SOFTWARE

o

The Creator

...by Frangois Lionet

‘© Mandarin/Jawx 1990

SOFTWARE "~

Design and programming Frangois Lionet

Project manager Richard Vanner

Manual author Stephen Hill

Technical editor Peter Lee

Editors Alan McLachlan, Richard Vanner and Chris Payne
Manual typesetting by Richard Vanner, Peter Lee and EIS

AMOS Packaging by Ellis, Ives and Sprowell Partnership, Wakefield.

Please join the AMOS Club for further technical support with AMOS. Write to: Aaron
Fothergill, AMOS Club, 1 Lower Moor, Whiddon Valley, Barnstaple, North Devon, EX32
8NW.

Write to Mandarin Software for help with defective discs or other initial problems: Customer
Services, Mandarin Software, Europa House, Adlington Park, Adlington, Macclesfield,
Cheshire, SK10 4NP.

No material may be reproduced in whole or part without written permission from Mandarin Software. While every care
has been taken to ensure this product is correct, the publishers cannot be held legally responsible for any errors or
omissions in the manual or software. If you do find any, please tell us!

ISBN # 0948104961

How was it all done?

AMOS Basic was designed and programmed by Frangois Lionet. His clever ideas and
inspirational work have produced what we feel to be by far the best high-level programming
language available on the Amiga to date.

AMOS was developed using the following programs:

Devpac Il Assembler - HiSoft

Deluxe Paint lll - Electronic Arts

Pix Mate - Progressive Peripherals & Software

Cross-Dos - Consultron

Mini Office Professional Communications - Database Software

Mandarin Software would like to thank the following people for their kind help during the
development of AMOS:

Allistair Brimble, Aaron and Adam Fothergill of Shadow Software, Peter Hickman, Rico
Holmes, Commodore UK for the international keyboard layouts (and the Amiga),
Commodore France for the help with the A1000 problem, 17-Bit Software for samples and
demos, Martyn Brown for fonts and support, Virus Free PD for Soundtracker, Simon Cook
for his constructive comments and bugfinding, Lee, Alex, all other AMOS developers for
their kind help and to all of you who have waited patiently for this software. We hope, like
us, you feel it was well worth the wait.

This manual was written using WriteNow on the Apple Macintosh and paged up with Page
Maker.

Copyright notice

Amos will enable you to create some very impressive software. It is very important that
you acknowledge AMOS in your programmes using a phrase such as “Written by John
Smith using AMOS,” and, where possible, include the AMOS Sprite.

If your program is released commercially, the words “AMOS © 1990 Mandarin/Jawx”
must be included on the back of the packaging and in the printer instructions.

e Contents

1: Introduction 1
Dedication
[T 1=\ o e IR T T PO PP OPUP PP SPPPRRNY

2: Getting started .-
BACKUP AMOS NOW ...ttt sba s ne e s b e nae e s beens
Installing AMOS on a single floppy system
Installing AMOS on a double floppy system
Installing AMOS onto a hard disc
Loading AMOS BasiCc..cceeeueeeee
AMOS totorial ...ccoevereereeeecceen
[IoT-To [TaTe TE= 1 10 o[- Ly [OOSR
Deleting a program ...
Direct mode
Animation!cceeeene
Listing the sprite fil@Ssccoooviiieiiiie
Loading @ SPrite fileccoveriiiiciiiii e
Setting the SPrite COIOUSc.eiiiiiiiiiice et
DiSPIAYING @ SPIIE ...ttt
ANIMAting @ SPILEveieiiiiiici e
MOVING @ SPILE ..o
MUSIC MAESIIO! ..ot sre s
The journey continues ... e
HINES @NA TIPS 1.vvvetet ettt

3: The editor ..c.ceuvmimemmcnnnnseiacrerss 11
The menu window
The information line ST
The editor window BT,
An introduction to direct mode
Loading a programcccoooeei
The AMOS file selector U
Saving a Basic program
Scrolling through your files ISP
Changing the current drive PPV P PO 15
Changing the directory e s 15
Setting the search path15
Using the file selector
Editor tutorialc..ccooeeviiii ...16

Scrolling through a listing16

Label/procedure searches

Folding a procedure definition ..

Search/Replaceccccoveieee

Finding @n EMo.viiiii e s ...18

REPIACE ..ttt e e s 18

CUL AN PASTE .ottt e 19
Multiple programs and accessories .. 19
Multiple programsccceevenee. .19

Accessories20

Direct mode21
Direct mode editor keys . .21
The menu window22
Default menu22

The system menu ...

The blocks menu25
The search menu26
Keyboard macros28
Conserving memory . ..30
Inside accessories30
The HELP accessory32
The editor control keys32
Special keys33
Editing keys33
TRE CUISOT @ITOWS ...ttt ettt eb et 33
Program CONIOLo.eiiiiiiie e 33
CUL AN PASEE ...ttt ettt neean 34
1= U USROS 34
SEArCH/REPIACE ...ttt ettt 34
T DS ettt ne et 34

4: Basic prinCiples .iccicsnsscsssnsnsnnmmnnnsnsnnssnmasannsnsnnsannnnnnans 3D

VaNADIES ...ttt ettt et eeaeeaanns 35
TYPes Of VArI@DIES ..ot 35
101 C=To 1= £ TSSO OSSO U RSP ST 35
REaI NUMDETS ...t et 36
SHING VANADIES ...t 36
Giving a variable a value36
ATTYS .« ottt ettt ettt a et n et en ettt e ne s e en et e neenee e e enteennan
Constants
Arithmetic operations38
String operations40
PAraMELEIS ...coviiiiiicieee e ettt ettt enae s 41
Line numMbers and 1aDEISooi i 41
L@DEIS ..ot e 41
PrOCEAUIES ...ttt st eaneeneeeneeeneean 42
Local and global variablescccuviirereii e 43
Parameters and ProCEAUIESccoiiiaeiieieecieeeie ettt 44
Shared Variablesc..coeieieieeeee e 45
Returning values from @ proCedureccooooeiiirneeieneeee e 46
Leaving @ ProCEAUIEocuiiuieiiie ettt et ettt ettt eaee et e e e beeeaaaeeanee s 47
Local DATA StAteMENTSo.eiuiiereee et 47
[10T =T o I] o PP 47
Memory banks FE TSP P PSP OPUPPRRON 48

Types of MEMOrY DanK ...
Deleting banks.................... .
Bank parameter functions .
Loading and saving banks..............cc.......

Memory fragmentationcccecvviiiiinnnnne

Finding space for your variables

5: String functions... 54
AITY OPEIALIONS ..cveiiiiiiiietieti ettt 59
6: Graphics 61
(0751 1o 10T OO OO PPP SR 61
Line drawing COMMANGASoooviiiiiiiiii 63

LINE 1YPES e 67
Flld SNAPES ...vveereiiititertiree ettt b 67

Fill BYPES ettt 68

WIHING STYIES .o 70
Advanced tEChNIQUEScceiiiiiiiicii e 71

0 118 R B ST o] 0] g N Y ——— ¢
Error NANAING ...cveovieeet et 83

8: TeXxt & WINAOWS ..cccurmemsensessssnssssssnsnnssssnssssssnsnnsnsnsnsnsnnnnnnnnnnns & 7
Text attributescccoevevveeennen. e e eee—eeeeeeiaareeeea——eeeaaaeaaaas 87
Cursor functions ettt eeeeeeeeaenn—ereennneaeaanaeaaas 89
Conversion functions . et — et e rara——taae e e ———————aan 91
CUSOT COMIMEANGAS ..eveeeeeeeeiieeeeeeeeeeeeeeaeseeseeesaeeseeeasseesseeeseasseesansreeeeeaannnenesasbaneessaneaan 92

TEXE INPUYOUIPUL ...t 96
Advanced teXt COMMEANGScoouiiiiiiiiiie e e e snee e 98
LT g To Lo OO RSP PSPPI 99
Slider bars104
o] 01 =SOSR 105

(=T o] 1T (=G SO OSSOSO 105

Installing NEW fONES ..o 109

Trouble SNOOHING ...ceeeieieiie e 109
9: Maths commands ... ——————————— I | |
Trigonometric fUNCHONS ..o 111
Standard mathematical functions114
Creating random sequences115

Manipulating MUMDETSceeiiuiiiiiiciiieeeere s 116

b TR T =) 1 1 Y —— |]
The default SCrEENc..coiiiii e 119
DEfiNING @ SCIEENeiiieiieeeee e b 119
SPECial SCIEEN MOAESccuiiiiiiiiiiieiie e 121
Extra half bright mode (EHB)coiiiiiie 122

Hold and modify mode (HAM)c.coriiiiieie et 122
LOAAING @ SCIEENcuieeieieee ettt et et e et e e e e e aeeenaesaeeereens 124
SAVING @ SCIEEM ...ttt sttt et ea ettt b e eb e eb st e tesbe s ae s b e bt ste s s e s besbesaeeaeesae e ee 124
MOVING @ SCIEEN ...ttt sttt et e et s aeebe e e e s seesseesaeesneeereenns 125
Screen control COMMEANGSco.eviriiiiiiirirte et s ens 127
Defining the SCreen COIOUTSoiuiiieii et 131
Clearing the SCrEENMccuiiiiiie ettt ettt e st eteeeneens 131
Manipulating the contents of @ SCrEENc.cceciiiriiiieeee e 132
SCrolling the SCrEENc.eieiee ettt n 133
SCrEEN SWItCHING ..eveviviiiciieee et ettt eenaeeeeenae s 134
Screen SyNChroniZationcc.ociiiiiiiiinieii e 136
SPECial EffECES ... s 136
Changing the COPPET IStooiiiiirieieee et e 142
HINES AN HiPS ...t 144
11: Hardware sprites 145
The sprite commands et h et et et e e b e e e ae e et e e e erteeeareeaaraaeans 145

