Eﬁﬂ

ARIADNE SOFTWARE LTD

The "Kickstart. Guide
to the AMIGA.

'R gfunc;

-AEVER {
DoIOC& ConReadBlk) ; 7 * [
for (iz=0B; id{ConReadB f§&5
current = ConInp e e |
xf‘gc??mand ==
i curpg
comMmmMand "b

Par‘a = »
-

L2l Y |

THE KICKSTART GUIDE TO AMIGA

ARIADNE SOFTWARE LTD

Published by Ariadne Software Ltd4d,

273 Kensal Road, London W10 5DB, ENGLAND.
Tel 01-960 0203

1st edition full of spelling mistakes - June 1987.
2nd edition with some corrections - September 1987.
3rd edition with various updates - November 1987.
(c) Ariadne Software Ltd 1987.

ISBN 0 9512921 0 2

PRINTED gN ENGLAND
Y

THE DACOSTA PRINT & FINISHING COMPANY
111 Salusbury Road London NW6 6RG
01-969 1111

Text mostly by Dave Parkinson; additional text, example programs
and research by Mike Bolley.

Illustrations by Tris Murray (Exec), Hugh Riley (Libraries
Architecture), Hanafi Houbart (Into Amiga Devices), Paula Dawson
(Keys to AmigaDOS), Phill Legard (Guru Alert), and Shelley O'Neil
(Graphics).

Cover design and general inspiration by Chris West.

Thanks to Chris Wood and Gossamer Graphics for help with
illustrations and cover art-work, and to Tim Newport for help
with printing.

Thanks to Jane Firbank (mighty Compunet editor) for proof reading
- hello to all on Cnet!

A lot of other people helped with Kickstart journal. 1In roughly
chronological order, special thanks are due to to Richard Leman
(his idea in the first place), Gail Wellington (Commodore
originator, regular contributor and strong support), Bill Donald
(original editor, regular contributor and number one asker of
difficult questions in public houses), Harry Broomhall (official
disk wizard), Chris Maciejewski and Tim Bunce (Intuition
experts), John Simon Phillips (technical help from Commodore), Dr
Tim King (THE expert on AmigaDOS), Mike Todd (champion Fish
filleter), Barry Walsh (graphics superstar), and Mark Power
(reprographic consultant). Thanks also to everyone who bothered
to send us feedback forms, or wrote to us.

KICKSTART is a registered trademark of Commodore Amiga Inc.
Amiga is a registered trademark of Commodore Amiga Inc and
Commodore Electronics Ltd.

All rights to information published in this book are held by
Ariadne Software or by Commodore Electronics. No information may
be reproduced or distributed in hard copy or electronically
without prior written permission of the copyright holder.

Commodore Electronics Ltd and Ariadne Software Ltd cannot be held
liable for any errors in this publication.

A Note from Gail

The Amiga was launched in July 1985 amidst much acclaim. Its
first major appearance in Europe was at the European Amiga
Developers Conference held at Eastbourne in December 1985.
Commodore knew that software was the key to the machine's
ultimate success, and the 300 developers who attended the
conference had the benefit of talking first hand to the designers
of the Amlga

The "Kickstart" journal was developed to make this sort of
information accessible to more people. Commodore are grateful to
Ariadne's professionalism in developing the journal for us.
Interest continues high in the Amiga family - because of the
value of the information in the journals, we are pleased that
Ariadne have chosen to publish this book, and we thank them for
their continued support of the Amiga.

Whether you program for fun or for profit, this book will improve
your understanding of the Amiga.

FRNTT

Gail Wellington,
Director Product & Market Development Group,
Commodore International Ltd.

About The Kickstart Guide to Amiga

It was back in December 1985 that Dave Parkinson and Mike Bolley
of Ariadne Software looked at the new Amiga, looked at the huge
pile of technical documentation next to it, and thought
"'Strewth...".

Before this, Ariadne Software had been involved in assembly code
programming on 8-bit micros, such as Commodore PETs (MTC PILOT,

MSC PILOT and PETNET), the BBC Micro (NPL's Microtext authoring

system and Robocom's Bitstik CAD package), and the Commodore 64

(Microtext again, plus the Compunet terminal). We had also done
some 'C' programming on PCs, and hadn't been much impressed.

Our original interest in Amiga was due to an involvement in
authoring systems for interactive video and training, and a
desire to go a lot further than had been possible on the BBC
Micro and Commodore 64. Some early experiments suggested that
PCs did not offer sufficient power and flexibility to do this;
the Amiga looked a lot more promising. With this in mind, Dave
Parkinson went off to the Amiga Developers Conference in
Eastbourne, and later the decision was made to purchase an Amiga
- Mike Bolley must be one of the few people to buy an Amiga
without ever actually having SEEN one, his decision being based
solely on the technical information contained in the Eastbourne
course notes!

Having bought the machine, we found ourselves at the start of a
very considerable learning process. 8-bit machines and PCs we
understood very well, but this was something else - what when
they were at home were "pre-emptive scheduling" or "round robin
time slicing"? Finding answers to questions like these involved
us in an extended process of reading, experimentation, discussion
with other Amiga developers, and buying drinks for people who
knew mainframe and mini operating systems - "Alright Hugh, come
clean, what exactly IS a "lock" precisely?".

It was Richard Leman of JCL Software who first suggested that we
should use the learning experiences of ourselves and other
developers as the basis of a European Amiga '"technical journal".
We took this idea to Gail Wellington of Commodore Electronics,
who responded enthusiastically, and before long had obtained
company support for the project. With Gail pushing, Commodore
supplied us with backing in the form of a bit of money, a lot of
technical support, and considerable help with distribution, the
journal going free of charge to all registered European
developers. To help us get started, Bill Donald came in as our
original "general editor"; also helping out at this stage was
artist/programmer Hanafi Houbart, who - amongst other claims to
fame - thought of the title "Kickstart".

In all, we produced six issues of Kickstart journal before we got
too busy with other things - notably developing video and
authoring software for Amiga! Each issue contained a feature
article concentrating on some particular aspect of the machine,
plus articles by other people, a series on 'C' on Amiga, and a
"Crosstalk" section for information exchange between developers.
Reaction to the journal was very favourable, with positive
feedback being received from Holland, from Germany, from Ireland,
from Monaco, from the UK, from Israel, from Switzerland, from New
Zealand, and from France. From further afield, we heard from
South Africa, from Australia, from the States and from Canada -
the latter asking if we wouldn't mind considering them as an
honorary part of Europe!

Now, with the release of the new A2000 and A500 machines, a
"second generation" of progammers and developers are approaching
the Amiga, often from a similar background to ourselves. With
them in mind, we have taken the feature articles and 'C' series
from Kickstart, revised and updated them, and added new material
- the result is this book. This is NOT intended as a replacement
for the official Amiga technical manuals, and it WON'T turn you
into a demon Amiga programmer overnight; it DOESN'T have very
much to say about Amiga hardware, or higher-level aspects of the
system software such as animation or speech. It DOES aim to
provide a '"step up" to the Amiga from other machines, in the form
of an introduction to 'C' programming on Amiga plus a
comprehensible account of how the machine works in terms of Exec,
AmigaDOS, and graphics - once you understand these, the rest is
pretty easy. We hope you find this book useful - enjoy the
Amiga!

o —

David Parkinson,
Kickstart Editor,
Ariadne Software Ltd.

Part 1 -

Part 2 -

Part 3 -

Contents

Introducing the Amiga.

Section

Section

Section

Section

Section

Section
Getting
Section
Section
Section
Section

Section

Appendix - introducing the 68000
The Kickstart Guide to Amiga.
1 - Exec. How to do several things at
once while doing one thing at a time.
2 - Libraries. How to call a routine
without knowing where it is.
3 - Devices. How to perform IO without
worrying too much what to.
4 - Aspects of AmigaDOS.
5 - Serial port debugging, and the Joy
of wack.
6 - Introducing Amiga graphics.
Started in C.
1 - Introducing C.
2 - Elements of C.
3 - Structures and Pointers.
4 - Arrays and Strings.
5 - Getting finished in C.

Appendix 1.2 libraries summary.

HowToReadThisBook()

{

ReadPart (1, CAREFULLY);
if (YouThinkYouKnowC) {

ReadPart (2, CAREFULLY);
ReadPart (3, QUICKLY);

} else {
ReadPart (3, QUICKLY);

ReadPart (2, CAREFULLY);
ReadPart (3, CAREFULLY);

1
13
23
23

66

108

146
169

192
227
227
238
244
251
257

265

Introducing the Amiga Page 1

PART I - Introducing the Amiga

The Commodore Amiga is an amazing machine in terms of its clever
hardware, its multi-tasking software, and its advanced WIMP
(Window Icon Mouse & Pointer) user interface. The purpose of
this part of the Kickstart Guide is to give a general overview of
the machine; we will then go into detail about how various bits
of it work in Part 2.

The three areas in which the Amiga excels - the hardware, the
multi-tasking, and the user-interface - are in fact very closely
related. Clever hardware like the blitter or bimmer (block image
manipulator) takes a lot of the burden of maintaining a complex
colour display away from the CPU and also handles things like
audio output - this enables the CPU to be used for other things,
such as running a sophisticated multi-tasking message-passing
"operating environment". (In this context it's worth noting that
Commodore-Amiga had the blitter in 1984, and it's taken them
since then to get the software right - other companies who are
just developing blitters now have therefore got a bit of catching
up to do!)

The multi-tasking has many applications on Amiga - including nice
things like being able to edit one program module while you
compile another and perhaps hard-copy a third - but its real
significance lies in its application to "Intuition", the Amiga's
user-interface. Earlier WIMPs-based machines offered the end-
user a nice easy time of it (or not so nice and not so easy in
the case of some systems we could mention); however this was
achieved at the expense of considerable sweat and grief on the
part of the application programmer, who had to worry not only
about the actual application, but also about things like '"what do
I do if the system tells me the user is trying to resize my
window?".

The Amiga is the first machine to take this burden away from the
application programmer, and therefore to provide a WIMPs user-
interface in a sensible civilised manner. On the Amiga, an
application program can get on with whatever it is supposed to be
doing, while another task worries about keeping the user happy -
in fact Intuition's "input-event handler", running as part of a
task associated with the "input device" on Amiga. This means
that you don't have to worry about things like windows moving and
resizing AT ALL - unless you specifically want to. Instead, you
just tell Intuition what you DO want to hear about - user
selecting a particular menu item, user clicking on a particular
""gadget", or whatever. You can then get on with something else,
or sit in a comfortable wait-state, waiting for Intuition to send
you messages about events of interest to something called your
IDCMP (for "Intuition Direct Communication Message Port").
Compared to programming other WIMPs machines, this is absolute
bliss - and it means that while Amiga development is still a
laborious business compared to cobbling something together on a
Commodore 64, it can be done in a fraction of the time it takes
to get a similar result on other WIMPs computers!

Introducing the Amiga Page 2

“kickstant| | BM 63008 2K R
NeHOrY !@MRS;;H chip siow
RON fast
op as fast RAN RAR
gate m&:

110 chips) Denise
Reyhrerd hisks “Saund | House
‘ - Vides |
Figure 1 - Amiga Hardware Overview

CLI -
:- -.:—-— T T Norkbench
migados | T— 7 =TT
- Intuition

Input device Console device Lavers

l1brary
Keyboard device -
Ganepart device ggl;gs
Timer device EXEC
(Other devices)

" ~ .
B Bs A AW K M mtene T s 2T
R ..':5?:\':«,_;5... i - A

Figure 2 - Amiga Software Overview

Introducing the Amiga

a0 aoao
FC 0000

F3 a0a0
FO 0080
ES @0a0

EG 0000
DC a0aa

Co a0ao

AQ 2080

20 8000

8t oQoa
b0 oaea

Page 3
256K RAM/ROM
FURTHER "SYSTEM ROM" - UNUSED DF Foea
-DF F130
RESFRVED gcws'
, ENISE' &
EXPANSION SLOT DECODING DENISE
RESERVED EVEN
____________ + BYTES
ONLY
SLOW MEMORY
¢ BF Daoe
"EXTERNAL DECODER EXPANSION SPACE" -BF EFOi
-CURRENTLY UNDECODED IMAGES OF 8520s 8520 A&B

UP TO 8M OF FAST MEMORY

IMAGES OF CHIP MEMORY

212K CHIP MEMORY

Figure 3 - Amiga Memory Map

introducing the Amiga Page 4

Amiga Hardware Overview

A diagram showing an overview of Amiga hardware is given in

Figure 1;

a memory map is given in Figure 3. Basic hardware

elements are as follows:

68000

PAD

gate

512K RAM

512K RAM

Amiga Central Processor Unit, Motorola 68000 running at
7.3 MHz. A later chip than the 8086 series used in
PCs, with more sensible memory management, more
powerful interrupts, and a more rational instruction
set. Can be upgraded to 68010 or 68020, with optional
floating point co-processor, for REALLY amazing
performance.

Paula, Agnus and Denise - known collectively as "the
PAD" - the '"clever chips" responsible for a lot of
Amiga special features, especially involving sound and
graphics. Capable of running "in parallel" with the
CPU - using alternate (even) clock half-cycles when the
68000 isn't accessing external memory - thus taking a
lot of processing burden off the 68000 and giving the
Amiga much better performance than cruder machines with
slightly faster clock rates.

Divides the Amiga system bus into '"fast" and "chip"
memory. "Chip" memory is the bottom 512K, which is
capable of being accessed both by the 68000 and the
PAD; "fast" memory is up to 8 megabytes of further RAM
which is not accessible to the PAD, and therefore
cannot be used for graphics screens, accessed by the
blitter, etc. The reason for this is that under some
circumstances the PAD '"cycle steals" from the 68000 -
ie stops it from accessing memory for a while, while
the PAD is busy fetching data for a high resolution
screen line, or doing a data-move using a "nasty"
blitter. ('"Nasty mode" is a blitter mode in which it
cycle steals a lot, eg when doing block memory
transfers - not unreasonable, given that the blitter is
a much more efficient data mover than the CPU!) The
presence of the gate in the bus means that the PAD can
be cycle stealing like mad in the bottom 512K of memory
- eg in order to do a complex high res animation - but
WITHOUT blocking CPU access to fast memory; the CPU can
therefore continue to operate at full speed, until such
a time as it needs to access chip memory. A sensibly
configured Amiga has AT LEAST as much fast memory as
chip memory, and preferably more.

"Chip memory'", accessed both by 68000 and the PAD.

Extra 512K of "slow memory" on A500 (optional) and
A2000 only; used to move system structures (eg Exec
library stuff and the supervisor stack) out of chip
memory, freeing more chip memory for use by graphics,
sound etc. See Appendix 2.

Introducing the Amiga Page 5

8M RAM Up to eight megabytes of "expansion memory" - fast
memory, accessed by 68000 only. Has to be external on
the A1000 or A500; can be fitted internally on the
A2000.

Kickstart Used to store vital Amiga system software such as Exec,

memory graphics and layers libraries, Intuition, and most of
AmigaDOS. On A1000, this software was loaded on power-
up from a "Kickstart" disk into a special 256K region
of additional RAM known as "Kickstart memory" or
"RAM/ROM" which was then write-protected - this was to
enable Commodore-Amiga conveniently to issue software
updates. On the A2000 and A500 this is no longer
necessary, and the original RAM/ROM has been replaced
by ordinary ROM. Note that this is not the whole story
- to actually operate the Amiga, more software is
needed such as the rest of DOS and the '"Workbench";
this is loaded into ordinary RAM from another disk
called "Workbench".

IO Chips Two 8520s, similar to the CIAs (Complex Interface
Adaptors otherwise known as Completely Incomprehensible
Adaptors) used in the Commodore 64. Contain two IO
ports each plus various clocks and timers, all of which
are "used up" by bits of system software such as the
timer device. Handle serial port, parallel port,
keyboard, and disk control - though disk DMA is looked
after by the PAD.

More about the 68000

It is not our intention to consider 68000 programming in much
detail in this guide; the interested reader will find plenty of
books on the subject. However, it's useful to know a bit about
it, even if only to gain insight into what your "C" compiler is
up to - for this reason, a quick overview of the 68000 is
provided as appendix 1 to this introductory section.

More about the PAD

As mentioned above, Paula Agnus and Denise are responsible for a
lot of the high performance of the Amiga. Functions looked after
by the PAD are roughly as follows:

1. CPU control. The PAD looks after the 68000 on Amiga, by
generating its DTACK signal usually provided by external
hardware to indicate a successful data transfer, by
"blocking" its access to external memory when it wants to
cycle-steal, and by controlling its interrupts. Interrupts
on the Amiga are looked after by Paula - there are sixteen
possible interrupt sources, which are two external hardware,
one vertical blank, one copper (video beam reached a

Introducing the Amiga Page 6

specified position), four audio channels (audio block done),
one blitter (blitter finished), two disks (sync found, disk
block finished), two CIA for keyboard and timers, and two
serial port (receive buffer full, transmit buffer empty).
Paula looks after watching and prioritising these interrupt
sources, and deciding whether to interrupt the CPU, and if
so with what priority.

2. DMA control. There are twenty five "dedicated" Direct
Memory Access channels on Amiga, used for direct access to
chip memory by the PAD without involving the CPU.
("Dedicated" means these channels are tied to a particular
purpose - eg "audio channel one" - and that you can't swipe
them for use for something different!) DMA is used on
Amiga for bitplane access (ie the screen - six channels),
for sprite data access (eight channels), for copper
instruction-fetch (one channel), for the blitter (four
channels), for disk DMA (two channels), and for audio (four
channels).

3. Playfield and sprites. The PAD handles forming a basic
"playfield" (ie screen display) by fetching data from a
number of "bitplanes" in chip memory, and interpreting it
using internal colour registers - this is known as 'colour
indirection”". The PAD can also handle up to eight hardware
sprites on top of the basic playfield, which can be up to
sixteen pixels wide and any number of columns deep; sprites
can be "joined together'" for greater width or more colours,
and the apparent number of them can be increased
considerably by clever tricks using the copper. An obvious
example of sprites on the Amiga is the Intuition pointer.

4. Copper - beam-synchronised graphics co-processor. You can
think of this as '"watching" the video beam go down the
screen, while following a simple program known as a '"copper
list" telling it what to do when the beam reaches specified
positions - "wait till the beam reaches so-and-so then do
this". The copper is capable of changing internal PAD
registers directly - eg changing playfield pointers for
split screen, or sprite pointers for sprite multiplexing -
or of affecting external memory by issuing a CPU interrupt,
or using the blitter.

5. Blitter or Bimmer. Block Image Manipulator with three input
channels and one output. Capabilities are as follows:

a. Can move data around VERY fast in chip memory - can
read/write a 16-bit chunk every 280 nano seconds,
though in practice this is slowed down by competition
for DMA with the rest of the PAD.

b. Can perform LOGICAL OPERATIONS - two of its inputs have
"barrel shifters" on them to shift data left or right,
and the three input streams can be combined in any one
of 256 possible logical operations, expressed by

Introducing the Amiga Page 7

blitter "minterms'". Input might consist of a graphics
object, a mask, and screen background; output might
consist of the current screen bitplanes - this is the
basic technique used for animation with "blitter
objects" or "Bobs".

c. Can perform LINE DRAWING or AREA FILL operations
directly into chip memory. This is also blindingly
fast - the system software using the blitter can draw
up to about four thousand lines a second!

6. Audio channels. The PAD has four audio channels, each of
which looks at a bit of external memory, interprets the
contents as a digitised waveform, and outputs the result as
audio. This "digitised waveform" approach is very powerful,
and is responsible for the Amiga's remarkable sound and
speech capabilities.

7. Disk. Transfer to/from disk is a whole track at a time,
using DMA; the system doesn't even wait for disk sync, but
instead just reads in the data wherever from wherever the
disk head happens to be, then sorts it out sensibly using
the blitter. This leads to very fast disk access - a good
thing, given the high overhead involved in the way AmigaDOS
handles directories!

Amiga software overview

A diagram giving a rough overview of Amiga system software is
given in Figure 2. It can be seen that this isn't much like a
conventional "Operating System'"; instead we talk about an Amiga
"Operating Environment" consisting of a large number of
intercommunicating elements, organised as "libraries", '"devices"
and "resources'" - more about these below.

There have in fact been three major releases of Amiga operating
software, which can be roughly categorised as follows:

V1.0 mid 1985 The best that we could do given the timescale.

V1.1 early 1986 The best that we could do, with most of the
bugs taken out.

V1.2 early 1987 What we should have done in the first place,
only we needed to do versions 1.0 and 1.1 to
find out.

Version 1.2 (Kickstart 33.180) is now occupies 256K of ROM in the
A500 and A2000.

Introducing the Amiga Page 8

Tasks and processes

The basic unit of multi-tasking on the Amiga is a '"task" - this
can be thought of as a 68000 program which is being fooled that
it has a whole machine to itself; different tasks are actually
swapped in and out by Exec running "on the interrupts" in
supervisor mode, as explained in detail in Part II Section 1.
Tasks usually spend most of their time in "wait states'" - ie
fast asleep until something of interest happens; this something
of interest is usually the arrival of a "message'" from another
task, asking it to do something. Messages are sent to tasks'
"message ports" - eg you can send a message to the 'console
device" asking it to output some data. This is used to implement
asynchronous IO amongst other things - you can send another task
a message asking it to do something, then get on with something
else until the task indicates it has finished, which it does by
"replying" your message.

Tasks are used on Amiga for system use, and also to run
application programs; a task in this context is part of a higher
level AmigaDOS concept known as a "process'", which consists of a
task plus a lot of other stuff, to do with default IO channels
etc.

Libraries

Amiga system software is organised into "libraries" - these are
essentially a load of routines starting with a jump table. These
routines can be called from other libraries, or directly from
application programs; calling library routines is the normal way
of getting things done on Amiga, sending messages being reserved
for special purposes such as asynchronous I0. A full account of
libraries is given in Part II Section 2, and a summary of all
routines available in 1.2 system libraries is given as an
appendix to this book. Some key libraries are as follows:

Exec The "multi-tasking executive" written by Carl Sassenrath.
In charge of 68000 interrupts; the lowest level of Amiga system
software, which looks after everything else.

Graphics Amiga graphics routines by Dale Luck; in charge of the
PAD graphics capabilities, including the blitter. Contains a
full set of routines for screen management, plus drawing routines
for points, lines, area-fills, flood fills, circles and ellipses.
Also contains routines for text - text is a special case of
graphics on Amiga!

Layers Also by Dale Luck; work in very close conjunction with the
graphics libraries - routines which allow a single drawing area
to be treated as a number of overlapping layers, such as
Intuition windows.

Intuition Designed and originally coded by R.J. Mical; revised
for V1.2 by Jim Macraz. Routines which handle the user-

Introducing the Amiga Page 9

interface, in the form of screens, windows, menus, gadgets,
requestors etc. Appears both as a library, and as an "input
handler" connected to the "input device" task - in its latter
form, is capable of handling things like window moving and
resizing, menu selection etc, without involving the application
program. Generally speaking, you ask Intuition to do things by
calling routines from the Intuition library; it tells you things
of interest (eg "The user has selected this gadget'") by sending
messages to something called your IDCMP - for Intuition Direct
Communication Message Port. (Intuition will generally create an
IDCMP for you and a "reply port" for its own use when you open a
window, so there's no need to worry about this too much.)
Intuition is used heavily by another important piece of Amiga
software called the Workbench - this is an AmigaDOS process which
uses Intuition to provide the user with a standard way of
performing disk and file operations, and of starting application
programs.

AmigaDOS An Amiga "late entry", brought in when an original DOS
project collapsed - written by Dr Tim King and others of UK
software house Metacomco. Based on the original Tripos operating
system developed in Cambridge in the late seventies, designed to
be as small and portable as possible, at the expense of "luxury"
features found in larger systems like Unix. Handles files,
devices and processes, including launching application programs.
Can be called by other processes such as Workbench; alternatively
can talk to you directly using a special form of process called a
"CLI" (for Command Language Interface). A bit of an odd man out
- we once described it as fitting in with the rest of the system
like a man in a dinner suit at a beach party, but subsequently
relented towards it. Written in BCPL - a language unknown to
Americans which is a forerunner of C.

A lot of rubbish has been written about AmigaDOS. Some sources
overrate the DOS by trying to credit it with everything the Amiga
can do - in fact AmigaDOS only accounts for about 40K of the
complete Amiga 256K ROM space. Other sources go to the opposite
extreme of blaming everything they DON'T like about the Amiga on
the DOS and on BCPL, which is pretty silly. The original Amiga
"DOS" project was intended to produce just a "filing system and
process manager'" integrated with the rest of the environment;
AmigaDOS does this quite successfully, while adding its own
"devices" (CON:, RAW: etc) and the CLI environment as a bonus.
The former are of dubious benefit, and we would argue that you
can write better Amiga programs by ignoring them and going
directly to other parts of the environment (eg "console.device')
as originally intended - unfortunately the '"standard functions"
in things like Lattice C don't do this! On the other hand, the
CLI is DEFINITELY a virtue - while it is easy enough to criticise
the CLI, try and imagine Amiga development without it.

There are many other Amiga libraries; for information on these,
see Section II part 2, and the Appendix.

Introducing the Amiga Page 10

Resources and devices

Resources and devices are two special sorts of Amiga software
entity, both based on the fundamental structure of a library. A
resource is a rather low-level object, concerned with '"contention
management" - the function of a resource is to grant or forbid
access to a particular bit of hardware, depending on what the
rest of the system is up to. Resources are generally looked
after by other bits of Amiga system software; you only have to
worry about them yourself if you want to directly access a bit of
hardware such as the parallel port, in which case you should
first "open'" the corresponding resource to avoid contention
problems - "misc.resource" in this case. A device is a special
sort of library concerned with IO on Amiga; many devices also
have tasks associated with them, so that they can operate
asynchronously of the calling program if necessary. A full
account of Amiga devices will be found in Part II section 3; a
summary of some important ones is as follows:

Trackdisk device Low-level disk IO; used by AmigaDOS.

Keyboard device Low-level keyboard input; works in terms of "raw"
keyboard events such as key-pressed/key-released.

Gameport device Low-level mouse input.

Timer device Low-level timing - uses the 8520 timers.

Input device A very important one this. A "cunning" device with

an associated task; handles coordinating input data from keyboard
device, gameport device and timer device, and passing it on to a

chain of "input-handlers" - notably the Intuition input handler,

and/or the console device.

console device A "high level" device - takes input from the input
device and performs output to a specified window using the
graphics library text primitives, in order to give a "virtual
terminal" capability. A full ASNI standard terminal with a whole
range of controls and escape sequences; used by AmigaDOS "RAW:",
or can be accessed directly. Note that, contrary to a once
widely-held belief, the console device and hence AmigaDOS RAW:
does NOT return "raw'" keycodes unless you explicity ask it to -
instead you get nice ASCII values, and "escape'" sequences headed
by a CSI (Command Sequence Introducer) character. Information
which can be passed back from the console device using CSIs
includes reports of mouse-movement, gadget selection etc; thus
talking to the console often provides an alternative to using an
Intuition IDCMP.

More information on these devices, including a full discussion of
the different ways they can be connected together for different
ways of doing I0 on Amiga, will be found in Part II section 3.
Other devices include audio, narrator, serial, parallel and
printer - for information on these, see the ROM kernel manuals.

Introducing the Amiga Page 11

Development on Amiga

An account of development on Amiga using the C language is given
in Part III - "Getting Started in C". A summary of important
development tools is as follows.

Compilers Used to convert source-code to "object module" format.
Favourite development language is C, but many others are
available, including Pascal, Modula 2, LISP and APL, to name but
a few. Original "official" Amiga C compiler was Lattice V3.03,
which was followed by Lattice V3.1 and now by Lattice 4; an
alternative (with many adherents) is Manx Aztec C.

Assemblers Also used to convert to object module format; this
format is the same for assembler and compiler output, so it's
quite easy to mix the two, eg in order to re-code time-critical
routines in assembler. A C function call Fred() results in a
subroutine call JSR _Fred; _Fred can be written in assembler, and
joined together with the C calling function using the linker.
Parameters can be passed from C to assembler by reading them off
the stack - for more information on this, see '"Getting Started in
C" later in this publication. Original "official" assembler was
Metacomco ASSEM; while this is still the standard assembler, some
good alternatives are now available, including some in the public
domain. ASM68K on the Fish disks is worth investigating.

Linkers Used to join together object modules to form load
modules, together with standard startup-code, and further
routines for standard functions from linker "scanned libraries".
Original Amiga linker was Alink (versions 1.0 and 1.1); an
alternative which started on the public domain and is now used as
standard by Lattice, is Blink from the Software Distillery.
Original (Lattice V3.03) startup modules were AStartup.obj or
LStartup.obj; new (Lattice V3.1) startup module is c.o.

Monitors Original Amiga monitor was Wack, written in C by Carl
Sassenrath, to run on the original Amiga development machine,
which was a Sun workstation. This was then ported across to the
Amiga, to form a cut-down version re-coded in assembler and
included in the ROM called ROMWack, and a full version known as
GrandWack - this was released undocumented with version 1.0, and
is now known by us as OldWwack. Metacomco were then given a
contract job to clean up Wack to give Wack 1.3, known to us as
NewWack - this is supposed to be included on the 1.2 developers
toolkit disk, which is still (Nov '87) being eagerly awaited.
Meanwhile, other monitors have been developed as commercial
packages - Lattice now bundle one called Metascope, which makes
very good use of Intuition to provide multiple dynamic windows
into memory to aid you in debugging. Metascope is limited
however - at least in the last version we saw - in that it tends
to fall over when asked to look at something like a sub-task, a
library or a device - a new version of Wack (capable of coping
with the new hunk-types introduced by Lattice) is therefore badly
needed!

Introducing the Amiga Page 12

Other tools There are many, many other development tools
available on the Amiga. These include alternative '"shells" -
such as the Dillon shell or the Metacomco shell - which give a
much more civilised alternative to the standard Amiga CLI. Other
tools ease the task of designing things like menus then generate
the corresponding C source-code, or take "brushes'" from Paint
packages and generate the corresponding "Image" structures for
use in things like Intuition gadgets. Some of these are
commercial products - eg the Metacomco Shell or Power Windows
packages - while many others are public domain or shareware, and
can be found on the Fish disks.

Documentation Originally, Amiga documentation was published in
several large volumes and circulated by Commodore; 1.1 versions
of this were then given to commercial publishers Bantam
(AmigaDOS) and Addison Wesley (all the others). If you are going
to do serious Amiga development, then the following documentation
is essential:

ROM kernel manual Vols 1 and 2 (Addison Wesley)
Intuition manual (Addison Wesley)
AmigaDOS User Guide & ref manual (Bantam)

Optional but useful is the Hardware manual, also published by
Addison Wesley. Absolutely crucial are the updates to these
manuals provided in the 1.2 enhancer documentation from
Commodore; also CRUCIAL are the disks containing 1.2 commented h-
files and full library and device routine descriptions
("autodocs"). We understand that the 1.2 enhancer manual is
currently being shipped with Amiga 2000s, while the autodocs are
available in the States as the '""Native Developer Update" which
costs $20 from Commodore Amiga Technical Support (CATS), 1200
Wilson Drive, Westchester, Pensylvania 19380. (Availability in
other countries is unknown - ask Commodore.)

Examples etc Best source of these is the Fish disks - over
eighty disks of public domain or shareware material collected
from US bulletin boards etc by Fred Fish. Original Fish disks -
or selections known as "Filleted Fish" - can be obtained from
most Amiga user groups, and from bulletin boards. (UK readers
should contact ICPUG or AUG, or try Ariadne Software.) Fish disk
material can be divided into utilities and examples; amoungst the
former, we would particularly recommend the gi brush-to-image
converter from Fish 13 (though it seems to work with DPaint 1
only), and the ASDG shareware recoverable RAM disk from Fish 58.
The latter allows developers with plenty of memory to load
compilers, h-files etc into a special form of RAM disk which can
(usually) be resurrected following a "Guru meditation" system
crash, which is a great time saver! Fish disk examples include
plenty of graphics stuff, and quite a bit on DOS and Intuition.
We would advise you to look at things like the nice bi-scrolling
disk directory from Fish 35 - believe us that if you decide to
write all this sort of thing yourself from scratch, it is going
to take you AGES!

Introducing the Amiga Page 13

Appendix 1 - Introducing the 68000

The objective of this appendix is to give a very brief overview
of the 68000 - for more information see any of the many books now
available on the subject. Some tables summarising 68000
registers, addressing modes and op-codes are provided at the end
of this appendix; further discussion of various aspects of the
chip will be found in Part 2, where they are discussed in
relation to various software aspects of the Amiga.

