting the inelegances and inefficiencies that 
entailed, Motorola and its partners chose to make the PowerPC a “clean-
room” design, with no relation to or compatibility with the 68000 line. If 
Commodore wished to continue the Amiga with Motorola’s latest proces-
sors, it thus faced not only designing an entirely new architecture around 
the PowerPC, but also rewriting AmigaOS to run on that new processor; it 
would have to make an entirely new Amiga from scratch and to accept that 
the end result would have compatibility with its predecessors, if at all, only 
through software emulators. Apple was of course faced with the same 
dilemma for its Macintosh line, but it had the resources and the entrenched 
status to execute this immense change successfully, albeit not without 
much grumbling from and inconvenience to its users. Commodore was in 
no position to do likewise, as indeed were few other manufacturers. Even 
in the absence of the Commodore bankruptcy, the Amiga had thus reached 
a very real end of the road in 1994. Even had Commodore’s financial situ-
ation been different and its management more competent, one might still 
ask how much this hypothetical PowerPC Amiga, with retargetable graph-
ics and sound, with an entirely rewritten OS, and with no software com-
patibility with its predecessors, could really be considered an Amiga at 
all.11

Although Miner’s team gave the computing world a vision of its mul-
timedia future, it had to do so with the technology that was available to it 
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in its present. Thus, the Amiga, for all its vision, contains elements that 
would be of little use in that future, elements that echo the early eight-bit 
computing era of the late 1970s and early 1980s rather than the computing 
eras to come. Hardware sprites, planer graphics, and of course the Amiga’s 
very tightly coupled, closed design are only some of the most prominent 
among these elements. Of course, they are also the very elements that 
enabled the Amiga to be a true multimedia computer using the technology 
of 1985. These contradictions and ironies are inherent to any understand-
ing of the platform. To ask whether the Amiga or the Intel architecture was 
ultimately “better” only invites further qualification. The Amiga was bet-
ter at countless things in its time, but the Intel architecture was pioneering 
in its openness and modularity and better suited to realize the future the 
Amiga previewed.

The Beloved Underdog

There is a sense in which Commodore’s neglect and the Amiga’s lack of 
industry acceptance can be construed as a positive, for the platform’s per-
petual underdog status was somehow vital to the culture and community 
that sprang up around it. It is difficult to imagine the most devoted 
members of this community clinging to the Amiga—some even to this 
day—had it been just another well-funded and well-supported commer-
cial platform. The leadership vacuum left by Commodore created the 
space for its users to take de facto ownership, thus empowering creative, 
generous, and visionary communities who learned from and shared with 
one another. Perhaps nowhere is their spirit more evident than in the Fred 
Fish public-domain software collection.

Fish was12 an experienced computer programmer who, fascinated by 
the Amiga’s support for multitasking and its graphics hardware, purchased 
his first machine very early:

When I got my machine just after Thanksgiving 1985, there was virtu-
ally no software anywhere. All I had was the normal Commodore disks 
that came with the Amiga and a few demo disks that I had managed to 
con my dealer into letting me take home to play with. I said to myself, 
“I have to do something with this machine,” so I started looking around 
to see what I could find in terms of public domain software that I could 
port. . . . At the time, I was working at a Unix company and had a fair 
amount of public domain software on disks that had come through 
Usenet, so I started porting that. I had gotten two or three disks of 
useful stuff done when I heard about this user group called The First 
Amiga Users Group. . . . Well, the users there went kind of crazy 



9	 The Way the Future Was� [265]

because, of course, they didn’t have much software either. That’s basi-
cally how it all got started.13

Like many early Amiga users willing to buy the machine on the basis 
of its raw potential in this period when very little polished commercial 
software was available, Fish had been reared in the world of institutional 
computing, which was possessed of a long tradition of cooperation and 
sharing as opposed to the more cutthroat, commercialized world of PC 
software development. He brought this ethic to the Amiga, collecting the 
best and most interesting available free software onto disks, which he 
distributed for only a nominal shipping-and-media charge to individuals, 
user groups, magazines, and dealers for further duplication and distribu-
tion. It may seem an awkward method of distribution today, but in this era 
when the Internet did not yet exist in its modern form and telecommuni-
cations of any stripe were unreliable and often expensive, the Fish disk 
collection, along with various others that sprang up in its wake, provided 
the only access to quality free software for many Amiga users. The Fish 
collection reached a staggering 1,000 volumes before he turned to CD-
ROM as his medium of distribution in 1994, producing bimonthly disks 
in this format until the slowing rate of new free-software releases follow-
ing the Commodore bankruptcy and the burgeoning availability of the 
Internet as a means of wide-scale distribution helped him finally decide 
to stop in late 1995. The network remained throughout an entirely non-
profit operation, a pure creation of the hacker ethic of sharing and open 
communication that absorbed roughly 20 to 30 hours of Fish’s free time 
per week for a decade.14

