
ARIADNE SOFTWARE LTD

The 'Kickstart: Guide
to the AMIGA.m

i-

I. I ·• :11 :1!1 1• A'· • '• ;-• ·
Ill I a.:.-•; •.. _.), , 1:;~· -·~
II ~l!I ,II JI :• ~II f ; ·. •'~·;
I. :I 1• 111 1• '• ·1 -•. ,. · -···· ... _ · ·· -· · . 1:~· , .. · .;

,,
, .. , ~

~:
~~

... .
~;;.

THE KICKSTART GUIDE TO AMIGA

ARIADNE SOFTWARE LTD

Published by Ariadne Software Ltd,
273 Kensal Road, London WlO SDB, ENGLAND.
Tel 01-960 0203

1st edition full of spelling mistakes - June 1987.
2nd edition with some corrections - September 1987.
3rd edition with various updates November 1987.

(c) Ariadne Software Ltd 1987.

ISBN 0 9512921 0 2

PRINTED IN ENGLAND
~

THE DACOSTA PRINT • FINISHING COMPANY
111 Salusbury Road London NW6 6RG

01-969 1111

Text mostly by Dave Parkinson; additional text, example programs
and research by Mike Bolley.

Illustrations by Tris Murray (Exec), Hugh Riley (Libraries
Architecture), Hanafi Houbart (Into Amiga Devices), Paula Dawson
(Keys to AmigaDOS), Phill Legard (Guru Alert), and Shelley O'Neil
(Graphics).

Cover design and general inspiration by Chris West.

Thanks to Chris Wood and Gossamer Graphics for help with
illustrations and cover art-work, and to Tim Newport for help
with printing.

Thanks to Jane Firbank (mighty Compunet editor) for proof reading
- hello to all on Cnet!

A lot of other people helped with Kickstart journal. In roughly
chronological order, special thanks are due to to Richard Leman
(his idea in the first place), Gail Wellington (Commodore
originator, regular contributor and strong support), Bill Donald
(original editor, regular contributor and number one asker of
difficult questions in public houses), Harry Broomhall (official
disk wizard), Chris Maciejewski and Tim Bunce (Intuition
experts), John Simon Phillips (technical help from Commodore), Dr
Tim King (THE expert on AmigaDOS), Mike Todd (champion Fish
filleter), Barry Walsh (graphics superstar), and Mark Power
(reprographic consultant). Thanks also to everyone who bothered
to send us feedback forms, or wrote to us.

KICKSTART is a registered trademark of Commodore Amiga Inc.
Amiga is a registered trademark of Commodore Amiga Inc and
Commodore Electronics Ltd.

All rights to information published in this book are held by
Ariadne Software or by Commodore Electronics. No information may
be reproduced or distributed in hard copy or electronically
without prior written permission of the copyright holder.

Commodore Electronics Ltd and Ariadne Software Ltd cannot be held
liable for any errors in this publication.

A Note from Gail

The Amiga was launched in July 1985 amidst much acclaim. Its
first major appearance in Europe was at the European Amiga
Developers Conference held at Eastbourne in December 1985.
Commodore knew that software was the key to the machine's
ultimate success, and the 300 developers who attended the
conference had the benefit of talking first hand to the designers
of the Amiga. ·

The "Kickstart" journal was developed to make this sort of
information accessible to more people. Commodore are grateful to
Ariadne's professionalism in developing the journal for us.
Interest continues high in the Amiga family - because of the
value of the information in the journals, we are pleased that
Ariadne have chosen to publish this book, and we thank them for
their continued support of the Amiga.

Whether you program for fun or for prof it, this book will improve
your understanding of the Amiga.

Gail Wellington,
Director Product & Market Development Group,
Commodore International Ltd.

About The Kickstart Guide to Amiga

It was back in December 1985 that Dave Parkinson and Mike Bolley
of Ariadne Software looked at the new Amiga, looked at the huge
pile of technical documentation next to it, and thought
"'Strewth ... ".

Before this, Ariadne Software had been involved in assembly code
programming on 8-bit micros, such as Commodore PETs (MTC PILOT,
MSC PILOT and PETNET), the BBC Micro (NPL's Microtext authoring
system and Robocom's Bitstik CAD package), and the Commodore 64
(Microtext again, plus the Compunet terminal). We had also done
some 'C' programming on PCs, and hadn't been much impressed.

Our original interest in Amiga was due to an involvement in
authoring systems for interactive video and training, and a
desire to go a lot further than had been possible on the BBC
Micro and Commodore 64. Some early experiments suggested that
PCs did not offer sufficient power and flexibility to do this;
the Amiga looked a lot more promising. With this in mind, Dave
Parkinson went off to the Amiga Developers Conference in
Eastbourne, and later the decision was made to purchase an Amiga
- Mike Bolley must be one of the few people to buy an Amiga
without ever actually having SEEN one, his decision being based
solely on the technical information contained in the Eastbourne
course notes!

Having bought the machine, we found ourselves at the start of a
very considerable learning process. 8-bit machines and PCs we
understood very well, but this was something else - what when
they were at home were "pre-emptive scheduling" or "round robin
time slicing"? Finding answers to questions like these involved
us in an extended process of reading, experimentation, discussion
with other Amiga developers, and buying drinks for people who
knew mainframe and mini operating systems - "Alright Hugh, come
clean, what exactly IS a "lock" precisely?".

It was Richard Leman of JCL Software who first suggested that we
should use the learning experiences of ourselves and other
developers as the basis of a European Amiga "technical journal".
We took this idea to Gail Wellington of Commodore Electronics,
who responded enthusiastically, and before long had obtained
company support for the project. With Gail pushing, Commodore
supplied us with backing in the form of .a bit of money, a lot of
technical support, and considerable help with distribution, the
journal going free of charge to all registered European
developers. To help us get started, Bill Donald came in as our
original "general editor"; also helping out at this stage was
artist/programmer Hanafi Houbart, who - amongst other claims to
fame - thought of the title "Kickstart".

In all, we produced six issues of Kickstart journal before we got
too busy with other things - notably developing video and
authoring software for Amiga! Each issue contained a f.eature
article concentrating on some particular aspect of the machine,
plus articles by other people, a series on 'C' on Amiga, and a
"Crosstalk" section for information exchange between developers.
Reaction to the journal was very favourable, with positive
feedback being received from Holland, from Germany, from Ireland,
from Monaco, from the UK, from Israel, from Switzerland, from New
Zealand, and from France. From further afield, we heard from
South Africa, from Australia, from the States and from Canada -
the latter asking if we wouldn't mind considering them as an
honorary part of Europe!

Now, with the release of the new A2000 and ASOO machines, a
"second generation" of progammers and developers are approaching
the Amiga, often from a similar background to ourselves. With
them in mind, we have taken the feature articles and 'C' series
from Kickstart, revised and updated them, and added new material
- the result is this book. This is NOT intended as a replacement
for the official Amiga technical manuals, and it WON'T turn you
into a demon Amiga programmer overnight; it DOESN'T have very
much to say about Amiga hardware, or higher-level aspects of the
system software such as animation or speech. It DOES aim to
provide a "step up" to the Amiga from other machines, in the form
of an introduction to 'C' programming on Amiga plus a
comprehensible account of how the machine works in terms of Exec,
AmigaDOS, and graphics - once you understand these, the rest is
pretty easy. We hope you find this book useful - enjoy the
Amiga!

--- ------------
David Parkinson,
Kickstart Editor,
Ariadne Software Ltd.

Contents

Part 1 - Introducing the Amiga.

Appendix - introducing the 68000

Part 2 - The Kickstart Guide to Amiga.

1

13

23

Section 1 - Exec. How to do several things at 23
once while doing one thing at a time.

Section 2 - Libraries. How to call a routine 66
without knowing where it is.

Section 3 - Devices. How to perform IO without 108
worrying too much what to.

Section 4 - Aspects of AmigaDOS. 146

Section 5 - Serial port debugging, and the Joy 169
of Wack.

Section 6 - Introducing Amiga graphics. 192

Part 3 - Getting Started in c.

Section 1 - Introducing c.

Section 2 - Elements of c.

Section 3 - Structures and Pointers.

Section 4 - Arrays and Strings.

Section 5 Getting finished in c.

Appendix 1.2 libraries summary.

HowToReadThisBook{)
{

}

ReadPart(l, CAREFULLY);

if (YouThinkYouKnowC) {

ReadPart(2, CAREFULLY);
ReadPart(3, QUICKLY);

} else {

}

ReadPart(3, QUICKLY);
ReadPart(2, CAREFULLY);
ReadPart(3, CAREFULLY);

227

227

238

244

251

257

265

Introducing the Amiga Page 1

PART ! = Introducing the Amiga

The Commodore Amiga is an amazing machine in terms of its clever
hardware, its multi-tasking software, and its advanced WIMP
(Window Icon Mouse & Pointer) user interface. The purpose of
this part of the Kickstart Guide is to give a general overview of
the machine; we will then go into detail about how various bits
of it work in Part 2.

The three areas in which the Amiga excels - the hardware, the
multi-tasking, and the user-interface - are in fact very closely
related. Clever hardware like the blitter or bimmer (block image
manipulator) takes a lot of the burden of maintaining a complex
colour display away from the CPU and also handles things like
audio output - this enables the CPU to be used for other things,
such as running a sophisticated multi-tasking message-passing
"operating environment". (In this context it's worth noting that
Commodore-Amiga had the blitter in 1984, and it's taken them
since then to get the software right - other companies who are
just developing blitters now have therefore got a bit of catching
up to do!)

The multi-tasking has many applications on Amiga - including nice
things like being able to edit one program module while you
compile another and perhaps hard-copy a third - but its real
significance lies in its application to "Intuition", the Amiga's
user-interface. Earlier WIMPs-based machines offered the end
user a nice easy time of it (or not so nice and not so easy in
the case of some systems we could mention); however this was
achieved at the expense of considerable sweat and grief on the
part of the application programmer, who had to worry not only
about the actual application, but also about things like "what do
I do if the system tells me the user is trying to resize my
window?".

The Amiga is the first machine to take this burden away from the
application programmer, and therefore to provide a WIMPs user
interface in a sensible civilised manner. On the Amiga, an
application program can get on with whatever it is supposed to be
doing, while another task worries about keeping the user happy -
in fact Intuition's "input-event handler", running as part of a
task associated with the "input device" on Amiga. This means
that you don't have to worry about things like windows moving and
resizing AT ALL - unless you specifically want to. Instead, you
just tell Intuition what you DO want to hear about - user
selecting a particular menu item, user clicking on a particular
"gadget", or whatever. You can then get on with something else,
or sit in a comfortable wait-state, waiting for Intuition to send
you messages about events of interest to something called your
IDCMP (for "Intuition Direct Communication Message Port").
Compared to programming other WIMPs machines, this is absolute
bliss - and it means that while Amiga development is still a
laborious business compared to cobbling something together on a
Commodore 64, it can be done in a fraction of the time it takes
to get a similar result on other WIMPs computers!

Introducing the Amiga

"•icJcstapt
IWttOl'p"
011 ION

IN
!xp.ansion
f ilt RAM

IO cllips

68181 512K
chip
MM

: ~'l• ·'a., : w C;cO

Figure ! = Amiga Hardware Overview

.
~.

Intuition

llntut device

Key•o•• tletice
GMIPO•t evice
1i"n •evice
COthe• device§)

Consol~ •e"iee Layers
lilH'ay

Figure ~ = Amiga Software Overview

Page 2

C' i '"'I< c..l.!.:!i.

~it:itf

RAH

Introducing the Amiga Page 3

10 1010
FC 0000

F8 8010
re e090
ES 8010
EB 0000
DC 1010

Cl 1010

Al emam

ze BOBO

88 Hll
ea eae1

2.S~IC llAU/R.OM
FURTHER "SYSTEM ROM" - UNUSED

RESERVED

EXPANSION SLOT DECODING

RESERVED
~ - - - - - - - - - - -

SLOW MEMORY

- - -
"EXTERNAL DECODER EXPANSION SPACE"

-CUR.R.ENTLY UNDECODED IMAGES or 3520s

UP TO 3M OF rAiST lllEMOllY

IMAGES Of CHIP MEMORY

51ZIC CHIP MEMORY
~ - - - - - - - - - - -

Figure l = Amiga Memory Map

DF FB81
-DF F1811
AGNUS
DENl8E1 1t
PAULA·
EVEN

4- BYTES
ONLY

+- BF Dame
-Br r:r11

8520s AtB

Introducing the Amiga Page 4

Amiga Hardware Overview

A diagram showing an overview of Amiga hardware is given in
Figure 1; a memory map is given in Figure 3. Basic hardware
elements are as follows:

68000 Amiga Central Processor Unit, Motorola 68000 running at
7.3 MHz. A later chip than the 8086 series used in
PCs, with more sensible memory management, more
powerful interrupts, and a more rational instruction
set. Can be upgraded to 68010 or 68020, with optional
floating point co-processor, for REALLY amazing
performance.

PAD Paula, Agnus and Denise - known collectively as "the
PAD" - the "clever chips" responsible for a lot of
Amiga special features, especially involving sound and
graphics. Capable of running "in parallel" with the
CPU - using alternate (even) clock half-cycles when the
68000 isn't accessing external memory - thus taking a
lot of processing burden off the 68000 and giving the
Amiga much better performance than cruder machines with
slightly faster clock rates.

gate Divides the Amiga system bus into "fast" and "chip"
memory. "Chip" memory is the bottom 512K, which is
capable of being accessed both by the 68000 and the
PAD; "fast" memory is up to 8 megabytes of further RAM
which is not accessible to the PAD, and therefore
cannot be used for graphics screens, accessed by the
blitter, etc. The reason for this is that under some
circumstances the PAD "cycle steals" from the 68000 -
ie stops it from accessing memory for a while, while
the PAD is busy fetching data for a high resolution
screen line, or doing a data-move using a "nasty"
blitter. ("Nasty mode" is a blitter mode in which it
cycle steals a lot, eg when doing block memory
transfers - not unreasonable, given that the blitter is
a much more efficient data mover than the CPU!) The
presence of the gate in the bus means that the PAD can
be cycle stealing like mad in the bottom 512K of memory
- eg in order to do a complex high res animation - but
WITHOUT blocking CPU access to fast memory; the CPU can
therefore continue to operate at full speed, until such
a time as it needs to access chip memory. A sensibly
configured Amiga has AT LEAST as much fast memory as
chip memory, and preferably more.

512K RAM "Chip memory", accessed both by 68000 and the PAD.

512K RAM Extra 512K of "slow memory" on A500 (optional) and
A2000 only; used to move system structures (eg Exec
library stuff and the supervisor stack) out of chip
memory, freeing more chip memory for use by graphics,
sound etc. See Appendix 2.

Introducing the Amiga Page 5

SM RAM Up to eight megabytes of "expansion memory" - fast
memory, accessed by 68000 only. Has to be external on
the AlOOO or A500; can be fitted internally on the
A2000.

Kickstart Used to store vital Amiga system software such as Exec,
memory graphics and layers libraries, Intuition, and most of

AmigaDOS. On AlOOO, this software was loaded on power
up from a "Kickstart" disk into a special 256K region
of additional RAM known as "Kickstart memory" or
"RAM/ROM" which was then write-protected - this was to
enable Commodore-Amiga conveniently to issue software
updates. On the A2000 and A500 this is no longer
necessary, and the original RAM/ROM has been replaced
by ordinary ROM. Note that this is not the whole story
- to actually operate the Amiga, more software is
needed such as the rest of DOS and the "Workbench";
this is loaded into ordinary RAM from another disk
called "Workbench".

IO Chips Two 8520s, similar to the CIAs (Complex Interface
Adaptors otherwise known as Completely Incomprehensible
Adaptors) used in the Commodore 64. Contain two IO
ports each plus various clocks and timers, all of which
are "used up" by bits of system software such as the
timer device. Handle serial port, parallel port,
keyboard, and disk control - though disk DMA is looked
after by the PAD.

More about the 68000

It is not our intention to consider 68000 programming in much
detail in this guide; the interested reader will find plenty of
books on the subject. However, it's useful to know a bit about
it, even if only to gain insight into what your "C" compiler is
up to - for this reason, a quick overview of the 68000 is
provided as appendix 1 to this introductory section.

More about the PAD

As mentioned above, Paula Agnus and Denise are responsible for a
lot of the high performance of the Amiga. Functions looked after
by the PAD are roughly as follows:

1. CPU control. The PAD looks after the 68000 on Amiga, by
generating its DTACK signal usually provided by external
hardware to indicate a successful data transfer, by
"blocking" its access to external memory when it wants to
cycle-steal, and by controlling its interrupts. Interrupts
on the Amiga are looked after by Paula - there are sixteen
possible interrupt sources, which are two external hardware,
one vertical blank, one copper (video beam reached a

Introducing the Amiga Page 6

specified position), four audio channels (audio block done),
one blitter (blitter finished), two disks (sync found, disk
block finished), two CIA for keyboard and timers, and two
serial port (receive buffer full, transmit buffer empty).
Paula looks after watching and prioritising these interrupt
sources, and deciding whether to interrupt the CPU, and if
so with what priority.

2. DMA control. There are twenty five "dedicated" Direct
Memory Access channels on Amiga, used for direct access to
chip memory by the PAD without involving the CPU.
("Dedicated" means these channels are tied to a particular
purpose - eg "audio channel one" - and that you can't swipe
them for use for something different!) DMA is used on
Amiga for bitplane access (ie the screen - six channels),
for sprite data access (eight channels), for copper
instruction-fetch (one channel), for the blitter (four
channels), for disk DMA (two channels), and for audio (four
channels).

3. Playfield and sprites. The PAD handles forming a basic
"playfield" (ie screen display) by fetching data from a
number of "bitplanes" in chip memory, and interpreting it
using internal colour registers - this is known as "colour
indirection". The PAD can also handle up to eight hardware
sprites on top of the basic playf ield, which can be up to
sixteen pixels wide and any number of columns deep; sprites
can be "joined together" for greater width or more colours,
and the apparent number of them can be increased
considerably by clever tricks using the copper. An obvious
example of sprites on the Amiga is the Intuition pointer.

4. Copper - beam-synchronised graphics co-processor. You can
think of this as "watching" the video beam go down the
screen, while following a simple program known as a "copper
list" telling it what to do when the beam reaches specified
positions - "wait till the beam reaches so-and-so then do
this". The copper is capable of changing internal PAD
registers directly - eg changing playf ield pointers for
split screen, or sprite pointers for sprite multiplexing -
or of affecting external memory by issuing a CPU interrupt,
or using the blitter.

5. Blitter or Bimmer. Block Image Manipulator with three input
channels and one output. Capabilities are as follows:

a. Can move data around VERY fast in chip memory - can
read/write a 16-bit chunk every 280 nano seconds,
though in practice this is slowed down by competition
for DMA with the rest of the PAD.

b. Can perform LOGICAL OPERATIONS - two of its inputs have
"barrel shifters" on them to shift data left or right,
and the three input streams can be combined in any one
of 256 possible logical operations, expressed by

Introducing the Amiga Page 7

blitter "minterms". Input might consist of a graphics
object, a ma~k, and screen background; output might
consist of the current screen bitplanes - this is the
basic technique used for animation with "blitter
objects" or "Bobs".

c. Can perform LINE DRAWING or AREA FILL operations
directly into chip memory. This is also blindingly
fast - the system software using the blitter can draw
up to about four thousand lines a second!

6. Audio channels. The PAD has four audio channels, each of
which looks at a bit of external memory, interprets the
contents as a digitised waveform, and outputs the result as
audio. This "digitised waveform" approach is very powerful,
and is responsible for the Amiga's remarkable sound and
speech capabilities.

7. Disk. Transfer to/from disk is a whole track at a time,
using DMA; the system doesn't even wait for disk sync, but
instead just reads in the data wherever from wherever the
disk head happens to be, then sorts it out sensibly using
the blitter. This leads to very fast disk access - a good
thing, given the high overhead involved in the way AmigaDOS
handles directories!

Amiga software overview

A diagram giving a rough overview of Amiga system software is
given in Figure 2. It can be seen that this isn't much like a
conventional "Operating System"; instead we talk about an Amiga
"Operating Environment" consisting of a large number of
intercommunicating elements, organised as "libraries", "devices"
and "resources" - more about these below.

There have in fact been three major releases of Amiga operating
software, which can be roughly categorised as follows:

Vl.O mid 1985

Vl.1 early 1986

Vl. 2 early 1987

The best that we could do given the timescale.

The best that we could do, with most of the
bugs taken out.

What we should have done in the first place,
only we needed to do versions 1.0 and 1.1 to
find out.

Version 1.2 (Kickstart 33.180) is now occupies 256K of ROM in the
ASOO and A2000.

Introducing the Amiga Page 8

Tasks and processes

The basic unit of multi-tasking on the Amiga is a "task" - this
can be thought of as a 68000 program which is being fooled that
it has a whole machine to itself; different tasks are actually
swapped in and out by Exec running "on the interrupts" in
supervisor mode, as explained in detail in Part II Section 1.
Tasks usually spend most of their time in "wait states" - ie
fast asleep until something of interest happens; this something
of interest is usually the arrival of a "message" from another
task, asking it to do something. Messages are sent to tasks'
"message ports" - eg you can send a message to the "console
device" asking it to output some data. This is used to implement
asynchronous IO amongst other things - you can send another task
a message asking it to do something, then get on with something
else until the task indicates it has finished, which it does by
"replying" your message.

Tasks are used on Amiga for system use, and also to run
application programs; a task in this context is part of a higher
level AmigaDOS concept known as a "process", which consists of a
task plus a lot of other stuff, to do with default IO channels
etc.

Libraries

Amiga system software is organised into "libraries" - these are
essentially a load of routines starting with a jump table. These
routines can be called from other libraries, or directly from
application programs; calling library routines is the normal way
of getting things done on Amiga, sending messages being reserved
for special purposes such as asynchronous IO. A full account of
libraries is given in Part II Section 2, and a summary of all
routines available in 1.2 system libraries is given as an
appendix to this book. Some key libraries are as follows:

Exec The "multi-tasking executive" written by Carl Sassenrath.
In charge of 68000 interrupts; the lowest level of Amiga system
software, which looks after everything else.

Graphics Amiga graphics routines by Dale Luck; in charge of the
PAD graphics capabilities, including the blitter. Contains a
full set of routines for screen management, plus drawing routines
for points, lines, area-fills, flood fills, circles and ellipses.
Also contains routines for text - text is a special case of
graphics on Amiga!

Layers Also by Dale Luck; work in very close conjunction with the
graphics libraries - routines which allow a single drawing area
to be treated as a number of overlapping layers, such as
Intuition windows.

Intuition Designed and originally coded by R.J. Mical; revised
for Vl.2 by Jim Macraz. Routines which handle the user-

Introducing the Amiga Page 9

interface, in the form of screens, windows, menus, gadgets,
requesters etc. Appears both as a library, and as an "input
handler" connected to the "input device" task - in its latter
form, is capable of handling things like window moving and
resizing, menu selection etc, without involving the application
program. Generally speaking, you ask Intuition to do things by
calling routines from the Intuition library; it tells you things
of interest (eg "The user has selected this gadget") by sending
messages to something called your IDCMP - for Intuition Direct
Communication Message Port. (Intuition will generally create an
IDCMP for you and a "reply port" for its own use when you open a
window, so there's no need to worry about this too much.)
Intuition is used heavily by another important piece of Amiga
software called the Workbench - this is an AmigaDOS process which
uses Intuition to provide the user with a standard way of
performing disk and file operations, and of starting application
programs.

AmigaDOS An Amiga "late entry", brought in when an original DOS
project collapsed - written by Dr Tim King and others of UK
software house Metacomco. Based on the original Tripos operating
system developed in Cambridge in the late seventies, designed to
be as small and portable as possible, at the expense of "luxury"
features found in larger systems like Unix. Handles files,
devices and processes, including launching application programs.
Can be called by other processes such as Workbench; alternatively
can talk to you directly using a special form of process called a
"CLI" (for Command Language Interface). A bit of an odd man out
- we once described it as fitting in with the rest of the system
like a man in a dinner suit at a beach party, but subsequently
relented towards it. Written in BCPL - a language unknown to
Americans which is a forerunner of c.

A lot of rubbish has been written about AmigaDOS. Some sources
overrate the DOS by trying to credit it with everything the Amiga
can do - in fact AmigaDOS only accounts for about 40K of the
complete Amiga 256K ROM space. Other sources go to the opposite
extreme of blaming everything they DON'T like about the Amiga on
the DOS and on BCPL, which is pretty silly. The original Amiga
"DOS" project was intended to produce just a "filing system and
process manager" integrated with the rest of the environment;
AmigaDOS does this quite successfully, while adding its own
"devices" (CON:, RAW: etc) and the CLI environment as a bonus.
The former are of dubious benefit, and we would argue that you
can write better Amiga programs by ignoring them and going
directly to other parts of the environment (eg "console.device")
as originally intended - unfortunately the "standard functions 11

in things like Lattice C don't do this! On the other hand, the
CLI is DEFINITELY a virtue - while it is easy enough to criticise
the CLI, try and imagine Amiga development without it.

There are many other Amiga libraries; for information on these,
see Section II part 2, and the Appendix.

Introducing the Amiga Page 10

Resources and devices

Resources and devices are two special sorts of Amiga software
entity, both based on the fundamental structure of a library. A
resource is a rather low-level object, concerned with "contention
management" - the function of a resource is to grant or forbid
access to a particular bit of hardware, depending on what the
rest of the system is up to. Resources are generally looked
after by other bits of Amiga system software; you only have to
worry about them yourself if you want to directly access a bit of
hardware such as the parallel port, in which case you should
first "open" the corresponding resource to avoid contention
problems - "misc.resource" in this case. A device i~ a special
sort of library concerned with IO on Amiga; many devices also
have tasks associated with them, so that they can operate
asynchronously of the calling program if necessary. A full
account of Amiga devices will be found in Part II section 3; a
summary of some important ones is as follows:

Trackdisk device Low-level disk IO; used by AmigaDOS.

Keyboard device Low-level keyboard input; works in terms of "raw"
keyboard events such as key-pressed/key-released.

Gameport device Low-level mouse input.

Timer device Low-level timing - uses the 8520 timers.

Input device A very important one this. A "cunning" device with
an associated task; handles coordinating input data from keyboard
device, gameport device and timer device, and passing it on to a
chain of "input-handlers" - notably the Intuition input handler,
and/or the console device.

Console device A "high level" device - takes input from the input
device and performs output to a specified window using the
graphics library text primitives, in order to give a "virtual
terminal" capability. A full ASNI standard terminal with a whole
range of controls and escape sequences; used by AmigaDOS "RAW:",
or can be accessed directly. Note that, contrary to a once
widely-held belief, the console device and hence AmigaDOS RAW:
does NOT return "raw" keycodes unless you explicity ask it to -
instead you get nice ASCII values, and "escape" sequences headed
by a CSI (Command Sequence Introducer) character. Information
which can be passed back from the console device using CSis
includes reports of mouse-movement, gadget selection etc; thus
talking to the console often provides an alternative to using an
Intuition IDCMP.

More information on these devices, including a full discussion of
the different ways they can be connected together for different
ways of doing IO on Amiga, will be found in Part II section 3.
Other devices include audio, narrator, serial, parallel and
printer - for information on these, see the ROM kernel manuals.

Introducing the Amiga Page 11

Development on Amiga

An account of development on Amiga using the C language is given
in Part III - "Getting Started in C". A summary of important
development tools is as follows.

Compilers Used to convert source-code to "object module" format.
Favourite development language is c, but many others are
available, including Pascal, Modula 2, LISP and APL, to name but
a few. Original "official" Amiga C compiler was Lattice V3.03,
which was followed by Lattice V3.1 and now by Lattice 4; an
alternative (with many adherents) is Manx Aztec c.

Assemblers Also used to convert to object module format; this
format is the same for assembler and compiler output, so it's
quite easy to mix the two, eg in order to re-code time-critical
routines in assembler. Ac function call Fred() results in a
subroutine call JSR Fred; Fred can be written in assembler, and
joined together with-the c calling function using the linker.
Parameters can be passed from c to assembler by reading them off
the stack - for more information on this, see "Getting Started in
C" later in this publication. Original "official" assembler was
Metacomco ASSEM; while this is still the standard assembler, some
good alternatives are now available, including some in the public
domain. ASM68K on the Fish disks is worth investigating.

Linkers Used to join together object modules to form load
modules, together with standard startup-code, and further
routines for standard functions from linker "scanned libraries".
Original Amiga linker was Alink (versions 1.0 and 1.1); an
alternative which started on the public domain and is now used as
standard by Lattice, is Blink from the Software Distillery.
Original (Lattice V3.03) startup modules were AStartup.obj or
LStartup.obj; new (Lattice V3.1) startup module is c.o.

Monitors Original Amiga monitor was Wack, written in c by Carl
Sassenrath, to run on the original Amiga development machine,
which was a Sun workstation. This was then ported across to the
Amiga, to form a cut-down version re-coded in assembler and
included in the ROM called ROMWack, and a full version known as
GrandWack - this was released undocumented with version 1.0, and
is now known by us as OldWack. Metacomco were then given a
contract job to clean up Wack to give Wack 1.3, known to us as
NewWack - this is supposed to be included on the 1.2 developers
toolkit disk, which is still (Nov '87) being eagerly awaited.
Meanwhile, other monitors have been developed as commercial
packages - Lattice now bundle one called Metascope, which makes
very good use of Intuition to provide multiple dynamic windows
into memory to aid you in debugging. Metascope is limited
however - at least in the last version we saw - in that it tends
to fall over when asked to look at something like a sub-task, a
library or a device - a new version of Wack (capable of coping
with the new hunk-types introduced by Lattice) is therefore badly
needed!

Introducing the Amiga Page 12

Other tools There are many, many other development tools
available on the Amiga. These include alternative "shells" -
such as the Dillon shell or the Metacomco shell - which give a
much more civilised alternative to the standard Amiga CLI. Other
tools ease the task of designing things like menus then generate
the corresponding C source-code, or take "brushes" from Paint
packages and generate the corresponding "Image" structures for
use in things like Intuition gadgets. Some of these are
commercial products - eg the Metacomco Shell or Power Windows
packages - while many others are public domain or shareware, and
can be found on the Fish disks.

Documentation Originally, Amiga documentation was published in
several large volumes and circulated by Commodore; 1.1 versions
of this were then given to commercial publishers Bantam
(AmigaDOS) and Addison Wesley (all the others). If you are going
to do serious Amiga development, then the following documentation
is essential:

ROM kernel manual Vols 1 and 2
Intuition manual
AmigaDOS User Guide & ref manual

(Addison Wesley)
(Addison Wesley)
(Bantam)

Optional but useful is the Hardware manual, also published by
Addison Wesley. Absolutely crucial are the updates to these
manuals provided in the 1.2 enhancer documentation from
Commodore; also CRUCIAL are the disks containing 1.2 commented h
files and full library and device routine descriptions
("autodocs"). We understand that the 1. 2 enhancer manual is
currently being shipped with Amiga 2000s, while the autodocs are
available in the States as the "Native Developer Update" which
costs $20 from Commodore Amiga Technical Support (CATS), 1200
Wilson Drive, Westchester, Pensylvania 19380. (Availability in
other countries is unknown - ask Commodore.)

Examples etc Best source of these is the Fish disks - over
eighty disks of public domain or shareware material collected
from US bulletin boards etc by Fred Fish. Original Fish disks -
or selections known as "Filleted Fish" - can be obtained from
most Amiga user groups, and from bulletin boards. (UK readers
should contact ICPUG or AUG, or try Ariadne Software.) Fish disk
material can be divided into utilities and examples; amoungst the
former, we would particularly recommend the gi brush-to-image
converter from Fish 13 (though it seems to work with DPaint 1
only), and the ASDG shareware recoverable RAM disk from Fish 58.
The latter allows developers with plenty of memory to load
compilers, h-files etc into a special form of RAM disk which can
(usually) be resurrected following a "Guru meditation" system
crash, which is a great time saver! Fish disk examples include
plenty of graphics stuff, and quite a bit on DOS a·nd Intuition.
We would advise you to look at things like the nice bi-scrolling
disk directory from Fish 35 - believe us that if you decide to
write all this sort of thing yourself from scratch, it is going
to take you AGES!

Introducing the Amiga Page 13

Appendix ! = Introducing the 68000

The objective of this appendix is to give a very brief overview
of the 68000 - for more information see any of the many books now
available on the subject. Some tables summarising 68000
registers, addressing modes and op-codes are provided at the end
of this appendix; further discussion of various aspects of the
chip will be found in Part 2, where they are discussed in
relation to various software aspects of the Amiga.

68000 registers

A diagram showing 68000 registers will be found in Table 1.
Registers are as follows:

D0-07

AO-A6

A7

PC

SR

Eight general purpose 32-bit data-registers. Can be
addressed as byte, word, or long-word - eg MOVE.L iO,DO
will zero the whole of DO, while MOVE.B iO,DO will zero
only bits 0 to 7. Generally used as accumulators or
index registers.

Seven general purpose 32-bit address-registers. Can be
addressed as word or long-word; generally used as
pointers or index registers. Behave very similarly to
the data registers a lot of the time, but with some
subtle differences - eg 16-bit quantities tend to get
"sign extended" when loaded into address registers, and
operations on address registers tend NOT to affect the
processor status flags, so watch it.

Address register seven = stack pointer, for normal
downward-growing stack. In fact the 68000 has two
stack pointers, for use in "user mode" (USP)- and
"supervisor mode" (SSP) respectively - roughly
speaking, user mode corresponds to normal operation,
while supervisor mode is a special state entered when
servicing interrupts. The right stack pointer appears
automatically in A7 when the 68000 swaps from user mode
to supervisor mode, or vice versa.

Twenty-four bit program counter, to address up to 16
megabytes of memory. Only (only!) eight and a half to
nine megabytes are easily accessible for RAM on Amiga,
though you could probably get hold of more than this
with a bit of hardware effort.

16-bit status register, divided into user-byte and
system-byte; bits in the system byte can only be
altered when the 68000 is in supervisor mode. User
flags are Carry C, Overflow V, Zero Z, Negative N, and
Extend X, the last being similar to the carry-flag but
not affected by as many operations, which is handy for
multi-precision arithmetic. System flags are a three
bit "interrupt mask" indicating what "level" of

,

Introducing the Amiga Page 14

interrupt the 68000 will respond to, plus a supervisor
mode flag s, and a trace-mode flag T - the latter is
used in a special mode of operation where a trap
(software interrupt) is forced after every instruction,
which comes in handy for debugging by single stepping.

68000 address modes

The 68000 supports eleven different address modes, as shown in
table 2. The instruction set is quite "orthogonal" meaning that
generally speaking you can use any address mode with any
instruction, assuming it makes sense to do so. Thus there is no
difficulty for example in performing

JSR -96(A6)

meaning call a subroutine 96 bytes below the "base address"
currently in A6 - this is in fact used a great deal in the Amiga,
as we shall see in Part II section 2 on "libraries". Note that
there is nothing corresponding to 6502 page zero on the 68000, so
if you want to use something as an address pointer you generally
have to get it into an address register. (Page one isn't special
either - the 68000 has a 32-bit stack pointer, meaning the
supervisor or user-stacks can be of any size, and located
anywhere in memory.)

References to external memory, like references to data-registers,
generally come in byte, word, and long-word (32-bit) varieties.
Note however that the way that memory management is handled on
the 68000 means that the chip is NOT happy performing word-or
long-word access on an odd-byte boundary - an attempt to do so
results in a 68000 "trap" which on the Amiga results in a crash
with "guru meditation" number 3.

68000 interrupt handling

The 68000 boasts very powerful interrupt handling, which is known
to Motorola as "exception processing" - presumably just to be
different. There are three interrupt lines, providing levels of
interrupt from zero (no interrupt) to seven (non-maskable
interrupt). When servicing an interrupt the 68000 generally sets
its "interrupt disable" mask in the system part of its status
register to the same as the level of the interrupt being
processed; this means that a level five interrupt can be
interrupted by levels six or seven, but not by one to five.

Besides normal hardware interrupts, exception processing can also
be caused by other "external" events in the form of bus errors or
reset, or by a whole variety of "internal" events such as
addressing errors, privilege violations, illegal or unimplemented
op-codes, divide by zero, or by one of sixteen special TRAP
instructions which force exception processing, in a way a bit
similar to 6502 BRK.

Introducing the Amiga Page 15

~n exception on the 68000 causes the CPU to push status register
and program counter to its current "user stack", to enter
supervisor mode, then to jump by way of an appropriate vector in
the bottom lK of memory. The 68000 has some very fancy ways of
handling interrupts indeed, but these are not used on Amiga,
which handles trickery on the interrupts outside the CPU in the
PAD as explained above. As used in the Amiga, the different
levels of hardware interrupt, and the various software interrupts
and traps, simply correspond to different vectors in the bottom
lK of memory, which point to different entry points in Exec. The
fact that the "fancier" interrupt modes aren't used in Amiga
means that the top part of the bottom lK isn't doing anything;
this is reserved for use as work-space by the Amiga monitor,
Wack. Note that the vectors in the bottom lK include initial SSP
and initial PC values for use during reset; things are got going
in a sensible manner on Amiga by having "boot" ROM switched into
this area during reset - this ROM also handles loading
"Kickstart" into RAM/ROM on the AlOOO.

We shall consider exception processing on the 68000 in more
detail in Part II section 1, when we look at multi-tasking and
Exec. For the moment, we shall content ourselves by mentioning a
difference in character between 6502 interrupts and exception
processing on 68000. On the 6502, interrupt processing can
generally be thought of as a "slave" to the main processing, that
wakes up every now and again and worries about boring
"background" matters like whether the user is typing on the
keyboard. On the 68000, exception processing can be thought of
as "master" rather than "slave"; an exception puts the 68000 in a
special "supervisor" mode, with its own private "supervisor
stack", which is independent of anything else going on in the
machine; this means that it can take a look at what's going on
and mess about with it if it feels like it, such as stopping one
program ("task"} running and starting another - more about this
later when we discuss multi-tasking.

68000 instruction set

A summary of the 68000 instruction set can be found in Table 3.
Note that there are only 56 basic instructions, which makes life
reasonably easy. However, many of these come in various
different "flavours" such as byte, word, long-word and quick:

MOVE. B
MOVE.VJ
MOV8.J
MOVEQ

#0,DO
#0,DO
#0,DO
#0,DO

zero bits 0 to 7 of DO
zero bits 0 to 15 of DO
zero bits 0 to 31 of DO
quick move byte with sign eKtension - in
this case will zero all of DO. Occupies
only one instruction word.

Most of the i nstr11ctions are fairly self-explanatory. MOVE is
probably the most commonly encollnt~red instruction; the use of
differ~~nt address modes with. MOVE allows data to be moved between

Introducing the Amiga Page 16

registers, between registers and memory, and directly from memory
to memory, with various indirection and indexing options. MOVEM
- for move multiple - allows various registers to be specified
together in a single instruction, eg for the purpose of pushing
them to the stack:

MOVEM.L D2-D7/A6,-(A7) push data regs D2 to D7 and
address reg A6 to the stack.

Other facilities worth noting are signed and unsigned multiply
and divide instructions, a variety of branch instructions (eg
BSR) which together with "PC-relative" address mode make it
fairly easy to write relocatable code (unnecessary on Amiga since
any position-dependence can be fixed up by the AmigaDOS loader),
and a variety of "test and set" instructions - these allow you to
do things like checking if a flag bit is set already and set it
if not in a single "atomic" (uninterruptable) operation, which
comes in handy in a multi-tasking system. Finally, note the LINK
and UNLK instructions - these allow you to grab a load of work
space off the stack, and put a pointer to it in another address
register. This is used to allocate space for all "local"
variables by things like c compilers - so you need a lot of
stack-space on Amiga!

Introducing the Amiga Page 17

T a It.11 I '1 1t N Z V C

I 101 10101 I I lel0lel I I I I 11~-BIT
I ,STATU

I REG
CCR

31 1615 8 '1
D0 32-BIT
01

.................. _.,_-t ... -.-....... ~ _.,_~ DATA

.................. _.,_-t ... ~ _.,_~ REGs
DZ
DJ
D-i
05
06
07

31 lb15 8 '7
A0 31.-BIT
Al
A:") • .w

1--+--+-i-+-~-+-11---t--+-+-+-+-+---+-tt-+--+-+-+-+-+--+-i...-..+---+-t-+-+-+-~AOOR