68000 registers

A diagram showing 68000 registers will be found in Table 1.
Registers are as follows:

D0-D7 Eight general purpose 32-bit data-registers. Can be
addressed as byte, word, or long-word - eg MOVE.L #0,D0
will zero the whole of DO, while MOVE.B #0,D0 will zero
only bits 0 to 7. Generally used as accumulators or
index registers.

AO0-Ab6 Seven general purpose 32-bit address-registers. Can be
addressed as word or long-word; generally used as
pointers or index registers. Behave very similarly to
the data registers a lot of the time, but with some
subtle differences - eg 16-bit quantities tend to get
"sign extended" when loaded into address registers, and
operations on address registers tend NOT to affect the
processor status flags, so watch it.

A7 Address register seven = stack pointer, for normal
downward-growing stack. In fact the 68000 has two
stack pointers, for use in "user mode" (USP)-and
"supervisor mode" (SSP) respectively - roughly
speaking, user mode corresponds to normal operation,
while supervisor mode is a special state entered when
servicing interrupts. The right stack pointer appears
automatically in A7 when the 68000 swaps from user mode
to supervisor mode, or vice versa.

PC Twenty-four bit program counter, to address up to 16
megabytes of memory. Only (only!) eight and a half to
nine megabytes are easily accessible for RAM on Amiga,
though you could probably get hold of more than this
with a bit of hardware effort.

SR 16-bit status register, divided into user-byte and
system-byte; bits in the system byte can only be
altered when the 68000 is in supervisor mode. User
flags are Carry C, Overflow V, Zero Z, Negative N, and
Extend X, the last being similar to the carry-flag but
not affected by as many operations, which is handy for
multi-precision arithmetic. System flags are a three-
bit "interrupt mask" indicating what "level" of

Introducing the Amiga Page 14

interrupt the 68000 will respond to, plus a supervisor-
mode flag S, and a trace-mode flag T - the latter is
used in a special mode of operation where a trap
(software interrupt) is forced after every instruction,
which comes in handy for debugging by single stepping.

68000 address modes

The 68000 supports eleven different address modes, as shown in
table 2. The instruction set is quite "orthogonal" meaning that
generally speaking you can use any address mode with any
instruction, assuming it makes sense to do so. Thus there is no
difficulty for example in performing

JSR -96(A6)

meaning call a subroutine 96 bytes below the '"base address"
currently in A6 - this is in fact used a great deal in the Amiga,
as we shall see in Part II section 2 on "libraries". Note that
there is nothing corresponding to 6502 page zero on the 68000, so
if you want to use something as an address pointer you generally
have to get it into an address register. (Page one isn't special
either - the 68000 has a 32-bit stack pointer, meaning the
supervisor or user-stacks can be of any size, and located
anywhere in memory.)

References to external memory, like references to data-registers,
generally come in byte, word, and long-word (32-bit) varieties.
Note however that the way that memory management is handled on
the 68000 means that the chip is NOT happy performing word. or
long-word access on an odd-byte boundary - an attempt to do so
results in a 68000 "trap" which on the Amiga results in a crash
with '"guru meditation'" number 3.

68000 interrupt handling

The 68000 boasts very powerful interrupt handling, which is known
to Motorola as '"exception processing" - presumably just to be
different. There are three interrupt lines, providing levels of
interrupt from zero (no interrupt) to seven (non-maskable
interrupt). When servicing an interrupt the 68000 generally sets
its "interrupt disable" mask in the system part of its status
register to the same as the level of the interrupt being
processed; this means that a level five interrupt can be
interrupted by levels six or seven, but not by one to five.

Besides normal hardware interrupts, exception processing can also
be caused by other "external" events in the form of bus errors or
reset, or by a whole variety of "internal" events such as
addressing errors, privilege violations, illegal or unimplemented
cp-codes, divide by zero, or by one of sixteen special TRAP
instructions which force exception processing, in a way a bit
similar to 6502 BRK.

Introducing the Amiga Page 15

An exception on the 68000 causes the CPU to push status register
and programm counter to its current "user stack", to enter
supervisor mode, then to jump by way of an appropriate vector in
the bottom 1K of memory. The 68000 has some very fancy ways of
handling interrupts indeed, but these are not used on Amiga,
which handles trickery on the interrupts outside the CPU in the
PAD as explained above. As used in the Amiga, the different
levels of hardware interrupt, and the various software interrupts
and traps, simply correspond to different vectors in the bottom
1K of memory, which point to different entry points in Exec. The
fact that the "fancier" interrupt modes aren't used in Amiga
means that the top part of the bottom 1K isn't doing anything;
this is reserved for use as work-space by the Amiga monitor,
Wack. Note that the vectors in the bottom 1K include initial SSP
and initial PC values for use during reset; things are got going
in a sensible manner on Amiga by having "boot" ROM switched into
this area during reset - this ROM also handles loading
"Kickstart" into RAM/ROM on the Al1l000.

We shall consider exception processing on the 68000 in more
detail in Part II section 1, when we look at multi-tasking and
Exec. For the moment, we shall content ourselves by mentioning a
difference in character between 6502 interrupts and exception
processing on 68000. On the 6502, interrupt processing can
generally be thought of as a "slave" to the main processing, that
wakes up every now and again and worries about boring
"background" matters like whether the user is typing on the
keyboard. On the 68000, exception processing can be thought of
as "master" rather than "slave"; an exception puts the 68000 in a
special "supervisor" mode, with its own private "supervisor
stack", which is independent of anything else going on in the
machine; this means that it can take a look at what's going on
and mess about with it if it feels like it, such as stopping one
program ("task") running and starting another - more about this
later when we discuss multi-tasking.

68000 instruction set

A summary of the 68000 instruction set can be found in Table 3.
Note that there are only 56 basic instructions, which makes life
reasonably easy. However, many of these come in various
different "flavours" such as byte, word, long-word and quick:

MOVE.B #0,D0 zero bits 0 to 7 of DO
MOVE.W #0,DO0 zero bits 0 to 15 of DO
MOVE.L #0,D0 zero bits 0 to 31 of DO
MOVEQ #0,D0 quick move byte with sign extension - in

this case will zero all of DO. Occupies
only one instruction word.

Most of the iastructions are fairly self-explanatory. MOVE is
probably the most commonly encount2red instruction; the use of
different addrass modes with MOVE allows data to be moved between

Introducing the Amiga Page 16

registers, between registers and memory, and directly from memory
to memory, with various indirection and indexing options. MOVEM
- for move multiple - allows various registers to be specified
together in a single instruction, eg for the purpose of pushing
them to the stack:

MOVEM.L D2-D7/A6,-(A7) ; push data regs D2 to D7 and
; address reg A6 to the stack.

Other facilities worth noting are signed and unsigned multiply
and divide instructions, a variety of branch instructions (eg
BSR) which together with "PC-relative" address mode make it
fairly easy to write relocatable code (unnecessary on Amiga since
any position-dependence can be fixed up by the AmigaDOS loader),
and a variety of '"test and set" instructions - these allow you to
do things like checking if a flag bit is set already and set it
if not in a single "atomic" (uninterruptable) operation, which
comes in handy in a multi-tasking system. Finally, note the LINK
and UNLK instructions - these allow you to grab a load of work-
space off the stack, and put a pointer to it in another address
register. This is used to allocate space for all "local"
variables by things like C compilers - so you need a lot of
stack-space on Amiga!

Introducing the Amiga

Page 17

T =3 121110 XNZIVC
o Jo]e Jo 16-BIT
1 1STATUS
I REG
CCR
31 1615 8" 0
Do| 32-BIT
D1 DATA
REGx
D2
D3
D4
D5
Dé
D7
31 1615 g7 0
AG 32-BIT
2 acond
A2 :
A3
A4
AS
A®
AT-
USH
SSP|
23)
24-BIT
PROGR
COUNT
Table 1 - 68000 Registers

Introducing the Amiga

Page 18

ADDRESSING MODE|GENERAL FORM|EFFECTIVE ADDRESS|[EXAMPLE
INHERENT NONE or INHERENT |RTS
r REGISTER Dn/An/SR/ SPECIFIED REGISTER|SWAP D2
CCR/USP
[MMEDTATE fdata INSTRUCTION or CMP #351234,05]

ABSOLUTE _
ADDRESS RLG.
INDIRECT

(An) CONTENTS OF

[EXTENSION WORD _
SPECIFIED ADDRESS [MOVE

SPECIFIED ADDRESS

REGISTER

:4321,D3
CLR (A3)

ELATIVE WITH
ISPLACEMENT

ROGRAM COUNTER,
ELATIVE WITH
NDEX AND
[SPLACEMENT

ADDRESS REG. d16¢An) CONTENTS OF ADDR. [NEG $200
INDIRECT WITH REG. + DISPLACEMENT
DISPLACEMENT
p |ADDRESS REG. (An)+ CONTENTS OF ADDR. |ADD (A2)+,D2
E: INDIRECT WITH REG. BEFORE
£ |POSTINCREMENT INCREMENTING
[ADDRESS REG. -(An) CONTENT® OF ADDR. |&UB -(Al),Do
INDIRECT WITH REG. AFTER
PREDECREMENT DECREMENTING
ADDRESS REG. d3¢An,iy CONTENTS OF(ADDR |ORS{AZD3)D5
INDIRECT WITH REG+INDEX REG.
INDEX AND + DISPLACEMEN
DISPLACEMENT
ROGRAM COUNTER| label PROGRAM COUNTER |BNE FRED

VALUE + OFFSET

label(1)
VALUE + OFFSET
+INDEX REG.

FROGRAM COUNTER

OR JIM{AG), D1

‘R
Tl

68000 Addressing Modes

Introducing the Amiga

Page 19

MNEMONIC DESCRIPTION

ABCD ADD DECIMAL WITH EXTEND

"ADD ADD .

AND LOGICAL AND

ASL ARITHMETIC SHIFT LEFT

‘ASR ARITHMETIC SHIFT RIGHT

Beo BRANCH CONDITIONALLY

BCHG BIT TEST AND CHANGE

'BRA BRANCH ALWAYS

BSET BIT TEST AND SET

BSR BRANCH TO SUBROUTINE

BTST BIT TEST

CHK CHECK REGISTER AGAINST BOUNDS
CLR CLEAR OPERAND

CHF COMPARE

DBce TEST COND. DECREMENT & BRANCH
DIV SIGNED DIVIDE ‘
DIVU UNSIGNED DIVIDE

EOR EXCLUSIVE OR

EXG EXCHANGE REGISTERS

EXT SIGN EXTEND

IMP JUMP

ISR JUMF_TO SUBROUTINE

LEA LOAD EFFECTIVE ADDRESS

LINK LINK STACK

LSL LOGICAL SHIFT LEFT

LOGICAL SHIFT RIGHT

MOVE

Table 3

68000 Mnemonics

Introducing the Amiga

Page 20

MNEMONIC _ DESCRIPTION
MOUVEM MOVE MULTIPLE REGISTERS
MOVEP MOVE PERIFPHERAL DATA
| MULS SIGNED MULTIPLY
TMULU UNSIGNED MULTIFLY
NBCD NEGATE DECIMAL WITH EXTEND
NEG NEGATE
KOF NO OPERATION
NOT ONE'S COMFLEMENT
OR LOGICAL OR
FEA FUSH EFFECTIVE ADDRESS
RESET RESET EXTERNAL DEVICES
ROL ROTATE LEFT WITHOUT EXTEND
ROR ROTATE RIGHT WITHOUT EATEND
ROXL ROTATE LEFT WITH EXTEND _
ROAR ROTATE RIGHT WITH EXTEND
RTE RETURN FROM EXCEPTION
RTR RETURN AND RESTORE
RTS RETURN FROM GUBROUTINE
wBCD SUEBTRACT DECIMAL WITH EXTEND
Soe SET CONDITIONAL
STOP STOP.
=UB SUBTRACT
SWAP SWAP DATA REGISTER HALVES
TAS TEST AND SET OFERAND
TRAFP TRAFP
TRAPY TRAP ON OVERFLOW
 TST TEST
UNLRK UNLINK

Table 3 - 68000 Mnemonics (continued)

Introducing the Amiga Page 21

Appendix 2 - More about Memory

The situation as regards memory on the original Amiga 1000 was
fairly straightforward. The A1000 came with 512K of internal
"chip memory" accessible by both the 68000 and the PAD (you could
get a system with only 256K, but there wasn't much point); if you
wanted to expand on this you could add up to 8 megabytes of
external "fast memory" (also known as expansion memory),
accessible by the 68000 only, and therefore not subject to cycle-
stealing by the PAD. This situation has become confused since
the release of the A2000 and the A500, by the arrival of a new
form of memory generally known as '"slow memory" - it is probably
worth trying to explain this, though please feel free to ignore
this section if this is your first reading!

The situation on the Amiga 1000 was that available chip memory
was checked by Exec on power-up; Exec would then swipe some of
this memory for its own use for things like Exec library
structures and the system supervisor stack, which was put at the
top of chip memory from $07 E800 up to $08 0000. The rest of
available memory was put by Exec into a "free memory list", ready
for allocation by anything else that wanted it.

Later on, the system would scan for expansion memory, using a
complex protocol looked after by a special library called
"expansion.library". This would interrogate any add-on cards,
looking out for expansion memory (amongst other things); if
found, this memory would be linked into the memory free list as
fast memory, at the next available location somewhere between
$20 0000 and $A0 0000.

From then on, memory allocation was looked after by two Exec
routines called AllocMem() and FreeMem(), or by higher level
routines built on these such as Exec AllocEntry() and
FreeEntry(), or Lattice malloc() and free(). Exec AllocMem() is
called with two parameters, the first indicating how much memory
is needed, and the second indicating various options, including
what sort of memory is wanted - chip memory, fast memory, or
don't-care-fast-if-available. This causes a block of memory to
be removed from the free list, until released by a suitable call
to FreeMem().

This was a nice versatile system; the only problem with it was
that it wasted some chip memory on Exec library structures and
supervisor stack, which didn't really need to be there and which
took memory which could otherwise be used for Intuition screens,
graphics structures, digitised waveforms, etc. Since it rapidly
became apparent that chip memory was very much at a premium on
Amiga, this scheme was modified somewhat on the A2000 and the
A500, by adding a new form of memory, now generally known as
"slow memory". (To confuse matters, slow memory was once known
as '"'ranger memory", while recent documentation tends to refer to
slow memory as "fast memory", while referring to real fast memory
as "expansion memory" - we shall ignore this.)

Introducing the Amiga Page 22

Slow memory is an additional 512K of RAM, built into the A2000,
or available as an optional internal RAM-pack (together with
real-time clock/calender) on the A500. This memory maps in up at
the top, in an area previously reserved for IO etc starting at
$CO0 0000, thus bringing the Amiga A2000 and A500 total RAM up to
a theoretical maximum of 9 megabytes. Slow memory is checked for
by Exec BEFORE it checks chip memory at power-up; if found, slow
memory is used for things like ExecBase and the supervisor stack,
instead of these being put into chip memory. The rest of slow
memory not used for these structures is put into the free memory
list; from then on it is treated by the system exactly like fast
(ie expansion) memory.

The good news is that this gives you the maximum possible amount
of free chip memory on the A2000 and A500. The bad news is that
slow memory - as the name implies - isn't real fast memory;
despite the fact that it lives high up in the memory map, slow
memory is in fact on the same side of the gate in the Amiga bus
as the PAD. This means that slow memory access suffers from
cycle stealing when the PAD is handling high resolution or using
a "nasty" blitter, despite the fact that slow memory cannot
actually be accessed by the PAD (at least with the current chip
set!). Be warned therefore that a program which uses high
resolution or a lot of colours, or which does a lot of '"nasty"
blitting, will not run as fast in a one megabyte A2000 or A500 as
it will in a system with real fast (expansion) memory.

There are two further points worth making, relating to two
utilities provided on the 1.2 disks, called NoFastMem and
SlowMemLast. The first is fairly simple: some early games
programs tended to assume that any memory they found in the
machine was chip memory, and they therefore won't work properly
on a system with over 512K. To get round this, run NoFastMemory
(by double clicking on the icon), which will go through the
system allocating any memory that isn't chip memory so that these
games will run properly; double click on the icon again to get
the extra memory back.

The second point is more subtle: if you have a system with slow
memory, then even if you add real fast (expansion) memory, this
will tend not to get used as much it should be. This is because
Exec links the slow memory into the system free list BEFORE
expansion.library links in the fast memory, which means that any
remaining slow memory will always tend to get allocated before
the real fast memory gets a look in. The solution is to run the
program SlowMemLast, which will adjust the links in the free
memory list so that slow memory is at the end of the list, so
that it will get used AFTER any real fast memory. If you are
adding expansion memory to an A2000, or to an A500 to which you
have already fitted slow memory, we suggest putting SlowMemLast
in your standard Workbench startup sequence.

Amiga Exec Page 23

Part II - The Kickstart Guide To Amiga

Amiga Exec

How To Do Several Things At Once While Doing One Thing At A Time

Exec illustration by Tris Murray.

Amiga Exec Page 24

Section 1 - Amiga Exec

How To Do Several Things At Once While Doing One Thing At A Time

Viewed in hardware terms, what makes the Amiga special are the
clever chips, which are able to maintain a high quality colour
display with very little effort on the part of the CPU. Viewed
in software terms, what makes the Amiga special is the multi-
tasking, which is handled by a crucial bit of system software
called Exec.

These two areas - the clever hardware and the clever software -
are in fact very closely connected. It is because you don't have
to tie up the CPU looking after the display all the time that you
can afford to use more sophisticated structures and concepts
(with higher overheads) in the system software; it is because

you can use these structures and concepts that you can do multi-
tasking in a reasonably civilised manner.

However, this software sophistication can be a bit of a problem.
If you are just out of a computer science degree - or if you
happen to have spent the last N years working on Unix systems -
then many of the concepts behind the Amiga should be quite
familiar. 1If on the other hand you came to software development
from some other background, and thence to 8-bit machines like the
Commodore 64, then these ideas won't necessarily be familiar, and
you won't find the documentation all that helpful, as it assumes
you know them.

For this reason, this book aims to tackle the Amiga from a
different angle, from the point of view of people (like
ourselves) who know the chips like the 6502 and machines like the
64 pretty well, but who tend to go a bit green when someone says
"round-robin scheduling" or "pre-emptive time-slicing". If you
are coming onto the Amiga from something like the 64, we hope you
will find this useful. If on the other hand you are coming to
the Amiga from something like Unix you may find this less useful
- if so, you can amuse yourself spotting our errors - please
write and tell us!

An introduction to multi-tasking

Multi-tasking on the Amiga is essentially a clever trick pulled
on the interrupts. Thus in order to understand how it works, you
have to know a bit about 68000 interrupts on the Amiga. We will
approach this by first reviewing 6502 interrupts on the 64, and
suggesting how you might use them to implement a simple form of
multi-tasking. We will then discuss why this would be a pretty
silly thing to do - though don't let us stop you of course - then
go on to discuss how it can be done in a more sensible way on the
Amiga.

Amiga Exec Page 25

Multi-tasking on the 647

As is now widely known, the 6502 has two interrupt lines -
interrupt request IRQ and non-maskable interrupt NMI. If either
of these lines is pulled low by external hardware, then the 6502
is forced to perform an interrupt; this means that it finishes
the instruction in progress, then saves its current program
counter and status register on its stack, sets the "interrupt
disable" flag in its status register, then jumps to an address
held in a "vector" at the top of memory. This invokes an
"interrupt servicing" routine, which typically saves off the
registers, does its business, restores registers, then returns
from interrupt (RTI). RTI causes the program counter and status
register to be restored from the stack (this has the side-effect
of clearing the interrupt disable flag); the interrupted program
then carries on as if nothing had happened.

IRQ and NMT differ in that IRQ can be disabled by setting the
interrupt disable flag, usually using the SEI instruction. This
causes any further IRQs to be ignored until interrupts are re-
enabled, usually by a CLI (clear interrupt disable) instruction,
or by a return from interrupt. NMI (non-maskable interrupt)
cannot be disabled, and can be considered as being at a higher
priority than IRQ; an NMI can interrupt an IRQ interrupt handler,
but an IRQ will not usually be able to interrupt an NMI.

There is a third form of interrupt on the 6502 known as a
"software interrupt", in the form of the BRK instruction. When
the 6502 hits BRK op-code ($00), it behaves exactly as if it had
received a hardware IRQ, but with a special flag set in the
status register so that the interrupt handler routines can tell
the two apart. BRK is usually used for debugging, eg to cause an
entry to a monitor such as Supermon.

On the 64, NMIs and IRQs can each result from a variety of
sources, which have to be identified by the interrupt handler
routines. However, under many circumstances the only interrupt
that needs to be worried about is a '"clocked" IRQ, generated
every 1/60 seconds by a timer on one of the CIAs. The principal
activities caused by the default interrupt handler for this IRQ
are to update the clock locations used by BASIC TI and TI$, to
update the location used by BASIC stop-key checking, and to scan
the keyboard and store any key presses in the keyboard queue.

As most 64 programmers are now aware, it is possible to enable
other sources of interrupt; for example the VIC chip can be made
to cause an interrupt when the electron beam reaches a specified
point on the screen, allowing various "split screen" tricks to be
implemented, such as changing background, or increasing the
apparent number of sprites. 1In order to do this, it is also
necessary to modify or replace the default interrupt handler
routines; this can be done quite easily. Other tricks can be
pulled just by modifying the interrupt handler; an example is
"polling" an external device such as a modem chip, and performing
input or output "on the interrupts" if necessary.

Amiga Exec Page 26

Less well known is the fact that you can in fact spend just about
as long as you like before '"returning from interrupt" without
upsetting the 64. For example, it is possible to run a
"snapshot'" utility on the interrupts, which allows a screen dump
to be made at any point during the execution of a BASIC program,
following which BASIC execution will continue. This works by
modifying the interrupt handler to check for some special key
combination; if found interrupts are re-enabled and a screen dump
routine invoked. This can then run perfectly normally; indeed it
has no way of knowing that it is actually running "on the
interrupts" (the stack pointer is a bit lower than it would
otherwise be, but what the heck). The screen dump has to take
care to save and restore any locations used in page zero etc, and
to use workspace separate from BASIC for its own variables; when
it has finished it can then pull registers from the stack and
RTI, causing BASIC to resume as if nothing untoward had happened.

(This utility gets into trouble if BASIC happens to be in the
process of using the printer when the snapshot is invoked. This
is an example of the dreaded contention, of which more anon.)

It would theoretically be possible to extend this technique in
order to provide at least a limited form of multi-tasking on the
64 in BASIC. 1In order to do this, you would do "task switching"
on the interrupts by saving off BASIC work-space (page 0 etc)
somewhere private (say around $C000), then setting the pointers
appropriately for another BASIC program, which would have its own
work area, variables etc somewhere else in memory - say above the
value of MEMSIZ for the first program. BASIC could then be
kicked off again and the second program run for a while; a few
interrupts later you could then restore the first program's
pointers then restore registers and RTI; the first program would
then carry on as if nothing had happened. This is a simple form
of multi-tasking - see Fig 1.

Limited versions of multi-tasking are in fact available on some
eight-bit micros, but there isn't really much point. For one
thing you tend to run out of memory; for another, the overhead in
saving everything off and restoring it as suggested is rather
high, so you tend to spend so much time "task switching'" that you
don't actually get time to do anything useful. In order to make
the whole business practical you need more memory, a faster more
versatile processor, and preferably some clever chips to look
after the screen without involving the processor too much; in
fact an Amiga will do very nicely.

Page 27

Amiga Exec
baes - Saved page ¥ efc Tor Progl
cosg | IRC code handles task smtchmg
ABS NEMSIZ for Prog2
Prog2 BASIC progran &
variables
MENSIZ for Progl
Progl BASIC progman &
varables G 1
o4 multitasking?
:ggg Prog 2 page 8 efc
S B T nig2
Y exee task peady A -
| quee . 2-task Aniga
"'"'-.i:-—‘ task ’ task - --\'-.ﬁ
._.v-""f =~ |control control RS,
Lot block block 2N
J /./ (ready) (running) AU
:Ji‘ ‘l I “'\. “
{ |address of cleanup code | task Iaddress of cleanwp code | fack!
S user /1 user,
v & |other stuff 30& ofher stuff stac!&
Y }
. |task's saved registers ‘
1 | Qf 2 ’
-""w.J(cleamxp éask '[ﬁk '~.,\‘ {cleanuy task |~ siﬁ
| code) code | M2 % code) code |

Amiga Exec Page 28

Amiga Exec

Exec is a collection of routines at the "lowest level" of the
Amiga; it is used by all the other bits such as graphics
libraries, Intuition, AmigaDOS, device drivers etc, and can also
be used directly by application programs. It is also in charge
of interrupts on the machine, and as such exercises a controlling’
influence over everything else. The principal thing looked after
by Exec in its controlling role is a sophisticated version of
multi-tasking - the Amiga can run several programs at once, each
of which thinks it has a '"virtual machine" all to itself. It
does this by means of task switching on the interrupts, using
some special facilities of the 68000.

Enter the 68000

In general, if you are familiar with the 6502, you shouldn't have
very much trouble understanding the 68000. While the two chips
are only distantly related, and are organised internally in a
very different way, they are in many respects conceptually quite
similar. 1In particular, both use a small number of instructions
with a large number of address modes; the 68000 has about 56
fundamental instructions (quite a lot of which come in various
flavours such as byte, word and long-word) and eleven addressing
modes. However, the 68000 does have a number of features not
found on processors like the 6502, which come in handy when it
comes to multi-tasking.

The 68000 doesn't have anything equivalent to the 6502 '"page
zero". 1Instead it has eight internal 32-bit data registers and
eight 32-bit address registers. The latter can be used for a
wide variety of indirection, such as

JSR (A6) - call a subroutine whose address is in A6
or even
JSR -6(A6) - call a subroutine whose address is 6 bytes

less than what's in A6

Address register A7 is reserved for use as the stack pointer.
Since this is a 32-bit register, this means you can have a stack
as big as you like anywhere in memory. (It also means that an
exploding stack can completely smash the machine, but there you
go.) The stack tends to be used very heavily on the 68000. For
example, the LINK instruction can be used to grab some temporary
work area off the stack and put a pointer to it in one of the
other address registers; this area can then be accessed by
suitable indirect addressing. This technique is used by most
compilers (including Lattice C) to allocate storage for all local
("automatic") variables, so you need a lot of stack space!

Amiga Exec Page 29

The 68000 has three interrupt lines, which are used together to
provide eight priorities of interrupt. 1Instead of an interrupt
disable flag, it has a three-bit interrupt mask in the status
register; this is used to prioritise interrupts so that a level 1
interrupt can itself be interrupted by levels 2 to 7, but not by
levels 0 or 1. The number of priorities is effectively increased
by one of the Amiga custom chips, the 4703 (or "PAULA"); this
watches fifteen possible sources of interrupt (NMI, copper,
expansion bus, disk , serial i/o, audio channels, blitter,
vertical blank, etc), and decides if and when to interrupt the
CPU and with what priority.

The full details of interrupt handling on the Amiga are fairly
complicated, especially when it comes to the details of the

interaction between PAULA and the 68000. However, the overall
effect is not too dissimilar to the 6502 case discussed above:

1. PAULA gets an interrupt from some bit of hardware. It flags
which interrupt was requested by setting a bit in one of its
registers, then checks another register to see if this
interrupt is enabled. If so, it generates an interrupt to
the 68000 at the appropriate priority.

2. If the 68000 is already servicing an interrupt, it checks to
see if the new priority is greater; if not it ignores it for
the time being. Otherwise it switches into "supervisor
mode" (see below), saves off status register and program
counter on the system stack, sets its interrupt mask
appropriately, then jumps by means of a vector in the bottom
1K of memory to an appropriate entry point in Exec. Exec
then further decodes what is going on by looking at PAULA's
registers, and calls the appropriate interrupt handler.

3. On return from interrupt (RTE), the 68000 restores status
register and program counter; this has the side-effect of
restoring the interrupt mask to its previous level. It then
restores the mode from which it was interrupted (this is
usually "user mode" - see below), and exits.

The 68000 also supports a wide variety of software interrupts,
including various error conditions like illegal instructions or
divide-by-zero, and 16 TRAPs, which can be used to initiate
special processing in a way similar to 6502 BRK. Again, these
are generally used for purposes like debugging; the system
default action on traps is to give you a guru number to meditate
on, then (optionally) to sling you into ROMWACK.

Now, there is a problem with terminology here. On a 6502, we
usually talk about hardware interrupts (IRQ and NMI), and
software interrupts (BRK). Motorola on the other hand don't talk
about interrupts at all - instead their documentation refers to
externally and internally-generated exceptions, which are just
like interrupts, but more wonderful. Amiga, just to be different
again, tend to talk about hardware interrupts and software traps;
they use the terms "exception" and '"software interrupt" to

Amiga Exec Page 30

describe two tricks of their own, which are touched on below.
This is very confusing. From now on, we will try and use the
Amiga terminology in order to be consistent with the
documentation - okay?

The 68000 can work in two modes, known as supervisor and user
modes, distinguished by a bit in the status register. Generally
speaking, user programs (this means you) run in user mode;
supervisor mode is only entered if the 68000 gets an interrupt or
trap. The most significant difference between the two modes is
that each has its own private stack pointer; Exec can therefore
run "on the interrupts", with the benefit of its own private
system stack. The only other difference between the two modes is
that a few instructions are "privileged" and can only be executed
in supervisor mode; this includes all operations affecting the
"system" part of the status register, so you can't barge into
supervisor mode from user mode directly; it has to be entered
legally. An attempt to use a privileged instuction from user
mode generates a trap - on the Amiga, this will usually give you
guru number eight.

68000 multi-tasking

A number of special instructions exist on the 68000 to allow the
user stack pointer to be manipulated from supervisor mode (it is
NOT possible to access the supervisor stack pointer from user
mode!). The significance of this is that it is possible to have
several different user programs ('"tasks'") in memory, each with
its own private stack; Exec can then swap between tasks '"on the
interrupts" by fiddling about with the user stack pointer.

As mentioned above, there are many sources of hardware interrupts
on the Amiga. The one of immediate relevance in understanding
how the machine does multi-tasking is the vertical blank; this is
generated once for every scan of the video display, and can be
thought of as the Amiga's closest equivalent to the 64's
"clocked" IRQ. (Coincidentally, it also happens about every 1/60
seconds in the USA, or every 1/50th elsewhere).

Thus as an application program on the Amiga, you will be running
as a task somewhere or other in memory, with the 68000 in User
mode, with your own data areas, and your own user stack. Every
vertical blank, Exec will be waking up and having a look at you,
running in Supervisor mode, with its own private supervisor
stack. If Exec decides to leave you unmolested, it will simply
return from interrupt and let you carry on.

If on the other hand, Exec decides to let some other task have a
go, it will save the current values of ALL your registers on your
(user) stack, then remember what your user stack pointer was in
something called your "task control block". It will then restore
some other task's user stack pointer, pull the last saved values
of its registers from its user stack, then return from interrupt.
The other task will then carry on as if nothing had happened.

Amiga Exec Page 31

In fact, Exec thinks about multi-tasking at the end of any form
of interrupt processing, not just vertical blank. It can also be
forced to think about it by other means, for example by a task
calling the Wait() function, which indicates that it doesn't want
to run for a while.

Memory management

In order for a variety of tasks to run independently as described
above, it is very important that they are not allowed to
interfere with each other, eg by trying to use the same memory.
Thus memory allocation has also to be looked after by Exec, which
keeps lists of what regions in memory are currently free, and
what regions are allocated.

There are two aspects to this, the first of which is looked after
by AmigaDOS, and the second of which is up to the programmer. An
AmigaDOS program file is stored as a number of "hunks" of code
and data, each of which has associated with it some relocation
information, allowing code hunks to be put anywhere in memory.
This is handled by the AmigaDOS scatter-loader, which asks Exec
to allocate memory for each hunk, then loads, relocating as it
goes. AmigaDOS also asks Exec for memory for the task's stack -
the amount of memory allocated for the stack is picked up from
the .info file if the program is run from Workbench, or
controlled by the current setting of STACK from the CLI. Thus a
program can rely on internal code and data, and on its private
user stack being allocated to it by AmigaDOS; this memory remains
allocated until the program terminates.

