
D.

The most thorough coverage of

Amiga Disk Drives ever.

Abacu
A Data Becker Book

Amiga Disk Drives:

inside & Out

Grote Gelfland Abraham

////y//////sMy/////&^^

Abacus
A Data Becker Book

First Printing, November 1988

Printed in U.S.A.

Copyright © 1987, 1988 Data Becker GmbH

MerowingerstraBe 30

4000 Dusseldorf, West Germany

Copyright © 1988 Abacus

5370 52nd Street SE

Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise without the prior written permission of Abacus Software or Data
Becker GmbH.

Every effort has been made to ensure complete and accurate information concerning the

material presented in this book. However, Abacus Software can neither guarantee nor be

held legally responsible for any mistakes in printing or faulty instructions contained in this

book. The authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC and MS-DOS are trademarks or registered trademarks of Microsoft

Corporation. Amiga 500, Amiga 1000, Amiga 2000, Graphicraft, Musicraft, Sidecar and

Textcraft are trademarks or registered trademarks of Commodore-Amiga Inc.

ISBN 1-55755-042-5

Table of Contents

1. Introduction 1

1.1 The disk 4

1.2 Suggestions about this book 6

2. Workbench disk drive functions 7
2.1 Copying single files 10

2.2 Deleting files 12

2.2.1 Deletion protection for files 12

2.2.2 Autostarting a Project 13

2.3 Tips & Tricks for the Workbench 15

3. The CLI 17

3.1 The CLI's capabilities 20
3.1.1 Starting disks with Install 20
3.1.2 Info 21

3.1.3 Protecting files 21
3.1.4 The DiskDoctor 23

3.1.5 AddBuffers 24

3.1.6 Using the RAM disk with the CLI 24
3.1.7 Path 27

3.1.8 DiskChange 27

3.1.9 Assign 28

3.2 Interactive directory 30

3.3 Tips & Tricks for the CLI 32

4. Programming in BASIC 33
4.1 LOAD, SAVE and Co 36

4.2 Files in AmigaBASIC 38

4.2.1 File types in AmigaBASIC 38

4.2.2 A sequential file is created 38

4.2.3 Enlarging a sequential file 41

4.2.4 A Random access file 43

4.2.5 Mini Data-The complete project 45
4.3 Instructions for Mini Data 58

4.4 AmigaBASIC improvements 60

4.5 Reading a directoiy from BASIC 62
4.6 MERGE 64

5. AmigaDOS 67

5.1 BCPL-variables under AmigaDOS 70

5.2 Internal organization of AmigaDOS 71

5.3 The functions of AmigaDOS 75
5.4 DOS functions 78

5.4.1 General Input/Output functions 78
5.4.2 Disk operations 81

Hi

5.4.3 Process processing 86

5.5 DOS error messages 89

6. File Control 93

6.1 The disk monitor 96

6.1.1 The commands of the monitor 96

6.2 The various block types 98

6.2.1 The boot block 98

6.2.2 The calculation of the user's boot checksum 100

6.2.3 The root block 110

6.2.4 The user directory blocks 112

6.2.5 The File header block 112

6.2.6 The File list block 113

6.2.7 The Data block 113

6.2.8 The calculation of the checksum 114

6.3 Connections between the blocks 115

6.4 The hash calculation 117

6.5 The bitmap 118

7. Viruses 125

7.1 Boot block viruses 128

7.2 Virus rumors 130

7.3 Protection against viruses 131

8. The Trackdisk device 133

8.1 Divisions of a disk 136

8.2 Devices and their applications 137

8.3 Sending commands 142

8.3.1 The commands in overview 147

8.3.2 The extended commands 152

8.4 The Trackdisk structures 154

8.4.1 The Device structure 154

8.4.2 The Port structure 155

8.4.3 The Resource structure 157

8.5 The internal processing of command parameters 159

8.5.1 The DoIO function 159

8.5.2 The BeginIO function 160

8.5.3 The Trackdisk task 161

8.5.4 Differentiating the commands 164

8.6 The RAW commands 166

9. Accessing the disk without DOS 171

9.1 The recording format on the disk 174

9.2 The MFM and GCR formats 175

9.2.1 The MFM format 175

9.2.2 The GCR format 176

9.3 Construction of a track 178

9.3.1 Construction of block headers 178

9.3.2 Construction of the data block 180

9.3.3 The calculation of checksums 180

9.3.4 How is a track coded? 181

IV

9.3.5 Decoding a track 191

9.4 The disk registers 194

9.4.1 The Drive Status register 194

9.4.2 The Drive Select register 195

9.4.3 The Disk LEN and Disk Pointer register 197

9.4.4 The Disk Byte Read register 198

9.4.5 The ADKCON and ADKCONR registers 198
9.4.6 The Disk Sync register 200

9.4.7 The DSKDAT registers 200

9.5 Reading a track 201

9.6 Writing a track to disk 211

9.7 The disk interrupts 215

Appendices 217

Appendix A The Diskmon program 219

Appendix B The Drive Accelerator 240

Appendix C The DeepCopy Program 260

Index 343

Preface

The disk drive is an important part of the Amiga. Disk drives let you

store data for later recall. Whether it's an address file, monthly expenses

or a letter, you can save the data to a disk and load it back into memory

later.

This book will help you understand what disk drives are and how they

work. Whatever your level of knowledge as an Amiga user, Amiga

Disk Drives Inside and Out gives you the information you need

about Amiga disk drives.

This book contains descriptions of the disk drive operations used in

AmigaBASIC, the Workbench and the CLI (Command Line Interface).

In addition, you'll find information about direct access (programming

the hardware and the operating system). Finally this book offers know-

how about speeding up disk drive access, and a powerful disk copying

program.

We feel that this book and the programs included will supply the reader

with a good working knowledge of the Amiga disk drive.

The Authors

Introduction

Abacus 1. Introduction

Introduction

Disk drives just didn't exist on Commodore's earlier computers (e.g.,

PET, VIC-20). Datasettes (cassette recorders) were the mass storage

devices in these older machines; data was saved and loaded on standard

audio cassettes. Disk drive interfaces became common in the later

Commodore computers, but cassette interfaces still existed.

The old days are gone: Cassettes are too slow for data access on a

68000-based computer. The disk drive plays the central role in data

storage on the Amiga. Every Amiga comes from the factory equipped

with an internal disk drive. The disk drive is such a necessary piece of

hardware that you can't get your Amiga started without inserting the

Workbench disk.

We chose to keep this chapter as short as possible, so that you can get

on to the main material of this book quickly. You should already be

familiar with the basic concepts of using disks, even if that.only

consists of knowing how to insert the Workbench disk. See your

Amiga manual or read Abacus' Amiga for Beginners for

information about using your disk drive.

1. Introduction Amiga disk drives inside and out

1.1 The disk

Disks are the storage medium used by disk drives. Without a disk, a

disk drive is totally useless. The Amiga uses a 3.5 inch floppy disk.

Disks of this size have been on the market for some time, but have

only become popular in the last few years. IBM, Atari and Apple are

just a few companies using 3.5 inch disks for data storage. The standard

disk size for older home computers is the 5.25 inch floppy disk.

There is no one standard storage capacity for 3.5 inch disks. Each

computer manufacturer uses his own method for storing information, so

disk capacity varies from machine to machine.

The disk drives used in the Amiga have two read/write heads. Each head

accesses a side of a disk. Commodore recommends that you purchase

2DD disks only. The 2 stands for "double-sided," the DD for "double-

density." Double-sided double-density disks are sturdier than 1DD

(single-sided double-density) disks.

If you use a 1DD disk, an error can occur on the second side of the disk

during disk access or even during formatting. Manufacturers don't test

the "B side" of 1DD disks for hardware errors. This is why 1DD disks

are less expensive.

The solution: Spend the extra money for double-sided double-density

disks. Don't use single-sided, double-density disks—you could lose
data.

Formatting Before an Amiga (or any computer) can use a disk for storing data, the

disk must be formatted. This process prepares a disk for receiving

information. Formatting converts the disk's magnetic media into the
order specified by the computer's operating system.

The Amiga operating system (AmigaDOS) formats each side of a disk

into 80 tracks of fixed width. These tracks appear in concentric circles

around the center of the disk. Each track of each side in combination

(e.g., track 1 top and track 1 bottom) is called a cylinder.

Each track can be divided into 11 sectors. Every sector can store 512

bytes (512 characters). If you multiply the values presented here, you'll

find that an Amiga disk can hold about 880K:

2 Read/Write heads multiplied by

80 Tracks per head multiplied by

11 Sectors per track multiplied by

512 Bytes per sector

= 901,120 bytes (1 character = 1 byte)

Abacus 1.1 The disk

Since IK corresponds to 1,024 bytes, dividing 901,120 bytes by 1,024

gives us 880K. To this figure we must add another 28K for directories

and the File Allocation Table (FAT). A 3.5 inch Amiga format disk can

easily hold 180 typewritten pages, or more than 900,000 characters.

With a such a large storage capacity, data organization becomes very

important AmigaDOS lets you store data under specific names on the

disk. To keep the data better organized, this data can be placed in

different disk areas allocated for a set of files.

Files A collection of data is called a file. The Amiga has a number of

different file types. For example, a Tool or program file is an

executable program. The Notepad on the Workbench generates a Project

(text) file which requires a Tool for access (i.e., the Notepad). The term

file is a generic term for data. It can be used interchangeably for

referring to programs, text files, BASIC programs and more.

1. Introduction Amiga disk drives inside and out

1.2 Suggestions about this book

We have a few suggestions that will help make your work in disk

access easier and more enjoyable. We felt that we should mention these

suggestions now, before you read any further.

Make a backup copy of any disks you plan to use during the course of

this book. This includes the Workbench disk and Extras disk. Disk

access commands in this book should only be performed on a backup

disk, even if the command looks harmless. This is to avoid any

accidents. One incorrectly typed program line can destroy a disk. You

can make backup disks using the DiskCopy command in the CLI or

the Duplicate item in the Workbench menu. When done making

backups, store the original disks in a dust-free, non-magnetic place for

safekeeping.

Make a backup copy of the optional disk for this book if you bought

this disk. Copy this disk and store the original disk in a safe place.

Files which belong together on the disk have been assigned to drawers.

For example, look in the drawer named CH4 for any programs that are

listed in Chapter 4. The programs listed in the appendices of this book

are located in the drawer named Assembler, since they are assembly

language programs.

2.

Workbench c

drive functic

lisk

HIS

Abacus 2. Workbench disk drive functions

2 . Workbench disk drive

functions

The Amiga disk operating system (AmigaDOS) handles the

Workbench's disk functions. An interface between the user and the

machine is needed to convey disk commands to AmigaDOS.

When you first turn the Amiga on, it doesn't recognize mouse

movement or keyboard access. The Workbench disk which comes

equipped with every Amiga establishes that communication between the

Amiga and user. After the Workbench loads you can perform disk

operations using the mouse and pulldown menus. These menus and the

mouse make computing very easy for the new user.

The Workbench has some disadvantages which should be mentioned.

The worst is that you usually can't see every filename on the disk from

the Workbench, because of unavailable graphic information. However,

the Workbench is a reliable user interface, and many Amiga users don't

use anything else (see Chapter 3 for an alternate interface).

2. Workbench disk drive functions Amiga disk drives inside and out

2.1 Copying single files

Every Amiga user with only 512K of memory and a single drive knows

how bothersome and time consuming it can be to copy a single file to
another disk.

You drag the program icon of the file to be copied into the window or

onto the icon of the destination disk. You'll have to change disks at

least four times, depending on the size of the program. As everyone

knows, frequent disk switching is hard on both the operator and the disk
drive.

One alternative would be to buy an external disk drive. This is fine, but
costs money. You could just put up with the disk switching, but it can

get very inconvenient.

The RAM disk There's a better way to copy files quickly and easily: Use the Amiga's
RAM (Random Access Memory). You can set aside a section of

memory to act as a fake disk drive. This imitation disk drive is called a

RAM disk. A RAM disk works much faster than an internal or external

mechanical drive. Of course even the RAM disk has a disadvantage: As
soon as you turn the computer off, all data stored in the RAM disk at

the time is erased forever. If you reset the Amiga by pressing

<CtrlxCommodorexAmiga> or <Ctrl> left<Amiga> right<Amiga>
(depending on the Amiga model), this also destroys any data in the

RAM disk. As long as the Amiga is under power and hasn't been reset,

the RAM disk information is as safe as if it were on a disk. You should
make a point of saving RAM disk data to a floppy or hard disk
occasionally.

The RAM disk's capacity changes with the amount of data it contains.
This is limited by the amount of memory available, unlike the floppy
disk which can hold 880K. If you have memory expansion in your

Amiga, the RAM disk can store more data. There's no absolute limit to
the RAM disk's capacity. However, the Workbench always states that
the RAM disk is full, even if you only store one byte in it.

If you already see a RAM disk icon on your Workbench screen, skip to
the paragraph entitled Copying with the RAM disk on the next page.

The RAM disk isn't installed directly in some versions of the
Workbench. We'll have to enter the CLI to create the RAM disk (more

on the CLI in Chapter 3). Double click the CLI icon to open it (the
program is normally in the System directory on the Workbench disk).

Some versions of the Workbench let you hide the CLI using
Preferences. If the CLI icon cannot be found, double click the
Preferences icon. When the Preferences screen appears enable the CLI.

10

Abacus 2.1 Copying single files

Click the Save gadget to save this data. Open the System drawer. The

System window should display the CLI icon.

After starting the CLI, a window appears displaying the prompt (1>).

Enter the following command sequence, pressing the <Return> key at

the end of each line:

1> dir ram:<Return>

1> endcli<Return>

The dir ram: command calls the directory of the RAM disk. Since no

RAM disk exists yet, AmigaDOS creates a RAM disk and displays a

RAM disk icon on the Workbench screen. The Endcli command

terminates the CLI, closes the window and returns to the Workbench

screen. The RAM disk icon appears on the screen.

Copying with To copy single files using the RAM disk, try this example. Look for

the RAM disk the Clock icon (it may be in the Utilities drawer in some versions of
the Workbench). Drag the Clock icon from the Workbench window to

the RAM disk icon. The pointer changes to a wait pointer. The drive

runs for a moment, then the wait pointer changes into the normal

mouse pointer. Double click the RAM disk icon and you'll find the

Clock icon inside. Now insert a disk in the internal drive and wait for

its icon to appear. Drag the clock from the RAM disk window to the

icon of the newly inserted disk. The Clock program moves to the disk

in the internal drive.

To free up storage space in RAM select the Clock icon in the RAM

disk and select the Discard item from the Workbench menu. A requester

appears. Click on the OK to discard gadget to delete the clock from the

RAM disk.

11

2. Workbench disk drive functions Amiga disk drives inside and out

2.2 Deleting files

The Workbench has two ways of deleting files from the disk. One

method is to click the selected file icon then select the Discard item

from the Workbench menu. A requester appears to tell you "Warning:
you cannot get back what you discard." If you click on the OK to

discard gadget, the Workbench deletes the selected file from the disk.

Empty Trash The second method consists of dragging the icon of the file to be deleted
to the Trashcan icon. The file disappears from the screen. The program

still exists; you've moved it to the Trashcan, which stores files like a
drawer. Selecting the Empty Trash item from the Disk menu actually

removes the files from the Trashcan. The advantage of this over the

Discard item is that files which you accidentally moved to the Trashcan

can be recovered from the Trashcan as long as you haven't selected

Empty Trash. The Empty Trash item releases the memory area the files
occupied on the disk.

2.2.1 Deletion protection for files

There are some features which prevent the deletion of data and

programs. Select the icon of the Clock program with a single click.

Now select the Info item from the Workbench menu. After the drive

finishes running, an Info window appears on the screen. The Info

window has a number of gadgets in it The two string gadgets in the

upper part of the window display the name and object type of the file.

The Amiga currently has five object types:

Tvpe

Disk

Garbage

Drawer

Tool

Prefect

Sample Object

Workbench disk

Trashcan

System directory

Notepad

Notepad

The object type determines whether additional indications appear in this

string gadget. For example, Garbage or Drawer object types need no

additional information. Disk object types require information such as

total capacity, the number of blocks already occupied and the number of

blocks still available, and the difference of the two numbers. Finally

block size information appears: "Bytes per Block 512". Block capacity

corresponds to a sector on disk.

12

Abacus 2.2 Deleting files

Status A Status field appears at the upper right of the Info window. The word

Deleteable indicates that the file whose Info window currently displayed

can be deleted from the Workbench. Place the mouse pointer on the

gadget currently containing the word Deleteable and click once. The

display changes to Not Deleteable. Now you can't delete this file from

the disk using the methods described above. Click the Save gadget to

make the clock undeleteable and exit the Info window.

Select the Clock icon and then select the Discard item from the

Workbench menu. The requester appears; click on the OK to discard

gadget. After the drive runs, the Workbench title bar displays the

message "Error while removing clock:222." You can't delete the clock

until you change the status back to Deleteable.

2.2.2 Autostarting a Project

Default Tool

Project (text or program code) icons can be copied back and forth on the

Workbench screen. You can also execute a Project by double clicking

its icon. The Project itself is not an executable program: It needs its

corresponding Tool (main program) to execute. When you double click

a Project, the Workbench looks for the Tool used to create the project

When the Workbench finds the Tool, it loads and executes the Tool

then loads the Project into memory. If the Project is program code

(e.g., AmigaBASIC) the Project executes.

How does the Workbench know which Tool created the Project? Create

a short document (Project) using your Notepad (it's in the Utilities

drawer of your Workbench disk). Save the Project and quit the Notepad.

Close and reopen the Utilities drawer. Click on the Project's icon and

select the Info item from the Workbench menu. The Info window

appears.

The Default Tool string gadget contains the entry "sys:Utilities/

Notepad". This means that the Notepad Tool was used to create this

Project and can be found on the system disk (the disk with which you

started your system) in the Utilities drawer. If you close the Info

window and double click this Project, the Amiga checks to see if there

is a Default Tool entry available. If this entry exists, the Amiga

searches for the Default Tool, loads the Default Tool and loads the

Project as well.

This autostarting capability can be useful with word processing

programs or AmigaBASIC. Double clicking a Project is much easier

than double clicking the Tool, waiting for the Tool to load, then double

clicking or loading the Project.

13

2. Workbench disk drive functions Amiga disk drives inside and out

There are two other ways of accessing a Project and its Tool. Try each
example using the Project you created above using the Notepad:

1. Click once on the Project icon you created from the Notepad.

Press and hold a <Shift> key and double-click on the Notepad
icon.

2. Press and hold a <Shift> key. Click once on the Project icon
you created from the Notepad. Click once on the Notepad icon.

Release the <Shift> key; both objects should be highlighted.
Select the Open item from the Workbench menu.

These last two options also work when no entry exists in the Default
Tool string gadget. This lets you load files created by another word

processing program directly into the Notepad, without changing the
Default Tool string gadget

Tool Types The Tool Types string gadget describes information which
automatically passes to the indicated Tool. The Notepad Tool Types

gadget lists the names of the font files loaded in while the Project loads.

Unfortunately, you can't change Tool Types in non-Notepad Projects.

14

Abacus 13 Tips & Tricks for the Workbench

2.3 Tips & Tricks for the

Workbench

Selecting

multiple files

Keyboard

shortcuts

The following are some tips and tricks which make working with the

Workbench much easier on the user.

Multi selection is of the best features on the Workbench. For example,

if you want to delete a whole series of programs from a disk, press and

hold a <Shift> key while clicking on every file icon you want deleted.

Select the Discard item from the Workbench menu to delete all the

highlighted file icons.

Multi selection can also be used to copy multiple files onto another

disk.

You actually don't use the mouse much when running a word processor

or the CLI. However, if a requester appears, you must switch to the

mouse to click on one of the gadgets.

You don't have to reach for the mouse. You can actually select requester

gadgets from the keyboard. Pressing the key combination

<Commodorexv> (or left <Amiga><v>) corresponds to the selection

of the Retry gadget with the mouse. The key combination

<Commodorexb> (or left <Amiga>) activates the Cancel gadget

15

3.

The CLI

Abacus 3. The CLI

3. The CLI

The Command Line Interface (CLI) is another method of communicat

ing with AmigaDOS. The CLI is much more powerful than the

Workbench. It is also much more difficult to use than the Workbench.

You must learn specific commands and command syntax. The CLi's

access isn't as easy as selecting a menu item or double clicking an icon.

Maybe the CLI seems like a throwback to the early days of home

computing. Not true: The CLI is part of the Amiga's true power,

especially in multitasking.

The Workbench only allows very limited multitasking. For example, if

you format a disk using the Initialize item from the Disk menu, the

computer remains unavailable for any other tasks. However, using the

CLI lets you format a disk while printing a document and writing a

new document, all at the same time. The more you learn about the

CLI, the less you'll probably use the Workbench.

19

3. The CLI Amiga disk drives inside and out

3.1 The CLI's capabilities

To begin learning the CLI boot (start) the Amiga. Insert the

Workbench disk. If the power's off, turn on the Amiga. If the power is

already on; press <Ctrl> <Commodore> right <Amiga> (or <Ctrl> left

<Amiga> right <Amiga>) to reset the computer. When the Workbench

finishes loading, open the Workbench disk, then the System drawer.

Double click on the CLI icon.

Only disk specific CLI commands appear in this chapter. Other

commands mentioned earlier will not be repeated here (e.g., DiskCopy).

3.1.1 Starting disks with Install

During power-up, the Amiga automatically loads the Workbench when

you insert the Workbench disk. If you insert a non-Workbench disk, the

Amiga hand icon stays on the screen. The Amiga checks the boot sector

of the inserted disk for information that indicates a boot disk. If this

information doesn't exist, the Amiga displays the hand icon until you

insert a Workbench or other bootable disk.

The Install command creates a bootable disk. It writes the information

required by AmigaDOS into the boot sector, making the disk bootable.

The Install syntax is as follows:

1> install DRIVE

"Drive" must be replaced with the drive specifier in which the disk is

located. The following makes the disk in the internal drive bootable:

1> install dfO:

You can use the Install command on a newly formatted disk which

doesn't contain any files. However, if you reset the Amiga with this

disk in the internal drive, the booting process is not completed

properly. For example, only 60 characters fit into a display line. Also,

the normal commands are available. This occurs because there are files

missing from the disk. See Section 3.2 for the minimum files required
for booting the Amiga.

20

Abacus 3.1 The CLI's capabilities

3.1.2 Info

Don't worry if during a save process the requester appears with the

"Disk Full" message, it is not a serious problem. You can insert a new

disk and repeat the save process. Some programs, however, are very

sensitive to a disk with too little storage space. You might get a "Guru

Meditation" and lose all data in RAM. You should check disk space

when using these types of programs. The CLI Info command displays a

list similar to this:

Mounted disks:

Unit

dfO:

Size Used

880K 1683

Free

75

Full

95%

Errs

0

Status

Read/Write

Name

Workbench

Volumes available:

Workbench [Mounted]

The "Mounted disks" heading contains information about the drives

connected to the Amiga. The example above lists the contents of the

internal drive (dfO:) only. This information includes the disk size

(880K); the number of blocks used (1683); the number of disk blocks

unused (75). In addition you'll find the percentage of the disk full

(95%); the number of defective blocks (Errs=0); the write protect status

of the disk (Read/Write); and the disk's name (Workbench).

About Status If the write protect on the disk is open, Info displays Read status (you

can only read from the disk). If die write protect clip of the disk covers

the opening, Info displays Read/Write status (you can read, write and

delete disk files).

The "Volumes available" heading lists the names of the disks currently

recognized by AmigaDOS. An additional [Mounted] indicates that this

disk is currently available for access.

3.1-3 Protecting files

When you want a file protected against accidental deletion from the

Workbench, you should select the Not Deleteable gadget from the Info

window. The CLI performs the same function using the Protect

command. The syntax of the command is:

1> protect [Filename] [Status]

21

3. The CLI Amiga disk drives inside and out

Enter the name of the file to be protected for "Filename" and to which
the information in "Status" applies. The best explanation is through
another practical example using the Workbench clock:

1> protect clock rwed

Each of the four letters rwed stands for a special file attribute:

rwed r The file can be read by the program.

w The file can be written to by the program.

e The file can be started with execute.

d The file can be deleted.

Unfortunately AmigaDOS in this case plays a little joke by ignoring
the three flags besides the Delete flag (the d). This may be upsetting,
but true. An example:

1> protect clock

This input protects the Workbench clock from accidental deletion since

the Delete flag was not set. The remaining three flags are of no concern

since they are not considered by DOS. The command:

1> protect clock rwe-

delivers the same result. Of course the status set in the CLI can be read.

The List command displays the file's status. Here's the default status of
the clock as displayed by the List command:

1> list dfO:

clock 18000 rwed 07-Oct-86 15:27:27

Note that the information displayed includes the filename, the flags, the

creation date and time. This example shows that all four flags are set

You can delete the Clock program in this state. The following input

disables the delete status:

1> protect clock rwe-

Entering List again displays the following line for the clock:

clock 18000 rwe- 07-Oct-86 15:27:27

The file cannot be erased on the disk from either the Workbench or
CLI.

The date and time items will only be correct if you set the current date

and time in Preferences before saving or copying, or if the Amiga is

equipped with a battery backed realtime clock.

22

Abacus 3.1 The CLI's capabilities

3.1.4 The DiskDoctor

The 3.5 inch disks protect themselves quite well against the outside

world (dust, fingerprints, etc.). However, the Amiga can't decode disk

data sometimes. In that case, the Amiga displays a requester indicating

the error on the disk (e.g., disk structure corrupt). Another requester

suggests that you use the DiskDoctor to fix the disk structure.

The The DiskDoctor is a small program which can only be called from the

DiskDoctor CLI. This program doesn't perform miracles. It can provide a valid

structure for a disk. It may also be able to rescue most of your corrupted

disk data. This is possible thanks to the high redundancy (repetition)

rate of information on one disk. For example, if damage occurs on track

18 of a Commodore 1541 format disk, both the directory and the file

pointers are lost. AmigaDOS spreads directory information over the

entire disk so that an extreme loss of data cannot occur quickly. The

result is slow directory output since the read/write heads must travel

back and forth to collect the desired information. The syntax of the

DiskDoctor command is:

1> diskdoctor [drive]

The drive number for any connected 3.5 inch drive can be used (e.g.,

dfO:).

At the prompt, insert the disk into the drive and press the <Return>

key. The Doctor goes to work. First the program reads the file

information sequentially from each cylinder. During this time DOS

determines the locations of hard errors and tells the user the track

number and side number:

Hard error Track 29 Surface 0

Hard error A hard error can occur from mechanical defects (scratches, dirt, etc.) or

from errors in the track formatting. A simple formatting procedure may

be all it takes to make the disk useful again. Allow the DiskDoctor to

finish its examination.

During the second run, the DiskDoctor displays the names of all files

and directories readable from AmigaDOS. The screen displays what the

DiskDoctor is doing with the file (Replacing/Inserting file/dir xxx).

Badly damaged files are removed automatically, as seen in the line

below:

Attention: Some file in directory xxx is unreadable and

has been deleted

If a file contains data which are only partially unreadable, the file

remains on the disk but a warning appears:

23

3. The CLI Amiga disk drives inside and out

Warning: File xxx contains unreadable Data

Finally the DiskDoctor asks if you want the defective files deleted from
the directories:

Delete corrupt files in dir xxx ?

If you have worked with a disk monitor, some items can be rescued.
Otherwise it may be best to remove the defective files.

The last message of the DiskDoctor asks the user to copy all saved files

to a new disk and format the disk which was processed by the

DiskDoctor. The formatting routine determines whether the hard errors
that occurred can be removed.

3.1.5 AddBuffers

The Amiga allocates a 25K memory buffer for each connected disk

drive. This area acts as interim storage between the disk drive and the

Amiga. All data sent from the disk first goes to the buffer before being

processed in memory. Sometimes when you enter the Info command for

the first time, the Amiga loads information from the disk. If you enter

Info again, disk access may not take place, since the data required is still
in the buffer.

The size of this buffer can be increased using the AddBuffers command.

Since system memory decreases when you increase buffer size, you

should be careful in your buffer allocation. You have a choice: Big
buffer or high speed.

Here's a sample call:

1> AddBuffers dfO: 20

The above call assigns drive dfO: 20 blocks (=10K) more of buffer

memory. Individual programs which are called sequentially (e.g., CLI

commands) and whose sizes don't exceed 10K can be retained in

memory without disk access. This remains in effect until another disk

access overwrites the commands in the buffer.

3.1.6 Using the RAM disk with the CLI

CLI users who have only one drive may find it a nuisance that the CLI

can only read its commands from the Workbench disk. If you want to

24

Abacus 3.1 The CLFs capabilities

examine the directory of any other disk with the dir command, the

Amiga requests the Workbench disk. The reason for this phenomenon is

simple: All CLI commands are nothing more than short programs

normally stored on the Workbench disk. If you insert another disk in

the internal drive, the Amiga cannot execute the CLI command dir dfO:.
It demands the Workbench disk. If you answer the request, the CLI

displays the Workbench disk's directory instead of the desired directory.
Some tricks can help here. If you only want to read the directory of the
foreign disk once, enter the following command while the Workbench
disk is in the drive:

dir ?

The Dir command loads without executing. Instead a line appears on the

display which contains information about the correct syntax of the Dir
command. This line of syntax is called the argument template:

DIR,OPT/K:

The cursor waits for input Remove the Workbench disk and insert the

disk you want to view. Enter dfO: and press <Return>. The CLI

displays this directory. This method of using the question mark can be
applied to all CLI commands.

There are other ways of applying CLI commands to other disks. The

RAM disk can help. Reset the Amiga, open the CLI and enter the
following lines:

1> cd dfO:

1> makedir ram:c

1> copy c: to ram:c all

1> assign c: ram:c

This set of commands copies all the CLI commands to the RAM disk

and makes the RAM disk the drive to search for these commands.

Problem: If you use the above four commands on an Amiga with 512K

RAM, you won't have much RAM left. In fact, you won't be able to

load any large programs. The solution: Copy only those commands you

think you'll need to the RAM disk. Reset the Amiga, open the CLI
and enter the following lines:

1> makedir ram:c

1> copy c/dir to ram:c

1> copy c/list to ram:c

1> copy c/cd to ram:c

1> copy c/copy to ramie

1> copy c/delete to ram:c

1> copy c/type to ramrc

assign c: ram:c

25

3. The CLI Amiga disk drives inside and out

Replace the above periods with other commands you want copied into

the RAM disk. The commands above show the most often used CLI

commands. Commands used less frequently only occupy a little

memory—these can be loaded from the Workbench disk into the RAM

disk at any time. Insert the Workbench disk in the internal disk drive

and enter the following command sequence:

1> copy dfO:c/[CLI-command-desired] to ram:c

Typing these commands every time you start your Amiga takes time

and can get to be boring. Instead you can put the commands into a

scriptfile and use the script file to create the CLl-based RAM disk.

Script files A script file is a normal text file which can be created by any word

processing program. It contains a series of CLI commands which are

executed in sequence. You start a script file by entering the Execute

command, followed by the script file's name. This saves typing the

input for often used CLI command sequences such as RAM disk

installation. The startup sequence which executes immediately after

booting the Amiga is really a script file.

You can create a script file with any word processing program that can

save data as an ASCII file (e.g., BeckerText). The editor ED contained

in the C directory of the Workbench disk is all you need to write a

script file. Call ED by entering:

1> ed [Filename]

Let's create the RAM disk routine as a script file. Enter:

1> ed ram-disk

Enter the CLI commands listed above for creating a RAM disk. Press

<Escxx> to save the script file and exit ED. Reset the Amiga, open

the CLI and enter the following to run the script file:

1> execute ram-disk

Modifying the startup sequence gives you the CLI-based RAM disk

available when you reset. Change directories and invoke ED as shown

below:

1> cd dfO:

1> ed s/startup-sequence

The desired script file appears on the screen. Insert the lines below

before the Loadwb command:

dir ram:

execute ram-disk

Press <Escxx> to save the change and exit ED. After every restart the

Amiga installs a new RAM disk automatically.

26

Abacus 3.1 The CLFs capabilities

3.1.7 Path

When you type a command into the CLI, AmigaDOS searches on the

disk for a program of the same name in a specific order. The search

begins in the current directory. IfDOS doesn't find the command there,

the C directory is searched next. If DOS still can't find the command it

displays an "Unknown command" message.

The Path command prevents this error. This command tells DOS to

automatically search additional directories for the command which was

entered.

An example is the startup sequence of the Workbench disk. This

sequence looks like this in some versions of the Workbench:

echo "Workbench disk (Version 1.2/33.43)"

echo " "

echo "(Date and Time can be set with 'Preferences1)"

if EXISTS sys:system

path sys:system add

endif

BindDrivers

setmap d

LoadWb

endcli > nil:

The "if EXISTS" command searches the boot disk for the System

directory. If this directory exists, the Path command includes this

directory in the list of directories to be searched. This is why the

DiskCopy command can be called without having to indicate that it is

in the System directory: AmigaDOS automatically checks this directory

when looking for a command.

If you enter Path without arguments (parameters), it displays the

directory names in the current path. AmigaDOS searches in the order

indicated. The Path Reset command deletes all pathnames previously

entered. Only the current directory and the directory assigned to device

C: are searched (see Section 3.1.9 for a description of device C:).

3.1.8 DiskChange

AmigaDOS immediately recognizes every disk change in the internal

and external drives. Since the 3.5 inch drives report disk changes

automatically to the operating system, it's impossible to write data to

the wrong disk. However, the larger 5.25 inch drives act differently.

27

3. The CLI Amiga disk drives inside and out

Most 5.25 inch disk drives don't tell the Amiga that a disk change has

occurred. This could cause damage to the disk currently in the drive due

to the Amiga adding data to what it thinks was the disk previously in

the drive.

The DiskChange command should be entered after every 5.25 inch disk

change. The following command tells the operating system that a

different disk has been inserted in drive dfl:

1> diskchange dfl:

3.1.9 Assign

The operating system of the Amiga uses a colon to differentiate

between device names and filenames. (e.g., dfO:, dfl: and pit: are device

names). The Assign command permits device name assignment to

directories or filenames. Assign entered without any parameters displays

the current assignments. Here is an example, your display may differ

1>ASSIGN

Voulmes:

RAM DISK [Mounted]

Workbenchg

Directories

CLIPS

ENV

T

S

L

C

FONTS

DEVS

LINS

SYS

Devices:

1.3 [Mounted]

RAM DISK:clipboards

RAM DISK:env

RAM DISK:t

Workbench

Workbench

Workbench

Workbench

Workbench

Workbench

Workbench

PIPE AUX SPEAK NEWCON

CON RAM

1.

1.

1.

1.

1.

1.

1.

DF5

3

3

3

3

3

3

3

:s

:1

:c

:fonts

:devs

:libs

:

Assume that you have a text file named Peter inside the Letters

directory. This directory is inside the Text directory in drive dfO:

dfO:Text/Letters/Peter

You want to copy this letter to several disks. It would be very time

consuming to input the following line for every Copy command:

28

Abacus 3.1 The CLFs capabilities

copy dfO:Text/Letters/Peter to Copyl

The Assign command assigns this directory structure a shorter name:

assign Orig: dfO:Text/Letters/Peter

After entering this command the Copy command can be abbreviated as

follows:

copy Orig: to Copyl

The "Orig:" is now shorthand for "dfO:Text/Letters/Peter". This method

of assigning device names to paths can save you a great deal of typing.

If you enter the Assign command without arguments (parameters) it

returns a list of assignments currently recognized by AmigaDOS. This

is handy if you can't remember which device names are available.

The pseudo device C: is also an assigned device name. The Path

command used previously showed C: as the last directory entry to be

searched for CLI commands. The C directory on the Workbench disk is

normally searched automatically. That's why AmigaDOS demands this

disk when you enter a CLI command. If you copied the CLI commands

into the RAM disk as discussed previously, "assign C: RAMx" tells

DOS to search the C directory of the RAM disk for CLI commands.

To disable an assignment, enter Assign and the name alone:

assign Orig:

The command above disables the "Orig:" device.

29

3. The CLI Amiga disk drives inside and out

3 . 2 Interactive directory

Even though Amiga disks have 880K of memory, they get full even

tually. Disks capable of booting (like the Workbench) have less storage

capacity since they already contain many drawers. Many programs in

these directories are seldom used and take up valuable space.

The Dir command lists the contents of the Workbench disk. Entering

Dir without arguments displays all directories on the disk at once. The

sequence below lists all directories interactively:

1> dir opt ai

This option lists all directories, including their individual files, and

displays a question mark prompt after each entry. The directory wants

you to respond (interact). You have three options in interactive mode

when displaying all of the files:

<Return> Type the word "del" to delete the file.

<t><Return> Display the contents of a text file.

<Return> Display next file/directory.

This command helps you find unnecessary files on the Workbench.

Start with the printer drivers. Only the drivers which fit the attached

printer are needed. All other drivers can be erased (enter del and press

<Return>). Most users would not want to select a foreign keyboard

layout on the Amiga. Erasing all the keyboard drivers from the

Devs/Keymaps directory except "usaO" and "usal."

As soon as you buy a decent word processor, delete the Notepad from

the Workbench disk. Delete the Expansion drawer if you don't own a

hard disk drive or other exotic peripherals.

The following files can also be removed if you don't need them:

Path Condition for deletion

devs/serial.device Printer not on serial port

devs/parallel.device Printer not on parallel port

devs/Mountlist No special peripherals attached

(e.g., 5.25 inch drive)

fonts/... (depends on applications)

demos/... (usually can be removed)

Clock (depends on applications)

Calculator (depends on applications)

Let's use the Utilities drawer as an example of how you can operate the

Dir command interactively. Enter the following:

30

Abacus 3.2 Interactive directory

1> dir opt i

Press the <Return> key until the Utilities drawer (directory) is displayed

on the screen. Enter <e> to enter this directory. To delete the Calcula

tor, enter the word <Return> when the words calculator and

calculator.info are displayed. The entire disk can be searched in this way

for unnecessary files.

Here is an example of the display, your display may differ slightly:

l>dir dfO: opt i

Trashcan (dir) ?

c(dir) ?

Prefs (dir) ?

System (dir) ?

1 (dir) ?

devs (dir) ?

s (dir) ?

t (dir) ?

fonts (dir) ?

libs (dir) ?

Empty (dir) ?

Utilities (dir) ?e

.info ?

Calculator ? del

Calculator.info ?del

1>

31

3. The CLI Amiga disk drives inside and out

3.3 Tips & Tricks for the CLI

Keyboard

shortcuts in

the CLI

Abbreviating

CLI

commands

There are a lot of tips and tricks to make your CLI sessions more

efficient. The following section presents some of these.

The table below shows some shortcuts available in the CLI:

Kevs Function

<CtrlxD>

<CtrlxC>

<CtrlxL>

Any key

Backspace

<Commodorexv>

<Commodorexb>

Interrupts script file.

Terminates a command which is executing.

Clears the screen.

Stops text output.

Continue output.

Click on Retry gadget.

Click on Cancel gadget.

Depending on the Amiga model, you may have either a <Commodore>

key or a left <Amiga> key.

If the CLI commands become too long (e.g., Execute, Addbuffers,

BindDrivers, etc.) the CLI commands can be renamed with the Rename

command. If you use script files frequently, the Execute command can

be renamed to "ex" which saves some typing. The following example

illustrates the renaming procedure:

1> rename c/execute to c/ex

You can now type "ex startup-sequence" instead of "execute startup-

sequence". Try the abbreviation "ren" for the Rename function. The

command for this would be as follows:

1> rename c/rename to c/ren

Other abbreviations are easily implemented:

Command Abbreviation

dir

copy

delete

type

run

etc.

d

c

del

t

r

This list can be expanded according to the user's needs. Avoid

abbreviations that don't even remotely resemble the command word; the

new word will be harder to remember.

32

4.

Programming in

BASIC

Abacus 4. Programming in BASIC

Programming in BASIC

Many computer novices were introduced to the world of computer

languages through BASIC. Some old hands make fun of the language

because it is too slow and convoluted. Times have changed. From the

orginal spaghetti-code BASIC faster and more productive BASIC

dialects have been developed. These new versions can be used in the

professional development of programs. ABasic, which was delivered

with the first Amigas, didn't offer half the capabilities of structured and

module oriented programming of the modern AmigaBASIC. The

Amiga, with its fast 68000 processor, gives the old C64 experts a new

trust in BASIC programming. Where a "FOR i=l TO 10000" required

at least ten seconds on the old C64, the Amiga can count this down in a

mere two seconds. This is not the only proof of speed which can be

achieved on the Amiga.

35

4. Programming in BASIC Amiga disk drives inside and out

4.1 LOAD, SAVE and Co.

The user who has loaded or stored a BASIC program is familiar with
the two commands LOAD (load program) and SAVE (store program).
AmigaBASIC also offers some other capabilities:

To have a "lightning" start without having to load the program and then
RUN it, the following variation is used:

RUN "Program"

The program is loaded from disk and started immediately. If the user
knows before starting AmigaBASIC which program will be used, the
icon of the desired program can be double clicked. This starts Amiga
BASIC first and then automatically loads and executes the program
which was clicked. This is also possible from the CLI:

1> RUN amigabasic "Program"

This input does the same as a direct start from the Workbench.

Several alternatives also exist during saving. If the normal SAVE
command is followed by a comma, the command can be enhanced with
three different options.

SAVE "Program",a

a.) Option "a" stores the program in ASCII format. In this format it

can be loaded by any word processing program and edited further.

SAVE "Program",b

b.) If option "b" is used, the program is stored in binary. A program
stored under this option requires less storage space on the disk

than a program stored under the "a" option. It can also be loaded

much faster. An attempt to load such a file into a word

processing program fails since the BASIC commands are not

stored as ASCII text, but in an abbreviated format

SAVE "Program",p

p.) The "p" option is the last and surely the most interesting

possibility of storing a program on disk The program is encoded

(protected) by this option and stored on disk. It can no longer be

edited, only started. Any attempt to list the program results in an

error message. This option is of interest to those users who want

to prevent a listing of a program.

36

Abacus 4.1 LOAD, SAVE and Co.

Since a program stored with "p" cannot be modified a backup copy

should be made of the listing before using the "p" option for saving.

Loading and attempting to save the program again using the "a" option

results in an error message. For this reason extreme caution should be

used.

Another interesting capability offered by AmigaBASIC is the consecu

tive loading of several programs into the BASIC working memory. The

MERGE command is used to do this. It can be used in direct mode and

also in the program itself. Several routines (for example an Editor) can

be stored as programs and when needed merged into other programs.

Such a program is always added at the end of the programs in memory.

It cannot be merged at any desired location.

37

4. Programming in BASIC Amiga disk drives inside and out

4.2 Files in AmigaBASIC

In the preceding chapters the concept of a file was discussed. For the
following sections two additional concepts must be explained:

The data If a computer file is compared with a card file, the individual cards in
record the card file correspond to the data records in the computer file. The data

records of an address file, for example, contain the complete address of a
certain person.

The data field Every card in a card file is normally subdivided into several fields. For
the address file box, the fields can be designated as follows: First Name,
Last Name, Street, City, Phone. Every card in this file has five fields.

In a computer file such subdivisions of a data record are called data
fields.

These concepts should be thoroughly understood since they are
frequently used in connection with data processing. If you run into
trouble, remember the card file:

file <-> card file

contains Data records <-> file cards

subdivided into Data Fields <-> fields

The important role of files in AmigaBASIC is discussed in the next
sections.

4.2.1 File types in AmigaBASIC

How would an address file be constructed? The Amiga has two different

file types. First, sequential files which are characterized by simple

handling. Second, the random access files which require more work, use

more space, but are far superior to sequential files in their capabilities.

Each of the two file types are useful for different applications which are
discussed later.

4.2.2 A sequential file is created

First start AmigaBASIC. A sequential file can be "opened" with an

almost limitless choice of names. The limitations are that some

38

Abacus 4.2 Files in AmigaBASIC

characters cannot be used when naming the Hie. These characters have

special significance in AmigaDOS. These are:

: Determines drive (for example dfO:, ram:).

/ Determines directory levels (drawers).

Used for search criteria in the CLI and some programs.

? Used for search criteria in the CLI and some programs.

It's possible to create a file named Example/file, but AmigaDOS inter

prets it to mean that in the Example drawer the file "file" should be

addressed. A file with the name example-file causes no problems. If a
colon occurs in the filename, AmigaDOS interprets the character string

before the colon as a disk or device name.

To avoid misunderstandings a single filename is used in the following

examples. We will create an address file named example-file. Input the

following text into the LIST window of AmigaBASIC:

OPEN "example-file" FOR OUTPUT AS #1

Let's examine the syntax of the command sequence for opening a

sequential file:

"OPEN" means what it says and is the key word in this command

sequence. Then the file is named, in this case example-file. The OPEN

command continues with direction of the information flow. This is an

indication if the file should be written (FOR OUTPUT) or read only

(FOR INPUT). Since data is first written into the file, it is opened for

writing (FOR OUTPUT). Finally the command is given a file channel

number which can have a value between 1 and 255. The file channel is

important since all following commands for writing and reading refer to

the file channel.

Continue adding to the program with the following lines:

DataEntry:

INPUT Person$

INPUT Street$

INPUT City$

Each one of these input commands accepts a data field from the

keyboard. All three data fields together produce a data record.

PRINT #l,Person$

PRINT #1,Street$

PRINT #l,City$

39

4. Programming in BASIC Amiga disk drives inside and out

The PRINT

command

The INPUT

command

The CLOSE

command

An interesting point has been reached in the development of the
sequential file. The PRINT command is familiar from normal text
output on the screen. Since file channel #1 was opened, the PRINT

#1,... command does not output the following data on the screen, but
sends them directly to the disk to the name of the file (example-file)
opened on channel #1. Each of the three PRINT commands writes a data
field to the disk.

Add the following:

INPUT "more";more$

IF more$="Y" THEN DataEntry

CLOSE #1

END

The INPUT command asks if any additional data is input and stored, or
if the file should be closed with CLOSE #1 and die program terminated.
If another input is desired (y) the program branches again to the data
input area (Label: DataEntry), and the entire procedure is repeated.
Newly input data is appended to the previously input data. For this
reason it is called a sequential file.

It is important to place the CLOSE command at the end of the program
to close the file, or the integrity of the data in the file cannot be
assured. The disk drive won't run after the completion of every data

record. The data is first placed in a buffer until an access to the drive is
justified. At the end of the program there may still be data in the buffer
which has not yet been written to disk. The CLOSE command causes
the data remaining in the buffer to be written to the file and the channel
closed.

This completes half of the address file. Now you'll want to read the
stored data and examine it The following program section can be used:

OPEN "example-file" FOR INPUT AS #1

DataReader:

INPUT #l,Person$

INPUT #l,Street$

INPUT #l,City$

PRINT Person$

PRINT Street$

PRINT City$

INPUT "more";more$

IF more$="Y" THEN DataReader

CLOSE #1

END

Since this time data is only read from the disk, the file is opened with
"FOR INPUT". The previous PRINT command redirected the output of
the data to the disk and the INPUT #1,... command gets the data from
the disk, not from the keyboard.

40

Abacus 4.2 Files in AmigaBASIC

The program lacks one more item. As soon as an attempt is made to

read additional data, the Amiga reports a "Read Past End" error. To

avoid this error, a command sequence is added to check for the end of the

file. The modified program appears as follows:

OPEN "example-file" FOR OUTPUT AS #1

DataEntry:

INPUT Person$

INPUT Street$

INPUT City$

PRINT #l,Person$

PRINT #1,Street$

PRINT #l,City$

INPUT "more"/more$

IF more$="y" THEN DataEntry

CLOSE #1

OPEN "example-file" FOR INPUT AS #1

DataReader:

IF EOF(l)<>0 THEN End

INPUT #l,Person$

INPUT #1,Street$

INPUT #l,City$

PRINT Person$

PRINT Street$

PRINT City$

INPUT "more";more$

IF more$="Y" THEN DataReader

End:

CLOSE #1

END

The new function EOF() checks to see if there is another data record

after the one just read. If there is not, a value other than zero is returned.

The 1 in EOF(l) refers to the file channel number. EOF stands for End

Of File.

4.2.3 Enlarging a sequential file

This should make the small address file complete. What happens if

additional data is added? Since a sequential file always adds data directly

to the beginning of the file, the stored data is overwritten. To prevent

this, the APPEND mode (designation: "A") must be used. This appears

as follows:

Enlarging:

OPEN "example-file" FOR APPEND AS #1

INPUT Person$

INPUT Street$

INPUT City$

PRINT #lfPerson$

41

4. Programming in BASIC Amiga disk drives inside and out

PRINT #1,Street$

PRINT #l,City$

INPUT "Append more";more$

IF more$="y" THEN Enlarging

CLOSE #1

END

This solves the problem. Some functions such as sorting and searching
our address database are still missing, but for purposes of training this
program is adequate. Let's examine a complete listing of a small address
file management program.

Program 1: "Program 1:

more:

INPUT "(R)ead next, (I)nput, (E)nd"; action$

IF action$="r" THEN DataReader

IF action$="i" THEN DataEntry

IF action$="e" THEN END

GOTO more

DataEntry:

CLOSE #1:

count=0

OPEN "example-file" FOR APPEND AS #1

INPUT "Name";Person$

INPUT "Street";Street$

INPUT "City"/City$

PRINT #l,Person$

PRINT #l,Street$

PRINT #l,City$

CLOSE #1

GOTO more

DataReader:

IF cnt=O THEN OPEN "example-file" FOR INPUT AS #l:cnt

IF EOF(l)<>0 THEN PRINT "No more records!": GOTO more

INPUT #l,Person$

INPUT #1,Street$

INPUT #l,City$

PRINT "Name",Person$

PRINT "Street",Street$

PRINT "City",City$

GOTO more

42

Abacus 4.2 Files in AmigaBASIC

4.2.4 A Random access file

The simple handling of the sequential file has some disadvantages.

Every addition of a data set increases the size of the file. If a certain data

set is accessed, the entire file must be searched from the beginning for

this entry. Even though AmigaBASIC is fast, a search of this nature

through large files can take several minutes. A sequential file is there

fore not suitable for a large address file. It is only useful if all the data

stored is accessed at the same time, such as in program files where all

the data is loaded sequentially into the working memory of the

computer.

AmigaBASIC has a more suitable file type for the address file: the

random access file, also called random file.

This file type permits random access to certain data records and their

fields without searching a long sequential list AmigaBASIC provides

very powerful commands to access these types of files. The syntax for

opening a file of this type is as follows:

OPEN "R"f#l,"example2",40

FIELD #1,10 AS Number$,20 AS Description$,10 AS Price$

The OPEN command is the same one used in sequential files. The "R"

designates the mode for both reading and writing random files (R stands

for random access). The filename shouldn't present a problem. The only

new item is the designation of a fixed data record length. Once it is set,

it cannot be changed later. Therefore the number, in this example 40,

should be considered carefully. You must designate a length that allows

the input of the longest piece of information you'll want to use.

At first glance the second new command sequence, which starts with the

FIELD command, appears somewhat difficult, but it's easily under

stood.

Following the FIELD command is the file channel number (#1). The

variables, which contain the information to be stored on the disk are

assigned a maximum length. The total of these is the exact length of

the data record. It is best to consider the whole matter on the basis of an

example. This time an inventory control file is created to illustrate the

advantages of a direct access file:

FileName$="example2"

OPEN "R",#l,FileName$, 40

FIELD #1,10 AS Number$,20 AS Description$,10 AS Price$

DataEntry:

INPUT "Stock-Number";nr

INPUT "Name";na$

INPUT "Price ($)"/dollars

43

4. Programming in BASIC Amiga disk drives inside and out

LSET Number$=MKS$(nr)

LSET Description$=na$

LSET Price$=MKS$(dollars)

PUT #l,nr

INPUT fImore";more$

IF more$=*"y" THEN DataEntry

DataReader:

INPUT "Stock-Number";nr

GET #l,nr

PRINT "Name", Description

PRINT "Price <$)",CVS<Price$)

INPUT "more";more$

IF more$="y" THEN DataReader

CLOSE #1

END

Let's take a moment to become familiar with the new commands. First,
the LSET command. The FIELD command determines the maximum
number of characters allowed in each field and a name is assigned to
every data field. The INPUT command does not limit the length during

input of data, so the input is first put into auxiliary variables "nr",
"na$" or "dm." The assignment to field variables occurs through the
LSET command. If the input is smaller than the maximum size

allowed, the variable is padded on the right with blanks. All entries are
left justified (LeftSET). If the input is longer than allowed, it's cut off
on the right Therefore every field variable ends up being the prescribed
length.

The MKS$ function converts a number into an equivalent representa

tion of text. The LSET command always expects a text variable so a
number must first be converted before it can be stored in the proper field
variable.

The PUT command finally stores the new data record on the disk. The

data record number and channel number are both required. This is a
numerical expression through which the data records are differentiated

from each other. A data record number can only be assigned once. In

this demonstration program the stock number serves this function.

The reading process now starts in reverse order. The command which

reads the selected data set into the field variable is GET. The CVS

command returns the "Price$" variable from text back into numbers.

Unlike the sequential file it is not a problem to add additional data

records to an existing file. This is the advantage of the random access

file because every data record has its own identity number under which

it was stored and under which it can be read again. No specific sequence

of data record numbers is required Any desired number can be read.

The random access file is almost complete now. However, there is one

problem to solve. The Amiga is not happy trying to read non-existent

data from the disk. If data that doesn't exist is called for, it simply reads

44

Abacus 4.2 Files in AmigaBASIC

an arbitrary data record. The solution to this problem is discussed in

Section 4.3.

Admittedly this concept is more difficult to understand than sequential

files, but more can be accomplished with random access files. Besides

the inventory control example with its stock numbers, prices and the

other items, there are thousands of applications for this file type. Now

we'll go on to the next section where some fun awaits.

4.2.5 Mini Data-The complete project

•Mini Data VI.0 © 1987 by GroSoftfl

CLEAR,35000&S

Arrays: SI

DIM Enter$(15),Maske$(15),Search$(15)5

SCREEN 1,640,200,2,2fl

WINDOW l,"Mini Data VI.0",,21,1 S

t

FOR i=l TO 10S

MENU i,0,l,""SI

NEXT if

MENU 1,0,1, "Mini Data"SI

MENU 1,1,1, "Open file F1"SI

MENU 1,2,1,"New File F2"f

MENU 1,3,1,"Quit Mini Data F3"fl

MENU 2,0,l,"Search"5

MENU 2,1,1,"Select F4"S

MENU 3,0,l,"Mask"fl

MENU 3,1,1, "Mask change F5"SI

MENU 4,0,1,"Printer"?

MENU 4,1,1,"Print record F6"fl

MENU 4,2,1,"Print file F7"5

S

MENU 5,0,l,"Sort"f

MENU 5,l,l,"Criterium F8"SI

COLOR 2,05

LOCATE 19,5:PRINT "File :"S

LOCATE 20,5:PRINT "Record :"S

Buffer!

COLOR 1,01

MainLoop:5

45

4. Programming in BASIC Amiga disk drives inside and out

MENU ON!

ON MENU GOSUB MenuBar!

BREAK ON!

ON BREAK GOSUB Interruption!

ON ERROR GOTO Problem!

ac$=""!

ac$=INKEY$!

IF ac$ ="" THEN MainLoop!

IF ac$=CHR$(129) THEN FileOpen!

IF ac$=CHR$<130) THEN NewFile!

IF ac$=CHR$(131) THEN MiniDataQuit!

IF MiniFile=l THEN !

IF ac$=CHR$(132) THEN Searcher!

IF ac$=CHR$(133) THEN MaskChange!

IF ac$=CHR$(134) THEN PrintRecord!

IF ac$=CHR$(135) THEN MiniFilePrint!

IF ac$=CHR$(136) THEN SortRoutine!

IF ac$=CHR$(31) THEN PrevRecord!

IF ac$=CHR$(30) THEN NextRecord!

IF ac$=CHR$(13) THEN DataEntry!

IF ac$=CHR$(28) THEN FirstRecord!

END IF!

GOTO MainLoop!

MenuBar:!

Menue=MENU(O)!

MenuPoint=MENU(1)!

IF Menue=l THEN ON MenuPoint GOTO

FileOpen,NewFile,MiniDataQuit!

IF MiniFile=l THEN!

IF Menue=2 THEN ON MenuPoint GOTO Searcher!

IF Menue=3 THEN MaskChange!

IF Menue=4 THEN ON MenuPoint GOTO

PrintRecord,MiniFilePrint!

IF Menue=5 THEN SortRoutine!

END IF!

RETURN!

FileOpen:!

text$=""!

LOCATE 22,5:PRINT "Please enter filename: "!

Buffer!

TextDataEntry 30,22,23,24,text$!

LOCATE 22,5:PRINT SPACE$(70)!

IF text$="ft THEN MainLoop!

ActualMiniFile$=text$+".MiniFile"!

MiniFile=l:GOSUB MenuOn!

CLOSE #1!

quantity=O:nr=l:text$=""!

OPEN "R",#l,ActualMiniFile$,730 !

FIELD #1,10 AS a$,720 AS b$!

LOCATE 19,12:PRINT SPACE$(70)!

LOCATE 19,12:PRINT ActualMiniFile$!

GOSUB Separate!

GOSUB MaskLoad!

GOTO FirstRecord!

46

Abacus 4.2 Files in AmigaBASIC

NewFile:!

text$=""!

LOCATE 22,5:PRINT "Name of the file :"!

TextDataEntry 22,22,23,24,text$!

LOCATE 22,5: PRINT SPACE$(70)!

IF text$="M THEN!

LOCATE 22,28:PRINT "Procedure terminated!"5

GOSUB Pause!

GOTO MainLoop!

END IF!

IF INSTR(text$,":")<>0 THEN!

LOCATE 22,19:PRINT "Please use the internal drive

only."!

GOSUB Pause!

GOTO NewFile!

END IF!

CLOSE #l:ActualMiniFile$=""!

quantity=O:nr=l!

text$=text$+".MiniFile"!

ActualMiniFile$=text$!

GOSUB MenuOn!

OPEN "R",#l,ActualMiniFile$,730!

FIELD #1,10 AS a$,720 AS b$!

LSET a$=CHR$(l)!

LSET b$=CHR$(255)!

PUT #1,1!

nr=l:GOSUB AuxOutput!

MiniFile=l!

LOCATE 19,12:PRINT SPACE$(70)!

LOCATE 19,12:PRINT ActualMiniFile$!

GOSUB MenuOut!

GOTO CreateMask!

!

RecordChange:!

Enter$=""!

FOR i=l TO quantity!

xp%=l+i!

text$=Enter$(i)!

Buffer!

TextDataEntry 28,xp%,80,32,text$!

Enter$(i)=text$!

LOCATE 1+i,28:PRINT SPACE$(32)!

LOCATE 1+i,28!

lang=LEN(text$):IF lang>32 THEN lang=32!

PRINT MID$(text$,l,lang)!

Enter$=Enter$+text$+CHR$(3)!

NEXT i!

GOSUB MenuOn!

1$=STR$(LEN(Enter$))!

LSET a$=l$!

LSET b$=Enter$!

PUT #l,nr!

GOSUB MenuOut!

GOTO MainLoop!

47

4. Programming in BASIC Amiga disk drives inside and out

PrintRecord:!

GOSUB MenuOn!

OPEN "PRT:" FOR OUTPUT AS #2!

FOR i=l TO quantity!

PRINT #2,Enter$(i)!

NEXT i!

FOR i=l TO 2:PRINT #2,CHR$(10):NEXT i!

CLOSE #25

GOSUB MenuOut!

IF under=l THEN RETURN!

GOTO MainLoop!

!

MiniFilePrint:!

GOSUB MenuOn!

nr=l!

OPEN "PRT:" FOR OUTPUT AS #2!

morelO:!

ReturnChk=l:GOTO Separate2!

Rl:!

FOR i=l TO quantity!

PRINT #2,Enter$(i)!

NEXT i!

FOR i=l TO 2:PRINT #2,CHR$(10):NEXT i!

nr=nr+l!

GOTO morel0!

!

MiniDataQuit:!

COLOR 1,0!

LOCATE 22f21!

PRINT "Are you sure ? (if yes then 'y')"!

w:!

be$=INKEY$!

IF be$="" THEN GOTO w!

IF UCASE$(be$)="Y" THEN CLOSE #1:END!

LOCATE 22,5!

PRINT SPACE$(70)!

GOTO MainLoop!

!

FirstRecord:!

nr=l:halt=0!

!

apart:!

GOSUB MenuOn!

GOTO Separate2!

R3:!

FOR i=l TO quantity!

LOCATE i+1,28!

PRINT Enter$(i)!

NEXT i!

GOSUB AuxOutput!

GOSUB MenuOut!

IF under=l THEN RETURN!

GOTO MainLoop!

!

PrevRecord:!

halt=0!

48

Abacus 4.2 Files in AmigaBASIC

nr=nr-l:IF nr<l THEN nr=l:GOTO MainLoop!

GOTO apart!

!

NextRecord:!

IF halt=l THEN MainLoop!

vor=l!

nr=nr+l!

GOTO apart!

SI

DataEntry:!

IF Enter$<>"" THEN RecordChange!

FOR i= 1 TO quantity!

text$=""!

xp%=l+i!

Buffer5

TextDataEntry 28,xp%,80,32,text$!

Enter$(i)=text$!

LOCATE l+i,28:PRINT SPACE$(32)!

LOCATE l+i,28!

lang=LEN(text$):IF lang>32 THEN lang=321

PRINT MID$(text$,l,lang)f

Enter$=Enter$+text$+CHR$(3) f

NEXT if

GOSUB MenuOnf

1$=STR$(LEN(Enter$))5

LSET a$=l$5

LSET b$=Enter$fl

PUT #l,nr5

FIELD #1,10 AS initl$,720 AS init2$5

LSET initl$*CHR$(l)f

LSET init2$=CHR$(255)f

PUT #lfnr+H

GOSUB MenuOutfl

halt=05

nr=nr+lf

GOTO apart!

Searcher:!

FOR i=l TO quantity!

LOCATE l+i,28!

PRINT Search$(i)!

NEXT i!

LOCATE 22,19:PRINT "Please input or change search

critera."!

FOR i=l TO quantity!

text$=Search$(i)!

xp%=l+i!

Buffer!

TextDataEntry 28,xp%,80,32,text$!

Search$(i)=text$!

LOCATE l+i,28:PRINT SPACE$(32)!

LOCATE l+i,28!

lang=LEN(text$):IF lang>32 THEN lang=32!

PRINT MID$(text$,l,lang)!

NEXT i!

LOCATE 22,5:PRINT SPACE$(70)!

49

4. Programming in BASIC Amiga disk drives inside and out

FOR i=l TO quantity*

IF Search$(!)<>"" THEN start*

NEXT i*

LOCATE 22,245

PRINT "No search critera available."*

GOSUB Paused

GOSUB AuxOutput*

under=l:GOSUB apart:under=0:GOTO MainLoop*

*

start:*

nr=l*

LOCATE 22,5:PRINT SPACE$(70)*

start2:*

GOSUB MenuOn*

ReturnChk=2:GOTO Separate2*

R2:*

FOR i=l TO quantity*

IF Search$(i)<>"" AND INSTR(Enter$(i),Search$(i))=0 THEN

moreIV*

NEXT i*

FOR i=l TO quantity*

LOCATE l+i,28*

PRINT Enter$(i)*

NEXT i*

GOSUB MenuOut*

LOCATE 22,17:PRINT "Fl=Print Record Key=Search ..."*

question:*

ab$=INKEY$*

IF ab$="" THEN question*

IF ab$=CHR$(129) THEN under=l:GOSUB PrintRecord:under=0*

LOCATE 22,5:PRINT SPACE$(70)*

morelV:*

nr=nr+l*

GOTO start2*

*

MaskLoad:*

COLOR 2,0*

OPEN MiniFileName$ FOR INPUT AS #3*

INPUT #3,quantity*

FOR i=l TO quantity*

INPUT #3,Maske$(i)*

LOCATE i+l,2:PRINT "(";i:LOCATE i+l,5:PRINT ")"*

LOCATE i+1,7*

PRINT Maske$(i)*

NEXT i*

CLOSE #3*

COLOR 1,0*

RETURN*

*

MaskeSave:*

MiniFileName$=""*

GOSUB Separate*

GOSUB MenuOn*

OPEN MiniFileName$ FOR OUTPUT AS #3*

PRINT #3,quantity*

FOR i=l TO quantity*

50

Abacus 4.2 Files in AmigaBASIC

PRINT #3,Maske$(i)5

NEXT il

CLOSE #31

GOSUB MenuOutSI

IF under=l THEN RETURNS

GOTO MainLoopS

CreateMask:fl

FOR i=l TO quantity*

Maske$(i)=""5

LOCATE l+i,20fl

PRINT SPACE$(17)fl

NEXT if

again:f

LOCATE 22,55

PRINT "Number of Fields per Record (max. 9)

quantity=O:IF other=0 THEN text$=""5

Buffers

TextDataEntry 4 6,22,1,2,text$31

LOCATE 22,5:PRINT SPACE$(70)S

quantity=VAL(text$)f

IF quantity<l OR quantity>9 THEN again!

mcreatellrf

FOR i=l TO quantity!

text$=""fl

REM IF other=l THEN text$=Maske$(i)f

xp%=l+if

COLOR 2,Of

LOCATE xp%,2:PRINT "(";i:LOCATE xp%,5:PRINT ")"f

Buffer!

TextDataEntry 7,xp%,19,20,text$f

IF RIGHT$(text$,l)<>" " AND RIGHT$(text$,1)<>"." THEN

text$=text$+" "f

langifl

IF LEN(text$)<20 THEN text$=text$+".":GOTO langfl

COLOR 1,0:LOCATE l+i,7:PRINT SPACE$(18)5

COLOR 2,0:LOCATE l+i,7:PRINT text$f

Maske$(i)=text$f

NEXT ifl

other=05

COLOR 1,05

GOTO MaskeSaveSI

MaskChange:^

other=lf

GOTO mcreatelll

Pause:5

FOR i=l TO 4:MENU i,0,0:NEXT H

Buffers

LOCATE 22,635

PRINT ••« Press a key '"1

WHILE INKEY$="":WEND5

LOCATE 22,5:PRINT SPACE$(70)5

51

4. Programming in BASIC Amiga disk drives inside and out

LOCATE 22,63:PRINT SPACE$(16)5

FOR i=l TO 4:MENU i,0,l:NEXT 15

RETURNS

5

AuxOutput:5

COLOR 1,05

LOCATE 20f17:PRINT SPACE$(10)5

LOCATE 20,17:PRINT STR$(nr)5

RETURNS

5

Interruption:5

CLOSE #1:END5

5

Problem:5

GOSUB MenuOutfl

COLOR 1,05

LOCATE 22,5:PRINT SPACE$(70)5

IF ERR=7 OR ERR=14 THEN?

LOCATE 22,18:PRINT "Memory full."5

RESUME Marked

END IF5

IF ERR=53 THENf

LOCATE 22,19:PRINT "File not found."5

LOCATE 19f12:PRINT SPACE$(63)f

CLOSE #15

KILL ActualMiniFile$5

MiniFile=05

RESUME Marked

END IF5

LOCATE 22,175

PRINT "An Internal program error occoured."5

Marke:5

GOSUB Paused

GOTO MainLoop5

5

Separate:5

MiniFileName$=""5

FOR i=l TO LEN(ActualMiniFile$)5

IF MID$<ActualMiniFile$,i,l)="." THEN stopl5

MiniFileName$=MiniFileName$+ MID$ (Actual.MiniFile$,i,

NEXT 15

stopl:5

MiniFileName$=MiniFileName$+".Maske"5

RETURN5

5

Separate2:f

z=0:n=l:Enter$=""5

GET #l,nr5

l$=a$:Enter$=b$5

IF INSTR(Enter$,CHR$(255))<>0 THEN5

GOSUB MenuOutf

IF ReturnChk=l THEN CLOSE #2:ReturnChk=0:GOTO

FirstRecordfl

GOSUB AuxOutput5

under=05

52

Abacus 4.2 Files in AmigaBASIC

IF ReturnChk=2 THEN?