The Fish collection today provides a veritable history lesson in the 
evolution of the Amiga free-software community. The early disks are filled 
with many frankly trivial exercises and code snippets, some provided by 
the original Amiga developers themselves, as a community of hackers and 
early adapters struggled to learn just what the machine they purchased was 
capable of and how it could be programmed. Later volumes contain full-
fledged applications of often surprising complexity: word processors, 
spreadsheets, databases, games, art and multimedia demos of various 
stripes, music trackers, and of course countless tools small and large to 
aid in all aspects of graphics, animation, and desktop video. Fish was 
tremendously respected in the Amiga community for his fairness and 
dedication, but he did admit to “a general bias towards material that comes 
with source code,” saying that “if two programs come to me and one of 
them has source and the other doesn’t, and there’s only room for one  
on the disk, then, of course, the one with source gets put on.” He also  
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admitted to “a bias towards developers.”15 Thus were the Fish disks par-
ticularly rich in tools for programmers, including debuggers, system 
monitors, editors, and a variety of full-fledged compilers and develop-
ment environments for various programming languages, from the ubiq-
uitous C, Pascal, and BASIC to obscurities such as Oberon-2 and Cleo. 
These biases reflect the ideals of a hacker who believed not just in provid-
ing users with functional software, but also in empowering them with 
information, tools, and source code that they could build on to create 
software for themselves—and, it was hoped, to pass on the results to others 
within the Amiga community. Although Fish did publish some semicom-
mercial “shareware” software—programs that were distributed freely, but 
in a crippled state, with the user requested to send the programmer a pay-
ment to receive the full version—Fish “discouraged” their submission, 
preferring to adhere as much as possible to the hacker ideal of completely 
free software exchange.16

In The Cathedral and the Bazaar, the classic philosophical text of the 
modern open-source movement, Eric Raymond divides software devel-
opment into two models: the cathedral model, in which software is “care-
fully crafted by individual wizards or smalls bands of mages working in 
splendid isolation,” bestowing the product upon the eager users only when 
it is perfected and polished; and the bazaar model, in which the develop-
ment process is “open to the point of promiscuity,” with all invited to share 
and participate in a community effort that benefits all.17 In the latter, the 
users of software are also its creators and vice versa. With Commodore 
having abdicated its expected role as high priest of the Amiga community, 
and with the heavy hitters of the commercial software world (a few excep-
tions and niche markets aside) also having chosen to ignore the Amiga, 
the way was open for the bazaar of the Fish collection. Here we see yet 
another foreshadowing of digital culture’s future, of the collaborative 
development communities that would coalesce around the open-source 
Linux OS in the 1990s and that are responsible today for such widely used, 
free, yet powerful applications as the Mozilla Firefox Web browser and the 
Openoffice.org office suite.

Unfortunately, there were inevitable limits to what the Amiga’s free-
software community could accomplish in the face of the Amiga’s proprie-
tary hardware design and the closed-source AmigaOS. Motivated as they 
may have been to improve and evangelize for the platform, they could nei-
ther design new models and market them nor make needed improvements 
to the software on the Kickstart ROM chips. Their efforts were likewise 
limited by the poor state of telecommunications throughout much of  
the Amiga’s run, which made difficult the large-scale, well-coordinated  
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cooperation common in the modern open-source community. Neverthe-
less, the Amiga’s free-software community was certainly the most sophis-
ticated and active in the world of personal computing prior to Linux. It 
should not be a surprise that countless Amiga users migrated to Linux and 
other open-source OSs as the Amiga’s necessary ultimate fate became 
clear, for much of the spirit of the Amiga free-software community per-
sisted in these communities without being tied to a single corporation’s 
decisions and fate. Indeed, the Amiga’s fate serves as an object lesson for 
the modern open-source movement, speaking to the way that even excel-
lent hardware and software can wither when said excellence is proprietary 
and closed source.

In one of the more remarkable examples of passion and sheer stub-
bornness in the history of computing, some Amiga users have continued 
to cling to the platform for the past 15 years, even as the Amiga intellectual 
property has changed hands multiple times and gone through countless 
alleged rebirths and the inevitable trailing disappointments. There have 
even been modest successes as well. New Amigas have been manufactured 
at various times under various licenses, and a small but extant network of 
dealers and manufacturers persists to this day, selling equipment to 
upgrade and repair machines now in many cases 20 years old, even pro-
viding a trickle of new commercial applications and, yes, games. The spirit 
of the Fish collection meanwhile migrated to the Internet. Founded in 
1991 by a club of Swiss computer science students, an online archive 
known as “Aminet” quickly evolved into a huge repository of public-
domain and open-source software for Amiga computers, with mirrors all 
over the world. On May 16, 1996, Aminet hit the 30,000 file mark and 
could declare itself “the largest collection of freely distributable software 
for any computer system.”18 That distinction inevitably gave way in the 
wake of the explosion in Internet usage and the increasing popularity of 
Linux-driven open-source initiatives in the late 1990s, but Aminet 
remains vital to the Amiga community of today, both as a voluminous 
archive of the platform’s rich past and as a source of new free games, 
demos, applications, tools, and information. It still receives several new 
submissions almost every day.

Another impressive achievement of this Amiga community that 
refuses to die was the completion of AmigaOS 4.0 by Belgian software 
company Hyperion Entertainment in 2006. Version 4.0 is a complete 
rewrite of AmigaOS that, although based to a large extent on earlier ver-
sions’ source code, runs on PowerPC processors that either have been 
retrofitted into the classic Amiga models or have come as part of new 
“Amiga” systems from boutique manufacturers. Such systems have of 
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course long since abandoned the custom-chip design that made the origi-
nal Amiga so unique—thus, my use of quotation marks around the name. 
AmigaOS 4.0 itself is compatible with software written for older Amigas 
only through emulation. The number of active Amiga users remaining 
today is miniscule by the standards of the general computing industry, but 
their community is a refreshing echo of an earlier era in computing; one 
is reminded of the Homebrew Computer Club of the 1970s soldering 
together their systems in garages and sharing knowledge and software 
simply for the love of hacking.