The program will require further memory for buffers, bit-maps and
whatever structures it cares to create. The allocation of memory
for this is handled by various routines in Exec, the simplest of
which is AllocMem(), which looks for a block of free memory of
the size and type requested, and returns a pointer to it if
found. This means that any memory allocated in this way must be
addressed indirectly; if you are using something like a C
compiler this is very straightforward (use pointers!).

Contention

There are other ways of getting into trouble in a multi-tasking
environment besides problems with memory. An example is handling
a hardware resource like the parallel port or the blitter; it is
possible for one task to start an operation on a hardware device,
then for another to be cut in by Exec and try to do something
quite different, resulting in system confusion.

This problem is handled on a resource by resource basis by the
associated system software; it is not looked after directly by
Exec. In the case of the parallel port, access to the device
driver is obtained via the Exec call OpenDevice(), which can pass

Amiga Exec Page 32

the device a flag requesting exclusive access; OpenDevice() in
turn tries to open a lower-level entity called a resource which
is directly concerned with granting or refusing access to the
parallel port hardware ("misc.resource"). If another task has
exclusive access, then the attempt to open the resource will
fail, and other tasks calling OpenDevice() will return an error
until the first task has finished. 1In the case of the blitter,
it is possible to claim exclusive use using a graphics library
routine OwnBlitter(), or to queue a non-exclusive request using
QBlit(). These different cases will be considered in more detail
later.

Note that if all else fails, it is possible to stop Exec from
task-switching for a while using two routines Forbid() and
Permit(), or even to switch off interrupts completely using
Disable() and Enable(). It should not be necessary to do this
except in exceptional circumstances however.

Time-slicing

The process of Exec deciding which task should be running, and
getting it going if necessary, is called task scheduling and
dispatching; the mechanism used to do it is called pre-emptive
time-slicing.

Consider a rather boring Amiga (only twice as interesting as its
competitors) which is only running two tasks; assume these tasks
are quite independent of each other, and are of equal "priority"
(see below). 1In this case, Exec will simply task swap as
described above at pre-set time intervals (time-slices); this
time interval, which is known as a '"quantum", is currently set to
four vertical interrupts, or 1/15s. This time-slicing is "pre-
emptive" in that the task losing the processor doesn't get any
say in the matter; from its point of view it is just as if it had
an abnormal very long interrupt. See Fig 2.

More than two tasks of equal priority are handled in a similar
manner, with Exec switching the processor between them every 1/15
seconds, with each task taking its turn in a "round robin"
fashion.

Task priority

Tasks are added to the system by setting up a task control block
somewhere in memory, then calling a routine called AddTask with
the address of this structure, a "kick-off" address for the
task, and an optional "clean-up" address, specifying what to do
if your task decides to RTS from its entry stack-level for some
reason. The task control block contains various information for
the task such as a name, the upper and lower bounds for the
task's stack, and an initial stack pointer; it also contains a
single byte interpreted as a number from -128 to 127 for the
task's priority.

Amiga Exec Page 33

When first experimenting with tasks, it is a good idea to always
set the priority to zero; this is a safe '"neutral" value. It is
however possible to choose lower or higher values. The rule used
by Exec to handle priority is very simple; if a high priority
task wants to run, a lower priority task will never get the
processor; Exec will only time-slice between tasks of the same
priority. This ceases to be the case if the high priority task
indicates that it doesn't want to run for a while by entering a
"wait" state (see below); lower priority tasks then get a look
in. Since the Amiga uses tasks for a lot of system activity such
as most I/O, this means that high-priority tasks should be used
only when necessary and then with caution. System tasks usually
have priorities between -20 and +20.

At this point, it may be worth considering some real tasks
running in the Amiga. If you open a CLI window in the workbench,
then invoke Oldwack, you can get a list of tasks by typing TASKS.
This will be something like the following:

Type Priority Status Name

Process 0 run Background CLI (you using WACK)
Process 0 wait CLI (CLI process)

Process 5 wait CON (CLI console device)
Process 10 wait File System (CLI filing)

Process 1 wait Workbench

Process 1 wait File System (Workbench filing)

Task 5 wait trackdisk.device (CLI disk device)

Task 5 wait trackdisk.device (CLI other drive)

Task 20 wait input.device (mouse/keyboard/timer)
Task 5 wait trackdisk.device (workbench disk device)
Task 5 wait trackdisk.device (workbench other drive)
Process 5 wait RAW (WACK RAW console)

"Processes" and "tasks'" are distinguished by '"node types'" of 13
and 1 respectively. A task is an Exec concept as discussed in
this document. A process is an AmigaDOS structure built on the
idea of a task; it consists of a task control block, a "message
port" (see below), and a lot of other stuff.

Waits and signals

Tasks operating independently of each other as discussed above
are not terribly exciting; things become more interesting when it
becomes possible for tasks to communicate with each other, eg for
one task to send another a "message'" asking it to do something,
or for a task to go to sleep (give up the processor) until it is
woken up by some action on the part of another task. The process
of tasks going to sleep and waking up is handled at the lowest
level by Exec using a mechanism called signals.

Amiga Exec Page 34

Tasks on the Amiga can be in three principal states, which are as
follows:

RUNNING - I've got the processor
READY - I want the processor
WAITING - I don't want the processor until so-and-so happens

The current status of each task is flagged by Exec within the
task control block. In addition, Exec maintains its task control
blocks in two lists, a "ready queue" ordered on task priority,
and a list of waiting tasks in no particular order. A task
indicates that it wants to go to sleep until something external
to itself happens by calling a general-purpose Exec routine
Wait(), or a more special-purpose routine such as WaitPort() (see
below). This causes Exec to remove the task's control block from
the READY queue and put it in the WAITING list; it then returns
to time-slicing between the tasks at the front of the READY list,
i.e. those of highest priority.

It should be pointed out that a lot of tasks will spend most of
their time waiting. An example is a task concerned with disk
i/o; this will spend most of its life waiting until some other
task requests disk activity. This is a pretty good idea, since
tasks in wait states don't tie up the processor.

The reverse process - of getting a task out of the WAITING list
and back into the READY queue - is handled by a mechanism called
signals. Each task has associated with it 32 signal bits; the
low order 16 of these are reserved for system use, while the high
order 16 are free for whatever you want to do with them. 1In
fact, each task control block contains four long-words (4 * 32
bits) of signal-bit information, flagging which signal bits have
been already allocated for use by this task, which signal bits
the task is currently waiting for, which signals have been
received, and which signals should cause a special form of
processing called an "exception'" (not to be confused with what
Motorola mean by an exception - aarrrgghhh).

Signal-bits are most often used in conjunction with a higher
level inter-task communication mechanism called messages and
ports. 1In this context, they are usually allocated for you by
Exec; however you can just as well look after them yourself. The
meaning of each bit is up to you; for example you might want to
have one signal bit flagging messages coming in from the console,
another flagging messages from the disk device, and a third
connected to a timer. The way to use signal bits directly is as
follows:

1. The safe way to claim a signal bit for some purpose is to
call an Exec routine called AllocSignal(). If called with
an argument of -1, this will return the number of the next
free bit to you from 16 to 31 (you will have to convert
this into a bit mask), and flag that bit as allocated.

Amiga Exec Page 35

2. To go to sleep until some event (or a choice of several
events) of interest takes place, call Wait() with an
argument which is a bit-mask indicating which signal (or
signals) you are waiting for. Exec will then put you in the
WAITING list until something happens to set these bits.

3. When something does happen, Exec will put you back in the
READY queue so that you again have the chance to run. When
you get the processor again you will return from Wait(); the
value returned indicates what signal (or signals) happened
to cause you to wake up again.

4. As mentioned above, signals are most often caused by
"messages'" arriving at "message ports". However, it is
possible for one task to signal another directly, by calling
an Exec routine Signal(task,mask), which sets the signal
bits specified in the control block of the task indicated.

Messages and ports

Simply waking up another task by calling Signal() is of limited
use; you usually need to send the task some data as well - for

example, you might want to output some text by sending a string
to the console device. This is handled by sending messages to

message ports.

A message port is a data structure linked to a task control
block. 1In order to do any form of I/O at all, a task needs at
least one message port, and it is frequently convenient to use
several. Each port has linked to it a queue of messages from
other tasks. The arrival of a message at a message port usually
causes the associated task to be signalled; this causes it to
wake up (return from a wait state) and do something about the
incoming message. Once it has finished processing a message, a
task usually needs to let the task that sent the message know
that it has finished with it. It does this by replying the
message by sending it back to the task that originated it; it is
able to do this because each message contains a long-word which
is either the address of the port to reply to, or zero if no
reply is required.

Let's take that again, slowly. Suppose we have an application
where we have two tasks, a "main" task and a '"child" task, which
we want to be able to communicate in a simple way, by the main
task sending the child task messages. This can be handled
roughly as follows - a detailed example is given in C later.

1. Both tasks need to get going somehow. This can be done by
being kicked off as a process from AmigaDOS; alternatively a
task can spawn another task using the Exec-support routine
CreateTask().

Amiga Exec Page 36

2. In order to be able to communicate, both tasks now need
message ports and associated signal bits. Creating a
message port, linking it with the associated task control
block and allocating a signal bit to flag arrival of
messages can all be handled by calling an Exec-support
routine CreatePort().

3. In order to be able to send messages to each other, the
tasks need to know where in memory to find the other task's
message port. There are two ways of doing this.

a. If the two tasks are closely collaborating, they will
probably be compiled and linked as part of the same
program. If so, they will know where each others'
message ports are anyway - these are called "private
ports".

b. If the two tasks are not part of the same program, then
they have to use "public ports'". A public port must be
given a name; it can then be added to a list of ports
maintained by Exec, using the Exec routine AddPort().
This will be handled for you if you use the Exec-
support routine CreatePort(); if passed a non-null
name, this routine assumes a public port, and calls
AddPort() accordingly. Once this has been done,
another task can find the port by using the Exec
routine FindPort(); this causes Exec to search its list
for a specified port-name, and return the address of
the port if it finds it.

4. The child task can now enter a wait state, until a signal
bit goes to indicate that a message has arrived from the
main task. The simplest way to do this is to call a routine
called WaitPort(), which does just this. Alternatively, if
the arrival of the message is only one of a variety of
possible interesting events you want to wait for, then you
can call Wait() directly, with a bit-mask which includes
the signal bit associated with the message port; if you
got Exec to create the port, you can find out which signal
bit it allocated by looking at the message port structure.

5. The main task can now send a message to the child task. It
does this by allocating memory appropriately (using the Exec
routine AllocMem()), then setting up a message structure,
followed by the message data. The message structure
includes a '"reply port" address; the main task fills the
address of its own message-port in here. The message can
then be sent using the Exec routine PutMsg(). The main task
can now get on with something else, and/or start watching
its own message port for a reply, probably by entering a
wait state using WaitPort().

Amiga Exec Page 37

6. Once the message has been sent, the child task will be
signalled, and will return from WaitPort(). The message can
then be removed from the queue using another Exec routine
GetMsg, which returns the address of the first message in
the queue, or zero if there are no more messages.

7. The child task can now examine the message, and take
appropriate action. When it has finished with it, it should
return it to the specified reply port; this can be done
conveniently using an Exec routine ReplyMsg().

8. In the general case, there may be more than one message
queued at the message port, despite the fact that the child
task was only signalled once. If this is a possibility,
then the child task should continue calling GetMsg() and
processing any further messages, until GetMsg() returns
zero. The child can then return to a wait state using
WaitPort ().

9. When the main task gets the reply from child task, it should
remove it from its message port using GetMsg(). Note that
it is possible for the child task to pass data back to the
main task by modifying the message data before replying; if
so the main task can now make use of the returned data. It
can then de-allocate the memory used for the message, use it
for another message, or whatever.

See fig 3 for an illustration showing the relation between tasks,
message-ports and messages.

There is a final subtlety to this business which is well worth
noting. This is that very little actually gets moved about in
memory when a message is sent; the message data actually stays in
the same place, but gets attached to the child's message port by
cunning use of pointers. For this reason, the main task must be
very careful not to touch the message data, or de-allocate the
message memory etc, until the child task has replied the message.
Another way of looking at this is to say that by sending the
message, the main task grants the child task a temporary licence
to mess about with a bit of main task's memory; by replying the
message, the child task returns this memory to the main task.

Amiga Exec

. anothep
| hessage
| port
L o
Ih/.)'../-—"' t&Sk'S P\x
"~ | HE5528e
task T |pert | |MESSMRL
771 contral y
27| block L
O . 1
LT signal :
o bits queue %
| of nessage| .
| Kes5ages Yy
o task —i reply- 1
| stack \ port o
s , .
task !
code nessage
———

task's [

nessage
port

Figure 3 - Messages and Ports

list

task B nodifying

Page 38

\
!

task
sending
hessage

code

list

task A scanning

15aster
this vay

o

Figure 4 - Two Tasks Contending!

Amiga Exec Page 39

Limitations of tasks

All of this sounds great until you try to use it and the Amiga
crashes with a guru (whoever wrote the example of multi-tasking
in the original V1.0 ROM kernel manual had a great sense of
humour). The problem is principally connected with AmigaDOS. As
mentioned above, AmigaDOS does make use of Exec's structures and
routines to handle multi-tasking; however it builds on top of
Exec's "task" structure (ie a task control block) to create its
own structure called a "process", which is a task control block,
followed by a message port, followed by various other stuff
connected with what the console is, where its window is, etc.
AmigaDOS expects this information to be there, ie it expects to
be called from a process; if you call it just from a task you
will crash the Amiga! This places very severe restrictions on
what you can do in a sub-task:

1. You can't call any AmigaDOS functions directly.

2. You can't use a lot of Lattice functions such as printf(),
since these call AmigaDOS.

3. You can't open any disk-resident libraries or devices, such
as the icon library or the printer device, unless you are
sure they are currently in RAM; otherwise AmigaDOS will try
and fetch them from disk, thus crashing the system.

On the other hand, there's no problem at all calling ROM
libraries such as Intuition and the graphics libraries, or of
opening resident devices such as the console. Thus you can
perfectly well spawn a sub-task to handle a bit of animation
(say) while your main task gets on with something else; or you
might want to have a "pre-processor" task sitting on top of the
console, passing stuff onto your main process in some pre-
digested form. If you do need to call DOS functions from a sub-
task, there are two solutions:

1. Be a sub-process instead. 1In order to do this, you will
probably be compiled and linked separately; you can then be
kicked off by AmigaDOS Execute(), or by AmigaDOS LoadSeg()
followed by CreateProc().

2. Have a dedicated sub-process (or even your main process)
handling the interface to AmigaDOS. Then when a sub-task
wants to talk to AmigaDOS, send a message to the dedicated
process, and let it talk to AmigaDOS.

A C example of a process kicking off a sub-process is given
later.

Amiga Exec Page 40

Interrugts

As indicated above, interrupts on the Amiga are essentially the
territory of Exec - you can use them yourself, but you have to

ask Exec nicely. As mentioned above, the terminology used when
discussing interrupts on Amiga tends to be confusing; a summary
of the main concepts is as follows.

1.

Hardware interrupts. These are looked after by one of two
mechanisms - interrupt handlers and server chains.

Interrupt handlers are used by high-priority-copper, disk,
serial port, audio channels and "software interrupts". Only
one handler is allowed per source of interrupt, and you are
unlikely to want to change the system defaults; however, if
you must, this can be done using a structure called an
"Interrupt", and a routine called SetIntVector(). Server
chains are used by NMI, the 8520s, the blitter, vertical
blank and the copper; they allow tasks to share interrupts,
by calling each routine in the chain successively, allowing
(say) a number of tasks to synchronise with vertical blank.
It is more likely that you will want to try this - if so,
you use the same interrupt structure, and a routine
AddIntServer(). Note that the Amiga gets upset if you spend
too long on the interrupts, particularly when servicing an
interrupt of high priority.

Traps. These are a form of 68000 special processing very
similar to a hardware interrupt, but caused either by an
error condition (eg address error, illegal instruction,
divide-by-zero), or by 16 special TRAP instructions. If you
want to do your own trap handling, you can set up two
pointers in your task control block to point to your trap-
handling code and (optionally) to a separate data area -
this second pointer is really for the system's convenience,
since its trap-handling code may be in ROM. If you don't do
this, the system will set up default trap-handling, which
gives you a guru number when you get a trap. If you want,
you can get Exec to help you with TRAP allocation within
your task, by using a routine AllocTrap(), which behaves in
a way very similar to AllocSignal() discussed above. Note
that there is no problem with different tasks using the same
traps - Exec will always pass the trap to the task that is
currently running. Traps are used by monitors like Wack to
implement things like break-points.

Exceptions. This is a cunning Amiga trick to allow a task
to have "private interrupts" connected to a signal bit. If
you want to use this, you set up pointers in your task
control block to point to special exception-handling code
and data-area; you then call an Exec routine SetExcept() to
indicate which signal bits you want to cause exceptions.

You can for example arrange for message arrival at a given
message port to cause an exception; you can then go and do
something quite different, knowing that as soon as a message
arrives your exception code will be invoked.

Amiga Exec Page 41

Software interrupts. This is another cunning Amiga trick.
"Software interrupts" on the Amiga use the same data
structure as hardware interrupts; they run at lower priority
than hardware interrupts and traps, but higher than normal
tasks. They have two main purposes:

a. As mentioned above, the Amiga gets upset if you spend
too long servicing a hardware interrupt. To get round
this, you can arrange for the hardware interrupt to
invoke a software interrupt using the Cause() function.
The software interrupt will then be processed after the
return from hardware interrupt, but before returning to
normal multi-tasking. It is also possible to use
Cause() from within a task; if so, the task is
interrupted immediately, and there will be no return to
normal multi-tasking until the software interrupt has
finished.

b. It is possible to set up a message port to cause a
software interrupt, instead of signalling a task.
Sending a message to this port will then immediately
invoke the software interrupt, again at a higher
priority than normal multi-tasking.

Note that there are therefore three principal things that you can
arrange to happen when a message arrives at a message port:

1.

In the normal case, when a message arrives, a task
associated with the port is signalled, and processes the
message when it gets round to it.

If the message is more urgent than this, it can be arranged
to cause an exception, in which case the associated task
will process it as soon as it is next woken up, even if is
currently busy doing something else.

If the message is really urgent it can be arranged to cause
a software interrupt; this will be executed at once, at a
higher priority than normal multi-tasking.

Amiga Exec Page 42

Programming implications

As was stated at the start of this section, Exec does its job
very well, so if you're not doing something exotic like using
interrupts, you can more-or-less forget the multi-tasking, and
just let Exec get on with it. However, there are a few rules you
have to keep:

1.

You MUST NOT simply hit the hardware when you feel like it -
what do you think this is, a 64? Some other task might be
in the middle of some delicate operation when you come
blundering in - this will cause weird intermittent crashes
which will be very hard to track down. 1If possible, use a
system library call instead; if you must access hardware
like the blitter directly, do it in a decent manner by first
of all claiming it, then accessing it, then releasing again
when you have finished.

Similarly, be careful with memory allocation. You can make
direct references to data actually in your code, as these
will be fixed up by the scatter-loader; for all your other
needs you should AllocMem(), then access the memory returned
to you indirectly.

You need to be a bit careful with your options when calling
AllocMem(). Data structures which are accessed by the
sy::rial chips should be AllocMem'd MEMF_CHIP; data
stiuctures (such as messages) which are going to be accessed
by more than one task should be AllocMem'd MEMF_PUBLIC -
this is for upward compatibility with any future products
which may support hardware memory partitioning. Note that
structures like this should NOT be declared implicitly as
data in the program. Finally, if you are going to create
structures like task control blocks yourself, you should do
so MEMF_PUBLIC;MEMF_CLEAR; however in these cases we would
recommend using support routines such as CreateTask(), then
adjusting the structures returned if necessary.

If you need to wait for something to happen, call Exec
Wait() or WaitPort(). "Busy waiting" by wizzing round a
tight loop is very bad manners - why tie up the processor
doing nothing? - and may cause the system to hang if you are
running at a higher priority than the task that you are
waiting for!

The interrupts belong to Exec; don't mess around with them
by directly changing the processor interrupt mask or the
bottom-of-memory interrupt vectors. If you want to use
interrupts, ask Exec nicely.

Finally, be careful about contention. Quite innocent-
seeming activities like "bunny hopping" through a system
list can cause trouble if some other task is updating the
list at the time - see Fig 4. You can frequently avoid this
sort of problem by calling Exec routines - such as

Amiga Exec Page 43

FindTask() to search Exec's task lists - rather than doing
it yourself. If you MUST access system lists, then use
Forbid() and Permit() to disable task switching where
necessary.

Structures and lists

So far, this section has deliberately not given details about the
exact mechanisms used to maintain lists, task control blocks etc;
this has been because we have been trying to concentrate on the
principles of what is going on, rather than implementation
details that you can find in the ROM kernel manuals. However, it
may be worth saying a bit about lists, and giving at least a
summary of some important structures used in lists.

Linked Lists

From the discussion above, we might expect that Exec keeps tables
somewhere showing which tasks are running and which waiting, what
the last saved task user stack pointer was, etc. This is more or
less correct, except that the Amiga doesn't use tables for
anything much - it uses linked lists.

In a table, items of information ("elements'") are ordered
implicitly by means of their arrangement in memory - see Fig 5.
In a linked list, elements of the list are ordered explicitly;
each element of the list contains the address in memory of the
next element, i.e. it contains a pointer to it - see Fig 6. The
order of the list as maintained by the pointers does not have to.
correspond with the actual arrangement in memory - indeed the
elements could be splattered about all over available memory.

In order to scan a table, you start at the beginning and search
sequentially through it until you find what you are looking for.
In order to scan a linked list, you have to '"bunny hop" through
it as follows:

DO

Get address of next element
Examine this element and do with it as you will

WHILE you haven't run out of list

You can tell when you've run out of list, because the pointer to
the next element is then zero.

The disadvantages of linked lists is that there is a small
overhead due to the pointers (each address takes four bytes), and
because the processing of scanning through the list by "bunny
hopping" as described can take a bit longer than sequential
scanning. The advantages are that you don't have to move
everything to insert a new element - you just twiddle the

Amiga Exec Page 44

pointers as shown in Fig 7 - and that it is a "no limits"
structure. A table can go on growing only until it fills the
space allocated to it; a linked list can grow until it fills the
whole of memory.

This sort of arrangement, with "structures'" scattered about in
memory, containing "pointers" to other structures, is exactly
what C was designed to be good at; hence the dominant position of
C on the Amiga. However, as regards linked lists, you don't have
to write your own routines; Exec contains a number of general
purpose routines to handle its own linked lists, and these are of
very general usefulness; their use from application programs is
recommended.

In fact, there are two subtleties about linked lists as used on
the Amiga.

1. The lists are doubly linked, in that each element contains a
pointer back to the previous element, as well as a pointer
forward to the next element. This makes it possible to
bunny hop backward if this is more efficient. Each element
in the list starts with a structure called a '"Node", which
is followed by the actual list data:

Node: pointer to next node (successor) - 4 bytes
pointer to previous node (predecessor) - 4 bytes
node type - 1 byte
node priority - 1 byte
pointer to node name - 4 bytes

Data for list element follows.

Besides the pointers, the node contains a type used to
distinguish between nodes used for different purposes - eg
tasks, message ports, messages etc - a priority which can
be used to order the list, and a pointer to a node name; in
the case of a linked list of task control blocks, the name
might be the name of the task or process, eg 'Background
CLI".

2. The two ends of the list are '"tied up" by use of a cunning
structure called a "list header" - this structure is simply
known as a "List" in order to confuse you. This is arranged
as follows:

List: pointer to first node in list
pointer to first node predecessor = pointer
to last node successor = 0
pcinter to last node in list
list type
spare byte (padding)

A complete linked list is illustrated in Fig 8.

Amiga Exec Page 45

Fig) |HereB | IcB : AB:Tabled

AAddress of IS | HERE 8
Figb { _~Address of LIST | A8
¥ diess ol A | IS0
s dero link warks end | LISIE

~Address of IS | HERE €
Fig? i _+Address of HODIFIED | A8

> TAQdress of A | IS8
~—2Zep0 link Harks end | LISTE
~ Addwess of LIST | MODIFIEDS

List Péointer 't‘-o firs:/ &~—-.___.‘
ero narks start/end — .
nm. f_:{girzht!r to last 3%-““‘
1St iype ;vev ‘-.,
Node - ﬂev, Spare A
Pointer to next.node Node |Pointen fo next.node
Pointer to previous node Pointer to previous node
Node type Node type
Node priority Node priority
Pointer to node nane Pointer to node nane
Data follous | Data follows
| ""\ Node [Pointer to next node I ,’;
Ny Pointer to previous node| ppey, /' /
>, |Node type b
= ~-Node priority "
gg}!{t"\\ Pointer to node nane 7 Text
T—{Data follows " Fig 8

Amiga Exec

Page 46

Task control blocks

Exec maintains its READY queue and its WAITING list as two linked
lists of task control blocks, known simply as Tasks. These are
arranged as follows:

Task:

Node, includes list pointers, '"task'" node-
type, and pointer to task name.

Flags - 1 byte

State - running, ready, waiting etc - 1 byte

Interrupt disabled nesting - 1 byte

Task disabled nesting - 1 byte

Signal bits allocated - 32 bits

Signals to cause exit from wait - 32 bits

Signals we have received - 32 bits

Signals to cause '"exceptions" - 32 bits

Traps that have been allocated - 32 bits

Traps enabled - 32 bits

Pointer to data area for "exceptions"

Pointer to code to handle "exceptions"

Pointer to data area for traps

Pointer to code to handle traps (default is '"give guru'

Last saved task user stack pointer
Address of task user-stack bottom boundary
Address of task user-stack top boundary

Routine to call when task is about to lose processor

Routine to call when task regains processor
List structure to tack tasks private memory

list onto if you want to (up to you)
Spare pointer (also up to you)

A message port also starts with a node; this is to allow Exec to
tie public ports into a linked list that it can search when asked

to FindPort().

MsgPort:

The structure is as follows:

Node - includes msgport type, and name.
Flags, including message arrival action
flags - signal task, cause software
interrupt, ignore message.
Number of signal bit to use if signalling task.
Pointer to associated task control block,
or software interrupt structure
List structure, with list of arriving
messages attached to it.

Messages are then arranged as a list (queue) tied onto the

message port:

Message:

Node - ties messages to port. Message-type
Address of message port to reply to

(null if reply not needed)
Length of message data in bytes

The message data then follows this structure.

Amiga Exec Page 47
The interrupt structure (used for handlers, server-chains and
software interrupts) is very simple:
Interrupt: Node - ties together server-chains
Pointer to data-area for interrupt
Pointer to interrupt code (terminates RTS)
Finally, the process structure is not so simple:
Process: Task control block

Message port used by DOS
Process values - file handles for default IO, etc.

Examples

Two examples are given of communication between tasks, and
communication between processes.

Task example

This can be compiled under Lattice in the usual way, using
something like the following. Assuming that LC: INCLUDE: and
LIB: have been assigned somewhere sensible, use

LC:1cl -iINCLUDE: -oRAM: mtask
LC:1lc2 -omtask.o RAM:mtask
LC:blink FROM LIB:c.o+mtask.o TO mtask LIB LIB:lc.lib+LIB:amiga.lib

In this example a main task creates a sub-task then sends it a
message containing a reason-code and a text pointer. It has to
be careful that its child task has woken up and created its
message port before it tries to talk to it; this is handled as
follows:

1. First main creates its own message port.
2. Then it creates child task, and waits for a message from it.

3. When child task wakes up, it creates a message port, then
sends main a message indicating if all is well (code zero),
or if failed for some reason (code 1). This message does
not need a reply.

4. Main then sends child a "hello there" message. Child gets
the message and replies it; main gets the reply.

5. Finally, main sends child a special message telling child to
go away. Child cleans up by removing its message port, then
replies to main and enters an endless wait state. Main then
deletes child, cleans up its message port, and exits.

Amiga Exec Page 48

This example aims for simplicity rather than beauty, and can be
criticised in a number of ways.

1. The messages have been set up as static structures in the
code. This makes the example easier to read, but it means
it won't necessarily run on Amiga upgrades. The correct
thing to do would have been to AllocMem some MEMF_PUBLIC
memory, and copy the message data into it.

2. Child does not bother to check if more than one message is
waiting. This is okay in this case, as we know main won't
send any more until child has replied. However, if there
was more than one possible source of messages to child, this
would be dangerous.

3. The code makes use of "goto". Our own feeling is that

"goto" is perfectly okay for handling errors in nested
structures only. You may disagree.

Process example

In this example, MAINPROC and CHILDPROC are compiled separately.
MAINPROC can be compiled as usual:

LC:1cl -iINCLUDE: -oRAM: mainproc
LC:1c2 -omainproc.o RAM:mainproc
LC:blink FROM LIB:c.o+mainproc.o TO mainproc LIB LIB:lc.lib+LIB:amiga.lib

CHILDPROC is linked without the Lattice standard startup code

c.o which handles the normal business of startup from CLI or
Workbench - we don't need this as we are kicking off this process
ourselves. To do this, you have to compile with the -v option to
disable Lattice stack-checking:

LC:1lcl -iINCLUDE: -oRAM: childproc
LC:1c2 =-ochildproc.o =-v RAM:childproc
LC:blink FROM childproc.o TO childproc LIB LIB:lc.lib+LIB:amiga.lib

This example is written to be similar to the previous one, and
uses the same message structure. However, because child is now a
process it can use AmigaDOS - it uses this to open a CON: window,
where it prints out messages sent to it.

Again, it is necessary to be a bit careful with synchronisation
at the beginning. 1In this case, this is achieved by main sending
child a "wake-up" message to child's DOS message-port and waiting
for a reply; this is okay, as DOS won't be using its port at the
time. Thereafter, child's own message-port is used, which is
safer. Main finds this message-port by looking in the "user-
data" area of the task control block, where child has put a
pointer to its message-port; alternatively, it would have been
possible to use a public port.

Amiga Exec Pag= 49

Appendix 1 - Guru Meditation Mysteries

Guru alerts are the mechanism by which the Amiga system software
informs the user of serious problems. Alerts are an Exec
function, which can also be invoked through Intuition. They come
in two forms - recoverable alerts from which you can return to
normal multi-tasking, and dead-end alerts which necessitate a
system reset. In the latter case the system normally puts up a
requestor first (eg 'Software Error - Task Held') to allow you to
go round saving files etc before this happens.

There are two principal sources of guru meditations - 68000
processor traps, and system software errors. If a task gets a
68000 trap it doesn't know what to do with - ie if it hasn't set
up its own trap handling and hasn't had its traps "taken over" by
a monitor like Wack - then the system will give a guru meditation
such as the following:

- > - ——- - — — = > B - - —— - - - - ——— — — - - — — - -y - —— ————— — - —— - ———— —— —

Software Failure. Press left mouse button to continue.
Guru Meditation #00000003.000027D2

- " - = — — - W - = - — - =P D " . —_ - = D - = W =D . = = D - . — —— - - - - - —— - - - —

Here the number before the dot is the 68000 trap number.
Possible candidates are as follows:

2 Bus error (hardware)
3 Address error (word access on odd byte boundary - frequent!
4 Illegal instruction (you are probably out of control)
5 Divide by zero '
6 CHK instruction
7 TRAPV instruction
8 Privilege violation (supervisor instruction from user mode)
9 Trace
A Opcode 1010 emulation (out of control again)
B Opcode 1111 emulation (")
20-2F TRAP instructions

The number after the dot is the address of the task control block
for the task that went wrong - almost certainly your task! From
this point, you can go in with ROMWack to investigate further, as
described in detail later.

The second type of Guru number is generated by the system
software, and has the following form:

00 00 0000 . 0000OO0O0O0O
Block A B C D

Byte A defines in what part of the system software the alert was
generated, and also flags if the alert is a recoverable one or
dead-end. The most significant bit flags a dead-end alert;
otherwise the values are as follows:

Amiga Exec Page 50

1 Exec librarcy 10 Audio device

2 Graphics library 11 Console device

3 Layers library 12 Game-port device
4 Intuition library 13 Keyboard device
5 Maths library 14 Trackdisk device
6 Clist library 15 Timer device

7 AmigaDOS library

8 RAM handler library 20 CIA resource

9 Icons library 21 Disk resource

22 Misc resource

30 Bootstrap
31 Workbench

Byte B indicates the general cause of the problem, as reflected
in the text error message:

No memory

Unable to create library
Unable to open library
Unable to open device
Unable to open resource
Input/output error

AU W N

Word C gives more detail - its meaning varies depending on the
source of the error (as specified in byte A) and can be found in
the commented version of h-file exec/alerts.h. An example is

. o - - - — - - ———- - ——— —— — ——— —— - — — - —— - — - —————— - - —————— —— — ——

Not enough memory. Press left mouse button to continue.
Guru Meditation #02010009.0007D6B8

- - — - - ——— - — —— ————— —— - ———— - — _——— . ———— —— - ——— = - — - ——— — - —— -

This indicates a recoverable error from the graphics library
(byte A = 82), and that the general cause of the problem is 'No
memory' (byte B = 01). Refering to exec/alerts.h tells us that
specific error word C = 0009 means 'no memory for TmpRas' - ie
the graphics library was trying to allocate some memory for
temporary storage during text or area-fill operations (TmpRas),
and found it had run out of memory. The address 7D6B8 is just
below the system stack at 7E800 on an unexpanded (512K) Amiga, so
obviously we are running low on memory.