LOCATE 22,21:PRINT "No more records available."*

ReturnChk=O*

GOSUB Paused

GOTO FirstRecord*

END IF*

FOR i=l TO quantity:Enter$(i)="":NEXT i:Enter$=""*

halt=l*

END IF*

1=VAL(1$)*

FOR i=l TO 1*

IF MID$(Enter$,i,1)=CHR$(3) THEN*

z=z+l:IF z>quantity THEN ende*

Enter$(z)=MID$(Enter$,n,i-n)*

n=i+l*

END IF*

NEXT i*

ende:*

IF ReturnChkoO THEN ON ReturnChk GOTO R1,R2*

GOTO R3*

*

MenuOn:*

FOR i=l TO 5:MENU i,0,0:NEXT i*

LOCATE 22,62:PRINT "■ Moment ... '"*

RETURN*

*

MenuOut:*

FOR i=l TO 5:MENU i,0,l:NEXT i*

LOCATE 22,62:PRINT SPACE$(14)*

Buffer*

RETURN*

*

SortRoutine:*

text$=IIM*

LOCATE 22,5*

PRINT "Sort using which field :"*

Buffer*

TextDataEntry 32,22f2,3,text$*

LOCATE 22,5:PRINT SPACE$(70)*

IF text$="" OR VAL(text$)<l OR VAL(text$)>quantity THEN

MainLoop*

Kriterium=VAL(text$)*

GOSUB MenuOn*

nr=l*

more:*

z=O:n=l:Enter$=""*

GET #l,nr*

l$=a$:Enter$=b$*

IF INSTR(Enter$,CHR$(255))<>0 THEN more2*

nr=nr+l*

GOTO more*

*

more2:*

Counter=nr-1*

DIM DataEntry2$(Counter)*

FOR k=l TO Counter*

53

4. Programming in BASIC Amiga disk drives inside and out

z=0:n=l:Enter$=""f

GET #1,1*

l$=a$:Enter$=b$*

1=VAL<1$)*

FOR j=l TO 1*

IF MID$(Enter$,j,l)=CHR$(3) THEN*

z=z+l:IF z>quantity THEN ende2*

Enter$(z)=MID$(Enter$,n,j-n)*

n=j+l*

END IF*

NEXT j*

ende2:*

FOR i=l TO Counter-1*

z=0:n=l:DataEntry2$=""*

GET #1,1+1*

12$=a$:DataEntry2$=b$*

12=VAL(12$)*

FOR j=l TO 12*

IF MID$(DataEntry2$,j,1)=CHR$(3) THEN*

z=z+l:IF z>quantity THEN ende3*

DataEntry2$(z)=MID$(DataEntry2$,n,j-n)*

n=j+l*

END IF*

NEXT j*

ende3:*

IF Enter$(Kriterium) > DataEntry2$(Kriterium) THEN*

LSET a$=l$*

LSET b$=Enter$*

PUT #lfi+l*

LSET a$=12$*

LSET b$=DataEntry2$*

PUT #l,i*

GOTO iandk*

END IF*

Enter$=DataEntry2$:1$=12$*

FOR a=l TO quantity:Enter$(a)=DataEntry2$(a):NEXT a*

iandk:*

NEXT i*

NEXT k*

ERASE DataEntry2$*

GOSUB MenuOut*

GOTO FirstRecord*

*

SUB Buffer STATIC*

Buffer:*

ad$=INKEY$*

IF ad$<>"" THEN ad$="":GOTO Buffer*

END SUB*

*

SUB TextDataEntry (xpos%,ypos%,Length%,Wide%,text2$)

STATIC*

SHARED text$*

text$=text2$*

COLOR 0,2*

LOCATE ypos%,xpos%:PRINT SPACE$(Wide%) *

COLOR lf2*

54

Abacus 4.2 Files in AmigaBASIC

IF text$<>"" THEN LOCATE ypos%,xpos%:PRINT text$l

quantity=0:StepNum=l:xpos2%=xpos%5

LINE (xpos%*8-8fypos%*8-l)-(xpos%*8-l,ypos%*8-l),31

1

1 :1

ab$=INKEY$f

IF ab$="" THEN IS

IF ab$=CHR$(3) OR ab$=CHR$(255) THEN IS

S

•Ende S

IF ab$=CHR$(13) THEN gobacklOS

S

•Cursor rights

IF ab$=CHR$(30) AND text$<>"" AND quantity<LEN(text$)

THENS

LINE (xpos%*8-8,ypos%*8-l)-(xpos%*8-l,ypos%*8-l),2

IF StepNum>0 THEN LOCATE ypos%,xpos2%:PRINT

MID$(text$,StepNum,1)S

xpos%=xpos%+lS

IF xpos%>xpos2%+Wide%-l THENS

xpos%=xpos2%+Wide%-lS

StepNum=StepNum+lf

IF (StepNum-l)>50 THEN StepNum=505

END IFfl

lang=LEN(text$):IF lang>Wide% THEN lang=Wide% f

IF StepNum>0 THEN LOCATE ypos%,xpos2%:PRINT

MID$(text$,StepNum,lang)f

LINE (xpos%*8~8,ypos%*8-l)-(xpos%*8-lfypos%*8-l) ,31

quantity=quantity+lfl

GOTO It

END IFfl

IF ab$=CHR$(30) THEN It

t

'Cursor leftfl

IF ab$=CHR$(31) AND text$<>"" AND quantity>0 THENf

LINE (xpos%*8-8fypos%*8-l)-(xpos%*8-l,ypos%*8-l),21

IF StepNum>0 THEN LOCATE ypos%,xpos2%:PRINT

MID$(text$,StepNum,1)1

xpos%=xpos%-15

IF xpos%<xpos2% THENf

xpos%=xpos2%f

StepNum=StepNum-11

IF (StepNum-l)<l THEN StepNum=lSI

END IF5

lang=LEN(text$) :IF lang>Wide% THEN lang=Wide%SI

IF StepNum>0 THEN LOCATE ypos%,xpos2%:PRINT

MID$(text$,StepNum,lang)1

LINE (xpos%*8-8,ypos%*8-l)-(xpos%*8-l,ypos%*8-l),35

quantity=quantity-lf

•GOTO 15

END IF5

IF ab$=CHR$(31) THEN 15

5

•Backspaces

IF ab$=CHR$(8) AND quantity>0 AND text$<>"" THEN5

55

4. Programming in BASIC Amiga disk drives inside and out

text$=LEFT$(text$,quantity-

1)+MID$(text$,quantity+l,LEN(text$)-quantity)5

xpos%=xpos%-l:quantity=quantity-15

lang=LEN(text$):IF lang>Wide% THEN lang=Wide% 5

LINE (xpos%*8-8,ypos%*8-8)-((Wide%+xpos2%-l)*8-

I,ypos%*8-l),2,bf5

LOCATE ypos%,xpos2%:PRINT MID$(text$,StepNum,lang)5

LINE (xpos%*8-8,ypos%*8-l)-(xpos%*8-l,ypos%*8-l),35

GOTO If

END IF5

IF ab$=CHR$(8) THEN 15

5

1 Delete 5

IF ab$=CHR$(127) AND quantity>=0 AND text$<>"" THEN5

text$=LEFT$(text$,quantity)+MID$(text$,quantity+2,LEN(tex

t$)-quantity)5

lang=LEN(text$):IF lang>Wide% THEN lang=Wide%5

LINE (xpos%*8-8,ypos%*8-8)-((Wide%+xpos2%-l)*8-

I,ypos%*8-l),2,bf5

LOCATE ypos%fxpos2%:PRINT MID$(text$,StepNum,lang)5

LINE (xpos%*8-8fypos%*8-l)-(xpos%*8-lfypos%*8-l),35

GOTO 15

END IF5

IF ab$=CHR$(127) THEN 15

fDataEntry5

IF LEN(text$)+l>Length% THEN 15

IF LEN(text$)>l AND MID$(text$,quantity+l)<>"" THEN

text$=LEFT$(text$,quantity)+ab$+MID$(text$fquantity+1,LEN

(text$)-quantity) ELSE text$=text$+ab$5

quantity=quantity+15

xpos%=xpos%+15

IF xpos%>xpos2%+Wide%-l THEN 5

xpos%=xpos2%+Wide%-15

StepNum=StepNum+l 5

lang=LEN(text$):IF lang>Wide% THEN lang=Wide%5

LOCATE ypos%,xpos2%:PRINT MID$(text$,StepNum,lang)5

LINE (xpos%*8-8,ypos%*8-l)-(xpos%*8-l,ypos%*8-l),35

GOTO 15

END IF5

lang=LEN(text$):IF lang>Wide% THEN lang=Wide%5

LOCATE ypos%,xpos2%:PRINT MID$(text$,StepNum,lang)5

LINE (xpos%*8-8,ypos%*8-l)-(xpos%*8-l,ypos%*8-l),35

GOTO 15

5

gobacklO:5

COLOR 1,05

END SUB

The H character in the previous program lines is only for reference. It

shows the end of the AmigaBasic line. Due to the formatting of this

book many of the lines have been split. Following are the most

important variables and their meaning:

56

Abacus 4.2 Files in AmigaBASIC

Variable Function

Enter$()

Enter$

1$
Makse$()

Search$()

Minifile=l

ActualMiniFile$

other

nr

Stores data fields.

Contains template.

Contains search criteria file

file often.

Name of the opened file.

Flag if data set was already written.

Number of the current data set.

Those who are interested in the labels for the example subroutines will

find the labels briefly explained here:

Label Function

MainLoop

Menuon

MenuOff

TextDataEntry

Buffer

CreateMask

NewFile

Mask change

RecoidChange

Main program loop.

Deactivates menu bar.

Activates menu bar.

Line editor for input

Prevents keyboard overrun.

Creates screen template.

Initializes new file.

Change screen template.

Change data record.

57

4. Programming in BASIC Amiga disk drives inside and out

4.3 Instructions for Mini Data

Now that the theoretical part is over let's get practical. Enter or load the

program from the optional disk and type RUN.

After a brief initialization period the title display appears. It's still

rather empty. Only File: and Record: are displayed, but these can be

changed immediately by loading an address file.

Even though Mini Data can be used from the menu bar and the

keyboard, for the sake of simplicity it is used here only with the

keyboard. The menu titles are self explanatory.

First select the New File item (new file) by pressing F2 and enter the

name of the desired file. How about Addresses? OK, the name is input

and the filename indicated appears beside File:. After a brief wait

another prompt appears. This time the input refers to the number of

data fields within each record of the file. Seven data fields for an address

file should be enough. Therefore input 7 and press the <Return> key.

This time no wait is required. The Data field template can be input

immediately. The Line text editor operates using the following keys:

<Delete>, <Backspace>, <Cursor up> and <Cursor down>. After

pressing the Return key, the cursorjumps down and forward to the next

field. The input is ended on the last, i.e. lowest, data field template, the

template is stored automatically. With this basic knowledge the follow

ing input template can be created:

Name

Address

City

State

Zip

Telephone

Remarks

The dots behind the names of the data fields are added by Mini Data. Of

course the templates and inputs suggested here are not compulsory, but

it is easier to follow the example if we use the same data.

After installing the template the input can start. Simply press the

<Return> key. Mini Data is now ready for input of data and signals this

by a highlighted text field and a red cursor. In the input mode, every

text field has a preset maximum of 80 characters. Since they do not all

fit into the text window (in Mini Data a text window can hold only 32

characters), the text scrolls in the text window. Very practical! Try the

first input:

58

Abacus 43 Instructions for Mini Data

Name Jim Smith <Return>

Address 1234 Any drive <Return>

City Somewhere <Return>

State MI <Return>

Zip 49505 <Return>

Telephone xxx-xxx-xxxx <Return>

Remarks none <Return>

The <Returns> behind the input lines should not be input, but simply

mean to press the <Return> key. After the input has been completed,

the disk drive runs briefly. On the lower right side of the screen a

message appears requesting you to wait a moment. During this time no

other function can be selected to prevent disturbing the drive during its

work. In the meantime the message "Record" has changed to indicate

the second data record even though only one has been input Simple, if

an entry was found in a previously unused data record, it is stored and a

switch occurs at the same time to the next data record to make fluid

input of data possible. If a previous data record is made available for

change by the pressing of the <Return> key, no switching occurs.

Since the first data record was input, it was stored and after pressing the

<Return> key, input of data can proceed. Input the names of a few more

Mends so that you can practice using Mini Data.

Next let's examine the function of the cursor keys more closely.

first data record

Previous data record <= ft => next data record

Pressing the <Cursor up> key displays the first data record of the

current file. The <Cursor left> and <right> keys switch to the previous

or next record. The <Cursor down> key has no significance. These three

cursor keys are well suited for "paging" through a file.

Sorting files Interested in sorting the file alphabetically? Simply press the F8 key

and immediately a prompt appears which asks according to which crite

ria. The number which is in front of the desired template field should be

input. Entering the number and pressing the <Return> key sets the

entire process in motion. This function requires at least 40 seconds (to

infinity, depending on the file length). This is dependent on the disk-

oriented processing of Mini Data, but assures 100% data security during

a system crash (which hopefully will never occur). The drive should

stop after sorting and the first data set of the newly sorted file is

displayed.

Nearly all functions of Mini Data have been explained, except searching

and the two print options "print record" and "print file", which use the

printer settings in Preferences and are self explanatory. The search

routine requires you to enter the search critera and then the file is

searched for all matches. A program which is easy to learn and which is

useful. What more can you ask for?

59

4. Programming in BASIC Amiga disk drives inside and out

4 . 4 AmigaBASIC improvements

Since we have discussed some material that was rather hard to digest,

two special delicacies will be served for the final portion of this BASIC
section. First: access to the CLI from AmigaBASIC and second:

leading the disk directory. The Merge example which we promised you

earlier completes the chapter.

The listing of Program 4 which permits direct access to the CLI from

BASIC starts the section:

Program 4: 'Program 4:

DECLARE FUNCTION xOpenfi LIBRARY

DECLARE FUNCTION Executes LIBRARY

LIBRARY "dos.library"

NewCommand:

INPUT "l>";Command$

Reaction:

Command$=Command$+CHR$(0)

Display$="CON:0/0/640/200/CLI-Basic"+CHR$(0)

REM PAL screens can use

REM Display$="CON:0/0/640/256/CLI-Basic"+CHR$(0) •

connection&=xOpen&(SADD(Display$) , 1006)

extra&=Execute&(SADD(Command$),0, connections)

FOR i=l TO 20000:NEXT i

CALL xClose(connections)

INPUT "more (y) ";w$

IF w$="y" THEN NewCommand

LIBRARY CLOSE

END

Those who have examined AmigaBASIC more closely are familiar with

the Library command which permits use of the Amiga System libraries.

This command is in this program so the dos.bmap file must be accessi

ble on disk.

Certain expressions are declared as functions (DECLARE FUNCTION).
The DOS operating system library is then opened with "dosJibrary"

which controls among other things, the processing of CLI commands.

After a brief interrogation of the desired CLI command (in Command$)
the actual processing procedure occurs. To mark the end of the
command sequence which was input, a CHR$(0) is attached to the
variable. Next parameters are passed which open the CLI window.
These have a fixed format just like most system routine accesses from

BASIC. The values for width, height and the name of the window can

be changed at will in the Display$ variable.

60

Abacus 4.4 AmigaBASIC improvements

The heart of the program is in the following line:

extra&=Execute&(SADD(Command$),0,connections)

The CLI command which was input previously is passed directly to the

DOS library for processing. When the process is finished, the library is

closed again (LIBRARY CLOSE).

Now some practical applications. A few examples are presented which

demonstrate what can be done with CLI BASIC. For example "dir" can

be used to display the directory of a disk (how dull). But wait, there's

more! Basically nearly all CLI commands can be accessed from the

CLI user interface. Commands which are not directly addressable are

those which require an input from the user. A good example is the

Setdate command. Programs cannot be started with RUN because this

confuses the Amiga and sometimes causes a "Guru meditation."

An interesting example is opening a new CLI window with Newcli in

which all commands can be executed correctly. It's now possible to

start programs which are independent of AmigaBASIC. However,

control through AmigaBASIC is no longer possible and return to the

normal BASIC level is only possible with an EndCLI. In this manner

work with the CLI and AmigaBASIC can be done in parallel.

The Info command should not be forgotten. It provides a complete

overview of the disk. With the List command more detailed information

can be obtained such as the length of the files.

The pseudo CLI can be used for many things, from setting the system

time (NewCLI-Setdate-EndCLI), to copying of titles or erasing them

(copy/delete), installing a RAM disk (dir ram:) or displaying the

directory of a disk (dir dfO:) quickly.

Bear in mind the following: The current directory must contain the

dos.bmap Hie and the CLI commands, such as dir, NewCLI, EndCLI,

Delete, Copy, etc. must be located in the C directory.

61

4. Programming in BASIC Amiga disk drives inside and out

4 . 5 Reading a directory from

BASIC

The directory of any disk can be read directly from BASIC with this

program.

Program 5t 'Program 5:

DECLARE FUNCTION Examines LIBRARY

DECLARE FUNCTION ExNextfi LIBRARY

DECLARE FUNCTION Locks LIBRARY

DECLARE FUNCTION AllocMemfi LIBRARY

DECLARE FUNCTION IoErrfi LIBRARY

LIBRARY "exec.library"

LIBRARY "dos.library"

more2:

INPUT "Directory ";Dir$

Hello%=-2

Dir$=Dir$+CHR$(O)

bytes&=252

lock2&=Lock&(SADD(Dir$),Hello%)

opt&=2*l+2A16

info&=AllocMem& <bytes&, opts)

suc&=Examine&(Iock2&,infos)

more:

DirName&=info&+8

FOR search=0 TO 29

check=PEEK(DirName&+search)

IF checkoO THEN

check$=check$+CHR$(check)

ELSE

search=29

END IF

NEXT search

DirName$=check$:check$=""

prot&=PEEKL(infO&+116)

IF prot&<>0 THEN

IF (prot& AND 2*3)00 THEN prot$=prot$+"read "

IF (prot& AND 2*2)00 THEN prot$=prot$+"write "

IF (prot& AND 2A1)<>0 THEN prot$=prot$+"Execute "

IF (prot& AND 2*0)00 THEN prot$=prot$+"erase "

DirProt$=LEFT$(prot$fLEN(prot$)-l)

prot$="d"

END IF

62

Abacus 4.5 Reading a directory from BASIC

type&=PEEKL(infO&+120)

IF types<0 THEN .

DirType$="File"

ELSEIF counter%=0 THEN

DirType$="Directory"

ELSE

DirType$="Directory"

END IF

DirSize&=PEEKL(info&+124)

DirBlks&=PEEKL(infO&+128)

FOR search=0 TO 79

check=PEEK(info&+144+search)

IF checkOO THEN

check$=check$+CHR$(check)

ELSE

search=79

END IF

NEXT search

DirComm$=check$:check$=""

suc&=ExNext&(Iock2&,info&)

IF suc&=0 THEN CLS:GOTO more2

CLS

LOCATE 5,3

COLOR 3:PRINT DirName$;:COLOR 1

PRINT " is a ";

COLOR 3:PRINT DirType$;:COLOR 1:PRINT

IF DirType$="Directory" THEN pause

PRINT " Following Protect-Options are used:"

PRINT:COLOR 2:PRINT " ";DirProt$:COLOR .1

pause:

PRINT :PRINT " Continue => Key New Dir => q"

pause2:

a$=INKEY$:IF a$="" THEN pause2

IF a$="q" THEN CLS:GOTO more2

GOTO more

As in the Pseudo CLI, the Library command is used here to access the

operating system routines. The functions of the program are easily

explained. After the start the directory to be listed (for example dfO:) is

read. The File type and the Protect mode of the files are output. The

exe.bmap and dos.bmap files must be in the current directory.

63

4. Programming in BASIC Amiga disk drives inside and out

4.6 MERGE

The capabilities of the MERGE command will be explained in this

section. A simple example program has been selected for this task to

illustrate MERGE clearly. The MERGE command does not occur in the

program itself, it would not be efficient in a program of this size. First

let's examine the listing:

Program 6: 'Program 6:

'MiniBase VI.0

REM ON ERROR GOTO Problem

SCREEN 1,320,200,4,1

WINDOW l,"Mini Base VI.0",,0,1

DIM Entry(12)

PALETTE 0,0,0,0

PALETTE 1,0,0,0

PALETTE 2,1,1,1

COLOR 2,0

INPUT "Data is (D)Data Statements or (I)Input ";a$

IF UCASE$(a$)="Q" THEN Ende

IF UCASE$(a$)="D" THEN

FOR i=l TO 12

READ Entry(i)

NEXT i

GOTO BarChart

END IF

DataEntry:

CLS

PRINT "Input :"

PRINT

FOR i=l TO 12

RepeatEntry:

PRINT "Value Nr.";i;

INPUT Entry(i)

IF Entry(i)=-l THEN Ende

IF Entry(i)<0 OR Entry(i)>20 THEN PRINT "False input;

repeat...":GOTO RepeatEntry

NEXT i

BarChart:

CLS

FOR i=l TO 12

COLOR 1,3+i

64

Abacus 4.6 Merge

FOR r=l TO Entry(i)

LOCATE 23-r,i*3:PRINT " "

NEXT r

COLOR 2,0:LOCATE 23-r-lfi*3-l:PRINT Entry(i)

NEXT i

a$=""

LOCATE 23f9:INPUT "(S)ave or (N)ew ";a$

IF UCASE$(a$)="Q" THEN Ende

IF UCASE$(a$)="S" THEN

REM LOCATE 23,9:PRINT SPACE$(16);

LOCATE 23,9:INPUT "Filename ";file$

OPEN file$ FOR OUTPUT AS #1

PRINT #1,"EnteredData:";CHR$(13)

FOR i=l TO 12

PRINT #1,"DATA "/Entry(i);CHR$(13)

NEXT i

CLOSE #1

END IF

GOTO DataEntry

Problem:

IF ERR=4 THEN

CLS

PRINT "No Data available !!! [Key]"

WHILE INKEY$="":WEND

ON ERROR GOTO ERROR

RESUME DataEntry

END IF

END

Ende:

WINDOW CLOSE 1

SCREEN CLOSE 1

END

To relieve the user of a typing chore, this program is also included in

the BASIC drawer of the optional disk for this book.

A description MiniBase is a small graphic calculation program, which displays the

values input as a bar graph on the screen and saves them.

After starting the program a prompt asks whether the data exists as data

lines at the end of the program or if it should be input. Now either

press the <Return> key or press <I> <Return>.

The number of data has been set at 12 data items. If less are input, the

prompt can be answered with a Return. To change the number of items

possible do the following: Every place where the number 12 occurs,

substitute the number of items you want to input.

65

4. Programming in BASIC Amiga disk drives inside and out

The maximum size of the data to be input is 20. Only whole numbers
(without a decimal point) can be used. When the last number has been
input, the bar chart with its values is constructed on the screen. You are
then asked if the data should be stored as a file, or if new data is input
The new input erases the old data. An <s> is input for saving the data.
After the drive has finished running, the program returns to Input mode.
To terminate the program, press <Ctrl><C>, input -1 in Input mode or
a <q> for Quit during all other prompts.

The MERGE command can be used to append the saved data to the
program.

66

5.

AmigaDOS

Abacus 5. AmigaDOS

5. AmigaDOS

The operating system of the Amiga is partitioned into various hierar

chical levels. The lowest level is the individual device drivers, for
example the disk drive, the serial interface, the keyboard and the screen

(Console). This low level offers only limited capabilities. Normally the

transfer rate is in IK increments from the computer to a device and vice

versa.

No user will accept this slow rate. A disk directory at this rate would
take hours! AmigaDOS is responsible for the upper level of the operat

ing system. All threads of the individual devices come together here.

For example, it is possible to redirect a task which normally would
have been displayed on screen to the printer or a file.

AmigaDOS cannot only handle the devices, but it also controls the
CLI. This part of AmigaDOS is less interesting for the user since this

book deals with the disk. But even in this area AmigaDOS can offer a

few features.

69

5. AmigaDOS Amiga disk drives inside and out

5.1 BCPL-variables under

AmigaDOS

AmigaDOS, like most of the system software of the Amiga, was
developed in BCPL. BCPL is a predecessor of the widely available C
programming language and has some peculiarities which must be
observed while programming in C.

The user who has looked at the Include files of the C compiler may
have already noticed some peculiar variable types. These are the vari
ables of BCPL which were translated into C:

BPTR = BCPL-Pointer

BSTR = BCPL-String

The BPTR is a pointer into the memory of the Amiga just like a C
pointer. The BCPL pointer only points to memory addresses which are
divisible by 4. It counts in long words (32 bits) instead of bytes (8 bit).
In the real world the conversion from C pointers (for example APTR)
to BCPL appears as follows:

BCPL = APTR / 4 (APTR must be completely divisible by 4!)

APTR = BCPL * 4

The Include file "libraries/dos.h" contains a helpful conversion routine.
It shifts the bits of the BPTR to the left by two and thus multiplies it
by 4.

typedef long BPTR;

typedef long BSTR/

#define BADDR(bptr) (((ULONG)bptr)«2)

Usage: APTR = BADDR(BPTR)

The BCPL string BSTR works just like the BPTR in the long word
format. It is a pointer to a series of bytes which contain character codes.

Unlike C, the first byte of the BCPL string contains the length of the
character string instead of the first character. This is followed by the
actual characters.

70

Abacus 5.2 Internal organization of AmigaDOS

5 .2 Internal organization of

AmigaDOS

AmigaDOS is a library, like all parts of the Amiga operating system.

However for C programs AmigaDOS has a special library. It doesn't

have to be opened like the Intuition library before using it in programs.

The opening is performed by the initialization routine which is

automatically linked to each C program. The base pointer of the library

is then stored in the global variable DOSBase.

Below the DOSBase address (with smaller addresses) are the addresses of

the individual DOS routines as in any library. Starting with positive

offsets from the DOSBase (addresses larger than the DOSBase) the data

area of the DOS library can be reached. This is a structure containing

the pointers to all additional internal data of AmigaDOS:

struct

struct

DosLibrary \

Library

APTR

APTR

LONG

LONG

LONG

[

dl_

dl"
dl"
dl"
dl_

dl"

lib;

_Root;

~GV;
~A2;
A5;

A6;

The only interesting entry is "dl_Root". It points to another structure,

the"RootNode":

struct RootNode {

BPTR rn_TaskArray;

BPTR rn__ConsoleSegment;

struct DateStamp rn_Time;

LONG rn_RestartSeg;

BPTR rn_Info;

BPTR rn_FileHandlerSegment;

Most of the entries of this structure are used for tasks which Amiga-

DOS performs outside the I/O control (CLI etc.).

The pointer in "rnjnfo" is important. It points to the DOS Info struc

ture which has the following structure:

struct Doslnfo {

BPTR di_McName;

BPTR di_DevInfo;

BPTR di_Devices;

BPTR di__Handlers;

APTR di_NetHand;

71

5. AmigaDOS Amiga disk drives inside and out

This structure is the key to all devices known to AmigaDOS. In
Version 1.2 of AmigaDOS only the di_DevInfo entry is occupied. Here
we find another pointer which points to another structure.

struct DeviceNode {

BPTR dn_Next;

ULONG dnJType;

struct MsgPort *dn_Task;

BPTR dn_Lock;

BSTR dn__Handler;

ULONG dn_StackSize;

LONG dn_Prior±ty;

BPTR dn_Startup;

BPTR dn_SegList;

BPTR dn_GlobalVec;

BSTR dn_Name;

This type of structure exists for every mounted device (for example
PAR for the parallel interface). The first entry "dnNext" always points
to the next DeviceNode structure. The last structure which cannot point
to another one, contains a null.

AmigaDOS controls not only the individual devices with this structure.
Disks (volumes) and directories can be declared as pseudo devices in this
manner. The CLI command Assign can use this list to make the C
directory of the Workbench disk into a logical device.

The device in question is listed in "dnJType". It can assume the
following values:

#define DLT_DEVICE OL

#define DLT_DIRECTORY 1L

#define DLT_VOLUME 2L

For the type "DTL_VOLUME" there is another modified form of the
DeviceNode structure:

struct DeviceList {

BPTR

LONG

struct MsgPort

BPTR

struct DateStamp

BPTR

LONG

LONG

BSTR

dl Next;

dl Type;

*dl_

dl]

dl_

dl]

_Task;

_Lock;

_VolumeDate;

_LockList;

dl_DiskType;

dl_

*dl"
_unused;

Name;

Of interest here is the dl_Lock or the dn_Lock entry. It again points to

an entire list of structures. For every file of a disk one Lock structure
can exist

72

Abacus 5.2 Internal organization of AmigaDOS

One function of Lock is to prevent, for example, two parallel executing

tasks writing to the same file at the same time. This would lead to
chaos! If a task is currently writing to a file, a Lock structure marks it

so no other task can access this file until writing has been completed.

More on this in the next section.

The following example program outputs all devices which are registered

in AmigaDOS. It determines the RootNode structure using the DOS

base address and climbs through the previously mentioned structures to

the first DeviceList. Since the structures are connected with each other

through the BCPL pointer they must first be converted with BADDR()

into C pointers. Then the program uses a while loop to read the
pointers for all DeviceList or DeviceNode structures. The type and name

for every device is output. Since the name is a BCPL string, it must be

converted with "printf' into a C string before output.

/* */

/* ASSIGN-Function for AmigaDOS */

/* V

/* JEA, 18-08-87 */
/* */

#include <libraries/dos.h>

#include <libraries/dosextens.h>

#include <libraries/filehandler.h>

extern struct DosLibrary *DOSBase;

UBYTE *dtl_types[] = {

"Device : ",

"Directory: ",

"Volume : "

,+ */

/* Convert BSTR into C-String */

/* V

/* */
/*__ — _ */

BstrC(bstr, buf)

BSTR *bstr;

UBYTE *buf;

{

UBYTE *str;

LONG loop;

LONG counter;

counter =0;

str = <UBYTE*) BADDR(bstr);

for(loop = (LONG) str[0]; loop—; ++counter) {

buf[counter] = str[counter+1];

}

buf[counter] = 0;

,+ */

/* output BPTR-String */

/* */

/* */
/* */

BstrOut(bstr)

73

5. AmigaDOS Amiga disk drives inside and out

BSTR *bstr;

{

UBYTE buf[80];

BstrC(bstr, buf);

printf(buf);

/* .._ ___ .. __ ___ * /

/* Output ASSIGN Entries */
/* */

/* */
/ * . . „ ^ .

FindeAssignO

{

struct RootNode *rootnode;

struct Doslnfo *dosinfo;

struct DeviceList *devicelist;

struct FileLock *filelock;

rootnode = (struct RootNode*) DOSBase->dl_Root;

dosinfo = (struct Doslnfo*) BADDR(rootnode->rn__Info);
devicelist = (struct DeviceList*) BADDR(dosinfo->di__DevInfo);
while(devicelist->dl_Next){

printf(dtl__types [devicelist->dl_Type]);

BstrOut(devicelist->dl_Name);

printf("\n");

devicelist = (struct DeviceList*) BADDR(devicelist->dl Next);
}

/* +1

/* Main program */

/* */

/* */
/*_ _«._ «... »«„„»«. ——.—.——«„ —.— __*/

min()

{

FindeAssignO;

74

Abacus 53 The functions of AmigaDOS

5.3 The functions of AmigaDOS

AmigaDOS has a set of 23 routines which permit control of the

devices. These file handling routines are easy to program because of

their high level in the operating system. On this level, as already

mentioned, all devices are treated equally. The following program reads

a file and outputs it to the screen. Some DOS functions are used which

are explained at the end of the program. The program shows that it is

easy for DOS to address various output devices such as the drive and

screen display.

/* */

/* Call of the DOS-Functions */

/* */

/* JEA, 18-08-87 */
/* ___ . _ */

#include <exec/exec.h>

#include <libraries/dos.h>

iinclude <libraries/dosextens.h>

#include <libraries/filehandler.h>

#include <stdio.h>

char *error_jstrs[] = {

nERROR_NO_DEFAULT_DIR: 201",

"ERROR_OBJECT_IN_USE: 202",

"ERROR_OBJECT_EXISTS: 203",

nERROR_DIR_NOT_FOUND: 204",

nERROR_OBJECT_NOTJFOUND: 205",

"ERROR_BADJSTREAM_NAME: 206",

"ERRORJ)BJECTJTOO_LARGE: 207",

"ERROR_ACTION_NOT_KNOWN: 209",

MERROR_INVALID_COMPONENT_NAME: 210",

"ERROR_BJVALID_LOCK: 211",

"ERROR_OBJECT_WRONG_TYPE: 212",

"ERROR_DISK_NOT_VALIDATED: 213",

"ERROR_DISK_WRITE_PROTECTED: 214",

"ERROR_RENAME_ACROSS_DEVICES: 215",

"ERROR_DIRECTORY__NOT__EMPTY: 216",

"ERRORJTOO_MANY_LEVELS: 217",

"ERROR_DEVICE_NOT_M0UNTED: 218",

"ERROR_SEEK_ERROR: 219",

"ERROR_COMMENT_TOO_BIG: 220",

"ERROR_DISK_FULL: 221",

"ERROR_DELETE__PROTECTED: 222",

"ERROR_WRITE_PROTECTED: 223",

"ERROR_READ_PROTECTED: 224",

"ERROR_NOT_A_DOS_DISK: 225",

"ERROR_NO_DISK: 226"

75

5. AmigaDOS Amiga disk drives inside and out

/*

/* AmigaDOS Error-Text output

/*
/*

LONG

get_error()

{
LONG error;

error - IoErr();

if(error < 120) {

switch(error) {

case 000:

printf("All OK!\nM);

break;

case 103:

printf("ERROR_NO_FREEJSTORE: 103\n");

break;

case 105:

printf(nERROR_TASKJTABLE_FULL: 105\nn);

break;

case 120:

printf("ERRORJLINEJTOO_LONG: 120\nw);

break;

case 121:

printf(nERROR_FILE__NOT_OBJECT! 121\nn);

break;

case 122:

printf(nERROR__INVALID__RESIDENT__LIBRARY: 122\n"

break;

case 232:

printf("ERROR_NO_MORE_ENTRIE$: 232\n");

break;

else{

printf("%s\nw, error_strs[error-201]);

return(error);

}

/* Type */

/* */

/* */
/*«_.. ..— „--. «—-. „„... « * /

type(filename)

UBYTE *filename;

{

struct FileHandle *handle;

struct FileHandle *Open{);

UBYTE buf;

LONG read_length;

handle =» Open(filename, MOE8E_OLDFILE);

if(handle){

do{

read length = Read(handle, &buf, 1L);

printf(w%c"r buf);

76

Abacus S3 The functions of AmigaDOS

while(read_length);

Close(handle);

}
else{

get_error() ;

*/
/* Main program

/* */

/* */
.+ d */

main(arg__num, args)

int arg_num;

char *args[];

{

if(arg_num > 1)

type(args[l]);

else

printf("A file name is required!\nn);

77

5. AmigaD O S Amiga disk drives inside and out

5 . 4 DOS functions

In this chapter all DOS functions, offsets and the registers in which the

various parameters must be passed are discussed.

5.4.1 General Input/Output functions

Open Handle = Open (Name, Mode)

DO -30 Dl D2

Opens afile

Opens the file to which Dl points. Text must be terminated with a null

byte.

The Mode in D2 can be Mode_readwrite (1004 for DOS 1.2) for input/

output, Modeold (1005) for input from or Modejiew (1006) for

output to the file.

In DO a pointer to the File Handle structure is returned, or a null when

the function could not be performed. The File Handle structure has the

following format:

Offset

0

4

8

12

16

20

24

28

32

36

40

Name

Link

Interact

ID

Buffer

CharPos

BufEnd

ReadFunc

WriteFunc

CloseFunc

Aigumentl

Argument

Significance

Unused.

If <>t), the file is interactive.
Identification number of the file.

Pointer to internal storage needed.

Pointer required internally.

Pointer required internally.

Pointer to routine which is called when

buffer is empty.

Pointer to routine which is called when

buffer is full.

Pointer to routine which is called during

closing of the file.

File type dependent arguments.

Most entries are provided for the internal usage of AmigaDOS. These

values should not be manipulated.

78

Abacus 5.4 DOS functions

Close Close (Handle)

-36 Dl

Closes afile

Closes the file which was opened with the Open command. The pointer

passed in Dl is the pointer from the Open command to the File Handle

structure.

Read Number = Read (Handle, Buffer, Length)

DO -42 Dl D2 D3

Reads data

Reads bytes from the Hie specified by the Handle up to the Length into

the memory starting at address Buffer.

The value returned in DO indicates the number of bytes actually read. If

this number is 0, the end of the file was reached. If an error occurred, -1

is returned.

Write Number = Write (Handle, Buffer, Length)

DO -48 Dl D2 D3

Writes data

Writes the number of bytes as specified in Length in the file specified

by Handle from memory, starting at address Buffer.

The number of bytes actually written is returned in DO. If this value is

-1, an error occurred.

Seek Position = Seek (Handle, Interval, Mode)

DO -66 Dl D2 D3

Movesfile pointer

This function moves the internal pointer in the file specified by Handle.

The Mode determines if the value in the Interval should move the

pointer relative to the beginning of the file or the end of the file. This

value is calculated according to the preceding sign so that it can also be

moved backwards.

The possible modes are: OFFSETJBEGINNING -1

OFFSET_CURRENT 0

OFFSET_END 1

The return value indicates the current position of the pointer after the

execution of the function. To determine the position of the pointer at

the moment, the Mode relative to the position (OFFSET_CURRENT)

can be set and moved by OK: the position returned is equal to the old

position.

79

5. AmigaDOS Amiga disk drives inside and out

Input

Output

WaitForChar

Handle = Input ()

DO -54

Determines standard input channel

This function determines the Handle of the channel from which the

standard input can be read. If the program was called from the CLI this

is the Handle of the CLI window. If the CLI command which called

the program used the Data redirection capability, the handle of the

channel selected is found An example:

>Programname < DFO:Filename

Input, resulting from the Read command, to the program comes from

the file named Filename.

Handle = Output()

Determines standard output channel

This function determines the Handle of the channel where the standard

output can be written. If the program was called from the CLI this is

the Handle of the CLI window. Here also the standard output can be
redirected

>Programname > PRT:

The standard output of the calling program is sent to the printer.

Status = WaitForChar (Handle, Timeout)

DO -204 Dl D2

Waitsfor a character

This function waits the number of microseconds indicated in Timeout

for the character from the channel specified in the Handle (for example

the RAW: window). If during this time a character isn't received, a 0 is

returned in Status, otherwise the value -1. The character can be read
with the Read function.

The function is only available if the channel is an interactive channel
(interactive terminal), for example a RAW: window, in which input and

output can occur at the same time and data are not necessarily required

immediately.

80

Abacus 5.4 DOS functions

Islnteractive

IoErr

Status = Islnteractive (Handle)

DO -216 Dl

Determines channel type

True (-1) is returned in the Status if the channel specified by the Handle

is an interactive terminal which can handle input and output. Otherwise

False (0) is returned.

Error

DO

= IoErr ()

-132

DeterminesInput/Output error

An error is reported after the call of a function by a null as the return

value in DO (usally). The exact error message can be determined by

calling IoErr. DO contains the number of the error which occurred (see

the Why command of the CLI).

A listing of the error values can be found in the next section.

5.4.2 Disk operations

CreateDir Lock = CreateDir (Name)

DO -120 Dl

Creates a sub-directory

A sub-directory is created named Name in the current directory. The

return value sets a pointer to a file structure (Lock) which has the

following format:

Offset Name Meaning

0

4

8

12

16

NextBlock

DiskBlock

AccessType

ProcessID

VolNode

Pointer to next connected Lock or Null.

Block-Nr. of the directory or file header.

Access type: -1= excl. access, -2= general

access.

Identification number.

Pointer to disk information.

This structure represents the key to this file or the sub-directory because

it can be accessed with it (see the Makedir command of the CLI).

81

5. AmigaDOS Amiga disk drives inside and out

Lock

CurrentDir

ParentDir

DeleteFile

Rename

lock = Lock (Name, Mode)

DO -84 Dl D2

Finds afile key

Find a file or a sub-directory with the name Name on the disk and create

a structure. The Mode determines what type of access can occur on this

file. If it is reading (-2), several tasks can be read from this file. If it is

writing, (-1), only this program can write into the file.

oldLock = CurrentDir (Lock)

DO -126 Dl

Elevate sub directory to current directory

The sub-directory specified by Lock is elevated to the current directory

(see the CD command of the CLI).

The value returned represents the pointer to the previous directory, the
Lock.

Lock__neu = ParentDir (Lock)

DO -210 Dl

Determines the highest level directory

The directory indicated by Lock is determined and its Lock is returned in

DO. If Lock already belongs to the highest directory (Root directory), a

null is returned in DO.

Status = DeleteFile (Name)

DO -72 Dl

Deletes afile

The file with the indicated name is deleted. The name must be text

which is terminated with a null byte. An error message is returned in

DO if the function could not be performed (for example, file not present,
file write protected, directory not empty).

If a sub-directory is indicated for deletion, no entries can still be present
in the sub-directory.

Status = Rename (Name_old, Name__new)

DO -78 Dl D2

Renames afile

The file or directory with the name provided in "Name_old" is renamed.

If a file with that name already exists, the operation is interrupted and
an error indication is returned.

82

Abacus 5.4 DOS functions

The two name indications can also contain paths. In this case the file is

brought from the old directory into the new directory with the new

name. This can only be done on the same disk.

DupLock newLock = DupLock (Lock)

DO -96 Dl

Copies a lock

The old Lock structure is copied into a new structure. DO then points to

the new structure. This can be used if several processes should access

this file. No Lock can be copied if it's only authorized for writing since

it is already authorized for an exclusive access.

UnLock UnLock (Lock)

-90 Dl

Removes a lock

The Lock structure which was created with Lock, DupLock or

CreateDir, is removed and the memory occupied is released again.

Examine Status = Examine (Lock, InfoBlock)

DO -102 Dl D2

Getsfile information

The structure to which D2 points is filled with information about the

file specified. This structure is called FilelnfoBlock and appears as

follows:

Offset

0

4

8

116

120

124

128

132

136

140

144

Name

DiskKey-L

DirEntiyTypei

FileName 108

Protection^

EntryType.L

Sizei

NumBlocks.L

Days.L

MinuteJL

Tick.L

Comment 116

Description

Disk number.

Entry type (+=Directory, -=file).

Bytes with the filename.

File protected?

Entry type.

File length in bytes.

Number of blocks occupied.

Creation date.

Creation time.

Creation time.

Bytes with comments.

DO contains a 0 if the function could not be performed.

83

5. AmigaDOS Amiga disk drives inside and out

ExNext Status = ExNext (Lock, InfoBlock)

DO -108 Dl D2

Determines the next directory entry

The InfoBlock filled with Examine and the Lock of the selected directo

ries is passed to this function. The information of the first suitable

entry from this directory is entered into the InfoBlock. During another

call of ExNext, a search is made for the next entry of this directory and

its information is returned. If a further entry cannot be found, or an error

has occurred, a null is returned in DO. The table of contents of a disk

can be read with die Lock, Examine and ExNext commands.

The path is as follows:

1.) The key to the desired directory is created with Lock.

2.) The directory name or the name of the disk can be determined

with Examine. At the same time the FilelnfoBlock is created

which is necessary for the next function.

3.) The individual entries in the directory are read with repeated calls

of the ExNext function. This information is entered into the

FilelnfoBlock. This is repeated until the ExNext function returns

a null. At that point no additional entries are available!

Following is a small machine language subroutine which completes

these steps. The Print routine that is called is not presented here. It

could for example print the name and length of file just read to the

screen.

Before the call of this routine the DOS library must be opened and the

DOS base address must be stored in'

Lock

Examine

ExNext

= -84

= -102

= -108

IoErr -132

directory:

move.1

move.1

move.1

jsr

tst.l

beq

move.1

dosbase,a6

#name,dl

#-2,d2

Lock(a6)

dO

Error

dO,locksav

/* Table of Content of DFO

/DOS-Base address in A6

/pointer to

/Mode "Read1

/search for

/found ?

/no !

Path-/Filename

file

/otherwise save key

move.l dosbase,a6

move.l locksav,dl

move.l #fileinfo,d2

;DOS-Base address

/Key in Dl

/pointer to FilelnfoBlock

84

Abacus SA DOS functions

Info

jsr

tst.l

beq

bra

loop:

move.

move.

move.

jsr

tst.l

beq

output:

bsr

bra

error:

move.

jsr

rts

name:

align

locksav:

fileinfo:

end

1

1

1

1

dc

Examine(a6)

dO

error

output

dosbase,a6

locksav,dl

#fileinfo,d2

ExNext(a6)

dO

error

Print

loop

dosbase,a6

IoErr(a6)

:.b 'DFOi'jO

blk.l 0

blk.l 260

;Get Disk-Name

;OK?

;no (occurs rarely)

/otherwise output Name

;* Read Filenames

;DOS-Base address

;Key in Dl

/pointer to FilelnfoBlock

/search for next file

/found ?

/no: End

/* Output Name

/Output/evaluate Name etc

/and continue ...

/* Determine I/O-Status

/DOS-Base address in A6

/Get Status

/End...

/ some assembler use even

After termination of this routine an error code which was determined by

the IoErr function is returned in DO. This code should be 232

(m)_more_entries) or something went wrong.

Status - Info (Lock, InfoData)

DO -104 Dl D2

Gets disk information

The parameter block, to which D2 points, is filled with information

about the disk in use. This block must start at an address which is

divisible by four (longword aligned).

Lock must fit the disk, a file or a subdirectory of this disk.

The parameter block InfoData has the following format:

Offset

0

4

8

12

16

20

24

28

32

Name

NumSof(Errors

UnitNumber

DiskState

NumBlocks

NumBlocksUsed

BytesPerBlock

DiskType

VolumeNode

InUse

Description

Number of disk errors.

Installed disk drive.

Disk status (see below).

Number of blocks on the disk.

Number of blocks used.

Number of bytes per block.

Disk type (see below).

Pointer to disk name.

<>0, if disk is active.

85

5. AmigaDOS Amiga disk drives inside and out

SetComment

SetProtection

DiskState shows the status of the disk. The possible results are:

80 Disk is write protected

81 Disk is under repair (validating).

82 Disk OK and can be written.

DiskType contains the disk type as text is inserted. The possible values
are:

-1 No disk inserted.

BAD Disk not readable (wrong Format).

DOS DOS disk.

NDOS Format OK, but not a DOS disk.

KICK Kickstartdisk.

Status = SetComment (Name, Comment)

DO 180 Dl D2

Sets a file comment

The file or the sub-directory Name is given a comment The comment

can be up to 80 characters in length and must terminate with a null

byte.

Status = SetProtection (Name, Maske)

DO -186 Dl D2

Sets the file status

The write or read Status of the file indicated, or of the sub-directory is

set. The lower 4 bits of the mask have the following significance:

Bit Significance when set

0 file not erasable

1 not executable

2 not to be overwritten

3 not readable

5.4.3 Process processing

CreateProc Process = CreateProc (Name, Pri, Segment, Stack)

DO -138 Dl D2 D3 D4

Creates a newprocess

A new Process structure is created under the name to which Dl points.

This process runs under the priority indicated in Pri and gets a Stack of

the size specified in Stack.

86

Abacus 5.4 DOS functions

DateStamp

Delay

DeviceProc

Exit

A pointer to the Segment list is passed in Segment (see also LoadSeg),

in which the program code to be started is defined. The program should

start in the first segment of the list.

The result of the function is the new Process ID or a 0, if an error
occurred

DateStamp (Vector)

-192 Dl

Determines the date and time

In Dl a pointer is returned to a table of three long words. If the time

was not set in the Amiga all of these long words contain a 0. Otherwise

the first long word contains the number of days passed since January

1978, the second the number of minutes passed since midnight, and the

third the I/SO seconds elapsed in this minute. This value is always a

multiple of SO so that the number of seconds *50 is always indicated.

Delay (Time)

-198 Dl

Stops the execution ofthe current processfor a short period oftime

The executing process is stopped for the number of I/SO seconds indi

cated in Time.

Process = DeviceProc (Name)

DO -174 Dl

Identifies the Process using I/O

The identification of the process which at this moment uses the Input/

Output channel indicated in Name is returned, or a 0 if a process wasn't

found.

If the name relates to a channel which is on a disk, a pointer to the

Lock structure of the corresponding directory can be maintained with the

IoErr function.

Exit (Parameter)

-144 Dl

Terminates a program

The executing program is terminated. If the program was called from

the CLI, control is returned to it and the integer value in Parameter is

interpreted as a return value. If the program was started as Process, this

process is erased through Exit and the Stack, Segment and Process

memory used by it is released again.

87

5. AmigaDOS Amiga disk drives inside and out

Execute Status = Execute (Command, Input, Output)
DO -222 Dl D2 D3

Calls a CU command

The CLI commands which are provided in a text file and to which Dl

points, is executed. With Input and Output the I/O of the CLI

command can be redirected but their handle must be indicated here. If a

null is indicated for Input or Output, the standard channel is used.

LoadSeg Segment = LoadSeg (Name)

DO -150 Dl

Loads aprogramfile

The program file Name is loaded into memory. The program can be
spread over several memory modules if not enough memory space is

available. The segments thus created are chained together by having the

first entry of every segment a pointer to the next segment of the list If

this pointer is 0, this is the last segment.

If an error occurs during this process, all previously loaded segments are

released again and a 0 is returned in DO. Otherwise DO contains a

pointer to the first segment.

The loaded program can only be started with CreateProc or erased with

UnLoadSeg.

UnLoadSeg UnLoadSeg (Segment)

-156 Dl

Erases aprogramfile which was loaded

The program file which was loaded with LoadSeg is erased and the

memory used is released again. The pointer in Dl points to the first

segment of the list (see LoadSeg).

GetPacket Status = GetPacket (Waitflag)

DO -162 Dl

Gets apacket

Gets a packet which was sent by another process. If the Waitflag is true

(-1), a wait occurs for the content of the packet, otherwise no wait

occurs and a null is returned if a packet isn't available.

QueuePacket Status = QueuePacket (Packet)

DO -168 Dl

Sends a packet

The packet, to which Dl points, is sent. If no error occurs, the value

<>0 is returned in DO.

88

Abacus 5.5 DOS error messages

5 • 5 DOS error messages

DOS error The following list contains the error codes and their meaning from IoErr

messages or the Why command of the CLI.

103 Insufficient free store

Not enough storage is available.

104 Task table full

Already 20 processes are active. No more are permitted.

120 Argument line invalid or too long

The argument list for this command is not correct or contains too many

arguments.

121 File is not an object module

The file called is not capable of being executed.

122 Invalid resident library during load

The resident library called is invalid.

202 Object in use

The indicated file or the directory is being used at this moment by

another program and is not available for other applications.

203 Object already exists

The filename indicated already exists.

204 Directory not found

The selected directory does not exist.

205 Object not found

The channel with the name indicated does not exist.

206 Invalid window

The parameters for the window to be opened are not correct

89

5. AmigaDOS Amiga disk drives inside and out

209 Packet requested type unknown

The desired function is not possible on the device indicated.

210 Invalid stream component name

The filename is invalid (too long or has unauthorized characters).

211 Invalid object lock

The Lock structure indicated is invalid.

212 Object not of required type

File and directory name have been reversed.

213 Disk not validated

The disk is either not recognized yet by the system or is defective.

214 Disk write-protected

The disk is write protected.

215 Rename across devices attempted

The Rename function is possible only within a disk.

216 Directory not empty

A directory which is not empty cannot be erased.

218 Device not mounted

The selected disk is not mounted.

219 Seek error

Seek function with illegal parameters.

220 Comment too big

The comment for the file is too large.

227 Disk full

The disk is full or doesn't contain enough free space for the application.

222 File is protected from deletion

The file is protected against deletion.

90

Abacus 5.5 DOS error messages

223 File is protected from writing

The file is protected against writing.

224 File is protected from reading

The file is protected against reading. With the last three error messages

the List command can be used to check the status of the affected file.

225 Not a DOS disk

This disk was not formatted with AmigaDOS format.

226 No disk in drive

The drive does not contain a disk.

232 No more entries in directory

The last ExNext function could not detect a suitable entry in the

directory.

91

6.

File Control

Abacus 6. File control

6. File Control

The

Filesystem

Path of data

access through

Filesystem

File control in the Amiga is performed by the Filesystem. The

Filesystem is a separate task which is addressed by DOS when files

must be handled (for example programs).

The Filesystem differentiates to which device file access should be

directed (for example disk or hard disk) and addresses the device drivers

to access the selected mass storage. The selection of the devices is not

important for the use of Filesystem. It works with every device capable

of using data blocks.

With this method it's possible to interface many different mass storage

devices provided a suitable device driver is included which can work

with the Filesystem. By using the Filesystem, the system is not tied to

a certain fixed device for file control and can be enhanced with additional

devices with little effort.

If access of a file is needed from a device, the command is normally sent

first to DOS (for example read program XY from disk). This determines

that it is a file access and sends the command to the Filesystem. The

Filesystem then controls access by determining how many blocks from

which device should be addressed. The commands for writing and read

ing of blocks are passed by the Filesystem to the proper device drivers

which then communicate directly with the hardware.

An access is a very complicated procedure which unfortunately also

consumes much time. This disadvantage was accepted by the systems

developers to keep the system flexible.

To reduce the speed loss, the Filesystem stores the last blocks read in

RAM so that during new accesses they can be read from the faster

RAM. The number of blocks which can be stored in RAM, can be

enlarged with the CLI command Addbuffers.

95

6. File control Amiga disk drives inside and out

6.1 The disk monitor

Before examining the various block types which can be found on the

disk, the use of a disk monitor is discussed.

The description of the monitor which follows cover the one presented in

the Appendix of this book. The source file is found in the Appendix.

The monitor is loaded and started from the optional disk for this book

using the CLI by entering DiskMon. It accesses the internal drive

(DFO). If another drive is accessed, it can indicated at the start as a

parameter in the command line. To access DF1, "DiskMon dfl:" must

be input for the start

Due to differences in screen sizes between PAL (Europe) and NTSC

(US) Amigas, the disk monitor program for the NTSC machines

displays either the ASCII data or HEX output in the same area. PAL

systems can display more lines so both ASCII and HEX output may be

displayed on the screen. The source code contains comments which

describe the changes required for each system. The optional disk

contains the NTSC version.

6.1.1 The commands of the monitor

The characters enclosed in brackets indicate the keys to be activated ([#]

for input of the character: #).

[Esc] Used to leave the monitor.

[#] The block number to be read can be indicated. The input must be

in decimal and must always have four digits (for example 0013

to read block 13). If an incorrect number is indicated, the input

must be repeated.

[$] Has the same meaning as [#] with the difference that the block

number must be input in hexadecimal.

[+] The next logical block is loaded and displayed.

[-] The previous logical block is loaded and displayed.

[R] The current block is read again (for instance if the disk is

changed).

96

Abacus 5.1 xHE DKK monitor

\W] The block in the buffer is written to disk.

[C] The checksum of the block is calculated and stored. The sum is

also displayed. The command is not suitable for the calculation
of the boot block checksum.

[A] The cursorjumps into the data display of the block in ASCII and

permits the editing of the blocks in ASCII. After the word

buffer, the current cursor position in the block is displayed. A

quick glance can determine if even or odd addresses are being

edited. This sub-point is left for the main menu with [Esc].

[H] The display changes to hexadecimal and permits editing of the

block in bytes. Two characters (1 byte) must always be input.
Otherwise editing is similar to ASCII.

97

6. File control Amiga disk drives inside and out

6 • 2 The various block types

Aside from the blocks containing program data, there are other blocks

on the disk which mark individual files and connect them with each

other for better data control. There is also an item called the boot block.

6.2.1 The boot block

Construction

of the boot

block

The boot block is used by the operating system to indicate if the disk

can be started during initialization like the Workbench disk. The name

boot block is misleading, since there are actually two blocks. These are

the lowest two blocks of the disk (block 0 and 1, consisting of 1024K).

To allow the disk to start, certain data must be written into it by using

the Install command.

The boot block can also be used to call machine language programs

which are executed as soon as the disk is inserted into the internal drive

(DFO) after a reset. To use this capability fully, it's necessary to under

stand how the operating system calls the boot block. This is discussed

in more detail after we look at the construction of the boot blocks.

Longword 1 contains:

The ASCII identification of the disk terminated with null

(valid only for DOS).

The ASCII identification can be either for DOS (for a DOS disk)

or KICK (for a Kickstart disk).

If the DOS identification cannot be found, the message "No DOS Disk"

is output.

Longword 2 contains:

The checksum of the boot block.

Longword 3 contains:

A pointer to the root block (normally $370=880).

The pointer does not have to be set.

98

Abacus 6.2 The various block types

Example for the construction of the header for the boot block:

Identification: dc.b flDOS",0 /ASCII identification of the disk

Chksum: del $???????? /Checksum for boot block

RootBlk: del $00000370 /pointer to Root block

Starting at the fourth longword (the 12th byte) is the actual boot

program which is executed when the checksum is correct. Normally the

following routine is stored here. This can be replaced by the user,

unless the original one is also executed. This is shown in the documen

tation of the boot routine which follows.

The program which is written by the Install command appears as

follows:

BootPrg: lea

jsr

tst.l

beq

move.1

move.1

moveq

Ende: rts

Resname(PC)

-96 (A6)

DO

Error

D0,A0

22(A0),A0

#$00,DO

,A1 /pointer to name of the

Resident structure

/search Resident structure

/test for error

/if an error occurred

/pointer to Resident structure

/after A0

/pointer to the Initialization

after A0

/clear DO if no error occurred

/Return jump to the Boot

/Routine of ROM

Following this is a routine which is called if an error occurs (which

normally should not happen):

Error: moveq #$ff,D0 /load DO with $ff (for error)

bra Ende /terminate program

The following bytes contain the name of the desired Resident structure

(in ASCII):

Resname: dc.b "dos.library",0

This routine searches for the Resident structure to construct the DOS

library and passes its base address in A0 to the boot routine in the

operating system.

Calculating Let's examine the routine which tests the boot block checksum.

the boot block

checksum On entry to the routine, the pointer of the boot block which is already

in RAM, is in A0. First a 256 is written into Dl. This is used as a

counter for the number of longwords for which the checksum should be

formed. Since a longword has 4 bytes, there are 4x256 = 1024 bytes,

which is exactly the length of two disk sectors (in this case 0 and 1).

fe8al4 move.w #$00ff,Dl

Then the register which is later used for the addition, is cleared.

fe8al8 moveq #$00,DO

99

6. File control Amiga disk drives inside and out

Now a longword from the disk buffer (which contains the boot block) is
added to DO.

fe8ala add.l <A0)+,D0

A test is made for an overflow. If one didn't occurr, a jump occurs to

$fe8a20.

fe8alc bcc.s $fe8a20

If an overflow occurred, it is added to DO.

fe8ale addq.l #1,DO

A test is made to see if the whole disk buffer was added and if not, addi

tion continues.

fe8a20 dbf Dl,$fe8ala

The following command reverses all bits, which means the bits which

were erased are set and vice versa

fe8a24 not.l DO

Finally a test is made if all bits have been erased. If this is not the case,

the checksum is false and a branch is taken to $fe8aSc to wait for the

insertion of a bootable disk.

fe8a2 6 bne.s $fe8a5c

The boot checksum is a longword addition with overflow.

6.2.2 The calculation of the user's boot checksum

The calculation of the checksum is fairly simple. First the data which

are stored in the boot block must be prepared as follows:

Bootbuffer is the label which indicates the start of the user's data buffer.

Bootbuffer:

dc.b "DOSMf0 / DOS-identification

del 0 ; Checksum

del $00000370 / pointer to Rootblock

Program: From here on the executable program is stored.

With the following program the sum of the user's data can be formed,

starting at the DOS identification. The result of this is then reversed by

the program and entered as checksum (Offset 4 starting from the boot

100

Abacus 6.2 The various block types

buffer). It is important that the sum entered before the calculation is

null. This is done by the program.

During the calculation of the user's data it can be determined that the

checksum is correct ($00000000) and is recognized as such by the oper

ating system.

Program for the calculation of the checksum:

lea

lea

clr.

move

Bootbuffer,A0

4

1

moveq

add.

bcc

addq

dbf

not.

move

1

,

1

(a0)fal

(al)

w #$00ff,Dl

#$00,DO

<A0)+,D0

Jump

1 #l,D0

Dl,Loop

DO

1 DO,(al)

Loop:

Jump:

All that remains is deciding what the boot program contains and writing

it to the disk.

The Boot How the operating system implements the booting of disks is explained

routine in the following section. To explain the entire reset routine would be

too extensive, so the explanation is limited to the most important

parts.

1.) Creating the Resident structure table $fc0504

fc0504 bsr.l $fc0900

This call causes a search for all Resident structures (reset proof pro

grams) which are in ROM. The pointers to these structures are stored in

a table. The sequence of the entries in the table is according to priority

of the Resident structures. The pointer to the table is stored at Offset

300 of the Execbase structure (ResModules).

2.) Processing the Resident structures $fcO522

fcO522 bsr.l $fc0af0

After the creation of the table, the InitCode() routine is called. It

processes the Resident structures in the sequence of their priorities (high

priority has precedence over lower priority). The lowest priority is -60

and the structure which pertains to it is the routine for the booting of

the disk.

Now for the documented Boot routine ofROM:

fe88d6 movem.l A5-A3/D3-D2,-(A7) Save Register

fe88da moveq #$00,D3 Clear D3

fe88dc suba.l A4,A4 Clear A4

101

6. File control Amiga disk drives inside and out

fe88de lea

fe88e4 link

£e88e8 suba.l

fe88ee move.l

fe88f2 move.l

$fe8b3a,A3

A5,#-126

#$0000007e,A5

A6,0(A5)

D3,4(A5)

Pass the pointer

to RTS in A3

increase stack

A5 to beginning of stack

enter Execbase

enter null

The following routine reserves the storage for the disk buffer.

fe88f6 move.l #$00000488,DO

fe88fc move.l #$00010002,Dl

fe8902 jsr -198(A6)

fe8906 tst.l DO

fe8908 bne.s $fe8924

fe890a movem.l A6-A5/D7,-(A7)

fe890e move.l #$30010000,D7

fe8914 move.l $0004,A6

fe8918 jsr -108(A6)

fe891c movem.l (A7)+,A6-A5/D7

fe8920 bra.l $fe8b2a

fe8924 move.l D0,A4

fe8926 lea $fe889e,A0

fe892c move.l A0,54(A5)

fe8930 move.l A0,102(A5)

fe8934 suba.l Al,Al

fe8936 jsr -294(A6)

fe893a move.l D0,108(A5)

fe893e move.b #$00,106(A5)

A blank List is created.

fe8944 lea 112(A5),A0

fe8948 move.l A0,(A0)

fe894a addq.l #4,(A0)

fe894c clr.l 4(A0)

fe8950 move.l A0,8(A0)

fe8954 moveq #$ff,D0

fe8956 jsr -330(A6)

fe895a move.b D0,107(A5)

fe895e bpl.s $fe897a

fe8960 movem.l A6-A5/D7,-(A7)

fe8964 move.l #$30070000,D7

pass the size of the storage to use

order Chip-Memory and erase

Alloc Mem

did error occur?

if not, branch

save Register

pass error number

write Execbase in A6

Alert

restore register

reduce stack

and end

pass the pointer

to reserved

storage in A4

pass pointer to

ASCII "STrap."

as Disk-I/O-Name

and store

enter as Portname in

Message-Port-

List

erase Al

get running task

and store pointer

enter flags in the Msg.- Port-

Structure

pass pointer to

Message-List to

A0

write pointer to

Message-List in

ml_Head

set ml_Head to ml__Tail

set ml_Tail to 0

set ml_TailPred to

ml_Head

search for signal of the running

Task

Alloc Signal

enter Signal into Msg.- Port-

Structure

if everything O.K.

branch

otherwise no Signal

available

pass error number

102

Abacus 6.2 The various block types

fe896a move.l $0004,A6 write Execbase in A6

fe896e jsr -108(A6) Alert

fe8972 movem.l (A7)+,A6-A5/D7 restore Register

fe8976 bra.l $fe8ble branch

fe897a lea 92(A5),A0 get pointer to Msg.-Port-

Node

fe897e move.l A0,58(A5) and enter into Disk-I/O-Structure

fe8982 lea -192(PC)(=$fe88c4),A0 pass pointer to ASCII

"trackdisk.device"

fe8986 lea 44(A5),A1 pass pointer to I/O-Request-

Structure

fe898a moveq #$00,DO set drive DF0

fe898c moveq #$00,Dl do not pass Flags

fe898e jsr -444(A6) open Trackdisk-Device

fe8992 tst.l DO Device open ?

fe8994 beq.s $fe89bO if yes, branch

fe8996 movem.l A6-A5/D7,-(A7) otherwise save Register

and

fe899a move.l #$30048014,D7 pass Error number

fe89aO move.l $0004,A6 write Execbase in A6

fe89a4 jsr -108(A6) Alert

fe89a8 movem.l (A7)+,A6-A5/D7 restore Register

fe89ac bra.l $fe8bl4 Free Signal and End

The following routine clears all buffers.

fe89bO move.w #$0100,$dff096 block DMA accesses

fe89b8 lea 44(A5),A1 pass the pointer

to the I/O-Request-

Structure in Al

fe89bc move.w #$0005,28(Al) pass command:

Clear Request

fe89c2 jsr -456(A6) DO 10

fe89c6 tst.l DO did error occur?

fe89c8 bne.l $fe8ac8- if yes, branch

In the next routine the number of the disk changes is passed in D2.

fe89cc lea 44(A5),A1 pass pointer to

I/O-Request-Structure

fe89dO move.w #$000d,28(Al) pass command:

Change Number

fe89d6 jsr -456(A6) DO IO

fe89da tst.l DO did error occur?

fe89dc bne.l $fe8ac8 if yes, branch

fe89eO move.l 76(A5),D2 otherwise pass the number

of disk changes in D2

Now a test is made if the disk inserted is a DOS disk.

fe89e4 lea 44(A5),Al pointer to
Structure

fe89e8 move.w #$0002,28(Al) command passed:

Read

fe89ee move.l #$00000400,36(Al) pass length

fe89f6 move.l A4,40(Al) pass pointer to

103

6. File control Amiga disk drives inside and out

Data Buffer

fe89fa move.l #$00000000,44(Al) pass Offset for

Boot-Block

fe8aO2 jsr -456(A6) DO 10

fe8aO6 tst.l DO error occurred ?

fe8aO8 bne.s $fe8a5c if yes, branch

fe8a0a move.l (A4),D0 first data to DO

fe8a0c cmp.l -334(PC)(=$fe88cO),D0 compare with DOS-

identification
fe8alO bne.s $fe8a5c if no agreement

branch

fe8al2 move.l A4,A0 otherwise pass the pointer

the data buffer in A0

Next follows the routine for testing of the boot block checksum,

fe8al4 move.w #$00ff,Dl load counter with value for

1024K(Boot Block)

fe8al8 moveq #$00,DO clear Register for

Checksum

fe8ala add.l (A0)+,D0 add content of longword from

Diskbuffer to DO

fe8alc bcc.s $fe8a20 if no overflow was created

branch

fe8ale addq.l #l,D0 otherwise increment DO by

overflow

fe8a20 dbf Dl,$fe8ala if the 1024K

of the Boot-Block have not been

processed, add further

fe8a24 not.l DO reverse the Bits of the Checksum

fe8a26 bne.s $fe8a5c if Checksum is not

O.K., branch

Jump to the Boot program.

fe8a28 lea 44(A5),A1 pass pointer to I/O-Request-

Structure

fe8a2c jsr 12 (A4) jump into the Boot-Program

fe8a30 tst.l DO error occurred ?

fe8a32 beq.s $fe8a56 if not, branch

fe8a34 move.l D0,-(A7) write error register to the

Stack

fe8a36 move.l A7,A1 write Alert-Parameter to

Al

fe8a38 movem.l A6-A5/D7,-(A7) save Register

fe8a3c move.l #$30000001,D7 pass Error number

fe8a42 lea (A1),A5 pass Alert-Parameter to A5

fe8a44 move.l $0004,A6 write Execbase in A6

fe8a48 jsr -108(A6) Alert

fe8a4c movem.l (A7)+,A6-A5/D7 restore Register

fe8a50 addq.l #4,A7 set Stack beginning after

Alert-Parameter

fe8a52 bra.l $fe8b00 branch

Next the pointer to the initialization routine is passed to A3.

fe8a56 move.l A0,A3 Pass pointer to the initialization routine

fe8a58 bra.l $fe8b00 branch

104

Abacus 6.2 The various block types

This routine tests if the display asking for insertion of the Workbench

disk has been sent to the screen already. If not, it is displayed and then

the motor is switched off.

fe8a5c

fe8a60

fe8a62

fe8a66

fe8a6e

fe8a72

fe8a78

fe8a7c

fe8a80

fe8a82

move.1

bne.s

bsr.l

move.w

lea

move.w

clr.l

jsr

tst.l

bne.s

4(A5),D0

$fe8a66

$fe8b7e

#$8100,$dff096

44(A5),Al

#$0009,28(Al)

36 (Al)

-456 (A6)

DO

$fe8ac8

Gfx-Library available ?

if yes, branch

else Gfx-Library

open

permit DMA accesses

pass pointer to I/O-Request

Structure in Al

pass command:

Motor

switch off motor

DO IO

Error occurred ?

if yes, branch

The following routine waits until the disk is changed.

fe8a84 lea 44(A5),A1 pass pointer to I/O-Request-

Structure to Al

fe8a88 move.w #$000d, 28 (Al) pass command:

fe8a8e jsr

fe8a92 tst.l

fe8a94 bne.s

fe8a96 cmp.l

-456(A6)

DO

$fe8ac8

76(A5),D2

fe8a9a beq.s $fe8a84

Change Num

DO IO

Error occurred ?

if yes, branch

Disk changed in the meantime ?

if not, continue testing

The program now senses if a disk is inserted.

fe8a9c lea 44(A5),A1 pass pointer to I/O-Request-

Structure

fe8aaO move.w #$000e,28(Al) pass command:

Changestate

fe8aa6 jsr -456(A6) DO IO

fe8aaa tst.l DO Error occurred?

fe8aac bne.s $fe8ac8 if yes, branch

fe8aae tst.l 76(A5) Disk inserted ?

fe8ab2 bne.s $fe8a9c if not, continue testing

fe8ab4 bra.l $fe89bO if Disk was inserted, branch

The number of disk changes is passed.

fe8ab8 lea 44(A5),A1 pass pointer to I/O-Request-

Structure

fe8abc move.w #$000d,28(Al) pass command:

Change Num

fe8ac2 jsr -456(A6) DO IO

fe8ac6 bra.s $fe8a5c branch

Ajump to the following routine occurs in case of error.

fe8ac8 cmpi.b #$ld,75(A5) Error occurred

fe8ace beq.s $fe8ab8 if yes, branch

fe8adO pea $0000 write $0000 into

105

6. File control Amiga disk drives inside and out

the stack

fe8ad4 move.w 72(A5),2(A7) get I/O command and write into stack

fe8ada pea $0000 write $0000 into the

stack

fe8ade move.b 75(A5),3(A7) get I/O error and write into stack

fe8ae4 move.l A7,A1 pass stack as Alert-

Parameter

fe8ae6 movem.l A6-A5/D7,-(A7) save Register

fe8aea move.l #$30068014,D7 pass error number

fe8afO lea (A1),A5 pass Alert-Parameter

A5

fe8af2 move.l $0004,A6 write Execbase in A6

fe8af6 jsr -108<A6) Alert

fe8afa movem.l (A7)+,A6-A5/D7 restore Register

fe8afe addq.l #8,A7 set stack beginning behind

Alert-Parameter

During the following routine everything is restored to normal and a

jump is performed to the initialization routine of DOS.

fe8b00 bsr.l $fe8ddO

fe8bO4 move.w #$8100,$dff096

fe8b0c lea 44(A5),A1

fe8blO

fe8bl4

fe8bl6

£e8bla

fe8ble

the

fe8b20

fe8b26

fe8b2a

fe8b30

fe8b32

fe8b34

fe8b38

jsr

moveq

move.b

jsr

move.1

move.1

jsr

adda.l

unlk

move.1

movem.l

jmp

routine

fe8b3a rts

-450(A6)

#$00,DO

15(A5),D0

-336 (A6)

A4,A1

#$00000488,DO

-210 (A6)

#$0000007e,A5

A5

A3,A0

(A7)+,A5-A3/D3-D2

(A0)

branch

permit DMA accesses

pass pointer to I/O-Request-

Structure

Close Device

erase DO

pass Signal number

Free Signal

write beginning address of

occupied storage to Al

pass size of occupied storage

Free Mem

set A5 to end of stack

bring stack to normal size

pass pointer to initialization

routine in A0

restore Register

perform initialization

In the normal case, A0 contains the pointer to the initialization routine.