COMPULEA SPILES ..ttt sttt ere s neeneenen 146
Creating an individual hardware SPriteccceceeveioiiiirienie e 149
The sprite palette ..., ... 150
CONrOlliNG SPIILESocviiii et beans 151
CONVErSION fUNCHONScouiiiiiiiiiiicieei ettt e aeenae e 158
12: Blitter objects 155
The bob control COMMEANGScc.ociiiiiiieeecee e 161
13: Object control 165
THE MOUSE POINTET ...ttt b et et reeaeereennean 165
Reading the joystickcccccceueee ... 167
Detecting collisions169
with a sprite 169
 withabob ..o ..170
between bobs and sprites170

- with rectangular blocks 172

Bob priority ..o ...174
Miscellaneous COMMANMSccoireoiriieririnre ettt 175
14: AMAL 176
AMAL PFINCIPIES ...ttt e te et taebe e e e seeenns 176
AMAL tutorial 177
Moving an object . 177
Animation179
Simple 100pSccvevveeeeneen ..180
Variables and expressions 181
Internal registers 181
External registers 181

SPECIAI TEUISTEIS ...ttt ettt e 182

a & & E B e E BB EEEEN

OPEIAIONS ...coeeeereerciainr e ...182
Making decisionsccceemnenninnnnnnne ...183
Generating an attack wave for a game......... ...184
Recording a complex movement sequence ...185
AMAL COMMENGSooveeereerienrieireriaie e eae s ... 187
AMAL fUNCHONS ..evieeiie et .. 191
Controlling AMAL programs from Basic193
AMAL EITOFS .e.veiveeereeeesseeseeneessseaneensssessasesaeesasaasa et at e she st ..195
Error messages 196
ANIMALION CHANNEISveeieie ettt e 197
Animating @ computed SPILEeiviuiririririi 197
Animating a blitter object197
Moving a screen198
Hardware scrollingccccoeuee.198
Changing the SCrEEN SiZEcciciieiiiiiiriinieii 199
RAINIDOWS ... et ereeeteeeiesie e e e e s a e bbb 199
Advanced techniques199
The Autotest system199
Autotest commandsccceeeeiencene200
INSIAE AULOTEST ... et et ette et et sees et 201
TiMING CONSIAEIAtIONS ..c.vuveierirircrercieie it 201
Beating the 16 object limitcccoiiiiinne202
STOS compatible animation COMMEANGSvveivireiiiiiii e 202
15: Background graphics 207
(157 2= ST TT Ty U PSP PP P PP PP PP PSPPI 207
SCIEEN DIOCKS . eveeeeeeeeeeieeeeeetee et e et e st e e st bt et e e e b e r e e e e s be e saebs e s e e s st e s e e s 209
16: Menus 212
USING @ MENU +ereverteeeeieresaesseee s sesss s s eSS 212
Creating a simple menu 212
Setting the title line212
Reading @ SiMPIE MENU ... 214
Advanced Menuing fEAtUIEScoviiiiiiiini 214
The menu hierarchy......215
Keyboard shortcuts........... ...219
Menu control commandsc.ccocveeeveeneninneenns220
Embedded Menu COMMENASccccverereriermieiiiiiiie s e aae s 222
Alternative MENU SIYIES ...ccovviviiiiiiiiie i 227
Moveable MEeNUSccoeceveveiiiieiniiens ... 229
Moving @ menu Within @ PrOGrame e 231
Displaying a menu at the cursor POSIION ..o 232
17: Sound and music 233
SIMPIEe SOUNA EffECESvurmeriiiriitieie s 233
Sound channels....

Sampled soundcccceeeiiininne
Creating a sample bank

Waveforms and eNVEIOPEScocovueeruiuieereueieteeeeeee et
SPECN .ttt et ee e

FItEI @FfECES ...ttt e e 248
18: The Keyboard 249
INPUYOULDUL ..ottt ee e een e e, 252
19: Other commands 254
20: Disc access 260
DFVES @Nd VOIUMEScueueeieeeeeeeeeceeee et 260

DIFIVES ...t 260

VOIUMES ...ttt et e e e e s ees s 260
LOGICAI ABVICESecuiiiii ettt 261
CrOSS DOS ...ttt ettt ettt 261
DIreCtory ChanGingccoeueurueueriieeeceeeceeeceeeee ettt oo 262
ComMmMON diSC OPEIALIONSc.vvreeiiieeiieeceeteteteee ettt ee e es e 265
Selecting afilec.ccceeevneriiiceesere .. 266
Running an AMOS program from disc 266
Checking for the existence of a file 267

DISC IS ...ttt e, 268

SeqUENtial files ..o 268

Random access files271
The printercceceevervennn.274
EXIEINAl AEVICES ...ttt e en e 274
21: Screen compaction 276
22: Machine level instructions 279
NUMDEI CONVEISION ..ottt ettt et 279
Memory manipulation 279
Bitwise operations 282
Using assembly [aNQUAGE -......c.ovuviieeeeeieeeeeeeee e ee et 285
Accessing the system Drariesc.cceeeooviieeceieeeeeeeeeeeeeee e, 287
INSIAE AMOS BESICeveuiieeeeiieintiieecececeeec et ee e e s e e, 288
Command index 289

1

1: Introduction

WELCOME to the exciting world of AMOS — The Creator! As you know, the Amiga is a truly
amazing computer. For the first time, all that power is at your fingertips.

In September 1988, Mandarin Software released STOS Basic for the ST. This made
history as the first programming language to reach number one in the ST Gallup games
charts! Now STOS has been rewritten from the ground up to produce AMOS Basic for the
Amiga. AMOS Basic includes a vast range of over 500 commands — many of which are
staggeringly powerful. You can, for instance, bounce a screen, or animate a sprite using
just a single Basic instruction.

AMOS is not just another version of Basic — it’s a dedicated games creation system
which comes with its own built-in Animation Language (AMAL). AMAL programs are
executed 50 times a second using a powerful interrupt system. They can be used to
generate anything from the attack waves in an arcade game, to a silky-smooth hardware
scrolling effect. At the same time, your Basic program can be doing something completely
different!

Whatever your knowledge of programming, AMOS has something to offer you. If you
have never written a game before, the prospect of creating your first game may be quite
daunting. But do bear in mind that many of the all-time classics are uncomplicated
programs with one or two original features — just look at Tetris for example. The strength
of your game will depend on the quality of your ideas, and not just your programming skill.
With alittle help from AMOS, you'll be able to produce professional-looking games with just
a fraction of the normal effort. All you really need is imagination.

If you've written a game in AMOS Basic, don't keep it to yourself. Mandarin Software
is very keen to publish any program written using AMOS. Don't worry if your programming
isalittle rough. If yourideas are good enough, you could have areal future as a professional
games writer. So please send us your programs. Mandarin would also be delighted to hear
your comments or suggestions for the AMOS system. Several features in AMOS were
taken directly from ideas which were sent to us from existing STOS users. Address your
correspondence for the attention of Richard Vanner, Development Manager, Mandarin
Software, Adlington Park, Adlington, Macclesfield SK10 4NP.

And now a word from the man who wrote this software — the amazingly talented and
incredibly French, Francois Lionet. Frangois started his career off as a vet, and ended up
creating the original STOS Basic as a sideline.

Dedication from Francois Lionet
I'd like to dedicate this program to my wife Carine, for her patience in the stressed days!

Foreword
I'd like to assure you that | have put all my knowledge in this product. It's everything I've
always wanted in a Basic for the Amiga.

When you program a game, you spend more than three quarters of the time writing
low-level routines to display sprites, move screens and so on... This job is difficult on any
computer, butit's a nightmare on the Amiga because of its power. In the BA years, (before
AMOSY!), making a game on the Amiga meant spending a lot of time on the utilities.

With AMOS, I've done the whole job once and for all, so all the boring bob routines,
copper list calculations, disc handling and so on are done for you. You can now concentrate
on the really important parts of your games — such as the scenario, the graphics and the
music.

I hope AMOS will provide you with the opportunity to make your ideas turn into reality.
I would really be very happy if, in a couple of years time, a hit-maker told me he had begun
with AMOS!

I've designed AMOS to be flexible and extensible, so it can follow the evolution of your
beloved machine. The best example of this can be found in the music routines. These are
public domain and you can find the source code (in assembly language) on the AMOS
program disc. Why? Because they provide you with a perfect example of how to create
extensions for AMOS Basic. The same techniques can be used to add whole new
instructions to AMOS, or to change the music routine to the latest 235-voice SoundTracker
version 4.242 rev 1.2!

My last word will be — guess what — about piracy. Software piracy is really a crime —
a slow crime. The effects can be seen with the boom of the games consoles market. Since
there’s no way you can copy a cartridge, all software houses are turning to them. But if you
want to be able to find an affordable computer with a disc drive and a keyboard in the next
few years, you'll need to support lone voices like myself. So please don’'t copy AMOS or
give copies to your friends. You'd literally be taking the bread out of my mouth and reducing
the chance of me producing the compiler and other add-ons. If you're a registered user,
you'll have the maximum support and respect from us!

Well that's it. Thanks for reading. | do hope you'll find this product useful, and you'll
spend lots of creative and enjoyable hours with it!

—

S
Ao g7

2: Getting started

AMOS Basic is a truly remarkable package, capable of creating games which were
previously beyond your wildest dreams. All the powerful features which make the Amiga
so irresistible have been incorporated into this amazing system. With the help of AMOS
Basic you can develop programs which would tax the skills of even the most expert
assembly language programmer.

You can for instance, effortlessly animate up to 56 hardware sprites simultaneously!
This is a real achievement, especially when you consider that the Amiga’s hardware only
actually provides you with eight.

If you need even more action on the screen, you can use the Amiga’s blitter chip as
well. Blitter objects can be created in any graphics mode you like, including HAM! The only
limit to the number of Blitter Objects on the screen is the amount of available memory.

Any combination of the Amiga’s graphics modes can be displayed on the screen at
once. Hardware scrolling isn’t just possible, it’s easy! There’s a built-in SCREEN OFFSET
command which allows you to perform the entire process directly.