The number after the dot has three possible interpretations for
this form of gquru. In most cases, it is the address of the
control block for the malfunctioning task, as in the traps case
discussed above. 1In cases relating to memory allocation, it is
the memory address which went wrong - an example is the Exec guru
81000009 'free twice' which indicates an attempt to FreeMem()
some memory already in the system free list. Finally, in cases
where the system is REALLY confused, to the point of not being
able to find things like system task lists, the number after the
dot is the ASCII text string 'HELP'!

Amiga Exec Page 51

Appendix 2 - About Semaphores

The issue of "contention" arises whenever two or more tasks want
to share something - such as a bit of hardware like a port, or
just some memory like a linked list or some other significant
structure. Generally speaking, if you use the system software
properly, then it will look after this for you; however, there
are the following three exceptions.

1. If you want to access a bit of hardware directly, you should
first of all claim it from the system by opening the
appropriate resource, or calling an appropriate routine such
as OwnBlitter(); when you have finished with it, you should
then give it back by closing the resource, or calling
DisownBlitter(). Programs (and programmers) who break this
rule are increasingly referred to as '"brain dead".

2. If you need to access a system linked list for some reason,
you should first of all disable multitasking using Forbid(),
and later restore it using Permit(); if the list may be
accessed on the interrupts, then you should use Disable()
and Enable() instead. An example of a system list that you
may want to access is Intuition's list of 'gadgets" attached
to a window structure - if you do this, make sure you
Forbid() first, or you may get into real trouble when
Intuition tries to access the same list, running as part of
input.device's task schedule. (A better alternative in this
case is to detach gadget sub-lists before you look at them,
using RemoveGList() and AddGList().)

3. If you are writing an Amiga application with two or more
collaborating tasks or processes, then you will almost
certainly find yourself in a position where two or more of
your tasks or processes want to access the same data
structures - which should be allocated MEMF_PUBLIC - and
where you therefore need to be careful about contention.

(An example from our work at Ariadne is the Amiga terminal
for the Compunet network, which has processes concerned with
upload/download from the net and others concerned with
editing; these need to access a common linked-list of text
and graphics information.) 1In this case, Exec can help you,
using a powerful mechanism known as 'semaphores'".

Like a lot of Exec, semaphores were really put in for the
convenience of the rest of the Amiga system software,
particularly to cope with various contention issues involving
Intuition. However, there is no reason why they shouldn't be
used by application software, and indeed we would recommend you
to do so. Before version 1.2, Amiga system tasks usually had to
handle contention using the Forbid/Permit mechanism discussed in
(2) above; this was unsatisfactory because it hung up the entire
machine waiting for just two tasks which wanted to share
something, and because it could result in various "deadlocks".
This was sorted out in 1.2 by introducing semaphores.

Amiga Exec Page 52

A semaphore is essentially a flag which can be associated with
something you want to share between tasks, such as piece of
hardware, a structure or a linked list. Before accessing the
shared object, a task must first of all '"claim" the semaphore; if
the semaphore has already been claimed by another task, then a
mechanism exists to go into a WAIT state, and not be woken up
again by Exec until the semaphore in question is available.

There are essentially two mechanisms for semaphoring in Exec 1.2,
a fast simple mechanism based just on task signalling which will
do fine in most cases, and an alternative mechanism based on
messages and ports, which is slower and more complicated, but
sometimes more powerful.

Signal Semaphores

A "signalSemaphore" is an Exec structure which can be used for
most cases of semaphoring, when a task needs either to claim a
particular semaphore immediately, or to go to sleep until the
semaphore is available. 1In our example of a linked list that we
want to be able to share between two tasks, we might decide to
have a signalSemaphore associated with the entire list. An Exec
routine InitSemaphore() exists to initialise such a structure, so
we could set it up by

OurListSem = AllocMem(sizeof(struct signalSemaphore), MEMF_ PUBLIC);
InitSemaphore(OurListSem);

Having done this, before either task tries to access our shared
list, it should claim the semaphore by

ObtainSemaphore(OurListSem);

This will return at once if the semaphore is available; if not
the task will WAIT on a signal-bit until the semaphore is free,
at which point it will claim it and return from ObtainSemaphore.
If you don't want to wait, but want to do something else if the
semaphore isn't free, you can call AttemptSemaphore() instead;
this will claim the semaphore and return TRUE if it is available,
or give up and return FALSE if it isn't. (DON'T use this for
"busy waiting'"!) When the task has finished with the shared
data, it must release the semaphore; this is done by

ReleaseSemaphore(OurListSem);

Note that calls to ObtainSemaphore() can be nested; if you call
it while you already have the semaphore in question, it will
return immediately having incremented an "obtain count"; other
tasks won't get a look in until you have dropped the obtain count
to zero, by calling ReleaseSemaphore() once for every call you
made to ObtainSemaphore(). Note also that tasks waiting for a
given semaphore are put into a queue, so that more than one task
can be waiting for the same signalSemaphore.

Amiga Exec Page 53

Named Semaphores

In order for two or more tasks to 'rendezvous' on a
signalSemaphore - to use it to control access to something or
other - they obviously must all know where it is. This is a
similar problem to a number of tasks being able to access each
others' message ports, and is answered in the same way. If
several tasks are closely collaborating, then they will probably
be linked to form a single load-module, in which case they will
all know where the semaphores are anyway; alternatively, if one
task or process starts another, it can send it a "startup"
message containing important information such as the locations of
semaphores. We can think of these as '"private semaphores'.

Alternatively, it is possible to have "public semaphores" very
like '"public ports". Public semaphores must be given a unique
name; they can then be linked into an Exec list of public
semaphores at a given priority position, using a routine called
Addsemaphore(); this is called instead of setting up a private
semaphore using InitSemaphore(). Another task can then search
for the semaphore by name using a routine called FindSemaphore().
Note that before the semaphore is deallocated, it should be
removed from Exec's semaphore list; this is done by a routine
called RemSemaphore(;.

Lists of Semaphores

Sometimes it is desirable to link semaphores together, for
reasons other than being able to find them in Exec's public
semaphore list. An example might be to control the linked list
of "frames" of text and graphics information mentioned in the
Compunet example; in this case we might chose to have a "master
semaphore" looking after the whole list, with "sub semaphores"
associated with each individual frame, themselves linked together
in their own semaphore list. With this setup, if we want to lock
a single frame we can simply ObtainSemaphore() its semaphore; if
we want several frames we can first obtain the master semaphore
to lock the whole list, then ObtainSemaphore() the frames we
want, then release the master lock. If we want ALL the frames in
the list, then we obtain the master lock, then we obtain all the
individual semaphores using a routine ObtainSemaphoreList(); when
finished, we can release them all using another special routine,
ReleaseSemaphoreList().

Note that the use of a master semaphore associated with the
entire list is essential, since otherwise you can get deadlock
problems - say if one task is trying to obtain semaphore A
followed by semaphore B, while another task is trying to obtain B
followed by A. Note also that the use of semaphore lists in this
way is incompatible with having named semaphores linked into an
Exec list as discussed above; this is because the semaphore
structure contains only one field for linking semaphores
together!

Amiga Exec Page 54

As a final example of this sort of thing, consider the Layers
library. Here we have a linked list of Layer structures each
associated with a particular RastPort or Intuition Window; this
is controlled by a master LayerInfo structure associated with the
entire BitMap or Intuition Screen. Handling contention properly
in this case is very important, to allow a number of programs to
share the screen, each with their own private window(s); this is
now handled internally by using semaphores in much the way
discussed above.

Message based Semaphores

The signalSemaphore mechanism is simple, fast and powerful; its
only drawback ,is that while you are in a WAIT state caused by
calling ObtainSemaphore, you can't simultaneously be looking out
for anything else - such as a different semaphore coming free, or
an IntuiMessage indicating that the user has clicked a "GIVE UP"
gadget. If this is a problem, you will have to use a slower and
more complicated mechanism, based on messages and ports.

Using this mechanism, the semaphore is a special sort of public
or private message port, set up with a special option PA_IGNORE
telling the system not to signal any tasks when a message
arrives, and with a field SM BIDS initialised to -1. A task can
"bid" for this semaphore, by calling an Exec routine

Procure(port, message);

where "port" is the special semaphore message-port, and "message"
is a standard Exec message structure, initialised to contain the
address of a suitable reply port. If the semaphore is available,
Procure() will return TRUE immediately and the message will not
be replied, and can be reused as soon as you feel like.
Otherwise, Procure() will return FALSE, and the message will be
replied as soon as the semaphore is available; you can therefore
call wWait() with an approprate bit-mask to watch the designated
reply port, while at the same time looking out for anything else
of interest, such as other semaphore replies, Intuimessages, or
whatever.

When you have finished with a message-based semaphore you should
of course release it; this is done by another call

Vacate(port);
This will free the semaphore port for use by others, and cause

the next task in line (if any) to be woken up, by getting a reply
to its message.

JErernrrrenrrsn® Source file MULTITASH . .C ###%xseexaxisisrd

Simple example of multi-tacsking
Ariadne Software Ltd.
April 1986
FRRRERRRERERERRERERRERRRRERRRRRRRERERERERHR RS RS/

/%#% Gyvstem header files required *##/

#include <exec/types.h:
#include <exec/ports.h:
#include <exec/tasks.h:

/%%% Our own definitions #¥%/
#define CHILDSTACE 1000 /+ stack size for child task #/

etruct OurMsg < struct Message message;
LONG code;
char #text;
73

#define OKAY
#define ERROR
#define CLEANUF
#define OTHER

L]

/% poscible values for code field */

4 Py e

/#%% Exec Library routines used ###/

extern struct Mescage *WaitFort(),+GetMsg():
extern VOID FutMsg() ,ReplyMsg();

/%¥% Exec Support Library routines used #¥#/
extern struct MsgFort #CreateFort();

extern struct Task #*#CreateTack();

extern VOID DeleteFort(),DeleteTask();

/*¥¥ Variables accecssible to both main & child tasks #¥%/

ctruct MegFort #mainport; /# pointer to main task’'cs mescage port */
struct MsgFort *childport; /% pointer to child task’'s mecssage port #*/

‘#++333 Ch1ld tasl code *#esa#/

childcode ()

struct OurMsg #*childrcv; /+ pointer to message received by child %/

kg

static struct OurMsg initmsg = {
{ {NULL,NULL,NT_MESSAGE, O,NULL, /* message.mn_Node %/

NULL, /% message.mn_ReplyFort %/
é /* message.mn_Length #*/

Iy

0, /% code */

NULL /% text */

3

childport = CreateFort(0,0); /% create mecssage port for child task #*/

1f (childport == 0) {
initmsg.code = ERROR;
initmesg. text = "Child task error"j
FutMsg(mainport,%initmsg); /* send message to main task */

Wailt (0); /#% wait until child task deleted */
r else {

initmsg.code = OEAY:

initmsg. text = "Child tacsk okay"j

FutMsg (mainport,initmsg); /* send message to main task */

s

for (330 {
WaitFort (childport); /¥ wait tor meccage from main task */

childrcv = (struct OurMsg *) GetMsg(childport); /+ get message */

if ((childrcv->code) == CLEANUF) ¢
DeleteFort(childport); /% delete child task's mecssage port */

ReplyMsg(childrcv); /% reply to main task */
Wait(0); /* wait until child task deleted */
; elee

/% procese the mescsage here */

ReplyMsg(childrcv); /% reply the message to main task */

[

-

2eeder NMaoin taz! cOrc e8I

mainty
struct Tacsk #childtash: /+ pointer to child tasl ‘¢ control block
struct OurMsq *mainrcv; /% pointer to mecssaqe received by maln #/

static struct OurMsg hellomsq
]

= {
{ {NULL,NULL,NT_MESSAGE,O,NULL?Z, /% message.mn_Node */

NULL, /+% message.mn_ReplyFort #/
6 /* message.mn_Length #/

iy

OTHER, /% code #*/

"Hello child task” /% text #/

Yo

L]

s

static struct GurMsg finalmsg = <
£ {NULL,NULL,NT_MESSAGE,O,NULLZ, /* message.mn_Node #/

NULL, /% mecssage.mn_ReplyFort #*/
6 /% message.mn_Length #/

Yy

CLEANUF, /% code %/

"Ferform clean-up" /% text »/

/% create message port % child task #/
mainport = CreateFort(0,0); /% create message port for main task #/
i¥ (mainport == 0) {
printf("Failed to create main task’'s message port\n");
goto errorl;
childtask = CreateTask("child".(,childcode,CHILDSTACK)
if (childtask == () {
printf("Failed to create child task\n")j
goto errorl;
3 else {
printf("Child task created - waiting for message\n");
3
/¥ wait for initial mescsagre from child task #/
WaitFort(mainport); /% wait for message to arrive */
mainrcy = (struct OurMsg #) GetMsg(mainport);

printf("Message received from child task:\n Zs\n",mainrcv->text);

if ((mainrcv-:code) == ERROR)
goto errori;

/¥ cend a mescsage to child task #/

printf("Sending message to child task:\n %s\n" ,hellomsg. text);
hellomsg.mecscsage.mn_ReplyFort = mainport;
FutMeg(childport,%hellomsg); /* send message to child task */

WaitFort(mainport); /¥ wait for reply #/
GetMsg(mainport); /¥ get & ignore reply */

printf("Reply received\n");

/% send mecsa3e telling child taslk to prepare for deletion ».
print{f("Sending mescsage to child task:\n rexn”, finalmea. text):
finalmsg.message.mn_ReplyFort = mainport;
FutmMsg(childport,&finalmsg); /* send message to child task */

WaitFort (mainport); /% wait for reply #/
GetMsgq (mainport) /¥ get & ignore reply #/

printf ("Replv received\n");
/+ delete child task, clean up % exit #*/

errori:
DeleteTask (childtacsk); /+ delete child task %/

printf("Child task deleted\n");

erroris
DeleteFort (mainport); /+ delete our message port ¥/

errorl:
ex1t (0j3

/ersxxe3x3¥ End of Source file MULTITASE,C **¥Etkxesdss/

. ererdrrrnranrudrs Source file MAINFROL.C #¥dsstixsdtstare

Main procese for multi-procescing example
Ari1adne Scftware Ltc.
April 1984
FERERREFERERFREEERERRNERRERFHRERFRRERFRRRR RN NN RRR

/+%% System header files required ¥/
#include <exec/types.h:

#1nclude <exec/ports.h:

#include <exec/tasks.h:

#include <libraries/dos.h:

#define TCESIZE cizeof (struct Task!?

/%%% Our own definitions *%*/

#define CHILDFRIORITY Q /% priority for child process */
#define CHILDSTACE 4000 /¥ stack <ize for child process #/

struct OurMeg { struct Message message;
LONG code;
char ¥teuxt;

()
.0

#define OEAY O /% possible values for code field #*/
#define EFRROF
#define CLEANUF
#define OTHER

L RY -

/¥#% Exec Library routines used *#*x/

extern struct Message *WaitFort(),+*GetMsg();
extern VOID FutMsg();

/%%% Exec Support Library routines used ###/
extern struct MegFort *CreateFort();

extern VOID DeleteFort(),DeleteTack ()}

/#%% DOS Library routines used *¥%/

extern int LoadSeg();

extern struct MsgFort *CreateFroc();
extern VOID Delay(),UnLcadSeg();

*d2999 Maln procecc COOE *3Ped .
main ()
struct MsgqFort *mainport: /+ pointer to main process’'s reply port

cstruct MsgFort #dfltchildrort; /* pointer to child procesc’'s default port %/
struct MsgFort *ourchildport; /# pointer to child process s new port #/

int childseg; /% BCFL pointer to child’'e segment list #/
struct Task #*childtask; /% pointer to child’'s task control block #/
struct OurMsg *mainrcv; /% pointer to message received by main #*/

etatic struct OurMsg wakemsg = {
{ {INULL,NULL,NT_MESSAGE,O,NULL7Z, /+ message.mn_Node */

NULL, /% mecssage.mn_ReplyFort */
& /% message.mn_Length %/

sy

OEAY, /% code */

"Wake up'" /% text »/

e
]

static struct OurMeg hellomeg = {
{ {NULL,NULL,NT_MESSAGE,0O,NULL:, /* mecssage.mn_Node */

NULL, /% mescage.mn_ReplyFort #*/
6 /% message.mn_Length #*/

3y

OTHEF:, /% code %/

“Hello child process” /% text %/

I
static struct OurMsg finalmsg = {
{ {NULL,NULL,NT_MESSAGE, 0, NULLZ, /% message.mri_Node */

NULL, /% message.mn_ReplyFort #/
b6 /% message.mn_Length */

3y

CLEANUF, /¥ code %/

"Ferform clean-up” /% text »/

i

/% create mescage port */
mainport = CreateFort(0,0); /% create message port for main process #/

if (mainport == 0) {
printf("Failed to create main task’s message port\n");
goto errorlj;

/% load % create child process */
childseg = LoadSeg("childproc");

if (childseg == 0) {
printf("Failed to load childproc\n");
goto errorZj

dfltchildport = CreateFrcc("child",CHILDFRIORITY,childseq, CHILDSTACK)

if (dfltchildport == 0) {
printf("Failed to create child process\n");
goto errord;

> elese {
printf("Child process created\n");

b
J

childtashk = (etruct Task *) (((int) dfltchildport) - TCERSIZE);

/% cenc "wale-uc meccaae to child process § wait tor replv e
print4("Sencina mescage to child process:\n “e\n" ,wakemesqg. te:t)
walemsg.message.mn_ReplyFort = mainport;
FutMsg(dfltchildport,¥wakemsq); /% cend message to child process */
WaitFort (mainport); /% wait for reply %/

mainrcy = (struct OurMsg #) GetMsg(mainport); /# get reply #/

Delay (200); /*% delay for 4 seconds */

if ((mainrcv-rcode) == ERROR) {

printf("Reply received - error in child processin");
goto erroréd;

‘0

printf ("Reply received - child proceses okay\n");

/¥ find child procese’'s newly-created message port */

ourchildport = (struct MsgFort #) childtask->tc_UserData;

/% send "hello" mecsage to child process % wait for reply #/

printf ("Sending mescage to child process:\n Ze\n",hellomsg. text)

hellomsg.messaqe.mn_ReplyFort = mainport;

FutMesg(ourchildport,“hel lomeg) ; /¥ cend mescage to child process %/
WaitFort (mainport); /¥ wait for reply */
GetMsg (mainport) /¥ get % ignore reply %/

printf("Reply received\n");

Delay (200) /% delay for 4 seconds #/

/% send "clean-up" message to child process & wait for reply */
printf("Sending message to child process:\n Zs\n", finalmeg. text);

finalmsg.message.mn_ReplyFort = mainport;

FutMsg (ourchildport,&finalmesq); /¥ cend mecscsage to child process */
WaitFaort (mainport); /% wait for reply */
GetMsg(mainport); /# get % ignore reply */

printf("Reply received\n");

Delay (200); /¥ delay for 4 seconde */

' close dowr (halo procese, clean up & exnit *-

errord:
LeleteTac) (childtach); /¥ delete child procescs #*/

errari:

UnLcadSeg(childseg) ; /% unload the child process’'s code #/
errord:
DeleteFort (mainport); /+ delete our message port #/

errorl:
ex1t (0);

Y
4

/erexrnxr3¥ End of Source file MAINFROC.C ##aseaxains/

ivsrersnsranrd%s Source t1le CHILDFROC.C #2##aatstissssds

Chi1ld proceses for multi-processing example
Ariadre Software Ltd.
April 1966
ERERREEEPRARRFFRERF R RR RS F R R R NP R AR ERRREREERRRR R RN/

/#+% Cystem header files required #%¥/

#include <exec/types.h:

#include -exec/porte.h:

#include :exec/tasks.h:

#include < libraries/dos.h:
#include <libraries/dosextens.h:

/#%% Our own definitions *#%/

#define DOS_REV 29
#define INTUITION_REV 29

struct OurMsg { struct Message message;
LONG code;
char *text;

()
o

#define OKAY ¢ /% poscible values for code field »/
#define ERROR 1

#define CLEANUF 2

#define OTHER 3

/#%% Exec Library routines used ###/

extern ULONG OpenLibrary ();

extern struct Task #FindTask();

extern struct Message #WaitFort(),*GetMsg();
extern VOID ReplyMsg(),ClocelLibrary();

/*%% Exec Support Library routines used ###/
extern struct MsgFort *CreateFort();

extern VOID DeleteFort();

/#%¥ DOS Library routines used #¥#/

extern int Open(),Write();

e:xtern VOID Close();

/%%% Declaration of function defined below #*/

extern VOID WriteString();

/¥*% Global pointers to required libraries */

ULOKG SycsEacse; /% base address for Exec Library */
ULONG DOSEase; /¥ base address for DOS Library */

'33%943 (h1]ld procece code ###2%4/

main ()
struct Tash #childtask; /% pointer to child’s task control block */
struct Frocecse *childproc; /# pointer to child’'s process blochk */

etruct MsgFort *dfltchildport; /* pointer to child’'s default message port #/
struct MsgFort #ourchildport; /% pointer to child process’s new port #/

struct OurMsg *childrcv; /+ pointer to message received by child %/
int concole; /* AmigaD0S file handle for console */
ULONG *known /* the only known address'' #/

known = (ULONG +) 4;
SysBase = #known; /% obtain Exec Library base address #*/

/% wait for wake-up message from main process #*/
‘childtask = FindTask(0); /% find child’'s task control block #*/

childproc (struct Frocess #) childtask;
dfltchildport = (struct MsgFort #*) &(childproc-:pr_MsgFort);

WaitFort(dfltchildport); /¥ wait for meésagé from main pﬁocess */
childrcv = (struct OurMsg %) GetMsa(dfltchildport); /% get mecssage */
/* create message port % open console for child process’'s output #/

ourchildport = CreateFort(0,0); /# create message port for child procecse */

if (ourchildport == 0) {
childrcv->code = ERROR; /% reply error message to main process */
ReplyMsg(childrcv)
Wait(0); /* then wait for deletion #/

childtask->tc_UserData = (AFTR) ourchildport; /% point at port in TCR %/
DOSEase = OpenLibrary("dos.library",D0S_REV);

if (DOSRase == 0) {
DeleteFort (ourchildport); /% delete child’'s mescsage port #*/

childrcv-:code = ERROR; /% reply error mecssage to main process */
ReplyMeg (childrcv);
Wait(0)g /% then wait for deletion %/ '

‘0
J

console = Open("CON:10/10/320/80/Child process" ,MODE_NEWFILE)§

if (console ==) {
ClocelLibrary (DOSEase) ; /% close DOS library */
DeleteFort (ourchildport); /% delete child’'s message port */
childrcv->code = ERROR; /* reply error mescage to main process */
FeplyMeg(childrcv);
Hait (0); /% then wait for deletion %/

b3
4

WriteString(console, "Meccage received from main process:");
WriteStrina(conscle,childrcv-;text);

/% tell mein procescs we re olay */

Replyrsg(childrcv)

‘% walt for mecsaqes trom main procecsc 4o appropriate action #¢

for (33) 1
Wai1tFort (ourchildport); /# wait tor mecscage from maln process +/

childrcv = (struct OurMsg #) GetMsg(ourchildport); /#* get message */

WriteString(console, "Mecsage received {rom main process:");
WriteString(console,childrcv->text);

r

1f ((childrcv-:code) == CLEANUF) <

Close(console); /% close console for child process */

CloselL ibrary (DOSEace) 3 /% close DOS library #/

DeleteFort (ourchildport); /+ delete child's message port #*/

ReplyMeg (childrcv); /¥ reply to main process %/

Wait(0); /¥ wait until child procecss deleted */
; elee {

/* process other messages here #*/

ReplyMsg(childrcv); /% reply the message to main process #/

(o)

[

/% Write a null-terminated string to specified file */

VOID WriteString(file,string)
int file;
char #*string;

{

int length;
length = strlen(string);

Write(file,string, length);
Write(file,"\n",1);

returng

o
J

/¥k¥Eexxa3y End of Source file CHILDFROC.C *%¥x¥sxxx¥xs/

Amiga Libraries Page 66

Amiga Libraries

How to Call a Routine, Without Knowing Where It Is

"System architecture" illustration by Hugh Riley.

Amiga Libraries Page 67

Section 2 - Amiga Libraries

How to Call a Routine, Without Knowing Where It Is

When people leave behind machines like the 64 and come onto the
Amiga, they usually start by asking questions like "Where is the

screen RAM?" or "How do I poke the blitter?". Amiga initiates
smile in a superior manner and gives answers like '"That depends"
or "You musn't". The beginner then asks for a memory map, and

details of what addresses to call to invoke Intuition, Sound or
Graphics; the expert smiles in an even more irritating fashion
and explains that these questions too have no answer. It is the
objective of this part of the Kickstart Guide to explain this.

This section is hard work and doesn't have many jokes in it. The
whole question of how various aspects of the Amiga work together
as a "soft machine" is not easy to understand or to explain; we
found the only way to do it was to work through an example,
looking carefully at what gets resolved where. This section
therefore falls into two principal sections - a review of the
concept of "libraries", and a detailed worked example. Note that
the examples are based on USA Kickstart version 1.1 - I suppose
we ought to have done them all again on 1.2, but we simply
couldn't face it - besides which the principles involved haven't
changed between versions.

PART I PRINCIPLES OF LIBRARIES

The aspect of the Amiga which we are concerned with is known as
soft machine architecture. This is a common feature of
mainframes and mini-computers, and has been increasingly used in
microcomputers since the first 16 bit machines. A "hard" machine
architecture relies on absolute addresses, such as "To output a
character you need to JSR $FFD2". "Soft'" machine architecture
means that the system relies on absolute addresses like this as
little as possible. Instead, things are done in a more flexible
way, in which system routines and jump tables don't always have
the same addresses, but are instead put into memory wherever
there happens to be room for them, as and when they are needed.

There are two main advantages to this. The first is that it
leads to flexible and efficient memory utilisation, particularly
in a multi-tasking system, and/or a system in which virtual
memory techniques are likely to be used at some stage. The
second is that it is very useful when it comes to upward
compatibility - if there aren't any fixed addresses in the
system, then you can produce an "upgrade'" with everything in
different places, and still quite legitimately claim
compatibility. The main disadvantage is speed - if you can't
rely on absolute addresses, then you have to keep using various
forms of indirect addressing for everything, which is somewhat
slower. It is because so much is done via DMA channels by the
custom chips on the Amiga that you can get away with this.

Amiga Libraries Page 68

Libraries, libraries and libraries

The mechanisms used to achieve a soft architecture on the Amiga
are known as libraries. Unfortunately, this term is used in no
less than three different ways with three different meanings!
This is rather confusing, so it may be worth trying to clear up
at the outset.

1. The Amiga ROM kernel uses '"library" to mean a collection of
routines in ROM or loaded off disk, accessed via a jump
table attached to a "library" structure in RAM. The purpose
of this is to allow languages or application programs to
access different system functions in a controlled manner by
suitable indirect addressing, discussed later in this
section. Examples of libraries in this sense are the
graphics library, the layers library, Intuition, DOS, etc.
Very closely related to libraries are '"devices'" such as the
parallel device, the serial device, the narrator and the
clipboard, and "resources" such as '"disk" and "cia". We
shall refer to libraries in this context as '"run-time" or
"Exec" libraries.

2. The AmigaDOS linker uses '"scanned libraries" to find
standard definitions or routines used by the program being
created; routines from the library are included in the
output of the linker as necessary. Examples of scanned
libraries are lc.lib containing all the lattice standard C-
functions such as printf(), getc() etc, and amiga.lib,
containing the Amiga functions. The latter fall into three
categories - standard C functions, "kernel interface"
functions (also known as '"stubs'") which provide the
necessary intermediate code to invoke the run-time
libraries, and "support" functions, which provide labour-
saving routines to do things like creating message-ports.
We shall refer to these as '"scanned" or "linker" libraries.

3. The AmigaDOS technical reference manual also refers to
"resident libraries" - however this does not appear to mean
the same thing as the "run-time" libraries discussed above!
In fact, in this context, the term '"library" is a hang-on
from Tripos, and can mean any loadable program module. 1In
particular, "resident library" tends to be used to mean a
set of routines which are linked separately, and then loaded
and integrated with a controlling program at load-time
rather than link-time; this can be a useful thing to do when
developing long programs, as it reduces pressure on the
linker. However, this is not something we have tried
ourselves, and we will not be discussing it further.

(On the subject of sources of confusion, it may be worth
mentioning the word "hunk", which is also used to mean three
slightly different things in different contexts! We will tackle
this later.) '

Amiga Libraries Page 69

Amiga run-time libraries

The concept of a jump-table will be familiar to anyone who knows
the kernal on the Commodore 64 - it consists of a series of JMP
instructions (6 bytes each on the Amiga) providing system
routines with standard entry points which won't alter between
versions. The Intuition library, for example, starts with a very
large jump table, part of which may appear as follows:

00003D32 JMP $FEOF9C ;DrawImage
00003D38 JMP $FEOF88 ;DrawBorder
00003D3E JMP $FEOF72 ;DoubleClick
00003D44 JMP $FEOF66 ;DisplayBeep
00003D4A JMP $FEOF54 ;DisplayAlert
00003D50 JMP $FEOF46 ;CurrentTime

There are two points to note about this. The first is that the
JMP destinations are addresses in the ROM (or A1000 kickstart
memory) - the addresses given are correct for the USA 1.1
kickstart, but won't be the same for the European version, or for
1.2. Provided the routines are accessed via the jump table this
won't matter. The second point to note is that the jump table
itself is in RAM; however, the crucial difference between this
and the 64 is that these addresses are not constant - the system
will have put the Intuition jump-table wherever it happened to
find room for it, so you can't on future occasions just JSR
$00003D44 and expect to get a display beep!

What does remain constant is the order of entries in the jump
table. 1In fact, libaries are constructed so that the jump
instructions build downwards in memory from a "library base
address":

offsets

-114 JMP $FEOF9C ;DrawImage

-108 JMP $FEOF88 ;DrawBorder

-102 JMP $FEOF72 ;DoubleClick

-96 JMP $FEOF66 ;DisplayBeep

-90 JMP $FEOF54 ;DisplayAlert

-84 JMP $FEOF46 ;CurrentTime
(other jump table entries)

-24 JMP $FD545A ; EXTFUNC

-18 JMP $FD545E ; EXPUNGE

-12 JMP $FD545E ;CLOSE

-6 JMP $FD5454 ;OPEN

0 ; library base address

Thus if we know the library base address, we can get the jump
table entry we want by indirect addressing with a suitable
displacement. For example, if we have the Intuition library base
address in A6, then we can call DisplayBeep by

Amiga Libraries Page 71

In assembler, you load Al with a pointer to the name and DO with the
version number then invoke OpenLibrary as explained below; LibPtr
is returned in DO.

OpenLibrary causes the Exec library manager to search its library
list for a library with the name given, with version number
greater than or equal to the one specified (so if you don't care,
set Version = 0). If the library is found in memory, Exec

calls a standard function OPEN in the library in question
allowing it to take note of the fact that someone (else) wants to
use it, then returns the library base address to the calling
program, which then has all the information it needs to access
the library. If the library is not currently in the library
list, then Exec asks AmigaDOS to look for a file <LibName> in
directory LIBS: (usually SYS:LIBS). If found this is scatter-
loaded by AmigaDOS and linked into the library list; its OPEN
routine is called and its base address returned. If both of
these fail - i.e. the library asked for can't be found in memory
or on disk - then Exec returns zero; it is up to the calling
program to pick this up and do something about it, such as giving

up.