In case of an error, A0 contains the pointer to $fe8b3a. Ajump is made

through WarmCapture (if it contains a value).

This routine opens the Gfx library.

fe8b7e lea

fe8b82 moveq

fe8b84 jsr

fe8b88 move.l

-68(PC)(=$fe8b3c),Al pass pointer to ASCII

"graphics.library"

to A0

#$00,DO pass Version

-552(A6) Open Library

D0,4(A5)

$fe8ba6fe8b8c bne.s

branch

fe8b8e movem.l A6-A5/D7,-(A7)

fe8b92 move.l #$30038002,D7

enter Gfx-Base in the stack

if no error occurred,

save Register

pass error number

106

Abacus 6.2 The various block types

fe8b98 move.l $0004,A6

fe8b9c jsr -108(A6)

fe8baO movem.l (A7)+,A6-A5/D7

fe8ba4 rts

write Execbase in A6

Alert

restore Register

The following routine reserves storage for the View port

fe8ba6

fe8baa

fe8bae

fe8bb4

fe8bba

fe8bbe

fe8bcO

fe8bc4

fe8bc8

fe8bce

fe8bd2

fe8bd6

fe8bda

fe8bde

movem.l

move.1

move.1

move.1

jsr

tst.l

bne.l

movem.l

move.1

move.1

jsr

movem. 1

movem. 1

rts

A6/A3-A2/D5-D2,-(A7)

0(A5),A6

#$00005e9a,D0

#$00010003,Dl

-198(A6)

DO

$fe8beO

A6-A5/D7,-(A7)

#$30010000,D7

$0004,A6

-108(A6)

(A7)+,A6-A5/D7

(A7) +, A6/A3-A2/D5-D2

save Register

pass Execbase to A6

write Byte length in DO

request chip memory, erase

and not relocatable

Allocate memory

error?

if not, branch

save Register

pass error number

write Execbase to A6

Alert

restore Register

restore Register

In the routines which follow, the structures required for the display

output are created, among other things.

fe8beO

fe8be4

fe8bea

fe8bee

fe8bf4

fe8bf8

fe8bfe

fe8cO2

fe8cO8

fe8c0c

fe8cl2

fe8cl6

fe8clc

fe8c20

fe8c26

fe8c28

fe8c2c

fe8c2e

fe8c32

fe8c36

fe8c3a

fe8c3e

fe8c42

fe8c46

fe8c4a

fe8c4c

fe8c52

fe8c58

fe8c5c

fe8c60

fe8c66

fe8c6c

fe8c70

move.1

addi.l

move.1

addi.l

move.1

addi.l

move.1

addi.l

move.1

addi.l

move.1

addi.l

move.l

move.1

add.l

move.1

add.l

move.1

move.1

move.1

jsr

move.1

jsr

move.1

moveq

move.1

move.1

jsr

move.1

move.1

move.1

move.1

jsr

D0,8(A5)

#$00000028,DO

DO, 12(A5)

#$00000012, DO

D0,16(A5)

#$00000064,DO

D0,20(A5)

#$00000008,DO

D0,24(A5)

#$0000000c,D0

D0,28(A5)

#$00000028,DO

D0,32(A5)

#$00001f40,Dl

D1,DO

D0,36(A5)

Dl,D0

D0,40(A5)

4(A5),A6

8(A5),A0

-204(A6)

12(A5),A1

-360 (A6)

28(A5),A0

#$02,DO

#$00000140,Dl

#$000000c8,D2

-390 (A6)

28(A5),A0

32(A5),8(A0)

36(A5),12(A0)

16(A5),A1

-198(A6)

store pointer to View-Port

reserve space

store pointer to View

reserve space

store pointer to Rast-Port

reserve space

store pointer to TmpRas

reserve space

store pointer to Raslnfo

reserve space

store pointer to Bitmap

reserve space

store PlanePTR 1-4

set Byte length

reserve space

store PlanePTR 5-8

reserve space

store pointer to Buffer

write Gfx-Base in A6

pass pointer to View-Port in A0

Init View Port

pass pointer to View in Al

Init View

write pointer to Bitmap-

Structure in A0

pass 2 Bitplanes

pass width

pass heigth

Init Bitmap

write pointer to Bitmap-

Structure in A0

store PlanePTR 1-4

store PlanePTR 5-8

pass pointer to Rast-Port in Al

Init Rast-Port

107

6. File control Amiga disk drives inside and out

fe8c74

fe8c78

fe8c7c

fe8c82

fe8c86

fe8c8a

fe8c90

fe8c94

fe8c9a

fe8caO

fe8ca4

fe8caa

fe8cbO

fe8cb6

fe8cba

fe8cbe

fe8cc4

fe8cc6

fe8cca

fe8cce

fe8cdO

fe8cd4

fe8cd6

fe8cda

fe8cde

fe8ce2

fe8ce4

fe8ce8

fe8cec

fe8cfO

fe8cf2

fe8cf4

fe8cf8

fe8cfa

fe8cfc

fe8cfe

fe8d00

fe8dO4

fe8dO6

fe8d0a

fe8d0e

fe8dlO

fe8dl2

fe8dl4

fe8dl6

fe8dl8

fe8dla

fe8dle

fe8d20

fe8d22

fe8d24

fe8d26

fe8d28

move.1

move.1

move.l

jsr

move.l

move.1

move.1

move.1

move.1

move.1

move.w

move.w

move.l

clr.w

move.1

move.l

move.l

move.1

jsr

move.1

jsr

move.1

jsr

move.1

20(A5),A0

4O(A5),A1

#$00001f40,D0

-468 (A6)

24(A5),A0

28(A5),4(A0)

16(A5),A0

28<A5),4(A0)

20(A5),12(A0)

8(A5),A0

#$0008,26(A0)

#$0140,24(AO)

24(A5),36(A0)

32 (A0)

12(A5),A3

8(A5),0(A3)

A3,A0

8(A5),A1

-216(A6)

A3,A1

-210(A6)

A3,A1

-222(A6)

8(A5),A0

lea -402(PC)(=$fe8b4e),A1

moveq

jsr

move.1

lea

move.1

moveq

jsr

moveq

move.b

moveq

move.b

cmpi.b

bne.s

cmpi.b

beq.l

moveq

move.b

moveq

move.b

move.1

move.1

jsr

moveq

add.l

moveq

add.l

move.1

jsr

#$14,DO

-192(A6)

16(A5),A3

302(PC)(=$fe8elc)

A3,A1

#$00,DO

-354(A6)

#$00,D3

(A2)+,D3

#$00,D5

(A2)+,D5

#$ff,D3

$fe8d2e

#$ff,D5

$fe8d6a

#$00,D4

(A2)+,D4

#$00,D3

(A2)+,D3

A3,A1

D5,D0

-342(A6)

#$28,Dl

D3,D1

#$46,D0

D4,D0

A3,A1

-240 (A6)

write pointer to TmpRas in A0

write pointer to Buffer in Al

pass size in DO

Init Tmp Ras

pass pointer to Raslnfo-

Structure in A0

store pointer to Bitmap

pass pointer to Rast-Port-

Structure in AO

store pointer to Bitmap

store pointer to Tmp Ras

write pointer to View-Port-

Structure to AO

store DHeigth

store DWith

store pointer to RasInfo

erase Modes

write pointer to View-

Structure to A3

store pointer to View-Port

pass pointer to View in A0

pass pointer to View-Port

in Al

Make View-Port

write pointer to View to Al

Mrg Cop

pass pointer to View in Al

Load View

write pointer to View-Port A0

write colors to Al

pass Count in DO

Load RGB4

pass pointer to Rast-Port A3

,A2 pass pass pointer to Xl/Yl

coordinates

pass pointer to Rast-Port

in Al

pass Draw Mode in DO

Set Draw Mode

clear D3

pass Yl coordinate in D3

clear D5

pass Pen in D5

is Yl equal to #$ff ?

if not, branch

is Pen equal to #$ff?

if yes, branch

clear D4

get new XI value

clear D3

get new Yl value

write pointer to Rast-Port to Al

pass Pen in DO

Set A Pen

pass Y in Dl

add Yl to Y

pass X in DO

add XI to X

write pointer to Rast-Port to

Move

108

Abacus 6.2 The various block types

fe8d2e crapi.b

fe8d32 bne.s

fe8d34 moveq

fe8d36 move.b

fe8d38 moveq

fe8d3a move.b

fe8d3c move.l

fe8d3e move.l

fe8d40 jsr

fe8d44 moveq

fe8d46 add.l

fe8d48 moveq

fe8d4a add.l

fe8d4c moveq

fe8d4e move.l

fe8d50 jsr

fe8d54 bra.s

fe8d56 move.l

fe8d58 move.l

fe8d5a moveq

fe8d5c add.l

fe8d5e moveq

fe8d60 add.l

fe8d62 move.l

fe8d64 jsr

fe8d68 bra.s

fe8d6a lea

fe8d6e move.l

fe8d70 moveq

fe8d72 jsr

fe8d76 move.w

fe8d78 bmi.s

fe8d7a move.b

fe8d7e moveq

fe8d80 move.b

fe8d82 moveq

fe8d84 move.b

fe8d86 moveq

fe8d88 moveq

fe8d8a move.b

fe8d8c add.l

fe8d8e moveq

fe8d90 move.b

fe8d92 add.l

fe8d94 move.w

fe8d96 mulu

fe8d98 lea

fe8d9c bra.s

#$fe,D3

$fe8d56

#$00,D4

(A2)+,D4

#$00,D3

<A2)+,D3

A3,A1

D5,D0

-342(A6)

#$28,Dl

D3,D1

#$46,D0

D4,D0

#$01,D2

A3,A1

-330 (A6)

$fe8cf8

D3,D4

D5,D3

#$28,D1

D3,D1

#$46,D0

D4,D0

A3,A1

-246 (A6)

$fe8cf8

588(PC)(=$fe8fb8)

A3,A1

#$03,DO

-342(A6)

(A2)+,D0

$fe8db8

DO,24 (A3)

#$00,D4

(A2)+,D4

#$00,D5

(A2)+,D5

#$46,D2

#$00,DO

(A2)+,D0

D0,D2

#$28,D3

(A2)+,D0

D0,D3

D4,D0

D5,D0

1032(A4),A0

$fe8daO

is Yl equal to #$fe

if not, branch

clear D4

get new XI value

clear D3

get new Yl value

pass pointer to Rast-Port in Al

pass Pen in DO

Set A Pen

pass Y in Dl

add Yl to Y

pass X in DO

add XI to X

write Mode in D2

pass pointer to Rast-Port in Al

Flood

branch

pass Yl in XI

pass Pen in Yl

write Y to Dl

add Yl to Y

write X to DO

add XI to X

pointer to Rast-Port to Al

Draw

branch

,A2 pointer to new data

pass pointer to Rast-Port in Al

pass Pen in DO

Set A Pen

get Pen

if result is negative, branch

store Pen in Rast-Port

clear D4

get XI

clear D5

get Pen

load D2 with #$46

clear DO

get DO

add DO to D2

get Yl

get Y

add Y to Yl

pass XI in DO

multiply XI with D5

pass Source in A0

branch

The next routine copies display data into the Source structure.

fe8d9e

fe8daO

fe8da4

fe8da8

fe8daa

fe8dac

fe8dae

fe8dbO

fe8db2

fe8db6

move.w

dbf

lea

moveq

add.l

move.1

move.1

lsl.w

jsr

bra.s

(A2) +, (A0) +

DO,$fe8d9e

1032(A4),A0

#$00,DO

D4,D4

D4,D1

A3,A1

#3,D4

-36 (A6)

$fe8d76

copy data in the Source structure

if not all data were copied, branch

pass Source in A0

pass srcX in DO

increment sizeX

pass srcMod in Dl

store destRast-Port

store sizeX

Bit Tern Plate

branch

109

6. File control Amiga disk drives inside and out

The next routine passes the colors in the View port colormap.

fe8db8 move.l 8(A5),A0 pass pointer to View-Port

in AO

fe8dbc lea -584(PC)(=$fe8b76),A1 write pointer to colors in

Al

fe8dcO moveq #$04,DO pass Count in DO

fe8dc2 jsr -192(A6) Load RGB4

fe8dc6 jsr -270(A6) Wait T Of

fe8dca movem.l (A7)+,A6/A3-A2/D5-D2 restore Register

fe8dce rts

The next routine releases the View port and closes the Gfx library.

fe8ddO

fe8dd2

fe8dd6

fe8dd8

fe8ddc

fe8dde

fe8de6

fe8dea

fe8dec

fe8dfO

fe8df4

fe8df8

fe8dfc

AL

fe8e00

fe8eO6

fe8e0a

fe8e0e

fe8el2

fe8el6

fe8el8

move.l

tst.l

beq.s

tst.l

beq.s

move.w

move.l

suba.l

jsr

move.1

jsr

move.1

move.1

move.1

jsr

move.1

move.1

jsr

move.1

rts

A6,-(A7)

4(A5)

$fe8el6

8(A5)

$fe8e0a

#$0100,$dff096

4(A5),A6

A1,A1

-222(A6)

8(A5),A0

-540(A6)

0(A5),A6

8(A5),A1

#$00005e9a,D0

-210(A6)

0(A5),A6

4(A5),A1

-414(A6)

(A7)+,A6

save Register

Gfx-Base available ?

if not, branch

pointer to View-Port

present ?

if not, branch

block DMA

pass Gfx-Base in A6

clear Al

Load View

pass pointer to View-Port in AO

FreeVPort Cop Lists

pass Execbase in A6

write pointer to View-Port to

pass number of Bytes in DO

Free Mem

pass Execbase in A6

pass Gfx-Base in Al

Close Library

get Register

6.2.3 The root block

AmigaDOS controls all files through tables of content, the directories.

Every directory can contain another. The difficulty is in the fact that

AmigaDOS must partition the logical blocks (sectors) of the Trackdisk

devices into directories and files. This is done with the help of control

blocks. These blocks are only used for control and therefore do not

contain any of the actual data.

The root block is one of these control blocks. It represents the main

directory and contains, among other items, the name of the disk. The

root block is located in cylinder 40, upper side sector zero. This is

block 880 ($370).

110

Abacus 6.2 The various block types

LONG-Offset Byte-Nr Function Constants

Type T SHORT (2)

Always 0 (0)

Always 0 (0)

Size of Hashtable (size-56) (72)

Always 0 (0)

Checksum

Hash table

BMFLAG-> <>0: Bitmap is valid

Bitmap-Blocks

Last Write access: Day

Last Write access: Minutes

Last Write access: Ticks (l/50Sec)

Disk Name as BCPL-String (<=30 character)

Disk Creation date: Day

Disk Creation date: Minutes

Disk Creation date: Ticks (l/50Sec)

Always Null (0)

Always Null (0)

Always Null (0)

Sub type of the Block ST.ROOT (1)

All entries are in the longword format as it is customary in BCPL.

Since AmigaDOS does not prescribe the length of a logical block, the

individual entries are always counted relative to the beginning and the

end.

For disks a block length of 512K is fixed. The byte indications in the

table have already been converted to the standard length of the disk

sector. The longword indications count relative to the beginning or end,

where size is the length of a block in longwords (for a Floppy 128L).

At the beginning of every block there is an identification which indi

cates the type of the block. In this case it is a 2 for T.SHORT. In addi

tion at the end of the block there is a sub-identification. The root block

contains a 1 for ST.ROOT.

Also the root block contains the name of the disk as a BCPL string.

The date on which the disk was formatted can also be found here.

AmigaDOS also makes a "note" here of the last time the disk was

written.

The function of the remaining entries is described in the next sections.

0

1

2

3

4

5

6

Size-50

Size-49

Size-23

Size-22

Size-21

Size-20

Size-7

Size-6

Size-5

Size-4

Size-3

Size-2

Size-1

0

4

8

12

16

20

24

312

316

420

424

428

432

484

488

492

496

500

504

508

111

6. File control Amiga disk drives inside and out

6.2.4 The user directory blocks

This type of block controls the subdirectories. The main type is the
same as the boot block. The subtype is again the block: ST.USERDIR.

The construction in general is the same as the Root directory:

Function Constants

Type T.SHORT (2)

Block-pointer to itself

Always 0 (0)

Always 0 (0)

Always 0 (0)

Checksum

Hashtable

Not used (0)

Protection Status-Bits

Not used (0)

Comment as BCPL-String

Creation date: Day

Creation date: Minutes

Creation date: Ticks (1/SOSec)

Dir name as BCPL string (<=30 char.)

Next Block with same Hash

Block-pointer to higher level directory.

Always Null (0)

Sub type of Block ST.USERDIR (2)

LONG-Offset

0

1

2

3

4

5

6

Size-SO

Size-48

Size-47

Size-46

Size-23

Size-22

Size-21

Size-20

Size-4

Size-3

Size-2

Size-1

Byt

0

4

8

12

16

20

24

312

320

324

328

420

424

428

432

496

500

504

508

6.2.5 The File header block

This block is the backbone of every file. The type is T.SHORT with

the subtype ST.FILE. This block holds the pointers to the individual

data blocks:

LONG-Offset Byte-Nr. Function Constants

0

1

2

3

4

5

6

Size-51

Size-50

0

4

8

12

16

20

24

308

312

TypeT SHORT (2)

Block-pointer to itself

Number of Blocks in File-Header(!)

Always Null (0)

First data block

Checksum

LAST Block-pointer to die Data Blocks

FIRST Block-pointer to data

Not used (0)

112

Abacus 6.2 The various block types

Size-48

Size-47

Size-46

Size-23

Size-22

Size-21

Size-20

Size-4

Size-3

Size-2

Size-1

320

324

328

420

424

428

432

496

500

504

508

Protection Status-Bits

Size of the Files in Bytes

Comments as BCPL-String

Creation date: Day

Creation date: Minutes

Creation date: Ticks (l/50Sec)

Filename as BCPL-String (<=30 characters)

Next Block with the same Hash

Block-pointer to higher level Directory

Block-pointer to first Extension-Block or 0,

if all Blocks are recorded here

Sub type of the Block STJFILE (-3)

6.2.6 The File list block

If there is not enough space in the File header block for all the pointers,

this block contains the remaining entries. If this block does not have

enough space, another File list block is attached. This happens until all

data blocks have been accomodated.

LONG-Offset Byte-Nr. Function Constants

0

1

2

3

4

5

6

Size-51

Size-50

Size-4

Size-3

Size-2

0

4

8

12

16

20

24

308

312

496

500

504

Size-1 508

T.LIST(16)

Block-pointer to itself

Number of Blocks noted in File List(!)

Always Null (0)

First Data block

Checksum

Last Block pointer to the Data blocks.

First Block pointer to data

Not used (0)

always Null (0)

pointer to File-Header-Block

Block pointer to next Extension-Block or 0,

if all Blocks are recorded

Sub type of the Block ST.FILE (-3)

6.2.7 The Data block

The block numbers of the individual data blocks are contained in the

File header or File list block. This is the data block which contains the

actual bytes of a file:

113

6. File control Amiga disk drives inside and out

LONG-Offset Bvte-Nr Function Constant

0

1

2

3

4

5

6

0

4

8

12

16

20

24

TypeTDATA

Pointer to File header block

Number of the Data block

Number of data bytes in the block

Next Data block

Checksum

Data starts here

(8)

6.2.8 The calculation of the checksum

As the tables show, the first longword (= 20K) in the block contains a

checksum for the block. How this is calculated can be seen in the

following small program.

lea Databuffer,aO /pointer to Data Buffer

move.l aO,al ;save pointer

move.w #$7f,dl /Counter for number of data

clr.l dO ;clear DO

move.l d0,20(al) ;clear sum entered

loopl: sub.l (a0)+,d0

dbf dlf loopl ;form Sum

move.l d0,20(al) ;enter Sum into Block

rts

END

114

Abacus 63 Connections between the blocks

6.3 Connections between the

blocks

All blocks of a disk controlled by AmigaDOS are logically connected

with each other. The root of this block system is the root block. It is

always located in logical block 880 of the disk. From this block

branches all other blocks.

The location of individual blocks is determined by the Hash Table. It

contains (for a block length of 512K), 72 longword pointers. Amiga-

DOS calculates the proper entry in the Hash Table from the filename. It

then checks in the block to determine if it was the desired entry. More

on this in the next section. Assume that the Hash Table contains the

pointers to the control blocks of the files and sub-directories.

The following illustration shows the complete file system of

AmigaDOS with all control blocks:

Figure 1: The Amiga File System

The root block (extreme left) also contains some pointers to the Bitmap

blocks. In the Bitmap, AmigaDOS records which blocks are still avail

able and which are occupied. A normal disk requires less than one block

for the Bitmap. For this reason only the first Bitmap pointer of the root

block is occupied.

The Hash Table of the root block can contain pointers to a sub-directory

(ST.USERDIR) or to a file (ST.FILE). A sub-directory is constructed

similar to the root block. The Hash Table has the same construction. It

contains only the block pointers to the files and other sub-directories of

ST.USERDIR's.

115

6. File control Amiga disk drives inside and out

For a normal file the Hash entry points to a File header ST.FELE.

Every File header contains the individual pointers to the data blocks. If

there is not sufficient space for the pointers in the File header, the

extension entry points to an extension block. This block is similar in

construction to die file header and contains the remaining pointers to

the data blocks. If even this space is not sufficient, the extension entry

points to the next file list block until all data blocks have been

lecofded.

The data blocks contain only 6 longwords for control. An entry always

points to the next data block of the same file. Additionally, the number

of data bytes contained in this block are recorded here. In case of doubt

this must always be the maximum of 488K (512-6*8). Only the last

data block can be partially empty.

116

Abacus 6.4 The hash calculation

6.4 The hash calculation

The user familiar with other file systems automatically connects a direc

tory with a list of filenames. In AmigaDOS, however, a directory is

organized differently. The filenames are already recorded in the File
header block. The directory is therefore only a list of block numbers in
which the headers can be found.

The problem is to get from the filenames to the hash entry belonging

to it. This is done with a form of "checksum calculation" of the Name
string:

UBYTE Capital(c)UBYTE c;

{

if(c >= 'a' && c <=

c -= 'a'-'A1;

return c;

!z')

LONG Hash(length, s)LONG length;UBYTE *s;

{

LONG hash;

for(hash = length; length—;)

hash = ((hash*13 + CapitaK *s++)) & 0x7ff);

return (LONG) (hash % 72 + 6);

The hash The string and its length is required for the calculation of the hash

value value. The routine does not differentiate between upper and lowercase

letters and basically calculates with the ASCII value of the uppercase

letters. For this reason the Capital function is used for the conversion.

When the hash value has been computed in the loop, it can be a number

up to 2,047. This value must now be converted to the actual size of the

Hash table. In a S12K disk block, the Hash table has 72 entries. There

fore the hash value is the result of dividing by 72. Since the Hash table

starts after the sixth longword, a six must be added to the calculated

value. Voila! - the entry of the Hash table has been calculated.

The calculated longword of the root or userdir block must be read to

obtain the desired block number.

The Hashchain This form of hash calculation has only one error. Several filenames can

have the same hash value (there are only 72 possibilities). For this

reason every header block has a clever entry, the "Hashchain". The

header blocks with the same hash value are thus chained together. If no

further files are contained in the Hashchain, the entry contains a 0.

117

6. File control Amiga disk drives inside and out

6 ♦ 5 The bitmap

In the root block an entry points to the bitmap block of the disk. This

block contains the assignment of the blocks. Every bit represents a

block. If a bit is set, the block is available. If the bit is reset (0), the

block is already occupied.

The bitmap starts at the second longword of the bitmap blocks, since

the first longword is a checksum for the block. Therefore, the lowest bit

of the second longword represents the second block, instead of the zero

block as you might have thought. In AmigaDOS the two boot blocks

are always occupied. For this reason they do not even appear.

Following is a bitmap analysis program. The fs in the program are

not to be enterd, they only show where the line actually ends. The

program first reads the root block and then gets the block number of the

bitmap which it reads and represents graphically. All Trackdisk device

operations are used in extended format:

/* */$

/* Bitmap - Analyzer */5

/* *n

/* JEA, 08-15-87 */5

/* */5

#include <exec/exec.h>5

#include <devices/trackdisk.h>5

#include <intuition/±ntuition.h>5

#define ON 1L5

#define OFF 0L5

#define BLOCK_SIZE 128L5

#define BM_FLAG BLOCK_SIZE-50L5

#define BM_BLOCKS BLOCK_SIZE-49L5

extern struct MsgPort *CreatePort();S

extern struct IORequest *CreateExtIO();5

struct IntuitionBase *IntuitionBase;f

struct GfxBase *GfxBase;5

struct TextAttr MyFont =5

{5

"topaz.font",5

TOPAZ_EIGHTY,fl

FS_NORMAL, SI

FPF_ROMFONT,fl

struct NewScreen NewScreen =5

640,5

200,5

118

Abacus 6.5 The Bitmap

2,5

0, 1,5

HIRES|SPRITES,5

CUSTOMSCREEN,5

&MyFont,5

"- BitMap -",5

NULL,I

NULL,5

/* _ * /%

/* Switch Motor on and off */5

/* */5

/* */5
/* */5

Motor(diskreq, on)5

struct IOExtTD *diskreq;5

LONG on;5

diskreq->iotd_Req.io__Length = on; 5

diskreq->iotd_Req.io_Command = TD_MOTOR;5

DoIO(diskreq);5

return (0);5

/* */s

/* Read Block from Device indicated */5

/* */

/* */5
/* */fl

ReadBlock(diskreq, block, puffer, diskChangeCount)5

struct IOExtTD *diskreq;5

LONG block;5

APTR puffer;5

ULONG diskChangeCount;5

diskreq->iotd_Req.io_Length = TD__SECTOR;5

diskreq->iotd_Req.io_Data = puffer;5

diskreq->iotd_Req.io_Command = ETD_READ;5

diskreq->iotd__Count = diskChangeCount; 5

diskreq->iotd_Req.io_Offset = block * TD_SECTOR;5

if(DoIO(diskreq))5

return(1);5

return(0);5

n

/* */5

/* Search for Bitmap-Block and read */5

/* */5

/* */5
/* */5

LONG5

ReadBitmap(diskreq, buf)5

struct IOExtTD *diskreq;5

LONG *buf;5

ULONG diskChangeCount;f

diskreq->iotd_Req.io_Command = TD_CHANGENUM;5

DoIO(diskreq);5

119

6. File control Amiga disk drives inside and out

diskChangeCount = diskreq->iotd_Req.io_Actual;SI

Motor(diskreq, ON) ;SI

ReadBlock(diskreq, 880L, buf, diskChangeCount);f

printffl

("Flag: %ld , Block#%ld \n", buf[BM_FLAG],

buf[BM_BLOCKS])/S

if(buf[BM_FLAG])f

ReadBlock(diskreq, buf[BM_BLOCKS], buf);S

Motor(diskreq, OFF);$

return(buf[BM_FLAG]);SI

}f
/* * /CT
/ / a.

/* Display Bitmap of the Device indicated */f

/* */f

/* */*
/* */SI

DisplayBitmap(diskreq, Screen)1

struct IOExtTD *diskreq;5

struct Screen *Screen;f

LONG *buf;5

LONG x, y/«

ULONG loop;5

struct Window *Window;5

struct NewWindow NewWindow/f

ULONG MessageClass;^

USHORT code;SI

LONG flag; II

struct Message *GetMsg();$

struct IntuiMessage *message;5

NewWindow.LeftEdge = 0;5

NewWindow.TopEdge = 0;f

NewWindow.Width = 640; 1

NewWindow.Height = 160;fl

NewWindow.DetailPen = 0;t

NewWindow.BlockPen = l;f

NewWindow.Title = " Bitmap ";I

NewWindow.Flags = WINDOWCLOSEISMART_REFRESHI ACTIVATE If

WINDOWDRAGIWINDOWDEPTHII

NOCAREREFRESH | GIMMEZEROZERO;5

NewWindow.IDCMPFlags =

CLOSEWINDOW|DISKINSERTED|DISKREMOVED;5

NewWindow.Type = CUSTOMSCREEN;fl

NewWindow.FirstGadget = NULL;5

NewWindow. CheckMark = NULL; SI

NewWindow. Screen = Screen; SI

NewWindow. BitMap = NULL; SI

NewWindow.MinWidth = 640;5

NewWindow. MinHeight = 148; SI

NewWindow. MaxWidth = 640; SI

NewWindow.MaxHeight = 200;f

if((Window = (struct Window*) 5

OpenWindow(&NewWindow)) == NULL)f

exit(FALSE);f

SetAPen (Window->RPort, 1);S

Move(Window->RPort, 500, 33);f

120

Abacus 6.5 The Bitmap

Text(Window->RPortf "Side 0", 7);$

Move(Window->RPort, 500, 105);$

Text(Window->RPort, "Side 1", 7);5

Move(Window->RPort, 0, 146) ;f

Text(Window->RPort, "1", 1) ;f

Move(Window->RPort, 466, 146);fl

Text(Window->RPort, "80", 2) ;fl

Move(Window->RPort, 480, 8);fl

Text(Window->RPort, "Sector 1.", 9);5

Move(Window->RPort, 480, 64);$

Text(Window->RPort, "Sector 11.", 10);f

Move(Window->RPort, 480, 80);f

Text(Window->RPort, "Sector 1.", 9)/?

Move(Window->RPort, 480, 136);5

Text(Window->RPort, "Sector 11.", 10);5

buf = (LONG*) AllocMem(512L, MEMF_CHIP);t

ReadBitmap(diskreq, buf);!

buf[0] &= 0x3fffffffL;5

loop=30L;f

for(x=0; x<80; ++x){5

for(y=0; y<22; ++y){f

if(buf[loop/32] & (1L « (loop % 32)))5

SetAPen (Window->RPort, 2);5

else^I

SetAPen (Window->RPort, 3);5

if (y > 10)1

RectFilK Window->RPort, x*6, 5

(y+l)*6, x*6+4, (y+l)*6+4

elsef

RectFilK Window->RPort, x*6, y*6, x*6+4,

y*6+4); ++loop;SI

FreeMem(buf, 512L);5

Wait(l<<Window->UserPort->mp_SigBit);5

flag = TRUE;5

dof

it

if (message = (struct f

IntuiMessage *)GetMsg(Window->UserPort)) {

MessageClass = message->Class/2

code = message->Code;fl

ReplyMsg(message);5

switch (MessageClass) {5

SI

case CLOSEWINDOW : flag = FALSE;5

break; SI

case DISKREMOVED :fl

Text(Window->RPort, 5

"Disk Removed", 11) ;

break;5

} /* Case */!

} /* if */!

}5

while (flag) ;SI

CloseWindow(Window);$

121

6. File control Amiga disk drives inside and out

/* . */fl

/* Close Libraries */!

/* *n

/* *n

/* *n

CloseLibsOf

CloseLibrary(IntuitionBase);fl

CloseLibrary(GfxBase);$

n ■
z* *n

/* Open Libraries */fl

/* */S

/* *n

/* */«

LONGS!

OpenLibsOf

(1
IntuitionBase = (struct IntuitionBase*)5

OpenLibrary("intuition.library", 0);$

if (IntuitionBase == NULL) exit (FALSE);fl

GfxBase = (struct GfxBase*)f

OpenLibrary("graphics.library", 0)/*

if (GfxBase — NULL) exit (FALSE);$

return(TRUE);fl

/* *n

/* Main-Program BITMAP-Analyzer */5

/* */«

/* (open Device and Screen) */$

/* *n

main ()$

struct MsgPort *diskport/f

struct IOExtTD *diskreq;5

struct Screen *Screen;f

if (!OpenLibs()) exit(FALSE)/*

if ((diskport = CreatePort(0L,0)) == NULL)1

printf("Port can't be opened\n");f

exit(FALSE);5

diskreq = (struct IOExtTD *)CreateExt10(diskport,1

(long)sizeof(struct IOExtTD));fl

if (diskreq == 0)5

printf("DiskRequest canft be created !, Error

%ld\n",diskreq);fl

DeletePort(diskport);fl

exit(FALSE);5

}5

if (OpenDevice(TD__NAME, 0L, diskreq, 0L))$

122

Abacus 6.5 The Bitmap

printf ("Device reports error! \n") ;SI

DeletePort(diskport);fl

DeleteExtIO(diskreq,(long)sizeof(struct IOExtTD))

exit(FALSE);fl

if((Screen = (struct Screen*)OpenScreen(&NewScreen))

== NULL)fl

exit(FALSE)/fl

DisplayBitmap(diskreq, Screen)/5

DeleteExtIO(diskreq,(long)sizeof(struct IOExtTD));f

DeletePort(diskport)/f

CloseScreen(Screen);fl

CloseLibsO ;H

exit(TRUE);5

Calculation of The checksum of "normal" blocks differs from that of the bitmap block
the bitmap only by the position where it is entered into the block. In the bitmap

checksum block it is the first longword. The following program calculates the
checksum and stores it.

lea Databuffer,aO /pointer to Data Buffer

move.l aO,al /save pointer

move.w #$7f,dl /Counter for number of data

clr.l dO /clear DO

move.l dO,(al) /erase sum entered

loopl: sub.l (aO)+,dO

dbf dl,loopl /form Sum

move.l dO,(al) /enter Sum into Block

rts

END

123

7.

Viruses

Abacus 7. Viruses

7. Viruses

Almost everybody has heard about the existence of computer viruses.
How they are constructed and protection against them, is probably not
well known.

Generally computer viruses are small programs which integrate them
selves into the operating system of a computer. At the most favorable

opportunity they copy (multiply) themselves onto diskettes or hard
disks.

Besides having the capability of reproduction, the viruses often cause
unpleasant effects inside the computer. This can start with a harmless
message on the screen. Unfortunately, it can escalate to a crash of the
system or the destruction of the data on disks.

A virus is, as already mentioned, a program and must therefore be
started like any other program to become active. To start itself without

the user noticing, the virus copies itself to a spot on the disk where it
is not noticeable and is started automatically.

127

7. Viruses Amiga disk drives inside and out

7.1 Boot block viruses

The simplest place for the virus to go is the boot block, where

normally important data isn't stored. It's large enough to host a virus

and the virus is started after a reset when a disk is inserted into the

internal drive of the Amiga. On the basis of this fact, the first viruses

which afflicted the Amiga, were stored in the boot block.

To create an effective virus, it must always be protected from being

deleted from memory when a reset occurs. The reset routine can be

altered so that it can be used to branch into the virus program and to

start the reproduction process.

The SCA The first virus which used the boot block is the well known SCA

virus (Swiss Cracker's Association) virus. It is of course reset protected. It

also uses the disk reset to reproduce itself. For reproduction the virus is

written into the boot block of the disk which is in the drive during the

disk reset After a certain number of copy processes, the virus displays a

message on the screen.

Since this virus was one of the first of its species it spread widely

because few users knew how to find and remove it

SCA made few friends with this virus which contained a bragging

message. It was possible for it to destroy the important copy protection

information on a commercial disk, therefore making the disk unusable.

The Byte This SCA virus was followed by other boot block viruses. One of these

Bandit virus is the Byte Bandit virus which is programmed more elegantly, but has

some errors.

It uses the fact that the boot block is read after every insertion of a disk

to verify the validity of the disk. All read and write procedures which are

initiated by the operating system on the disk, are performed through the

trackdisk device. A message is sent to the device and is processed after a

jump through a vector contained in the device structure. The virus

changes this vector into its own program. It intercepts the message

which indicates that the boot block should be read, and changes the read

into a Write command. Then the buffer pointer which was set for the

read of the boot block, is set to the buffer containing the virus. This

trick spreads the virus during the insertion of a disk which isn't write

protected.

128

Abacus 7.1 Boot block viruses

Since the procedure for removal of viruses was known by the time this

virus appeared, it did not become as widespread as the SCA virus. This

was lucky since the virus was not very harmless. It caused a system

crash which could only be remedied with a reset unless you know more

about the virus (more on this later). The idea (not very original) of

causing a system crash was probably selected because the boot block did

not offer more storage space.

129

7. Viruses Amiga disk drives inside and out

7 . 2 Virus rumors

Rumors have circulated that viruses exist which could place themselves

inside the battery backed memory of the real time clock of the Amiga

2000 and Amiga 500. These viruses would then remain active even after

the computer was switched off. These reports appeared in several

publications. This was surprising since the authors (undoubtedly not

computer novices) should have been aware of the fact that this is

absolutely impossible. Impossible, since the battery backed memory is

not large enopugh to store a virus. Even if it was sufficient (the clock

buffer is about IK) to be stored in the computer after the power was

switched off, the vector to the virus would have disappeared. A program

in memory which is not started does not have the capability to spread

itself and the operating system does not execute the data in the clock as

a program. Therefore, this virus variant is a non-executable idea.

Another rumor was spread that a virus existed which integrated itself

into the write protected RAM of the Amiga 1000 where the operating

system was stored.

It's unlikely that a virus of this type exists, but under certain circum

stances a program can be stored in the Kickstart area of the Amiga

1000.

Writing a program, even a virus, into the Kickstart area is only possi

ble when a RAM expansion is present. In this case the Kickstart area

can be made ready for writing with the assembler command Reset

without switching off the RAM area where the program is stored (but

only the Fast RAM). If the Reset command is executed in the Chip

RAM, it switches off its own RAM, and this leads to an unavoidable

system crash.

Another virus type has surfaced recently. These are the viruses which

insert themselves into the CLI commands (such as the Dir command or

the disk validator.) An attempt to execute an infected CLI command, or

a disk validation, makes the virus active. Until now no such virus has

been observed on the Amiga by the author. It is uncertain that they

really exist, but it is probably possible to program a virus of this type.

The dangerous aspect of this last type of virus is the fact that it is not

limited to disks. It could spread to hard disk units. In addition it would

be harder to find than the boot virus.

Viruses which insert themselves into existing programs can only work

on two principles. Either they enlarge the code by copying themselves

behind the program, or they destroy the actual program code so no

additional space is used on the disk. In both cases the virus can be

easily identified and dealt with because of this.

130

Abacus 73 protection against viruses

7.3 Protection against viruses

A general protection scheme against viruses unfortunately cannot be
provided. Their spread can be limited by using only write protected
disks whenever possible.

The removal of boot block viruses is in general not a very difficult
problem. The boot block can be initalized again with the CLI
command Install. Please note that the computer must be switched off

after the appearance of the virus and rebooted with a disk which is guar
anteed not to be infected. This is very important, because viruses whose
construction correspond to the Byte Bandit virus intercept the Install
command and write the virus on the disk again. To remove the virus
from the disks, the user must ensure that the virus is not in the com
puter.

The sequence for removing a Boot block virus is as follows:

1.) Switch the computer off.

2.) Boot with a disk which is not infected.

3.) Copy the Install command onto the RAM disk:

copy sys:c/install ram:

4.) Remove the CLI disk from DFO and insert the infected disk.

5.) Erase virus from disk:

ram:install dfO:

These five steps remove the virus from an infected disk. Caution should

be used in using this technique since the mere fact that a disk has a non-

standard boot block doesn't mean that it is infected, especially if it is a
commercial program.

Finally a useful tip. If a computer should crash without a recognizable

reason (the display disappears and the computer doesn't react to

anything) this could be caused by the Byte Bandit virus. In this case the

computer should not be reset which would cause the loss of data.

Pressing the lowest five keys from left to right, at the same time,

brings the computer to "life" again. The virus is still in the computer,

but the possibility exists to store the working files.

The key combination is:

[ALT] [Commodre] [SPACE] [AMIGA] [ALT]

131

8.

The Trackdisk

device

Abacus 8. The Trackdisk device

8. The Trackdisk device

We began the AmigaDOS chapter with a discussion of the partition

hierarchy of the operating system. As we've seen the top level is

AmigaDOS itself. The next level is the Trackdisk device.

AmigaDOS uses the Trackdisk device for all disk operations. It has a

fairly limited set of commands, but forms the heart of every disk access.

It determines whether a disk is in the drive and if so, whether it is write

protected. The most important assignment of the Trackdisk device is the

reading and writing of information on the disk.

Before discussing the usage of the Trackdisk device, you must

understand how data is stored on disk.

135

8. The Trackdisk device Amiga disk drives inside and out

8.1 Divisions of a disk

Stepper motor A disk-regardless of its size-is roughly divided into two structures. The
first structure consists of concentric rings called tracks. Since the
Amiga disk has two sides, the two tracks which lie on top of each other
on either side comprise a cylinder. The read/write heads are always
positioned over one of these cylinders. The heads are moved from one
cylinder to another by the stepper motor.

A normal Amiga disk consists of 80 cylinders with the motor moving
the read/write heads between them. Cylinder 0 is located on the outer

most ring and cylinder 79 on the innermost Since there are two tracks
per cylinder you end up with 160 tracks. The tracks on the lower side of

the disk have even numbers, those on the upper side have odd numbers.

Track 0 is in cylinder 0 on the upper side; track 1 on the lower side of

cylinder 0. It follows that the last track (track 159) can be found on
cylinder 79 of the lower side.

A track is divided into several sectors. The sectors are located consecu

tively on a track. The Amiga has 11 of these sectors in one track. The
sector contains the actual data, 512 bytes.

With these facts the storage capacity of a disk can be calculated. A disk

has two sides. Each one of these sides has 80 tracks. Each track has 11
sectors. Each sector contains 512 bytes. This results in:

80 Cylinder * 2 Tracks * 11 Sectors * 512 bytes= 901,120 bytes

or (Bytes/1024=K) = 880K

Blocks The Trackdisk device does not calculate in side/track/sector format, but
in logical sectors, called blocks. A block always corresponds to a sector

somewhere on the disk. The blocks arc numbered sequentially from 0 to

1,759. This division makes control of the disk much easier since work

ing with one variable (block number) is easier then with three; (side,
track, sector).

The first 11 blocks are on Side A (upper disk side) in track and cylinder

0. The next 11 blocks (10-21) are on the lower side, also in cylinder 0,
but in track 1.

This constant changing of sides might appear at first to be clumsy.

Considering that both read/write heads are operated by one motor, this

organization actually saves time. Very often a series of connected

blocks must be read. The two heads move only once to read two tracks
instead of once for each side.

The conversion of side track sector format to blocks uses the following

formula: Block = 2*ll*Cylinder + ll*Side + Sector

136

Abacus 8.2 Devices and their applications

8 • 2 Devices and their

applications

There are many different devices in the operating system of the Amiga,

but all are constructed according to the same system.

A device always consists of a data structure (the Device structure) and a

task (simultaneously running program), which accepts the commands of

the user program. Sending a command to a device is basically no differ

ent from sending a command to another task which is recognized there

and processed.

The complete transmission of the commands and results between tasks

occurs through the message system of Exec. For this reason every task

which wants to accept messages must provide a message port. The

message transmission is similar to the transmission of a phone conver

sation. Without a telephone (message port), no conversation (message).

To send a command to the Trackdisk device (the Trackdisk task), a

message port is created. This is necessary because the task must not

only send commands, but must also be in die position to receive replies

(reply messages).

A message port is a structure which in C appears as follows:

struct

{

struct

UBYTE

UBYTE

struct

struct

MsgPort

Node

mp_Flags;

mp_SigBit;

Task *

List

mp_Node;

mp_SigTask;

mp_MsgList;

/*

/*

/*

/*

/*

/*

Offsets */

0

14

15

16

20

$00 */

$0E */

$0F */

$10 */

$14 */

The Node structure at the beginning connects the individual ports in a

global list of the operating system. If the port should remain local, this

structure remains unused.

A port is initialized with the Library function CreatePort. This function

is normally already in the C library and does not have to be input

#include "exec/ports.h"

tinclude "exec/memory.h"

struct MsgPort

*CreatePort(name, pri)

char *name;

long pri;

137

8. The Trackdisk device Amiga disk drives inside and out

register struct MsgPort *mp;

register long sig;

long AllocSignal();

void *AllocMem();

struct Task *FindTask();

if ((sig = AllocSignal(-1L)) == -1)

return(0)/

if ((mp = AllocMem((long)sizeof(*mp), MEMF_PUBLIC

IMEMF_CLEAR)) == 0)

FreeSignal(sig);

return(0);

mp->mp_Node.ln_Name = name/

mp->mp_Node.ln_Pri = pri;

mp->mp_Node.ln_Type = NT_MSGPORT;

mp->mp__Flags = 0;

mp->mp_SigBit = sig;

mp->mp_SigTask = FindTask(OL);

if (name)

AddPort(mp);

else

NewList(&mp->mp_MsgList);

return(mp);

}

The only parameters needed for this function are a Name string and a

Priority. A name is only required for global message ports to make the

search easier for other tasks. For device ports "NULL" is sufficient as a

name. The priority does not matter and a null is also sufficient here as a

parameter.

The function obtains some memory for the Message Port structure and

initializes the most important entries.

First the Node structure is processed; then the pointer to the task whose

message port is involved; and finally the function must set the

Signalbit. The Signalbit tells the task later if a message has arrived at

the port. Every task has only a limited number of Signalbits. One of

the bits can be reserved with AllocSignal. For device accesses, the

signal bit tells if the device is finished.

Finally the function adds a global port with AddPort to the other global

ports. For local ports only a List structure for the messages to follow is

initialized. This occurs again with a Library function: NewList.

If the port is no longer needed, it can be made to disappear with the

DeletePort function:

#include "exec/ports.h"

#include "exec/memory.h"

138

Abacus 8.2 Devices and their applications

DeletePort(mp)

register struct MsgPort *mp;

{

if (mp->mp_Node.ln_Name)

RemPort(mp)/

mp->mp_Node.ln_Type = -1;

mp->mp_MsgList.lh_Head = -1;

FreeSignal((long)mp->mp_SigBit);

FreeMem(mp, (long)sizeof(*mp))/

First DeletePort tests if this is a global port If this is the case, the

Exec function RemPort removes the message port from the message

port list. Then the function releases the Signalbit and the memory

which were occupied

To send a command, an IORequest structuie is needed. The backbone of

an IORequest structure is a Message structure. The Message structure

serves as an aid for the transmission of commands. The command to be

transmitted is not in the Message structure, but in the higher level

IORequest structure.

The Message structure has the following appearance:

struct

{

struct

struct

Message

Node

MsgPort

UWORD

mn__Node;

*mn_ReplyPort;

mn_Length;

/*

/*

/*

/*

Offsets

0

14

18

$00

$0E

$12

*/

*/

*/

*/

The Node structure takes over the concatenation of the messages within

the message port list. The ReplyPort is a pointer to the Message Port

structure of the task to which the message is returned by the Trackdisk

task with the return values at the end of the command. At the end is the

length of the message in bytes. This indication is necessary since the

actual message follows the Message structure and its length can vary.

The message to be sent in this case is the IORequest structure.

The IORequest structure has the following appearance:

struct IORequest

{

struct

struct

struct

Message

Device

Unit

UWORD

UBYTE

BYTE

io_Message;

*io__Device;

*io_Unit;

io_Command;

io_Flags;

io Error;

/*

/*

/*

/*

/*

/*

/*

Offsets

0

20

24

28

30

31

$00

$14

$18

$1C

$1E

$1F

*/

*/

*/

*/

*/

*/

*/

The normal IORequest is not usable for the Trackdisk device and for

this reason an extended version exists:

139

8. The Trackdisk device Amiga disk drives inside and out

IOStandard

Request:

struct

{

struct

struct

struct

IOStdReq

Message

Device

Unit

UWORD

UBYTE

BYTE

ULONG

ULONG

APTR

ULONG

io__Message;

*io Device;

*io_Unit;

io_Command;

io__Flags;

io__Error;

io_Actual;

io__Length;

io_Data;

io Offset;

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Offsets

0

20

24

28

30

31

32

36

40

44

$00

$14

$18

$1C

$1E

$1F

$20

$24

$28

$2C

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

The complete device parameter interchange runs through the last seven

entries of the IOStdReq structure. "io_Command" contains the code of

the command to be executed. The other parameters result from the vari

ous commands.

To arrange an IORequest, there is a Library function:

struct IORequest

*CreateExtIO(mp, size)

struct MsgPort *mp;

long size;

{

register struct IORequest *iop;

void *AllocMem();

if (mp == 0)

return(0);

if ((iop = AllocMem(size, MEMF_PUBLIC |MEMF_CLEAR)) == 0)

return(0);

iop->io_Message.mn_Node.ln_Type = NT_MESSAGE;

iop->io_Message.mn_Length = size;

iop->io_Message.mn__ReplyPort = mp;

return <iop);

This function obtains the required memory for the structure to be

created. Since the length of the structure can vary, the length must be

indicated in bytes. In this case the length is 48 bytes (length of the

IOStdReq structure). The function also requires the address of the

message ports to which the message is returned after the completion of

the I/O command. Finally the call returns the address of the just created

IORequest

If the IORequest is no longer required, the occupied memory space

should be released. This can be done with the following function:

DeleteExtlO(iop)

register struct IORequest *iop;

if (iop == 0)

140

Abacus 8.2 Devices and their applications

DeleteExtlO(iop)

register struct IORequest *iop;

{

if (iop == 0)

return/

iop->io_Message.mn_Node.ln_Type = -1;

iop->io__Device = -1;

iop->io_Unit = -1/

FreeMem(iopf (long) iop->io_Message.mn__Length) ;

Some effort can be saved by maintaining the IOStdReq structure. For

this two small Library functions exist which are similar to the last one

mentioned:

tinclude <exec/io.h>

struct IOStdReq

*CreateStdIO(mp)

struct MsgPort *mp;

{

struct IOStdReq *CreateExtIO();

return (CreateExtIO(mp, (long) sizeof (struct IOStdReq))); }

DeleteStdlO(iop)

struct IOStdReq *iop;

{

DeleteExtlO(iop);

Nothing much new has been added with these functions. CreateStdIO

only saves the indicate length of IOStdReq. For DeleteStdIO nothing

changes.

141

8. TheTrackdisk device Amiga disk drives inside and out

8.3 Sending commands

Name

Unit

lORequest

Flags

Error

The practical part of the chapter begins here. Additional information

about the use of various structures will also be presented here.

Before work can start with a device, two structures must be initialized.

Through CreatePort a message port is created for the replies from the

Trackdisk devices. CreateStdIO produces a IOStdReq structure.

After this has happened, the program must prepare the device for access

by the task. This happens with the OpenDevice() function. The return

is the number of errors that may have occurred.

error=OpenDevice(devName, unitNumber, lORequest, flags)

DO AO DO Al Dl

A pointer to a string, in which the name of the device has been stored.

Hoe"trackdisk.device".

The number of the unit which is accessed (0 to 3). For every attached

drive there is a unique task. Through the unit number the message port

of the task which is responsible for the drive is determined. The port is

entered into the lORequest structure as io_Device pointer. The

lORequest structure (the command) is then sent to this port

The pointer to the lORequest structure which is sent to the message

port of the Trackdisk task should be stored.

Set to null for opening the Trackdisk devices.

The message returned from the OpenDevice function. A value not equal

to null signals and error.

The opening of the devices appears as follows:

diskport = CreatePort(0, 0);

diskreq = CreateStdIO(diskport);

OpenDevice{ TD_NAME, 0, diskreq, 0);

...(Device accesses start here)...

CloseDevice(diskreq)/

DeleteStdIO(diskreq);

DeletePort(diskport);

If the device was opened with OpenDevice, the command transmission

can start The figure below shows a device command's execution.

142

Abacus 83 Sending commands

The transmission of the command in the form of a IORequest structure

can be performed with two commands. Either DoIO or SendIO can be

used, although the latter is not as common. The difference between the

two functions is in the treatment of the message which was sent, after

the Trackdisk task has received it

The DoIO function waits until the Trackdisk task has completed its

assignment and has returned a message. In contrast, SendIO does not

wait for the return message from the task. This must be done by the

programmer. Those not skilled in programming of devices, should only

work with DoIO. A pointer to the IORequest structure is passed to the

DoIO and SendIO functions.

•»•»"•••

Before device command execution

After device command execution

Figure 2: The execution of a Device command

The device gets a command code and possibly some parameters from

IORequest (in the illustration under IO-Data).

Once the command has been executed (for example a sector has been

read), or has been interrupted with AbortIO, the device sends the

IORequest with the output parameters back to the reply port (port

initialized by the task), which was indicated in the IORequest. This is

done by the Exec function ReplyMsg. The user should not forget that

every IORequest-no matter what type-is basically only a simple

message!

If the message (the IORequest) arrives at the reply port, the Signalbit is

released by Exec. If the task was waiting for the signal (during DoIO),

it can now evaluate the result

Here is a small program which tests the write protect of the disk in

drive DFO:

143

8. The Trackdisk device Amiga disk drives inside and out

/* */

/* Test Write Protect of the Diskette in DFO: */

/* use +L compile option, -lm -lc link option */

/* JEA, 11-07-87 */

/* */

#include <exec/types.h>

finclude <devices/trackdisk.h>

/* */

/* Main Program */

/* */

/* */
/* */

main()

{

struct MsgPort *diskport;

struct IOReq *diskreq;

diskport = CreatePort(0L, 0L);

diskreq = CreateStdIO(diskport)/

OpenDevice(TD_NAME, 0L, diskreq, 0L);

diskreq->io__Command = TD_PROTSTATUS;

DoIO(diskreq);

printf< "Write Protect: %ld\n"f diskreq->io_Actual);

CloseDevice(diskreq)/

DeleteStdIO(diskreq);

DeletePort(diskport);

First the program opens the Trackdisk device with Unit 0 (DFO:). Then

it passes the TD_PROTSTATUS command in the io_Command field

ofthelORequests.

The input parameters are now initialized. Only the IORequest remains

to be sent by the program to the Trackdisk device. The simplest method

is to use the Exec function DoIO. Exec waits until the device is

finished and returns to the program. Since during the processing of the

IORequest structure the program did not have to perform other tasks, it

(our task) can go into waiting.

After DoIO has returned, the output parameter is in the io_Actual field

of the IORequest output:

255 = Disk is write protected

0 = Disk is not write protected

Once the write protect status has been output, the program must release

all the structures it used. The program can be terminated only after this

has occurred.

The most important assignment of the Trackdisk devices is the reading

and writing of data on disks:

144

Abacus 8.3 Sending commands

/* v

/* Read Sector with Trackdisk-Device */

/* */

/* JEA, 12-07-87 */
/* */

#include <exec/types.h>

#include <exec/memory.h>

finclude <devices/trackdisk.h>

/* *,

/* Turn Motor on or off */

/* */

/* */

/* */

MotorSwitch(iosr, flag)

struct IOStdReq *iosr;

LONG flag;

{

iosr->io_Command = TD_MOTOR;

iosr->io_Length = flag; /* l=an and 0=aus */

DoIO(iosr)/

/* it/

/* Read Logical Block */

/* */

/* */
/* ie/

LONG *GetBlock(iosr, block, map)

struct IOStdReq *iosr;

LONG block;

LONG *map;

{

LONG *ret = NULL;

iosr->io_Command = CMD_READ;

iosr->io_Length = TD_SECTOR;

iosr->io_Data = (APTR)map;

iosr->io_Offset = TD_SECTOR * block;

DoIO(iosr);

return(ret);

/*

/* Read Sector

/*
/* ^

LONG *GetTSH(iosr, track, sector, head, map)

struct IOStdReq *iosr;

LONG track;

LONG sector;

LONG head;

LONG *map;

LONG *ret - NULL;

145

8. The Trackdisk device Amiga disk drives inside and out

iosr->io_Command = CMD_READ;

iosr->io_JJength = TD_SECTOR;

iosr->io_Data = (APTR)map;

iosr->io_Offset = TD_SECTOR*(sector + NUMSECS*head

+ NUMSECS*NUMHEADS*track);

DoIO(iosr);

return(ret)/

}

/* */

/* Main Program */

/* */

/* */

main()

struct MsgPort *diskport;

struct IOStdReq *diskreq;

LONG *buf;

LONG loop;

buf = (LONG*) AllocMem(512L, MEMF_CHIP);

diskport = CreatePort(OL, OL);

diskreq = CreateStdIO(diskport);

OpenDevice(TD_NAME, 0, diskreq, 0)/

MotorSwitch(diskreq, 1L)/

GetBlocM diskreq, OL, buf) /

for(loop=0; loop<128; loop++){

printf("%lx ", buf[loop]);

printf("\n\n");

GetTSH(diskreq, OL, OL, OL, buf);

for(loop=0; loop<128; loop++){

printf("%lx ", buf[loop]);

printf("\n");

MotorSwitch(diskreq, OL);

CloseDevice(diskreq) /

DeleteStdIO(diskreq) ;

DeletePort(diskport);

FreeMem(buf, 512L);

Before this program opens the Trackdisk device, it reserves 512K of

memory for itself in chip memory. A sector is read into this buffer

later. Since the Trackdisk device uses the blitter for decoding of track
data, the sector buffer must be in the lower part (in the lower 512K) of

memory in the chip memory area.

146

Abacus 8.3 Sending commands

Next the TD_MOTOR command switches on the motor of the drive

since it must run for the read/write access. The Trackdisk device waits

for the flag which determines if the motor is switched on (1) or off (0).

This is done in the ioLength field of IORequest. DoIO then handles

the device.

The CMDREAD command reads bytes from the disk. The field

ioJLength justifies its name. It contains the number of bytes to be read.

In this case, since one sector is read, it is 512K.

The Trackdisk device looks in ioData for the address of the buffer into

which the byte read is copied.

In order to read a sector it must be known what sector we want to read.

This is recorded, in bytes, in io_Offset. The program then converts the

information from bytes to block numbers. When this is done the

command is executed with DoIO.

Sometimes it is important to address a sector through the side, track,

sector format instead of the logical block number. The conversion

formula which was described earlier is very useful here.

For example, this program reads the first sector, called the bootsector,

with the two possible methods and outputs the content in hexadecimal

numbers.

After read access, the program switches the device motor off again,

closes the device and releases the sector buffer.

8.3.1 The commands in overview

Every device can be addressed with a standard set of commands which

are defined in the Include file "Exec/io.h":

#define CMD_INVALID 0L

tdefine CMD_RESET 1L

#define CMD_READ 2L

#define CMD__WRITE 3L

#define CMDJJPDATE 4L

#define CMD_CLEAR 5L

#define CMD_STOP 6L

#define CMD_START 7L

tdefine CMD_FLUSH 8L

tdefine CMD_NONSTD 9L

All of these standard commands begin with "CMD". Every device can,

in addition, have its own special commands. These start at

CMD NONSTD. The additional commands of the Trackdisk devices are

147

8. The Trackdisk device Amiga disk drives inside and out

contained in the Include file "Devices/Trackdisk" offset to

CMDNONSTD:

#define TD_MOTOR (CMD_NONSTD+0)

#define TD_SEEK (CMD_NONSTD+1)

#define TD_FORMAT (CMD_N0NSTD+2)

tdefine TDJREMOVE (CMD_N0NSTD+3)

#define TD_CHANGENUM (CMD_N0NSTD+4)

#define TD_CHANGESTATE (CMD_N0NSTD+5)

#define TD_PROTSTATUS (CMD_N0NSTD+6)

fdefine TD_RAWREAD (CMD_N0NSTD+7)

#define TD_RAWWRITE (CMD_N0NSTD+8)

#define TD_GETDRIVETYPE (CMD_N0NSTD+9)

#define TD_GETNUMTRACKS (CMD_NONSTD+10)

#define TD_ADDCHANGEINT (CMD_NONSTD+11)

#define TD_REMCHANGEINT (CMD_N0NSTD+12)

tdefine TD_LASTCOMM (CMD_N0NSTD+13)

#define TDF__EXTCOM (1L«15)

#define ETD_WRITE (CMD__WRITE | TDF__EXTCOM)

#define ETD_READ (CMD_READ I TDF_EXTCOM)

#define ETD_MOTOR (TD_MOTOR| TDF_EXTCOM)

#define ETD_SEEK (TD_SEEK|TDF_EXTCOM)

#define ETD_FORMAT (TD_FORMAT|TDF_EXTCOM)

#define ETD_UPDATE (CMD___UPDATE I TDF__EXTCOM)

fdefine ETD_CLEAR (CMD_CLEAR|TDF_EXTCOM)

#define ETD_RAWREAD <TD_RAWREAD|TDF_EXTCOM)

tdefine ETD_RAWWRITE (TD_RAWWRITE|TDF_EXTCOM)

These commands have "TD" in front for Trackdisk device. Here the two

commands TD_MOTOR and TDPROTSTATUS are also defined.

They are of interest only to the Trackdisk device.

The CMDREAD command is different. Since bytes are read from

every device, it makes sense to standardize the definition of this

command for all devices.

The last category of Trackdisk commands are the Extended commands.

They have a prefix of "ETD". They differ from the normal commands

only through a set bit (TDF_EXTCOM). These extended commands

permit some additional features, but require an extended IORequest

structure. Because of this, a section has been devoted to these

commands.

The Trackdisk device recognizes the following "not extended"

commands (the IO section in the IORequest structure contains the indi

vidual parameters):

CMDREAD Reads bytes from the disk in the drive.

UWORD io_Command; CMD_READ

UBYTE io_Flags;

BYTE io_Error; Possible error message.

148

Abacus 83 Sending commands

ULONG

ULONG

APTR

ULONG

io_Actual;

io__Length;

io__Data;

io Offset;

Number of Bytes to be read.

Pointer to Data Buffer.

Byte-Offset, where to start

read.

CMD_WRITE Writes bytes on the disk in the drive.

UWORD

UBYTE

BYTE

ULONG

ULONG

APTR

ULONG

io_Command;

io_Flags;

ioJError;

io_Actual;

io_Length;

io_Data;

io Offset;

CMD_WRITE

Possible error message.

Number of Bytes to written.

Pointer to Data buffer.

Byte-Offset, where write

starts.

CMDJUPDATE The Trackdisk device always reads entire tracks and stores them in RAM

until another track is requested. During a write, data is sometimes only

changed in RAM. This command forces an immediate write of the track

buffer to the disk if its content has changed.

Possible error message.

CMD CLEAR

UWORD io_Command; CMD_UPDATE

UBYTE io_Flags;

BYTE io_Error;

ULONG io_Actual;

ULONG ioJLength;

APTR io_Data;

ULONG io_Offset;

The track buffer of the Trackdisk devices is declared invalid so that the

track is read again on the next access.

WORD

UBYTE

BYTE

ULONG

ULONG

APTR

ULONG

io_Command;

io__Flags;

io_Error;

io_Actual;

io_Length;

io__Data;

io Offset;

CMD___CLEAR

Possible error message.

TD_MOTOR Switches the motor of the device on or off.

UWORD

UBYTE

BYTE

ULONG

ULONG

APTR

ULONG

io_Command;

io_Flags;

io_Error;

io_Actual;

io_Length;

io_Data;

io Offset;

TD_MOTOR

Possible error message.

0: Motor off/l:Motor on

TD FORMAT This command formats one or more indicated tracks. It should be noted

that the track offset must be converted to bytes.