.................. -......-t -.-.. ~ -...... REGs

A3
A4

A5
Ai

____________ _.... _______ __
A7-

~~~...----11-111-111-11....--111-111-11-111--111-11-111-111 
Z3 B 

I I I I I I I I I I I I I I I I I I I I I I I I lz4-11T 
PROGR 
COUNT 

Table ! = 68000 Registers 



J ~ ... 

r 

T 
'E' • I 

Introducing the Amiga Page 18 

ADDRESSING MODE GENERAL FORM EFFECTIVE ADDRESS EXAMPLE 
INHERENT NONE or INHERENT RTS 
REGISTER On/An/SR/ SPECIFIED REGISTER SWAP DZ 

CCR/USP 

I~fMEDIATE Ida.to. INSTRUCTION or 
EXTENSION WORD 

CMP 1~123-4 ,DS 

AB~OLUTE a.cldr- SPECIFIED ADDRESS MOVE ~4321. DJ 
ADDRE~S Rt.G. (An) CONTENTiS OF CLR (A3) 
INDIRECT SPEClrIED ADDRESS 

REGISTER 
ADDRESS REG. cllt>(An) CONTENTS Of ADDR. NEG sze0 
INDIRECT WITH REG. t DISPLACEMENT 
DISPLACEt.IENT 
ADDRESS REG. (An)+ CONTENTS Of ADDR. ADD (AZ)+,DZ 
INDIRECT WITH REG. BEFORE 
POSTINCREMENT INCREMENTING 
ADDRESS REG. -(An) CONTENTS OF ADDR. SUB -(Al) ,Do 
INDIRECT WITH REG.AFTER 
PREDECREMENT DECREMENTING 
ADDRESS REG. d8(An,i) CONTENTS OF~DDR OR 5(A2,D3),D5 
INDIRECT WITH Hf:GHNDEX RE ¥ 
INDEX AND + DISPLACEMEN 
DISPLACEMENT 
PROGRAM COUNTEfi label PROGRAM COUNTER BNE FRED 
RELATIVE WITH VALUE + OFFSET 
OiiSl'LACEMENT 
PROGRAM COUNTEfi labcl(i) PROGRAM COUNTER OR JIM(A&), 01 
RELATIVE WITH VALUE t orrBET 
ENDEX AND +INDEX REG. 
DISPLACEMENT 

Table ~ = 68000 Addressing Modes 



Introducing the Amiga Page 19 

MNEMONIC DESCJtlfTION 

ABCD ADD DECIMAL WITH EXTEND 
ADD ADD 
AND LOGICAL AND 
ASL ARITHMETIC SHIPT LEFT 
ASR ARITHMETIC SHIFT RIGHT 
Bao BJtANCH CONDITIONALLY 
BCHG BIT TEST AND CHANGE 
BHA BHANCH ALWAYS 
BS?:T BIT TEST AND SET 
BSR BRANCH TO SUBROUTINE 
BTST BIT TEST 
CHJC CHECJC REGISTER AGAINST BOUNDS 
CLR CLEAR orERAND 
CMP COMPARE 
DBi!~ TEST COND .. DECREMENT & BRANCH 
DIViS SIGNED DIVIDE 
DIVU UNSIGNED DIVIDE 
EOR EXCLUSIVE OR 
EXG EXCHANGE REGISTERS 
EXT SIGN EXTEND 
.JMP JUMP 
JSR .JUMP TO SUBROUTINE 
LEA LOAD EFFECTIVE ADDRESS 
LIN IC LINK STACK 
LSL LOGICAL SHIFT LEFT 
LSR LOGICAL SHIFT RIGHT 
MOVE MOVE 

Table 3 - 68000 Mnemonics 



Introducing the Amiga Page 20 

MNEMONIC DESCRIPTION 
MOVEM MOVE MULTIPLE REGISTERS 
MOVEP MOVE PERIPHERAL DATA 
MULS SIGNED kfULTIPLY 
MULU UNSIGNED MULTIPLY 
NBCD NEGATE DECIMAL WITH EXTEND 
NEG NEGATE 
NOP NO OPERATION 
NOT ONE I iS COMPLEMENT 
OR LOGICAL OR 
PEA ftJSH EFFECTIVE ADDRESS 
RESET RESET EXTERNAL DEVICES 
ROL ROTATE LEFT ll71THOUT EXTEND 
ROR ROTATE RIGHT WITHOUT EXTEND 
ROXL ROTATE LEFT WITH EXTEND 
ROXR ROTATE RIGHT WITH EXTEND 
RTE RETURN FROM EXCEPTION 
RTR RETURN AND RESTORE 
RTS RETURN fROM SUBROUTINE 
SBCD SUBTRACT DECIMAL WITH EX TEND 
s~~ SET CONDITIONAL 
STOP STOP 
SUB SUBTRACT 
SWAP SWAP DATA REGfSTER HALVES 
TAS TEST AND SET OPERAND 
TRAP TRAP 
TRAPV TRAP ON OVERFLOW 
TST TEST 
UNLNIC UNLINK 

Table 3 - 68000 Mnemonics (continued) 



Introducing the Amiga Page 21 

Appendix ~ = More about Memory 

The situation as regards memory on the original Amiga 1000 was 
fairly straightforward. The AlOOO came with 512K of internal 
"chip memory" accessible by both the 68000 and the PAD (you could 
get a system with only 256K, but there wasn't much point); if you 
wanted to expand on this you could add up to 8 megabytes of 
external "fast memory" (also known as expansion memory), 
accessible by the 68000 only, and therefore not subject to cycle
stealing by the PAD. This situation has become confused since 
the release of the A2000 and the A500, by the arrival of a new 
form of memory generally known as "slow memory" - it is probably 
worth trying to explain this, though please feel free to ignore 
this section if this is your first reading! 

The situation on the Amiga 1000 was that available chip memory 
was checked by Exec on power-up; Exec would then swipe some of 
this memory for its own use for things like Exec library 
structures and the system supervisor stack, which was put at the 
top of chip memory from $07 E800 up to $08 0000. The rest of 
available memory was put by Exec into a "free memory list", ready 
for allocation by anything else that wanted it. 

Later on, the system would scan for expansion memory, using a 
complex protocol looked after by a special library called 
"expansion.library". This would interrogate any add-on cards, 
looking out for expansion memory (amongst other things); if 
found, this memory would be linked into the memory free list as 
fast memory, at the next available location somewhere between 
$20 0000 and $AO 0000. 

From then on, memory allocation was looked after by two Exec 
routines called AllocMem() and FreeMem(), or by higher level 
routines built on these such as Exec AllocEntry() and 
FreeEntry(), or Lattice malloc() and free(). Exec AllocMem() is 
called with two parameters, the first indicating how much memory 
is needed, and the second indicating various options, including 
what sort of memory is wanted - chip memory, fast memory, or 
don't-care-fast-if-available. This causes a block of memory to 
be removed from the free list, until released by a suitable call 
to FreeMem ( ) . 

This was a nice versatile system; the only problem with it was 
that it wasted some chip memory on Exec library structures and 
supervisor stack, which didn't really need to be there and which 
took memory which could otherwise be used for Intuition screens, 
graphics structures, digitised waveforms, etc. Since it rapidly 
became apparent that chip memory was very much at a premium on 
Amiga, this scheme was modified somewhat on the A2000 and the 
ASOO, by adding a new form of memory, now generally known as 
"slow memory". (To confuse matters, slow memory was once known 
as "ranger memory", while recent documentation tends to refer to 
slow memory as "fast memory", while referring to real fast memory 
as "expansion memory" - we shall ignore this.) 



Introducing the Amiga Page 22 

Slow memory is an additional 512K of RAM, built into the A2000, 
or available as an optional internal RAM-pack (together with 
real-time clock/calender) on the A500. This memory maps in up at 
the top, in an area previously reserved for IO etc starting at 
$CO 0000, thus bringing the Amiga A2000 and A500 total RAM up to 
a theoretical maximum of 9 megabytes. Slow memory is checked for 
by Exec BEFORE it checks chip memory at power-up; if found, slow 
memory is used for things like ExecBase and the supervisor stack, 
instead of these being put into chip memory. The rest of slow 
memory not used for these structures is put into the free memory 
list; from then on it is treated by the system exactly like fast 
(ie expansion) memory. 

The good news is that this gives you the maximum possible amount 
of free chip memory on the A2000 and A500. The bad news is that 
slow memory - as the name implies - isn't real fast memory; 
despite the fact that it lives high up in the memory map, slow 
memory is in fact on the same side of the gate in the Amiga bus 
as the PAD. This means that slow memory access suffers from 
cycle stealing when the PAD is handling high resolution or using 
a "nasty" blitter, despite the fact that slow memory cannot 
actually be accessed by the PAD (at least with the current chip 
set!). Be warned therefore that a program which uses high 
resolution or a lot of colours, or which does a lot of "nasty" 
blitting, will not run as fast in a one megabyte A2000 or A500 as 
it will in a system with real fast (expansion) memory. 

There are two further points worth making, relating to two 
utilities provided on the 1.2 disks, called NoFastMem and 
SlowMemLast. The first is fairly simple: some early games 
programs tended to assume that any memory they found in the 
machine was chip memory, and they therefore won't work properly 
on a system with over 512K. To get round this, run NoFastMemory 
(by double clicking on the icon), which will go through the 
system allocating any memory that isn't chip memory so that these 
games will run properly; double click on the icon again to get 
the extra memory back. 

The second point is more subtle: if you have a system with slow 
memory, then even if you add real fast (expansion) memory, this 
will tend not to get used as much it should be. This is because 
Exec links the slow memory into the system free list BEFORE 
expansion.library links in the fast memory, which means that any 
remaining slow memory will always tend to get allocated before 
the real fast memory gets a look in. The solution is to run the 
program SlowMemLast, which will adjust the links in the free 
memory list so that slow memory is at the end of the list, so 
that it will get used AFTER any real fast memory. r.f you are 
adding expansion memory to an A2000, or to an A500 to which you 
have already fitted slow memory, we suggest putting SlowMemLast 
in your standard Workbench startup sequence. 



Amiga Exec 

Part .!..!. = The Kickstart Guide To Amiga 

Amiga Exec 

Page 23 

How To Do Several Things At Once While Doing One Thing At ~ Time 

'I 
,, 

Exec illustration by Tris Murray. 



Amiga Exec Page 24 

Section 1 - Amiga Exec 

How To Do Several Things At Once While Doing One Thing At A Time 

Viewed in hardware terms, what makes the Amiga special are the 
clever chips, which are able to maintain a high quality colour 
display with very little effort on the part of the CPU. Viewed 
in software terms, what makes the Amiga special is the multi
tasking, which is handled by a crucial bit of system software 
called Exec. 

These two areas - the clever hardware and the clever software -
are in fact very closely connected. It is because you don't have 
to tie up the CPU looking after the display all the time that you 
can afford to use more sophisticated structures and concepts 
{with higher overheads) in the system software; it is because 
you can use ~hese structures and concepts that you can do multi
tasking in a reasonably civilised manner. 

However, this software sophistication can be a bit of a problem. 
If you are just out of a computer science degree - or if you 
happen to have spent the last N years working on Unix systems -
then many of the concepts behind the Amiga should be quite 
familiar. If on the other hand you came to software development 
from some other background, and thence to 8-bit machines like the 
Commodore 64, then these ideas won't necessarily be familiar, and 
you won't find the documentation all that helpful, as it assumes 
you know them. 

For this reason, this book aims to tackle the Amiga from a 
different angle, from the point of view of people {like 
ourselves) who know the chips like the 6502 and machines like the 
64 pretty well, but who tend to go a bit green when someone says 
"round-robin scheduling" or "pre-emptive time-slicing". If you 
are corning onto the Amiga from something like the 64, we hope you 
will find this useful. If on the other hand you are corning to 
the Amiga from something like Unix you may find this less useful 
- if so, you can amuse yourself spotting our errors - please 
write and tell us! 

An introduction to multi-tasking 

Multi-tasking on the Amiga is essentially a clever trick pulled 
on the interrupts. Thus in order to understand how it works, you 
have to know a bit about 68000 interrupts on the Amiga. We will 
approach this by first reviewing 6502 interrupts on the 64, and 
suggesting how you might use them to implement a simple form of 
multi-tasking. We will then discuss why this would be a pretty 
silly thing to do - though don't let us stop you of course - then 
go on to discuss how it can be done in a more sensible way on the 
Amiga. 



Amiga Exec Page 25 

Multi-tasking on the 64? 

As is now widely known, the 6502 has two interrupt lines -
interrupt request IRQ and non-maskable interrupt NM!. If either 
of these lines is pulled low by external hardware, then the 6502 
is forced to perform an interrupt; this means that it finishes 
the instruction in progress, then saves its current program 
counter and status register on its stack, sets the "interrupt 
disable" flag in its status register, then jumps to an address 
held in a "vector" at the top of memory. This invokes an 
"interrupt servicing" routine, which typically saves off the 
registers, does its business, restores registers, then returns 
from interrupt (RT!). RT! causes the program counter and status 
register to be restored from the stack (this has the side-effect 
of clearing the interrupt disable flag); the interrupted program 
then carries on as if nothing had happened. 

IRQ and m.ft differ in that IRQ can be disabled by setting the 
interrupt disable flag, usually using the SEI instruction. This 
causes any further IRQs to be ignored until interrupts are re
enabled, usually by a CL! (clear interrupt disable) instruction, 
or by a return from interrupt. NM! (non-maskable interrupt) 
cannot be disabled, and can be considered as being at a higher 
priority than IRQ; an NM! can interrupt an IRQ interrupt handler, 
but an IRQ will not usually be able to interrupt an NM!. 

There is a third form of interrupt on the 6502 known as a 
"software interrupt", in the form of the BRK instruction. When 
the 6502 hits BRK op-code ($00), it behaves exactly as if it had 
received a hardware IRQ, but with a special flag set in the 
status register so that the interrupt handler routines can· tell 
the two apart. BRK is usually used for debugging, eg to cause an 
entry to a monitor such as Supermen. 

On the 64, NMis and IRQs can each result from a variety of 
sources, which have to be identified by the interrupt handler 
routines. However, under many circumstances the only interrupt 
that needs to be worried about is a "clocked" IRQ, generated 
every 1/60 seconds by a timer on one of the CIAs. The principal 
activities caused by the default interrupt handler for this IRQ 
are to update the clock locations used by BASIC TI and TI$, to 
update the location used by BASIC stop-key checking, and to scan 
the keyboard and store any key presses in the keyboard queue. 

As most 64 programmers are now aware, it is possible to enable 
other sources of interrupt; for example the VIC chip can be made 
to cause an interrupt when the electron beam reaches a specified 
point on the screen, allowing various "split screen" tricks to be 
implemented, such as changing background, or increasing the 
apparent number of sprites. In order to do this, it is also 
necessary to modify or replace the default interrupt handler 
routines; this can be done quite easily. Other tricks can be 
pulled just by modifying the interrupt handler; an example is 
"polling" an external device such as a modem chip, and performing 
input or output "on the interrupts" if necessary. 



Amiga Exec Page 26 

Less well known is the fact that you can in fact spend just about 
as long as you like before "returning from interrupt" without 
upsetting the 64. For example, it is possible to run a 
"snapshot" utility on the interrupts, which allows a screen dump 
to be made at any point during the execution of a BASIC program, 
following which BASIC execution will continue. This works by 
modifying the interrupt handler to check for some special key 
combination; if found interrupts are re-enabled and a screen dump 
routine invoked. This can then run perfectly normally; indeed it 
has no way of knowing that it is actually running "on the 
interrupts" (the stack pointer is a bit lower than it would 
otherwise be, but what the heck). The screen dump has to take 
care to save and restore any locations used in page zero etc, and 
to use workspace separate from BASIC for its own variables; when 
it has finished it can then pull registers from the stack and 
RTI, causing BASIC to resume as if nothing untoward had happened. 

(This utility gets into trouble if BASIC happens to be in the 
process of using the printer when the snapshot is invoked. This 
is an example of the dreaded contention, of which more anon.) 

It would theoretically be possible to extend this technique in 
order to provide at least a limited form of multi-tasking on the 
64 in BASIC. In order to do this, you would do "task switching" 
on the interrupts by saving off BASIC work-space (page 0 etc) 
somewhere private (say around $COOO), then setting the pointers 
appropriately for another BASIC program, which would have its own 
work area, variables etc somewhere else in memory - say above the 
value of MEMSIZ for the first program. BASIC could then be 
kicked off again and the second program run for a while; a· few 
interrupts later you could then restore the first program's 
pointers then restore registers and RTI; the first program would 
then carry on as if nothing had happened. This is a simple form 
of multi-tasking - see Fig 1. 

Limited versions of multi-tasking are in fact available on some 
eight-bit micros, but there isn't really much point. For one 
thing you tend to run out of memory; for another, the overhead in 
saving everything off and restoring it as suggested is rather 
high, so you tend to spend so much time "task switching" that you 
don't actually get time to do anything useful. In order to make 
the whole business practical you need more memory, a faster more 
versatile processor, and preferably some clever chips to look 
after the screen without involving the processor too much; in 
fact an Amiga will do very nicely. 



Amiga Exec 

DRIB 

Clll 

Al81 

IBll 
1811 

Pllo9Z BASIC Pl'DSl'~tt I 
variables 

I 
I 

I P•oq1 BASIC pl\oplft a 
1 Vat'1ables 

Prag 2 page I etc 

_ _,,,,,_,-__,.--~-. 
""-.,,.• 

.•' 
' v ... r 
\ 

~ 

Page 27 

HDtSI2 for Pros2 

HlltSIZ tor Pfogl 

FIG 1 

'4 MUititasking? 

---- ~- -..._ · .... ,_ ---r-- ··. --
~ -~~ 

_...., .... - _.---- task task ~-----.. ·---~ . 
, .... •• •• .,.> con~ol contl'ol ...... :::.· 

/'-._ ¥..!.' b I ock b 1 ock ·:::.t -... 
/ / (mdy) (running) . \\. \ ... \ 

,I .l 
f I I 

J .I I ' :! 

ll' , ... _,...-ad_d?-_e_ss-of_c_le_an-up-co-de- f;\S:k add?-ess 0£ cleanup code ', ta~kf 
.. US~I\ - usei1~: 

\ / otl1e1' s:tuf£ staC«' 0U1el' stuf t stadc 
I I . I 

! ; + / 
i ./· 

' ' 
task \ ,___--""I 

task l-:~:-· dat ~ '· ( c I e ~n~i,p 
code I · " code) 

ta~k 
code 

task 
... ~ d4ti i 



Amiga Exec Page 28 

Amiga Exec 

Exec is a collection of routines at the "lowest level" of the 
Amiga; it is used by all the other bits such as graphics 
libraries, Intuition, AmigaDOS, device drivers etc, and can also 
be used directly by application programs. It is also in charge 
of interrupts on the machine, and as such exercises a controlling· 
influence over everything else. The principal thing looked after 
by Exec in its controlling role is a sophisticated version of 
multi-tasking - the Amiga can run several programs at once, each 
of which thinks it has a "virtual machine" all to itself. It 
does this by means of task switching on the interrupts, using 
some special facilities of the 68000. 

Enter the 68000 

In general, if you are familiar with the 6502, you shouldn't have 
very much trouble understanding the 68000. While the two chips 
are only distantly related, and are organised internally in a 
very different way, they are in many respects conceptually quite 
similar. In particular, both use a small number of instructions 
with a large number of address modes; the 68000 has about 56 
fundamental instructions (quite a lot of which come in various 
flavours such as byte, word and long-word) and eleven addressing 
modes. However, the 68000 does have a number of features not 
found on processors like the 6502, which come in handy when it 
comes to multi-tasking. 

The 68000 doesn't have anything equivalent to the 6502 "page 
zero". Instead it has eight internal 32-bit data registers and 
eight 32-bit address registers. The latter can be used for a 
wide variety of indirection, such as 

JSR (A6) 

or even 

JSR -6(A6) 

- call a subroutine whose address is in A6 

- call a subroutine whose address is 6 bytes 
less than what's in A6 

Address register A7 is reserved for use as the stack pointer. 
Since this is a 32-bit register, this ·means you can have a stack 
as big as you like anywhere in memory. (It also means that an 
exploding stack can completely smash the machine, but there you 
go.) The stack tends to be used very heavily on the 68000. For 
example, the LINK instruction can be used to grab some temporary 
work area off the stack and put a pointer to it in one of the 
other address registers; this area can then be accessed by 
suitable indirect addressing. This technique is used by most 
compilers (including Lattice C) to allocate storage for all local 
("automatic") variables, so you need a lot of stack space! 



Amiga Exec Page 29 

3. The 68000 has three interrupt lines, which are used together to 
provide eight priorities of interrupt. Instead of an interrupt 
disable flag, it has a three-bit interrupt mask in the status 
register; this is used to prioritise interrupts so that a level 1 
interrupt can itself be interrupted by levels 2 to 7, but not by 
levels O or 1. The number of priorities is effectively increased 
by one of the Amiga custom chips, the 4703 (or "PAULA"); this 
watches fifteen possible sources of interrupt (NMI, copper, 
expansion bus, disk , serial i/o, audio channels, blitter, 
vertical blank, etc), and decides if and when to interrupt the 
CPU and with what priority. 

The full details of interrupt handling on the Amiga are fairly 
complicated, especially when it comes to the details of the 
interaction between PAULA and the 68000. However, the overall 
effect is not too dissimilar to the 6502 case discussed above: 

1. PAULA gets an interrupt from some bit of hardware. It flags 
which interrupt was requested by setting a bit in one of its 
registers, then checks another register to see if this 
interrupt is enabled. If so, it generates an interrupt to 
the 68000 at the appropriate priority. 

2. If the 68000 is already servicing an interrupt, it checks to 
see if the new priority is greater; if not it ignores it for 
the time being. Otherwise it switches into "supervisor 
mode" (see below), saves off status register and program 
counter on the system stack, sets its interrupt mask 
appropriately, then jumps by means of a vector in the bottom 
lK of memory to an appropriate entry point in Exec. Exec 
then further decodes what is going on by looking at PAULA's 
registers, and calls the appropriate interrupt handler. 

3. On return from interrupt (RTE), the 68000 restores status 
register and program counter; this has the side-effect of 
restoring the interrupt mask to its previous level. It then 
restores the mode from which it was interrupted (this is 
usually "user mode" - see below), and exits. 

The 68000 also supports a wide variety of software interrupts, 
including various error conditions like illegal instructions or 
divide-by-zero, and 16 TRAPs, which can be used to initiate 
special processing in a way similar to 6502 BRK. Again, these 
are generally used for purposes like debugging; the system 
default action on traps is to give you a guru number to meditate 
on, then (optionally) to sling you into ROMWACK. 

Now, there is a problem with terminology here. On a 6502, we 
usually talk about hardware interrupts (IRQ and NMI), and 
software interrupts (BRK). Motorola on the other hand don't talk 
about interrupts at all - instead their documentation refers to 
externally and internally-generated exceptions, which are just 
like interrupts, but more wonderful. Amiga, just to be different 
again, tend to talk about hardware interrupts and software traps; 
they use the terms "exception" and "software interrupt" to 



Amiga Exec Page 30 

describe two tricks of their own, which are touched on below. 
This is very confusing. From now on, we will try and use the 
Amiga terminology in order to be consistent with the 
documentation - okay? 

4. The 68000 can work in two modes, known as supervisor and user 
modes, distinguished by a bit in the status register. Generally 
speaking, user programs (this means you) run in user mode; 
supervisor mode is only entered if the 68000 gets an interrupt or 
trap. The most significant difference between the two modes is 
that each has its own private stack pointer; Exec can therefore 
run "on the interrupts", with the benefit of its own private 
system stack. The only other difference between the two modes is 
that a few instructions are "privileged" and can only be executed 
in supervisor mode; this includes all operations affecting the 
"system" part of the status register, so you can't barge into 
supervisor mode from user mode directly; it has to be entered 
legally. An attempt to use a privileged instuction from user 
mode generates a trap - on the Amiga, this will usually give you 
guru number eight. 

68000 multi-tasking 

A number of special instructions exist on the 68000 to allow the 
user stack pointer to be manipulated from supervisor mode (it is 
NOT possible to access the supervisor stack pointer from user 
mode!). The significance of this is that it is possible to have 
several different user programs ("tasks") in memory, each with 
its own private stack; Exec can then swap between tasks "on the 
interrupts" by fiddling about with the user stack pointer.· 

As mentioned above, there are many sources of hardware interrupts 
on the Amiga. The one of immediate relevance in understanding 
how the machine does multi-tasking is the vertical blank; this is 
generated once for every scan of the video display, and can be 
thought of as the Amiga's closest equivalent to the 64's 
"clocked" IRQ. (Coincidentally, it also happens about every 1/60 
seconds in the USA, or every 1/50th elsewhere). 

Thus as an application program on the Amiga, you will be running 
as a task somewhere or other in memory, with the 68000 in User 
mode, with your own data areas, and your own user stack. Every 
vertical blank, Exec will be waking up and having a look at you, 
running in Supervisor mode, with its own private supervisor 
stack. If Exec decides to leave you unmolested, it will simply 
return from interrupt and let you carry on. 

If on the other hand, Exec decides to let some other task have a 
go, it will save the current values of ALL your registers on your 
(user) stack, then remember what your user stack pointer was in 
something called your "task control block". It will then restore 
some other task's user stack pointer, pull the last saved values 
of its registers from its user stack, then return from interrupt. 
The other task will then carry on as if nothing had happened. 



Amiga Exec Page 31 

In fact, Exec thinks about multi-tasking at the end of any form 
of interrupt processing, not just vertical blank. It can also be 
forced to think about it by other means, for example by a task 
calling the Wait(} function, which indicates that it doesn't want 
to run for a while. 

Memory management 

In order for a variety of tasks to run independently as described 
above, it is very important that they are not allowed to 
interfere with each other, eg by trying to use the same memory. 
Thus memory allocation has also to be looked after by Exec, which 
keeps lists of what regions in memory are currently free, and 
what regions are allocated. 

There are two aspects to this, the first of which is looked after 
by AmigaDOS, and the second of which is up to the programmer. An 
AmigaDOS program file is stored as a number of "hunks" of code 
and data, each of which has associated with it some relocation 
information, allowing code hunks to be put anywhere in memory. 
This is handled by the AmigaDOS scatter-loader, which asks Exec 
to allocate memory for each hunk, then loads, relocating as it 
goes. AmigaDOS also asks Exec for memory for the task's stack -
the amount of memory allocated for the stack is picked up from 
the .info file if the program is run from Workbench, or 
controlled by the current setting of STACK from the CLI. Thus a 
program can rely on internal code and data, and on its private 
user stack being allocated to it by AmigaDOS; this memory remains 
allocated until the program terminates. 

The program will require further memory for buffers, bit-maps and 
whatever structures it cares to create. The allocation of memory 
for this is handled by various routines in Exec, the simplest of 
which is AllocMem(), which looks for a block of free memory of 
the size and type requested, and returns a pointer to it if 
found. This means that any memory allocated in this way must be 
addressed indirectly; if you are using something like a C 
compiler this is very straightforward (use pointers!}. 

Contention 

There are other ways of getting into trouble in a multi-tasking 
environment besides problems with memory. An example is handling 
a hardware resource like the parallel port or the blitter; it is 
possible for one task to start an operation on a hardware device, 
then for another to be cut in by Exec and try to do something 
quite different, resulting in system confusion. 

This problem is handled on a resource by resource basis by the 
associated system software; it is not looked after directly by 
Exec. In the case of the parallel port, access to the device 
driver is obtained via the Exec call OpenDevice(}, which can pass 



Amiga Exec Page 32 

the device a flag requesting exclusive access; OpenDevice() in 
turn tries to open a lower-level entity called a resource which 
is directly concerned with granting or refusing access to the 
parallel port hardware ("misc.resource"). If another task has 
exclusive access, then the attempt to open the resource will 
fail, and other tasks calling OpenDevice() will return an error 
until the first task has finished. In the case of the blitter, 
it is possible to claim exclusive use using a graphics library 
routine OwnBlitter(), or to queue a non-exclusive request using 
QBlit(). These different cases will be considered in more detail 
later. 

Note that if all else fails, it is possible to stop Exec from 
task-switching for a while using two routines Forbid() and 
Permit(), or even to switch off interrupts completely using 
Disable() and Enable(). It should not be necessary to do this 
except in exceptional circumstances however. 

Time-slicing 

The process of Exec deciding which task should be running, and 
getting it going if necessary, is called task scheduling and 
dispatching; the mechanism used to do it is called pre-emptive 
time-slicing. 

Consider a rather boring Amiga (only twice as interesting as its 
competitors) which is only running two tasks; assume these tasks 
are quite independent of each other, and are of equal "priority" 
(see below). In this case, Exec will simply task swap as 
described above at pre-set time intervals (time-slices); this 
time interval, which is known as a "quantum", is currently set to 
four vertical interrupts, or 1/15s. This time-slicing is ''pre
emptive" in that the task losing the processor doesn't get any 
say in the matter; from its point of view it is just as if it had 
an abnormal very long interrupt. See Fig 2. 

More than two tasks of equal priority are handled in a similar 
manner, with Exec switching the processor between them every 1/15 
seconds, with each task taking its turn in a "round robin" 
fashion. 

Task priority 

Tasks are added to the system by setting up a task control block 
somewhere in memory, then calling a routine called AddTask with 
the address of this structure, a "kick-off" address for the 
task, and an optional "clean-up" address, specifying what to do 
if your task decides to RTS from its entry stack-level for some 
reason. The task control block contains various information for 
the task such as a name, the upper and lower bounds for the 
task's stack, and an initial stack pointer; it also contains a 
single byte interpreted as a number from -128 to 127 for the 
task's priority. 



Amiga Exec Page 33 

When first experimenting with tasks, it is a good idea to always 
set the priority to zero; this is a safe "neutral" value. It is 
however possible to choose lower or higher values. The rule used 
by Exec to handle priority is very simple; if a high priority 
task wants to run, a lower priority task will never get the 
processor; Exec will only time-slice between tasks of the same 
priority. This ceases to be the case if the high priority task 
indicates that it doesn't want to run for a while by entering a 
"wait" state (see below); lower priority tasks then get a look 
in. Since the Amiga uses tasks for a lot of system activity such 
as most I/O, this means that high-priority tasks should be used 
only when necessary and then with caution. System tasks usually 
have priorities between -20 and +20. 

At this point, it may be worth considering some real tasks 
running in the Amiga. If you open a CL! window in the workbench, 
then invoke OldWack, you can get a list of tasks by typing TASKS. 
This will be something like the following: 

Type Priority Status Name 

Process 0 run Background CL! (you using WACK) 
Process 0 wait CL! (CL! process) 
Process 5 wait CON (CL! console device) 
Process 10 wait File System (CLI filing) 
Process 1 wait Workbench 
Process 1 wait File System (Workbench filing) 
Task 5 wait trackdisk.device (CL! disk device) 
Task 5 wait trackdisk.device (CL! other drive) 
Task 20 wait input.device (mouse/keyboard/timer) 
Task 5 wait trackdisk.device (workbench disk device) 
Task 5 wait trackdisk.device (workbench other drive) 
Process 5 wait RAW (WACK RAW console) 

"Processes" and "tasks" are distinguished by "node types" of 13 
and 1 respectively. A task is an Exec concept as discussed in 
this document. A process is an AmigaDOS structure built on the 
idea of a task; it consists of a task control block, a "message 
port" (see below), and a lot of other stuff. 

Waits and signals 

Tasks operating independently of each other as discussed above 
are not terribly exciting; things become more interesting when it 
becomes possible for tasks to communicate with each other, eg for 
one task to send another a "message" asking it to do something, 
or for a task to go to sleep (give up the processor) until it is 
woken up by some action on the part of another task. The process 
of tasks going to sleep and waking up is handled at the lowest 
level by Exec using a mechanism called signals. 



Amiga Exec Page 34 

Tasks on the Amiga can be in three principal states, which are as 
follows: 

RUNNING - I've got the processor 
READY - I want the processor 
WAITING - I don't want the processor until so-and-so happens 

The current status of each task is flagged by Exec within the 
task control block. In addition, Exec maintains its task control 
blocks in two lists, a "ready queue" ordered on task priority, 
and a list of waiting tasks in no particular order. A task 
indicates that it wants to go to sleep until something external 
to itself happens by calling a general-purpose Exec routine 
Wait(), or a more special-purpose routine such as WaitPort() (see 
below). This causes Exec to remove the task's control block from 
the READY queue and put it in the WAITING list; it then returns 
to time-slicing between the tasks at the front of the READY list, 
i.e. those of highest priority. 

It should be pointed out that a lot of tasks will spend most of 
their time waiting. An example is a task concerned with disk 
i/o; this will spend most of its life waiting until some other 
task requests disk activity. This is a pretty good idea, since 
tasks in wait states don't tie up the processor. 

The reverse process - of getting a task out of the WAITING list 
and back into the READY queue - is handled by a mechanism called 
signals. Each task has associated with it 32 signal bits; the 
low order 16 of these are reserved for system use, while the high 
order 16 are free for whatever you want to do with them. In 
fact, each task control block contains four long-words (4 • 32 
bits) of signal-bit information, flagging which signal bits have 
been already allocated for use by this task, which signal bits 
the task is currently waiting for, which signals have been 
received, and which signals should cause a special form of 
processing called an "exception" (not to be confused with what 
Motorola mean by an exception - aarrrgghhh). 

Signal-bits are most often used in conjunction with a higher 
level inter-task communication mechanism called messages and 
ports. In this context, they are usually allocated for you by 
Exec; however you can just as well look after them yourself. The 
meaning of each bit is up to you; for example you might want to 
have one signal bit flagging messages coming in from the console, 
another flagging messages from the disk device, and a third 
connected to a timer. The way to use signal bits directly is as 
follows: 

1. The safe way to claim a signal bit for some purpose is to 
call an Exec routine called AllocSignal(). If called with 
an argument of -1, this will return the number of the next 
free bit to you from 16 to 31 (you will have to convert 
this into a bit mask), and flag that bit as allocated. 



Amiga Exec Page 35 

2. To go to sleep until some event (or a choice of several 
events) of interest takes place, call Wait() with an 
argument which is a bit-mask indicating which signal (or 
signals) you are waiting for. Exec will then put you in the 
WAITING list until something happens to set these bits. 

3. When something does happen, Exec will put you back in the 
READY queue so that you again have the chance to run. When 
you get the processor again you will return from Wait(); the 
value returned indicates what signal (or signals) happened 
to cause you to wake up again. 

4. As mentioned above, signals are most often caused by 
"messages" arriving at "message ports". However, it is 
possible for one task to signal another directly, by calling 
an Exec routine Signal(task,mask), which sets the signal 
bits specified in the control block of the task indicated. 

Messages and ports 

Simply waking up another task by calling Signal() is of limited 
use; you usually need to send the task some data as well - for 
example, you might want to output some text by sending a string 
to the console device. This is handled by sending messages to 
message ports. 

A message port is a data structure linked to a task control 
block. In order to do any form of I/O at all, a task needs at 
least one message port, and it is frequently convenient to use 
several. Each port has linked to it a queue of messages from 
other tasks. The arrival of a message at a message port usually 
causes the associated task to be signalled; this causes it to 
wake up (return from a wait state) and do something about the 
incoming message. Once it has finished processing a message, a 
task usually needs to let the task that sent the message know 
that it has finished with it. It does this by replying the 
message by sending it back to the task that originated it; it is 
able to do this because each message contains a long-word which 
is either the address of the port to reply to, or zero if no 
reply is required. 

Let's take that again, slowly. suppose we have an application 
where we have two tasks, a "main" task and a "child" task, which 
we want to be able to communicate in a simple way, by the main 
task sending the child task messages. This can be handled 
roughly as follows - a detailed example is given in C later. 

1. Both tasks need to get going somehow. This can be done by 
being kicked off as a process from AmigaDOS; alternatively a 
task can spawn another task using the Exec-support routine 
CreateTask(). 



Amiga Exec Page 36 

2. In order to be able to communicate, both tasks now need 
message ports and associated signal bits. Creating a 
message port, linking it with the associated task control 
block and allocating a signal bit to flag arrival of 
messages can all be handled by calling an Exec-support 
routine CreatePort(). 

3. In order to be able to send messages to each other, the 
tasks need to know where in memory to find the other task's 
message port. There are two ways of doing this. 

a. If the two tasks are closely collaborating, they will 
probably be compiled and linked as part of the same 
program. If so, they will know where each others' 
message ports are anyway - these are called "private 
ports". 

b. If the two tasks are not part of the same program, then 
they have to use "public ports". A public port must be 
given a name; it can then be added to a list of ports 
maintained by Exec, using the Exec routine AddPort(). 
This will be handled for you if you use the Exec
support routine CreatePort(); if passed a non-null 
name, this routine assumes a public port, and calls 
AddPort() accordingly. Once this has been done, 
another task can find the port by using the Exec 
routine FindPort(); this causes Exec to search its list 
for a specified port-name, and return the address of 
the port if it finds it. 

4. The child task can now enter a wait state, until a signal 
bit goes to indicate that a message has arrived from the 
main task. The simplest way to do this is to call a routine 
called WaitPort(), which does just this. Alternatively, if 
the arrival of the message is only one of a variety of 
possible interesting events you want to wait for, then you 
can call Wait() directly, with a bit-mask which includes 
the signal bit associated with the message port; if you 
got Exec to create the port, you can find out which signal 
bit it allocated by looking at the message port structure. 

5. The main task can now send a message to the child task. It 
does this by allocating memory appropriately (using the Exec 
routine AllocMem()), then setting up a message structure, 
followed by the message data. The message structure 
includes a "reply port" address; the main task fills the 
address of its own message-port in here. The message can 
then be sent using the Exec routine PutMsg(). The main task 
can now get on with something else, and/or start watching 
its own message port for a reply, probably by entering a 
wait state using WaitPort(). 



Amiga Exec Page 37 

6. Once the message has been sent, the child task will be 
signalled, and will return from WaitPort(). The message can 
then be removed from the queue using another Exec routine 
GetMsg, which returns the address of the first message in 
the queue, or zero if there are no more messages. 

7. The child task can now examine the message, and take 
appropriate action. When it has finished with it, it should 
return it to the specified reply port; this can be done 
conveniently using an Exec routine ReplyMsg(). 

8. In the general case, there may be more than one message 
queued at the message port, despite the fact that the child 
task was only signalled once. If this is a possibility, 
then the child task should continue calling GetMsg() and 
processing any further messages, until GetMsg() returns 
zero. The child can then return to a wait state using 
WaitPort(). 

9. When the main task gets the reply from child task, it should 
remove it from its message port using GetMsg(). Note that 
it is possible for the child task to pass data back to the 
main task by modifying the message data before replying; if 
so the main task can now make use of the returned data. It 
can then de-allocate the memory used for the message, use it 
for another message, or whatever. 

See fig 3 for an illustration showing the relation between tasks, 
message-ports and messages. 

There is a final subtlety to this business which is well worth 
noting. This is that very little actually gets moved about in 
memory when a message is sent; the message data actually stays in 
the same place, but gets attached to the child's message port.by 
cunning use of pointers. For this reason, the main task must be 
very careful not to touch the message data, or de-allocate the 
message memory etc, until the child task has replied the message. 
Another way of looking at this is to say that by sending the 
message, the main task grants the child task a temporary licence 
to mess about with a bit of main task's memory; by replying the 
message, the child task returns this memory to the main task. 



Amiga Exec 

i ~othtri 
1
1. nessage 
port 

I 
I 

'./.. • --- tllk I§ 
--'--... _ __,._ nessase 

.. --:S.._ . .. 
· .. 

task 
,,-:~/. contl'ol 

_... .. / ltlock 
·.· ,• 

·' { ! ·y· signal 
··~"' · bi ts 

port . 11mairel\ 
·{~ 

___ J • 

queue , _; or nessue .. ,... 

. 
. •' 

task's 
"es sage 
port 

.. -1~ 
~"' 

/- .. · 
,/' _ _,/ /" 
I/ 

( I . \ . 
• l •l-"l.• . 

Page 38 

task 
sending 
M55Q! 

\ \ taslc ~ •, ,.' 

n~ssas~s l'ep 1 y- ~x,,_ 
{ f 
~--

\ stack "\ 
., ..----. POl't ·+·· 
\ task 

f 

----./ 
nessase ,/ \. · ... code 

Figure ~ = Messages and Ports 

tllk A ~canninr 
list 

'~ ------ .. 
task B nodif~ing 
list Q .._______.. 

Figure ! = Two Tasks Contending! 

task 
stack 

~. 
\ 

l 

task 
code 



Amiga Exec Page 39 

Limitations of tasks 

All of this sounds great until you try to use it and the Amiga 
crashes with a guru (whoever wrote the example of multi-tasking 
in the original Vl.O ROM kernel manual had a great sense of 
humour). The problem is principally connected with AmigaDOS. As 
mentioned above, AmigaDOS does make use of Exec's structures and 
routines to handle multi-tasking; however it builds on top of 
Exec's "task" structure (ie a task control block} to create its 
own structure called a "process", which is a task control block, 
followed by a message port, followed by various other stuff 
connected with what the console is, where its window is, etc. 
AmigaDOS expects this information to be there, ie it expects to 
be called from a process; if you call it just from a task you 
will crash the Amiga! This places very severe restrictions on 
what you can do in a sub-task: 

1. You can't call any AmigaDOS functions directly. 

2. You can't use a lot of Lattice functions such as printf(), 
since these call AmigaDOS. 

3. You can't open any disk-resident libraries or devices, such 
as the icon library or the printer device, unless you are 
sure they are currently in RAM; otherwise AmigaDOS will try 
and fetch them from disk, thus crashing the system. 

On the other hand, there's no problem at all calling ROM 
libraries such as Intuition and the graphics libraries, or of 
opening resident devices such as the console. Thus you can 
perfectly well spawn a sub-task to handle a bit of animation 
(say) while your main task gets on with something else; or you 
might want to have a "pre-processor" task sitting on top of the 
console, passing stuff onto your main process in some pre
digested form. If you do need to call DOS functions from a sub
task, there are two solutions: 

1. Be a sub-process instead. In order to do this, you will 
probably be compiled and linked separately; you can then be 
kicked off by AmigaDOS Execute(}, or by AmigaDOS LoadSeg(} 
followed by CreateProc(). 

2. Have a dedicated sub-process (or even your main process) 
handling the interface to AmigaDOS. Then when a sub-task 
wants to talk to AmigaDOS, send a message to the dedicated 
process, and let it talk to AmigaDOS. 

A C example of a process kicking off a sub-process is given 
later. 



Amiga Exec Page 40 

Interrupts 

As indicated above, interrupts on the Amiga are essentially the 
territory of Exec - you can use them yourself, but you have to 
ask Exec nicely. As mentioned above, the terminology used when 
discussing interrupts on Amiga tends to be confusing; a summary 
of the main concepts is as follows. 

1. Hardware interrupts. These are looked after by one of two 
mechanisms - interrupt handlers and server chains. 
Interrupt handlers are used by high-priority-copper, disk, 
serial port, audio channels and "software interrupts". Only 
one handler is allowed per source of interrupt, and you are 
unlikely to want to change the system defaults; however, if 
you must, this can be done using a structure called an 
"Interrupt", and a routine called SetintVector(). Server 
chains are used by NMI, the 8520s, the blitter, vertical 
blank and the copper; they allow tasks to share interrupts, 
by calling each routine in the chain successively, allowing 
(say) a number of tasks to synchronise with vertical blank. 
It is more likely that you will want to try this - if so, 
you use the same interrupt structure, and a routine 
AddintServer(). Note that the Amiga gets upset if you spend 
too long on the interrupts, particularly when servicing an 
interrupt of high priority. 

2. Traps. These are a form of 68000 special processing very 
similar to a hardware interrupt, but caused either by an 
error condition (eg address error, illegal instruction, 
divide-by-zero), or by 16 special TRAP instructions. If you 
want to do your own trap handling, you can set up two 
pointers in your task control block to point to your trap
handling code and (optionally) to a separate data area -
this second pointer is really for the system's convenience, 
since its trap-handling code may be in ROM. If you don't do 
this, the system will set up default trap-handling, which 
gives you a guru number when you get a trap. If you want, 
you can get Exec to help you with TRAP allocation within 
your task, by using a routine AllocTrap(), which behaves in 
a way very similar to AllocSignal() discussed above. Note 
that there is no problem with different tasks using the same 
traps - Exec will always pass the trap to the task that is 
currently running. Traps are used by monitors like Wack to 
implement things like break-points. 

3. Exceptions. This is a cunning Amiga trick to allow a task 
to have "private interrupts" connected to a signal bit. If 
you want to use this, you set up pointers in your task 
control block to point to special exception-handling code 
and data-area; you then call an Exec routine SetExcept() to 
indicate which signal bits you want to cause exceptions. 
You can for example arrange for message arrival at a given 
message port to cause an exception; you can then go and do 
something quite different, knowing that as soon as a message 
arrives your exception code will be invoked. 



Amiga Exec Page 41 

4. Software interrupts. This is another cunning Amiga trick. 
"Software interrupts" on the Amiga use the same data 
structure as hardware interrupts; they run at lower priority 
than hardware interrupts and traps, but higher than normal 
tasks. They have two main purposes: 

a. As mentioned above, the Amiga gets upset if you spend 
too long servicing a hardware interrupt. To get round 
this, you can arrange for the hardware interrupt to 
invoke a software interrupt using the Cause() function. 
The software interrupt will then be processed after the 
return from hardware interrupt, but before returning to 
normal multi-tasking. It is also possible to use 
Cause() from within a task; if so, the task is 
interrupted immediately, and there will be no return to 
normal multi-tasking until the software interrupt has 
finished. 

b. It is possible to set up a message port to cause a 
software interrupt, instead of signalling a task. 
Sending a message to this port will then immediately 
invoke the software interrupt, again at a higher 
priority than normal multi-tasking. 

Note that there are therefore three principal things that you can 
arrange to happen when a message arrives at a message port: 

1. In the normal case, when a message arrives, a task 
associated with the port is signalled, and processes the 
message when it gets round to it. 

2. If the message is more urgent than this, it can be arranged 
to cause an exception, in which case the associated task 
will process it as soon as it is next woken up, even if is 
currently busy doing something else. 

3. If the message is really urgent it can be arranged to cause 
a software interrupt; this will be executed at once, at a 
higher priority than normal multi-tasking. 



Amiga Exec Page 42 

Programming implications 

As was stated at the start of this section, Exec does its job 
very well, so if you're not doing something exotic like using 
interrupts, you can more-or-less forget the multi-tasking, and 
just let Exec get on with it. However, there are a few rules you 
have to keep: 

1. You MUST NOT simply hit the hardware when you feel like it -
what do you think this is, a 64? Some other task might be 
in the middle of some delicate operation when you come 
blundering in - this will cause weird intermittent crashes 
which will be very hard to track down. If possible, use a 
system library call instead; if you must access hardware 
like the blitter directly, do it in a decent manner by first 
of all claiming it, then accessing it, then releasing again 
when you have finished. 

2. Similarly, he careful with memory allocation. You can make 
direct references to data actually in your code, as these 
will be fixed up by the scatter-loader; for all your other 
needs you should AllocMem(), then access the memory returned 
to you lndirectly. 

You need to be a bit careful with your options when calling 
AllocMem(). Data structures which are accessed by the 
sr•-''·~·ial chips should be AllocMem'd MEMF_CHIP; data 
st1uctures (such as messages) which are going to be accessed 
by more than one task should be AllocMem'd MEMF PUBLIC -
this is for upward compatibility with any future products 
which may support hardware memory partitioning. Note that 
structures like this should NOT be declared implicitly as 
data in the program. Finally, if you are going to create 
structures like task control blocks yourself, you should do 
so MEMF PUBLIClMEMF CLEAR; however in these cases we would 
recommend using support routines such as CreateTask(), then 
adjusting the structures returned if necessary. 

3. If you need to wait for something to happen, call Exec 
Wait() or WaitPort(). "Busy waiting" by wizzing round a 
tight loop is very bad manners - why tie up the processor 
doing nothing? - and may cause the system to hang if you are 
running at a higher priority than the task that you are 
waiting for! 

4. The interrupts belong to Exec; don't mess around with them 
by directly changing the processor interrupt mask or the 
bottom-of-memory interrupt vectors. If you want to use 
interrupts, ask Exec nicely. 

5. Finally, be careful about contention. Quite innocent
seeming activities like "bunny hopping" through a system 
list can cause trouble if some other task is updating the 
list at the time - see Fig 4. You can frequently avoid this 
sort of problem by calling Exec routines - such as 



Amiga Exec Page 43 

FindTask() to search Exec's task lists - rather than doing 
it yourself. If you MUST access system lists, then use 
Forbid() and Permit() to disable task switching where 
necessary. 

Structures and lists 

So far, this section has deliberately not given details about the 
exact mechanisms used to maintain lists, task control blocks etc; 
this has been because we have been trying to concentrate on the 
principles of what is going on, rather than implementation 
details that you can find in the ROM kernel manuals. However, it 
may be worth saying a bit about lists, and giving at least a 
summary of some important structures used in lists. 

Linked Lists 

From the discussion above, we might expect that Exec keeps tables 
somewhere showing which tasks are running and which waiting, what 
the last saved task user stack pointer was, etc. This is more or 
less correct, except that the Amiga doesn't use tables for 
anything much - it uses linked lists. · 

In a table, items of information ("elements") are ordered 
implicitly by means of their arrangement in memory - see Fig 5. 
In a linked list, elements of the list are ordered explicitly; 
each element of the list contains the address in memory of the 
next element, i.e. it contains a pointer to it - see Fig 6. The 
order of the list as maintained by the pointers does not have to 
correspond with the actual arrangement in memory - indeed the 
elements could be splattered about all over available memory. 

In order to scan a table, you start at the beginning and search 
sequentially through it until you find what you are looking for. 
In order to scan a linked list, .you have to "bunny hop" through 
it as follows: 

DO 

Get address of next element 
Examine this element and do with it as you will 

WHILE you haven't run out of list 

You can tell when you've run out of list, because the pointer to 
the next element is then zero. 

The disadvantages of linked lists is that there is a small 
overhead due to the pointers (each address takes four bytes), and 
because the processing of scanning through the list by "bunny 
hopping" as described can take a bit longer than sequential 
scanning. The advantages are that you don't have to move 
everything to insert a new element - you just twiddle the 



Amiga Exec Page 44 

pointers as shown in Fig 7 - and that it is a "no limits" 
structure. A table can go on growing only until it fills the 
space allocated to it; a linked list can grow until it fills the 
whole of memory. 

This sort of arrangement, with "structures" scattered about in 
memory, containing "pointers" to other structures, is exactly 
what C was designed to be good at; hence the dominant position of 
C on the Amiga. However, as regards linked lists, you don't have 
to write your own routines; Exec contains a number of general 
purpose routines to handle its own linked lists, and these are of 
very general usefulness; their use from application programs is 
recommended. 

In fact, there are two subtleties about linked lists as used on 
the Amiga. 

1. The lists are doubly linked, in that each element contains a 
pointer back to the previous element, as well as a pointer 
forward to the next element. This makes it possible to 
bunny hop backward if this is more efficient. Each element 
in the list starts with a structure called a "Node", which 
is followed by the actual list data: 

Node: pointer to next node (successor) - 4 bytes 
pointer to previous node (predecessor) - 4 bytes 
node type - 1 byte 
node priority - 1 byte 
pointer to node name - 4 bytes 

Data for list element follows. 

Besides the pointers, the node contains a type used to 
distinguish between nodes used for different purposes - eg 
tasks, message ports, messages etc - a priority which can 
be used to order the list, and a pointer to a node name; in 
the case of a linked list of task control blocks, the name 
might be the name of the task or process, eg "Background 
CLI". 

2. The two ends of the list are "tied up" by use of a cunning 
structure called a "list header" - this structure is simply 
known as a "List" in order to confuse you. This is arranged 
as follows: 

List: pointer to first node in list 
pointer to first node predecessor = pointer 

to last node successor = O 
pointer to last node in list 
list type 
spare byte (padding) 

A complete linked list is illustrated in Fig 8. 



Amiga Exec Page 45 

Fis 5 I HePel I Isl ; All ta•lel I 

.. -1Mm.ess ar IS I HERE •I 
Fig 6 t~1Adllr-es;s of LIST I Al I ....... ·f ·~~~,....Ad-~-ess_o_r -A .... , -1-S , ..... , 

~- --===========---------~zero link narks end I LISIB I 
. ~~~Address of IS I HEJll: e i 

Fir? .tJ1Addz.m of HODIFID I AB I 
'y '1Addf\1~s ot A I I~ I I 

l 

\ .. r;---i2e~o I in)( ttvks !nd I LISTI l 
\1 Addlim of LIST I NODil'IED • I 

Ho de 

List Pointer to first -. 
~Zero t\arks st!l't/end --:-----...... · . .tn·"•: 

next-~.---·..--- PointrI' to last -.,:: .r. .. \lt\\· 
, .... -··· ~ List tWJe F·re\1 : ...... \ \\ 

.. l'' /"'Pl'evf .__SP ..... ~_e____ .. \ \ 
Pointeia to next node No41 Point~I' to newt nod1 
Pointe1' to Pl'evious node Pointer to previous node 
Node t~e Hode ty~e 
Nok~1wify Ho~n1~i~ 
Pointer to node naHe Pointe11 to node nirtl! 

Data tollous 

'· ~ \ '"\ Node Poinh11 to next nod@ 
·. · .. ~"~~ev Poinhl' to Pl''uio~ noll~ 
\. ·~: ....... ~ Node type 

~,~, • Not{! Pl' 1 or i ty 
1 t·~---...._ Pointer to node naMe 11~){. ....... 

-..._ Data follows 

Data follows 

I I 

!' I 
t , 
~ .• 

/ " prev t.., l 
7i / _,. I 

-·,,r \ _.. ,..- ... 
·· .... ··~ext .. · 

Fig B 



Amiga Exec Page 46 

Task control blocks 

Exec maintains its READY queue and its WAITING list as two linked 
lists of task control blocks, known simply as Tasks. These are 
arranged as follows: 

Task: Node, includes list pointers, "task" node-
type, and pointer to task name. 

Flags - 1 byte 
State - running, ready, waiting etc - 1 byte 
Interrupt disabled nesting - 1 byte 
Task disabled nesting - 1 byte 
Signal bits allocated - 32 bits 
Signals to cause exit from wait - 32 bits 
Signals we have received - 32 bits 
Signals to cause "exceptions" - 32 bits 
Traps that have been allocated - 32 bits 
Traps enabled - 32 bits 
Pointer to data area for "exceptions" 
Pointer to code to handle "exceptions" 
Pointer to data area for traps 
Pointer to code to handle traps (default is "give guru"· 
Last saved task user stack pointer 
Address of task user-stack bottom boundary 
Address of task user-stack top boundary 
Routine to call when task is about to lose processor 
Routine to call when task regains processor 
List structure to tack tasks private memory 

list onto if you want to (up to you) 
Spare pointer (also up to you) 

A message port also starts with a node; this is to allow Exec to 
tie public ports into a linked list that it can search when asked 
to FindPort(). The structure is as follows: 

MsgPort: Node - includes msgport type, and name. 
Flags, including message arrival action 

flags - signal task, cause software 
interrupt, ignore message. 

Number of signal bit to use if signalling task. 
Pointer to associated task control block, 

or software interrupt structure 
List structure, with list of arriving 

messages attached to it. 

Messages are then arranged as a list (queue) tied onto the 
message port: 

Message: Node - ties messages to port. Message-type 
Address of message port to reply to 

(null if reply not needed) 
Length of message data in bytes 

The message data then follows this structure. 



Amiga Exec Page 47 

The interrupt structure (used for handlers, server-chains and 
software interrupts) is very simple: 

Interrupt: Node - ties together server-chains 
Pointer to data-area for interrupt 
Pointer to interrupt code (terminates RTS) 

Finally, the process structure is not so simple: 

Process: Task control block 
Message port used by DOS 
Process values - file handles for default IO, etc. 

Examples 

Two examples are given of communication between tasks, and 
communication between processes. 

Task example 

This can be compiled under Lattice in the usual way, using 
something like the following. Assuming that LC: INCLUDE: and 
LIB: have been assigned somewhere sensible, use 

LC:lcl -iINCLUDE: -oRAM: mtask 
LC:lc2 -omtask.o RAM:mtask 
LC:blink FROM LIB:c.o+mtask.o TO mtask LIB LIB:lc.lib+LIB:amiga.lib 

In this example a main task creates a sub-task then sends it a 
message containing a reason-code and a text pointer. It has to 
be careful that its child task has woken up and created its 
message port before it tries to talk to it; this is handled as 
follows: 

1. First main creates its own message port. 

2. Then it creates child task, and waits for a message from it. 

3. When child task wakes up, it creates a 
sends main a message indicating if all 
or if failed for some reason (code 1). 
not need a reply. 

message port, then 
is well (code zero), 
This message does 

4. Main then sends child a "hello there" message. Child gets 
the message and replies it; main gets the reply. 

5. Finally, main sends child a special message telling child to 
go away. Child cleans up by removing its message port, then 
replies to main and enters an endless wait state. Main then 
deletes child, cleans up its message port, and exits. 



Amiga Exec Page 48 

This example aims for simplicity rather than beauty, and can be 
criticised in a number of ways. 

1. The messages have been set up as static structures in the 
code. This makes the example easier to read, but it means 
it won't necessarily run on Amiga upgrades. The correct 
thing to do would have been to AllocMem some MEMF PUBLIC 
memory, and copy the message data into it. 

2. Child does not bother to check if more than one message is 
waiting. This is okay in this case, as we know main won't 
send any more until child has replied. However, if there 
was more than one possible source of messages to child, this 
would be dangerous. 

3. The code makes use of "goto". Our own feeling is that 
"goto" is perfectly okay for handling errors in nested 
structures only. You may disagree. 

Process example 

In this example, MAINPROC and CHILDPROC are compiled separately. 
MAINPROC can be compiled as usual: 

LC:lcl -iINCLUDE: -oRAM: mainproc 
LC:lc2 -omainproc.o RAM:mainproc 
LC:blink FROM LIB:c.o+mainproc.o TO mainproc LIB LIB:lc.lib+LIB:amiga.lib 

CHILDPROC is linked without the Lattice standard startup code 
c.o which handles the normal business of startup from CLI or 
Workbench - we don't need this as we are kicking off this process 
ourselves. To do this, you have to compile with the -v option to 
disable Lattice stack-checking: 

LC:lcl -iINCLUDE: -ORAM: childp'roc 
LC:lc2 -ochildproc.o -v RAM:childproc 
LC:blink FROM childproc.o TO childproc LIB LIB:lc.lib+LIB:amiga.lib 

This example is written to be similar to the previous one, and 
uses the same message structure. However, because child is now a 
process it can use AmigaDOS - it uses this to open a CON: window, 
where it prints out messages sent to it. 

Again, it is necessary to be a bit careful with synchronisation 
at the beginning. In this case, this is achieved by main sending 
child a "wake-up" message to child's DOS message-port and waiting 
for a reply; this is okay, as nos won't be using its port at the 
time. Thereafter, child's own message-port is used, which is 
safer. Main finds this message-port by looking in the "user
data" area of the task control block, where child has put a 
pointer to its message-port; alternatively, it would have been 
possible to use a public port. 



Pag•? 49 

Appendix ! = Guru Meditation Mysteries 

Guru alerts are the mechanism by which the Amiga system software 
informs the user of serious problems. Alerts are an Exec 
function, which can also be invoked through Intuition. They come 
in two forms - recoverable alerts from which you can return to 
normal multi-tasking, and dead-end alerts which necessitate a 
system reset. In the latter case the system normally puts up a 
requestor first (eg 'Software Error - Task Held') to allow you to 
go round saving files etc before this happens. 

There are two principal sources of guru meditations - 68000 
processor traps, and system software errors. If a task gets a 
68000 trap i~ doesn't know what to do with - ie if it hasn't set 
up its own trap handling and hasn't had its traps "taken over" by 
a monitor like Wack - then the system will give a guru meditation 
such as the following: 

I Software Failure. Press left mouse button to continue. I 
Guru Meditation #00000003.00002702 

Here the number before the dot is the 68000 trap number. 
Possible candidates are as follows: 

2 
3 
4 
5 
6 
7 
8 
9 
A 
B 

20-2F 

Bus error (hardware) 
Address error (word access on odd byte boundary - frequent! 
Illegal instruction (you are probably out of control) 
Divide by zero 
CHK instruction 
TRAPV instruction 
Privilege violation (supervisor instruction from user mode) 
Trace 
Opcode 1010 emulation (out of control again) 
Opcode 1111 emulation ( " ) 
TRAP instructions 

The number after the dot is the address of the task control block 
for the task that went wrong - almost certainly your task! From 
this point, you can go in with ROMWack to investigate further, as 
described in detail later. 

The second type of Guru number is generated by the system 
software, and has the following form: 

Block 
00 00 
A B 

0000 
c 

00000000 
D 

Byte A defines in what part of the system software the alert was 
generated, and also flags if the alert is a recoverable one or 
dead-end. The most significant bit flags a dead-end alert; 
otherwise the values are as follows: 



1 
2 
3 
4 
5 
6 
7 
8 
9 

Exec '..ibrac1 
Graphics library 
Layers library 
Intuition library 
Maths library 
Clist library 
AmigaOOS library 
RAM handler library 
Icons library 

10 
11 
12 
13 
14 
15 

20 
21 
22 

.l\udio device 
Console device 
Game-port device 
Keyboard device 
Trackdisk device 
Timer device 

CIA resource 
Disk resource 
Misc resource 

30 Bootstrap 
31 Workbench 

Page 50 

Byte B indicates the general cause of the problem, as reflected 
in the text error message: 

1 No memory 
2 Unable to create library 
3 Unable to open library 
4 Unable to open device 
5 Unable to open resource 
6 Input/output error 

Word C gives more detail - its meaning varies depending on the 
source of the error (as specified in byte A) and can be found in 
the commented version of h-file exec/alerts.h. An example is 

I Not enough memory. Press left mouse button to continue. I 
Guru Meditation #02010009.0007D6B8 

This indicates a recoverable error from the graphics library 
(byte ~ = 02), and that the general cause of the problem is 'No 
memory' (byte B = 01). Refering to exec/alerts.h tells us that 
specific error word C = 0009 means 'no memory for TmpRas' - ie 
the graphics library was trying to allocate some memory for 
temporary storage during text or area-fill operations (TmpRas), 
and found it had run out of memory. The address 7D6B8 is just 
below the system stack at 7E800 on an unexpanded (512K) Amiga, so 
obviously we are running low on memory. 

The number after the dot has three possible interpretations for 
this form of guru. In most cases, it is the address of the 
control block for the malfunctioning task, as in the traps case 
discussed above. In cases relating to memory allocation, it is 
the memory address which went wrong - an example is the Exec guru 
81000009 'free twice' which indicates an attempt to FreeMem() 
some memory already in the system free list. Finally, in cases 
where the system is REALLY confused, to the point of not being 
able to find things like system task lists, the number after the 
dot is the ASCII text string 'HELP'! 



Amiga Exec Page 51 

Appendix ~ = About Semaphores 

The issue of "contention" arises whenever two or more tasks want 
to share something - such as a bit of hardware like a port, or 
just some memory like a linked list or some other significant 
structure. Generally speaking, if you use the system software 
properly, then it will look after this for you; however, there 
are the following three exceptions. 

1. If you want to access a bit of hardware directly, you should 
first of all claim it from the system by opening the 
appropriate resource, or calling an appropriate routine such 
as OwnBlitter(); when you have finished with it, you should 
then give it back by closing the resource, or calling 
DisownBlitter(). Programs (and programmers) who break this 
rule are increasingly referred to as "brain dead". 

2. If you need to access a system linked list for some reason, 
you should first of all disable multitasking using Forbid(), 
and later restore it using Permit(); if the list may be 
accessed on the interrupts, then you should use Disable() 
and Enable() instead. An example of a system list that you 
may want to access is Intuition's list of "gadgets" attached 
to a window structure - if you do this, make sure you 
Forbid() first, or you may get into real trouble when 
Intuition tries to access the same list, running as part of 
input.device's task schedule. (A better alternative in this 
case is to detach gadget sub-lists before you look at them, 
using RemoveGList() and AddGList().) 

3. If you are writing an Amiga application with two or more 
collaborating tasks or processes, then you will almost 
certainly find yourself in a position where two or more of 
your tasks or processes want to access the same data 
structures - which should be allocated MEMF PUBLIC - and 
where you therefore need to be careful about contention. 
(An example from our work at Ariadne is the Amiga terminal 
for the Compunet network, which has processes concerned with 
upload/download from the net and others concerned with 
editing; these need to access a common linked-list of text 
and graphics information.) In this case, Exec can help you, 
using a powerful mechanism known as "semaphores". 

Like a lot of Exec, semaphores were really put in for the 
convenience of the rest of the Amiga system software, 
particularly to cope with various contention issues involving 
Intuition. However, there is no reason why they shouldn't be 
used by application software, and indeed we would recommend you 
to do so. Before version 1.2, Amiga system tasks usually had to 
handle contention using the Forbid/Permit mechanism discussed in 
(2) above; this was unsatisfactory because it hung up the entire 