In fact, the only hard part of AMOS Basic is knowing where to start! AMOS supports
over 500 Basic commands, and if you've never used Basic before, you may feel a little
overawed by the sheer scale of this system. When you're in unfamiliar territory, it's always
useful to have a guide to show you around and point out some of the notable landmarks.
That's the purpose of this chapter.

Backup AMOS now!

Before continuing however, it's vital that you back up the entire AMOS Basic package on
fresh discs. This will safeguard your copy of AMOS against accidental mistakes. You'llnow
be able to play around with the system as much as you like, without the risk of destroying
something important.

If the worst comes to the worst, we at Mandarin will be happy to replace your disc for
anominal handling charge. But you'll obviously be deprived of AMOS Basic while it's being
re-duplicated.

The installation procedure varies depending on your precise set-up, but it can usually
be accomplished in a matter of minutes.

Installing AMOS on a single floppy system

1 Prepare two blank discs to hold your copies of AMOS Basic.

2 Take your AMOS program disc and slide the “write-protect tab” on the right, so that you
can see a small hole. This will protect your disc against unfortunate mistakes during the
duplication process.

3 Start up your Amiga with your normal Workbench disc.

4 Insert your AMOS program disc into your internal drive, and select its icon with the
mouse.

5 Now choose the duplicate disc option from the Workbench menu, and follow the prompts
as they are displayed on the screen. If you have any problems, see the Amiga User’s
Manual which came with your computer. This contains a detailed explanation of the
whole procedure.

6 Repeat steps 4 and 5 for the AMOS data disc.

3

7 Finally, place your original copies of AMOS Basic somewhere safe.
Installing AMOS on a double floppy system

Prepare a couple of blank discs to hold your back-ups.

Take your AMOS program disc and slide the “write-protect tab” on the right, so that you
can see asmall hole. This will protect your disc against unfortunate mistakes during the
duplication process.

Start up your Amiga using the standard Workbench disc.

Insert the AMOS program disc into the internal drive, and select its icon with the mouse.
Put a blank disc into the second drive.

Drag the original AMOS disc over your new disc.

You will nowbe given the option of copying AMOS onto the new disc. Follow the prompts
in the screen to back-up the disc.

Now repeat steps 4 to 7 for the AMOS data disc.

Place your original copies of AMOS Basic somewhere safe. (Preferably another room!).

Installing AMOS onto a hard disc

This requires a special installation routine on the AMOS Program disc. Here's the
procedure.

N =

o NoO O sH W

1 Boot up your Amiga from your hard disc as normal.

2 Enter the CLI or SHELL.

3 Insert your AMOS program disc into the internal drive.
4 Set the directory to the internal drive with:

CD Dfo:
5 You can now type the following line from the CLI prompt:
AMOS INSTALL.AMOS

6 AMOS will load into memory, and you'll be presented with the hard disc installation
program. Simply follow the prompts to install AMOS straight onto your hard drive.

Loading AMOS Basic

As you might expect, AMOS Basic can be executed in a variety of different ways. You can,
for instance, load AMOS directly from the Workbench by selecting its icon with the Left
mouse button. Once you've entered AMOS in this way, you will be able to flick back and
forth to the Workbench by pressing the Amiga and A keys from the keyboard.

In practice however, the Workbench consumes valuable memory which would be
better used to hold your Basic programs. So if you're a serious user, you'll probably prefer
to boot up AMOS as part of your normal start-up sequence. This will allow you to achieve
the maximum possible results from the AMOS system.

To load AMOS Basic:

« Turn off your Amiga and wait for about ten seconds.

« Place a backup of the AMOS Program disc (Disc 1) into the internal drive.
« Now switch on your Amiga. AMOS will load into memory automatically.

- Hit a key to remove the information box and thus enter the AMOS system.

AMOS tutorial

The firstthing you'll see when you enter AMOS Basic is the editor window. This is extremely
easy to use, and if you've a little previous experience with computers it should be self-
explanatory. Feel free to experiment as much as you like. The AMOS editor is quite
intelligent, and you are unlikely to make any serious mistakes.

Now you've seen the editor window, It's time to explore some of the features that make
AMOS Basic really stand out from the crowd.

Loading a program

We'll start off by showing you how you can load one of the terrific games from the AMOS
data disc. We'll take the Number Leap game as an example:

« Insert the AMOS DATA disc into drive Df0: (the internal drive).

« Hold down an Amiga key on the keyboard and press the letter L. This will bring up a
standard file-selector on the screen.

« Click on the disc drive label DFO to inform AMOS that you have changed the disc.

« At the centre of the file selector there will be a list of programs which can be loaded into
AMOS Basic.

« To select the Number Leap program, just position the mouse pointer over the file:
Number_Leap.AMOS
The file you have chosen will be highlighted accordingly.
- Once you've chosen your file, you can load it into the Amiga’s memory by clicking twice
on the left mouse button. Your game will now be entered from the AMOS DATA disc and
you will be returned to the original editor screen. The contents of this window will be

updated to display your new program listing.

« You can run this program by selecting the RUN button from the main menu area (or
hitting F1 from the keyboard if you're feeling lazy).

The editor screen will now disappear completely and Number_Leap will be executed in
front of your eyes. After you've played with this game to your satisfaction, you can exit to
AMOS Basic by pressing the Ctrl and C keys simultaneously.

Ctrl+C provides an effective way of breaking into the vast majority of AMOS programs.
It can be disabled from within your program using a BREAK OFF command for extra
security. When the program has been broken into you can flick straight back to the editor
by pressing the Spacebar key from the keyboard.

Deleting a program

Now that we've finished with the Number Leap program, we can erase it from memory with
the NEW command. You won't find this option on the main menu, as it's been placed in a
separate SYSTEM menu. This can be brought into view by moving the mouse pointer over
the menu window and holding down the right mouse button.

To delete a program:
* Ensure the mouse pointer is over the menu area.
* Hold the Right mouse button down to bring up the SYSTEM menu.

* While the button is depressed, move the pointer over the NEW option and select it with
the Left mouse key. Alternatively, you can execute this option directly from the keyboard
by pressing Shift+F9.

* Type Y to confirm the operation or N to abort. (You can also highlight these options using
the mouse.)

+ Ifthe current program hasn’t been saved, you'll be asked whether to store it onto the disc.
If you select the Yes option, you'll be presented with an AMOS file selector. Otherwise
your program will be totally erased.

Direct mode
We'll now have a quick look at direct mode.This forms the centre of the AMOS Basic
package and allows you to experiment with your routines and immediately observe the
effects.

It's important to recognize that all the screens, sprites, and music defined in your
program are completely separate from the Editor window. So no matter what you do in
direct mode, you'll be able to return to your listing with just a single key-press.

* Enter direct mode by pressing Escape. The editor window will slide away and you'll be
presented with the main program display.

Towards the bottom of this area will be a small screen which can be used to enter your direct
mode commands. Try typing the following line, pressing Return to “execute”:

Print “Your name”

Insert your name between the quotes to print your name on the Amiga’s screen.

Now press the up and down arrows from the keyboard to move the window around the
display area. As you can see, the Direct mode window is totally independent of the main
program screen.

Animation!

So much for Direct mode. Let's experiment with some of the AMOS Basic sprite
instructions. Before we can use these commands, we'll need to load a set of sprite images
into memory. Stay in directmode and enter the indented lines in bold as you come to them.

Listing the sprite files
We'll begin by listing all the available sprite files to the Amiga’s screen.

« Ensure that the AMOS DATA disc is still in the internal drive.
« Display the disc file directory with the line:

Dir “AMOS_DATA:Sprites/”

This will display the sprite files we've supplied on the AMOS data disc. These files contain
all the images which are used in the various example programs. You can create your own
images using the Sprite definer accessory on the AMOS Program disc.

The Sprite definer incorporates a host of powerful drawing features which make it
extremely easy to generate professional-quality animation sequences in your games.

Loading a sprite file

We can now load these sprites using the loadcommand. The sprites will load into a special
memory bank so don’t expect to see any sprites to appear yet! Let’s enter the sprites used
by the Number Leap game with the following command:

Load “AMOS_DATA:Sprites/Frog_Sprites.abk”

If you make a mistake, hit F1 to get your previous line. This line can then be edited using
the normal cursor keys and may be re-executed by pressing Return.
Now let's also load up a music file using a similar load command:

Load “AMOS_DATA:Music/Funkey.abk”

In order to check whether the sprites and music have been successfully loaded into
memory, we'll call up the LISTBANK instruction like so:

Listbank
This prints a line like:

1 - Sprites S:$0682B0 L: $000040
3 - Music S:$043878 L: $0081FE

Don’t worry if the numbers do not correspond as they will change depending on the
available memory. The number of sprites we've justloaded can be returned directly with the
LENGTH function.

Print Length(1)

64

All the way through this manual we will have lines you can type in, these lines will be
highlighted in bold. Any text from the computer will be displayed below the program lines
in plain text.

Setting the sprite colours

Each set of sprite images has its own set of colour values stored on the disc. Since these
can be very different from your current screen colours, it's useful to be able to GRAB the
colours from the sprite bank and copy them into an existing screen. This can be
accomplished with the GET SPRITE PALETTE command. Enter the line:

Get Sprite Palette

All the colours in the main program screen will change immediately, but the direct mode
window will be completely unaffected because it's been assigned its own separate list of
colour values by the AMOS system.

Displaying a sprite
Sprites can be displayed anywhere on the screen using a simple AMOS Basic sprite
command. Here’s an example:

Sprite 8,129,50,62

Animating a sprite

Let’s animate this object using the AMOS Animation Language, (AMAL). AMAL is a unique

animation system which can be used to move or animate your objects at incredible speed.
Note that when you're entering the following example programs, it's essential to type

each line exactly as its appears in the listing, as otherwise you may get an unexpected

syntax error.