This is all very well - you don't know where the libraries are
but there's an Exec routine called Openlerary which tells you -
but how do you call OpenLibrary if you don't know where it is?
The answer is that Exec itself is organised as a llbrary, SO you
call OpenLibrary via the Exec jump table, using a suitable offset
from the Exec base address. To find the Exec base address, you
look in the ONLY absolute software memory location on the Amiga
(apart from the processor exception vectors), which is as
follows:

- ————————————————————————————

Complete Amiga memory map revealed!

(68000 experts will recognise that this is the same as the
processor reset inital PC. However this is only needed during
reset while there is a boot ROM switched in at the bottom of
memory; after this it is free for use as AbsExecBase.)

Amiga Libraries Page 72

Using system libraries

If you are using assembler, the process of using a library
routine is as follows:

1. At start-up, you need to pick up the pointer to the Exec
library base address at 4, and remember it as SysBase. This
will be done for you if you link with a standard start-up
module.

2. Before you use a library, you need to open it by

move.1l SysBase,A6

move.l <name pointer>,bAl
move.1l <version>,DO

jsr LVOOpenlerary(AG)
move.1l DO,<library pointer>

3. To access a particular routine - say DisplayBeep in the
Intuition library - you then proceed as follows

xref _LVODisplayBeep
move.l IntuitionBase, A6
jsr _LVODisplayBeep(A6)

These operations can be performed by using a macro
LINKLIB _LVODisplayBeep, IntuitionBase
which also pushes and pulls the previous contents of A6.
4. When you have finished with a library, you should close it,
to allow, for example, memory occupied by a disk-loaded

library to be reclaimed if it's wanted for something else.
This is handled by an Exec routine CloseLibrary(LibPtr):

move.l SysBase, A6
move.l <library pointer>, Al
jsr _LVOCloseLibrary(A6)

The offsets _LVOOpenLibrary and LVOCloselerary can be declared
external, or obtained by including exec. 1ib.i in the assembly.

From C, the process is very similar, except that you don't have
to worry explicitly about the jump-table offsets, since these are
got right by calling kernel interface functions (known as 'stub
functions") from the linker library.

1. In order to call Exec, you need to have a pointer SysBase
obtained by reading location 4 - if you link with
a standard startup like c.o, this will have been done for
you, as will opening the DOS library and setting up a
pointer DOSBase. (Note two errors in early versions of the
ROM Kernel Manual on this score - the actual Exec library
base address is known as SysBase not ExecBase, and the DOS

Amiga Libraries Page 73

library base address is known as DOSBase not DosBase.)
2. In order to use Intuition, open the library by

IntuitionBase = (struct IntuitionBase *)
OpenLibrary("intuition.library",29);

(Here we are using version number 29 which will open any
Intuition revision from release 1.1 onwards - if you want to
ensure you are running on 1.2, use version number 33.)

IntuitionBase is a global variable declared
struct IntuitionBase *IntuitionBase;

This form declares a pointer IntuitionBase to a structure
also called IntuitionBase - if you don't like this, and
aren't interested in the structure but just want to access
the library, then you can use

APTR IntuitionBase;

(When you link using amiga.lib, the linker will look for a
global variable of this name from which to pick up the
library base address, so you have to call it
"IntuitionBase", and not "fred" or something.)

3. Having opened the library, you can then call intuition
functions by name, eg

DisplayBeep(0);

This causes a stub routine from amiga.lib to be included in
the link, which sorts out registers as necessary (getting
the zero into A0 in this case), picks up the library base
address from IntuitionBase, then does the indirect call with
the right offset.

4. When you have finished with Intuition, you close the library
by

CloseLibrary(IntuitionBase);

The use of libraries from other languages varies in detail but
tends to be similar in principle; for example in BASIC the
command LIBRARY handles both opening the library and picking up
information about function offsets and register usage from an
appropriate file .bmap.

Amiga Libraries Page 74

Register conventions

Amiga convention dictates that A6 should always be used to
contain the base address of the library being called - note that
you must ensure this, as the libraries may rely on it internally.
DO, D1, A0 and Al are scratch registers which are not preserved
across library calls; these are also the principal registers used
to pass values or pointers to the library routines, and to return
results to the calling routine. Other registers should all be
preserved across library calls.

(Some exceptions to this were discovered in version 1.1, in that
some Intuition and graphics routines tended to destroy D6 and D7
- this could cause things that had been declared as register
variables in Lattice C to be lost across library calls, which was
a nuisance. Some interesting debate followed on the networks as
to whether or not the library routines should in fact preserve
all except the scratch registers, since pushing and pulling
registers all the time can have a severe effect as regards
performance. To our minds, this is an interesting question, but
irrelevant to the main point, which is that if the documentation
says the registers are preserved, then the registers should be
preserved - this is fixed in version 1.2.)

Note also that this mechanism of communication using registers is
designed for maximum efficiency when using assembler to call low
level ROM kernel routines, also written in assembler. However,
it is not particularly efficient for C, which passes values to
functions by pushing them onto the stack before calling the
function. This means that the amiga.lib link library stub
functions have to read the appropriate values off the stack and
put them into the right registers before invoking the run-time
library; if the run-time library was itself written in C, the
first thing it does is to push these registers back on the stack
again, in order to set things up correctly to invoke a C
function! While this is unfortunate, it is probably the best
that could have been done given the requirement of a consistent
interface to the kernel routines - it is obviously necessary that
assembler calls to time-critical bottom-level routines should be
as efficient as possible, even if this leads to some overhead
when using higher-level aspects of the system. The only other
alternative would have been to write the whole thing in assembler
- this would have resulted in a typical assembler system, which
is fast, efficient, streamlined, sexy, and not quite finished
yet, sorry.

Amiga Libraries Page 75

Library structure

The full structure of an Amiga run-time library is as follows:

JMP <routine n> ; jump vectors
; - library-specific routines

JMP <routine 4>
JMP <routine 3>
JMP <routine 2>
JMP <routine 1>

JMP EXTFUNC ;reserved vectors
JMP EXPUNGE ; - standard routines for all libs
JMP CLOSE
JMP OPEN
Library: Library node: pointer to next lib in list
base pointer to previous lib in list
address node type O

node priority O
pointer to library name
Flags byte
Padding byte
NegSize - size jump vectors in bytes (2 bytes)
PosSize - size of data area in bytes (2 bytes)
Library version number (2 bytes)
Library revision number (2 bytes)
Pointer to Id string, or zero
Library checksum (4 bytes)
OpenCnt - library open count (2 bytes)

Data area follows
Meanings of the different library elements are as follows:

Jump vectors Used to access the library routines by suitable
indirect addressing with negative displacement from the library
base address, as explained above. See the ROM kernel manual
volume 2 for full descriptions and register conventions for
specific routines from specific libraries (V1.1), and/or see the
1.2 auto-docs. Jump vectors point either into ROM or kickstart
memory (ROM libraries), or to wherever AmigaDOS happened to
scatter-load the library routines (disk libraries).

Reserved vectors All libraries have to contain at least the
following functions:

OPEN - Called when some task is going to OpenLibrary()
this library. Should increment OpenCnt indicating
that another task has this library open.

Amiga Libraries Page 76

CLOSE - Called when some task has called CloseLibrary()
for this library. Should decrement OpenCnt and do
a "delayed expunge'" (see below) if necessary.

EXPUNGE - Frees up memory allocated for this library,
including the library node itself,
and areas reserved by AmigaDOS for disk-loaded
library functions.

EXTFUNC - Spare, reserved.

Note that after a library has been linked into Exec's library
list, it will usually hang around in memory in case it is needed
again, even if no task currently has it open. Libraries can be
got rid of by calling RemLibrary() - when this happens the
EXPUNGE routine is called for the library, allowing it to de-
allocate resources such as memory. EXPUNGE checks OpenCnt; if
this is zero, the expunge takes place immediately; otherwise a
"delayed expunge'" is flagged, and will take place as soon as
OpenCnt becomes zero. Note that the Exec memory management
routines will automatically RemLibrary all libraries with an
OpenCnt of zero if they find they are running low of memory; thus
a simple way of getting rid of all libraries that are not
currently needed is to AllocMem more memory than can possibly be
in the system!

Library node Links the library into Exec's library list. Also
contains a pointer to the library name, used by OpenLibrary().

Flags Bit 3 of this byte is used to flag a "delayed expunge",
explained above. Other bits are concerned with a checksum
facility which exists to allow you to check library integrity -
has some other task somewhere blown up and jumped all over this
library?

bit 0 flags checksum in process
bit 1 flags one or more code vectors have been changed
bit 2 tells system to panic by issuing an alert (guru

meditation) if checksum fails.

NegSize & PosSize The size in bytes of the jump table and data
area respectively.

Version & Revision Version is the version number used by
OpenLibrary(). Revision allows different revisions of the same
version to be distinguished; this is not used by the system.

Idstring Zero, or a pointer to an "id string" for this library -
eg 1.1 Exec had id string "exec 31.34 (23 Nov 1985)".

Sum Library checksum.

OpenCnt How many tasks currently have this library open.

Amiga Libraries Page 77

Data area A data area follows the Library structure; this can be
used for work-space by the ROM libraries. It is particularly
useful for variables that you might want to access from routines
outside the library; this can be done using positive offsets from
the library base address. For example, the Intuition data area
starts with ViewLord - a View (graphics primitive) structure
describing the current screen display - followed by a pointer to
the currently active window, a pointer to the currently active
screen, and a pointer to the start of a linked list of all
current screens. Remember to Forbid() task-switching if you are
going to access these lists directly!

Library facilities

Exec contains a number of functions documented in ROM kernel
manual volume 1, allowing you to manipulate libraries. A
summary of these is as follows:

AddLibrary(libPtr) - adds a new library to the system library
list.

RemLibrary(libPtr) - removes library from the system library
list, or flags a "delayed expunge'.

MakeLibrary(parameter list) - a convenient way of constructing a
new library. Handles creation of library node, calculation of
checksum etc. Usually followed by a call to AddLibrary().

SetFunction(Library, FuncOffset, FuncEntry) - allows function
with negative offset "FuncOffset" in library "Library" to -be
changed to point to "FuncEntry". Recalculates library checksum.

SumLibrary(library) - computes a new checksum and compares with
the old one. If these values are different, and the library is
not flagged as having been altered, then the system gives a guru
alert; this is one way the system can realise that memory has
been corrupted due to an "exploding" task.

System libraries

A list of libraries in the current system library list can be
obtained by invoking OldWack then typing "libraries'". These are
as follows.

ROM libraries

The following libraries are in ROM (loaded from the Kickstart
disk into protected memory on the A1000), and the appropriate
library structures initialised in RAM during boot-up.

Amiga Libraries Page 78

Exec - routines for linked list manipulation, task control,
messages and ports, i/o handling, interrupt management, memory
management, library, device and resource management. Also
contains "processor control" functions to get condition codes,
get/set processor status register, enter supervisor state or
enter user state in a way which will work on processor upgrades
(68010, 68020) - these are well worth using!

CLIST - This library was present in ROM version 1.1, but was
dropped from 1.2, partly for lack of space, but also because no-
one was using it. It contained Amiga string-handling, which
worked using linked lists (like everything else on Amiga) - CList
stands for '"character list". Allowed you to initialise a block
of memory for use as a '"clist pool", then perform various string
operations on clists within this pool, such as getting/putting
bytes or words to start/end of list, converting clists to/from
continuous data (such as null-terminated C strings), and
performing concatenation, string-chopping, length and index
operations. However, this library was roundly ignored by Lattice
(and everyone else), on the grounds that they already had their
own perfectly satisfactory string-handling routines, thank you.

GRAPHICS - Amiga graphics library, handling Views and Viewports
(screen display primitives), RastPorts (drawing primitives),
BitMaps (graphics data areas), GELS (graphics elements)
consisting of SSprites (Simple Sprites), Vsprites (Virtual
Sprites) and Bobs (blitter objects), Animobs (animation objects),
text and fonts. Contains routines to control all the graphics
facilities of the custom chips, including colour registers, the
copper and the blitter, but allows you to take over for lower-
level access if you ask nicely; '"legal" access to these
facilities should go by way of the graphics library.

LAYERS - Routines that work in conjunction with the graphics
library, to allow a bitmap to be treated as a number of
overlapping layers for window management. Handles manipulating a
"damage list" of obscured regions for "dumb" refresh, buffering
off obscured regions and rendering (drawing) into obscured
regions for "smart" refresh, looking after '"super-bitmaps", re-
arranging and re-sizing layers, plus locking and unlocking layers
as necessary to avoid contention problems.

INTUITION - Routines built on top of the graphics library, the
layers library and the console device to provide a standard user-
interface for different application programs. Handles screens,
windows and borders, mouse and pointers, pull-down menus,
gadgets, requestors, preferences, and I/0 using the IDCMP
(Intuition Direct Communications Message Port); also provides
some convenience routines for "easy'" memory management, graphics
and text.

MATHFFP - Motorola fast (single precision) floating point
routines for absolute value, testing against zero, comparison,
addition subtraction multiplication and division, conversion
to/from integer, negation.

Amiga Libraries Page 79

DOS - AmigaDOS functions Open, Close, Read, Write, Protect etc -
disk i/o and process control.

RAM-LIB - Ram handling for RAM-disk. Not accessible from C.

EXPANSION Routines invoked as part of the Amiga boot process, to
handle external expansion on the A1000 or A500, or 'Amiga-side'
expansion cards on the A2000. Handles interrogation of expansion
cards to find out what they are, linking expansion memory into
the Exec free-memory list, allocating memory etc to other
expansion cards, giving them a change to initialise, etc.

Disk libraries

The following libraries may or may not be found if you use
"libraries" in OldWack, since they live in LIBS: and are loaded
by AmigaDOS as needed.

ICON - routines used by the Workbench to allocate/deallocate
memory for Workbench objects (project, tool, drawer or whatever),
to get/put Workbench objects and icons to/from .info files on
disk, plus routines to deal with standard tool types, and updates
to filenames ('"copy of fred", "copy 2 of fred" etc).

MATHTRANS - routines for transcendental mathematical functions on
fast floating point numbers - sin, cos, sin & cos, tan, arcsin,
arccos, arctan, sinh, cosh, tanh, exp, 1ln, log, power, square
root, plus routines to convert between fast floating point
format, and IEEE standard double-precision floating point.

MATHIEEEDOUBBAS IEEE standard double precision basic floating
point routines for same functions as MATHFFP routines. May be
adapted to run with optional 68010/68020 floating-point co-
processor in future.

TRANSLATOR Contains a single routine Translate() to convert
English language to a phonetic string.

DISKFONT Contains two routines, to build an array of all fonts
available in memory or on disk, and to load a font into memory
from disk if necessary.

This completes a list of all the libraries admitted to in the
Amiga documentation. Two further libraries can be found in the
workbench SYS:LIBS directory, VERSION and INFO; the former
contains a Workbench version number used by Workbench and DOS
'"VERSION' commands and not a lot else, while the latter is used
by Workbench to perform the INFO function from the "Workbench"
menu.

Amiga Libraries Page 80

Devices and resources

"Devices" and "resources" are two further Amiga concepts, both
built on the library structure.

A "device" is a library with standard jump-table entry points
used by Exec routines like DoIO(); these provide standard
(physical device independent) IO functions such as reset, read,
write, update and clear. Like libraries, devices can be resident
or disk-loaded; standard resident devices are Timer, TrackDisk,
Keyboard, Gameport, Input, Console and Audio; devices loaded from
directory DEVS: (usually SYS:DEVS) are Narrator, Serial,
Parallel, Printer and Clipboard. Devices in general, and the
console device in particular, will be considered in detail in the
next section.

A 'resource" is a library WITHOUT the standard entry points

- this is because resources are very closely tied to the Amiga
hardware, and cannot be made to go away. Bits of hardware looked
after by '"resource" software are the four disk units, the two
CIAs, the POTGO register (used to initiate a potentiometer read
for joysticks etc), and "misc" - the serial and parallel port
register bits. The function of the associated resource routines
is to handle contention by granting or forbidding different tasks
exclusive access to these bits of hardware. Usually this is
handled for you by higher-level system software; however if you
want to access this hardware directly, you can do it safely by
opening the resource, then calling the appropriate routine - eg
AllocUnit to allocate a disk unit. Note that the blitter is NOT
considered a resource - though there was once discussion that
perhaps it should be - but is looked after by routines like
OwnBlit() from the Graphics library.

Linker scanned libraries

The Amiga linker scanned libraries consist of a concatenation of
"hunks" each containing definitions of things like library
offsets, or named routines which can be incorporated in the final
disk-loaded program file if needed. The same file amiga.lib is
used for both assembler and C programs, though a lot of the
functions in it are only needed from C. Other languages may or
may not use the same file.

As mentioned above, there are two principal scanned libraries
used from C, lc.lib containing lattice standard functions, and
amiga.lib containing the Amiga functions. Generally speaking,
you need to link with both; if you are using Lattice 3.03 put
lc.1lib first if you are linking with LStartUp.obj, and amiga.lib
first if you are using AStartUp.obj. Lattice 3.1 has a new
Lattice startup c.o and doesn't support AStartUp.obj (shame!), so
you have to put lc.lib first. 1In 3.1, the floating point maths
functions have also been separated into different libraries; if
you are using floating point maths, you have to put one of these
before lc.lib. 1In this case, you have to decide which floating

Amiga Libraries Page 81

point routines you want to use - standard Lattice maths functions
from the linker library, fast floating point routines from ROM,
or IEEEDoubBas from the LIBS: directory - then use the
appropriate file lcm.lib, lcmffp.lib or lcmieee.lib. If you
decide to use the fast floating point ROM routines, then you also
have to tell the compiler to use FFP data format - this is done
by setting the -f flag in LC1.

In addition to definitions like library offsets and current
hardware memory locations, amiga.lib contains functions which can
be divided into the following categories:

Kernel interface

"Stub" routines to sort out registers and call the specified run-
time library routines; these routines expect the library in
question to have been opened, and its base address put into an
appropriate global variable GfxBase, IntuitionBase, DOSBase, etc.
Interface routines are available for all run-time libraries
except EXPANSION, RAMLIB, VERSION and INFO. Maths interface
routines are supposed to handle conversion between C floating
point number representation and Motorola fast floating point or
IEEE double precision as necessary - this used to be tricky, but
is got right by the new Lattice maths linker libraries.

Kernel support

There are two "linker only" sub-libraries within amiga.lib,
providing support functions as follows:

EXEC SUPPORT Routines to handle initialising list headers,
creating or deleting tasks, message ports, standard IO request
blocks, extended IO request blocks. Ensures that this is done in
a legal manner, and saves you the trouble of writing these
functions yourself.

MATHLINK LIB Routines to convert fast floating point number
representation to ASCII strings, "dual binary" format, or BCD;
also a routine to round floating point strings. Note that the
first of these was bugged and blew up on release 1.1 - it seems a
bit dodgy on 1.2 as well, so it's probably safer to use the
equivalent Lattice functions from lcmffp.lib.

Standard functions

Amiga.lib also contains the Amiga versions of some standard C
functions - such as a limited (and much shorter than usual)
version of printf() that makes use of Exec ROM functions. These
will be used instead of the Lattice functions if amiga.lib is
linked in front of lc.lib - but note that this doesn't work using
Lattice 3.1, which is a pity.

Amiga Libraries Page 82

Other linker libraries

There is an additional linker library file "debug.lib". This
contains routines to handle formatting debug data according to C
conventions - actually stub routines to undocumented entry points
in Exec - and putting/getting debug information to/from a 9600
baud terminal attached to the Amiga serial port. Debugging

techniques using the serial port will be looked at in detail
later.

If you want to, you can also create your own linker libraries by
concatenating object files. This is discussed in more detail
below.

Amiga Libraries Page 83

PART II - LINKING AND LOADING WITH AMIGADOS

To gain a further insight into how the C compiler (or other
language), the linker, the relocating scatter-loader and the run-
time libraries work together to produce a "soft machine", it is
convenient to have a look at a real example, and consider what
gets resolved where. An overview of this process is as follows.

1. For each module you compile (or assemble), the compiler (or
assembler) converts your source code as far as possible into
68000 code, and resolves references to symbols defined
within the same file (eg local variables), or whatever
include files (.h or .i) you are using. The object file
produced contains no absolute addresses; all references to
internal symbols are stored as offsets. References to
external symbols - ie symbols defined in other modules or in
the linker libraries - are not resolved by the compiler or
assembler; instead the name of the symbol to be referenced
is output to the object file. Also output to the object
file are the offsets corresponding to any symbols defined in
this file that might be needed externally - for C these are
the names of global variables and all functions not declared
as '"static".

2. The linker then joins together the object files for your
different modules, together with whatever routines from the
scanned libraries may be needed. This results in a '"load
file" containing no external references, but still with no
absolute addresses - everything is given as offsets within
different "hunks" in the load file.

3. AmigaDOS scatter-loads the load file; it first decides where
in memory to put the various hunks, then loads thenm,
converting hunk offsets to absolute addresses where
necessary.

4. The program then is run from the start of the first hunk
loaded - this will be the first module linked, which must
therefore be some sort of startup module. As the code runs
it will use various system libraries - it will open these
and find out where they are as needed, as explained above.

Hunks, hunks and hunks

Before looking at this in more detail using a specific example,
we need to sort out a couple of terms from AmigaDOS - "hunks" and
"BPTRS". Like the word "library", the word "hunk" is used in
three different contexts to mean slightly different things.

These are as follows:

1. The output of the compiler is referred to as a "program
unit". The program unit starts with a header giving the
name of the unit - for Lattice 3.03 this is the same as the
name of the .q file (quad file) which is the intermediate

Amiga Libraries Page 84

file between LC1 and LC2 - eg "wombat.q" - while for 3.1 it
is the name of the .o file (object file). Following this
are three "hunks" containing code (CODE), initialised data
(DATA) and uninitialised data (BSS or Base of Stack Segment
- this need have nothing at all to do with stacks and is a
silly name from Unix). "Hunks" in this context are known to
Lattice as '"segments", and described as 'P' (program), 'D'
(data) and 'U' (uninitialised) - the size of each of these
is given on termination by LC2. We shall call these hunks.

2. Each hunk can be divided into sub-units properly called
"blocks", but sometimes also called hunks in order to
confuse you. For example, a relocatable CODE hunk may start
with a block of type "hunk code" (confused yet?) containing
the code itself, followed by blocks such as "hunk reloc32"
containing relocatlon information, followed by a block
"hunk_ext" containing information about external symbols
used by this hunk and global symbols defined within thlS
hunk. Other blocks which may be present are "hunk name"
containing a hunk-name such as "text", "hunk symbol"
containing information about symbols whlch are to be passed
onto the load file for use by a symbolic debugger like Wack
or Metascope; and "hunk_debug" containing additional debug
information like source-code line numbers. We shall refer
to these as '"blocks" - the idea of calling them "hunkettes"
was considered, but regretfully rejected.

3. The output of the linker - the AmigaDOS "load" file - is
also organised in hunks. These are very similar to "hunks"
in sense 1, though with references to external symbols
resolved. However, if two or more hunks have the same
hunk name, they are combined by the linker to form a '"super-
hunk™ (our termlno;ogy), which is treated as a single unit
by the loader; this is useful for things like named COMMON
blocks in FORTRAN, or for data which is going to be accessed
in certain ways like "base relative" addressing. This tends
to happen to kernel-interface link library stub hunks, as
all functions in the same library have the same hunk_name in
amiga.lib. We shall refer to these as '"super-hunks"

AmigaDOS BPTRs

A further bit of background needed to understand AmigaDOS is the
data-type BPTR. AmigaDOS is written in BCPL; this is an ancestor
of C which only supports one data type, which is a 4-byte
address, or longword. A BPTR is a machine address expressed in
longwords - i.e. it is the actual address divided by 4. This
means that when moving between AmigaDOS and other aspects of the
system, you have to keep shifting left or right by two to
multiply or divide by four, in order to convert between BPTRs and
ordinary machine addresses (APTRs) used by the rest of the
system. This is a nuisance.

Source ti1le CURSTART.LU

Object file OURSTART.S

MU O: CODE
hudis 1 DATA
HUNE. 21 BES

<

Sowrce tiie

BEEFLC

i

[

TomEllar

!

Object

file BEER.O

UM 0:
LRI
MUk 2

o

.
2

CJbE
DATH
B35

inker

=

Linker library file AMIGA.LIE

/

Frogram file BEEF

FiUNE
HUNE
HUMI
HUNE.
HURE
FiLYME.
HUNE
FHLINE
HUNE:

JOUNE SR

RS S & S

*% a2i ®n we ae &% ae = am

[a]

Figure 1

A} 2

I~ N~
W

Amiga Libraries Page 86

Now the example

In order to keep things as simple as possible, we will consider
linking a minimal Intuition "screen beep" program (discussed in
the "Getting started in C" section of this book) with a minimum
startup module, providing the bare minimum needed to get a
program started from the CLI.

The screen-beep program BEEP.C is listed at the top of figure 4;
it attempts to open the Intuition run-time library, and if
successful it beeps the screen 6 times, with a small delay
between each obtained by calling the DOS Delay() function. It
then closes Intuition and exits.

The minimum startup module OURSTART.C is listed at the top of
figure 2. It picks up SysBase by looking in location 4, then
opens the DOS library and sets up DOSBase - the example ignores
the possibility that this might fail, though there's nothing it
could do except give an alert if it did! It then calls main(),
then closes the DOS library and exits.

(Of course, the standard startup modules do rather more than
this, including remembering the entry stack level for use by the
Exit() function, worrying about whether they were started from
CLI or Workbench, and setting up vectors _stdin, _stdout and
_stderr for use by the C standard functions, either by scanning a
CLI command line or by waiting for messages from Workbench.
Lattice startups like c.o do even more, including setting up
locations used for stack-checking, and opening a window for stdin
and stdout if necessary. Since we aren't using any C standard
functions, aren't using Exit() and are only going to run from the
CLI, we needn't bother with any of this.)

An overview of the process of compiling, linking then loading
this example is shown in figure 1. Source files ourstart.c and
beep.c are first of all compiled using LC1l and LC2, going through
intermediate quad files ourstart.q and beep.q, and ending up with
object files ourstart.o and beep.o. Each object file starts with
a program unit header block, giving program unit names ourstart.q
and beep.q (we were using Lattice 3.03), following by three hunks
each containing code, initialised data, and uninitialised data
(BSs). These hunks are identified by the type of one of the
blocks in them, which is hunk code, hunk data, or hunk bss, and
numbered implicitly by the order they appear in the file. Note
that Lattice always produces one hunk of each type, even if this
results in "null hunks" having to be linked into the segment list
at load time; however, these will be stripped out if you link
using Blink.

Ourstart.o and beep.o are then linked, together with linker
library file amiga.lib. This produces a program file beep
consisting of a header followed by nine hunks - these are code,
data and bss from main.o, code data and bss from beep.o, a code
hunk from amiga.lib containing the Delay stub code for the DOS
run-time library, a "super hunk" containing the _CloseLibrary and

Amiga Libraries Page 87

_OpenLibrary stub code to the Exec run-time library, and a hunk
containing the DisplayBeep stub code to the Intuition run-time
library.

The program file is then loaded by AmigaDOS LoadSeg(), which can
be invoked in various ways, the simplest of which is typing the
program name ''beep" at the CLI. This performs '"scatter loading"
by putting each hunk wherever there happens to be room in memory;
as this is done any absolute memory references within the hunks
are fixed up appropriately, as are all references from one hunk
to another. The hunks are linked together in memory as an
AmigaDOS segment list.

Finally the program is run, either as part of the process which
invoked it by means of a JSR to the start of the segment list, as
an AmigaDOS CLI "co-process" (see Section IV on AmigaDOS), or by
being kicked off as a new process using AmigaDOS CreateProc().

Compiling the example

The process of compiling ourstart.c is illustrated in figure 2.
The listing of ourstart.o given is based on the output of the
Lattice Object Module Disassembler (OMD); this performs some
integration of the blocks within each hunk to produce a more
readable output.

Note that in this example, the DATA hunk contains just the null-
terminated text-string "dos.library", while the BSS section
contains room for two entries _SysBase and _DOSBase (the labels
generated by the compiler are the same as the labels in the
source code, with an underscore in front).

The CODE hunk generated by this example first loads A0 with 4,
then moves whatever is pointed at by A0 to location 02.0000 -
this means hunk 2 offset zero, which is where we are going to
store _SysBase. It then pushes zero (library version number) and
the address of hunk 1 offset zero (library name) to the stack -
this is how Lattice passes values between functions - and calls
an external routine OpenLibrary. It then cleans up the stack,
moves the contents of DO to hunk 2 offset 4 (_DOSBase), then
calls external routine main. When this returns, it pushes hunk
2 offset 4 (_DOSBase) to the stack, calls external routine
_CloseLibrary, cleans up the stack again, and exits.

A more detailed look at the start of ourstart.o is given in
figure 3; this is obtained by annotating the output of the
general purpose ObjDump utility, and shows details of exactly how
somethlng like "now I want to call a routine called main but I
don't know where it is yet'" is represented. The file starts with
a program unit header block - this starts off with a block
identifier "hunk unit", followed by the length of the name in
longwords, followed by the name "ourstart.q" padded with nulls as
necessary. This is followed by hunk 0, which contains CODE.

Amiga Libraries

Page 88

Source file OURESTART.C

#include <exec/tyres.h:
#define ENOWN_ADDRESS 4

extern AFTR Openlibrary();
stern VOID Closelibraryti;

AFTR SysBase;
AFTR DOSEase;

i®
/%

i*

/#

Ourstart ()

{
SysBase = #({AFTR *) EHNOWN_ADDRESS)
DOSBase = OpenLibrary("doc.library",d);
main ()3 _
CloselLibrary (LOSBase)

& only

ti1xed address in Amiga' #/

pointer to EXEC library +#/
pointer to DOS library #/

sort out sysbase */
/+ open DOS library */
/# check for failure
% explode 1f necessary #*/
do whatever #/

G:Mf .

lec

\4

Object file OURSTART.O

HUNE O3

00, 0G0
00, DDA
00, QU
00, QOOE
Q0,014
OO, 001A
00, 0010
00,0022
00, 002E
OO, OOZE
OO, Ou3d
00, 0078

_Uurstart

CODE - length GE longwords =

MOVEA. L

MOVE. L
CLR.L
FEA
ISR
ADDG. L
MOVE. L
J5R
MOVE.L
ISR
ADDE. L
RTS

8 bytes
(AO),QE,QQQQ
= (A7)

C1.0a00
_OpenLibrary
#9,A7
DG, 02, 0004
_main

Q2. 0004, - (A7)
_Cioselabrary
#4, A7

HUNE 1: DRTA - length 33 longwords = QL bytes
01, QGG "dos. library”
fuEk 2 BLS 0 - length O longwords = OB bytes

Amiga Libraries

Page 89

Object file QURETART.D

Q000
3004 :
Q003

FROGRAM UNIT HEADER BLGCE

QGOOOOLE7

EF7STE7ETA61T72742e7 10000

hurik _unit
wrilt nam2 1€ I lonqwords
ourstart.q

0014:
0018:
D01C:
00%2:
00203
002A:
0030:

0O03E:
0044,
QUA:

0050

QO7C:
00g0:
001
0034
(SO TAH
0094
0098:
Q0399
Q0I9C:
OCAR4:
QDAB:
QOAC:
OGRDs
QORO:

OOCD:
00C4:
ooca:
QOCYs
3OCCe
ach8:
OGDC:

QUED:

UG 4

HUME. O: CODE

OO, 0000
00, 0006
00, 000C
00, QUOE
00,0014
00,0018
00, 001C
00, 0022
00, 0025
00, Q0ZE
00,0074
00,0036

2I00 SOix
42n7
4379
4EES
S0O8F
PRI
4ERY OO
2F 39
4ERY
S8EF
4E7S

OOO00EED

S374517274000000)

O 375

hunk _code
OE longuords of code

FOYEA.L #00000004, AO
MOVE.L (AQ) , OZ. D000
CLR.L -(~7)

FE& 01,0000

J3k _OpenLibrary
ADDE.L #8,A7

MOGVE.L DO,02,0004
J5R _main

MOVE.L 02,0004, - (A7)
JSK _CloseLibrary
ADDW.L #4,A7

kTS

hunk_reloc3Zz

1 retference to hunk 1

at of+set 0010 1n this bunk

I references to hunk Z

at oftsets 002A, O01E and 0GO8
no more references

hunk_ext

ext _retlZ

I lengwords of
_openl.ibrary

1 reterence

at offset 0016

symbol name

in this hunk

ext_retiZ
2 longwords of symbol nane

_naln

1 reterence

at offcet 0024
ext_retil

4 lengwords of
_CloselLibrary

in this bhunk

csymbol riame

1 reterence

at oftecet 000 1n
ext_cef

I longwerds of
_OurStartc

at offeet 0000 in this hunk
no more externals

this hunk

symbol name

hunk _end

bk _ =Nl

]
]

Figqure 3

Amiga Libraries Page 90

Hunk 0 starts with a block of type '"hunk code" containing OE
longwords of code; this is "partial code” containing zeros for
unknown addresses such as the address of _OpenLibrary, and just
offsets for locations in other hunks - see the hex corresponding
to MOVE.L D0,02.0004 in fig 3. This is followed by a block of
type "hunk_reloc32" containing relocation information for use by
the scatter-loader; in this case, we tell the scatter loader that
there is one reference to hunk 1 at offset 0010 in the code, and
three references to hunk 2 at offsets 002A, O0OlE and 0008. By
the time it processes this, AmigaDOS will have decided where to
put hunks 1 and 2; the scatter loader will therefore be able to
take the start addresses of these hunks and add them to the
values already found at the offsets specified; this will convert
the operand for MOVE.L D0,02.0004 to the correct absolute memory
reference, by adding the offset stored in the code block to the
hunk base address. Other relocation blocks hunk_relocl6 and
hunk_reloc8 are handled in a similar manner.