machine waiting for just two tasks which wanted to share 
something, and because it could result in various "deadlocks". 
This was sorted out in 1.2 by introducing semaphores. 



Amiga Exec Page 52 

A semaphore is essentially a flag which can be associated with 
something you want to share between tasks, such as piece of 
hardware, a structure or a linked list. Before accessing the 
shared object, a task must first of all "claim" the semaphore; if 
the semaphore has already been claimed by another task, then a 
mechanism exists to go into a WAIT state, and not be woken up 
again by Exec until the semaphore in question is available. 
There are essentially two mechanisms for semaphoring in Exec 1.2, 
a fast simple mechanism based just on task signalling which will 
do fine in most cases, and an alternative mechanism based on 
messages and ports, which is slower and more complicated, but 
sometimes more powerful. 

Signal Semaphores 

A "signalSemaphore" is an Exec structure which can be used for 
most cases of semaphoring, when a task needs either to claim a 
particular semaphore immediately, or to go to sleep until the 
semaphore is available. In our example of a linked list that we 
want to be able to share between two tasks, we might decide to 
have a signalSemaphore associated with the entire list. An Exec 
routine InitSemaphore(} exists to initialise such a structure, so 
we could set it up by 

OurListSem = AllocMem( sizeof(struct signalSemaphore}, MEMF_PUBLIC}; 
InitSemaphore(OurListSem}; 

Having done this, before either task tries to access our shared 
list, it should claim the semaphore by 

ObtainSemaphore(OurListSem}; 

This will return at once if the ~emaphore is available; if not 
the task will WAIT on a signal-bit until the semaphore is free, 
at which point it will claim it and return from ObtainSemaphore. 
If you don't want to wait, but want to do something else if the 
semaphore isn't free, you can call Attemptsemaphore(} instead; 
this will claim the semaphore and return TRUE if it is available, 
or give up and return FALSE if it isn't. (DON'T use this for 
"busy waiting"!} When the task has finished with the shared 
data, it must release the semaphore; this is done by 

ReleaseSemaphore(OurListSem}; 

Note that calls to ObtainSemaphore(} can be nested; if you call 
it while you already have the semaphore in question, it will 
return immediately having incremented an "obtain count"; other 
tasks won't get a look in until you have dropped the obtain count 
to zero, by calling ReleaseSemaphore(} once for every call you 
made to ObtainSemaphore(}. Note also that tasks waiting for a 
given semaphore are put into a queue, so that more than one task 
can be waiting for the same signalSemaphore. 



Amiga Exec Page 53 

Named Semaphores 

In order for two or more tasks to "rendezvous" on a 
signalSemaphore - to use it to control access to something or 
other - they obviously must all know where it is. This is a 
similar problem to a number of tasks being able to access each 
others' message ports, and is answered in the same way. If 
several tasks are closely collaborating, then they will probably 
be linked to form a single load-module, in which case they will 
all know where the semaphores are anyway; alternatively, if one 
task or process starts another, it can send it a "startup" 
message containing important information such as the locations of 
semaphores. We can think of these as "private semaphores". 

Alternatively, it is possible to have "public semaphores" very 
like "public ports". Public semaphores must be given a unique 
name; they can then be linked into an Exec list of public 
semaphores at a given priority position, using a routine called 
AddSemaphore(); this is called instead of setting up a private 
semaphore using InitSemaphore(). Another task can then search 
for the semaphore by name using a routine called FindSemaphore(). 
Note that before the semaphore is deallocated, it should be 
removed from Exec's semaphore list; this is done by a routine 
called RemSemaphore(j. 

Lists of Semaphores 

Sometimes it is desirable to link semaphores together, for 
reasons other than being able to find them in Exec's public 
semaphore list. An example might be to control the linked list 
of "frames" of text and graphics information mentioned in the 
Compunet example; in this case we might chose to have a "master 
semaphore" looking after the whole list, with "sub semaphores" 
associated with each individual frame, themselves linked together 
in their. own semaphore list. With this setup, if we want to lock 
a single frame we can simply ObtainSemaphore() its semaphore; if 
we want several frames we can first obtain the master semaphore 
to lock the whole list, then ObtainSemaphore() the frames we 
want, then release the master lock. If we want ALL the frames in 
the list, then we obtain the master lock, then we obtain all the 
individual semaphores using a routine ObtainSemaphoreList(); when 
finished, we can release them all using another special routine, 
ReleaseSemaphoreList(). 

Note that the use of a master semaphore associated with the 
entire list is essential, since otherwise you can get deadlock 
problems - say if one task is trying to obtain semaphore A 
followed by semaphore B, while another task is trying to obtain B 
followed by A. Note also that the use of semaphore lists in this 
way is incompatible with having named semaphores linked into an 
Exec list as discussed above; this is because the semaphore 
structure contains only one field for linking semaphores 
together! 



Amiga Exec Page 54 

As a final example of this sort of thing, consider the Layers 
library. Here we have a linked list of Layer structures each 
associated with a particular RastPort or Intuition Window; this 
is controlled by a master Layerinfo structure associated with the 
entire BitMap or Intuition Screen. Handling contention properly 
in this case is very important, to allow a number of programs to 
share the screen, each with their own private window(s); this is 
now handled internally by using semaphores in much the way 
discussed above. 

Message based Semaphores 

The signalSemaphore mechanism is simple, fast and powerful; its 
only drawback,is that while you are in a WAIT state caused by 
calling ObtainSemaphore, you can't simultaneously be looking out 
for anything else - such as a different semaphore coming free, or 
an IntuiMessage indicating that the user has clicked a "GIVE UP" 
gadget. If this is a problem, you will have to use a slower and 
more complicated mechanism, based on messages and ports. 

Using this mechanism, the semaphore is a special sort of public 
or private message port, set up with a special option PA_IGNORE 
telling the system not to signal any tasks when a message 
arrives, and with a field SM BIDS initialised to -1. A task can 
"bid" for this semaphore, by-calling an Exec routine 

Procure(port, message); 

where "port" is the special semaphore message-port, and "message" 
is a standard Exec message structure, initialised to contain the 
address of a suitable reply port. If the semaphore is available, 
Procure() will return TRUE immediately and the message will not 
be replied, and can be reused as soon as you feel like. 
Otherwise, Procure() will return FALSE, and the message will be 
replied as soon as the semaphore is available; you can therefore 
call Wait() with an approprate bit-mask to watch the designated 
reply port, while at the same time looking out for anything else 
of interest, such as other semaphore replies, Intuimessages, or 
whatever. 

When you have finished with a message-based semaphore you should 
of course release it; this is done by another call 

Vacate(port); 

This will free the semaphore port for use by others, and cause 
the next task in line (if any) to be woken up, by getting a reply 
to its message. 



'*************** Sourc~ file MULTITASt.C *************** 

Simple example of multi-tasking 
Ariadne Software Ltd. 

Apri 1 1986 
*****************************************************' 

I*** System header files required ***/ 

#include <exec/types.h> 
#include <exec/ports.h> 
#include <exec/tasks.h> 

I*** Our own definitions ***' 

#define CHILDSTACK 1000 I* stack size for child task +/ 

st rue t OurMsg { 

#define OKAY 
#define ERROR 
#define CLEANUP 
#define OTHEF: 

struct Message message; 
LONG code; 
char +text; 

0 I* possible values for code field +/ 
1 
2 
"'!! ·-· 

I*** Exec Library routines used ***' 

extern struct Message +WaitPort<>,*GetMs9<>; 
e>:tern VOID PutMs9 () ,ReplyMsg (); 

'*** Exec Support Library routines us~d ***' 

extern struct Ms9Port *CreatePort<>; 
extern struct Task •CreateTask<>; 
e>:tern VOID DeletePort 0, DeleteTask (); 

I*** Variables accessible to both main ~ child tasks ***' 

struct Ms9Port *mainport; I* pointer to main task's message port *' 
struct MsgPort •childport; /* pointer to child task's message port •I 



chi idcode<) 
{ 

} 

struct OurMsg *Childrcv; I* pointer to mess~ge received by child */ 

static struct OurMsg initms9 = < 

'· . 
J ' 

{ CNULL,NULL,NT_MESSAGE,O,NULL}, 
NULL, 
6 

'· J • 

o, 
NULL 

I* message.mn_Node *I 

'* message.mn_ReplyPort *I 
I* message.mn_Length *I 

I* code *I 
I* text */ 

childport = CreatePort<O,O>; /*create message port for child task*/ 

if <childport == 0) { 
initmsg.code = ERROR; 
initmsg.text = "Child task error"; 
PutMsg<mainport,&initmsg>; /*send message to main task ~/ 

WaitCO>; /*wait until child task deleted *I 

} else { 

} 

initmsg.code =OKAY; 
initmsg.text = "Child task okay"; 
PutMs9<mainport,&initms9>; I* send message to main task*' 

for <; ; ) { 
WaitPort<childportl; /*wait for message from main tas~ *I 

childrcv = <struct OurMsg *) GetMsg<childport>; I• get message *I 

if <<childrcv->code) ==CLEANUP> { 
DeletePort(childport>; I* delete child task's message port*' 
ReplyMsg(childrcv>; /*reply to main task*/ 

Wait ((I); /* wait until child task deleted *I 

} else { 

I* process the message here *I 

ReplyMsg<childrcv>; I* reply the message to main task */ 
} 

} 



•••••• M,~1n t.ci:t CD•'.'"'.' •••••• 

me. in\ 1 

struct Ta=k *ch1ldta=~: 

struct OurMsg *mainrcv; 
I* pointer to child tasl. 's control blocl: 
I* pointer to message received by main *I 

static struct OurMsg helloms9 = < 
< <NULL,NULL,NT_MESSAGE,O,NULL}, I* message.mn_Node •I 

NULL, 
6 

I* message.mn_ReplyF'ort */ 
/* message.mn_Length *' 

'.. , ' 

}, 
OTHER, 
"Hello child task~ 

static struct OurMs9 finalms9 = { 
,{ {NULL, NULL, NT _MESSAGE, O, NULU , 

NULL, 
6 

}, 
CLEANUP, 
"Perform clean-up" 

I* create messa9e port ~ child task */ 

I• code *I 
I* text *I 

'* message.mn_Node *' 
I* message.mn_ReplyPort 

'* message.mn_Length *I 

I* code *I 
I* te>:t *' 

*I 

mainport = CreatePort(O,O>; I* create message port for main task */ 

if <mainport == 0) { 
printf<"Failed to create main task's message port\n">; 
goto errorl; 

} 

childtask = CreateTask<"child",O,childcode,CHILDSTACK>; 

if <childtask == O> < 
printf<"Failed to create child task\n">; 
goto error2; 

} else { 
printf <"Child task created - waiting for message\n" >; 

} 

I* wait for initial messagre from child task *' 
WaitPort(mainport>; I* wait for message to arrive *' 
mainrcv = <struct OurMsg *> GetMs9<mainport>; 

printf("Message received from child task:\n 

if ( <mainrcv->code) == ERROR> 
9oto error3; 

I* send a message to child task */ 

printf("Sending message to child task:\n 

hellomsg.message.mn_ReplyPort = mainport; 

Xs\n",mainrcv->text>; 

%s\n",helloms9.te:-:t>; 

PutMsg(childport,&hellomsg>; I* send messa9e to child task *I 

WaitPort<mainport>; 
GetMsg<mainport>; 

printf("Reply received\n">; 

I* wait for reply *' 
I* get & ignore reply •I 



1• seno ~ess~~e t~ll1ng child tasl to prepare for deletion•· 

pnntf t "Sending message to child tasi:: \n 'Y.s\n 11 ,finalms9. te::tl; 

finalmsg.message.mn_ReplyF'ort = mainport; 

PutMsg<childport,Lfinalmsg>; 

WaitPort<mainport>; 
GetMsg<mainport>; 

printf<"Reply received\n">; 

I* send message to child tas~ *' 
/+ wait for reply *' 
I* get ~ ignore reply *' 

I* delete child task, clean up L exit •I 

error3: 
Deletelask<childtask>; I• delete child task •I 

printf<"Child task deleted\n">; 

error2: 
DeletePort<mainport>; 

errc•rl: 
e:-:it<O); 

} 

I* delete our message port •I 

'********** End of Source file MULTITASK.C ************/ 



Main process for mult1-process1n9 example 
Ariadne &oftware Ltd. 

Apri 1 1986 
******************************************************/ 

I*** System header files required ***/ 

~include <exec/types.h> 
#include <exec/ports.h> 
*include <exec/tasks.h> 
#include <libraries/dos.h> 

#define TCBSIZE sizeof<struct Taskl 

/*** Our own definitions ***/ 

#define CHILDPRIORITY 
#define CHILDSTACK 

(1 

40(1(1 
I* priority for child process *I 
I* stack size for child process *' 

struct OurMs9 { struct Message message; 
LONG code; 

#define Ol<AY 
#define EF:ROF: 
#define CLEANUP 
#define OTHER 

char *text; 

0 I* possible values for code field •I 
1 
2 

I*** Exec Library routines used ***' 

extern struct Message *WaitPort<>,*GetMs9<>; 
e:-:tern VOID PutMsg (); 

'*** Exec Support Library routines used ***/ 

extern struct Ms9Port *CreatePortC>; 
extern VOID DeletePort<>,DeleteTask<>; 

I*** DOS Library routines used *«*/ 

extern int LoadSes<>; 
extern struct Ms9Port *CreateProc<>; 
e:-:tern VOID DelayO,UnLoadSe90; 



•+•••• l'i;;<1n l'''oce~s .:ooe- ••+•+• · 

me. in ( 1 

struct Msgf-·ort 
struct MsgPort 
s true t 1'1s9Port 
int childseg; 

*ma1nport: I• pointer to main process's reply port +/ 

*dfltchildport; I• pointer to child process's default port *' 
•ourchildport; I* pointer to child process's new port *' 

I* BCPL pointer to child's segment list •I 
struct Task •childtask; 
struct OurMs9 *mainrcv; 

I• pointer to child's task control block *' 
I• pointer to message received by main *f 

static struct OurMsg wakemsg = { 
{ {NULL,NULL,NT_MESSAGE,O,NULL}, I* messa9e.mn_Node *I 

NULL, I• message.mn_ReplyPort •I 
I* message.mn_Length •I 

'!. • . ' 

'· . ' 
OKAY, 
"Wake up!" 

static struct OurMsg hellomsg = { 

} ; 

{ {NULL,NULL,NT_MESSAGE,O,NULU, 
NULL, 
6 

} ' 
OTHH:, 
"Hello child process" 

static struct OurMsg finalmsg = { 
{ {NULL,NULL,NT_MESSAGE,O,NULU, 

I• code *' 
I* text *I 

'* message.mn_Node *I 
I* message.mn_ReplyPort 
I* message.mn_Length *I 

'* code *' 

'* text *I 

I* message.mn_Node *I 

*/ 

NULL, I* message.mn_ReplyPort *' 
I* message.mn_Length *I 

}; 

}, 
CLEANUP, 
"Perform clean-up" 

I* create message port */ 

I* code *' 
I* ted *I 

mainport = CreatePort<O,O>; I* create message port for main process *I 

if <mainport == O> < 
printf("Failed to create main task's message port\n">; 
goto error1; 

} 

I* load • create child process */ 

childseg = LoadSeg("childproc">; 

if (chi ldseg == 0) { 

} 

printf("Failed to load childproc\n">; 
goto error2; 

dfltchildport = CreateProc("child",CHILDPRIORITV,childseg,CHILDSTACK>; 

if (dfltchildport -- 0) { 
printf<"Failed to create child process\n">; 
goto error3; 

} else { 
printf("Child process created\n"l; 

} 

childtasl = <struct Task•> (((int> dfltchildport) - TCBSIZE>; 



pr1ntf<"Senc1n? message to child process:\n %s\n",wakems9.text1; 

wal:emsg.message.mn_f\eplyPort = ma1nport; 

PutMsg(dfltchildport,~wakemsg>; I* send message to child process •I 

WaitPort(mainport>; I* wait for reply *I 

mainrcv = <struct OurMsg *> GetMs9<mainport>; I* get reply *' 
Dela.y<200>; I* delay for 4 seconds *' 
if < <ma1nrcv->code> == ERROR> { 

printf<"Reply received - error in child process\n">; 
goto error4; 

} 

printf<"Reply received - child process okay\n">; 

I* find child process's newly-created message port *' 

ourchildport = <struct Ms9Port *> childtask->tc_UserData; 

I* send "hello" message to child process ~wait for reply */ 

printf<"Sending message to child process:\n Xs\n",hellomsg.text>; 

hellomsg.message.mn_ReplyPort = mainport; 

PutMs9<ourchildport,•helloms9>; /*send message to chilij process •I 

WaitPort(mainport>; /*wait for reply •I 

GetMsg(mainport>; '*get' ignore reply*' 

printf<"Reply received\n">; 

De lay < 20C» ; f* delay for 4 seconds *' 
I* send "clean-up" message to child process & wait for reply *' 

printf<"Sending message to child process:\n Xs\n",finalmsg.text>; 

fina.lmsg.message.mn_ReplyPort = ma.inport; 

PutMsg<ourchildport,&finalmsg>; /*send message to child process*' 

WaitPort<ma.inport>; /*wait for reply*' 

GetMsg<mainport>; /*get t ignore reply*/ 

printfC"Reply received\n">; 

Delay<200>; I* delay for 4 seconds *' 



1 • clc•si: dowr i..i";1lc p.-oi::e~s. cle.;.r, L!p t:, e::1t ,. .. 

error4: 
liel et el a~ I \chi l dtasU : 

error:.: 
UnloadSe9<ch1ldse9>; 

error2: 
DeletePort<mainport>; 

error1: 
e:-:it<O>; 

'· , 

I• delete child process •I 

I* unload the child process's code •I 

I* delete our message port *' 

'********** End of Source file l'IAINPROC.C ************/ 



Child process for multi-processing example 
Ariadne Softw~re Ltd. 

April 1986 
*******************************************************/ 

'*** System header files required ***' 

#include <exec/types.h> 
#include <exec/ports.h> 
#include <exec/tasks.h> 
#include <libraries/dos.h> 
#include <libraries/dosextens.h> 

I*** Our own definitions ***' 

#define DOS_REV 29 
#define INTUITION_REV 29 

strL•ct OurMsg { 

#define OKAY 
#define ERROF: 
#define CLEANUf' 
#define OTHEF: 

}; 

struct Message message; 
LONG code; 
char *te>:t; 

0 I* possible values for code field •I 
l 
2 
3 

/*** E:{ec Library rc;iutines used ***/ 

e:-:tern ULONG Openlibrary ( >; 
extern struct Task •FindTask<>; 
extern struct Message *Waitf'ort(>,*GetMsg(>; 
extern VOID ReplyMs90,CloselibraryO; 

I*** E:-:ec Support Library routines used ***' 

extern struct Msgf'ort •CreatePort(); 
e>:tern VOID Deletef'ort ( >; 

'*** DOS Library routines used ***' 

extern int Open(),Write<>; 
extern VOID Close<>; 

I*** Declaration of function defined below */ 

extern VOID WriteString<>; 

'*** Global pointers to required libraries */ 

ULDMG SysBa.s.e; 
ULONG DOSB.:i.se; 

I• base address for Exec Library */ 
I• base address for DOS Library •I 



main ( 1 

struct Tasl: •ch1 ldtask; /* pointer to child's task control blocl' •I 
struct Process +childproc; /* pointer to child's process bloc~ *I 
struct MsgPort +dfltchildport; /* pointer to child's default message port •I 
struct Ms9Port *ourchildport; /* pointer to child process's new port *' 
struct OurMsg *Childrcv; I* pointer to message received by child •I 
int console; /* _AmigaDOS file handle for console •I 
ULONG *known; /+ the only known address!! */ 

known = <ULONG * :1 4; 
SysBase = *known; I* obtain Exec Library base address *' 
I• wait for wa~:e-up message from main process •I 

·childtask = FindTask<O>; /*·find child's task control block*' 
childproc = <struct Process *> childtask; 
dfltchildport = (s.truct MsgPort *> t·dchildproc->pr_MsgPort>; 

WaitPort<dfltchildport>; /* wait for message from main process *' 

childrcv = <struct OurMsg •> GetMsg(dfltchildport>; I* get message *' 
I+ crea.te message port ~{ open console for child process's output *' 
ourchi ldport = Cre2tePort W, (I); l*, create. messag.e port for child process *' 
if 1ourchildport == 0) { 

childrcv->code = ERROR; 
~ep lyMsg <chi ldrcv>; 
Wait ((1) ; 

} 

I* reply error message to main process ~/ 

I* then wait for deletion *' 
childtask->tc_UserData = <APTR> ourchildport; I* point at ~ort in TCB *' 

DOSBase = OpenLibrary ("dos. l ibraryN, DOS_REV>; 

if <DOSEcase == O> { 

DeletePort<ourchildport>; '* delete child's message port *' childrcv->code = ERROR; '* reply error message to main process *' ReplyMsg<childrcv>; 
Wait<O>; '* then wait for deletion *' } 

console= Open<"CON:l0/10/320/80/Child process",MODE_NEWFILE>; 

if <console -- (I) 
, ... 

CloseLibrary<DOSBase>; '* close DOS library *' DeletePort<ourchildport>; '* delete child's message 
childrcv->code = ERROR: I* reply error mes.s.age to 
ReplyMsg<childrcv>; 
~Jai t ((l); '* then wait for deletion 

} 

WriteString<console,"Message received from main process:">; 
WriteStrine<console,childrcv->text>; 

/+ tell ni?.in proce:.s 1-Je ·re ol:ay 'Ii:/ 

ReplyMs9lchildrcv>; 

port 
main 

•I 

*I 
process +:/ 



} 

it wait 4or me~sa9e~ trorr main proce~~ t do appropriate action •1 

for· (; ; 1 ~ 

} 

Wa1tPort<ourch1ldport>; I• wait for message from main proce~~ •1 

ch1larcv = <struct OurMsg *> GetMsg<ourchildport>; I* get message •I 

WriteStrin9<console,"Messa9e received from main process:">; 
WriteString<console,childrcv->text>; 

if <<childrcv->code> ==CLEANUP> { 
Close(console>; 
Closelibrary<DOSBase>; 
DeletePort<ourchilaport1; 
ReplyMs9 (chi ldrcv); 

Wait ((I); 

I* close console for child process*' 
I* close DOS library *' 
I• delete child"s message port *' 
I* reply to main process *I 

I* wait until child process deleted *' 
} else { 

/+, process other messages here *' 

ReplyMsg<childrcv>; I• reply the message to ma.in process*' 
} 

I* Write a null-terminated string to specified file *' 
VOID WriteStrin9<file,strin9> 
int file; 
char *string; 
{ 

} 

int length; 

length = strlen <string>; 

WriteCfile,string,length>; 
Write<file,"\n",1>; 

return; 

/********** End of Source file CHILDPROC.C ************/ 



Amiga Libraries Page 66 

Amiga Libraries 

How to Call a Routine, Without Knowing Where It Is 

.· ... 
. :,· .. 

·: • .).:;., ,,/ ' •" i· . .;.,,::..., .............. , ' ·-·· •'-<.-b• .. •••M~··•,•• .. , ...... '• 

. -~ : 

···.).:"··. 

;·t~· :
. . ., ; '~-.; 

"System architectt1re" illustration by Hugh Riley. 



Amiga Libraries Page 67 

Section ~ = Amiga Libraries 

How to Call ~ Routine, Without Knowing Where It Is 

When people leave behind machines like the 64 and come onto the 
Amiga, they usually start by asking questions like "Where is the 
screen RAM?" or "How do I poke the blitter?". Amiga initiates 
smile in a superior manner and gives answers like "That depends" 
or "You musn't". The beginner then asks for a memory map, and 
details of what addresses to call to invoke Intuition, Sound or 
Graphics; the expert smiles in an even more irritating fashion 
and explains that these questions too have no answer. It is the 
objective of this part of the Kickstart Guide to explain this. 

This section is hard work and doesn't have many jokes in it. The 
whole question of how various aspects of the Amiga work together 
as a "soft machine" is not easy to understand or to explain; we 
found the only way to do it was to work through an example, 
looking carefully at what gets resolved where. This section 
therefore falls into two principal sections - a review of the 
concept of "libraries", and a detailed worked example. Note that 
the examples are based on USA Kickstart version 1.1 - I suppose 
we ought to have done them all again on 1.2, but we simply 
couldn't face it - besides which the principles involved haven't 
changed between versions. 

PART I - PRINCIPLES OF LIBRARIES 
~~ - - ~~~~~ 
The aspect of the Amiga which we are concerned with is known as 
soft machine architecture. This is a common feature of 
mainframes and mini-computers, and has been increasingly used in 
microcomputers since the first 16 bit machines. A "hard" machine 
architecture relies on absolute addresses, such as "To output a 
character you need to JSR $FFD2". "Soft" machine architecture 
means that the system relies on absolute addresses like this as 
little as possible. Instead, things are done in a more flexible 
way, in which system routines and jump tables don't always have 
the same addresses, but are instead put into memory wherever 
there happens to be room for them, as and when they are needed. 

There are two main advantages to this. The first is that it 
leads to flexible and efficient memory utilisation, particularly 
in a multi-tasking system, and/or a system in which virtual 
memory techniques are likely to be used at some stage. The 
second is that it is very useful when it comes to upward 
compatibility - if there aren't any fixed addresses in the 
system, then you can produce an "upgrade" with everything in 
different places, and still quite legitimately claim 
compatibility. The main disadvantage is speed - if you can't 
rely on absolute addresses, then you have to keep using various 
forms of indirect addressing for everything, which is somewhat 
slower. It is because so much is done via OMA channels by the 
custom chips on the Amiga that you can get away with this. 



Amiga Libraries Page 68 

Libraries, libraries and libraries 

The mechanisms used to achieve a soft architecture on the Amiga 
are known as libraries. Unfortunately, this term is used in no 
less than three different ways with three different meanings! 
This is rather confusing, so it may be worth trying to clear up 
at the outset. 

1. The Amiga ROM kernel uses "library" to mean a collection of 
routines in ROM or loaded off disk, accessed via a jump 
table attached to a "library" structure in RAM. The purpose 
of this is to allow languages or application programs to 
access different system functions in a controlled manner by 
suitable indirect addressing, discussed later in this 
section. Examples of libraries in this sense are the 
graphics library, the layers library, Intuition, DOS, etc. 
Very closely related to libraries are "devices" such as the 
parallel device, the serial device, the narrator and the 
clipboard, and "resources" such as "disk" and "cia". We 
shall refer to libraries in this context as "run-time" or 
"Exec" libraries. 

2. The AmigaDOS linker uses "scanned libraries" to find 
standard definitions or routines used by the program being 
created; routines from the library are included in the 
output of the linker as necessary. Examples of scanned 
libraries are le.lib containing all the lattice standard c
functions such as print£(), getc() etc, and amiga.lib, 
containing the Amiga functions. The latter fall into three 
categories - standard c functions, "kernel interface" 
functions (also known as "stubs") which provide the 
necessary intermediate code to invoke the run-time 
libraries, and "support" functions, which provide labour
saving routines to do things like creating message-ports. 
We shall refer to these as "scanned" or "linker" libraries. 

3. The AmigaDOS technical reference manual also refers to 
"resident libraries" - however this does not appear to mean 
the same thing as the "run-time" libraries discussed above! 
In fact, in this context, the term "library" is a hang-on 
from Tripos, and can mean any loadable program module. In 
particular, "resident library" tends to be used to mean a 
set of routines which are linked separately, and then loaded 
and integrated with a controlling program at load-time 
rather than link-time; this can be a useful thing to do when 
developing long programs, as it reduces pressure on the 
linker. However, this is not something we have tried 
ourselves, and we will not be discussing it further. 

(On the subject of sources of confusion, it may be worth 
mentioning the word "hunk", which is also used to mean three 
slightly different things in different contexts! We will tackle 
this later.) · 



Amiga Libraries Page 69 

Amiga run-time libraries 

The concept of a jump-table will be familiar to anyone who knows 
the kernal on the Commodore 64 - it consists of a series of JMP 
instructions (6 bytes each on the Amiga) providing system 
routines with standard entry points which won't alter between 
versions. The Intuition library, for example, starts with a very 
large jump table, part of which may appear as follows: 

00003D32 JMP $FEOF9C ;Drawimage 
00003D38 JMP $FEOF88 ;DrawBorder 
00003D3E JMP $FEOF72 ;DoubleClick 
00003D44 JMP $FEOF66 ;DisplayBeep 
00003D4A JMP $FEOF54 ;DisplayAlert 
00003D50 JMP $FEOF46 ;CurrentTime 

There are two points to note about this. The first is that the 
JMP destinations are addresses in the ROM (or AlOOO kickstart 
memory) - the addresses given are correct for the USA 1.1 
kickstart, but won't be the same for the European version, or for 
1.2. Provided the routines are accessed via the jump table this 
won't matter. The second point to note is that the jump table 
itself is in RAM; however, the crucial difference between this 
and the 64 is that these addresses are not constant - the system 
will have put the Intuition jump-table wherever it happened to 
find room for it, so you can't on future occasions just JSR 
$00003D44 and expect to get a display beep! 

What does remain constant is the order of entries in the jump 
table. In fact, libaries are constructed so that the jump 
instructions build downwards in memory from a "library base 
address": 

off sets 

-114 
-108 
-102 
-96 
-90 
-84 

-24 
-18 
-12 
-6 

0 

JMP $FEOF9C 
JMP $FEOF88 
JMP $FEOF72 
JMP $FEOF66 
JMP $FEOF54 
JMP $FEOF46 

;Drawimage 
;DrawBorder 
;DoubleClick 
;DisplayBeep 
;DisplayAlert 
;CurrentTime 

(other jump table entries) 

JMP $FD545A 
JMP $FD545E 
JMP $FD545E 
JMP $FD5454 

;EXTFUNC 
;EXPUNGE 
;CLOSE 
;OPEN 

; library base address 

Thus if we know the library base address, we can get the jump 
table entry we want by indirect addressing with a suitable 
displacement. For example, if we have the Intuition library base 
address in A6, then we can call DisplayBeep by 



Amiga Libraries Page 71 

In assembler, you load Al with a pointer to the name and DO with the 
version number then invoke OpenLibrary as explained below; LibPtr 
is returned in DO. 

OpenLibrary causes the Exec library manager to search its library 
list for a library with the name given, with version number 
greater than or equal to the one specified (so if you don't care, 
set Version= 0). If the library is found in memory, Exec 
calls a standard function OPEN in the library in question 
allowing it to take note of the fact that someone (else) wants to 
use it, then returns the library base address to the calling 
program, which then has all the information it needs to access 
the library. If the library is not currently in the library 
list, then Exec asks AmigaDOS to look for a file <LibName> in 
directory LIBS: (usually SYS:LIBS). If found this is scatter
loaded by AmigaDOS and linked into the library list; its OPEN 
routine is called and its base address returned. If both of 
these fail - i.e. the library asked for can't be found in memory 
or on disk - then Exec returns zero; it is up to the calling 
program to pick this up and do something about it, such as giving 
up. 

This is all very well - you don't know where the libraries are 
but there's an Exec routine called OpenLibrary which tells you -
but how do you call OpenLibrary if you don't know where it is? 
The answer is that Exec itself is organised as a library, so you 
call OpenLibrary via the Exec jump table, using a suitable offset 
from the Exec base address. To find the Exec base address, you 
look in the ONLY absolute software memory location on the Amiga 
(apart from the processor exception vectors), which is as 
follows: 

AbsExecBase : 4 : 

Complete Amiga memory map revealed! 

(68000 experts will recognise that this is the same as the 
processor reset inital PC. However this is only needed during 
reset while there is a boot ROM switched in at the bottom of 
memory; after this it is free for use as AbsExecBase.) 



Amiga Libraries Page 72 

Using system libraries 

If you are using assembler, the process of using a library 
routine is as follows: 

1. At start-up, you need to pick up the pointer to the Exec 
library base address at 4, and remember it as SysBase. This 
will be done for you if you link with a standard start-up 
module. 

2. Before you use a library, you need to open it by 

move.! 
move.! 
move.! 
jsr 
move.! 

SysBase,A6 
<name pointer>,Al 
<version>,DO 
LVOOpenLibrary(A6) 

DO,<library pointer> 

3. To access a particular routine - say DisplayBeep in the 
Intuition library - you then proceed as follows 

xref 
move.! 
jsr 

LVODisplayBeep 
IntuitionBase,A6 
_LVODisplayBeep(A6) 

These operations can be performed by using a macro 

LINKLIB _LVODisplayBeep,IntuitionBase 

which also pushes and pulls the previous contents of A6. 

4. When you have finished with a library, you should close it, 
to allow, for example, memory occupied by a disk-loaded 
library to be reclaimed if it's wanted for something else. 
This is handled by an Exec routine CloseLibrary(LibPtr): 

move.l 
move.l 
jsr 

SysBase,A6 
<library pointer>,Al 
_LVOCloseLibrary(A6) 

The off sets LVOOpenLibrary and LVOCloseLibrary can be declared 
external, or-obtained by including exec~lib.i in the assembly. 

From c, the process is very similar, except that you don't have 
to worry explicitly about the jump-table offsets, since these are 
got right by calling kernel interface functions (known as "stub 
functions") from the linker library. 

1. In order to call Exec, you need to have a pointer SysBase 
obtained by reading location 4 - if you link with 
a standard startup like c.o, this will have been done for 
you, as will opening the DOS library and setting up a 
pointer DOSBase. (Note two errors in early versions of the 
ROM Kernel Manual on this score - the actual Exec library 
base address is known as sysBase not ExecBase, and the DOS 



Amiga Libraries Page 73 

library base address is known as DOSBase not DosBase.) 

2. In order to use Intuition, open the library by 

IntuitionBase = (struct IntuitionBase *) 
OpenLibrary("intuition.library",29); 

(Here we are using version number 29 which will open any 
Intuition revision from release 1.1 onwards - if you want to 
ensure you are running on 1.2, use version number 33.) 

IntuitionBase is a global variable declared 

struct IntuitionBase *IntuitionBase; 

This form declares a pointer IntuitionBase to a structure 
also called IntuitionBase - if you don't like this, and 
aren't interested in the structure but just want to access 
the library, then you can use 

APTR IntuitionBase; 

(When you link using amiga.lib, the linker will look for a 
global variable of this name from which to pick up the 
library base addres~o you have to call it 
"IntuitionBase", and not "fred" or something.) 

3. Having opened the library, you can then call intuition 
functions by name, eg 

DisplayBeep(O); 

This causes a stub routine from amiga.lib to be included in 
the link, which sorts out registers as necessary (getting 
the zero into AO in this case), picks up the library base 
address from IntuitionBase, then does the indirect call with 
the right offset. 

4. When you have finished with Intuition, you close the library 
by 

CloseLibrary(IntuitionBase); 

The use of libraries from other languages varies in detail but 
tends to be similar in principle; for example in BASIC the 
command LIBRARY handles both opening the library and picking up 
information about function offsets and register usage from an 
appropriate file .bmap. 



Amiga Libraries Page 74 

Register conventions 

Amiga convention dictates that A6 should always be used to 
contain the base address of the library being called - note that 
you must ensure this, as the libraries may rely on it internally. 
DO, Dl, AO and Al are scratch registers which are not preserved 
across library calls; these are also the principal registers used 
to pass values or pointers to the library routines, and to return 
results to the calling routine. Other registers should all be 
preserved across library calls. 

(Some exceptions to this were discovered in version 1.1, in that 
some Intuition and graphics routines tended to destroy D6 and D7 
- this could cause things that had been declared as register 
variables in Lattice c to be lost across library calls, which was 
a nuisance. Some interesting debate followed on the networks as 
to whether or not the library routines should in fact preserve 
all except the scratch registers, since pushing and pulling 
registers all the time can have a severe effect as regards 
performance. To our minds, this is an interesting question, but 
irrelevant to the main point, which is that if the documentation 
says the registers are preserved, then the registers should be 
preserved - this is fixed in version 1.2.) 

Note also that this mechanism of communication using registers is 
designed for maximum efficiency when using assembler to call low 
level ROM kernel routines, also written in assembler. However, 
it is not particularly efficient for c, which passes values to 
functions by pushing them onto the stack before calling the 
function. This means that the amiga.lib link library stub 
functions have to read the appropriate values off the stack and 
put them into the right registers before invoking the run-time 
library; if the run-time library was itself written in C, the 
first thing it does is to push these registers back on the stack 
again, in order to set things up correctly to invoke a C 
function! While this is unfortunate, it is probably the best 
that could have been done given the requirement of a consistent 
interface to the kernel routines - it is obviously necessary that 
assembler calls to time-critical bottom-level routines should be 
as efficient as possible, even if this leads to some overhead 
when using higher-level aspects of the system. The only other 
alternative would have been to write the whole thing in assembler 
- this would have resulted in a typical assembler system, which 
is fast, efficient, streamlined, sexy, and not quite finished 
yet, sorry. 



Amiga Libraries Page 75 

Library structure 

The full structure of an Amiga run-time library is as follows: 

JMP <routine n> 

JMP <routine 4> 
JMP <routine 3> 
JMP <routine 2> 
JMP <routine 1> 

JMP EXTFUNC 
JMP EXPUNGE 
JMP CLOSE 
JMP OPEN 

; jump vectors 
- library-specific routines 

;reserved vectors 
; - standard routines for all libs 

Library: Library node: 
base 

pointer to next lib in list 
pointer to previous lib in list 
node type 0 address 
node priority O 
pointer to library name 

Flags byte 
Padding 
NegSize 
PosSize 
Library 
Library 
Pointer 
Library 
Opencnt 

byte 
- size jump vectors in bytes (2 bytes) 
- size of data area in bytes (2 bytes) 
version number (2 bytes) 
revision number (2 bytes) 
to Id string, or zero 
checksum (4 bytes) 

library open count (2 bytes) 

Data area follows 

Meanings of the different library elements are as follows: 

Jump vectors Used to access the library routines by suitable 
indirect addressing with negative displacement from the library 
base address, as explained above. See the ROM kernel manual 
volume 2 for full descriptions and register conventions for 
specific routines from specific libraries (Vl.1), and/or see the 
1.2 auto-docs. Jump vectors point either into ROM or kickstart 
memory (ROM libraries), or to wherever AmigaDOS happened to 
scatter-load the library routines (disk libraries). 

Reserved vectors All libraries have to contain at least the 
following functions: 

OPEN Called when some task is going to OpenLibrary() 
this library. Should increment OpenCnt indicating 
that another task has this library open. 



Amiga Libraries Page 76 

CLOSE - Called when some task has called CloseLibrary() 
for this library. Should decrement OpenCnt and do 
a "delayed expunge" (see below) if necessary. 

EXPUNGE - Frees up memory allocated for this library, 
including the library node itself, 
and areas reserved by AmigaDOS for disk-loaded 
library functions. 

EXTFUNC - Spare, reserved. 

Note that after a library has been linked into Exec's library 
list, it will usually hang around in memory in case it is needed 
again, even if no task currently has it open. Libraries can be 
got rid of by calling RemLibrary() - when this happens the 
EXPUNGE routine is called for the library, allowing it to de
allocate resources such as memory. EXPUNGE checks OpenCnt; if 
this is zero, the expunge takes place immediately; otherwise a 
"delayed expunge" is flagged, and will take place as soon as 
OpenCnt becomes zero. Note that the Exec memory management 
routines will automatically RemLibrary all libraries with an 
OpenCnt of zero if they find they are running low of memory; thus 
a simple way of getting rid of all libraries that are not 
currently needed is to AllocMem more memory than can possibly be 
in the system! 

Library node Links the library into Exec's library list. Also 
contains a pointer to the library name, used by OpenLibrary(). 

Flags Bit 3 of this byte is used to flag a "delayed expunge", 
explained above. Other bits are concerned with a checksum 
facility which exists to allow you to check library integrity -
has some other task somewhere blown up and jumped all over this 
library? 

bit 0 
bit 1 
bit 2 

flags checksum in process 
flags one or more code vectors have been changed 
tells system to panic by issuing an alert (guru 
meditation) if checksum fails. 

NegSize ! PosSize The size in bytes of the jump table and data 
area respectively. 

Version & Revision Version is the version number used by 
OpenLibrary(). Revision allows different revisions of the same 
version to be distinguished; this is not used by the system. 

IdString Zero, or a pointer to an "id string" for this library -
eg 1.1 Exec had id string "exec 31.34 (23 Nov 1985)". 

sum Library checksum. 

OpenCnt How many tasks currently have this library open. 



Amiga Libraries Page 77 

Data area A data area follows the Library structure; this can be 
used for work-space by the ROM libraries. It is particularly 
useful for variables that you might want to access from routines 
outside the library; this can be done using positive offsets from 
the library base address. For example, the Intuition data area 
starts with ViewLord - a View (graphics primitive) structure 
describing the current screen display - followed by a pointer to 
the currently active window, a pointer to the currently active 
screen, and a pointer to the start of a linked list of all 
current screens. Remember to Forbid() task-switching if you are 
going to access these lists directly! 

Library facilities 

Exec contains a number of functions documented in ROM kernel 
manual volume 1, allowing you to manipulate libraries. A 
summary of these is as follows: 

AddLibrary(libPtr) - adds a new library to the system library 
list. 

RemLibrary(libPtri - removes library from the system library 
list, or flags a 'delayed expunge". 

MakeLibrary(parameter list) - a convenient way of constructing a 
new library. Handles creation of library node, calculation of 
checksum etc. Usually followed by a call to AddLibrary(). 

SetFunction(Library, FuncOffset, FuncEntry) - allows function 
with negative offset "FuncOffset" in library "Library" to-be 
changed to point to "FuncEntry". Recalculates library checksum. 

SumLibrary(library) - computes a new checksum and compares with 
the old one. If these values are different, and the library is 
not flagged as having been altered, then the system gives a guru 
alert; this is one way the system can realise that memory has 
been corrupted due to an "exploding" task. 

System libraries 

A list of libraries in the current system library list can be 
obtained by invoking OldWack then typing "libraries". These are 
as follows. 

ROM libraries 

The following libraries are in ROM (loaded from the Kickstart 
disk into protected memory on the AlOOO), and the appropriate 
library structures initialised in RAM during boot-up. 



Amiga Libraries Page 78 

Exec - routines for linked list manipulation, task control, 
messages and ports, i/o handling, interrupt management, memory 
management, library, device and resource management. Also 
contains "processor control" functions to get condition codes, 
get/set processor status register, enter supervisor state or 
enter user state in a way which will work on processor upgrades 
(68010, 68020) - these are well worth using! 

CLIST - This library was present in ROM version 1.1, but was 
dropped from 1.2, partly for lack of space, but also because no
one was using it. It contained Amiga string-handling, which 
worked using linked lists (like everything else on Amiga) - CList 
stands for "character list". Allowed you to initialise a block 
of memory for use as a "clist pool", then perform various string 
operations on clists within this pool, such as getting/putting 
bytes or words to start/end of list, converting clists to/from 
continuous data (such as null-terminated C strings), and 
performing concatenation, string-chopping, length and index 
operations. However, this library was roundly ignored by Lattice 
(and everyone else), on the grounds that they already had their 
own perfectly satisfactory string-handling routines, thank you. 

GRAPHICS - Amiga graphics library, handling Views and Viewports 
(screen display primitives), RastPorts (drawing primitives), 
BitMaps (graphics data areas), GELS (graphics elements) 
consisting of SSprites (Simple Sprites), Vsprites (Virtual 
Sprites) and Bobs (blitter objects), Animobs (animation objects), 
text and fonts. Contains routines to control all the graphics 
facilities of the custom chips, including colour registers, the 
copper and the blitter, but allows you to take over for lower
level access if you ask nicely; "legal" access to these 
facilities should go by way of the graphics library. 

LAYERS - Routines that work in conjunction with the graphics 
library, to allow a bitmap to be treated as a number of 
overlapping layers for window management. Handles manipulating a 
"damage list" of obscured regions for "dumb" refresh, buffering 
off obscured regions and rendering (drawing) into obscured 
regions for "smart" refresh, looking after "super-bitmaps", re
arranging and re-sizing layers, plus locking and unlocking layers 
as necessary to avoid contention problems. 

INTUITION - Routines built on top of the graphics library, the 
layers library and the console device to provide a standard user
interf ace for different application programs. Handles screens, 
windows and borders, mouse and pointers, pull-down menus, 
gadgets, requesters, preferences, and I/O using the IDCMP 
(Intuition Direct Communications Message Port); also provides 
some convenience routines for "easy" memory management, graphics 
and text. 

MATHFFP - Motorola fast (single precision) floating point 
routines for absolute value, testing against zero, comparison, 
addition subtraction multiplication and division, conversion 
to/from integer, negation. 



Amiga Libraries Page 79 

DOS - AmigaDOS functions Open, Close, Read, Write, Protect etc -
disk i/o and process control. 

RAM-LIB - Ram handling for RAM-disk. Not accessible from c. 

EXPANSION Routines invoked as part of the Amiga boot process, to 
handle external expansion on the AlOOO or ASOO, or 'Amiga-side' 
expansion cards on the A2000. Handles interrogation of expansion 
cards to find out what they are, linking expansion memory into 
the Exec free-memory list, allocating memory etc to other 
expansion cards, giving them a change to initialise, etc. 

Disk libraries 

The following libraries may or may not be found if you use 
"libraries" in OldWack, since they live in LIBS: and are loaded 
by AmigaDOS as needed. 

ICON - routines used by the Workbench to allocate/deallocate 
memory for Workbench objects (project, tool, drawer or whatever), 
to get/put Workbench objects and icons to/from .info files on 
disk, plus routines to deal with standard tool types, and updates 
to filenames ("copy of fred", "copy 2 of fred" etc). 

MATHTRANS - routines for transcendental mathematical functions on 
fast floating point numbers - sin, cos, sin & cos, tan, arcsin, 
arccos, arctan, sinh, cosh, tanh, exp, ln, log, power, square 
root, plus routines to convert between fast floating point 
format, and IEEE standard double-precision floating point. 

MATHIEEEDOUBBAS IEEE standard double precision basic floating 
point routines for same functions as MATHFFP routines. May be 
adapted to run with optional 68010/68020 f loating~point co
processor in future. 

TRANSLATOR Contains a single routine Translate() to convert 
English language to a phonetic string. 

DISKFONT Contains two routines, to build an array of all fonts 
available in memory or on disk, and to load a font into memory 
from disk if necessary. 

This completes a list of all the libraries admitted to in the 
Amiga documentation. Two further libraries can be found in the 
workbench SYS:LIBS directory, VERSION and INFO; the former 
contains a Workbench version number used by Workbench and DOS 
'VERSION' commands and not a lot else, while the latter is used 
by Workbench to perform the INFO function from the "Workbench" 
menu. 



Amiga Libraries Page 80 

Devices and resources 

"Devices" and "resources" are two further Amiga concepts, both 
built on the library structure. 

A "device" is a library with standard jump-table entry points 
used by Exec routines like DoIO(); these provide standard 
(physical device independent) IO functions such as reset, read, 
write, update and clear. Like libraries, devices can be resident 
or disk-loaded; standard resident devices are Timer, TrackDisk, 
Keyboard, Gameport, Input, Console and Audio; devices loaded from 
directory DEVS: (usually SYS:DEVS) are Narrator, Serial, 
Parallel, Printer and Clipboard. Devices in general, and the 
console device in particular, will be considered in detail in the 
next section. 

A "resource" is a library WITHOUT the standard entry points 
- this is because resources are very closely tied to the Amiga 

hardware, and cannot be made to go away. Bits of hardware looked 
after by "resource" software are the four disk units, the two 
CIAs, the POTGO register (used to initiate a potentiometer read 
for joysticks etc), and "misc" - the serial and parallel port 
register bits. The function of the as~ociated resource routines 
is to handle contention by granting or forbidding different tasks 
exclusive access to these bits of hardware. Usually this is 
handled for you by higher-level system software; however if you 
want to access this hardware directly, you can do it safely by 
opening the resource, then calling the appropriate routine - eg 
AllocUnit to allocate a disk unit. Note that the blitter is NOT 
considered a resource - though there was once discussion that 
perhaps it should be - but is looked after by routines like 
OwnBlit() from the Graphics library. 

Linker scanned libraries 

The Amiga linker scanned libraries consist of a concatenation of 
"hunks" each containing definitions of things like library 
offsets, or named routines which can be incorporated in the final 
disk-loaded program file if needed. The same file amiga.lib is 
used for both assembler and c programs, though a lot of the 
functions in it are only needed from c. Other languages may or 
may not use the same file. 

As mentioned above, there are two principal scanned libraries 
used from c, le.lib containing lattice standard functions, and 
amiga.lib containing the Amiga functions. Generally speaking, 
you need to link with both; if you are using Lattice 3.03 put 
le.lib first if you are linking with LStartUp.obj, and amiga.lib 
first if you are using AStartUp.obj. Lattice 3.1 has a new 
Lattice startup c.o and doesn't support AStartUp.obj (shame!), so 
you have to put le.lib first. In 3.1, the floating point maths 
functions have also been separated into different libraries; if 
you are using floating point maths, you have to put one of these 
before le.lib. In this case, you have to decide which floating 



Amiga Libraries Page 81 

point routines you want to use - standard Lattice maths functions 
from the linker library, fast floating point routines from ROM, 
or IEEEDoubBas from the LIBS: directory - then use the 
appropriate file !cm.lib, lcmffp.lib or lcmieee.lib. If you 
decide to use the fast floating point ROM routines, then you also 
have to tell the compiler to use FFP data format - this is done 
by setting the -f flag in LCl. 

In addition to definitions like library offsets and current 
hardware memory locations, amiga.lib contains functions which can 
be divided into the following categories: 

Kernel interface 

"Stub" routines to sort out registers and call the specified run
time library routines; these routines expect the library in 
question to have been opened, and its base address put into an 
appropriate global variable GfxBase, IntuitionBase, DOSBase, etc. 
Interface routines are available for all run-time libraries 
except EXPANSION, RAMLIB, VERSION and INFO. Maths interface 
routines are supposed to handle conversion between C floating 
point number representation and Motorola fast floating point or 
IEEE double precision as necessary - this used to be tricky, but 
is got right by the new Lattice maths linker libraries. 

Kernel support 

There are two "linker only" sub-libraries within amiga.lib, 
providing support functions as follows: 

EXEC SUPPORT Routines to handle initialising list headers,· 
creating or deleting tasks, message ports, standard IO request 
blocks, extended IO request blocks. Ensures that this is done in 
a legal manner, and saves you the trouble of writing these 
functions yourself. 

MATHLINK LIB Routines to convert fast floating point number 
representation to ASCII strings, "dual binary" format, or BCD; 
also a routine to round floating point strings. Note that the 
first of these was bugged and blew up on release 1.1 - it seems a 
bit dodgy on 1.2 as well, so it's probably safer to use the 
equivalent Lattice functions from lcmffp.lib. 

Standard functions 

Amiga.lib also contains the Amiga versions of some standard C 
functions - such as a limited (and much shorter than usual) 
version of printf() that makes use of Exec ROM functions. These 
will be used instead of the Lattice functions if amiga.lib is 
linked in front of le.lib - but note that this doesn't work using 
Lattice 3.1, which is a pity. 



Amiga Libraries Page 82 

Other linker libraries 

There is an additional linker library file "debug.lib". This 
contains routines to handle formatting debug data according to C 
conventions - actually stub routines to undocumented entry points 
in Exec - and putting/getting debug information to/from a 9600 
baud terminal attached to the Amiga serial port. Debugging 
techniques using the serial port will be looked at in detail 
later. 

If you want to, you can also create your own linker libraries by 
concatenating object files. This is discussed in more detail 
below. 



Amiga Libraries Page 83 

PART II - LINKING AND LOADING WITH AMIGADOS 

To gain a further insight into how the C compiler (or other 
language), the linker, the relocating scatter-loader and the run
time libraries work together to produce a "soft machine", it is 
convenient to have a look at a real example, and consider what 
gets resolved where. An overview of this process is as follows. 

1. For each module you compile (or assemble), the compiler (or 
assembler) converts your source code as far as possible into 
68000 code, and resolves references to symbols defined 
within the same file (eg local variables), or whatever 
include files (.h or .i) you are using. The object file 
produced contains no absolute addresses; all references to 
internal symbols are stored as offsets. References to 
external symbols - ie symbols defined in- other modules or in 
the linker libraries - are not resolved by the compiler or 
assembler; instead the name of the symbol to be referenced 
is output to the object file. Also output to the object 
file are the offsets corresponding to any symbols defined in 
this file that might be needed externally - for C these are 
the names of global variables and all functions not declared 
as "static". 

2. The linker then Joins together the object files for your 
different modules, together with whatever routines from the 
scanned libraries may be needed. This results in a "load 
file" containing no external references, but still with no 
absolute addresses - everything is given as offsets within 
different "hunks" in the load file. 

3. AmigaDOS scatter-loads the load file; it first decides where 
in memory to put the various hunks, then loads them, 
converting hunk off sets to absolute addresses where 
necessary. 

4. The program then is run from the start of the first hunk 
loaded - this will be the first module linked, which must 
therefore be some sort of startup module. As the code runs 
it will use various system libraries - it will open these 
and find out where they are as needed, as explained above. 

Hunks, hunks and hunks 

Before looking at this in more detail using a specific example, 
we need to sort out a couple of terms from AmigaDOS - "hunks" and 
"BPTRS". Like the word "library", the word "hunk" is used in 
three different contexts to mean slightly different things. 
These are as follows: 

1. The output of the compiler is referred to as a "program 
unit". The program unit starts with a header giving the 
name of the unit - for Lattice 3.03 this is the same as the 
name of the .q file (quad file) which is the intermediate 



Amiga Libraries Page 84 

file between LCl and LC2 - eg "wombat.q" - while for 3.1 it 
is the name of the .o file (object file). Following this 
are three "hunks" containing code (CODE), initialised data 
(DATA) and uninitialised data (BSS or Base of Stack Segment 
- this need have nothing at all to do with stacks and is a 
silly name from Unix). "Hunks" in this context are known to 
Lattice as "segments", and described as 'P' (program), 'D' 
(data) and 'U 1 (uninitialised) - the size of each of these 
is given on termination by LC2. We shall call these hunks. 

2. Each hunk can be divided into sub-units properly called 
"blocks", but sometimes also called hunks in order to 
confuse you. For example, a relocatable CODE hunk may start 
with a block of type "hunk code" (confused yet?) containing 
the code itself, followed by blocks such as "hunk reloc32" 
containing relocation information, followed by a block 
"hunk_ext" containing information about external symbols 
used by this hunk and global symbols defined within this 
hunk. Other blocks which may be present are "hunk name" 
containing a hunk-name such as "text", "hunk symbol" 
containing information about symbols which are to be passed 
onto the load file for use by a symbolic debugger like Wack 
or Metascope; and "hunk debug" containing additional debug 
information like source=code line numbers. We shall refer 
to these as "blocks" - the idea of calling them "hunkettes" 
was considered, but regretfully rejected. 

3. The output of the linker - the AmigaDOS "load" file - is 
also organised in hunks. These are very similar to "hunks" 
in sense 1, though with references to external symbols 
resolved. However, if two or more hunks have the same 
hunk name, they are combined by the linker to form a "super
hunkw (our terminology), which is treated as a single unit 
by the loader; this is useful for things like named COMMON 
blocks in FORTRAN, or for data which is going to be accessed 
in certain ways like "base relative" addressing. This tends 
to happen to kernel-interface link library stub hunks, as 
all functions in the same library have the same hunk_name in 
amiga.lib. We shall refer to these as "super-hunks". 

AmigaDOS BPTRs 

A further bit of background needed to understand AmigaDOS is the 
data-type BPTR. Amiga:bos is written in BCPL; this is an ancestor 
of C which only supports one data type, which is a 4-byte 
address, or longword. A BPTR is a machine address expressed in 
longwords - i.e. it is the actual address divided by 4. This 
means that when moving between AmigaDOS and other aspects of the 
sy~tem,· you have to keep shifting left or right by two to 
multiply or divide by four,· in order to convert between BPTRs and 
ordinary machine addresses (APTRs) used by the rest of the 
system. This is a nuisartee. 



Cc.mp i l er 

! 
Object file OURSTART.O 

HUl··~L O: CDDE 
H~nw: 1: DATA 
HUW< ,.., . 

"-• BSS 

f'rogr.:..m file BEEP 

HLlNi::: 0: CODE 
HUNK 1: DHTA 
HU!-.JI:: 2: BSS 
HUNi< -:~. CODE ·-·· 
HUNK i~: DATA 
r:lJNI< l:;" .J: [iSS 
HUNK 6: CODE 
HUNK 7·: CODE 
HL.iNK 8: CODE 

LoadSeg 

Figure 1 

I comi: i ler I 
! 

ObJect file BEEP.O 

HUNr: t): CJDE 

hUNI:· l: DAT~\ 

HUNK 2: BSS 

Linker liD~ary file AMIGA.LIB 



Amiga Libraries Page 86 

Now the example 

In order to keep things as simple as possible, we will consider 
linking a minimal Intuition "screen beep" program (discussed in 
the "Getting started in C" section of this book) with a minimum 
startup module, providing the bare minimum needed to get a 
program started from the CLI. 

The screen-beep program BEEP.C is listed at the top of figure 4; 
it attempts to open the Intuition run-time library, and if 
successful it beeps the screen 6 times, with a small delay 
between each obtained by calling the DOS Delay() function. It 
then closes Intuition and exits. 

The minimum startup module OURSTART.C is listed at the top of 
figure 2. It picks up SysBase by looking in location 4, then 
opens the DOS library and sets up DOSBase - the example ignores 
the possibility that this might fail, though there's nothing it 
could do except give an alert if it did! It then calls main(), 
then closes the DOS library and exits. 

(Of course, the standard startup modules do rather more than 
this, including remembering the entry stack level for use by the 
Exit() function, worrying about whether they were started from 
CLI or Workbench, and setting up vectors stdin, stdout and 
stderr for use by the c standard functions, either by scanning a 

CLI command line or by waiting for messages from Workbench. 
Lattice startups like c.o do even more, including setting up 
locations used for stack-checking, and opening a window for stdin 
and stdout if necessary. Since we aren't using any C standard 
functions, aren't using Exit ( ) and are only going to run f·rom the 
CLI, we needn't bother with any of this.) 

An overview of the process of compiling, linking then loading 
this example is shown in figure 1. Source files ourstart.c and 
beep.c are first of all compiled using LCl and LC2, going through 
intermediate quad files ourstart.q and beep.q, and ending up with 
object files ourstart.o and beep.a. Each object file starts with 
a program unit header block, giving program unit names ourstart.q 
and beep.q (we were using Lattice 3.03), following by three hunks 
each containing code, initialised data, and uninitialised data 
(BSS). These hunks are identified by the type of one of the 
blocks in them, which is hunk code, hunk data, or hunk bss, and 
numbered impl.ici tly by the order they appear in the f iie. Note 
that Lattice always produces one hunk of each type, even if this 
results in "null hunks" having to be linked into the segment list 
at load time; however, these will be stripped out if you link 
using Blink. 

Ourstart.o and beep.a are then linked, together with linker 
library file amiga.lib. This produces a program file beep 
consisting of a header followed by nine hunks - these are code, 
data and bss from main.a, code data and bss from beep.a, a code 
hunk from amiga.lib containing the Delay stub code for the DOS 
run-time library, a "super hunk" containing the CloseLibrary and 



Amiga Libraries Page 87 

_OpenLibrary stub code to the Exec run-time library, and a hunk 
containing the DisplayBeep stub code to the Intuition run-time 
library. -

The program file is then loaded by AmigaDOS LoadSeg(), which can 
be invoked in various ways, the simplest of which is typing the 
program name "beep" at the CLI. This performs "scatter loading" 
by putting each hunk wherever there happens to be room in memory; 
as this is done any absolute memory references within the hunks 
are fixed up appropriately, as are all references from one hunk 
to another. The hunks are linked together in memory as an 
AmigaDOS segment list. 

Finally the program is run, either as part of the process which 
invoked it by means of a JSR to the start of the segment list, as 
an AmigaDOS CLI "co-process" (see Section IV on AmigaDOS), or by 
being kicked off as a new process using AmigaDOS CreateProc(). 

Compiling the example 

The process of compiling ourstart.c is illustrated in figure 2. 
The listing of ourstart.o given is based on the output of the 
Lattice Object Module Disassembler (OMD); this performs some 
integration of the blocks within each hunk to produce a more 
readable output. 

Note that in this example, the DATA hunk contains just the null
terminated text-string "dos.library", while the BSS section 
contains room for two entries SysBase and DOSBase (the labels 
generated by the compiler are the same as the labels in the 
source code, with an underscore in front). 

The CODE hunk generated by this example first loads AO with 4, 
then moves whatever is pointed at by AO to location 02.0000 -
this means hunk 2 offset zero, which is where we are going to 
store _SysBase. It then pushes zero (library version number) and 
the address of hunk 1 offset zero (library name) to the stack -
this is how Lattice passes values between functions - and calls 
an external routine OpenLibrary. It then cleans up the stack, 
moves the contents of DO to hunk 2 offset 4 ( DOSBase), then 
calls external routine main. When this returns, it pushes hunk 
2 offset 4 ( DOSBase) to the stack, calls external routine 
_CloseLibrary, cleans up the stack again, and exits. 

A more detailed look at the start of ourstart.o is given in 
figure 3; this is obtained by annotating the output of the 
general purpose ObjDump utility, and shows details of exactly how 
something like "now I want to call a routine called main but I 
don't know where it is yet" is represented. The file starts with 
a program unit header block - this starts off with a block 
identifier "hunk_unit", followed by the length of the name in 
longwords, followed by the name "ourstart.q" padded with nulls as 
necessary. This is followed by hunk O, which contains CODE. 



Amiga Libraries 

Source file OURSTART.C 

#include <exec/types.h> 
#define KNOWN_ADDRESS 4 

extern APTR Openl1braryll; 
extern VOID Closelibrary1>; 

APTR SysBase; 
APTR DOSBase; 

OurStart () 
{ 

Page 88 

1• only fixed address in Amig~ 1 •I 

I* pointer to EXEC library *' 
I• pointer to DOS library *' 

SysBase = 
DOSBase = 

•< <APTR *) KNOWl-J_ADDRESS); i* sort out sysbase */ 
Openlibrary ("dos.library", (I); I* open DOS 1 ibrary */ 

I* check for failure 

} 

main(); 
& e:·:plode if necessary *I 

I* do whatever *I 
Closelibrary <1JOSB~6e>; 

Ob1ect file OURSTAHT.O 

HUNK O: CODE - length OE longwords = 38 bytes 

00. 0000 _Ow·Start 
(1(1. 0(1(16 

00. (h)(l[ 

00. (1(i(1E 

00. 1)(114 

(Ii). 001 A 
00.00lC 
00.0022 
00. (l;/28 
00. (!(12E 

(i(l. (l(,34 
1)0. 003b 

MOVEA.L 
l"tOVE.L 
CLR.L 
PEA 
JSR 
ADDQ.L 
l"IOVE.L 
JSf;'. 
MOIJE.L 
JSR 
AODQ.L 
RTS 

#(1(1(1(1(1(11)4, AO 
(AO l , 02. 0000 
-(f-171 
c 1. l)i.)00 

__ OpenLibrary 
#8,A7 
DO, 02. 001)4 
_main 
(12. (H)(l4, - ( H 7) 

.. _Ciosel1brary 
#4,A7 

HUNK 1: DHTA - length OJ longwords = OC bytes 

01 • (1(i(;(1 

0?.0000 ;~~Gase 

i:/: 11 ({11)..+ (.;Q;~:L;a~e 

"dos.library" 

Figure 2 



Amiga Libraries 

I 

ObJect file OURSTART.O 

PROGRAM UN IT HEADER KOCK 

(H)(l(l: 

0004: 
0008: 

HUNK O: CODE 

0014: 
0018: 
001C: 00. (l(h)(l 

00:·2: 00.0006 
0028: 00. OOOC 
002A: 00. 01)(1£ 
00:50: 00. 0014 
(1(136: 00.0CilA 
0038: 00.00lC 
003£: 00.0022 
1)044: 00.0028 
01)4A: oo. 00:£ 
0050: 00. 0034 
0052: 00.0036 

0054: 
0058: 
006(1: 
0064: 
OOcC: 
0078: 

007C: 
0080: 

0081 : 
0084: 
(11)91): 
0094: 
0098: 
0099: 
1)i)9C: 
OC1A4: 
OOA8: 
(10AC: 
OOAD: 
OOBO: 

oocu: 
C10C4: 
OOC8: 
OOC9: 
O<)CC: 
OODB: 
(l(i[l[: 

OoEO: 

,:1(1t 4: 

(it}::i(ll).::t:. 7 
(l1})00(h):::: 

t..F7572/:::.7 46 i 7'27 42E711)000 

(11)(;1)(13E9 
0000(i00E 
207CO(>(H)(l0U4 

23DO (lt)i)(i(i(i(l(i 

42i47 
4879 OOOOO(i(ii) 
4EB9 (1(l(,(ll)( !i)(l 

508F 
:.::~:co O•)(iU0(1(14 
4EB9 00000(!(1(1 
2F3'7' OU01)0004 
4EB9 OOOOOi)(10 
588F 
4E75 

000003EC 
0(l(l(IO(l(i 1 (l(H)(l(l(li) 1 

(l(l(100010 
00000003 1)1)(1(10002 
0000002~ OOOOOOlE 00000008 
OOO(i.)(l(l!) 

.00(;(103EF 

81 
(i (ll) (li) 3 
5F4F7065cE4C696272617279 
(i(l(H)()(l(l 1 
000(100 L 6 
81 
(100002 
5F6D61696EOOOOOO 
00000001 
00000024 
81 
000004 
5F436C6F73654C6962726172 
79(l(i(ii})(i 

(li)i)l)(H)(l] 

(il)(1(l(l(1:2':(1 
01 

SF4F75725374~172740000~) 
(l(i(l(i(l(i(H) 

001)(1i);)(l(l 

!})OOo:::F2 

0~ •U· ;;·) ···.,:: .:." 

Page 89 

t"1ur.k _unit 
unit n .. ~ma is 3 longwords 
ours tart.~ 

hunk ._code 
OE longwords of code 
MOVEA.L w00000004, AO 
MOiJE.L !AO) , (.12. 0000 
CLR.L -<A7> 
PEA 01.0000 
JSR _Openlibrary 
ADDQ~L #8,A7 
MOVE.L DO, 02. 0004 
JSR _main 
MOVE.L 02.0004,-<A7> 
JSR _CloseLibrary 
ADDQ.L #4,A7 
RTS 

i-.unk_reloc32 
1 reference to hunk 1 
at offset 0010 1n this hunk 
3 references to hunk 2 
at offsets 002H, 001E ~nd 0008 
no more references 

hunk_e>:t 
e;<t._ret32 
3 lcngwcrds of symbol name 
__ .upenLibrary 
1 reference 
at offset 0016 in this hun~ 
e~:t_ref32 

2 longwords of symbol name 
_ff1ain 
J. r'efi:rence 
at offset 0024 in this hunk 
ext _ _ref32 
4 lcn9words of symbol name 
_Closelibrary 

1 reference 
at offset 0030 in this hunk 
e;:t_def 
3 longwords of symbol name 
_ourStart 
at lJffset 0000 in this hunk 
no more externals 

huM:: ,_end 



Amiga Libraries Page 90 

Hunk O starts with a block of type "hunk code" containing OE 
longwords of code; this is "partial codelT containing zeros for 
unknown addresses such as the address of OpenLibrary, and just 
off sets for locations in other hunks - see the hex corresponding 
to MOVE.L D0,02.0004 in fig 3. This is followed by a block of 
type "hunk_reloc32" containing relocation information for use by 
the scatter-loader; in this case, we tell the scatter loader that 
there is one reference to hunk 1 at offset 0010 in the code, and 
three references to hunk 2 at offsets 002A, OOlE and 0008. By 
the time it processes this, AmigaDOS will have decided where to 
put hunks 1 and 2; the scatter loader will therefore be able to 
take the start addresses of these hunks and add them to the 
values already found at the offsets specified; this will convert 
the operand for MOVE.L D0,02.0004 to the correct absolute memory 
reference, by adding the offset stored in the code block to the 
hunk base address~ Other relocation blocks hunk reloc16 and 
hunk reloc8 are handled in a similar manner. -

Block "hunk reloc32" is followed by a block "hunk ext" giving 
information-about external routines called from this hunk, and 
globals defined within the hunk. Within the overall block, there 
are three records of type "ext ref32", indicating that there are 
three external symbols OpenLibrary, main and CloseLibrary, 
used once each at offsets 0016, 0024 and 0030 respectively. 
These will be replaced by offsets within other hunks by the 
linker, and finally by absolute addresses by the loader. This is 
followed by one record of type "ext def" indicating that there is 
one global symbol " OurStart" at offset zero within the hunk, so 
if something else in the link wants to call Ourstart it knows 
where to find it. Generally, all function names will appear as 
global symbols in CODE hunks, unless they have been declared to 
be "static" to the compiler. Global variables will appear as 
"ext_def" in DATA or BSS hunks - examples (not shown in detail) 
are _sysBase and _DOSBase in hunk 2. 

The process of compiling BEEP.C is illustrated in figure 4. 
68000 fans should be able to follow the CODE hunk quite easily; 
note the use of LINK A6,-4 and UNLK A6 to grab some space off the 
stack for the automatic variable i. 



Source file BEEP.C 

#include <exec/types.h> 

extern APTR OpenLibraryO; 
extern VOID CloseLibrary<i ,DisplayBeepO; 

Af'TR IntuitionBase; 

main() 
{ 

int i; 

I• pointer to intuition library *' 

Intui tionBase = OpenLibrary <"intuition.library", 29>; I* open intuition •I 

if < Intui tionBase != 0) r 

'* if open succeeded ••• *' ., 

for < i=O; i<6; i++) { '* six times ••• *' DisplayBeep COi; '* beep the screen ••• *' Delay<5>; /'Ir and pause •I 
} 

CloseLibraryCintuitionBase>; i* and close again. *' } 

} 

Object file BEEP.O 

HUNK O: CODE - length 17 longwords = 5C bytes 

();), 0000 _main LINK A6,-4 
1)(1. 0004 MOVEQ #10,DO 
00. (i006 MOVE.L DO,-<A7) 
00.0008 PEA 01. 000(1 
00.000E JSR _Openlibrary 
00.0014 ADDQ.L #8,A7 
.)(1.0016 MOVE.L 00,02.0000 
00.00lC TST.L DO 
00.00lE BEQ 00.0058 
00.0020 CLR.L -4CA6> 
00.0024 CMPI.L ti00000006,-4CA6> 
00.002C BGE 00. 1)04A 
00.002E CLR.L -<A7> 
00.0030 JSR _DisplayBeep 
.::;o. 0036 ADDQ.L #4,A7 
00. \)038 MOVEQ #5,DO 
•.)0. 0(>3A MOVE.L DO,-<A7> 
OO.o03C JSi:;: _Delay 
1)0. 0042 ADDQ.L #4,A7 
l)'.).(1044 ADDQ.L #1,-4CA6"> 
(1(i, (H)4b BRA 00.1)024 
UO.o04A MO'v'E.L 02.0000,-<A7i 
(H). (1(;5~) JSR _Closelit:irary 
·)0. 0056 .:.\DOQ.L #4,A7 
•.)(I. (1058 UNU·: A6 
00. (i()5?1 RlS 