Sprite 8,129,150,62
Amal 8,”Anim 0,(62,5)(63,5)(64,5);” : Amal On

The program above animates a small duck on the screen.Whilst it's being manipulated, the
sprite can be moved around using the SPRITE command. Example:

Sprite 8,300,50,

Moving a sprite
Now for some movement!
Sprite 8,129,150,62 : A$="Anim 0,(62,5)(63,5)(64,5);”

A$=A$+"Loop: Move 320,0,100; Move -320,0,100; Jump Loop”
Amal 8,A$: Amal On

This program animates the duck and moves it back and forth across the screen, using just
three lines!

Although the instructions between the quotes may look like Basic, they're actually
written in AMAL. All AMAL programs are executed 50 times a second and they can be
exploited to produce silky smooth animation effects independently of your Basic programs.

Justto prove how amazing AMAL really is, hit Esc to jump back to the Basic editor. After
a few moments, return to direct mode. Your Sprite will still be bouncing across the screen
as if nothing had happened!

Music maestro!
For a finale, let's play the music! Ensure you're still in direct mode, turn up the volume on
your monitor and start the music running with the MUSIC command like so:

Music 1

By the way, you can stop the music with the command:

Music Off

The journey continues

Hopefully, you'll now have a pretty good idea of what AMOS Basic can achieve. But so far
we've only looked at a tiny fraction of AMOS Basic’s power. As you experiment with the
AMOS package, you'll quickly discover a whole new world, full of exciting possibilities.

AMOS Basic can't, of course, transform you into an expert games programmer
overnight. Like any programming language, it does take a little time to familiarise yourself
with the entire repertoire of commands. We'll therefore end this section with a few
guidelines to help you on your way.

Hints and tips

» The best way to learn about AMOS is to create small programs to animate sprites, scroll
screens or generate hi-score tables. Once you've gained a little confidence, you'll then
be able to incorporate these routines into an actual game.

» Don't be overawed by the sheer size of the AMOS Basic language. In practice, you can
achieve terrific effects with only a tiny fraction of the 500 or so commands available from
AMOS. Start by mastering just a couple of instructions such as SPRITE and BOB, and
then work slowly through the various sections. As you progress, you'll gradually build-up
a detailed knowledge of the AMOS system.

* Although we've attempted to make this package as easy to use as possible, a thorough
grounding of the general principles of Basic programming is invaluable. If you're new to
Basic, you may find it helpful to purchase an introductory text such as Alcock’s
lllustrating Basic. (Cambridge University Press).

* Plan your games carefully on paper. It ‘s amazing how many problems can be completely
avoided at the early design stages. Never attempt to tackle really large projects without
prior preparation. It's the easiest way to get permanently lost.

* When you're writing a game, try to concentrate on the quality of the game play rather than
the special effects. The graphics and music can always be added later if the idea’s are
good enough.

« Fill in the registration card and join the AMOS user club immediately! There’s a regular
newsletter providing an essential source of ideas, news and tips about the AMOS Basic
system. You’ll also have access to a growing library of public domain software, including
sprites, samples, and music, all of which can be freely incorporated into your own
programs.

We’re expecting many exciting developments on the AMOS scene, such as extensions,
utility programs and even books. So if you want to play a real part in the evolution of this
package, join the AMOS Club now! We'll be delighted to hear from you.

a

3: The editor

The AMOS editor provides you with a massive range of editing facilities. Not only is it
exceptionally powerful, butit’s also delightfully easy to use. All commands can be executed
either directly from the screen, or via an impressive range of simple keyboard alternatives.
It's so friendly in fact, that If you've a little experience with computers, you'll probably be
able to use it straight out of the box.

One of the most exciting features of this system, is that the listing is displayed
completely separately from your main program screen. So you can instantly flick from your
program display to the editor window using a single keypress (ESCape).

If you've plenty of memory, it’s also possible to load several programs in AMOS Basic
atatime. Each program can be edited totally independently, and it's possible to effortlessly
switch between the various programs in memory by pressing just two keys from the editor.

Thefirstthing you see after AMOS has loaded into memory is a standard credit screen.
Applause applause! Press a key to remove this window and enter the editor.

The menu window

At the top of the screen, there’s a menu window containing a list of the currently available
commands. This forms the gateway to all AMOS Basic's powerful editing features.
Commands can be quickly executed by moving the mouse pointer over anitem, and hitting
the left mouse button. Each command is also assigned to a particular function key.

In addition to the main menu, there are also a number of other menus. The most
important of these menus is the SYSTEM menu. This can be brought into view by either
holding down the right mouse button, or pressing the shift key from the keyboard.

The SYSTEM menu contains a range of important system commands such as LOAD,
SAVE, NEW, etc. Like the main menu, all options can be executed using either the left
mouse bottom, or by pressing an appropriate function key. Here are some examples:

F1 Run the current program

F2 Tests your program for syntax errors
Shift+F1 Load a program (Also Amiga+L)
Shift+F3 Save a program (Amiga+S)

Immediately below the menu window, there’s a single line containing a range of useful
information.

The information line

I L=1 C=1 Text=40000 Chip=91000 Fast=0 Edit:example
The markers at the far left display the editor mode (Insert or Overwrite). There’s also an
indication of the Line and Column you are presently editing. Alongside these markers is a
list of three numbers:
TEXT: Measures the amount of memory which has been assigned to the editor window.

This can be adjusted within AMOS Basic using a simple SET BUFFER command from the
SEARCH MENU.

11

CHIP: Holds the amount of memory which can be accessed directly by the Amiga’s custom
chips. Don'’t panic if you've an unexpanded A500, and are feeling a little memory hungry.
There are several ways to dramatically increase this value in your Basic programs (see the
section on CONSERVING MEMORY for more details).

FAST: Lists the amount of FAST memory which has been instalied in your computer.
Whenever possible, AMOS will use this memory in preference to the more valuable CHIP
memory.

EDIT: Displays the name of the program you are currently editing. Initially this area will be
totally blank, but when you load or save a program to the disc, the new filename will be
automatically entered into the information line.

The editor window

The Editor window forms the heart of the AMOS system, and allows you to type in your
Basic program listings directly from the keyboard. All text is inserted at the current cursor
position, which is indicated by a flashing horizontal line.

At the start of your session, the cursor will always be placed at the top left hand corner
of the editing window. It can be moved around the current line using the left and right cursor
keys.

Your line can be edited on a character by character basis using the Delete and
Backspace keys. Delete erases the characterimmediately underneath the cursor, whereas
Backspace deletes the character to the left of this cursor. As an example, type the line:

Print “AMOS”
When you press Return, your new line will be entered into AMOS Basic. Anything AMOS
recognises as a command will be immediately converted into a special format.

All Basic commands begin with a Capital letter and continue in lower case. So the
previous line will be displayed as:

Print “AMOS”
Similarly, all AMOS variables and procedures are displayed in CAPITALS. This lets you
quickly check whether you've made a mistake in one of your program lines. Supposing for
instance, you'd entered a line like:

Inpit “What’s your name; “;name$
This would be displayed as:

Inpit “What’s your name; “;NAME$
Since INPIT is in UPPER case, it'simmediately obvious that you’ve made an error of some
sort.

Ok, now for a little fun. Move the cursor under the Print command you entered a few
moments ago and type in the following lines of Basic instructions.

12

F-------

Centre “<Touch ‘n’ Type Demo>
Do

X$=Inkeys$: If X$<>>” Then Print X$;
Loop

Don'tforgetto press the Return key after each and every line. Now move the cursor through
your new program using the arrow keys. Finally, press the F1 key to run this program.

The EDITOR WINDOW will disappear and a separate PROGRAM display will flip into
place. The program now expects you to type in some text from the keyboard. As you can
see, the program screen has its own independent cursor line. This is totally separate to the
one used by the editor. So you can play about as much as you like, without changing your
current editing position. -

After you've finished, press Cntrl+C to abort the program. A thin line will now be
displayed over the screen. This can moved using the up and down cursor arrows.

Program interrupted at line 4
>>> Loop

Pressing the space bar at this point would return you back to the editor. But since we've
already seen the editor, let’'s have a brief look at the Direct mode instead. Hit the Escape
key to flip this mode into place.

An introduction to Direct mode

DIRECT mode provides you with an easy way of testing your Basic programs. For the time
being, we’ll examine just a couple of its more interesting features.

All direct mode commands are entered into a special screen which is completely
independent from the program display. You can move this screen up and down using the
arrow keys from the keyboard.

Atthe top of the window, there’s alist of 20 function key assignments. These represent
alistof commands which have been previously assigned to the various function keys. They
can be accessed by hitting the left or right Amiga-keys in combination with one of the
various function keys

Whilst you're in direct mode, you can execute any Basic instructions you like. The only
exceptions are things like loops or procedures. As with the editor, all commands should be
entered into the computer by pressing the Return key. Here are some examples:

Print 42 Print a constant

ANSWER=6 : Print ANSWER*9 Perform a calculation

Curs Off Turn off text cursor

Close Workbench Deactivate Workbench. Saves around 40K but aborts
multitasking operations!

Run Run your program again.

I'simportantto recognise that no matter what you do in direct mode, there will be absolutely
no effect on the current program listing. So you can mess about to your heart's content, with
no risk of deleting something in your Basic program.

It’'s now time to return to the Editor window. So wave a fond farewell to Direct mode,
and enter the editor by pressing Escape.

13

See how the cursor flashes in exactly the same position as before. This demonstrates
thatthe two modes are completely separate. You can test this by diving back to Direct mode
by hitting the Escape key once again. After you've played around with Direct mode to your
satisfaction, enter the Editor window. Everything will be restored to exactly the state you
left it.

Loading a program

We'llnow discuss the various procedures for loading and saving your programs on the disc.
As usual, these options can be executed either from the MENU window or using a range
of simple two-key commands from the editor. The fastest way to load a program is to hold
down either of Amiga keys, and press the letter L.

You’'ll now be presented with the standard AMOS file selector window. Nowadays, file
selectors have become a familiar part of most packages available on the Amiga. So If
you've used one before, the AMOS system will hold no real surprises. However, since the
file-selector is such an integral part of AMOS Basic, it's well worth explaining it in some
detail.