Although the Amiga’s original hardware design has little remaining 
relevance in the modern world of multigigahertz processors, AmigaOS in 
fact remains a fecund source of inspiration to many. Two open-source 
OSs, MorphOS and AROS, are based on AmigaOS’s look and feel and 
design philosophy while running on everyday Intel hardware. Nor have 
designers of commercial OSs been oblivious to the Amiga lure, as demon-
strated by BeOS, a creation of the startup Be Incorporated in the 1990s. 
BeOS bears obvious marks of its AmigaOS inspiration, but in a story all 
too familiar to Amiga users it ultimately failed to attract sufficient users 
to survive in the face of competition from Apple and Microsoft. Ironically 
in that light, perhaps the most Amiga-like mainstream OS of today is 
Apple’s OS X, with its slick interface and multimedia orientation built on 
a solid Unix-like foundation.

And then, of course, the Amiga remains a favorite of the Internet’s 
retrogaming communities. Virtually all of the old games are available 
through huge legal and illegal archives on the Internet and are playable 
through emulators such as the UAE. Partially prompted by nostalgia for 
their adolescence, but also by the very real qualities of many of the best 
Amiga games, considerable numbers of people continue to play on their 
modern computers the games from Cinemaware, Psygnosis, and other 
publishers that were developed during the Amiga’s heyday.

But there is no avoiding the fact that the Amiga’s significance to mod-
ern computing is rooted in its past, not its present. Rather than lamenting 
the history of the Amiga as a series of tragic might-have-beens and dream-
ing of a revival, we should perhaps view it as a technology that simply ran 
its course and ceded the field to those better prepared to build on its 
innovations. We certainly can do so while also recognizing the elegance 
and panache that made so many people fall in love with the machine in its 
day and that still put stars in the eyes of many a hacker, artist, and gamer 
when the name is mentioned today. Some words written by the Bandito 
amid the chaos and confusion of the Commodore bankruptcy seem espe-
cially wise: “In a few years, no doubt, you’ll be able to buy a computer, 
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software, and operating system that will match the capabilities of your 
current Amiga at about the price you paid for the Amiga way back when. 
But you can smile to yourself, knowing that you were touching the future 
years before the rest of the world. And that other computers and operating 
systems will do with brute force what the Amiga did years before with 
grace, elegance, and style.”19

One must search long and hard to find a for-profit corporation willing 
to sing the praises of a competitor’s product; one certainly will not find a 
record of Microsoft, Apple, IBM, or any other big computer industry player 
publicly discussing the Amiga’s innovations. If one looks to these com-
petitors’ actions, though, one can see that they were watching the Amiga. 
IBM and Microsoft began developing in partnership a multitasking OS of 
their own in the immediate wake of AmigaOS, OS/2, and Apple began a 
serious push to bring quality color graphics and sound to the Macintosh. 
As Jay Miner observed in 1988, “There’s a lot of the Amiga in the Mac II 
[released in 1987], though not done as well, of course.”20 Such develop-
ments would have come eventually in the absence of an Amiga, just as they 
would have in the absence of an IBM or a Macintosh, but the Amiga inno-
vators nevertheless deserve recognition for their vision. The Amiga’s 
unique design makes it a fascinating study in elegant engineering, and the 
communities of practice that sprang up around it—from artists to game 
players to video producers to free-software hackers to the scruffy kids of 
the demoscene—are equally compelling. Yet a study of the platform is also 
more than an abstract lesson in technology or sociology, for although the 
technology itself is dead and most of the communities have moved on, the 
vision of computing that this machine and its disparate users represented 
permeates our lives today. In another 1994 column that reads like a eulogy, 
the Bandito tells us that the Amiga “is the [first] computer that made 
multimedia and multitasking meaningful, that made beautiful music and 
astounding animations possible.”21 The Amiga’s most long-lived and 
effective marketing slogan, “Only Amiga makes it possible,” is of course 
no longer true. It is true, however, that the Amiga made many things pos-
sible first and in doing so gave the world a rough draft of its future.



 

3D modeling  The process of generating the mathematical description of a 
3D scene, whether entirely by hand or via a GUI application, to be turned 
into an image via a 3D renderer.

3D rendering  The process of converting a collection of data that describes 
a 3D scene into a 2-D image on a computer screen.

AAA  Amiga Advanced Architecture. A proposed Amiga chip set with 
capabilities far beyond even those of AGA. Begun in 1988, before AGA, 
but never completed due to lack of funding.

ADC  Analog-to-digital converter. An electronic circuit that converts a 
continuous, analog signal into a stream of discrete, digital numbers.

address  The unique location of a single byte in memory. Addresses are 
numbered from 0 up to the total number of bytes in the computer’s 
memory.

AGA  Advanced Graphics Architecture. A new version of the Amiga chip 
set released in 1992, with dramatically improved display capabilities over 
the OCS and ECS.