:-1Ul\IF 1: DATA ·- lengt1"1 05 longwords = 14 bytes 

Figure 4 
"intLll tion. l 1brary" 

1~n~t~ 01 long~ord = 04 bytes 

1- ._ ........ ; _ (.-,,ti l r i .-., __ ~ .. -_ :_. ,.. _______________ _ 



Amiga Libraries 

Linker library +ile fiMIG~.LI~ 

HUNt:: WW: name "d<:iE l 1b" -- LODE ·-

WW, (H)(h) ___ De i a y 
WW.0002 
WW.0006 
WW. 00(1C 
ww.0010 
WW. (1012 

HUNK xx: name .. e;~ec -

:·1u·;[. L 
l"iOVE.L 
MOVE.L 
.J::lf·: 
MiJ'.-'f.. L 
j:·i r ·:. 

i ib" ... CODE 

XX. (l(ll)(I _CloseLibrary MO'v'E.L 
XX.(1002 
xx. (i(l(l8 

xx.oooc 
xx. (l(l l(l 
XX.0012 

HUNK VY: name "e:-:ec ·-

'fY. 0000 _Openlibra1·y 
yy, 1)(1(12 

VY.0008 
YV. !)OOC 
yy. (1(11(1 

yy. (l(ll4 

VY. (ll)16 

1 ib II 

MOVE. L 
~iO'.JE. L 
J~:;R 

MUVE.L 
Rf:3 

-- CODE 

MOVE.L 
t·10'JE. L. 
i•ICt'Jt::. L 
MDVE.L 
JSP 
MC11/E. L 
fi"iS 

-

-

Page 92 

len~tn 05 longwords = 14 bytes 

1-16. - (f~}) 

8lA71,L:l 
.... DOSB.:. SE:' A6 
FF3AIA6J 
U-17) +, h6 

. . 

. 
length 05 

A6,-\A7i 
__ SysEtase, A6 
B<A7>,AO 
FEo2<AoJ 
<A7l +,A6 

. . . 
length 0.:.. 

A6,-<A7) 
_SysBa-:.e,A6 
8\IH) ,AO 
OUA7 I, DC 
n.08 (A6> 
<A7j .... 1-16 

lc1119words = 14 bytes 

longwords = 18 bytes 

HUNV ZZ: name "intuition __ liti" - CODE -- lengtn 05 longwords = 14 bytes 

Z Z. 0000 _Di sp l ayf,eep 
ZZ.0002 
ZZ.0008 
zz. (l(l(l[ 
ZZ.0010 
z z. 001:.:: 

HOVE.L 
l'"lJVE. L 
MDVE.L. 
.JSi-:; 

i10VE. L 
f(;-s 

ric:, ··· (A7) 

__ Intu1t1onbase,A6 
S rn7 i, Au 
FFAOCAb/ 
(A71+ 1 t"16 

Figure 5 



Amiga Libraries Page 93 

Linking 

Relevant extracts from amiga.lib are shown in figure 5. 
Amiga.lib simply consists of a concatenation of program units; 
thus it is quite easy to make your own libraries by concatenating 
object files. Each hunk in amiga.lib is of CODE type, and starts 
with a block "hunk name", which is the name of the associated 
library. The function names Delay, CloseLibrary are defined as 
external for use by the linker; they are also defined as symbols 
in an additional block "hunk symbol", which causes their 
definitions to be included in the load-file, for use by Wack if 
necessary. The functions themselves are self explanatory; 
_DisplayBeep for example pushes the current value of A6 (must 
preserve regs except AO, Al, DO, Dl), puts the externally defined 
_IntuitionBase into A6, r~ads the parameter from the top of the 
stack into AO, then performs the library call by JSR -96(A6). It 
then pops the previous value of A6 and exits. 

The process of linking to produce a load file "beep" is 
illustrated in figure 6. Note that as two of the hunks from 
amiga.lib have the same name "exec lib", these are concatenated 
to form one "super-hunk" by the linker. The linker also resolves 
all externals and replaces them by suitable hunk offsets. Figure 
7 shows a "linker map" obtained by specifying "MAP beep.map" in 
the linker command string. This lists each hunk by type, memory 
type, and total size; it then gives file, program unit, base 
address and size, followed by a list of offsets for external 
symbols defined within the hunk. Note "super-hunk" number 7; the 
two hunks this comes from appear successively within the super
hunk, with a different base-address. The result of using the OMD 
on the load file is shown in figure 8; note the way that the 
externals have been resolved by the linker, but that there are 
still "hunk-relative" addresses to be resolved by the loader. 

In addition to producing the output hunks illustrated, the linker 
also produces a "load file header" at the start of the file (not 
illustrated). This contains information about how many "resident 
libraries" (in the Tripos sense) to open, which will be zero 
under normal circumstances, plus the number of hunks in the file, 
and the length of each hunk in longwords. This is used by the 
loader. 



Amiga Libraries 

OURSTART.O 

HUNK 0: CODE - l~nqtn (•[ 

OurStart roL1t1ne ·-

HUNK 1: DATA - lenc;:itt1 03 
"dos.library" 

HUNI< 2: i:ss - length o:: 
_Sysflase 
__ DOS Base 

BEEP.O 

HUNK I): CODE - length 17 
_main routine 

HUNK 1: DATA - lenqth (15 

"intuition.library" 

HUNK 2: BSS - length I) 1 
Intui tion[iase ·-

AMIGA. LIB 

HUM< WW: CODE - length 0:5 
_Del i(I routine 

HUNK XX: CODE - lenstn (~ 
.. _Closelibrary routine 

HUNV YY: C:-JDE - l en:3 th 06 
._Openl.ibr•c:ory rcutine 

HUN! ZZ: C.:DE ·- lenqtr! 1.::; 

_DisPlayBe~p routine 

Figure 6 

Page 94 

[;E[P 

HUNK 0: CODE - length OE 
_OurStart routine 

HUNt( 1: DATA - length 03 
"dos.library" 

HLit~l< 2: BSS - le;ngth 02 
_.SysBas2 
_DOSBase 

HUN1::: 3: CODE - length 17 
__ main roLttine 

HUNK 4: DATA - len8th 05 
"intuition.library" 

HUNK 5: BSS .- length 01 
_Intuit.ionBase 

HUNK 6: CODE - length 05 
_Delay routine 

HUNK 7: CODE - length (18 
_Closelibrary routine 
_Openlibrary routine 

HUNK 8: COliE - length 05 
_DisplayBeep routine 



Amiga Libraries Page 95 

Memory Ty?e PUBLIC Total Size 000038. 

Progr3m unit: ourstJrt.g 
Base: 000GOO Si:e: 000038 

Symoal Value 

_OurStart 00000000 

i. DAH\. Memory Type PUBLIC Total Size OOOOOC. 

File: ourstart.o 
Program Unit: oursta.rt.11 
Base: 000000 Size: OO~)OC 

~ BS~:. Memory Type PUBLIC Total Size 000008. 

File: our~tart.o 

Program Lin1t: ou~start.q 

B.:1!':e: (h)(;o.Hh) Size: (l(i(l(i(;8 

Symbol Value 

SvsBase 00000000 
DOSBase 00000004 

CODE. Memorv Typ~ PUBLIC Total Size 001)05C. 

F:i.le: bi?eP.D 

f'pogr=im Unit: oeep.g 
B~se: 000000 Size: 00005C 

Symral Value 

main 00000000 

f'lPmcrv lyp•~ FLBLIC lotal Size 000014. 

Fiie: oeeP.o 
F'!'ngrc.,m Urn t: be;.p. '1 
Ba. se: (.{,Cit.it)\) Si :: e: (J 1)t}.) 14 

F rr}•:p ·.:.•m :jr' Lt~ !:iP•"P. '1 
bd. ·::.e: )(ll..·· ,\f..i ::; 1 :··~t·": Ut~ii.)(.::.)4 

';alue 

Figure 7 



Amiga Libraries 

6. CODE. i'iemory Type t:'UbLlC 1otal Size 00(1014. 
Hunkname: dos_11b 

File: c1.1:1ib1amiga.liD 
Progrc.m Lin it: Na Name 
Base: •.H)00(h) Si:::'.e: (.(1(1014 

Symbol value 

_Delay 00000000 

7. COCiE. Memory Type PUBLIC Total Size 00002C. 
Hunkname: e:{ec _ _lib 

File: c1.l:li~/ami9a.lin 
Program un:..t: No Mame 

-Base: 000000 Size: 000014 

Symbol Value 

_CloseLibrary 0000(1000 

File: cl.l:lio/amiqa.lib 
Progrcim Un1t: No Name 
E6se; ~)0014 Size: 000018 

Symbol 

__ Qpenlibrary 

Value 

(i(l(i(i(l(l 14 

8. CODE. Memory TyPe PUB~IC Total Size 000014. 
Hunkname: lntu1 ti or;_) ib 

F :i 1 e: c 1 • 1 : l i ti i am i c:; -:i. l i b 

Program Unit: No Name 
Base: 000000 Size: 000014 

Symr::c.i Value 

Figure 7 (continued) 

Page 96 



Amiga Libraries Page 97 

Program file BEEP 

HUNK 0: CQDE - length OE ion9words = 38 bytes 

00.0000 MOVEA.L #00000004, AO 
0<).0006 MOVE.L (AOl,02.0000 
oo·. ocioc CLR.L -<A7> 
00.000E PEA 01. 0000 
00.0014 JSR 07.0014 
00.001A ADDQ.L #8,A7 ~ 

00.001C MOVE.L D0,02.0004 • 
00.0022 JSR 03.0000 
00.0028 MOVE.L 02.0004,-CA7> 
00.002E JSR 07.0000 
00.0034 ADDQ.L "#4,A7 
00.0036 RTS 

HUNK 1· D.ATA :- length 03 longwol"'.dS = oc bytes ' . ' . 
"dos. l ibrary•i 

,. 
01.0000 

HUNK 2: BSS - length 02 longwords =· 08 bytes· ' 

HUNK 3: CODE - length 1.7 longwords = 5C bytes l 

03.0000 LIN!:'. A6,-4 
03.0004 MOVEQ tUD,DO 
03.0006 MOVE.L Do,-·<A7> 
03.0-008 PEA 04. 0000 
03.000E JSR 07.0014 
03.0014 ADDQ.L #B,A7 
03.0016 MOVE.L D0,05.0000 
03.001C TST.L DO 
03.1)01E BEQ 03.0058 
03.0020 CLR.L -4CA6l 
03.0024 Cl"IPI.L #00000006,-4(A6> 
03.002C BGE 03.004A 
03.002E CLR.L -<A?) 
03.0030 JSR 08.0000 
03.0036 ADDQ.L #4,A7 
03.0038 MOVEQ #05,DO 
03.003A MOVE.L DO, - CA7> 
03.003C JSR 06.0000 
03.0042 ADDQ.L #4,A7 
03.0044 ADDQ.L #1,-4<A6> 
03. (11)48 BRA 03.0024 
03.004A MOVE.L os.oooo,-<A7> 
03.0050 JSR 07. 0000 
03.0056 ADDQ.L #4,A7 
03.0058 UNLK A6 
03.005A RTS 

HUNK 4: DATA - length 05 longwords = 14.bytes 

04.0000 "intuition.library" 

HUNK 5: BSS - length 01 longword = 04 bytes 

Figure 8 



Amiga Libraries Page 98 

HUN~:: l: CODE - length c·C" ,..., lon']words = 14 byt~s 

06. 0000 MOVE.L A6,-1A7; 
06.0(1(12 MOVE.L 8<A7>,Di 
06. 001)6 MOvE.L 02.0004,A6 
06.000C JSR FF3ACA6> 
(16. 0010 MOVE.L <A7>-r,A6 
Ob. 0012 RTS 

HUNI( 7: CODE - length OB longwor·ds = 2C bytes 

07.0000 Mt.NE. L A6,-(fi7) 
(17. 0002 MO"iE. L Ci2. 000(1, Ab 
07.0008 MOV£.L 8<A7>,AO 
07.000C JSF: FE62(1-i6) 
07.0010 MOVE.L (A7)+,A6 
07.0012 RTS 

07.0014 MOVE.L A6,-<A7> 
07.0016 MOVE.L 1)2. 0000, A6 
1)7. OOlC MOVE.L 8<A7>,AO 
07. 0020 MOVE.L C!C(A7>,DO 
07.0024 J3R FDDB<A6l 
07. (1028 MO'·iE. L 1.A7> +,A6 
07.002A RTS 

HUNK 8: CODE - lens th f•C" 
~•...J longwords = 14 bytes 

08.(1000 MOVE. L Ab,-(A7) 
08.0002 MOVE.L 05. (11)(10, A6 
08.0008 MOVE.L 8(A7>,AO 
08. 00(1C JSR FF~O<A6) 

08.0010 MOVE.L <A7;+,A6 
08.0012 RTS 

Figure 8 (continued) 



Amiga Libraries 

!)(10'.::3148 (l(l(H)(H)40 
0(HJ08C63 

00023150 MOVEA.L #'t>(1(>(l(11)U04, AO 
00023156 MOVE.L \AOJ, $231A8 
Ot)02315C CLR.L -<A7> 
0(102315E PEA $2:~: 190 
00023164 JSR $2F23C 
0002316A ADDQ.L #8,A7 
0002316C MOVE.L D0,$23iAC 
1)(>1)23172 JSR $231B8 
(10023178 MOVE.L $231AC,-<A7i 
1)00231 ?E JSR $2F228 
00023f84 ADDQ.L #4,A7 
00023186 RTS 

OOOT5188 (l(l(l(l(l(I 14 
00008C69 

"dos.library" 

000231A(l 

00023180 
000231B4 

00023188 
000231BC 
000231BE 
000231CO 
000231C6 
0(i0231CC 
000231CE 
(H)(i23 l 04 
(i(H)231D6 
0002~; 1 [·8 
(H);)2:S 1 DC 
0(10231E4 
U(H)231E6 
(H)(l:;'.3 i [8 
t)!)0231EE 
0(>0231FO 
OU0231F2 
("f!TS1F4 

(h)0231FA 
!)(11):'.31 F C 

( 11)0.:'.3:.\;8 
.)(1r~! :2-:.2~)E 

00000010 
00008C6D 

(l(l(l(l(l(J(l(l 

00000000 

00000064 
00008C87 

LINK 
MOVEQ 
MOVE.L 
PEA 
JSR 
ADDQ.L 
l'IOVE.L 
TST.L 
BEQ 
CLR.L 
CNP!. L 
!~GE 

CLF.:.L 
JSR 
ADDQ.L 
t•10VEQ 
M01-iE. L 
JSH 
14DDC!. L 
ADDQ.L 
BRA 
MUVE.L. 
J~jf;' 

ADDI). L 
UNLf: 

A6,-4 
#'.Ii 1D , DO 
DO,-\A7i 
$23220 
$2F23C 
#8,A7 
D0,$2532G 
DO 
$2321(1 
-4<A61 
~(l({l(H)i~J(!~, -4 \A6 j 

-rn-:n 
$2F'.:::b(! 

#4,A7 
#05, [;•) 
D0,-(?17,t 
'l,2F20b 
#4,t-i? 
#1,-4\Hoi 
:i::::?.l [J1_: 

#4,.H7 
~i6 

Figure 9 

0002F200 

1)00:2'F20A 
0002F20f 
0002F214 
0002F218 
0002F21A 

0002F220 

OU02F228 
0()02F22A 
0002F230 
0002F234 
0002F238 
0002F23A 

OOO:'F23C 
•J002F23E 
OU02F244 
0(102F248 
(1002F24C 
OC02F250 
01:102F2:i2 

C.002F:58 
(H}.:.;2F25C 

(,;_J(C"F'.:.:6 1) 

(h)((::F ~.~_,2 

·~il)((7'f~6d 

1:i1:1.:1::::F2sc 
, _ _.,, __ ,(::.r=:~·o 
'.!':"CF'.:: T::. 

Page 99 

0000001C 
000094C9 

"intuition.library" 

oooooooc 
)000BC81 

000 00000 

0000001C 
"1(100BC89 

MOVE.L 
MO'JE.L 
MOVE.L 
JSR 
MO'·JE.L 
RTS 

(l(H)(l(l034 
OOOOBC97 

MOVE.L 
MOVE.L 
l"tOVE. L 
JSR 
MOVE.L 
RTS 

MOVE.L 
MOVE.L 
MOVE.L 
MOVE.L 
JSF: 
MOVE.L 
RTS 

(l(l(!(H)(l1 C 

C•OOO(H)1)(l 

MOVE.L 
MCVE.L 
f1[1!./E. L 

.JSR 
1'1ff/E. L 
f.:T3 

A6,-<A7> 
B<A7l,Dl 
$231AC,A6 
SFF3A!A6l 
<A7l+,A6 

A6,-<A7l 
f231AB,A6 
8<A7>,AO 
SFE62!A6) 
<A7i+,A6 

A6,-<A7) 
$231A8,A6 
8\A7),A0 
$OC<A7>,DO 
$FDD8CA6i 
<A7l+,A6 

At.,-(A7J 
$25::::28, A6 
B<A7> ,AO 
iFFAO <A6i 
U\ll +, i'.16 



Amiga Libraries Page 100 

Loading 

When the AmigaDOS scatter-loader is invoked by LoadSeg(), it 
first of all processes the load file header, by trying to 
allocate memory for each hunk, and if successful building up a 
"segment list" in memory, as illustrated in figure 9. Each 
record of this consists of a segment length in bytes, followed by 
a BPTR to the next segment (zero if last segment), followed by 
enough space for the hunk. Note that this allows AmigaDOS to 
know whether it has enough memory to be worth continuing with the 
load, and if so where in memory it is going to put each hunk, 
before it actually loads anything. 

The load itself is now quite straightforward. The only things 
still needing attention in our example are the "hunk reloc32" 
blocks, which specify where to modify the hunk being-loaded by 
adding on appropriate hunk base addresses; the loader now knows 
what these are, so it can relocate as it loads, resulting in an 
arrangement in memory something like the one shown in figure 9. 
If we look at the code from the linker library that actually 
invokes DisplayBeep {7th segment), we see that the "hunk offset" 
in MOVE.L 02.0000,A6 has been replaced by the appropriate 
absolute address MOVE.L $231AC,A6; this sets up our Intuition 
library base pointer prior to the JSR -96{A6). 

Running 

When LoadSeg() has finished it returns a BPTR to the first 
segment in the segment list - in our example this will be $8C53, 
which multiplied by four gives $2314C. The code can then be run 
(usually as a CLI "co-process") by a call to this address plus 4, 
or set going as a separate process by calling CreateProc() - this 
is what happens when a program is run from Workbench. 

The final piece of indirection involved in invoking the library 
is then resolved at run-time; in this case Exec returns $00003DA4 
as IntuitionBase, which takes us to a jump vector at $00003D44, 
which takes us to a ROM routine at $FEOF66, which beeps the 
screen (at last) - see figure 10. 



Amiga Libraries 

intuition.liorar~ 

Offset 

FE5C 
FE62 
FE68 

FF8E 
FF94 
FF9A 
FFAO 
FFA6 
FFAC 

FFDC 
FFE2 

FF£8 
FFEE 
FFF4 
FFFA 

0000 
0004 
0008 
i)009 
OOOA 

OOOE 
(>OOF 
(H)10 
0012 
(n)14 
0016 
•)018 
(Ii) 1 c 
0020 

Descr1Pt1on Adaress 

-~VOUnlcckIBase 00003COO 
LVOLockIBase 00003C06 
LVOFreeRemember 00003COC 

_LVOOrawlma9e (H}.)03D32 
__ LVODt,awBarder 00003038 
_LVODoubleClick 00003D3E 
_LVODisplayBeep 01j003D44 
_LVODi sp l ayAlert OOOt:>:.SD<+A 
LVOCLtrren t Ti me 00003050 -

LVOintui t ion 00003080 -
_LVOUpe-nlntui ti on !)(l(H)3D86 

LIB EHFUNC 0000308C -
LIB t::XPUMGE 000(130'72 -
LIB _CLOSt: OOOO'rn't8 
LIB lJF'EN oooo:.:m9E -
lib _Node. ln -Succ 00003DA4 
lib .. _Nooe. ln _f''red 0000.:0DA8 
lib -Node. ln -· Ty Pe 00003DAC 
lib Mode.In _Pri 000(>3[iAD -
lio _Node. ln _Name 00003D~iE 

lib _Flags 00003DB2 
lib Pad oooo::::nB:3 -
1 ib_Neg;;i ze 00003DE.4 
lib PosS1ze •)0(H)50E>6 

-·-
lib Version 0000 ::::v BB -
l j b Eevision 01)(1t)3DBA -· 
lib - IdStnng 00003DBC 
llD ·:>um 00003DCO -
lib 0Per.Cnt 00003DC4 ... 

Figure 10 

Vaiue 

JMP 
Jt1P 
Jl'lF' 

JMP 
JMP 
JMP 
JMP 
JMP 
JMP 

JMP 
JMP 

Jl'lP 
JMP 
JMP 
JMP 

~·FE1284 

$fE1278 
$F£125E 

$FEOF9C 
$FEOF88 
$fEOF72 
$FEOF66 
$FEOF54 
$FEOF46 

$FEOEEC 
$FEOEEO 

$FD545A 
$FD545E 
$F0545E 
$FD5454 

00004E2C 
00003A58 
00 
(l(l 

OOF05442 

04 
i)(i 

01A4 
040E 
001F 
0041 
(i(H)OOOOO 
70820000 
0001 

Page 101 



Amiga Libraries 

wac f.: r1eep 

Wac~ Version 1.0 

1 C·ad ing syrnbc is ••••••••. 
4 SYffibols loaded from 8 hunks 

:3t:i1Pl'a ti n·1 s:1mbo 1 add re::ses ••• 
ready 

023150 207C 0000 0004 23D0 
go 

: ..... ... · .. o # •• 

segl ist 
#0 ~02314C:00040 #1 
#3 :50231 B4: (!(1(104 #4 
#6 $02F204:0~)1C #7 

symbols 

b.:1se oO•)Z)l ~<(1 
ba~e Oi.i0:.2:::; 1 'tO 
tiase (1(11) 2 ":'.1 t16 
base OOU~·::::: 1 BB 
i:lii~e (11·u.1:.::.:;z::•) 
base Ot)t):.·s::::2a 
base:- ( 1t102f-""',))8 

b:.se uoo:t= 2:~'8 
t,as~ oi:;c1.:::r.-2c.1J 

C"1-itSt?t (i(;(l(it)(,(i(i 

o+f~,~·t (i(i!)U 1)(;(i{1 

offset C1 ~)i)(1~~;000 

oft set (1(il/l(1(114 

"'hunk_(; 

$02318C:~)014 ~2 

$02321C:0001C ~5 
$02F224:~)034 #8 

~02:51 A4: (1(>010 
$025~524: (11)(!(1( 

$02F25C:0001C 

, i(l({l(i(h)I) ··hunk (l 

(h)(i!)r)(li)(• ·"t-.un k 1 -
1.)(i1)i)1>(1t)(I '•hunk 2 -
iJ(l(1(l(l(1(1(i "'r;unl:: ' ·-· -
(i(il)(l(l(l(i(l ''hLtnk _4 
i)•.:;O(l•.)(i(n) "'hunk i:: 

._J ·-
(1•.:•l)l_l(!l)(i(i "'nunk 6 --
OC·OOt)(l(h) ·"h1.mk 

.., 
i -

(o(H)i~1(l(l(l(l "'hunk 8 -

OOU2F228 ___ CioseLibrary 

(n)(C'F208 
·-Oelay 

C1(l1)2F2ti(; _DispiayBeep 

0002F228 _Openlibrary 

(123151) '.2i)7C t)(;(ii) (;1)1:..4 :23DO 
_OpenL1brary 

: •..••• . /··o # •• 

02F23C 2F(E 2[70 0002 31A8 
where::· 
-~penlibr~ry + 0 
quit 

···· N • :-,: •• ·····B 1 •• 

Figure 11 

Page 102 



Amiga Libraries Page 103 

A final twiddle - ATOM 

The above discussion represents the state-of-play as per Amiga 
version 1.0. However, it contains a shortcoming, in that there 
was no way in 1.0 of specifying what sort of memory each hunk was 
to be loaded into - chip memory (ie the bottom 512K accessible by 
the blitter etc), fast memory (up to BM of expansion RAM not 
affected by the clever chips), or don't care. This was given a 
short-term fix in release 1.1, by means of a utility program 
called ATOM (Alink Temporary Object Modifier), used in 
conjunction with Lattice 3.03 and Alink. 

When using Lattice 3.1 and Blink, ATOM is not needed, the same 
effect being obtained by new compiler switches, -c being used in 
LC2 to force code data or bss into chip memory (eg -ccdb would 
force all three), and -h (for high-speed) to force code data or 
bss into fast memory. It is very important to get this right if 
you want your code to run in Amigas with over 512K of memory; we 
suggest putting all data that needs to be in chip memory - like 
Intuition images, sprite definitions or audio waveforms - in a 
special source-module "slingthisinchip.c" or something, for 
compilation with the lc2 -c option. 

The effect of running ATOM (after compiling or assembling, and 
before linking) or of using the new Lattice 3.1 compiler switches 
is to modify the .o files. This is done by modifying the type of 
one of the blocks in each hunk, which previously just marked the 
hunk as hunk code, hunk data, or hunk bss. The two most 
significant bits of this longword are-now used as follows: 

0 
1 
0 
1 

0 
0 
1 
1 

Don't care - Use fast or chip, fast if available. 
Use fast memory or fail 
Use chip memory or fail 
More info follows (reserved) 

Having been modified, the .o files can now be passed to Alink 
(Vl.1), or to Blink. This leaves these extra bits in the hunk 
types; it also ORs them into the most significant bits of the 
hunk lengths in the load file header, which are spare because the 
hunk lengths are given in longwords. Version 1.1 and 1.2 
LoadSeg() then uses these bits to AllocMem() the right kind of 
memory for each hunk, or fails; old versions of LoadSeg() (1.0) 
will mistake hunks with non-zero values ·for these bits for very 
long hunks indeed, and fail with "out of memory". 

A final point to note is that AmigaDOS refers to "don't care" 
memory as "public". This is confusing, as it does not appear to 
mean the same thing as "public" as in AllocMem(MEMF PUBLIC), 
which is an upwards-compatibility feature, meaning memory that 
needs to be accessed by more than one task. 



Amiga Libraries Page 104 

Last words on scatter loading 

The clever way it handles relocating and scatter loading is 
probably the best thing about AmigaDOS. The fact that you can 
write fast position dependent absolute code, which will be fixed 
up to run properly anywhere by the loader, has a speed penalty 
while loading but leads to much faster code execution. In our 
opinion, this is much more sensible than other systems like OS9, 
which FORCE you to write position-independent code, with no JMPs, 
JSRs or other absolute memory references. 

To take an extreme example, consider screen bit-plane access. 
Normally, you let the system allocate this for you - using a 
function like Intuition's OpenScreen() - then write into it using 
other functions in Intuition or the graphics library. However, 
if this isn't fast enough, and if you don't require system 
facilities like layers (windows) and so on, then you can find out 
where the memory has been allocated, then write into it yourself 
by appropriate indirect addressing - subject to various caveats 
discussion in Section 6. If even THIS isn't fast enough, then 
you can set up some bit-planes yourself by allocating some 
suitably enormous arrays compiled to be loaded as bss data into 
chip memory; you can then tell Intuition to use this for screen 
memory by passing OpenScreen() a NewScreen structure set up with 
a pointer to your own "CustomBitMap". This permits you to make 
ABSOLUTE references to your screen memory, which will be fixed up 
by the scatter loader. This proceedure isn't recommended; it is 
however as close as you can get to "poking screen RAM" on Amiga! 

A final point - also relating to speed of execution - concerns 
two options available from Lattice 3.1, called base-relative and 
PC-relative addressing. Base-relative addressing is a form of 
data addressing in which one register (A6) is used to point at 
the start of a data area, and individual data items are accessed 
as 16-bit offsets within this area. This results in four bytes 
per data-reference (as opposed to six bytes for absolute 
addressing), and usually in faster execution; its disadvantage is 
that only up to 64K of data can be accessed like this, and that 
all this data must be in a continuous block. Base-relative 
addressing is specified by an option "-b" in LCl; this will cause 
the compiler to use base-relative addressing to access all data, 
and also cause the data and bss hunks to be given a special name 
"_MERGED", so that they will be joined together in a continuous 
super-hunk by the linker. 

PC-relative addressing is a similar mechanism, this time applied 
to subroutine calls in code hunks; here the target address is 
specified as a 16-bit offset from the current PC-value, resulting 
in a four byte instruction rather than a six byte absolute JSR, 
which also executes faster. This is limited to offsets of plus 
or minus 32K from the current PC value; if you try to go further 
than this then BLINK will try to fix it up for you by generating 
a jump table, but this will obviously lose the code-length and 
speed advantage. It is therefore worth joining code hunks into 
super-hunks if you are going to use this; one way of doing this 



Amiga Libraries Page 105 

is to use the -s option in LC2 which allows you to specify 
hunk_names, the defaults being "text", "data" and "udata.". (The 
use of the word "text" to mean "code" is another silly name from 
Unix.) Note that using this option to join hunks into super
hunks also results in faster loading; its disadvantage is that it 
is more likely to fail in a system in which the available memory 
has become fragmented. 

Try it yourself! 

Of course, it is not necessary to understand very much of the 
above in order to do an Intuition screen beep! However, it is 
our feeling that an understanding of what happens "behind the 
scenes" is both interesting and useful, so we hope that you found 
the discussion above valuable, if exhausting. 

Of course, if you really want an insight into the whole business, 
you should try your own example. If you want to do this, you 
will find the following utilities of interest. 

1. ObjDump <filename> This can be used to examine ANYTHING 
made of hunks (object files, .lib files, load files), giving 
output in a "human" (Martian?) readable format, split into 
different hunks and blocks. Output can be redirected to the 
printer if desired. 

2. OMD <filename> This is the Lattice Object Module 
Disassembler, which can produce a fairly readable 
disassembly of object files by integrating information in 
the various hunk blocks. OMD output includes labels defined 
in hunk ext blocks in the file - if you want more symbolic 
information, then set the -d option in LCl (version 3.1), 
which causes the compiler to output "hunk symbol" blocks 
giving symbol definitions and "hunk debugTT blocks giving 
line numbers, which can be picked up by OMD. 

3. Linker MAP and XREF options By specifying MAP <filename> 
and/or XREF <filename> in the linker command string, you can 
cause it to output a map similar to figure 7, showing each 
hunk in the output file, together with the symbols defined 
within it, or a cross-reference, which also shows where the 
symbols are referenced. This is useful in allowing you to 
spot symbols (and hence routines etc) which don't need to be 
public, or which don't get used at all! 

4. Wack If you compile with the -d option in LCl, then 
hunk_symbol blocks are output by the compiler, and passed on 
by the linker into the final load file; these are usually 
then ignored by LoadSeg(). Note that amiga.lib contains 
hunk_symbol blocks for each library function, so these will 
always be present in the load file however you chose to 
compile; there is a Fish disk utility which allows you to 
strip these out of release software if you want to! 
If you want to make use of symbolic information while 



Amiga Libraries Page 106 

debugging with Wack, then you can "bind" these symbols by 
invoking Wack by 

wack <filename> 

This should cause Wack to fetch the symbolic information 
while loading <filename>, and to calculate the actual 
address in memory corresponding to each symbol; note however 
that Lattice 3.1 introduces some new hunk types which old 
versions of Wack and Alink don't know about, so you may come 
to grief at this point with an error 'Unknown hunk type'. 
If the load does succeed, then you can get a list of symbols 
by typing 

SYMBOLS 

(Use right mouse button to stop them scrolling off the top 
of the screen.) This gives a list of internal symbols used 
by Wack - ie a list of Wack commands - plus the base address 
(actual start of code or whatever) of each hunk in the form 
-HUNK O etc, plus the symbols picked up from hunk symbol 
blocks OpenLibrary etc. Other OldWack facilities of use 
in this-context are as follows: 

GO 

SEGLIST 

SYMBOLS 

WHERE 

run program from current address - this will be 
initialised to the hunk O base address, so you can 
use GO to run the program just loaded, by a JSR to 
the start of the first segment. 

gives address (real address not BPTR) of each 
segment of the program just loaded, and its· 
length in bytes. 

gives all symbols as above. Typing in a symbol 
name (eg -hunk O) takes you immediately to that 
location. -

gives your current position relative to the last 
symbol, else "You're lost". 

LIBRARIES list of libraries in current Exec library list. 

QUIT exit Wack. 

See figure 11 for an example of using these facilities. 
Note that OldWack can't count - there are actually NINE 
hunks in our example, numbered 0 to 8! 

5. Metascope If you can't get Wack to work - or if you just 
don't like Wack or can't get hold of a copy - then you can 
use an alternative symbolic debugger such as Metascope, 
which knows about the new Lattice hunk types. You can get 
Metascope to look at a particular program compiled with the 
-d option using 



Amiga Libraries Page 107 

metascope <filename> 

or alternatively you can load the program from within 
Metascope by selecting LOAD from the PROJECT menu. You can 
then get a list of symbols by selecting SYMBOL from the OPEN 
menu. You then can select particular symbols by pointing 
and clicking, open other windows with code-dumps or 
disassemblies at the locations corresponding to these 
symbols, plus all sorts of other wonders - see the Metascope 
documentation. 

References 

ROM kernel manual volume 2, Libraries. Contains much useful 
reference material (destined to become your most thumbed manual), 
plus a source-code example of a library. 

Vl.2 auto-docs for up-to-date library summaries. 

AmigaDOS Manual Technical Reference - full information about 
binary file format, including various block types not covered 
above. Be warned that what this part of the DOS manual lacks in 
length it more than makes up for in total incomprehensibility, at 
least on a first reading. Be particularly wary of words which 
appear to mean the same thing as they do elsewhere in the 
documentation, but don't quite. 



Amiga Devices Page 108 

Amiga Devices 

How to Perform IO, Without Worrying Too Much What To 

"Into Amiga" illustration by Hanafi Houbart. 



Amiga Devices Page 109 

Section l = Amiga Devices 

How to Perform IO, Without Worrying Too Much What To 

A goal of many state-of-the-art machines, the Amiga (of course) 
included, is to provide "device independent IO". At first sight, 
this seems pretty daft, even by the standards of state-of-the-art 
buzz words - how can you address a tracker-ball exactly like a 
printer? The answer is that you can't, so the notion of device
independence should not be taken too literally; the more accurate 
alternative of "as device independent as possible under the 
circumstances" is however a bit long-winded. 

In fact, the goal of device-independent IO is to provide as 
consistent an interface as possible to a wide variety of input 
and output devices. This is achieved by providing some standard 
structures and routines which are used in all IO, some standard 
input and output commands which are used by most IO, and a 
mechanism for adding the inevitable device-specific routines in a 
consistent and convenient manner. Besides conforming to abstract 
notions of "elegance", this has the concrete advantages of 
convenience to the programmer in not having to learn a whole set 
of new rules when considering a new IO device, and maximum ease 
when converting between devices which are in fact reasonably 
similar. 

The software mechanisms used to handle IO on the Amiga are known 
generally as "devices"; examples of devices are the timer, 
trackdisk, keyboard, gameport, input, console and audio devices 
all of which are resident in ROM or "kickstart" protected memory, 
and narrator, serial, parallel, printer, and clipboard which are 
scatter-loaded off backing store as necessary. 

Note that "devices" can appear at very different levels in the 
overall Amiga system architecture. The keyboard device for 
example is a very "low level" device which handles servicing 
keyboard interrupts, and passing "raw" key information to a 
higher level input coordinator called the input device. The 
console device on the other hand is a rather high-level part of 
the system with very close links to both Intuition and AmigaDOS; 
it takes keyboard information from the input device, and provides 
a variety of clever "virtual terminal" capabilities. Part 1 of 
this section considers devices in general; part 2 considers 
keyboard, input and console devices in detail. 



Amiga Devices Page 110 

Background concepts 

In terms of software structure, a device is a special case of a 
general-purpose Amiga structure known as a library; "cunning" 
devices, capable of running quasi-independently of the calling 
program, have associated with them another structure known as a 
task. Roughly speaking, a library is a load of routines starting 
with a jump table, and a task is a mechanism used to allow 
different programs to share the CPU by "time slicing" on the 
interrupts - see the earlier sections of this guide for a full 
explanation of these concepts. 

Devices and libraries 

A device is a special case of a library, in that it consists of a 
jump table, followed by a node and various other library-type 
stuff, followed by a data area. As a library, it contains the 
standard entry points for Open(), Close(), Expunge(), and 
Extfunc(); in order to be a device, it must also have two further 
standard jump table entries BeginIO() and AbortIO(), which can 
be invoked by various standard routines in Exec. 

Device: 

<other jump table entries> 

JMP ABORTIO 
JMP BEGINIO 

JMP EXTFUNC 
JMP EXPUNGE 
JMP CLOSE 
JMP OPEN 

Library node. 

;device standard entries 

;library standard entries 

Library flags, sizes, version, checksum and open count 

Data area follows. 

The main general-purpose routine provided by all devices is 
BeginIO(); this is called with a pointer to a structure called an 
IORequest, which contains various information relevant to the IO 
call in question, including a "command" word specifying what is 
to be done - read data, write data, reset the device, or 
whatever. Commands fall into two categories. Standard commands 
such as read and write are satisfied by all devices if possible, 
though this may not be the case (you can't write to a tracker
ball!). Device-specific commands provide a mechanism to do 
things like allocating channels on the sound device, which 
wouldn't make a lot of sense to anything else. 



Amiga Devices Page 111 

In addition to device-specific commands, it is also possible for 
devices to have their own private additional jump-table entries 
beyond BeginIO() and AbortIO(), which provides an additional 
mechanism for device-specific functions, accessed by the usual 
way of calling functions from a library. Examples are the 
console device routines which provide translation from "raw" to 
"cooked" keyboard data by means of a key-table. In the case of 
the console, it is possible to open it just as a library, i.e. 
without linking it into the system's devices list or connecting 
it to the input device; it can then be used just for key 
translation (by Intuition or by the application program) without 
it doing anything else. 

It can be seen that the mechanisms of standard commands, device
specific commands, and "private" jump-table entries provide 
considerable versatility in the way a device choses to function. 
Different devices make use of these mechanisms in different ways, 
some more neatly than others! 

Devices and tasks 

Besides the library structure discussed above, a device may have 
one or more tasks associated with it. This means that when the 
device is opened, one or more "task control blocks" may be linked 
into the task queues maintained by Exec, associated with routines 
within the device; this allows the device to run "alongside" 
other routines such as the application program, making use of 
Exec's ability to perform multi-tasking. 

If this is the case, then each task will have associated with it 
a message port to allow queueing of IO requests. All IORequests 
start with a message structure, allowing them to be attached to a 
task's message port if appropriate. In this context, IO using 
BeginIO() (or higher level routines like DoIO()) can be viewed as 
a special case of the general Amiga mechanism of message passing. 
The IORequest structure can then be viewed as a message passed to 
the device; usually the device indicates that the IO request has 
been processed in the usual way, ie by replying the message to 
the calling program. (However, there is a shortcut to this 
process - see QuickIO below.) 

To make this clearer, it may be worth distinguishing between 
"simple" devices with no associated tasks, and "cunning" devices 
which make use of multi-tasking; in this context, the keyboard 
device is (fairly) simple, while the input and console devices 
are both cunning. 

A "simple" device performs IO in a way not very different from a 
Commodore 64. When an IO request is made, an IO request block is 
set up containing the relevant command - say to read a specified 
number of bytes of data. BeginIO() is then called with this 
request block and control passes to the device; control will not 
return to the calling program until the device has satisfied the 
IORequest and replied the IO request message with an error code 



Amiga Devices Page 112 

of zero, or else given up and returned an error. Thus the 
calling program has to wait until the data is available; this is 
known as synchronous IO, and is all that is available from a 
"simple" device. 

A "cunning" device on the other hand has at least one associated 
task and message port, and is capable of asynchronous IO in 
which IO requests are queued to a message port, and other 
processing can continue while the device gets round to processing 
them. A cunning device maintains a "device busy" flag - when 
BeginIO() gets an IO request for something like "read data", it 
first checks if it is already busy, and if not gets on with the 
IO immediately. Otherwise, it queues the IO request to its 
associated task's message port. The associated task deals with 
removing IORequests and satisfying them as quickly as it can; the 
calling program will know when the request has been satisfied 
when the task replies the message. It can either hang around in 
a wait state waiting for this to happen (synchronous IO), or it 
can get on with something else in the meantime (asynchronous IO). 

Note that you should never assume that something is a "simple" 
device, because someone may come along and re-write it. An 
IORequest should therefore always be viewed as a "message", ie as 
a bit of memory which is going to be "loaned" to another task -
this means that it should be allocated MEMF PUBLIC, and that it 
should NOT be modified by the calling program until the device 
has replied it. Note also that while a device may make use of 
multi-tasking to run asynchronously with the calling program, it 
will not attempt to perform more than one IORequest at once(!) -
requests are queued to a message port, and dealt with one at a 
time. This is a nice simple idea sometimes known as single
threading - this is in order to sound better when you talk about 
it loudly in restaurants. 

A good example of a "cunning" device with an associated task is 
the "input device" - this handles picking up "raw" input events 
from the keyboard, timer, and gameport all of which are simple 
devices, and passing them on to a "server chain" of input 
handlers, which includes Intuition. It is through the input 
device's associated task that Intuition "stays alive" while an 
application program is running; this is obviously rather 
important, which is reflected in the fact that the input device 
runs at the maximum priority used by the system, which is 20. 
(If you use Wack to look at this, you may see the "input.device" 
task more than once or not at all - this is because Wack is 
rather silly about tasks that may be moving between the Exec 
task-ready and task-waiting lists while Wack is looking at them!) 
The relationship of the various devices concerned with user input 
is discussed in detail in the next article. 



Amiga Devices Page 113 

(Since writing the above discussion of simple and cunning 
devices, it has been pointed out to me - hi Harry - that quite a 
few devices that I would have categorised as "simple", including 
keyboard.device and gameport.device, do in fact have interrupt 
handlers associated with them. While not being the same as the 
full mechanism of message-queuing used by a cunning device with 
an associated task, this does however give them a capability for 
elementary request queuing, and hence assynchronous IO. It may 
therefore be better to think of devices like this as only "fairly 
simple".) 

Devices and Units 

Associated with each device are one or more additional data 
structures known as units, arranged as follows: 

Unit: 

message port for associated task (actual structure, not pointer) 
flags 
(padding) 
open count for this unit 

This structure is initialised by the system, and a pointer to it 
returned as part of the process of opening a device; one of the 
parameters passed to the OpenDevice() function is a unit number. 

In the case of the floppy disk drives, the unit number 
corresponds to the actual physical unit being accessed. M~ltiple 
drives are looked after by only one device structure and one set 
of code; however each unit has its own unit structure, its own 
message port, and its own TrackDisk.device task control block and 
data area for buffers. 

In the case of other devices, the unit number may correspond to 
physical units (eg the gameports), it may be used for something 
else (eg for the timer it specifies whether to use vertical blank 
or an 8520 microhertz timer), it may have to be zero (eg the 
narrator), or it may be ignored completely (eg the audio device). 
However, in all cases, OpenDevice() always returns a pointer to a 
"unit" structure, as above. 



Amiga Devices Page 114 

Opening ~ device 

Before using a device, it is necessary to open it, in the same 
way as opening a library. This is done by an Exec routine 
OpenDevice() which is passed a device name, a unit number, the 
address of an IORequest data structure, and some device-specific 
flags. Space must be reserved for the IORequest data structure, 
and its message header initialised before calling OpenDevice: 

IORequest: 

Message structure - set up in advance with node-type 
NT MESSAGE, priority zero, and appropriate pointer to reply 
port. Used internally by cunning devices to queue IO 
requests. 

Pointer to device base address - will be set up by 
OpenDevice(). 

Pointer to unit structure - will be set up by OpenDevice(). 

Command word - set up before calling BeginIO(). Not used by 
OpenDevice(). 

Flags - set up before calling BeginIO(); not used by 
OpenDevice(). In theory, the lower four bits are for use by 
Exec - currently just to flag QuickIO - while the upper four 
bits are available for use as the device wishes. However, 
since the first thing that Exec SendIO() and DoIO() do is to 
blam absolute values into this location (versions 1.1 AND 
1.2), this claim needs viewing with suspicion (unless you 
call BeginIO() directly). 

Error - error return, zero if successful. 

(Other stuff follows.) 

The "other stuff" which follows depends on what sort of IO is to 
be performed. Some IO - eg the console - uses a structure called 
an IOStdReq, consisting of an IORequest structure followed by 
some more material as detailed below; a lot of other IO uses a 
extension to this consisting of an IOStdIO followed by some 
device-specific data. Exec support functions CreateStdIO() and 
CreateExtIO() exist to create the standard and the extended 
versions of these structures. 

The full mechanism for opening devices and performing IO is 
summarised below: 

1. Set up an IORequest structure followed by whatever else the 
device needs somewhere MEMF PUBLIC, and initialise the 
message type and priority, and the address of your reply
port. If you are going to be using IOStdReq or extended 
IOStdReq structures, you can create these by calling 



Amiga Devices Page 115 

CreateStdIO() or CreateExtIO() respectively. 

2. Open the device by calling 

OpenDevice(name, unit number, address of request 
structure, flags). 

This will attempt to open the device, scatter loading from 
disk if necessary, and call the device's own OPEN routine to 
allow it to initialise and connect itself in as necessary. 
It will also create a unit structure, and put the address of 
this structure and of the device itself into the IORequest 
structure. The use of unit number and flags varies from 
device to device - one use of flags is to request exclusive 
access, eg to the parallel device. 

3. The IORequest structure can now be used in calls to 
BeginIO(), either directly or via other Exec calls (see 
below). The same structure can be used as was returned by 
OpenDevice, or copies of it can be made; before calling 
BeginIO() other fields should be set up, including the 
actual command to be performed. Command completion will 
normally be indicated by the IORequest message being 
returned to the reply port designated in stage (1). 

4. Before your program exits, you should close the device using 
the Exec call CloseDevice(). 

In some other respects, devices behave just like libraries - eg 
it is possible to add new devices to the system lists or remove 
them using AddDevice() and RemDevice() respectively. 

Standard commands 

The standard commands supported by all devices (at least in as 
far as returning an error if they can't do them!) use a structure 
IOStdReq mentioned above: 

IOStdReq: 

IORequest structure as above 
Number of bytes actually transferred (returned) 
Number of bytes we want transferred 
Pointer to data buffer 
Byte offset for structured devices (eg disk) 

Note that only a few devices (eg the console) use this structure 
"as is"; most of them use an extended IO request block consisting 
of an IOStdReq followed by various device specific data. 
Examples of devices which do this are the clipboard, the 
narrator, parallel, serial and trackdisk devices; the tra=kdisk 
device for example uses a structure called IOExtTD, consisting of 
an IOStdReq followed by a disk change counter value, and a 
pointer used when accessing sector label information. Certain 



Amiga Devices Page 116 

devices ignore IOStdReq altogether, and just use an IORequest 
structure followed by the data in whatever form they feel like. 
Examples are the audio device, the printer, and the timer - the 
timer for example uses just an IORequest followed by a "timeval" 
structure, specifying time in seconds and microseconds. 

The standard commands are as follows: 

CMD RESET - reset and reinitialise everything immediately, 
losing any pending commands. 

CMD READ - read bytes into data buffer. 

CMD_WRITE - write bytes from data buffer. 

CMD UPDATE - ensure media up to date, eg no unwritten data 
lurking in internal disk buffers. 

CMD CLEAR - throw away contents of all internal buffers. 

CMD STOP - stop performing IO immediately - just queue 
requests. 

CMD START start performing IO again. 

CMD FLUSH - immediately return all pending requests with an 
error. 

"Cunning" devices maintain internal tables specifying which of 
these commands are for immediate execution, and which should be 
queued if necessary. Immediate commands are usually RESET, STOP 
START and FLUSH. 

No frills IO = calling ~ device directly 

The two standard routines supported by all devices are as 
follows: 

BEGINIO - attempt to perform request specified 
ABORTIO - attempt to abort request specified, by de-queuing 

it from a message-port. 

The first of these routines can be accessed by an Exec support 
routine BeginIO(pointer to request structure), which handles 
picking up the device base address from the IORequest structure, 
setting up registers, then doing the appropriate indirect call to 
invoke BEGINIO. The second can be accessed via a routine 
AbortIO(structure) in Exec itself. (Note that the ROM kernel 
manuals are a bit confused about this - BeginIO is not mentioned 
in the Exec support documentation though it can be found in 
amiga.lib, and AbortIO is currently in Exec, not in Exec support 
as claimed!) 

Thus the most direct way of performing IO is to set up your 



Amiga Devices Page 117 

request block with the command and other information you want 
(including the address of your reply port), then call BeginIO(). 
You can then go to sleep waiting for a reply (synchronous IO), or 
get on with something else checking for a reply from time to time 
(asynchronous). 

QuickIO 

The mechanism summarised above is general and powerful, 
particularly when it comes to cunning devices, internal request 
queuing, and asynchronous IO. However, in some cases - say when 
outputting characters one at a time to a "simple" device with no 
associated task - the mechanism of having to reply a message for 
every IO request adds a high overhead with no advantage, since 
the device won't be queueing requests internally anyway. 

For this reason, if you don't require the full mechanism of 
asynchronous IO, it is possible to ask a device to "short-cut" if 
possible by setting a flag called QuickIO in the flags byte of 
the IO request block. 

The QuickIO flag can be interpreted as telling a device that the 
calling program isn't particularly interested in getting a reply 
to its message. If a simple device gets an IO request with this 
flag set, it will perform the IO as usual, then return with this 
flag still set, and without bothering to reply the message. If a 
cunning device gets a QuickIO request, it may or may not be able 
to satisfy it. If it is not currently busy, it will perform the 
request immediately, and return with the QuickIO flag still set 
and without replying. However, if it is currently busy, it will 
have to queue the request to its message port. In this case it 
will return with the QuickIO flag clear, and later on when the 
request has been satisfied it will reply the message, to allow 
the calling program to re-use or deallocate the IO request block. 
Note that this means that you can't assume that QuickIO will be 
successful (even if you are talking to a simple device - someone 
might rewrite it!), and must always be prepared to cope with 
QuickIO failing, and the device replying your message. (If you 
find this too much of a pain, use the Exec routines discussed 
below, which handle this for you.) 

Exec IO routines 

In a few cases (eg when talking to the audio device) you have to 
use BeginIO() and AbortIO() directly - this is because these 
devices make use of flags which are jumped on by the routines 
from Exec. In other cases, it makes just as much sense to use 
the Exec routines,·which are SendIO(), CheckIO(), WaitIO(), and 
DoIO(), all of which take a single parameter, which is the 
address of an IO request structure. The following details of the 
internal workings of these routines are based on version 1.1 (all 
right, we admit it, we disassembled the ROM!), but are unlikely 
to differ in any externally significant way in version 1.2. 



Amiga Devices Page 118 

SendIO(), CheckIO(), and WaitIO() 

These routines are used for asynchronous IO - exactly what they 
do in version 1.1 is as follows: 

SendIO() - Sends asynchronous IO request. Clears the QuickIO 
flag (by blamming zero in the IORequest flags 
byte), since you must have a message reply in order 
to do asynchronous IO. Then picks up the device base 
address from the IORequest, and calls BEGINIO for the 
device. 

CheckIO() - Checks if asynchronous request has completed, and 
returns true or false accordingly. First checks for 
QuickIO flag still set (ie QuickIO was specified and 
succeeded), and if so returns true. Else checks if 
type of message has been changed to NT REPLYMSG, and 
if so returns true; else returns false~ In the later 
case, note that the reply will still need de-queueing 
from the reply port - this can be done by calling 
WaitIO(). 

WaitIO() - Waits for asynchronous IO request completion, and 
returns error code from IORequest block. Internally, 
works as follows (version 1.1): 

First checks for QuickIO flag still set, and if so 
picks up the error code from the IO request block and 
exits. 

Else picks up the reply port address from the ·Io 
request block, then picks up the corresponding signal 
bit number from the reply port. 

Then clears the PAULA master interrupt enable (why?) 
and increments Exec's interrupt disable count. 

Now looks back at the IO request block to see if its 
node-type has been changed to NT REPLYMSG yet - if so 
the message has been replied, so-it unlinks the reply 
from the reply port, decrements the interrupt disable 
nesting count and sets PAULA master interrupt enable 
if appropriate, picks up the error code and exits. 

Otherwise it goes to sleep by calling Exec Wait(), 
waiting on the signal bit associated with the repLy 
port. It then loops back to checking for NT 
REPLYMSGf and exits or waits again accordingly. 



Amiga Devices Page 119 

DoIO() 

This routine is used for simple synchronous IO, without you 
having to worry explicitly about messages and ports - its effect 
is to perform the IO, then return an error code. 

Internally, DoIO first sets the QuickIO flag, since there's no 
particular reason for it to wait for a reply to its message. It 
then picks up the device base address, and calls BEGINIO; it then 
drops straight into WaitIO(), explained above. 

References 

ROM Kernel Manual Volume 1 contains a useful overview of IO, 
though it contains a few minor errors, and isn't very informative 
about QuickIO! 

ROM Kernel Manual Volume 2 contains a detailed account of all the 
devices, including all the nasty non-standard bits. The example 
programs are particularly useful. The appendices contain a 
summary of all calls to all devices and listings of the .h and .i 
files giving the structures used by these calls; updates to these 
can be found on the 1.2 'docs' disk. 

ROM Kernel Manual Volume 2 also contains an assembly-code listing 
for a "skeleton device", which is a "cunning" device with a task 
associated with it. This makes interesting reading. 



Mouse and Keyboard Page 120 

Mouse ! Keyboard 

Ten different ways to get ~ input! 

Elementary user input on the Amiga consists of the user pressing 
and releasing keys on the keyboard, moving the mouse and pressing 
and releasing mouse buttons. The system hardware detects these 
actions and system software deals with obtaining data from the 
peripheral chips and making these events known to higher-level 
system software and application programs in a convenient form. 

The significance attached to these elementary events depends 
entirely on the context in which they happen. Thus pressing the 
left mouse button, moving the mouse and then releasing the left 
button may have any of the following effects:-

(1) requesting a disk copy (if the button was pressed with the 
pointer on a disk icon and released over another disk icon); 

(2) resizing a window (if the button was used to select a sizing 
gadget; 

(3) moving a window (if the button was used to select a window's 
drag bar; 

(4) dragging an Intuition Screen up or down (if the button was 
used to select a screen's drag bar); 

(5) selecting a window for input (if the pointer was inside a 
window when the button was pressed); 

or a whole range of other possibilities. 

Similarly, pressing and releasing the cursor-down key may have a 
number of different effects:-

(1) moving the cursor down a character line (eg when using Ed); 

(2) moving the Intuition pointer down a raster line (simulated 
mouse movement - left Amiga key pressed); 

(3) moving the Intuition pointer dawn by jumps (simulated fast 
mouse movement, left Amiga & SHIFT keys pre5sed); 

(4) nothing (eg when inputting to a CLI window); 

and so on. 



Mouse and Keyboard Page 121 

The lowest level of system software handling user input deals 
with "raw" input events - that is key presses and releases etc -
without attempting to attach any particular significance to them. 
Higher-level system software deals with such matters as 
generating an ASCII "a" code when the A key is pressed or an "A" 
code when the A key is pressed together with the SHIFT key, or 
interpreting a mouse button press as icon or gadget selection. 

"Raw" key presses and releases are handled by the keyboard 
device, and mouse movement and button presses and releases by the 
gameport device (since the mouse is attached to one of the 
Amiga's game ports). These deal directly with the hardware and 
can be asked by other system software or by application programs 
to provide descriptions of "raw" input events in a standard 
format, called an "input event" structure. This contains data on 
what kind of event occurred, which key was pressed, etc, and a 
time stamp indicating when it happened, together with various 
other data. The definition of this structure can be found in the 
header file "devices/inputevent.h" for C programs, or in the 
include file "devices/inputevent.i" for assembler programs. 

"Raw" keyboard events 

The keys on the Amiga keyboard are numbered from 00 to 67 hex. 
The values attached to the keys have no relation to ASCII 
keycodes, they simply identify which key is being referred to. 
The keys can usefully be considered in three groups, classified 
by their raw keycode values:-

(1) keycodes 00 to 3F - correspond to ordinary printable· 
characters, eg numerals, letters, punctuation characters; 

(2) 40 to SF - special keys, eg backspace, delete, function 
keys, HELP key; 

(3) 60 to 67 - "qualifier" keys, ie. SHIFT keys, CAPS LOCK, CTRL 
key, ALT keys and "Amiga" keys, which generally don't mean 
anything on their own but can affect how other keys are 
interpreted. 

When a key is pressed, the keyboard device generates an input 
event of class IECLASS RAWKEY with appropriate keycode, eg the A 
key generates keycode 20 hex. When a key is released, the 
keyboard device produces an input event with the appropriate 
keycode but with bit 7 set, eg key A being released generates 
keycode AO hex. 

The input event also contains a description, as a set of bit 
flags, of which of the qualifier keys were down when the key was 
pressed or released, so that shifted A can easily be 
distinguished from unshifted A, etc. 



Mouse and Keyboard Page 122 

Application programs may obtain these raw keyboard events 
directly from the keyboard device, as described in the ROM Kernel 
Manual, using CMD READ commands (see Figure 1 (a)). This method 
is not recommended, since under most circumstances the input 
device (as described below) will be active, and it will also be 
requesting keyboard events, leading to a situation where some 
keyboard events are sent to the application and some to the input 
device, resulting in general confusion! 

The keyboard device also handles the key combination ALT with 
both Amiga keys to produce a reset, and handler code to deal with 
clean-up processing before a reset occurs can be added to the 
system via the KBD ADDRESETHANDLER command. 

"Raw" mouse events 

Mouse button presses and releases are treated by the gameport 
device in the same way as the keyboard device handles key presses 
and releases, where the buttons have "keycodes": 

hex 68 - left mouse button 
hex 69 - right mouse button 
hex 6A - middle mouse button (if you have one) 

except that the event class is IECLASS RAWMOUSE instead of 
IECLASS RAWKEY. 

Mouse movements are also reported by using RAWMOUSE events, but 
with the value IECODE NOBUTTON as the "keycode", indicating a 
mouse report not involving button press or release. Mouse 
position is reported for all mouse events, including button press 
& release. 

The input device 

Unprocessed raw input events are not the most convenient form for 
most application programs, so there are various levels of further 
system software provided to make life easier for the programmer. 
The key to these facilities is the input device. This is a task 
which requests raw input events from the keyboard and gameport 
devices, together with timer device events to handle key repeat 
timimg, etc and also receives notice of disk insertion and 
removal. It produces a single chain of input events, including 
handling key repeat by producing multiple key pressed events when 
keys are held down. Access to this chain of input events is not 
achieved by performing CMD READ commands to the input device (as 
you might expect): instead-these input events are passed to a 
chain of input event handling routines for further processing. 
An input event handling routine may do any of the followin~with 
the input event chain: 



Mouse and Keyboard Page 123 

(1) handle the entire processing of an event and remove the 
event from the chain, so that further handlers are not aware 
that the event has occurred; 

(2) remove an event from the chain, replacing it by another 
description of the same event, based on the context in which 
the event occurred; 

(3) add new events to the chain; 

(4) simply pass on an event unprocessed to other handlers (if 
any) in the chain. 

When Intuition is active, it has an input event handler at high 
priority in the chain, and this is often the only handler 
present. Intuition's input event handler deals with such things 
as:-

(1) recognising mouse button events as system gadget selection 
and causing window sizing, dragging, pushing & popping, etc 
to happen, then "throwing away" the event; 

(2) recognising mouse button events as window selection and re
directing input to the appropriate task; 

(3) handling menu selection; 

(4) recognising appropriate keyboard events as simulated mouse 
events, including menu short cuts; 

(5) converting keyboard events to "cooked" form to produce ASCII 
character output. 

Other input handling routines may be hooked into the chain by 
using the IND_ADDHANDLER command to the input device (as shown in 
Figure l(b)). Since the priority of the handler is specified 
when it is added to the chain, handlers may be inserted before or 
after Intuition. 

Key cookery and keymaps 

For most purposes one is not interested in every key press and 
release, but in which ASCII characters and control sequences are 
being generated. The process of converting raw keyboard events 
into ASCII data we refer to as key cookery, since it produces 
"cooked" keyboard data as the result. The system needs some way 
of deciding what ASCII or extended character sequence to 
associate with a particular key when pressed with a given 
combination.of "qualifier".keys such as SHIFT, CTRL and ALT. 
This is provided by means of a "keymap". You may provide your 
own custom keymap if you so desire, but there are default keymaps 
- for varous different countries - provided for use if you have 
no need of your own; these are installed by means of the 1.2 
utility program SetMap. The keymap for raw keycodes 00 to 3F hex 



Mouse and Keyboard Page 124 

(ordinary printable characters) is known as the Low Key Map, and 
that for raw keycodes from 40 hex upwards is known as the High 
Key Map. For each key with raw keycode in the range 00 to 5F hex 
(ie all except the "qualifier" keys), the keyrnap contains the 
following:-

(1) which of the "qualifier" keys SHIFT, ALT and CTRL (if any) 
affect the "cooked" keycode or sequence produced when the 
key is pressed - the possible "key types" are: 

NOQUAL 

SHIFT 

ALT 

CTRL 

no qualifiers - always generates the same result, 
regardless of qualifier keys; 

the SHIFT key affects the output, but pressing ALT 
or CTRL doesn't make any difference; 

the ALT key affects the output, but pressing SHIFT 
or CTRL makes no difference; 

the CTRL key affects the output, but SHIFT or ALT 
have no effect; 

SHIFT+ALT there are four possible results, produced by the 
key pressed alone, or with SHIFT, or with ALT, or 
with both SHIFT & ALT, but it makes no difference 
whether the CTRL key is pressed; 

SHIFT+CTRL there are four possible results, produced by the 
different combinations of the SHIFT and CTRL keys, 
with the ALT key making no difference; 

ALT+CTRL there are four possible results, produced by the 
different combinations of the ALT and CTRL keys, 
with the SHIFT key making no difference; 

VANILLA there are up to eight different results, produced 
by all possible combinations of the SHIFT, ALT and 
CTRL keys. 

(2) for each combination of the qualifier keys, what single 
character or sequence is generated; 

(3) whether the key is "capsable" - ie. does the key generate 
its shifted value when pressed with CAPS LOCK active; 

(4) whether the xey repeats when held down. 

For a detailed description of keyrnaps, see the chapter-on the 
Console Device in the ROM Kernel Manual. 



"ii ..... 
IQ 
r::: 
"1 
(1) 

i--' 

(a) EJ game~ort ====;>:> .de~lC~ 1~ . 
(un1t 0) ~ Application 

Application program obtains 'raw' 
input events directly from the 
keyboard and gameport devices 

~ Program 

IC JD 1~ ~~~e~~~d ~ 

( b) 

1001 . :> 

timer. 
device 

gameport 
.device 
(unit 0) --

IC JD 1~ ~~~e~~;d 

( c) 
timer. 
device 

EJ game~ort ---"ilooi> ,dev1ce 
·. (unit 0) 

[ C JD 1~ ~~~e~~;d 

Application program obtains 'raw' input events by 
hooking itself into the input event handler chain 
via an IND-ADDHANDLER·conunand to the input device 

input. 
device 

~ 

Intuition 
input event 
handler 

~ 

Application 
Program 

Application program obtains 'raw' or 'cooked' input 
by opening an Intuition window and using IDCMPs 

input. 
device 

~ 

Intuition 
input event 
handler 

--~~->,1 1 Application 
.,. 1 Program 

3: 
0 
r::: 
rn 
ID 

I» 
!l 
p. 

~ 
ID 

~ 
0 
I» 
"1 
p. 

tti 
I» 

IQ 
ID 

..... 
N 
VI 



( d) 
timer. 
device 

EJ game~ort ---....,> .device 
(unit 0) 

keyboard 
.device l JOI=>~--

( e) timer. 
device 

EJ game~ort 
----:~> .device 

(unit 0) 

I [ J ·~ ===> ~~~e~~;d 

Figure 1 (contd.) 

input. 
device 

input. 
device 

Application program obtains 'raw' or 'cooked' input 
by opening an Intuition window and attaching a 
console device then using CMD_READ 

Intuition 
input event 

~I handler I~ 

console 
.device 

l 

---• .... 6 1 Application 
"' • Program 

Application program obtains 'raw' or 'cooked' input 
by opening an AmigaDOS 'RAW:' file & using Read() 

Intuition 
input event 

~I handler I~ 

console 
.device ==~>( RAW:l 

Application 
Program 



Mouse and Keyboard Page 127 

The default keymap and CSI sequences 

Table 1 contains a list of the keycodes generated· by the "USAO" 
default keymap for all combinations of the three qualifier keys 
SHIFT, ALT and CTRL, together with the "key type" and whether the 
key is considered "capsable" or "repeatable". The following 
general points are of interest:-

(1) the only keys which don't repeat when held down _are ENTER, 
RETURN, ESC and HELP; 

(2) the letter keys are the only "capsable" keys; 

(3) all keys in the Low Key Map (raw keycodes 00 to 3F hex) are 
of type VANILLA; 

(4) the cursor keys, function keys and HELP key generate a 
sequence of characters, as does shift-TAB. 

All of the multi-character sequences generated start with hex 9B, 
known as the Command Sequence Introducer, or CSI, and are of the 
form: 

<CSI> [parameters separated by semi-colons] [space] <terminator> 

where the optional parameters consist of ASCII digits or"?"; 

the space may be present or not, depending on the meaning 
of the sequence; 

the terminator is a character in the range 40 to 7E hex. 

Such CSI sequences are used both as the cooked form of special 
keys and also to send commands to the console device. 

The console device 

A convenient way for application programs to obtain input events 
after Intuition, and in a "cooked" form if required, without the 
programmer having to write his own input handling routines, is 
provided by the console device. This device consists of three 
principal elements:-

(1) an input event handler; 

(2) conversion routines for doing key "cookery"; 

(3) output routines, to perform text output, scrolling, cursor 
movement, etc in a given window, normally using the standard 
character set. 

The various ways of using these facilities are detailed below. 



~ey "Raw" kev codes 
Leqend key key key alone Wl th 

press release type SHIFT 

" (It) 8(1 VANILLA b(I 7E 
I I 01 81 VANILLA 31 21 
: Ii! 02 82 VANILLA ..... 40 -~·~ 

3 • (.13 83 VANILLA 33 23 

" s (14 84 VANILLi1 34 24 
5 ~ (15 85 VANILLA ""' ,.).J 2S 
0 " (lo bb VANILLA 3b SE 
;· ~ 07 87 VANILLA 37 26 
~ t 00 88 VANILLA 38 2A 
" ( (19 89 VANILLA 39 28 
1_1 I OA BA Vi:tNILLA 30 29 
- OB 8[1 - VANILLA 2D 5F 
= + OC BC VANILLA 3D 28 
' I 1)0 BD VANILLA SC 7C 

[undehnedl OE BE 
t~u11 (I OF BF VANILLA :o 30 

~ I (I 91) VANILLA 71 51 
w II 91 VANILLA 77 57 
E 12 9~ VANILLA b5 45 
R 13 93 VANILLA 72 52 
T 1-t 94 Vi1rHLLtl 74 54 
y 15 95 IJl.NILLH 79 59 
u lb 9:i VANILLI'.. 75 55 
I 17 o; i IJANILLA bi 49 
0 18 98 IJANILLA t:f 4F 
F 19 ~~ V.:1NILLl4 7(1 50 

[ : Ill 9i1 VHNILLIO 58 "8 
J j !Cc 'j[I V~ILLA 50 70 

[ul"ldetinedl IC qc 
·~u11 I rn '1D V~ldLL!'.I 31 31 
r1um : IE qE VHrHLLft 32 32 
~llHI °! IF ~F 'JANILLA 33 33 

Table l - Default Key Map 

"Cooked" key codes 
with Wl th Wl th with Wl th 
ALT &HIFT C.TRL SHIFT ALT L 

& ALT fir CTF:L CTl"\L 

EO FE (1(1 IE 8(1 
Bl Al 31 21 81 
82 co 00 00 81) 
&3 A3 ~., 23 83 . .).) 

B4 A4 34 24 84 
85 A5 ""' .j.J 25 85 
Bb DE IE IE 9E 
87 Ab 37 26 87 
Eta AA 38 2A B8 
[19 AB 39 :e 89 
BO tl9 30 29 BO 
AO OF IF IF 9F 
BD A& 3D 2B BD 
liC FC IC IC 9C 

8(1 &O 30 30 BO 
Fl DI 11 1l 91 
F7 D7 17 17 97 
E5 C5 (15 OS 85 
F2 li2 12 12 92 
F4 [14 14 14 94 
F9 D9 19 19 99 
F5 D5 15 15 95 
E9 C9 •j9 09 89 
EF CF OF ~ BF 
FO [J(I 1(1 10 9<J 
D& F[I l& Iii 98 
liD FD ID 10 9D 

Eel f:<I :.1 31 Bl 
82 &2 3: -.. 82 .j ... 

83 fl~ .... "'" 83 -· .,_, ,,.,, 

Wl th Nil ether l'llletner 
SHIFT, Hl...T capsable repeatable 
Ii CTRL 

9E iiEf'EHT'4£tLE 
Al REPEt1TABLE 
80 h£PEATA&LE 
A3 REf'Et• T li&LE 
A4 ~:EF'E'4 TABLE 
AS l\'E:F'E~ T A&LE 
9E iiEPE~TABLE 

Ab REPEATABLE 
AA REF'EATA81..E 
AB ~:EPEAT ABLE 
A9 fiEf'EATA£1lE 
9F REf'EATA91..E 
AB ii'EPEATAEtl.E 
9C l\'EPEAT ABLE 

90 REPEATABLE 
91 C;l'SAEtl.E ~PEATAEtl.£ 

97 CAPSABLE REPEATABLE 
85 CAPSAlU REf·EATASLE 
9" ' CAPSABLE REPEATABLE 
94 ~E l\'EF"EATABLE 
99 CilPSA8l.E REPEATABLE 
95 CAf'SA8t..E l\Ef'EATMBLE 
69 CAPSA9LE REPEATAfLE 
BF C/.F'SABLE REPEATABLE 
91) CAP~BLE REPEATA8i..E 
9& NEf"EATA&LE 
90 REF'EA T H&l.E 

Bl ~.EPEATAk.£ 

e: l\'Ef'EAT AM.E 
[13 REF·~1.r 11£tl.E 

Key 
Le9eno 

.... 
I I 

: @ 
3 • 
4 5 

5 x 
6 ,.. 
7 ~ 
fl t 

9 ( 
0 I 

- -= + 
\ I 

Cundehnedl 
Nu• I,) 

Q .. 
E 
f( 

T 
y 
u 
I 
0 
p 

[ { 
] ) 

Cunattinedl 
Nu• l 
b .2 
Nu• 3 

3: 
0 c: 
Ul 
It) 

DJ 
::l 
0. 

~~ 
!:'.I 
'< 
O' 
0 
p.i 
t1 
p, 

'ti 
Ill 

\Q 
~ 

I-' 
N 
CX> 



t,ey "Raw" kev codes 
Leqend key key key alone Wl th with 

press release type SHIFT ALT 

ll 20 AO VANILLA bl 41 El 
s 21 At VANILLA 73 53 F3 
D 22 A2 VANILLA b4 44 E4 
F 23 A3 VANILLA bb 4b Eo 
G 24 A4 VANiLLA b7 47 E7 
H 25 AS VANILLA 68 48 ES 
j 26 Ab VANILLA · oA 4A EA 
~. 27 A7 VANILLA 68 49 EB 
L 28 AB VANILLA bC 4C EC .. 29 A9 VANILLA 38 3A 88 I • . . 2A AA VANILLA 27 22 A7 

(reserved) 28 AB 
[uMehnedl 2C AC 

Num 4 2D AD VANILLA 34 34 84 
Num S 2E AE VANILLA 35 ., .. 

.:J.J [15 
t~Ulll 0 2F AF VANILLA 36 36 8b 

[reserved] 30 BO 
z 31 &I V14NILLA 7A 5A FA 
~ 32 B2 VANILLA 78 SB FB 
c 33 [13 VANILLA b3 43 E3 
v 34 B4 VANILLA 76 56 F6 

~· 

& 35 [15 VANILLA b2 42 E2 
N 36 86 VANILLA bE 4E EE 

"' 
37 87 VANILLA oD 40 ED 

I '. ~8 88 VANILLA 2C 3C AC 
I / 39 [!9 VANILLA 2E 3E AE 
I ) 3A BA VANILLA 2F 3F AF 

(undehnedl 3B BB 
Nu111 , :!.C BC VANILLA 2E 2E AE 
Nur1 7 3D BD VANILLA 37 37 87 
Nuni fl 3E BE VANILLA 38 38 BB 
Nu11 9 3F BF VANILLA 39 39 89 

Table 1 (contd.) 

"Cooked" key cO<les 
with with with Ioli th Wl th 
SHIFT CTRL SHIFT ALT Ii SHIFT, ALT 
& ALT Ii CTRL CTRL Ii CTRL 

Cl 01 01 81 Bl 
D3 13 13 93 93 
C4 04 (14 84 84 
Co Ob 06 86 86 
C7 (17 07 87 87 
ca 08 08 88 88 
CA (1A OA BA BA 
CB (18 09 88 BB 
cc oc oc BC BC 
BA 38 3A 88 BA 
A2 27 22 A7 A2 

B4 34 34 [14 [14 
BS 35 35 85 85 
&b 36 36 Bb 86 

DA lA lA 9A 9A 
DB 18 18 98 98 
C3 03 03 83 B3 
Db lb 16 96 96 
c~· i. (12 02 82 82 
CE OE OE BE BE 
Cli OD OD BD BD 
BC 2C 3C AC BC 
BE 2E 3E AE BE 
BF 2F 3F AF BF 

AE 2E 2E AE AE 
87 ~, 

,;, 37 87 87 
(48 :!.S 38 B8 88 
89 39 39 89 89 

~.ey 

whether w~1etrier legend 
capsable repeatable 

. ' 
CAf'SA&LE fiEPEATABLE A 
CAPSABLE . J<Ef'E;H i1fiLE s 
CAf'SA8LE REF'E.:. T i1lilE D 
Cl1F'SA~LE REf'EATA&lE F 
CAPSABLE REPEATABLE G 
Ctlf'SABLE nEPEtlTA&LE H 
C.V:-5'%BLE REPEAT~8LE J 
CAPSA8LE REF'EAT 11BLE K 
CAf'SABLE REPEATABLE L 

REf'EA T&ALE . . . . 
fiEF'EATABLE ' II 

[reserved) 
C undefi nea l 

REPEATABLE Nu111 4 
llEP£ATA8LE Num 5 
REPEATABLE Numb 

Creser'ledl 
CAPSHRE REF'Etl T t'..EILE 2 
CHf'SAIU l\EF'EATAEU x 
CAf'SABLE REF'EATA8LE c 
Ci1f'S~lll.E REPEATABLE v 
CAPSABLE REPEATABLE 8 
CAPSABLE REPEATABLE N 
CAPSABLE REPEATA8LE 11 

REf'EATABLE ' '\ 
REPEATABLE I ,/ 

REPE1HABLE I ? 
REPEATABLE [undefined] 
l\'EF'EATABLE Nu• • 
REPEATABLE Hui 7 
REPEATABLE Nu• 8 
REPEATABLE Nu• 9 

"'-···· ·<--

::3: 
0 
s:: 
UI 
(1) 

Pl 
::l 
0. 

~ 
(1) 

~ 
0 
Pl 
t; 
0. 

t'!1 
Pl 

\Q 
(1) 

..... 
N 
\0 



I ey "Raw" ~:ey codes 
Legend key key key alone 

press release type 

Space 4(1 co ALT 20 
Bac~;space 41 Cl NOQUAL 08 
Tab 42 C2 SHIFT 09 
Enter 43 C3 NOQUAL OD 
f:eturn 44 C4 CTRL OD 
E~c 45 cs ALT l& 
Del 46 Cb NOQUAL 7F 

[undefined l 47 C7 
[undefined] 4B ca 
[uncJeflnedl 49 C9 

tlu111 - 4A CA ALT 2D 
[uncJet inedl 48 CB 

Up 4C cc SHIFT 9841 
Down 4D CD SHIFT 9842 
R19ht 4E CE SHIFT 9843 
Left 4F CF SHIFT 9844 

Fl 50 DO SHIFT 98307E 
F2 51 D1 SHIFT 98317E 
F3 52 D2 SHIFT 98327E 
F4 53 03 SHIFT 98337E 
FS 54 D4 SHIFT 98347E 
Fb 55 DS SHIFT 9B.357E 
F7 Sb Db SHIFT 98367E 
FB 57 07 SHIFT 98377E 
F9 SB DB SHIFT 98387E 
F!O 59 09 SHIFT 98397E 

[undet ined) Sil DA 
Cunaehneol 58 DB 
[unoet ined l SC oc 
(undefined] SD DO 
[ urioeti necl l SE DE 

f1f!p 5f Of hGIJUhL 9B3F7E 

Table l (contd. ) 

"Coo~edM key codes 
with with with Wl th with wi tn 
SHIFT ALT SHIFT CTRL SHIFT ALT & 

L ALT & CTRL CTRL 

20 AO AO 20 20 AO 
OB oa oa OB OB 08 
9(15A 09 985A (19 9(15A (19 
OD OD OD OD OD OD 
OD OD OD OA OA OA 
18 98 98 18 1B 98 
7F 7F 7F 7F 7F 7F 

2D FF FF 2D 20 FF 

9854 9841 9854 9841 9854 9841 
9853 9842 9853 9842 9853 9842 
982040 9843 982(140 9843 982040 9843 
982041 9844 982041 9844 982041 9844 
9831307E 98307E 9831307E 98307E 9831307E 9B307E 
9831317E 98317E 9831317E 98317E 9831317E 98317E 
9831327E 98327E 9831327E 98327E 9831327E 98327E 
9831337E 98337E 9831337E 98337E 9831337E 98337E 
9831347E 98347E 9831347E 98347E 9831347E 98347E 
9831357E 98357E 9831357E 98357E 983 llS7E 98357E 
9831367E 983b7E 98313b7E 983b7E 98313b7E 98367E 
9831377E 98377E 9831377E 98377E 9B31377E 98377E 
98313B7E 98387E 98313B7E 98397E 9831397E 98397E 
9831397E 9~397E 9B31397E 98397E 9831397E 98397E 

9S3F7E 983F7E 983F7E 9B3F7E 983F7E 9B3F7E 

with whetner wnetner 
SHIFT, ALT capsable repeatable 
ti CTRL 

A(I REPE~TABLE 

08 REPEATABLE 
985A REPEATABLE 
OD 
OA 
98 
7F F.EPEATABLE 

FF F:Ef'EAT tl8LE 

9854 REPEATABLE 
9853 REPEATABLE 
982040 fi:Ef'EATARE 
982041 l\'EPEATABLE 
9831307E l\'EPEATAlU 
9831317E REPEATABLE 
9831327E REPEAT AKE 
9831337E F:EPEATABLE 
9831347E REPEATABLE 
9831357E REPEATABLE 
9831367E REPEATABLE 
9831377E REPEATABLE 
9B31397E REPEATABLE 
9631397E REPEATABLE 

9B:'f7E 

~ey 

Le9end 

Space 
Bact:space 
Tab 
Enter 
Re tum 
Esc 
Del 

Cundehnedl 
[undefined l 
CundefinecJJ 

Nu• -