Block "hunk reloc32" is followed by a block "hunk ext" giving
information about external routines called from this hunk, and
globals defined within the hunk. Within the overall block there
are three records of type "ext ref32", indicating that there are
three external symbols _OpenLibrary, main and _CloseLibrary,
used once each at offsets 0016, 0024 and 0030 respectively.

These will be replaced by offsets within other hunks by the
linker, and finally by absolute addresses by the loader. This is
followed by one record of type '"ext def" indicating that there is
one global symbol " _OurStart" at offset zero within the hunk, so
if something else in the link wants to call _Ourstart it knows
where to find it. Generally, all function names will appear as
global symbols in CODE hunks, unless they have been declared to
be "static" to the compiler. Global variables will appear as
"ext def" in DATA or BSS hunks - examples (not shown in detail)
are _SysBase and _DOSBase in hunk 2.

The process of compiling BEEP.C is illustrated in figure 4.

68000 fans should be able to follow the CODE hunk quite easily;
note the use of LINK A6,-4 and UNLK A6 to grab some space off the
stack for the automatic variable i.

Source file BEEF.C

#include <exec/types.h:

extern AFTR OpenLibraryf);
extern VOID CloselLibrary(),Displaybeep();

AFTR IntuitionBase; /+ pointer to intuition library #/

main()
r
v

int i3

IntuitionBase = OpenLibrary("intuition.library",29); /# open intuition #/

if (IntuitionBase '= 0) { /% 1f open succeeded... */
for (i=0; i<6; i++) { /# six times... */
DisplayBeep (Q) 3 /% ... beep the screen... #/
Delay(3); /% ... and pause */
CloselLibrary(IntuitionBase) /% and close again. */
3
Obiect file BEEF.O
CQMP [U HunK, ©: CODE - lenath 17 longwords = SC bytes
05, G000 _main LINK fb, —4
0o, D004 MOVEQ #1D,DO
G0, OG04 MOVE.L DO, -(A7)
(0. D008 FEA 01.0000
00, GOOE JSR _OpenLibrary
00,0014 ADDE.L #8,A7
20,0018 MOVE.L DO, 02,0000
000010 TET.L DO
Q0. 0G1E BEQ 00,0058
00,0020 CLR.L -4 (Ab)
00, 0024 CMFI.L #00000006,-4(RS6)
00.002C BGE 00. 0044
G0, OOZE CLR.L -(A7)
00,0030 JSkR _Displaybeep
ADDR.L #4,A7
g MOVEQ #5,D0
90, GOZA MOVE.L DO,-(A7)
OG, 0O3C JSR _Delay
GOL0D042 ADDW.L #4,A7
L. 0044 ADDQ.L #1,-4(R6)
O, Gl4E BRA 00,0024
0oL 004A MOVE.L 02,0000,-(A7)
i, GOS0 JER _CloseLibrary
N5¢ ADDG.L #4,A7
‘ UNLF Ab
00, OOSH RT3
HUNE 1t DATA - length 0S5 lorigwords = 14 bytes
L O "intuition. library"
Figure 4
CE TR S L2ngth 01 longword = 04 bytes
oo [eturricrEan

Amiga Libraries

Page 92

Linker library file AMIGA.LIE

Wi, GOGZ
WW. 0006
W, 000C
WW. 0010
Wi, 0012

LODE -

HUNE WW: name "dos_litc" - lenath &5 longwards =
WW. GOOG - Deliay MUVE.L ARG, (A7)

MUVE . L
MOVE. L

AT, 01

_biSkese, A&

JoH FFZA(RS)
MEVE. L (A7) +,h6
il

14 bytes

XX, 000 _CloseLibrary
XX, 0002
XX. 0008
XX.000C
XX, 0010
XX.0012

HUNE. XX: name “exec_iib" . -

CUDE - length 05 longwords
HGVE. L
MOVE. L
HOVE. L

A6, - {R7)
_5ysBase,h&
8(A7), /D

J5R FE&Z (AG)
MUVE.L (A7) +,A&

RT3

14 bytes

YY. 0000 _UpenLibrary
YY, 0002
YY, 0008
YY.000C
YY. 0010
YY.0014
YY., 0016

MOVE.L A&, - (A7)
MOVE. L _SysBase, A&

Ve, L
MUVE.L

8{A7) 46
OC A7, D0

HUNE. YY: name "exec_lib" -~ CODE - length & longwords = 18 bytes

JSR FLOG (AR&)
MOVE. L (A7) +,Ab6
FiS

HUNE ZZ: name "intuition

LG0GO _Displaybeep
L0002
Z.0608
2Z.00¢C
12,0010

22.0012

17
22
7

Jbin" - CODE - lenatn 03 longwords

MOVE.L Ae, - (A7)

MOVE.QL Intuitionbase,nb
MOVE.L S(AT7) AU

JER Fréao (as)

MCVE. L (A7 4,08

(e

14 bytes

Figure 5

Amiga Libraries Page 93

Linking

Relevant extracts from amiga.lib are shown in figure 5.
Amiga.lib simply consists of a concatenation of program units;
thus it is quite easy to make your own libraries by concatenating
object files. Each hunk in amiga.lib is of CODE type, and starts
with a block "hunk name", which is the name of the associated
library. The function names _Delay, _CloselLibrary are defined as
external for use by the linker; they are also defined as symbols
in an additional block "hunk_symbol", which causes their
definitions to be included in the load-file, for use by Wack if
necessary. The functions themselves are self explanatory;
_DisplayBeep for example pushes the current value of A6 (must
preserve regs except AO, Al, DO, D1), puts the externally defined
IntuitionBase into A6, reads the parameter from the top of the
stack into A0, then performs the library call by JSR -96(A6). It
then pops the previous value of A6 and exits.

The process of linking to produce a load file "beep" is
illustrated in figure 6. Note that as two of the hunks from
amiga.lib have the same name "exec lib", these are concatenated
to form one "super-hunk" by the linker. The linker also resolves
all externals and replaces them by suitable hunk offsets. Figure
7 shows a "linker map" obtained by specifying '"MAP beep.map" in
the linker command string. This lists each hunk by type, memory
type, and total size; it then gives file, program unit, base
address and size, followed by a list of offsets for external
symbols defined within the hunk. Note '"super-hunk" number 7; the
two hunks this comes from appear successively within the super-
hunk, with a different base-address. The result of using the OMD
on the load file is shown in figure 8; note the way that the
externals have been resolved by the linker, but that there are
still "hunk-relative" addresses to be resolved by the loader.

In addition to producing the output hunks illustrated, the linker

also produces a "load file header" at the start of the file (not
illustrated). This contains information about how many "resident
libraries" (in the Tripos sense) to open, which will be zero
under normal circumstances, plus the number of hunks in the file,
gnddthe length of each hunk in longwords. This is used by the
oader.

Amiga Libraries

OURSTART.O

HUNK. O3 CODE - lengtn Ot

_Ourstart routine

HUNE. 1: DATR - length OI
“dos. library”

HUNE Z: ESS
_SysBase
_DUSEase

- length

BEEP.O

HUNEK. O: CODE - length
_main routine

HUNE 13 DATA - lenqth 05
"intuition. library"

HUNE. 23 BSS - length 01

_Intuitionlace

AMIGA.LIE

HUNE. WW: CODE - length €5
_Delay routine

HUNE. XX: CODE - lengtn 08
Closelibrary routines

HUNE ¥Y: COLE - length Os
_OpenLibrary rcutine

HUME Z2: CUDE - lenath o3
_DiseclayBeer routine

N\

Figure 6

Page 94

EEEF

HUNK 0: CODE - length ¢

_OurStart routine

HUNiz 1: DATA - length
"dos.library"

HUNE. 2: BSS
_SysBase
_DOSRase

- length 0

T

HUNE: CODE - length
_main routine

HUME. 4: DATA - length
"intuiticon.library"

HUNE S: BS5 -~ length
_IntuitionRase

01

HUNE. 62 CODE - length
_Delay routine

05

HumE. 7: CODE - length
_CloselLibrary routine
_OpenLibrary routine

OB

HUNE, 8: CODE - length ¢

_Displaybeep routine

Amiga Libraries

Linker maz

BEEF . MA

. CLGDE.
File:

Frogram unit:

Hase:

[N ISR
Lymbol

_OurStart

i. DATA.
File:
Frogram bri1t:
base: OCGONC
2. BSE.

File:

ouirsEtaint.

C

ourstart.o

curstart.g

Sizes CGOOOC

ourstart.o

Frogram Unit: ourstart.q

EBaser 006
Syabol

_GyeBase
_ii03EBas=
. CODE.
File: beer.o

Frogran Unit:

_main

4. DiTA,

File: beerp.C

Frogram dnit: besp.q
=H

o) P SN
Base: GOl

Size:

OO0l 4

510

-

memcry Type FUBLIC Total Size 000038,

Value

GOUO0O00

Memory Type FUBLIC Total Size vQO0SC,

Femcry lypa FUBLIC Total Size 0QGO14,

Figure 7

Page 95

Amiga Libraries

-

]

&. CODE. remory Type rUBLIC Total Size 000014,
Hunkname: dos_i1ib

File: cl.l:ztip/samigadlio
Frogram Lnit: No Name

Race: w0000 Size: 00014
Symbol Value
_Delay Q0000000

7. COLE. rMemory Type FUBLIC Total Size 00002C.
Hurkname: exec lib

File: cl.l:lib/amiga.lib
Frogram un:t: o Hame

Bage: COOdd3 Size: 00014

Svinbo1i Value
_CloseLiorary QOOOTOGO
File: cl.i:1lin/amiga.lib

Fragram Unit: Na Name

Ease: 00014 Size: Q00018

Symbol value

_dpenLibrary GOGOO01 4

8. COLE. remory Type FUBLIC Total Size 000014,
Hunkname: 1ntultion _1ib

File: cl.i:lib/amiga. lib

Frograin ULRrit: Ho Name

Hase: Size: 000014

Syinco Value
_Dispiayibeep OOOGO00G

Figure 7 (continued)

Page 96

Amiga Libraries

Frogram

file BEEF

HUNE O: CODE - length COE longwords = 38 bytes

| 00,0000 MOVEA.L #00000004, A0
11 00,0006 MOVE.L (AD), 02,0000
1 00, 000C CLR.L - (A7)
00, 000E FEA 01,0000
100,0014 JSR 07.0014
] 00.001A ADDG. L #3,A7 2
I 00, 001C MOVE.L DO,02.0004 !
| 00,0022 J5R 03.0000
00,0028 MOVE.L 02.0004,-(A7)
L] 00.00ZE JSR . 07.0000
00,0034 ADDG. L #4,A7
| 00. 0036 RTS
;| HUNK 13 DATA - length 03 longwords = OC bytes .|
1 01,0000 "dos.library"
(| HUNK. 2: BSS - length 02 longwords = 0B bytes’
| HUN. 3: CODE - length 17 longwords = SC bytes X
[03. 0000 LINE, Ab, -4
] 03,0004 MOVER #1D,D0
03,0006 MOVE.L DO, =(A7)
-] 03,0008 FEA 04, 0000
<1 03. 000E JSR 07.0014
03,0014 ADDQ. L #8,A7
‘lo3.0016 MOVE.L D@, 0S.0000
(] 03.001C TST.L Do
1 03.001E BEQ 03.00358
| 0. 0020 CLR.L -4 (Ab6)
03,0024 CMFI.L #0O0000006,-4 (R6)
1 03,002 EBGE 02,0044
03.002E CLR.L -(A7)
"1 02,0030 JSR 8. 0000
L 03,0036 ADDA. L #4,A7
"1 03,0028 MOVEQR #05,D0
] 03.00ZA MOVE.L DO, = (A7)
] 03.003C JSR 06, 0000
1 03,0042 ADDQ. L #4,A47
03,0044 ADDQ. L #1,-4(A6)
0Z.0048 BRA 03,0024
03,0044 MOVE.L 05.0000,-(A7)
03,0050 J5R 07.0000
03,0056 ADDG. L #4,R7
03,0058 UNLE)
0. 00548 RT3

HUNE. 4:

04,0000

DATA - length OS5 longwords = 14.bytes

“intuition.library"

HUNE. 51 BS5 - length Ol longword

04 bytes

Figure 8

Page 97

Amiga Libraries

04. 0000
Q6. 0002
06. 00086
6. 000C
06,0010
06.0012

MOVE.L
MOVE.L
MOVE. L
JSR
MOVE. L
RTS

HUNE. &3 CODE - length €S lonqwords = 14 bytecs

R6,—\R7)
8(A7), D1
02,0004, A4
FF3IA{AG)
(A7) +,Rb

HUNE. 73

07.0000
07.006072
07.0008
07.000C
07.0010
07.0012

07.0014
07.0016
07.001C
Q7. 0020
07.0024
67,0025
07.002/

CODE - length OB longwords = 2C bytes

MUVE. L
MOVE.L
MOVE. L
JSF
MOVE. L
RTS

MOVE. L
MOVE. L
MOVE.L
MOVE. L

by - (K7)
02,0000, A6
g (A7), AD
FE62 (R6)
(A7) +, 66

A&, —(R7)
02, 0000,A6
8{A7),A0
CC (A7) ,DD
FDD8 (A6
A7)+, A6

HUNE. 82

0g. 0000
08. 0002
8. 0008
08.000C
08,6010
08.0012

CODE - lensth 5 longwords = 14 bytes

MOVE. L
MOVE.L
MOVE.L
J5R
MOVE. L
RTs

fib, — (A7)
Q5. GO0, A
B(R7),A0
FFRO (A&)
{(R7)+,R6

Figure 8 (continued)

Page 98

Amiga Librar

ies

WO0ZI148

r‘

00023150

QOOZ3I1SE
00023164
QDO2316A
Q00zI16C
QOOZ3I172

DO0Z3I17E
Q0027184
00023186

O0O023140 QO008C6E

MOVEA. L
MOVE. L
CLR.L
FEA
JSR
ADDQ. L
MOVE.L
JSR
MOVE.L
JSR
ADDW. L
RTS

#0000 , RO
{AD) , $231A8
- (A7)

$23190
$2F2IC
#4,A7

DO, $231AC
$231B3
$231AC, - (A7)
$2F2Z8
#4,A7

00023168

T o0023190

00008CeY

"dos. library"

QOO2Z1AD
DOO2Z1A4

QGOZI1AC

DO0231B0O
O0OZI1RY

—

O002Z1E8
O00231EC
QO02Z1BE
QOOZI1CO
0002

.......

QOOO00ES /
Qo00BCE7

LINE
MOVEQ
MOVE.L
FEA
J5R
ADDWQ. L
MOVE. L
TST.L
BEQ
CLR.L
ChFI.L
EGE
CLR.L
J5R

ADDG. L

MOVER
MOVE.L
SR
RADDO. L
ADDGE. L
BRA
MU‘{’E . L..
JEGR

ADDR. L

UNLE

RTS

AL, -4
#%1D, DO
DO, - (A7)
$23220
$2F23C
#3, A7

DO, 25325
Do

$23Z10

-4 (A4

#4,47
#05, 00
DG, = (7))
$IFZ0G
#4,R7
#1,-4{ps:

Page 99

00023220

GOON43CT

“intuition,. liorary"

QOU2S320
Q0025324

Q0025328

OOOZF 200
GOQZF204
QOO2F208

VOOZF20A
OOOZFZ20E

O002F214

QOOZF218
QGOZEF21A

0000001C
DOOORCBY

MOVE.L
MOVE. L
MOVE.L
JER
MOVE.L
RTS

Ab, - (A7)
8(A7),D1
$231AC, Ab
$FFIA(AS)
(A7) +,Ab

\ 3

QOOZF22

OOOZF22A
OON2F230
OOOZF234
OOO2FZ3

QCO2FZTA

OOOZF23C
DOOZF2IE
QUO2F244
GOO2F248
QOOZF24C
GCO2F250

QOOZFZEL

QOOOBCY7

MOVE. L
MOVE.L
MOVE.L
JSR
MOVE.L
kTS

AL, = (A7)
$231A6, A6
8(A7) ,AD
$FEGZ (AG)
(A7) +,Ab

MOVE.L
MOVE. L
MOVE.L
MOVE. L
J5k

MOVE. L
RTS

Ab, ~ (A7)
$231A6, Ab
B{(A7) A0
$0C (A7), DO
$FDDB (A&)
(A7) +,Ab

MOVE.L
MOVE. L
MOvVE.L
J5R
MOVE. L
RT3

Ak (A7)
$25328, A6
B(AT7) A
$FFAD (AL
(A7) +,As

Amiga Libraries Page 100

Loading

When the AmigaDOS scatter-loader is invoked by LoadSeg(), it
first of all processes the load file header, by trying to
allocate memory for each hunk, and if successful building up a
"segment list" in memory, as illustrated in figure 9. Each .
record of this consists of a segment length in bytes, followed by
a BPTR to the next segment (zero if last segment), followed by
enough space for the hunk. Note that this allows AmigaDOS to
know whether it has enough memory to be worth continuing with the
load, and if so where in memory it is going to put each hunk,
before it actually loads anything.

The load itself is now quite straightforward. The only things
still needing attention in our example are the "hunk_reloc32"
blocks, which specify where to modify the hunk being loaded by
adding on appropriate hunk base addresses; the loader now knows
what these are, so it can relocate as it loads, resulting in an
arrangement in memory something like the one shown in figure 9.
If we look at the code from the linker library that actually
invokes DisplayBeep (7th segment), we see that the "hunk offset"
in MOVE.L 02.0000,A6 has been replaced by the appropriate
absolute address MOVE.L $231AC,A6; this sets up our Intuition
library base pointer prior to the JSR -96(A6).

Running

When LoadSeg() has finished it returns a BPTR to the first
segment in the segment list - in our example this will be $8C53,
which multiplied by four gives $2314C. The code can then be run
(usually as a CLI "co-process'") by a call to this address plus 4,
or set going as a separate process by calling CreateProc() - this
is what happens when a program is run from Workbench.

The final piece of indirection involved in invoking the library
is then resolved at run-time; in this case Exec returns $00003DA4
as IntuitionBase, which takes us to a jump vector at $00003D44,
which takes us to a ROM routine at $FEOF66, which beeps the
screen (at last) - see figure 10.

Amiga Libraries

intuition. library

FESC
FE6Z
FE&8

FFEE
FF94
FF9A
FFAD
FFAG
FFAC

FFDC
FFE2

FFES
FFEE
FFF4
FFFA

0000
0004
0008
009
DO0A

QOQE
O0O0F
0010
0Lz
0014
0016
D01G
001c
OGZ0

Uf+set

Descrimtion

_LYOUnlocklIbacse
_LVOLockTBase
_LVOFreeremember

_LViDrawlmage
_LvODpawBorder
_LVODoubleClick
_LViibisrlayBeep
_LVODicplayhlert
_LvOoCurrentTime

_LVOIntuition
_LVOopenIntuition

LIE_EXTFUNC
LLIB_EXFUNGE
LIB_CLOSE
LIE_UFEN

lib_Nod=. 1n_Succ
lib_MNooe.ln_Fred
1ib_Node. in_Tyre
1ib_Node. ln_Fri

lio_Node. Ln_Name

libk Flags
lib_Fad
lib_Negihize
lib_FosSize
lib_Version
1ib_FR=vision
lib_ldetring
lib_Sum

lib UOeerint

fdaress

........

O000ZD3E

00003044
OGOOZED4A

......

QOOOEDSZ
QOOQEDY8
QO0O03DSE

QOOOZDA4
QOOOADAE
OOOOZIDAC
QOOOIDED
DOO0IDHE

QOOGOZDE2
Q000ZDES
D00GIDES
QQGGEDES
QOOOZDBA
QOOOIDCD
GOGOZDCY

Value

JMF

JWP

JrF

JMF
JmP
JMF
JMP
JMF
JMF

JMP
JmF

JMP
JMF
JMP
JMF

sFE1284
$FE1278
$FE125E

$FEQF9C
$FEQOF83
$FEQF72
$FEOF&66
$FEOFS4
$FEOF 46

$FEQEEC
$FEOEEC

$FDS435A
$FDS45E
$FDS4SE
$FD5454

QOOO4E2C
OGO0OZASE

00
Q0

00FD53442

Q4
o
0144
Q40
QO1F
0041

7DB20000

0001

Figure 10

Page 101

Amiga Libraries

Page 102

Wacry Versiaon 1.0

Jenerating «ymbol addresses .
ready

OZTIS0 2070 CGOGD 0004 2IDC

90

seglist

#0 $OZT14C00n
#3 $O2T1B4s 00004 #4
#6 SOZFZO4: 00010 #7

$023180C
$0O2321C0
$OLFZ24

symools

oo oo

T U VR VR ST T}
ot aomoan wow
™M wm™IMGMOLD

0
ul
L

= B S
Bl

OUOZF20E

GO0 ZF 260

offset OOGOOO1I4 OOQZFIZE

~hunk_G

GZI150 2070 OG0 Good ZIL0

_UpenLibrary
O2F2EC 2F0E 2079 O
where

_Openblibrary + O
quit

D o#,.

120014
HOLISTHD
s 00054

%0
$0)
S

#2
#5
#E

“hunk _0
“hunk_1
“hunk _2
“rank 3
“hunk_4
“hunk S
“nunk 5
“hunk_7
“hunk _8

_GeenLibrary

2314

s OUO10

25324 00000

e
25C

iad
e

200010

Amiga Libraries Page 103

A final twiddle - ATOM

The above discussion represents the state-of-play as per Amiga.
version 1.0. However, it contains a shortcoming, in that there
was no way in 1.0 of specifying what sort of memory each hunk was
to be loaded into - chip memory (ie the bottom 512K accessible by
the blitter etc), fast memory (up to 8M of expansion RAM not
affected by the clever chips), or don't care. This was given a
short-term fix in release 1.1, by means of a utility program
called ATOM (Alink Temporary Object Modifier), used in
conjunction with Lattice 3.03 and Alink.

When using Lattice 3.1 and Blink, ATOM is not needed, the same
effect being obtained by new compiler switches, -c being used in
LC2 to force code data or bss into chip memory (eg -ccdb would
force all three), and -h (for high-speed) to force code data or
bss into fast memory. It is very important to get this right if
you want your code to run in Amigas with over 512K of memory; we
suggest putting all data that needs to be in chip memory - like
Intuition images, sprite definitions or audio waveforms - in a
special source-module '"slingthisinchip.c" or something, for
compilation with the 1lc2 -c option.

The effect of running ATOM (after compiling or assembling, and
before linking) or of using the new Lattice 3.1 compiler switches
is to modify the .o files. This is done by modifying the type of
one of the blocks in each hunk, which previously just marked the
hunk as hunk_code, hunk data, or hunk bss. The two most
significant bits of this longword are now used as follows:

0 Don't care - Use fast or chip, fast if available.
0 Use fast memory or fail

1 Use chip memory or fail

1 More info follows (reserved)

RPORFRO

Having been modified, the .o files can now be passed to Alink
(vi.1), or to Blink. This leaves these extra bits in the hunk
types; it also ORs them into the most significant bits of the
hunk lengths in the load file header, which are spare because the
hunk lengths are given in longwords. Version 1.1 and 1.2
LoadSeg() then uses these bits to AllocMem() the right kind of
memory for each hunk, or fails; old versions of LoadSeg() (1.0)
will mistake hunks with non-zero values for these bits for very
long hunks indeed, and fail with "out of memory".

A final point to note is that AmigaDOS refers to "don't care"
memory as '"public". This is confusing, as it does not appear to
mean the same thing as "public" as in AllocMem(MEMF_PUBLIC),
which is an upwards-compatibility feature, meaning memory that
needs to be accessed by more than one task.

Amiga Libraries Page 104

Last words on scatter loading

The clever way it handles relocating and scatter loading is
probably the best thing about AmigaDOS. The fact that you can
write fast position dependent absolute code, which will be fixed
up to run properly anywhere by the loader, has a speed penalty
while loading but leads to much faster code execution. 1In our
opinion, this is much more sensible than other systems like 0S9,
which FORCE you to write position-independent code, with no JMPs,
JSRs or other absolute memory references.

To take an extreme example, consider screen bit-plane access.
Normally, you let the system allocate this for you - using a
function like Intuition's OpenScreen() - then write into it using
other functions in Intuition or the graphics library. However,
if this isn't fast enough, and if you don't require system
facilities like layers (windows) and so on, then you can find out
where the memory has been allocated, then write into it yourself
by appropriate indirect addressing - subject to various caveats
discussion in Section 6. If even THIS isn't fast enough, then
you can set up some bit-planes yourself by allocating some
suitably enormous arrays compiled to be loaded as bss data into
chip memory; you can then tell Intuition to use this for screen
memory by passing OpenScreen() a NewScreen structure set up with
a pointer to your own "CustomBitMap'. This permits you to make
ABSOLUTE references to your screen memory, which will be fixed up
by the scatter loader. This proceedure isn't recommended; it is
however as close as you can get to "poking screen RAM" on Amiga!

A final point - also relating to speed of execution - concerns
two options available from Lattice 3.1, called base-relative and
PC-relative addressing. Base-relative addressing is a form of
data addressing in which one register (A6) is used to point at
the start of a data area, and individual data items are accessed
as 16-bit offsets within this area. This results in four bytes
per data-reference (as opposed to six bytes for absolute
addressing), and usually in faster execution; its disadvantage is
that only up to 64K of data can be accessed like this, and that
all this data must be in a continuous block. Base-relative
addressing is specified by an option "-b" in LC1l; this will cause
the compiler to use base-relative addressing to access all data,
and also cause the data and bss hunks to be given a special name
" _MERGED", so that they will be joined together in a continuous
super-hunk by the linker.

PC-relative addressing is a similar mechanism, this time applied
to subroutine calls in code hunks; here the target address is
specified as a 16-bit offset from the current PC-value, resulting
in a four byte instruction rather than a six byte absolute JSR,
which also executes faster. This is limited to offsets of plus
or minus 32K from the current PC value; if you try to go further
than this then BLINK will try to fix it up for you by generating
a jump table, but this will obviously lose the code-length and
speed advantage. It is therefore worth joining code hunks into
super-hunks if you are going to use this; one way of doing this

Amiga Libraries Page 105

is to use the -s option in LC2 which allows you to specify

hunk names, the defaults being "text'", "data'" and '"udata'. (The
use of the word "text" to mean "code" is another silly name from
Unix.) Note that using this option to join hunks into super-
hunks also results in faster loading; its disadvantage is that it
is more likely to fail in a system in which the available memory
has become fragmented.

Try it yourself!

Of course, it is not necessary to understand very much of the
above in order to do an Intuition screen beep! However, it is
our feeling that an understanding of what happens 'behind the
scenes" is both interesting and useful, so we hope that you found
the discussion above valuable, if exhausting.

Of course, if you really want an insight into the whole business,
you should try your own example. If you want to do this, you
will find the following utilities of interest.

1. ObjDump <filename> This can be used to examine ANYTHING
made of hunks (object files, .lib files, load files), giving
output in a "human" (Martian?) readable format, split into
different hunks and blocks. Output can be redirected to the
printer if desired.

2. OMD <filename> This is the Lattice Object Module
Disassembler, which can produce a fairly readable
disassembly of object files by integrating information in
the various hunk blocks. OMD output includes labels defined
in hunk ext blocks in the file - if you want more symbolic
information, then set the -d option in LC1l (version 3.1),
which causes the compiler to output "hunk symbol" blocks
giving symbol definitions and "hunk debug blocks giving
line numbers, which can be picked up by OMD.

3. Linker MAP and XREF options By specifying MAP <filename>
and/or XREF <filename> in the linker command string, you can
cause it to output a map similar to figure 7, showing each
hunk in the output file, together with the symbols defined
within it, or a cross-reference, which also shows where the
symbols are referenced. This is useful in allowing you to
spot symbols (and hence routines etc) which don't need to be
public, or which don't get used at all!

4. Wack If you compile with the -d option in LC1, then
hunk_symbol blocks are output by the compiler, and passed on
by the linker into the final load file; these are usually
then ignored by LoadSeg(). Note that amiga.lib contains
hunk symbol blocks for each library function, so these will
always be present in the load file however you chose to
compile; there is a Fish disk utility which allows you to
strip these out of release software if you want to!

If you want to make use of symbolic information while

Amiga Libraries Page 106

debugging with Wack, then you can "bind" these symbols by
invoking Wack by

wack <filename>

This should cause Wack to fetch the symbolic information
while loading <filename>, and to calculate the actual
address in memory corresponding to each symbol; note however
that Lattice 3.1 introduces some new hunk types which old
versions of Wack and Alink don't know about, so you may come
to grief at this point with an error 'Unknown hunk type'.

If the load does succeed, then you can get a list of symbols

by typing
SYMBOLS

(Use right mouse button to stop them scrolling off the top
of the screen.) This gives a list of internal symbols used
by Wack - ie a list of Wack commands - plus the base address
(actual start of code or whatever) of each hunk in the form
"HUNK_O0 etc, plus the symbols picked up from hunk_symbol
blocks _OpenLibrary etc. Other Oldwack facilities of use
in this context are as follows:

GO run program from current address - this will be
initialised to the hunk 0 base address, so you can
use GO to run the program just loaded, by a JSR to
the start of the first segment.

SEGLIST gives address (real address not BPTR) of each
segment of the program just loaded, and its’
length in bytes.

SYMBOLS gives all symbols as above. Typing in a symbol
name (eg "hunk_0) takes you immediately to that
lccation.

WHERE gives your current position relative to the last
symbol, else "You're lost".

LIBRARIES list of libraries in current Exec library list.
QUIT exit Wack.

See figure 11 for an example of using these facilities.
Note that OldWack can't count - there are actually NINE
hunks in our example, numbered 0 to 8!

5. Metascope 1If you can't get Wack to work - or if you just
don't like Wack or can't get hold of a copy - then you can
use an alternative symbolic debugger such as Metascope,
which knows about the new Lattice hunk types. You can get
Metascope to look at a particular program compiled with the
-d option using

Amiga Libraries Page 107

metascope <filename>

or alternatively you can load the program from within
Metascope by selecting LOAD from the PROJECT menu. You can
then get a list of symbols by selecting SYMBOL from the OPEN
menu. You then can select particular symbols by pointing
and clicking, open other windows with code-dumps or
disassemblies at the locations corresponding to these
symbols, plus all sorts of other wonders - see the Metascope
documentation.

References

ROM kernel manual volume 2, Libraries. Contains much useful
reference material (destined to become your most thumbed manual),
plus a source-code example of a library.

V1.2 auto-docs for up-to-date library summaries.

AmigaDOS Manual Technical Reference - full information about
binary file format, including various block types not covered
above. Be warned that what this part of the DOS manual lacks in
length it more than makes up for in total incomprehensibility, at
least on a first reading. Be particularly wary of words which
appear to mean the same thing as they do elsewhere in the
documentation, but don't quite.

Amiga Devices Page 108

Amiga Devices

How to Perform IO, Without Worrying Too Much What To

Aadget ¥gadget;
R gfunc; ,
VER <{ :
DoIOC&ConReadBlk) ;

for (1=0;
current

"Into Amiga" illustration by Hanafi Houbart.