Agnus  On pre-AGA Amigas, the custom chip that acts as a gatekeeper to 
prevent chip–RAM conflicts among the other two custom chips and the 
CPU and that fetches data from memory and feeds them to Denise and 
Paula as needed. Also houses the blitter and the copper.

Amiga 500  A cost-reduced home-computer version of the Amiga released 
in 1987. The best-selling Amiga model by far.

Glossary
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Amiga 500+  A new version of the Amiga 500 briefly sold in early 1992, 
which included AmigaOS 2.0 in ROM and the ECS in place of the OCS.

Amiga 600  An odd Amiga model released in 1992 as a successor to the 500 
and 500+ in the low-end market. Despite featuring the ECS and one MB 
of RAM standard, it was so cost reduced as to be in many ways less desir-
able than its predecessor.

Amiga 1000  The original Amiga developed by Jay Miner and team and 
released by Commodore in 1985. Discontinued with the arrival of the 500 
and 2000 in 1987.

Amiga 1200  The home-computer AGA Amiga, with a 68020 CPU. Released 
in 1992.

Amiga 2000  A professional-level Amiga model, with a large case offering 
ample room for expansion. Released in 1987.

Amiga 2500  An Amiga 2000 with a more powerful 68020 or 68030 CPU. 
Released in 1989.

Amiga 3000  A significantly improved version of the original Amiga design 
and the logical successor to the 2000, featuring the ECS, AmigaOS 2.0 in 
ROM, and a 68030 CPU, among other improvements. Released in 1990.

Amiga 4000  The professional-level AGA Amiga, with a 68040 or 68060 
CPU. Released in 1992.

AmigaBASIC  A version of the BASIC programming language that shipped 
with versions of AmigaOS prior to AmigaOS 2.0.

AmigaDOS  The disk- and file-management layer of AmigaOS, licensed 
from Metacomco. Also frequently used by Commodore and others to refer 
to AmigaOS as a whole.

AmigaOS  The Amiga’s standard OS. Frequently also referred to as “Amiga-
DOS” or “Amiga OS.”

analog  Data as they are often found in the real world, a continuous stream 
or curve.

application software  A fairly large, complex, interactive program meant for 
some serious task. A word processor and a paint program are examples.

assembly language  The lowest level at which it is normally practical to 
program a computer. Consists of a system of mnemonics, each represent-
ing a single operation that the CPU can natively understand. These are 
translated into executable code via an assembler. By far the most efficient 
method of programming, but also be extremely tedious and difficult to 
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work with for all but the smallest programs because it lacks the data struc-
tures and logical abstractions of high-level languages. Was often used in 
the 1980s to coax as much as possible from the era’s limited machines, but 
with the explosion in computing power and program complexity that fol-
lowed, it is now commonly used only for certain very specialized tasks 
today. Often also called machine language.

bare-metal programming  Coding directly to a computer’s underlying hard-
ware, using no support libraries or OS calls.

BASIC  Beginner’s All-Purpose Symbolic Instruction Code. A high-level 
programming language developed for teaching purposes at Dartmouth 
College in the 1960s. Often derided by experienced programmers for its 
lack of structure and inefficiency, it was nevertheless ubiquitous on PCs 
of the 1980s.

batch processing  A model of computing in which a series of noninteractive 
programs are funneled through the machine, usually to process large 
amounts of data. An example might be a payroll cycle that accepts input 
data describing employees and the hours they have worked and outputs 
their paychecks.

BBS  Bulletin-board system. An online community, generally running on 
a PC, that users accessed by dialing in using their own computers. Most 
allowed just one user to be online at any one time.

binary  The base-2 number system used by a computer. Each binary digit 
corresponds to a single bit.

bit  A single on/off switch, the lowest level of computer storage. Corre-
sponds to a single binary digit. Can be combined together to form bytes, 
words, or long words representing numbers, symbols, or other data.

bitplane  A part of a playfield consisting of one bit for every pixel. Com-
bined with its siblings when the display is painted to the screen to create 
the final image. The more bitplanes that constitute a playfield, the more 
colors it can contain.

blitter  One of the Amiga’s two custom coprocessors. Can copy blocks of 
memory very quickly and can, if desired, logically combine several sources 
in the process. Very important for animation.

BOB  Blitter object block. On the Amiga, an on-screen object that is 
superficially similar to a sprite, but that is created by drawing into the 
playfield on which it appears. Facilitated by the blitter, thus its name.
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boot sector  The first sector of an Amiga floppy or hard disk, which con-
tains a small bit of code used to boot the machine. A favorite home of 
viruses. Often also referred to as the boot block.

busy wait  The process of a program checking for user input by continually 
looping, thus using CPU cycles, instead of sleeping and waiting for a noti-
fication of activity. Very bad programming practice in a multitasking 
environment.

byte  Equal to eight bits. Capable of storing any unsigned number from 0 
to 255.

C  A hugely popular general-purpose, high-level programming language 
that corresponds more closely to its underlying technology than most lan-
guages do, to the extent that it is sometimes called a “midlevel” language. 
Although C is still slower than assembly, this correspondence makes it 
faster and more efficient than most other high-level languages. Was 
developed in tandem with Unix but spread to many platforms thereafter. 
Most of AmigaOS is programmed in C, and C was by far the most com-
monly used high-level language for serious programming on the Amiga 
platform in general.