Cundehnedl 

Up 
bn 
Ri9ht 
Left 
Fl 
F2 
F::i 
F4 
FS 
Fb 
F7 
FS 
F9 
FlO 

Cundefinedl 
(undefined) 
[undefined] 
Cundefinedl 
Cunaefinedl 

Help 

ID 
Ill ::s 
0. 

~ 
11> 

"< 
tr 
0 
Ill 
11 
0. 

I'd 
Ill 

lQ 
CD 

~ 
w 
0 



rey "Raw" key codes 
Legend key key key alone with with 

press release type SHIFT ALT 

LeH Shi ft bO EO 
Right Shift bl El 
Caps Lock b2 E2 

Ctrl b3 E3 
Left Alt b4 E4 
R19ht Alt bS ES 
Lett Amiga bb Eb 
R19nt Amiga 67 E7 

Table l (contd. ) 

"Cooked" key codes 
Wl th with with with with 
SHIFT CTRL SHIFT ALT It SHIFT, ALT 
& ALT Ir CTRL CTRL le CTRL 

~.ey 

whether whether Legend 
capsable repeatable 

Left Shi ft 
Right Shi ft 
Caps Lock 

Ctrl 
Left Alt 
Right Alt 
Left 11miga 
Right A11119a 

:!: 
0 
i:: 
Ul 
11> 

Ill 
::1 
p. 

~ 
11> 
"< 
O" 
0 
Ill 
t1 
p. 

"'Cl 
Pl 
~ 
<D 

I-A 
w 
I-A 



Mouse and Keyboard Page 132 

Intuition Direct Communication Message Ports (IDCMPs) 

Application programs may obtain input event data by opening an 
Intuition window with IDCMP flags set (as in Figure l(c)). 
Intuition's input event handler will then inform the application 
of events in which it is interested by sending it IntuiMessages 
describing the events. These contain data describing the events 
either in "raw" or processed form, in a way similar to that used 
by the "input event" structure. Raw mouse button events will be 
processed by Intuition's input event handler (to produce "cooked" 
mouse events), and the application will be informed that a gadget 
or menu has been selected or whatever. 

It is also possible to get keyboard input via IDCMPs, using one 
of two flags:-

(1) Setting the RAWKEY IDCMP flag will cause Intuition to inform 
you of key presses and releases, using raw keycodes. 

(2) Setting the VANILLAKEY IDCMP flag will cause Intuition to 
"cook" the keyboard input for you, giving you the data in 
ASCII form. To cook the data for you, Intuition makes use 
of one of the console device's library functions, 
RawKeyConvert(), which uses the current keymap to cook the 
raw data. Intuition only provides a single character output 
buffer for use by RawKeyConvert(), so keys such as the 
function keys, which generate more than one character, will 
not be passed on to you by Intuition. Thus you cannot use 
this method if you wish to know about cursor keys, function 
keys, etc - though you can set the RAWKEY flag then call 
RawKeyConvert() yourself (see Appendix 1). 

The example program VANILLAKEY shows how to get "cooked" keyboard 
input by using the VANILLAKEY IDCMP option. If you run this 
program from a CLI and then press keys, you will get the "cooked" 
keycodes in hex displayed in the CLI window. Use CTRL-C to exit. 

Using the console device directly 

The most powerful and versatile way of handling keyboard input 
also requires the most work from the programmer to set it up. 
This involves opening an Intuition window and then "attaching" a 
console device to it, by using OpenDevice() with an appropriate 
IO Request block (see Figure l(d)). This causes the console 
device's input event handler to be linked into the input handler 
chain after Intuition, and makes the given window the output 
window for the console device. Keyboard (and other) input events 
can then be obtained, normally in "cooked" form, by doing 
CMD READs from the console device. Text output, scrolling, 
cursor movement, and so on are performed by CMD WRITE commands to 
the console device, as are commands specifying that you want 
"raw" keycodes or other kinds of events to be reported to you. 
All special commands to the console use CSI sequences, with the 
form described above. 



Mouse and Keyboard Page 133 

This approach has the following advantages:-

(1) the window can be opened on any screen, with any flags and 
wh~tever system or custom gadgets you may require; 

(2) all keys can be obtained in "cooked" form, including cursor 
and function keys, etc; 

(3) you can supply your own custom keymap and the console device 
will give you keyboard data cooked according to your recipe. 

The example program CONSOLE illustrates this method. Like the 
VANILLAKEY program, it obtains "cooked" data and prints the 
values in hex in the CLI window used to invoke it, and exits when 
you press CTRL-C. However this program also illustrates the 
console device being used for output, and you get the text, 
cursor movement, etc that you specify occurring in the output 
window. 

AmigaDOS "devices" 

The simplest, but most limited, method of getting keyboard input 
is to make use of AmigaDOS "devices" (not to be confused with 
Exec devices such as the keyboard, gameport, input and console 
devices!!). These are accessed in the same way as AmigaDOS 
files, using DOS library calls Open(), Close(), Read(), Write(), 
etc, but are distinguished from files by having special names. 
Those used for obtaining keyboard input are "RAW:" and "CON:". 
These of fer a shortcut method for opening a window and attaching 
a console device, but with a number of limitations:-

(1) the window will be opened on the Workbench screen - opening 
DOS windows on other screens cannot be done without special 
trickery (see the Fish disks); 

(2) although the window's title and initial size and position 
can be specified, the programmer has no control over the 
maximum and minimum size of the window, and the sizing, 
push, pop and drag gadgets are always present, but no close 
gadget; 

(3) no custom gadgets can be attached to the window; 

(4) the default keymap (as set by setMap) is used for key 
cookery - it is not possible to use a custom keymap. 

There are in fact three ways of obtaining keyboard data with this 
method:-

(1) using Open("RAW: ..... ",MODE NEWFILE) and then Read()ing from 
this "device" to obtain "cooked" data - this is illustrated 
by the example program DOSRAW (see Figure l(e)); 



Mouse and Keyboard Page 134 

(2) using Open("RAW: ..... ",MODE NEWFILE), Write()ing a control 
sequence to the "device" asking it to give us "raw" 
keycodes, then Read()ing from the "device" to obtain "raw" 
keycodes; 

(3) using Open("CON: ..... ",MODE NEWFILE) and then Read()ing from 
the "device" to obtain "cooked" data a line at a time, with 
backspace, etc handled transparently by the "CON:", and 
special keys such as cursor and function keys being 
suppressed. 

The DOSRAW program is an example of using an ArnigaDOS "RAW:" 
device for keyboard input and text output. It acts just like 
CONSOLE program, but involves much less programming effort. Note 
that the CONSOLE program has been written to behave as much as 
possible like this one:. in particular, the maximum and minimum 
sizes of the window and the choice of system gadgets used are 
those which you always get with ArnigaDOS "RAW:" or "CON:" 
devices. 

Ten different ways to get user input 

There are thus at least ten different ways to get user input:

(1) directly access the keyboard & gameport devices; 

(2) hook into the input event handler chain ahead of Intuition, 
so that you just get raw input events; 

(3) hook into the input event handler chain behind Intuition, so 
that you only have to process events not dealt with by 
Intuition; 

(4) open an Intuition window and use the RAWKEY IDCMP option -
convert these into "cooked" data by using the console.device 
RawKeyconvert() function; 

(5) open an Intuition window and use the VANILLAKEY IDCMP 
option; 

(6) open an Intuition window and attach a console device, then 
get "cooked" data; 

(7) open an Intuition window and attach a console device, then 
get "raw" data; 

(8) open an ArnigaDOS "RAW:" device and select "raw" input 
events; 

(9) open an ArnigaDOS "RAW:" device and get "cooked" data; 

(10) open an ArnigaDOS "CON:" device. 



Mouse and Keyboard Page 135 

Those likely to prove most useful are:-

(4) for applications using IDCMPs for handling gadget selection 
and so on, but also requiring use of the keyboard; 

(5) for applications using IDCMPs, requiring only limited use of 
the keyboard, avoiding the cursor and function keys, etc; 

(6) for applications requiring heavy use of console IO, where 
AmigaDOS "RAW:" and "CON:" devices are not sufficient, eg 
because you are not working on the Workbench screen; 

(9) for applications running on the Workbench screen, with less 
programming effort than using method (6); 

(10) for inputting lines of text, with little control over 
formatting and_ no need for special keys. 

Hopefully, by the time that you've digested the above, you shouid 
be in a position to make up your own mind about how you like your 
input events (including whether you prefer your mice raw or 
cooked!). 



Mouse and Keybodrd Page 136 

Appendix ~More about RawKeyConvert() 

Since the articles above and the examples which follow first 
appeared in Kickstart journal, there seems to have developed a 
consensus of opinion between Amiga programmers as to what input 
methods are generally most worth going for. While there will 
always be cases where special methods are required, the following 
is probably a good sununary of current opinion: 

(1) Unless you are doing something pretty trivial, or converting 
from a very file-oriented system such as Unix, there is not 
much to be said for bothering with the DOS CON: and RAW: 
devices. 

(2) If you are writing a very text-oriented application where 
you want a standard ANSI terminal, open console.device and 
handle everything through this, including getting mouse 
events etc. 

(3) In all other cases, the most versatile method is number (4) 
above - use an Intuition IDCMP, and perform any keycode 
conversion yourself using console.device RawKeyConvert(). 

Using RawKeyConvert() is reasonably straightforward. First of 
all you have to open a window with non-null IDCMP flags as in the 
VANILLAKEY example which follows; however you should set RAWKEY 
rather than VANILLAKEY in the IDCMPFlags field of your NewWindow 
structure. Next, you need to open console.device with a special 
unit number -1, which indicates that you only want to use it as a 
library; you need a IOStdReq structure lying around somewhere in 
order to do this, but you don't need all the special setting up 
of ports etc showed in the CONSOLE example below. Other stuff 
you will need are an InputEvent structure initialised as shown 
below, and a buffer for storing converted key-codes: 

/* global data used by key conversion */ 

struct Device *ConsoleDevice; 

struct IOStdReq ConsoleReq; 
struct InputEvent RawKeyEvent = {NULL,IECLASS_RAWKEY,0,0,0}; 

#define BUFSIZ 10 
UBYTE KeyBuffer[BUFSIZ]; 

The console open is then simply as follows: 

if (OpenDevice("console.device",-1,&ConsoleReq,O)) { 
/* gone wrong - cope with failure! */ 

} 

ConsoleDevice = ConsoleReq.io_Device; /* used as library 
base address */ 



House and Keyboard Page 137 

When you get an IDCMP message with class RAWKEY, you can now call 
RawKeyConvert() as follows: 

struct IntuiMessage *IDCMPMsg; 
LONG KeyCodes; 

/* (get info from IDCMP in usual way here) */ 

if (IDCMPMsg->Class == RAWKEY) [ /* now process key events */ 

} 

RawKeyEvent.ie Code = IDCMPMsg->Code; 
RawKeyEvent.ie-Qualifier = IDCMPMsg->Qualifier; 
RawKeyEvent.ie::J>osition.ie addr = NULL; 
KeyCodes = RawKeyConvert(&RawKeyEvent,KeyBuffer,BUFSIZ,NULL); 

if (KeyCodes > O) { 
/* process key codes from buffer */ 

} 

What is going on here is that we are picking up information from 
our IDCMP message and using it to "recon·struct" a RAWKEY input 
event as might be passed to the console device as part of the 
input device's chain of event handlers; This is a bit round the 
houses, but there you go. We then call RawKeyConvert (); ·picking 
up the library base address from location ConsoleDevice will be 
handled by the "stub" routine from amiga.lib in the usual manner. 
The value returned - Keycodes in our example - tells us how many 
converted key codes are now available in .KeyBuffer. This might 
be zero if the raw key event being processed was just shift going 
down (say), one if the key hit was an ordinary alphanumeric, more 
than one - ie a CS! sequence - if the key was a function key etc 
- or minus one if your buffer overflowed! 

Note that we are calling RawKeyConvert with a NULL final 
parameter, which tells it to use the console device's default 
keymap, as set up by the utility program SetMap. Alternatively, 
you could pass it the address of your own KeyMap structure. 

Finally, note that this procedure needs some minor adjustment if 
we want to handle the "dead keys" now available in some European 
keymaps; these are keys which have no visible effect when hit, 
but cause the next character output to be modified or accented in 
some way. To get this right, we make use of the !Address field 
from our IntuiMessage, by setting up 

RawKeyEvent.ie_position.ie_addr = *((APTR *)IDCMPMsg->IAddress); 

before calling RawKeyconvert(). 

Finally, we must of course close everything down when we exit; in 
the case of console.device, this is handled in the normal way, by 

CloseDevice(&ConsoleReq); 



I* ---------------------- VANILLAKEV ---------------------
E:·:amp le of obtaining 'cooked' keyboard input by opening 
an Intuition window and using IDCMP VANILLAKEV messages ------------------------------------------------------- *' 

#include <exec/types.h> 
#include <intuition/intuition.h> 

extern APTR OpenLibrary<>; I* Exec library*' 
e:·:tern VOID Closelibrary < >; 
e>:tern struct Message *Wai tPort ( >, *GetMsg < >; 
extern VOID ReplyMsg<>; 

extern struct Window *OpenWindow<>; 
extern VOID CloseWindow<>; 

extern VOID printf<>; 

'*** Variables ***' 

I* Intuition library *' 

I* Amiga. lib *' 

APTR IntuitionBase = NULL; I* Intuition library base address *' 

struct Window *ConsoleWindow = NULL; 

UBVTE HexStringC3J; 
UBVTE He:<Chaf-Cl = "(112345o789ABCDEF"; 

'*** Definition of console window ***/ 

static struct NewWindow ConNewWindow = C 

}; 

400,30, 
200,BO, 
-1,-1, 
VANILLAKEV, 
WINDOWDEPTH : WINDOWDRAG : WINDOWSIZING 
: SMART_REFRESH : ACTIVATE, 
NULL, 
NULL, 
"Console window", 
NULL, 
NULL, 
120,50, 
640,200, 
WBENCHSCREEN 

I* Close window, etc & then exit *' 

VOID CleanUpAndExit<> 

' i 

if <ConsoleWindow ~= NULL> 
CloseWindow<ConsoleWindow>; 

if <IntuitionBase ~= NULL> 
Closelibrary <Intuit ionBase>; 

E :·: i t <TRUE> ; 

I* ptr to console window *' 

I* hex string to output *' 

'* LeftEdge, TopEdge *' 

'* Width, Height *I 

'* DetailPen, Blod:F'en *' '* IDCMPFlags *' 

I* Flags *' 
'* FirstGadget */ 

'* CheckMark *' 
'* Title *I 

'* Screen */ 
I* BitMap *' 
'* MinWidth, MinHeight *I 

'* Ma:·:Width, Ma:<Height *' 
'* Type */ 



I*** Open Intuition window ~ith IDCMP VANILLAKEY input ***/ 

VOID In1 t < > 
{ 

} 

1f «IntuitionBase = Openlibrary<"intuition.library",29)) =='NULL> 
C leanUpAndE>: it<>; 

if <<ConsoleWindow = OpenWindow<LConNewWindow>> ==NULL> 
CleanUpAndExit<>; 

return; 

I*** Main program function ***/ 

main<> 
{ 

} 

struct IntuiMessage 
ULONG class; 

*message; /+ pointer to message received *' 

USHORT code; 
/+ class of message being processed •I 
I+ code of message being processed +/ 

UBVTE c = '\O'; I* current character read from console +/ 

InitO; I* open Intuition window with VANILLAl<EV IDCl1P *-' 

do { 
Waitf'ort<ConsoleWindow->UserPort>; 

while <message = <struct Intui1'fessage •> Getf'1sg <ConsoleWindow->Uset·Port» < 

} 

clas!5 = mess.age->Class; 
code = message->Code; 

ReplyMs9<messa9e>; 

if <class == VANILLA~::EV> { 
c = code; 

} 

HexStringCOl = HexCharCc >> 4l; 
HexStringC1l = HexCharCc ~ OxOFl; 
HexStringC2l = '\O'~ 
printf<"Xs",HexStrin9>; 

} while (c ~= '\003'); 

printf ("\n">; 

CleanUpAndExit<>; 

f*** The End ***' 



I• ----------------------- CONSOLE -----------------------
E>:amp le of obtaining 'cooked· keyboard input by opening 
an Intuition window and attaching a console device 
------------------------------------------------------- *' 

linclude <exec/types.h> 
line lude <intuition/intuit ion. h> 
linclude <devices/console.h> 

extern APTR OpenLibrary<>; 
e:<tern LONG OpenDevice (); 
extern VOID DoIO<>; 
extern VOID CloseDevice<>,CloseLibrary<>; 

extern struct MsgPort •CreatePort<>; 
extern struct IOStdReq •CreateStdIO (); 
extern VOID DeletePort<>,DeleteStdIO<>; 

extern struct Window *OpenWindow<>; 
extern VOID CloseWindow<>; 

extern VOID printf<>; 

I*** Variables ***/ 

APTR IntuitionBase = NULL; 

struct Window *ConsoleWindow = NULL; 
struct MsgPort *ConWrtPort = NULL; 
struct MsgPort •ConReadPort = NULL; 
struct IOStdRe9 *ConWrtReq = NULL; 
struct IOStdRe9 *ConReadRe9 = NULL; 

LONG ConsoleOpen = FALSE; 

#define CONREADBUFLEN 80 
UBYTE ConReadBufferCCONREADBUFLENl; 

UBYTE Hex5tring[2•CONREADBUFLEN+1l; 
UBYTE HexChadl = "01234S6789ABCDEF"; 

I*** Definition of console window ***f 

static struct NewWindow ConNewWindow = { 
41)1)' 30, 
200,80, 
-1,-1. 
(i' 
WINOOWDEPTH : WINDOWDRAG : WINDOWSIZING 
: SMART_REFRESH : ACTIVATE, 
NULL, 
NULL, 
"Console window", 
NULL, 
NULL, 
120, 50, 
640,200, 
WBENCHSCREEN 

f* Exec library *f 

f* Exec :support 1 ibrary *f 

I* Intuition library •I 

'* Intuition library base address *I 

'* ptr to console window *f 
f* ptr to console write message port 

'* ptr to console read message port * 
'* ptr to console write request block 

'* ptr to console read request block 

'* flags whether console open •I 

f* length of console read 
'* console read buffer *f 

I* hex string to output *' 

f* LeftEdge, TopEdge */ 
I* Width, Height •! 
I* Deta.1 lPen, BlockPen •I 
I• lDCMPFlags •/ 

I* Flags */ 

f* FirstGadget *' 
f* ChecH1ark */ 
f* Title *f 
i* Screen •I 
f* BitMap *f 
I* MinWid~h, MinHeight */ 
I* MaxWidth, MaxHeight •I 
f* Type *I 

buffer *f 



I* Close console device, window, etc ~ then exit */ 

VOID CleanUpAndE:·:i t 0 
{ 

} 

if <ConsoleOpen> 
CloseOevice<ConWrtReq>; 

if <ConReadReq != NULL> 
DeleteStdIO<ConReadReq>; 

if <ConWrtReq != NULU 
DeleteStdIO <ConWrtReq>; 

if <ConReadPort ~= NULL> 
DeletePort<ConReadPort>; 

if <ConWrtPort ! = NULL> 
DeletePort <ConWrtPort>; 

if CConsoleWindow ~= NULL> 
CloseWindow<ConsoleWindow>; 

if <IntuitionBase != NULL) 
CloseLibrary<IntuitionBase>; 

E:d t <TRUE>; 

I*** Open Intuition window ~ attach console device ***/ 

VOID lnitO 
{ 

i°f <<IntuitionBase = Openlibrary<"intuition.library",29>> -- NULL> 
CleanUpAn~Exit<>; 

if <<ConsoleWindow = OpenWindow<&ConNewWindow>> -- NULL> 
CleanUpAndExit<>; 

if < <ConWrtPort = CreatePort <O, 0)) -- NULL> 
CleanUpAndExit<>; 

if <<ConReadPort = CreatePort<O,O>> ==NULL> 
CleanUpAndExit<>; 

if <<ConWrtReq = CreateStdIO<ConWrtPort>> -- NULL> 
CleanUpAndExit<>; 

if <<ConReadReq-= CreateStdIO<ConReadPort)) -- NULL> 
CleanUpAndE>: it<>; 

ConWrtReq->io_Data = (APTR> ConsoleWindow; 
ConWrtReq->io_Length = si.zl!of <struct Window>; 

if <OpenDevice("console.device11 ,0,ConWrtReq,O) 1 = (I) 

CleanUpAndExit<>; 
else 

Con~oleOpen = TRUE:; 



ConReadReq-;= io_Device = ConWrtReq-> 1o_Device; 
ConReadReq-> io_Un it = ConWrtReq.- .. > io_Un1 t; 

return; 

I• Read characters from console * 
* (returns number of characters read) •I 

ULONG ReadConsole <buffer. bu fl en> 
STRPTR buffer; 
ULONG buflen; 
; 

··-
ConF:eadReq-> io_Data = <Af'TR) buffer; 
ConF:eadReq-> io_Length = bu fl en; 
ConReadReq->io_Command = CMD_READ: 

DoIO<ConReadReq>; I* wait for character(s) from console •I 

return<ConReadReq-:>io_Actual>; I• return number of chars read *I 

I*** Write string of specified length to console ***/ 

VOID WrtConsole<str1n9,length> 
STRPTR string; 
ULONG length; 

ConliJrtReq-> io_Data = \Af'TR> string; 
ConloJrtReq- ·, io_length = length; 
ConWrtF:eq->io_Command = CMD_WRITE: 

DoIO<ConWrtReq>; 

i*** Main program function ***/ 

ma in () 

ULONG n; 
ULDNG 1: 

I• number of characters read •I 
I* index to current character in read buffer •I 

ULONG J; 
UBYTE c; 

InitO; 

do { 

I• index to character position in output string •I 
I* current character read from console •I 

I* open Intuition window~~ attach console device•/ 

n = ReadConsole<ConReadBuffer,CONREADBUFLEN>; 

WrtConsole<ConReadBuffer,ni; 

for ( i = 1\ J = O; i n; i ++ > { 

' ,. 

c = ConReadBuffer(iJ; 
He::Stnng[J++] = He::Chadc :··> 4]; 
He~Str1n9Cj++] = HexChar[c & O~OFJ; 

HeYStr1n9[J++] = "\0'; 
printf<"ls",HexString>; 

} while<.:.'= '\r)(l3"l; 



Ft"lntf("'-n"ii 

C lear:Ui:;AndE:: l t ( l; 

'**• The End ***' 



1 • ----------------------- DOSRAW ------------------------
E::ample of obtain in9 ·cool= ed · l·eyboard input by opening 
an Am19aDOS "fiAW:" file 
------------------------------------------------------- •I 

line lude <e:-:ec/types. h> 
linclude <librar1es/dos.h> 

edern Af'TR Open < ) ; 
e~tern VOID Close<>; 
e:{ tern UL ONG Read < > , Write<> ; 

edern VOID printf < >; 

I*** Variables ***/ 

Af'TR ConsoleFi le = NULL; 

ldef ine CONREADBUFLEN BO 
lJ(IYTE ConReadBuf ferCCONREADBUFLENJ; 

UBYTE He ::St r i nq C 2•CONREADBUFLEN+ 1 1; 
UBYTE HexChad l = "01234567B9ABCDEF"; 

I* Close file & then e:-:i t •I 

VOID CleanUpAndL: it<> 
{ 

if <ConsoleFile '= NULL> 
Close<ConsoleFile>; 

E:· it <TRUE>; 

i*** Open Ami9aDOS "F:AW:N file***' 

VOID ln1tO 
r .. 

I• DOS library •I 

I• Alniqa.lib •I 

I• console file handle •I 

I* length of console read buffer •I '* console read buffer *' 

I• he:< string to output •I 

if C {ConsoleFi le = Open< "RAW: 4(10/30/2•X•/80/Console windowN, l'IODE_NEWFILE> > 
== NULL) 

' i 

CleanUpAndEx1t{>; 

return: 

I* Read characters from console * 
* lreturns number of characters read> •I 

LILONG F:eadConsol e <buffer, buf len) 
STF:F'TR buHer; 
ULONG buflen; 

return<ReadCConsoleFile.buffer,buflen>>: 

!•••Write string of spec1f1ed lenqth to console***/ 

'JOID WrtConsole<strrnq, lPnqth> 
'=,TRF ffc c;tnng; 
I.JI fjtJrl I r•r1·1 th; 



Wr1te!ConsoleF1le,strin9,len9th>; 

I•** Main program function ***' 

main< I 
{ 

ULONG n; 
ULONG i; 
ULONG j; 
U0VTE c; 

In1tO; 

do -~ 

I• number of chAracters read •I 
I• index to current character in read buffer •I 
I• index to character position in output string •I 
I• current character read from console •I 

I* open Ami9aDOS "RAW:" file*/ 

n = ReadConsole <Conf::ead0uffer, CONREADBUFLEN>; 

WrtConsole<ConReadBuffer,n>; 

for· <i = o, j = O; i·< n; i++) { 
c = 'con Re ad Bu ff et~ C i l; 

· . ... 

He}:StringC j++l = .He>:CharCc >> 41: 
HexString[j++l = HexCharCc ·& OxOFl; 

HexString[j++l = '\O'; 
printf<"Xs",HeKString>; 

} while Cc '= '\003'); 

prinHC"\n"); 

CleanUp~ndExit<>; 

!••• The End ***' 



. 
ABC AmigaDOS Page 146 

Aspects of AmigaDOS 

"Keys" illustration by 0 Paula Dawson. 



ABC AmigaDOS Page 147 

Section 4 - ABC AmigaDOS 

The Technical Reference section of the AmigaDOS Manual is full of 
useful information - it is not however an easy read by any 
standards! For one thirig, the information is densely packed; fot 
another it uses a lot of technical terms which may or may not be 
familiar. This section aims to help by explaining some of the 
important terms in a way which is supposed to be illuminating 
rather than strictly rigorous. Like AmigaDOS itself, this 
section is designed either for random or sequential access - an 
alphabetic "key table" is provided, followed by a list of topics, 
which have been arranged to make sense when read sequentially. 

When reading this section, be particularly wary of the fact that 
some important terms such as "library" and "device" are used to 
mean (at least) one thing by AmigaDOS, and something else by 
Exec! In particular, "device" in this section will usually be 
used to refer to an AmigaDOS "device" such as "DFO:" - this is 
NOT the same as an Exec "device" such as "trackdisk.device", as 
discussed in the previous section. We shall occasionally mention 
trackdisk.device - remember that devices in this sense are a 
lower level aspect of the system than most of what we are 
discussing, and are a part of Exec on which AmigaDOS is built. 

Missing from this section are a number of important terms 
concerned with binary file format and linking - these include 
"hunk", "block", "program unit", etc. For an explanation of this 
material, see part two of the section about "libraries" on Amiga. 

Bear in mind ~migaDOS history when reading this section. In 
surmnary, the Amiga was originally supposed to have a "file system 
and process manager" interacted with the rest of the operating 
environment. When this project got into trouble - Amiga 
subcontracted it to another company·- Metacomco were asked to put 
the Tripos operating system on Amiga; the original port of Tripos 
was done by Tim King and his team in about a month, which wasn't 
bad going! 

Tripos is written in a language called BCPL, similar to C but 
with some important differences. Its implementation on Amiga 
uses Exec as its "kernel", and Exec devices such as 
trackdisk.device as its "device drivers". Tripos sits very 
comfortably on Exec, since the two systems follow very much the 
same basic design principles. It sits less comfortably on 
trackdisk; Tripos was designed for big hard-disk multi-user 
systems, and tends to sacrifice speed to versatility and 
recoverability, whereas trackdisk is written for speed. In some 
circumstances this can result in the worst of both worlds, with 
Tripos slowness combined with trackdisk lack of recoverability! 
However, this is by no means always the case - AmigaDOS is at its 
slowest performing operations like DIR or LIS'f when it doesn't 
yet know filenames, faster finding named files, and VERY fast 
once it has files open - see below for further discussion. 



. ABC AmigaDOS 

KEY TABLE 

BCPL 
Bitmap 
Block 
Block list 
BPTR 
BSTR 
Cache buffers 
Checksum 
CLI 
co-routine 
Command 
Cylinder 
Device 
Device 
Device 
Directory 
DOS library 
Extension 
File handler 
Filing system 
Grand Bodge 
Global vector 
Handle 
Handler 
Hash chain 
Hash function 
Hash number 
Hash table 
Header 

2.1 
1.8 
1. 2 
1.S 
2.3 
2.4 
1.13 
1.10 
3.5 
3.4 
3.6 
1.3 
3.8 
3.8 
3.8 
1.4 
3.1 
1. 5 
1.1 
1.1 
3.3 
2.2 
1.14 
3.9 
1. 9 
1. 9 
1. 9 
1. 9 
1.11 

Header key 
IO Stream 
Kernel 
Key 
Lock 
Martian 
Redundancy 
Resident library 
Resident segment 
Root 
Packet 
Parent 
Path 
Priority 
Process 
Protection bits 
Redirection 
Secondary type 
Segment list 
Sequence number 
Shell 
Stack 
Token passing 
Tree 
Type 
User directory 
Validate 
Volume 

Page 148 

1.11 
3.2 
3.1 
1.11 
1.15 
2.1 
1.7 
2.6 
2.5 
1.4 
3.3 
1.4 
1.4 
3.2 
3.2 
1.16 
3.7 
1.5 
2.5 
1.12 
3.5 
3.9 
1.15 
1.4 
1. 5 
1. 4 
1.8 
1. 6 



ABC AmigaDOS Page 149 

1. AMIGADOS FILING SYSTEM 

1.1 Filing system/File handl&r 

"Filing system" is a general term for that part of AmigaDOS which 
is concerned with files and directories; "file handler" is a 
specific name for an AmigaDOS "handler process" associat.ed with 
an AmigaDOS "device" (such as DFO:), whose job is to look after 
filing. File handlers can be thought of as organised as a number 
of "layers" or "levels" - the low levels talk directly to 
trackdisk.device and work'in terms of tracks and sectors; the 
higher levels abstract away from this and deal in terms of 
sequentially numbered "blocks". An intermediate level deals with 
translating between logical block numbers and actual physical 
tracks, sectors and surfaces. 

1.2 Block 

A basic unit of filing information, as viewed by the higher 
levels of AmigaDOS; 512 bytes of information distinguished by a 
unique "block number". From the point of view of the higher 
levels of AmigaDOS, a floppy disk appears simply as a series of 
blocks with "logical block numbers" from zero to 1759 - other 
disks such as hard disk or non-standard floppies appear very 
similar, with different maximum block numbers. 

1.3 Cylinder 

Originally a term from those huge mainframe disk units, 
consisting of a pack of hard disks with a disk head for each 
surface; the heads move together, and the area of every disk 
currently under a head is known collectively as a "cylinder". On 
a double-sided Amiga floppy with two surfaces and two heads, also 
moving together, sectors O to 10 on one disk surface plus the 
corresponding sectors on the other side are known collectively as 
a "cylinder", with sectors Oto 21. 

AmigaDOS thinks in terms of cylinders when translating between 
logical blocks and physical tracks and sectors - thus blocks O to 
10 correspond to track O sectors O to 10 on one side of the disk, 
and blocks 11 to 21 are found on the same cylinder sectors 11 to 
21, ie track O on the other disk surface; block 22 follows on 
track 1 sector 0 on the first side, etc. At first sight this 
seems peculiar - however, given that the heads move together, a 
moment's thought should convince you that this arrangement is 
likely to result in much less head movement than the one more 
often found on micros, in which tracks O to 79 are on one side of 
the disk and tracks 80 to 159 on the other. AmigaDOS is 
therefore sensible in this respect; other systems are less 
efficient. 



ABC AmigaDOS Page 150 

1. 4 Tree 

One of the fundamental data structures of computer science (along 
with linked lists, stacks, queues and all that stuff) dearly 
beloved by Donald Knuth and good computer scientists everywhere. 
Computer trees tend to be upside down and to grow downwards 
(there must be some significance in this somewhere). The 
AmigaDOS "hierarchy" of directories is a "pure tree" as 
illustrated: 

I 
I 

File 

I 
I 

File 

I 
I 

User 
Directory 

I 
I 

I 
I 

File 

Root 
Directory 

I 
I 

File 

I 
I 

File 

I 
I , 

I 
I 

File 

I 
I 

File 

I 
I 

User 
Directory 

I 
I 

I 
I 

File 

I 
I 

File 

I 
I 

File 

I 
I 

User 
Directory 

I 
I 

I 
I 

File 

The root directory is created when the disk is formatted, and 
must always be present for the disk to be useable; user 
directories are created (surprise) by the user, usually by the 
DOS command MAKEDIR. The thing immediately above something in 
the tree is known as its "parent"; a route through the tree 
starting from the root and ending with a specific file or 
directory is known as a "path". Information about the root, 
including disk name, time of creation etc, is stored in a special 
block ST.ROOT - this is found at block number 880, ie cylinder 40 
sector o, ie track 40 sector O on the first disk surface. This 
is (sensibly) in the middle of the disk - hopefully out of harm's 
way - rather like the "directory" in old CBM DOS. Note however 
that the resemblence to old CBM DOS ends there - "directory 
blocks" other than the root can be found anywhere on the disk 
(though AmigaDOS now tries to keep them fairly close to each 
other to cut down directory search times). This means that it is 
impossible to suffer- from a "full directory" unless the whole 
disk is full, which is rather clever. 



ABC AmigaDOS Page 151 

1.5 Type/secondary~ 

Blocks are used to contain different types of filing information, 
and are distinguished by a "type" and a "secondary type" as 
follows: 

T.SHORT 

T.SHORT 

T.SHORT 

T.LIST 

T.DATA 

Secondary Purpose 
~ 

ST.ROOT "Root" of directory; information about entire 
"volume" (disk) - name, time of creation etc. 

ST.USERDIR Information about a directory - name, 
comment, time of creation etc. 

ST.FILE 

ST.FILE 

(none) 

Information about a file - name, comment, 
etc, plus pointers to the disk blocks 
containing the actual data. 

"Extension" information, containing more 
pointers to data blocks for long files. 

Actual data in file. 

ST.ROOT and ST.USERDIR blocks contain "hash tables" containing up 
to 72 pointers to "hash chains" of ST.USERDIR or ST.FILE blocks. 
ST.FILE blocks contain "block lists" of up to 72 pointers to 
T.DATA blocks; if this isn't enough - ie if the file is over 
about 34K - then the ST.FILE block sets up an "extension" pointer 
to a T.LIST block containing more block list; this may also have 
an extension pointer if necessary, etc. See Fig 1 for a diagram 
showing the relationship between different block types, when 
accessing a file MYDISK:MYDIR/FRED. 

1.6 Volume 

For floppies, "volume" is just a fancy name for a disk, when 
viewed as a logical unit by AmigaDOS. Things may or may not be 
this simple for other media - eg a RAM disk is also viewed as a 
"volume", while with a hard disk, it may be convenient to split 
the physical disk into various separate logical volumes, ·ie to 
treat it like several floppies. 



Type ; T. SHORT 
Huder key = I 
Highest seq na = I 
Hastitabte size = 72 

liil~h valuel 1· 
fur '"YDIR' Checksu1 

ROOT 
~LOCK 

l881l 

.. 

hash table 

y 

TRUE if ~it1ap valid .. 
Block ~u1bers af bit1ap pages 

y 

Volu1e last alt1red date/ti1e 
Voluae na11 BSTR '"YDlSK' 
Volu•e creation date and ti1e 
Hash chain next entry " I 
Parent directory = I 
Extension • I 
S1condary type~ ST.ROOT 

Figure l 

W.! "YD! §K: MUJ!lf!U 

uh value 
or 'FRED' 

Type = T.SHORT 
Header key = no of this block 
Highest seq na = I 
II 

• Checksu1 .. 

hash table 

v 
Spare 
Protection bits 
I 
Co11ent BSTR 
Dir creation date and ti1e 
Directory na1e BSTR '"YDIR' 
Hash chain next entry 
Parent directory = 881 

US~R 'Extension = I 
DIRECTORY Secondary type= ST.USERDIR 
BLOCK 
·nn1R· 

"AY BE OTHER USER 
DIRECTORY BLOCKISl 
IN SA"E HASH 
CHAIN AS 'MYDIR' 

FILE 
HEADER 
BLOCK 
'FRED' 

Type = T.SHORT 
Header key = na of this block 
Highest seq no in file 
NJ1ber of block slats used 
Nu1ber of first data black 
Checks111 

list of data block nu1bers 

y 

Spare 
Protection bits 
II 
Co11ent BSTR 
File creation date and ti1e 
File na1e BSTR 'FRED' 
Hash chain next entry 
Parent directory 
Extension 
Secondary type= ST.FILE 

"AY BE ONE OR "ORE 
'T.LIST' FILE LIST 
BLOCKS CONTAININ6 
MORE DATA BLOCK NOS. 

"AY BE OTHER FILE 
HEADER BLOCKISl 
IN SME HASH 
CHAIN AS 'FRED' 

DATA 
BLOCK 

DATlt 
BLOCK 

Type = T. DATA 
Header key = no of this block 
Sequence nu1ber = I 
Data size = 488 
Next data block nu1ber 
Checksua 

dilh 

v 

Type = T.DATA 
Header key = no of this blo:k 
Sequence nuaber = 2 
Data size = 488 
Next data block nu1ber 
Checksu1 .. 

data 

y 

~ l1or1 data blocks in he•el 

' ~ hype= T.DATA 

DATA 
BLOCK 

~eader key = no of this block 
Sequence nu1ber 
Data size = •hatever 
Next data block nu1ber = I 
Checksu1 

,.. 

data 

y 

g; 
(') 

~ ...... 
IQ 
Ill 
0 
0 
en 

.,, 
Ill 
IQ 
(I) 

..... 
U'I 
N 



ABC AmigaDOS Page 153 

1.7 Redundancy 

Storing the same information in various different ways - ie 
redundantly. For example, information about how data blocks fit 
together to form a file is stored both as a series of pointers in 
ST.FILE file information blocks (a bit like CP/M), and as 
forwards pointers from one block to the next within the data 
blocks themselves (a bit like old CBM DOS sequential files). 
This allows you to "have your cake and eat it" - eg the pointers 
in ST.FILE blocks are more convenient for random access, while 
the internal pointers within the data blocks are handy for 
sequential access. Redundancy also helps recovery from errors -
eg if a ST.FILE block gets splatted somehow, you can still 
(theoretically) put the file back together by looking at the 
internal data block pointers. 

1.8 Bitmap 

Information about which blocks in a volume are currently in use -
bit set if block in use, clear if block available, just like old 
CBM DOS Block Availability Map (BAM). May or may not be "valid" 
on a given volume - AmigaDOS can check this by wizzing round the 
directory tree finding out which blocks are currently being used, 
rather like old CBM DOS "validate". DOS checks this whenever a 
disk is inserted - if it fails for some reason, DOS takes 
exception to the disk, and you're in trouble. Sort it out using 
DISKDOCTOR. 

1.9 Hashing 

Hashing is a technique used by AmigaDOS to make finding a given 
(named) file faster than having to search the whole directory. 

Suppose AmigaDOS wants to find some given file "FRED" within the 
current directory. First of all, it applies a "hash function" to 
the file name FRED to generate a small "hash number" from it - a 
simple mechanism it mi~ht (but doesn't) use would be to add the 
ASCII values for 'F', R1 , 'E' and 'D' together, then divide the 
result down until it gets a small number in the right range (0 to 
71). It then uses this small number as an offset iQ a "hash 
table" of pointers to ST.FILE file header blocks. It then 
searches through a (hopefully short) "hash chain" of header 
blocks for files with the same hash number, until it finds 
filename "FRED", or reaches the end of the hash chain and reports 
"File not found" .. 



ABC AmigaDOS Page 154 

In fact, just adding the ASCII values for the characters together 
wouldn't be very clever, as this would tend to lead to "bunching" 
of files amongst the hash chains, and hence to longer than 
necessary search times. The mechanism actually used can be 
represented in pseudo-BASIC as follows: 

hash = length of filename 
for character = first to last 

hash = 13*(hash) + upper case ASCII value for character 
next 

(13 is chosen just as a nice prime number!). The result of this 
calculation is then rounded down mod 72 (the number of entries in 
the hash table) to produce an offset into the hash table in the 
file hea4er block; six is then added onto this result to enable 
the off set to be applied as a longword off set from the start of 
the ST.FILE block rather than the start of the hash table itself, 
for reasons which escape the current author. 

Checksum 

How AmigaDOS tells if a block has gone bad on it - again, very 
like old CBM DOS. Each block contains a "checksum" arranged so 
that if all the longwords in the block are added together, and 
the result rounded down to the nearest longword, then the result 
should be zero - if not, the block has got corrupted somehow. It 
should be noted that using a simple sum like this isn't the most 
reliable form of error detection possible - it is however nice 
and simple, and has a much lower processor overhead than messing 
about with more sophisticated techniques like "Cyclic Redundancy" 
checkwords. 

Nothing much to do with a "lock"! 

A "key" in AmigaDOS is simply a logical block number - when used 
to reference one block from another this is frequently ref erred 
to as a "pointer" in the documentation. For example, a ST.FILE 
contains a "block list" list of "data block keys" - this is just 
a list of the block numbers for the file's blocks of data. Most 
blocks have a "header key" immediately following the block type -
this is the block's own logical block number. 

Sequence number 

A number stored in a data block to number the blocks in a file 
sequentially. Note that the data blocks are also ordered 
implicitly by the order they appear in the ST.FILE block list, 
and by the fact that each block contains a pointer to the next 
one - see uredundancy" above. 



ABC ~migaOOS Page 155 

1.13 Cache buffers 

Buffers used by AmigaOOS to remember ("cache") the last few 
segments read off disk, or to store up output material prior to 
writing to disk. Used to speed things up - eg if you dump a 
small file (eg TYPE .info OPT H) then immediately dump it again, 
you will get the second dump immediately with no disk access, 
because the file contents are currently in a cache buffer. 

AmigaOOS cache buffers should not be confused with trackdisk 
device buffers, though the latter also serve to speed up disk 
access. When AmigaOOS asks trackdisk.device to read a particular 
sector, trackdisk.device actually reads the whole track into an 
internal buffer; requests for further sectors from the same track 
can then be satisfied without further disk access. When 
trackdisk returns a sector to AmigaDOS, DOS will itself remember 
it in its own cache buffer, thus providing another level of 
buffering. The trackdisk.device buffers have to be in chip 
memory since trackdisk uses the blitter; AmigaDOS cache buffers 
do not need to be in chip memory, and will normally be allocated 
in fast memory if available. 

AmigaDOS normally allocates 5 cache buffersi if you are using 1.2 
and have lots of memory, then you can increase this for even 
faster disk access using the new command ADDBUFFERS. 

1.14 Handle 

A number used by AmigaDOS to identify a particular currently open 
file, a bit similar to a "logical file number" in old CBM DOS. 
In old CBM DOS (anyone remember it?) you might open "logical 
file" number 1 {say) to the floppy disk as follows: 

OPEN 1,8,8,"wombat,s,r" 

The file can then be accessed via its "logical file number", as 
in 

GET#l, A$ 

In more recent filing systems {eg the BBC Micro) the number used 
to access the file is allocated by the system, rather than being 
chosen by the programmer, and is known as a "handle", eg 

WOM HANDT .. E = OPENIN{ "wombat") 
A =-BGET#(WOM_HANDLE) 

In this case, the "handle" used to access the file will be a 
small number returned by the OPENIN function. 



ABC AmigaDOS Page 156 

AmigaDOS works rather like this, except that the handle returned 
is in fact a BPTR to a structure containing various information 
about the file; usually you don't have to worry about this, you 
just treat the handle as a number used to identify the file: 

ULONG 
UBYTE 

handle,charsread,Open(),Read(); 
character; 

handle= Open("wombat",MODE OLDFILE); 
charsread = Read(handle,&character,1); 

(This is lousy c, just as the above is lousy BASIC - in real 
life, we would of course need to check for all these calls 
failing!) 

Lock 

Nothing much to do with a "key"! 

A lock is a data structure maintained by AmigaDOS - calls which 
return a "lock" actually return a pointer to this structure. 
Locks serve two purposes: 

a. The primary purpose of locks is to provide a mechanism for 
file (not record) locking, when there is a possibility of 
contention between processes. Locks come in two flavours, 
shared read-locks and exclusive write-locks. As many 
processes as want one can have a read-lock on a file at a 
time, but while something is read-locked, it is not possible 
to get a write-lock on it. Only one process at a time can 
have a write-lock; while this is set, nothing else is 
allowed a read or write lock. It can be seen that this 
provides a simple way of avoiding a situation where one 
process is trying to read a file while another is in the 
process of updating it. A' process which currently has a 
lock can make it available to another process, by sending 
that process a message containing a pointer to the lock; the 
other process can then indicate when it has finished by 
replying this message. This is referred to as "token 
passing". Note however that if two processes require record 
(rather than file) locking, they will have to sort it out 
between themselves, using some private message-passing 
protocol. 

b. A secondary function of locks is to provide something a bit 
like file-handles, only different ~ a lock in this sense is 
a number used to describe something like a directory to 
AmigaDOS, much like handles describe open files. For 
example, it is possible to obtain a lock on the current 
directory by calling Lock() with a null directory name (this 
is undocumented!); it is then possible to examine this 
directory by calling Examine(lock,FileinfoBlock). Locks 
(rather than handles) are also used to describe files from 
the point of view of functions like Examine() which don't 



ABC AmigaDOS Page 157 

actually need to get the file open - note that obtaining a 
lock on a file is much faster than opening it, so calling 
Lock() (then UnLock()) provides a quick method of finding 
out if a given file exists. 

Two further points worth noting about AmigaDOS locks are as 
follows: 

1. Locks on directories in sense (b) above don't function in 
sense (a) - ie just because you have a lock on a directory, 
you won't stop some other process updating it! 

2. Opening a file implies a lock in sense (a) to AmigaDOS -
opening a file MODE OLDFILE implies a read-lock, so no other 
proc~ss (or you) can write-lock it; opening a file 
MODE NEWFILE implies a write-lock, so no other process can 
get a read- or write-lock until you close it. A weakness of 
1.0 and 1.1 was that it wasn't possible to get a write-lock 
on an existing file; 1.2 supports a new MODE READWRITE which 
opens an existing file with a write-lock, while MODE OLDFILE 
is now known synonymously as MODE READONLY. 

1.16 Protection bits 

Four bit flags which indicate if the current file can be read 
(bit 3), written (bit 2), executed (bit 1) or deleted (bit 0). 
Due to an argument between AmigaDOS and the requirements of the 
rest of the system software, DOS itself only pays attention to 
bit O (deletion) - the other bits are there if you want them 
however, and it's up to you if you choose to pay any attention to 
them. 



ABC ArnigaDOS Page 158 

AMIGADOS AND BCPL 

BCPL 

BCPL is a systems programming language invented in 1967 (Sergeant 
Pepper - remember?) by Dr Martin Richards of Cambridge University 
Computing Laboratory. Most of the Tripos operating system was 
written in BCPL, so BCPL and Tripos bear much the same 
relationship to each other as c and Unix; since Tripos started 
around 1976, BCPL and Tripos have advanced together, so most BCPL 
development environments contain many Tripos-like features, 
including those irritating "templates". The design philosophy of 
both BCPL and Tripos is to keep things small, portable, and 
simple; C and Unix on the other hand are much bigger (C is 
descended from BCPL), not especially portable (Unix was not 
designed as a portable system!), and certainly not simple - Unix 
is closely associated with the concept of "Martians", defined as 
strange creatures with sixteen fingers who go around saying 
"GREP!" to one another. Which you prefer is a matter of taste -
Tripos is "TRivial Portable Operating System" to some of its 
detractors, which at least is more polite than TripeDOS! 

BCPL was designed for interactive system software development, 
and contains a number of features designed to cut down time spent 
hanging around waiting for compilers and linkers (sound 
familiar?). BCPL normally compiles into an intermediate code, 
which is then interpreted at run-time, very much like many Pascal 
(P-code) systems; this leads to rapid compilation. Long link
times are avoided using a mechanism known as the "global vector". 
Note that we can find no trace of intermediate code in AmigaDOS -
while this was probably used in the course of development, ·the 
final version has been compiled down to 68000. 

Global Vector 

To cut down link-times, BCPL allows modules to link at run-time; 
different modules communicate using a common data area, which is 
a stonking great table containing global variables and addresses 
of global routines that all modules know about. Since "stonking 
great table" doesn't sound very professional, this is known 
instead as a "global vector" - "vector" is generally used in a 
rather confusing way in BCPL, to simply mean "some chunk of 
memory". The different bits of ArnigaDOS are linked together in 
this way, which is why you keep coming across pointers to a 
"global vector" in the documentation. Note that the global 
vector table is for the internal convenience of AmigaDOS in tying 
its different bits together - it is likely to vary from version 
to version, and application programs are not supposed to use it. 
Most references to "global vector" refer to one master table used 
by the whole of AmigaDOS; however some processes, such as the 
file-handler, are tied together using their own private global 
vector. 



ABC AmigaDOS Page 159 

2.3 Words and BPTRs 

C is a "weakly typed" language in which types can be converted by 
an operation called "casting" - BCPL goes further than this, by 
not being typed at all, or supporting only one data type, which 
comes to the same thing. The data-type supported by BCPL is the 
machine-word; in 68000 BCPL implementations this is taken to be a 
32-bit quantity, or longword (LONG or ULONG). AmigaDOS makes 
use of normal machine addresses (APTRs) internally - for example 
entries in the global vector corresponding to global routines are 
usually APTRs, so that the routines can be accessed by mechanisms 
like 

MOVEA.L 
JSR 

APTR,An 
(An) 

However, since BCPL does everything in terms of longwords, its 
own pointers are expressed in a different way, which is a machine 
address expressed in longwords, otherwise known as a BPTR, where 

BPTR value = APTR value / 4 

Note that anything accessed via a BPTR had better be longword 
aligned or there'll be trouble - this is something to watch out 
for when using AmigaDOS. Unfortunately, most of the rest of the 
Amiga software is written in C which tends to work with ordinary 
byte-oriented machine-addresses - the necessity of having to keep 
shifting addresses left or right by two when moving between 
AmigaDOS's BPTRs and the rest of the system's APTRs is something 
you get used to, but a nuisance. 

2.4 Strings and BSTRs 

BCPL also handles strings differently from C - C strings are 
pointers to a string of characters terminated by a null, while BCPL 
strings (BSTRs) are BPTRs to a structure containing the length of 
the string in the first byte, with the actual string characters 
following. Be warned that references to BSTRs normally mean a 
BPTR to a structure like this - sometimes the structure itself is 
meant however, so watch it. 



ABC AmigaDOS Page 160 

2.5 Lists = segment lists 

A third commonly-encountered BCPL structure used extensively by 
AmigaDOS is a "Segment list" - this is a simple singly-linked 
list as follows: 

:Length of seg : :Length of seg :Length of seg : 
·----------------· ·---------------- ·----------------· I I I I I I 

:BPTR to next seg:------>:BPTR to next seg:-- .. -->:Null terminator : 
·----------------' ·----------------· ·----------------· I I I I I I 

:oata : :oata : :oata : 

Again, note that this is different from the rest of the system, 
which tends to use the doubly-linked list structure supported by 
Exec - see section 1. Examples of this form of linked list are 
the segment list created by the scatter-loader, and the new list 
of "resident segments" supported in 1.2. 

2.6 Resident libraries 

Another mechanism used by BCPL and Tripos to deprive programmers 
of coffee by reducing link times (and to avoid having to 
duplicate commonly-used bits of code which may be needed by more 
than one currently-running application} is known as a "resident 
library". This is NOT to be confused with linker "scanned 
libraries" such as amiga.lib, or with Exec libraries such as 
intuition.library! 

The AmigaDOS load-file format contains the facility to specify 
one or more "resident libraries" which are used by this 
application; these "libraries" can be any valid AmigaDOS load
files. The loader will check if the library is already resident; 
if not it will load it before it loads the application. It then 
sorts out references from the application into the resident 
library as part of its normal scatter-loading. In order to 
recognise things as calls into a resident library you need to 
link with an object module which includes a bunk containing 
resident library definitions - a special software tool is needed 
to create this. We're not aware of anyone making use of this 
facility on the Amiga, though for some· applications it may be 
worth considering - for one thing, it has a smaller run-time 
overhead than the process of accessing an Exec library. 

.. 



ABC AmigaDOS Page 161 

3. THE AMIGADOS KERNEL AND P~OCESSES 

Tripos consists of a small "kernel" written in assembler, plus 
various "processes" such as file handlers and CLis, mostly 
written in BCPL, plus various "devices" such as "DFO:", "SER:", 
"CON:" etc, also mostly written in BCPL, but interfacing to 
"device drivers" written in assembler. AmigaDOS uses Exec as its 
kernel, and makes use of Exec "devices" such as trackdisk.device 
as its device drivers. 

3.1 The AmigaDOS library 

The AmigaDOS library is organised so that it can be accessed 
either as an Exec library (see section 2) or as a Tripos-style 
resident library (see 2.6 above). 

Viewed as an Exec library, DOS is somewhat peculiar, in that it 
does NOT need to be called with the library base address in A6 
(as long as you call the right address without relying on 
absolute memory locations somehow!), and in that it does not 
support Expunge(). Furthermore, its jump table doesn't actually 
consist of jump instructions. Instead the table consists of a 
series of six byte entries (same length as jump instruction) 
organised as follows: 

MOVEQ 
BRA 

M:>VEQ 
BRA 

etc. 

#entry number in global vector,DO 
action- - - -

#another entry number in global vector,DO 
action - - - - -

While you don't need to know this to use AmigaDOS, it's quite 
interesting to consider what happens next. The "action" routine, 
which is in the library positive offset area, grabs 1500 bytes 
below your current stack pointer for use as a BCPL stack and sets 
up Al as a BCPL stack pointer - BCPL stacks are used from the 
bottom upwards just to be difficult! No bounds check is done on 
this, so you'd better have 1500 bytes available on your stack 
when you call AmigaDOS, or prepare to meditate. It then zeros 
AO, and sets up registers A2 (=global vector), AS (=DOS kernel 
action routine from ROM) and A6 (= DOS kernel cleanup routine 
from ROM) from locations which.are also in the library positive 
offsets, and puts the appropriate action address from the global 
vector table into A4. 

The ROM is now invoked by JSR (AS), and deals with the call; this 
often involves constructing the appropriate "packet" for the DOS 
call in question, sending it to the right process, and waiting 
for a reply indicating successful completion, or an error. Note 
that Dl, D2, D3 and D4 are used to pass values to AmigaDOS; 
results are returned from the ROM action routine in Dl, then 
transferred to DO for return to the calling program. 



ABC AmigaDOS Page 162 

3.2 Process 

A Process is the basic structure used to control multi-tasking in 
AmigaDOS; it is built on the Exec concept of a "task", and 
consists of an Exec task control block, immediately followed by a 
message port, followed by some other bits and pieces needed by 
AmigaDOS. (It is quite easy to tell a Process from a Task by 
looking at the task control block's node type, which will be 
NT PROCESS or NT TASK respectively.) The process message port is 
used by AmigaDOS-for its own "packet" based communication between 
processes. The other stuff following the message port includes 
the current directory lock for this process, and the current 
input & output "streams" - ie the handles for the current input 
and output files, which might very well (for example) refer to a 
"CON: II. 

Anything which calls AmigaDOS directly or indirectly (eg by 
opening a non-resident Amiga library or font) must be a Process 
rather than a simple task; an attempt to call AmigaDOS from a 
simple task will result in a Guru Alert since AmigaDOS will 
assume that it is being called from a process, will pick up 
nonsense values for things like current I/O streams, will try to 
reply to a non-existent message-port, and generally go bananas. 
Thus most Amiga tasks are also Processes: 

"Workbench" 
"CLI" 

"Initial CLI" 
"New CLI" 
"Background CLI" 
"File System" 
"CON" I "RAW" I "PRT" 

the WorkBench process 
process which creates a new CLI from the 
Workbench (obtained from CLI icon) 
boot-up CLI with window title "AmigaDOS" 
a CLI obtained by CLI or NEWCLI 
a CLI obtained by the RUN command 
disk file handler (one for each drive) 
handlers for appropriate AmigaDOS devices 

The only simple tasks are such things as: 

"trackdisk.device" 
"printer.device" 
"input.device" 
"console.device" 

Exec device for handling disk drive 
Exec device for handling printer 
Exec input device (see section 3) 
Exec console (see section 3) 

AmigaDOS refers to each process by its Process ID, which is the 
address (APTR not BPTR!) of the message port in the Process 
structure. The message port is the thing you are most likely to 
want to use directly, but if you need a pointer to the Process 
structure, you can subtract the size of a Task structure from the 
Process ID. Note that you can create a new process quite easily 
by calling CreateProc() - this takes a name, priority, segment 
BPTR, and stack size as parameters, and returns a new process ID. 
The process priority is the same as the task priority, ie a 
number from -128 to 127 - this is a significant difference 
between AmigaDOS and Tripos, since Tripos allows 65536 
priorities, but does not allow two tasks to have the same 
priority, whereas Exec and hence AmigaDOS time-slice between 
tasks of the same priority. 



ABC AmigaDOS Page 163 

3.3 Packet 

The "packet" is the basic unit of message-passing in AmigaDOS, 
and is built on the Exec concept of a "message", much as a 
process is built on the Exec concept of a task. The way that a 
packet is built onto a message is by means of the "AmigaDOS Grand 
Badge" (apologies to Tim King - AmigaDOS is generally remarkably 
bodge-free, especially given the time scale!): the part of the 
message structure defined as a pointer to a name is used instead 
to point to a Tripos structure called a "packet", as follows: 

APTR back to message structure 
APTR to reply port 
LONG packet type 
LONG resultl 
LONG result2 
LONG argumentl 
LONG argument2 

etc. 

AmigaDOS gets things done by sending packets like this to the 
message-ports of appropriate processes such as file-handlers -
for a description of different packet types and functions, see 
the AmigaDOS technical reference manual. Note that you can also 
get things done by sending packets to processes, instead of 
calling AmigaDOS library routines - this is handy if you don't 
want to wait for something to finish, but want to operate 
asynchronously. 

3.4 Co-routine 

Co-routine is a term from Tripos useful in understanding 
AmigaDOS; the term means a routine which is executed as part of a 
particular process, but using its own private stack, instead of 
the process's standard stack. 

When a co-routine is about to be invoked, memory is allocated for 
its stack by the process, the stack pointer is saved then altered 
to point at this new stack, and the new stack is initialised to 
contain its own size, plus a return address to the main process. 
Then the co-routine is invoked. When the co-routine exits, 
control returns to the main process code, which restores its 
stack pointer to the old value and deallocates the co-routine's 
stack memory. 

This technique is used by a CL! process to execute commands - see 
below. The fact that the process pushes the size of the stack to 
the new stack is significant here, as it means that you can check 
if you've been given enough stack space, and refuse to run if you 
haven't! 



ABC Amiga...;;CS l'C:Jqe 164 

3.5 CL! 

A CL! (Command Line Interpreter in Tripos, changed to Command 
Line Interface in ArnigaDOS for no obvious reason) is a Process 
with some special attributes, including:-

a CLI number (1 to 20) 
standard input and output streams (usually a CON: device) 
a path list to use when searching for command files 
a prompt string definition (altered with the PROMPT command) 
default stack size for co-routines for executing commands 

(altered with the STACK command) 

The CLI environment can be thought of as a "shell" (a term from 
UNIX) for ArnigaDOS - it provides a user interface, performing 
commands typed in at the keyboard .from a CON: window or read from 
a file, and handles input and output "re-direction", such as 
sending program output to the printer (PRT:) instead of the CON: 
window. All commands are normally loaded from disk as required, 
and the user can create his own commands, which have exactly the 
same status as those provided as part of the system. 

Some special setting-up is needed to start a CLI (initialising 
input and output streams etc), and another process is needed to 
do this - it is important not to confuse the process which starts 
a CLI (such as the one invoked by clicking the CLI Icon on the 
Workbench) from the actual CLI process once running. The 
standard code for handling the CLI environment (as distinct from 
that for creating or destroying CLI processes) is in the 
KickStart ROM; however, under version 1.2 it is possible to load 
alternative CLI code, such as one which recognises resident 
commands, and this lives in RAM. 

A CLI process can be created interactively in any of three ways:-

(1) from the CLI icon on the Workbench - this creates a new 
interactive CLI process with a set of default parameters, 
including a default stack size for co-routines of 4000 
bytes. This will always be a standard CLI, using ROM code, 
even if a non-standard CLI has been loaded with the RESIDENT 
command. 

(2) via the NEWCLI command from a CLI - this creates a new 
interactive CLI process with some parameters inherited from 
the CLI process which created it, including default stack 
size and current directory. It uses the CLI code in the 
resident segment list, so if this is non-standard you will 
get a non-standard CLI. 

(3) via the RUN command from a CLI - this creates a new 
"background" CLI process (ie one without its own CON: 
window) in which to execute a specified command, whose 
default output stream is that of the CL! from which the RUN 
command was given. 



ABC AmigaDOS Page 165 

A CL! process can also be created from a program, using the 
Execute() function in the dos.library. 

The STATUS command can be used to tell you about active CL! 
processes. Note that these are referred to in the output from 
the STATUS command as Task 1, Task 2, etc - this couldn't be much 
more misleading, as what is actually meant is CLI 1, CLI 2, etc! 

3.6 Commands 

A command is code which is executed from a CLI process when it is 
invoked by name, and is usually loaded from a disk file with the 
same name as the command in the current or specified directory 
(in the case of a user-supplied command) or in the C: directory 
(in the case of a system command). In version 1.2 it is possible 
to specify further directory paths to be searched for commands, 
by using the PATH command. Also in version 1.2, by use of an 
appropriate CLI (not the default CLI code), commands which have 
been made resident using the RESIDENT command can be executed 
directly from memory without any disk access. 

Commands are executed as co-routines of the CLI process from 
which they are invoked. That is, no new process is created, but 
stack space for the command's use is allocated and control is 
passed to the code at the start of the first segment of the 
command's code. On entry to the co~mand's code, the registers 
contain: 

in AO a pointer to the command line for execution; 
in DO the length of the command line. 

Other registers contain defined, but not documented, values; 
these are irrelevant to commands written in assembler or C. 
However, commands written in BCPL will expect to be entered with 
these registers correctly initialised - Al = BCPL stack pointer, 
A2 = global vector etc, very much as set up by the DOS "action" 
routine explained in 3.1 above. This explains why it is not 
possible, for example, to load NewCLI or DiskEd under Wack and 
then execute them with GO, since these registers will not contain 
the appropriate values. 

Commands run as co-routines under the CLI will generally start 
with some form of standard startup code (eg LStartup.obj or 
AStartup.obj for Lattice 3.03, or c.O for Lattice 3.1), which 
amongst other things deals with -obtaining the cur~ent CLI input 
and output streams by calling functions Input() and Output(), and 
using them to set up their own IO vectors such as c 'stdin' and 
'stdout'. There is a significant difference between running from 
CLI and Workbench here - applications run from the Workbench run 
as processes rather than CLI co-routines, and have to set up 
default IO channels by some other method, such as opening a 
window on the Workbench (Lattice). 



ABC AmigaDOS Page 166 

Commands are not required to preserve any registers, and the main 
process cannot rely on any of them being preserved when the co
routine exits. 

A final point concerns "resident" commands. These are commands 
supported by non-standard CLis like the Metacomco shell, which 
maintain a "resident segment list" of named commands in memory. 
Commands found in the resident segment list will be executed 
directly where they live in memory, without any form of loading 
or initialisation. While this is very fast, it means that 
resident commands will get in trouble if they rely on any form of 
data pre-initialisation, such as 

ULONG counter = O; 

This will work fine the first time the command is run from the 
resident segment list; the next time however counter will start 
of with whatever value it finished with last time, resulting in 
general confusion. Thus to work properly as a resident command, 
you have to avoid this sort of thing, and use 

ULONG counter; 
counter = O; 

This carries a fair amount of overhead, but should probably be 
done if you are writing a program which can be viewed as a 'DOS 
extension' and which you therefore might want to make resident. 
Otherwise, we wouldn't bother! 

.7 Re-direction 

When a CLI process obtains a command line for execution (either 
from a CON: window or from a file) it checks for re-direction 
specifications, in the form of AmigaDOS file or device names 
preceded by '<' for input re-direction or '>' for output re
direction. The CL! will attempt to perform the requested re
direction, so that the current input and output streams are those 
asked for, before control is passed to the command's code. The 
command will only respond to re-direction if it gets its input 
from its default input stream (stdin in C) and sends its output 
to its default output stream (stdout in C). This is the reason 
for a problem with Wack - Wack wants to respond to single key 
closures, so it does its input and output to a RAW: window which 
it opens rather than using stdin and stdout, which means it does 
not support re-direction - damn it. 



ABC AmigaDOS Page 167 

3.8 Devices, devices and devices 

Like "library" the word device is somewhat overworked.on the 
Amiga, being used to refer to three different things - is this an 
undocumented feature of AmigaSpeak? - as follows: 

(1) an Exec device, as in OpenDevice(), CloseDevice(), etc, such 
as "trackdisk.device" or "console.device"; 

(2) an AmigaDOS device, which is an interface between AmigaDOS 
and Exec devices, and which is referred to by a name ending 
with a colon, which may be used in contexts where a filename 
is required. The standard AmigaDOS devices are 

DFO: handles floppy disk drive O file/directory access 
DFl: handles floppy disk drive 1 file/directory access 
RAM: handles the RAM disk file/directory access 
PRT: handles output to the printer 
SER: handles input/output via the serial port 
PAR: handles input/output via the parallel port 
CON: handles input/output via a CON: window 
RAW: handles input/output via a RAW: window 

(3) an AmigaDOS logical device name, which is a name ending with 
a colon, may be the name of any of three types of entity: 

(a) an AmigaDOS device, as in (2) above; 

(b) a volume, ie a physical disk or the RAM disk, eg 
"C-DEVEL:" or "RAM Disk:"; 

(c) a directory with an logical device name set up by the 
system or specified via the ASSIGN command eg. "SYS:", 
"C:", or "THISISMEFOLKS:" 

The ASSIGN command with no parameters will report on all 
currently known logical device names, grouping together 
those of the same type. 

3.9 Handler processes 

AmigaDOS devices (in sense (2) above) have associated processes 
for performing the actions required by them. These can be 
compared with the associated tasks used by some Exec devices such 
as console.device (see section 3), and are known as handler 
processes. 

There is a function call in the DOS library to allow you to 
obtain the Process ID for the handler process for a named 
AmigaDOS device. This is DeviceProc(), for which an example call 
is: 

dfOhandlerID = DeviceProc ( "DFO": "); 



ABC AmigaDOS Page 168 

Handler processes generally have the same name as their device 
(but without the colon), eg the handler process for a "CON:" 
window is called "CON". However, this is not always the case -
the floppy disk handlers (ie those for DFO: and DFl:) are each 
called "File System". 

Each open "CON:" or "RAW:" window will have its own handler 
process, so it is common to have several processes with these 
names present in the system at any one time. For this reason one 
cannot use DeviceProc("CON:") or DeviceProc("RAW:") to find the 
handler processes for these devices, since there may be more than 
one handler for the specified device. 

Handler processes spend much of their time in wait states, 
waiting to receive AmigaDOS packets at their message ports asking 
them to perform some action, such as reading or writing data or 
opening or closing a file. They then perform the required 
action, then reply the packet to the sender. 

References 

For full information on disk structures, process structure, 
packet structures etc, see the definitions in "libraries/ 
dosextens.i" (don't trust dosextens.h), together with the 
Technical Reference and Developers sections of the AmigaDOS 
Manual. With any luck, you should find the latter easier going 
if read in conjunction with the above! 

You don't really need to know BCPL to understand AmigaDOS, any 
more than you need to know c to understand Unix - but it probably 
helps. The BCPL "Kernighan & Richie" is probably "BCPL the 
Language and its Compiler" by Martin Richards and Colin Whitby
Strevens, published by the Cambridge University Press - all 
right, we admit we haven't read it! If you actually want a BCPL 
compiler to play with on Amiga, try screaming loudly at 
MetacomC'O. 

For an "official" example of how one process can start another, 
see the C-program by Rob Peck which has now been widely 
circulated - this starts a process then sends it messages as if 
it had been started from Workbench. For a simpler method, which 
doesn't mess about pretending to be Workbench, see the example in 
section 1 of this book. Examples of how to talk to AmigaDOS by 
sending packets to processes can be found on the Fish disks. 



Debugging and Wack Page 169 

ca[[ecf, 

Ofi ~.?lS'Tt:1t 

Serial Port Debugging, and The Joy of Wack. 

Illustration by Phill Legard. 



Debugging and Wack Page 170 

Part v - Serial Port Debugging 

A common problem encountered when developing in a mult~-window 
environment like Amiga is - where do you put diagnostic 
information? There are various solutions to this: 

1. You can send diagnostics to a standard channel - eg "stderr" 
in C - and leave it up to your compiler (or whatever) to 
decide what to do with it. The usual default for stderr is 
to use the same channel as "stdout" - thus if you are 
running from the CLI, errors etc will tend to go to the CLI 
window, and if you are running from Workbench (and linking 
using LStartup.obj or c.o) they will go to the window 
Lattice opens on the Workbench - the ability to direct 
diagnostics to this window is one use for this otherwise 
irritating feature of Lattice startup. 

2. You can use a special window opened for diagnostic 
information only. This is one approach used by the Amiga 
symbolic debugger Wack, which by default will open its own 
RAW: window on the workbench, and converse using that. 

3. You can direct debug information to an external device, such 
as a terminal hung on the serial port. This is the approach 
used by ROMWack, the resident miniature version of Wack used 
for emergency debugging - eg to find what is causing a guru 
meditation. It is also possible to run Wack on the serial 
port, using the -s option. 

There are three main advantages to the serial port approach. 
First, it gets the diagnostics off the main screen, so that you 
can arrange things so that the Amiga screen shows exactly what 
the user will get while running your application, while you get 
diagnostics on the remote terminal. Secondly, it is reasonably 
proof against blow-ups - even if your screen has gone into 
"firework display mode" due to a graphics bug, you can still get 
in and find out what has gone wrong with ROMWack. Finally, the 
use of a remote terminal is very handy when it comes to things 
like printing long disassemblies or memory dumps - if you have 
half-way decent terminal software, you should be able to run 
these off to a file, then churn them out at your leisure, without 
involving the Amiga. 

Connecting ~ remote terminal 

The first thing to realise about debugging using the serial port 
is that the communication is handled, quite deliberately, in as 
dumb a way as possible, by directly hitting the serial port 
hardware. Thus you musn't expect Preferences settings or 
anything involving serial.device to make any difference; nor must 