The AMOS file selector

Selecting a file from the disc couldn’t be easier. Simply move the mouse cursor over the
required filename so that it's highlighted in reversed text. To load this file into memory, click
twice on the left mouse button. Alternatively, you can enter the name straight from the
keyboard, and just press Return.

If you make a mistake, and wish to leave the selector without loading a file, move the
mouse over the Quit button and select it with the left button. AMOS will abort your operation
and display a “Not Done” message on the information line.

As an example, place your COPY of the AMOS program disc into the internal drive,
and press Amiga+L to load a file. If you've been following our tutorial, AMOS will give you
the option of saving the existing program first. Unless you've made any interesting
changes, press “N” to enter the file-selector. Otherwise, see Saving a program for further
instructions.

When the file selector appears, look out for a file with the name “Hithere. AMOS”.
Once you've found it, position the mouse over the name, and click twice on the left button.
The example file will now load into memory, and the following listing will be loaded into
AMOS Basic.

Rem Hi there AMOS users
Cls 0 : Rem Clear the screen with colour zero
Do
Rem Get some random numbers
X=Rnd(320):Y=Rnd(200):I=Rnd(15):P=Rnd(15)
Ink L,P : Rem Add a little colour
Text X,Y,”Hi there!” : Rem Graphic text
Loop

Move the text cursor over the text “Hi there” and insert your own message. Now press F1

to runthe program. The program display will rapidly fill up with dozens of copies of your text.
Press Cntrl+C to exit from this routine.

14

Saving a Basic program

Return to the editor window, and type Alt+S to save your current program onto the disc. If
you feel like a change, hold down the right mouse key and click on the Save As option from
the SYSTEM menu with the left button. Either way you’ll jump straight back to the AMOS
file selector window.

You should now enter the name of your new file straight from the keyboard. As you
type, your letters will appear in a small window at the bottom of the selector. Like the editor,
there’s a cursor at the current typing position. This cursor can be moved around using all
the normal editing keys. Finally, press Return to save your program to disc. We said it was
easy...

Scrolling through your files
If your disc is reasonably full, the standard selection window won’t be able to list the entire
contents of your disc at once. You can page through the listing using the scroll bar to the
left of the selection window.

Place the mouse over the bar, and hold down the left button.You'll now be able to drag
the bar up or down with the mouse, moving the file window as you go. A similar effect can
also be achieved by clicking on the arrow icons.

Changing the current drive
To the right of the file window, there’s a list of drive names. The precise contents of the
window will naturally depend on the devices you've connected to your Amiga.

If you have several drives, you can switch between them by simply clicking on the
appropriate name. The directory of this drive will now be entered into the selection window,
and the files can be chosen in the normal way.

Changing the directory

When you search through the directly listing, you'll discover several names with an asterix
character (*) in front of them. These are not files at all. They are entire directories in their
own right.

You can enter one of these folders by selecting them with the left mouse button. You
may then chose your files directly from this folder. Note that only the files with the current
extension “.AMOS” will be displayed.

Once you've opened adirectory, you can setitas the default using the SETDIR button.
The next time you enter the file selector or obtain a directory listing with DIR, your chosen
folder will be entered automatically. Similarly, you can move back to the previous directory
by clicking on the PARENT button. See PARENT for more details.

Setting the search path

Normally, AMOS will search for all filenames with the extension “.AMOS”. If you want to
load a file with another extension such as .BAK, you can edit the search pattern directly.
This can be accomplished in the following way.

Move the text cursor to the PATH window by pressing with the up arrow from the
keyboard. Now type your new path and hit Return. A full description of the required syntax
can be found in the section on the DIR command.

Warning! AMOS uses its own individual search patterns which are very different from

15

the standard Amiga Dos system. If you're unsure, delete the entire line up to the current
VOLUME or DRIVE name and hit Return. This will present you with a full list of ALL the files
on the present disc.

Using the file selector
Interestingly enough, it's also possible to call this file-selector directly from your own
programs. For ademonstration, enter DIRECT mode (with Esc) and type the following line:

Print Fsel$(**)

After you've chosen afile, the name you've selected will be printed straight onto the screen!
See FSELS$ for a detailed explanation of this command.

Editor tutorial

We'll now have a brief look at some of the more advanced editing features available from
the AMOS editor. We'll start by loading an example program from the disc. Just for a
challenge, we've placed this in a separate MANUAL folder on the AMOS Program disc.

Insert your COPY of the program disc into your Amiga’s internal drive and call up the
file-selector window with Amiga+L. Now open the MANUAL folder by selecting it with the
left button. A new list of folders will be displayed in the file-selection window. As you can
see, there’s one folder for each chapter in this manual.

To list the files available for the current chapter, open the “Chapter_3” folder. Simply
place the cursor over this name, and click on the left button. You'll now be presented with
all the examples files for this chapter.

Finally, load Example 3.1.AMOS into memory by selecting it with the mouse. After a
few moments the program will load into AMOS Basic. In case you’re wondering, it's a small
program to display a working dialogue box on the screen. Hit F1 for a quick demonstration.
When you click on one of the buttons, the program simply displays its number and exits
back to Basic.

If you examine this program, you should discover a couple of important facts. Firstly,
there’s not a line number in sight. Due to the power of AMOS Basic, line numbers aren’t
really needed. So we've made them completely optional in your Basic programs. It's
entirely up to you whether you wish to use them.

Anotherinteresting feature is that there seems to be a lot of lines starting with a strange
“Procedure” statement. These form the starting points for all the procedure definitions in
this program.

Procedures are independent program sections with their own lists of variables and
data statements. They are rather similar to the GOSUBs you’d find in standard Basic.
However, they are much more powerful! We'll be discussing them in detail in Chapter 4.

You can examine this program in several different ways:

Scrolling through a listing
Alongside the main editor window are two “scroll bars”. These allow you to page through
your listing with the mouse.

Move the mouse pointer over the Vertical bar and hold down the left button. Now drag
the bar down the screen. The editor window will scroll smoothly downwards through the
listing. You can also scroll the program using the Arrow Icons at the top and bottom of this

16

bar. Clicking on these icons moves the line exactly one place in the required direction.
At the far bottom of the editor window, there’s a horizontal scroll bar. This can be used
to move the window left and right in exactly the same way.

If you prefer to use the keyboard for your editing, you'll be pleased to discover that there
are dozens of equivalent keyboard options as well. Try the following:

» Up Arrow (From keyboard) Moves window up by a single line.

*Down Scrolls window down by a line.
* Cntrl+up Arrow Shift the listing to the previous page.
* Cntrl+down Arrow Moves the listing to the next page.

All the keyboard options obey the same basic principles. So once you've familiarised
yourself with one command, the rest are easy. A full list of these commands can be found
towards the end of this chapter.

Now we've looked at the program, it's time to actually change something. Search
through the program listing until your find the line:

ALERT[50,”Alert box”,””,”0k”,”Cancel”,1,2]

This calls a Basic procedure which displays a working alert box on the screen. The format
of this procedure is:

ALERT[Y coord,Title1$,Title2$,Button1$,Button$,Paper, Ink]

Let’s change this alert to something a little more exciting. Move the cursor over the above
statement, and edit the line with the cursor keys so that it looks like so:

ALERT[50,”Exterminate!”,”Stephen”,”Yep!”,”Nope!”,13]

Execute the program by pressing F1 or selecting RUN from the main menu. You'll be given
the unique option of stopping the manual author in his tracks. Select a button with the
mouse and make you choice. Ouch! That hurt!

In practice, you can change the title and the buttons to literally anything you like. Feel
free to use this routine in your own programs.

Hopefully, the above example will have provided you with a real spur to use
procedures in your own programs. In order to aid you in this task, we’ve built a powerful
range of special editing features into the AMOS editor.

Label/procedure searches

If your program is very long, it can be quite hard to find the starting points of your various
procedure definitions. We've therefore included the ability to jump straight to the next
procedure definition in your program, using just two keys (Alt+Arrow).

For an example of this feature, place the cursor at the start of the listing and press
Alt+down arrow. Your cursor will be immediately moved to the beginning of the first
procedure definition in the current program (ALERT). You can repeat this process to jump
to each procedure definition in turn. Once you've reached the end of the listing, you can
jump upwards through the listing with Alt+up arrow in an identical way.

17

This system is not just limited to procedures of course. It also works equally well with
Labels or line numbers. So even if you don’t need procedures, you'll still find a use for this
feature.

Folding a procedure definition
If you build up your programs out of a list of frequently used procedures, your listings can
easily be cluttered with the definitions of all your various library routines.

Fortunately, help is at hand. With a simple call to the Fold command, you can hide
away any of your procedure definitions from your listings. These routines can be used in
your program as normal, but their definitions will be replaced by a single Procedure
statement. Example:

Position the cursor anywhere in the definition of ALERT and click on the Fold/Unfold
option from the menu window. Bing! The contents of your procedure will vanish into thin
air! Despite this, you can run the program with no ill effects. The only change has been in
the appearance of the listing in the editor window.

If you want to modify this procedure, it's easy enough to get back to the original listing.
Just select Fold/Unfold again, and your procedure will be expanded to it's full glory.

It's also possible to fold ALL the procedure in your program at once. This uses an
option on the SEARCH menu called Close All. To bring the Search menu onto the screen,
click on the button with the same name, or press F5 from the keyboard. Now select the
Close All button to remove the procedure definitions from the current program.

The effect on EXAMPLE 3.1 is dramatic! The entire program now fits into just a single
screen. So you can instantly see the procedures we've been using in the program. Each
procedure definition can be edited individually by expanding it with the Fold/Unfold button.
Or you can unfold the the whole program with Open All from the search menu.

Search/Replace

The search/replace commands provided by the AMOS Basic editor are accessed through
a special SEARCH menu which can be called up either from the menu window or by
pressing function key F4.