CD32  A CD-ROM-based game console that was actually an AGA Amiga 
internally. Released in 1993 and the last significant new product to come 
from Commodore.

CDTV  Commodore Dynamic Total Vision. A CD-ROM-based “multime-
dia appliance” introduced by Commodore in 1991. Was an Amiga 
internally.

CGI  Computer graphics imaging. A method of accomplishing special 
effects in film or video using computer-generated imagery that is super-
imposed onto real-world footage.

chip RAM  The Amiga memory that is accessible by the custom chips. Was 
the first 512 KB in early models; later expanded to the first MB with the 
release of Fatter Agnus and finally the first two MBs with the arrival of the 
ECS. A CPU that is faster than the Amiga’s original 68000 must slow down 
to the 68000’s speed when accessing chip RAM. Further, the CPU can 
access chip RAM only at Agnus’s pleasure.

chroma-key compositing  A method for mixing live video with other sources 
in which all areas of the live feed that are of a certain color are replaced 
with the alternate source. A television weather report is the classic exam-
ple of this technique in action.
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chunky method / chunky graphics  A method of storing a playfield in memory 
as a single contiguous chunk of data. Used by virtually all modern PCs.

CLI  Command-line interface. A command-line-driven AmigaOS inter-
face that is similar to the MS-DOS or Unix command prompts.

code space  Memory used to store actual code to be executed by the CPU.

cold start  Booting a computer from a powered-off state.

collision detection  The process, particularly important in games, of iden-
tifying collisions between on-screen components. Collisions involving 
sprites are automatically detected by the Amiga’s hardware.

CoolCapture vector  A feature of AmigaOS that can allow some code or data 
to survive a warm start. Frequently exploited by viruses.

cooperative multitasking  Multitasking that relies on individual applications 
to cooperate with one another by politely yielding the CPU to other pro-
cesses that might be waiting. The OS, in other words, has no authority to 
seize control preemptively from a process that does not yield it 
voluntarily.

copper  One of the Amiga’s two custom coprocessors. Can be programmed 
to make changes to the display settings at arbitrary points as the display is 
being painted.

coprocessor  A processer that can be programmed, at least within a limited 
sphere, and can operate semiautonomously but is ultimately subservient 
to the CPU.

CPU  Central processing unit. A computer’s programmable brain.

cracker  One who cracks protection schemes, whether on commercial 
software or on larger technical structures such as the phone system or 
computer networks. Often referred to as a hacker by the nontechnical 
media.

cracktro  Crack intro. A multimedia introduction placed at the beginning 
of cracked games by the pirate group who did the cracking to claim credit 
for their work and to show off their coding skills. The forerunner of the 
demoscene demo.

CRT  Cathode-ray tube. The standard display technology used for both 
televisions and computer monitors prior to the advent of liquid-crystal 
display (LCD) and plasma flat screens.

custom chip  A specialized chip designed for a certain computer model, as 
opposed to more common general-purpose components. A trio of spe-
cial-purpose chips made the Amiga’s hardware design unique. Prior to the 
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AGA era, these chips were named “Paula,” “Denise,” and “Agnus”; on the 
AGA machines, they were named “Paula,” “Lisa,” and “Alice.”

DAC  Digital-to-analog converter. An electronic circuit that transforms a 
stream of discrete, digital numbers into a continuous, analog wave.

data space  Memory used to store data that are acted upon by code.

demo  In the context of the demoscene, a generally noninteractive piece 
of computer-based multimedia art incorporating graphics, animation, 
and music and almost always coded from scratch in assembly language.

Denise  On pre-AGA Amigas, the custom chip responsible for doing most 
of the work of generating the display.

digital  Data stored as a series of discrete numbers; the only type of data a 
computer can deal with.

digitization  The process of converting analog data into digital data by sam-
pling it repeatedly at fixed intervals.

digitizer  In the abstract, any device that digitizes an analog signal into 
digital data. In the 1980s and early 1990s, this term was normally used to 
refer to a device that captured an analog image such as a photograph for 
storage and display on the computer.

DMA  Direct memory access. A device that directly accesses its host com-
puter’s memory rather than passing requests through the CPU.

double buffering  A method of performing animation in which two play-
fields are used. While one is the active one being painted to the screen, 
the next frame of the animation is prepared in the inactive one; the inac-
tive one then becomes the active one, and vice versa.

dual-playfield mode  A unique Amiga video mode in which two playfields, 
each up to three bitplanes deep, can be on the screen at once. The back-
ground playfield shows through wherever the foreground playfield is 
transparent (signaled by color 0).

ECS  Enhanced Chip Set. Chip set introduced on the Amiga 3000 in 1990, 
which increased available chip RAM to two MB and introduced some other 
modest improvements to the OCS.

EHB mode  Extra-Half-Brite mode. A special mode in which the Amiga 
uses six bitplanes to display up to 64 colors at once on a low-resolution 
screen, with the last 32 colors being the first 32 at half intensity.

event-driven programming  A programming model in which an application 
is driven by events generated by the user from many options available to 
her rather than running as a continuous linear stream. These events 
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include such actions as typing a key on the keyboard, clicking a gadget or 
menu, and so on. An application should ideally sleep when there is no 
processing to be done between these events, yielding the CPU (under a 
multitasking OS) to other tasks. A natural fit for a GUI application and for 
a multitasking OS.