you expect anything much in the way of clever handshakes, 



Debugging and Wack Page 171 

XON/XOFF, RTS/CTS or whatever. The reason for this is quite 
simple - since you are debugging the machine it has (presumably) 
crashed, causing unknown memory corruption, so you certainly 
can't assume that things like the serial device are still alive 
and functioning. The only things you can reasonably assume are 
still there are the ROM contents and the hardware - if not you've 
REALLY got problems! - hence the existence of debug routines in 
the ROM which communicate by directly hitting the hardware. 

The choice of remote terminal is up to you, though it needs to be 
reasonably fast - if you are going to be using Wack, then you 
need to be able to communicate at 9600 baud without handshake -
and we recommend an eighty column screen. We use a BBC Micro 
running our own bi-scrolling terminal software - this allows 
stuff which has scrolled off the top of the screen to be "pulled 
back" down again which is very useful when running in trace mode 
(What were the register contents when I entered this 
subroutine?). However, this facility is not essential, so pretty 
well anything will do - you could probably use a Commodore 64 
with appropriate software and a serial cartridge, or, of course, 
another Amiga. 

Since there is nothing fancy to worry about _in the way of 
handshake conventions etc, connecting up a cable is quite simple, 
the only trick being that you may have to do something with the 
handshake lines (RTS/CTS and/or DSR/DTR) at the terminal end if 
it is expecting a handshake. The connections for a BBC Micro are 
as follows: 

Amiga Transmit data (pin 2) to BBC data in (pin A) 
Amiga Received data (pin 3) to BBC data out (pin B) 
Amiga Signal ground (pin 7) to BBC OV (pin C) 

BBC CTS (pin D) jumpered to BBC RTS (pin E) 

For other terminals it may also be necessary to jumper DSR to 
DTR - as is nearly always the case with horrible serial comms, 
you'll just have to try it and see. 

The terminal software should then be configured as follows: 

9600 baud send 
9600 baud receive 
8 data bits, 1 stop bit, no parity 
linefeeds expected (ie don't auto-linefeed after return) 
all fancy protocol options off 

To see if everything is working, open a CL! in the Amiga then 
invoke ROMWack - this should result in a display on the remote 
terminal similar to the one shown in figure 1. If not, check 
baud-rate settings at the terminal end and the three connections 
between the Amiga and the terminal. Now press RETURN on the 
remote terminal - this should cause a one line "frame" showing 
memory contents to be displayed as shown in figure 2. If nothing 
happens, the terminal isn't sending - check the Amiga received 



Debugging and Wack Page 172 

data connection, then try different jumpering between CTS/RTS and 
DSR/DTR until something happens. Don't you just hate serial 
communications? 

Once you have got this working, you can explore ROMWack as 
explained below; alternatively if you just want to exit ROMWack 
then you can get out of it and bring the Amiga back to life by 
typing "resume". Note that ROMWack completely kills all normal 
system activities and multi-tasking, so you won't even be able to 
move the pointer using the mouse (and the disk light won't go 
off) until you do this. 

Undocumented routines in Exec 

All the Amiga's serial port debugging facilities make use of some 
originally undocumented routines in the Exec library; these can 
be used directly by making use of the interface code in the 
special linker library debug.lib, and are also used internally by 
ROMWack, Wack, and Exec's Alert system. The reason for these 
routines being originally undocumented was (presumably) because 
they might not still be there in later releases of the Amiga as 
space in the ROM got tighter and tighter - h.owever we note that 
in the 1.2 autodocs RawDoFmt() at least has made it as an 
officially documented system facility! Anyway, if the purpose is 
simply to debug an application on the current version of the 
software, then it certainly doesn't hurt to know about these 
routines, so here they are: 

of £set name description 

FDF6 
FDFC 
FE02 

FE08 

RawDoFmt 
RawPutChar 
RawMayGetChar 

RawIOinit 

format data into a character stream 
put character to debug console 
get char from debug-console if there's 
one pending 
initialise for I/O from debug-console 

A summary of these functions is as follows: 

RawDoFmt - Exec library call invoked by debug.lib routine KDoFmt 
- output a stream of characters formatted in a way similar to C 
print£(). Register usage is as follows: 

AO - pointer to null terminated format string, eg 
'Longword value = $%lx' ,10,0 

Al - pointer to data-stream - eg a pointer to a long-word 
value $21222324. 

A2 - PutChProc - address of routine to use to output a 
single character - eg interface to RawPutChar 

A3 - PutChData - anything extra you want to pass to 
PutChProc. 

When this routine is called, the PutChProc routine specified will 
be called repeatedly with the next character to output in the 
bottom byte of DO, and whatever you put in A3 still in A3 (up to 



Debugging and Wack Page 173 

you). Given the example format string and data-stream given 
above, the output would be "Longword value = $21222324", follm·red 
by a linefeed then a terminating null. 

RawPutChar - Exec library call invoked by debug.lib routine 
KPutChar - puts a character to the "debug console" by slinging it 
directly at the serial port hardware - called with character in 
DO. 

RawMayGetChar - Exec library call invoked by debug.lib routine 
KMayGetChar - gets character from serial port - returns char in 
DO, or -1 if no character waiting. 

RawIOinit - initialisation routine used by Wack and ROMWack to 
set the serial port hardware to 9600 baud send/receive, 8 data 
bits, 1 stop bit, no parity bit. Not available from debug.lib 
for some reason. 

More about DoFmt 

The two principal inputs to RawDoFmt (and routines which use it 
such as KPutstr() discussed below) are a pointer to a format 
string in AO and a pointer to a data stream in Al. 

The format string follows c conventions as regards format 
instructions (%lx etc), but can also contain explicit codes for 
linefeeds etc, so in assembler you might have 

MyFormatString dc.b 'The answer is $%lx' ,10,0 

to output a single value as longword hexadecimal, followed by a 
linefeed, followed by the usual null string terminator. Other 
valid format specifications are as follows: 

%ld longword value printed in decimal 
%lx longword value printed in hex 
%le least sig byte of longword printed as a character 
%lo longword value printed in octal 
%s successive string chars printed up to null terminator 

It is also possible to specify field widths as in 

%5ld -

%06lx-

longword value in decimal in 5 char field, right 
justified. 
longword value in hex in 6 char field, right 
justified, padded with leading zeros. 

The "data stream" input to DoFmt simply consists of a pointer to 
the data to be printed, stored as a succession of longword 
values and/or null-terminated strings. A convenient way of 
setting this up is to use a "print stack" using one of the 
address registers as a stack pointer - successive values to be 
output using DoFmt can be pushed to this stack by instructions 
like 



Debugging and Wack Page 174 

move.l nextvalue,-(al) 

This will end up with al pointing to start of the data stream 
(with the last value pushed as the first value to be output), 
ready to call DoFmt. 

Using debug.lib 

Debug.lib is a linker scanned library containing interface code 
to enable the routines above to be called conveniently from 
assembler or c, plus some additional routines built on top of 
them. This allows you to output diagnostic messages of the sort 
"Entering routine DeepThought()", "Current value of 
Meaning Of Life is 41" etc to the serial port while you test your 
application. This can be massively useful, particularly in 
sorting out high level bugs involving control flow. It is good 
practice to make use of conditional assembly or compilation to 
include or exclude calls of this nature, depending on whether you 
are creating a development or production version of your 
software. 

A point to note about debug.lib is that since it makes direct use 
of the serial port hardware, and since you won't be using 
RawIOinit (unless you write your own interface code to call the 
Exec library directly), the communication will take place at 
whatever rate the hardware is currently set to. The default 
power-up is 9600 baud, 8 data-bits etc as used by ROMWack, and 
this is not affected by the current setting of Preferences. 
However, if you change Preferences to (say) 1200 baud, and·then 
actually output something at this baud rate (eg ECHO >SER: "ECCE 
WOMBAT"), then the hardware settings will be changed to 1200 
baud; subsequent calls via the debug library will therefore 
operate at this baud rate. It is also possible to change the 
number of data bits and stop bits by this method; it is not 
however possible to enable a protocol such as CTS/RTS, as this 
depends on software in serial.device, not just hardware settings. 
Changing the baud rate used by debug.lib can be useful - eg when 
running a utility like SNOOP which outputs a lot of data to a 
terminal which has trouble keeping up with 9600 baud. 

Routines in debug.lib 

There are three types of routine in debug.lib: 

1. Interface to undocumented calls in Exec. These are 
KPutChar, KMayGetChar and KDoFmt - see above. 

2. Routines built on undocumented calls in Exec. These are as 
follows: 

KGetChar - keeps calling KMayGetChar until it actually gets 
something. Returns with character in DO. 



Debugging and Wack Page 175 

KGetNum - input a number from the debug console, with echo. 
Allows a signed decimal integer to be input on the remote 
terminal, terminated by carriage return. Returns with the 
number in DO. Uses KGetChar and KPutChar. 

KPutFmt - put formatted data to debug console. Called with 
AO pointing to format string, Al pointing to values to be 
output according to format string. Sets A2 to address of 
KPutChar, then calls KDoFmt. 

KPutStr - put null terminated string to debug console. 
Called with address of string in AO. Uses KPutChar. 

3. Stand-alone routines. There is currently only one of these, 
which is KCmpStr, to compare two null terminated strings. 
Called with string pointers in AO and Al, returns with DO = 
0 if strings equal, or DO = char where strings differ or 
where one string terminates - negative value indicates 
second string is longer. 

The debug library is quite interesting from another angle, as it 
provides a short and straightforward example of how a linker 
scanned library is constructed by concatenating object modules, 
of how an Exec library is called at assembler level, and of how·a 
function written in assembler receives paramaters from a calling 
program written in C by reading them off the stack. It is 
possible to obtain a listing of it using a disassembler like ones 
to be found on the Fish disks, or as part of the "Metacomco 
toolkit" - this is a recommended exercise. 

Other debugging tools - SNOOP 

Besides putting diagnostics directly in your code using KPutStr, 
KPutFmt etc, it is also possible to run diagnostics in other 
processes that keep an eye on what's going on; things like stack
watchers can be implemented like this, which can be quite useful. 
Note also that since the diagnostic routines make no use of 
AmigaDOS, there is no problem in calling them from tasks which 
aren't processes, such as sub-tasks spawned by your application. 

A good example of a debugging tool which uses debug.lib is the 
SNOOP utility, supposedly provided (with source code) on the 1.2 
toolkit disk. This uses Exec routine SetFunction() to replace 
the standard system AllocMem() and FreeMem() by "snooped" 
versions which output a diagnostic message to the serial port on 
every memory allocation and deallocation - this is very useful in 
tracking memory leaks. 

Note that you may get flooded with information from SNOOP, since 
you will get a message on every memory allocation/deallocation, 
including ones made by the system - if you run SNOOP then try 
(say) resizing a window on the Workbench, you will notice that 
there are an awful lot of these! This can cause two problems: 



Debugging and Wack Page 176 

1. Your remote termlnal may have trouble keeping up at 9600 
baud without handshake. If so, try running at a lower baud 
rate - see under "Using debug.lib" above for how to do this. 

2. You may have trouble disentangling your memory 
aIIocations/deallocations from the ones made by the system. 
One solution to this is to pass all memory allocations 
through your own routines (we use something called the 
Ariadne Manager which also tracks what we're up to), and put 
diagnostics in this using KPutFmt etc. Another option is to 
modify SNOOP so that it checks which task is doing the 
AllocMem or FreeMem, and only outputs diagnostics if it is 
(one of) your task(s). 

By making appropriate use of "higher-level" debugging tools like 
the stuff in debug.lib, you will probably be able to avoid having 
to go in at a lower level most of the time - on a machine as 
complex as Amiga, we would heartily recommend this! However, if 
you really have to, or if you just like messing about with 
symbolic debuggers, then there's always Wack. 

There has been some debate over the origin of the name "Wack". 
Bill Donald's suggestion that it stands for "Westchester Amiga 
Crash Killer" can sadly be discounted, since the documentation 
with 1.2 states that "The name derives from its ability to wack 
bugs over the head". Pity. 

There are two main versions of Wack - the full disk-loaded 
symbolic debugger known as GrandWack, and a cut down "ROM"
resident version for emergency debugging known as ROMWack. 
GrandWack can talk either via the serial port, or via its own RAW 
window on Workbench; ROMWack is serial port only. 

There have (of course) been various revisions of GrandWack. The 
original program (Wack 1.0) put out with versions 1.0 and 1.1 of 
the ROM kernal contained a core of general purpose debug 
facilities, plus a number of Amiga-specific commands such as 
"devices", "libraries", "resources" etc; however there was no 
simple way of adding new facilities. The new version of Wack put 
out with version 1.2 (the latest we have is 1.004) is about twice 
as long as the old one (presumably we all have fast RAM expansion 
these days!), has lost most of the old Amiga-specific commands, 
but has gained a very powerful general-purpose macro facility, 
with a LISP-like syntax! Using this, it is possible to recreate 
the old Amiga-specific commands (Wack now looks for a default 
macro-set s:wack-macros which hopefully will contain these); it 
is also possible quite easily to modify existing commands, or to 
add new ones for special purposes. We shall refer to the two 
versions as OldWack and NewWack when it comes to pointing out the 
differences. 



Debugging and Wack Page 177 

ROMWack 

ROMWack is the Amiga's equivalent of a "machine code monitor", 
roughly comparable with the SYS 4 monitor in the old PETs; 
GrandWack can in this respect be compared with something more 
like Supermon. Again, for reasons of ROM-space, the ROMWack 
facilities have been kept fairly rudimentary, and most notably 
absent are any ability to work in terms of symbols rather than 
absolute addresses, and any form of disassembler. This makes 
finding your way around with ROMWack pretty slow going. ROMWack 
is best viewed as an emergency measure, useful for pinning down 
things like the causes of guru meditations when other measures 
(like thinking about it) have proved unsuccessful. ROMWack is 
best used in conjunction with more powerful tools such as Wack -
eg if you have loaded using Wack and found out where everything 
of interest is, it is going to make life much easier if you need 
to pin down the cause of any serious problem using ROMWack. 

ROMWack does its best to disturb the machine as little as 
possible, and to ensure that any process that has gone out of 
control does no further damage. To this end, it disables multi
tasking (while keeping interrupts enabled) - the documentation 
warns you that this may lead to buffer-full problems if you spend 
too long using ROMWack (too many key closures etc), so you should 
aim to find out whatever you need, then get out fast. For 
workspace, ROMWack uses a small amount of supervisor stack, and 
memory between $200 and $400 - these are normally reserved fer 
68000 "User vectors" for a form of clever exception (interrupt) 
processing which is not used on the Amiga, since Amiga prefers to 
do its own clever tricks with interrupts using PAULA. 

Entering ROMWack 

ROMWack is normally entered using the Debug(O) function in the 
Exec library, though note that this function can be arranged to 
invoke GrandWack or some other debugger - see the -r option in 
GrandWack discussed below. Calls to Debug(O) can be put in your 
code for diagnostic purposes to put you into ROMWack (or Wack or 
whatever) in circumstances where you want to have a peer around 
in memory before proceeding, or if you want to single-step - the 
entry PC value shows where Debug() was called from and the stack 
frame SF: shows what is currently at the top of the stack - ie 
the next few return addresses, so you should be able to find out 
where things are without too much difficulty. Typing "resume" 
allows you to leave ROMWack and to pick up your application again 
after the call to Debug(). 

ROMWack can also be invoked directly from the CLI using the 
program ROMWack - this must be about the shortest utility 
available on the Amiga, since it currently goes 



Debugging and Wack Page 178 

om-wack 
FC08BB SR: 0000 USP: 211800 SSP: 07FFFA XCPT: 0000 TASK: 20F488 
00000020 00000020 00000FA0 00000FA8 00000001 0000003E 000840C5 0020F4E4 
00000000 00211200 002033E0 002105C4 0020F488 00FF4484 00000676 
0020 E11C 0000 0676 0020 9782 0020 9AA0 0021 0698 0000 0001 0021 07C4 00FF 

Fig 1 - ROMWack entry via Debug(O) 

m-wac:k 
FC08B8 SR: 0000 USP: 211800 SSP: 07FFFA 
00000020 00000020 00000FA0 00000FA8 00000001 
00000000 00211200 002033E0 002105C4 0020F488 
0020 E11C 0000 0676 0020 9782 0020 9AA0 0021 

XCPT: 0000 TASK: 20F488 
0000003E 000840C5 0020F4E4 
00FF4484 00000676 
0698 0000 0001 0021 07C4 00FF 

fmBBB 4E75 007C 2000 518F 4007 2F7C 00FC 0888 Nu •• •• Q •• @ •. I : .••. AH •• 

Fig 2 - 'frame' obtained by pressing return 

!om-wac:k 
~: 203A5A SR: 0000 USP: 2180A8 SSP: 07FFFA XCPT: 0021 TASK: 208818 
~: 00000001 00208E60 00003A98 00003AA0 00000001 0000003E 00080E21 00208874 
~: 00208E60 00208F6C 002033E0 00203A4C 00218080 00FF44B4 00FF44A8 
f: 0020 3A56 00FF 4CAE 0000 3A98 0020 91F4 0000 0000 001E 7F48 2208 E489 7020 

Fig 3 - ROMWack entry via Guru Meditation 

om-wack 
C: 203A5A SR: 0000 USP: 2180A8 SSP: 07FFFA 
k: 00000001 00208E60 00003A98 00003AA0 00000001 
R: 00208E60 00208F6C 002033E0 00203A4C 00218080 
f: 0020 3A56 00FF 4CAE 0000 3A98 0020 91F4 0000 

XCPT: 0021 TASK: 208818 
0000003E 00080E21 00208874 
00FF44B4 00FF44A8 
0000 001E 7F48 2208 E489 7020 

03A5A 0000 0008 18C3 0020 3858 0000 0038 0020 •••••• AHAX •••• ; x. . . • . . 8 .• 

Fig 4 - 'frame' obtained by pressing return 
1111-wack 

:: 203A5A SR: 0000 USP: 2180AB SSP: 07FFFA XCPT: 0021 TASK: 208818 
~: 00000001 00208E60 00003A98 00003AA0 00000001 0000003E 00080E21 00208874 
t: 00208E60 0020BF6C 002033E0 00203A4C 002180B0 00FF44B4 00FF44AB 
·: 0020 3A56 00FF 4CAE 0000 3A98 0020 91F4 0000 0000 001E 7F48 2208 E489 7020 

l3A5A 0000 0008 18C3 012120 3058 0000 0038 0020 •••••• -··w·x •••• 

13A4A 0014 0000 0000 4EB9 0020 3A58 4E75 4E41 •• AT •••••••• N •••• 

Fi_g__-2__-=--E_revious frame obtained by pressing I I , 

x. . . . . . 8 .. 

: X N u N A 



Debugging and Wack 

main() 
{ 

Page 179 

printf("Entering ROM-Wack on serial port (9600 baud)\n"); 
Debug(); 

} 

Note that this two-line program contains two errors (!), first 
because it won't necessarily invoke ROMWack at all if something 
else (GrandWack) has been made "resident", and second because it 
calls Debug() with no parameters, instead of a single null 
parameter, as recommended. 

Finally, ROMWack can be entered following a dead-end Alert (Guru 
Meditation), to allow you to poke about to find out what went 
wrong, before resetting the Amiga. In version 1.1, you wait 
until you have the (familiar?) message up 

"Software Failure. Press left mouse button to continue" 

then press the right mouse button - this will put you into 
ROMWack. In 1.2, the mechanism has changed. Right mouse button 
on Guru Meditation no longer works; instead the system watches 
the serial port data lines for a pattern .of "seven ones", while 
it is flashing the light before actually displaying the guru. 
Thus pressing BREAK or DEL ($7F) on the remote terminal while the 
light is flashing will put you into ROMWack. In either of these 
cases, exiting ROMWack by typing "resume" will cause the Amiga to 
reset. 

ROMWack example 

As mentioned above, debugging with ROMWack is usually a last 
resort, and should normally only be tackled when you have already 
found out where everything is using Wack or another symbolic 
debugger, and even then it takes ages! The "simple example" 
which follows is therefore, we freely admit, a total fake, but 
may help illustrate the principles of serial port Wackery. 

In this example, the Amiga has come to a halt due to an 
unrecognised 68000 exception (Motorola terminology meaning "soft 
interrupt" cf 6502 BRK - not to be confused by what Amiga mean by 
"exception" or "software interrupt" - see section 1.) The 
symptoms of this are that the system first of all puts up a 
requester: 

: Software error - task held 
: Finish ALL disk activity 
: Select CANCEL to reset/debug 

You should now go around cleaning up anything else you may have 
running at the time, saving everything that may be necessary to 
disk. When you have done this, selecting CANCEL in the ''Software 



Debugging and Wack Page 180 

error" requester brings up the familiar "alert" (pushing down 
other screen contents in this case): 

Software Failure. Press left mouse button to continue. 
Guru Meditation #00000021.00208Bl8 

This indicates that we have taken exception vector 33 ($21), 
which corresponds to 68000 TRAP #1, and that no trap-handling has 
been set-up to allow the task in question to know what to do 
about it. The 68000 supports 16 TRAP instructions all of which 
function a bit like 6502 BRK, causing it to go into exception 
processing (interrupt) mode, saving off status register, program 
counter etc, entering supervisor mode, then· continuing execution 
from an address held in one of 16 vectors (vectors 32 to 47). An 
~miga task can be set up to handle traps (consisting of actual 

TRAP instructions and other conditions causing processor 
exceptions such as address errors, illegal instructions, or 
divide by zero) by setting a vector tc TrapCode in the task 
control block - if this has not been done, then the system will 
assume something has gone wrong, and will perform its default 
trap handling, which is to give the "Software error" requestor 
followed by the "Software failure" alert. 

Note that this form of Guru Meditation, in which the Meditation 
number starts with four leading zeros, always results from a 
processor trap, and is the most common form of Amiga failure. 
Another form of Guru Meditation, in which the first part of the 
meditation number is non-zero, can arise from a variety of 
different error conditions in different libraries - for more 
information on this, see section 1 of this book, and header file 
exec/alerts.h. 

The second part of the guru meditation number 
indicates that the task control block for the 
guru is at address $208Bl8 (in fast memory). 
find out without using ROMWack. 

- after the dot -
task which has gone 
This is all we can 

Assuming we have a 9600 baud remote terminal connected as 
described above, we can invoke ROMWack by pressing right mouse 
button on the Guru (ROM version 1.1), or pressing remote BREAK or 
DEL before the Guru (version 1.2). This gives a display on the 
remote terminal as shown in figure 3. The top line shows that 
our progra·m counter was at $203A5A when we got into trouble; also 
displayed are our current status register, user stack pointer, 
supervisor stack pointer, exception number (as shown in the guru 
alert), and the address of the control block for this task (also 
as shown in the al~rt). Below this are displayed the current 
contents of data regi3ters DO to D7, followed by the contents of 
address regi3ters AO to A6 (A7 is the user stack pointer, and has 
already been displayed.) 

Below the registers is displayed a "stack frame", showing the 
fifteen words on the usec stack iinmediately below the current 



Debugging and Wack Page 181 

setting of the user stack pointer. From this we see that the 
routine that went guru was going to return to the routine that 
called it at $00203A56 (just a few bytes earlier), and that this 
routine was going to return into the ROM at OOFF4CAE. Below this 
we can see the current value of A3, which was obviously pushed by 
this ROM routine. 

If we now press <RETURN> on the remote terminal, we get a "frame" 
of 8 words starting from the program counter value where we 
crashed - this doesn't tell us very much (fig 4). Pressing 11 , 11 

now takes us back a frame (fig 5) - here we see the TRAP #1 
instruction ($4E41) that got us into trouble at $203A58 (the PC 
was incremented by a word after fetching this instruction and 
before executing it, which is why we entered ROMWack with PC = 
203ASA). Before this we see an RTS ($4E75) at $203A56 - this is 
the address we were going to return to if we hadn't hit the trap 
- and before this we see the JSR $203A58 which pushed this return 
address (4EB9 0020 3A58). With a bit (or a lot) more sweat we 
should now be able to· investigate further, and find out why this 
happened. 

In fact, as mentioned above, this example was a fake, and the 
alert was caused by running a program "guru" from the CLI which 
was assembled from source code guru.asm as follows: 

section 
jsr 
rts 

crash: 
trap 
end 

guru 
crash 

#1 

This was assembled by itself then linked without any libraries or 
any form of startup. The code ended up being scatter loaded to 
$203A50, with subroutine "crash" at $203A58. The ROM return 
address $FF4CAE would be part of the AmigaDOS code concerned with 
executing commands typed at a CLI - however, note that for a lot 
of its activities AmigaDOS uses its own funny upwards-growing 
BCPL stack using Al as a BCPL stack-pointer, so we would have to 
look at this stack as well if we wanted to trace the AmigaDOS 
part of the story! 

ROMWack facilities 

ROMWack is documented in ROM Kernal manual Volume 1. A summary 
of the facilities offered (updated to 1.2) is as follows: 

Current address 

ROMWack works in terms of a "current address", initialised to the 
value of the program counter on entry. The current address can 
be changed by typing in a hex number terminated by <RE'rURN>. 
Generally, BACKSPACE and CTRL-X function as usual when entering 



Debugging and Wack Page 182 

numbers or symbols into Wack. 

Single key facilities 

Most ROMWack facilities are "permanently bound" to particular 
single keys. These are as follows: 

space 
bs 

? simple help - display list of symbols 

return display current frame 

or 
or 

I 

> 
< 
+n 
-n 

:n 

forward to next frame 
backward to previous frame 
forward by one word 
backward by one word 
forward by n bytes 
backward by n bytes 

set frame size (number of bytes displayed on line) 
to n. Default is 16. 

[ indirect - set new current address to contents of 
old current address; remember old current address 
on an "indirection stack". For example, entering 
"4" will take you to AbsExecBase; typing "[" will 
now take you from there to SysBase. The Exec 
library structure at this location starts with a 
node which starts with a pointer to the next node 
in the system's library list - typing "[" again 
takes us to this library. Typing "+a" moves us 
ten bytes on to the pointer to the name of this 
library; pressing"[" once more takes us to.this 
name - probably "expansion.library". 

] exdirect - go back one level up the indirection 
stack. For example, if you have just followed the 
indirection example given above, then pressing "]" 
3 times will take you back to AbsExecBase (4). Be 
warned that in some versions of ROMWack, typing 
"]" again at this point - ie attempting to 
exdirect with nothing on the indirection stack -
can be fatal and result in another guru alert! 

= alter memory word. Prompts with old value, then 
allows you to enter new value. 

alter register value. Registers which can be 
altered are AO to A6, DO to D7 and U (user stack 
pointer) - eg "!AO". Prompts with old value, then 
allows you to enter new value. 

tab single step - execute next instruction (from 
current setting of PC) and redisplay register 
values etc. Useful for single stepping having 
interrupted execution using Debug(O). 



Debugging and Wack Page 183 

Functions invoked ~ symbols 

Other ROMWack facilities are invoked by typing a "symbol" (such 
as a command like "resume") and pressing return - in ROMWack 
symbols are permanently bound to particular actions. Some 
symbols also have single key alternatives. 

Block memory operations such as "fill" or "find" go from the current 
address up to another address set by "limit" or "A". For 
example, to fill memory from 300000 to 300080 (exclusive) with a 
specified pattern, first set the current address to 300080, then 
type "limit", then set the current address to 300000 and type 
"fill" - the system will them prompt you for a fill pattern. 

ROMWack symbols are as follows: 

regs 

alter 

A limit 
find 

fill 

go 
AD resume 

ig boot 

~t 

clear 

show 
reset 

user 

shows current "register frame", as displayed on entry 
to ROMWack. 

alters memory by giving repeated prompts as for "=". 
Exited by null input (return). 
set limit at current address 
prompts for a pattern of up to four bytes, then 
searches memory from current address up to limit, 
stopping with current address at first occurrence of 
the pattern, or at limit if pattern not found. 
prompts for a pattern of up to four bytes then fills 
memory from current address up to but not including 
limit. 

continue execution from current address. 
continue execution from PC address - ie from after 
where you entered ROMWack, or the next instruction 
after the last one you executed while single stepping. 
re-boot the Amiga. ig??? 

set breakpoint at current address - saves word at 
current address, then inserts a TRAP #15 (opcode $4E4F 
causing exception $2F). If you now continue execution 
by "resume" (or "go" from an appropriate current 
address) then hitting the breakpoint will put you back 
in ROMWack; ROMWack will recognise this as a breakpoint 
entry, and will remove the trap and restore previous 
memory contents, so that "resume" will allow execution 
to continue. You can set up to 16 breakpoints. 
clear breakpoint at current address - ignored if 
current address is not a breakpoint! 
display addresses of current breakpoints. 
get rid of all breakpoints. 

forces the A~ga back into multi-tasking after a crash, 
hopefully to allow disk buffers to be written out 
before you reset. Leaves the problem that caused the 
crash unresolved - ie the task that went guru will 
still have memory, resources or whatever allocated to 



Debugging and Wack Page 184 

it, so you ought to reset anyway. Note that "user" may 
not work at all, eg if the crash in question has 
totally corrupted memory! 

list attempts to display an Amiga "list" starting from a 
node at the current address, and displaying node 
addresses, types, priorities and name. Seemed a bit 
bugged - at least in early versions of 1.2. 

GrandWack 

GrandWack is the full disk-loaded Amiga symbolic debugger, and 
contains a number of features that make life a lot easier than 
when using ROMWack. Most significant of these are the presence 
of a 68000 disassembler, a facility to work in terms of 
meaningful text symbols instead of directly in machine addresses 
(hence "symbolic debugger"), a number of useful standard commands 
relating to Amiga libraries devices etc (OldWack), and a facility 
to define your own commands (Newwack). 

GrandWack symbols 

Symbols in GrandWack fall into the following categories: 

Primitive symbols or commands are the commands understood by Wack 
when loaded, similar to the symbols understood by ROMWack. In 
GrandWack however, ALL actions have symbols associated with them, 
and these symbols may or may not have keys "bound" to them; thus 
the key"?" for example is bound to the symbol "help", which in 
turn invokes the help function. 

Offsets and bases are symbols associated with locations in the 
program currently being debugged. Amiga load files consists of a 
series of "hunks" which in turn contain various block-types, 
including "hunk symbol" blocks containing symbolic information, 
associating text labels with particular offsets in the hunk in 
question (see section 2); this information is normally ignored by 
the AmigaDOS scatter-loader, but it is available for use by 
symbolic debuggers like Wack. The standard scanned libraries 
like amiga.lib already contain symbolic information; if you are 
using Lattice c, you can instruct the compiler to output symbolic 
information about your own labels by using the -d option. You 
can then instruct Wack to load your program and the symbolic 
information by 

Wack <progname> [<arguments>] 

This invokes Wack, and causes it to scatter-load <progname> 
and pass <arguments> to it exactly as if they had been entered 
after the program name from the CLI. As Wack loads, it takes a 
note of the hunk base addresses and associates them with symbols 
'hunk O, 'hunk 1 etc (-hunk O etc in OldWack); it also notes the 
actuaI addresses corresponding to the offsets associated with the 



Debugging and Wack Page 185 

symbols defined within the hunks. GrandWack allows you to use a 
symbol like this whenever you might otherwise use an absolute 
address; thus typing 

'hunk 0 

(or -hunk 0 in OldWack) will set the current address to the start 
of the first hunk in the program, and typing 

_Thing 

will take you to a label Thing (if defined), which might 
correspond to the start of a C function Thing() compiled using 
the -d option, the leading underscore being tacked on by Lattice. 
If you haven't used a symbolic debugger before, you won't believe 
how liberating this is until you try .it! 

WARNING - Lattice 3.1 and later introduce some new hunk 
types, which old versions of Wack (and Alink) won't 
recognise - this causes Wack to fail with 'unrecognised hunk 
type'. Hopefully, this will be fixed when NewWack is 
finally officially released. 

Registers are symbols associated with particular processor 
registers. Examples are !dO to !d7 and !aO to !a6 as in ROMWack, 
plus !pc and !sp for program counter and user stack pointer. 

Macros and variables are symbols associated with user-defined 
commands (NewWack only), and with variables used within those 
commands, just like in any interpreted language. 

Data types 

The data types supported by NewWack are as follows: 

Numbers - the default for these is hex, as in ROMWack; however 
it is possible to use decimal if you want to, by using a leading 
"#". 

Characters - prefaced by a single quote, eg 'A. Control 
characters can be represented using a leading A - eg AC. 

Strings - enclosed in double quotes. All C-type escape sequences 
are allowed - \n for newline, \t for tab, \b for backspace, \0 
for null, \\ for backslash, \' for single quote, \" for double 
quote, and \ooo for byte with octal value ooo. In addition \( 
and \) must be used for open and close parenthesis, in order not 
to confuse NewWack's LISP-like parser. 



Debugging and Wack Page 186 

Key bindings 

As you might expect, Wack maintains linked lists associating its 
symbols with the appropriate addresses; it also maintains lists 
associating individual keys with particular functions, so that 
hitting the key in question is equivalent to typing in the 
associated symbol. In fact, in OldWack, all keys are bound to 
functions, keys like the alphanumerics, delete and cancel being 
bound to functions -GatherKeys, -GatherDelKey, -GatherCancelKey 
which deal with inputting a symbol, and processing it when return 
is pressed. NewWack has the facility to make your own bindings 
by defining your own "key macros". 

Wack options 

Besides the facility to follow Wack with a filename (and 
optionally with the rest of a CLI command line) for symbolic 
debugging, the following options can also be specified: 

-s run GrandWack down serial port, like ROMWack. Note that 
OldWack used to mess up disassembler output to the serial 
port, and also have trouble with "quit" if run with this 
option. 

-r make GrandWack resident so that any Debug(O) calls within 
the program being debugged drop you into GrandWack instead 
of ROMWack. Note that this has nothing to do with being 
"resident" in the sense of AmigaDOS's new "resident segment 
list" (see section 4). Note also that if a "resident" Wack 
1. 004 is being entered using Debug( O), it assumes that" it is 
being called from the same process as it was originally 
invoked from, and gets upset if it isn't. Thus setting up 
Wack -r from one CLI, then calling Debug(O) by entering 
ROMWack in another CLI results in Wack getting very confused 
about where its input is supposed to be coming from - not 
recommended. 

-c specifies a command file from which Newwack is to fetch 
macro definitions, and key-bindings. The default is to use 
s:wack-macros. 

OldWack facilities 

A summary of OldWack 1.0 can be obtained by typing"?" or "help"; 
a full list of key bindings can be obtained by typing "keys", and 
a full list of symbols can be obtained by typing "symbols" (use 
right mouse button to stop them scrolling off the screen before 
you can read them). 

? help 
keys 
symbols 



Debugging and Wack Page 187 

Facilities the same as ROMWack 

OldWack supports most of the single key commands understood by 
ROMWack, now bound to appropriate symbols; it also supports most 
of ROMWack's symbols, but without "limit", "find" and "fill". In 
a few cases key bindings are different - eg "!" is bound to 
"resume" while "'D is bound to "-exit" and in other cases the 
exact effects of the commands are slightly different - eg the 
format of the register frame produced by "regs" isn't the same in 
GrandWack as in ROMWack. Facilities more-or-less the same as 
ROMWack are as follows: 

ret "'J 

I 

spc > 
"'H < 

+n 
-n 
:n 
[ 
] 
= 

show frame 
next-frame 
back-frame 
next-word 
back-word 
next-count 
back-count 
size-frame 
indirect 
exdirect 
assign mem 
set -
clear 
reset 
show 
go 
resume 
-exit 

tab "'I 
regs 
step 

Disassembler 

The GrandWack disassembler is invoked by";" which is bound to 
symbol "disassemble"; this will disassemble the current frame 
(number of lines depends on frame size) and increment the current 
address accordingly. An alternative disassembler is invoked by 
"/", which is bound to "newdisasm". 

; disassemble 
I newdisasm 



Debugging and Wack Page 188 

Commands which display system lists 

The following commands give formatted displays of various lists 
maintained by the system: 

devs, devices 
libs, libraries 
rsrcs, resources 
ports 

all currently resident devices 
all currently resident libraries 
all resident resources 
all public message ports 

mods, modules 
regions 

all resident modules 
all regions of memory in system 
free memory blocks mem, memory 

tasks all tasks running, ready, or waiting 

Note that OldWack "tasks" first looks down the task ready queue, 
then the task waiting list; this means that tasks like 
input.device which will be moving between the two lists while 
Wack is running may appear once, twice, or not at all! 

Commands which format from current address as ~ particular system 
structure 

To use the following commands, you must first set Wack's current 
address to the start of the structure in question: 

showtask 

showprocess 

listsegs 

Miscellaneous 

give details of task control block at current 
address. 
give details of process structure (task control 
block plus other stuff) at current address. 
list segment chain starting at current address. 

Other commands supported by OldWack are as follows: 

execbase 
in ts 
seglist 
@ where 

quit 
magic,xyzzy 

give details of ExecBase structure 
list details of interrupt handling 
list all segments in Wack-loaded program 
gives current address as an offset relative to the 
last symbol in Wack-loaded program, else "you're 
lost". 
return to CLI. 
guess! 



Debugging and Wack Page 189 

New Wack for Old 

A full discussion of all the facilities available in NewWack is 
beyond the scope of this section; it is also, thankfully, 
unnecessary, as NewWack comes with comprehensive documentation -
at last! However, a sununary of changes and new facilities is as 
follows. 

Lots of Irritating Spurious Parentheses 

NewWack has lost most of the built-in Amiga-specific commands 
listed above, but has gained a very powerful general-purpose 
"build your own commands" facility, using a LISP-like syntax. 
This means that if you want NewWack to actually output the value 
of something, you have to put it in parentheses. NewWack 
supports a wide variety of arithmetic operations, using a LISP
like pre-fix notation, so 

+ 2 2 

wil be taken as a command to NewWack to add 2 and 2, but not tell 
you what the answer is (useful). To get an output, you have to 
enter 

(+ 2 2) 

which causes NewWack to output 

Value: 4 

Similarly 

allocmemory 1000 

will allocate a 4096 byte buffer, but not tell you where it is, 
so that there is no way either of using it or of getting rid of 
it (really useful!); the sensible thing to do is 

(allocmemory 1000) 

which will cause NewWack to output a pointer, eg 

Value: 2C2FO 

Newwack capabilities 

An very rough outline of NewWack facilities follows - for 
detailed information see wack.doc. 

Frame control, etc This is very much the same as in OldWack, 
though in some cases the commands have been enhanced - eg 
"disassemble" now labels each line with symbolic information, and 
is more sensible about multi-register instructions. 



Debugging and Wack Page 190 

Arithmetic, logic ! comparison NewWack supports a wide range of 
arithmetic, logical and comparison operations - the latter are 
mainly used in macros. 

Memory access Newwack allows memory to be altered using 
"assign mem", bound to the "="key, just as in ROMWack and 
OldWack~ Newwack also allows you to update locations other than 
the current address, and supports a "peek" operator, allowing the 
contents of memory locations to be used in expressions. NeWWack 
also supports "find" and "fill" but with a different syntax to 
ROMWack. Finally, NewWack supports a "copy" instruction. 

Breakpoints Newwack supports breakpoint set, clear, reset and 
show but with a different syntax to OldWack; it also supports new 
commands "halt" and "is break". 

Single-stepping Single-stepping is accomplished as before with 
the "step" command, though this now takes an optional parameter 
allowing you to execute more than one instruction before 
returning to Wack. To return to normal execution after single
stepping, use "go" - note that in Wack 1.004 there is no "resume" 
command, and that "go" continues from the current PC value, not 
from the current address! Finally, to skip a subroutine call 
while single-stepping, use "stepover". This sets a breakpoint 
immediately after the next instruction, then executes "go". 

Input/output The only output command in Newwack is "print" -
this outputs values according to a data stream like C printf() or 
debug library KDoFmt. Newwack can load programs· and macros when 
first invoked; it also supports commands "load" to load new 
programs or macros, and "bindsymbols" to fetch symbol defin.itions 
from a file without actually loading it. 

Macros The command used by Newwack to define a user-defined 
command is "macro <name> <expression>". If expression starts 
with an open-parenthesis, it can stretch over many lines, and 
will only terminate on a matching close-parenthesis - this allows 
very complex expressions incorporating logical tests etc to be 
built up quite easily. 

Key Macros In much the same way as it lets you define your own 
commands, GrandWack lets you make your own key bindings known.as 
"key macros". 

Control flow A number of commands allow conditional execution 
within macros, the simplest of which is "if", which is a full 
if ... then ... else. Slightly more complex is "select", which 
permits a series of conditions, each with associated "action 
expression", to be evaluated, until one evaluates TRUE. Looping 
is possible using "while"; "for" is also supported, and is 
treated, as inc, as a special case of "while". 

System interaction As mentioned earlier, most Amiga specific 
commands have been removed from Newwack, as they can be 
implemented using macros. However, a few system interaction 



Debugging and Wack Page 191 

commands are needed, particularly to let you do things like 
disabling task switching while examining system lists - these are 
"permit", "forbid", "enable", "disable", "allocmemory" and 
"freememory". 

Internal data structure access Finally, within macros it is 
sometimes useful to examine Newwack's internal data strucures 
directly, working in terms of pointers to the nodes in Wack's 
internal linked lists. A number of commands permit you to do 
this. 

References 

ROMWack is documented in ROM Kernel Manual Volume 1 - though note 
that it has grown some new facilities for version 1.2. 

debug.lib is documented in ROM Kernel Manual Volume 2; an update 
to this should be available with 1.2. 

Source code for SNOOP should be provided with the 1.2 toolkit -
this is both a useful utility in itself, and a good example of 
using debug.lib. 

"NewWack" documentation should be available as wack.doc on the 
1. 2 toolkit . 



Introducing Amiga Graphics Page 192 

• 
• ~- t:. 

*"-.k . ........ 

...... ·:4.·J.}·'·~: .. ;:..·; 
. ·.:.~}:···~~-

Section 6 - Introducing Amiga Graphics 

Illustration by Shelley O'Neil. 



Introducing Amiga Graphics Page 193 

Section ~ = Introducing Amiga Graphics 

Trying to write this last section raises a major problem of scale 
- how can you do justice to the Amiga's graphics capabilities 
without writing something as long as the average ROM kernel 
manual? As usual, we won't try to do this - instead the aim of 
this section is to take a "bottom up" approach, starting with an 
overview of Amiga graphics hardware, then showing how this is 
built on by the graphics, layers and Intuition libraries to 
create views, viewports, rastports, layers, screens, windows, and 
all the other hard work done by the Amiga to make things look 
easy to the user. 

1. Amiga graphics hardware 

The graphics hardware is generally one of the best understood 
aspects of the Amiga - this probably reflects the fact that the 
hardware manual is much more familiar territory to programmers 
coming to the Amiga from 8-bit machines like the 64 than the 
unfamiliar software concepts involved in the ROM kernal manuals. 
We shall therefore give only a brief overview here, without going 
into too much detail about fancy features (like "hold and 
modify") which will be found documented in many sources. 

The graphics facilities of the Amiga are looked after by the 
custom chips Paula, Agnus and D~nise - we agree that there is 
little point in worrying about the exact division of 
responsibility between these chips, and better to think of them 
as a single entity "the PAD". These chips share chip memory (the 
bottom 512K) with the 68000 on the Amiga, either in a civilised 
manner by accessing memory in alternate clock cycles while the 
68000 is performing internal operations, or else in an 
uncivilised manner by blocking the 68000 from bus access until 
the PAD has finished. The amount of uncivilised access ("cycle 
stealing") depends on what the blitter is doing (see below), and 
on the screen resolution and number of colours. It is important 
to realise how much difference this can make - the amount of 
cycle stealing varies from zero for 16 colours lo-resolution 
display, to all of the display time for 16 colours high 
resolution, which means that the processor can only access the 
bus while the beam is off the screen. If you have "fast memory" 
(real fast memory - ie expansion memory) attached this isn't too 
much of a problem, as the 68000 is only blocked from the bottom 
512K - and from the new "slow memory" at $COOOOO - and can still 
access real fast memory at full speed. For an Amiga without 
expansion memory it can make quite a difference however. The 
relationship between the 68000, the PAD, and chip and fast memory 
is illustrated in figure 1. 



Introducing Amiga Graphics Page 194 

1.1 Graphics hardware elements 

The basic elements of the PAD's graphics capabilities are as 
follows: 

The playf ield hardware handles forming a basic display by 
accessing "bit-planes" (essentially screen RAM that can be 
located anywhere in the PAD's memory) and a "colour table" 
or "palette" indicating which of the Amiga's 4096 possible 
colours are to be used in the current display. 

The sprite hardware handles moving up to eight independent 
graphic objects in front of the basic playfield. Hardware 
sprites are surprisingly limited on the Amiga compared with 
the 64; there are only eight of them, and they can be only 
up to 16 pixels wide, though they can be any height. These 
limitations are largely overcome by some cunning software 
making use of other Amiga hardware resources; sprites can be 
"joined together" to increase their effective width, and 
they can be "multiplexed" using the copper to increase the 
apparent number of them ("virtual sprites"). Sprites are 
mainly used for fairly simple, rapidly moving graphics 
objects on the Amiga - more complex (but slower moving) 
objects use "blitter objects" or "bobs". 

The graphics coprocessor or copper is used to make changes 
to the display sychronised with the current beam position. 
This includes changing the bit-plane pointers telling the 
PAD where to fetch its graphics data, and changing the 
colour table values; it is this which is fundamentally 
responsible for the Amiga's ability to support overlapping 
"screens" (an Intuition concept) with different resolutions, 
colours etc, usually running different applications. 

The blitter or bimmer is the Block Image Transfer (or, as 
Amiga now prefer, Block Image Manipulator) device which is 
responsible for most of the Amiga's animation capabilities. 
The blitter makes use of direct memory access (DMA) in Amiga 
chip memory; it takes input from three different "input 
streams", combines them in a choice of 256 different 
possible logical operations specified by "minterms", and 
outputs the result on an "output stream". Thus it is 
possible for example to take three input streams 
representing a graphics background, a mask, and a moving 
object, and output them into bit-planes corresponding to 
part of the current screen display - this is the basic 
technique used for animation with "bobs". 



Introducing Amiga Graphics 

"iickstapt 
•1tOl'f 
o• :ROM 

IN 
l!>epusion 
lilt IAN 

IO claips 

&8111 

---··-1 s~umil 

Figure ! .:. Amiga Hardware Overview 

Biiplanes - anuhe'e in chip neno'y -
~Pl~ct coloul' 1111 

!T 
:.1.: 
i._; 

]..--.......... 
~ 

~---··--·-······-·------·-···--
Figure ~ .:. PAD playf ield access 

Page 195 

contents or 
cololD' ~es 3 
detel'Hine 
cololll' output 
at this point 

:red - 8 
green - 4 
blue - 15 



Introducing Amiga Graphics Page 196 

Playf ield access 

The Amiga playf ield hardware contains registers specifying the 
various graphics modes available (lo-res or hi-res, interlace on
or-off and "special effects" like dual playf ield and hold-and
modify), pointers to up to 5 "bit-planes", and colour registers 
for up to 32 colours. The basic mechanism used by the PAD to 
determine what colour to display a given pixel is as illustrated 
in figure 2, and can be summarised as follows: 

1. The PAD fetches one bit of information from each bit-plane 
and interprets the result as a binary number from O to 3 for 
2 bit planes, O to 7 for 3 bit planes etc, up to 0 to 31 for 
5 bit planes. 

2. This number tells the PAD which colour register to use. 
Each colour register contains a 12-bit number specifying the 
amount of red (bits 8 to 11), green (bits 4 to ·7) and blue 
(bits O to 3) in the final colour~ 

The fact that the bit planes specify a register number rather 
than an actual colour value is referred to as "colour 
indirection"; changing the colour register contents allows 
colours to be changed very rapidly, allowing a variety of 
effects, such as "colour cycle animation" as used in many Amiga 
paint packages and in the famous "bouncing ball" demo. 

Note that the fact that the PAD registers contain pointers to the 
bit-planes in internal registers means that the bit-planes can be 
anywhere in chip memory, don't have to be next to each other, and 
·can be in any order. This is reflected in an important graphics 
structure called a BitMap which contains pointers to the bit
planes used by any particular graphics object, as explained 
below. 

The role of the Copper 

The 64 contains a simple form of "graphics co-processing" in the 
form of "VIC chip interrupts"; the chip controlling the video 
keeps an eye on the position of the video beam, and is able to 
interrupt the processor when the beam· reaches a specified 
position, allowing a number of "split screen" tricks to be 
implemented. 

This is taken a very great deal further in the Amiga, in that the 
PAD contains a "graphics coprocessor" sychronised with the 
position of the video beam, running its own simple program which 
is known as a "copper list". This runs on the odd system cycles 
like the 68000 and unlike most of the PAD's DMA; as such it takes 
priority over the 68000, and over any odd-cycle access performed 
by a "nasty" blitter. The copper is capable of interrupting the 
CPU when the video beam reaches a specified position as in the 
64; however, it is capable of much more than this, the most 
important new facility being the ability for the copper to modify 



Introducing Amiga Graphics Page 197 

other registers in the PAD directly when the beam reaches a given 
position, allowing things like split-screen tricks to be 
implemented without any CPU intervention. Note that the copper 
can directly access only PAD registers; to affect memory in the 
rest of the system, it can either cause a 68000 interrupt and let 
the CPU do it, or it can do it more directly by writing to the 
registers which control the blitter. 

(Allowing the copper to program the blitter and hence to affect 
external memory is potentially powerful but also very dangerous; 
for this reason the PAD copper control register contains a 
"danger bit", and the copper is prevented from accessing blitter 
control registers unless this bit is set. Using the copper and 
the blitter together also causes sychronisation difficulties, as 
the copper must wait for a "blitter finished" interrupt before 
doing tryin~ to do anything else with the blitter - this is 
achieved using a "blitter finished disable bit'' in the actual 
copper instructions.) 

The copper has a distinctly limited instuction set, being limited 
to only three instructions, each of which occupies two words (one 
longword): 

WAIT 
MOVE 

SKIP 

till the beam reaches a specified position 
16-bits of data from the second word into a PAD 
register specified by the first word 
the next instruction if the video beam has passed 
a specified position 

In a normal Intuition-managed Amiga display of several 
overlapping screens, the copper list will just consist of a 
series of WAIT and MOVE instructions, to set up the playfield 
hardware for the first screen to be displayed, wait until the 
beam reaches a position where the screens change, then adjust the 
playfield hardware for the next screen, etc. 

The PAD contains a number of registers associated with the 
copper, an important one of which is a pointer telling the copper 
where to start processing its copper-list. The copper's "program 
counter" is automatically loaded with this value at the start of 
each vertical blanking interval - ie while the beam is off the 
screen ready to start a new frame. The copper then processes its 
instruction list as the beam travels down the screen; note that 
the list should be in a sensible order, so that an instruction to 
wait for vertical position 150 comes after an instruction to wait 
for vertical position 100, not before it! The copper list is 
usually terminated by an instruction to wait for the impossible 
such as line 255, column 254; the copper is rescued from this by 
the next vertical blank, which causes it to be automatically 
restarted at the start of its instruction list. 



Introducing Amiga Graphics 

0001b4a8 
0001b4ac: 
0001b4b0 
0001b4b4 
0001b4b8 
01)1) 1 b 4b c: 
0001b4c:O 
0001b4c:4 
0001b4c:8 
0001b4c:c: 
0001b4d0 
0001b4d4 
0001b4d8 
0001b4dc: 
0001b4e0 
0001b4e4 
0001b4e8 
0001b4ec: 
0001b4f0 
0001b4f4 
0001b4f8 
0001b4fc: 
0001b500 
0001b504 
0001b508 
0001b50c: 
0001b510 
0001b514 
0001b518 
0001b51c 
0001b520 
0001b524 
0001b528 
0001b52c 
0001b530 
0001b534 
0001b538 
0001b53c 
0001b540 
0001b544 
0001b548 
0001b54c 
0001b550 
0001b554 
0001b558 
0001b55c 
0001b560 
0001b564 
0001b568 
0001b56c 
(1(101 b570 
0001b574 
0001b578 
0001b57c 
0001b580 
0001b584 
0001b588 
0001b58c 

2801 
0180 
0182 
OlaO 
01a2 
01a4 
01a6 
01a8 
(llaa 
Olac 
Olae 
OlbO 
01b2 
01b4 
01b6 
OlbB 
01ba 
Olbc 
01be 
OOBe 
0100 
0104 
0090 
0092 
0094 
0102 
0108 
OOeO 
00e2 
2901 
0100 
9101 
0100 
9301 
0180 
0182 
0184 
0186 
OlaO 
01a2 
01a4 
01a6 
01a8 
Olaa 
01ac 
Olae 
OlbO 
01b2 
01b4 
01b6 
01b8 
Olba 
01bc 
Olbe 
008e 
0100 
0104 
0090 

fffe 
0777 
Off f 
0000 
Od22 
0000 
Of ca 
0444 
0555 
0666 
0777 
0888 
0999 
Oaaa 
Obbb 
Occc 
Oddd 
Oeee 
Of ff 
0581 
(>3(>2 
0024 
40c1 
003c 
OOdO 
0000 
0000 
0001 
f780 
fffe 
9302 
fffe 
0302 
fffe 
0777 
Off f 
0002 
Of 1'1 
0000 
Od22 
0000 
Of ca 
0444 
0555 
0666 
0777 
0888 
0999 
Oaaa 
Obbb 
Occc 
Oddd 
Oeee 
Of ff 
0581 
0302 
0024 
40c1 

WAIT <0028,0000) 
MOVE <0180,0777> 
MOVE < 0182, 0 ff f > 
MOVE (01a0,0000> 
MOVE <01a2,0d22> 
MOVE <Ola4,0000> 
MOVE C01a6,0fca> 
MOVE <OlaB,0444> 
MOVE <Olaa,0555> 
MOVE <Olac,0666> 
MOVE ((11ae, 0777) 
MOVE <Olb0,0888) 
MOVE C01b2,0999) 
MOVE C01b4,0aaa) 
MOVE COlb6,0bbb) 
MOVE COlbS,Occc> 
MOVE C01ba,Oddd) 
MOVE COlbc,Oeee) 
MOVE C01be,Offf) 
MOVE COOBe,0581) 
MOVE (0100,0302> 
MOVE (0104,0024> 
MOVE < 0090, 40c 1 ) 
MOVE C0092,003c) 
MOVE < 0094, OOdO > 
MOVE co102,oooo> 
MOVE <0108,0000> 
MOVE COOe0,0001) 
MOVE COOe2,f780> 
WA IT <0029, 0000 > 
MOVE C 01 OO, 9302 > 
WAIT (0091,0000) 
MOVE <0100,0302> 
WA IT < 0093, 0000 > 
MOVE <0180, 0777> 
MOVE <0182, Of ff> 
MOVE <0184,0002> 
MOVE <O 186, Of 11 > 
MOVE COla0,0000) 
MOVE <01a2, Od22> 
MOVE C01a4,0000> 
MOVE <01a6, Ofca) 
MOVE C01a8,0444> 
MOVE <Olaa,0555> 
MOVE <Olac,0666) 
MOVE <Olae,0777>" 
MOVE <Olb0,0888) 
MOVE <O 1 b2, 0999 > 
MOVE C01b4,0aaa> 
MOVE CO 1 b6, Obbb > 
MOVE <Olb8,0ccc> 
MOVE <Olba,Oddd> 
MOVE COlbc,Oeee> 
MOVE <Olbe,Offf) 
MOVE COOSe,0581> 
MOVE (0100,0302> 
MOVE <0104,0024> 
MOVE < 0090, 40c 1 > 

Page 198 

;background till line 40 
colO top vp = emacs 
coll <1 bitplane med-res> 
col16 colours 16 to 19 
col17 
col 18 
col 19 
col20 
col21 
col22 
col23 
col24 
col25 
col26 
col27 
col28 
col29 
col30 
col31 

are sprite 0 
- intuition pointer 

colours 20 to 31 are 
set up for other sprites 

DIWSTRT - display window start 
BPLCONO - bit plane display off 
BPLCON2 - bit plane priority 

,DIWSTOP - display window stop 
;DDFSTRT - display data fetch start 
;DDFSTOP - display data fetch stop 
;BPLCON1 - bit plane scroll value 
;BPL1MOD - odd bit plane modulo 
;BPLlPTH - bitplane 1 at 1f780 
;BPL1PTL 
;wait for line 41 

BPLCONO - bitplane display enabled 
display emacs vp till line 145 
BPLCONO - bitplane display off 
wait ti 11 line 14 7 
colO 
coll 
col2 
col~5 

col 16 

;col20 

;col31 
;DIWSTRT 
;BPLCONO 
; BPLCON2· 
;DIWSTOP 

next vp - workbench 
<2 bitplane med-res) 

intuition pointer 

other sprites 

Listing 1 - Copper list disassembly 



Introducing Amiga Graphics 

0001b590 
0001b594 
0001b598 
0001b59c 
0001b5a0 
0001b5a4 
0001b5a8 
0001b5ac 
0001b5b0 
0001b5b4 
0001b5b8 
0001b5bc 
0001b5c0 
0001b5c4 
0001b5c8 

0092 
0094 
0102 
0108 
01 Oa 
OOeO 
00e2 
00e4 
00e6 
9401 
01 (1(1 

ffdf 
3601 
0100 
ffff 

003c 
OOdO 
0000 
0000 
0000 
0001 
11b8 
0001 
61b8 
fffe 
a302 
fffe 
fffe 
0302 
fffe 

MOVE C0092,003c) 
MOVE <0094, OOdO) 
MOVE C 0102, 0000) 
MOVE C 0108, 0000 > 
MOVE C010a, 0000> 
MOVE C OOeO, 0001 > 

MOVE COOe2,11b8> 
MOVE C 01)e4 , 0001 > 
MOVE C00e6,61b8> 
WAIT (0094,0000) 
MOVE C0100,a302> 
WAIT <OOff,OOde) 
WA IT C 0036, 0000) 
MOVE (0100,0302> 
WAIT <OOff, OOfe> 

;DDFSTRT 
;DDFSTOP 
;BPLCONl 
;BPL1MOD 
;BPL2MOD 

Page 199 

;BPL1PTH bit plane 1 at 111b8 
; BPL1PTL· 

BPL2PTH bit plane 2 at 161b8 
BPL2PTL 
wait till line 148 
BPLCONO - bit plane display enab 
wait till line 255,col222 
pardon? 
BPLCONO - same as before??? 
wait line line 255,col254 

Copper list for two ViewPort display -
WorkBench screen pulled down in front of Emacs. 

Listing 1 (continued) 



Introducing Amiga Graphics Page 200 

Note that the use of the copper is not an optional extra in the 
Amiga, but is an integral part of the mechanism for even the 
simplest display. This is because the copper must be used to set 
up the bitplane pointers used by the playf ield hardware at the 
start of every screen display; if this isn't done then the bit
plane pointers won't be reset, so the screen will go crazy after 
at most one single frame! 

Listing 1 shows a copper list disassembly for a simple display of 
the workbench (2 bit-plane, med-resolution) "pulled down" in 
front of the MicroEMACs editor (1 bit-plane, med-resolution). 
The copper list disassembler program used to generate this is 
very simple, and is printed at the end of this section. You can 
use this to perform further experiments if you want; 
alternatively, a more powerful copper list disassembler can be 
found on the Fish disks. 

1.4 Tricks with playfield hardware 

The Amiga PAD contains a register containing an off set known as 
the modulo to be added to the PAD's bitplane pointers between 
each scan line and the next. This allows the actual bitplanes to 
be larger than the physical screen display (see Fig 3), which 
then forms a "window" (not in the Intuition sense) onto the 
larger display. It can be seen that adjusting the bitplane base 
address and the modulo allows a variety of smooth-scroll tricks 
to be implemented. 

The modulo is also involved in interlace mode on the Amiga. In 
this mode, the apparent vertical resolution is doubled by first 
outputting a screen consisting of every second line in the 
display, then outputting another screen consisting of the 
"missing" lines, offset by half a screen scan-line. Missing 
every second line is achieved by setting a modulo of 40 (40 bytes 
corresponds to 40*8 = 320 pixels for a low-res screen with 
interlace); showing first one screen then the other is achieved 
by having two copper lists, which are used for alternate frames. 

Two special modes available from the Amiga hardware are "dual 
playfield", and "hold and modify" modes, each involving up to six 
bit-planes. In dual playfield, the bitplanes are divided into 
two groups, one of which appears "behind" the other - ie the 
"back" playfield is displayed where.the "front" playfield is 
showing background (colour register O). In hold-and-modify (HAM) 
mode, two bitplanes specify either normal colour selection using 
the remaining bitplanes, or else a colour value (red green or 
blue) to "hold and modify" - the remaining bitplanes then specify 
the new value of this register. Further information about these 
modes can be found in the hardware and other manuals. 



Introducing Amiga Graphics Page 201 

1.5 More about the blitter 

While the blitter is principally used for graphics image 
manipulation, it is in fact generally useful for operations 
involving blocks of memory in the bottom 512K - it is much faster 
at this sort of thing than the 68000 - and is therefore also used 
for non-graphics purposes, such as rapid motion of data in disk 
buffers. The blitter can operate either in "nice" mode in which 
it uses alternate clock cycles not needed by the 68000, or in 
"nasty" mode in which it forces the 68000. off the bus until it 
has finished - this is not an unreasonable thing to do during 
block transfers, at which the blitter is much more efficient than 
the 68000. Note that the existence of "nasty mode" is another 
good reason for the division of "chip" and "fast" memory. 

Besides its essential function of moving blocks of memory 
around (and perhaps modifying them in the process), the blitter 
has another mode in which it can be used to generate lines and 
area fills directly into bitplane memory. This secondary 
function of the blitter is used by the graphics library line
drawing and area-fill routines. 

2. Graphics system software 

The graphics capabilities of the Amiga are controlled by three 
libraries of routines as follows: 

graphics.library - controls the blitter and copper in a 
consistent with the Amiga's multi-tasking environment. 
the basic graphics capabilities to provide a variety of 
for drawing and animating the display. 

way 
Builds on 
routines 

layers.library - provides some of the routines needed to treat a 
display as a number of overlapping "layers", as used for example 
by Intuition Windows. The distinction between the graphics and 
layers libraries is fairly arbitrary, and was probably a matter 
of development convenience as much as anything else. This is 
reflected in the fact that most of the drawing routines in the 
graphics libraries pay attention to layers structures if present, 
and, conversely, the layers routines make use of lower-lever 
concepts called "regions", which are themselves manipulated using 
routines from the graphics library. 

intuition.library - provides a consistent interface to the user 
by building on routines in the graphics and layers libraries to 
provide things like Screens and Windows. Appears both as a 
library which can be invoked by application software, and as an 
"input handler" in the handler-chain maintained by the input 
device (mouse keyboard etc input coordinator); in its latter 
incarnation is capable of handling things like window moving, 
resizing etc in a way transparent to the application program, and 
of sending messages to the application program telling it things 
of interest to it using Intuition Direct communication Message 
Ports ( IDCMPs) . 



Introducing Amiga Graphics Page 202 

Note that in the process of providing a standard interface, the 
Intuition library introduces some restrictions - eg to standard 
screen sizes. 

The graphics library 

The Amiga graphics library can be viewed as consisting of various 
levels as follows: 

level 0 

level 1 
level 2 
level 3 
level 4 

level 5 

level 6 

- elementary playfield control. Rasters and 
BitMaps. 

- elementary copper control. Views and ViewPorts 
- elementary sprite control. Simple sprites. 
- elementary blitter control. 
- non-layered drawing primitives. Non-layered 

RastPorts. 
- layered drawing primitives. Regions, layers, and 

layered RastPorts. 
- elementary animation. GELs (graphics elements) 

consisting of virtual sprites (VSprites) and 
blitter objects (Bobs) 

level 7 - complex animation. Animobs. 

In the rest of this section we will try and give an overview of 
levels O to 5; discussions of animation will be found in many 
sources, including ROM kernel manual volume 2. 

Elementary playf ield control 

Probably the lowest level graphics structures available are the 
ColorMap containing a pointer to a ColorTable, which itself 
contains the actual colour register values used by part of an 
Amiga playf ield, and the BitMap containing pointers to the actual 
bit planes used in the display; these bitplanes are also known as 
the "raster". The BitMap structure is as follows: 

BitMap: Number of bytes per row 
Number of rows 
Flags 
Number of bit planes (depth) 
Padding byte 
Up to eight pointers to bi~ planes. 

Note that this structure contains some redundancy; the largest 
number of bitplanes used by an ordinary Amiga display is 5, and 
the largest used by special modes such as "dual playfield" is 6; 
however the BitMap structure supports up to 8. The idea of this 
is to support upward compatibility with future-Amigas-that-may
be-to-come with even more graphics capability - there is a lot of 
this kind of redundancy in the graphics and Intuition structures. 



Introducing Amiga Graphics Page 203 

Big hihnp __ .,..._.,,,;.'~·i ----------1 
- 7 st.wts li~N~ 

·Moduln· -
fhi5 offi;pt 
Jth1et1 tn PAb 

Bi tl"l~.P corresponding 
to visible s~reen 
s t~.r ts here ---

.~-----

bitplan~ pointP,5 
between ~can 

.,_ ..... _......,.h..!li hP5. 

Figure ~ = Big bitplanes and Modulo 

Vie\ifor t 
sof tvJ.re 

Linked. 
list of 
VievPorts 

Viet1 
... o I oto'fiap :~ Co I otlJl Table : 

I 
I 

! Bitplanes 

J 
... : ___ ___,: Copper chanses 

olomiHap :~ ColoUJ'Ilble: PAD pointeJ's 
be tween V-Po:r ts 

Bit.planes 

Figure ! = Views and viewports 

: 
: 
~ 
t 



Introducing Amiga Graphics Page 204 

It is for the same reason that the ColorMap structure points to 
the actual hardware ColorTable rather than simply containing 
register values; future Amigas with different colour hardware 
should be supportable provided user software goes through the 
routines provided (SetRGB4CM etc), and doesn't attempt to access 
the ColorTable directly. 

Note the following further points about BitMaps: 

1. BitMap structures are used to represent the actual "screen 
RAM" currently in use by the Amiga, eg the current Intuition 
Screen. However, they can also be used to indicate sub
elements (such as Windows) within the current display, and 
for bits of display which aren't currently on the screen, 
such as the obscured part of a "smart refresh" Window. This 
can be confusing! 

2. As mentioned above, the use of the modulo facility in the 
PAD allows the actual bitplanes to be larger than the 
physical screen display (see Fig 3), which then forms a 
window onto the larger display. The offsets to be used for 
this kind of trick are held in another structure called 
Rasinfo, which itself points to the BitMap. 

Copper control from the graphics library - Views and ViewPorts 

As mentioned above, the Amiga copper can be used to change the 
PAD playf ield registers part of the way through the screen 
display, allowing the screen to be divided into a number of 
separate horizontal slices (corresponding to bits of different 
Screens under Intuition). Each horizontal slice is associated 
with a graphics structure called a ViewPort as follows: 

ViewPort: pointer to next ViewPort in display 
pointer to ColorMap structure for this slice 
pointer to copper list to set up display for this slice 
pointer to copper list to set up sprites for this slice 
pointer to copper list to get rid of sprites after this slice 
pointer to user copper list 
width and height of this slice 
x and y off set of this slice 
modes - interlace, dual playfi_eld on/off etc 
reserved 
pointer to Rasinfo for this viewport 

The various ViewPorts are tied together in a linked list, headed 
by a structure called a View: 

View: pointer to first ViewPort in this display 
pointer to hardware copper list for this display 
(pointer to second copper list for alternate frames in 

interlaced display) 
x,y offsets for whole display 
modes - overall interlace on/off, genlock on/off, etc 



Introducing Amiga Graphics Page 205 

The relationship between View, ViewPorts, ColorMaps, Rasinfo and 
BitMaps is illustrated in figure 4. The ViewPort and View 
structures are very much concerned with copper list manipulation; 
each ViewPort contains pointers to up to four "intermediate 
copper lists" containing copper instructions relating to the 
playfield, to sprites (two lists), and to any special copper 
tricks wanted by the user. These intermediate lists of 
instructions are then merged together (with WAIT instructions in 
a sensible order), and linked with the lists corresponding to the 