Finding an item
We will continue our tutorial with a brief look at of some of the Search/Replace instructions.
Let’s start with the FIND command .

This canbe executed either directly from the SEARCH menu or using the keys Cntrl+F
from the keyboard. When you select this command, you will be asked to enter the search
string.

For an example, press Cntrl+F and type Rem at the prompt. AMOS will now search
for the next Remstatement in your program, starting from the current cursor position. If the
search is successful, the cursor will be placed over the requested item.

The search can now be repeated from this point with the Find Next option (Cntrl+N).

Replace
Supposing we wanted to change all the Rem statements in a program with the equivalent
“» characters. This could be accomplished with the Replace command.

In order to use this option, it's necessary to define the replacement string. So the first
time you call up replace, you will always be asked to enter this string from the keyboard.

18

\

Press Cntrl+R, type in ‘ (apostophe) at the prompt and hit the return key to enter itinto
the computer. You now set the search string with the Find option like so:

* Press Cntrl+F to select the Find option
» Type Rem into the information line
* The cursor will then be moved straight to the next Rem statement in your program listing.

To change this to the replacement string and jump to the next occurrence, select Replacz
(Cntrl+R) once again. Alternatively, if the Remis in the middle of the line, you'll need to ski:
it, because AMOS only allows you to substitute a quote for this command at the stai v
line. You can avoid this problem and jump directly to the next item in your program Usii.
Find Next.

Cut and paste

The AMOS Block commands allow you to cut out parts of your programs and save them
in memory for future use. Once you've created a block, you can copy it anywhere you like
in the current listing.

Here’s an example of this feature in action. Let’s take the previous ALERT program,
and cut out a single procedure. Place the mouse pointer over the first line of the INVERT
procedure, and depress the right mouse button. We can now enter this procedure into a
block using the mouse. Hold down the right mouse key, and drag the point towards the
bottom of the display. As you move the mouse, the selected area will be highlighted in
reverse.

We can now grab this area into memory using Cut. When you press Cntrl+C from the
keyboard, the procedure will be removed from the listing and stored into memory. It's now
possible to Paste this block anywhere in your program. For the purposes of our example,
move the text cursor down to the bottom of the listing, and call the Paste option with Cntrl+P.
The INVERT procedure will now be copied to the current cursor position.

Multiple programs and accessories

Multiple programs

Although AMOS only allows you to edit a single program at a time, there’s no limit to the
number of programs which can be installed into memory, other than the amount of available
storage space. Once you've installed a program in this way, you can execute it straight from
Editor window with the Run Other option.

On an expanded system, you'll easily be able to store two or three full sized programs
in memory without problems. But even if you're only using a standard A500 with 512k of
memory, you'll still find a real use for this function.

Supposing, forinstance, you encounter a problemin one of your programs. AMOS will
let you effortlessly swap your existing program into memory so that you can freely
experiment with the various possibilities until you find a solution. After you've finished, you
can now grab your new routine into memory with the cut option, and flick back into your
original program by pressing just two keys! The new routine can then be pasted into
position, and you can continue with your program as before. This ability to stop everything
and try out your ideas immediately, is incredibly valuable in practice.

Another possibility is to permanently keep all he most commonly needed utilities such

19

as the sprite definer or the map editor in memory. You can now access these utilities
instantaneously, whenever you need them.

Infact, AMOS includes a special ACCESSORY system which makes this even easier.
The utility programs can be given total access to all the memory banks in your main
programs. So the sprite definer can grab the images straight from your current program,
and modify them directly. This technique speeds up the overall development process by
an amazing degree!

Let's have a quick demonstration of these facilities. Enter the following small program
into the editor:

Print “This is program One”
Boom

We can now push this program into memory using the push command. This is called up
by pressing Amiga+P from keyboard. You will then be asked to enter the name of your
program from the information line. Type a name like “Program1” at this point

The edit screen will be cleared completely.The new window is totally separate from
your original program. As a demonstration, enter a second routine like so:

Print “This is program Two”
Shoot

This program can now be executed from the editor window using RUN (F1). But when your
return you can immediately jump to the old one with the Flick option.

Try pressing Amiga+F from the keyboard. As before you'll be asked to enter a name
for your program. Use a name like “program2” for this purpose. The editor will now jump
straight to your original program as if by magic.

It's possible to repeat this process to jump back and forth between the two programs.
Each program is entirely independent and can have it’s list of own banks and program
screens.

So far, we've only discussed how you can use two programs at a time. However, you
can actually have as many program in memory as you like. These programs can be
selected individually using the Run Other and Edit Other options from the Menu window.
When you call these commands, a special “program” selector will be displayed on the
screen.

The program selector is almost identical to the familiar AMOS file selector. The only
difference is that is allows you to choose a program from memory rather than from the disc.
You can select a program by simply highlighting it with the mouse cursor and clicking once
on the left button.

Have a try at running and editing Program1 and Program two using this system. Once
you get the hang of it, it's amazingly easy to use.. See the Load Other and New Other
commands.

Accessories
In order to distinguish accessories from normal Basic programs, they’re assigned a“. ACC”
extension instead of the more usual “.AMOS”. Accessories can be loaded into memory like
any normal program using the Load Other command.

Load Other presents you with a normal fileselector which can be used to load an

20

accessory program from the disc. After the accessory has been installed into memory you
will be returned straight back to your current program . You can now run this accessory at
any time using the Run Other option from the menu window. Simply move the mouse
pointer over your required accessory and press the left button.

Alternatively, you can load all the accessories from the current disc using the Accnew/
Load feature. This option can be found on the System menu which is displayed when you
hold down the right mouse button. Accnew/Load erases all existing accessories and loads
a new set from the current disc.

For a demonstration, place the AMOS Program disc into your drive, and click on the
AccNew/Load Button from the System menu.

The HELP accessory will be quickly loaded into memory. HELP is a special accessory
because it is can be called up directly by pressing the HELP key on the keyboard. We've
packed this program with all the information you'll need about the accessory programs
supplied with AMOS Basic . All you need to do, is just follow the prompts which will be
displayed on the screen.

Direct mode

The direct mode window can be entered from the editor by pressing the ESCape key atany
time. As a default, the window is displayed in the lower half of the screen, with the program
screen in the background.

If you run a program that changes the screen format, displays windows, animates
sprites etc, then all this screen data will remain intact. So you can move the DIRECT
window around or flip back to the editor to make program changes without destroying the
current program screen. This DIRECT mode window is totally independent and is
displayed on its own front level screen.

Whilst you're within direct mode you can type any line of AMOS Basic you wish. The
only commands you cannot use are loops and branch instructions.You only have access
to normal variables (as distinct from the local variables defined in a procedure).

Direct mode editor keys

ESCape Jump to the editor window.

Return Executes the current line of commands.
DELete Delete character under cursor/

BACK SPACE Delete character to the left of the cursor.
Left arrow Move cursor left

Right arrow Cursor right

Shift+left Skip a word to the left

Shift+right Skip a word to the right

Shift DELete Deletes entire line.
Shift BACK Ditto
Help Displays the function key definitions to the direct window.

F1 to F10: These keys remember the last 10 lines you've entered from direct
mode. F1 displays the latest one entered, F2 the second to last etc.
The memory area used by this system is always cleared when you
return to the editor window or run one of your programs.

The menu window

Here’s a detailed explanation of all the options which are available from the main menu
window.

Default menu

This gives you various commands that allow you to operate the editor, plus give you access
to the block and search menus.

Run (F1)
Runs the current program from memory.

Test (F2)
Checks the syntax of the entire program and places the cursor at the first error.

Indent (F3)
Takes the current program and neatly indents the listing for you.

Blocks Menu (Cntrl or F4)

Displays the Blocks menu in the selection window. These options can now be called either
with the mouse or from the keyboard by pressing the appropriate function key. You can
return to the main menu by simply clicking on the right mouse button, taking the pointer out
of the function key area or by hitting a key.

Search Menu (Alt or F5)

Brings up the search menu. This allows you to search through your program for specific
keywords and change them if required. You can also adjust the size of the text buffer or
alter the current tab from this menu.

Run Other (F6)
Runs a program or accessory held in the Amiga’s memory.

Edit Other (F7)

Edits a program which has been previously installed into memory using the Load Otheror
Accnew/Loadcommands. If you haven't saved your existing program, you will be prompted
for it's name.

Your current program will now be pushed into memory, and you will be able to choose
another program to edit using the program selector. To select this program, simply move
the mouse over its name and press on the left button.

Note that the size of the editor buffer is stored into memory along with your program
along with your program. This buffer area will reset to it’s original size the next time you edit
your program. If you attempt to edit a program which has not been saved in this way, such
as an accessory, the memory buffer will be automatically increased if required. If you run
out of memory the option will be aborted with an “out of memory” error.

Overwrite (F8)
Toggles between two separate editing modes.

Insert mode: (Default), inserts a space in your existing text to contain every character you

22

type from the keyboard. If, for instance, you were editing a line like:
Rem TESTING INSRT MODE

Since the cursor is underneath the R, typing an
“E” would change the line to:

Rem TESTING INSERT MODE

Overwrite mode: Overwrite mode completely replaces the character under the cursor with
your new keypress. Taking the previous example, typing “E” would produce the line:

Rem TESTING INSET MODE

After you've changed the mode, the menu item will be set to Overwrite. Selecting this
option will return you back to the normal editing system.The current typing mode is
indicated by a letter at the far left of the Information line. I=INSERT and O=OVERWRITE.
Note that if you make a mistake while ininsert mode, you can usually reverse the alterations
on the current line by pressing Cntrl+U.

Fold/Unfold (F9)
Takes a procedure definition and folds it away inside your program listing. Once you've
folded a procedure, only the first line in your definition will be displayed in your listings.

To fold a procedure, move the cursor anywhere inside the definition and select the
Fold option. Your procedure will be tested for syntax errors, and will be hidden inside your
program listing. It's vital to realise that absolutely nothing has happened to the actual
program lines in the procedure. The only change has been in the way these lines are
displayed in your listings.