Amiga Devices Page 109

Section 3 - Amiga Devices

How to Perform IO, Without Worrying Too Much What To

A goal of many state-of-the-art machines, the Amiga (of course)
included, is to provide "device independent IO". At first sight,
this seems pretty daft, even by the standards of state-of-the-art
buzz words - how can you address a tracker-ball exactly like a
printer? The answer is that you can't, so the notion of device-
independence should not be taken too literally; the more accurate
alternative of "as device independent as possible under the
circumstances" is however a bit long-winded.

In fact, the goal of device-independent IO is to provide as
consistent an interface as possible to a wide variety of input
and output devices. This is achieved by providing some standard
structures and routines which are used in all IO, some standard
input and output commands which are used by most IO, and a
mechanism for adding the inevitable device-specific routines in a
consistent and convenient manner. Besides conforming to abstract
notions of "elegance'", this has the concrete advantages of
convenience to the programmer in not having to learn a whole set
of new rules when considering a new IO device, and maximum ease
when converting between devices which are in fact reasonably
similar.

The software mechanisms used to handle IO on the Amiga are known
generally as '"devices"; examples of devices are the timer,
trackdisk, keyboard, gameport, input, console and audio devices
all of which are resident in ROM or "kickstart'" protected memory,
and narrator, serial, parallel, printer, and clipboard which are
scatter-loaded off backing store as necessary.

Note that '"devices" can appear at very different levels in the
overall Amiga system architecture. The keyboard device for
example is a very "low level" device which handles servicing
keyboard interrupts, and passing "raw" key information to a
higher level input coordinator called the input device. The
console device on the other hand is a rather high-level part of
the system with very close links to both Intuition and AmigaDOS;
it takes keyboard information from the input device, and provides
a variety of clever '"virtual terminal” capabilities. Part 1 of
this section considers devices in general; part 2 considers
keyboard, input and console devices in detail.

Amiga Devices Page 110

Background concepts

In terms of software structure, a device is a special case of a
general-purpose Amiga structure known as a library; "cunning"
devices, capable of running quasi-independently of the calling
program, have associated with them another structure known as a
task. Roughly speaking, a library is a load of routines starting
with a jump table, and a task is a mechanism used to allow
different programs to share the CPU by "time slicing" on the
interrupts - see the earlier sections of this guide for a full
explanation of these concepts.

Devices and libraries

A device is a special case of a library, in that it consists of a
jump table, followed by a node and various other library-type
stuff, followed by a data area. As a library, it contains the
standard entry points for Open(), Close(), Expunge(), and
Extfunc(); in order to be a device, it must also have two further
standard jump table entries BeginIO() and AbortIO(), which can

be invoked by various standard routines in Exec.

Device:
<other jump table entries>

JMP ABORTIO ;device standard entries
JMP BEGINIO

JMP EXTFUNC ;library standard entries
JMP EXPUNGE

JMP CLOSE

JMP OPEN

Library node.
Library flags, sizes, version, checksum and open count

Data area follows.

The main general-purpose routine provided by all devices is
BeginIO(); this is called with a pointer to a structure called an
IORequest, which contains various information relevant to the IO
call in question, including a '"command" word specifying what is
to be done - read data, write data, reset the device, or
whatever. Commands fall into two categories. Standard commands
such as read and write are satisfied by all devices if possible,
though this may not be the case (you can't write to a tracker-
ball!). Device-specific commands provide a mechanism to do
things like allocating channels on the sound device, which
wouldn't make a lot of sense to anything else.

Amiga Devices Page 111

In addition to device-specific commands, it is also possible for
devices to have their own private additional jump-table entries
beyond BeginIO() and AbortIO(), which provides an additional
mechanism for device-specific functions, accessed by the usual
way of calling functions from a library. Examples are the
console device routines which provide translation from "raw" to
"cooked" keyboard data by means of a key-table. In the case of
the console, it is possible to open it just as a library, i.e.
without linking it into the system's devices list or connecting
it to the input device; it can then be used just for key
translation (by Intuition or by the application program) without
it doing anything else.

It can be seen that the mechanisms of standard commands, device-
specific commands, and "private'" jump-table entries provide
considerable versatility in the way a device choses to function.
Different devices make use of these mechanisms in different ways,
some more neatly than others!

Devices and tasks

Besides the library structure discussed above, a device may have
one or more tasks associated with it. This means that when the
device is opened, one or more "task control blocks" may be linked
into the task queues maintained by Exec, associated with routines
within the device; this allows the device to run "alongside"
other routines such as the application program, making use of
Exec's ability to perform multi-tasking.

If this is the case, then each task will have associated with it
a message port to allow queueing of IO requests. All IORequests
start with a message structure, allowing them to be attached to a
task's message port if appropriate. 1In this context, IO using
BeginIO() (or higher level routines like DoIO()) can be viewed as
a special case of the general Amiga mechanism of message passing.
The IORequest structure can then be viewed as a message passed to
the device; usually the device indicates that the IO request has
been processed in the usual way, ie by replying the message to
the calling program. (However, there is a shortcut to this
process - see QuickIO below.)

To make this clearer, it may be worth distinguishing between
"simple" devices with no associated tasks, and '"cunning" devices
which make use of multi-tasking; in this context, the keyboard
device is (fairly) simple, while the input and console devices
are both cunning.

A "simple" device performs IO in a way not very different from a
Commodore 64. When an IO request is made, an IO request block is
set up containing the relevant command - say to read a specified
number of bytes of data. BeginIO() is then called with this
request block and contrcl passes to the device; control will not
return to the calling program until the device has satisfied the
IORequest and replied the IO request message with an error code

Amiga Devices Page 112

of zero, or else given up and returned an error. Thus the
calling program has to wait until the data is available; this is
known as synchronous I0, and is all that is available from a
"simple" device.

A "cunning" device on the other hand has at least one associated
task and message port, and is capable of asynchronous IO in

which IO requests are queued to a message port, and other
processing can continue while the device gets round to processing
them. A cunning device maintains a '"device busy" flag - when
BeginIO() gets an IO request for something like '"read data", it
first checks if it is already busy, and if not gets on with the
IO immediately. Otherwise, it queues the IO request to its
associated task's message port. The associated task deals with
removing IORequests and satisfying them as quickly as it can; the
calling program will know when the request has been satisfied
when the task replies the message. It can either hang around in
a wait state waiting for this to happen (synchronous IO), or it
can get on with something else in the meantime (asynchronous I0).

Note that you should never assume that something is a "simple"
device, because someone may come along and re-write it. An
IORequest should therefore always be viewed as a '"message'", ie as
a bit of memory which is going to be '"loaned" to another task -
this means that it should be allocated MEMF PUBLIC, and that it
should NOT be modified by the calling program until the device
has replied it. Note also that while a device may make use of
multi-tasking to run asynchronously with the calling program, it
will not attempt to perform more than one IORequest at once (!) -
requests are queued to a message port, and dealt with one at a
time. This is a nice simple idea sometimes known as single-
threading - this is in order to sound better when you talk about
it loudly in restaurants.

A good example of a "cunning" device with an associated task is
the "input device" - this handles picking up '"raw" input events
from the keyboard, timer, and gameport all of which are simple
devices, and passing them on to a "server chain" of input
handlers, which includes Intuition. It is through the input
device's associated task that Intuition "stays alive" while an
application program is running; this is obviously rather
important, which is reflected in the fact that the input device
runs at the maximum priority used by the system, which is 20.

(If you use Wack to look at this, you may see the "input.device"
task more than once or not at all - this is because Wack is
rather silly about tasks that may be moving between the Exec
task-ready and task-waiting lists while Wack is looking at them!)
The relationship of the various devices concerned with user input
is discussed in detail in the next article.

Amiga Devices Page 113 §

(Since writing the above discussion of simple and cunning
devices, it has been pointed out to me - hi Harry - that quite a
few devices that I would have categorised as '"simple", including
keyboard.device and gameport.device, do in fact have interrupt
handlers associated with them. While not being the same as the
full mechanism of message-queuing used by a cunning device with
an associated task, this does however give them a capability for
elementary request queuing, and hence assynchronous IO. It may
therefore be better to think of devices like this as only "fairly
simple".)

Devices and Units

Associated with each device are one or more additional data
structures known as units, arranged as follows:

Unit:

message port for associated task (actual structure, not pointer)
flags

(padding)

open count for this unit

This structure is initialised by the system, and a pointer to it
returned as part of the process of opening a device; one of the
parameters passed to the OpenDevice() function is a unit number.

In the case of the floppy disk drives, the unit number
corresponds to the actual physical unit being accessed. Multiple
drives are looked after by only one device structure and one set
of code; however each unit has its own unit structure, its own
message port, and its own TrackDisk.device task control block and
data area for buffers.

In the case of other devices, the unit number may correspond to
physical units (eg the gameports), it may be used for something
else (eg for the timer it specifies whether to use vertical blank
or an 8520 microhertz timer), it may have to be zero (eg the
narrator), or it may be ignored completely (eg the audio device).
However, in all cases, OpenDevice() always returns a pointer to a
"unit" structure, as above.

Amiga Devices Page 114

Opening a device

Before using a device, it is necessary to open it, in the same
way as opening a library. This is done by an Exec routine
OpenDevice() which is passed a device name, a unit number, the
address of an IORequest data structure, and some device-specific
flags. Space must be reserved for the IORequest data structure,
and its message header initialised before calling OpenDevice:

IORequest:

Message structure - set up in advance with node-type
NT_MESSAGE, priority zero, and appropriate pointer to reply
port. Used internally by cunning devices to queue IO
requests.

Pointer to device base address - will be set up by
OpenDevice().

Pointer to unit structure - will be set up by OpenbDevice().

Command word - set up before calling BeginIO(). Not used by
OpenDevice().

Flags - set up before calling BeginIO(); not used by
OpenDevice(). 1In theory, the lower four bits are for use by
Exec - currently just to flag QuickIO - while the upper four
bits are available for use as the device wishes. However,
since the first thing that Exec SendIO() and DoIO() do is to
blam absolute values into this location (versions 1.1 AND
1.2), this claim needs viewing with suspicion (unless you
call BeginIO() directly).

Error - error return, zero if successful.

(Other stuff follows.)

The "other stuff" which follows depends on what sort of IO is to
be performed. Some IO - eg the console - uses a structure called
an IOStdReq, consisting of an IORequest structure followed by
some more material as detailed below; a lot of other IO uses a
extension to this consisting of an I0StdIO followed by some
device-specific data. Exec support functions CreateStdIO() and
CreateExtIO() exist to create the standard and the extended
versions of these structures.

The full mechanism for opening devices and performing IO is
summarised below:

1. Set up an IORequest structure followed by whatever else the
device needs somewhere MEMF PUBLIC, and initialise the
message type and priority, and the address of your reply-
port. If you are going to be using IOStdReq or extended
IOStdReq structures, you can create these by calling

Amiga Devices Page 115

CreateStdIO() or CreateExtIO() respectively.
2. Open the device by calling

OpenDevice(name, unit number, address of request
structure, flags).

This will attempt to open the device, scatter loading from
disk if necessary, and call the device's own OPEN routine to
allow it to initialise and connect itself in as necessary.
It will also create a unit structure, and put the address of
this structure and of the device itself into the IORequest
structure. The use of unit number and flags varies from
device to device - one use of flags is to request exclusive
access, eg to the parallel device.

3. The IORequest structure can now be used in calls to
BeginIO(), either directly or via other Exec calls (see
below). The same structure can be used as was returned by
OpenDevice, or copies of it can be made; before calling
BeginIO() other fields should be set up, including the
actual command to be performed. Command completion will
normally be indicated by the IORequest message being
returned to the reply port designated in stage (1).

4. Before your program exits, you should close the device using
the Exec call CloseDevice().

In some other respects, devices behave just like libraries - eg

it is possible to add new devices to the system lists or remove
them using AddDevice() and RemDevice() respectively.

Standard commands

The standard commands supported by all devices (at least in as
far as returning an error if they can't do them!) use a structure
IOStdReq mentioned above:

I0StdReq:

IORequest structure as above

Number of bytes actually transferred (returned)
Number of bytes we want transferred

Pointer to data buffer

Byte offset for structured devices (eg disk)

Note that only a few devices (eg the console) use this structure
"as is"; most of them use an extended I0 request block consisting
of an IOStdReq followed by various device specific data.

Examples of devices which do this are the clipboard, the
narrator, parallel, serial and trackdisk devices; the trackdisk
device for example uses a structure called IOExtTD, consisting of
an IOStdReq followed by a disk change counter value, and a
pointer used when accessing sector label information. Certain

Amiga Devices Page 116

devices ignore IOStdReq altogether, and just use an IORequest
structure followed by the data in whatever form they feel like.
Examples are the audio device, the printer, and the timer - the
timer for example uses just an IORequest followed by a "timeval"
structure, specifying time in seconds and microseconds.

The standard commands are as follows:

CMD_RESET - reset and reinitialise everything immediately,
losing any pending commands.

CMD_READ - read bytes into data buffer.
CMD_WRITE - write bytes from data buffer.

CMD_UPDATE - ensure media up to date, eg no unwritten data
lurking in internal disk buffers.

CMD_CLEAR - throw away contents of all internal buffers.

CMD_STOP - stop performing IO immediately - just queue
requests.

CMD_START - start performing IO again.

CMD_FLUSH - immediately return all pending requests with an
error.

"Cunning" devices maintain internal tables specifying which of
these commands are for immediate execution, and which should be
queued if necessary. Immediate commands are usually RESET, STOP
START and FLUSH.

No frills IO - calling a device directly

The two standard routines supported by all devices are as
follows:

BEGINIO - attempt to perform request specified
ABORTIO - attempt to abort request specified, by de-queuing
it from a message-port.

The first of these routines can be accessed by an Exec support
routine BeginIO(pointer to request structure), which handles
picking up the device base address from the IORequest structure,
setting up registers, then doing the appropriate indirect call to
invoke BEGINIO. The second can be accessed via a routine
AbortIO(structure) in Exec itself. (Note that the ROM kernel
manuals are a bit confused about this - BeginIO is not mentioned
in the Exec support documentation though it can be found in
amiga.lib, and AbortIO is currently in Exec, not in Exec support
as claimed!)

Thus the most direct way of performing IO is to set up your

Amiga Devices Page 117

request block with the command and other information you want
(including the address of your reply port), then call BeginIO().
You can then go to sleep waiting for a reply (synchronous IO), or
get on with something else checking for a reply from time to time
(asynchronous).

QuickIO

The mechanism summarised above is general and powerful,
particularly when it comes to cunning devices, internal request
queuing, and asynchronous I0O. However, in some cases - say when
outputting characters one at a time to a '"simple" device with no
associated task - the mechanism of having to reply a message for
every IO request adds a high overhead with no advantage, since
the device won't be queueing requests internally anyway.

For this reason, if you don't require the full mechanism of
asynchronous I0, it is possible to ask a device to "short-cut" if
possible by setting a flag called QuickIO in the flags byte of
the I0 request block.

The QuickIO flag can be interpreted as telling a device that the
calling program isn't particularly interested in getting a reply
to its message. If a simple device gets an IO request with this
flag set, it will perform the IO as usual, then return with this
flag still set, and without bothering to reply the message. If a
cunning device gets a QuickIO request, it may or may not be able
to satisfy it. 1If it is not currently busy, it will perform the
request immediately, and return with the QuickIO flag still set
and without replying. However, if it is currently busy, it will
have to queue the request to its message port. 1In this case it
will return with the QuickIO flag clear, and later on when the
request has been satisfied it will reply the message, to allow
the calling program to re-use or deallocate the IO request block.
Note that this means that you can't assume that QuickIO will be
successful (even if you are talking to a simple device - someone
might rewrite it!), and must always be prepared to cope with
QuickIO failing, and the device replying your message. (If you
find this too much of a pain, use the Exec routines discussed
below, which handle this for you.)

Exec IO routines

In a few cases (eg when talking to the audio device) you have to
use BeginIO() and AbortIO() directly - this is because these
devices make use of flags which are jumped on by the routines
from Exec. 1In other cases, it makes just as much sense to use
the Exec routines, which are SendIO(), CheckIO(), WaitIO(), and
DoIO(), all of which take a single parameter, which is the
address of an IO request structure. The following details of the
internal workings of these routines are based on version 1.1 (all
right, we admit it, we disassembled the ROM!), but are unlikely
to differ in any externally significant way in version 1.2.

Amiga Devices Page 118

SendIO(), CheckIO(), and WaitIO()

These routines are used for asynchronous IO - exactly what they
do in version 1.1 is as follows:

SendIOo() -

ChecklIO() -

wWaitIo() -

Sends asynchronous IO request. Clears the QuickIO
flag (by blamming zero in the IORequest flags

byte), since you must have a message reply in order
to do asynchronous IO. Then picks up the device base
address from the IORequest, and calls BEGINIO for the
device.

Checks if asynchronous request has completed, and
returns true or false accordingly. First checks for
QuickIO flag still set (ie QuickIO was specified and
succeeded), and if so returns true. Else checks if
type of message has been changed to NT_REPLYMSG, and
if so returns true; else returns false. In the later
case, note that the reply will still need de-queueing
from the reply port - this can be done by calling
WaitIo().

Waits for asynchronous IO request completion, and
returns error code from IORequest block. Internally,
works as follows (version 1.1):

First checks for QuickIO flag still set, and if so
picks up the error code from the IO request block and
exits.

Else picks up the reply port address from the IO
request block, then picks up the corresponding signal
bit number from the reply port.

Then clears the PAULA master interrupt enable (why?)
and increments Exec's interrupt disable count.

Now looks back at the IO request block to see if its
node-type has been changed to NT_REPLYMSG yet - if so
the message has been replied, so it unlinks the reply
from the reply port, decrements the interrupt disable
nesting count and sets PAULA master interrupt enable
if appropriate, picks up the error code and exits.

Otherwise it goes to sleep by calling Exec Wait(),
waiting on the signal bit associated with the reply
port. It then loops back to checking for NT_
REPLYMSG, and exits or waits again accordingly.

Amiga Devices Page 119

DoIO()

This routine is used for simple synchronous IO, without you
having to worry explicitly about messages and ports - its effect
is to perform the IO, then return an error code.

Internally, DoIO first sets the QuickIO flag, since there's no
particular reason for it to wait for a reply to its message. It
then picks up the device base address, and calls BEGINIO; it then
drops straight into WaitIO(), explained above.

References

ROM Kernel Manual Volume 1 contains a useful overview of IO,
though it contains a few minor errors, and isn't very informative
about QuickIO!

ROM Kernel Manual Volume 2 contains a detailed account of all the
devices, including all the nasty non-standard bits. The example
programs are particularly useful. The appendices contain a
summary of all calls to all devices and listings of the .h and .i
files giving the structures used by these calls; updates to these
can be found on the 1.2 'docs' disk.

ROM Kernel Manual Volume 2 also contains an assembly-code listing
for a "skeleton device", which is a '"cunning" device with a task
associated with it. This makes interesting reading.

Mouse and Keyboard Page 120

Mouse & Keyboard

Ten different ways to get user input!

Elementary user input on the Amiga consists of the user pressing
and releasing keys on the keyboard, moving the mouse and pressing
and releasing mouse buttons. The system hardware detects these
actions and system software deals with obtaining data from the
peripheral chips and making these events known to higher-level
system software and application programs in a convenient form.

The significance attached to these elementary events depends
entirely on the context in which they happen. Thus pressing the
left mouse button, moving the mouse and then releasing the left
button may have any of the following effects:-

(1) requesting a disk copy (if the button was pressed with the
pointer on a disk icon and released over another disk icon);

(2) resizing a window (if the button was used to select a sizing
gadget;

(3) moving a window (if the button was used to select a window's
drag bar;

(4) dragging an Intuition Screen up or down (if the button was
used to select a screen's drag bar);

(5) selecting a window for input (if the pointer was inside a
window when the button was pressed);

or a whole range of other possibilities.

Similarly, pressing and releasing the cursor-down key may have a
number of different effects:-

(1) moving the cursor down a character line (eg when using Ed);

(2) moving the Intuition pointer down a raster line (simulated
mouse movement - left Amiga key pressed);

(3) moving the Intuition pointer down by jumps (simulated fast
mouse movement, left Amiga & SHIFT keys pressed);

(4) nothing (eg when inputting to a CLI window);

and so on.

Mouse and Keyboard Page 121

The lowest level of system software handling user input deals
with "raw" input events - that is key presses and releases etc -
without attempting to attach any particular significance to them.
Higher-level system software deals with such matters as
generating an ASCII "a" code when the A key is pressed or an "A"
code when the A key is pressed together with the SHIFT key, or
interpreting a mouse button press as icon or gadget selection.

"Raw" key presses and releases are handled by the keyboard
device, and mouse movement and button presses and releases by the
gameport device (since the mouse is attached to one of the
Amiga's game ports). These deal directly with the hardware and
can be asked by other system software or by application programs
to provide descriptions of '"raw" input events in a standard
format, called an "input event" structure. This contains data on
what kind of event occurred, which key was pressed, etc, and a
time stamp indicating when it happened, together with various
other data. The definition of this structure can be found in the
header file "devices/inputevent.h" for C programs, or in the
include file "devices/inputevent.i" for assembler programs.

"Raw'" keyboard events

The keys on the Amiga keyboard are numbered from 00 to 67 hex.
The values attached to the keys have no relation to ASCII
keycodes, they simply identify which key is being referred to.
The keys can usefully be considered in three groups, classified
by their raw keycode values:-

(1) keycodes 00 to 3F - correspond to ordinary printable’
characters, eg numerals, letters, punctuation characters;

(2) 40 to 5F - special keys, eg backspace, delete, function
keys, HELP key;

(3) 60 to 67 - "qualifier" keys, ie. SHIFT keys, CAPS LOCK, CTRL
key, ALT keys and "Amiga" keys, which generally don't mean
anything on their own but can affect how other keys are
interpreted.

When a key is pressed, the keyboard device generates an input
event of class IECLASS_RAWKEY with appropriate keycode, eg the A
key generates keycode 20 hex. When a key is released, the
keyboard device produces an input event with the appropriate
keycode but with bit 7 set, eg key A being released generates
keycode A0 hex.

The input event also contains a description, as a set of bit
flags, of which of the qualifier keys were down when the key was
pressed or released, so that shifted A can easily be
distinguished from unshifted A, etc.

Mouse and Keyboard Page 122

Application programs may obtain these raw keyboard events
directly from the keyboard device, as described in the ROM Kernel
Manual, using CMD_READ commands (see Figure 1 (a)). This method
is not recommended, since under most circumstances the input
device (as described below) will be active, and it will also be
requesting keyboard events, leading to a situation where some
keyboard events are sent to the application and some to the input
device, resulting in general confusion!

The keyboard device also handles the key combination ALT with
both Amiga keys to produce a reset, and handler code to deal with
clean-up processing before a reset occurs can be added to the
system via the KBD_ADDRESETHANDLER command.

"Raw'" mouse events

Mouse button presses and releases are treated by the gameport
device in the same way as the keyboard device handles key presses
and releases, where the buttons have 'keycodes":

hex 68 - left mouse button
hex 69 - right mouse button
hex 6A - middle mouse button (if you have one)

except that the event class is IECLASS_RAWMOUSE instead of
IECLASS_RAWKEY.

Mouse movements are also reported by using RAWMOUSE events, but
with the value IECODE_NOBUTTON as the "keycode", indicating a
mouse report not involving button press or release. Mouse
position is reported for all mouse events, including button press
& release.

The input device

Unprocessed raw input events are not the most convenient form for
most application programs, so there are various levels of further
system software provided to make life easier for the programmer.
The key to these facilities is the input device. This is a task
which requests raw input events from the keyboard and gameport
devices, together with timer device events to handle key repeat
timimg, etc and also receives notice of disk insertion and
removal. It produces a single chain of input events, including
handling key repeat by producing multiple key pressed events when
keys are held down. Access to this chain of input events is not
achieved by performing CMD_READ commands to the input device (as
you might expect): instead these input events are passed to a
chain of input event handling routines for further processing.

An input event handling routine may do any of the following with
the input event chain:

Mouse and Keyboard Page 123

(1) handle the entire processing of an event and remove the
event from the chain, so that further handlers are not aware
that the event has occurred;

(2) remove an event from the chain, replacing it by another
description of the same event, based on the context in which
the event occurred;

(3) add new events to the chain;

(4) simply pass on an event unprocessed to other handlers (if
any) in the chain.

When Intuition is active, it has an input event handler at high
priority in the chain, and this is often the only handler
present. Intuition's input event handler deals with such things
as:-

(1) recognising mouse button events as system gadget selection
and causing window sizing, dragging, pushing & popping, etc
to happen, then "throwing away" the event;

(2) recognising mouse button events as window selection and re-
directing input to the appropriate task;

(3) handling menu selection;

(4) recognising appropriate keyboard events as simulated mouse
events, including menu short cuts;

(5) converting keyboard events to "cooked" form to produce ASCII
character output.

Other input handling routines may be hooked into the chain by
using the IND ADDHANDLER command to the input device (as shown in
Figure 1(b)). Since the priority of the handler is specified
when it is added to the chain, handlers may be inserted before or
after Intuition.

Key cookery and keymaps

For most purposes one is not interested in every key press and
release, but in which ASCII characters and control sequences are
being generated. The process of converting raw keyboard events
into ASCII data we refer to as key cookery, since it produces
"cooked" keyboard data as the result. The system needs some way
of deciding what ASCII or extended character sequence to
associate with a particular key when pressed with a given
combination of "qualifier" keys such as SHIFT, CTRL and ALT.

This is provided by means of a "keymap'". You may provide your
own custom keymap if you so desire, but there are default keymaps
- for varous different countries - provided for use if you have
no need of your own; these are installed by means of the 1.2
utility program SetMap. The keymap for raw keycodes 00 to 3F hex

Mouse and Keyboard Page 124

(ordinary printable characters) is known as the Low Key Map, and
that for raw keycodes from 40 hex upwards is known as the High
Key Map. For each key with raw keycode in the range 00 to 5F hex
(ie all except the '"qualifier" keys), the keymap contains the

following:-

(1) which of the '"qualifier" keys SHIFT, ALT and CTRL (if any)
affect the "cooked" keycode or sequence produced when the
key is pressed - the possible "key types' are:

NOQUAL

SHIFT

ALT

CTRL

SHIFT+ALT

SHIFT+CTRL

ALT+CTRL

VANILLA

no qualifiers - always generates the same result,
regardless of qualifier keys;

the SHIFT key affects the output, but pressing ALT
or CTRL doesn't make any difference;

the ALT key affects the output, but pressing SHIFT
or CTRL makes no difference;

the CTRL key affects the output, but SHIFT or ALT
have no effect;

there are four possible results, produced by the

key pressed alone, or with SHIFT, or with ALT, or
with both SHIFT & ALT, but it makes no difference
whether the CTRL key is pressed;

there are four possible results, produced by the
different combinations of the SHIFT and CTRL keys,
with the ALT key making no difference;

there are four possible results, produced by the
different combinations of the ALT and CTRL keys,
with the SHIFT key making no difference;

there are up to eight different results, produced
by all possible combinations of the SHIFT, ALT and
CTRL keys.

(2) for each combination of the qualifier keys, what single
character or sequence is generated;

(3) whether the key is "capsable" - ie. ‘does the key generate
its shifted value when pressed with CAPS LOCK active;

(4) whether the Kkey repeats when held down.

For a detailed description of keymaps, see the chapter on the
Console Device in the ROM Kernel Manual.

1 @anbryg

(a)

0ad

(b)

00

(c)

0a

gameport
.device
(unit 0)

~

Application
Program

keyboard
.device

=

:imgr.
device

gameport
.device
(unit 0)

~

keyboard
.device

~

:imgr.
device

gameport
.device
(unit 0)

keyboard
.device

~

N

Application program obtains 'raw'’
input events directly from the
keyboard and gameport devices

input.
device

N

Intuition
input event
handler

N

input.
device

N

Intuition
input event
handler

Application program obtains 'raw' input events by
hooking itself into the input event handler chain
via an IND_ADDHANDLER command to the input device

Application
Program

N—— |

Application program obtains 'raw' or 'cooked' input
by opening an Intuition window and using IDCMPs

Application
Program

pieoqia) pue 3SNORW

GZ1 °beg

(a)

timer.

device

00

gameport
.device
(unit 0)

~

keyboard
.device

(e)

timer.
device

0o

gameport
.device
(unit 0)

keyboard
.device

Figure 1

(contd.)

Application program obtains
by opwening an Intuition window and attaching a
console device then using CMD_READ

-input.
device

N

Intuition

input event

handler

‘raw' or

‘cooked' input

consqle
.device

N

N_—

. 1
Application
Program

Application program obtains 'raw' or 'cooked' input
by opening an AmigaDOS 'RAW:' file & using Read()

input.
device

N

Intuition

input event

handler

=4

console
.device

Application
Program

Mouse and Keyboard Page 127

The default keymap and CSI sequences

Table 1 contains a list of the keycodes generated by the "USAO"
default keymap for all combinations of the three qualifier keys
SHIFT, ALT and CTRL, together with the '"key type" and whether the
key is considered '"capsable'" or '"repeatable". The following
general points are of interest:-

(1) the only keys which don't repeat when held déwn.are ENTER,
RETURN, ESC and HELP;

(2) the letter keys are the only '"capsable'" keys;

(3) all keys in the Low Key Map (raw keycodes 00 to 3F hex) are
of type VANILLA;

(4) the cursor keys, function keys and HELP key generate a
sequence of characters, as does shift-TAB.

All of the multi-character sequences generated start with hex 9B,
known as the Command Sequence Introducer, or CSI, and are of the
form:

<CSI> [parameters separated by semi-colons] [space] <terminator>

non,

where the optional parameters consist of ASCII digits or ;

the space may be present or not, depending on the meaning
of the sequence;

the terminator is a character in the range 40 to 7E hex.
Such CSI sequences are used both as the cooked form of special

keys and also to send commands to the console device.

The console device

A convenient way for application programs to obtain input events
after Intuition, and in a "cooked" form if required, without the
programmer having to write his own input handling routines, is
provided by the console device. This device consists of three
principal elements:-

(1) an input event handler;

(2) conversion routines for doing key "cookery";

(3) output routines, to perform text output, scrolling, cursor
movement, etc in a given window, normally using the standard

character set.

The various ways of using these facilities are detailed below.