Exec  The Executive. The microkernel heart of AmigaOS, which performs 
the most essential tasks of process management and resource allocation.

executable  A program that has been translated from human-readable source 
code into the CPU’s native language of 0s and 1s, and thus can be executed by the 
computer.

fast RAM  Memory that is accessible to the Amiga’s CPU but not to the 
custom chips. Can always be accessed by the CPU at full speed.

Fat Agnus  The version of the Agnus chip developed for the Amiga 500 and 
2000. Identical in functionality to the version in the Amiga 1000, but 
more compact and less expensive to manufacture.

Fatter Agnus  A new version of the Agnus chip that Commodore released 
in 1989 and that increases chip RAM to a maximum of one MB.

frame grabber  A device capable of instantly capturing and holding a full 
digital image in its memory.

free software  Software that is entirely free to use and distribute to others, 
with no fees, onerous restrictions, or licensing requirements. The term 
has come to imply software that is open source thanks to the efforts of the 
Free Software Foundation, but this implication was not as prevalent in the 
1980s and early 1990s as it is today.

genlock  Generator lock. A device that allows the Amiga to interface with 
and mix its video signal with other analog video sources.

GUI  Graphical user interface. A method of controlling a computer using 
a pointing device such as a mouse, a desktop metaphor, and graphical 
windows, icons, and menus. Has supplanted and in many cases replaced 
older CLIs.

Guru Meditation Error  The whimsical error message that signals a full sys-
tem crash under certain versions of AmigaOS. Equivalent to the Microsoft 
Windows “Blue Screen of Death.”

hacker  A computer programmer or technician with a certain system of 
ethics and a certain idealized view of the way that technology and even 
society ought to function—that is, with complete openness and transpar-
ency to all. Associated with the open-source methodology of development; 
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generally opposed to most proprietary software. A term often used by the 
nontechnical media to refer to computer criminals, but the term cracker is 
more appropriate in the latter case.

HAM mode  Hold-and-Modify mode. A special Amiga mode available in 
low resolution only in which most pixels are a modified version of the 
color of the previous pixel. Allows all 4,096 colors on screen at once, but 
with only a limited number of sharp color transitions. Ideal for digitized 
photographs.

HAM6 mode  See HAM mode.

HAM8 mode  A version of HAM mode possible on the AGA chip set that 
allows any of the 16.7 million colors of the AGA palette on screen, subject 
to the same basic restrictions as the older HAM6 mode.

hexadecimal  A base-16 numbering system favored by programmers 
because it corresponds much more neatly than decimal to the way a com-
puter stores numbers. It consists of the decimal digits 0 through 9 as well 
as A through F, referring to the decimal numbers 10 through 15, respec-
tively. Thus, four bits will always consist of exactly one hexadecimal digit, 
and a byte (eight bits) will consist of two. Often shortened to hex.

high-level language  A language that is somewhat abstracted from the tech-
nical details of the computer so as to allow the programmer to design her 
logic in a more human-comprehensible way. Must either be translated 
into natively executable code via a compiler or run with the aid of an 
assisting application known as an “interpreter.” Both bring a penalty in 
speed and efficiency over assembly language, the latter technique much 
more so than the former. Some high-level languages are specialized and 
designed to excel at creating a certain category of program such as scien-
tific applications or text–adventure games, whereas others are more gen-
eral purpose.

IFF  Interchange File Format. A standard set of file formats developed at 
Electronic Arts to allow Amiga users to exchange images, music, and ani-
mations among applications.

institutional computer  A large mini- or mainframe computer that costs a 
great deal of money and is shared by many users. Prior to the arrival of the 
first PCs in the mid-1970s, all computers were institutional computers.

interlace  A method of sending video to a television or monitor in which 
only every other line is sent with each successive paint of the screen. 
Because each line is refreshed only half as frequently, a visible flickering 
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effect can result, but interlace allows a device to interface easily with stan-
dard analog video hardware of the 1980s and early 1990s.

interrupt  A signal sent by a piece of hardware or a software component to 
notify the system that an event has occurred: a key has been pressed, a disk 
read has finished, one sprite has struck another, and so on. A large suite 
of interrupts is essential to the event-driven programming model and to 
multitasking because it allows an application to sleep and wait for inter-
rupts to which it should respond rather than having to poll the hardware 
again and again.

Intuition  AmigaOS’s GUI library, which allows the programmer to build 
windows, gadgets, screens, and other components easily.

KB  Kilobyte. Equal to 1,024 bytes.

kernel  The core of an OS.

Kickstart  The most essential parts of AmigaOS, stored either on disk (in 
the case of the Amiga 1000) or on a ROM chip (in the case of all other 
models released during the Commodore era).

library  A collection of programming routines that carry out common tasks 
and that can be called by programs.

long word  Equal to four bytes (32 bits). Can hold any unsigned number 
from 0 to 4,294,967,295.

mainframe computers  The physically largest computers, normally found 
only in large businesses and government. They excel at batch processing 
but are generally viewed by hackers as rather unimaginative and 
uninteresting.