Normally, it's possible to re-open a folded procedure by repeating the process. Place
the cursor over a folded procedure and click on Fold/Unfold. (Hit F9 for a shortcut.) If you
feel the need for extra security you can also call up a special LOCK accessory from the
AMOS program disc. This will ask for a code word, and will lock your procedures so that
they can’t be subsequently examined from AMOS Basic. Simply fold your required
procedures and load FOLD.ACC using the Load Others command. Full instructions are
included with the utility.

The real beauty of this system is that it allows you to create whole libraries of your
routines on the disc. These can be loaded into memory as a separate program (see LOAD
OTHER). You can now cut out the routine you need and copy them directly into your main
program. So once you've written a routine, you can place it into a procedure and reuse it
again and again.

If you're intending to use this system, there are several points to consider.

» Whenever you fold or unfold a procedure a syntax check is made of the entire program.
If an error occurs the operation will not be performed. So it’s vital that you keep back-up
copies of all your procedures in Unfolded format.

» Don't try to delete a folded procedure using the normal cursor keys. This will have no

23

permanent effect. So define a block around your procedure and use CUT instead.

+ Cut and Paste work fine with folded procedures. The complete procedure definition is
entered into memory when you cut the Procedure statement. But you should take care
to avoid the following errors.

“This array is not defined in your main program”

When you're copying a routine from one program to another, it's easy to forget about the
SHARED or GLOBAL variables and arrays you've defined in your main program. If a
procedure uses external variables, which have not ben defined, you'll get the above error.
So check through your original listing for SHARED or GLOBAL statements.

“Label Defined Twice”

You've attempted to make TWO copies of a procedure in the same program! You've
probably grabbed an extra procedure by mistake.

“Procedure not defined”

In AMOS Basic, it's perfectly acceptable to call procedures inside one another. This
occasionally causes problems when you attempt to unpack one of these procedures, as
the operation will only be performed if all the procedures it uses have been also been copied
into your program. It's a good idea to list these routines at the start of a procedure, as this
can avoid a lot of confusion!

Line insert (Cntrl+l or F10)
Inserts a line at the current cursor position.

The system menu

The SYSTEM menu contains a series of commands which allow you to load and save your
programs from the disc. To select this menu simply press either the Shift key or hold down
the right mouse button. Here’s a full list of the available options.

Load (Shift+F1 or Amiga+L)
Loads an AMOS Basic file from the disc. This file is chosen using the standard AMOS file
selector.

Save (Shift+F2 or Amiga+S)

Saves the current AMOS program. If you’re saving a file for the first time, you will be asked
to enter its name with the file selector. If there’s another program on the disc with the same
name, it will be automatically renamed with an extension of “.BAK”. This provides a useful
insurance against mistakes, as you can usually get back to the previous version of your
program if you do something silly.

Save As (Shift+F3 or Shift+Amiga+S)

Saves the current program under another name. The new name is chosen with the help
of the file selector. Note that If you save a program with the name AUTOEXEC.AMOS it

24

\

will be automatically loaded and executed on start-up. When you enter AMOS Basic, the
main program screen will be displayed immediately.

Merge (Shift+F4)

Enters the chosen program at the current cursor position without erasing your original
program first. This is used to incorporate routines taken from another program, such as the
AMOS Map Definer.

Merge Ascii (Shift+F5)
Merges an Ascii version of an AMOS Basic program with the existing programin 2mory.

Ac.New/Load (Shift+F6)
Removes all current accessory routines from memory and enters a new set from the disc.
All files with the extension “.ACC” will be automatically loaded by this command. If you're
using an unexpanded A500, you should treat this command with a little caution as it’s all
too easy to run out of memory.

Load Others (Shift+F7)
Loads a single accessory program from the current disc. This can be accessed using the
Run Others command from the main menu.

New Others (Shift+F8)

Erases one or more accessories from the Amiga’s memory. When you call this command,
you will be presented with a standard AMOS program selector. You can now click on either
a single program to erase or the all button to delete all accessories.

New (Shift+F9)
Erases the program you are currently editing. If you haven’t saved your program, you're
given the option of saving it onto the disc before it is deleted.

Quit (Shift+F10)
Exits AMOS and returns control to the CLI. As with NEW you are given the option of saving
your existing program before leaving AMOS.

The blocks menu
The Blocks menu provides you with the useful ability to move whole sections of your
program from one place to another.

If required, these features can be accessed directly from the Main menu with the
mouse. But you’ll probably find it faster to use the alternative keyboard commands. Here’s
a complete list of the various options.

Block Start (Cntrl+B or Cntrl+F1)
Sets the starting point for the current block.

Block End (Cntrl+E or Cntrl+F6)

Defines the end of a block. Normally it’'s used straight after a Cntrl+B command. The region
between your starting and ending points will now be displayed in inverse text.

25

Block Cut (Cntrl+C or Cntrl+F2)
Removes the selected block fromits current position and loads itinto memory. You can now
copy this block anywhere in your program using the Paste command.

Block Paste (Cntrl+P Cntrl+F7)
Pastes the entire contents of a block at the current cursor position. This block must have
been saved into memory using the Cut or Store commands.

Block Move (Cntrl+M or Cntrl+F3)
Moves the highlighted block straight to the current cursor position, erasing the original
version completely.

Block Store (Cntrl+S or Cntrl+F8)

Copies the contents of a block into memory, without affecting the current program. This
option provides you with a simple way of transferring lines from one program in memory
to another.

Block Hide (Cntrl+H or Cntrl+F4)
Deselects the block you've highlighted using the Block Start and Block End commands.

Block Save (Cntrl+F9)

Saves the current block on the disc as a AMOS program. You can now reload it using the
Merge or Load commands from the SYSTEM menu. Note any memory banks in your
program are not saved along with your listing.

Save Ascii (Cntrl+F5)

Stores your selected block on the disc as a normal text file. This file can be loaded directly
into any standard Wordprocessor. If you've access to a Modem, you can also copy these
files on bulletin boards and communication networks such as MicroLink and Prestel.

Block Print (Cntrl+F10)
Outputs the selected block straight to the printer if it's connected.

There is also a special Select All command that can only be accessed via the keyboard.
Pressing Cntrl+A will block select the whole of the current program. This is useful when
you need to save out the entire program as an Ascii file.

The search menu

One of the best ways to learn about the AMOS system is to examine some of the example
programs we’ve supplied onthe AMOS Data disc. With the help of the AMOS Search menu,
you can search the listings for examples of any AMOS instruction you like. This will give
you valuable tips about how it can be used in the context of a real program.

You can also use the Replace command to change all the variable names in one of
your Basic programs. So you can use short, simple names when you're entering your
programs, and convert them into something more readable when you’ve finished.

The SEARCH menu can be called up straight from the menu window using the mouse.
Alternatively, use one of the many keyboard short-cuts to call the required function directly.

26

Find (Cntrl+F or Alt+F1)

Enters a string of up to 32 characters from the keyboard and searches through your text
until an exact match is found. The search precedes downwards from the current cursor
position.

Find Next (Cntrl+N or Alt+F2)
Searches for the next occurrence of the string you specified using Find.

Find Top (Alt+ F3)
This is identical to Find except that it starts the search from the top of your program, rather
than the cursor position.

Replace (Alt+F4 or Cntrl+R)
Activates Replace mode. The effect of this command varies depending on when it is used.
There are two possibilities:

« Before a Find command
You will now be asked to enter the replacement string from the keyboard.
After a Find

If the search operation was successful, the text and the current cursor position will be
swapped with the replacement string. Replace will now jump to the next occurrence of the
search string in your program. If you don’t want to replace this item, you can skip directly
to the next word with Find Next.

Replace All (Alt+F5)
Replaces all copies of a word in your program. The procedure is as follows:

« Confirm the command by hitting “Y” from the keyboard or clicking on the “Yes” box in the
information line.

« Enter the string you wish to change.

« Input the string which the search string is to be replaced with. The search/replace will now
proceed, starting from the top of your program.

Low<>Up (Alt+F6)

Changes the case sensitivity in your various search/replace commands. As a default all
lowercase letters are distinguished from their equivalent CAPITALS. So “g” and “G” would
be treated as different letters in your searches. This option forces AMOS to assume that
the upper and lower case versions of your text are identical. In order to reflect the new
operating mode, the display will be changed to Low=Up.

Open All (Alt+F7)

Opens all closed procedures in your program. A check is made of the syntax of the entire
program before the procedures are unfolded. If an error is detected the operation will be

27

aborted.
If you encounter difficulties with this feature, see the Fold command for a detailed
explanation of the possible problems and their solutions.

Close All (Alt+F8)

Closes all procedure definitions in your current program. Only the first line of your

procedure definitions will be displayed in your listings. This makes them much shorter and

removes much of the clutter from your listings. Like the previous Open command, the

folding operation will only be performed if there are no errors in your current program.
Once you close your procedures you can edit them individually using the separate

Fold/Unfold option.

Set Text B. (Alt+F9)

SET TEXT BUFFER. Changes the number of characters available to hold your listings.
This can be used to increase the editors memory to allow you to enter particularly large
programs into your Amiga. This can be extremely useful if you've added more memory to
your Amiga. See also CLOSE EDITOR.

Set Tab (Cntrl+TAB or Alt+F10)
Sets the number of characters which the cursor will be moved when the user presses the
TAB key.

Keyboard macros

AMOS Basic lets you create up to 20 keyboard macros at a time. These are accessed using
a combination of the left or right Amiga key and a function key. Once you've defined a
macro, it can be used anywhere in the AMOS system, just as if you'd entered your
commands straight from the keyboard. The same macro can be called from the editor
window, from direct mode, or even from inside one of your Basic programs!

The current key assignments are displayed in a special area above the direct mode
window. While you are in direct mode, you can call this list on the screen with the HELP
key. Similarly, pressing the left or right Amiga keys from the editor will display these
definitions in the menu window.