Table 1 - Default Key Map

key "Raw" key codes “Cooked" key codes Key
Legend key key key alone with with with with with with With whether whether Legena
press release type SHIFT ALT SHIFT CTRL SHIFT ALT & SHIFT, WLT capsable repeatable
Y ALT 4% CTRL CTRu & CTRL
N 00 Bo VANILLA &0 7E 10 FE 0 1E 80 SE REFERTAELE ~
1 01) VANILLA 3 21 Bl Al 3 21 Bt Al REFERTABLE 1!
le 02 g2 VANILLA 2 40 B2 Co 00 09 80 B0 REFEATREBLE A
R 03 83 VANILLA 3 23 B3 Ad 33 3 B3 A3 REFERTRBLE 3
48 04 B4 VANILLA 34 24 B4 A4 34 24 B4 A4 REFERTABLE 4%
S 09 85 VANILLA 35 p] BS RS 35 25 9 AS REFERTAELE S
6")) VANILLA i SE B DE 13 1E /3 9 REFERTABLE 6"
T 07 87 VANILLA 37 26 B7 R& 3 26 B7 Ab REFEATAHBLE 7%
SR (VT 63 VAHILLA 8 2A 4] R 38 20 B8 AA REFEATABLE 6+
9 09 89 VANILLA 39 28 By Ag 39 28 B9 (] REFEATABLE 9
U 0A 8A VANILLA 3 29 kO A9 0 29 BO Ag REFEATABLE 0
- 0B Bk VANILLA 2 > AD DF IF tF SF 9 REPEATARLE -
=+ 0C BC VANILLA 3D B ED AR 30 ZR ED AB REFEATARLE 2+
(W 00 60 VANILLA i 1C LC FC 1C 1C 9C 9C REPEATABLE v
[undefined]] (E B8t [undef1ined]
hum 0 OF BF VANILLA 0 20 B] 30 0 BO EO REFERTABLE | Nua 0
o 10 90 VANILLA " St Fi b1 11 11 91 9 CAFSABLE REFEATABLE Q
W 11 91 VANILLA n 57 F7 D7 17 17 97 97 CAPSABLE REPEATAMLE W
£ 2 92 VANILLA 65 45 5 5] 0S 05 85 85 .CAPSAKLE REFEATABLE £
R 13 93 VANILLA 2 52 F2 vz 12 2 92 92 CAPSABLE REPERTABLE k
1 14 94 Vil ILLA 74 54 F4 b4 14 14 94 94 CAFSHELE REFEATAELE T
Y 19 S VANILLR 79 39 Fg DY 19 19 99 99 CAPSABLE REPEATAELE Y
U 16 9y VANILLA 7 9 FS S 15 15 9% 95 (AFSARLE REFEATARLE U
1 17 §7 YANILLA &9 49 EY c9 09 09 89 89 CAFSABLE REFERTARLE 1
U 18 98 VANILLA of 4 EF CF OF OF 8F 8F CAFSABLE REFEATARLE 0
F 19 59 VANILLK 0 50 FO Do 10 10 90 90 CAFSABLE REFERTABLE P
[1A 9i4 VANILLA b] DB Fe i 18 98 9k REFEATABLE (<
I 1k Sk VANILLA S 70 uo FD 1D 10 S0 30 REFEATABLE 1)
lundetined]| 1IC SC {ungefined]
Num | 10 50 vANILLA k| 3 KM El M 3| Bl F1 REFEATARLE | Num I
tum 2 1€ 9E VRNILLA 32 32 B2 B2 32 32 B2 B2 REFEATARLE | Nua 2
won 2 1F SF VANILLA 33 3 [N B 3T 32 B3 B REFZRATARLE | Nua 3

pivogqhay pue 3SNOW

gz1 @bed

Table 1 (contd.)

rey “Raw" key codes “Cooked" key codes rey
Legend key key key alone with with with with with with with whether whether Legend
press release type SHIFT ALT SHIFT CTRL SHIFT ALT & SHIFT, ALT capsable repeatable
WALT & CTRL CTRL & CTRL '
A 20 AQ VANILLA 61 41 El C4 01 01 81 81 CAFSABLE REFEATABLE A
S 21 At VANILLA 3 33 F3 D3 13 13 93 93 CAPSABLE . REFEATRBLE : 3
D 22 A2 VANILLA b4 44 E4 c4 04 04 B84 B4 CAFSABLE REFERTHELE D
F 23 A3 VANILLA bb 4b Ed Co 06 04 84 8 CAPSABLE REFEATRELE F
b 24 A4 VANILLA 67 47 E7 c7 a7 07 87 87 CAFSABLE REFEATABLE B
H 25 AS VANILLA 48 48 1] cs 08 08 88 88 CAPSABLE REFEATABLE H
J 26 Ab VANILLA - oA 40 EA cA 0A 0A BA 8A CAPSHELE REFEATRBLE J
3 27 A7 VANILLA 6B 4B EB Cb 0B 0B 88 8B CAPSAELE REFEATABLE K
L 28 AB VANILLA 6C 4C EC cc 0C 0c &6C 8C CAFSABLE REFEATAEBLE L
i 29 AY VANILLA 3B 3A BE Bh 3B A BB BA REFERTBALE H
. 2A AA VANILLA 27 22 A7 A2 27 2 A7 A2 REFERTAELE | . * "
(reserved) | 2B AB [reserved)
(undetinedl| 2C AC [undefinea)
Num 4 20 AD VANILLA 4 34 b4 B4 34 34 B4 B4 REFEATABLE | Num 4
Num 5 2E AE VANILLA 35 35 BS 5 25 35 B3 S REFEATABLE | Num S
Num 6 2F AF VANILLA 16 36 Be ko 6 3 1) B REFEATABLE | Num 6
(reserved) | 30 B0 | reserved)
1 31 kl VANILLA I 5 FA DA 1A 1A 9A 97 CAFSABLE REFEATAELE 1
A 32 Bz VANILLA 78 o8 Fg D8 18 18 98 98 CHFSABLE REFEATABLE X
C 3 B3 VANILLA 63 43 E3 c3 03 03 83 83 CAFSABLE REFEATHBLE C
v 34 B4 VANILLA 74 3% Fé D& 16 14 9% 96 CHFSABLE REFEATARLE v
B 15 ES VANILLA 62 42 E2 Cz 02 02 82 82 CAFSABLE REPEATABLE b
N 36 B VANILLA o€ 4E EE CE U3 0E BE BE CAPSABLE REPEATAELE N
M 3 B7 VANILLA oD 4D ED o 0D 0D 8D 8D CAFSABLE REPEATABLE M
N 38 B8 VANILLA 2C 3 AC BC 2C 3 AC BC REFEATABLE N
. s 39 3] - VANILLA Z 3 AE BE 2E IE AE BE REFEATABLE .7
/7 3A BA VANILLA F 3F RF EF F 3F AF 3 REFEATABLE /7
(undefined])| 3B BB REFEATABLE | (undetined)
Num X EC VANILLA 2 2 AE AE 2 2 AE AE REFEATARLE | Num .
Nus 7 3D BD VANILLA 3 37 B7 B7 37 37 B? B7 REPEATABLE | MNum 7
Num 8 3 BE VANILLA 38 38] K8 8 38 2] B8 REFEATAMLE] MNus 8
Nua 9 3F BF VANILLA M 39 B9 BY 39 39 B9 B9 REFEATABLE

Num 9

pieogkay pue 3SNOKW

621 @bed

Table 1 (contd.)

b ey “Raw" key codes “Cooked" key codes rey
Legend key key key alone with with with with with with with whether whatner Legend
press release type SHIFT ALT SHIFT CTRL SHIFT ALT & SHIFT, ALT capsable repeatable

& ALT & CTRL CTRL & CTRL
Space 40 co ALT 20 20 A0 A0 20 20 A0 A0 REFERTAELE | Seace
Backspace| 41 C1 NOQUAL 08 08 08 08 08 08 08 08 REFEATABLE | Bacrspace
Tab 42 c2 SHIFT 09 9ESA 09 9ESA 09 9R5A 09 9B5A REFEATARLE | Tab
Enter 43 €3 NOQUAL 0D 0D QD oD oD oD 0D oD Enter
Feturn 44 C4 CTRL D 0D 0D (D 0A 08 0A 0A Return
Eec 45 £s ALT 1B 1B 9B 9B 1B 1B 98 9B Esc
Del 46 €6 NOGUAL 7F IF 7F 7F 7F 7F 7F 7F FEFEATAELE | Del
(undefined]| 47 c7 (undefined)
{undefined]| 48 () (undefined)
{undefined]| 49 o (undefined)
Num - 4A CA ALT 2D 2D FF FF 2D 2D FF FF FEFEATAELE | Num -
(urdefined]| 4B CE - | lundefined]
Up 4C cc SHIFT 9B41 9854 9841 9654 9R41 9RS4 9B41 9E54 REFEATAELE | Up
Down 4D cD SHIFT 9842 9E33 9842 9853 9p42 9833 9842 9833 REFEATABLE | Down
Right 4E CE SHIFT 9843 982040 9RA3 9E2040 9BAI 982040 9BAT 982040 REFEATARLE | Right
Left 4 CF SHIFT 9844 982041 9B44 982041 9pB44 982041 9B44 962041 REFEATABLE | Left
F1 50 Do SHIFT 9B307e 9B31307E 9BIOTE 9BIIIOTE 9BIO7E 9BIL1307E 9BIO7E 9B3IL1IOTE REFEATAELE Fi
F2 51 D1 SHIFT 9B317€ 9B3L317E 9BZ17E 9B3I317E 9B317E SBIL3I7E 9BIL7E 9B313I7E REFEATABLE F2
F3 92 2 SHIFT 9R327E 9BI1327E 9BI27E 9BII1327E 9RI27E 9B313I27E 9BI27E 9EII1327E REFEATAELE F3
Fi 53 D3 SHIFT 9B337€ 9B313I3I7E 9BIITE 9BIIIITE 9BII7E 9B313I7E 9B3IITE 9BI1II7E REFEATABLE F4
FS 4 D4 SHIFT 9E347E 9GBI1347E 9BI4TE 9BI1Z4TE 9BA7E 9BII1T4TE 9BIATE 9R3IIIATE REFEATABLE FS
Fs 59 5 SHIFT 9B3S7E 9B31357E 9E3STE 9B313S7E 9EISTE 9B313S7E 9BIS7E 9BIIISTE REPEATABLE Fé
F? 56 D¢ SHIFT 9B347E GEIL1ILTE 9BI67E 9BI1T6TE 9E3ILTE 9BIIIGTE FRILTE 9BIIILTE REFEATABLE F7
F& 57 0?7 SHIFT 9B377€ 9B31377E QBI77E 9B3I377E 9BITIE 9BIIITIE 9B3ITIE 9BILIITIE REPEATABLE F8
Fy 58 D8 SHIFT 9K3B7E 9B313B7E 9E3BTE YB313B7E YBIBTE 9B3IIBTE 9B36TE 9BIIIETE REFEATABLE F9
F10 59 D9 SHIFT 98397 9B31397€ 9B3FTE 9R31I97E 9B3Y7E 9B31397E 9B3ITE 9B3IIVIE REFEATABLE F10
{undetinedl] SA DA {undefined]
{ungetinedl| SB DB Lundefined)
(uroefined]| SC oc {undefined]
(undetined]| SD DD (undefined])
(ungefined]| SE DE {undefined)
help oF oF NOQUAL GRIFFE 9BIFTE 9BIFTE 9YBIFTE 9EIFTE 9BIFIE 9BIFTE 9EIFTE Help

paieogiay pue 9

0€T 9bed

Table 1 (contd.)

Key "Raw" key codes “Cooked" key codes hey
Legend key key key alone with with with with with with with whether whather Legend
press release type SHIFT ALT SHIFT CTRL SHIFT ALT & SHIFT, ALT capsable repeatable

kALT & CTRL CTRL & CTRL
Lett Shift | &0 E0 Left Shift
Right Shift| 6l 3 Right Shift
Caps Lock 62 £2 Caps Lock
Ctrl 63 E3 Ctrl
Left Alt b4 E4 Left Alt
Right Alt 65 ES Right Alt
Lett Amiga | 66 ko Left Amiga
Right Amiga| &7 E7 Right Amiga

pieogda) pue 3SNOW

1¢T @bed

Mouse and Keyboard Page 132

Intuition Direct Communication Message Ports (IDCMPs)

Application programs may obtain input event data by opening an
Intuition window with IDCMP flags set (as in Figure 1(c)).
Intuition's input event handler will then inform the application
of events in which it is interested by sending it IntuiMessages
describing the events. These contain data describing the events
either in "raw" or processed form, in a way similar to that used
by the "input event" structure. Raw mouse button events will be
processed by Intuition's input event handler (to produce '"cooked"
mouse events), and the application will be informed that a gadget
or menu has been selected or whatever.

It is also possible to get keyboard input via IDCMPs, using one
of two flags:-

(1) Setting the RAWKEY IDCMP flag will cause Intuition to inform
you of key presses and releases, using raw keycodes.

(2) Setting the VANILLAKEY IDCMP flag will cause Intuition to
"cook" the keyboard input for you, giving you the data in
ASCII form. To cook the data for you, Intuition makes use
of one of the console device's library functions,
RawKeyConvert(), which uses the current keymap to cook the
raw data. Intuition only provides a single character output
buffer for use by RawKeyConvert(), so keys such as the
function keys, which generate more than one character, will
not be passed on to you by Intuition. Thus you cannot use
this method if you wish to know about cursor keys, function
keys, etc - though you can set the RAWKEY flag then call
RawKeyConvert() yourself (see Appendix 1).

The example program VANILLAKEY shows how to get "cooked" keyboard
input by using the VANILLAKEY IDCMP option. If you run this

program from a CLI and then press keys, you will get the '"cooked"
keycodes in hex displayed in the CLI window. Use CTRL-C to exit.

Using the console device directly

The most powerful and versatile way of handling keyboard input
also requires the most work from the programmer to set it up.
This involves opening an Intuition window and then "attaching" a
console device to it, by using OpenDevice() with an appropriate
IO Request block (see Figure 1(d)). This causes the console
device's input event handler to be linked into the input handler
chain after Intuition, and makes the given window the output
window for the console device. Keyboard (and other) input events
can then be obtained, normally in "cooked" form, by doing
CMD_READs from the console device. Text output, scrolling,
cursor movement, and so on are performed by CMD_WRITE commands to
the console device, as are commands specifying that you want
"raw'" keycodes or other kinds of events to be reported to you.
All special commands to the console use CSI sequences, with the
form described above.

Mouse and Keyboard Page 133

This approach has the following advantages:-

(1) the window can be opened on any screen, with any flags and
whatever system or custom gadgets you may require;

(2) all keys can be obtained in "cooked" form, including cursor
and function keys, etc;

(3) you can supply your own custom keymap and the console device
will give you keyboard data cooked according to your recipe.

The example program CONSOLE illustrates this method. Like the
VANILLAKEY program, it obtains "cooked" data and prints the
values in hex in the CLI window used to invoke it, and exits when
you press CTRL-C. However this program also illustrates the
console device being used for output, and you get the text,
cursor movement, etc that you specify occurring in the output
window.

AmigaDOS '"devices"

The simplest, but most limited, method of getting keyboard input
is to make use of AmigaDOS '"devices" (not to be confused with
Exec devices such as the keyboard, gameport, input and console
devices!!). These are accessed in the same way as AmigaDOS
files, using DOS library calls Open(), Close(), Read(), Write(),
etc, but are distinguished from files by having special names.
Those used for obtaining keyboard input are "RAW:" and '"CON:".
These offer a shortcut method for opening a window and attaching
a console device, but with a number of limitations:-

(1) the window will be opened on the Workbench screen - opening
DOS windows on other screens cannot be done without special
trickery (see the Fish disks);

(2) although the window's title and initial size and position
can be specified, the programmer has no control over the
maximum and minimum size of the window, and the sizing,
push, pop and drag gadgets are always present, but no close
gadget;

(3) no custom gadgets can be attached to the window;

(4) the default keymap (as set by SetMap) is used for key
cookery - it is not possible to use a custom keymap.

There are in fact three ways of obtaining keyboard data with this
method: -

(1) using Open("RAW:..... " ,MODE_NEWFILE) and then Read()ing from
this "device" to obtain "cooked" data - this is illustrated
by the example program DOSRAW (see Figure 1l(e));

Mouse and Keyboard Page 134

(2) using Open("RAW:..... " ,MODE NEWFILE), Write()ing a control
sequence to the "device" asking it to give us '"raw"
keycodes, then Read()ing from the '"device" to obtain '"raw"
keycodes;

(3) using Open("CON:..... " ,MODE_NEWFILE) and then Read()ing from
the "device" to obtain '"cooked'" data a line at a time, with
backspace, etc handled transparently by the "CON:", and
special keys such as cursor and function keys being
suppressed.

The DOSRAW program is an example of using an AmigaDOS "RAW:"
device for keyboard input and text output. It acts just like
CONSOLE program, but involves much less programming effort. Note
that the CONSOLE program has been written to behave as much as
possible like this one: in particular, the maximum and minimum
sizes of the window and the choice of system gadgets used are
those which you always get with AmigaDOS "RAW:" or "CON:"
devices.

Ten different ways to get user input

There are thus at least ten different ways to get user input:-
(1) directly access the keyboard & gameport devices;

(2) hook into the input event handler chain ahead of Intuition,
so that you just get raw input events;

(3) hook into the input event handler chain behind Intuition, so
that you only have to process events not dealt with by
Intuition;

(4) open an Intuition window and use the RAWKEY IDCMP option -
convert these into "cooked" data by using the console.device
RawKeyConvert() function;

(5) open an Intuition window and use the VANILLAKEY IDCMP
option;

(6) open an Intuition window and attach a console device, then
get '"cooked" data;

(7) open an Intuition window and attach a console device, then
get '"raw" data;

(8) open an AmigaDOS "RAW:'" device and select "raw" input
events;

(9) open an AmigaDOS "RAW:" device and get '"cooked" data;

(10) open an AmigaDOS "CON:" device.

Mouse and Keyboard Page 135

Those likely to prove most useful are:-

(4) for applications using IDCMPs for handling gadget selection
and so on, but also requiring use of the keyboard;

(5) for applications using IDCMPs, requiring only limited use of
the keyboard, avoiding the cursor and function keys, etc;

(6) for applications requiring heavy use of console IO, where
AmigaDOS "RAW:" and "CON:'" devices are not sufficient, eg
because you are not working on the Workbench screen;

(9) for applications running on the Workbench screen, with less
programming effort than using method (6);

(10) for inputting lines of text, with little control over
formatting and no need for special keys.

Hopefully, by the time that you've digested the above, you should
be in a position to make up your own mind about how you like your
input events (including whether you prefer your mice raw or
cooked!).

Mouse and Keyboard Page 136

Appendix - More about RawKeyConvert ()

Since the articles above and the examples which follow first
appeared in Kickstart journal, there seems to have developed a
consensus of opinion between Amiga programmers as to what input
methods are generally most worth going for. While there will
always be cases where special methods are required, the following
is probably a good summary of current opinion:

(1) Unless you are doing something pretty trivial, or converting
from a very file-oriented system such as Unix, there is not
much to be said for bothering with the DOS CON: and RAW:
devices.

(2) If you are writing a very text-oriented application where
you want a standard ANSI terminal, open console.device and
handle everything through this, including getting mouse
events etc.

(3) In all other cases, the most versatile method is number (4)
above - use an Intuition IDCMP, and perform any keycode
conversion yourself using console.device RawKeyConvert().

Using RawKeyConvert () is reasonably straightforward. First of
all you have to open a window with non-null IDCMP flags as in the
VANILLAKEY example which follows; however you should set RAWKEY
rather than VANILLAKEY in the IDCMPFlags field of your NewWindow
structure. Next, you need to open console.device with a special
unit number -1, which indicates that you only want to use it as a
library; you need a IOStdReq structure lying around somewhere in
order to do this, but you don't need all the special setting up
of ports etc showed in the CONSOLE example below. Other stuff
you will need are an InputEvent structure initialised as shown
below, and a buffer for storing converted key-codes:

/* global data used by key conversion */
struct Device *ConsoleDevice;

struct IOStdReq ConsoleReq;
struct InputEvent RawKeyEvent = {NULL,IECLASS_RAWKEY,0,0,0};

$define BUFSIZ 10
UBYTE KeyBuffer[BUFSIZ];

The console open is then simply as follows:
if (OpenDevice("console.device",-1,&ConsoleReq,0)) {

/* gone wrong - cope with failure! */
}

ConsoleDevice = ConsoleReq.io_Device; /* used as library
base address */

Youse and Keyboard Page 137
When you get an IDCMP message with class RAWKEY, you can now call
RawKeyConvert() as follows:

struct IntuiMessage *IDCMPMsg;
LONG KeyCodes;

/* (get info from IDCMP in usual way here) */

if (IDCMPMsg->Class == RAWKEY) { /* now process key events */
RawKeyEvent.ie_Code = IDCMPMsg->Code;
RawKeyEvent.ie Qualifier = IDCMPMsg->Qualifier;
RawKeyEvent.ie position.ie_addr = NULL;
KeyCodes = RawKeyConvert (&RawKeyEvent,6 KeyBuffer,BUFSIZ,6NULL);
if (KeyCodes > 0) {

}

/* process key codes from buffer */

}

What is going on here is that we are picking up information from
our IDCMP message and using it to "reconstruct'" a RAWKEY input
event as might be passed to the console device as part of the
input device's chain of event handlers. This is a bit round the
houses, but there you go. We then call RawKeyConvert(); picking
up the library base address from location ConsoleDevice will be
handled by the "stub" routine from amiga.lib in the usual manner.
The value returned - KeyCodes in our example - tells us how many
converted key codes are now available in KeyBuffer. This might
be zero if the raw key event being processed was just shift going
down (say), one if the key hit was an ordinary alphanumeric, more
than one - ie a CSI sequence - if the key was a function key etc
- or minus one if your buffer overflowed!

Note that we are calling RawKeyConvert with a NULL final
parameter, which tells it to use the console device's default
keymap, as set up by the utility program SetMap. Alternatively,
you could pass it the address of your own KeyMap structure.

Finally, note that this procedure needs some minor adjustment if
we want to handle the '"dead keys" now available in some European
keymaps; these are keys which have no visible effect when hit,
but cause the next character output to be modified or accented in
some way. To get this right, we make use of the IAddress field
from our IntuiMessage, by setting up

RawKeyEvent.ie position.ie addr = *((APTR *)IDCMPMsg->IAddress);
before calling RawKeyConvert().

Finally, we must of course close everything down when we exit; in
the case of console.device, this is handled in the normal way, by

CloseDevice(&ConsoleReq);

/¥ mmmm e VANILLAKEY ~—=—=--mmmmmmm e
E:xample of obtaining ‘cooked’ keyboard input by opening
an Intuition window and using IDCMF VANILLAKEY message

#include <exec/types.h:
#include <intuition/intuition.h>

extern AFTR OpenLibrary();
extern VOID Closelibrary();

extern struct Message *WaitPort(),*GetMsg();

extern VOID ReplyMsg();

extern struct Window *#OpenWindow();
extern VOID CloseWindow();

extern VOID printf();

/#x% Variables *##/

AFTR IntuitionBase = NULL;

struct Window #*ConsoleWindow = NULL;

UBYTE HexStringl[3];
UBYTE HexCharll = "(123455789ABCDEF";

/#%% Definitiocn of concole window #%#%/
static struct NewWindow ConNewWindow =

400,30,

200,80,

-1,-1,

VANILLAEEY,

WINDOWDEFTH | WIMDOWDRAG !
i SMART_REFRESH ! ACTIVATE,
NULL,

NULL,

"Console window",

NULL,

NULL ,

120,50,

640,200,

WBENCHSCREEN

3

/# Close window, etc % then exit #/

VOID CleanUpAndExit (}

if (ConsoleWindow !'= NULL)
CloseWindow (ConsoleWindow) §

1¥ (IntuitionRase !'= NULL)
CloselLibrary(IntuitionBase);

Exit (TRUE) ;

.

4
3

WINDOWSIZING

/%

/*

/%

/*

/%

/%

/%
/%
I
/%

/%
/®
/*
/*
/*
/%
/*
/*
/®

Exec library #/

Intuition library #/

Amiga.lib #/

Intuition library base address #/
ptr to console window %/

hex sfring to output */

LeftEdge, TopEdge #/
Width, Height */
DetailFen, ElockFen */
IDCMFFlags #/

Flags */
FirstGadget */
CheckMark */
Title #/
Screen */
BitMap +/
MinWidth,
MaxWidth,
Type */

MinHeight #/
MaxHeight #/

/#¥% Open Intuition window with IDCMF VANILLAKEY input #%#/

VOID Init()

1¥ ((IntuitionBase OpenLibrary("intuition.library”,29)) ==" NULL)

CleanUpAndExit ();

if ((ConsoleWindow = OpenWindow (4&ConNewWindow)) == NULL)
CleanUpAndExit();

return;

M
g

/##% Main program function *#x/

main ()

{
struct IntuiMessage *message; /# pointer to message received #/
ULONG class; /% class of message being processed #/
USHORT code; /# code of message being processed %/
UBYTE c = '\0"; /% current character read from console #/
Init(); /% open Intuition window with VANILLAKEY IDCMF */
do {

WaitFort (ConsoleWindow->UserFort);

while (message = (struct IntuiMessage #) GetMsg(ConsoleWindow-:UserFort)) {

class = mescsaqe-:Class;
code = message-:Code;

FeplyMsg (message)

if (class == VANILLAKEY) £

c = code;
HexStringl0) = HexCharlc >: 41];
HexStringl1] = HexCharlc & QuOF1];

HexStringl2] ‘N0
printf("%s" ,HexString);
3

3
g

3 while (c !'= "\0OZ’);
printf("\n");

CleanUpAndExit () ;

\.
J

/%%% The End #%x/

/¥ ———————= -—- CONSOLE -------———-————mmmm
Example of obtaining ’‘cooked’ keyboard input by opening
an Intuition window and attaching a console device

------------- - - - —— %/
#include <exec/types.h’
#include <intuition/intuition.h>
#include <devices/console.h?
extern AFTR OpenLibrary(); /# Exec library #/
extern LONG OpenDevice();
extern VOID DolIO();
extern VOID CloseDevice(),CloselLibrary();
extern struct MsgFort #*CreateFort(); /% Exec.support library #/
extern struct 10StdReq #CreateStdI0();
extern VOID DeleteFort(),DeleteStdl00);
extern struct Window #OpenWindow(); /# Intuition library #/
extern VOID CloseWindow()
extern VOID printfQ); /% Amiga.lib */
/#%% Variables #%#%/
APTE IntuitionRase = NULL; /# Intuition library base address #/
struct Window *ConsoleWindow = NULL; /% ptr to console window #/
struct MesgFort *ConWrtFort = NULL; /% ptr to console write message port
struct MsgFort *ConReadFort = NULL; /% ptr to console read message port #
struct I0StdReq #ConWrtReq = NULL; /% ptr to console write request block
struct 10StdReq #*ConFeadReq = NULL; /* ptr to console read request block
LONG ConsoleOpen = FALSE; /* flags whether console open #/
#define CONREADBUFLEN 80 /% length of console read buffer */
UBYTE ConReadEuffer{CONREADEUFLEN]; /% concsole read buffer #/
UBYTE HexString[2#CONREADBUFLEN+11; /% hex string to output */
UBYTE HexCharl] = "0123456789ABCDEF";
/#%% Definition of console window #*##/
static struct NewWindow ConNewWindow = {
400,30, /% LeftEdge, TopEdge %/
200,80, /% Width, Height #/
-1,-1, /% Detai1lFen, BlockFen #/
G, /% 1DCMFFlags %/
WINDOWDEFTH | WINDOWDRAG | WINDOWSIZING
' SMART_REFRESH ! ACTIVATE, /% Flags #/
NULL, /% FirstGadget */
NULL, /+ CheckMarlk: */
"Conscle window", /% Title %/
NULL , /% Screen */
NULL, /% BitMap */
120,50, /# MinWidth, MinHeight #*/
640,200, /* MaxWidth, MaxHeight #/

WBRENCHSCREEN /% Type */

3
iy

/+ Close console device, window, etc & then exit #/

VOID CleanUpAndE:it ()

1f (ConsoleOpen)

CloseDevice (ConWrtReq)

if¥ (ConReadReq '= NULL)
DeleteStdI0(ConReadReq) ; '

if (ConWrtReq '= NULL)
DeleteStdI0(ConWrtReq)

if (ConReadFort '=

NULL)

DeleteFort (ConReadFort)

if (ConWrtFort != NULL)
DeleteFort (ConWrtPort);

if (ConsoleWindow != NULL)
CloseWindow(ConsoleWindow) ;

if (Intuitionkase '= NULL)
CloseLibrary{IntuitionBase);

Exit (TRUE) 3§

M
J

/#%% Open Intuition window % attach concole device ###/

VOID Init{)

if ((Intuitionkace

= OpenLibrary("intuition.library",29)) == NULL)

CleanUpAndExit ()

if ((ConsoleWindow

= OpenWindow (&ConNewWindow)) == NULL)

CleanUpAndE:xit ()

if ((ConWrtPort = CreateFort(0,0)) == NULL)
CleanUpAndExit();

if ((ConReadFort =

CreateFort (0,0)) == NULL)

CleanUpAndEx:it();

if ((ConWrtReq = CreateStdIO(ConWrtPort)) == NULL)
CleanUpAndExit ()

if ((ConFeadReq = CreateStdiO(ConReadFort)) == NULL)
CleanUpAndE:x:it ()

ConWrtReq-:io_Data

= (AFTR) ConsoleWindow;

ConWrtReq-:10_Length = sizeof(struct Window);

if (OpenDevice("console.device",0,ConWrtReq,0) '= O
CleanUpAndExit () ;

else

ConsoleOpen = TRUE;

ConReadkeq-.10_Device = ConWrtReq-:10_Device;
ConReadReq->10_Unit = ConWrtReq-: 10_Unit;

return;

3
J

/* Read characters from censole *
(returns number of characters read) #*/

ULONG ReadConsole(buffer,buflen)
STRPTR buffer;
ULOMG buflen;

ConkeadReq-:10_Data = (AFTR) buffer;
ConkFeadReq-:10_Length = buflen;
ConReadReq->:10_Command = CMD_READ:

Dal0(ConReadReq) ; /* wait for character(s) from console #/

return (ConReadReq->10_Actual); /% return number of chars read %/

/+%% Write string of specified length to console ##%/

VOID WrtConsole(string,length)

STRFTR string;

ULONG length;
ConkirtReq-:10_Data = (AFTR) string;
ConWrtReq-:10_Length = length;
ConWrtReq-:>10_Command = CMD_WRITE;

Dol0(ConWrtReq);

M
)

/#%% Main program function #*#/

main ()
ULONG ng /% number of characters read #/
ULONG 13 /# 1ndex to current character in read buffer */
ULONG »; /#% 1ndex to character position in output string #/
UBYTE c3 /% current character read from console */
Init(O); /*% open Intuition window ¥ attach console device #/
do

n = FeadConsole (ConReadBEuffer, CONREADBUFLEN) ;
WrtConsole (ConReadBuffer,n);

for (1 =0,) = 05 1 ny 1++) {
c = ConkFeadBufferl(il;
He:Stringl)++] = He:Charlc > 41;
He:Stringl j++] He:Charlc % 0x0F1;

1)

HerStringl++] = "\0’y
printf("is" HexString);

J owhile (¢ '= "\OOIZ7);

printé("tnyy

ClearUpAndE: 1t ()3

J

/#2+ The End #%%/

e DOSKAW ~~-—--

E:ample of obtaining ‘cooked’ leyboard input by opening

an Am19aD0S “RAW:" file

#include <exec/types.h’
#$include -libraries/dos.h:

e:tern AFTR Open();

extern VOID Close();

extern ULONG Read () ,Write();
extern VOID printf();

/#%% Variables ###/

AFTR ConsoleFile = NULL;

#define CONREADBUFLEN 80
UBYTE ConReadFuf fer E CONREADRUFLEN];

UBYTE He:Stringl2+#CONREADBUFLEN+11];

UBYTE HexCharl(l = "0123456789ABCDEF";

/% Close file & then e:it #/

VOID CleanUpAndE:1t ()
{
1¥ (ConscleFile '= NULL)
Close(ConsoleFile);

Erit(TRUE);

h)
4

/#%% Open Am1gaDOS "FAW: " file ###/

VOID Init(}

kY

/# DOS library #/

/% Amiga.lib =/

/% console file handle #/

/+ length of console read buffer #/
/% console read buffer #/

/% hex string to output #/

if ((ConcoleFile = Open ("RAW:400/30/200/80/Console window",MODE_NEWFILE))

== NULL)
CleanUpAndE:1t () ;

returng

.~

/# Read characters from concole
% (returns number of characters read) %/

ULONG FeadConsole (buffer,buflen)
STREFTR buffer;
ULONG buflen;

Y

return(kead (ConsolefFile,.buffer,buflen));

hY
4

/#%% Yrite ctring of specirfied length to concole ###/

YOID WrtConsole(string,length)
STRETF stringg
ULONGS Tengthyg

WriteiConcoleFile,string, length);

~
4

/#%% Main program function ###/

main ()

{

ULONG n3
ULONG 13
ULONG j3
UBRYTE c;
Init O3

do

/#
/%
/%
/*

/%

number of characters read #/ .
index to current character in read buffer #/
index to character position in output string #/
current character read from console #/

open AmigaDOS "RAW:" file #/

rn = ReadConsole (ConFeadEuffer, CONREADRUFLEN) 3

WrtConscle (CanReadBuffer,n);

for (i = 0, §=05 i< ny ite) {
c = ConReadBufferlil;
He:Stringlj++] = HexCharlc > 41;

He:Stringl j++]

Hex&tringl j++4] =

\O’

He:Charlc & OQu0OF];

3
printf("%s",Hex5tring);

3 while (¢ '= \OOZ)g

\

printf("\n"j;

CleanUphAndE:zit ()

3
J

/e%s The End ##»/

ABC AmigaDOS Page 146

Aspects of AmigaDOS

"Keys" illustration by Paula Dawson.

ABC AmigaDOS Page 147

Section 4 - ABC AmigaDOS

The Technical Reference section of the AmigaDOS Manual is full of
useful information - it is not however an easy read by any
standards! For one thing, the information is densely packed; for
another it uses a lot of technical terms which may or may not be
familiar. This section aims to help by explaining some of the
important terms in a way which is supposed to be illuminating
rather than strictly rigorous. Like AmigaDOS itself, this
section is designed either for random or sequential access - an
alphabetic "key table" is provided, followed by a list of topics,
which have been arranged to make sense when read sequentially.

When reading this section, be particularly wary of the fact that
some important terms such as "libra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>