149

8. The Trackdisk device Amiga disk drives inside and out

BYTE io_Error; Possible error message.

ULONG io_Actual;

ULONG io_Length; Indicates the number of tracks

in Bytes <!) .

APTR ioJData; Pointer to buffer which contains

the track (s) .

ULONG io_Offset; Points (numbered in Bytes) to

the start track.

TDJREMOVE An interrupt is initialized every time a disk is removed or inserted.

UWORD io__Command; TD_REMOVE

UBYTE io_Flags;

BYTE io_Error; Possible error message.

ULONG io_Actual;

ULONG io_Length;

APTR io_Data; Contains pointer to a software

interrupt structure. If a null

is passed here, the interrupt is

blocked.

ULONG io__Offset;

TD_SEEK Moves the read/write heads over the track in which the indicated offset

byte is located No write or read operations occur.

UWORD io_Command; TD_SEEK

UBYTE io_Flags/

BYTE io_Error; Possible error message.

ULONG io_Actual;

ULONG io_Length;

APTR io_Data;

ULONG iojDffset; Byte-Offset for Positioning.

TD_CHANGNUM

Returns the counter condition indicating how many times a disk was

inserted or removed from the drive.

UWORD io_Command; TD_CHANGENUM

UBYTE io_Flags;

BYTE io_Error; Possible error message.

ULONG io__Actual; Disk-Change-Counter.

ULONG io_Length;

APTR io_Data;

ULONG io_Offset;

TD_CHANGESTATE

Tests to see if a disk is in the drive.

UWORD

UBYTE

BYTE

ULONG

APTR

ULONG

10 Command;

io_Flags;

io_Error;

io_Actual;

io Data;

io Offset;

TD_CHANGESTATE

Possible error message

0: Disk inserted,

<>0: Disk removed.

150

Abacus 83 Sending commands

APTR io_Data;

OLONG ioJDffset;

TD_PROTSTATUS

Tests to see if the inserted disk is write protected.

UWORD io_Command; TD_PROTSTATUS

UBYTE io_Flags;

BYTE io_Error; Possible error message.

ULONG io_Actual; 0 :Disk not write protected,

<>0:Disk is write protected.

ULONG io_Length;

APTR io_Data;

ULONG io_Offset;

TD_RAWREAD Permits reading of a track without decoding. Can be used to wait for the
index hole.

UWORD io_Command; TD__RAWREAD

UBYTE io_Flags; IOTDF_INDEXSYNC (if waiting for

the Index is desired)

BYTE io_Error; Possible error message.

ULONG io_Actual;

ULONG io_Length; Number of data to be read

(must be smaller than 32, 768) .

APTR io_Data; Pointer to data buffer

ULONG io_Offset; Number of the track to be read

(track not cylinder) .

TD_RAWWRITE

Permits the writing of a track without decoding. Can be used to wait for

the index hole.

UWORD io_Command; TD_RAWWRITE

UBYTE io__Flags; IOTDF_INDEXSYNC (if wait for

Index is desired)

BYTE io_Error; Possible error message.

ULONG io_Actual;

ULONG io_Length; Number of data to be written

(must be smaller than 32,768).

APTR io_Data; Pointer to data buffer.

ULONG io_Offset; Number of the track to be

written (track not cylinder).

TD_GETDRIVETYPE

Receives the type of the attached drive.

UWORD io_Command; TD_GETDRIVETYPE

UBYTE io_Flags;

BYTE io_Error;

ULONG io__Actual; Type of the drive:

DRIVE3_5/DRIVE5_25

ULONG io_Length;

APTR io_Data;

ULONG ioJDffset;

151

8. The Trackdisk device Amiga disk drives inside and out

TD_GETNUMTRACKS

Receives

UWORD

UBYTE

BYTE

ULONG

ULONG

APTR

ULONG

the number of tracks.

io Command;

io_Flags;

io_Error;

io_Actual;

io__Length;

io Data;

io Offset;

TD_GETNUMTRACKS

Number of the T

TD_ADDCHANGEINT

A command which appears in principle to be very good. It makes it

possible to jump to several interrupts as soon as a disk is removed from

the drive or inserted into the drive. The problem with this command is

that no Interrupt structure (as in TOREMOVE) can be passed. The

IORequest structure is accepted as an Interrupt structure and is fit into

the interrupt list. By inserting a IORequest structure instead of a Inter

rupt structure, the operating system crashes as soon as a jump occurs to

the change interrupt.

TDJKEMCHANGEINT

The command is used to remove an Interrupt structure from the

Diskchange interrupt list. It is unusable on the basis of an error during

the TD_ADDCHANGEINT command because no personal interrupt can

be included.

8.3.2 The extended commands

As mentioned, the extended Trackdisk commands offer some extra

features. To use them, the IORequest structure must be extended also. It

is then known as "IOExtTD" and appears as follows:

struct IOExtTD

{ /* Offsets */

struct IOStdReq iotdjteq; /* 0 $00 */

ULONG iotd_Count; /* 48 $30 */

ULONG iotd_SecLabel; /* 52 $32 */

Basically not much has changed. Only two longwords have been added

which the extension can handle.

One is used to confinn that the user has not changed the disk without

permission. During normal commands, the Trackdisk device writes a

sector without checking if this is the right disk. Since the Trackdisk

device counts how many times a disk was inserted or removed, it can

test for an unauthorized change.

152

Abacus 8j Sending commands

The program uses TD^CHANGENUM, the current change number, to
determine if the right disk is in the drive when reading a sector. If the

sector should be changed with ETD_WRITE, the program gives the

Changenum through iotd_Count to the Trackdisk device. It now writes
the sector to the disk only when the current change number and the one
passed agree.

How this is done can be seen in the Bitmap Analysis program which is
described in Chapter 6.

The next entry "iotd_SecLabel" is a pointer to a data block which
contains, in addition to the actual sector data the sector label data. These

are identifications between sectors in a track. Since the Trackdisk device
always works on a track basis with the disk, this information is already
in the memory. Normally they are not required.

Otherwise all extended commands operate like their "normal" counter
parts.

The Include file Devices/Trackdislch contains some useful constants for
working with the disk:

#define NUMCYLS 80 Number of cylinders.

#define NUMSECS 11L Sectors per track.

#define NUMHEADS 2 Heads per drive.

#define MAXRETRY 10 Max. repetitions on error.

#define NUMTRACKS (NUMCYLS*NUMHEADS) Tracks per disk,

idefine NUMUNITS 4L Devices connected.

#define TD_SECSHIFT 9L Size of label area.

#define TD_NAME *trackdisk.device" Name of device.

153

8. The trackdisk device Amiga disk drives inside and out

8.4 The Trackdisk structures

The Device

structure

The Msg. port

structure

To be able to understand the routines for disk control, as they are used

by the operating system the most important structures are presented

here. They are the Trackdisk Device structure and the Message Port

structure.

Within the Device structure is data which is required for the organiza

tion of all the disk operations. This includes the pointers to additional

structures (Msg. Port structures), which control the attached drives and

take over the work.

There is a Msg. Port structure for every attached drive. Besides the

"naked" Port structure which is familiar from the C Include files, there

are additional interesting entries which must be explained for the fol

lowing chapters. These additional entries are important for the control

of the drive through the operating system.

More details are provided in the following sections in the structure

entries.

8.4.1 The Device structure

The first explanation concerns the construction of the Trackdisk Device

structure. We'll discuss some, but not all of the entries for this struc

ture.

Offset Entry Explanation

00

34

36

40

44

48

52

56

60

78

$00

$22

$26

$28

$2E

$30

$34

$38

$3C

$4E

struct Library

$0000

*Msg-Port 0

*Msg-Port 1

*Msg-Port 2

*Msg-Port 3

*ExecBase

*GfxBase

*DSKResource

*Timer.device

Library structure (valid for all

Device structures).

Word to access longword-address.

Pointer to Msg.-Port for Drive 0.

Pointer to Msg.-Port for Drive 1.

Pointer to Msg.-Port for Drive 2.

Pointer to Msg.-Port for Drive 3.

Pointer to ExecBase.

Pointer to GfxBase.

Pointer to Disk-Resource.

Pointer to Timer-Device.

94 $5E *ciab.resource Pointer to CIAB-Resource.

154

Abacus 8.4 The Trackdisk structures

If a drive is not attached, the pointer to the corresponding Msg. port is

null.

8.4.2 The Port structure

Next is the description of those parts of the Msg. Port structure which

are important

Offset Entry Explanation

00 $00 struct MsgPort

34 $22 unit_Flags

35 $23 unit_Pad

36 $24 unit_OpenCnt

38 $2 6 Changel

40 $28 Change2

42 $2A Change3

44 $2C

48 $30 Wait

52 $34 ErrorNum

$35 Drive_Type

$36 TrackNum

56 $38 MaxOffset

Usual Msg. Port structure.

Flagbits used for the control

of the device.

Bit 0 = 1 => Device busy

Empty byte to reach even

addresses.

Counter for number of the tasks

which access the device.

First compression value for

writing a track if the track

number is higher than the value

indicated here (80).

Second compression value for

track indicated (not used

($FFFF)).

Third compression value for

track indicated (not used

($FFFF)).

StepTimeValue for time loop

during stepping of head (3000).

Value for time loop after the

desired track is reached

(6000).

Number of errors permitted

during disk access (10)

Type of the attached drive (1

for 3.5 disk):

Number of accessible tracks

(160)

Largest offset for disk =

$DC000 => 160 Tracks

64 $40 Flagbits

65 $41 DriveBit

Control Bits:

Bit 1 = 1 => Drive empty

Bit 2 = 1 => Extended command

Bit 3 = 1 => Close Device

Bit 4 = 1 => Disk is protected

Drivebits for Drive select

register related to motor.

155

8. The trackdisk device Amiga disk drives inside and out

66

67

68

72

74

76

78

$42

$43

$44

$48

$4A

$4C

$4E

ErrorCNT

DriveNum

*IoRequest

Sector

Track

Track

*LoadBuffer

82 $52 *SaveBuffer

90 $5A *Headbuffer

94

Counter for number of errors

during disk access.

Drive number.

Pointer to IoRequest structure

passed.

Sector number to be read or

written.

Track number of the head.

Track number of the head.

Pointer to buffer into which

the data from the disk is

written (MFM-coded data).

Same as LoadBuffer, but write

buffer.

Pointer to data buffer, when

the 16 empty bytes in the

Block-Header should be decoded.

Otherwise not set.

$5E struct IoRequest IoRequest structure which is

sent to the timer device during

disk operations.

134 $86 struct IoRequest IoRequest structure which is

sent to the disk in the drive

during maintenance.

Port to which messages are sent

when a certain process is

finished, for example disk

block ready.

Message sent to the port

(Offset 174) to indicate the

end of a process.

228 $E4 struct interrupt Structure for Disk-Block-Int.

242 $F2 is_Data is_Data for Disk-Block-

Int.

24 6 $F6 is_Code is__Code for Disk-Block-

Int. ($FEA6F2)

250 $FA struct Interrupt structure for DiskSYNC-Int.

264 $108 is_Data is__Code for DiskSYNC-

Int.

268 $10C is_Code is_Code for DiskSYNC-

Int.

272 $110struct Interrupt Structure for Index-Interrupt

286 $11E is_Data is_Data for Index-Int.

290 $122 is_Code is__Code for Index-Int.

($FEB38E)

298 $12A CangeCNT Incremented when the disk is

removed from the drive or

inserted in it.

With the help of these two structures, the routines which are used by

the operating system, related to the drive, can be analyzed.

In the following text, the Msg. port is also called Drive port.

174 $AE struct MsgPort

208 $D0 struct Message

156

Abacus 8.4 TheTrackdisk structures

8.4.3 The Resource structure

The third structure is the Trackdisk Resource structure which is used to
control the drive in connection with multitasking.

Some functions are available for work on the structure which are
accessed like a library through jumps with negative offsets. Jumps are

made to all functions with the base address of the Resource structure in
A6.

The functions have the following significance:

Offset-6 $FC4A62

Function: Sets bit for drive.

Parameterpassed:

DO = Drive number.

Return parameter:

DO = $FF Drive was not yet present.

DO = $00 Drive was present

Offset -12 $FC4A6E

Function: Erases bit for drive.

Parameterpassed:

DO = Drive number

Offset -18 $FC4996

Function: Announce drive.

If a drive is accessed by the operating system, access is prevented ftom
another task to this or another drive at the same time since the access
would occur through the same hardware registers. This would disturb
access to the drive by the first task. To prevent this interference, a wait
must occur for the release of the registers. The request to use the regis
ters is attached to the end of a list. If the list is not empty, the task
goes into a waiting position until the registers are released.

The message to wait for the release of the registers is the Message
structure from the Drive Port structure with the offset 208:

Parameterpassed

Al = Pointer to message to be added.

Parameter returned:

DO not equal to zero means that no wait is required. Access can start
immediately.

157

8. The trackdisk device Amiga disk drives inside and out

Offset -24 $FC4A0E

Function: Remove drive.

One Trackdisk task releases the hardware registers for the others and

sends a message to the next one on the list so it can continue its work.

Offset -30 $FC4A74

Function: Test if drive is present.

Parameterpassed:

DO = Drive number

Parameter returned:

DO = $0000 Drive present

DO = $FFFF Drive not present

The data area of the structure appears as follows:

00 $00 struct Library

34 $22 *Reply-Message

38 $2 6 DriveBits

39 $27

40 $28 *ExecBase

44 $2C *ciab.resource

48 $30 60 $3C

64 $40 struct List

Standard Library structure as

in all Resource structures.

If a drive has been

registered, this is the

pointer to the Message

structure (Offset 208) in the

Port structure.

A set Bit signals a drive

present. If Bit 7 is set, a

drive is registered.

Pointer to ExecBase structure.

Pointer to CIAB resource.

Words which signal if the

drive is connected.

$FFFF => no Drive

$0000 => Drive

List for drive registration.

158

Abacus 8.5 The internal processing of command parameters

8.5 The internal processing of

command parameters

Now that we have described the programming for the Trackdisk devices

and structures, the internal processing of the commands which are sent

through the IORequest structure will now be covered.

It's assumed that the IORequest structure has been initialized and the

device was opened.

8.5.1 The DoIO function

In Al is a pointer to the previously created IORequest structure.

fcO6dc move.l A1,-(A7)

fcO6de move.b #$01,30(Al)

fcO6e4 move.l A6,-(A7)

fcO6e6 move.l 2O(A1),A6

Save Al

Set Quick-Bit

Save A6

Get Pointer to Device

The following jump into the routine which sends the command (the

IORequest structure) to the device* is discussed later.

fcO6ea jsr -30(A6)

fcO6ee move.l (A7)+,A6

fcO6fO move.l (A7)+,Al

Jump to 10 execution

Get A6

Get Al

The WaitIO function which is used by the DoIO function starts here.

fcO6f2 btst #0,30(Al) Test Quick-Bit

fcO6f8 bne.s $fcO744 Done when set

fcO6fa move.l A2,-(A7) Save A2

fcO6fc move.l Al,A2 Pointer to IORequest to A2

fcO6fe move.l 14(A2),A0 Pointer to Reply-Port

fc0702 move.b 15(A0),Dl Get signal bit for Port

fc0706 moveq #$00,DO Erase DO

fc0708 bset Dl,D0 Set Bit for Signal

fc070a move.w #$4000,$dffO9a Disable-

fcO712 addq.b #1,294(A6) Macro

fcO716 cmpi.b #$07,8(A2) Type of Msg. = ReplyMsg.?

fcO71c beq.s $fcO724 Branch if Type ok

fcO71e jsr -318(A6) else wait for Msg. (Wait())

fcO722 bra.s $fcO716 indeterminate Jump

fcO724 move.l A2,A1 IORequest to Al

fcO726 move.l (Al),A0

fcO728 move.l 4(A1),A1 remove Node from Reply-Msg-List

fcO72c move.l A0,(Al)

159

8. The trackdisk device Amiga disk drives inside and out

fcO72e move.l

fcO732 subq.b

fcO736 bge.s

fcO738 move.w

fc0740 move.l

fcO742 move.l

fcO744 move.b

fcO748 ext.w

fcO74a ext.l

fcO74c rts

Al,4(A0)

#1,294(A6)

$fc0740

#$c000,$dff09a

A2,A1

(A7)+,A2

31(A1),DO

DO

DO

Enable-

Macro

Pointer to IORequest to Al

Create A2

Error-Flag to DO

Extend Sign

Extend Sign

Return Jump

In the routine above, the quick bit is set first. Then the pointer to the

device is put in A6 and ajump is performed to the BeginIO function.

This terminates the passing of the command. All that remains is to

wait for completion. If the quick bit was not reset, the routine is now

finished. Otherwise a test is made if the IO process was completed. For

this test it is sufficient to test the type of Message structure for "Reply

Msg." If this is not the case, the task goes to a wait condition until a

proper message arrives.

8.5.2 The BeginIO function

In this function a command to be executed is tested for validity and

passed to the Trackdisk task. The routine also tests if the command sent

can be executed directly, or if it must be sent to the device.

When the program returns from this routine, the message type in the

IORequest structure is always set to "Message". The IORequest struc

ture is always passed to the Trackdisk task as a message in the routine.

Passing occurs through the Message Port structure belonging to the

drive and therefore the task.

The function jumps from the DoIO function with "JSR -30(A6)".

The pointer to the IORequest structure is in Al.

The pointer to the device is in A6.

> 21)

fe9fbe

fe9fc2

fe9fc4

fe9fc8

fe9fcc

fe9fce

fe9fd2

fe9fd8

fe9fda

fe9fdc

fe9fe2

fe9fe4

clr.b

moveq

move.b

cmpi.b

bcc.s

move.1

move.1

btst

bne.s

andi.b

move.1

move.l

31 (Al)

#$00,DO

29(A1),DO

#$16,DO

$feaO16

24(A1),AO

#$000c61c2,Dl

DO,D1

$fe9ffO

#$7e,30(Al)

A6,-(A7)

52(A6),A6

Erase Errorflag

Clear DO

iojCommand to DO

Command permitted ?

branch if illegal (command

Pointer to Device-Port

Command decode bits

Execute command directly ?

yes, execute command

Erase flags up to Quick-Bit

save A6

get ExecBase

160

Abacus 8.5 The internal processing of command parameters

fe9fe8

fe9fec

fe9fee

fe9ffO

fe9ff6

fe9ffc

feaOOO

fea002

fea004

fea008

feaOOa

feaOOe

feaOlO

feaO14

feaO16

feaOla

jsr

move.1

bra.s

bset

move.b

movem.1

move.1

move.1

lea

lsl.w

move.1

jsr

movem. 1

rts

bsr.l

bar

-366 (A6)

(A7)+,A6

$feaO14

#7,30(Al)

#$O5,8(A1)

A3-A2,-(A7)

A0,A3

Al,A2

PutMsg (Pass IORequest to

Trackdisk-task)

get A6

unconditional Jump

Set flag for execution

Type in IORequest structure

to "Message",

to make Wait10 wait

save A2 and A3

Pointer to Drive-Port to A3

Pointer to IORequest to A2

762(PC)(=$fea300),A0 pointer to command tab

#2, DO command *4, to get Offset

0(AO,DO.W),get AO jump

(AO)

(A7)+,A3-A2

$feaO6e

$feaO14

Jump

restore A2 and A3

Return jump

Error Output

Return jump

As already mentioned the routine tests if the command can be executed.

Then follows a listing of commands which cannot be passed to the

device.

These commands are again divided into two sub-groups: the CMD and

the TD commands. The CMD commands which follow aren't permitted

for the Trackdisk device and are terminated during the direct call imme

diately with the error number 253 ($FD).

CMD_RESET

CMD_STOP

CMD_START

CMDJTLUSH

In contrast with the CMD commands which are not permitted, are the

allowable TD commands. The following are executed directly.

TD_CHANGENUM

TD_CHANGESTATE

TD_GETDRIVETYPE

TD GETNUMTRACKS

8.5.3 The Trackdisk task

As described, most commands ate passed from the BeginIO function to

the Trackdisk task. This transmission occurs with the help of the

message port which is "coupled" to the Trackdisk task.

161

8. The trackdisk device Amiga disk drives inside and out

The main task routine is busier than you would suspect because it has

other duties besides processing the commands coming from the BeginIO

function. Besides the IORequest structures, the task also receives addi
tional messages.

This message ensures that every half-second the task tests to see if a

disk was removed from its assigned drive. If this has happened, the

heads are moved to cylinder zero and the delay with which the message

wakes the task from its rest position is set for 2.5 seconds. The

message, which now arrives every 2.5 seconds, causes the task to check

if a disk was inserted in the meantime. The Amiga is (minimally) faster
if there is no disk in the drive.

The task differentiates between the two messages and passes them on,

with the following exception: If the message was sent by the

CloseDevice() function, this task is not passed on, but executed directly

in the main routine.

To permit each of the four possible tasks the opportunity of addressing

a disk drive, only one program is needed in memory; in this case in the

Kick-ROM. Every task accesses the same program. This program is

documented as follows:

FEAE50 MOVE.L 8(A7),A6 Pointer to Track device

FEAE54 MOVE.L 4(A7),A3 Pointer to Track port

FEAE58 LEA 302(A3),A0 Pointer to Track task

FEAE5C MOVE.L A0,16(A3) Enter Task as Msg.task for Port

FEAE60 BSR.L $FE9960 check if disk was removed

Start of the loop in which the task runs until a message is sent.

FEAE64 BSR.S $FEAE7A test for Msg. and process

FEAE66 MOVE.L #$00000300,DO Bits, for which the task is waiting

FEAE6C MOVE.L A6,-(A7) Save pointer to device

FEAE6E MOVE.L 52(A6),A6 Get ExecBase

FEAE72 JSR -318 (A6) Function: Wait()

FEAE76 MOVE.L (A7)+,A6 Restore pointer to device

FEAE78 BRA.S $FEAE64 unconditional jump

In the following program a message portion is obtained from port and

processed

A3 = Pointer to Msg. Port for the Drive.

A6 = Pointer to the Trackdisk Device structure.

FEAE7A BSET #0,34 (A3) Set Flag for Task

FEAE80 BNE.L $FEAF4A End if Task is already working

FEAE84 MOVE.L A3,A0 Pointer to Port to A0

FEAE86 MOVE.L A6,-(A7) save A6

FEAE88 MOVE.L 52(A6),A6 get ExecBase

FEAE8C JSR -372 (A6) Function: GetMsgO

FEAE90 MOVE.L (A7)+,A6 restore A6

FEAE92 TST.L DO Message present ?

FEAE94 BEQ.L $FEAF3E branch if no Msg.

FEAE98 MOVE.L D0,A2 Pointer to Message to A2

FEAE9A BCLR #3,64 (A3) Flag for Close-Device

162

Abacus 8.5 The internal processing of command parameters

FEAEAO

FEAEA4

FEAEA8

FEAEAE

FEAEB2

FEAEB6

FEAEBA

FEAEBE

FEAECO

FEAEC4

FEAEC8

FEAECA

FEAECE

FEAEDO

FEAED4

FEAED8

FEAEDA

FEAEDE

BEQ.L

MOVE.L

BCLR

BEQ.L

MOVE.L

BSR.L

MOVE.L

MOVEQ

MOVE.W

MOVE.W

MOVEQ

BSR.L

MOVE.L

MOVE.L

ADDQ.B

MOVE.L

TST.W

BNE.L

$FEAF1E

82(A3),A0

#0,2 (AO)

$FEAEBA

A0,78(A3)

$FEA958

82(A3),A0

#$FF,D0

D0,0(A0)

DO,76(A3)

#$00,D0

$FEA462

A6,A0

52(A0),A6

#1,295 (A6)

A0,A6

36 (A3)

SFEAF12

branch if no Close

Storage buffer to A0

Was Buffer changed ?

branch if not changed

Storage buffer = Load buffer

write Track

Write buffer to A0

-1 to DO

mark Track as invalid

mark Track as invalid

Value for motor off

Motor off

save A6

get ExecBase

Forbit

restore A6

remove Drive ?

branch if not removed

The drive is removed:

FEAEE2

FEAEE4

FEAEE8

FEAEEA

FEAEEE

FEAEF2

FEAEF4

FEAEF8

FEAEFA

FEAEFE

FEAF00

FEAF02

FEAF04

FEAF06

FEAF08

FEAFOC

FEAF10

FEAF12

FEAF14

FEAF18

FEAF1C

MOVEQ

MOVE.B

MOVE.L

MOVE.L

JSR

MOVE.L

LEA

MOVEQ

MOVE.B

LSL.L

ADDA.L

CLR.L

SUBA.L

MOVE.L

MOVE.L

JSR

MOVE.L

MOVE.L

MOVE.L

JSR

MOVE.L

#$00,DO

67 (A3), DO

A6,-(A7)

60(A6),A6

-12 (A6)

(A7)+,A6

36(A6),A0

#$00,DO

67(A3),DO

#2, DO

D0,A0

(A0)

A1,A1

A6,-(A7)

52(A6),A6

-288(A6)

(A7)+,A6

A6,-(A7)

52(A6),A6

-138(A6)

(A7)+,A6

clear DO

Drive number to DO

save A6

Pointer to Disk-Resource

erase Motor-Bit

restore A6

Pointer to Driveports

erase DO

get Drive number

determine Position of

the Pointer to Port

erase Pointer

clear Al

save A6

get ExecBase

Function: RemTaskO (remove

own Task)

restore A6

save A5

get ExecBase

Function: Permit ()

restore A6

Check where message originated:

FEAF1E MOVE.L A2,Al

FEAF20

FEAF24

FEAF26

FEAF28

FEAF2C

LEA

CMPA

BNE.

BSR.

BRA.

.•L

S

L

L

134(A3),A0

A0,A2

$FEAF30

$FE9960

$FEAE84

get Pointer to Message

Pointer to Message from Timer

is Msg. from Timer

no, then command message

test if Disk was removed

get new Message

The part of the program which processes an IO structure sent by the

programmer begins here:

FEAF30 BSET #1,34(A3)

FEAF36 BSR.L $FEA01C

FEAF3A BRA.L $FEAE84

Set Bit for processing of a command

process command

get new Message

163

8. The trackdisk device Amiga disk drives inside and out

FEAF3E BCLR #1,34(A3) clear Flags for

FEAF44 BCLR #0,34(A3) processing of commands

FEAF4A RTS Return Jump

8.5.4 Differentiating the commands

On the basis of the routine just described it can be seen that for a

message sent by the timer, a branch is taken to $FE9960. In contrast

the routine is continued at $FEA01C, when a command arrives. Of

interest is the portion starting at $FEA01C, which controls the

IO structure.

Pointer in A0 to the IO Request structure.

Pointer in A3 to the Drives port.

Pointer in A6 to the Device structure.

FEA01C

FEA01E

FEA020

FEA026

FEA02A

FEA02C

FEA030

FEA034

FEA036

FEA03C

FEA040

FEA044

FEA046

FEA04C

FEA050

FEA052

FEA054

FEA056

table

FEA058

FEA05C

FEA060

FEA062

FEA066

FEA068

MOVE.L

MOVE.L

ANDI.B

BSR.L

MOVE.L

MOVE.W

BTST

BEQ.S

BSET

MOVE.L

CMP.L

BLS.S

MOVE.B

BSR.L

BRA.S

MOVEQ

MOVE.B

LSL.W

LEA

MOVE.L

JSR

BSR.L

MOVE.L

RTS

A2,-(A7)

A1,A2

#$FA, 64 (A3)

$FE998C

A2,A1

28(A2),D0

#15,DO

$FEA052

#2, 64 (A3)

294(A3),D1

48(A2),D1

$FEA052

#$1D,31(A2)

$FEA1BO

$FEA066

#$00,Dl

D0,Dl

#2,D1

save A2

IO-Request to A2

erase Status-Bits

test for Disk in Drive

IO-Request-Structure to Al

io_Command to DO (corrmand)

extended command ?

branch if not extended

set Bit for extended command

number of Disk changes to Dl

compare with iotd Count

(within IOExtTD-Structure)

branch if value still OK

otherwise Disk changed too often

pass errors

unconditional Jump

clear Dl

command to Dl

determine Offset for command

678(PC) (=$FEA300),A0 Pointer to Table

0(A0,Dl.W),A0

(A0)

$FE998C

(A7)+,A2

get Address for command

call command

test for Disk in Drive

restore A2

Return Jumn

The start addresses of the commands which can be called by the Track-

disk device, are in a table starting at $FEA300.

164

Abacus 8.5 The internal processing of command parameters

The following listing shows the jump locations for various functions:

$FEA06E =>

$FEA06E =>

$FEA734 =>

$FEA734 =>

$FEAAAA =>

$FEAA94 =>

$FEA06E =>

$FEA06E =>

$FEA06E =>

$FEA9FE =>

$FEAA14 =>

$FEA07A =>

$FE9AB6 =>

$FE9A96 =>

$FE9AA2 =>

$FEAA44 =>

$FEB2E8 =>

$FEB2EE =>

$FEB3B6 =>

$FEB3C8 =>

$FE9AC2 =>

$FE9ADE =>

CMD

CMD

CMD

CMD

CMD

CMD

CMD

CMD

CMD

TD

TD_

TD_

TD

TD_

TD_

TD

TD

TD

TD_

TD_

TD

TD

^INVALID

RESET

READ

WRITE

UPDATE

CLEAR

_STOP

_START

_FLUSH

MOTOR

SEEK

FORMAT

REMOVE

CHANGNUM

CHANGESTATE

PROTSTATUS

*RAWREAD
"rawwrite
"GETDRIVETYPE

~GETNUMTRAKS
"addchangeint
"remchangeint

no

no Function (Error).

no Function (Error).

no Function (Error).

no Function (Error).

Executed directly.

Executed directly.

Executed directly

Executed directly.

165

8. The trackdisk device Amiga disk drives inside and out

8.6 The RAW commands
(with Index interrupt)

Some of the information introduced next will be comprehended fully
only after reading Chapter 9 (Direct disk access). It has been inserted
here only because it fits more logically into the outline.

As will be shown in Chapter 9, it isn't possible for the operating

system to load data from the disk with the controller synchronized. The

operating system normally loads without synchronization. The system

can be forced into synchronization in connection with the RAW
command.

To understand how this can be done the documented RAW functions are
shown:

Jump to TDRAWREAD:

feb2e8 lea

feb2ec bra.s

-3522(PC) (=$fea528)

$feb2f2

Jump to TDRAWWRITE:

feb2ee lea

feb2f2 movem.l

feb2f6 link

feb2fa move.l

feb2fc move.l

feb2fe moveq

feb300 bsr.l

feb304 move.l

feb308 cmp.l

feb30c bcc.s

feb30e bsr.l

feb312 move.b

feb316 bne.s

feb318 move.l

feb31c cmp.l

feb322 bcc.s

feb324 move.l

feb328 lea

feb32c btst

feb332 beq.s

feb334 lea

feb338 move.l

feb33a lea

-3384(PC) (=$fea5b8)

A4-A2/D3-D2,-(A7)

A5,#-8

A1,A2

A0,A4

#$01,DO

$fea462

44(A2),D0

54 (A3),DO

$feb35c

$fea3da

D0,31(A2)

$feb34e

36(A2),D0

$008000,DO

$feb35c

40(A2),A0

-3456(PC)(=$fea5aa)

#4,30(A2)

$feb348

-8(A5),A1

A1,D1

82(PC)(=$feb38e),Al

,A0 Pointer to Routine

for reading Track

unconditional Jump

,A0 Pointer to Routine

for writing Track

save Register

make space in Stack

IORequest to A2

Read/Write routines to A4

Value for Motor on

switch motor on

get Track-Number from IORequest

Number legal ?

branch if Track too high

position head on Track

enter Error in Error-Flag

branch if Error

number of Bytes to be

read/written

more or equal to $8000 Bytes

branch if larger

Pointer to Data buffer

,A1 Pointer to Routine for

switching on DMA

IOTDF INDEXSYNC in Flags

set ?

branch if not set

Pointer to place in Stack

Pointer to Dl

Pointer to Interrupt

Routine by Index-Sync

166

Abacus 8.6 The RAW commands

feb33e

feb344

feb348

feb34a

feb34e

feb350

feb354

feb356

feb35a

feb35c

feb362

movem.1

lea

jsr

move.b

move.1

bsr.l

unlk

movem. 1

rts

move.b

bra.s

A1/D1,286(A3)

30(PC)(=$feb364),Al

(A4)

D0,31(A2)

A2,Al

$fealbO

A5

(A7)+,A4-A2/D3-D2

#$fc,31(A2)

$feb34e

enter values for is_Data and

isjCode

for Index-Interrupt

Pointer to Start-

Routine for DMA

jump to read/write routine

write Error in Error-Flag

Pointer to IORequest to Al

answer IORequest

release Stack again

Restore Registers

Return Jump

Move Error into Error-Flag

unconditional Jump

Next follows the routine to which a jump occurs if read/write is started

through the DMA, if index synchronization should be on.

feb364 move.l 286(A3)#A0

feb368 movem. 1 A6/D0, (A0)

feb36c moveq #$10,DO

feb36e move.l A6,-(A7)

feb370 move.l 94(A6),A6

feb374 jsr -24(A6)

feb378 move.l

feb37a move.l

feb380 move.l

feb382 move.l

feb386 jsr

feb38a move.l

feb38c rts

(A7)+,A6

#$00000090,DO

A6,-(A7)

94(A6),A6

-18 (A6)

(A7)+,A6

get is_Data (pointer to stack)

Number of bytes to be read and

enter pointer to device

value for Index-Int.

save A6

pointer to CIAB resource

If interrupt present

clear interrupt

restore A6

permit value for Index int.

save A6

Pointer to CIAB-Resource

permit Interrupt

restore A6

Return Jump

After the index interrupt (CIAB flag) is released, the task waits, which

can be seen in the documented Load routine in Chapter 9.

If the index marking sets the flag line of the CIAB, an interrupt is
triggered which is handled by the CIAB Resource structure. For this

purpose the following entries are in the CIAB Resource structure start

ing at Offset 112 ($70):

CIAB resource Offset Significance

112 $70 Pointer to disk resource

116 $74 Pointer to the program to be executed

120 $78 Pointer to the Interrupt structure (not important)

Starting at offset 116 there is the pointer to the program to be executed

as soon as an interrupt is pending. The program starts at $FC4AB0.

Al is the pointer to disk resource.

fc4abO move.l 34(A1),DO

fc4ab4 beq.s $fc4ad8

fc4ab6 move.l D0,Al

fc4ab8 movem.1 78 (Al) ,A5/A1

jump for

Was Drive registered ?

End, if not registered

Reply-Msg. to Al

get Pointer to Data buffer and

167

8. The trackdisk device Amiga disk drives inside and out

fc4abe jmp (A5) Jump to Interrupt,

normally $FEB38E

fc4ad8 rts

With offset 78 in the Reply Msg. (which starts at offset 208 in the
Drives Port structure) therefore in $FC4AB8, a pointer is obtained to
the isJData entry (Offset 208+78 = 286 = $11E in drives port), which
was set by the previously documented routine in $FEB364. The follow

ing longword is "is_Code" which represents the pointer to the Interrupt
program. This program starts the reading of the track.

The actual Interrupt program starts at $FEB38E and has the following
appearance:

Al is the pointer to the buffer which is in the stack (see $FEB2F6,
$FEB334 and following).

feb38e

feb390

feb392

feb394

feb39a

feb39e

feb3a2

feb3a6

feb3a8

feb3aa

feb3ac

feb3bO

feb3b2

feb3b4

move.l

move.l

move.1

lea

bsr.l

move.l

move.1

moveq

move.1

move.1

jsr

move.1

move.1

rts

A2,-(A7)

A1,A2

(A2),D0

$dff000,Al

$fea5aa

4(A2),A0

94(A0),A0

#$10,DO

A6,-(A7)

A0,A6

-18 (A6)

(A7)+,A6

(A7)+,A2

save A2

Pointer to Buffer to A2

number of data to be read

(see $FEB368)

Pointer to Custom-Chips

start DMA

Pointer to Track-Device

(see $FEB368)

Pointer to CIAB-Resource

block value for Index Int

save A6

CIAB rsource to A6

block Index interrupt

restore A6

restore A2

Return Jump

Admittedly the entire process is somewhat confusing, but permits
waiting for the index mark to synchronize the data read.

The synchronization of the data is of value when it concerns reading
copy protected data, reading a foreign format, etc. Using the operating

system routines is simpler than writing completely new routines.

To switch on synchronization of the byte to be read from disk, the

previously described Index interrupt must be redirected to the user

routine. The synchronization, which is always switched off by the oper
ating system, can be retroactively switched on.

The best chance to redirect the interrupt to a proprietary routine, is at a

location where it jumps through the vector in the CIAB Resource struc

ture (offset 116 = $74) to the routine at $FC4AB0.

From there a branch occurs to the last Interrupt routine which performs

the starting of DMA. Since the interrupt is now in the user's routine,

synchronization can be switched on before the DMA is switched on. A

168

Abacus 8.6 The RAW commands

decision can also be made to read GCR fonnat instead of MFM format

without having to write a long user routine.

The redirection of the interrupt and switching on of the synchronization

occurs as follows:

FindName

ResourceList

is Code

= -276

= 336

= 116

move.l $4fa6 ;get ExecBase

lea ResourceList(a6),aO ;Pointer to Resource-

;List in ExecBase

lea ResName,al /Pointer to Name

jsr FindName(a6) /search for Resource

tst.l dO /found ?

beq Error /no, Error

move.l dOfal /ResourceBase to Al

lea Program,aO /Pointer to Interrupt

/Program

move.l aOfis_Code(al) /enter Pointer to Resource

Error: rts /Return Jump

ResName: dc.b "ciab.resource",0 /Resource-Name

align.w /bring following Commands

/to even Addresses

/The Interrupt program, which is called by the

/routines of the C1AB resource and performs the

/Synchronization, starts here.

Program: move.l 34(al),dO /Drive registered

beq prl /no, End

move.l dO,al /Reply-Msg. to Al

movem.l 78(al),a5/al /get Jump for Interrupt

move.w #$8400,$dffO9e /switch on Word sync

move.w #$4489,$dffO7e /pass Sync-Word

jmp <a5) /start DMA

prl: rts /Return Jump

END

169

9.

Accessing the disk

without DOS

Abacus 9. Accessing the disk without DOS

9. Accessing the disk

without DOS

Now that you've learned how to access the disk with the help of DOS,

direct mode access independent of DOS will be discussed. Following

this, the formats used by the Amiga will be discussed. Before starting

on these matters, an explanation of how the data is stored on the disk

must be provided so the sections which follow can be understood.

173

9. Accessing the disk without DOS Amiga disk drives inside and out

9.1 The recording format on the

disk

To understand how information is stored on disk, it is necessary to

become familiar with the basic principle of storing data on magnetic
surfaces (cassette, tape, hard disk, disk).

First of all you have to know that a magnetic field is created by a
current passing through a coil. This is why a disk should not be stored

near a transformer, speaker or electric motor.

Induction Current passing through a coil produces a magnetic field. On the other

hand a magnetic field acting on a coil produces a current. This phe
nomenon is called induction.

A recording head, such as the read/write head of the disk drive, is basi

cally nothing more than a coil through which current passes to produce

a magnetic field. The condition of the magnetic field, on or off, is
stored on disk.

Data is dissected into its smallest units (bits) for recording on a disk.

These bits can assume only two states, 0 or 1. The condition 1 is repre

sented by the presence of current, and the condition 0 by the absence of

current

The data is sent to the r/w head (read/write head) of the drive in the form

of current impulses with a timer providing the intervals in which an

impulse is sent. These impulses are recorded on the surface of the disk
in the form of magnetization (north or south pole).

When the read head rides over the disk, the magnetized coating on the

surface of the disk creates impulses which are restored into bytes by the

electronics of the drive.

The data is stored on a disk in a form different from what you would

expect. The 0 and 1 bits are represented not only by a different magneti

zation (for example north pole = 1 and south pole = 0), but also their

change. A change in magnetization represents a 1 bit and unchanging

magnetization within a certain time interval represents a 0 bit.

174

Abacus 9.2 The MFM and GCR formats

9.2 The MFM and GCR formats

As mentioned, a 1 bit is represented by a changing magnetization and a

0 bit through a steady magnetization. The writing of data with this

method creates a problem. The phases of the unchanging magnetization

cannot be too long or the controller goes out of synchronization. This

is because of variations in the drive since its "orientation" on the disk.

How is it possible to store data which consist partly of nulls?

To do this, the data to be written must be coded before being recorded.

The coding must be in such a manner that not too many null bits are

recorded consecutively.

Sync marking There is another reason for coding data which must be written on a disk.

To read data from a disk, the controller must know where to start with

the reading, i.e. where the data starts. To mark the start of data a bit

combination is needed which cannot occur in normal data. A combina

tion of this type is called synchronization marking or sync marking.

The required sync marking is also the second reason why data must be

coded because any combination of data can occur. There are two different

systems for coding data on the Amiga.

9.2.1 The MFM format

The Amiga uses MFM coding for the encryption of data. For coding of

data according to this system, data is recorded on the disk in the form of

data bits. In addition clock bits are recorded to insure that the controller

does not get out of synchronization.

With this system every data bit follows a clock bit, doubling the num

ber of bits which must be written. This is not a space-efficient system.

The system for setting the clock bits is relatively simple. If one of the

adjacent data bits is set, a reset clock bit is inserted. If the neighboring

data bits are reset, a set clock bit is inserted.

For the coding of the byte $A1, the coded word has the following

appearance.

Byte Bitpattern

$A1 %10100001

175

9. Accessing the disk without DOS Amiga disk drives inside and out

The clock bits appear as follows:

Data Bits

Clock Bits

Result

%10100001

%0 0001110

%0100010010101001 $44A9

This coding system prevents too many null bits following each other.

It also prevents two or more 1 bits from following each other. This is

important since the controller is not capable of recognizing a change in

magnetization which occurs too quickly, without errors. This is also

the reason why the GCR format, described at the end of this chapter,

can only write with half the speed.

After the discussion of the formats, the synchronization of the con

troller will be described. For synchronization the disk is searched for a

word which the user has provided. This word cannot be present in

normal data since the controller would synchronize at the wrong place.

Data must be found which cannot be reached with normal coding and

which can be recognized by the controller without problems. Such a

combination is a sequence of three bits set to null, where two of them

are data bits (normally between reset data bits there is always a set clock

bit). For example the combination $4489 is used by DOS as a marker.

D D

$4489 = %0100010010001001

T

The word is illegal. It can never occur through normal coding.

After the controller has found this word, it knows that data starts here

and reads it without error. It does not matter if these are sync words or

legal data. A renewed synchronization is possible only after the

completion of the read process.

9.2.2 The GCR format

The second format which the controller must process is the GCR

format (Group Code Recording), which is not used by DOS. It occupies

significantly less space on the disk, but has a disadvantage.

In the GCR format groups of four bits are coded into a combination of

five bits. This eliminates too many null bits following each other.

After the coding there are never more than two null bits or more than

eight one bits following each other.

The problem is that several one bits can follow each other in this

format and the controller cannot process these. This has the result of

changing the data recording density. To work with the GCR format

176

Abacus 9.2 The MFM and GCR formats

without error, a switch is made to half the recording speed (from 2 ms

to 4 ms).

The following table shows the coding according to this system:

Hexadecimal Binary

$0 (0)

$1 (1)

$2 (2)

$3 (3)

$4 (4)

$5 (5)

$6 (6)

$7 (7)

$8 (8)

$9 (9)

$A (10)

$B (11)

$C (12)

$D (13)

$E (14)

$F (15)

Byte $39 is coded according

$39 = %0011 1001 <=>

$3 $9

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

to this system as

10011 11001

GCR equivalent:

01010

01011

10010

10011

OHIO

01111

10110

10111

01001

11001

11010

11011

01101

11101

11110

10101

follows:

<=> 1001 1110 01

$8 $E —

Two bits remain as "excess" since they cannot be gathered into a byte.

Blocks of four bytes are coded to five bytes to avoid this problem.

Now that the coding system is understood, how about synchronization?

It's impossible in this system to have more than eight 1 bits following

each other. Such a combination cannot be created through coding of

data. This is used by the controller, which recognizes the appearance of

nine or more 1 bits sequentially as a synchronization marker.

Reading of data is suspended until a null bit is found after the recogni

tion of the sync marker.

When data is written in this format, it is important to note that the data

beginning after the sync marker always starts with a null bit If this is

not the case, the first data bits are recognized as being part sync marker

and the following data is shifted by the corresponding number of bits.

The writing of data according to this system has the following

appearance.

$FFFF FF55 Data

Sync Sync-End Data

177

9. Accessing the disk without DOS Amiga disk drives inside and out

9.3 Construction of a track

A track consists of 11 blocks of 512K each and two are used as pointers
to the next one.

The data is stored in MFM format. In addition to the data there is other

information on the track which is used by DOS to orientate data on the

disk. The track can be divided into information and data blocks. The

normal user has no access to information blocks. On a track an infor

mation block follows a data block and the next information block.

The most important data which appears in an information block indi

cates which track and block is being read and provides two checksums.

The first is formed on the information block itself and the second on the

following data block. These checksums are important to determine if

the track contains errors.

The track gap In addition to the information and data blocks there is a separate section

which is written on disk. This is the track gap. The track gap contains

no significant information but is required for every track.

During data writing it is important not to write new data over old data

on the disk (a track is round). To prevent such overwriting, a "safety

gap" between the first and last block of a disk must exist. Another

reason for this gap is the fact that there is not always space for a com

plete block in the remaining space. This also creates a gap. The gap is

about $2B8 (696) bytes long in the Amiga recording format. The

number of bytes in the gap is not always the same since it can change

slightly due to speed differences in the motor. The data in the gap is not

important since DOS does not need it or check it

9.3.1 Construction of block headers

Since the general construction of a track should not present any more

difficulties, the information block will be examined more closely. The

information block (block header) can be divided into five areas.

The beginning of the block header is formed by two sequential 0 bytes

coded in MFM format. Translated, this results in two sequential

$AAAA-longwords. These are followed by two standard sync markers

($44894489).

178

Abacus 93 Construction of a track

After the sync marks are four bytes, which contain information about

the construction and characteristics of the track.

Format identification <$FF)

Track number

Sector number

Number of sectors to the gap.

These four bytes, like the following data, have not yet been converted

into the MFM format.

The format identification indicates - as the name implies - that the track

read corresponds to the recording format of the Amiga. An MS-DOS

disk is also coded in MFM format, but has a different track structure

which is registered by DOS instantly through the missing format iden

tification.

The track number indicates on which track of the disk reading just

occurred. The same is true of the sector number.

The next byte indicates how many sectors exist before the track gap.

The current sector is included in the count. The value one indicates that

the track gap follows this sector. This byte is important since the track

gap is not static (fixed location) but can exist after any sector.

The next sector contains 16 bytes which are not used by DOS. These

bytes were provided to record die chaining of the blocks. These 16 bytes

are free (filled with nulls) and can be used for data which is not meant to

be accessible to the ordinary user (such as a serial number for the

program). This area is not suitable for copy protection data.

After the 16 unused bytes is the checksum for the block header and the

data block. This checksum is used by DOS for finding errors on the

disk. Both sums are formed by the coded data and is also stored in MFM

format. How these checksums are formed will be demonstrated in the

next chapter.

Some older copy protection systems which are still in use, are based on

the fact that the data of the blocks is intact, even though the checksum

is in error and the block becomes unreadable for DOS. Simple copy

programs cannot duplicate these programs, or correct the checksum.

When the bytes of the complete block header are calculated, the result is

the following:

Explanation

Bytes before Sync

Sync-Mark

Info-Part

Unused Part

Block-Checksum

Data-Checksum

Byte

2*

-

4*

16*

-

-

B.Nr.

$00

??

$00

Byte

00

04

08

16

48

56

in MFM

4*

2*

8*

32*

8*

8*

64

code

$AA

$4489 (Wor

??

$AA

??

??

= $40K

179

9. Accessing the disk without DOS Amiga disk drives inside and out

The ?? stand for bytes whose value depends on the current block header.

After the 64 bytes of the block header conies the data block consisting

of 2*512 = 1,024 ($400) bytes. In addition there are the 64 bytes of the

block header, resulting in 1,088 ($440) bytes. On each track there are

11 blocks and one track gap of about $2B8 (696) bytes. This produces a

total of about 12,664 (3,178) bytes.

9.3.2 Construction of the data block

The data block is much simpler in construction than the block header. It

consists of two times S12K data bytes in MFM format. In the block

header two adjacent MFM coded longwords form an uncoded longword.

In the data block an uncoded longword is formed by two longwords, but

differs firom the coding of the block header in that the two coded adjacent

longwords do not result in an uncoded longword. The two 512 bytes are

The first and the 512th, the second and the 513th longword, etc. are

combined into one uncoded longword.

9.3.3 The calculation of checksums

The checksums which are formed for the data block and the block header

were discussed earlier. At this point we'll discuss the calculation of

these checksums.

The checksum for a block header is calculated only for the information

part and the 16 unused bytes. The sync mark isn't included. This results

in a byte count of 40 ($28). For the data block the checksum is calcu

lated for all 1,024 ($400)K. A routine is available to the operating

system for calculating these checksums.

The following routine calculates the checksum for the storage area

indicated. Dl contains the number of bytes for which the sum should be

calculated. A0 has the pointer to the beginning of the data.

The number of bytes is divided by four to obtain the number of long

words which must be considered. The result is a number which must be

a multiple of four. It is not possible to consider more than $FFFC

bytes.

180

Abacus 93 Construction of a track

feada4 move.l

feada6 lsr.w

feada8 subq.w

feadaa moveq

feadac move.l

feadae eor.l

feadbO dbf

feadb4 andi.l

feadba move.l

feadbc rts

D2,-(A7)

#2,D1

#1,D1

#$00,DO

(A0)+,D2

D2,D0

Dl,$feadac

#$55555555,DO

(A7)+,D2

Save D2

Number of bytes\ 4

Number -1

Set result to zero

Get longword

and attach

branch if counter

not finished

remove invalid bits

Restore D2

Return jump

To calculate the checksum for a block header, the following program is

used.

lea Datastart,aO Pointer to block header in A0

moveq #$28,dl Indicate number of bytes

jsr $feada4 Calculate checksum

The result of the calculation is returned in DO and can be used at the

discretion of the programmer.

To calculate the data checksum, the pointer to the data block must be

passed in A0 and the byte number 1,024 ($400) in Dl.

9.3.4 How is a track coded?

The operating system unfortunately does not make a separate routine

available for coding of a track. The user must be satisfied with a routine

which codes only one block. However, this routine also calculates the

checksum.

Before discussing the coding of a block or track, another often-used

routine will be examined. This routine is used for coding a block header

and is used often by DOS. During the call of the routine, the block

header is passed in DO and the pointer to the buffer where the coded

header should be stored in A0.

fead46

fead4a

fead4c

fead4e

fead52

fead54

fead58

fead5c

fead60

fead62

fead68

fead6a

fead70

movem.l

move.1

lsr.l

bsr.l

move.1

bsr.l

bsr.l

movem.l

rts

andi.l

move.1

eori.l

move.1

D3-D2,-(A7)

D0,D3

#l,D0

$fead62

D3,D0

$fead62

$feadbe

(A7)+,D3-D2

#$55555555,DO

D0,D2

#$55555555,D2

D2,D1

Save D2 and D3

Byte to D3

Shift right

Code odd bits

Byte to DO

Code even bits

Clock bit of the next

Byte corrected

Restore register

Return jump

Filter odd bits

Result to D2

Determine clock bits

Result to Dl

181

9. Accessing the disk without DOS Amiga disk drives inside and out

fead72

fead74

fead76

fead7a

fead7c

fead7e

fead84

fead86

fead8a

fead8c

lsl.l

lsr.l

bset

and.l

or.l

btst

beq.s

bclr

move.l

rts

#1,D2

#1,D1

#31,Dl

D2,D1

D1,DO

#0,-1(AO)

$fead8a

#31,DO

DO, (A0) +

Shift left one

Bit one to the right

Set first bit

Link to sort out clock Bits

Set clock bits

Determine if previous

Byte ended with null bit

Yes, bits are right

Reset first bit

Store value

Return jump

Correct the first clock bit of the next byte if a byte was inserted. The

pointer to the next byte is in A0.

feadbe

feadcO

feadc6

feadc8

feadcc

feadce

feadd2

feadd4

feadd8

feadda

move.b

btst

bne.s

btst

bne.s

bset

bra.s

bclr

move.b

rts

(A0),D0

#0,-1(AO)

$feadd4

#6,DO

$feadda

#7, DO

$feadd8

#7, DO

DO, <A0)

Get byte

Is last bit of the previous byte set?

Yes, reset clock bit

Test next data bit

Branch if bit is set

Set clock bit

Unconditional jump

Reset clock bit

Write byte

Return jump

Assuming the header $FF020406 was passed to the routine the individ

ual steps of the coding are:

$FF240406 => %1111 1111 0010 0100 0000 0100 0000 0110

These bits are shifted to the right and at first only the odd bits are coded.

This results in:

%0111 1111 1001 0010 0000 0010 0000 0011

Next the odd clock bits in this new longword are reset and then all even

data bits are reversed.

%0111 1111 1001 0010 0000 0010 0000 0011

AND %0101 0101 0101 0101 0101 0101 0101 0101

%0101 0101 0001 0000 0000 0000 0000 0001

EOR %0101 0101 0101 0101 0101 0101 0101 0101

%0000 0000 0100 0101 0101 0101 0101 0100

The purpose of this will be evident soon.

Next all reversed data bits are shifted right and left. A logical AND is

then performed. The first bit of the longword shifted right is also set

%1000 0000 0010 0010 1010 1010 1010 1010

AND %0000 0000 1000 1010 1010 1010 1010 1000

%0000 0000 0000 0010 1010 1010 1010 1000

182

Abacus 93 Construction of a track

As a result of the logical operation only 1 bit exist where in the origi

nal longword two null bits existed. This is the case when the set clock

bits must be introduced. The result of the last logical operation with the

longword, in which all clock bits were removed, are ORed to obtain the

final coded value:

%0101 0101 0001 0000 0000 0000 0000 0001

OR %0000 0000 0000 0010 1010 1010 1010 1000

%0101 0101 0001 0010 1010 1010 1010 1001

A test must be performed to determine if the last data bit of the previ

ous byte was set or reset. If it was set, the first clock bit of the

longword must be reset, or it will arrive at the original longword,

which was already considered in the calculation. The first coded

longword is:

$5512AAA9

Analog to the coding of the odd bits is the coding of the even bits

which results in the value S5524A4A4. The final coded header looks

like this:

$5512AAA9 5524A4A4

After the second longword was stored, the gap between the second and

following longword must be corrected. For this task a jump is made to

the routine starting at SFEADBE.

The process of coding a complete track is rather time consuming. It can

be speeded up considerably, at least for data blocks, by the blitter.

Before examining this routine, some foundations must be laid. A

complete explanation of programming the blitter would be too lengthy

for inclusion here. However, the functioning of the graphic function

QBlit, which is called by the routine to be discussed, is explained. It

may be puzzling why a graphic function is being used since the coding

of a block does not involve graphic operations.

The QBlit The QBlit function just mentioned is stored in the Graphic library, but

function is used for more than graphic operations. During the call of the func

tion, a pointer to a previously created structure is passed. This structure

is attached to the end of a list in which there are structures used for

programming the blitter. If a structure has been processed, the next one

is used. When a structure is in use, the blitter can be programmed

through multitasking until the control of the list is returned to the
system.

QBlit has the task of waiting until the blitter is free and then passes

control over it to a program. To which program control is passed, is

determined in the structure.

183

9. Accessing the disk without BOS Amiga disk drives inside and out

The blitter structure which is used has the name blitNode. For the

coding of a block it is passed in a slightly changed form and appears as

follows:

Offset Explanation

00 $00 Pointer to next structure.

04 $04 Pointer to program to be executed.

08 $08 Length of data for coding.

12 $0c Pointer to Source.

16 $10 Pointer to destination.

20 $14 Content for BLTSIZE.

22 $16 Value depends on application.

26 $1A Pointer to drive Port.

The pointer to the next structure is accepted by the QBlit function and

does not have to be set by the programmer. The pointer to the program

to be executed must point to the user routine to which the QBlit func

tion jumps as soon as the blitter becomes free for this structure.

The last entry in the structure requires an explanation. It concerns the

pointer to the message port of the drive which is addressed. The address

of this port has been stored in the Device structure and is stored in the

ORequest structure under "Unit". The pointers to the Msg. ports in the

Trackdisk Device structure can be found under the following offsets:

Offset Explanation

36 $24 Pointer to Port for Drive 0.

40 $28 Pointer to Port for Drive 1.

44 $2C Pointer to Port for Drive 2.

48 $30 Pointer to Port for Drive 3.

If a "Drive Not Present" error is returned, the pointer is set to null.

The QBlit function performs the program indicated in the structure

when its turn arrives. The return jump from QBlit occurs when the user

program returns a null in DO. If this isn't the case, a branch occurs to

another program through the indicated vector after die return jump from

the user program. For this, the pointer is set in the first program to the

next. With this linkage of programs it is possible to perform several

tasks with the blitter through one call of the QBlit function. Aside from

the blitter programming, several tasks can be performed by these user

programs, but in most cases this does not make sense.

Since the QBlit function originated in the Graphic library, there is a

pointer to the Graphic library in the Trackdisk Device structure starting

at Offset 56 ($36). It may be curious, but a disk operation without the

presence of the Graphic library is not possible.

The coding routine will be explained next. The information part of the

block header must be passed to this routine since it's linked completely.

184

Abacus 93 Construction of a track

Coding of a

block

Since the process of coding data into the MFM format was already

described in detail, a similar description of the coding by the blitter is

not provided.

In AO is the pointer to the data block which is coded (Source).

In Al is the pointer to the buffer into which the coded data is written

(Destination).

In A3 is the pointer to the Msg. port of the drive.

In A6 is the pointer to the Device structure.

In DO is the uncoded information portion of the block header.

feaadc movem.l A4/A2/D2,-(A7)

feaaeO

feaae2

feaae4

feaae6

feaae8

feaaec

move.l

move.1

move.1

moveq

lea

bsr.l

A1,A4

A0,A2

D0,D2

#$00,DO

0(A4),A0

$fead46

feaafO move.l #$44894489,4(A4)

£eaaf8 move.l D2,D0

feaafa lea 8(A4),A0

feaafe bsr.l $fead46

Save register

Pointer to write buffer

Pointer to data buffer

Block header to DO

Clear DO

Pointer to write buffer

Code null bytes and write into

buffer

Store sync mark

Block header to D2

Pointer to buffer

Code block header and store in

buffer

Coding the

data block

feabO2 moveq

feabO4 moveq

feabO6 bsr.l

feabOa dbf

feabOe lea

feabl2 moveq

feabl4 bsr.l

feabl8 lea

feablc bsr.l

feab20 move.l

feab26 move.l

feab28 lea

feab2c bsr.l

feab30 lea

feab34 move.w

feab38 bsr.l

feab3c lea

feab40 bsr.l

feab44 movem.l

feab48 rts

#$03,D2

#$00,DO

$fead46

D2,$feabO4

8(A4),A0

#$28,Dl

$feada4

48(A4),A0

$fead46

#$00000200,DO

A2,A0

64(A4),A1

$feab4a

64(A4),A0

#$0400,Dl

$feada4

56(A4),A0

$fead46

(A7)+,A4/A2/D2

Set counter to 3

Enter null bytes in buffer

Branch until counter done

Set pointer to coded block header

Set number of bytes

Calculate block checksum

Pointer position in block

Store checksum

Set number of bytes

Pointer to data buffer

Set pointer in write buffer

Code data block

Pointer to the beginning of

coded data

Set counter

Calculate checksum for data

Pointer to position

Store checksum

Restore register

Return jump

In AO is the pointer to the data buffer.

In Al is the ooiiiter to the write buffer.

In A3 is the pointer to the Msg. port of the drive.

In A6 is the pointer to the Device structure.

In DO is the number of data which are coded.

feab4a

feab4e

feab50

feab52

feab56

link

move.w

lsl.w

ori.w

move.w

A2,#-30

D0,Dl

#2,D1

#$0008,Dl

Dl,-10(A2)

Make space in stack

Number to Dl

BltSize

Determine register

185

9. Accessing the disk without DOS Amiga disk drives inside and out

feab5a movem.l Al-A0/D0,-22 (A2)

feab60 move.l #$00feab9e,-26(A2)

feab68 move.l A3,-4(A2)

feab6c lea -3O(A2),A1

feab70 move.l A6,-(A7)

feab72 move.l 56(A6)fA6

feab76 jsr -276(A6)

feab7a move.l (A7)+,A6

feab7c bsr.l $fea70a

feab80 movem.l -22 (A2) ,A1-AO/DO

feab86 move.l DO,D1

feab88 move.l Al,A0

feab8a

feab8e

feab90

feab94

feab96

feab9a

feab9c

bsr.l

adda.l

bsr.l

adda.l

bsr.l

unlk

rts

$feadbe

D1,AO

$feadbe

D1,AO

$feadbe

A2

Create structure

Set function pointer

Pass pointer to port

Set pointer to beginning of

structure

Store A6

Get pointer to GfxBase

Function QBlit

Restore A6

Wait for Reply Msg.

Restore register

Byte number to Dl

Set pointer to beginning of

data

Correct border

Pointer to next seam

Correct border

Pointer to end

Correctly border

Release stack

Return jump

Following is the function to which the QBlit function jumps.

In AO the pointer to SDffOOO is passed.

In Al is the pointer to the previously created structure.

In A6 is the pointer to the Trackdisk Device structure.

feab9e move.l A5,-(A7)

feabaO move.l A1,A5

feaba2 bsr.l $feb2cc

feaba6 move.l A5,Al

feaba8 movem.l 8(Al),A5/Dl-D0

feabae move.l

feabb2 move.l

feabb6 move.l

feabba move.w

feabacO move.w

feabc6 move.w

feabcc move.l

feabd4 move.l

feabd6 rts

Dl,76(A0)

D1,80(AO)

A5,84(A0)

#$ldbl,64(A0)

#$0000,66(AO)

20(Al),88(A0)

#$00feabd8,4(Al)

(A7)+,A5

Save A5

Save pointer to structure

Set mode for A,B,D and

BLTALWM

Restore pointer

Get pointer to source and

destination

Source to Source B

Source to Source A

Destination to Destination D

Value for BLTCON0

Value for BLTCON1

Start blitter, BLTSIZE

Pointer to next function

restore A5

Return jump

This is the second function. It is called when the blit process of the first

has been completed. The parameters passed are the same.

feabd8

feabda

feabeO

feabe4

feabe8

feabec

feabf2

feabf8

feacOO

feacO2

move.l

movem. 1

move.l

move.1

move.1

move.w

move.w

move.1

move.1

rts

A5,-(A7)

8(A1),A5/D1-DO

A5f76(A0)

Dl,80 (A0)

A5,84(A0)

#$2d8c, 64 (A0)

20 (Al), 88 (A0)

#$00feac04,4(Al)

(A7)+,A5

Save A5

Values from the structure

Source B = Destination

Source A = Source

Destination D = Destination

Set BLTCON0

Set BLTSIZE, start

Store next function

Restore A5

Return jump

186

Abacus 9.3 Construction of a track

Function 3 feacO4

feacO6

feacOc

feacOe

feaclO

feacl2

feacl4

feacl6

feacla

feacle

feac22

feac28

feac2e

feac34

feac3c

feac3e

move.l

movein. 1

add.l

subq.l

adda.l

adda.l

subq.l

move.1

move.1

move.1

move.w

move.w

move.w

move.1

move.1

rts

A5,-(A7)

8(A1),A5/D1-DO

DO,D1

#2,D1

D0,A5

D0,A5

#2,A5

Dl,76(A0)

Dl,80(A0)

A5,84(A0)

#$0dbl,64(A0)

#$1002,66(A0)

20(Al),88(A0)

#$00feac40,4(Al)

(A7)+,A5

Save A5

Values from the structure

Pointer to end of source

Set -2

Pointer to end of

Destination

Set -2

Source B = Source End

Source A = Source End

Destination D = Destination-End

Set BLITCON0

Set BLITCON1

(count backwards)

Set BLTSIZE, start

Next function

Restore A5

Return jump

Function 4

Function 5

feac40 move.l A5,-(A7)

feac42 movem.l 8(Al),A5/Dl-D0

feac48 adda.l D0,A5

feac4a move.l A5,76(A0)

feac4e move.l Dl,80(A0)

feac52 move.l A5,84(A0)

feac56 move.w

feac5c move.w

feac62 move.w

feac68 move.l

feac70 move.l

feac72 rts

feac74 moveq

feac76 move.l

feac7a move.l

feac7e bsr.l

feac82 moveq

feac84 rts

#$ld8c,64(A0)

#$0000,66(A0)

20(Al),88(A0)

#$00feac74,4(Al)

(A7)+,A5

#$00,DO

DO,4(A1)

26(A1),A1

$fea6f2

#$00,DO

Save A5

Value from structure

Pointer to end of first part of

destination

Enter from Source B

Source A = Source

Destination D = End of the

first part of destination

Set BLTCON0

Set BLTCON1

Set BLTSIZE, start

Next function

Repeat A5

Return jump

Clear DO

Clear function pointer

Get pointer to port

Send Msg. (Blit-End)

Set Flag for End

Return jump

The following routine is called by its own function. It sets the registers

BLTAFWM, BLTALWM, BLTBMOD, BLTAMOD, BLTDMOD and

BLTCDAT.

feb2cc

feb2ce

feb2d2

feb2d8

feb2dc

feb2de

feb2eO

feb2e2

feb2e6

moveq

lea

move.1

lea

move.1

move.w

addq.l

move.w

rts

#$00,DO

68(AO),A1

#$ffffffff, (Al)

98(AO),A1

DO, (Al) +

DO, (Al) +

#8,A1

#$5555,(Al)

Clear DO

Pointer to BLTAFWM

Set BLTAFWM, BLTALWM

Pointer to BLTBMOD

Erase Mode B,A

Erase Mode D

Pointer to BLTCDAT

Set BLTCDAT

Return jump

The knowledge gained so far is not sufficient to write programs which

codes a block with the help of the routines discussed.

187

9. Accessing the disk without DOS Amiga disk drives inside and out

The reason for this is that the Wait function is used to wait for the

termination of blitter activity. This routine for waiting for the termina

tion of blitter activity and for sending the return message, is inspected

closely.

To understand the following routines, it should be mentioned that there

is another Msg. Port structure (Reply port) at offset 174 ($A£) from

the basic address of the Msg. Port for the drive, which is used to accept

return messages.

As in the Reply Port structure, within the Msg. Port structure for the

drive, there is a Message structure which is sent as message for this and

other wait processes to the Reply port. The Message structure is located

at offset 94 ($5E).

Then comes the routine for sending the return message (Message) to

terminate the waiting process.

In Al is the pointer to the Drive port (Msg. port).

In A6 is the pointer to the Trackdisk Device structure.

fea6f2

fea6f6

fea6fa

fea6fc

fea702

fea706

fea708

lea

lea

move.

move.

jsr

move.

rts

1

1

1

174(A1),AO

94(A1),A1

A6,-(A7)

$000004,A6

-366 (A6)

<A7)+,A6

Pointer to Reply port

Pointer to Reply message

Save A6

Get pointer to ExexBase

Call PutMsg function

Restore A6

Return jump

The following routine is used to wait until the routine shown above

sends a message to the Reply port

In A3 is the pointer to the Drives port (Msg. port).

In A6 is the pointer to the Trackdisk Device structure.

fea70a

fea710

fea712

fea716

fea71a

fea71c

fea720

fea722

fea726

fea72a

fea72c

fea72e

fea730

move.1

move.l

move.1

jsr

move.1

lea

move.l

move.1

jsr

move.1

tst.l

beq.s

rts

#$00000400,DO

A6,-(A7)

52(A6),A6

-318 (A6)

(A7)+,A6

174(A3),A0

A6,-(A7)

52(A6),A6

-372 (A6)

(A7)+,A6

DO

$fea70a

Signal

Save A6

Pointer

set to DO

to ExecBase

Wait function

Restore

Pointer

Save A6

Pointer

GetMsg

Restore

Message

A6

to Reply port

to ExecBase

function

A6

arrived ?