other ViewPorts in the current View to produce the final "real" 
copper list for actual execution by the copper hardware. 

4.1 Graphics library routines using ViewPorts 

The graphics library routines concerned with ViewPorts can be 
divided into categories as follows: 

1. Copperlist manipulation. The lowest level graphics library 
routines involved in copper list and ViewPort management are 
the routines and macros concerned with setting up and adding 
instructions to copper lists directly; these are useful when 
constructing "user copper lists". 

2. Creating ViewPorts. A number of routines are provided to 
allocate and deallocate memory used by the ViewPorts 
(BitMaps, ColorMaps etc), to initialise the View and 
ViewPort structures themselves, and to actual create and use 
the copper list corresponding to a given view. 

3. Manipulating ViewPorts. Once a display has been created, it 
can be manipulated by smooth-scrolling ViewPorts (by 
manipulating Rasinfo), and/or by changing colour values 
used in ViewPorts. 

4. Miscellaneous routines exist to read current beam position 
(though by the time you get this it may be out of date due 
to task switching!), to wait for top of next video frame, 
and to wait till the beam reaches the bottom of a specified 
ViewPort. 

5. Getting rid of ViewPorts. When a ViewPort is no longer 
needed - eg because a new View has been loaded - memory used 
in creating its various sub-structures can be deallocated 
using various routines to free memory for its copper lists 
and bitplanes. · 

See Table 1 for a summary of graphics routines concerned with 
ViewPorts. 



Introducing Amiga Graphics Page 206 

Table 1 - Graphics library routines for ViewPorts 

Copperlist manipulation 

CINIT 
CB ump 
CWAIT 
CMOVE 
CEND 

(macro) 

(macro) 
(macro) 
(macro) 

InitBitMap 
GetColourMap 
SetRGB4CM 

InitView 
InitViewPort 
MakeVPort 

MrgCop 

Load View 

ScrollVPort 

SetRGB4 
LoadRGB4 
GetRGB4 

VBeamPos 
WaitTOF 
WaitBOVP 

- initialise intermediate copper list 
- increment copper list pointer 
- insert WAIT instruction then CBump 
- insert MOVE instruction then CBump 
- insert WAIT for position 255,254 to terminate list 

Creating ViewPorts 

- initialise a BitMap structure 
- allocate memory for ColorMap and ColourTable 
- set one colour in the ColourTable structure 

pointed at by this ColourMap. 
- initialise a View structure to default values 
- initialise a ViewPort structure to default values 
- construct an intermediate copper list to set up 

the display for this ViewPort 
- merge together all the intermediate copper lists 

for the various ViewPorts into one "real" copper 
list for the whole View 

- actually make the copper execute the copper list 
for this View 

Manipulating ViewPorts 

- change current copper list to reflect new 
ViewPort Rasinfo - used for "smooth scroll". 

- set a colour reg value for specified ViewPort. 
- set all colour reg values from a table. 
- read a colour reg value for specified ViewPort. 

Miscellaneous 

- return vertical beam position 
- wait for top of next video frame 
- wait till beam reaches bottom of ViewPort. 

Getting rid of ·viewPorts 

FreeCopList - free memory for an intermediate copper list 
FreeVPortCopLists - free memory for all intermediate copper 

FreeCprList 
FreeColourMap 
FreeRaster 

lists associated with ViewPort 
- free memory for "real" hardware copper list 
- free memory for ColourMap and ColourTable 
- free memory for a bitplane 



Introducing Amiga Graphics Page 207 

4.2 ViewPorts and Screens 

As mentioned above, the graphics concept of a ViewPort is very 
closely linked to the Intuition concept of a Screen; Intuition 
Screen structures actually contain ViewPort structures. However, 
it is useful to realise the distinction. An Intuition Screen is 
a fairly high level concept and has a title, push and pop gadgets 
etc; it may be considered to be "behind" other screens, even to 
the extent of not being currently visible on the display at all. 
A ViewPort on the other hand corresponds strictly to a horizontal 
slice of the current display, which may (but doesn't have to be) 
part of an Intuition screen. The relationship between 
Intuition's notion of things and the same setup as seen by the 
graphics library is illustrated in Figure 5, for a setup 
involving three screens, one of which has been pulled down, and 
one of which is currently entirely obscured. 

5. Elementary sprite control 

The mechanisms used for elementary sprite control on the Amiga 
are known as "simple sprites"; this is in contrast with the more 
complex mechanism used in the animation system (GELs) which are 
known as "virtual sprites". 

Both simple and virtual sprites are controlled using the copper, 
using two additional intermediate copper lists associated with 
each ViewPort; however, the mechanism used to control virtual 
sprites is much more complex, and is known as the "virtual sprite 
machine". Simple sprites are "stolen" from this machine - ie 
individual hardware sprites are flagged as no longer available 
for use with the virtual sprite machine, but are allocated 
instead to an application program. The principal structure used 
in this connection is the SimpleSprite 

SimpleSprite: pointer to data used for sprite cont'rol 
height of simple sprite 
current x,y position of simple sprite 
number of simple sprite (O to 7) 

Routines used to control simple sprites are as follows: 

Getsprite - attempt to allocate hardware sprite for your 
exclusive use 

ChangeSprite - change appearance of sprite 
Movesprite change position of sprite relative to given 

ViewPort, or the current View. 
FreeSprite - return sprite for use by others 



Introducing Amiga Graphics Page 208 

6. Elementary blitter control 

At the lowest level, the graphics library provides elementary 
contention management, to prevent one task trying to do something 
with the blitter, while another task is in the middle of doing 
something else. The simplest routines which handle this are the 
following: 

OwnBlitter - go to sleep until the blitter is free for your 
exclusive use. Should be followed by a 
WaitBlit. 

WaitBlit wait until the blitter is really free - ie 
until it has finished all internal operations 
involved in a blit currently in progress. 

DisownBlitter - release blitter for use by others. 

Less anti-social are routines which allow you to queue a request 
for a blit, using a structure called a "bltnode": 

bltnode: pointer to next bltnode, set up by QBlit or QSBlit 
pointer to your blitter-hitting function. 
flag indicates if cleanup function needed 
synch position for synchronised blit 
pointer to cleanup function (optional) 

These routines are as follows: 

QBlit 

QSBlit 

- queue an ordinary (not beam synchronised) 
blitter request 

- queue a synchronised blitter request - ie one to 
be done when the video beam reaches a specified 
position. Takes priority over non-synchronised 
blits. 

When your bltnode is processed, your blitter-hitting function is 
called repeatedly until it returns a zero; the cleanup function 
is then called if specified. This allows multiple blits - eg 
blits involving several bit-planes - to be performed as closely 
as possible together. 

6.1 Bottom line Amiga graphics 

Once you have got hold of a ViewPort and some BitPlanes to write 
into (the easiest way of doing this is to open a Screen using the 
new SCREENQUIET flag in Intuition), and once you know how to 
control sprites and the blitter using the elementary routines 
discussed above, then you are in a position to start writing 
Amiga graphics applications. This is appropriate in situations 
where you want maximum possible speed, but aren't worried about 
fancy features like the "layered RastPorts" discussed below - eg 
for games applications. It is important to realise that this 
provides a mechanism for hitting the "screen RAM" and the blitter 
hardware directly for maximum performance, but in a way which is 
legal and won't screw up the rest of the system. 



Introducing Amiga Graphics 

scJ\een 3 
SCPeen 2 (ObSCUl'ed) r---··-··- ·-~ 
scPeen 1 
{pulled 

down) 

As reen by Intuition 
'Stat't of linked list 
of Intuition sc~eens 

screen ts: 
VieuPort l 

scJ\een 1 
st:JluctUPe 

I Vi el!Por· t 1 

VieMP011t 2 

Page 209 

As seen by !ll"•l.l"Jhi er. libr1 3PY 

View st~uctW'e - st~t ol 
link@d list of Vi@uPo~ts 

scr·een 3s 
ieMPort 

scJ\een 3 
st:JluctUPe 

Figure ~ = ViewPorts and Screens 

VirlPo:rt 

VitwPOJ\t's 
Bi tM;ip 

Routines h~dling 
dltawing v __ -----

RastPo:rt 

Figure ~ = ViewPorts and RastPorts 

:RastPoJ'lt' s 
Bi tHap 



Introducing Amiga Graphics Page 210 

Non-layered drawing primitives = non-layered RastPorts 

The basic system structure concerned with copper-list 
manipulation and the display of graphics is the ViewPort; the 
basic structure consisting with the actual creation of graphics 
images (drawing or "rendering") is the RastPort. If you are 
doing all your own drawing by directly accessing ViewPort 
bitplanes using the CPU or the blitter as discussed above, then 
you don't need to worry about these; however, if you want to use 
any of the system's drawing routines, then you need a RastPort. 

The first item in a RastPort is a pointer to a Layer structure; 
this is crucial in determining the behaviour of the RastPort. 
Generally speaking, if this pointer is NULL, then the graphics 
routines assume that they don't need to worry about layers (eg 
overlapping windows), and that they don't need to worry about 
clipping - ie if an effort is made to draw outside the RastPort's 
associated BitMap (see below), then the graphics routines will go 
ahead and draw, causing unknown damage! However, if you don't 
mind handling your own clipping, and if you don't require the 
full capability of drawing into overlapping windows, then this is 
much faster than drawing to a layered RastPort as discussed 
below, and provides a good compromise between handling everything 
yourself, ~nd going through the full "layered RastPort" approach, 
which handl~s all sorts of things for you, but has some time 
overhead. 

Of equal importance is another pointer to a BitMap structure, 
telling the graphics routines where to draw to. This structure 
is the same as that used by ViewPorts; a RastPort's BitMap may be 
exactly the same as a ViewPort's; it may be a subset of it if you 
want to draw into just part of a ViewPort, or it may not 
correspond to part of a current ViewPort at all - eg if you want 
to draw to a region of chip memory which is currently off the 
visible screen, then swap it in later. A possible relation 
between a ViewPort's and a RastPort's BitMaps is illustrated in 
figure 6. There is an obvious relation between RastPorts and 
Windows; however be warned in advance a Window is in fact a 
layered RastPort which means that life is a bit more complicated 
than shown in figure 6, as explained below! 

"Pens" and RastPorts 

The notion of a pen is used in two contexts in a RastPort. In 
the simpler case, "pen number" is used simply to specify a colour 
register number to use in a drawing operation - ie what number 
(bit pattern) to to "JAM" in the bitplanes. However, the 
RastPort contains three special "pens" for drawing operations as 
follows: 



Introducing Amiga Graphics Page 211 

FgPen (APen) foreground pen using for drawing operations. 
The RastPort remembers a current colour (pen 
number) for FgPen, and a current pen position. 

BgPen (BPen) - background pen (colour register number) used when 
JAMing both foreground and background into 
bitplanes (drawing mode JAM2) 

AOLPen (OPen) - pen (colour register number) used for area-fill 
operations. 

7.2 RastPort structure 

Stuff of interest in a RastPort structure is as follows: 

RastPort: 

Pointer to Layer structure for layered RastPort 
Pointer to BitMap structure - where to draw to 
Pointer to pattern to use for area fills 
Pointer to "TmpRas" - temp storage for area fill, text, etc. 
Pointer to "Areainfo" - info for area fill operations 
Pointer to "Gelsinfo" for animation 
Write mask 
Foreground pen - which colour reg to use for foregrounds 
Background pen - which colour reg to use for backgrounds 
Areaf ill pen - which colour reg to use for block (area) operatio 
DrawMode - put in foreground only (JAMl), foreground and 

background (JAM2), xor drawing (COMPLEMENT) or invert 
(INVERSEVID) 

Number of words in areaf ill pattern 
Flags 
Line pattern for textured lines 
Current "pen" position for move, draw etc 
Current "minterms" for blitting - reflect current DrawMode etc 
Current pen width and height 
Pointer to current text font 
Text style, flags, height, width, baseline position & spacing 



Introducing Amiga Graphics Page 212 

7.3 Graphics library routines using RastPorts 

All the Amiga graphics drawing ("rendering") routines make use of 
RastPorts - there are quite a lot of these (see Table 2). The 
routines can be sub-divided as follows: 

1. Initialising RastPorts. Two routines are available to 
initialise a RastPort to default settings, and to initialise 
a "TmpRas" structure, containing a pointer to an area of 
memory for use as a buffer area for area fill, flood fill, 
or text. 

2. Drawing into RastPorts. Basic drawing routine for points, 
lines, circles and ellipses. Work equally well into non
layered or layered RastPorts. 

3. Area fill operations. "Area fill" routines normally use the 
blitter to flood an area with a given pattern (pointed to by 
AreaPtrn pointer in the RastPort), the area being defined as 
a series of vectors or end-points specifying the (polygon) 
shape to be filled; there are also routines for rapid 
filling of ellipses and circles, though this involves more 
work by the 68000. Area fills use a structure called 
Areainfo: 

Areainfo: pointer to start of table of vectors 
pointer to current vertex (end-point) in table 
pointer to start of flags table 
pointer to flags for area fill 
number of end points in list 
maximum number of end points allowed 
x,y for first point in this polygon 

Besides the "standard" area fill routines using this 
structure, there are special fpst routines for area filling 
rectangles, and a slow routine for "flood filling" an 
arbitrary area on the screen up to a boundary - this 
involves a lot of work by the 68000 searching bitplanes for 
boundaries, and is much slower than "area filling" a known 
shape using the blitter. 

Note that in order to use area fill, two additional 
structures are needed associated with the RastPort - an 
Areainfo structure as above, plus a "TmpRas" (temporary 
raster - also used for text) big enough to hold the area 
being filled. There is no problem adding these structures 
to Intuition's Windows' RastPorts (see below). Routines 
InitTmpRas() and InitArea() can be used to initialise these 
structures - note that the latter is called with the address 
of the Areainfo structure, NOT - as claimed in some versions 
of the documentation - the address of the RastPort. See the 
1.2 autodocs for full information. 



Introducing Amiga Graphics Page 213 

4. Blitting into RastPorts. Besides the contention-management 
routines (OwnBlit etc) mentioned above, the lowest-level 
access to the block-copy/block-modify facilities of the 
blitter simply allow you to blit directly from one BitPlane 
to another, with no clipping and entirely at your own risk -
this is called BltBitMap. Higher level routines handle 
clipping in a layered RastPort (ClipBlit etc), and a variety 
of special effects such as ~litting through a stencil. 

5. Text into RastPorts Text is just a special sort of graphics 
on the Amiga. Routines which render text into RastPorts 
make use of a structure called a TextFont which describes a 
particular font to the system in terms of the actual shapes 
of the characters, and a structure called TextAttr which 
describes it in terms of name, size and style; text fonts 
are loaded into chip memory where they are linked into a 
system list of currently resident fonts, and where they 
remain until got rid of. Further font-handling routines 
relate to the management of the 'fonts:' directory on disk; 
these are in a special library 'diskfont.library'. 

The graphics library text routines are fairly elementary and 
are built on by other software in the Amiga system, notably 
by Intuition which provides a convenient mechanism for 
positioning text in windows ("IntuiText"), and by the 
console device, which uses the basic text-handling routines 
with the system's default font to provide an emulation of a 
full ANSI standard terminal, with cursor control, standard 
"escape" sequences, etc. 

See table 2 for a summary of graphics routines concerned with 
RastPorts. 



Introducing Amiga Graphics Page 214 

Table 2 - graphics routines concerned with RastPorts 

Initialising RastPorts 

InitRastPort 

InitTmpRas 

- set Mask, FgPen, AOLPen and LinePtrn to -1, 
DrawMode to JAM2 and font to standard. 

- set up a TmpRas structure pointing to a buff er 
for temp storage for area fill, flood and text. 

Drawing into RastPorts 

WritePixel - set pixel specified to PenA colour 
ReadPixel - return colour reg number at pixel specified 
Move - move "pen" position within RastPort 
SetAPen - select FgPen colour 
SetBPen - select BgPen colour 
SetOPen (macro)- select AOLPen colour 
SetDrMode - select drawing mode JAMl, JAM2, COMPLEMENT, 

Draw 
PolyDraw 
DrawEllipse 

or INVERSVID 
- draw line from current 
- draw a series of lines 
- draw ellipse or circle 

to new pen position 
into RastPort 
into RastPort 

Area fill in RastPorts 

InitArea - initialise table of vectors used to store end-
points for area fill 

AreaMove - start a new list of end points for area fill 
AreaDraw - add another to list of end points for area fill 
AreaEllipse - put an ellipse in the buffer used for area fill 
AreaCircle (macro) - put a circle in the buffer used for area fill 
AreaEnd - process the list of end points, and do the fill 
Rectf ill - fast area fill rectangular area 
SetRast - fast area fill entire RastPort 
Flood - slow flood area around point up to boundary 

Blitting into RastPorts 

BltBitMap - blit from one bitmap to another with no clipping. 
BltClear - zero a region of memory using the blitter. 
BltBitMapRastPort - blit from a bitmap into a RastPort 
BltMaskBitMapRastPort - blit from a· bitmap through a mask into a 

BltPattern 

BltTemplate 
ClipBlit 

ScrollRaster 

RastPort. 
- blit a pattern (like area fill) into a RastPort, 

though an (optional) mask. 
- blit a template mask into a RastPort. 
- blit from one RastPort into another, paying 

attention to layers (if present). 
- blit from one RastPort into itself, to perform a 

scrolling operation. 



Introducing Amiga Graphics Page 215 

AddFont 
RemFont 
OpenFont 

CloseFont 
SetFont 

AskFont 
SetSof tStyle 

AskSof tStyle 
Text 
TextLength 

ClearEOL 

ClearScreen 

AvailFonts 

OpenDiskFont 

Table ~ (continued) 

Text into RastPorts 

- adds a text font structure to the system font list 
- removes a font from the system font list 
- search the system font list for a given TextAttr 

and indicate font in use 
- indicate font no longer in use 
- sets the font pointer and text attributes of a 

given RastPort 
- gets text attributes of given RastPort 
- set soft style (algorithmically generated 

effects like bold or italic) for given RastPort 
- get soft style for given RastPort 
- write specified text at current pen position 
- figure out how long text is going to be - eg is 

it going to fit in the RastPort? 
- clear to right edge of RastPort, according to 

current text height and baseline 
- perform ClearEOL, then clear from there to the 

bottom of the RastPort 

Routines in diskfont.library 

- build a list of information about all fonts 
currently available in RAM or on disk, including 
their TextAttr structures 

- like OpenFont, but loads from disk if font not 
in current system font list 



Introducing Amiga Graphics Page 216 

8. Layered drawing= Layered RastPorts 

As mentioned above, most of the Amiga drawing routines will work 
either into a non-layered RastPort with a NULL Layer pointer, or 
into a layered RastPort associated with a Layer structure, 
controlled by a number of routines in the layers library. 

Layers in the Amiga serve two closely related purposes: 

1. They allow a single BitMap - such as the one associated with 
a particular Intuition Screen - to be considered as a number 
of independent overlapping drawing areas (RastPorts) - such 
as Intuition Windows. 

2. They allow a single BitMap to be shared by a number of 
different tasks, and provide the locking and unlocking 
routines necessary to prevent the different tasks 
interfering with each other. Typically, this is achieved 
transparently by each task having its own Window(s), and 
hence its own layered RastPort(s); the Layers routines then 
apply the necessary locks internally when performing 
functions where windows could interfere with each other. 

8.1 Layers and Windows 

In the same way that graphics ViewPorts are closely related to 
Intuition Screens, so layered RastPorts are very closely related 
to Intuition Windows. An Intu_ition Window contains a pointer to 
its "very own" layered RastPort and hence to an associated Layer 
structure; the simplest way of getting hold of a layered RastPort 
is therefore to open an Intuition window, then use 

rp = window->RPort; 

It is then possible to use most of the graphics routines 
discussed above to draw into the window, and Intuition's 
facilities to depth-arrange windows, with no overhead over using 
the Layers facilities more directly. ~ 

In fact, it is possible for an Intuition Window to have either 
one or two layers associated with it. A normal window (with its 
origin at the top left of the title bar) has a single layered 
RastPort and Layer associated with it; this means that when 
drawing to the windows RastPort, you have to apply your own 
"mini-clipping" to avoid drawing over the window borders and 
system gadgets. A GIMMEZEROZERO window on the other hand has two 
layers associated with it; the borders and system gadgets have~
their own "private" RastPort and Layer so that you can't draw 
over them, while the RastPort and Layer you get from 
window->RPort correspond to the "inside" of the window, with its 
origin at the top left of the inside (non-border part) of the 
window. (This is convenient, but has a fairly high overhead; the 
1.2 graphics library documentation suggests getting the same 
effect by using InstallClipRegion to mask the borders out of 



Introducing Amiga Graphics Page 217 

routines which draw into the window, and ScrollLayer to specify 
an offset for drawing routines to compensate for the presence of 
window borders.) 

8.2 Layers structures 

Layers logic on the Amiga has been updated since the original 
release 1.0, and again between releases 1.1 and 1.2, most notably 
by improving the mechanism used for locking and unlocking Layers, 
which now uses a system of flags called Semaphores. Some old 
structures, and routines like InitLayers ThinLayerinfo and 
FattenLayerinfo, remain for reasons of downward compatibility 
with old versions - however, we shall not bother to consider 
these in this section. 

Layers logic on the Amiga is looked after using the following 
principal structures. Layers are held together in a linked list; 
a Layer_Info structure contains a pointer to the current top 
Layer in a BitMap, which in turn contains a pointer to the next 
Layer, and so so. These structures are as follows: 

1. A Layer Info structure is associated with the BitMap being 
shared = eg with an Intuition Screen which is to be split 
into a number of Windows - and contains a pointer to the 
current top Layer within the BitMap. It also contains other 
general information about the layers arrangement within the 
BitMap such as the number of layers currently locked; and 
Semaphore information allowing the Layers_Info structure 
itself to be locked and unlocked, to avoid contention 
problems when creating new Layers within the BitMap. A new 
Layer_Info structure can have memory allocated and be 
initialised using a layers.library routine NewLayerinfo. 

2. A Layer structure is associated with a layered RastPort - eg 
with one particular Window within a Screen's overall BitMap. 
A layered RastPort containing a pointer to a Layer 
structure, and the Layer structure itself, are created 
together using routines from the layers library 
CreateUpfrontLayer and CreateBehindLayer. Once created, 
layered RastPorts are used in the drawing routines just like 
non-layered RastPorts; however the drawing routines will 
note the non-zero Layers pointer, and will perform clipping 
(and clever tricks like drawing into currently obscured 
areas) as necessary. Useful elements in this structure are 
as follows: 



Introducing Amiga Graphics Page 218 

Layer: Pointers to Layer in front, Layer behind 
Pointer to list of ClipRects for this Layer 
Pointer back to this Layer's RastPort 
Minx, MinY, Maxx, MaxY bounds for this Layer 
Flags - Layer type (see below), 

Layer-needs-refreshing flag 
Pointer to SuperBitMap, if SuperBitMap Layer 
Pointer to list of ClipRects for SuperBitMap for 

SuperBitMap Layer, OR pointer to damage list 
ClipRects for si~ple refresh Layer 

Various stuff used by system for Layer locking 
Various stuff used by system for Layer refresh 
Pointer to damage list regions for simple refresh 

3. A ClipRect structure is associated with one particular 
rectangular area of a Layer for purposes of clipping - eg 
with a corner of a Layer which is currently obscured by 
another Layer (eg another Window) in front of it. Each 
Layer can be broken into a series of rectangles on or off 
the visible screen for purposes of clipping; this is 
reflected in the fact that the Layer structure contains a 
pointer to a linked list of ClipRect structures as follows: 

ClipRect: Pointer to next ClipRect 
Pointer to previous ClipRect 
Pointer back to Layer owning this ClipRect 
Pointer to BitMap for this ClipRect 
Minx, MinY, Maxx, MaxY bounds for this ClipRect 
Various stuff for system use 

Note that each ClipRect has its own associated BitMap 
structure; this may correspond to part of the currently 
visible screen, or (if we are dealing with a "smart refresh" 
or "super-bitmap" Layer) to bitplanes which are buffer areas 
corresponding to currently obscured regions of the Layer. 
It is by drawing into such areas that the graphics library 
drawing functions are able to draw into currently "hidden" 
areas of Layers and Windows. 

4. Regions and RegionRectangles perform very similar functions 
to Layers and ClipRects, but contain the information in a 
purely geometric format, which saves time over using the 
full ClipRect structures. The main function of Regions is 
to create a DamageList showing which areas of a Layer may 
need re-drawing; this can then be converted to an equivalent 
list of ClipRects when the time comes to actually do the re
drawing. The damage list contains a Region structure 
followed by a series of RegionRectangles: 

Region: Minx, MinY, Maxx, MaxY for this region 
Pointer to first RegionRectangle 

RegionRectangle: Pointers to next, previous RegionRectangles 
Minx, MinY, Maxx, MaxY for this RegionRectangle 



Introducing Amiga Graphics Page 219 

Shared/ 
(·Hui tiplexed") 
Bi tHap for this 
ScPeen. 

jlntui ti on' s lis 
il·or Windows fol' 
this scl'11m. 

1LayeJl_lnfo 
lro~ this BitH.J,P. 

Nindow 
s tl'uc tUl'e 

La11ePed 
lastPoPt 

~:t~/XtX>t{X'~li.XXI~ ~ 

, ~~ ' ' • 1, ,;_ '( ~ 

Window 
s tl'llC ture 

Window 
S tttllC tlll'@ 

Layer-eel 
JtastPoPt 

'--------' 

Linked 
list of 
Hindaws 

RastPal' 
lol' thei 
Windows 

Linked 
list at 
Layers 

C 1 ipRec ts indicate -A1 
to dl'aw in this Layer 

---.I Region ~ RegionRect1ngle~ RegionRecta~ 
DatlaS'e list indicates -.ihere in this 
Layer ""-'Y need refreshing tor 
sirt>le l'ell'esh. 

Figure 7 - Layered RastPorts 



Introducing Amiga Graphics Page 220 

The relationship between these various structures is illustrated 
in figure 7. 

8.3 Types of Layers 

There are three principal types of layer, distinguished by 
flags in the Layer structure, corresponding to different 
mechanisms for "refreshing" the layer - ie of correcting any 
"damage" done to the layer due to other things going on in the 
BitMap, such as other layers being moved in front of it. These 
three Layer types correspond to the three principal Intuition 
Window types, and are as follows. 

In many ways, the most ingenious form of layer is the "simple 
refresh" or LAYERSIMPLE variety. Simple refresh layers are 
divided into ClipRects corresponding to only the visible parts of 
the layer; no buffer areas (BitMaps) are provided for parts of 
the Layers not immediately visible. Instead it is up to the 
application to correct the damage, assisted by the system as 
follows: 

1. If something happens (such as movement of another layer) 
that may cause part of this Layer to be have to be 
refreshed, then " 

a. The DamageList (Region and RegionRectangles) is updated 
to indicate which parts of the Layer may need 
redrawing, and 

b. A flag LAYERREFRESH is set in the Layer structure, to 
show that it needs refreshing. 

2. When the application notices that LAYERREFRESH is set, it 
proceeds as follows: 

a. Calls a function BeginUpdate, which saves the Layer's 
current ClipRects, then works out a new set of 
ClipRects from the DamageList. 

b. Redraws the whole layer; however, because we are using 
the damage-list ClipRects, this means that only the 
parts of the layer that were damaged will be redrawn, 
so the system won't waste time re-drawing stuff which 
is all right anyway. 

c. Calls a function EndUpdate, which restores the Layer's 
normal ClipRects. 

Note that if you are working through Intuition, then you can 
arrange to get an IDCMP message REFRESHWINDOW when your 
window's layer needs refreshing; you can then perform 
refresh using Intuition functions BeginRefresh and 
EndRefresh, which are functionally equivalent to BeginUpdate 
and EndUpdate but using Window structures rather than 



Introducing Amiga Graphics Page 221 

working directly with Layers. 

The next type of layer is the "smart refresh" or LAYERSMART 
variety. In this sort of layer, the system will allocate memory 
for an off-screen buffer area when part of the layer becomes 
obscured, and this off-screen area will be included in the 
Layer's list of ClipRects, so that the graphics routines will 
draw into it if necessary. When the off-screen area becomes 
visible again, the system deals with copying this area back into 
the visible screen bitplanes and deallocates the buffer memory; 
the application therefore doesn't have to worry, unless the layer 
is resized. 

The final type of layer is the "super bitmap", obtained by 
setting both LAYERSMART and LAYERSUPER flags in the Layer 
structure:--In this case, the layer has an off-screen buffer area 
permanently allocated to it (you have to provide this when 
creating the layer), which can be bigger than the current layer 
size, or indeed bigger than the entire screen display if you want 
this. In the case of a SuperBitMap layer, the Layer's ClipRects 
point either into the visible screen BitMap, or into the 
SuperBitMap, depending on whether the corresponding part of the 
Layer is currently visible or not; the graphics routines 
therefore update either the screen BitMap or the SuperBitmap 
accordingly. The layers routines then deal with updating the 
screen BitMap from the SuperBitMap or vice-versa, as parts of the 
layer become revealed or hidden due to layer re-arrangement or 
resizing; this continues until the layer is deleted, when the 
system performs a final update of the SuperBitMap, leaving it 
reflecting the last known state of the layer. 

Note that keeping the visible part of the display "synchronised" 
with the SuperBitMap will be handled automatically if you use the 
system drawing routines; however, this won't be the case if you 
choose to make changes in either the Screen bitplanes or the 
SuperBitMap bitplanes directly. If you decide to do this, then 
two routines exist to update the SuperBitMap from the screen and 
vice versa; these are called SynchSBitMap and CopySBitMap 
respectively. 

Like all the Layers facilities, SuperBitMaps are best accessed by 
way of Intuition Windows. Note that a Window making use of 
SuperBitMaps should also be a GIMMEZEROZERO Window - with its 
borders gadgets etc in a separate layer - so that only the main 
data area of the window is associated with the SuperBitMap. 

Two additional bits in the Layers flags which are used 
independently of the Layer type discussed above are as follows: 

LAYERBACKDROP - indicates that the Layer has to stay at the 
back, and prevents sizing or depth-arranging. Used for 
Intuition "back-drop windows". 

LAYERREFRESH - flags simple Layer needs refreshing. 



Introducing Amiga Graphics Page 222 

Table 3 - Routines Concerned with Layers and Regions 

Layers library = initialisation 

NewLayerinf o 
DisposeLayerinf o 
CreateUpf rontLayer 
CreateBehindLayer 
DeleteLayer 

LockLayerinf o 
UnLockLayerinf o 
LockLayer 
UnlockLayer 
LockLayers 
Unlocklayers 

- alloc and init memory for Layer_Info structure 
- free memory associated with Layer_Info struct 
- create new Layer & layered RastPort at front 
- create new Layer & layered RastPort at back 
- delete Layer & free memory 

Layers library = locking 

- wait till Layer Info free, then lock it 
- unlock Layer Info 
- wait till Layer free, then lock it 
- unlock Layer 
- lock Layer Info then all layers 
- unlock all-layers then Layer Info 

Layers library = arrangement 

Upf rontLayer 
MoveLayerinFrontOf 

BehindLayer 
MoveLayer 
SizeLayer 

BeginUpdate 

EndUpdate 

- move specified Layer to front 
- move specified Layer in front of another 

specified Layer 
- move specified Layer to back 
- move Layer to a new position in BitMap 
- change size of this Layer 

Layers library = update 

- convert DamageList to ClipRect list, and 
swap into Layer's ClipRect pointer 

- restore Layer's ClipRect pointer to normal 

Layers library = miscellaneous 

InstallClipRegion 
ScrollLayer 

- install specified Region in layer for clipping 
- scroll around a SuperBitMap, or specify a 

plotting offset in a non-SuperBitMap layer 
SwapBitsRastPortClipRect - swap bits between RastPort and 

WhichLayer 
ClipRect (used for pull-down menus) 

- return pointer to Layer which specified 
point is in 



Introducing Amiga Graphics Page 223 

NewRegion 
DisposeRegion 
OrRectRegion 
OrRegionRegion 
AndRectRegion 
AndRegionRegion 
ClearRectRegion 
ClearRegion 
XorRectRegion 

XorRegionRegion 

Table l (continued) 

Grapnics library = Regions 

- alloc & init memory for Region structure 
- free memory for all RegionRectangles & Region 
- add anything new from rectangle to Region 
- add anything new from regionl to region2 
- clip away Region outside specified rectangle 
- clip away Region2 outside Regionl 
- clip away Region inside specified rectangle 
- clip away everything from Region 
- add bits of rectangle to Region if not 

there already, remove if there already 
- add bits of Regionl to Region2 is not there 

already, remove if there already. 

Graphics library = Locking 

AttemptLockLayerRom - attempt to lock Layer; fail if already 
locked 

LockLayerRom - wait till Layer free, then lock it 
UnlockLayerRom - unlock Layer 

CopySBitMap 
SynchSBitMap 

Graphics library = miscellaneous 

- update Layer window from SuperBitMap 
- update SuperBitMap from Layer window 



Introducing Amiga Graphics Page 224 

.4 Routines using Layers 

As mentioned above, there is little real distinction between the 
graphics and layers libraries; it is therefore convenient to 
consider the two together. Routines involving layers can be sub
divided as follows: 

1. Layers initialisation. Routines exist to create and get rid 
of Layer_Info structures, and to add or get rid of Layer 
structures from the linked list of Layers attached to the 
Layer Info, either at the front or the back of any Layers 
already present. 

2. Layer locking. Before adding new layers, or performing 
other operations involving the Layers list such as depth
arranging, it is necessary to "lock" the Layer Info 
structure, to avoid inter-task contention. This is usually 
looked after by the other Layers routines as necessary; you 
only need to lock Layer Info yourself if you are going to 
access the Layers structures directly, or if you are 
planning to lock more than one Layer - if so, you should 
first lock Layer Info, to prevent a possible inter-task 
"deadlock". Similarly, when performing operations on a 
Layer's ClipRects, it is necessary to "lock" the Layer 
itself; again this is usually handled by the system as 
necessary. Finally, in some cases such as certain Intuition 
operations such as pull-down menus, it is necessary to lock 
all layers from graphics output for a while. 

3. Layer arrangement. Routines exist to move layers to the 
front, to move them to the back, to move them in front of 
another specified layer, to move them "sideways" in the 
BitMap, and to change layer size. 

4. Layer update. Routines BeginUpdate and EndUpdate used for 
"simple refresh". 

5. Layer miscellaneous. Misc routines are InstallClipRect 
allowing you to install a specified Region in a layer for 
special clipping, ScrollLayer which EITHER moves a 
SuperBitMap around in a layer, OR specifies an offset for 
plotting in non-SuperBitMap layers, WhichLayer which reports 
which layer a given point is in, and 
SwapBitsRastPortClipRect (!),which provides a quick way of 
getting up menus in an otherwise locked layered display. 

6. Graphics regions. Routines used in damage-list management, 
to update a Region (list of RegionRectangles) by performing 
logical operations between Regions and rectangles (eg 
"anything inside this rectangle and not already in the 
Region should be added to the Region"), or between Regions 
and other Regions. Can be used for to create drawing masks 
for "special effects"; a user-supplied Region can be 
"installed" in a Layer using InstallClipRegion, or by 
pointing to as a "pseudo DamageList" and calling 



Introducing Amiga Graphics Page 225 

BeginUpdate. 

7. Graphics locking Two routines LockLayerRom and 
UnlockLayerRom precisely equivalent to the layers locking 
routines in the Layers library, plus a routine 
AttemptLockLayerRom. 

8. Graphics miscellaneous. Two routines CopySBitMap and 
SynchSBitMap for use when doing your "own" SuperBitMap 
management, eg when writing directly into SuperBitMap 
bitplanes. 

See table 3 for a summary of routines concerned with Layers and 
Regions. 

References 

The main references used for this section have been the Amiga 
Hardware Manual, and ROM Kernel Manual Volume 2 - though the 
latter is now rather out of date in some respects, and also 
contains some errors. For up-to-date information, see the 1.2 h
files, and the 1.2 routine descriptions. 



Introducing Amiga Graphics 

/*********************************************** 

copper list disassembler for kickstart 

9th March 87 Ariadne Software Ltd 

***********************************************/ 

#include <exec/types.h> 
#include <intuition/intuition.h> 
#include <intuition/intuitionbase.h> 
#include <9raphics/view.h> 

struct copins { 
UWORD ir1; 
UWORD ir2; 

} ; 

I* copper list instruction *I 

struct IntuitionBase *IntuitionBase; 
struct copins *copptr; 

main<> 
{ 

UWORD first,second; 

Page 226 

if <<lntuitionBase = <struct IntuitionBase *> 
OpenLibrary<"intuition. library",0)) == NULL> exit<FALSE>; 

} 

printf<"Copper list disassembly\n\n">; 

copptr = <struct copins *> <IntuitionBase->ViewLord.LOFCprList->start>; 

do < 
first = copptr->ir1; 
second = copptr->ir2; 

printf <"%08lx 'l.(14 x 'l.(14 x 

if (!(first & Ox0001> > { 

",copptr,first,second>; 

printf<"MOVE <%04x,'l.04x>\n'', (first & Ox01FE>,second>; 

} else { 

} 

if (!<second 8< Ox0001>> printf<"WAIT">; else printf<"SKIP">; 
printf(" <Y.04>:,Y.04x)\n", 

(first & OxFFOO>>>B, (first~ OxOOFE>>; 

copptr++; 
} while <!((first== OxFFFF> && (second== OxFFFE>>>; 

CloseLibrary<IntuitionBase>; 
return<TRUE>; 

App~ndix - Simple copper list disassembler 



Getting Started in c Page 227 

Part III = Getting started in C 

Section ! = Introducing C 

Many Amiga owners who want to go beyond programming in Amiga 
BASIC will be interested in the language "C". This is the 
language that was used to develop a lot of the Amiga system 
software such as the graphics library, and the "Intuition" 
software which provides pull-down menus, windows, and the rest of 
the Amiga user interface. c has also been used to develop many 
important Amiga application packages such as paint packages, 
animation packages, word processors, music packages, data bases, 
and even fast arcade-type games. 

However, C has a reputation for being a "difficult" language, not 
to mention expensive! In this part of the Kickstart Guide we 
look at what C is, and how it differs from programming in more 
familiar languages like BASIC. We shall start by discussing the 
strengths and weaknesses of c, then look briefly at some of the 
peculiarities of the language. We will then look at various 
aspects of C in more detail. 

People who are high-level programmers by nature tend not to like 
C very much. Compared even with BASIC it is quite weak, 
particularly as regards string-handling. It is also inclined to 
be cryptic, and tends to make very heavy use of "pointers" -
these are variables which hold the addresses where other 
variables are stored in memory (more about this later), which is 
something which assembler programmers are used to worrying about, 
but isn't something you expect in a high level language. By 
making extensive use of pointers, it is possible to write really 
phenomenally incomprehensible code in C! 

C is also distinctly lackadaisical about "typing". In C, like in 
Pascal, you have to declare all variables before you use them, 
and have to say what "type" of thing they are - integer, long 
integer, floating point, character, string or whatever. In 
Pascal, having declared a variable to be of a certain type, it 
has to stay that way; C however is "weakly typed", in that it is 
possible to convert types at the drop of a hat using an operation 
known as "casting". This can also easily lead to confusion, and 
is something else that high-level programmers tend to object to -
we would recommend that they investigate something like Modula 2 
as a probably far more congenial alternative. 

So, what about low level programmers, approaching the Amiga from 
a background programming 8-bit machines like the Commodore 64 in 
assembler? People from this background usually start by finding 
C alien and unforgiving; their first few efforts give umpteen 
error messages and apparently spurious warnings ("pointers do not 
point to the same object"), and they end up being appalled by the 
size of "object module" they get from an apparently trivial 
program - it is possible to end up with over 12K of code for a 
program to print your name on the screen, if you're not careful! 
Assembler programmers will probably find it easier to learn the 



Getting Started in c Page 228 

68000 and program the Amiga using an assembler, which they will 
find to be powerful, but overall quite familiar. 

Advantages of c 

So is there any point bothering to learn c, when there seems to 
be so much going against it? In a lot of cases, the answer to 
this question is "Yes - very definitely!" If you want to write 
arcade games, or any application in which your main interest is 
wizzing bits about in bit planes as quickly as possible (bit 
planes are as close as the Amiga comes to having "screen RAM"), 
then you should probably learn 68000 assembler. If you want to 
write something like an accountancy package, you should consider 
learning Modula 2. However, if you want both speed of execution, 
and quite a lot of the advantages of using a high level language, 
then c provides a very good compromise - it is a sort of "half
way house" or "middle level" language. So if you need speed, but 
are also doing "serious" programming, in which you are liable to 
end up with rather a lot of code interconnected in a tricky 
manner, then you will find c has the following advantages. 

1. Viewed as a "super-assembler", c has a lot going for it. If you 
have some appreciation of what your c compiler is actually doing, 
then it is possible to write code in C with suprisingly little 
overhead, either in code-size or in execution speed. It is also 
quite easy to drop into assembler from c, for those routines 
where extra speed is really vital. 

2. c lends itself much better than assembler to writing in a 
"structured" manner, with independent intercommunicating 
functions. It is quite easy to build your own "library" of 
useful functions, and to make use of libraries from other sources 
such as "standard libraries" available from Lattice and Amiga, 
which can cut development time dramatically. Contrary to some 
popular belief, it is possible to write c in a quite readable 
way, which also aids maintainance and debugging. 

3. C is very much the native language on the Amiga, since it is what 
so much of the system software was written in! Using c, it is 
particularly easy to make full use of the facilities provided in 
the "ROM kernel"; these are generally of a high standard, and 
it's silly not to take advantage of them. 

4. C is supposed to be a portable language, though in practice this 
is a lot more trouble than it should be. However, if portability 
is important to you, C will at least ease the task of moving your 
programs across a variety of machines, especially if you are 
careful about using "standard" functions. 

5. The main advantage of C is the time-factor. Assembler 
programmers on large projects who have switched to C report that 
after a few months experience, they can be up to ten times more 
productive generating working debugged code. True, the resulting 
program may run a bit slower than if it was written in assembler 



Getting Started in c Page 229 

- but is it really worth the development time penalty? 

Getting to £ from BASIC or assembler 

If you are approaching C on the Amiga from a background 
programming 8-bit machines in BASIC or assembler, you will find 
that things are very different. 

The first thing you have to get used to is that C is compiled 
then linked - instead of just typing in a program and typing 
"run", or even running a two-pass assembler, there are a lot more 
stages to go through. We will be looking at these stages in 
detail later - however an overview is of the whole process is 
more or less as follows: 

1. First of all you have to type in your "source-code" using some 
form of editor; there is a simple screen-editor on the standard 
Amiga Workbench which can be entered by typing "ED" in at the 
CLI. (The CLI is the Command Language Interface - an icon for 
this can be made to appear in the system drawer by switching CLI 
ON in Preferences. We shall assume some familiarity with the CLI 
- if you don't know about it then a number of books are available 
which explain it, including the official AmigaDOS manual.) Other 
editors are available from a variety of sources - a favourite 
used by many Amiga programmers is MicroEMACS. A C program 
consists of a series of "functio::-s" - more about these later -
which in turn call other functions in the same module, in some 
other module, or in a "system library". The system library 
functions perform standard operations such as printing a string, 
so you can't do very much without them! · 

2. Next, you need to save your source code, and possibly to exit the 
editor - though if you are using an editor like EMACS and have 
enough room in memory you may prefer to leave it running for use 
again later. You now need to run your C compiler - if you are 
using the Lattice compiler this runs in two phases, going through 
an intermediate stage known as a "q-file" (for "quad") which you 
will probably keep in RAM-disk, and ending up with "object code" 
Co-file). 

3. The compiler may give you various error messages, in which case 
it will refuse to produce an o-file, and you need to go back to 
step 1 and re-edit. It may also give you "warning" messages - eg 
if it thinks you are trying to use a variable without having 
initialised it sensibly. It is up to you to decide if you are 
going to pay attention to warning messages (and go back to step 
1) or whether you can safely ignore them. 

4. The compiler a-file is not yet in a runnable form, because it 
will contain references to functions and variables defined in 
other modules, or in standard libraries. In fact, the o-file has 
a complicated format, and contains a variety of record-types. 
Some of these contain a sort of "partial" 68000 code without much 
in the way of address information; others contain information 



Getting Started in c Page 230 

about functions and variables defined in other modules; others 
still contain "relocation" information about how to adjust the 
code depending on where in memory it ends up. 

To resolve references to other modules· etc, another program has 
to be run called a "linker". Typically, the linker is used to 
join together some sort of standard "start-up" module, a number 
of modules comprising your program, and routines for standard 
functions selected from one or more "libraries". If the linker 
succeeds - ie if it manages to find all the functions and 
variables it needs - then it produces an AmigaDOS "load file"; 
otherwise it will give error messages, and you need to go back to 
step 1. 

5. It is worth noting that on the Amiga, the load file still doesn't 
contain absolute 68000 code. Instead it contains a number of 
records known as "hunks" each of which corresponds to one bit of 
code or data, and which contain fields known as "blocks" 
containing code, relocation information enabling the code to be 
loaded anywhere in memory there happens to be room for it, and 
(optionally) "symbolic" information allowing text labels etc from 
your original program to be passed to a "symbolic debugger" such 
as "Wack" or "Metascope". 

The actual process of "scatter-loading" the load file is made to 
happen by typing the program name at the CLI; it can also be 
arranged to happen which you click on an icon on the Workbench. 
AmigaDOS will decide where in memory to put the various hunks, 
then will load, relocating as it goes; it will then execute from 
the start of the first hunk, which should be the startup module. 
You can now determin whether your code works or not -·if not go 
back to step 1! 

Peculiarities of c 

C was developed as a systems programming language, designed to 
make the process of writing things like operating systems quicker 
and more efficient. It is descended from BCPL, which has never 
caught on the same extent, though which still has its 
enthusiasts. Both BCPL and c have been used to write operating 
systems; BCPL was used to write Tripos, and c was developed along 
with Unix. All these systems are very relevant to the Amiga; 
AmigaDOS is written in BCPL and is based on Tripos, while most of 
the ROM kernel (apart from the lowest levels of Exec) is written 
in C, and was developed on Unix systems. 

Unix was originally developed on the PDPll; C was therefore 
developed with a number of features designed for the generation 
of efficient compiled code using the PDPll instruction set. This 
instruction set has been very influential on microprocessor 
design, including the 68000, which accounts for the continuing 
popularity of C, due to its (comparitively) efficient code 
generation. The fact that c is designed in this way also 
accounts for its unsatisfactory character when viewed as a high 



Getting Started in c Page 231 

level language; it also accounts for a number of distinctive 
peculiarities of the language. These include the existence of 
pre- and post- increment and decrement operators, which appear in 
statements like 

nextchar = string[index++]; 

which picks up the next character in a string then increments the 
index; this has a direct equivalent in the 68000 instruction set 
in the form of register indirection with postincrement, eg 

MOVE.B (An)+,Dn 

which moves the byte at the address in register An to data 
register Dn, and increments An to point at the next byte. 
Similar peculiarities are the existence of operators like "+=" 
("value+= 4;" is equivalent to "value = value+ 4;"), and the 
fact that assignment statements have values, the value being the 
result of the assignment, ie the thing in front of the equals 
sign - since this value will be hanging around in a register, the 
compiler might as well use it! This latter peculiarity is 
frequently used to assign something a value and test it in the 
same line, as in the highly characteristic 

if ( {buffer=AllocMem(lOOO,O)) == O) printf("No room\n"); 

Note the difference between "=" meaning assignment - being used 
here to set a variable "buffer" equal to the value returned by 
function AllocMem() - and"==" meaning the equality operator, 
being used to check if buffer ends up as zero. Forgetting this 
is a classic c "beginner's error". 

Perhaps the most important aspect of C viewed as a "super 
assembler" is the language's facilities for structures and 
pointers. A C-pointer is almost (but not quite) the same as a 
machine address; the statement 

struct Node *ln Succ· 
- I 

declares that "ln_Succ" is a "pointer" to a structure called a 
Node, ie it contains the address where the Node is in memory. 
The pointer is not quite the same as a machine address, because 
the statement 

ln_Succ++; 

will not increment ln Succ by one byte (or one word or one long
word); it will increment it by an amount equal to the size of the 
structure called "Node". For this reason (amongst others), C
compilers are very fussy about being told what sort of objects 
pointers point to, and give you irritating warning messages if 
you forget to. 



Getting Started in C Page 232 

A "structure" itself i~ a collection of the various data-types 
supported by C, including other structures· and pointers; thus a 
"Node" structure is defined 

struct Node { 

} ; 

struct Node *ln_Succ; 
struct Node *ln Pred; 
UBYTE ln Type; 
BYTE ln Pri; 
char *ln_Name; 

/* pointer to next node */ 
/* pointer to previous node */ 
/* type - unsigned byte */ 
/* priority - signed byte */ 
/* pointer to node name */ 

A "node" is in fact a standard structure used by all the Amiga 
system software - its definition can be found in an "h-file" 
exec/nodes.h, which should be provided with your C compiler. You 
can include this in your compilation using an instruction called 
#include; assuming you have done this, you can then declare a 
node-structure for your own use by 

struct Node mynode; 

or declare a pointer to a Node by 

struct Node *mypointer; 

You can then pick up some part of the structure - say the node 
priority - directly by 

mypriority = mynode.ln_Pri; 

or indirectly by 

priority = mypointer->ln_Pri; 

Again, there is a very close correspondence between this C 
facility and a 68000 address mode - in this case register 
indirection with displacement, 

MOVE.B dl6(An),Dn 

where address register An is being used as a pointer to the start 
of a structure, and offset dl6 is being applied to this value to 
pick up a byte this far past the start of the structure, and move 
it into address register On. The use of structures and pointers 
is crucial to C programming, which is why we have mentioned them 
in this introduction; we shall look at how they work in detail 
later. 



Getting Started in C 

A simple example 

A classic simple c program is as follows: 

/* a classic example */ 

main() 
{ 

printf("Hello Amiga!\n"); 
} 

Page 233 

This uses a standard library function printf() to output the 
string "Hello Amiga!" followed by a new-line, represented by the 
escape sequence "\n". This program consists of the definition of 
a single function main() which takes no parameters; by convention 
C execution is transferred to~ function called main() as soon as 
startup operations have been completed. Further points to note 
about this example are the use of /* and */ pairs to enclose 
comments, the use of braces { and } to enclose functions, and the 
use of semi-colon as a line terminator. Forgetting semi-colons 
is another classic "beginner's error"; carriage returns have no 
special significance in a c program, and in fact any amount of 
"white space" consisting of spaces, tabs and carriage returns is 
taken as equivalent to a single space. This gives considerable 
latitude in the layout of a C program; the system of indentation 
adopted in this book is however fairly standard, and is 
recommended as an aid to program legibility. 

Accessing ~ library 

In order to follow a slightly more complicated example which 
makes use of one of the built-in functions from the Amiga's 
Kickstart ROM, it is necessary to understand a little about 
"libraries" on the Amiga. 

A "library" is essentially a group of routines accessed via a 
jump table at the start, a bit like the "kernal" on the Commodore 
64. However, the Amiga differs from the 64 in having a large 
number of libraries concerned with different aspects of the 
machine - examples that we will be using here are the Exec 
library which handles interrupts, multi-tasking etc, the 
"Intuition" library which provides a standard user-interface, and 
the DOS library which gives access· to the functions provided by 
AmigaDOS. A second crucial difference from machines like the 64 
is that Amiga libraries don't necessarilly always live at the 
same place in memory; before using a library it is necessary to 
"open" it, and find out where it is. 

A simple example using the Intuition library is as follows; this 
will flash the Amiga display rapidly six times. 



Getting Started in C Page 234 

/* Intuition screen beep */ 

#include <exec/types.h> 

extern APTR OpenLibrary(); 
extern VOID CloseLibrary(),DisplayBeep(); 

APTR IntuitionBase; /* pointer to intuition library */ 

main() 
{ 

int i; 

IntuitionBase = OpenLibrary("intuition.library",29); 

if (IntuitionBase != 0) { 

for (i = O;i < 6;i++) { 
DisplayBeep(O); 
Delay(S); 

} 

/*if open succeeded ••• */ 

/* then perform six •.. */ 
/* screen flashes ..• */ 
/* and pauses •.• */ 

CloseLibrary(IntuitionBase); /*then close*/ 

} /* end of if */ 
/* end of function main() */ 

This example is much more complex, and contains a number of 
aspects of C which we will be discussing in detail later. 
However, some explanation may be useful at this sta9e: 

1. The linclude at the start is not a line of C - note the absence 
of a terminating semi-colon! Instead it is an instruction to a 
part of the compiler known as the "macro pre-processor" to 
include a header file exec/types.h, which contains definitions of 
some standard data-types such as APTR and VOID. Things defined 
as "macros" like this are by convention distinguished by being 
given in capital letters. 

2. The #include is followed by extern statements telling the 
compiler a bit about functions used in this module which are 
defined elsewhere - in this case in the library file amiga.lib. 
Here we are using a function Open~ibrary() which returns an 
address pointer (APTR) and two functions CloseLibrary() and 
DisplayBeep() which don't return anything (VOID). 

3. Following this we have the declaration of a "global variable" 
which is an APTR called IntuitionBase, where we are going to 
store a pointer telling us where the Intuition library is in 
memory. The names of global variables like this are output to 
the object file, so that IntuitionBase will be accessible to the 
routine in amiga.lib which needs it. 

4. Our function main() starts with another variable declaration -
this is a "local variable" called "i" which will be used as a 



Getting Started in c Page 235 

counter only within this function. Variables declared within 
functions like this are known properly as "automatic variables" 
since they are created automatically when the function is called, 
and got rid of when the function exits. 

5. The first thing we do is to attempt to open a library called 
"intuition.library", with version number greater or equal to 29. 
OpenLibrary is itself a routine from the Exec library; we don't 
have to worry about opening the Exec library, since the Exec and 
DOS libraries are opened for us by the standard startup modules. 

6. If OpenLibrary succeeds it returns a pointer telling us where 
intuition.library is in memory; if it fails it returns zero. The 
rest of the program is therefore conditional on this call not 
returning zero; "!=" is "not equals" inc. 

7. We now use a for loop to beep the screen 6 times. The "for" 
construction is very powerful in c, and contains specifications 
for loop initialistion (i = O), "keep looping" condition (i < 6), 
and what to do between loops (i++ - ie increment i). 

8. Within the loop we call the Intuition function DisplayBeep with a 
zero parameter, telling Intuition to flash the entire display 
rather than one specific "screen". The function DisplayBeep() is 
actually in amiga.lib and the necessary code will be incorporated 
at link time; what it does is to set up processor registers 
appropriately, then figure out what address it should be calling 
by applying an offset to the value held in the IntuitionBase 
variable; it then transfers execution to this address, and hence 
to the Kickstart ROM. 

9. Following the call to DisplayBeep, we call a routine from the DOS 
library Delay() with a parameter of 5, telling it to delay for 5 
fiftieths of a second. 

10. When we have finished, we must "close" the Intuition library to 
inform the system that this task doesn't require Intuition any 
longer; to do this we call an Exec function CloseLibrary(). 

f on the Amiga 

There are a number of versions of c available for the Amiga; the 
"standard" version which was originally circulated to developers 
by Commodore was Lattice c V3.03; updates of this, Lattice C V3.1 
and V4.0 are now available from dealers. Another version which 
has found favour with many developers is Manx Aztec C. We will 
base our examples on Lattice - however, if you are using another 
compiler, you should find things are similar in principle. 

The original Amiga linker was called Alink (for "Alan's linker" 
not "Amiga linker" -after a programmer for MetaComco). This came 
in versions 1.0 and 1.1, the latter boasting a keywork FASTER 
which had the effect of speeding matters up considerably. An 
alternative linker called Blink was developed by a group called 



Getting Started in C Page 236 

"The Software Distillery" in the States and placed initially on 
the Public Domain - this is faster than the original Alink 
without the FAS"rER keyword, and boasts more fancy facilities; 
Blink is now provided as standard by Lattice. 

Full instructions for setting up a C development environment on 
Amiga should be included with the compiler; details will vary 
depending on what version of what compiler you are using, on 
whether you have hard disk or extension RAM, and on personal 
preference. If you are using Lattice, then the process will be 
something like the following: 

You will probably need to create a "stripped" Workbench disk, 
with enough room on it for the compiler, linker and utilities. 
Start by chucking out the demos, clock, calculator, notepad etc, 
then ditch all fonts, all printer drivers except your printer, 
all keymaps except your country, all AmigaDOS commands you don't 
use, and any libraries and devices you don't need like 
translator.library and narrator.device. Then install at least 
both phases of the compiler lcl and lc2, and the linker blink -
the best place to put these is probably in the C: directory. 

Adjust the startup file s:startup-sequence so that it assigns the 
following logical device names: 

LC: where to find lcl, lc2 and blink. Probably assigned to 
C: 

INCLUDE: where to look for system .h files given in angle
brackets (eg #include <intuition/intuition.h>) 
Probably assigned to a volume name like h files: if you 
are working on floppy, to a directory name like 
dhO:Lattice/h files if you are working on hard disk; 
can be assigned to RAM: if you have lots of memory and 
don't mind the time it takes to copy all the h-files 
into RAM-disk when you boot; alternatively, might be 
assigned to a recoverable RAM-disk. 

LIB: where to 10ok for linker scanned libraries like le.lib 
and amiga.lib. Probably assigned to INCLUDE:lib 

QUAD: where to put the intermediate quad file between lcl and 
lc2. Almost certainly assigned to RAM: 

You are now in a position to try a simple example, such as the 
Intuition screen-beep program given above. Put yourself in a 
suitable directory C-progs (or something), and makedir a sub
directory obj to hold the object files. You can now create a 
source-file beep.c using ED or EMACS, then compile and link it 
using something like the following: 



Getting Started in C 

stack 15000 
LC:lcl -iINCLUDE: -oQUAD: beep 
LC:lc2 -oobj/beep.o QUAD:beep 
LC:blink FROM LIB:c.o+obj/beep.o 

Page 237 

TO beep 
LIBRAHY LIB:lc.lib+LIB:amiga. 

The first thing we do is to increase the stack-size given to a 
new program - this is important because Lattice needs more than 
the system default which is only 4K. The next two lines invoke 
the two phases of the compiler, telling it search INCLUDE: for 
any "#include<>" files, to put its intermediate file in QUAD:, 
and to put its final object file in directory obj. The third 
line - which should be entered as all one line in the CLI - tells 
the linker to link Lattice's standard startup module c.o with 
object· module obj/beep.o to produce a load module beep, looking 
first in le.lib then in amiga.lib for library functions such as 
OpenLibrary() and DisplayBeep(). 

Note that it is possible to shorten this considerably by making 
use of the Lattice program le which will invoke both compiler 
phases and (optionally) also the linker, and/or by making use of 
AmigaOOS "execute" file$. Note also that this simple example is 
untypical in that our whole program is in one object file - in a 
real application we would want to have things split up so that 
functions relating to menu-handling (say) were in one file, 
functions relating to gadgets in another, drawing functions in a 
third or whatever: we would then join these all together with a 
startup module such as c.o using the linker. Knowing how to 
split functions between different source-files is a bit of an 
acquired skill - beginners generally start by having everything 
in one huge source-file (which takes forever to compile), then go 
to the opposite extreme of having every function in a separate 
source-file: the ideal is probably somewhere in between these. 



Getting Started in C Page 238 

Section 2 - Elements of C 

Introduction 

We will now consider the principal types of object encountered in 
C programs, in the form of functions, variables, and fundamental 
data types. This is not inclusive - our intention is not write 
an "alternative reference guide" for Amiga C, and we make no 
claim to cover all aspects of the language - we hope however that 
it may serve as a useful introduction. 

When discussing aspects of C such as "types of object supported", 
we inevitably run into the proble of standards in C, or rather 
the lack of them. C was developed at Bell Laboratories in the 
late seventies, along with the UNIX operating system. The 
definitive tutorial introduction, programming guide and reference 
manual for C is "The C Programming Language" by Kernighan and 
Ritchie, published in 1978, and still available in the Prentice
Hall Software Series. This defines quite rigorously the syntax 
of c, so that it was hoped that C could remain a highly portable 
language. 

Unfortunately, this didn't really work out, for two reasons. The 
first is that C itself contains very few primitives; for nearly 
all real activities (such as I/O) it relies on a "library" of 
standard functions. Unfortunately, Kernighan and Ritchie have 
very little to say about these, with the result that considerable 
variation arose in the libraries in different implementations of 
C. Secondly, as C gained in popularity outside its original 
environment (UNIX), implementers of versions of C for different 
systems were unable to resist adding various "improvements" to 
the original specification, resulting in further variations 
between different versions. This seems to happen inevitably to 
popular programming systems - the only really standard and 
portable systems are the ones that nobody uses! 

The world is currently awaiting a new "IEEE" standard for C; this 
has got as far as a preliminary specification. Meanwhile, the 
standards are essentially determined by the major suppliers such 
as Lattice and Aztec; fortunately, these don't vary too greatly, 
and also look likely to be fairly close to the eventual new 
standard. In this introduction to C, we will consider facilities 
available in Lattice version 3.1, without worrying too much about 
what comes from the original Kernighan and Ritchie (K&R) 
standard, and what was added later. Best reference - and a 
classic textbook - is probably K&R itself; for information on the 
proposed ANSI standard see "AC Reference Manual" (2nd edition) 
by Harbison and Steel. 



Getting Started i~ : Page 239 

Elements of C 

In order to get a feel for the "building blocks" of C, it is 
convenient to consider a real example - we will therefore 
consider (for the last time!) our simple Intuition "screen beep" 
program. This shows a typical structure of a C program, which 
can be broken down as follows. 

1. The program starts with several #include statements, giving 
instructions to include files containing standard 
definitions in the compilation; this is very like using .lib 
to include files of standard definitions in assembler. 
These may be system definitions, or ones of your own. 
Conventionally, these are distinguished by giving the names 
of files containing system definitions in angle-brackets 
<filename>, and the names of files containing your own 
definitions in quotes "filename 11 • Examples would be 

#include <intuition/intuition.h> 
#include "myfiles/mymacros.h" 

Note that the #include statements break the rules, in that 
they are not followed by semi-colons! This is because lines 
starting with "#" were not originally considered as lines of 
C, but as instructions to a "macro preprocessor" which scans 
the program sorting out included files and macro definitions 
before handing over to the compiler. In Lattice C, macro 
preprocessing is done as part of lcl. 

2. The #includes are then followed by the first lines of the C 
program, which are typically extern statements telling the 
compiler what it needs to know about functions from other 
modules or from the linker library that are needed in this 
compilation. An example would be 

extern APTR AllocMem(); 

This tells the compiler that we are going to be using a 
function AllocMem() defined somewhere else, and that this 
function returns a value of type APTR, which is a general
purpose address pointer - see below. 

3. Next, we may need to tell the compiler a bit about functions 
declared later in this module. Considering that they 
usually run in several passes, C compilers are generally 
pretty dim about function forward reference, and expect to 
know what sort of thing a function returns before it is 
first referenced. One solution to this is to build the 
module "bottom up", so that functions are always defined 
before they are referenced. Another is to declare the 
function in extern statements, despite the fact that they 
are actually not external, but declared later in this module 
- this works fine in Lattice, but isn't generally approved 
of. The approved thing to do is just to declare the 
function with a terminating semi-colon, to indicate to the 



Getting Started in C Page 240 

compiler that the actual definition is later in the module: 

APTR WonderFunction(}; /* defined later on */ 

The compiler will then be able to cope with references to 
WonderFunction(} which occur before the actual definition. 

3. The extern declarations and any necessary function 
declarations are typically followed by definitions of 
"global" variables which need to be accessed from a variety 
of different points in the program. This will cause the 
compiler to allocate space for the variables in DATA or BSS 
hunks used for initialised and uninitialised data 
respectively, and to output the variable name to the object 
fil~, so that other modules can access it. 

Examples are 