MB  Megabyte. Equal to 1,024 KB.

memory leak  Memory allocated by a process but never properly deallo-
cated, thus becoming inaccessible and shrinking the available total mem-
ory pool.

memory protection  An OS’s ability to protect itself and other processes 
from a “rogue” process that attempts to access memory it has not properly 
allocated to itself. See virtual memory.

MHz  Megahertz. The standard measurement of CPU speed in the 1980s 
and early 1990s. Each megahertz represents one-million clock cycles per 
second. Although the term offers some idea of a computer’s relative speed, 
it must be used only with care as a guide to the overall throughput of dis-
parate architectures. Equally important are many other architectural 
details of the CPU and the computer as a whole.
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microcomputer  See PC.

microkernel  A kernel that contains only the most essential functions of the 
OS. Other functions are loaded in and out as separate modules as needed.

MMU  Memory-management unit. A component in a CPU that makes it 
quick and easy to translate virtual-memory addresses into physical 
addresses and vice versa. Key to the implementation of virtual memory in 
an OS.

MOD  Modular music file. A system of music storage that consists of a set 
of instrument samples and a score, the latter being a series of instructions 
on when and how to play those samples and thus form a song.

monolithic kernel  A kernel that contains virtually the entirety of the OS 
within itself.

MS-DOS  Microsoft Disk Operating System. The simple command-line-
driven OS found on the original IBM PC (1981) and the many PC clones 
that followed it. Later served as the base of many versions of Windows; was 
not phased out of this role until the release of Windows XP in 2001.

multimedia  The integration of data, text, images, and sound within a sin-
gle digital environment.

multitasking  Running more than one program at the same time on a single 
computer.

NTSC standard  National Television System Committee standard. The 
standard format for television and video in the United States, Canada, and 
scattered other countries from the birth of television until the recent 
(2009 in the United States, 2011 in Canada) transition to a digital 
format.

OCS  Original Chip Set. Retroactive name for the chip set found in the 
Amiga 1000, 500, 2000, and 2500.

open source  Software for which the source code, as opposed to just the 
executable code, is made available. Makes it easy for others to analyze, 
modify, and improve the software as well as to port it to other architectures 
beyond the one on which it was written.

OS  Operating system. The most fundamental piece of enabling software 
on a computer, it manages resources, provides a user interface, provides 
programmers with libraries that they can call upon to accomplish many 
tasks, and often forms a buffer between applications and the underlying 
hardware.



Glossary� [281]

overscan mode  A special Amiga resolution mode that uses the overscan 
area, which usually contains a border, as additional screen area, yielding 
resolutions as high as 704 × 480. Very important to video production, 
where borders around the screen are unacceptable.

paint program  A program in which a user manually creates images by col-
oring the on-screen pixels, usually using painting and drawing metaphors 
such as a pencil, a brush, and an eraser.

PAL standard  Phase Alternate Line standard. The legacy standard format 
for television and video in Europe and many other regions. In the process 
of being replaced by digital systems in most regions as of 2011.

parallax scroll  A scrolling background that consists of two or more levels, 
each scrolling at different speeds. Simulates the visual property of 
parallax.

Paula  The Amiga custom chip responsible for sound and miscellaneous 
input/output tasks.

PC  Personal computer. A computer small enough to sit on or under a 
desktop and that is generally used by only one person at a time. Was fre-
quently referred to as a microcomputer from its birth in the 1970s until the 
early 1990s, but this term has fallen out of fashion in more recent times.

planar method / planar graphics  A method of storing a playfield in memory 
as a series of bitplanes rather than as a single contiguous chunk of data. 
Used by the Amiga and many other early PCs.

playfield  A representation of a screen stored in memory, to be painted 
onto the monitor by the display hardware. On the Amiga, it is made up of 
one or more bitplanes.

preemptive multitasking  Multitasking under the OS’s complete control, in 
which the OS is the final authority that decides which processes receive 
CPU time and when.

priority  The relative importance of a process running under a multitask-
ing OS. Used by the OS to decide when and how much CPU time should be 
granted to the process.

procedural programming  A programming model in which the program runs 
as a linear or semilinear stream, either entirely noninteractively or with 
only occasional branching in response to user input. Was the norm prior 
to the rise of GUIs and the accompanying event-driven model.

process  On a multitasking OS, any instance of running code. Can be an 
application, a device driver, or some part of the OS itself, among many 
other possibilities.
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progressive scanning  A method of sending a signal to a television or moni-
tor in which the entire screen is painted every time. Standard for most 
computers, but not for analog television and video equipment. See 
interlace.

RAM  Random-access memory. Memory that can be written to as well as 
read and that is erased when the machine is powered off.

Ranger  A more advanced version of the Amiga chip set that Jay Miner and 
the original design team were developing before being laid off by Com-
modore in 1986. Never completed.

raster  Another term for a playfield, one most commonly used on plat-
forms other than the Amiga.

raster graphics  A system of storing an image as a grid of colored pixels.

raster-graphics editor  See paint program.

rasterization  The process of converting the data that make up a vector-
graphics image into a grid of pixels suitable for display on raster-graphics 
hardware.

ray tracing  A form of 3D rendering that determines the color of each pixel 
by tracing the path of the light that strikes it through the scene.

refresh rate  The number of times a video screen is repainted per second. 
A faster refresh rate results in a more stable image less prone to flicker. 
Given in hertz (Hz), which simply means “cycles per second.”

register  A unique memory address that has a specialized purpose, con-
trolling some fundamental aspect of the computer’s operation.

retargetable graphics  A design scheme in which a computer’s display func-
tions are separated from its core components and placed onto a card that 
can be swapped and upgraded as needed without the necessity of replacing 
the entire machine.