No, error, wait some more

Return jump

Normally all these routines are called from the Trackdisk task. For this

reason the Reply port is tailored for the Trackdisk task, which means

that all messages are sent to it. If the routine for coding a block or

another routine which uses this waiting function is called, the message

which signals the termination of the wait is sent to the Trackdisk task.

188

Abacus 93 Construction of a track

The user task which is waiting, would never obtain the message and

therefore would wait forever.

To avoid this, a trick can be used. The Reply port for the user task

must be informed to get the message to its destination. It is sufficient

to point the *mp_SigTask entry, which points to the Trackdisk task, to

the user task. This entry is at offset 16 starting at Reply port

After termination of the user program, the pointer to the task must be

pointed again to the Trackdisk task. During the change to the user task

any disk accesses must be avoided because the system would get into

major difficulties.

There is another matter to consider. During the processing of the user

task, the Trackdisk task should not interfere. To avoid this it should be

fooled into assuming that it is already executing and therefore cannot

accept additional assignments. A bit in the Drive port exists for this.

Setting bit 0 at offset 34 ($22) prevents the processing of messages by

the Trackdisk task. Resetting the bit permits the processing to resume.

The following program shows this process while coding a block with

the help of the routine discussed previously. The source and destination

must be added to this routine.

;Code.s Amiga Disk Drives Inside and Oout

Device = 350

Port =36

RepPort = 174

SigTask = 16

Task = 276

FindName = -276

Header = $FF240406

move.l $4,a6

lea Name,al

lea Device(a6) ,a0

jsr FindName(a6)

tst.l dO

beq Error

move.l Task(a6),aO

move.l dO,a6

move.l Port(a6),a3

lea RepPort(a3),al

move.l SigTask(al),-(a7)

move.l al,-(a7)

move.l aO,SigTask(al)

bset #0,34(a3)

/Pointer to Devicelist

/find Device

/Pointer to user Task

/Drives-Port-Address

/Reply-Port-Address

/save old Pointer

/save Reply-Port

/store user Task

/set Trackdisk-Task to

/waiting position

/ everything is prepared for the call of the desired routine

move.l #Header,dO

lea Source,aO

lea Destination,al

jsr $feaadc /code Block

189

9. Accessing the disk without DOS Amiga disk drives inside and out

Error:

Name:

move.l (a7)+,al /restore Reply port

move.l (a7)+,SigTask(al) ;store old Pointer

bclr #0,34(a3) /release Task again

rts /Return jump

dc.b 'trackdisk.device\0

END

We'll end the chapter by showing how DOS codes an entire track.

The listing which follows is only a fragment from a larger routine

which also writes the track and checks for errors during writing. The

writing of a track is not important at this point and will be discussed

later.

In A2 is the pointer to the destination buffer (coded).

In A3 is the pointer to the Drive port.

In AS is the pointer to the source buffer (uncoded).

In A6 is the pointer to the Trackdisk Device structure.

In D2 is the track number. The track number must be stored as a long-

word.

feall2

feall4

feall6

feallc

fealle

feal20

feal22

feal24

feal26

feal28

feal2a

feal2c

feal2e

feal32

feal34

moveq

moveq

move.1

move.l

lsl.l

or.l

or.l

move.1

swap

or.l

move.1

move.1

bsr.l

addq.l

adda.l

#$0b,D4

#$00,D5

#$ff000000,DO

D5,D1

#8,D1

Dl,D0

D4,D0

D2,D1

Dl

Dl,D0

A2,A1

A5,A0

$feaadc

#1,D5

#$00000440, A2

feal3a adda.l #$00000200,A5

feal40 subq.l #1,D4

feal42:66d2 bne.s $feall6

Number of the Blocks (11)

erase Block counter

DOS-code to DO

Block counter to Dl

move to its Position

enter into Header

enter number of Blocks to the Gap

Track-Number to Dl

bring Number into Position

and enter into Header

Destination to Al

Source to A0

code Block

increment Block counter

increment Pointer to Destination

Buffer

increment Pointer to Source Buffer

decrease Number of Blocks

branch if not done with coding

The counter for the number of the remaining blocks is also the counter

for the number of blocks to the gap. If a track is coded with this or a

similar program, the gap is always at the end of the track (after block

11).

190

Abacus 93 Construction of a track

9.3.5 Decoding a track

Now that we know how a track is coded, we'll learn how it can be
decoded again.

A routine exists in the operating system which decodes a block. In addi

tion another routine is used which decodes the block header. Just as in

the coding of a track, first the routine for decoding of the header is

described

An uncoded longword is created from two sequential, coded longwords.

AO is the pointer to the first longword. The result is returned in DO as

an uncoded longword.

fead8e move.l (A0)+,D0 get first longword

fead90 move.l (AO)+,D1 get second longword

fead92 andi.l #$55555555,DO remove clock bits

fead98 andi.l #$55555555,Dl remove clock bits

fead9e lsl.l #1,DO correct bits

feadaO or.l D1,DO and perform logical operation

feada2 rts Return jump

Starting with the example for coding of a block header, the decoding
appears as follows.

You may recall that the info portion ($FF240406) of the block header

was coded into two longwords ($5512AAA9 5524A4A4).

$5512AAA9 = %0101 0101 0001 0010 1010 1010 1010 1001

$5524A4A4 = %0101 0101 0010 0100 1010 0100 1010 0100

After getting these two longwords, the clock bits are removed.

%0101 0101 0001 0010 1010 1010 1010 1001

AND %0101 0101 0101 0101 0101 0101 0101 0101

%0101 0101 0001 0000 0000 0000 0000 0001

aid

%0101 0101 0010 0100 1010 0100 1010 0100

AND %0101 0101 0101 0101 0101 0101 0101 0101

%0101 0101 0000 0100 0000 0100 0000 0100

Then the longword representing the odd bits (the first longword), is
shifted left by one bit and a logical OR is performed with the second
longword.

191

9. Accessing the disk without DOS Amiga disk drives inside and out

%1010 1010 0010 0000 0000 0000 0000 0010

OR %0101 0101 0000 0100 0000 0100 0000 0100

%1111 1111 0010 0100 0000 0100 0000 0110

The result of the logical operation is the original header.

The decoding of data is much faster than coding, but still rather demand

ing if an entire track must be decoded. For this reason the blitter is

used

In A0 is the pointer to where the decoded data is stored (Destination).

In Al is the pointer to the buffer where the data for decoding are stored

(Source).

In A3 is the pointer to the Drive port.

In A6 is the pointer to the Trackdisk Device structure.

In DO is the number of bytes to be decoded.

Make space in the stack

Write values into the structure

calculate BLTSIZE

and store

Pointer to function

store pointer to port

Pointer to start of structure

save A6

get pointer to GfxBase

call QBlit function

restore A6

wait for Reply-Msg.

restore register

correct stack

Return jump

Now the listing of the function which is called by the QBlit function:

In A0 is the pointer to the beginning of the custom chips ($DFF000).

In Al is the pointer to the BlitNode structure which was created.

In A6 is the pointer to the Trackdisk Device structure.

feacb2

feacb6

feacbc

feacbe

feacc2

feacc6

feacce

feacd2

feacd6

feacd8

feacdc

feaceO

feace2

feace6

feacec

feacee

link

movem.l

lsl.w

ori.w

move.w

move.1

move.l

lea

move.1

move.1

jsr

move.l

bsr.l

movem.l

unlk

rts

A2,#-30

Al-A0/D0,-22(A2)

#2, DO

#$0008,00

D0,-10(A2)

#$00feacf0,-26(A2)

A3,-4<A2)

-3O(A2),A1

A6,-(A7)

56(A6),A6

-276 (A6)

(A7)+,A6

$fea70a

-22(A2),Al-A0/D0

A2

feacfO

feacf2

feacf4

feacf8

feacfa

feadOO

feadO2

feadO4

feadO8

feadOa

feadOe

feadlO

feadl2

move.l

move.1

bsr.l

move.1

movem.l

adda.l

subq.l

move.1

adda.l

move.1

add.l

subq.l

move.1

A5,-(A7)

Al,A5

$feb2cc

A5,A1

8(A1),A5/D1-DO

D0,A5

#1,A5

A5,80(A0)

D0,A5

A5,76(A0)

D0,Dl

#1,D1

Dl,84(A0)

Save A5

save pointer to structure

set values for blitter

see previous chapter

get pointer to structure

get pointer to source,

destination

and Length

determine end address of source

for odd Bits

decrease by one

enter in Source A

End address of even bits

enter in Source B

End address destination

-1

enter Destination D

192

Abacus 93 Construction of a track

Function 2

feadl6 move.w #$Idd8,64(AO) set BLTCONO

feadlc move.w #$0002,66(AO) s*t BLTCON1 (count backwards)

fead22 move.w 20 (Al),88(AO) set BLTSIZE, Start

fead28 move.l #$00fead34,4(Al) enter new function

fead30 move.l (A7)+,A5 restore A5

fead32 rts Return jump

fead34 moveq #$00,DO clear DO

fead36 move.l D0,4(Al) erase pointer to function

fead3a move.l 26(A1),A1 get pointer to port

fead3e bsr.l $fea6f2 Put message

fead42 moveq #$00,DO clear DO (End Flag)

fead44 rts Return jump

To decode a block, the following program is required. The source and

the destination must be inserted.

;Decode.s Amiga Disk Drives Inside and Out

Device =350

Port =36

RepPort = 174

SigTask = 16

Task = 276

FindName = -276

Number $200

move.l $4,a6

lea Name,al

lea Device(a6),aO

jsr FindName(a6)

tst.l dO

beq Error

move.l Task(a6),aO

move.l dO,a6

move.1 Port(a6),a3

lea RepPort(a3),al

move.l SigTask(al),-(a7)

move.l al,-(a7)

move.l aO,SigTask(al)

bset #0,34(a3)

/Pointer to Devicelist

;find Device

/Pointer to user Task

;Drive-Port-Address

;Reply-Port-Address

/save old Pointer

;save Reply-Port

/enter user Task

/set Trackdisk-Task to

/wait position

/everything is ready to call the desired routine

lea Source,al

lea Destination,aO

move.l #Anzahl,d0

jsr $feacb2 /decode Block

Error:

Name:

END

move.

move.

bclr

rts

1

1

#0

(a7)+,al

(a7)+,SigTask(al)

,34(a3)

/restore Reply-Port

/enter old Pointer

/release

/Return

a Task again

jump

dc.b 'trackdisk.device',0

193

9. Accessing the disk without DOS Amiga disk drives inside and out

9.4 The disk registers

The coding and decoding of data as discussed in the preceding sections

have provided you with a basic working knowledge. The most
important step is the reading and writing of data to and from the disk.

To be able to understand these processes completely a working

knowledge of the hardware registers is needed. We'll discuss this in the
following sections.

9.4.1 The Drive Status register

This register is used to check to see if a disk is in the drive, if it is
write protected, etc.

Register Drive-Status = $BFE001

Port Name Description

CIAA PA5 DSKRDY* The bit indicates if the drive

is ready to accept commands

Ready => Bit = 0

CIAA PA4 DSKTRACKO* The position of the- head of

the addressed drive is on Head

at Null => Bit = 0

CIAA PA3 DSKPROT* Indicates if the disk which is

in the driver is write

protected.

Protected => Bit = 0

CIAA PA2 DSKCANGE* Indicates if a disk is in the

drive. Disk in Drive =>Bit = 1

The bit is actuated then the

stepmotor is moved.

Bits are valid only for the drive indicated by the Drive Select register.

This register is discussed next.

If several drives are addressed at the same time, the bits are set according

to events when one of the drives is in the condition to display. For

example the DSKCANGE bit would be LOW, when one of the

addressed drives does not have a disk present

Example for waiting for disk ready:

Ll: BTST #5,$BFE001

BNE.S Ll

RTS

194

Abacus 9.4 The disk registers

9.4.2 The Drive Select register

With this register the four different drives are addressed and a selection is

made if the upper (head 0) or lower side (head 1) of the disk should be

addressed. In addition, the step motor of the selected drive is controlled

through this register.

Register drive select = $BFD100

Port Pin Name Description

CIAB PB7 DSKMOTOR* This bit controls the drive

motors of the four drives. If

the bit is LOW, while a drive

is selected, its motor

switches on. Additional

description follows.

Bit for Drive 3

Drive addressed => Bit = 0

Bit for Drive 2

Drive addressed => Bit = 0

Bit for Drive 1

Drive addressed => Bit = 0

Bit for Drive 0

Drive addressed => Bit = 0

Indicates which head was

selected.

Head 0 (bottom) => Bit = 1

Indicates if the head of the

drives should move inward or

outward.

Inward => Bit = 0

The motor is moved with this

bit. During a change from HIGH

to LOW, the head moves in the

direction indicated.

A closer explanation requires the assignment of individual drive motor

conditions. If a drive is selected for a certain activity by resetting the

corresponding DSKSEL bit, this stores the condition of the

DSKMOTOR bit (switches the motor on or off). The Motor command

is considered until the corresponding drive bit again switches from

HIGH to LOW. When this happens, the condition of the DSKMOTOR

bit is transmitted to the motor. The DISKSTEP bit should always be

reset to HIGH after a change from HIGH to LOW or problems develop

when changing drives.

It is possible to address several drives simultaneously and to move the

heads of both drives at the same time. Here are some programming

examples which show how the motors of the individual drives are

addressed.

CIAB

CIAB

CIAB

CIAB

CIAB

CIAB

CIAB

PB6

PB5

PB4

PB3

PB2

PB1

PBO

DSKSEL3*

DSKSEL2*

DSKSEL1*

DSKSELO*

DSKSIDE*

DISDIREC

DISKSTEP

195

9. Accessing the disk without DOS Amiga disk drives inside and out

Switch on motor for drive 0, select head 1 (down):

All Drive bits on HIGHMotorOn: MOVE.B #$7D,$BFD100

NOP

NOP

MOVE.B #$75,$BFD100

MOVE.W #$B000,D0

LI: DBRA DO,LI

RTS

Switch off motor for drives 0 and 1:

MotorOff: MOVE.B #$FD,$BFD100

NOP

NOP

MOVE.B #$E7,$BFD100

MOVE.W #$B000,D0

LI: DBRA DO,LI

RTS

Drive 0, Motor on

Waiting loop

All drive bits on HIGH

Drives 0 and 1 off

Waiting loop

The following demonstrates how the head of one or more drives can be
moved inward or outward.

Move head one track inward:

Headln:

L2:

LI:

BCLR

BCLR

BSET

MOVE,

DBRA

BTST

BNE.S

RTS

#l,$BFD100

#0,$BFD100

#0,$BFD100

.W #3000,DO

D0,L2

#5,$BFE001

3 LI

Move head one track to outside:

HeadOut:

L2:

LI:

BSET

BCLR

BSET

MOVE,

DBRA

BTST

BNE.S

RTS

#l,$BFD100

#0,$BFD100

#0,$BFD100

,W #3000,DO

D0,L2

#5,$BFE001

> LI

Waiting

Wait for

Waiting

Wait for

loop

Disk-Ready

loop

Disk-Ready

Since these routines do not work with the operating system, they must

lock out the interrupts before use or make the task of the drive "think"

that it is already working. How this is done was discussed in the

examples for coding and decoding.

196

Abacus 9.4 The disk registers

9.4.3 The Disk LEN and Disk Pointer register

To read or write data, the hardware must be informed from which

memory region this should occur. In addition it must know how many

bytes aie processed

To set the start address, two connecting registers (DSKPTH and

DSKPTL) exist Only 19 bits are accepted for determining the address.

With these 19 bits the lowest 512 Kbytes of memory can be addressed

(2A19=> 512 Kbytes).

The DSKPT registers don't have to be set individually. This can be

done with an assignment

lea Pointer,aO

move.l aOfDSKPTH

The two registers have the addresses $DFF020 and $DFF022.

After the start address has been passed, the length is passed to start the

DMA access. Both tasks can be performed with the DSKLEN register.

This register can be divided into two areas. First it controls the DMA

access, and also the number of words to be transferred are passed to it

There are 13 bits available for passing the word length. With the 13

bits a maximum of 16 Kbytes can be transferred.

Register DSKLEN = $DFF024

Pin Name Description

15 DMAEN Enable Disk-DMA.

DMA enable => Bit = 1

14 WRITE Indicates if read or write.

Read => Bit = 0

13-0 LENGTH Number of words to be transferred.

To start Disk DMA without errors, a certain procedure must be

followed. The register must be written twice with the same value and

only then is data transferred. To avoid errors during the transmission,

the DMAEN bit should be erased before and after the transmission.

Starting the transmission appears as follows:

1. Set the register to $4000, to block the DMA.

2. Write the desired value into the register.

3. Write the same value again to start the DMA.

4. After termination of the transmission the register is set again to

$4000 to prevent writing on the disk.

197

9. Accessing the disk without DOS Amiga disk drives inside and out

If the transmission is started, the DSKLEN register is decremented and
die DSKPT register is incremented. When the counter in the SKLEN
register is zero, the transmission stops.

Because of a hardware error, the last three bits of the data to be transmit
ted to disk are ignored. Also the last word which should be written from
the disk to storage is not sent. Therefore the user must always transmit
one word more than the required data.

9.4.4 The Disk Byte Read register

This register is also a Status register, but indicates other results than
the Drive Status register. In addition the last 8 bits can be used to read
the byte which is currently being read from the disk. If a byte has

arrived, the byteready bit is set to HIGH. When the register is read, the
byteready bit is reset automatically.

Register DSKBYTR = $DFF01A

Bit Name Description

15 BYTEREADY Indicates when a byte has arrived

from the disk. The bit is erased

during a read access.

14 DAMON Indicates if the Disk-DMA is

permitted. Both the bit in the DSKLEN

register, and the DMACON register

must be set.

Indicates if the read or write modeis

switched on in the DSKLEN register.

Indicates that the controller has

found a sync mark. The bit is set

only as long as the sync mark is

recognized (about 2 Microseconds).

Not used.

Contains the data just read from the

disk.

9.4.5 The ADKCON and ADKCONR registers

The ADKCON and ADKCONR registers are important parts of the

Amiga disk controller. ADKCON is the write address and ADKCONR

the read address of the registers. Not all bits of these registers are used

for disk accesses. The lower 8 bits are used for music programming.

198

13

12

11-8

7-0

DISKWRITE

WORDEQUEL

DATA

Abacus 9.4 The disk registers

Register ADKCON = $DFF09E, ADKCONR = $DFF010

Bit Name Explanation

15 CLR/SET

14 PRECOMP1

13 PRECOMP2

12 MFMPREC

11 UARTBRK

10 WORDSYNC

9 MSBSYNC

8 FAST

7-0

Detailed explanation follows.

Upper bit of the bit pair PRECOM1 and 2.

Lower bit of the bit pair for the pre-

compensation during writing:

Value 00 => 00 ns

Value 01 => 140 ns

Value 10 => 280 ns

Value 11 => 560 ns

Value 0 selects MFM-Format.

Value 1 selects GCR-Format.

Value 1 => Output to Paula.

Value 0 => Output to Disk.

Switch on synchronization for a certain

word. The word must be in $DFF07E. The

transmission of the data starts only

after the mark is found.

Value 1 => Synchronization on

Switch on synchronization for GCR-Sync-

Marking.

Value 1 => Synchronization on

Switch on the writing speed:

Value 1 => MFM-Format, 2 ms per Bit

Value 0 => GCR-Format, 4 ms per Bit

Not for Disk Controller.

The CLR/SET bit (bit 15) indicates if the bits which are set in the

value to be written are set or reset in the register. If the CLR/SET bit is

set, all register bits are set in the word which is written. If the CLR/

SET bit is reset, all bits which are set in the word in the register, are

reset.

Two examples make this clear:

Word to be written:

Old Register content:

000 1001 0110 0000

110 0110 1100 0000

New Register content: 1 110 1111 1110 0000

Word to be written: 0 110 0010 0111 0000

Old Register content: 0 110 1111 1110 0000

New Register content: 0 000 1101 1000 0000

199

9. Accessing the disk without DOS Amiga disk drives inside and out

9.4.6 The Disk Sync register

Register Address = $DFF07E

The controller synchronizes itself according to the word in this register,
if the wordsync bit in the ADKCON register is set The data transmis
sion is not started before this wonl is found on disk.

Finding a word can trigger an interrupt (Priority 6). Further discussions
about the interrupt can be found in the proper chapter.

9.4.7 The DSKDAT registers

These registers are a pair of which one (DSKDAT) is write only and the
other (DSKDATR) is read only register.

Register DSKDAT =$DFF026

Register DSKDATR = $DFF008

The register serves as a data buffer during the data transmission from or
to the disk with the DMA.

200

Abacus 9.5 Reading a track

9.5 Reading a track

Up to now the discussion about programming the registers has been

theoretical. In this chapter it is demonstrated how a track is read and

decoded and how the operating system performs this task.

First the documentation of the read routine which is easy to understand

if the register descriptions are used.

fea524 lea :

fea528 movem.l

fea52c move.l

fea52e move.l

fea530 move.l

fea532 bsr.l

fea536 move.b

fea53e move.w

fea546 move.l

fea54c bsr.s

fea54e lea

fea554 move.l

fea558 move.w

fea55e move.w

fea564 btst

fea56c bne.s

fea56e moveq

fea570 bra.s

fea572 lsr.w

fea574 ori.w

fea578 move.l

fea57a jsr

fea57c bsr.l

fea580 lea

fea586 move.w

fea58c move.w

fea592 btst

fea59a beq.s

fea59c moveq

fea59e bsr.l

fea5a2 move.l

fea5a4 movem.l

fea5a8 rts

132(PC)(=$fea5aa),

A4/A2/D2,-(A7)

A0,A2

D0,D2

Al,A4

$feaddc

65(A3),$bfdl00

#$4000,$dff024

#$000003e8,D0

$fea4f0

$dff000fAl

A2,32(A1)

#$1002,156(Al)

#$8002,154(Al)

#2,$bfe001

$fea572

#$ld,D2

$fea59e

#1,D2

#$8000,D2

D2,D0

(A4)

$fea70a

$dff000,Al

#$0002,154(Al)

#$4000,36(Al)

#2,$bfe001

$fea56e

#$00,D2

$£eae42

D2,D0

(A7)+,A4/A2/D2

,A1 Pointer to routine

for setting of DSKLEN

save Register

Load address to A2

Number of Bytes to be read

set Pointer to Routine

Routine for Motor organization

set Motor Bits

prepare DSKLEN-Register to Read

Value for Waiting loop

Wait until Drive is finished

Pointer to Custom-Chips

set DSKPT-Register

block Sync-Interrupt

release Disk-Block-Ready-Int.

Disk in the Drive?

branch if Disk present

Error Message to D2

End

convert number of Bytes

into number of words

set Bit for DMA permitted

Value to dO

set DSKLEN-Register, Start

wait for return message

Pointer to Custom-Chips

block Disk-Block-Int.

block Disk-DMA (DSKLEN)

Disk removed ?

yes, Error => End

Error-Flag on ok

organize Motor

Return message to DO

restore Register

Return jump

Routine for setting the DSKLEN registers. The value is in DO.

fea5aa move.w

fea5ae move.w

fea5b2 rts

DO,36(A1)

DO,36(A1)

set Register

start DMA

Return jump

Next follows a program which reads a track with the help of the previ

ously discussed routine into the indicated buffer.

201

9. Accessing the disk without DOS Amiga disk drives inside and out

/Read.s Amiga Disk Drives Inside and Out

Device =350

Port =36 /Offset for Drive 0
RepPort =174

SigTask = 16

Task = 276

FindName = -276

Number = $397c

Track =20

move.l $4,a6 /get ExecBase

lea Name,al /set Pointer to Name

lea Device(a6),aO /Pointer to Device-List

jsr FindName(a6) /seek Trackdisk-Device
tst.l dO /Device found ?

beq Error /No, error

move.l Task(a6),aO /get Pointer to user Task

move.l d0fa6 /Pointer to Task to A6

move.l Port(a6),a3 /get Pointer to Drives-

/Port (Drive 0)

lea RepPort(a3),al /Pointer to RepPort

move.l SigTask(al),-<a7);save Pointer to Task

move.l al,-(a7) /save Pointer to RepPort

move.l aO,SigTask(al) /enter user Task

bset #0,34<a3) /block Trackdisk-Task

/ From here on starts the actual load routine

move.l #l,dO /Value for Motor on

jsr $fea462 /switch Motor on

move.l #Track,dO /Track-Number to DO

move.w #Track,7 4(a3)

jsr $fea3da /move Head to position

move.l 78(a3),aO /Pointer to read buffer

move.l #Number,dO /Number of bytes to read

/to DO

jsr $fea524 /read Track

clr.l dO /Value for Motor off

jsr $fea4 62 /turn Motor off

/ End of the load routine. The modified pointers must be
/ restored again.

bclr #0,34(a3) /release Task again

move.l (a7)+,al /get Pointer to Task

move.l (a7)+,SigTask(al) /store again in Port

Error: rts /Return jump

Name: dc.b •trackdisk.device1,0

END

202

Abacus 9.5 Reading a track

You may have noticed that in the routine the synchronization on a

certain bit combination ($4489) was not switched on. For this reason

the data read was not synchronized. A special routine must be called

which retroactively recognizes the sync mark and corrects the data read.

The routine for control of the drive motor erases the previously set bits.

Using special tricks (see the description of the RAW commands) the

routine can be made to wait for the sync before the start of read. For the

sake of clarity the following illustrates how this would be done for a

user load routine.

move.w #$84OO,$dffO9e

move.w #$4498,$dffO7e

Switch on the synchronization

determine after which word

synchronization should occur.

The routine which corrects the unsynchronized data is explained in the

following section.

Hie main jump is at $F£AFE2. The previous routine is called by the

main routine.

The first routine searches for the block header. It is found even if it is

not known if the block header has clock or data bits in the beginning of

the buffer. Even if the data is shifted by several bits (because they are

not synchronized), the header is found.

The routine orients itself on the four $AA bytes which always precede

the sync mark. Even if the data is shifted a $AAAA or $5555 is found.

If the routine finds a $5555, it knows that it found a clock bit.

In A2 is the pointer to the data to be decoded.

In DO is the number of the bytes to be searched.

save Register

first control value to D3

second control value to D4

Pointer to data to A2

determine end of the data

Word to D2

Word = first control value?

branch, if word was found

Word = second control value?

branch, if Word was found

End of data reached?

continue if not reached

Error message to DO

DO to AO

Return jump with error message

Jump if the second word was found. This means that a clock bit was

found first

feaf70 moveq #$0f,D0 Counter for the Number of

Bits shifted

feaf72 lea $feafa2,Al Pointer to Table to Al

feaf4c

feaf50

feaf54

feaf58

feaf5a

feaf5c

feaf5e

feaf60

feaf62

feaf64

feaf66

feaf68

feaf6a

feaf6c

feaf6e

movem. 1

move.w

move.w

move.1

adda.l

move.w

cmp.w

beq.s

cmp.w

beq.s

cmpa.l

bhi.s

moveq

move.1

bra.s

A2/D4-D2,-(A7)

#$aaaa,D3

#$5555,D4

A0,A2

D0,A2

(A0)+,D2

D3,D2

$feaf98

D4,D2

$feaf70

A0,A2

$feaf5c

#$ff,D0

D0,A0

$feaf92

203

9. Accessing the bisk without DOS Amiga disk drives inside and out

feaf78 cmpa.l

feaf7a bls.s

feaf7c move.w

feaf7e cmp.w

feaf80

feaf82

feaf84

feaf86

¥eaf88

feaf8a

feaf8c

feaf8e

feaf90

feaf92

feaf96

beq.s

subq.l

move.1

cmp.l

beq.s

subq.l

bge.s

bra.s

subq.l

movem.l

rts

A0,A2 End of Data?

$feaf6a yes, error

(AO)+,D1 next Word to Dl

D2,D1 still the $AA Byte before the Sync-

Mark ?

$feaf78 yes, get next Word

#2,A0 let AO point to previous Word

(AO),D1 get Longword

(A1)+,D1 is this a Sync-Mark?

$feaf90 branch, if possible Sync

#2,DO else decrement number of bits

$feaf86 branch when not counted down

$feaf5c else, no Sync found, continue search

#4,A0 Pointer to beginning of Sync-
(A7)+,A2/D4-D2 restore Register

Return jump

Set pointer if a data bit was found first

feaf98 moveq #$0e,D0 Counter for for number of shifted

Bits to DO

feaf9a lea $feafc2,Al set Pointer to table

feafaO bra.s $feaf78 unconditional Jump

Table for sync recognition when a clock bit was found first

feafa2: 2244 a244 4891 2891 5224 4a24 5489 1289

feafb2: 5522 44a2 5548 9128 5552 244a 5554 8912

Table for sync recognition when a data bit was found first

feafc2: 9122 5122 a448 9448 a912 2512 aa44 8944

feafd2: aa91 2251 aaa4 4894 aaa9 1225 4489 4489

The main routine which corrects the data read, begins here.

In A2 is the pointer to the data buffer in which the data is stored
starting at Offset 1664 ($680).

In A3 is the pointer to the Drive port.

In A6 is the pointer to the Trackdisk Device structure.

feafe2

feafe6

feafea

feafee

feaff2

feaff4

feaff6

feaffc

febOOO

feb006

febOOa

febOOc

febOOe

febOlO

feb012

febO14

febO16

movem.l

link

move.1

lea

move.1

addq.l

move.l

bsr.l

cmpa.l

beq.l

move.1

move.1

addq.l

moveq

moveq

tst.l

bne.s

A2/D6-D2,-(A7)

A4,#-16

78(A3),A2

1664(A2),A2

A2,A0

#2,A0

#$00000abc,D0

$feaf4c

#$ffffffff,AO

$feble8

A0,D5

D0,D2

#8,A0

#$09, D4

#$00,D6

D2

$febO3c

save Register

make space in Stack

Pointer to Load Buffer

Pointer to beginning of data

Pointer to data to AO

Bytes read exceed Counter

search for Block-Header

Header found ?

branch if not found

Pointer to Header to D5

Number of Bits to shift

set pointer to longword behind

sync

Counter for checksum creation

clear register for checksum

do bits have to shift?

branch if yes

204

Abacus 95 Reading a track

febO18 move.l (A0),-8(A4) else, store Header Bytes

febOlc move.l 4(A0),-4(A4) store Header Bytes

febO22 move.l #$55555555,Dl Value for filtering of clock bits

febO28 move.l (A0)+,D0 get Longword

febO2a and.l Dl,D0 filter out Clock Bits

febO2c eor.l D0,D6 form Checksum

febO2e dbf D4,$febO28 decrement Counter

febO32 move.l (A0)+,-16(A4) store Header-Checksum

febO36 move.l (A0),-12(A4) store Header-Checksum

febO3a bra.s $feb070 unconditional Jump

Jump to here if the data was shifted and stored

febO3c

feb040

febO44

febO48

febO4c

febO4e

feb050

febO54

febO5a

febO5c

feb060

febO64

febO68

febO6c

feb070

febO74

febO78

febO7a

febO7e

febO82

febO86

febO88

febO8a

feb090

febO94

febO98

febO9c

febOaO

feb0a2

feb0a4

feb0a6

febOaa

febOac

febOae

febObO

feb0b2

bsr.l

move.1

bsr.l

move.l

move.1

addq.l

bsr.l

andi.l

eor.l

dbf

bsr.l

move.l

bsr.l

move.l

lea

bsr.l

cmp.l

bne.l

lea

bsr.l

move.l

move.l

cmpi.b

bne.l

move.b

cmp.b

bne.l

move.1

moveq

move.b

mulu

move.1

move.1

move.l

move.1

bsr.l

$feb204

D0,-8(A4)

$feb204

D0,-4(A4)

D5,A0

#8,A0

$feb204

#$55555555, DO

D0,D6

D4,$feb050

$feb204

D0,-16(A4)

$feb204

D0,-12(A4)

-16(A4),A0

$fead8e

D0,D6

$feblec

-8(A4),A0

$fead8e

D0,D3

D3,-(A7)

#$ff,0(A7)

$feblec

l(A7),D0

75 (A3),DO

$feblec

(A7)+,D3

#$00,DO

D3,D0

#$0440,DO

D5,A0

A2,A1

D2,D1

D0,D4

$feb214

get header shifted properly

store Header

get Header shifted properly

store Header

Sync-Address to A0

Pointer to Header

get Longword

filter Clock Bits

form Checksum

branch if not finished

get Header-Checksum

and store

get Header-Checksum

and store

Pointer to header checksum

decode Checksum

compare with calculated sum

branch if not equal, error

set Pointer to Header

decode Header

Decoded Header to D3

store in Stack

is DOS identification right?

branch if error

get Track number from Header

right Track?

branch if error

nonsense since header is already

in D3

clear DO

Number of Blocks to Gap

calculate number of Bytes to Gap

Pointer to Sync-Address to A0

Pointer to beginning of data in

buffer Destination during copying

Number of Bits to shift

Distance to Gap to D4

copy data properly

The $FEA214 routine copies the data located up to the track gap in the

data buffer where the right data starts (offset 1664 ($680). If the data is

shifted by a few bits, they are corrected. This task is performed by the

blitter.

205

9. Accessing the disk without DOS Amiga disk drives inside and out

feb0b6

feb0b8

febOba

febOcO

feb0c2

feb0c4

feb0c6

febOcc

febOce

febOdO

feb0d4

febOda

febOde

febOeO

feb0e2

feb0e4

feb0e6

febOea

febOee

febOfO

feb0f2

feb0f6

febOfa

febOfe

feblO4

feblO8

feblOc

feblOe

febll2

febll4

febll6

febll8

rooveq

move.b

subi.l

neg.l

beq.s

add.l

move.l

move.1

addq.l

bsr.l

cmpa.l

beq.l

move.1

move.l

adda.l

move.1

mulu

bsr.l

move.l

adda.l

bsr.l

lea

move.w

btst

beq.l

bclr

move.w

move.w

moveq

moveq

move.w

lsr.w

#$00,D2

D3,D2

#$0000000b,D2

D2

$febOee

D4,D5

#$0000067c,D0

D5,A0

#2,A0

$feaf4c

#$ffffffff,AO

$feb200

DO,D1

A2,A1

D4,A1

D2,D0

#$0440,DO .

$feb214

A2,A0

D4,A0

$feadbe

11968(A2),A0

#$aaa8,D0

#0,-1 (A0)

$feblOc

#15,DO

DO, (AO)

#$aaaa,(A2)

#$00,D4

#$0b,D2

D3,D5

#8,D5

clear D2

Number of Blocks to the Gap

-Maximum Number-1

Number of Blocks after the Gap

Branch if no additional

determine Address of Gap

Number of Bytes to be searched-

Address of the Gap to A0

search Sync for Gap

Sync found ?

no, error

Number of Bits to b shifted

Data Buffer to Al

determine destination address for

Data

Number of Blocks after Gap

determine Bytes after Gap

copy Bytes with help of Blitter

Data Buffer address to A0

calculate the Address of newly

copied data

correct borders (see coding in

MFM-Format)

Pointer to end of data

Value for End marking

test last data Bit

branch if Bit was reset

else erase End marking

store Mark

store mark of beginning

set Block counter to zero

Number of Blocks to 11

first Header to D5

shift off Number of Blocks to Gap

From here on starts the part which tests the properly shifted track for

errors.

feblla

febl22

febl24

febl2c

febl30

febl38

febl3c

febl40

febl42

febl46

febl48

febl4c

febl50

febl52

febl56

febl5a

febl5e

febl60

febl66

febl6a

febl6e

febl72

cmpi.l

beq.s

cmpi.l

bne.l

cmpi.l

bne.l

lea

moveq

bsr.l

move.1

lea

bsr.l

cmp. 1

bne.l

lea

bsr.l

move.1

cmpi.b

bne.l

move.b

cmp.b

bne.l

#$2aaaaaaa,0(A2

$febl30

#$aaaaaaaa, 0(A2

$feblf0

#$44894489,4(A2

$feblfO

8(A2,D4.W),A0

#$28,Dl

$feada4

D0,D6

48(A2,D4.W),A0

$fead8e

D6,D0

$feblf8

8(A2,D4.W),A0

$fead8e

D0,-(A7)

#$ff,0(A7)

$feblf4

1(A7),D1

75(A3),D1

$feblf4

,D4.W) found beginning ?

branch when found

,D4.W) found beginning ?

branch when error

,D4.W) found Sync ?

branch when error

Pointer to Header

Number of Bytes for Checksum

form Sum

store Sum

Pointer to Checksum in Header

decode Checksum

Checksum OK ?

branch if error

Pointer to Header

decode Header

store Header

DOS identification ok?

branch if error

Track-Number to Dl

Track-Number ok?

branch if error

206

Abacus 9.5 Reading a track

febl76

febl7a

febl7c

febl80

febl84

febl86

febl8a

febl8e

febl92

febl94

febl98

febl9c

feblaO

febla4

febla8

feblac

feblae

feblb2

feblb6

feblb8

feblbc

feblbe

feblcO

feblc4

feblc6

feblc8

feblcc

febldO

febld4

febld6

febld8

feblda

febldc

feblde

feble2

move.b

cmp.b

bne.l

move.b

move.l

lea

bsr.l

lea

moveq

bsr.l

lea

bsr.l

lea

move.w

bsr.l

move.1

lea

bsr.l

cmp.l

bne.l

subq.l

addq.b

cmpi.b

blt.s

moveq

addi.w

cmpi.w

bne.l

move.l

lsr.l

moveq

move.b

unlk

movem.l

rts

2(A7),D1

D5,D1

$feblf4

D2,3(A7)

(A7)+,D0

8(A2,D4.W),

$fead46

8<A2,D4.W),

#$28,Dl

$feada4

48(A2,D4.W)

$fead46

64(A2,D4.W)

#$0400,Dl

$feada4

D0,D6

56(A2/D4.W)

$fead8e

D6,D0

$feblfc

#1,D2

#1,D5

#$0b,D5

$feblc8

#$00,D5

#$0440,D4

#$2ecO,D4

$feblla

D3,D1

#8,D1

#$00,DO

D1,DO

A4

A0

A0

,A0

,A0

,A0

(A7)+,A2/D6-D2

Sector number to Dl

Sector number ok?

branch, if error

enter number of Sectors until Gap

restore Header

Pointer to Header-Position

enter Header again

Pointer to Header-Position

Counter for Checksum

calculate Checksum

Pointer to Sum entry

enter Checksum again

Pointer to beginning of

Data Blocks

Number of Bytes to be calculated

calculate Sum

store Sum

Pointer to Data Checksum

decode Sum

compare with calculated Sum

branch, if error

decrement Counter for number of

Blocks

increment Block number

Block number = 11

branch, if not 11

else Block number = Null

Pointer to next Block

all Blocks checked ?

no, next Block

first Header in Buffer to Dl

Track-Number to lowest Byte

clear DO

Track-Number to DO

release Stack

restore Register

Return jump

Passing the error numbers, return jump.

feble4

feble6

feble8

feblea

feblec

feblee

feblfO

feblf2

feblf4

feblf6

feblf8

feblfa

feblfc

feblfe

feb200

feb202

nop

bra.s

moveq

bra.s

moveq

bra.s

moveq

bra.s

moveq

bra.s

moveq

bra.s

moveq

bra.s

moveq

bra.s

$febldc

#$15,D0

$feble4

#$lb,D0

$feble4

#$16,DO

$feble4

#$17,D0

$feble4

#$18,D0

$feble4

#$19,D0

$feble4

#$la,D0

$feble4

Return

Return

Return

Return

Return

Return

Return

jump

jump

jump

jump

jump

jump

jump

The number of blocks in the buffer is returned in DO.

207

9. Accessing the disk without DOS Amiga disk drives inside and out

The next routine is quite useful. It reads a track, removes the gap and

tests the track for errors. If an error occurrs, it tries again to read the

track until the number of possible recovery attempts has been

exhausted

The track number to be read is located at offset 74 in the Drives Port

structure. In addition the track number must also be stored at the begin

ning of the buffer to be read. Bit 0 at offset 2 starting at the buffer must

also be erased.

The pointer to the buffer into which the data should be written is

located at offset 78 in the Drive Port structure. After loading, they are

located starting at offset $1668 ($684).

fea99e

fea9a2

fea9a6

fea9a8

fea9ac

fea9ae

fea9b2

fea9b6

fea9ba

fea9be

fea9c2

fea9c4

fea9c6

fea9ca

fea9ce

fea9d2

fea9d6

fea9da

fea9dc

fea9eO

fea9e4

fea9e8

fea9ea

fea9ee

fea9fO

fea9f6

fea9f8

fea9fc

movem.l

move.1

moveq

bsr.l

moveq

move.w

bsr.l

lea

move.w

bsr.l

tst.l

beq.s

move.b

bra.l

bsr.l

move.b

cmpi.b

bcs.s

addq.b

move.b

cmp.b

bgt.s

andi.b

bne.s

move.w

bra.s

movem.l

rts

A2,-(A7)

78(A3),A2

#$01,DO

$fea462

#$00,DO

74(A3),DO

$fea3da

1668(A2),A0

#$397c,DO

$fea524

DO

$fea9ce

D0,3(A2)

$fea9f8

$feafe2

D0,3(A2)

#$0b,D0

$fea9f8

#1,66 (A3)

66(A3),DO

52(A3),DO

$fea9f8

#$03,DO

$fea9b6

#$ffff,76(A3)

$£ea9ac

(A7)+,A2

save A2

get Pointer to Buffer

Value for Motor on

switch Motor on

clear DO

Track-Number to DO

Head positioning

Pointer to beginning of data

Number of Bytes to be read

read Track

Error during read ?

branch, if no error

else pass error number

unconditional Jump

correct Track, remove Gap

store Sector number

compare Sector number with 11

branch, if everything is ok

else error occurred

increment number of errors

Number of errors at maximum?

branch, if maximum

Error number a multiple of 4?

no, try again

else value for new positioning

of Head (first to Null)

unconditional Jump

restore A2

Return jump

Finally this routine which reads a track, decodes it and moves it to the

buffer. The destination address must be indicated by the program. The

program uses the routine just described.

;Read-d.d Amiga Disk Drives Inside and Out

Device =350

Port =36 /Offset for Drive 0

RepPort =174

SigTask = 16

Task =27 6

FindName = -276

Track 20 /Number of Track to be read

208

Abacus 9.5 Reading a track

/Destination = ????

/Destination must be provided by the user.

Destination =$5000 ; for testing only

move.l $4,a6 /get ExecBase

lea Name,al /set Pointer to Name

lea Device(a6),a0 /Pointer to Device-List

jsr FindName(a6) /search for Trackdisk-Device

tst.l dO /Device found ?

beq Error /No, Error

move.l Task<a6),aO /get Pointer to user Task

move.l dO,a6

move.l Port(a6),a3

lea RepPort(a3) ,al

/Pointer to Task to A6

/get pointer to drive

/Port (Drive 0)

/Pointer to RepPort

move.l SigTask(al),-(a7)/save Pointer to Task

move.l al,-(a7) /save Pointer to RepPort

move.l aO,SigTask(al) /store user Task

bset #0,34(a3) /block Trackdisk-Task

The actual load routine starts here

11:

13:

12:

move.l #Track,dO

move.w d0,74(a3)

move.l 78(a3),a2

move.w dO,(a2)

bclr #0,2<a2)

clr.b 66(a3)

jsr $fea99e

clr.l dO

jsr $fea462

move.b 3 (a2) , dO

cmp.b #$0b,d0

bcc Ende

move.b #$0b,d6

clr.l dO

sub.b 3(a2),dO

bpl 11

addi.b #$0b,d0

mulu #$440,dO

lea 1664(a2),a4

adda.l dO,a4

lea Destination,

clr.l d7

lea 64(a4),al

move.l a5,aO

move.l #$200,dO

jsr $feacb2

adda.l #$200,a5

sub.b #l,d6

beq Ende

add.b #l,d7

cmp.b 3(a2),d7

bne 12

lea 1664(a2),a4

bra 13

add.l #$440,a4

bra 13

/Track-Number to DO

/store in Structure

/Pointer to Data buffer

/store Track-Number

/erase Bit 0

/erase Errornumber

/read Track

/Value for Motor off

/switch Motor off

/first Block number to DO

/Number larger than 11

/yes, Error

/Sector Number

/first Block = Null

/Address of the Block

/calculate Null

/Pointer start of Data

/Pointer to Block zero

a5 /set Pointer to dest

/start at Sector zero

/Pointer to Data block

/Destination to A0

/Number to be decoded

/decode Data

/increment Dest Pointer

/decrement number of Blocks

/branch, when done

/increment Block number

/continue start of Buffer

/no, continue normally

/Pointer start of Buffer

/unconditional Jump

/Pointer to next Block

/unconditional Jump

209

9. Accessing the disk without DOS Amiga disk drives inside and out

/ End of the load routine. The modified pointers

; must be restored.

Ende: bclr #0,34(a3) /release Task again

move.l (a7)+,al ;get Pointer to Task

move.l (a7)+,SigTask(al) /enter again in Port

Error: rts /Return jump

Name: dc.b 'trackdisk.device'^O

END

With the help of the routines described and the examples, you should

now be able to read and decode a track directly.

210

Abacus 9.6 Writing a track to disk

9.6 Writing a track to disk

The coding of data and how it is written on a desired track will now be

shown.

The Write routine is similar in construction to the Load routine. One

difference is that during the writing of a track the write density changes,

depending on its position. The operating system only uses two of the

four possible write densities. A change in write density is performed

starting at track 80.

The Save routine of the operating system demonstrates how a track is

written.

fea5b4 lea

fea5b8 movem.l

fea5bc move.l

fea5be move.l

fea5cO move.l

fea5c2 bsr.l

fea5c6 move.b

fea5ce move.w

fea5d6 move.l

fea5dc bsr.l

feaSeO lea

fea5e6 move.l

fea5ea move.w

fea5fO move.w

fea5f6 btst

fea5fe bne.s

fea600 moveq

fea602 bra.l

fea606 btst

fea60e beq.l

fea612 move.l

fea616 move.w

fea61e addq.b

fea622 btst

fea628 beq.s

fea62a moveq

fea62c move.l

fea630 subq.b

fea634 bge.s

fea636 move.w

fea63e bra.l

fea642 bset

fea648 move.l

fea64c subq.b

fea650 bge.s

fea652 move.w

fea65a move.w

density

fea660 move.w

-12(PC)(=$fea5aa),A1

A4/A2/D2,-(A7)

A0,A2

D0,D2

Al,A4

$feaddc

65(A3),$bfdl00

#$4000,$dff024

#$000003e8,D0

$fea4fO

$dff000,Al

A2,32(A1)

#$1002,156(Al)

#$8002,154(Al)

#2,$bfe001

$fea606

#$ld,D2

$fea6e2

#3,$bfe001

$fea6ee

$0004,A0

#$4000,$dff09a

#1,294(A0)

#4,34(A6)

$fea642

#$23,D2

$0004,A0

#1,294(A0)

$fea63e

#$c000,$dff09a

$fea6e2

#5,34(A6)

$0004,A0

#1,294(A0)

$fea65a

#$c000,$dff09a

#$6000,158(Al)

76(A3),DO

Pointer to DSKLEN register

save Register

Pointer to Write buffer

Number Bytes to be written

Pointer to DSKLEN-Routine

Motor control

set Motor Bits

block Disk-DMA

Value for Waiting loop

Wait

Pointer to Custom-Chips

set DSKPT-Register

clear Disk block interrupt

Request

enable Disk-Block-Int.

Disk in Drive?

branch, if ok

Error number to D2

End, Error

Disk write protected?

branch, if protected

Pointer to ExecBase

Disable-

Macro

Bit 4 in Status-Byte set

branch, if reset

else Error number to D2

get ExecBase

Enable-

Macro

unconditional Jump

set Bit 5

ExecBase to A0

Enable-

Macro

reset Bit for lesser write

Track-Position

211

9. Accessing the disk without DOS Amiga disk drives inside and out

fea664

fea668

fea66c

fea66e

fea672

fea676

fea678

fea67c

fea680

fea682

fea686

fea68a

fea68c

£ea690

fea692

£ea694

fea698

fea69e

fea6a4

fea6aa

fea6ae

fea6b4

fea6b8

fea6be

fea6c2

fea6c4

fea6c8

fea6ca

fea6ce

fea6d2

fea6d4

fea6dc

fea6eO

fea6e2

fea6e6

fea6e8

fea6ec

move.w

cmp.w

bls.s

move.w

cmp.w

bls.s

move.w

cmp.w

bls.s

move.w

move.w

lsr.w

ori.w

move.1

jsr

bsr.l

lea

move.w

move.l

bsr.l

move.w

move.b

bclr

btst

beq.s

lea

move.1

move.l

jsr

move.1

btst

beq.l

moveq

bsr.l

move.1

movem.l

rts

Jump point whe

fea6ee

fea6fO

moveq

bra.s

#$8000,Dl

38 (A3),DO

$£ea686

#$a000,Dl

40(A3),DO

$fea686

#$c000,Dl

42 (A3), DO

$fea686

#$e000,Dl

D1,158(A1)

#1,D2

#$c000,D2

D2rD0

(A4)

$fea70a

$dff000,Al

#$0002,154(Al)

#$000007d0,D0

$fea4f0

#$4000,36(Al)

34(A6),D0

#5,34(A6)

#4, DO

$£ea6d4

12O(A6),A1

A6,-(A7)

2O(A1),A6

-30 (A6)

(A7)+,A6

#2,$bfe001

$£ea600

#$00,D2

$feae42

D2,D0

(A7)+,A4/A2/D2

n write protecte<

#$lc,D2

$fea6e2

Write density to 0

compare if writing with

another write density

Track number smaller

else Write density 1

compare Track-Number

Track-Number smaller

else Write density 2

compare Track-Number

Track-Number smaller

else Write density 3

store Write density

change number of Bytes to

be written to Words

set Bits for writing

Value to DO

write DSKLEN-Register

(see Load-Routine)

wait until Track has been

written

Pointer to Custom-Chips

block Disk-Block-Int.

Value for time loop

Wait

block Disk-DMA

erase Bit 5

in user System,

unconditional Jump

Disk in Drive?

branch, if no

return message ok

Motor control

Return message to DO

restore Register

Return jump

Error number to D2

unconditional Jump

We've already seen how the operating system codes a track (in the

section on coding). Next a program that performs all the tasks.

The following program makes it possible to store data which is located

in chip memory; ($0000-$80000). The routine has the advantage, com

pared with the operating system, that it does not check if there is an

error on the track to be written. Therefore all disks can be written with

this program, even if they are (for example) MS-DOS disks. If an error

does occur, it is not intercepted by the program. A test for errors must

be added

212

Abacus 9.6 Writing a track to disk

If an error occurs, the error number is passed in DO. Otherwise DO

returns a null.

The beginning of the program is the same as the previous examples.

/Write.s Amiga Disk Drives Inside and Out

Device =350

Port =36 /Offset for Drive 0

RepPort =174

SigTask = 16

Task =276

FindName = -276

Track =20 /Number of the Tracks to read

Address = $50000 /The Address which memory

; starts can only be in Chip-Memory.

/Here $50000 was selected.

move.l $4,a6 /get ExecBase

lea Name,al /set Pointer to Name

lea Device(a6),aO /Pointer to Device-List

jsr FindName(a6) /search for Trackdisk-Device

tst.l dO /Device found ?

beq Error /No, Error

move.l Task(a6)fa0 /get Pointer to user Task

move.l dO,a6 /Pointer to Task to A6

move.l Port(a6),a3 /get Pointer to Drive-

/Port (Drive 0)

lea RepPort(a3),al /Pointer to RepPort

move.l SigTask(al)f-(a7)/save Pointer to Task

move.l alr-(a7) /save Pointer to RepPort

move.l aO,SigTask(al) /store user Task

bset #0,34(a3) /block Trackdisk-Task

/ Starting here is the actual write routine

move.l #l,d0 /Value for Motor on

jsr $FEA4 62 /switch Motor on

move.l #TRACK,D2 /Track-Number to D2

move.l D2,D0 /Track-Number to DO

jsr $FEA3DA /Head positioning

lea Address,A5 /Pointer to Start

/address of Data to transmit to A5

move.l $52(A3),A2 /Pointer to Write buffer

lea 4(A2),A2

move.w #$FFF,D0 /erase counter value

move.l #$AAAAAAAA,Dl /Value for erasing

LI: move.l Dl,(A2)+ /erase Write buffer

dbra DO,LI /branch, until done

movea.l $52(A3),A2 /Pointer to Write buffer

lea $680(A2),A2 /Pointer to beginning of data

moveq #$0B,D4 /Number of Blocks

moveq #0,D5 /Block counter to Null

L2: move.l #$FF000000,D0 /DOS id of the Header

move.l D5,D1 /Block number to Dl

lsl.l #8,D1 /shift Number to proper

213

9. Accessing the disk without DOS Amiga disk drives inside and out

or.l D1,DO

or.l D4,D0

move.l D2,D1

swap Dl

or.l D1,DO

movea.l A2,A1

movea.l A5,A0

jsr $FEAADC

addq.l #1,D5

adda.l #$440,A2

adda.l #$200,A5

subq.l #1,D4

/position

/store in Header

/store number of blocks to gap

/Track-Number to Dl

/Number to proper Position

/enter Track-Number

/Write buffer to Al

/Pointer to Data to A0

/code Data and shift into

/Write buffer

/increment Block counter

/Pointer to next Block

/in the Write buffer

/Pointer to next Data

/decrement number of Blocks

bne.s L2 /branch, if not finished coding

movea.l $52(A3),A0 /Pointer to Write buffer

lea 4(A0),A0

move.w #$353E,D0 /Data number for writing

jsr $FEA5B4 /write Track

move.l #0,d0 /Value for Motor off

jsr $FEA4 62 /switch Motor off

/ End of the write routine. The changed

/ Pointers must be restored.

Ende: bclr #0,34(a3) /release Task again

move.l (a7)+,al /get Pointer to Task

move.l (a7)+,SigTask(al) /store in Port again

Error: rts /Return jump

Name: dc.b 'trackdisk.device1,0

END

214

Abacus 9.7 The disk interrupts

9.7 The disk interrupts

During disk operations it is possible to trigger two different kinds of

interrupts. One can be triggered when the controller recognizes a sync

mark. This is triggered through a flag line from the CIAB and produces

a Level 6 interrupt. It is used by the operating system only with the

RAW commands.

The second interrupt is triggered, when a data block is completely

transmitted. This occurs during reading and writing of a track. This

produces a Level 1 interrupt

First the Disk Block interrupt is discussed since it is the most impor

tant for the system. When transmission to or from the disk is started

with the DSKLEN register, the Save and Load routines branch to a sub

routine which puts the task into a wait status. This routine appears as

follows:

In A3 is the pointer to the Drive port.

In A6 is the pointer to the Trackdisk Device structure.

fea70a

fea710

fea712

fea716

fea71a

fea71c

fea720

fea722

fea726

fea72a

fea72c

fea72e

fea730

move.1

move.1

move.1

jsr

move.1

lea

move.1

move.1

jsr

move.1

tst.l

beq.s

rts

#$00000400,DO

A6,-(A7)

52<A6),A6

-318(A6)

(A7)+,A6

174(A3),A0

A6,-(A7)

52(A6),A6

-372(A6)

(A7)+,A6

DO

$fea70a

set Signal Bits

save A6

Pointer to ExecBase

Wait-Function

restore A6

Pointer to Reply-Port

save A6

Pointer to ExecBase

GetMsg-Function

restore A6

Msg. arrived

branch, if not arrived

Return jump

Looking at the routine the question arises where the message is sent to

restart the task. The answer is simple. As soon as the block is transmit

ted, the Disk Block interrupt is executed which processes the routine.

In A1 is the pointer to the Disk Resource structure.

This pointer is in the Interrupt Vector structure in the ExecBase struc

ture.

fc4a80 move.w #$0002,$dff09c

fc4a88 move.l 34(A1),DO

fc4a8c beq.s $fc4acO

fc4a8e move.l D0,Al

fc4a90 movem.l 34 (Al) ,A5/A1

Reset the Int.-Request-Bit

Pointer to Reply-Msg.

Guru, when not set

Reply-Msg. to Al

Pointer to Interrupt-Vector-

Structure

215

9. Accessing the disk without DOS Amiga disk drives inside and out

fc4a96

In Ali

fea6f2

fea6f6

fea6fa

fea6fc

fea702

fea706

fea708

jmp (A5)

s the pointer to the Drive port.

lea

lea

move.1

move.1

jsr

move.1

rts

174(A1),AO

94(A1)/A1

A6,-<A7)

$000004,A6

-366(A6)

(A7)+,A6

Al = Pointer to Drive-Port

A5 = $FEA6F2

Location for Jump

Pointer to Reply-Port

Pointer to Reply-Message

save A6

Pointer to ExecBase

PutMsg-Function

restore A6

Return jump

With this system computer time is provided for other tasks which the

Trackdisk task cannot use, since it has to wait for the completion of the

disk operation.

Now to discuss an interrupt which is not important to the operating

system but can occur when the disk controller synchronizes. The inter

rupt jumps to the following routine.

In Al is a pointer to the Disk Resource structure.

fc4a98 move.w #$1000,$dff09c

fc4aaO move.l 34(A1),DO

fc4aa4 beq.s $fc4acO

fc4aa6 move.l D0,Al

fc4aa8 movem.l 56(A1),A5/A1

fc4aae jmp (A5)

erase Int.-Request-Bit

Pointer to Rep-Msg.

Guru, if Msg. not present

Pointer to Message to Al

Pointer to Interrupt-Vector-

Structure in the

Drives-Port-Structure

Location for Jump

The Interrupt Vector structure addressed in the listing is not initialized.

If necessary this can be used for other purposes.

The Reply Message structure is a structure which is inside the Message

Port structure for the various drives (Drives port). Starting at offset 242

and 264 are the Interrupt Vector structures for the two interrupts which

can be used as desired.

216

Appendices

Abacus The Diskmon.s program

Appendix A

The Diskmon.s program

/Diskmon.s, run from CLI only

;See the Abacus book Amiga Disk Drives Inside and Out

/Section 6.1 for instructions

/Assemble with AssemPro Amiga

Exodus:

OldOpenLibrary =-408

CloseLibrary =-414

AllocMem =-198

FreeMem =-210

Read = -42

Write = -48

Open = -30

Close = -36

FindTask =-2 94

OpenDevice =-444

CloseDevice =-450

DoIO =-456

tst.l dO

beq.s run

cmp.1 #5,dO

bne.s run

cmp.b #"d",(aO)

bne.s run

cmp.b #"f",l(aO)

bne.s run

cmp.b #•':", 3 (aO)

bne.s run

move.b 2(aO),d0

sub.b #"0",d0

move.b dO,device

run: move.l 4,a6

lea dosname,al

jsr OldOpenLibrary(a6)

move.l dO,dosbase

beq error

move.l #$10002,dl

move.l #512,dO

jsr AllocMem(a6)

move.l dO,buffer

beq error

sub.l al,al

jsr FindTask(a6)

/parameter length

/test for "dfx:"

/SET DRIVE

/dos.library open

;512 byte buffer in chipmem

/reserved

/task for trackdisk.device

219

Appendix A Amiga disk drives inside and out

start:

lea diskport,aO

move.l dO,16(aO)

clr.l dO

move.b device,dO

moveq #0fdl

lea diskioreq, al

lea trkdisk,aO

jsr OpenDevice<a6)

tst.l dO

bne nodrive

move.b devicefd0

add.b #"0",d0

move.b dO,drive

move.l dosbase,a6

move.l #title,dl

move.l #1005,d2

jsr Open(a6)

move.l dO,wdhd

beq error

jsr crsroff

move.l wdhd,dl

move.l #top,d2

move.l #toplenfd3

jsr Write(a6)

jsr dumpblock

move.b #"r",key

move.b #"h",display

bra.s start

/trackdisk.device for dfx: open

jsr

jsr

jsr

cmp.

beq.

cmp.

beq

cmp.

beq

cmp,

beq

cmp,

beq

cmp,

beq

cmp,

beq

cmp,

beq

cmp,

dumptype

dumpcheck

getkey

b #$lb,key

s quit

b #"r",key

readsec

b #"w",key

writesec

b #"c",key

check

b #"#",key

blockedit

b #"$",key

blockedithex

b #"+",key

up

b #"-",key

down

,b #"a",key

beq asciiedit

cmp.b #"h",key

beq hexedit

bne main

;close library,release memory

;ldrive in command line set

;open raw-window

;windowhandle

/cursor off

/menu display

/output block # and $,clr errors

/simlulate read command

/hex display

/typ output

/checksum output

/get next key

/program end

/read block and display

/write blockand display

/data checksum create

/decimal block input and read

/hexadecimal block input and read

/block +1 read

/block -1 read

/ascii input

/hex input

220

Abacus The Diskmon.s program

quit: move.l dosbase, a6

move.l wdhd,dl

jsr Close(a6)

move.l 4,a6

lea diskioreq,al

jsr CloseDevice(a6)

nodrive:move.l buffer,al

move.l #512,dO

jsr FreeMem(a6)

move.l dosbase,al

jsr CloseLibrary(a6)

clr.l dO

rts

/close window

/close trackdisk.device

;free buffer

/close dos.library

moveq #100,dO

rts

/returncode 100 for system error

dumphex:cmp.b #"a",display

beq hexstop

move.b #"0",row

move.b #"6",row+l

move.b #"0",col

move.b #"2",col+l

move.l buffer,buffptr

clr.w adr

moveq #15,d6

poshex: jsr cursor

move.w adr,dO

jsr convword

jsr printword

move.b #" ",key

jsr printkey

add.w #$20,adr

moveq #15,d5

lea Iinebuf,a2

x: move.l buffptr,al

add.l #2,buffptr

move.w (al),d0

jsr convword

move.l mytext,(a2)+

dbra d5,x

jsr Printline

move.b row+l,d0

cmp.b #"9",dO

bne.s 11

add.b #l,row

move.b #"0"-l,row+1

11: add.b #1,row+1

dbra d6,poshex

hexstop: rts

/ascii input- NTSC added

/NTSC added

/cursor pos.

/buffer pointer to start

;16 lines

/address output

/space printed

/inc. address by $20

;16 words per line

/buffer for line

/buffer pointer2

/get word

/convert to ascii

/copy to line buffer

/cursor pos. line +1

221

Appendix A Amiga disk drives inside and out

convdezrlea mytext,aO

divu #1000,dO

add.b #"0",d0

move.b dO,(aO) +

clr.w dO

swap dO

divu #100,dO

add.b #"0",d0

move.b dO,(aO)+

clr.w dO

swap dO

divu #10,dO

add.b #"0",d0

move.b dO,(aO)+

clr.w dO

swap dO

add.b #"0",d0

move.b dO,(aO) +

rts

/convert word in dO by 4

/decimal number

convword:

moveq #3,d2

lea mytext+4,a0

10: move.b dO,dl

and.b #$Of,dl

lsr.w #4,dO

cmp.b #$09,dl

bgt.s hex

add.b #"0",dl

bra.s do

hex: add.b #"a"-10,dl

do: move.b dl,-(aO)

dbra d2,10

rts

/convert word in dO to ascii text

printword:

move.l wdhd,dl

move.l #mytext,d2

moveq #4,d3

jsr Write<a6)

rts

dumpasc:cmp.b #"h",display

beq ascstop

move.b #"0M,row

move.b #"6",row+l

move.b #"0",col

move.b #"2",col+l

move.l buffer,buffptr

clr.w adr

moveq #7,d6

posasc: jsr cursor

move.w adr,d0

jsr convword

jsr printword

move.b #" ",key

/text output

/check for hex display NTSC only

/block ascii output Pal=2

;PA1 =3

/PAL =0

/Pal =2

; PAL=7

/address output

/space printed

222

Abacus The Diskmon.s program

jsr printkey

add.w #$40fadr

moveq #63,d5

lea Iinebuf,a2

raove.l buffptr,al

y: move.b (al)+,dO

cmp.b #" ",dO

blt.s dot

cmp.b #"z",dO

bgt.s dot

move.b dO,(a2)+

bra.s chr

dot: move.b #".",(a2)+

chr: dbra d5,y

move.l al,buffptr

jsr Printline

move.b row+1,dO

cmp.b #"9",dO

bne.s 12

add.b #l,row

move.b #"0"-l,row+1

12: add.b #1,row+1

dbra d6,posasc

move.l wdhd,dl

move.l #clrhex,d2

move.l #clrhexlen,d3

jsr Write(a6)

;line buffer

;get byte and mask ascii

/replace control char with

;line buffer output

/cursor pos. line +1

/NTSC only to clear 8 hex lines

/NTSC only

/NTSC only

/NTSC only

ascstop:rts

Printline:

move.l wdhd,dl

move.l #linebuf,d2

moveq #64,d3

jsr Write(a6)

rts

/line buffer output

dumpcheck:

move.b #"0",row

move.b #"4",row+1

move.b #"5",col

move.b #"l",col+l

jsr cursor

move.l buffer,aO

move.w 20(aO),d0

jsr convword

jsr printword

move.l buffer,aO

move.w 22(aO),d0

jsr convword

jsr printword

rts

dumpblock:

move.b #"0",row

/checksum output

/upper word

/lower word

/block number dez. and hex. output

223

Appendix A Amiga disk drives inside and out

move.b #"4",row+l

move.b #"0",col

move.b #"9",col+l

jsr cursor

move.w block,dO

mulu #512,dO

move.l dOfoffset

clr.l dO

move.w block,dO

jsr convdez

jsr printword

move.b #"0",row

move.b #"4",row+l

move.b #"l",col

move.b #"5",col+l

jsr cursor

move.w block,dO

jsr convword

jsr printword

move.l #clear,d4

moveq #clrlen,d5

jsr doerr

rts

dumptype:

move.b #"0"frow

move.b #"2",row+l

move.b #"0",col

move.b #"2",col+l

jsr cursor

move.1 wdhd,dl

move.1 #unkn,d2

moveq #10,d3

cmp.w #2,block

bge.s noboot

move.l #boot,d2

bra.s noknown

noboot: move.l buffer,aO

cmp.l #8,(aO)

bne.s nodata

move.l #dat,d2

nodata: cmp.l #$10,(aO)

bne.s nolisting

cmp.l #-3,508(a0)

bne.s nolisting

move.l #flist,d2

nolisting: cmp.l #2,(aO)

bne.s noknown

cmp.l #l,508(a0)

bne.s noroot

move.l #root,d2

noroot: cmp.l #2,508(a0)

bne.s noudir

move.l #udir,d2

;set offset for read/write

/convert block decimal

/convert block hex.