APTR IntuitionBase; 
ULONG Counter = O; 

In the first case we are simply instructing the compiler to 
reserve space for a pointer called IntuitionBase in a BSS 
hunk. In the second we are reserving space for an unsigned 
long-word called Counter, and initialising it to zero - this 
will end up in a DATA hunk. 

4. Following the global data comes the program itself. AC 
program consists of a series of "functions" which are 
general-purpose building-blocks, which fill the same roles 
as functions, procedures and subroutines in other languages. 
The first function of the program is conventionally called 
main(); this is then followed by other functions as 
necessary. Each function consists of a declaration giving 
the function name and information about what is passed to 
this function and what it returns, followed by a function 
definition enclosed in curly brackets. An example would be 

APTR GetChipMemory(amount}; 
ULONG amount; 
{ /* function defined here */ 

} 

Here we are going to define a function called GetChipMemory 
to allocate memory in the bottom 512K of the Amiga's memory 
map. We are going to pass it a long-word value "amount" 
telling the function how much memory we want; the function 
is then going to return an APTR telling us the address of 
the memory allocated, or zero (NULL) if none was available. 
The fact that the value "amount" is an unsigned long-word is 
declared in the line "ULONG amount;", after the function 
declaration and before the opening curly bracket. 



Getting Started in c Page 241 

5. Within the function definition, the first things found are 
usually definitions of local ("automatic") variables; space 
will be reserved for these on the stack when the function is 
entered, and de-allocated when the function terminates, so 
these variables are stictly local and temporary. An example 
is the counter "i" in beep.c: 

main() 
{ 

int i; 

} 

/* counter */ 
/* other stuff follows */ 

6. Following the local variables comes the actual lines of C 
that do something, consisting of control statements like if 
and for, assignments, logical operations, and calls to other 
functions. 

Types of variable 

The main types of variables in C are as follows. 

Global variables are declared outside functions; the compiler 
reserves space for them in BSS or DATA hunks, and in the latter 
case sets up initial values. Global variables are "permanent" in 
that once space has been reserved for them, they cannot be made 
to go away. Information about global variables names and 
locations are output to the object file, so that they can be 
accessed by other modules 

External static variables are just like global variables, but 
their names are not output to the object file, so they can only 
be accessed within the current module. This allows a number of 
collaborating functions to share things like buffers, which you 
may not want to be accessible from elsewhere in the program. An 
example would be 

static char buffer[SIZE]; 

This tells the compiler to reserve space for an array of 
characters of size SIZE in a BSS hunk, but not to output the name 
"buffer" for access by separately-.compiled modules. 

Automatic variables are declared within function definitions; the 
system reserves space for them on the stack at run-time. These 
values are strictly temporary, and are thrown away when the 
function exits. Note that this is quite handy when it comes to 
recursion; if a function calls itself, then a new set of 
automatic variables will be created lower down the stack, which 
won't conflict with the original values. Automatic variables can 
be initialised on declaration: the initialisation will be performed 
by code at the start of the function. 



Getting Started in C Page 242 

Internal static variables are static variables declared within 
function definitions, and are private to the function in which 
they are declared. Static variables are not put on the stack; 
instead space is reserved for them in BSS or DATA hunks, so that 
their values are not lost when the function exits. This allows 
functions to maintain internal private values such as buffer 
pointers, which are preserved between calls to the function. 
Internal and external static variables are similar in the way 
that space is reserved for them; however the compiler allows 
internal static variables to be accessed only within the function 
in which they are defined, while external static variables can be 
accessed from anywhere within the source-code module in which 
they are defined. 

Formal variables refer to function arguments, defined after the 
function declaration, and before the opening curly brackets. 
These are very similar to automatic variables in that they refer 
to some space on the stack, the difference being that in this 
case this space is grabbed off the stack by the calling function 
- this process is discussed in detail later. 

Register variables are a special type of automatic variable -
declaring them as "register" tells the compiler that they are 
going to be used a lot, so it should use processor registers for 
them if possible. Lattice allocates registers for register 
variables from D7 to D2 and A4 to A2. A7 is the stack pointer, 
A6 is used for library access and base relative addressing, while 
AS is used for automatic variable access, which leaves only DO, 
Dl, AO and Al free for scratch - so if you're writing assembler 
functions to interface with Lattice, make sure you preserve all 
registers except possibly these four! · 



Getting Start=d in C Page 243 

Data types 

The basic data types supported by Lattice C are 

int signed 32-bit integer 
long or long int signed 32-bit integer 
short or short int signed 16-bi t integer 
char signed 8-bit quantity 
float floating point 
double or long float- double-precision floating point 

All of these are interpreted as signed quantities - be careful of 
this, as it can give rise to funny effects when comparing 
characters for example. If you want unsigned quantities, you can 
use a qualifier unsigned as in 

unsigned char buffer[lOO]: 

The problem with these data types is that they are not guaranteed 
to be the same for other versions of C! For this reason, Amiga 
have defined their own data types in a file "exec/types.h" -
these are distinguished from the Lattice types by being 
capitalised. If you #include this file in your compilation, you 
can use the Amiga data-types, which is a very good idea if you 
are ever likely to change versions of C. Commonly encountered 
Amiga data-types are 

LONG 
ULONG 
WORD 
UWORD 
BYTE 
UBYTE 
STRPTR 
APTR 

- signed 32-bit 
- unsigned 32-bit 
- signed 16-bit 
- unsigned 16-bit 
- signed 8-bit 
- unsigned 8-bit 
- string pointer 
- memory pointer 

For a full list, see h-file exec/types.h. 



Getting Started in : Page 244 

Section 3 - Structures and Pointers 

Introduction 

Getting Started in C Section 2 looked at the different "storage 
classes" supported by C - global, external static, automatic, 
internal static, formal and register - and at the "arithmetic 
objects" supported directly by Lattice, or by using the Amiga 
macros LONG, ULONG, WORD, UWORD etc. This section carries on 
from this by starting to look at the "derived objects" built up 
using these elements, which include the very important notions of 
structures and pointers. Other derived objects are strings and 
arrays - these are in fact special cases of uses of pointers in 
C, and wili be considered in section 4. 

Structures and pointers 

The importance of structures and pointers in C has already been 
mentioned in Part I; it is C's abilities to handle these in a 
reasonably civilised manner which is the main thing which makes 
it attractive as a systems-level programming language. 

An example of a structure in C is an IOStdReq used in much Amiga 
IO - eg to communicate with the console device - as discussed in 
the section on "devices". The IOStdReq structure is defined in 
an .h fil~ exec/io.h. You can instruct the macro pre-processor 
to include this in your compilation by putting 

#include <exec/io.h> 

somewhere near the start of your program. The h-file contains 
the structure definition as follows: 

struct IOStdReq { 
struct Message 
struct Device 
struct Unit 

io Message; 
*io Device; 
*io:unit; 

/* device node pointer */ 
/* unit (driver private) */ 

} ; 

tn«>RD 
UBYTE 
BYTE 
ULONG 
ULONG 
APTR 
ULONG 

io Command; 
io-Flags; 
io-Error; 
io-Actual; 
io-Length; 
io Data; 
io:offset; 

/* device command */ 

/* error or warning num */ 
/* actual number of bytes transferred */ 
/* requested number of bytes transferred */ 
/* points to data area */ 
/* offset for block structured devices */ 

The first thing to note is that a structure definition can make 
use of other structure~. The IOStdReq starts with a complete 
20-byte Message structure, defined in exec/ports.h - the 
exec/io.h file itself contains the necessary logic to include 
exec/ports.h if this hasn't already been done, so you don't have 
to worry about this! This is followed by two 4-byte pointers to 



Getting Started in : Page 245. 

a Device structure and to a Unit structure, which are also 
defined in other files which will be included automatically as 
necessary. Note carefully the absence or presence of "*", which 
indicates either an actual instance of a structure (Message 
structure), or of pointers to (ie addresses of) structures 
defined elsewhere (Device and Unit). 

The initial structures and pointers are followed by some 
"elementary" objects, defined using the macros from exec/types.h; 
note the C-convention by which we use capital letters to 
distinguish macros. The use of macros rather than the Lattice 
primitives such as 

unsigned short io_Command; 

is to aid portability - unsigned short won't necessary give you a 
sixteen bit quantity on a different C compiler! 

Direct use of structures 

Having Li.eluded exec/io. h, you can then create a global IOStdReq 
structure quite simply, by putting something like the following 
before the first function definition in your source module: 

struct IOStdReq myrequest; 

(This is in fact an un-brilliant thing to do, for reasons 
discussed later. However, on the current Amiga at any rate it 
would work okay, so we'll carry on with it for a while for the 
sake of illustration.) 

This tells Lattice to reserve space for an IOStdReq structure in 
a BSS hunk, to output "myrequest" as a global symbol accessible 
from other modules (to avoid this, use "static struct •••• "), and 
to note that myrequest refers to this kind of structure. 
Elements within the structure can then be accessed using the 
"dot" operator, eg 

myrequest.io_Command = CMD_READ; 

This sets the command word in the request block to CMD READ -
this is another macro (capital letters) which is #defined in 
exec/io.h, and actually evaluates to 2. 

Dot evaluates left to right, so it is possible to pile one on 
another - eg to set up the message port node type correctly, we 
could use 

·myrequest.io_Message.mn_Node.ln_Type = NT_MESSAGE; 

This relies on the fact that the Message structure (defined in 
exec/ports.h) itself contains a Node structure mn Node, and 
that the Node structure (defined in exec/nodes.h)-contains a 
UBYTE element ln_Type. The macro NT MESSAGE is also defined in 



Getting Started in C Page 246 

exec/nodes.h, and actually expands to 5. 

Having set up an IOStdReq structure like this, and initialised 
node type, priority and address of reply port by means similar to 
the above, we could then attempt to use it to open the Console 
device as follows: 

if (OpenDevice("console.device",O,&myrequest,O) != O) 
/* cope with open failed */ 

else 
/* cope with open succeeded */ 

Here we are using the OpenDevice EXEC function which takes as 
arguments the device name, a unit number (here zero), the address 
of the IOStdReq block, and flags (here zero). This introduces 
another important c operator - "ampersand" is used to indicate 
that we want to pass the address of something, rather than the 
object itself. OpenDevice returns either zero or an error-code -
here we are testing this immediately in a typically C-ish fashion 
using the != (not-equals) relational operator. 

(In fact, C if statements behave like many BASICs, in that zero 
is taken as false, and non-zero as true. Thus the above could be 
replaced by the even-more-C-ish 

) 

if (OpenDevice("console.device",O,&myrequest,O)) 
/* cope with open failed */ 

else 
/* cope with open succeeded */ 

Two further facilities regarding structures declared explicitly 
in the code are worth noting. The first is that it is possible 
to initialise a structure when declaring it - eg to set up a 
message node: 

struct Node mynode = { 
NULL, /* 
NULL, /* 
NT MESSAGE, /* 
0,- /* 
"My node" /* 

} ; 

*ln Succ - pointer to next node */ 
*ln-Pred - pointer to previous node */ 
ln Type - node type */ 
ln-Pri - node priority */ 
*ln Name - pointer to node name */ 

This is often (and quite legitimately) used to set up structures 
like Intuition NewWindows - see numerous examples, including 
CONSOLE.C elsewhere in section 3 of this publication. 

Secondly, note that it is of course possible to define your own 
structures just as easily as using the ones provided in the .h 
files. Suppose you wanted to define your own structure 
consisting of an IOStdReq followed by an extra flags byte for 
your own nefarious purposes -



Getting Started in c 

struct FunnyioReq { 
struct IOStdReq; 
UBYTE FunnyFlags; 

} ; 

Page 247 

It is possible to combine defining a structure like this with 
declaring one (or more) instances of the structure, as in 

struct FunnyIOReq { 
struct IOStdReq; 
UBYTE FunnyFlags; 

} myFunnyIOReq; 

You can also combine this with initialising the structure as 
above, if you want to get really carried away! Initialising 
global or static structures like this causes Lattice to output 
initialised DATA rather than uninitialised BSS hunks. (It is 
also possible to initialise an automatic variable or structure, 
but this is handled differently, by actually generating code to 
handle the initialisation.) 

Indirect use of structures 

As mentioned above, setting up an IOStdReq structure by declaring 
it directly in the code, then accessing it using dot, is in fact 
considered an unwonderful thing to do. The reason for this is 
that future products in the Amiga series may make use of hardware 
memory partitioning, so that rogue tasks can no longer burst 
their bounds and crash the entire machine. This will mean that 
structures such as messages which have to be shared between tasks 
have to be put in a special region of "public" memory obtained by 
calling AllocMem() MEMF PUBLIC - current Amigas support this as 
an upward compatibility-feature. 

Thus if we want to be upward-compatible, we will have to obtain 
our memory for our IOStdReq by calling AllocMem(), then accessing 
it indirectly. To do this we need a pointer to the structure, 
which we declare as follows, probably as a global variable: 

struct IOStdReq *myrequestpointer; 

Having set up a pointer to a structure like this, it is now 
possible to access elements within the structure using another 
operator"->", known in-house at Ariadne as SillyArrow: 

myrequestpointer->io Command = CMD READ; 
myrequestpointer->io=Message.mn_Node.ln_Type = NT_MESSAGE; 

SillyArrow also evaluates left to right, which leads to a very 
convenient way of dealing with pointers to pointers, eg 

sigmask = l<<(myrequestpointer->io_Unit->unit_MsgPort->mp_SigBit) 

This uses myrequestpointer to pick up a pointer to a unit, from 



Getting Started in c Page 248 

which we pick up a pointer to a message port, from which we pick 
up a signal bit number; we then shift 1 left this number of 
times (<< is binary shift left) in order to convert this to a 
signal bit mask, which we could then use as an argument to the 
EXEC Wait() function! 

Note that in c, it is often important to remember to distinguish 
between a pointer, and the thing being pointed to! For example, 
suppose we wanted to copy the IO request block that had been 
initialised by a call to OpenDevice, into another area accessed 
via another pointer "myotherpointer". We might try and do this 
by 

myotherpointer = myrequestpointer; 

which would just copy the pointer, presumably not what we had in 
mind! To copy the thing being pointed at, we use the * operator 
again: 

*myotherpointer = *myrequestpointer; 

which will copy the entire structure from one place to the other. 
(This ability to access a whole structure like this is in fact a 
special feature of Lattice, rather than standard K&R. More 
conventially, *pointer is used to access simple arithmetic 
objects using pointers - this will be discussed in the context of 
arrays in the next issue of Kickstart.) 

Casting 

If we now consider this example further and consider how we 
actually allocate some MEMF PUBLIC memory for use as an IOStdReq 
structure, we come across an interesting difficulty. Allocating 
the memory is no problem, particularly if we use the C sizeof 
operator which returns the size of a 'structure in bytes: 

myrequestpointer 
= AllocMem(sizeof(struct IOStdReq),MEMF_CLEARlMEMF_PUBLIC); 

The problem is that AllocMem is usually declared to return an 
APTR (general purpose absolute memory pointer), eg by 

extern APTR AllocMem(); 

while mypointer will have been declared as a pointer to an 
IOStdReq structure, 

struct IOStdReq *mypointer; 

C won't think much of you equating two different types of 
pointers, and will give you a warning message "pointers do not 
point to the same object". In order to avoid this, you have to 
perform an explicit type conversion, using an operation known as 
casting. 



Getting Started in c Page 249 

Casting is the mechanism in c which allows you to convert data 
types at the drop of a hat - this is yet another reason why 
Pascal programmers will probably dislike c, but for the rest of 
us ("It's all binary really innit?") it comes in very handy. A 
simple example of a cast would be 

UBYTE bert; 
ULONG fred; 

fred = (ULONG) bert; 

The "cast" (ULONG) tells c explicitly to convert bert to type 
ULONG before equating it to fred, though in fact the cast is 
optional here since this conversion wouldn't worry c anyway. 
Casting is more often used in connection with pointers, as in: 

APTR bert; 
s_truct funnystructure *fred; 

fred = (struct funnystructure *) bert; 

This uses casting to convert bert to a pointer to a structure 
"funnystructure" before equating it to fred - this would 
otherwise worry C, at least to the extent of issuing a 'pointers 
do not point' warning, since it is quite fussy about knowing what 
pointers are supposed to be pointing to. 

Thus the "correct" way of writing the call to AllocMem in this 
case is as follows: 

myrequestpointer = (struct IOStdReq *) 
AllocMem(sizeof(struct IOStdReq),MEMF_CLEAR:MEMF_PUBLIC); 

Assuming this works okay (mypointer doesn't end up NULL), then we 
can proceed to initialise the message port, then call 
OpenDevice(): 

myrequestpointer->io Message.mn Node.ln Type = NT MESSAGE; 
myrequestpointer->io-Message.mn-Node.ln-Pri = O; -
myrequestpointer->io:Message.mn:ReplyPort = myportpointer; 

if (OpenDevice("console.device",O,myrequestpointer,O) != O) 
/* cope with open failed */ 

else 
/* cope with open succeeded */ 

where we are assuming that "myportpointer" has already been set 
up as a pointer to a MessagePort structure. 

In fact, it isn't necessary to do all this setting up before 
calling OpenDevice yourself, since this is provided by an EXEC 
support function CreateStdIO(address of reply port). See ROM 
kernel manual volume I for a listing of this function. 



Getting Started in C Page 250 

summary 

This section has introduced several of the most important 
concepts in C, and some key operators ampersand, dot, splat and 
SillyArrow, along with the notion of casting. A summary is as 
follows: 

f red = &bert; set f red to the address of bert. 
f red = thing.bert; set f red to the element bert in the 

structure thing. 
f red = *bert; set f red to what bert points to. 
f red = thing->bert; - set f red to the element bert in the 

structure thing points to. 
f red = (struct thing *)bert; 

- set fred to bert, having converted 
to a pointer to a thing structure. 

More on structures and pointers, especially in the context of 
strings and arrays, follows in the next section. 

it 



Getting Started in C Page 251 

Section 4 - Arrays and Strings 

Getting Started in C Section 3 looked at the crucial ideas of 
structures and pointers in c programs; this section goes on to 
consider arrays and strings, which in c are built on the more 
general ideas of structures and pointers. 

Declaring !!!. array 

Suppose we are intending to do something or other involving disk 
files (say), and that we are going to need a 1000 byte buffer. 
One way of doing this (the one we would tend to use) would be to 
allocate' this dynamically at run-time: 

buffer= AllocMem(lOOO,O); 

This grabs some memory from the system, and sets up "buffer" as a 
pointer to it. This approach has various advantages, including 
that the memory allocated will be certain to start at a longword 
boundary (often useful for AmigaDOS), and that various options 
exist to specify what kind of memory you want (MEMF FAST, 
MEMF_CHIP, MEMF_PUBLIC) and whether or not you want-the memory 
zeroed for you by AllocMem (MEMF CLEAR). The main disadvantage 
of doing this is that you have to remember that you have 
allocated this memory, and be prepared to free it when you finish 
- unless you are writing the kind of Wallyware where you have to 
reset the Amiga to exit! 

Thus you may pref er to have C handle the memory allocation for 
you. One way of doing this is to call the Lattice standard 
(Unix-like) memory-allocation routines malloc(), calloc() etc 
- memory allocated this way is tracked by Lattice, and will be 
freed up when you perform a Lattice exit(). Alternatively, you 
don't have to use a function at all - you could just declare a 
global array: 

UBYTE buffer[lOOO]; 

This essentially sets up a structure consisting of 1000 
repetitions of a UBYTE, with a pointer "buffer" pointing at the 
first element in the structure. In the case of an uninitialised 
global array like this (declared outside the body of a function 
definition), the effect of this declaration will be enter a 
reservation for space for the array in a BSS hunk - memory will 
actually be allocated and the value of "buffer" resolved by the 
AmigaDOS scatter-loader at load time. The buffer will end up 
linked into the "segment list" for the program, and will be freed 
up automatically by AmigaDOS Exit(). 



Getting Started in C Page 252 

Just like simple variables, global arrays can be initialised at 
the same time they are declared. A classic example (K&R) is a 
"days in month" array (not leap year) declared as follows: 

UBYTE days_in_month[] = {31,28,31,30,31,30,31,31,30,31,30,31}; 

Arrays in functions 

In the days in month[] example above, note that we didn't have to 
tell C explicitly the size of the array, since it's perfectly 
capable of counting the elements for itself! In general, we only 
have to tell c the array size when c is actually reserving space 
for the array. For example, if we had a function which took an 
array as an argument, we might declare the argment as follows: 

cunningfunction(somearray) 
UBYTE somearray[]; 
{ 

/* some wonderful code in here */ 
} 

Remembering that "somearray" is actually a pointer to the start 
of array storage in memory, you could just as well write 

cunningfunction(somearray) 
UBYTE *somearray; 
{ 

/* even more wonderful code using pointers */ 
} 

Whether you continue to think of "somearray" as an array name as 
in the first example, or whether you work with it directly as a 
pointer as in the second example, is very much a matter of 
preference. Generally speaking, C couldn't care less - though in 
some cases, the pointer approach is faster. 

Other array types 

In the examples above, we have been considering the simplest 
case, consisting of a global array of UBYTEs. Static arrays 
(internal or external) are very similar indeed to global arrays, 
the only difference being that the array name is not output to 
the object file, so that the array can only be accessed from 
within a particular function (internal static), or within a 
particular source-code module (external static). The use of 
external static arrays allows a group of collaborating routines -
say a group of routines concerned with disk IO - to share 
"private" buffers, which can't be interfered with from elsewhere 
in the program. 

It is also possible to declare automatic arrays within functions. 
These are handled differently, as space is not reserved for them 
in DATA or BSS hunks - instead space is grabbed off the stack for 



Getting Started in C Page 253 

the array when the function is invoked, and given back when the 
function exits. Note that in standard (K&R) C it is not possible 
to initialise an automatic array when you declare it, so in this 
case you always have to tell C the array size explicitly. 

Arrays of other objects 

Similarly, C is not restricted to arrays of UBYTES - you can have 
arrays of pretty well anything you like. These can be either 
elementary data types such as 

ULONG somearray[SIZE]; /* array of unsigned 32-bi t quanti ti 

or derived data types, such as arrays of structures -

struct List listarray[SIZE]; /* array of list headers */ 

This would produce an array of List structures, each of which 
could have a linked list hung off it. This would be a handy 
thing to have in a database or similar application, where you 
wanted to hash on a key, then search through a hash-chain of 
elements with the same hash-value - ie to use the same technique 
as AmigaOOS uses to find a named file or directory. Having 
declared an array of list headers above, you could then get at 
the right list by 

thislistpointer = &listarray[hashvalue%SIZE]; 

(% is integer modulus in C). 

As well as arrays of structures, you can of course have arrays of 
pointers - perhaps better known to you or me as an address table:
For example, if we were going to write a utility to print a list 
of waiting tasks in order of task priority, then we would 
probably declare an arrays as follows: 

struct Task *taskpointers[SIZE]; 

We could then set up this array by calling Disable() then bunny
hopping through Exec's waiting list (the list header is in the 
positive offsets from ExecBase); we could then sort the list on 
priority of task pointed at, and finally print out the task names 
in the right order. 

Finally, we can have arrays of arrays. The declaration 

UBYTE thing [ 12] [ 5]; 

declares an array of 12 objects, each of which is an array of 5 
UBYTES - in other words a two dimensional array. Arrays of three 
and more dimensions follow just as naturally - quite neat really, 
isn't it? 



Getting Started in c Page 254 

Accessing arrays = pointer arithmetic 

Suppose we have an array of longwords, declared 

ULONG thing[SIZE]; 

Then we can access the i'th element in this array by 

element= thing[i]; 

(Note that array indexing starts from zero, so i will range from 
Oto SIZE-1.) Alternatively, we can make use of the fact that 
"thing" is actually the address of the array in memory, so we can 
just as well write this 

element= *(thing+i); 

The reason that this works is because pointer arithmetic in £ is 
scaled according to the size of the object pointed to. Thus if 
we are trying to access the fourth element in the array, then 
(thing+i) will actually cause sixteen to be added on to thing, 
because c knows that thing is an array of longwords (size 4). 
This will result in an offset from the base of the array of 
sixteen bytes, which is four longwords - exactly what we wanted. 

Other pointer arithmetic works in the same way. For example, 
suppose that we have a pointer into our array set up by 

pointer = thing; 

This is exactly equivalent to 

pointer= &thing[O]; 

i.e. it points at the first element in the array. Now 

pointer++; 

will increment pointer by the size of object pointed at - ie by 
four bytes in this case - so that it points to the next element 
in the array. Note a small difference between pointers and 
arrays here, in that a pointer is a variable while an array name 
is a constant. Thus if we want to do this sort of thing we have 
to set 

pointer = thing; 
pointer++; 

as an attempt to perform 

thing++; 

would result in an error. 



Getting Started in c Page 255 

Similarly 

pointer--; 

will decrement pointer by four bytes, to point at the previous 
element. If we have two pointers into the array, then pointer 
subtraction will be scaled in the same way -

thing = pointerl-pointer2 

will subtract the two pointers then scale the result down, to 
return the number of elements between the two pointers. We can 
also compare two pointers in a similar way -

if {pointer! < pointer2) then { 

/* whatever */ 

} 

However these are the only operations which are legal - pointers 
can be incremented or decremented, they can have integers added 
or subtracted from them, and they can be subtracted or compared. 
Other operations, such as attempting to add two pointers or 
multiply by a constant, are illegal and result in a compiler 
error. Note also that operations such as pointer subtraction can 
only be scaled sensibly if the pointers point to the same object, 
eg to elements in the same array - attempts to perform pointer 
arithmetic on pointers to different objects will result in a 
fatal compiler error. 

All there is to know about strings in £ 

In the same way that arrays are really special cases of pointers 
and structures in c, so strings are special cases of arrays - a C 
string is simply a null-terminated array of characters. Thus 
declaration of a literal string 

fred = "here is a string"; 

will actually cause "here is a string" followed by a null to be 
output as an array of characters in the data hunk from the 
compilation; fred will be a pointer to this array, ie the address 
of "h". Note that 

fred = 'h'; 

and 

fred = "h"; 

are totally different in C - the first sets just sets fred to the 
ASCII value for 'h', while the second outputs an "h" followed by 
a null in a data hunk, and sets fred to the address of it. 



Getting Started in c Page 256 

In terms of string manipulation, what c provides in this respect 
is, er, nothing. The Lattice library le.lib provides standard 
functions to perform string concatenation, string-chopping, 
comparision etc. The fact that you have to call library 
functions to perform string operations is another weakness of C 
viewed as a high-level language - but then it isn't really a high 
level language anyway! 



Getting Started in c Page 257 

Section ~ :. _g~_tting Finished in .£ 

This last section of Getting Started in c looks at flow control 
in C - ie at if ... else constructions, at various forms of loop, 
and at how control is passed forwards and backwards between 
functions. 

If ... else 

The basic "if" construction in c is quite straightforward: 

if (expression) statement; 

OR if (expression) statement!; else statement2; 

In the first case, statement will only be executed if expression 
is non-zero (true). In the second case, statement! will be 
executed if expression is non-zero, otherwise statement2 will be 
executed. statement can be a single line of C: 

if (x == 42) printf("Meaning of life discovered\n"); 

Here we are using the equality operator "==" (NOT to be confused 
with the assignment operator "=") which returns TRUE (1) if two 
things are equal, and FALSE (O) otherwise. 

Alternatively, if can be followed by a series of statements 
surrounded by braces: 

if (handle= Open("Thing",MODE OLDFILE)) { 
printf("File Thing opened-okay\n"); 
readfile(handle); 

} else { 

} 

printf("Couldn't open file Thing\n"); 
exit(20); 

Here we are attempting to open a file "Thing"; it successful we 
read it in using a function (assumed defined somewhere else) 
called readfile(), otherwise we exit using the Lattice standard 
function exit(). The AmigaDOS Open() function returns eit9er a 
"handle" describing the file, or else returns zero if it fails, 
so we can set up variable handle AND test it for being non-zero 
in one operation as shown above. Again, notice the difference 
between = and ==! 

Other logical tests 

It is frequently necessary to set a variable to one of two 
possible values depending on the result of a logical test. For 
example, if we have just got information using AmigaDOS Examine( 
and want to remember whether what we were looking at was a file 
or a directory, we might use 



Getting Started in c 

if (fib->fib DirEntryType > O) 
type = DIRECTORY; 

else 
type = FILE; 

Page 258 

(Here DIRECTORY and FILE are two macros we have defined somewhere 
for our own use.) c provides a short-cut for doing this sort of 
thing, in the form of a "conditional expression" as follows: 

type = (fib->fib_DirEntryType > O) ? DIRECTORY : FILE ; 

This works out the expression before the "?" then sets type to 
DIRECTORY or FILE, depending on whether the expression is true 
(non-zero) or false respectively. 

Another shortcut is provided when it is necessary to take a 
number of possible courses of action depending on different 
possible integer values, eg in the case of different possible 
messages received from an Intuition IDCMP: 

if (message->Class == MOUSEBUTTONS) { 
/* cope with mouse button pressed */ 

} 
if (message->Class == MENUPICK) { 

/* cope with menu selection */ 
} 
if (message->Class == CLOSEWINDOW) { 

/* window closed - exit */ 
} 

etc. 

This can be handled much more neatly as follows: 

switch(message->Class) { 

case(MOUSEBUTTONS): 

} 

/* cope with mouse button pressed */ 
break; 

case(MENUPICK): 
/* cope with menu selection */ 

break; 

case(CLOSEWINDOW): 
/* window closed - exit */ 

break; 

default: 
/* unrecognised message - panic! */ 

Note the break statements which are necessary to get you out of 
the switch braces and onto the next statement; without this each 
case will fall into the next one. Note also the default:, which 



Getting Started in C Page 259 

specifies what to do if none of the cases specified are satisfied 
- in this case we would be getting an unrecognised message from 
Intuition, which would almost certainly indicate dire trouble! 

Looping 

All looping inc is a variation on "while", with the test either 
at the start or at the end of the loop: 

while (expression) statement; 
OR do statement; while (expression); 

(test at start) 
(test at end) 

Note the terminating semi-colon in the second case (do-while). 
Again, statement can be either a single line of c terminated by a 
semi-colon, or a series of lines enclosed in braces: 

while (ExNext(lock,fib)) { 
if (fib->fib DirEntryType > O) 

printf ("'Directory") ; 
else 

printf("File"); 
printf(" %s\n",fib->fib FileName); 
} -

Here we are printing out an AmigaDOS directory listing, using a 
function ExNext which fills in the next entry in a "file 
information block", and returns zero when there are no more 
entries or if it hits an error. 

A "for" loop inc is really a variant on "while", with the test· 
at the top of the loop: 

for (start-expression; while-condition; loop-expression) 
statement; 

The c equivalent of FOR X=l TO lO:PRINT"WOMBAT":NEXT is therefore 

for (x=l ; x<=lO; x++) printf("wombat\n"); 

However, the c "for" is much more powerful than BASIC FOR ... NEXT, 
the trick being the loop-expression which specifies what to do 
between one iteration and the next. For example, to "bunny hop" 
through a linked list, we can use a loop-expression which picks 
up the pointer to the next node in the list from the current 
node: 

for (node = list->lh Head; next = node->ln_Succ; node = next) { 
/* process list-in here */ 

} 

Here the while-condition is (next= node->ln succ), meaning 
keep looping until the pointer to the next node is zero. 



Getting Started in c Page 260 

It is possible to have more than one start-expression, while
expression or loop-expression separated by commas; it is also 
possible for any or all of these expressions to be be null: 

for (;;) { 
/* keep looping forever */ 

} 

A frequently encountered trick in c is to use a for-loop whose 
body is null - eg to copy a string from one place to another 

for (i = O;destn[i] = source[i];i++); 

Here the while-condition is being used both to copy a character 
and test .if it is null; the actual body of the loop does nothing, 
as indicated by the terminating semi-colon. This is a point to 
watch - it is quite easy to create a null loop by accident, by 
putting a semi-colon a the end of a "for" statement when you 
don't mean to! 

Getting out of loops 

Loops in C don't use the stack, so it is usually quite safe to 
break out of them. The "clean" way to do this is using the 
keyword break - eg we might want to keep looping until we get an 
Intuition CLOSEWINDOW message: 

FOREVER { /*Intuition macro - expands to for (;;) */ 

WaitPort(OurWindow->UserPort); /*wait for message*/ 
message= GetMsg(OurWindow->UserPort); 

/* (should be checking for more than one) */ 

class = message->Class; 
if (class == CLOSEWINDOW) break; 

switch(class) { 
/* handle other message types */ 

} 
} 
/* processing continues here after break */ 

Another way out is to use (shudder) goto: 

if (!(buffer= AllocMem(lOOO,O)) goto nomemory; 
/*** buffer allocated okay - continue ***/ 

nomemory: 
/*** run out of memory - clean up and exit ***/ 

Our own opinion is that this sort of thing is perfectly okay for 
handling errors - its use for other purposes should be avoided 
however. 



Getting Started in C Page 261 

Flow control using fun~ticns 

The passing of control between functions in C is illustrated in 
listing 1, which shows a program to add two numbers using a 
(totally unnecessary) function sum(a,b). Looking first at 
function main() - starting at offset 0010 in the object module 
disassembly - what happens is as follows: 

1. First of all we set up two global variables "first" and 
"second". The compiler has put these in section 02 (BSS 
hunk), at offsets 0 and 4. 

2. Now we want to call function sum(), passing it the current 
values of "first" and "second" as parameters. To do this, 
we take the current value of "second" (already in DO), and 
push it to the stack, followed by the current value of 
"first". We now call sum() by BSR 0 - this takes us to 
offset zero in the object module disassembly. 

3. The first thing done in sum() is to reserve space for a 
temporary (•automatic") variable c. This is done by LINK 
AS,FFFC, which grabs another four bytes off the stack, and 
puts a pointer to them in AS. 

4. sum() can now get at its formal variables a and b, and at 
its automatic variable c, by looking at what has been 
pushed to the stack. It does this by using AS with offsets 
zero (c), 8 (a) and 12 (b). 

S. When sum() has finished, it first of all cleans ·up the space 
it grabbed off the stack by UNLK ASi it then returns a 
value by passing it back in DO. 

6. When main() is returned to, it first of all cleans up the 
values it pushed to the stack by ADDQ.L f8,A7i it then sorts 
out •first" by moving DO to the appropriate offset in hunk 
2. This completes the story. 

Note that the values of the formal variables a and b, and of the 
automatic variable c, are all strictly temporary - these 
variables consist of some space at the top of the stack which is 
thrown away when the function has finished either by the function 
itself (c), or by the function which called it (a and b). This 
scheme is known as "passing by value" - the function sum() is 
given the current values of first and second at the top of the 
stack, but has no access to the variables themselves where they 
are stored in hunk 2, and can't affect their values. 

You have to be a bit careful about this in C programs. For 
example, you might think it was possible to swap the values of 
two variables "first" and "second" by calling swap(first, second) 
where function swap() is defined as follows: 



Getting Started in C 

void swap(a,b) 
int a,b; 
{ 

int c; 
c=a; a=b; b=c; 

} 

Page 262 

However, all this will do is to fiddle around with temporary 
values at the top of the stack which will then be thrown away. 
The way to get round this - ie to provide a facility for "passing 
by reference" in which a swap() function can affect the current 
values of its arguments is to pass it the---address of its 
arguments, then let it access them indirectly. Thus you would 
call swap(&first, &second) and define swap as follows: 

void swap(a,b) 
int *a,*b; 
{ 

int c; 
c = *a; *a = *b; *b = c; 

} 

An OMD for this is given in listing 2 - checking though what the 
compiler does in this case and that it works out correctly is 
left as an exercise for the reader! 

A final point 

Note that while C generally checks the type of value returned by 
a function very carefully, it doesn't usually make much of a fuss 
about values passed to it!. Thus if you called a function 
sum(a,b) with two floating point parameters, but had defined the 
function to expect integers, then sum() would read values off the 
top of the stack as if it had been passed integers, resulting in 
a garbage result. In Lattice it is possible to protect yourself 
against this by explicitly stating argument types expected by 
functions, eg by 

extern sum(int,int); 

though this is not compulsory. In Lattice it is also permitted 
to pass complete structures to functions and to return them from 
functions - however this is unusual, and Lattice will generally 
give a warning message to check that this is really what you had 
in mind! 

What to do now 

Read Kernighan and Ritchie. 



Getting Started in c Page 263 

I* Trivial example for Kickstart *I 

int first,second; I* two 9lobals */ 

I* unnecessary function to add two numbers */ 

int sum<a,b> 
int a,b; 
{ 

int c; I* auto variable - temp storage */ 

} 

c = a+b; 
return<c>; 

void main () 
{ 

} 

first = 2; 
second = 4; 
first= sum<first,second>; 

LATTICE OBJECT MODULE DISASSEMBLER v2.oo 

Amiga Object File Loader Vl.00 
68000 Instruction Set 

EXTERNAL DEFINITIONS 

_sum ocioo-oo _ma i n 001 (1-00 _first 0000-02 _second 0004-02 

SECTION (10 "add.a" 00000034 BYTES 
0000 4E55FFFC LINK A5,FFFC 
0004 202D0008 MOVE.L OOOB<A5>,DO 
0008 DOADOOOC ADD.L OOOC<A5>,DO 
oooc 4E50 UNLK AS 
OOOE 4E75 RTS 
0010 7002 MOVEQ #02,DO 
0012 23CO 00000000-02 MOVE.L 00,02.00000000 
0018 7004 MOVEQ #04,DO 
001A 23CO 00000004-02 MOVE.L DO, 02. 0(•000004 
0020 2FOO MOVE~L DO,-<A7> 
0022 2F39 00000000-02 MOVE.L 02.00000000,-<A7> 
0028 6106 BSR 00000000 
002A 508F ADDQ.L #8,A7 
002C 23CO 00000000-02 MOVE.L 00,02.00000000 
0032 4E75 RTS 

SECTION 01 " " 00000000 BYTES 

SECT I ON 02 II " (l(l(l(H)008 BYTES 

Listing 1 - sum £unction 



Getting Started in c Page 264 

* Swap example - debugged version */ 

int f1rst,second; '* two globals */ 

I* function to swap two numbers */ 

\/Did swap <a,b) 
int *a,*b; 
.-·, 

int c; I* auto variable - temp storage */ 

c = *a; 
*a = *b; 
*b = c; 

} 

. 
void main<> 
{ 

} 

first = 2; 
second == 4; 
swap(&first,&second>; 

LATTICE OBJECT MODULE DISASSEMBLER V2.00 

Amiga Object File Loader Vl.00 
68000 Instruction Set 

EXTERNAL DEFINITIONS 

_:.wap (l(H)(l-1)0 main OOlA-00 _first 0000-02 _second 0004-02 

SECT I ON (H) 11 swap . o 11 0000003C 
0000 4E55FFFC 
0004 20600008 
0008 2010 
OOOA 2060000[ 
OOOE 22600008 
0012 2290 
0014 2080 
0016 4E5D 
0018 4E75 
OOlA 7002 
OOlC 23CO 00000000-02 
0022 7004 
0024 23CO 00000004-02 
002A 4879 00000004-02 
(~30 4879 00000000-02 
0036 61C8 
0038 508F 
003A 4E75 

SECT I ON 01 " II (l(H)(l(l(H)i) BYTES 

SECTION 02 II II 00000008 BYTES 

BYTES 
LINK 
MOVEA.L 
MOVE.L 
MOVEA.L 
MOVEA.L 
MOVE.L 
MOVE.L 
UNLI< 
RTS 
MOVEQ 
MOVE.L 
MOVEQ 
MOVE.L 
PEA 
F'EA 
BSF: 
ADDQ.L 
RTS 

A5,FFFC 
0008 < A5 > , AO 
(AO> , DO 
OOOC <AS) , AO 
OOOB<A5>,A1 
<AO> , <A 1) 
DO, <AO> 
A5 

#02,DO 
DO, 02. 00000000 
#04,DO 
DO, 02. 0(10(H)(l04 
02.00000004 
02 • 0(1(l(l(l(H)0 
00000000 
#8,A7 

Listing 2 - swap function 



Getting Started in c Page 265 

Appendix = 1.2 libraries summary 

Following is a summary of all routines in all libraries in . 
version 1.2, originally prepared by Mike Solley for Kickstart 
Issue 5. This was based on Kickstart 33.166 and Workbench 33.43, 
a bit earlier than the final 1.2 release versions, which were 
Kickstart 33.180 and Workbench 33.47. We don't expect library 
contents to have changed at all in the release versions however. 

Note that by the time of Kickstart 33.t66, clist.library - the 
Amiga ROM string-handling - had already gone missing. At the 
time its fate seemed uncertain, so it was included in Mike's 
summary - in the end however it was left out of the release 1.2 
ROM (Kickstart 33.180), presumably for reasons of ROM-space, and 
on the grounds that no-one was using it. 

The objective of this summary is to give an idea of "what's where 
in the Amiga", and to provide a quick reference for finding 
routines when you need them. For full routine descriptions, see 
the official documentation, as provided in the 1.2 autodocs. 



System summary: Release 1.2 lKicLstart 33. 166/Workbench 33.43 - Ol-Oct-86> 

System libraries 
""""""'""~"""""""""""' ... "'""""'"" 
Amiga system libraries are provided either on a KickStart. disk lKICIO and 
loaded into "ROM" on boot-up, or on disk in the libs: directory; in which 
case they are loaded into memory as required. 

This document describes the system libraries provided on Release 1.2 dated 
Ol-Oct-96, comprising KickStart 33. 166 and WorkBench 33.43. Note that the 
clist.library does not seem to be provided in this release, but presumably 
wi 11 be restored in the final 1. 2 release. 

Details of the library version and revision numbers, etc are given for each 
library, together with a list of all library functions, giving their offsets 
from the library base and brief descriptions. 

For full descriptions of library functions, see the official documentation, 
provided on the 1.2 ReadMe disl:. 

Library n;ame 
......................................... 
cl ist. library 
diskfont.library 
dos.library 
exec.library 
expansion.library 
graphics. library 
icon. library 
info. I ibrary 
intuition.library 
layers. library 
mathffp. library 
mathieeedoubbas.library 
mathtrans.library 
ramlib.library 
translator. library 
version. library 

Description 
"'""'"'""'""'"'"W"" ........ "' 
Character-list handling functions 
Disk-resident text font handling 
AmigaDOS functions 
General system functions 
Functions for handling system e:~pansion 
Graphics functions, including te~t 
Icon handling and related functions 
Used by Worl:Bench 'info' 
Intuition user-interface handling 
Layer-handling functions 
Fast Floating Point <FFPl arithmetic 
IEEE double precision format arithmetic 
Fast Floating Point Transcendental Funes 
RAM-disk handling functions 
Translate text to phoneme stream 
Version number, ~ little else! 

Where 

???? 
1 ibs: 
KICK 
KICK 
KICK 
KICK 
libs: 
1 ibs: 
KICK 
KICK 
KICK 
libs: 
libs: 
KICK 
1 ibs: 
libs: 

System su11111ary: Release 1.2 <Kickstart 33.166/Workbench 33.43 - Ol-Oct-B6l 

clist.libr~ry: Character-list handling functions 
........................................ ~ 
Name: 
Version: 
Revision: 
ldString: 
NegSize: 
PosSize: 

Where: 

Base Name: 

"t:l ist. library• 
?? 
?? 
?? 
?? 
?? 

?? where indeed ?? 

ClistBase 

Function name 

FF64 ConcatCLi st 
FFbA SubCList 
FF70 CopyCList 
FF76 SplitCList 
FF7C PeekCLMark 
FFB2 IncrCLl'rark 
FFBB MarkCList 
FFBE GetCLBuf 
FF94 PutCLBuf 
FF9A UnPutCLWord 
FFAO UnGetCLWord 
FFA6 GetCLWord 
FFAC PutCLWord 
FF82 UnPutCLChar 
FFBB UnGetCLChar 
FFBE GetCLChar 
FFC4 PutCLChar 
FFCA SizeCList 
FFDO FlushCList 
FFD6 FreeCList 
FFDC AllocCList 
FFE2 lnitCLPool 

Description 
"'"'"' ... """""""""'"'""" ... 
concatentte two character-lists lclistsl 
copy a substring from a clist 
copy a clist to a new clist 
split a clist 
peek at the byte in the clist at the mark 
increment a clist mar~ to the next position 
mark a position in a clist 
convert a characater-list to contiguous data 
convert contiguous data into a character-list 
get a word from the end of a character-list 
add a word to the beginning of a character-list 
get a Hord from the beginning of a character-list 
add a word to the end of a character-list 
get a byte from the end of a ~haracter-list 
add a byte to the beginning of a character-list 
get a byte from the beginning of a character-list 
add a byte to the end of a character-list 
get the number of bytes in a character-list 
clear a character-list 
free a clist 
allocate and initialize a clist 
initialize a clist pool 



System sum111ary: Release 1.2 IKicl:shrt :n.106/Workbench 33.43 - Ol-Dct-861 

diskfont.library: Functions for handling disk-resident text fonts 

Na111e: 
Version: 

•diskfont.library• 
33 

Revision: 
ldString: 
NegSize: 
PosSize: 

Where a 

Base ~1 

16 
NONE 
10024 
10038 

Disk 

DiskfantB&H 

Function n&M ............ ~ ............... 
FFDC AvailFonts 
FFE2 OpenDiskFont 

DHcripHon ... ........................... , 
build an array of all fonts in ...ary I an disk 
load and get • pointer to • disk font 

Syst .. 11U1111Ary1 Release 1.2 CKickstart 33.166/Workbench 33.43 - Ol-OCt-161 

dos.library: AlligaDOS functions 
~ .............. ~ 
Nue1 
Version: 

•dos. library• 
33 
124 Revisian1 

JdString: 
NegSize1 
PosSize: 

•dos 33.110 Ill Sep 19861• 
SOODE 
1007C 

DOSBase 

Function n•H ............ .._..... ............... """'-
FF22 Execute 
FF28 lslnteractive 
FF2E ParentDir 
FF34 NaitForChar 
FF3A Delay 
FF40 Datest.., 
FF46 SetProtectian 
FF4C SetC~t 
FF52 DeviceProc 
FF:58 QueuePacket 
FF:sE GetPacket 
FF64 lklloadSeg 
FF6A LoadSeg 
FF70 E11it 
FF76 CreateProc 
FF7C JoErr 
FF82 CurrentDir 
FFBB CreateD1r 
FFBE Info 
FF94 ExNext 
FF9A Exa.iine 
FFAO Duplock 
FFA6 lkllock 
FFAC Lock 
FF92 Rena11e 
FFEcB DeleteFi le 
FFEcE Seek 
FFC4 Output 
FFCA Input 
FFDO Write 
FFD6 Read 
FFDC Close 
FFE2 Open 

Description .......... ~ ............... ... 
execute • CLI c~nd 
discover whether a file is • virtual ter•inal 
obtain the parent of • directory or file 
deter•ine if chars arrive within • time li•it 
delay • process for • specified ti•• 
obtain the date and time in internal for .. t 
set protection for• file or directory· 
change • file's cOlllll!nt string 
return the process JD of specific J/O handler 
send • packet to another process 
get, or wait for, •packet· 
unload a seg111ent previously loaded by LoadSegCI 
load a load llOdule into memory 
exit frDll a progra• 
create a new process 
return extra infor•atian frDll the syst .. 
•ake a dir associated with a lock the working dir 
create a new directory 
returns information about the disk 
examine the next entry in a directory 
examine a directory or file associated with a lock 
duplicate a lock 
release a lock on a directory or file 
lock a directory or file 
rename a directory or file 
delete a file or directory 
find and point at the logical position in a file 
identify the program· s initial output file handle 
identify the program's initial input file handle 
write bytes of data to a file 
read bytes of data from a file 
close a file for input or output 
open a file for input or output 



&ystem summary: ~elea~e 1.2 (~iclstart 33. 166/Wcrlbench 33.43 - 01-0ct-Sb> 

intuit ion.library: Intuit ion user-interface harodl ins functions 

Name: 
Version: 

"intuition.library" 
33 

Revision: 
IdStrin9: 
Ne9Size: 
f'osSize: 

Where: 

Base Name: 

702 
NONE 
t01D4 
$0564 

KickStart "ROI'!" 

IntuitionBase 

Function name 

FE2C Newl'lodifyProp 
FE32 Activate6ad9et 
FE3B RefreshWindowFrame 
FE3E ActivateWindow <"o) 
FE44 RemoveGList 
FE4A AddGList 
FE50 RefreshGList 
FE56 GetScreenData 
FE5C UnlockIBase 
FE62 LockIBase 
FE6B FreeRemember 
FE6E AlohaWorkbench 
FE74 AllocRemetnber 
FE7A RethinkDisplay 
FEBO RemakeDisplay 
FE86 l'lakeScreen 
FEBC FreeSysRequest 
FE92 EndRefresh 
FE9B BuildSysRequest 
FE9E Be9inRefresh 
FEA4 AutoRequest 
FEAA WBenchToFront 
FEBO WBenchToBack 
FEB6 lntuiTeictlen9th 
FEBC SetPref s 
FEC2 WindowLitnits 
FECB WindowToFront 
FECE WindowToBack 
FED4 ViewPortAddress 
FEDA ViewAddress 
FEEO SizeWindow 
FEE6 ShowTi t le 
FEEC SetWindowTitles 
FEF2 SetPointer 
FEFB Setl'lenuStrip 
FEFE SetDl'IRequest 
FF04 ScreenToFront 
FFOA ScreenToBack 
FFlO Request 
FF16 Reportl'louse 
FF1C Remove6ad9et 
FF22 Ref resh6ad9ets 
FF28 PrintITeict 
FF2E OpenWorkBench 
FF34 OpenWindow 
FF3A OpenSc:reen 
FF40 Onl'lenu 
FF46 On6ad9et 
FF4C OffMenu 
FF:S:? Off6ad9et 
FF:SS MoveWindow 
FF:SE MoveSc:reen 
FF 64 Modi fyf·rop 
FF6A ModifylDCMP 
FF70 ItemAddress 
FF76 lnitRequester 
FF7C GetPrefs 
FF82 GetDef Prefs 
FF88 EndRequest 
FFSE Drawima9e 
FF94 DrawBorder 
FF9A DoubleC!ick 
FFAO DisplayBeep 
FFA6 DisplayAlert 
FFAC CurrentTime 
FFE<2 CloseWorkBenc:h 
FFE<S CloseWindow 
FFBE CloseScreen 
FFC4 Clear-Pointer 
FFCA ClearMenuStrip 
FFDO ClearDMRequest 
FFD6 AddGadget 
FFDC Intuition 
FFE2 Openlntuition 

Description 
""""""""'""""'"""""""' .... 

. ModifyF·ropO, but with selective refresh 
attempt to activate a string gadget 
ask Intuition to redraw your window border/9ad9ets 
activate an Intuition window 
removes a sublist of gadgets from a window 
add a linked list of 9ad9ets to a window/requester 
refresh (redraw> a chosen number of gadgets 
set a copy of a screen data structure 
surrender an Intuition lock obtained by LocklBase 
Intuition user's access to Intuition locking 
free memory allocated by c:alls to AllocRememberll 
WorkBenc:h becoming active/shutting down 
Al locl'lem II l< create link node to make Freel'lem easy 
grand manipulator of the entire Intuition display 
remake the entire Intuition display 
lntui ti on-integrated l'lakeVPort () of custom screen 
frees resources used by call to BuildSysRequest(l 
ends the optimized refresh state of the window 
build and display a system requester 
sets up a Window for optimized refreshing 
automatically build ~set response from Requester 
brings Worl<Bench Screen in front of all screens 
sends WorkBench Screen to back of all screens 
returns the length (pixel-width> of an IntuiText 
set Intuition Preferences 
set the minimum & maximum limits of the Window 
ask Intuition to bring this Window to the front 
ask Intuition to send this Window to the back 
returns the address of a Window's ViewPort 
returns the address of the Intuition View struct 
ask Intuition to size a Window 
set the sc:reen title bar display mode 
set the Window's titles for both Window &i Screen 
sets a Window with its own pointer 
attaches the Menu strip to the Window 
sets the Dl'IRequest of the Window 
brings specified Screen to the front of display 
sends specified Sc:reen to bac~ of the display 
activates a Requester 
tells Intuition whether to report mouse movement 
removes a Gadget from a Window 
refresh (redraw> the Gadget display 
prints the text according to lntuiText argument 
opens the WorkBench Sc:reen 
open_s an lntui ti on Window 
opens an Intuition Sc:reen 
enables the given menu or menu item 
enables the specified Gadget 
disables the given menu or menu item 
disables the specified Gadget 
ask Intuition to move a Window 
attempts to move the Screen by given increments 
modify current parameters of ~ Proportional Gadget 
modify the state of the Window's IDCMf'Flags 
returns the address. c.·f the speci-fied Menuitem 
initializes a Requester structure 
get current setting of the intuition Preferences 
get a copy of Intuition defa~lt Preferences 
ends the F:equest and resets the Window 
draws the specified Image into the Rastf'ort 
draws the spec: if ied Border into the RastPort 
test two time v~lues for double-clic:k timing 
flashes the video display 
create the display of an Alert message 
get the current time valu~s 
closes the WorkBench Sc:reen 
closes an Intuition Windo•1 
closes an Intuition Screen 
clears the mouse pointer definition from a Window 
c:le~rs (detaches) the Menu strip from a Window 
clears (detaches) the DMReq•_oest of the Window 
add a Gadget to Gadget list of a Window or Screen 
[Intuition input event hand:erl 
[not documented - int•rnal use only) 



System summary: fiele&>se 1. 2 <l'.1cl start 3::. lbb/Workbench 3:;. 43 - 01-0ct-Sbl 

layers.library: Layer-handling functions 

Name: 
Version: 
Revision: 
ldString: 
NegSize: 
Po5Si ZI!: 

Where: 

"layers. l 1brary" 
33 
31 
NONE 
IOOAE 
1002A 

KickStart "ROl1" 

LayersBase 

Function na111e .. "'""'"'"'""'""'""'"'"'"'"' 
FF52 lnstallClipRegion 
FF58 P1ovelayerlnFront0f 
FF5E Thinlayerlnfo 
FF64 Fattenlayerlnfo 
FF6A Disposelayerlnfo 
FF70 NeNL.ayerlnfo 
FF7b Unlocklayerlnfo 
FF7C lllhichlayer 
FFB2 SNapBitsRastPortClipRect 
FFBB Locklayerlnfo 
FFBE Unlacklayers 
FFr;4 Locklayers 
FF9A Unlocklayer 
HAO Lod:Layer 
FFAb Deletelayer 
FFAC Endllpdate 
FFB2 BeginUpdate 
FFBB Scrolllayer 
FF1'E Sizelayer 
FFC4 P1ovelayer 
FFCA Behindlayer 
FFDO Upfrontlayer 
FFDb CreateBehindlayer 
FFDC Createllpfrontlayer 
FFE2 Jnitlayers 

Description 
.............. "' ....... ""'"'""' 
install clip region in layer 
put layer in front of another layer 
convert 1.1 Layerlnfo to 1.0 Layerlnfo <OBSOLETE> 
convert 1.0 Layerlnfo to 1.1 Layerlnfo <OBSOLETE> 
return all 11emory for Layerlnfo to memory pool 
allocate & initialize full Layerlnfo structure 
unlock a Layerlnfo structure 
which layer is this point in? 
swap bite between bitmap & obscured ClipRect 
loci: a Layerlnfo structure 
unlock all layers from graphics output 
lock all layers from grapnics output 
unlocl.: layer le allow graphics routines to use it 
lod. layer to make changes to ClipRects 
delete layer from layer list 
remove da111a9e list & restore state of layer 
prepare to repair damaged layer 
scroll around in a layer 
change the size of a non-backdrop layer 
•ove layer to a new position in BitMap 
put layer behind other layers 
put layer in front of all other layers 
create a new layer behind all existing layers 
create a new layer on top of existing layers 
initialize Layerlnfo structure <OBSOLETE> 



System summary: Release 1.2 <Kic~stilrt 33.166/Worl bench :.: .. 4:::. - Ol-Oct-86l 

graphics.library: Graphics functions, including text 

Name: 
Version: 

"graphics.library" 
33 

Revision: 
ldString: 
NegSize: 
PosSize: 

Where: 

Base Name: 

89 
NONE 
S02BE 
SOOF2 

KickStart "ROM" 

GfxBase 

Function name 

FD72 AttemptlocklayerRom 
FD7B GraphicsReserved2 
FD7E GraphicsReservedl 
FDB4 BltMaskBitMapRastPort 
FDBA SetRGB4CM 
FD90 AndRegionRegion 
FD96 XorRegionRegion 
FD9C OrRegionRegion 
FDA2 BltBitMapRastPort 
FDAB FreeGBuffers 
FDAE UCopperlistlnit 
FDB4 ScrollVPort 
FDBA GetRGB4 
FDCO FreeColorMap 
FDC6 GetColorMap 
FDCC FreeCprlist 
FDD2 XorRectRegion 
FDDB ClipBlit 
FDDE FreeCoplist 
FDE4 FreeVPortCoplists 
FDEA DisposeRegion 
FDFO ClearRegion 
FDF6 ClearRectRegion 
FDFC NewRegion 
FE02 OrRectRegion 
FEOB AndRectRegion 
FEOE FreeRaster 
FE14 AllocRaster 
FEIA RemFont 
FE20 AddFont 
FE26 AskFont 
FE2C lnitTmpRas 
FE32 DisownBlitter 
FE38 OwnBlitter 
FE3E CopySBitMap 
FE44 SyncSBitMap 
FE4A UnlocklayerRom 
FESO LocklayerRom 
FE56 MoveSpri te 
FESC ChangeSprite 
FE62 FreeSprite 
FE68 GetSprite 
FE6E WaitBOVP 
FE74 ScrollRaster 
FE7A lnitBitMap 
FEBO VBeamPos 
FEB6 CWait 
FEBC CMove 
FE92 CBump 
FE98 Initview 
FE9E SetDrMd 
FEA4 SetBPen 
FEAA·SetAPen 
FE90 PolyDraw 
FEB6 Flood 
FEBC WritePi>:el 
FEC2 ReadPixel 
FECB BltPattern 
FECE Rec:tFill 
FED4 BltClear 
FEDA QBSBlit 
FEEO SetRGB4 
FEE6 InitArea 
FEEC QBlit 
FEF2 WaitTOF 
FEFB. AreaEnd 
FEFE AreaDraw 
FF04 AreaMove 
FFOA Draw 
FFJO Move 
FF16 SetRast 
FFJC Wait9lit 
FF22 LoadView 
FF28 Maf;eVPort 
FF::E MrgCop 

Description 
"'"""'"""'"'"""""'""""' 
attempt to lock layer structure by ROl1 code 
[reserved] 
[reserved] 
blit from bitmap to rastport with masking 
set one color register for this ColorMap 
perform AND of one region with second region 
perform XOR of one region with second region 
perform OR of one region with second region 
bl it from source bitmap. to dest rastport 
deallocate memory obtained by GetGBuffers<> 
[not documented] 
reinterpret Raslnfo information in ViewPort 
inquire value of entry in ColorMap 
free ColorMap structure 
allocate and initialize a ColorMap 
deallocate hardware copper list 
perform XOR of rectangle with region 
calls BltBitMap(I after accounting for windows 
deallocate intermediate copper list 
deallocate intermediate copper lists from ViewPort 
deallocate all space for this region 
remove all rectangles from region 
perform CLEAR operation of rectangle with region 
get a clear region 
perform OR operation of rectangle with region 
perform AND operation of rectangle with region 
free space for a bitplane 
allocate space for a bitplane 
remove a font from the system list 
add a font to the system list 
get the text attributes of the current font 
init area of local memory for areafill, etc 
return blitter to free state 
get the blitter for private usage 
synchronize layer window with SuperBitMap 
synchronize Super BitMap with layer 
unlock layer structure by ROM code 
lock layer structure by ROM code 
move sprite to point relative to top of ViewPort 
change a sprite's image pointer 
return sprite for use by others 
attempt to get a sprite for simple sprite manager 
wait until vertical beam at bottom of ViewPort 
push bits in rectangle in raster around by dx,dy 
initialize Bi tMap structure with input values 
get vertical beam position at this instant 
append copper wait instruction to user copper list 
append copper move instruction to user copper list 
bump pointer to next instruction in copper list 
initialize View structure 
set drawing mode 
set secondary pen 
set prim.;.ry pen 
draw lines from a table of (x,yl values 
flood rastport like areaf1ll 
change pen mom of one specific p1>:el in a RastPort 
read pen number at spec i fie loc:at ion in a Rast Port 
blit u.rough a mask using standard areafill 
fill rectangular area 
clear a block of memory words to zero 
synchronize blitter request with the video beam 
set one color regikster for this ViewPort 
initiali:e vector collection matrix 
queue up a request for blitter usage 
wait for the top of the next video frame 
process table of vectors and produce areafill 
add a point to a list of endpoints for areafill 
define new starting point for new shape 
draw 1 ine from current pen posn to spec: i fied posn 
move graphics pen position 
set an entire drawing area to a spec:ified colour 
wait for the blitter to be finished 
use a copper instructio~ list to create display 
generate display copper list 
merge together coprocessor instruction lists 



S1 i>tr111 su111111ary: Release 1.2 lt;;1clsta1·t 33.166/Workbench 3Z-.43 - 01-0ct-Bbl 

9raph1cs.l1brary lcontdl 

f"unc t ion name 

FF34 ln1tVf'ort 
FF3A lnitRastPort 
FF40 LoadRG84 
FF46 AreaEllipse 
FF4C DrawEllipse 
FFS2 lnitG"asks 
FF58 GetG8uffers 
FFSE Ani111ate 
FF64 AddAnillOb 
FF6A SortGList 
FF70 SetCollision 
FF76 RemVSprite 
FF7C Remlllob 
FF82 Jnit11asks 
FFBB lnitGels 
FFBE DralllGL..ist 
FF94 DaCollision 
FF9A Addi/Sprite 
FFAO AddBob 
FFA6 SetSoftStyle 
FFAC A&kSof tStyle 
FFB2 CloseFont 
FFBB ClpenFont 
FFBE SetFont 
FFC4 Text 
FFCA TextLength 
FFDO ClearScreen 

.FFD6 ClearEOL 
FFDC BltT91aPlate 
FFE2 BltBi t"-P 

Description 
"" .... "' .... "'"'"""'"' ....... 
initialize V1ewPort structure 
initialize RastPort structure 
load RBG color values fro• table 
add an ellipse to areainfo list for areafill 
draw an ellipse 
initialize all of the •••ks of an Anillllb 
atte11pt to allocate all buffers of an AnillOb 
processes every Ani.ob in cu,..nt anieation list 
add an Ani.ob to the linked list of AnillObs 
sort the current gel list, orclerin9 y,x coords 
set pointer to a user collision routine 
re11<1ve a VSprite from the current gel list 
i ... ediately re11ove a llob fra. 9el list l RastPort 
init the Borderline l Coll"a•k •asks of • VSprite 
initialize a gel list 
process gel list, queueing VSprites, drawing Bobs 
test every gel in gel list for collisions 
add a I/Sprite to the current gel list 
add a Bob t~ the current gel list 
set the soft style of the current font 
get the soft style bits of the current font 
release a pointer to a syst .. font 
get a pointer to a syste• font 
set the text font ~ attributes in a RastPort 
write text characters Cno for•attingl 
detereine raster length of text data 
clear fro• current position to end of RastPort 
clear fro. current position to end of line 
cookie cut a shape in a rectangle to ... RastPort 
11<1ve a rectangular region of bits in a Bitl1ap 

Syste• su11111ary: Release 1.2 CKickstart 33.166/Workbench 33.43 - 01-0ct-86> 

icon. library& Icon handling and related functions 
"'"""'""'"' .. "'"'"""'"" ... 

•icon.library• 
33 
127 

N ... 1 

Versions 
Revision: 
ldString: 
NegSize1 
PosSize: 

•icon 33.127 <22 Jul 1986)• 
S006C 
S002E 

Where1 Disk 

Base Na•e: lconBase 

Function n•• 
~"'"'"""'"'"""""'""'"""" 

FF94 Bu111pRevision 
FF9A "•tchToalValue 
FFAO FindToolType 
FFA6 FreeDiskObject 
FFAC PutDiskObject 
FFB2 GetDiskObject 
FFBB AddFreeList 
FFBE AllocWBObject 
FFC4 FreeWBObject 
FFCA FreeFreelist 
FFDO Putlcon 
FFD6 Getlcon 
FFDC PutWBObject 
FFE2 GetWBObject 

Description 
""""'"'"""""""'"""'""'"' 
refor111at • name for a second copy 
check a tool type variable for a particular value 
find the value of a tool type variable 
free all .. •ory in a Workbench disk object 
write out a DiskObject to disk 
read in a Workbench disk object 
add 111e1110ry to the free list 
allocate a Workbench object 
free all •emory in a Workbench object 
free all memory in a free list 
write out a DiskOject to disk (as PutDiskObject> 
read in a DiskObject structure fro• disk 
write out a Workbench object 
read in a Worl-:bench object 

System summary: Release 1.2 <Kickstart 33.loo/Workbench 33.43 - Ol-Oct-86> 

info.library: Function used by WorkBench 'info' 
""'""""""""""""~._. ... """" 
Name: 
Version: 
Revision: 
lilString: 
NegSize: 
PosSize: 

Where: 

Base Name: 

"info.library" 
33 
0 
"info Vl.2" 
SOOlE 
S0026 

Disk 

NONE 

Function name 

f"FE2 

Description 
........................................... 

[not documented - used by WQrkBench 'info"] 



Sy•tH •u•••••y: fielH!ll' I. 2 <hcl'.!llo>r·t 3·:. Ibo/Workbench 3~. 43 - (•I-Oct-Bbl 

11athffp. library1 Fast Floating Point <FFF'l ;arith111etic 4unct1ons 
"'"'"'"'"'"'"'"'"'"'"'"'"'"""' 

"••thffp.library" 
33 
7 

Na11e1 
Ver•ians 
Revisions 
IdString1 
NegSizes 
PosSize: 

•mathffp 33. 7 lb May 1986>" 
SOObO 
•0022 

Wheres KickStart "ROM" 

Base Nilme: l'lathBase 

Function name 

FFAO SPCeil 
FFAb SPFloor 
FFAC SPDiv 
FFB2 SPl'lul 
FFBB SPSub 
FFBE SPAdd 
FFC4 SPNeg 
FFCA SPAbs 
FFDO SPTst 
FFDb SPCmp 
FFDC SPFlt 
FFE2 SPFix 

Description 
"'"""'"'"'"""'"""'"'"' 
obtain smallest integer not less than FFP number 
obtain largest integer not greater than FFP number 
divide two FFP numbers 
11ultiply two FFP numbers 
subtract two FFP numbers 
add two FFP numbers 
negate an FFP number 
obtain absolute v•lue of ;an FFP number 
compares •n FFP nu11ber with 0.0 
compares two FFP numbers 
convert •n integer to FFP format 
convert FFP number to integer 

System summary: Release 1.2 <Kickstart 33.166/Workbench 33.43 - 01-0ct-Bbl 

mathieeedoubbas.library: Arithmetic functions using IEEE double precision format 
"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"' 
Names 
Versions 
Revision: 

"mathieeedoubbas.library" 
33 

IdString1 
NegSize:' 
PosSize: 

Where: 

10 
NONE 
t0060 
•0022 

Disk 

Base Name: l'lathleeeDoubBasBase 

Function name 

FFAO JEEEDPCeil 
FFAb JEEEDPFloor 
FFAC JEEEDPDiv 
FFB2 JEEEDPl'lul 
FFBB JEEEDPSub 
FFBE JEEEDPAdd 
FFC4 JEEEDPNeg 
FFCA JEEEDPAbs 
FFDO JEEEDPTst 
FFDb JEEEDPCmp 
FFDC JEEEDPFlt 
FFE2 I EEEDPF ix 

Description 
"""""'"'"""'"""'"""'"" 
obtain smallest integer not less than FP argument 
obtain largest integer not greater than FP arg 
divide two IEEE double precision FP numbers 
multiply two IEEE double precision FP numbers 
subtract two IEEE double precision FP numbers 
;add two IEEE double preci51on FP numbers 
negate the supplied IEEE double precision FP num 
obtain absolute value of IEEE double precis num 
compares an IEEE DP FP number against 0.0 
compares two IEEE double precision FP numbers 
convert integer to IEEE double precision format 
obtain integer part of IEEE double precision num 

System summary: Release 1.2 <Kickstart 33.166/Workbench 33.43 - 01-0ct-Bbl 
'-

m;athtrans. library: Fast Floating Point <FFPl Transcendental Functions 

Name: 
Version: 

"mathtrans.library" 
33 

Revision: 
ldString1 
NegSize: 
PosSize: 

Where: 

Base Name: 

B 
NONE 
t007E 
S0022 

Disk 

M•thTransB•se 

Function name 
"'"""""'"'"'"'"'"'"""'"'"' 

FFB2 SPLog10 
FFBB SPAcos 
FFBE SPAsin 
FF94 SPFieee 
FF9A SPTieee 
FFAO SPSqrt 
FFAb SPPow 
FFAC SPLog 
FFB2 SPExp 
FFBB SPTanh 
FFBE SPCosh 
FFC4 SPSinh 
FFCA SPSincos 
FFDO SPTan 
FFDb SPCos 
FFDC SPSin 
FFE2 SPAtan 

Description 
"'"""'"""'"'"'"'"""'"" 
obtain logarithm base ten of FFP number 
obtain arccosine of an FFP number 
obtain arcsine of an FFP number 
convert an IEEE standard FP number to FFP format 
convert an FFP format number to IEEE format 
obtain the square root of an FFP number 
obtain the exponentiation of two FFP numbers 
obtain the natural logarithm of an FFF' number 
obtain e to the power of the FFP number 
obtain the hyperbolic tangent of the FFF' number 
obtain the hyperbolic cosine of the FFP number 
obtain the hyperbolic sine of the FFP number 
obtain the sine~ cosine of the FFP_number 
obhin the tangent of the FFP number 
obtain the cosine of the FFP number 
obtain the sine of the FFF' number 
obtain the arctangent of the FFP number 



System summ,1ry: fielease 1.2 <t'.ickshrt 3".'..16b/Worlt.er.ch :· .• 43 - 01-0ct-Bbl 

ramlib.library: RAM-disk handling functions <not called directly by userl 
...... "'"""""""'"'"'"""'"""'"" 
Name: 
Version: 

•ramlib. library• 
33 
9<J Revision: 

ldString: 
Ne9Size: 

"ramlib 33,90 <7 Jul 19861" 
10042 

PosSize: IOOB2 

Wheres KickStart "ROl1" 

Base Name: NONE 

Function name Description 
............... ,,. ...... """'"""""' """" ... ""'"'""'"""'"""'"' 

FFBE Cnot· documented -
FFC4 Enot documented -
FFCA Cnot documented -
FFDO Cnot documented -
FFD6 Cnot documented -
FFDC Cnot documented -
FFE2 Cnot documented -

internal use onlyl 
interniil use onlyl 
internal use onlyl 
internal use onlyl 
internal use only] 
internal use only] 
internill use only] 

System summary: Release 1.2 <Kickstart 33.166/Workbench 33.43 - Ol-Oct-861 

translator.library: Function to translate te~t into a phoneme stream 
..................... "'"""'"'"""""'"""""'"" 
Name: 
Version: 
Revision: 
ldString: 
NegSize: 
PosSize: 

Where: 

Base Name: 

"translator.library" 
33 
2 
NONE 
IOOlE 
1002A 

Disk 

Translator8ase 

Function name Description 
""""""'"'"'"' ... "'"'41if"' 

FFE2 Translate converts an English string into phonemes 

System summary: Release 1.2 <Kickstart 33.166/Workbench 33.43 - Ol-Oct-861 

version.library: This library has a version number, and little else • 
............... "'"'"'"'"'"'"'"'"'"' 
Name: 
Versions 
Revisions 
IdString1 
NegSize: 
PosSize: 

Where: 

Base Name: 

"version. library• 
33 
43 
•myl ib 33. 1 <25 Apr 861" 
10018 
S002C 

Disk 

NONE 

There are no library-specific functions in this library. 





THE 
TO 

'KICKST ART' 
THE AMIGAtm 

GUIDE 

When Commodore sent out the first issue of "Kickstart - the 
European Technical Journal" it was hailed as the first thing ' 
to explain the machine in a way which was comprehensible to a 
human being, instead of just to another Amiga! 

The Commodore Amiga is probably the most advanced wide-market 
Microcomputer ever produced, both in terms of hardware, and 
in terms of the system software. The Amiga uses a 
state-of-the-art message-passing multi-tasking Operating 
Environment - while this is responsible for a lot of the 
machine's power, it is also a rich source of confusion to 
programmers used to comparitively primitive micros. 

Aware of this, Commodore commissioned Ariadne to produce the 
"Kickstart" journal, which was distributed to all European 
developers. Particularly well received were a series of 
feature articles, which explained the key concepts of the 
machine in a way which didn't assume you knew about them 
already, and which were designed to complement the official 
documentation as much as possible. 

Now with the release of the ASOO another group of programmers 
are eagerly approaching the Amiga. Ariadne have therefore 
taken the feature articles from Kickstart, revised and 
updated them, and added new material appropriate to a wider 
audience - the result is this book. 

ARIADNE SOFTWARE LTD 

273 Kensal Road, London W10 508 
Tel: 01-960 0203 



This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