RGB value  Red green blue value. A method of representing any color as a 
ratio of these three primary colors.

ROM  Read-only memory. Memory that can be read but not written to and 
that survives even when the machine is powered off.

sample  A digital recording done by sampling an analog signal repeatedly 
at a fixed interval of time. If done frequently enough and on an amplitude 
scale great enough to allow enough resolution, it is effectively indistin-
guishable from its analog antecedent.

sample rate  In sound sampling and playback, the number of times a sound 
is sampled per second. Along with the sampling resolution, it largely 
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determines the fidelity of the recorded sound to its real-world antecedent. 
A CD is recorded at 44,100 samples per second; sample rates on the Amiga 
can be varied but are always much lower than the CD rate.

sample resolution  In sound sampling and playback, the range of values to 
which a sample is mapped. Along with the sample rate, sample resolution 
largely determines the fidelity of the recorded sound to its real-world 
antecedent. The Amiga uses 8-bit sound samples, meaning each value in 
the sample can range from 0 to 255. A CD player uses 16-bit resolution, 
with the expected increase in fidelity.

SCSI  Small Computer Systems Interface. A longstanding interface stan-
dard used for hard disks, CD-ROMs, and other types of storage devices on 
many PCs, including many Amigas, many models of the Macintosh, and 
some Intel-based machines.

SEG  Special effects generator. A specialized and expensive device used to 
manipulate video either live or in postproduction. A TV station might use 
an SEP, for example, to superimpose the image of a meteorologist over a 
graphical display using chromo-key compositing. Amigas—particularly 
Video Toaster-equipped Amigas—could perform many traditional SEG 
functions at a fraction of the cost.

source code  A human-readable description of a program’s logic written 
in a high-level language such as C. Translated into executable code via a 
compiler.

sprite  A graphical object that exists independently of any playfield and 
that can be easily moved about without modifying the on-screen playfield 
over which it appears. Found on the Amiga and many earlier PCs. Not 
found on modern PCs, where this functionality is achieved through soft-
ware only.

TBC  Time-base corrector. A device that synchronizes the output of sev-
eral video sources.

terminal  A device that is superficially similar to a PC’s monitor and key-
board, but that is not a stand-alone computer. It is instead a “dumb” device 
that connects its user to a larger computer that she most likely shares with 
many other users.

tile-based graphics  A method of building up screens from a set of tiles 
that are larger than individual pixels but much smaller than the screen  
as a whole. Frequently used to build backgrounds and maps for 
videogames.



[284] 

time sharing  The process of dividing a computer’s CPU time and other 
resources among more than one user at the same time. Implies multitask-
ing capability.

tracker—A music composition tool in which the user arranges musical notes, 
sound effects, and other events such as a change from one instrument to another 
along a linear “track” or timeline for each available sound channel. Completed 
songs can be stored in the MOD format for playback and incorporation into other 
productions. Tracker-produced music was ubiquitous in Amiga games and 
demos.

UAE  Ultimate Amiga Emulator. The most long-standing and accurate 
Amiga software emulator currently available. Free, open source, and avail-
able for many platforms (including the newest incarnations of the Amiga 
itself).

Unix  A powerful and flexible OS first developed at Bell Labs in the late 
1960s and refined and expanded for decades afterward by universities, 
corporations, and individuals. For years a favorite of hackers working in 
institutional computing environments and the model for Linux, which 
operates almost identically.

vector graphics  A system of storing an image by the locations and defini-
tions of the shapes that make it up.

viewport  On the Amiga, a software and logical construct that defines many 
aspects of the view that will be painted to the monitor screen: the number 
of bitplanes, the starting address of each bitplane, the size of the playfield, 
and so on. Can be thought of as the camera lens aimed at a certain part of 
memory and transmitting what it finds there to the monitor.

virtual memory  Memory that is abstracted from the actual physical memory 
in the machine. Allows the OS to protect itself from programs that attempt 
to access memory that they have not properly allocated to themselves; also 
allows the OS to use a hard drive as a temporary storage space to accom-
modate programs that request more memory than is currently available in 
RAM.

virus  A program that, unknown to the computer user, attempts to infect 
its host computer system and from there to spread to other computers. 
May or may not attempt to engage in other secret or destructive behaviors 
or both in the process.

warm start  A reboot that does not involve powering off the machine.

word  Equals two bytes (16 bits). Can hold any unsigned number from 0 
to 65,535.
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Workbench  The Amiga’s standard GUI workspace, similar to the Macin-
tosh OS’s Finder or to the Windows desktop.

workstation  During the 1980s, a small, often single-user computer that is 
superficially similar to a PC but is more powerful, expensive, and special-
ized in its application. Often runs a complex OS such as Unix rather than 
a consumer-grade OS. With the enormous growth in power of the everyday 
PC since the 1980s, the relevance of this term and the distinction it implies 
in contrast with more plebian PCs has largely disappeared.

wrap scroll  A scrolling background that appears to be infinite but that is 
actually a smaller playfield wrapped around again and again.
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