;clr error message

/block type output

/typ unknown

/typ-lenght

/boot block=0,l

/data l.LW=$00000008

/filelist l.LW=$00000010

/filelist 127.LW=$fffffffd

;root,userdir,filehead

l.LW=$00000002

/root 127.LW=$00000001

/userdir 127.LW=$00000002

224

Abacus The Diskmon.s program

noudir: cmp.l #-3,508(a0)

bne.s noknown

move.l #fhead,d2

noknown:jsr Write(a6)

rts

getkey: move.l wdhd,dl

move.l #key,d2

moveq #l,d3

jsr Read(a6)

rts

printkey:

move.l wdhd,dl

move.l #keyfd2

moveq #l,d3

jsr Write<a6)

rts

cursor: jsr cursoff

move.l wdhd,dl

move.l #adrpos,d2

moveq #7,d3

jsr Write(a6)

lea mytext,aO

move.l #" ",(aO)

btst #0,crsrstatus

beq.s noadr

move.l buffptr,dO

sub.l buffer,dO

jsr convdez

noadr: jsr printword

move.l wdhd,dl

move.l #adrpos2,d2

moveq #7,d3

jsr Write(a6)

lea mytext,aO

move.l #" ",(aO)

btst #0,crsrstatus

beq.s noadr2

move.l buffptr,dO

sub.l buffer,dO

jsr convword

noadr2: jsr printword

move.l wdhd,dl

move.l #pos,d2

moveq #7,d3

jsr Write(a6)

btst #0,crsrstatus

beq.s no

jsr curson

no: rts

crsron: bset #0,crsrstatus

curson: move.l wdhd,dl

move.l #con,d2

/filehead 127.LW=$fffffffd

;wait for key

/get next key

;char key printed

/cursor off, no status change

/cursor on #address position

/when cursor off,clr address

/else output address

/address=pointer-start

/position cursor on $address

/when cursor off, clr address

/else output address

/cursor position

/cursor on. no status change

/switch cursor on

225

Appendix A Amiga disk drives inside and out

moveq #3,d3

jsr Write(a6)

rts

crsroff:bclr #0,crsrstatus

cursoff:move.l wdhd,dl

move.l #coffrd2

moveq #4,d3

jsr Write(a6)

rts

doerr: move.l dosbase,a6

move.b #"0",row

move.b #"4",row+l

move.b #"6",col

move.b #"0"fcol+l

jsr cursor

move.l wdhd,dl

move.l d4,d2

move.l d5fd3

jsr Write(a6)

lea diskioreq,aO

clr.l 32(aO)

rts

mtroff: move.l 4,a6

lea diskioreq,al

move.w #9,28(al)

clr.l 36(al)

jsr DoIO(a6)

move.l dosbase,a6

rts

readsec:move.l 4,a6

lea diskioreq,al

move.w #14,28(al)

jsr DoIO(a6)

lea diskioreq, al

tst.l 32(al)

beq.s dsk

move.l #nderr,d4

moveq #ndlen,d5

jsr doerr

bra here

dsk: lea diskioreq,al

move.w #2,28(al)

move.l #512,36(al)

move.l buffer,40(al)

move.l offset,44(al)

jsr DoIO(a6)

tst.l dO

beq.s noerr

move.l #rderr,d4

/switch cursor off

/output error message d4/d5

;clr error status

/switch motor off

/motor on

/read block into buffer

/test is disk inserted

/output error

/read finished

/block read

/test for read error

/error output

226

Abacus The Diskmon.s program

noerr:

here:

moveq #rdlen,d5

jsr

bra,

jsr

jsr

jsr

jsr

cmp,

jsr

doerr

,s here

dumpblock

mtroff

dumpcheck

dumptype

.b #"a",key

dumpasc

cmp.b #"h",key

jsr dumphex

/ jsr dumpasc

bra main

writesec:

move.l 4,a6

lea diskioreq, al

move.w #14,28(al)

jsr DoIO(a6)

lea diskioreq,al

tst.l 32(al)

beq.s dsk2

move.l #nderr,d4

moveq #ndlen,d5

jsr doerr

bra here2

/output block number,clr error

/checksum

/type

/ascii input NTSC added

/ NTSC added

/hex input NTSC added

/hex. output

/ascii output orginal pal

/write block to disk

/test if disk inserted

/error output

dsk2: lea diskioreq,al

move.w #15,28(al)

jsr DoIO(a6)

lea diskioreq,al

tst.l 32(al)

beq.s dsk3

move.l #pterr,d4

moveq #ptlen,d5

jsr doerr

bra here2

dsk3: move.w #3,28(al)

move.l #512,36(al)

move.l buffer,40(al)

move.l offset,44(al)

jsr DoIO(a6)

lea diskioreq, al

move.w #4,28(al)

move.l #512,36(al)

move.l buffer,40(al)

move.l offset,44(al)

jsr DoIO(a6)

tst.l dO

beq.s noerr2

/test for write-protect

/error output

/block write

/update disk

/test for write error

227

Appendix A
Amiga disk drives inside and out

move.l #wrerr,d4

moveq #wrlen,d5

jsr

bra,

noerr2: jsr

here2: jsr

jsr

jsr

jsr

bra

doerr

.s here2

dumpblock

mtroff

dumpcheck

dumphex

dumpasc

main

check: move.l buffer,aO

moveq #126,dO

clr.

adck: cmp.

bne.

add.

ck: sub.

dbra

move

move

jsr

jsr

jsr

bra

blockedit:

move

move

move

move

jsr

jsr

,1 dl

,w #121,dO

s ck

1 #4,aO

1 (aO)+,dl

i dO,adck

s.l buffer,aO

i.l dl,20(a0)

dumpcheck

dumphex

dumpasc

main

i.b #"0",row

>.b #"4",row+l

i.b #"0",col

>.b #"9",col+l

cursor

crsron

moveq #3,d4

lea

in: jsr

cmp.

bit.

cmp.

bgt.

jsr

move

dbra

jsr

clr.

lea

clr.

move

sub.

mulu

add.

clr.

move

sub.

mytext,a5

getkey

b #"0",key

s in

b #"9",key

s in

printkey

.b key, (a5) +

d4,in

crsroff

w block

mytext,aO

w dO

.b <aO)+,dO

w #"0",d0

#1000,dO

w dO,block

w dO

.b (a0)+,d0

w #"0",d0

/error output

/output everything

/calculate buffer checksum

/jump over checksum

/record checksum

/output

/input block number in dec.

;4 chars

/in text buffer

/convert text buffer to hex

228

Abacus The Diskmon.s program

mulu #100,dO

add.w dO,block

clr.w dO

move.b (a0)+,d0

sub.w #"0"rd0

mulu #10,dO

add.w dO,block

clr.w dO

move.b (a0)+,d0

sub.v #"0",d0

add.w dO,block

cmp.w #1759,block

bgt blockedit

jsr dumpblock

bra readsec

blockedithex:

move.b #"0",row

move.b #"4",row+l

move.b #"l",col

move.b #"5",col+l

jsr cursor

jsr crsron

lea mytext,a5

moveq #3,d4

retry: jsr getkey

cmp.b #"0",key

bit retry

cmp.b #"f",key

bgt retry

cmp.b #"9",key

ble.s hO

cmp.b #"a",key

bge.s hO

bra.s retry

hO: jsr printkey

move.b key,(a5)+

dbra d4,retry

jsr crsroff

move.b mytext,dO

cmp.b #"9",dO

bgt.s hi

sub.b #"0"-"a"+10,d0

hi: sub.b #fla"-10,d0

lsl.b #4,d0

move.b dO,block

move.b mytext+1,dO

cmp.b #"9",dO

bgt.s h2

sub.b #"0"-"a"+10,d0

h2: sub.b #"a"-10,d0

or.b dO,block

move.b mytext+2,dO

cmp.b #"9",dO

bgt.s h3

sub.b #"0"-"a"+10,d0

/compare with last block

;new input

/read blockand display

/input block in hex

/4 char

/write in text buffer

/convert text to hex in nibbles

229

Appendix A Amiga disk drives inside and out

h3: sub.b #"aM-10,d0

lsl.b #4,dO

move.b dO,block+l

move.b mytext+3,dO

cmp.b #"9",dO

bgt.s h4

sub.b #"0"-"a"+10,d0

h4: sub.b #"a"-10,d0

or.b dO,block+l

cmp.w #1759,block

bgt blockedithex

jsr dumpblock

bra readsec

up: cmp.w #1759,block

beq main

add.w #1,block

jsr dumpblock

jmp readsec

down: tst.w block

beq main

sub.w #1,block

jsr dumpblock

jmp readsec

asciiedit: move.b #"a",display ;NTSC added

/compare with last block

/block output

/read block and display

/read next block and display

/previous block read and disp.

jsr dumpasc

move.b #"0",row

move.b #"6",row+l

move.b #"0",col

move.b #"7",col+l

move.l bufferfbuffptr

jsr crsron

jsr cursor

getasc: jsr getkey

cmp.b #$9b,key

bne nocurs

jsr getkey

cmp.b #$44,key

beq ascleft

cmp.b #$43,key

beq ascright

cmp.b #$41,key

beq ascup

cmp.b #$42,key

beq ascdown

bra.s getasc

ascright:

cmp.b #"7",col

blt.s csright

cmp.b #"0",col+l

blt.s csright

cmp.b #"3",row

/ascii input in buffer

/PAL =2

;PA1 =3

/PAL =0

/PAL =7

/compare with cursor sequence

/left

/right

/up

/down

/cursor right or start of line

230

Abacus The Diskmon.s program

bit csdown

cmp.b #"0",row+l

bit csdown

bra getasc /cursor in lower left

csright:cmp.b #"9",col+l ;set cursor

bne.s m3

move.b #"0"-l,col+1

add.b #l,col

m3: add.b #1,col+1

add.l #1,buffptr ;set buffer pointer

jsr cursor

bra getasc

csdown: cmp.b #"9",row+1 ;see above

bne.s m2

move.b #"0lf-l, row+1

add.b #l,row

m2: add.b #1,row+1

move.b #"0",col

move.b #"7",col+l

add.l #lfbuffptr

jsr cursor

bra getasc

ascdown:cmp.b #"3",row /cursor down if possible

bit rowdown

cmp.b #"0",row+l

bit rowdown

bra getasc

rowdown:cmp.b #M9",row+l

bne.s m4

move.b #"0"-l,row+1

add.b #l,row

m4: add.b #1,row+1

add.l #$40,buffptr /buffer pointer next line

jsr cursor

bra getasc

ascleft:cmp.b #"0"fcol /cursor left or end of line

bgt.s csleft

cmp.b #"7",col+l

bgt.s csleft

cmp.b #"2",row

bgt csup

cmp.b #"3",row+1

bgt csup

bra getasc /cursor is upper left

csleft: cmp.b #"0",col+l /set cursor

bne.s m5

move.b #"9"+l,col+1

sub.b #l,col

m5: sub.b #1,col+1

sub.l #1,buffptr /left buffer pointer

231

Appendix A
Amiga disk drives inside and out

jsr cursor

bra getasc

csup: cmp.b #"0",row+l

bne.s m6

move.b #"9"+l,row+1

sub.b #l,row

m6: sub.b #1,row+1

move.b #"7",col

move.b #"0",col+l

sub.l #l,buffptr

jsr cursor

bra getasc

ascup: cmp.b #"2",row

bgt rowup

cmp.b #"3",row+1

bgt rowup

bra getasc

rowup: cmp.b #"0",row+1

bne.s m8

move.b #"9"+lfrow+1

sub.b #l,row

m8: sub.b #1,row+1

sub.l #$40,buffptr

jsr cursor

bra getasc

nocurs: cmp.b #$lb,key

beq ascend

cmp.b #" ",key

bit getasc

cmp.b #"z",key

bgt getasc

cmp.b #"7",col

blt.s doright

cmp.b #"0",col+l

blt.s doright

cmp.b #"3", row

bit dodown

cmp.b #"0",row+1

bit dodown

jsr printkey

move.l buffptr,aO

move.b key,(aO)

bra asciiedit

doright:cmp.b #"9",col+l

bne.s mO

move.b #"0"-l,col+l

add.b #l,col

mO: add.b #l,col+l

jsr printkey

move.l buffptr,aO

/cursor to end of line

/cursor up if possible

/buffer pointer upper line

/escape key= end input

/mask key

/char left or start of line

/print

/store in buffer

/cursor home

/char left print

232

Abacus The Diskmonjs program

move.b key,(aO)

add.l #l,buffptr

jsr cursor

bra getasc

dodown: cmp.b #"9",row+l

bne.s ml

move.b #"0"-l,row+1

add.b #l,row

ml: add.b #1,row+1

move.b #"0",col

move.b #"7",col+l

jsr printkey

move.l buffptr,aO

move.b key,(aO)

add.l #l,buffptr

jsr cursor

bra getasc

ascend: jsr crsroff

; jsr dumphex

bra main

hexedit: move.b #'h',display

jsr dumphex

move.b #"0",row

move.b #"6",row+l

move.b #"0",col

move.b #"7",col+l

move.l buffer,buffptr

jsr crsron

jsr cursor

gethex: jsr getkey

cmp.b #$9b,key

bne noxcurs

jsr getkey

cmp.b #$44,key

beq hexleft

cmp.b #$43fkey

beq hexright

cmp.b #$41,key

beq hexup

cmp.b #$42,key

beq hexdown

bra gethex

hexright:

cmp.b #"6",col

bit.s xcsright

cmp.b #"9",col+l

blt.s xcsright

cmp.b #"2",row

bit xcsdown

cmp.b #"l",row+l

bit xcsdown

bra gethex

/store in buffer

;print char at start of line

/store in buffer

;end the ascii input

;hex output PAL only

/added NTSC

/added NTSC

/hex input in buffer

/similar to ascii input

/except: cursor in 2 steps

/ to enter in bytes

233

Appendix A Amiga disk drives inside and out

xcsright:

cmp.b #"9",col+l

bne.s n3

move.b #"l"-2,col+1

add.b #l,col

n3: add.b #2,col+1

add.l #lfbuffptr

jsr cursor

bra gethex

xcsdown:cmp.b #"9",row+l

bne.s n2

move.b #"0"-l,row+l

add.b #l,row

n2: add.b #l,row+l

move.b #M0",col

move.b #"7",col+1

add.l #l,buffptr

jsr cursor

bra gethex

hexdown:cmp.b #"2",row

bit rowxdown

cmp.b #"lM,row+l

bit rowxdown

bra gethex

rowxdown:

cmp.b #"9",row+l

bne.s n4

move.b #"0"-l,row+l

add.b #l,row

n4: add.b #l,row+l

add.l #$20fbuffptr

jsr cursor

bra gethex

hexleft:cmp.b #"0",col

bgt.s xcsleft

cmp.b #"7",col+1

bgt.s xcsleft

cmp.b #"0",row

bgt xcsup

cmp.b #"6",row+l

bgt xcsup

bra gethex

xcsleft:cmp.b #"1",col+1

bne.s n5

move.b #"9"+2,col+1

sub.b #l,col

n5: sub.b #2,col+1

sub.l #l,buffptr

jsr cursor

bra gethex

234

Abacus The Diskmon.s program

xcsup: cmp.b #"0",row+l

bne.s n6

move.b #"9"+l,row+l

sub.b #l,row

n6: sub.b #l,row+l

move.b #"6",col

move.b #"9",col+l

sub.l #l,buffptr

jsr cursor

bra gethex

hexup: cmp.b #"0",row

bgt xrowup

cmp.b #"6",row+l

bgt xrowup

bra gethex

xrowup: cmp.b #"0",row+l

bne.s n8

move.b #"9"+l,row+1

sub.b #l,row

n8: sub.b #1,row+1

sub.l #$20,buffptr

jsr cursor

bra gethex

noxcurs:cmp.b #$lb,key

beq hexend

cmp.b #"0",key

bit gethex

cmp.b #"f",key

bgt gethex

cmp.b

ble.s

cmp.b

bge.s

#"9",key

okO

#"a",key

okO

bra gethex

okO: jsr printkey

ok2: move.l

move.1

moveq

wdhd,dl

#key2,d2

#l,d3

jsr Read(a6)

cmp. b

blt.s

cmp.b

bgt .s

cmp.b

ble.s

cmp.b

blt.s

#"0",key2

ok2

#"f",key2

ok2

#"9",key2

okl

#"a",key2

ok2

okl: move.b key,dO

cmp.b #"9",dO

bgt.s ok3

;convert key and key2 into byte

235

Appendix A Amiga disk drives inside and out

sub.b #ft0iI-IIatI+10,d0

ok3: sub.b #"a"-10,d0

lsl.b #4,dO

move.b dOrbyte

move.b key2,dO

cmp.b #"9",dO

bgt.s ok4

sub.b #"0"-"a"+10,d0

ok4: sub.b #"a"-10,d0

or.b dO,byte

cmp.b #"6",col

blt.s doxright

cmp.b #"9",col+l

blt.s doxright

cmp.b #"2",row

bit doxdown

cmp.b #"l",row+l

bit doxdown

move.l wdhd,dl

move.l #key2,d2

moveq #l,d3

jsr Write<a6)

move.l buffptr,aO

move.b byte,(aO)

bra hexedit

doxright:

cmp.b #"9",col+l

bne.s nO

move.b #"l"-2,col+l

add.b #l,col

nO: add.b #2,col+l

move.l wdhd,dl

move.l #key2,d2

moveq #l,d3

jsr Write (a6)

move.l buffptr,aO

move.b byte,(aO)

add.l #l,buffptr

jsr cursor

bra gethex

doxdown:cmp.b #"9",row+l

bne.s nl

move.b #"0"-lfrow+1

add.b #l,row

nl: add.b #1,row+1

move.b #"0",col

move.b #"7"fcol+l

move.l wdhd,dl

move.l #key2fd2

moveq #lfd3

jsr Write(a6)

move.l buffptr,aO

move.b byte,(aO)

236

Abacus The Diskmon.s program

add.l #l,buffptr

jsr cursor

bra gethex

hexend: jsr crsroff

; jsr dumpasc

bra main

/end hex input

;ascii output PAL only

TEXT, VARIABLES AND TABLES

title: dc.b "raw:0/0/640/200/" ;PAL= "raw:0/0/640/256/"

dc.b " DISK-MONITOR VERSION 1.0

dc.b " INSERT DISK TO EXAMINE IN DF"

drive: dc.b 0,": ",0

top: dc.b $0a

invers 1.char normal rest

dc.b "

dc.b " ",$9b,"0/31;43"

dc.b " ",$9b,"0/31/43"

dc.b " ",$9b,"0/31/43"

dc.b " ",$9b,"0/31/43"

dc.b " ",$9b,"0/31/43"

dc.b " ",$9b,"0;31;43"

dc.b " ",$9b,"0/31/43"

dc.b " ",$9b,"0/31/43"

dc.b •■ ",$9b,"0/31/43"

dc.b " ",$9b,"0/31/43"

dc.b $0a,$0a

Block # $

,$6d,"Esc",$9b,"0;31;40",$6d,"ape"

,$6d,"#",$9b,"0;31/40",$6d," Block"

,$6d,"$",$9b,"0/31/40",$6d," Block"

,$6d,"+",$9b,"0/31/40",$6d," Up"

,$6d,"-",$9b,"0/31/40",$6d," Down"

,$6d,"R",$9b,"0/31/40",$6d,"ead"

,$6d,"W",$9b,"0/31/40",$6d,"rite"

,$6d,"C",$9b,"0/31/40",$6d,"hecksumn

,$6d,"A",$9b,"0/31/40",$6d,"scii"

,$6d,"H",$9b,"0/31/40",$6d,"ex"

dc.b

dc.b $0a,"

dc.b "

topend:

toplen=topend-top

/ BLOCKTYP

Buffer # Checksum $"

boot: dc.b "BOOTBLOCK "

root: dc.b "ROOTBLOCK "

flist: dc.b "FILELIST "

fhead: dc.b "FILEHEADER"

dat: dc.b "DATABLOCK "

udir: dc.b "USERDIR

unkn: dc.b " "

; DISK Error messages

nderr: dc.b $9b,"43",$6d,"NO DISK IN DRIVE !",$9b,"40",$6d

nderrend:

ndlen=nderrend-nderr

rderr: dc.b $9b,"43",$6d," READ-ERROR ! ",$9b,"40",$6d

rdend:

rdlen=rdend-rderr

wrerr: dc.b $9b,"43",$6d," WRITE-ERROR ! ",$9b,"40",$6d

wrend:

237

Appendix A Amiga disk drives inside and out

wrlen=wrend-wrerr

pterr: deb $9b, "43",$6d, "WRITE-PROTECTION ! ", $9b, "40", $6d

ptend:

ptlen=ptend-pterr

clear: deb " NO ERROR !

clrend:

clrlen=clrend-clear

align /even

crsrstatus:

dew 0

adr: dew 0

mytext: deb "0000"

key: deb 0

key2: deb 0

display deb 0

byte: deb 0

align ;even

linebuf:blk.b 64,0 /buffer for conversions

/sequence for cursor positioning

pos:

row:

col:

dc

dc

dc

.b

.b

.b

$9b

"00"

"00"

,$3b

,$48

;s.o. for address number dec and hex

adrpos: deb $9b, "04", $3b, "29", $48

adrpos2 :deb $9b, "04", $3b, "35", $48

/sequence for cursor on/off

con: deb $9b,$20,$70

coff: deb $9b, $30,$20, $70

dosname:dcb "dos.library",0

trkdisk:dc.b "trackdisk.device",0

device: deb 0

align /even

dosbase:del 0

wdhd: del 0 /window handle

block:

offset:

buffptr:

buffer:

diskport

dew

del

del

del

:

del

del

dew

del

deb

880

0

0

0

0

0

$0400

0

0

/startblock

/offset for read/write =512*block

/buffer pointer

/buffer start

;0

;4

;8

;io

;14

238

Abacus The Diskmon.s program

dc.b

del

LH1: del

LH2: del

del

dc.b

deb

diskioreq:

del

del

deb

deb

del

del

dew

del

del

dew

dew

del

del

del

del

del

del

31

0

LH2

0

LH1

0

0

0

0

5

0

0

diskport

48

0

0

0

0

0

0

0

0

0

0

;The following is for

clrhex: deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

dc.b

dc.b

deb

clrhexend:

$0a,"
ti

$0a, "
11

$0a,"
11

$0a,"
11

$0a,"
11

$0af "
11

$0a,"

$0a, "
11

;15

;16

;20

;24

;28

;32

;33

;0

;4

;8

;9

;io

;14

;18

;20

;24

;28

;30

;32

;36

;40

;44

task adr. here

IO_CMD

10 ERROR

IO_LENGTH

IO_DATA

IO__OFFSET

NTSC versions only, to clear 8 hex lines

11

it

11

11

it

11

clrhexlen = clrhexend-clrhex

end

239

Appendix B Amiga disk drives inside and out

Appendix B

The Drive Accelerator

Most users have been annoyed by the slow access time of the Amiga

disk drives. This is caused partly by a complex and therefore slow

system, and partly by the complicated routines of the Trackdisk device.

The main reason for slow loading is in the basic principle of the Amiga
operating system: everything should be easy to expand.

To satisfy this principle, the Load command is first sent from DOS to

the Filesystem. Here the command must first be recognized and then

transmitted to the Trackdisk device.

The desired tracks are read from disk into memory and the data passed to

the Filesystem with the help of the blitter. Some of these are temporar

ily stored and the data is passed to DOS which pushes it to the final

location in memory. Because of the frequent passing of commands and

data to other parts of the system, much time is lost Without reorganiz

ing the system completely, there is no way to speed this process.

Another possibility, however, is to accelerate the Trackdisk device since

it controls the reading of a track in a very complicated manner. The

accelerator presented here uses this method.

To use the disk accelerator described in this book, the present system

and its weaknesses must first be explained.

The Filesystem sends a read command to the Trackdisk device. The

Filesystem decides what should be read. As soon as the command (read

disk block into a certain buffer) is passed to the Trackdisk device (more

exactly the Trackdisk task), it starts to work.

The command is tested for its legality and at the same time a jump is

performed to the proper routine for further processing. Now a test is

made to determine if the track, whose block is needed, is already in

memory. If this is the case, the block is decoded by the blitter (from

MFM format to normal code) and copied into the buffer desired by the

Filesystem.

If the track was not already in memory, it must be loaded. The loading

of a track has been implemented in a very complicated and not very

elegant manner.

A track contains, including track gaps, about $3100 bytes, depending

on the drive in use. To insure that the Trackdisk device has read the

240

Abacus The Drive Accelerator

entiie track, $397C bytes are loaded. For some unknown reason there is

no wait for the sync mark during reading. The reading is unsynchro-

nized. For this reason the sync mark must be found "by hand", which is

not simple. First it must discover if the first bit read was a track or data

bit. After finding the mark, the data, with the sync marking at the front,

are copied properly and checked for read errors. Only after the data has

been verified is the block decoded and moved to the buffer. Then the

Filesystem continues its work.

Using the The first problem when modifying the operating system is how to

accelerator insert a user routine into the system. The easiest possibility is to set

the return jump address of the Trackdisk task to the user task, which is

similar to it, including the load routines. After this has been done, a

branch occurs not to ROM, but to the user routine, every time an

operation is performed on the disk.

In the user task, just as in the system, the commands are tested for

legality. If it is not a command to read a block, a jump is performed to

the operating system. This must occur through direct addresses. This is

also why the accelerator only runs with Kickstart Version 33.192 (of

the Amiga 500 and 2000). In other versions, the absolute addresses are

different

If the display blinks after starting, the accelerator is working. If not,

there is either a wrong Kickstart version or not enough memory could

be made available.

When the command to read is passed, the program runs in the user

routines which are completely different from die operating system.

To prevent reading substantially more data than one track length, the

header of the first block found is read. During the read a wait occurs for

the sync mark. On the basis of the data read, it can be recognized where

the track gap is located and how many bytes can be found in front and

behind it. It takes little time to find this information and the following

block can be read directly.

After the number of bytes to the gap has been discovered, they can be

read after finding the sync mark. After the gap there must be another

wait for the "Sync", after which the rest of the data is read. It is

therefore no longer necessary to read $397CK, only the actual track

length in addition to the block read for orientation. This of course

increases the speed. In addition, the data does not have to be corrected by

copying as in the operating system, because a wait occurred for the sync

mark.

The data is read from the disk directly to memory through DMA (Direct

Memory Access), without the use of the processor. You can therefore

have the processor decode the data and check for errors during the same

time the data is read from disk. With this system the assignments

normally performed sequentially are performed simultaneously.

241

Appendix B Amiga disk drives inside and out

When the Filesystem requests a block whose track is already in the
memory of the Trackdisk device, it doesn't have to be decoded first by

the operating system. It can be copied to the desired location immediate
ly by the blitter (the decoding was done during the leading).

To achieve an even more acceleration, the speed at which the head is
moved across the disk is increased. Also the wait time for the device,

after positioning the head to the desired location, is set to almost zero.
This is very noticeable in loading times.

Altogether the routines of the Trackdisk device which are responsible
for the reading of a track, have been accelerated to the maximum.

As mentioned earlier, most of the time for reading a file is not used by

the Trackdisk device, but the complicated system which, for reasons of

compatibility, cannot be changed. The accelerator described here is an

improvement, and is about as much as is possible through the enhance

ment of the Trackdisk devices.

The source listing for the accelerator follows. It is also contained on the

optional disk for this book. This program was assembled with the

AssemPro asembler from Abacus.

242

Abacus The Drive Accelerator

/Listing of floppy accelerator program

;speeder.s

;from the Abacus book

/Amiga Disk Drives Inside and Out

/Assembled using the AssemPro Assembler

DeviceList

TrackTask

TrackPort

SPReg

ReplyAddress

IDNestCnt

PortStatus

CMD_READ

FindName

Wait

AllocMem

FreeMem

Reql

Req2

TrackSize

Track

ReadError

NoDisk

NoSync

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

350

302

36

54

70

294

34

2

-276

-318

-198

-210

$01

$03

$1604

21

29

21

/MEMF_PUBLIC

/Number of Bytes in one

\13:

lea $fc0000,a0

cmp.l #$2033332E,$lc(a0)

bne \DError4

cmp.l #$31393220,$20(aO)

bne \DError4

move.l $4,a6

bsr Disable

move.l #Ende-Startl,d0

move.l #Reql,dl

jsr AllocMem(a6)

move.l d0,al

move.l al,a4

move.l d0,d4

beq \DErrorl

lea TrackName(pc),al

lea DeviceList(a6),a0

jsr FindName(a6)

tst.l dO

beq \DError3

move.l d0fa5

lea MyTask(pc) , aO

lea Startl(pc),al

suba.l al,a0

adda.l a0,a4

clr.l d3

move.l TrackPort(a5,d3) ,d0

beq \15

/Save memory address

/Address of MyTask

243

Appendix B Amiga disk drives inside and out

\15:

\14:

\DErrorl:

\DError4:

\DError2:

\DError3:

move.l dO,a3

move.l #TrackSize,dO

move.l #Req2,dl

jsr AllocMem(a6)

lea TrackMemoryl(pc),aO

lea (aO,d3),aO

move.l dO, (aO)

beq \DError2

btst #0,PortStatus(a3)

bne \11

move.l #1800,$2c(a3)

move.l #lf$30(a3)

lea TrackTask+SPReg(a3),a2

move.l (a2), al

move.1 a4,ReplyAddress(a1)

addq.l #4,d3

cmpi.w #16fd3

bcs \13

move.l #Ende-Startl,dO

lea Startl(pc)fa0

move.l d4,al

move.b (aO)+ ,(al)+

subq.l #l,dO

bne \14

bsr blink

bsr Enable

clr.l dO

rts

subq.l #4,d3

bcs \DError3

lea TrackMemoryl(pc),aO

lea (aO,d3),aO

move.l (aO),al

move.l #TrackSize,dO

jsr FreeMem(a6)

bra \DError2

move.l #Ende-Startl,dO

move.l a4,al

jsr FreeMem(a6)

bra \DErrorl

/Track Memory for Disk

/wait, until Task in Wait

/accelerate Step motor

/no wait after Posi.

/Copy data

Blink:

Ml:

Startl:

Disable:

move.l D0,-(a7)

move.l #$20000,dO

move.w d0,$dffl80

sub.l #l,d0

bne Ml

move.l (a7)+,D0

rts

move.w #$4000,$dff09a

move.l a6,-(a7)

move.l $4,a6

add.b #l,IDNestCnt(a6)

244

Abacus The Drive Accelerator

move.l (a7)+,a6

rts

Enable: move.l a6,-(a7)

move.l $4,a6

sub.b #l,IDNestCnt(a6)

bge \11

move.w #$c000f$dffO9a

\11: move.l (a7)+fa6

rts

TheTask: MOVEA.L 8(A7),A6

MOVEA.L 4(A7),A3

LEA $12E(A3),A0

MOVE.L A0,$10(A3)

JSR $FE9960

LFEAE64: BSR.S LFEAE7A

MOVE.L #$300,DO

MOVE.L A6,-(A7)

MOVEA.L $34(A6)fA6

JSR Wait(A6)

MyTask: MOVEA.L (A7)+,A6

BRA.S LFEAE64

LFEAE7A: BSET #0,$22(A3)

BNE NoMessage

LFEAE84: MOVEA.L A3,A0

MOVE.L A6,-(A7)

MOVEA.L $34(A6),A6

JSR -$174(A6)

MOVEA.L (A7)+,A6

TST.L DO

BEQ LFEAF3E

MOVEA.L D0,A2

BCLR #3,$40(A3)

BEQ LFEAF1E

MOVEA.L $52(A3),A0

BCLR #0,2(A0)

BEQ LFEAEBA

MOVE.L A0,$4E(A3)

JSR $FEA958

LFEAEBA: MOVEA.L $52(A3),A0

MOVEQ #-l,D0

MOVE.W D0,0(A0)

MOVE.W D0,$4C(A3)

MOVEQ #0,D0

JSR $FEA4 62

MOVEA.L A6,A0

MOVEA.L $34<A0),A6

ADDQ.B #1,$127(A6)

MOVEA.L A0,A6

TST.W $24(A3)

BNE LFEAF12

MOVEQ #0,D0

MOVE.B $43(A3),D0

MOVE.L A6,-(A7)

MOVEA.L $3C(A6),A6

JSR -$C(A6)

245

Appendix B Amiga disk drives inside and out

LFEAF12:

LFEAF1E:

LFEAF30:

LFEAF3E:

NoMessage:

Stepperl:

LFEA052:

LoadEnde:

LFEA066:

MOVEA.L <A7)+,A6

LEA $24<A6),A0

MOVEQ #0,D0

MOVE.B $43(A3),DO

LSL.L #2fD0

ADDA.L D0,A0

CLR.L (AO)

SUBA.L A1,A1

MOVE.L A6,-(A7)

MOVEA.L $34(A6),A6

JSR -$120(A6)

MOVEA.L (A7)+,A6

MOVE.L A6,-(A7)

MOVEA.L $34(A6),A6

JSR -$8A(A6)

MOVEA.L (A7)+,A6

MOVEA.L A2fAl

LEA $86(A3),A0

CMPA.L A0,A2

BNE.S LFEAF30

JSR $FE9960

BRA LFEAE84

BSET #1,$22(A3)

bsr Stepperl

BRA LFEAE84

BCLR #1,$22(A3)

BCLR #0,$22(A3)

RTS

MOVE.L A2,-(A7)

MOVEA.L A1,A2

ANDI.B #-6,$40(A3)

jsr $FE998C

MOVEA.L A2,A1

MOVE.W $1C(A2),D0

cmp.b #CMD_READ,dO

beq Stepper2

BTST #$F,D0

BEQ.S LFEA052

BSET #2,$40(A3)

MOVE.L $126(A3),D1

CMP.L $3O(A2),D1

BLS.S LFEA052

MOVE.B #$1D,$1F(A2)

JSR $FEA1BO

BRA.S LFEA066

MOVEQ #O,D1

MOVE.B DO,D1

LSL.W #2,D1

LEA $FEA300,A0

MOVEA.L 0(A0,Dl.W),A0

JSR (AO)

JSR $FE998C

MOVEA.L (A7)+,A2

RTS

246

Abacus The Drive Accelerator

Stepper2: ; bsr Blink

bsr Stepper3

bra LoadEnde

Stepper3:

LFEA78E:

LFEA7A0:

LFEA7B8:

LFEA7D4:

MOVEM.L A2-A4,-(A7)

MOVEA.L $18(A1),A3

MOVEA.L A1,A2

MOVE.L A2f$44(A3)

MOVE.L #0,$20(A2)

MOVE.L $28(A2),$56(A3)

MOVE.L $2C(A2),D0

JSR $FEA182

TST.L DO

BMI LFEA92A

MOVE.W D0,$4A(A3)

MOVE.B D1,$49(A3)

MOVE.L $2C(A2)fD0

ADD.L $24(A2),D0

JSR $FEA182

TST.L DO

BMI LFEA92A

BTST #2,$40(A3)

BEQ.S LFEA78E

MOVE.L $34<A2),$5A(A3)

BEQ.S LFEA78E

BSET #0,$40(A3)

BTST #l,$40(A3)

BEQ.S LFEA7A0

MOVE.B #$1D,$1F(A2)

BRA LFEA920

MOVE.W $4A<A3)fD0

JSR $FEA93C

MOVE.L A0,$4E(A3)

BNE.S LFEA804

jsr $FEA952

MOVEA.L A0,A2

MOVE.L A2,$4E(A3)

BTST #0,2(A2)

BEQ.S LFEA7D4

JSR $FEA958

TST.L DO

BEQ.S LFEA7D4

MOVEA.L $44<A3),A1

MOVE.B DO,$1F<A1)

BRA LFEA920

MOVE.W $4A(A3),0(A2)

BCLR #0,2<A2)

CLR.B $42(A3)

bsr readl

MOVE.B 3(A2),D0

CMPI.B #$B,D0

BCS.S LFEA804

MOVE.W #-lf0(A2)

MOVEA.L $44(A3),Al

/Track in buffer

;No, read one

;read track into buffer

247

Appendix B Amiga disk drives inside and out

LFEA804:

LFEA82E:

LFEA866:

LFEA890:

LFEA8A0:

LFEA8C4:

MOVE.B DO,$1F<A1)

BRA LFEA920

MOVEA.L $4 4(A3)fA2

MOVE.W $1C(A2),D0

MOVEA.L $4E(A3),AO

CMPI.B #3,DO

BNE LFEA890

BSET #0,2(A0)

MOVEQ #0,D0

MOVE.B $49(A3),DO

SUB.B 3(A0),D0

BPL.S LFEA82E

ADDI.B #$B,D0

MULU #$440,DO

LEA $680(A0),A4

ADDA.L D0,A4

BTST #0,$40(A3)

BEQ.S LFEA866

MOVEA.L $5A(A3),AO

MOVE.L #$10,DO

LEA $10(A4),A1

JSR $FEAB4A

LEA 8(A4),A0

MOVE.W #$28,Dl

JSR $FEADA4

LEA $30(A4),A0

JSR $FEAD4 6

MOVEA.L $56(A3),A0

MOVE.L #$200,DO

LEA $40(A4),A1

JSR $FEAB4A

LEA $40(A4),A0

MOVE.W #$400,Dl

JSR $FEADA4

LEA $38(A4),A0

JSR $FEAD4 6

BRA LFEA8D6

MOVEQ #0,D0

BTST #0,$40(A3)

BEQ.S LFEA8C4

MOVE.B $49(A3),DO

SUB.B 3(A0),D0

BPL.S LFEA8A0

ADDI.B #$B,D0

MULU #$440,DO

LEA $680(A0),A4

ADDA.L D0,A4

LEA $10(A4),A1

MOVEA.L $5A(A3),A0

MOVE.L #$10,DO

JSR $FEACB2

clr.l dO

MOVE.B $49(A3),DO

MOVEA.L $56(A3),A1

lea TrackMemoryl(pc) , aO

;SecLabel set?

/no

/Sector number to DO

/Sector number to DO

/destination address

248

Abacus The Drive Accelerator

LFEA8D6:

LFEA8FA:

LFEA920:

LFEA92A:

LFEA936:

readl:

MOVEM

RTS

MOVEM

LFEA9AC:

LFEA9B6:

clr.l dl

move.b $43(a3),dl

lsl.w #2,dl

adda.l dl,aO

movea.l (aO),aO

mulu #$200,dO

adda.l d0,a0

move.w #$200,dO

bsr CopyBlock

MOVE.L #$200,Dl

ADD.L D1,$56(A3)

MOVE.L $20(A2),D0

ADD.L D1,DO

MOVE.L D0,$20(A2)

BTST #0,$40(A3)

BEQ.S LFEA8FA

ADDI.L #$10,$5A(A3)

CMP.L $24(A2),D0

BCC.S LFEA920

MOVEA.L $4E(A3),A2

ADDQ.B #1,$49(A3)

CMPI.B #$B,$49(A3)

BLT LFEA804

MOVE.B #0,$49(A3)

ADDQ.W #1,$4A(A3)

BRA LFEA7B8

MOVEA.L $44(A3),A1

JSR $FEA1BO

BRA.S LFEA936

MOVEA.L $44<A3),A1

MOVE.B #-4,$lF(Al)

BRA.S LFEA920

L (A7)+,A2-A4

\Error:

L A2,-(A7)

MOVEA.L $4E(A3),A2

MOVEQ #l,D0

jsr $FEA4 62

MOVEQ #0,D0

MOVE.W $4A(A3),D0

jsr $FEA3DA

LEA 1664(A2),A0

lea TrackMemoryl(pc), al

clr.l dO

move.b $43(a3),d0

lsl.w #2,dO

adda.l d0,al

move.l (al),al

bsr trackreadl

move.w FirstBlock(pc),D0

MOVE.B dO,3(A2)

lea ErrorFlag(pc),a0

tst.w (aO)

beq \Ende

MOVE.B l(aO),3(A2)

ADDQ.B #1,$42(A3)

/Motor on

;Head Posi.

/No Error

;Store error

249

Appendix B Amiga disk drives inside and out

\Ende:

MOVE.B $42(A3),DO

CMP.B $34(A3),DO

BGT.S \Ende

ANDI.B #3,DO

BNE.S LFEA9B6

MOVE.W #-lf$4C(A3)

BRA.S LFEA9AC

MOVEM.L (A7)+,A2

RTS

;End too many errors

/Track read and decoder

;>= Al = Pointer to buffer

;>= AO = Pointer to buffer

for decoded data

for coded data

Trackreadl:

\FL3:

\FL8:

MOVEM.L D2-D4/a4-a5,-(A7)

move.l aO,a5

move.l al,a4

lea ErrorFlag(pc),al

clr.w (al)

lea DecodeNum(pc),al

move.w #$080,(al)

lea $40(a5),a0

lea DecodeAdr(pc), al

move.l aO,(al)

adda.l #$400,aO

lea FTestAdr(pc),al

move.l aO,(al)

jsr $FEADDC

MOVE.B $41(A3),$BFD100

BTST #2,$BFE001

BNE.S \FL3

lea ErrorFlag(pc),al

move.w #NoDisk,(al)

BRA \FL5

bsr Disable

move.l a6,-(a7)

MOVEA.L A5,A6

move.l #$aaaaaaaa,(a6)+

move.w #$4489,(a6)+

bsr search

tst.l dO

bpl \FL8

lea ErrorFlag(pc) ,al

move.w #NoSync,(al)

bra \FL9

bsr FErase

clr.l d2

move.w BytesBefGap(pc),d2

tst.l d2

beq \FL1

lea BlockAdr(pc) ,al

clr.w (al)

bsr Numreadl

clr.l dO

/Number long words to decode

/Data area for 1. Blocks

/Address of next Block

/Check drive

/Disk in drive

/Ok

/No disk in drive

/Ende

/Track buffer

/store first Sync

/No Sync

/End

/Prepare track buffer

/Num. of Bytes before Gap

/No Bytes before Gap

/Offset im Block

/Bytes read

250

Abacus The Drive Accelerator

move.w BytesBefGap(pc),dO

move.l a5,a6

adda.l dO,a6 ;Pointer to next buffer

move.l #$aaaaaaaa,(a6)+

move.w #$4489,(a6)+ /store first sync

\FL1: move.w BytesAftGap(pc),d2

tst.l d2

beq \FL2

lea BlockAdr(pc),al

clr.w (al)

bsr Numreadl

bsr lastoneblock

\FL2: move.l #$aaaaaaaa,$2ecO(a5) ;Creat gap after data

BTST #2,$BFE001 /Disk in drive?

bne \FL9 /Ok, Disk in Drive

lea ErrorFlag(pc),al

move.w #NoDisk,(al)

\FL9: move.l (a7)+,a6

\FL5: bsr Enable

jsr $FEAE42 /drop drive

MOVEM.L (A7)+,D2-D4/a4-a5

RTS

/Prepare track buffer (clrear block start)

/>= A5 = Pointer to track buffer

FErase: move.1 a5,aO

move.w #10,dl

clr.l dO

\L1: move.l d0,$440(a0)

adda.l #$440,aO

dbf dl,\Ll

lea BlockReportl(pc),aO

move.w #10,dl

\L2: clr.w (a0)+

dbf dl,\L2

rts

/Read set number of bytes

/>= A6 = Pointer to destination

/>= D2 = Number of bytes to read

Numreadl:

bsr install

MOVE.W D2,D0

LSR.W #l,D0

ORI.W #$8000,DO

add.w #l,d0

MOVE.W DO,36(A1)

MOVE.W DO,36(A1)

bsr decode

LEA $DFF000,Al

MOVE.W #$4000,$24(Al)

rts

/Prepare to read

251

Appendix B Amiga disk drives inside and out

;>= A6 Pointer to track buffer

install: LEA $DFF000,Al

move.w #$4000,$24(al)

move.w #$8400,$9e(al)

move.w #$4489,$7e(al)

MOVE.L A6,$2O<A1)

move.w #$0002,$dff09c

rts

;Code long word and enter into buffer

;>= DO = Long word

;>= A0 = Pointer to buffer

;set Disk-Len back

/switch on Disk Sync

/SYNC-Mark

/pass buffer

CodeLWort:

\CH1:

\CH2:

;set border

Randsetone:

\CH4:

\CH5:

\CH6:

MOVEM.L D2-D3,-(A7)

MOVE.L D0,D3

LSR.L #l,D0

BSR \CH1

MOVE.L D3,D0

BSR \CH1

BSR Randsetone

MOVEM.L (A7)+,D2-D3

RTS

ANDI.L #$55555555,DO

MOVE.L D0,D2

EORI.L #$55555555,D2

MOVE.L D2,D1

LSL.L #1,D2

LSR.L #1,D1

BSET #$1F,D1

AND.L D2,D1

OR.L D1,DO

BTST #0,-1(A0)

BEQ.S \CH2

BCLR #$1F,DO

MOVE.L DO, (A0) +

RTS

MOVE.B (A0),D0

BTST #0,-1(A0)

BNE.S \CH4

BTST #6,DO

BNE.S \CH6

BSET #7,DO

BRA.S \CH5

BCLR #7,DO

MOVE.B DO,(A0)

RTS

/determine checksum

;>= Dl = Number of Bytes (must be divisible by 4)

/>= A0 = Pointer to buffer

/=> DO = Check sum

Checksum: MOVE.L D2,-(A7)

252

Abacus The Drive Accelerator

LSR.W #2,D1

SUBQ.W #1,D1

MOVEQ #0,D0

\PS1: MOVE.L (A0)+,D2

EOR.L D2,D0

DBRA D1,\PS1

ANDI.L #$55555555,DO

MOVE.L (A7)+,D2

RTS

/Decode block header

;>= AO is pointer to header

/=> DO = Header

Header: move.l (aO)+,DO

move.l (aO)+,Dl

andi.l #$55555555,dO

andi.l #$55555555,dl

lsl.l #1,DO

or.l D1,DO

rts

/find first block

/=> A6 = Pointer to track buffer

;=> DO = Null: Block found

;=> BytesBefGap = Number of Bytes before the Gap

;=> BytesAftGap = Number of Bytes after the Gap

search:

movem.l d2-d4/a2,-(a7)

move.w #11,d2 /Number of errors permitted

\SU1: bsr install

move.w #$8024,dO /$24 Words read

MOVE.W D0,$dff024

MOVE.W D0,$dff024

bsr Blockready /wait for ready Block

tst.l dO /Error, then DO = -1

bmi \SUError

lea 8(a5),aO /Pointer to Blockheader

moveq #$28,dl /number of long words

bsr Checksum /Sum for Header

move.l dO,d3 /Sum stored

lea 48(a5),a0 /*Sum

bsr Header /get sum from Header

cmp.l dO,d3 /compare sums

bne \SUNeu

lea 8(a5),a0

bsr Header /Header decode

move.w dO,d3 /Header to D3

lsr.w #8,d3

andi.w #$00ff,d3 /isolate sector number

addi.w #l,d3 /incr. sector number

cmp.w #$000a,d3 /Nummer > 10?

bis \SU2 /No, OK

clr.w d3 /Number = 0

253

Appendix B Amiga disk drives inside and out

\SU2: lea SectNum(pc),a2

move.w d3,<a2)

lea FirstBlock(pc),a2

move.w d3,(a2)

/Store number

/Number of first block

\SUNeu:

\SUok:

move.w d0fd3

andi.w #$ff,d3

cmp.b #$0c,d3

bcs.s \SUok

dbf d2,\SUl

bra \SUError

/Header

/Sectors to gap

/Header OK?

\SUError:

\SUEnd:

Blockready:

\B1:

\B2:

sub.w #l,d3

move.w d3,d2

move.w #$000b,d4

sub.b d2,d4

mulu #$440,d3

mulu #$440,d4

clr.l dO

lea BytesBefGap(pc), a2

move.w d3f <a2)

lea BytesAftGap(pc), a2

move.w d4, (a2)

lea SectBL(pc),a2

move.w #$0bf(a2)

bra \SUEnd

move.l #-l,dO

lea ErrorFlag(pc),a2

move.w #ReadError,(a2)

movem.l (a7)+,d2-d4/a2

rts

clr.l dO

move.l #$20000fdl

move.w #$0002,$dff09c

MOVE.W $DFF01E,D0

BTST #l,D0

bne.s \B2

sub.l #l,dl

bne \B1

move.l #-l,dO

RTS

/Num. of blocks to gap

/Num. of blocks after gap

/Num. of bytes to gap

/Num. of bytes to gap

/Sectors before gap to load

/Error-Flag cleared

/Disklnt cleared

/Error occoured

/decode bytes, unitl block ead

decode:

movem.l d2-d4/a2-a3, -(a7)

clr.l d3

move.l a3,d4

move.w BlockAdr(pc),d3

move.1 FTestAdr(pc),aO

move.1 DecodeAdr(pc),a2

move.w DecodeNum(pc),d2

/save drive-prot

/Offset in Block

/Address to test if

/Block already loaded

/Address, decode is done

/Number for decoding

254

Abacus The Drive Accelerator

\DC1:

\DC2:

MOVE.W $DFF01E,D0

BTST #1,DO

bne \DCEnd

tst.l (aO)

beq \DC1

movem.l aO-al,-(a7)

lea -$40(a2),al

move.l d4,a3

bsr BlockCheck

movem.l (a7)+,aO-al

move.w SectNum(pc),dO

mulu #$200fd0

move.1 a4,al

add.l dO,al

/Area read already

/Yes, end

/TestAdr

/Wait, until block read

/save registern

;* Block Start

;* Drive-Port

/Block check

/restore Register

/Basic address for dest. data

/Address of the Blocks

\DC3:

\DCEnd:

MOVE.W $DFF01E,D0

BTST #1,DO

bne.s \DCEnd

move.l (a2),D0

move.l $200(a2),Dl

adda.l #4,a2

andi.l #$55555555,dO

andi.l #$55555555,dl

lsl.l #1,DO

or.l D1,DO

move.l dO,(al,d3)

addq.w #4,d3

subq.w #1,D2

bne \DC2

adda.l #$240,a2

adda.l #$440,aO

move.l #$080,D2

clr.w d3

lea SectNum(pc),a3

add.w #1,(a3)

cmp.w #$0b,(a3)

bcs \DC3

clr.w (a3)

bra \DC1

/area already read

/store long word

/Decode number

/incr. Address

/TestAdr

/Decode number

/Offset to Null

/incr. Sector number

/Nummer > 10?

/No, OK

/Number = 0

lea BlockAdr(pc), a3

move.w d3,(a3)

lea DecodeAdr(pc),a3

move.l a2,(a3)

lea FTestAdr(pc),a3

move.l aO,(a3)

lea DecodeNum(pc) ,a3

move.w D2,(a3)

movem.l (a7)+fd2-d4/a2-a3

RTS

255

Appendix B Amiga disk drives inside and out

/decode last block

lastoneblock:

\LB1:

movem.l d2-d3/a2,-(a7)

move.w SectNum(pc),dO

mulu #$200,dO

move.l a4,al

add.l dO,al

clr.l d3

move.1 DecodeAdr(pc),a2

move.w DecodeNum(pc),d2

move.l (a2),D0

move.l $200(a2),D1

adda.l #4,a2

andi.l #$55555555,dO

andi.l #$55555555,dl

lsl.l #l,D0

or.l D1,DO

move.l dO,(al,d3)

addq.w #$4,d3

subq.w #1,D2

bne \LB1

movem.l (a7)+fd2-d3/a2

RTS

/Basic addres for dest. data

/Address of the blocks

/Decode number

/test Block for Errors

;A1 = Pointer to BlockStart

BlockCheck:

movem.l d2-d3/a2, -(a7)

clr.l d3

move.w SectNum(pc),d3

lsl.w #l,d3

lea BlockReportl(pc),aO

move.w (a0fd3),d0

tst.w dO

bne \CBEnd2

lea 64(al),aO

move.w #$400,dl

bsr Checksum

move.l dO,d2

lea 56(al),aO

bsr Header

cmp.l dO,d2

bne \DataIsFalse

lea 8(al),aO

bsr Header

move.w dO,d2

lsr.w #8,d2

cmp.b SectNum+1(pc),d2

bne \FalseoneSector

swap dO

/Sector number => Offset

/get entry

/already tested?

/Yes, end

/Sum for Data block

/save sum

/Pointer to Data sum

/Sum decoder

/Header decode

/store lowere word

/Sector number to d2

/rright Sector

/Track number to DO

256

Abacus The Drive Accelerator

cmp.b 77(a3),dO

bne \FalseoneTrack

andi.l #$ffOO,dO

cmp.w #$ffOO,dO

bne \KeinDosTrack

lea 8(al),aO

moveq #$28,dl

bsr Checksum

move.l dO,d2

lea 48(al),aO

bsr Header

cmp.l dO,d2

bne \HeaderlFalse

move.w #$fffffd0

\CBEndl: lea BlockReportl(pc) , aO

move.w dO,(aO,d3)

btst #0,-1(al)

beq \CB1

move.l #$2aaaaaaa,(al)

bra \CB2

\CB1: move.l #$aaaaaaaa,(al)

\CB2: move.l #$44894489,4(al)

move.w #$ffOO,dO

move.b 77(a3),dO

swap dO

move.b SectNum+1(pc),d0

lsl.w #8,dO

move.b SectBL+1(pc),d0

lea 8(al),aO

bsr CodeLWort

lea 8 (al),a0

moveq #$28,dl

bsr Checksum

lea 48 (al),aO

bsr CodeLWort

lea SectBL(pc),a2

subq.w #1,(a2)

\CBEnd2: movem.l (a7)+rd2-d3/a2

rts

/right Track?

;long word number

;Sum for Header

;save sum

;*Sum

;get sum from Header

/compare sum

/create new Header

/store Header

/long word number

/Sum for Header

/*Sum

/Checksum stored

\FalseoneSector

\FalseoneTrack:

\KeinDosTrack:

\HeaderlFalse:

\DataIsFalse:

\Flagsetone:

: move.w #$0017,dO

bra \Flagsetone

move.w #$0017,dO

bra \Flagsetone

move.w #$0017,dO

bra \Flagsetone

move.w #$001b,d0

bra \Flagsetone

move.w #$0019,dO

lea ErrorFlag(pc),a2

move.w dO,(a2)

bra \CBEndl

/Data bock coded

/>= DO = Length of source

/>= A0 = Pointer to Source

257

Appendix B Amiga disk drives inside and out

;>= Al = Pointer to Dest.

CopyBlock:

move.l a2,-(a7)

move.l aO,a2

LSL.W #2,DO

ORI.W #8,DO

lea $dff000,a0

bsr BlitWait

bsr BlitterCode

move.l (a7)+,a2

RTS

;A0 = $dffOOO

;D0 = Length of source

;D1 = Source

;A5 = Dest

BlitterCode:

bsr Modulu

MOVE.L a2f$50<A0)

MOVE.L al,$54(A0)

MOVE.W #$09F0,$40(A0)

MOVE.W #0,$42(A0)

bsr StartBlit

rts

/Blit start and wait for end of Blitter

;set Modulu

/Source

/Dest

StartBlit:

BlitWait:

MOVE.W dO,$dffO58

btst #14,$dff002

bne.s BlitWait

rts

/Modulu for coding set

/>= AO = $dff000

Modulu:

movem.l dO/al,-(a7)

MOVEQ #0,D0

LEA $44(AO),A1

MOVE.L #-1,<A1)

LEA $62<AO),A1

MOVE.L DO,(Al)+

MOVE.W DO,(Al)+

movem.l (a7)+,dO/al

rts

BytesBefGap:

BytesAftGap:

ErrorFlag:

DecodeNum:

DecodeAdr:

FTestAdr:

dc.w

dc.w

dc.w

dc.w

del

del

0

0

0

0

0

0

258

Abacus The Drive Accelerator

BlockAdr:

SectNum:

FirstBlock:

SectBL:

TrackMemoryl

TrackMemory2

TrackMemory3

TrackMemory4

BlockReportl

TrackName:

Ende:

dc

dc

dc

dc

:dc.l

:dc.l

:dc.l

:dc.l

: ds

dc

.w

.w

.w

.w

0

0

0

0

• W

.b

END

0

0

0

0

11

1trackdisk.device' ,0,0

259

Abacus The Deepcopy Program

/The listing of the copy program DeepCopy.s

;from the Abacus book

;Amiga Disk Drives Inside and Out

/Assembled using the AssemPro Assembler

key

Cont

IntCon

MaxWait

MinWait

Textout

InitRastPort

Movee

Draw

RectFill

SetAPen

InitBitMap

ExecBase

AllocMem

AvailMem

FreeMem

OldOpenLibrary

CloseLibrary

FindName

MEMF_Chip

MEMF_Fast

MEMF_Largest

DevList

Port

IDNestCnt

= $BFEC01

= $BFEE01

= $BFED01

= $4000

= $1000

:s.library

= -30 - 30

= -30 -168

30 -210

= -30 -216

= -30 -276

= -30 -312

= -30 -360

►library ————————

4

= -30 -168

= -216

= -30 -180

= -30 -378

= -30 -384

= -276

= $02

= $04

= $20000

= 350

= 36

= 294

/Drive 0

floppy_size = floppyend - floppy

floppy_s = floppy_size/6-l

ON =1

OFF = 0

/Error-Flag Values

NoError = $0000

NoSync = $0001

LengthUnequal = $0002

LengthUnequal2 = $0003

265

Appendix C Amiga disk drives inside and out

NoDisk

ReadError

VerifyError

DiskProtect

NotProtect

Escape

CopyAttemptl

CopyAttempt2

;Load options

WithoutSync

WithSync

/Write options

NoIndex

IndexOk

= $0004

= $0005

= $0006

= $0007

= $0008

= $0009

= 3

= 3

= $0000

= $ffff

= $0000

= $ffff

/Attempts on illegal Data

/Attempts on NoSync

/Size of memory used

SortBlockNum = $40 /Number of blocks,

/whose length is sorted

Bytesread = $3600

BSize = 2*Bytesread

req = 2 /Chip-Memory

CIAA = $BFE000

GapLengthF = $500 /Length of Gap for FastCopy

NumReadsF = 5 /Number of Read attempts for Readerror (Fast)

/Values for Cruncher

ShrtNull

MiddleNull

LongNull

ShrtNorm

MiddleNorm

LongNorm

ShrtNone

MiddleNone

LongNone

EmptyBlock

\An2:

\Anl:

= $80

= $20

= $08

= $40

= $10

= $04

= $c0

= $30

= $02

= $01

lea DevName,al

move.l $4,a6

lea DevList(a6),aO

jsr FindName(a6)

move.l d0,a0

beq Ende

lea Port(a0),a0

clr.w dO

tst.l (a0) +

beq \Anl

bset dO,Drives

addq.w #l,d0

266

Abacus The Deepcopy Program

move,

lea

jsr

move,

beq

move,

move,

jsr

move,

beq

move,

move,

jsr

move

beq

copy_start:

\ME7:

\ME5:

cmp.w #4,dO

bne.s \An2

1 ExecBase,a6

gfxname,al

OldOpenLibrary(a6)

1 dO,gfxbase

no_gfxbase

1 #$2800,dO

1 #$10002,dl

AllocMem(a6)

1 dO,bit__adress

no__bitmap

1 #copsize+2,dO

1 #$10002,dl

AllocMem(a6)

1 d0,cop_adress

no_copper

MOVE.L #BSize,D0

MOVE.L #req,Dl

JSR AllocMem(A6)

TST.L DO

BEQ no_DPuffer

MOVE.L DO,TrackBufferl

addq.l #6,TrackBufferl

add.l #Bytesread-6,dO

move.l D0,TrackBuffer2

bsr GetMemory

bra beg

MOVE.L $4,A6

MOVE.B #$FF,$BFD300

move.w #$0020,$dff09a

JSR Disable

MOVE.W #$8210,$DF096

clr.w FreeFlagCh

clr.w FreeFlagFa

/Memory for Cruncher

;set DMA-Reg.

bsr HeadMov

bsr Start_End

cmp.b #ON,dcl

beq \ME7

cmp.b #ON,dc2

bne \ME5

move.b SD,dO

cmp.b DD,dO

beq \ME6

bsr SwitchS

bsr TestProtect

tst.l dO

bmi \ME4

bsr protect_source

tst.l dO

bmi \ME3

bra \ME5

;set Heads to 0 and set Motorbits

/determine copy area

/Deepcopy 1

/one Drive-Copy?

/yes

/Escape

\ME4:

267

Appendix C Amiga disk drives inside and out

/Fastcopy on?

/Deepcopyl on?

;Deepcopy2 on?

\ME1:

\ME2:

\ME6:

\ME3:

cmp

bne

bsr

bra

cmp

bne

bsr

bra

cmp

bne

bsr

bsr

bsr

bsr

bsr

.b #ON,fa

\ME1

FastCopy

\ME3

.b #ONfdcl

\ME2

DeepCopy

\ME3

.b #0N,dc2

\ME3

DeepCopy

SwitchS

MotorOff

SwitchD

MotorOff

move.w #$0600,$dff09e

move.w #$8100f$dffO9e /restore Bits

\Error: bsr Enable

move.w #$8020f$dffO9a

Ende: rts

TextoutL: move.w StartTrack,dO

lsr.w #l,dO

move.b dO,Cylinder

bsr reading_cyl

rts

TextoutS: move.w StartTrack,dO

lsr.w #l,dO

move.b dO,Cylinder

bsr writing_cyl

rts

/output Read-Error

RError: move.w StartTrack,dO

move.b #l,side

btst #0,d0

bne \RE1

clr.b side

\RE1: lsr.w #l,dO

move.b dO,Cylinder

bsr read_error

rts

/output Write-Error

WError: move.w StartTrack,dO

move.b #l,side

btst #0,d0

bne \RE1

clr.b side

\RE1: lsr.w #l,dO

move.b dO,Cylinder

bsr write_error

rts

FastCopy:

bsr GapCreate

268

Abacus The Deepcopy Program

\FC1:

move.b DD,dO

cmp.b SD,dO

beq \FC1

bra FastCopyML

bra FastCopyEL

/for several Drives

;for one Drive

;FastCopy for several Drives

FastCopyML:

bsr SwitchD

\FC5:

\FC1:

\FC3:

\FC2:

\Error

bsr TestProtect

tst.l dO

bpl \FC1

bsr protect_Destination

tst.l dO

bmi \Error

bra \FC5

bsr TextoutL

bsr TrackLSF

cmp.w #NoDisk,ErrorFlag

beq \Error

bsr SwitchD

move.w StartTrack,dO

bsr HeadPos

bsr TextoutS

bsr TrackFastWrite

cmp.w #NoDisk,ErrorFlag

beq \Error

cmp.w #DiskProtect,ErrorFlag

bne \FC3

bsr protect__destination

bra \Error

cmp.b #ON,vd /Verify ON

bne \FC2 /branch if

bsr TrackFVerify

cmp.w #NoDisk,ErrorFlag

beq \Error

cmp.w #VerifyError,ErrorFlag

bne \FC2

bsr WError

bsr compare_drives

add.w #1,StartTrack

move.w StartTrack,dO

cmp.w EndTrack,dO

bis \FC1

rts

/Escape

/load Track from Source

?

not

/FastCopy for one Drive

FastCopyEL:

\FCEL1:

clr.b ShrtByte

move.w #$1600,Length

bsr NextMemory

bsr TestProtect

tst.l dO

bmi \FCEL3

bsr protect_Source

/ShortByte for Chruncher = 0

/assign memory

269

Appendix C Amiga disk drives inside and out

\FCEL3:

\FCEL7:

\FCEL5:

\FCEL6:

\FCEL8:

\FCEL2:

FCopylDL:

\FCD1:

tst.l dO

bmi \FCEL2

bra \FCEL1

bsr FCopylDL

tst.l dO

bmi \FCEL2

move.l WriteAddrs,a5

add.l #GapLengthF,a5

/Escape activated

;read in memory

move.w TNumBufferA,StartTrack

bsr insert_destination

tst.l dO

bmi \FCEL2

bsr TestProtect

tst.l dO

bpl \FCEL6

bsr protect_Destination

tst.l dO

bmi \FCEL2

bra \FCEL5

bsr FCopylDS

tst.l dO

bmi \FCEL2

cmp.b #ON/ws

bne \FCEL8

bsr write__b_again

cmp.w #Escape,ErrorFlag

beq \FCEL2

tst.l dO

bpl \FCEL7

/Escape

/Escape activated

/Write Tracks

/write repeatedly

/no

; write again

move.w StartTrack,TNumBufferA

move.w TNumBufferE,dO

cmp.w EndTrack,dO

bcc \FCEL2

bsr insert_source

tst.l dO

bmi \FCEL2

bra \FCEL1

rts

bsr TrackLSF

/Escape

/load Track from

cmp.w #NoDisk,ErrorFlag

beq \Error

move.l TrackBuffer2,aO /pass Pointer

bsr Packe /crunch Track

tst.l dO

bmi \FCD2 /memory full

bsr TextoutL /output Text

add.w #1,StartTrack

move.w StartTrack,dO

cmp.w EndTrack,dO

bis \FCD1

\FCD2: subq.w #1,StartTrack

clr.l dO

move.w StartTrack,TNumBufferE /Last Track

rts

270

Abacus The Deepcopy Program

\Error: move.l #-l,dO

rts

/Copy portion for writing with one Drive

FCopylDS:

move.w StartTrack,dO /first Track read

\FDS1: bsr HeadPos

bsr TextoutS

move.l TrackBuffer2,aO /Buffer for Track (Target)

bsr EntPacke /Track in regular size again

move.l a5,al /Target (TrackBufferl + Gap)

move.l TrackBuffer2,aO /Source

move.w StartTrack,dO /Track to be read

bsr CodeTrack /code Track

move.w #00,FirstBlockSp /first Block = Null

bsr TrackFastWrite

cmp.w #NoDiskfErrorFlag

beq \Error

cmp.w #DiskProtect,ErrorFlag

bne \FDS3

bsr protect__destination

bra \Error

\FDS3: cmp.b #ON,vd /Verify ON ?

bne \FDS2 /branch if not on

bsr TrackFVerify

cmp.w #NoDisk,ErrorFlag

beq \Error

cmp.w #VerifyError,ErrorFlag

bne \FDS2

bsr WError

\FDS2: bsr Get_Key /Escape activated?

cmp.b #$45fd0

bne \FCS4 /no, continue

move.w #Escape,ErrorFlag

bra \Error

\FCS4: addq.w #l,StartTrack

move.w StartTrack,dO

cmp.w TNumBufferE,dO

bis \FDS1

clr.l dO

clr.w FreeFlagCh /Chip-Mem is available again

clr.w FreeFlagFa /Fast-Memomory is available again

rts

\Error: move.l #-l,dO

rts

/crunch Track and store

/>= AO Pointer to TrackBuffer

Packe: /Pointer to Track

move.l a2,-(a7)

move.l aO,a2

\PA2: lea TrackPointer,aO /Pointer to Track-Table

clr.l dO

move.w StartTrack,dO /Track-Number

lsl.w #2,dO

adda.l dO,aO /Pointer to Memory

271

Appendix C Amiga disk drives inside and out

\PA1:

move.l MemoryBeg,<aO)

move.l MemoryBeg,al

move.l a2fa0

bsr Crunch

tst.l dO

bpl \PA1

bsr NextMemory

tst.l dO

bpl \PA2

move.l (a7)+,a2

rts

/store Pointer to Track

;Ok, continue

;get new Mempory

;Ok, Memory obtained

;get Track from memory;>= AO - Pointer to Target for Track

EntPacke:

move.l aO,al

lea TrackPointer,aO /Pointer to Track-Table

clr.l dO

move.w StartTrack,dO ;Track-Number

lsl.w #2,dO

adda.l dO,aO /Pointer to memory

move.l (aO),aO /get Pointer to Track

bsr DeCrunch

rts

GetMemory:

\HS1:

\HS2:

move.l a6r-(a7)

move.l #MEMF_Chip,dl

or.l #MEMF_Largest,dl

move.l ExecBase,a6

jsr AvailMem(a6)

move.1 dO,LengthChip

bne \HS1

clr.l MemoryChip

bra \HS2

jsr AllocMem(a6)

move.l dO,MemoryChip

move.l #MEMF_Fast,dl

or.l #MEMF_Largest,dl

jsr AvailMem(a6)

move.l dOfLenghtFast

bne \HS3

clr.l MemoryFast

bra \HS4

jsr AllocMem(a6)

move.l dO,MemoryFast

move.l (a7)+,a6

clr.w FreeFlagCh

clr.w FreeFlagFa

rts

/get next memory block

NextMemory:

tst.w FreeFlagCh

bpl \NS1

tst.w FreeFlagFa

bpl \NS4

\HS3:

\HS4:

;no Chip available

/get Fast-Memory

\NS3:

/ok

/no fast memory available

/memory is free

/Chip not available

/Yes, is free

/Fast memory still available

/Yes, is free

272

Abacus The Deepcopy Program

\NS5:

\NS4:

\NS1:

\NS6:

\NS2:

move.l #-l,dO

bra \NS2

move.l MemoryFast,dO

beq \NS5

move.l LenghtFast,dl

move.w #$fff-&>FreeFlagFa

bra \NS6

move.l MemoryChip,dO

beq \NS3

move.l LengthChip,dl

move.w #$ffff,FreeFlagCh

move.l dO,MemoryBeg

move.l dl,MemoryLength

clr.l dO

rts

/no memory free

;no Fast memory free

;Fast memory occupied

;no Chip free

/occupy Chip

/load Track (Fastcopy)

/>= StartTrack = Track to be loaded

/=> SBytes = Number of Bytes to be written

/=> WriteAddrs = Address from which writing starts

TrackLSF:

\TSF6:

movem.l d2/a2,-(a7)

bsr SwitchS

move.l TrackBufferl, a5

move.l a5,WriteAddrs

add.l #GapLengthF,a5

move.l TrackBuffer2,a4

move.w #(GapLengthF+$2ecO+2),SLength

move.w StartTrack,dO

bsr HeadPos

move.w #NumReadsF-l,d2

bsr FastReads

move.w FirstBlock,FirstBlockSp /I. Block loaded

cmp.w #NoDisk,ErrorFlag

beq \TSF7

cmp.w #ReadError,ErrorFlag

bne \TSF5

/branch, if reading again

/No Sync found

dbf d2,\TSF6

tst.l dO

bpl \TSF1

move.l a4,aO

bsr DOSClear

\TSF1:

/pass Buffer

/store Track empty

/output error

\TSF5:

\TSF7:

bsr RError

move.l a4,aO

move.l a5,al

move.w StartTrack,dO /pass Track-Number

bsr CodeTrack /generate Track from data

clr.w FirstBlockSp /first Block = 0

clr.l dO

movem.l (a7)+,d2/a2

rts

/enter Gap Bytes in Track-Buffer

GapCreate:

273

Appendix C Amiga disk drives inside and out

move.l TrackBufferl,aO

move.w #(GapLengthF/4)+4,dO

\LS1: move.l #$aaaaaaaa,(aO)+

dbf dO,\LSl

rts

TrackFVerify:

movem.l d2-d4/a4-a5,-(a7)

clr.w d3 /Dest.-Counter

clr.w VerErrFlag /erase Verify-Error-Flag

move.b MotorBits,d4 /store Motor Bits

\TF2: move.l TrackBuffer2,a5

move.l TrackBufferl,a4

add.l #GapLengthF,a4

\TF1:

move.b tr,d2 /number of Write attempts

move.w d3,dl /Dest.-Number to Dl

bsr SwitchND /switch on Desti.. it ion

tst.l dO /Drive present

bmi \TF6 /No

\TF4: bsr FastVerify

cmp.w #NoDiskfErrorFlag

beq \TF3 /Error, No Disk

cmp.w #VerifyError,ErrorFlag

bne \TF6 /no Error, continue

subq.b #lfd2 /decrement Error-Counter

bne \TF5 /continue if another attempt

bset d3,VerErrFlag /set Bit for Error

\TF6: addq.w #lrd3 /increment Dest.number

cmpi.w #4fd3

bcs \TF1

bra \TF3 /no additional Drives

\TF5: bsr TrackFastWrite

bra \TF4

\TF3: move.b d4,MotorBits

movem.l <a7)+,d2-d4/a4-a5

rts

TrackFastWrite:

move.l a5,-(a7)

move.l WriteAddrs,a5

move.w SLength,dO

move.w #NoIndex,dl

bsr Writer

move.l (a7)+,a5

rts

DeepCopy:

move.b DD,dO

cmp.b SD,dO

beq \DC1

bra DeepCopyML /for several Drives

\DC1: bra DeepCopyEL /for one Drive

DeepCopyEL:

move.b #$aa,ShrtByte /ShortByte for Chruncher = aa

bsr NextMemory /assign memory

bsr insert_destination

274

Abacus The Deepcopy Program

\FCEL9:

\FCEL10:

\FCEL11:

\FCEL1:

\FCEL3:

\FCEL7:

\FCEL5:

\FCEL6:

\FCEL8:

\FCEL2:

tst.l dO

bmi \FCEL2

bsr TestProtect

tst.l dO

bpl \FCEL10

bsr protect_Destination

tst.l dO

bmi \FCEL2

bra \FCEL9

bsr LengthTest

move.w StartTrack,TrackNumS

/Escape activated

/Length for Cruncher

/Escape activated

/read into memory

move.w LenghtDest,dO

addi.w #$10,dO

move.w dO,Length

bsr insert__source

tst.l dO

bmi \FCEL2

bsr TestProtect

tst.l dO

bmi \FCEL3

bsr protect_Source

tst.l dO

bmi \FCEL2

bra \FCEL1

bsr DeepCopylDL

tst.l dO

bmi \FCEL2

move.w TNumBufferA,StartTrack

bsr insert_destination

tst.l dO

bmi \FCEL2

bsr TestProtect

tst.l dO

bpl \FCEL6

bsr protect_Destination

tst.l dO

bmi \FCEL2

bra \FCEL5

bsr DeepCopylDS

tst.l dO

bmi \FCEL2

cmp.b #ON,ws

bne \FCEL8

bsr write_b_again

cmp.w #Escape,ErrorFlag

beq \FCEL2

tst.l dO

bpl \FCEL7 / write again

move.w StartTrack,TNumBufferA

move.w TNumBufferE,dO

cmp.w EndTrack,dO

bcs \FCEL11

rts

/Escape activated

/Write Tracks

/write several times

/no

DeepCopylDL:

\FCD1: clr.w ErrorFlag

275

Appendix C Amiga disk drives inside and out

bsr TrackLS /load Track from Source

cmp.w #NoDisk,ErrorFlag

beq \Error

move.l TrackBuffer2,aO ;pass Pointer

move.l WriteAddrs,al

lea -6<aO),aO

move.l al,(aO)

move.w SLength,4(aO)

bsr Packe /crunch Track

tst.l dO

bmi \FCD2 /Memory full

bsr TextoutL

\FCD3: add.w #1,StartTrack

move.w StartTrack,dO

cmp.w EndTrack,dO

bis \FCD1

\FCD2: subq.w #1,StartTrack

clr.l dO

move.w StartTrack,TNumBufferE /Last Track

rts

\Error: move.l #-l,dO

rts

/Copy part for writing with one Drive

DeepCopylDS:

move.w StartTrack,dO /first Track read

\FDS1: bsr HeadPos

bsr TextoutS

move.l TrackBuffer2,aO /Buffer for Track (Target)

lea -6(aO),aO

bsr EntPacke /Track again in normal size

move.l TrackBuffer2,aO

move.l -6(aO),WriteAddrs

move.w -2(aO),SLength

move.l #$aaaaaaaa,-4(aO)

bsr TrackWriter

cmp.w #NoDisk,ErrorFlag

beq \Error

cmp.w #DiskProtect,ErrorFlag

bne \FDS3

bsr protect__destination

bra \Error

\FDS3: cmp.b #ON,vd /Verify ON ?

bne \FDS2 /branch, when not on/

bsr TrackFVerify

; cmp.w #NoDisk,ErrorFlag

; beq \Error

* cmp.w #VerifyError,ErrorFlag

bne \FDS2

; bsr WError

\FDS2: addq.w #1,StartTrack

move.w StartTrack,dO

cmp.w TNumBufferE,dO

bis \FDS1

clr.l dO

clr.w FreeFlagCh /Chip-Mem is free again

276

Abacus The Deepcopy Program

clr.w FreeFlagFa ;Fast-Mem is free again

rts

\Error: move.l #-l,dO

rts

DeepCopyML:

bsr SwitchD

\DC5: bsr TestProtect

tst.l dO

bpl \DC3

bsr protect_Destination

tst.l dO

bmi \Error /Escape activated

bra \DC5

\DC3: bsr LengthTest

tst.l dO

bmi \Error

\DC1:

bsr TextoutL

bsr TrackLS ;load Track from Source

cmp.w #NoDisk,ErrorFlag

beq \Error

bsr SwitchD

move.w StartTrack,dO

bsr HeadPos

bsr TextoutS

bsr TrackWriter

cmp.w #NoDisk,ErrorFlag

beq \Error

cmp.w #DiskProtect,ErrorFlag

bne \DC2

bsr protect_destination

bra \Error

\DC2: add.w #1,StartTrack

move.w StartTrack,dO

cmp.w EndTrack,dO

bis \DC1

\Error: rts

;load Track from Source or Destination

;>= StartTrack = Track which will be loaded

TrackLS: bsr SwitchS

move.l TrackBufferl,a5

move.w StartTrack,dO

bsr HeadPos

bsr TrackLoader

rts

/Check length of Source- and Dest.-Diskette

;=>CheckLength = Length of Source-Disk

;=>LenghtDest = Length of Dest.-Disk

LengthTest:

bsr SwitchD

277

Appendix C Amiga disk drives inside and out

move.w StartTrack,dO

bsr HeadPos

move.l TrackBuffer2,a5

bsr erase

move.w #Bytesread-$15,dO

bsr Writer

tst.l dO

bmi \TD1 /Disk write protected

bsr Counter

tst.l dO

bmi \TD1 ;No Disk in Drive

move.w CheckLength,LenghtDest

\TD1: rts

;load Track after setting Motor Bits

;>= A5 = Pointer to the Read buffer

;=> WriteAddrs = Pointer to Data for writing

;=> SLength = Number of Bytes to be written

TrackLoader:

move.w #CopyAttemptl,CopyTryl

Attempt1:

move.w #CopyAttempt2,CopyTry2

/Attempts, on NoSync

Attempt2:

/measure length of Track (Index <=> Index)

/read data without DMA in Buffer starting at A5

move.w #NoError,ErrorFlag

bsr Counter /=> CheckLength = Length of Track

tst.l dO /Disk in Drive?

bmi \TrackLoaderEnd

/measure distance from Index to Sync

/if no Sync, then DO = -1

/=> Syncwidth = distance to Sync

bsr Syncdistance

tst.l dO

bpl \OK2

sub.w #l,CopyTry2

bne Attempt2

/Program part when no Sync is found

\TL7: move.l TrackBuffer2fa5

bsr CopyOSync

bra \TL11

\0K2:

move.w CheckLength,dO

add.w #$100,dO

move.w #WithSync,dl

bsr loader

move.w SyncWord,(a5) /store first Sync

278

Abacus The Deepcopy Program

/determine number of Bytes to Track (Sync to Sync)

;=> DO = -1, if number deviates too much from CheckLength

;=> TrackBytes = Length of Track

bsr SrchTEnd

tst.l dO

bpl \TL3

bsr SrchTEnd2

tst.l dO

bpl \TL3

sub.w #l,CopyTryl

bne Attempt1

move.w CheckLengthrTrackBytes

sub.w #$10,TrackBytes ;if no End found

/shorten Track

;search for Gap if Sync was found

/>= A5 Pointer to beginning of Track

;=> Sizel = Size of the largest Block

;=> Size2 = Size of the second largest Block

;=> SizePos = Position of the largest Block

/=> SyncNum = Number of Syncs found

\TL3:

clr.l dO

move.w TrackBytes,dO

add.l a5,dO

move.l dO,EndPos

bsr Blockidentify

cmp.w #SortBlockNum,SyncNum

bis \TL2 /Number of Sync Ok

;Too many Blocks for intermediate memory

move.l SizePos,BegPos /Gap in largest Block

bra \TL1 ;Too many Blocks to sort

\TL2:

\TL4:

\TL5:

\TL1:

\TL11:

bsr TrackAmiga

tst.l dO

bpl \TL4

cmp.b #ON,sy

bne \TL5

bsr Synccorrector

bsr OrderBlocks

bsr SearchGap

move.l TrackBuffer2,a4

bsr Entirecopy

clr.l dO

\TrackLoaderEnd:

rts

/Test if Amiga-Track

/branch if Amiga-Track

/Sync correction

/no

/Destination for copyi

/erase Error-Flag

/load Track which has no Sync

/>= A5 = Track-Buffer

279

Appendix C Amiga disk drives inside and out

/=> GapLength = Length of Gap

;=> Syncwidth = 0 (no Sync)

;=> TrackBytes = Number of Bytes on the Track

CopyOSync:

\COS7:

\COS6:

movem.l d2-d3,-(a7)

move.w CheckLength,dO

cmp.w #Bytesread-50,d0

bcc \COS7

add.w #36,dO

bra \COS6

move.w #Bytesread-50,CheckLength

move.w #Bytesread-16,dO

move.w #WithoutSync,dl

bsr loader

tst.l dO

bmi \COS1

move.w CheckLength,dl

sub.w #50,dl

/Source-Track too long

\COS2:

\COS4:

\COS3:

\COSOK:

\COS5:

\COSNO:

move.l a5,aO

move.b (aO)+,d2

move.b (aO)+,d3

cmp.b d2,d3

bne \COS4

sub.w #l,dl

bne \COS2

bra \COSOK

add.l #2,aO

move.b (aO)+,d2

move.b (aO)+,d3

cmp.b d2,d3

bne \COSNO

sub.w #l,dl

bne \COS3

move.l a5,aO

move.w LenghtDest,dO

add.w #$10,dO

move.b d2,(aO)+

dbf dO,\COS5

move.w LenghtDest,dO

/Track-Buffer

;get first Byte

/compare Bytes

;not equal

/increase number

/Track the same every

;jump over Gap

/compare Bytes

/not always the same

/increment Counter

\COS1:

TrackWriter:

add.w #$4,d0

move.w dO,TrackBytes

move.w dO,SLength

move.l a5,WriteAddrs

move.w #NoSync,ErrorFlag

clr.l dO

movem.l (a7)+,d2-d3

rts

move.l #-l,dO

rts

/number of write bytes

/beginning of Data

280

Abacus The Deepcopy Program

move.l WriteAddrs,a5

move.w SLength,dO

bsr Writer

rts

erase:

move.l TrackBuffer2,AO

move.w #(Bytesread-$10)/4,dO

\ER2: move.l #$aaaaaaaa,(aO)+

dbf dO,\ER2

rts

/determine copy area (Start- and End-Cylinder)

;>= StartTrack = Track where start is made (Track!!)

/>= EndTrack = Track which is copied last (Track!!)

StartJEnd: clr.l dO

move.b fc,dO /first Cylinder

lsl.b #l,dO /Cylinder => Track

move.w dO,StartTrack

move.w dO,TNumBufferA

move.b lc,dO /last Cylinder

lsl.b #l,dO /Cylinder => Track

add.w #l,dO /last Track = bottom side

move.w dO,EndTrack

rts

/test if Disk is in the Drive

/=> DO = -1, if no Disk in the Drive

DisklnFloppy:

clr.l dO

move.b $bfe001,d0

btst #2,dO

bne \DIF

move.l #-l,dO

move.w #NoDisk,ErrorFlag

\DIF: rts

/load Track

;A5 = Pointer to Data-Buffer

Loader: MOVEM.L d2-d3,-(A7)

move.w dO,d3 /read Byte num

lsr.w #l,d3

bsr DisklnFloppy

tst.l dO

bmi \L1

MOVE.W #$8010,$DFF096 /enable Disk-DMA

move.w #$7fOO,$DFF09E /erase Disk-Bits

MOVE.L A5,A1 /Pointer to Data-Buffer

MOVE.L Al,$DFF020 /pass Data-Buffer

cmp.w #WithSync,dl

bne \L3

MOVE.W SyncWord,$DFF07E /pass SYNC-Word

move.w #$8500f$DFF09E

lea 2(a5),al

281

Appendix C Amiga disk drives inside and out

move.l al,$DFF020 /pass new Address

bra \L4

\L3: MOVE.W #$8100,$DFF09E ;To MFM-Format

\L4: MOVE.W #$4000,$DFF024 /prepare transmission

bsr Index /wait to Index

tst.l dO

bmi \L1

or.w #$8000,d3

MOVE.W d3,$DFF024

MOVE.W d3,$DFF024 /read Data

clr.l dO /report Ok

MOVE.L #$18000,Dl /set time counter

move.w #$0002,$dff09c /erase Blockdone-Int.

\L2: MOVE.W $DFF01E,D2

BTST #1,D2

BNE.S \L1 /wait for Disk-Block-Ready

SUBQ.L #1,D1 /decrement Counter

BNE.S \L2 /branch when not done

move.l #-l,d0

\L1: MOVE.W #$4000,$DFF024

\L5: MOVEM.L (A7)+,D2-d3

RTS

/wait for Index hole

Index:

move.l dl,-(a7)

clr.l dO

move.l #$30000,dl

MOVE.B $BFDD00,D0

Indexl: MOVE.B $BFDD00,D0 /wait for Index hole

BTST #4,DO

Bne.s Index2

sub.l #l,dl

bne Indexl

move.l #-l,d0

Index2:

move.l (a7)+,dl

rts

/determine Motorbits, set Heads to zero

HeadMov:

movem.l d2-d4,-(a7)

clr.w d3

move.b DD,d2

or.b SD,d2

\KA1: clr.l dO

btst d3,d2

beq \KA2

bset d3,dO

lsl.b #3,dO

eor.b #$fb,dO

move.b d0,MotorBits

bsr MotorOn

/Dest.-Drives

/Source-Drives

/Drive now in use

/not in use

/Bit for Drive

282

Abacus The Deepcopy Program

\KA2:

TestDrive:

;=> DO = -1

TestProtect:

\TP2:

\TP1:

clr.l dO

bsr HeadPos

addq.w #l,d3

cmp.w #4,d3

bne \KA1

bsr MotBits

move.b MotorBitsD,MotorBits

move.b #-l,Flag

clr.w TrackNumS

clr.w TrackNumD

bsr SwitchS

movem.l (a7)+,d2-d4

rts

move.l aO,-(a7)

lea $bfd000fa0

bclr #l,MotorBits

bsr Stepper

bset #1,MotorBits

bsr Stepper

move.l (a7)+,aO

rts

=> Disk protect

bsr TestDrive

clr.w ErrorFlag

move.b $bfe001,d0

btst #3,dO

bne \TP2

move.w #DiskProtect,ErrorFlag

move.l #-l,dO

bra \TP1

clr.l dO

rts

/place Head in position indicated by DO

HeadPos:

Upper:

MOVEM.L D0-D3,-(A7)

lea $bfd000,a0

tst.w dO

beq HeadNull

move.w TrackNum,d2

CMP.W d2,D0

BEQ.S Headend

move.w dO,d3

move.b MotorBits,dl

bset #2,dl

btst #0,d3

beq Upper

bclr #2,dl

move.b dl,MotorBits

move.b dl,$100(a0)

move.w d3,TrackNum

lsr.w #l,d2

/current Track-Number

;End when right Track

;Track-Number to D3

/lower Head

/select lower Head

/upper Head

283

Appendix C Amiga disk drives inside and out

In:

Out:

Heads:

rechok:

Headend:

HeadNull:

HeadNulll:

\Hel:

lsr.w #l,d3

sub.w d3,d2

bcs.s In

bhi.s Out

bra Headend

bclr #l,dl

move.b dl,MotorBits

neg.w 6.2

bra.s rechok

bset #l,dl

move.b dl,MotorBits

bra.s rechok

bsr Stepper

dbf d2,Heads

movem.l (a7)+,dO-d3

rts

move.b Motorbitsfdl

bset #2,dl

bset #l,dl

move.b dl,Motorbits

clr.w TrackNum

move.b $bfe001,d0

btst #4,dO

beq.s \Hel

bsr Stepper

bra HeadNulll

bclr #1,MotorBits

bsr Stepper

bset #1,MotorBits

bsr Stepper

bra Headend

/calculate steps

Stepper:

move.b MotorBits,dO

lea $100(a0),al

move.b dO,dl

bclr #0,d0

move.b dO,(al)

nop

nop

move.b dl,(al)

jsr Timer

move.b MotorBits,(al)

rts

/Wait loop

Timer:

\L1:

Timer2:

MOVE.L D7,-(A7)

MOVE.W #2500,D7

DBRA D7,\L1

MOVE.L (A7)+,D7

RTS

MOVE.L D7,-(A7)

MOVE.L #$6000,D7

284

Abacus The Deepcopy Program

\L1: sub.l #1,D7

bne \L1

MOVE.L (A7)+,D7

RTS

;Motor routine: D0=0 => Motor off

MotorOff:

MotorOn:

Motor:

Mook:

Disable:

Enable:

L005:

clr.l dO

bra Motor

move.b #$01,dO

movem.l dl/d2,-(a7)

lea $bfd000,a0

tst dO

seq dl

andi.b #$80,dl

move.b MotorBits,d2

andi.b #$80,d2

cmp.b dl,d2

beq.s Mook

bclr #7,MotorBits

or.b dl,MotorBits

move.b #$ff,dl

eor.b d2,dl

move.b dl,$100(a0)

move.b MotorBits,$100(aO)

btst #7,MotorBits

bne Mook

jsr Timer2

movem.l (a7)+,dl/d2

rts

move.w #$4000,$dff09a

move.l a6,-(a7)

move.l $4,a6

add.b #l,IDNestCnt(a6)

move.l (a7)+,a6

rts

move.l a6,-(a7)

move.l $4,a6

sub.b #l,IDNestCnt(a6)

bge L005

move.w #$c000,$dffO9a

move.l <a7)+,a6

rts

/Waits for Byte during read and stores Byte (a0)+

rts

;>= ao = Address of data to be found

/>= Al = Address where search starts

;>= Searchln = Number of words for error

;>= NumWords = Number of Words which is compared

/=> Dl = Number of Bytes to fund;=> Position = where found

;=> DO = -1 = not found

285

Appendix C Amiga disk drives inside and out

;=> AO = Position where found

Bitsrch:

srch2:

srchl:

srch4:

srch3:

srchok:

srchok2:

srchendl:

srchend:

comp:

movem.l d2-d6/a2-a4,-(a7)

move.l a0fa2

move.l al,a3

clr.w d5

move.w Searchin,d4 /Search num

move.w #00,d3 /number of shift Bits

move.1 (a2),dl

move.l (a3),d2

bsr comp

tst.w dO

beq srchok

move.l aO,a2

tst.w d5

beq srch4

clr.w d5

move.w d6,d3

move.l a4,a3

add.w #l,d3

cmp.w #$10fd3

bne srchl

add.l #2,a3

clr.w d5

dbf d4,srch2

move.l #-l,dO

bra srchend

/compare the right ones

/Counter for attempts

/not found

tst.w d5

bne srchok2

move.l a3fa4

move.w d3,d6

add.w #l,d5

cmp.w NumWords,d5

beq srchendl

add.l #2,a2

add.l #2,a3

bra srchl

move.l #0,d0

sub.w #l,d5

lsl.w #l,d5

suba.l d5,a3

move.l a3,aO

move.l a3,Position

move.l a3,aO /Position

move.w d3fBitShifts /Bit shifting

sub.l al,a3

move.l a3,dl /Number of Bytes until found

movem.l (a7)+fd2-d6/a2-a4

rts

movem.l dl-d2,-(a7)

lsl.l d3,d2

swap dl

286

Abacus The Deepcopy Program

swap d2

eor.w dl,d2

move.w d2,dO

movem.l (a7)+,dl-d2

rts

MotBits:

move.b SD,dO ;Source-Disk

lsl.b #3,dO

eor.b #$fbfd0

move.b dOfMotorBitsS

move.b DD,dO /Dest.-Disk

lsl.b #3,dO

eor.b #$fbfd0

move.b dO,MotorBitsD

rts

/switch on next Dest.-Drive

;!!! Caution !!! old Motorbits are reset

;>= Dl = which Drive (< 4)

/=> DO = -1, if no additional Drive available

.=> do = Null if OK

SwitchND:

\SND1:

\SND3:

\SND2:

SwitchS:

move.l d2,-(a7)

clr.l dO

move.b DD,d2

btst dlfd2

bne \SND1

move.l #-l,dO

bra \SND2

bset dlfd0

lsl.b #3fd0

eor.b #$7b,dO

move.w StartTrack,dl

bset #2,dO

btst #0fdl

beq \SND3

bclr #2,dO

move.b dO,MotorBits

move.b dO,$bfdlOO

clr.l dO

move.l (a7)+,d2

rts

tst.b Flag

bpl \S1

move.b MotorBits,MotorbitsD

move.w TrackNum,TrackNumD

move.b MotorBitsS,MotorBits

move.w TrackNumS,TrackNum

move.b #$7f,$bfdl00

move.b MotorBits,dO

/Drive connected ?

/yes, connected

/Bit for Drive

/lower Head select

/upper Head

287

Appendix C Amiga disk drives inside and out

\S1:

SwitchD:

bclr

move

move

clr.

rts

#7,dO

.b dO,$bfdlOO

.b dO,MotorBits

b Flag

tst.b Flag

bmi \S1

move.b MotorBits,MotorbitsS

move.w TrackNum,TrackNumS

move.b MotorBitsD,MotorBits

move.w TrackNumD,TrackNum

move.b #$7f,$bfdl00

move.b MotorBits,dO

bclr #7,dO

move.b dO,$bfdlOO

move.b dO,MotorBits

move.b #-l,Flag

\S1: rts

;store Track

;>= DO = number of Bytes to write

;>= A5 = Track-Buffer

;>= Dl = Indication if wait for Index (IndexOk/NoIndex)

Writer: MOVEM.L D2-D3,-(A7)

move.w dl,d2

move.w dO,d3 /Number to D3

clr.w ErrorFlag

bsr DisklnFloppy

tst.l dO

bmi \Protect

move.b $bfe001,d0

btst #3,dO

bne \SR5

move.w #DiskProtect,ErrorFlag

bra \Protect

\SR5: lsr.w #l,d3 /from Byte make Word

jsr MotorOn

MOVE.W #2,$DFF09C /erase Disk-Block-Int.

MOVE.L A5,$DFF020 /pass Data-Buffer

MOVE.W #$8210,$DFF096 /enable Disk-DMA

move.w #$7f00,$dff09e

MOVE.W #$8100,$DFF09E /MFM-Format

cmp.w #80,StartTrack

bcs \SR1

move.w #$a000,$dff09e /Pre-compensation

\SR1: MOVE.W #$4000,$DFF024 /prepare transmission

cmp.w #NoIndexfd2

beq \SR2

bsr Index

tst.l dO

bmi \Protect

\SR2: or.w #$c000,d3 /switch to write

MOVE.W d3,$DFF024

288

Abacus The Deepcopy Program

/write Data

/pass OK message

/set time counter

/wait for Disk-Block-Ready

/decrement Counter

/branch when not done

MOVE.W d3,$DFF024

clr.l dO

MOVE.L #$20000,Dl

\SR3: MOVE.W $DFF01E,D2

BTST #1,D2

BNE.S \SR4

SUBQ.L #1,D1

BNE.S \SR3

\Protect: move.l #-l,dO

\SR4: move.w #$4000,$dffO24

MOVEM.L (A7)+,D2-D3

RTS

/Searches for Track-End when Sync found

/>= A5 = Pointer to Track-Buffer (Sync found)

/=> TrackBytes = Number of Bytes on the Track (seek for Sync)

/=> DO = -1, too much deviation from CheckLength

SrchTEnd:

\STE2:

move.l a5,aO

clr.l dO

move.w CheckLength,dO

sub.w #$4,d0

adda.l d0,a0

move.w #$10,dO

bsr SrchSync

tst.l dO

bmi \STE2

suba.l a5,aO

sub.w #2,aO

move.w aO,TrackBytes

rts

move.l #-l,d0

move.w #LengthUnequal,ErrorFlag

rts

SrchTEnd2:

\STE2:

move.l a5,aO

adda.l #$04,aO

move.l a0,al

clr.l dO

move.w CheckLength,dO

sub.w #$40,dO

adda.l d0,al

move.w #$40,Searchin

move.w #$60,NumWords

bsr Bitsrch

tst.l dO

bmi \STE2

suba.l a5,aO

suba.l #6,aO

move.w aO,TrackBytes

rts

move.l #-l,d0

move.w #LengthUnequal2,ErrorFlag

rts

/Position before Sync

289

Appendix C Amiga disk drives inside and out

/search for Blocks and store

;>= A5 = Pointer to Track beginning

;=> Sizel = Size of the largest Block

;=> Size2 = Size of the second largest Block

/=> SizePos = Position of the largest Block

;=> SyncNum = Number of Syncs found

;=> Blocks = Buffer in which the Block sizes are stored

Blockidentify: movem.l d2-d4/a3,-(a7)

move.w TrackBytes,d2

move.l a5,a3

clr.w Sizel

clr.w Size2

clr.w SyncNum

clr.w d3

;Bytes on Track

/Beginning of Track

\S2:

\S6:

\S5:

\S7:

move.w d2,dO

move.l a3,aO

bsr SrchSyncF

tst.l dO

bmi \S5

tst.w dl

beq \S6

move.w d3,d4

add.w dl,d3

bsr Blockentry

bsr Size

clr.w d3

add.w #2,d3

add.w #2,dl

andi.l #$ffff,dl

adda.l dl,a3

sub.w dl,d2

bcc \S2

bra \S7

move.w d2,dl

add.w #2,dl

move.w d3,d4

add.w dl,d3

bsr Blockentry

bsr Size

movem.l <a7)+,D2-d4/A3

rts

/where to start search

/End

/Number + Sync

/Sync gap = 0

/Sync gap +2

/Number +2

/Sync message

/Number + Syn

/Enter size of Blocks

/>= Dl = Block size

Size:

\S3:

cmp.w Sizel,d3

bcs \S3

move.w Sizel,Size2

move.w d3,Sizel

move.l aO,al

move.l al,SizePos

bra \S4

cmp.w Size2,d3

290

;>=

;>=

;=>

/=>

/=>

AO

DO

AO

DO

Dl

Abacus The Deepcopy Program

bcs \S4

move.w dl,Size2

\S4: rts

Blockentry:

move.w SyncNum,dO

cmp.w #$40fd0 ;Too many Blocks ?

bcc \S1 ;yesf do not store

lsl.w #2,dO

lea Blocks,al

lsr.w #l,d4

move.w d4,(al,dO)

add.w #2,dO

move.w d3,(al,dO) /store Block

\S1: add.w #l,SyncNum

rts

;seek Sync-Mark (fast)

Search address

Byte number for errors permitted

Sync address

-1, no Sync found

found after xx Bytes

SrchSyncF:

lsr.w #l,dO ;from Byte make Word

move.l aO,al

\SSF2: cmp.w #$4489,(aO)+

beq \SSF1

dbf dO,\SSF2

move.l #-l,dO

bra \SSF3

\SSF1: suba.l #2,aO

move.l aO,dO

sub.l al,aO

move.w aO,dl

move.l dO,aO

clr.l dO

\SSF3: rts

;search for Sync-Mark

Search address

Byte number for errors permitted

Sync address

-1, no Sync found

found after xx Bytes

=> BitShifts = shifted by xx Bits

SrchSync:

movem.l d2-d4/a2,-(a7)

move.l aO,a2

lsr.w #2,dO ;Byte out, with longword value

lea SyncBase,al

\SS3: clr.l dl

move.l #$ffff0000,d3

move.l (aO)+,d2

291

;>=

;>=

;=>

;=>

;=>

AO

DO

AO

DO

Dl

Appendix C Amiga disk drives inside and out

\SS2: move.l d2,d4

and.l d3,d4

cmp.l <al,dl),d4

beq \SS1

add.w #4,dl

lsr.l #l,d3

cmp.w #$40,dl

bis \SS2

dbf dO,\SS3

move.l #-l,dO

bra \SS4

\SS1: clr.l dO

lsr.w #2,dl

move.w dl,BitShifts

cmp.w #$8,dl

bcc \SS5

suba.l #2,aO

\SS5: suba.l #2,aO

move.l aO,dl

suba.l a2,aO

exg.l aO,dl

\SS4: movem.l (a7)+,d2-d4/a2

rts

/Distance Index <=> Sync

;=> Syncwidth = Distance Index <=> Sync

;=> DO = -1, no Sync found

Syncdistance:

move.l a5,aO

move.w CheckLength,dO

bsr SrchSync

tst.l dO

bpl \SE1

move.w #NoSync,ErrorFlag

bra \SE2

\SE1:

move.w dl,Syncwidth

\SE2: rts

;A5 = TrackBuffer

/Counter of Data on Disk without Sync and without DMA

;>= A5 = Pointer to Verify-Buffer for reading Data without Sync

;=> CheckLength = Length of a Track (From Index to Index)

Counter:

bsr DisklnFloppy

tst.l dO

bmi \Z5

movem.l d2-d4/a2-a3,-(a7)

move.w #$0600f$dffO9e /switch Sync off

move.w #$8000,$dff024

lea $dff01b,a0

lea $dff01a,al

lea $bfdd00,a2

292

Abacus The Deepcopy Program

move.l #15,d2

move.l #4,d3

move.w #l,d4

clr.w dO

move.b (a2)fdl ;erase Byte-Ready-Flag

\Z4: move.b (a2)rdl

btst #4,dl

beq.s \Z4

move.w (al)fdl /erase Byte-Ready-Flag

move.b <a2),dl ;erase Indexbit

move.1 a5,a3

\Z1:

btst d2,(al)

beq.s \Z1

btst d3,(a2)

bne.s \Z2

add.w d4,dO

move.b (aO),(a3)+

bra \Z1

\Z2:

andi.w #$fffe,dO

move.w dO,CheckLength

cmp.w #Bytesread,dO /Track too long

bcs \Z6

move.w #Bytesread-16,CheckLength

\Z6: bclr #31,dO /erase Errorbit

movem.l (a7)+ ,d2-d4/a2-a3

\Z5: move.w #$4000f$dffO24

rts

/Sort Block sizes

OrderBlocks:

move.l d2r-(a7)

cmp.w #SortBlockNum,SyncNum

bhi \OBEND /too many Blocks

tst.w SyncNum

beq \OBEND /no Blocks

clr.w NumSortBlock

lea Blocks,aO

move.w SyncNum,dO

\0B5: move.l (aO)+,dl

sub.w #l,dO

lea SortBlocks,al /Number of Blocks -1

move.w NumSortBlock,d2

tst.w d2

beq \0B2 /first Block

\OB4: cmp.w (al)+,dl

bne \OB3 /found

add.w #1,(al)

bra \OB6

\OB3: adda.w #2,al

sub.w #l,d2

bne \OB4 /continue search

\OB2: move.w dl,(al) +

move.w #1,(al)+

293

Appendix C Amiga disk drives inside and out

\0B6:

\OBEND:

SearchGap:

add.

tst.

bne

move

rts

w #1,NumSortBlock

w dO

\OB5

.1 (a7)+,d2

;new search

move.l d2,-<a7)

clr.l BegPos

move.w NumSortBlock,dO

cmp.b #l,dcl

beq \SL10

/search for single Blocks

sub.w #l,dO

;DeepCopy 1 (Gap after large Block)

\SL3:

\SL10:

\SL7:

\SL8:

\SL9:

bsr SingleBlock

tst.l dO

bpl \SL7

move.l SizePos,aO

move.l AO,BegPos

cmp.l EndPos,aO

bcs \SL8

move.l a$faGk. \;yi-

move .1. aP ^ BjelrPos..

u move -I; Sizel^bs> dp

tifcp.IfEnjdPos,dp

> move.l a5,SizePos

move.l (a7)+,d2

rts

/Block number -1

/search for single Block

/Gap found ?

/branch when not found

/Gap with largest Block

■$*'

/Search for single Block

/=> DO = Block number

/=> DO = Block number of next Block

;=> DO = -1, when none found

/=> Dl = Size of Block

/=> aO = Address of the Blocks

SingleBlock:

\EB2:

movem.l d2-d4,-(a7)

and.l #$ffff,dO

tst.w dO

bmi \EB3

lea SortBlocks,aO

move.w dOfdl

lsl.w #2,dl

move.l (aO,dl)fd2

cmp.w #l,d2

beq \EB1

/erase error message

/Block found

294

Abacus The Deepcopy Program

sub.w #l,dO

tst.w dO

bpl \EB2

\EB3: move.l #-l,dO

bra \EBEND ;Error

\EB1: move.w (aO,dl),d2 ;Block length

clr.w d3 /erase Blockadr.

lea Blocks,aO

\EB4: move.l (aO)+,dl

add.w dl,d3 /determine Address

cmp.w dl,d2

bne \EB4 /continue if not done

sub.l aO,aO /clear AO

\EB5: move.w d3fa0 /Offset

add.l a5,aO /Address

move.w d2,dl /.Block size

sub.w #l,dO /Number of next Block

\EBEND: movem.l (a7)+,d2-d4

rts

/Test if Track on Amiga-Format

/=> DO = Null, if Track Amiga-Format

/=> DO = -1, if not Amiga-Format

TrackAmiga:

move.l d2,-(a7)

lea Blocks,aO /Pointer to Block storage

cmp.w #$Ob,SyncNum /SyncNum for Amiga-Format

bne \PL1 /No not Amiga-Format

clr.w dl

clr.l d2

move.w #$0a,d0

\PL3: move.w dO,d2

lsl.w #2,d2

cmp.w #$0440,2(a0,d2) /Block length for Amiga

bne \PL2

add.w #l,dl

\PL2: dbf dO,\PL3

cmp.w #$9,dl /at least 9 Amiga-Blocks

bcs \PL1

clr.l dO /OK, Amiga-Format

move.b #0N,AmigaTrack

\PL4: move.l <a7)+,d2

rts

\PL1: move.l #-l,dO /not Amiga-Format

move.b #OFF,AmigaTrack

bra \PL4

/The program assumes that all Syncs are equal in length

/all Syncs are fitted to the first

/>= A5 = Pointer to Track-Buffer

Synccorrector:

movem.l d2-d4,-(a7)

cmp.w #1,SyncNum

beq \SK1 /only one Sync

lea Blocks,aO

clr.w dO

295

Appendix C Amiga disk drives inside and out

clr.l d3

move.l a5,al

move.l (aO)+,d2

move.w d2,d3 /Block length

swap d2 /Sync value

\SK3: adda.l d3,al /Pointer to Block

add.w #l,dO

cmp.w SyncNum,dO

bcc \SK1

move.l (aO)+,dl

move.w dl,d3 /Block length

swap dl /SyncNum from Block

cmp.w d2,dl

bcc \SK3 /do not correct

sub.w d2,dl

not.w dl

move.w dl,d4 /Number of new Syncs

move.l al,-(a7)

\SK2:

cmp.l SizePos,al /must Pos be changed

bne \SK8

sub.l #2,SizePos /change SizePos

\SK8: move.w #$4489,-(al)

dbf d4f\SK2

move.l (a7)+,al

add.w #l,dl

add.w dl,-4 <aO)

lsl.w #l,dl

sub.w dl,-6(aO)

add.w dl,-2(aO)

bra \SK3

\SK1: cmp.w #LengthUnequal,ErrorFlag

/no end correction required

/Sync value

/set Pointer to Sync

/test transition to beginning\SK6:

\SK4:

\SK7:

\SK5:

beq \SK7

move.w d2,dO

move.l EndPos,al

add.l #2,al

bra \SK4

cmp.w #$4489,(al)+

bne \SK5

dbf dO,\SK6

movem.l (a7)+,d2-d4

rts

sub.w dO,d2

lsl.w #lfd2

sub.l #2,EndPos

sub.w #2,TrackBytes

sub.w #2,-2(aO)

bra \SK7

/Last Block is shorter

/after the Gap has been determined, the Data are copied/and

written

/>= A5 = TrackBuffer (Source)

/>= A4 = TrackBuffer (Destination)

Entirecopy:

296

Abacus The Deepcopy Program

\UK6:

move.l a2,-(a7)

move.l a4,al

move.l BegPos,aO

sub.l a5ra0

clr.l dO

move.w Syncwidth,dO

sub.w #$0044,dO

bcc \UK6

clr.w dO

/Offset of the beginning

/distance correction

/distance too small ?

/yes, distance = 0

/distance from Index

/number of Bytes before Sync

/beginning of writing

/Byte to Word

/Source-Address

/Destination-Address

add.l dO,aO

move.w aO,Offset

suba.l aO,al

move.l al,WriteAddrs

move.w TrackBytes,dO

lsr.w #l,dO

move.w LenghtDest,dl

move.l BegPos,aO

move.l a4,al

cmp.b #0NfAmigaTrack

bne \UK9

add.l #4,al

\UK9: move.l #$aaaaaaaa,-4(al)

\UK4: move.w (aO),(al)+

sub.w #l,dl

cmp.l EndPos,aO

bcs \UK3

move.l a5,aO

bra \UK5

\UK3: adda.l #2,aO

\UK5: dbf dO,\UK4

move.l (a7)+,a2

and.w #$fOOO,dl

bne \UK8 /Source longer than Destination

\UK7: move.w #$aaaa,(al)+ /if Dest. is longer than Source

dbf dl,\UK7

\UK8: move.w LenghtDest,dO

sub.w #$0006,dO

add.w Offset,dO

move.w dO,SLength

rts

/read Track and decode

/>= A4 = Pointer to Buffer for decoded Data

/>= A5 = Pointer to Buffer for coded Data

FastReads:

MOVEM.L D2-D4/a3/a6,-(A7)

lea decode,a3

move.w #$080,DecodeCnt

lea $40(a5),a0

move.1 aO,DecodeAdr

adda.l #$400,aO

move.l a0,FTestAdr

move.w #OFF,VerifyFlag

bra Fread

/Jump point for decode

/number of

/Longwords to decode

/Data area of first Block

/Address of the next Block

297

Appendix C Amiga disk drives inside and out

FastVerify:

Fread:

movem.l d2-d4/a3/a6, -(a7)

lea FVerify,a3 ;Jump point for Verify

move.l a5,DecodeAdr

lea $440(a5),a0

move.l aO,FTestAdr

move.w #ON,VerifyFlag

clr.w ErrorFlag

bsr DisklnFloppy

tst.l dO

bmi \FastError

MOVEA.L A5,A6

move.l #$aaaaaaaa,(a6)+

move.w #$4489,(a6)+

bsr search

tst.l dO

bmi \FreadEnd

/Track-Buffer

/enter first Sync

\FL1:

\FL2:

\FL3:

/prepare Track-Buffer

/display Byte before Gap

/No Byte before Gap

/Offset in Block

/read Byte

/Pointer to next Buffer

/enter first Sync

\FastError:

\FreadEnd:

bsr FErase

clr.l d2

move.w BytesBefGap,d2

tst.l d2

beq \FL1

clr.w BlockAdr

bsr Readbyte

clr.l dO

move.w BytesBefGap,dO

move.l a5,a6

adda.l dO,a6

move.l #$aaaaaaaa,(a6)+

move.w #$4489,(a6)+

move.w BytesAftGAp,d2

tst.l d2

beq \FL2

clr.w BlockAdr

bsr Readbyte

cmp.w #ON,VerifyFlag

beq \FL3

bsr lastblock /no last Block during Verify

BTST #2,$BFE001

BEQ.S \FastError /Error, if no Disk

MOVEQ #0,d0 /OK-Message

move.l #$aaaaaaaa,$2ecO(a5)

/create Gap after Data

bra VFreadEnd

move.l #-l,dO

MOVEM.L (A7)+,D2-D4/a3/A6

RTS

/prepare Track-Buffer (erase Block starts)

/>= A5 = Pointer to Track-Buffer

FErase: move.l a5,aO

move.w #10,dl

298

Abacus The Deepcopy Program

clr.l dO

\L1: move.l d0,$440(a0)

adda.l #$440,aO

dbf dl,\Ll

lea BlockMessage,aO

move.w #10,dl

\L2: clr.w (a0)+

dbf dl,\L2

rts

;read number of Bytes selected

;>= A6 = Pointer to Destination

;>= D2 = Number of Bytes to be read

Readbyte:

jsr install

MOVE.W D2,D0

LSR.W #l,D0

ORI.W #$8000,DO

add.w #l,d0

MOVE.W DO,36(A1)

MOVE.W DO,36(A1)

jsr <a3)

LEA $DFF000,Al

MOVE.W #$4000,$24(Al)

rts

/preparation for reading

/>= A6 Pointer to Track-Buffer

install: LEA $DFF000,Al

move.w #$4000,$24(al) /reset Disk-Len

move.w #$8400,$9e(al) /switch on Disk-Sync

move.w #$4489,$7e(al) /SYNC-Mark

MOVE.L A6,$2O(A1) /pass Buffer

move.w #$0002,$dff09c

rts

/code Longword and store in Buffer

;>= DO = Longword

/>= A0 = Pointer to Buffer

CodeLWord: MOVEM.L D2-D3,-(A7)

MOVE.L D0,D3

LSR.L #l,D0

BSR \CH1

MOVE.L D3,D0

BSR \CH1

BSR SetBorders

MOVEM.L (A7)+,D2-D3

RTS

\CH1: ANDI.L #$55555555,DO

MOVE.L D0,D2

EORI.L #$55555555,D2

MOVE.L D2,D1

LSL.L #1,D2

299

Appendix C Amiga disk drives inside and out

\CH2:

;set borders

SetBorders:

\CH4:

\CH5:

\CH6:

LSR.L #1,D1

BSET #$1F,D1

AND.L D2,D1

OR.L D1,DO

BTST #0,-1(AO)

BEQ.S \CH2

BCLR #$1F,DO

MOVE.L D0f <A0) +

RTS

properly

MOVE.B (A0),D0

BTST #0,-1(AO)

BNE.S \CH4

BTST #6,DO

BNE.S \CH6

BSET #7,DO

BRA.S \CH5

BCLR #7,DO

MOVE.B DO,(AO)

RTS

/determine Checksum for Data area

;>= Dl = number of Bytes (must always be divisible by 4)

/>= AO = Pointer to Buffer

;=> DO = Checksum

TestSum: MOVE.L D2,-(A7)

LSR.W #2,D1

SUBQ.W #1,D1

MOVEQ #0,D0

\PS1: MOVE.L (A0)+,D2

EOR.L D2,D0

DBRA D1,\PS1

ANDI.L #$55555555,DO

MOVE.L (A7)+,D2

RTS

/decode Block-Header

;>= AO is Pointer to Header

/=> DO = Header

Header: move.l (a0)+,D0

move.l (aO)+,Dl

andi.l #$55555555,dO

andi.l #$55555555,dl

lsl.l #l,D0

or.l D1,DO

rts

;find first undisturbed Block

/=> A6 = Pointer to Track-Buffer

;=> DO = Null: Block found

;=> BytesBefGap = Number of Bytes before the Gap

;=> BytesAftGAp = Number of Bytes after the Gap

300

Abacus The Deepcopy Program

search:

\SU1:

\SU2:

\SUNeu:

\SUok:

Gap

\SUError:

\SUEnd:

movem.l d2-d4,-(a7)

move.w #11,d2

bsr install

move.w #$8024,dO

MOVE.W DO,$dffO24

MOVE.W DO,$dffO24

bsr Blockready

tst.l dO

bmi \SUError

lea 8<a5),aO

moveq #$28fdl

bsr TestSum

move.l dO,d3

lea 48(a5),aO

bsr Header

cmp.l dO,d3

bne \SUNeu

lea 8 (a5), aO

jsr Header

move.w dO,d3

lsr.w #8,d3

andi.w #$00ff,d3

addi.w #lrd3

cmp.w #$000a,d3

bis \SU2

clr.w d3

move.w d3,SectNum

move.w d3,FirstBlock

move.w dO,d3

andi.w #$ff,d3

cmp.b #$0c,d3

bcs.s \SUok

dbf d2,\SUl

bra \SUError

sub.w #lfd3

move.w d3,d2

move.w #$000b,d4

sub.b d2,d4

mulu #$440,d3

mulu #$440,d4

/Number of errors permitted

;read $24-Words

/wait for Block-Ready

/Error, then DO = -1

/Pointer to Block-Header

/number of Long words

/Sum for Header

/save Sum

/ *Sum

/get Sum from Header

/compare Sums

/decode Header

/Header to D3

/isolate Sector number

/increment Sector number

/Number bigger than 10?

/No, OK

/Number = 0

/store Number

/Number first Block

/Header

/Sectors to Gap

/Header OK?

/number of Blocks to Gap

/Number of Blocks after Gap

/Number of Bytes to Gap

/Number of Bytes after

clr.l dO

move.w d3,BytesBefGap

move.w d4,BytesAftGAp

move.w #$0b,SectBL/Sectors before Gap after loading

bra \SUEnd

move.l #-l,dO

move.w #ReadError,ErrorFlag

movem.l (a7)+,d2-d4

rts

301

Appendix C Amiga disk drives inside and out

Blockready:

\B1:

\B2:

clr.l dO

move.l #$20000,dl

move.w #$0002,$dff09c

MOVE.W $DFF01E,D0

BTST #l,D0

bne.s \B2

sub.l #l,dl

bne \B1

move.l #-l,d0

RTS

/erase Error-Flag

/erase Disk-Int.

/Error occurred

/decode Bytes until Block has been read

decode:

\DC1:

\DC2:

movem.l d2-d3/a2,-(a7)

clr.l d3

move.w BlockAdr,d3

move.l FTestAdr,a0

move.l DecodeAdr,a2

move.w DecodeCnt,d2

/Offset in Block

/Address for testing if

/Block already loaded

/Address where

/decoding is done

/Number for decoding

MOVE.W $DFF01E,D0

BTST #l,D0

bne \DCEnd

tst.l (aO)

beq \DC1

movem.l aO-al,-(a7)

lea -$40(a2),al

bsr BlockCheck

movem.l (a7)+,aO-al

move.w SectNum,d0

mulu #$200,dO

move.l a4,al /Base address for destination data

add.l d0,al /Address of the Block

/area already read

/Yes, End

/TestAdr

wait until Block has been read

/save Register

;* Block start

/check Block

/restore Register

MOVE.W $DFF01E,D0

BTST #l,D0

bne.s \DCEnd

move.l (a2),D0

move.l $200(a2),Dl

adda.l #4,a2

andi.l #$55555555,dO

andi.l #$55555555,dl

lsl.l #l,D0

or.l D1,DO

move.l dO,(al,d3)

addq.w #4,d3

subq.w #1,D2

bne \DC2

adda.l #$240,a2

adda.l #$440,aO

move.l #$080,D2

/area already read

/enter Longword

/Decode number

/increment Address

/TestAdr

/Decode number

302

Abacus The Deepcopy Program

\DC3 :

\DCEnd:

clr.w d3

add.w #l,SectNum

cmp.w #$0b,SectNum

bcs \DC3

clr.w SectNum

bra \DC1

/Offset to Null

/increment Sector

/Number more than

/Nof OK

/Number = 0

number

10?

move.w d3,BlockAdr

move.l a2,DecodeAdr

move.l aO,FTestAdr

move.w D2,DecodeCnt

movem.l (a7)+fd2-d3/a2

RTS

/decode last Block

Lastblock:

\LB1:

movem.l d2-d3/a2r-(a7)

move.w SectNum,dO

mulu #$200rd0

move.l a4,al

add.l d0fal

clr.l d3

move.1 DecodeAdr,a2

move.w DecodeCnt,d2

move.l (a2),DO

move.l $200(a2),D1

adda.l #4,a2

andi.l #$55555555,dO

andi.l #$55555555,dl

lsl.l #l,D0

or.l D1,DO

move.l dO,(al,d3)

addq.w #$4,d3

subq.w #1,D2

bne \LB1

movem.l (a7)+fd2-d3/a2

RTS

/Base address for dest. data

/Address of the Block

/Decode number

/test Block for Error

;A1 = Pointer to start of Block

BlockCheck:

movem.l d2-d3,-(a7)

clr.l d3

move.w SectNum,d3

lsl.w #l,d3

lea BlockMessage,aO

move.w (aO,d3),dO

tst.w dO

bne \CBEnd2

lea 64(al),a0

/Sector number => Offset

/get entry

/already tested ?

/yes, End

303

Appendix C Amiga disk drives inside and out

move.w #$400,dl

jsr TestSum

move.l dO,d2

lea 56(al),aO

jsr Header

cmp.l dO,d2

bne \DataFalse

/Sum for Data block

/save Sum

/Pointer to Data sum

/decode Sum

\CBEndl:

\CB1:

\CB2:

\CBEnd2:

lea 8(al),a0

bsr Header

move.w dO,d2

lsr.w #8,d2

cmp.b SectNum+l,d2

bne XFalseSector

swap dO

cmp.b StartTrack+l,dO

bne \FalseTrack

andi.l #$ffOO,dO

cmp.w #$ffOO,dO

bne \NotDOSTrack

lea 8 (al),aO

moveq #$28,dl

bsr TestSum

move.l dO,d2

lea 48(al),aO

bsr Header

cmp.l dO,d2

bne \HeaderFalse

move.w #$ffff,dO

lea BlockMessage, aO

move.w dO,(aO,d3)

btst #0,-1(al)

beq \CB1

move.l #$2aaaaaaa,(al)

bra \CB2

move.l #$aaaaaaaa,(al)

move.l #$44894489,4(al)

move.w #$ffOO,dO

move.b StartTrack+l,dO

swap dO

move.b SectNum+l,dO

lsl.w #8,dO

move.b SectBL+l,dO

lea 8(al),a0

bsr CodeLWord

lea 8(al),aO

moveq #$28,dl

bsr TestSum

lea 48(al),aO

bsr CodeLWord

subq.w #l,SectBL

movem.l (a7)+,d2-d3

rts

/decode Header

/store lower Word

/Sector number to d2

/right Sector

/Track-Number to DO

/right Track?

/number of Longwords

/Sum for Header

/save Sum

/ *Sum

/get Sum from Header

/compare Sums

/create new Header

/store Header

/Longword number

/Sum for Header

/ *Sum

/store Checksum

XFalseSector: move.w #$0001,dO

bra \Flagset

304

Abacus The Deepcopy Program

\FalseTrack:

\NotDOSTrack:

\HeaderFalse:

\DataFalse:

\Flagset:

move.w #$0002,dO

bra \Flagset

move.w #$0017,dO

bra \Flagset

move.w #$001b,d0

bra \Flagset

move.w #$0019,dO

move.w #ReadError,ErrorFlag

bra \CBEndl

/compare Bytes read with old

;>= A4 = Pointer to Base address of the old Block

FVerify:

cmp #VerifyErrorfErrorFlag

beq \FVEnd2

movem.l d2-d3/a2,-(a7)

clr.l d3

move.w BlockAdr,d3

move.1 FTestAdr, aO

move.1 DecodeAdr,a2

\FV1:

\FV2:

\FV3:

MOVE.W $DFF01E,D0

BTST #lrD0

bne \FVEnd

tst.l (aO)

beq \FV1

move.w #$110,d2

move.w SectNum,d0

sub.w FirstBlockSp,dO

bcc \FV2

addi.w #11,dO

mulu #$440,dO

move.l a4,al

add.l d0,al

;Offset in Block

/Address for test if

/Block already loaded

/Address, where

/comparison is made

/area already read

/Yes, End

/TestAdr

/Wait until Block was read

/comparison number

move.l (a2)+,dO

cmp.l (al,d3),dO

beq \FV6

/test for special case ($aaaaaaaa and

move.l (al,d3),dl

eor.l dl,dO

cmp.l #$80000000,dO

bne \FV5

\FV6: addq.w #4,d3

subq.w #l,d2

bne \FV3

adda.l #$440,aO

clr.l d3

add.w #1,SectNum

cmp.w #$0b,SectNum

bcs \FV1

clr.w SectNum

bra \FV1

/Base address for dest. data

/Address of the Block

/Verify Ok

$2aaaaaaa)

/TestAdr

/Offset to Null

/increment Sector number

/Number higher than 10?

/No, OK

/Number = 0

305

Appendix C Amiga disk drives inside and out

\FV5: move.w #VerifyError,ErrorFlag

bra \FVEnd3

\FVEnd:

clr.w ErrorFlag

move.w d3,BlockAdr

move.l a2,DecodeAdr

move.l aO,FTestAdr

\FVEnd3: movem.l (a7)+fd2-d3/a2

\FVEnd2: RTS

;code Track

;>= AO = Pointer to Source

;>= Al = Pointer to Destination

;>= DO = Track-Number

CodeTrack:

movem.l d2-d4/a2-a3,-(a7)

move.l dO,d4

move.l aO,a2

move.l al,a3

moveq #$0b,d2

clr.w d3

\CT1: move.w #$ffOO,dO

move.b d4,dO

swap dO

move.w d3,dO

lsl.w #8,dO

move.b d2,dO

move.l a2fa0 /Source

move.l a3,al /Destination

bsr ConstructBlock

add.l #$440,a3

add.l #$200,a2

addq.w #l,d3

subq.w #l,d2

bne \CT1

movem.l (a7)+,d2-d4/a2-a3

rts

/code Block and create Header

/>= AO = Uncoded Data (Source)

/>= Al = Data buffer for coded Data (Destination)

/>= DO = uncoded Header

ConstructBlock: MOVEM.L D2/A2/A4,-(A7)

MOVEA.L A1,A4

MOVEA.L A0fA2

MOVE.L D0rD2

MOVEQ #0,D0

LEA 0(A4),A0

BSR CodeLWord

MOVE.L #$44894489,4(A4)

MOVE.L D2fD0

LEA 8(A4),A0

BSR CodeLWord

MOVEQ #3fD2

\EB1: MOVEQ #0fD0

306

Abacus The Deepcopy Program

BSR CodeLWord

DBRA D2,\EB1

LEA 8(A4),A0

MOVEQ #$28,Dl

BSR TestSum

LEA $30<A4),A0

BSR CodeLWord

MOVE.L #$200,DO

MOVEA.L A2fA0

LEA $40<A4),Al

BSR CodeBlock

LEA $40(A4),A0

MOVE.W #$400,Dl

BSR TestSum

LEA $38(A4),A0

BSR CodeLWord

MOVEM.L (A7)+,D2/A2/A4

RTS

;code Data Block

;>= DO = Length of the Source

;>= A0 = Pointer to Source

;>= Al = Pointer to Destination

CodeBlock:

movem.l d2/a5,-(a7)

MOVE.W DO,D1

LSL.W #2fDl

ORI.W #8,D1

MOVE.W D1,D2

movem.l dO-dl/aO-al/a5,-(a7)

move.l aO,dl

move.l alfa5

lea $dff000,a0

bsr BlitWait

bsr BlitterCode

movem.l (a7)+,dO-dl/aO-al/a5

MOVE.L DO,D1

MOVEA.L Al,A0

BSR SetBorders

ADDA.L DlfA0

BSR SetBorders

ADDA.L D1,AO

BSR SetBorders

movem.l (a7)+,d2/a5

RTS

;A0 = $dffOOO

;D0 = Length of Source

;D1 = Source

;A5 = Destination

BlitterCode:

bsr Modulu ;set Mode

MOVE.L Dl,$4C(A0)

307

Appendix C Amiga disk drives inside and out

MOVE.L Dl,$50(A0)

MOVE.L A5,$54(A0)

MOVE.W #$1DB1,$4O(AO)

MOVE.W #0f$42(AO)

bsr StartBlit

MOVE.L A5,$4C(A0) /Source B

MOVE.L Dl,$50(A0) /Source A

MOVE.L A5,$54(A0) /Dest

MOVE.W #$2d8c,$40(A0)

bsr StartBlit

movem.l dO-dl/a5,-(a7)

ADD.L DO,D1

SUBQ.L #2,D1

ADDA.L D0,A5

ADDA.L D0,A5

SUBQ.L #2,A5

MOVE.L Dl,$4C(A0)

MOVE.L Dl,$50(A0)

MOVE.L A5,$54(A0)

MOVE.W #$DB1,$40(AO)

MOVE.W #$1002,$42(AO)

bsr StartBlit

movem.l (a7)+fdO-dl/a5

movem.l dO-dl/a5,-(a7)

ADDA.L D0,A5

MOVE.L A5,$4C(A0)

MOVE.L Dl,$50(A0)

MOVE.L A5,$54(A0)

MOVE.W #$1D8C,$40(AO)

MOVE.W #0f$42(A0)

bsr StartBlit

movem.l (a7)+,dO-dl/a5

rts

/start Blitter and wait for end of Blitter

StartBlit:

MOVE.W d2,$dffO58

BlitWait: btst #14,$dff002

bne.s BlitWait

rts

;set Mode for coding

;>= AO = $dffOOO

Modulu:

movem.l dO/al,-(a7)

MOVEQ #0,D0

LEA $44(AO),A1

MOVE.L #-1,(Al)

LEA $62(AO),A1

MOVE.L DO,(Al)+

MOVE.W DO,(Al)+

ADDQ.L #8,A1

MOVE.W #$5555,(Al)

movem.l (a7)+,dO/al

rts

308

Abacus The Deepcopy Program

/erase Track with DOS

;>= AO = Pointer to Track-Buffer

DOSClear:

move.l #$444F5300,d0 ;DOS + 0

move.w #$57f,dl

\DO1: move.l dO, (aO) + ;erase Track

addq.b #l,dO

dbf dl,\DOl

rts

/shorten Track and store in memory

;>= AO = Pointer to beginning of Track

;>= Al = Pointer to destination address

;>= Length = number of Bytes to be shortened

;>= ShrtByte = Byte, which should be stored shorter

;=> Al = Pointer to memory for shortened Block

Crunch:

movem.l d2-d7/a2/a4,-(a7)

clr.w d7

clr.w d2

move.w Length,d3 /number of Bytes

move.l MemoryLength,d6

\CHAnf:

tst.w d7

bne \CHEnd

movea.l aO,a2 /intermediate storage for Address

\CH4: bsr \EraseBlock

tst.w dO

beq \CHAnf

move.b (aO)fd4

cmp.b ShrtByte,d4

beq \KF1 /Null byte

cmp.b 1(aO),d4

bne \CH10 /no sequel

cmp.b 2(aO),d4

beq \AF1 /other sequels

\CH10: addq.l #l,aO

subq.w #l,d3

bne \CH4 /continue search

bsr \NoResult

\CHEnd:

move.b #$00,dO

move.b dO, (al) +

subq.l #l,d6

bcs CrunEnd

move.l d6,MemoryLength

move.l a1,MemoryBeg

clr.l dO

movem.l (a7)+,d2-d7/a2/a4

rts

/short sequel

\KF1: cmp.b l(a0),d4

bne \CH10 /no Null

bsr \NoResult

309

Appendix C Amiga disk drives inside and out

bsr CounterBytes

cmp.w #$40,dl

bcc \KF2 ;too large for a Byte

ori.b #ShrtNull,dl

move.b dl,(al) +

subq.l #l,d6

beq CrunEnd

bra \KF4

\KF2: cmp.w #$1000,dl

bcc \KF3 ;too large, must be Word

move.w dl,dO

lsr.w #8,dO

ori.b #MiddleNull,dO ;Null sequence with Byte

move.b dO,(al)+

subq.l #l,d6

beq CrunEnd

move.b dl,(al)+

subq.l #l,d6

beq CrunEnd

bra \KF4

\KF3: move.b #LongNull,dO

move.b dO, (al) +

subq.l #l,d6

beq CrunEnd

move.w dl,dO

lsr.w #8,dO

move.b dO,(al) +

subq.l #l,d6

beq CrunEnd

move.b dl,(al)+

subq.l #l,d6

beq CrunEnd

\KF4: bra \CHAnf

;other sequence

\AF1: bsr \NoResult

bsr CounterBytes

cmp.w #$40,dl

bcc \AF2 ;too large for a Byte

ori.b #ShrtNorm,dl

move.b dl,(al) +

subq.l #l,d6

beq CrunEnd

bra \AF4

\AF2: cmp.w #$1000,dl

bcc \AF3 /too large, must be Word

move.w dl,d0

lsr.w #8,dO

ori.b #MiddleNorm,dO /any sequence

/Byte

move.b dO,(al)+

subq.l #l,d6

beq CrunEnd

move.b dl,(al)+

subq.l #l,d6

310

Abacus The Deepcopy Program

beq CrunEnd

bra \AF4

\AF3: move.b #LongNorm,dO

move.b dO,(al) +

subq.l #l,d6

beq CrunEnd

move.w dl,dO

lsr.w #8,dO

move.b dO,(al)+

subq.l #l,d6

beq CrunEnd

move.b dl,(al)+

subq.l #l,d6

beq CrunEnd

\AF4: move.b d4,dO

move.b dOf (al) +

subq.l #l,d6

beq CrunEnd

bra \CHAnf

;found no sequence

\NoResult2: move.w #l,Subtr

bra \KF20

\NoResult: clr.w Subtr

\KF20: move.l aO,a4

sub.l a2,a4

move.w a4,dl

beq \KFEnd

swap dl

move.w a4,dl

cmp.w #$40,dl

bcc \CH5

ori.b #ShrtNone,dl

move.b dl,(al)+

subq.l #l,d6

beq CrunEnd2

bra \CH6

\CH5: cmp.w #$1000,dl

bcc \CH7

move.w dl,dO

lsr.w #8,dO

ori.b #MiddleNone,dO

move.b dO,(al)+

subq.l #l,d6

beq CrunEnd2

move.b dl,(al)+

subq.l #l,d6

beq CrunEnd2

bra \CH6

\CH7: move.b #LongNone,D0

move.b dO, (al) +

subq.l #l,d6

beq CrunEnd2

move.w dl,dO

lsr.w #8,dO

move.b dO,(al)+

;store other Byte

;See CrunEnd2

;too large for a Byte

/too large, must be Word

311

Appendix C Amiga disk drives inside and out

\CH6:

\CH9:

\CH8:

\KFEnd:

subq.l #l,d6

beq CrunEnd2

move.b dl,(al)+

subq.l #l,d6

beq CrunEnd2

swap dl

andi.l #$fffffdl

sub.l dl,d6

beq CrunEnd2

bcs CrunEnd2

bra \CH8

move.b (a2)+,(al)+

dbf dl,\CH9

clr.w Subtr

rts

;See CrunEnd2

\EraseBlock:

\LB1:

\LBNone:

\LBEnd2:

\LBEnd:

CounterBytes:

\ZB2:

\ZB1:

move.w d3,dO

andi.w #$feOO,dO

cmp.w dO,d3

bne \LBEnd2

move.l aO,a3

move.w #$7e,d5

move.l (aO)+,d4

move.l d4,dO

andi.l #$ff000000,dO

cmp.l #$44000000,dO

bne \LBNone

addq.b #l,d4

cmp.l (a0)+,d4

bne \LBNone

dbf d5,\LBl

bsr \NoResult2

move.b #EmptyBlock,dO

move.b dO,(al)+

subq.l #l,d6

beq CrunEnd2

clr.w dO

subi.w #$200,d3

bne \LBEnd

move.w #-l,d7

bra \LBEnd

move.l a3,aO

move.w #-l,d0

rts

clr.w dl

cmp.b <a0)+,d4

bne \ZB1

addq.w #l,dl

subq.w #l,d3

bne \ZB2

move.w #-l,d7

subq.l #l,a0

rts

;Ok-Message

;End mark

;End mark

312

Abacus The Deepcopy Program

CrunEnd2:

\CE1:

CrunEnd:

move.w Subtr,d2

adda.l #$4,a7

dbf d2,\CEl

movem.l (a7)+,d2-d7/a2/a4

move.l #-l,dO

rts

/bring Track to normal size

;>= AO = Pointer to crunched Track

;>= Al = Pointer to destination address

DeCrunch:

/error

\DCEnd:

move.b (aO)+,dO

tst.b dO

beq \DCEnd

move.b dO,dl

andi.b #$cO,dl

bne Shrt

move.b dO,dl

andi.b #$30,dl

bne Middle

move.b dO,dl

cmpi.b #EmptyBlock,dl

beq \BlockClear

move.b (a0)+,d0

lsl.w #8,dO

move.b (a0)+,d0

cmpi.b #LongNull,dl

beq \NullLong

cmpi.b #LongNorm,dl

beq \NormJjong

cmpi.b #LongNone,dl

beq \UndefLong

move.l $4,a6

sub.l a5,a5

move.l #$12345678,d7

jsr -108(a6)

rts

/End mark

/empty Block

\BlockClear:

\LB1:

/ Long

\LA1:

\UndefLong:

move.w #$7f,dl

move.l #$444F5300,d0

move.l dO,(al)+

addq.b #l,dO

dbf dl,\LBl

bra DeCrunch

move.b (aO)+,(al)+

dbf dO,\LAl

313

Appendix C Amiga disk drives inside and out

\NullLong:

\NormLong:

\LA3:

\LA2:

bra DeCrunch

move.b Shrtbyte,dl

bra \LA2

move.b (aO)+,dl

bra \LA2

move.b dl,(al)+

dbf dO,\LA3

bra DeCrunch

Shrt:

cmpi.b #ShrtNull,dl

beq \KU1

cmpi.b #ShrtNorm,dl

beq \KU2

;ShrtUndeff

\KU4:

\KU3:

\KU1:

\KU2:

\KU5:

\KU7:

\KU6:

andi.w #$3f,dO

bra \KU3

move.b (aO)+,(al)+

dbf dO,\KU4

bra DeCrunch

move.b Shrtbyte,dl

bra \KU5

move.b (aO)+fdl

andi.w #$003f,d0

bra \KU6

move.b dl, (al)+

dbf dO,\Ku7

bra DeCrunch

Middle:

andi.w #$Of,dO

lsl.w #8,dO

move.b (aO)+,dO

cmpi.b #MiddleNull,dl

beq \KU1

cmpi.b #MiddleNorm,dl

beq \KU2

;MiddleUndeff

bra \KU3

\KU4: move.b (aO)+,(al)+

\KU3: dbf dO,\KU4

bra DeCrunch

\KU1: move.b Shrtbyte,dl

bra \KU6

\KU2: move.b (aO)+,dl

bra \KU6

\KU7: move.b dl,(al)+

\KU6: dbf dO,\Ku7

bra DeCrunch

beg:

move.w #$0008,$dff09a

move.l gfxbasefa6

lea bitmap,aO

move.b #lfd0

move.w #320,dl

move.w #200,d2 ;PAL uses 256

314

Abacus The Deepcopy Program

jsr InitBitMap(a6)

move.l bit_adress,planel

move.l bit_adress,dl

move.w dl,plane_lo

swap dl

move.w dl,plane_hi

lea rastport,al

jsr InitRastPort(a6)

move.1 #bitmap,r_bitmap

move.l #ncopper,aO

move.l cop_adress,al

move.l #copsize,dO

copy_loop:

move.b (aO)+,(al)+

dbf dO,copy__loop

bsr adresses

move.l cl_adress,flash_adress

move.l bit_adress,aO

move.w #$27ff,dO

clear_loop:

clr.b (aO)+

dbf dOfclear_loop

move.l gfxbase,aO

move.w #$0080,$dff096

move.l $6c,oldirq

move.1 #newirq,$ 6c

move.l 50(aO),oldcopper

move.l cop_adress,50(aO)

move.w #$82bO,$dffO96

new__start:

move.w #7,xl

move.w #54,yl

move.b #$4f,lc

move.b #$00,fc

move.b #$03,tr

move.b #$00,ws

move.b #$01,vd

move.b #$01,fa

move.b #$00,del

move.b #$00,dc2

move.b #$01,sd

move.b #$00,dd

move.b #$01,sy

move.b #$00,new

move.b #$00,pointerl

move.b #$00,color_ptr

move.b drives,dd

bsr end_drive

bsr show_lc

move.l #textl,text_ptr

315

Appendix C Amiga disk drives inside and out

bsr set_title

bra menu_control

exit:

move.w #$8008,$dff09a

move.l gfxbase,aO

move.w #$0080,$dff096

move.1 oldirq,$ 6c

move.l oldcopper,50(aO)

move.w #$82bOf$dffO96

no_DPuffer:

move.1

move.1

move.1

jsr

no_copper:

move.1

move.1

move.1

jsr

no bitmap:

move.1

move.1

jsr

no_gfxbase:

clr.l

rts

newirq:

move

movem.

addq.b

cmp.b

ble

clr.b

move.1

cmpi.b

bne.s

move.w

bra.s

ExecBase,a6

cop__adress, al

#copsize+2,dO

FreeMem(a6)

ExecBase,a6

bit adress,al

#$2800,dO

FreeMem(a6)

ExecBase,a6

gfxbase,al

CloseLibrary(a6)

dO

SR,-(a7)

1 aO-a6/dO-d7,-(a7)

#1,waiting

#2,waiting

endirq

waiting

flash_adress,a2

#$00,color_ptr

irq_flash

#$00ee, <a2)

endirq

irq_flash:

cmpi.b #$00,back

beq.s upward

downward:

subi.w #$0011, <a2)

cmpi.w #$0044,(a2)

bcc.s endirq

move.b #$00,back

bra.s endirq

upward: addi.w #$0011,(a2)

cmpi.w #$OOff,(a2)

bcs.s endirq

move.b #$01,back

endirq: movem.1 <a7)+,aO-a6/dO-d7

move (a7)+,SR

dew $4ef9

316

Abacus The Deepcopy Program

oldirq: del 0

menu_control:

bsr wait_key

cmpi.b #$4 6,dO

beq destination_drive

cmpi.b #$50,dO

beq start_copy

cmpi.b #$51,dO

beq first_cylinder

cmpi.b #$52,dO

beq last__cylinder

cmpi.b #$53rd0

beq how_many_tries

cmpi.b #$54,dO

beq write_serveral_times

cmpi.b #$55,dO

beq verify_destination

cmpi.b #$56,dO

beq fast__copy

cmpi.b #$57,dO

beq deepcopy_l

cmpi.b #$58,dO

beq deepcopy_2

cmpi.b #$59,dO

beq source_drive

cmpi.b #$21,dO

beq synccorrection

bra.s menu_control

start_copy:

move.l c2_adress,flash_adress

move.b #$01,colorjptr

bsr show_start

start_copy2:

bsr wait__key

cmpi.b #$45,dO

beq new_start

cmpi.b #$44,dO /Return

beq.s end_start

cmpi.b #$43,dO

bne.s start_copy2

end_start:

move.b #$00,color_ptr

move.w #28,yl

bsr cl2

move.w #10,dO

estlop: bsr Timer

dbf dO,estlop

bsr clear_eol

bsr copy_start ;Copy-Routine

cmp.w #Escape,ErrorFlag

beq new_start

cmp.w #diskprotect,errorflag

beq start_copy

cmp.w #NoDisk,errorflag

beq start_copy

317

Appendix C Amiga disk drives inside and out

cmp.w #NotProtect,ErrorFlag

beq.s start_copy

bsr ell

esdl: bsr wait_key

cmpi.b #$40,dO

bne.s esdl

esd2: bra new_start

destination_drive:

move.1

move.b

destinationl:

cl3_adress,flash_adress

#$01,color_ptr

bsr wait_Jcey

cmpi.b

beq.s

cmpi.b

beq.s

cmpi.b

beq d_

cmpi.b

beq d_

cmpi.b

beq.s

cmpi.b

bne.s

#$0a,d0

d_driveO

#$01,dO

d_drivel

#$02,dO

_drive2

"#$03, dO
_drive3

"#$43, dO
end_destination

#$44,dO

destinationl

end_destination:

cmpi.b

beq.s

move.b

#$00,dd

destinationl

#$00,color_ptr

bra menu control

d_driveO:

btst #0,drives

beq end_drive

btst

beq.s

bclr

bra.s

ddO_O: bset

move.b

#0,dd

ddO_O

#0,dd

ddO_l

#0,dd

#l,drv

ddO_l: bra end_drive

d_drivel:

btst #1,drives

beq end_drive

btst

beq.s

bclr

bra.s

ddl 0: bset

#l,dd

ddl 0

#l,dd

ddl 1

#l,dd

move.b #2,drv

ddl_l: bra.s end_drive

d_drive2:

btst #2,drives

beq.s end_drive

btst #2,dd

318

Abacus The Deepcopy Program

dd2_0:

dd2_l:

beq.s

bclr

bra.s

bset

move.b

bra.s

d_drive3:

dd3_0:

btst

beq.s

btst

beq.s

bclr

bra.s

bset

move.b

end_drive:

stl:

st2:

stevel:

stel:

ste2:

ste3:

steve:

end ddl

cmpi.b

bne.s

bra.s

cmpi.b

dd2_0

#2,dd

dd2_l

#2,dd

#4,drv

end_drive

#3,drives

end drive

#3,dd

dd3 0

#3,dd

end drive

#3,dd

#8,drv

#$01rdcl

stl

st2

#$01,dc2

bne stevel

move.b drv, dd

bra steve

btst

beq.s

andi.b

cmpi.b

bne.s

bset

bra.s

btst

beq.s

andi.b

cmpi.b

bne.s

bset

bra.s

btst

beq.s

andi.b

cmpi.b

bne.s

bset

bra.s

btst

beq.s

andi.b

cmpi.b

bne.s

bset

btst

bne.s

lea

bra.s

:lea

#0,sd

stel

#$Oe,dd

#$00,dd

steve

#0,dd

steve

#l,sd

ste2

#$0d,dd

#$00,dd

steve

#l,dd

steve

#2,sd

ste3

#$0bfdd

#$00rdd

steve

#2,dd

steve

#3,sd

steve

#$07,dd

#$00,dd

steve

#3,dd

#0,dd

end_ddl

off text,a0

end_dd2

on text2,aO

319

Appendix C Amiga disk drives inside and out

end_

end_

end_

end_

end_

end_

end_

end_

set_

set_

set_

set

set

_dd2:bsr

btst

bne.s

lea

bra.s

_dd3:lea

_dd4:bsr

btst

bne.s

lea

bra.s

_dd5: lea

[dd6:bsr
btst

bne.s

lea

bra.s

_dd7: lea

_dd8:bsr

cmpi.

bne.s

move.

rts

_dd9:bra

driveO:

move.

lea

move.

move.

jsr

bra.s

drivel:

move.

lea

move.

move.

jsr

bra.s

_drive2:

move.

lea

move.

move.

jsr

bra.s

_drive3:

move.

lea

move.

move.

jsr

_text:

lea

move.

jsr

set drive0

#l,dd

end_dd3

off_text,aO

end_dd4

on text2,aO

set_drivel

#2fdd

end_dd5

off_text,aO

end__dd6

on text2,aO

set_drive2

#3,dd

end_dd7

off_textfaO

end__dd8

on text2,aO

set_drive3

b

b

#$00,pointerl

end_dd9

#$01fpointerl

destinationl

1

w

w

1

w

w

1

w

w

1

w

w

w

gfxbase,a6

rastport,al

#61fd0

#190,dl

Movee(a6)

set__text

gfxbase,a6

rastport,al

#126,dO

#190,dl

Movee(a6)

set_text

gfxbase,a6

rastport,al

#190,dO

#190,dl

Movee(a6)

set_text

gfxbase,a6

rastport,al

#254,dO

#190rdl

Movee(a6)

rastport,al

#$0003,dO

Textout(a6)

;PAL 213

;PAL 213

/PAL 213

/PAL 213

320

Abacus The Deepcopy Program

rts

first_cyUnder:

move.l c3_adress,flash_adress

move.b #$01,color_ptr

bsr wait_key

cmpi.b #$4ffd0

beq.s fc_down

cmpi.b #$4erd0

beq.s fc_up

cmpi.b #$43,dO

beq compare__fc

cmpi.b #$44,dO

bne.s first_cylinder

compare_fc:

move.b lc,dO

cmp.b fc,dO

beq compare_fc2

bit.s first_cylinder

compare__fc2:

move.b #$00,colorjptr

bra menu_control

fc_down:subi.b #$01,fc

cmpi.b #$ff,fc

bne.s

move.b

fc_down2:

fc_down2

#$00,fc

bra show fc

fc_up: addi.b

cmpi.b

bne.s

move.b

show_fc:lea

move.b

#$01,fc

#$52,fc

fc down2

#$51,fc

fc text,aO

fc,dO

bsr byte_calculate

move.1

lea

move.w

move.w

jsr

lea

lea

gfxbase,a6

rastport,al

#295,dO

#64,dl

Movee(a6)

rastport,al

fc text,aO

move.w #$0002,dO

jsr Textout(a6)

bra first_cylinder

last_cylinder:

move.l c4_adress,flash_adress

move.b #$01, color__ptr

bsr wait__key

cmpi.b #$4f,dO

beq.s lc_down

cmpi.b #$4e,d0

beq.s lc_up

cmpi.b #$43,dO

beq compare_lc

321

Appendix C Amiga disk drives inside and out

cmpi.b #$44,dO

bne.s last_cylinder

compare_lc:

move.b fc,dO

cmp.b lc,dO

beq compare_lc2

bge. s last__cylinder

compare_lc2:

move.b #$00,color_ptr

bra menu__control

lc_down:subi.b #$01,lc

cmpi.b #$ff,lc

bne.s Ic_down2

move.b #$00,lc

Ic_down2:

bra Ice

lc_up: addi.b #$01,lc

cmpi.b #$52,lc

bne.s Ic_down2

move.b #$51,lc

Ice: bsr.s show_lc

bra last_cylinder

show_lc:lea lc_text,aO

move.b lc,dO

bsr byte__caleulate

move.1

lea

move.w

move.w

jsr

lea

lea

move.w

jsr

rts

how_many_tries:

move.1

move.b

triesl: lea

gfxbase,a6

rastport,al

#295,dO

#74,dl

Movee(a6)

rastport,al

lc_text,aO

#$0002,dO

Textout(a6)

c5_adress,flash_adress

#$01, color_jptr

tr text,a0

bsr wait_key

cmpi•b

beq.s

#$4e,d0

tries_up

cmpi.b #$4f,dO

beq.s tries_down

cmpi.b #$43,dO

beq.s end_tries

cmpi.b #$44,dO

bne.s triesl

end_tries:

move.b #$00,color_ptr

bra menu_control

tries_up:

addi.b #$01,tr

cmpi.b #$0a,tr

bne.s tries_up2

322

Abacus The Deepcopy Program

move.b #$09,tr

tries_up2:

move.b trfd0

addi.w #$30,dO

move.b dO,(aO)

bra.s tries2

tries_down:

subi.b #$01,tr

cmpi.b #$00,tr

bne.s tries_down2

move.b #$01,tr

tries_down2:

move.b tr,dO

addi.w #$30,dO

move.b dO,(aO)

tries2: move.l gfxbase,a6

lea rastport,al

move.w #303,dO

move.w #84,dl

jsr Movee(a6)

lea rastport,al

lea tr_text,a0

move.w #$0001,dO

jsr Textout(a6)

bra triesl

synccorrection:

move.l cl2_adress,flash_adress

move.b #$01,color_ptr

cmpi.b #$01,sy

bne.s sync2

clr.b sy

lea off_text,aO

bra.s sync3

sync2: move.b #$01,sy

lea on_text,a0

sync3: lea rastport,al

move.w #287,dO

move.w #157,dl

jsr Movee(a6)

lea rastport,al

move.w #3,dO

jsr Textout(a6)

move.b #$00,color_ptr

bra menu_control

write_serveral_times:

move.l c6_adress,flash_adress

move.b #$01,color_ptr

move.b sd,dO

cmp.b dd,dO

bne wait__return

cmpi.b #$00,ws

bne.s write_s2

write_sl:

move.b #$01,ws

323

Appendix C Amiga disk drives inside and out

lea on_text,aO

bra.s end_write_serveral

write_s2:

move.b #$00fws

lea off__text,aO

end_write_serveral:

move.l gfxbase,a6

lea rastport,al

move.w #287,dO

move.w #94,dl

jsr Movee(a6)

lea rastport,al

move.w #$0003,dO

jsr Textout(a6)

esw: move.b #$00,color_ptr

bra menu_control

verify_destination:

move.b dcl,dO

or.b dc2,dO

tst.b dO

bne menu_control

move.1

move.b

cmpi.b

bne.s

verify_dl:

move.b

lea

bra.s

verify_d2:

move.b

lea

end_verify:

c7_adress,flash_adress

#$01,color ptr

#$00,vd

verify_d2

#$01,vd

on_text,aO

end_verify

#$00,vd

off_text,a0

bsr verify_d3

bra menu control

verify_off:

move.b

lea

verify__d3:

move.1

lea

move.w

move.w

jsr

lea

#$00,vd

off_text,aO

gfxbase,a6

rastport,al

#287,dO

#104,dl

Movee(a6)

rastport,al

move.w #$0003,dO

jsr Textout(a6)

move.b #$00,color_ptr

rts

fast_copy:

move.l c8__adress, flash_adress

move.b #$01,color_ptr

cmpi.b #$01,dd

beq.s fcopl

324

Abacus The Deepcopy Program

cmpi.b #$02,dd

beq.s fcopl

cmpi.b #$04,dd

beq.s fcopl

cmpi.b #$08,dd

beq.s fcopl

bra wait__return

fcopl: cmpi.b #$01,fa

bne.s fastcopy1

move.b #$00,fa

move.b #$01,del

move.b #$00,dc2

bra.s end_fast

fastcopyl:

move.b #$01,fa

move.b #$00,del

move.b #$00,dc2

end_fast:

cmp.b #ON,DC1

bne fcop2

bsr verify_off

fcop2: bsr show_copies

move.b #$00,color_ptr

bra menu_control

deepcopy_l:

bsr verify_off

move.l c9_adress,flash_adress

move.b #$01,color_ptr

cmpi.b #$01,dd

beq.s deep4

cmpi.b #$02,dd

beq.s deep4

cmpi.b #$04,dd

beq.s deep4

cmpi.b #$08,dd

beq.s deep4

bra.s wait_return

deep4: cmpi.b #$00,del

beq.s deepl

move.b #$00,fa

move.b #$00,del

move.b #$01,dc2

bra.s end_deepl

deepl: move.b #$00,fa

move.b #$01,del

move.b #$00,dc2

end_deepl:

bra end_fast

wait_return:

move.l #textl2,text_ptr

move.w #16,xl

move.w #28,yl

bsr set__text3

wait_r3:bsr wait__key

325

Appendix C Amiga disk drives inside and out

cmpi.b #$44,dO

beq. s wait_r2

cmpi.b #$43,dO

bne.s wait_return

wait_r2:

bsr BegText

bra end_fast

wait_r4:bsr waitjcey

cmpi.b #$45,dO

beq.s wait_r5

cmpi.b #$44,dO

beq \W1

cmpi.b #$43,dO

beq \W1

cmpi.b #$40,dO

bne.s wait_r4

\W1: move.l dO,-(a7)

bsr clear_eol

move.l (a7)+,dO

clr.l dO

rts

wait_r5:move.l #-l,dO

move.w #Escape,ErrorFlag

rts

deepcopy_2:

bsr verify_off

move.l clO_adress,flash_adress

move.b #$01,color_ptr

cmpi.b #$01,dd

beq.s deep3

cmpi.b #$02,dd

beq.s deep3

cmpi.b #$04,dd

beq.s deep3

cmpi.b #$08,dd

beq.s deep3

bra wait_return

deep3: cmpi.b #$01,dc2

beq.s deep2

move.b #$00,fa

move.b #$00,del

move.b #$01,dc2

bra.s end_deep2

deep2: move.b #$01,fa

move.b #$00,del

move.b #$00,dc2

end deep2:

bra

show_copies:

move

lea

move

move

jsr

lea

.1

.w

.w

end_fast

gfxbase,a6

rastport,al

#287,dO

#114,dl

Movee(a6)

rastport,al

326

Abacus The Deepcopy Program

showl:

show2:

show3:

show4:

show5:

show6:

source

sourcel

source2

cmpi.b

beq.s

lea

bra.s

lea

move.w

jsr

lea

move.w

move.w

jsr

lea

cmpi.b

beq.s

lea

bra.s

lea

move.w

jsr

lea

move.w

move.w

jsr

lea

cmpi.b

beq.s

lea

bra.s

lea

move.w

jsr

rts

drive:

move.1

move.b

*

bsr

cmpi.b

beq.s

cmpi.b

beq.s

cmpi.b

beq

cmpi.b

beq

cmpi.b

beq.s

cmpi.b

bne.s

:move.b

clr .b

bsr

move.b

move.b

bra

#$00,fa

showl

on_text,aO

show2

off text,aO

#$0003,dO

Textout(a6)

rastport,al

#287,dO

#124,dl

Movee(a6)

rastport,al

#$00,del

show3

on__text,a0

show4

off_text,a0

#$0003,dO

Textout <a6)

rastport,al

#287,dO

#134,dl

Movee(a6)

rastport,al

#$00,dc2

show5

on_text,a0

show6

off_text,a0

#$0003,dO

Textout(a6)

cll_adress,flash_adress

#$01,color_jptr

waitjcey

#$0a,d0

s_drive0

#$01,dO

s_drivel

#$02,dO

s_drive2

#$03,dO

s_drive3

#$43,dO

source2

#$44,dO

sourcel

pointerI,d7

pointerl

end__drive

d7,pointerl

#$00,color_ptr

menu control

327

Appendix C Amiga disk drives inside and out

s_driveO

s_ddO:

s_drivel

s_ddl:

s_drive2

s_dd2:

s_drive3

s_dd3:

•

btst

beq

move.b

move.b

bra

:

btst

beq

move.b

move.b

bra

:

btst

beq

move.b

move.b

bra.s

btst

beq

move.b

move.b

set s_drive:

lea

addi.b

move.b

move.1

lea

move.w

move.w

jsr

lea

move.w

jsr

bra

byte_calculate!

byte2:

byte3:

cmpi.w

bmi.s

divu

move.w

addi.w

swap

bra.s

move.w

move.b

#$00,drives

sourcel

#$01,sd

#$00,dO

set_s_drive

#$01,drives

sourcel

#$02,sd

#$01,dO

set__s__drive

#$02,drives

sourcel

#$04,sd

#$02,dO

set_s_drive

#$03,drives

sourcel

#$08,sd

#$03,dO

sd text,a0

#$30,dO

dO,(aO)

gfxbase,a6

rastport,al

#303,dO

#144,dl

movee(a6)

rastport,al

#$0001,dO

Textout(a6)

sourcel

#$0a,d0

byte2

#$0a,d0

dO,dl

#$30,dl

dO

byte3

#$0030,dl

dl, <a0) +

addi.w #$0030,dO

move.b dO,(a0)+

rts

adresses:

move.l cop_adress,d0

move.l #colorl,dl

move.l #ncopper,d2

sub.l d2,dl

add.l dl,dO

328

Abacus The Deepcopy Program

move.l dO,cl_adress

addi.l #$000010,dO

move.l dO,c2_adress

addi.l #$000008,dO

move.l dO,c3_adress

addi.l #$000008,dO

move.l d0,c4_adress

addi.l #$000008,dO

move.l dO,c5_adress

addi.l #$000008,dO

move.l dO,c6_adress

addi.l #$000008,dO

move.l d0,c7_adress

addi.l #$000008,dO

move.l dO,c8__adress

addi.l #$000008,dO

move.l dO,c9_adress

addi.l #$000008,dO

move.l d0,cl0_adress

addi.l #$000008,dO

move.l d0,cll__adress

addi.l #$000008,dO

move.l dO,cl2_adress

addi.l #$000010,dO

move.l dO,cl3_adress

rts

set_title:

clr.l d6

move.w #$0009,d6

set_textl:

move.l gfxbase,a6

bsr set_text2

addi.l #$000026,text_ptr

addi.w #$000a,yl

dbf d6,set_textl

lea floppy,aO

move.l bit_adress,al

add.l #$001c26,al

move.l al,a2

bsr.s box

lea floppy,aO

move.l al,a2

add.l #$000008,a2

bsr.s box

lea floppy,aO

move.l al,a2

add.l #$000010,a2

bsr.s box

lea floppy,aO

move.l al,a2

add.l #$000018,a2

bsr.s box

bra.s set_work

box: rts /Remove this rts for PAL systems

move.w #floppy_js,dO ;draws graphic disk drive onscreen

329

Appendix C Amiga disk drives inside and out

bit_copy_loop:

move.b (aO)+,(a2)+

move.b (aO)+,(a2)+

move.b (aO)+,(a2)+

move.b (aO)+,(a2)+

move.b (aO)+,(a2)+

move.b <aO)+ ,(a2)+

add.l #$22,a2

dbf dO, bit_copy_loop

rts

set_work:

move.w #44,y2

bsr draw__line

move.w #148,y2

bsr draw_line

move.w #218,y2

bsr draw_line

move.w #250,y2

bsr draw_line

move.w #160,y2

bsr draw__line

move.w #157,yl

move.l #textll,text_ptr

bsr set_text2

move.w #170,yl

move.w #$0001,d2

move.l #text2,text_ptr

set_loop2:

bsr set__text2

addi.l #$000026,text_ptr

addi.w #$000a,yl

dbf d2,set_loop2

move.w #$0001,d2

move.l #text3,textjptr

move.w #200,yl ;PAL uses 230

bsr set_text2; /added to NTSC

move.l #text3a,textjptr ;added to NTSC

move.w #7,xl ;to position text

move.w #210,yl ;PAL uses 245

set_loop3:

bsr set_text2

addi.w #$OOOf,yl

addi.l #$000026,textj?tr

dbf d2,set_loop3

lea rastport,al

move.b #l,d0

jsr SetAPen(a6)

lea rastport,al

move.w #10,dO

move.w #10,dl

move.w #309,d2

move.w #40,d3

jsr RectFill(a6)

lea rastport,al

move.b #0,d0

jsr SetAPen(a6)

330

Abacus The Deepcopy Program

lea rastportfal

move.w #11,dO

move.w #11,dl

move.w #308,d2

move.w #39,d3

jsr RectFill<a6)

lea rastport,al

move.b #l,dO

jsr SetAPen(a6)

BegText: move.l #text4,text_ptr

move.w #16,xl

move.w #18,yl

bsr set_text3

move.l #text20,text_ptr

move.w #28,yl

bsr set_text3

move.l #text21,text_ptr

move.w

bsr

rts

draw_line:

lea

move.w

move.w

jsr

lea

move.w

move.w

jsr

rts

set_text2:

move.1

move.1

lea

move.w

move.w

jsr

lea

move.1

move.w

jsr

move.1

rts

#38,yl

set_text3

rastport,al

#$0000,dO

y2,dl

Movee(a6)

rastport,al

#$013f,d0

y2,dl

Draw(a6)

a6,-(a7)

gfxbase,a6

rastport,al

xl,d0

yl,dl

Movee(a6)

rastport,al

text_ptr,a0

#$0026,dO

Textout(a6)

(a7)+,a6

set_text3:

move.l a6,-(a7)

move.l gfxbase,a6

lea rastport,al

move.w xl,d0

move.w yl,dl

jsr Movee(a6)

lea rastport,al

move.l text_ptr,a0

move.w #$0024,dO

331

Appendix C Amiga disk drives inside and out

jsr Textout(a6)

move.l (a7)+,a6

rts

show_

show_

show

show

show_

show_

show_

show_

show_

start:

lea

btst

bne

btst

beq.s

_sl:lea

bsr

_startl:

btst

bne.s

btst

beq.s

_s2:lea

bsr

_start2:

btst

bne.s

btst

beq.s

_s3:lea

bsr.s

_start3:

btst

bne.s

btst

beq.s

_s4:lea

bsr.s

_start4:

move.

move.

move.

move.

show_loop:

lop:

bsr

addi.

addi.

dbf

w

w

w

1

w

1

move.w

lea

move.

dbf

rts

copy_drives:

move.

copy d_loop:

move.

dbf

rts

b

w

,b

text6,aO

#0,dd

show si

#0,sd

show__startl

dfO,al

copy_drives

#l,dd

show s2

#lfsd

show_start2

dfl,al

copy_drives

#2fdd

show s3

#2,sd

show start3

df2,al

copy_drives

#3,dd

show s4

#3fsd

show start4

df3,al

copy_drives

#16,xl

#18,yl

#$002,d2

#text5,textjptr

set_text3

#$000a,yl

#$000024,text_ptr

d2,show loop

#16,dO

text6,aO

#$20,(a0)+

dO,lop

#$0003,dO

(al)+,(a0)+

dO,copy_d_loop

332

Abacus The Deepcopy Program

;PAL uses 230

#text7,text_jptr

set text2

read__error:

clr.l dO

move.b cylinder,dO

lea text7,aO

add.l #$00001a,a0

bsr byte_caleulate

move.b side,dO

add.l #$000006,aO

bsr byte_calculate

move.w #7,xl

move.w #200,yl

move.1

bra

write_error:

clr.l dO

move.b cylinder,dO

lea text8,aO

add.l #$00001b,a0

bsr byte_caleulate

move.b side,d0

add.l #$000006,aO

bsr byte__calculate

move.w #7,xl

move.w #200,yl ;PAL uses

move.l #text8,text_ptr

bra set_text2

clear_error:

move.l #text3,textjptr

move.w #7,xl

move.w #200,yl

bra set text2

230

/PAL uses 230

move.l #text3a,text_j>tr /added to NTSC

move.w #7,xl ;to position text

move.w #210,yl ;(PAL uses 245)

bra set text2 /on the screen

reading cyl:

clr.l

move.b

lea

bsr

lea

move.1

lea

move.w

move.w

jsr

lea

move.w

jsr

rts

writing cyl:

clr.l

move.b

lea

bsr

dO

cylinder,dO

rcyl_text,a0

byte_calculate

rcyl_text,a0

gfxbase,a6

rastport,al

#127,dO

#210,dl

Movee(a6)

rastport,al

#$0002,dO

Textout <a6)

dO

cylinder,dO

wcyl_text,a0

byte calculate

;PALS uses 245

333

Appendix C Amiga disk drives inside and out

lea wcyl_text,aO

move.l gfxbase,a6

lea rastport,al

move.w #271,dO

move.w #210,dl ;PAL uses 245

jsr Movee(a6)

lea rastport,al

move.w #$0002,dO

jsr Textout(a6)

rts

insert source:

move.1

bra.s

#text9,text_ptr

melvin

insert_destination:

move.1

bra.s

protect_source:

bsr cl

move.1

bra.s

#textlO,text_ptr

melvin

#textl3,text_ptr

melvin

protect_destination:

bsr cl

move.1

melvin:

move.w

move.w

bsr

move.1

move.w

bsr

bra

clear_eol:

move.1

#textl4,text_ptr

#16,xl

#28,yl

set_text3

#text5,textjptr

#18,yl

set_text3

wait_r4

#textl5,text ptr

move.w #16,xl

move.w #28,yl

bsr set_text3

move.w #18,yl

bra set_text3

write_b__again: ; Check write again Y/N

bsr cl

move.l #textl7,text_ptr

move.w #16,xl

move.w #28,yl

bsr set_text3

wbal: bsr wait_key

cmpi.b #$45,dO /check esc

beq.s wba4

cmpi.b #$15,dO /German keyboards use 31 y and z reversed

beq.s wba2

cmpi.b #$36,dO /check n

bne.s wbal

move.l #-l,dO

bra.s wba3

wba2: clr.l dO

334

Abacus The Deepcopy Program

wba3: move.l dO,-(a7)

wba4:

bsr

move.1

rts

move.w

rts

compare_drives:

cdll:

cdl4:

cdl2:

cdl3:

move.w

bsr

lea

clr .w

lea

btst

beq.s

move.w

lsl

add.l

bsr .s

addq.w

cmpi.w

bne.s

move.1

move.w

bra

move.w

move.b

dbf

clear eol

(a7)+,dO

#escape,errorflag

#18,yl

cl2

textl9,aO

d2

dfO,al

d2,vererrflag

cdl4

d2,dO

#2,dO

dO,al

cdl2

#l,d2

#4,d2

cdll

#textl8,text ptr

#28,yl

set_text3

#3,dl

<al)+,(aO)+

dl,cdl3

rts

wait_key:

movem.1 dl-d7,-(a7)

move.w Keybrdclr,dl

18: move.b IntCon,dO

btst #7,dl

bne 11

sub.1 #1,Keybrdent

beq Keybrepeat

11: btst #3,dO

beq 18

move.b Key,dO

ori.b #$40,Cont

not.b dO

ror.b #l,dO

move.w #$600,dl

15: dbf dl,15

andi.b #$bf,Cont

move.1 #MaxWait,Cntwait

move.1 #MaxWait,Keybrdcnt

move.w dO,Keybrdclr

Keybtdend:

movem.1 (a7)+,dl-d7

rts

Keybrepeat:

move.l Cntwait,dl

cmp.l #MinWait,dl

335

Appendix C Amiga disk drives inside and out

repeat1

get_key

\12:

Ml:

cl:

cl2:

bcs.s

sub.l

move.1

:move.1

move.w

bra.s

:

move.w

btst

beq

move.b

ori.b

not .b

ror .b

move.w

dbf

andi.b

rts

move.w

move.w

repeat1

#$800,dl

dl,Cntwait

dl,Keybrdcnt

Keybrdclr,dO

Keybtdend

$dff01e,dl

#3,dl

Ml

Keyfd0

#$40,Cont

dO

#l,dO

#$600,dl

dlf\12

#$bffCont

#28,yl

#16,xl

move.1 #text15,text_ptr

bsr set__text3

addi.w #10,yl

bsr set_text3

rts

ell: bsr.s cl

move.w #18,yl

bsr set_text3

move.w #28,yl

move.l #textl6,text_ptr

bsr set_text3

rts

gfxname:

deb

align

gfxbase:

oldcopper:

bit_adress:

cop_adress:

cl_adress:

c2_adress:

c3_adress:

c4_adress:

c5_adress:

c6_adress:

c7_adress:

c8_adress:

c9_adress:

clO adress:

cll_adress:

cl2 adress:

"graphics.library",0

.w

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

336

Abacus The Deepcopy Program

cl3_adress:

rastport:

r_bitmap:

bitmap:

planel:

ncopper:

plane_hi:

plane_lo:

colorl:

color2:

color3:

color4:

color5:

color6:

color7:

color8:

color9:

colorlO:

colorll:

colorl2:

colorl3:

copend:

del

blk.l

blk.l

blk.l

blk.l

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

0

1,0

24,0

2,0

8,0

$008e,$2681,$0090,$24cl

$0092,$0038,$0094,$00d0

$00e0

$0000,$00e2

$0000

$0100,$1200,$0102,$0000,$0104, $0000

$0108,$0000,$010a, $0000

$0120,$0000,$0122, $0000

$0180,$0000,$0182

$00ee,$0d01,$fffe,$0182

$00ee,$5401,$fffe,$0182

$00ee,$6001,$fffe,$0182

$00ee,$6a01,$fffe,$0182

$00ee,$7201,$fffe,$0182

$00ee,$7d01,$fffe,$0182

$00ee,$8601,$fffe,$0182

$00ee,$9001,$fffe,$0182

$00ee,$9a01,$fffe,$0182

$00ee,$a401,$fffe, $0182

$00ee,$af01,$fffe,$0182

$00ee,$b701,$fffe,$0182

$00ee,$c501,$fffe,$0182

$00ee,$c701,$fffe,$0182

$00ee,$ff01,$fffe,$0182

$00ee,$ffff,$fffe

$0000,$0000

copsize = copend - ncopper

drives:

d_drives:

s_drives:

color ptr:

back:

pointerl:

cylinder:

side:

new:

drv:

align.w

flash_adress:

text_ptr:

xl:

yl:

y2:

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

del

del

dew

dew

dew

0

0

0

0

0

0

0

0

0

0

0

0

7

54

0

337

Appendix C Amiga disk drives inside and out

keybrdclr:

cntwait:

keybrdcnt:

fc_text:

ralf:

lc_text:

tr_text:

sd_text:

rcyl_text:

wcyl_text:

on__text:

on_text2:

off_text:

dfO:

dfl:

df2:

df3:

dew

del

del

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

deb

$ffff

MaxWait

MaxWait

"00"

0

••79"

II QM

"0"

"00"

"00"

".ON"

" ON"

"OFF"

"DFO "

"DF1 "

"DF2 "

"DF3 "

textl: dc.b "Fl = START COPY "

dc.b "F2 = FIRST CYLINDER (CRSR) 00"

dc.b "F3 = LAST CYLINDER (CRSR) 79"

dc.b "F4 = HOW MANY TRIES (CRSR) 3"

dc.b "F5 = WRITE SEVERAL TIMES OFF"

dc.b "F6 = VERIFY DESTINATION ON"

dc.b "F7 = FASTCOPY ON"

dc.b "F8 = DEEPCOPY 1 OFF"

dc.b "F9 = DEEPCOPY 2 OFF"

deb "F10 = SOURCE DRIVE (0/1/2/3) DFO"

text2: dc.b "DEL = DESTINATION DRIVE (0/1/2/3) "

dc.b " DFO: DF1: DF2: DF3:

text3: deb " STATUS: 00, OKf00,00

text3a: dc.b " READING CYL. 00 / WRITING CYL. 00

/text3a added for text positioning on NTSC systems

text4: dc.b " AMIGA- COPY VI.2

text5: dc.b " (ESC) TERMINATES COPY

deb "INSERT DISK(S) IN "

text6: deb "

dc.b "PRESS RETURN OR ENTER WHEN READY !°!"

text7: dc.b "STATUS: READ-ERROR ON CYL.00 SIDE 00 "

text8: dc.b "STATUS: WRITE-ERROR ON CYL.00 SIDE 00 "

text9: dc.b " PLEASE INSERT SOURCE DISK !!

textlO: dc.b " PLEASE INSERT DESTINATION DISK ! "

textll: dc.b " S = SYNCCORRECTION ON"

textl2: dc.b " ONLY ONE DESTINATION !!

textl3: dc.b " SOURCE DISK INSN'T WRITEPROTECTED. "

textl4: deb "DESTINATION DISK IS WRITEPROTECTED. "

text15: deb "

textl6: dc.b " COPY COMPLETE !!

textl7: dc.b " WRITE BUFFER AGAIN ??? (Y/N)

text18: dc.b " ERROR ON DRIVE(S) "

textl9: deb "

text20: deb " WRITTEN BY :

text21: dc.b " R. GELFAND AND S. THUBEAUVILLE

align.w

floppy:

338

Abacus The Deepcopy Program

del

del

dc,

del

del

$00000000,$00000000, l

$04000000,$002005ff,!

$00000000,$00000000,$000007ff,

$ffffffaO,$05ffffff,$ffa00400,

1 $04ffffff,$ff200880,$00000110,$08800000,$01100880,

$fOOffdlO,$07a00000,$05e008bf,

$00000110,$08800000,$01100480,

$00000020,$07ffffff,$ffeOOOOO,

$08801008,$011008bf,

$08800ff0,$01100a90,

del $04ffffff,$ff200400,

floppyend:

/graphic of disk drive not

/Fast Copy

$ffffffeO

$00000020

$lff80110

$fOOffdlO

$00000120

$00000000

used by NTSC system

DecodeCnt:

DecodeAdr:

BlockAdr:

FTestAdr:

SectNum:

BytesBefGap:

BytesAftGAp:

FirstBlock:

FirstBlockSp:

SectBL:

VerifyFlag:

VerErrFlag:

TNumBufferA:

TNumBufferE

BlockMessage:

/Cruncher

Length:

ShrtByte:

TrackPointer:

MemoryBeg:

MemoryLength:

MeraoryChip:

LengthChip:

FreeFlagCh:

MemoryFast:

LenghtFast:

FreeFlagFa:

Subtr:

/Control

TrackBufferl:

TrackBuffer2:

TrackNumS:

TrackNumD:

TrackNum:

StartTrack:

EndTrack

MotorBits:

MotorBitsS:

MotorBitsD:

dew

del

dew

de

0

0

0

0

dew 0

dew 0

dew 0

dew 0

dew 0

dew 0

dew 0

dew 0

dew 0

dew 0

ds.w 11

dew $1600

deb 0

align.w

/Counter for longwords to be decoded

/Address where to decode

/Offset in Block for decoding

/Test address if Block already loaded

/Counter for Sector number

/Bytes before the Gap

/Bytes after the Gap

/Block number of the first Block

/permanent memory for first Block

/Sector counter for Sectors before Gap

/indicates if read or Verify

/Flag for Errors

/Verify-Bit = 1 => Error

/Track-Number memory

/for ID-Copy (Start-Track)

/Buffer for End number

/of loaded Tracks

ds.l

del

del

del

164

0

0

0

/memory for Pointer to packed Tracks

/memory beginning for crunching

/memory length for Crunching

dc

dew

del

del

dew

dew

1 0

/See CrunEnd2

del

del

dew

dew

dew

dew

dew

deb $F3

deb $F3

deb $F3

/first Track to be read

/last Track to be read

339

Appendix C Amiga disk drives inside and out

/indicates if Source or Dest.

;For Search routine

/number of Bits during shift

/size of the largest Block

/size of the second largest Block

/Position of the largest Block

/how many defective Words can there be

/how many Words are compared

/End position of Track

/beginning of Track (after Gap)

/number of Bytes to be written

/Address from which writing starts

/number bytes before Sync during writing

/Bytes on the Track

/Bytes on the Track (Controll)

/Track length of Dest.-Disk

/Distance from Index to Sync

/number of Syncs found

/Illegal Data, read how many times

/how many times read for NoSync

SortBlockNum /memory for Blocklength+SyncNum

SortBlockNum /memory for Block sorting

/number of different sorted Blocks

/Value for reading

/Table for Sync-Search

/Sync = $4489

SyncBase: del %01000100100010010000000000000000

del %00100010010001001000000000000000

%00010001001000100100000000000000

%00001000100100010010000000000000

%00000100010010001001000000000000

%00000010001001000100100000000000

%00000001000100100010010000000000

%00000000100010010001001000000000

%00000000010001001000100100000000

%00000000001000100100010010000000

%00000000000100010010001001000000

%00000000000010001001000100100000

%00000000000001000100100010010000

%00000000000000100010010001001000

%00000000000000010001001000100100

%00000000000000001000100100010010

Flag:

/Deep Copy

Position:

BitShifts:

Sizel:

Size2:

SizePos:

Searchln:

NumWords:

ErrorFlag:

EndPos:

BegPos:

SLength:

WriteAddrs:

Offset:

TrackBytes:

CheckLength:

LenghtDest:

Syncwidth:

SyncNum:

CopyTryl:

CopyTry2:

Blocks:

SortBlocks:

NumSortBlock:

SyncWord:

deb $00

align.w

del

dew

dew

dew

del

dew

dew

dew

del

del

dew

del

dew

dew

dew

dew

dew

dew

dew

dew

ds.l

ds.l

dew

dew

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sor

Sor

0

$44

del

del

de

de

de

del

del

de

del

del

del

de

de

de

del %00000000000000000100010010001001

AmigaTrack: deb 0 /indicates if Amiga-Format on DeepCopy

fc: dc.b 00 /First Cylinder

lc: deb 79 /Last

tr: deb 3 /Tries

ws: deb 0 /Write repeatedly

vd: deb 1 /Verify

340

Abacus The Deepcopy Program

fa: dc.b 1 ;Fast Copy

del: dc.b 0 ;D1 Copy

dc2: dc.b 0 ;D2 Copy

sd: dc.b 1 ;SourceBits

dd: dc.b 2 ;DestDits

sy: dc.b 0 ;Sync correction

waiting: dc.b 0 ;irq wait_conter

DevName: dc.b "trackdisk.device",0

END

341

Index

ADKCON register

ADKCONR register

AllocSignal

AmigaBASIC 35,

AmigaDOS

APPEND

ASCII format

Assign

Bar graph

Base pointer

BCPL variables

BeginIO function

Bitmap

Bitmap blocks

Blitter

Block types

Boot block

Boot block checksum

Boot block viruses

Boot routine

Bootable disks

BPTR

Buffer

Byte Bandit virus

C programming language

Calculation program

Cancel gadget

Channel

Checksums

Chip memory

CLI

CLI commands

Clock bits

Close

CMD commands

Coding

Commands

Console

Control blocks

Copy program

Copy protection

Copying

CreateDir

CreatePort function

CreateProc

CuirentDir

198

198

138

38, 60, 62

69,71

41

36

28

65

71

70

160

115, 118

115, 118

146, 183

98

98

99-100

128-131

20, 99-101

20

70

24

128

70

65

15

40

114, 180

146, 212

20, 32, 60

32

175

79

161

175, 181

147

69

110

260

179

10

81

37

86

82

Cylinders

Data access

Data block 113,

Data fields

Data records

Data redirection

DateStamp

Default Tool

Delay

DeleteFile

Deletion protection

DeepCopy

Device driver

Device structure

DeviceNode structure

DeviceProc

Devices 69,

Dir

95

178, 180

38,58

43,59

80

87

13

87

82

12

260

95

154

72

87

137, 147

30

Directory 30, 84, 62, 110

Discard

Disk Byte Read register

Disk control

Diskdrive

Disk interrupts

DiskLEN

Disk monitor program

Disk Pointer register

Disk registers

Disk Sync register

DiskChange

DiskDoctor

DoIO function

DOS error messages

DOS functions

DOS Info structure

DOS library

DOSBase

Drawer

Drive accelerator

Drive Select register

Drive Status register

DSKDAT registers

DSKLEN register

DSKPT registers

DupLock

12

198

154

3, 9, 69

215

197

96,219

197

194

200

27

23

159

89

78

71

60,71

71

12

240

195

194

200

197

197

83

343

Index Amiga disk drives inside and out

Error messages

Examine

Exec

Execute

Exit

ExNext

File

File channel

File control

File Handle structure

File handling routines

File header block

File list block

FilelnfoBlock

Filesystem

Format identification

Formatting

Garbage

GCR format

GET

GetPacket

Hard errors

Hash calculation

Hash Table

Hashchain

Include file

Index mark

Info

Information block

Information flow

Initialize

Input

Input/Output functions

Install

Interrupt program

Interrupt structure

IoErr

89

83

137

87

87

83

5,38

39

95

78

75

112

113

83

95

179

4, 173

12

175, 176

44

88

23

117

115

117

70, 147

168

12, 21, 85

178

39

4

80

78

20, 98, 131

168

152

81

IORequest structure 139, 148, 159

IOStandard

Islnteractive

Keyboard

Keyboard drivers

LoadSeg

Lock

Lock structure

140

81

32,69

30

88

81,82

72

LSET

Magnetization

Merge

Message

Message Port structure

Message structure

MFM format 175,

Mini Base program

MKS$

Monitor

Motor

Msg. Port structure

Multitasking

Object types

Open

Operating system

Output

ParentDir

Port structure

Printer drivers

Project

QBlit function

QueuePacket

RAM disk

Random files

RAW commands

Read

Read/write heads

Recording format

Rename

Reply messages

ReplyPort

Resident structures

Resource structure

Retry gadget

Root block

RootNode

SCA virus

Screen

Script files

Sectors 4,

Seek

Sequential file

Serial interface

SetComment

44

174

60,64

137

154

139, 188

178, 180

45-59

44

219

195

188

157

12

78

4,69

80

82

155

30

12, 13

183

88

10

43

166

79

4, 136

174

82

137

139, 188

101

157

15

110, 118

71

128

69

26-27

136, 179

79

38-42

69

86

344

Abacus Index

SetProtection

Signalbit

Speeder.s

ST.USERDIR

Stepper motor

Storage capacity

86

138

240

112

136

30,136

Swiss Cracker's Association 128

Sync marks 175, 179

Synchronization 175

System libraries 60

T.SHORT

TD commands

Text editor

Tool

Track

Track coding

Track data

Trackdisk task

Trackdisk.device 110,

Tracks

Trashcan icon

UnLoadSeg

UnLock

User directoiy blocks

Viruses

Wait function

WaitForChar

Workbench

Woikbenchdisk

Write

111

161

58

12

178-179,190

181

146

161, 188

135, 152-154

4, 136

12

88

83

112

127-131

188

80

15

12

79

345

Optional Diskette

Amiga Disk Drives

Inside and Out

For your convenience, the program listings contained in this book are

available on an Amiga formatted floppy disk. You should order the diskette if

you want to use the programs, but don't want to type them in from the

listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a

check, money order or credit card information. Mail your order to:

Abacus Software

5370 52nd Street SE

Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.
Credit Card orders only 1-800-451-4319.

New TM

AMIGA BASIC- Inside and Out

AMIGA BASIC—-Inside and Out is the definitive step-by-step
guide to programming the AMIGA in BASIC. This huge volume
should be within every AMIGA user's reach. Every AMIGA
BASIC command is fully described and detailed. In addition,
AMIGA BASIC—Inside and Out is loaded with real working
programs.

Topics include:

• Video titling for high quality object animation

• Bar and pie charts

• Windows

• Pull down menus

• Mouse commands

• Statistics

• Sequential and relative files
• Speech and sound synthesis

Plus much, much more. Over 550 pages of vital information are

contained in this book. Available late first quarter 1987.

Suggested retail price: $24.95

AMIGA Tricks & Tips

AMIGA Tricks & Tips follows a tradition established by our other

Tricks & Tips books for Commodore computers. It's another solid
collection of diverse and useful programming techniques written

for everyone who uses the AMIGA. This easy to understand

source book details applications for the stunning processing power

of the AMIGA.

Topics include:

• Displaying 64 colors on screen simultaneously

• Accessing libraries from BASIC

• Creating custom character sets

• Using Amiga DOS, graphics

In addition, AMIGA Tricks & Tips presents dozens of tips cm
windows, programming aids, the AMIGA'S speech synthesis and

musical capabilities, covers important 68000 memory locations,

and much more.

AMIGA Tricks & Tips is available second quarter 1987.

Suggested retail price: $19.95

Optional program diskettes are available for ourAMIGA books
Suggested retail price: $14.95

Amiga for Beginners

A perfect introductory book of you're a new or prospective Amiga owner.

Amiga for Beginners introduces you to Intuition (the Amiga's graphic

interface), the mouse, windows, the versatile CLI. This first volume in our
Amiga series explains every practical aspect of the Amiga in plain English.

Includes clear, step-by-step instructions for common Amiga tasks. Amiga for

Beginners is all the info you need to get up and running.

Topics include:

• Unpacking and connecting the Amiga components

• Starting up your Amiga

• Customizing the Workbench

• Exploring the Extras disk

• Taking your first steps in the AmigaBASIC programming language

• AmigaDOS functions

• Using the CLI to perform "housekeeping" chores

• First Aid, Keyword, Technical appendixes

• Glossary

Suggested retail price: $16.95
No optional

disk available

Amiga System

Programmer's Guide

Amiga System Programmer's Guide has a wealth of information about what

goes on inside the Amiga. Whether you want to know about the Amiga kernal or

DOS commands, Amiga System Programmer's Guide has the information you

need, explained in a manner that you can easily understand. Just a few of the

things you will find inside:

• EXEC Structure

• Multitasking functions

• I/O management through devices and I/O request

• Interrupts and resource management

• RESET and its operation

• DOS libraries

• Disk management

• Detailed information about the CLI and its commands

• Much more—over 600 pages worth

Optional program diskettes are available for ourAMIGA books
Suggested retail price: $14.95

Suggested retail price: $34.95

Amiga Machine Language

The practical guide for learning how to program your Amiga in ultrafast machine

language. Used in conjunction with our AssemPro Amiga software package,

Amiga Machine Language is a comprehensive introduction to 68000

assembler/machine language programming. Topics include:

• 68000 microprocessor architecture

• 68000 address modes and instruction set

• Acessing RAM, operating system and multitasking capabilities

• Details the powerful Amiga libraries for using AmigaDOS

• Speech and sound facilities from machine language

• Many useful programs listed and explained

Suggested retail price: $19.95

AmigaDOS Inside & Out
AmigaDOS covers the insides ofAmigaDOS from the internal design up to

practical applications. There is also a detailed reference section which helps you

find information in a flash, both alphabetically and in command groups.

Topics include:

68000 microprocessor architecture

AmigaDOS - Tasks and handling

Detailed explanations of CLI commands and their functions

DOS editors ED and EDIT

Operating notes about the CLI (wildcards, shortening input and outpuO

Amiga devices and how the CLI uses them

Batch files - what they are and how to write them

Changing the startup sequence

AmigaDOS and multitasking

Writing your own CLI commands

Reference to the CLI, ED- and EDIT commands

Resetting priorities - the TaskPri command

Protecting your Amiga from unauthorized use

Suggested retail price: $19.95

Optional program diskettes are available for ourAMIGA books

Suggested retail price: $14.95

AMIGA 3-D
Graphics Programming

in BASIC

Amiga 3-D Graphics Programming in BASIC-
shows you how to use the powerful graphics

capabilities of the Amiga. Details the techniques

and algorithm for writing three dimensional

graphics programs: ray tracing in all resolutions, light

sources and shading, saving graphics in IFF format and more

Suggested retail price: $19.95.

AMIGA C
for Beginners

Amiga C for Beginners- and introduction

to learning the popular C language.

Explains the language elements using

examples specifically geared to the Amiga.

Describes C library routines, how the

compiler works and more.

Suggested retail price: $16.95

AMIGA C
for Advanced
Programmers
Amiga C for Advanced Programmers- contains

a wealth of information from the pros: how compilers, assemblers

and linkers work, designing and programming user friendly interfaces

using intuition, managing large programming projects, using jump

tables and dynamic arrays, combing assembly language and C codes and more.

Includes complete source code for text editor.

Suggested retail price: $24.95

Optional program diskettes are available for ourAMIGA books

Suggested retail price: $14.95

Selected Abacus Products for the Amiga computers

AssemPro
Machine Language Development

System for the Amiga

Bridge the gap between slow higher-level languages and

ultra-fast machine language programming: AssemPro

Amiga unlocks the full power of the AMIGA'S 68000

processor. It's a complete developer's kit for rapidly

developing machine language/assembler programs on your

Amiga. AssemPro has everything you need to write

professional-quality programs "down to the bare metal":

editor, debugger, disassembler & reassembler.

Yet AssemPro isn't just for the 68000 experts.

AssemPro is easy to use. You select options from
dropdown menus or with shortcut keys, which makes your

program development a much simpler process. With the

optional Abacus book Amiga Machine Language

(see page 3), AssemPro is the perfect introduction to

Amiga machine language development and programming.

AssemPro also has the professional features that

advanced programmers look for. Lots of "extras" eliminate

the most tedious, repetitious and time-consuming m/1

programming tasks. Like syntax error search/replace

functions to speed program alterations and debugging. And

you can compile to memory for lightning speed. The

comprehensive tutorial and manual have the detailed

information you need for fast, effective programming.

AssemPro Amiga offers more professional features,

speed, sheer power, and ease of operation than any

assembler package we've seen for the money. Test drive

your AssemPro Amiga with the security of the

Abacus 30-day MoneyBack Guarantee.

Suggested retail price: $99.95

Features
Integrated Editor, Debugger, Disassembler and

Reassembler

Large operating system library

Runs under CLI and Workbench

Produces either PC-relocatable or absolute code

Create custom macros for nearly any parameter (of

different types)

Error search and replace functions

Cross-reference list

Menu-controlled conditional and repeated assembly

Full 32-bit arithmetic

Advanced debugger with 68020 single-step emulation

Written completely in machine language for ultra-fast

operation

Runs on any Amiga with 5\2K or more and Kickstart

version 1.2

Not copy protected

Machine languageprogramming requires a solid understanding
of the AMIGA's hardware ana operating system. We do not

recommend thispackage to beginning Amigaprogrammers

Selected Abacus Products for the Amiga computers

BeckerText

Powerful Word Processing
Package for the Amiga

BeckerText Amiga is more than just a word processor.

BeckerText Amiga gives you all of the easy-to-use

features found in our TextPro Amiga, plus it lets you

do a whole lot more. You can merge sophisticated IFF-

graphics anywhere in your document You can hyphenate,

create indexes and generate a table of contents for your

documents, automatically. And what you see on the

BeckerText screen is what you get when you print the

document—real WYSIWYG formatting on your Amiga.

But BeckerText gives you still more: it lets you
perform calculations of numerical data within your

documents, using flexible templates to add, subtract,

multiply and divide up to five columns of numbers on a

page. BeckerText can also display and print multiple

columns of text, up to five columns per page, for

professional-looking newsletters, presentations, reports,
etc. Its expandable built-in spell checker eliminates those

distracting typographical errors.

BeckerText works with most popular dot-matrix and
letter-quality printers, and even the latest laser printers for

typeset-quality output. Includes comprehensive tutorial
and manual.

BeckerText gives you the power and flexibility that you

need to produce the professional-quality documents that
you demand.

When you need more from your word processor than just

word processing, you need BeckerText Amiga.

Discover the power of BeckerText.

Suggested retail price: $150.00

Features

• Select options from pulldown menus or handy shortcut
keys

• Fast, true WYSIWYG formatting
• Bold, italic, underline, superscript and subscript
characters

• Automatic wordwrap and page numbering

• Sophisticated tab and indent options, with centering and
margin justification

• Move, Copy, Delete, Search and Replace

• Automatic hyphenation, with automatic table of

contents and index generation

• Write up to 999 characters per line with horizontal
scrolling feature

• Check spelling as you write or interactively proof

document; add to dictionary

• Performs calculations within your documents-

calculate in columns with flexible templates

• Customize 30 function keys to store often-used text

and macro commands

• Merge IFF graphics into documents

• Includes BTSnap program for converting text blocks to

IFF graphics

• C-source mode for quick and easy C language program
editing

• Print up to 5 columns on a single page

• Adapts to virtually any dot-matrix, letter-quality or laser
printer

• Comprehensive tutorial and manual

• Not copy protected

Selected Abacus Products for the Amiga computers

DataRefrieve

A Powerful Database Manager
for the Amiga

Imagine a powerful database for your Amiga: one that's

fast, has a huge data capacity, yet is easy to work with.

Now think DataRetrieve Amiga. It works the same

way as your Amiga—graphic and intuitive, with no

obscure commands. You quickly set up your data files

using convenient on-screen templates called masks. Select

commands from the pulldown menus or time-saving

shortcut keys. Customize the masks with different text

fonts, styles, colors, sizes and graphics. If you have any

questions, Help screens are available at the touch of a

button. And DataRetrieve's 128-page manual is clear

and comprehensive.

DataRetrieve is easy to use—but it also has

professional features for your most demanding database

applications. Password security for your data.

Sophisticated indexing with variable precision. Full

Search and Select functions. File sizes, data sets and data

fields limited only by your memory and disk storage

space. Customize up to 20 function keys to store macro

commands and often-used text. For optimum access speed,

DataRetrieve takes advantage of the Amiga's multi

tasking.

You can exchange data with TextPro Amiga,

BeckerText Amiga and other packages to easily

produce form letters, mailing labels, index cards,

bulletins, etc. DataRetrieve prints data reports to most

dot-matrix & letter-quality printers.

DataRetrieve is the perfect database for your Amiga.

Get this proven system today with the assurance of the

Abacus 30-day MoneyBack Guarantee.

Suggested retail price: $79.95

Features

Select commands and options from the pulldown menus

or shortcut keys

Enter data into convenient screenmasks

Enhance screen masks with different text styles, fonts,

colors, graphics, etc.

Work with 8 databases concurrently

Define different field types: text, date, time, numeric &

selection

Customize 20 function keys to store macro commands

and text

Specify up to 80 index fields for superfast access to

your data

Perform simple or complex data searches
Create subsets of a larger database for even faster

operation

Exchange data with other packages: form letters,

mailing lists etc.

Produce custom printer forms: index cards, labels,

Rolodex*cards, etc. Adapts to most dot-matrix & letter-

quality printers

Protect your data with passwords

Get Help from online screens

Not copy protected

• Max. file size

• Max. data record size

• Max. data set

• Max. no. of data fields

• Max. field size

Limited only

by your memory

and disk space

Selected Abacus Products for the Amiga computers

TextPro
The Ideal Word Processing

Package for the Amiga

TextPro Amiga is an full-function word processing

package that shares the true spirit of the Amiga: easy to

use, fast and powerful—with a surprising number of

"extra" features.

You can write your first TextPro documents without

even reading the manual. Select options from the
dropdown menus with your mouse, or use the time-saving

shortcut keys to edit, format and print your documents.

Yet TextPro is much more than a beginner's package. It

has the professional features you need for all of your

printed documents. Fast formatting on the screen: bold,

italic, underline, etc. Centering and margin justification.

Page headers and footers. Automatic hyphenation of text.

You can customize the TextPro keyboard and function

keys to suit your own style. Even merge IFF-format

graphics right into your documents. TextPro includes

BTSnap, a utility for saving IFF graphics that you can

use in your graphics programs. This package can also

convert and print other popular word processor files.

TextPro is output-oriented. This means you can print

your documents to exact specifications—and get top

performance out of your dot-matrix or letter quality

printer. (Printer drivers included on diskette let you

customize TextPro to virtually any printer on the

market). The complete tutorial and manual shows you

how it's all done, step by step.

TextPro sets a new standard for word processors in its

price range. Easy to use, packed with advanced features—

it's the Ideal package for all of your wordprocessing needs.

Backed by the Abacus 30-day MoneyBack

Guarantee.

Suggested retail price: $79.95

Features

Fast editing and formatting on screen
Display bold, italic, underline, superscript and subscript

characters

Select options from dropdown menus or handy shortcut

keys

Automatic wordwrap & page numbering

Sophisticated tab and indent options, with centering &

margin justification

Move, Copy, Delete, Search &Replace options

Automatic hyphenation

Customize up to 30 function keys to store often-used

text, macro commands

Merge IFF format graphics into your documents

Includes BTSnap program for saving IFF graphics from

any program

Load & save files through RS-232 port

Flexible, ultrafast printer output—printer drivers for

most popular dot-matrix & letter quality printers included

Comprehensive tutorial and manual

Not copy protected

ROFESSIONAL

DataKetr/eve
File your other databases away!
Professional DataRetrieve, for the Amiga 500/1000/2000, is a friendly easy-to-operate
professional level data management package with the features of a relational data base system.

Professional DataRetrieve has complete relational data management capabilities. Define
relationships between different files (one to one, one to many, many to many). Change
relations without file reorganization.

Professional DataRetrieve includes an extensive programming language which includes

more than 200 BASIC-like commands and functions and integrated program editor. Design

custom user interfaces with pulldown menus, icon selection, window activation and more.

Professional DataRetrieve can perform calculations and searches using complex

mathematical comparisons using over 80 functions and constants.

Professional DataRetrieve's features:

• Up to 8 files can be edited simultaneously

• Maximum size of a data field 32,000 characters (text fields only)

• Maximum number of data fields limited by RAM

• Maximum record size of 64,000 characters

• Maximum number of records disk dependant

(2,000,000,000 maximum)

• Up to 80 index fields per file

• Up to 6 field types - Text, Date, Time,

Numeric, IFF, Choice

• Unlimited number of searches and sub

range criteria

• Integrated list editor and full-page printer

mask editor

• Index accuracy selectable from 1 -999

characters

• Multiple file masks on-screen

• Easily create/edit on-screen masks for one

or many files

• User-programmable pulldown menus

• Operate the program from the mouse or from

the keyboard

• Calculation fields, Date fields

• IFF Graphics supported

• Mass-storage-oriented file organization

• Not Copy Protected, no dongle: can be installed on your hard drive

5370 52nd St. SE Grand Rapids Ml 49508 - Order Toll Free! 800-451-4319

COfTlPUT€R

o high-tech diyeo/e

Computer VIRUSES, A High-Tech Disease describes

the relatively new phenomena among personal computer

users, one that has potential to destroy large amounts of

data stored in PC systems. Simply put, this book explains

what a virus is, how it works and what can be done to

protect your PC against destruction.

Computer VIRUSES, A High Tech Disease starts with a

short history of computer viruses and will describe how a

virus can quietly take hold of a PC. It will give you lots of

information on the creation and removal of computer

viruses. For the curious, there are several rudimentary

programs which demonstrate some of the ways in which a

virus infects a PC.

Computer VIRUSES, A High Tech Disease even

presents techniques on inoculating the PC from a virus.

Whether you want to know a little or a lot about viruses,
you'll find what you need in this book. 288 pages, $18.95

Written by Ralf Burger

Published by Abacus Software Inc.

About the author; Ralf Burger is a system engineer who

has spent many years experimenting with virus programs

and locating them in computer systems.

Topics include:

• What are computer viruses

• A short history of viruses

• Definition of a virus

• How self-manipulating programs work

• Design and function of viral programs

• Sample listings in BASIC, Pascal and machine language
• Viruses and batch file

• Examples of viral software manipulation

• Protection options for the user

• What to do when you're infected

• Protection viruses and strategies

• A virus recognition program

• Virus proof operating systems

Contact Abacus
For More Information!

5370 52nd Street • Grand Rapids, Ml 49508 • (616) 698-0330

How to Order
Abacus!!! 5370 52nd Street SE Grand Rapids, Ml 49508

All of our Amiga products-application and language

software, and our Amiga Reference Library-are available at

more than 2000 dealers in the U.S. and Canada. To find out

the location of the Abacus dealer nearest you, call:

Toll Free 1-800-451-4319

8:30 am-8:00 pm Eastern Standard Time

Or order from Abacus directly by phone with your credit

card. We accept Mastercard, Visa and American Express.

Every one of our software packages is backed by the

Abacus 30-Day Guarantee—if for any reason you're not

satisfied by the software purchased directly from us, simply

return the product for a full refund of the purchase price.

Order Blank

Name:

Address:

State Zio Country

Phone:

Qtv Name of product

Mich, residents add 4% sales tax

Shipping/Handling charge

(Foreign Orders $12 per Hem)

Check/Money order TOTAL enclosed

Price

Credit Card#

Expiration date

1 1

|

We appreciate your selection

of another of our

fine products:

In addition you may receive the,

Abacus on Amiga Newsletter^$5 -..,.*,.

Return this completed card to receive Abacus on Amiga, our newsletter

that keeps you informed about Abacus' newest products for the AMIGA.

/&^£^><% ^^<?<r^ ^<>^£^
/c^?r**ti*i*z>-&'h**fy **^**%1r*'^>^c-*» ^r*'i>'/-'>«fZ**C/>

■■■■■■■■■■■ di'il Hrte'ii H/;ii'''£''iB hb'^"'^! teM^ai a"Ih A'Bii"'ii'nii

■ Reserve your copy now!!

Abacus on Amiga
[Abacus
5370 52nd Street S.E., Grand Rapids, MI 49508

(610) 698*0330

Name.

Address

City State _Zip

Where did you purchase AMIGA DISK DRIVES: Inside and Out ?.

What other Abacus Products would you be interested in?

Amiga Disk Drives: Inside & Out shows
everything you need to know about Amiga

disk drives. You'll find information about data

security, disk drive speedup routines, disk

copy protection, boot blocks and technical

aspects of the hardware.

If you're a beginner, you'll learn simple disk
drive operations using AmigaBASIC, the
Workbench and the CLI (Command Line

Interpreter). You'll also learn about loading and

saving programs; sequential and relative file

management techniques and much more.

If you're an advanced user, you'll see how to
access the disks without DOS, how to use and

change the full-length disk monitor so that you

can explore the disk by track and sector. This

way you'll discover the inner workings of the

disk drive.

Amiga Disk Drives: Inside & Out topics

include: disk drive operations • file

management • CLI, Workbench, AmigaBASIC

disk commands and functions • disk and file

copy methods and techniques • protecting files

• disk format information

FastCopy: You can copy entire diskettes in one

minute!

DeepCopy: Backup many copy protected disks

Also copy ST and PC 3 1/2" disk formats with your

Amiga disk drive!

FloppySpeeder: Super fast-track disk routines

independent of diskette access

CrunchCopy: Packing routines without changing

disk formats

Disk Monitor: Full-length track and sector editor

The most

coverage of Amiga

disk drives ever.

Many real, working programs presented
described and explained:

• AmigaBASIC: loading, saving data and

sequential and relative file management
• Floppy disk operations from the

Workbench and CLI (Command Line
Interpreter)

• DOS functions and operations

• Disk block types, boot blocks,

checksums, file headers, hashmarks and
protection

• Viruses and how to protect your boot block

• Trackdisk.device: Commands and
structures

• Trackdisk-task: Function and design

• Diskette access with DOS (Disk

Operating System)

• MFM, GCR, track design, blockheader,

datablocks, checksums, coding and

decoding data, hardware registers, SYNC

and interrupts

Optional Program Diskette available:

Contains every program listed in the book ■

complete, error-free and ready to run! Saves

you hours of typing in program listings.

Abacus!

ISBN 1-S57SS-DM2-S

5370 52nd Street SE • Grand Rapids, Ml 49508

Amiga is a 'euislefed I'aoamark o< CommocJO'eAmioa Inc