As a default, all the macro assignments are loaded with a set of common Basic
keywords. These can be changed using a simple option from the configuration accessory
(CONFIG.ACC). It's also possible to assign these keys directly within one of your programs
using the powerful KEY$ function.

=KEY$= (Define a keyboard macro)

KEY$(n)=command$
command$=KEY$(n)

KEY$ assigns the contents of commands$ to function key number n. nis an identification
number of your function key from one to twenty.

Keys from one to ten are accessed by pressing the function key in conjunction with
the left Amiga button. Similarly, numbers from eleven onwards are called with a right Amiga
Fn combination.

Note that it's essential to press both keys simultaneously, otherwise your macro will

28

be misinterpreted as two separate key presses.
command$ can be any string of text you wish, up to a maximum of 20 characters.
There are two special characters which are directly interpreted by this function:

¢ (Alt+Quote) Generates a Return code.
‘ (Single Quote) Encloses a comment. This is only displayed in your key lists. It's
totally ignored by the macro routine. Examples:
? Key$(1)
Key$(2)="Default“
Alt+F2

Key$(3)=""Comment’ Print”

In practice, this macro system can prove incredibly useful. Not only can you speed up the
process of entering your Basic programs, but you can also define a list of standard inputs
for your Basic programs. These would be extremely effective in an adventure game, as can
be seen from the program EXAMPLE 3.2 in the MANUAL folder.

If you wish to generate a keypress which has no Ascii equivalent such as up arrow,
you can optionally include a scancode in these macros. This is achieved using the SCAN$
function.

=SCAN$ (Return a scan code for use with KEY$)
x$=Scan$(n [,m])

nis the scancode of a key to be used in one of your macro definitions. mis an optional mask
which sets the special keys such as Cntrl or Alt, in the following format:

Bit Key Tested Notes

Left SHIFT key

Right SHIFT key

Caps Lock Either ON or OFF

Control (Cntrl)

Left Alt

Right Alt

Left Amiga This is the Commodore key on some keyboards
Right Amiga

NO OO hRhWN—-O

If a bit is set to a one, then the associated button is “depressed “ in your macro.
Examples:

KEY$(4)="Whee!”+Scan$($4C)
KEY$(5)="Page Up!”+scan$($4c,%00010000)

29

Conserving memory

If you're using an unexpanded A500, memory can occasionally get rather tight. We've
therefore provided you with two powerful instructions which allow you to maximize the
memory which is available for your programs.

Before discussing these functions, it's worth noting that if you have an external 3.5
inch drive, you can save around 30k by deactivating it before loading AMOS Basic.

Since AMOS only accesses the disc for a few small library files, you may find that the
second drive is rarely if ever used. So it's sensible to take the memory and run!

Warning! Never turn off the drive while the Amiga is switched on. This will have
absolutely no effect as the memory is allocated to the drive as part of your start-up
sequence.

CLOSE WORKBENCH (Closes the workbench)
CLOSE WORKBENCH

Closes the workbench screen saving around 40K of memory for your programs! Example:

Print Chip Free,Fast Free
Close Workbench
Print Chip Free,Fast Free

CLOSE WORKBENCH can be executed either from direct mode, or inside one of your
Basic programs. A typical program line might be:

If Fast Free=0 Then Close Workbench

This would check for a memory expansion and close the Workbench if extra memory was
not available.

CLOSE EDITOR (Close editor window)
CLOSE EDITOR

Closes the Editor window while your program is running, saving you more than 28k of lovely
memory. Furthermore, there’s absolutely NO effect on your program listings!

If there’s not enough memory to reopen the window after your program has finished,
AMOS will simply erase your current display and revert back to the standard DEFAULT
screen. You'll now be able to effortlessly jump back to the Editor with the Escape key as
normal. What a terrific little instruction!

Inside accessories

We'll now explore the general techniques required to write your own accessory programs.
These are really just a specialised form of the multiple programs we discussed a little
earlier. As you would expect, they can incorporate all the standard Basic instructions.

Accessories are displayed directly over your current program screen and the music,
sprite, or bob animations are automatically removed from the screen.

30

Your accessory should therefore check the dimensions and type of this screen using
the SCREEN HEIGHT, SCREEN WIDTH and SCREEN COLOUR commands during its
initialisation phase. If the current screen isn't acceptable, you may be forced to open a new
screen for the accessory window or to erase the existing screens altogether with a
DEFAULT instruction.

Any memory banks used by your accessory are totally independent of the main
program. If it's necessary to change the banks from the current program, you can call a
special BGRAB command.

BGRAB (Grabs the banks used by the current program)
BGRAB b

BGAB “borrows” a bank from the current program and copies it into the same bank in your
accessory. If this accessory bank already exists, it will be totally erased. When the
accessory returns to the editor, the bank you have grabbed will be automatically returned
to your main program along with any changes. b is the number of a bank from 1 to 16.

Note that this instruction can only be used inside an accessory. If you try to include
it in a normal program, you'll get an appropriate error message.

PRUN (Run a program from memory)
PRUN “name”

Executes a Basic program which has been previously installed in the Amiga’s memory.
This command can be used either from direct mode, or within a program! In effect, PRUN
is very similar to a standard procedure call, except that any bobs, sprites or music will be
totally suspended.

Note that it's impossible to call the same program twice in the same session. After
you've called it once, any further attempts will be ignored completely.

When the program returns to your accessory you will need to restore your screen to
its original state. This will avoid the danger of your accessory screens being corrupted by
the new routine. See EXAMPLE 3.3 in the MANUAL folder.

=PRG FI RST$ (Read the first program loaded into memory)
p$=PRG FIRST$
This returns the name of the first Basic program installed in the Amiga's memory. It's used

in conjunction with the PRG NEXT$ command to create a full list of all the currently
available programs.

=PRGN EXT$ (Returns the next program installed in memory)
p$=PRG NEXT$

PRG NEXT$ is used after a PRG FIRST$ command to page through all the programs
installed in the Amiga’s memory. When the end of the list is reached, a value of " will be

31

returned by this function. Here’s an example:

N$=Prg First$

While N$<>™
Print “Program” “;N$
N$=Prg Next$

Wend

=PSEL$ (Call program selector)
n$=PSEL$(“filter “[default$,title1$,title2$]

PSELSS$ calls up a program selector which is identical to the one used by the Run Other,
Edit Other, Load Others , and New Others commands. This can be used to selectaprogram
in the usual way. The name of this program will be returned in n$. If the user has aborted

from the selector, n$ will be set to an empty string “.
“filter” sets the type of programs which will be listed by this instruction. Typical values

are:
“* ACC” List all the accessories in memory.
“* AMOS” Only displays the AMOS programs which have beeninstalled.
o List all programs currently in memory.

For further details of the system see the DIR command.

default$ holds the name of a program which will be used as a default.

title 18, title$ Contains up to two lines of text which will be displayed at the
top of the selector.

See EXAMPLE 3.4 in the MANUAL folder for a demonstration of this instruction.

The HELP accessory

Whenever the HELP key is pressed from the Editor window, AMOS automatically executes
an accessory with the name HELP.ACC if it's available. Unlike normal accessories, this is
displayed directly over the editor window. Special access is provided to the current word
you are editing. The address of this word is placed in an address register and can be read
using the AREG function.

The editor control keys

Finally, here’s a full list of the various control keys and their effects.

32

Special keys
ESCape

Editing keys
Backspace

DELete

RETURN

Shift+Back or Cntrl+Y

Cntrl+U
Cntrl+Q

Cntrl+l

Takes you to direct mode

Deletes the character to the immediate left of the cursor.
Deletes the character directly underneath the cursor.
Tokenises the current line. If you move onto a line and press
RETURN it will split the line (this only takes effect if you
haven’t changed anything).

Deletes currentline and then pulls the rest of the text up from
below.

Undo. Return the last line when in Overwrite mode.

Erase the rest of the characters in the line starting from the
present cursor position.

Insert a line at the current position.

The cursor arrows

Left
Right
Up

Down
Shift+left
Shift+right
Shift+up
Shift+down
Cntrl+up
Cntrl+down
Shift+Cntrl+up
Shift+Cntrl+down
Amiga+up
Amiga+down
Amiga+left

Amiga+right

Cursor one space to the left.

Cursor one space to the right.

Moves the cursor up by one line. There’s no effect if you are
at the top line of your program.

Move the cursor down by a line.

Place the cursor over the previous word.

Position the cursor over the next word.

Move the cursor to the top line of the present page.
Transport the cursor to the bottom line of the current page.
Display the previous page of text.

Display the next page of your program.

Move to start of text.

Jump to end of text.

Scrolls text up without moving the cursor.

Scrolls text down under the cursor.

Scroll program to the left. The cursor stays fixed on the
current line.

Moves text to the right.

Program control

Amiga+S
Amiga+shift+S
Amiga+L
Amiga+P

Amiga+F
Amiga+T

Saves your program under a new name.

Saves program under current name.

Loads a program.

Pushes the current programinto memory and creates a new
program.

Flips between two programs stored in memory.

Displays next program in memory. Repeating this option will
allow you to display all the programs currently in memory.

33

Cut and Paste

Cntrl+B Set the beginning of a block.
Cntri+E Set end point of a block.
Cntrl+C Cut block. Loads block into memory and erases it from its

current position. (This combination also works in DIRECT
MODE, where it HALTS to the current program.)

Cntrl+M Block move.

Cntrl+S Saves the block in memory without erasing it first.

Cntrl+P Paste block at current cursor position.

Cntrl+H Hide block. The highlighting will be removed from the
chosen block.

Marks

Cntrl+shift+n Defines a marker at the present cursor position. n must be
a digit from the numeric keypad in the range 0 to 9.

Cntrl+n Go to mark. Jumps to a previously set mark. nmust be from
the numeric keypad.

Search/Replace

Alt+up Searches backwards through your program to the next line
which contains label or procedure definition. If AMOS has
reached the end of your procedures, the cursor will remain
at its current position.

Alt+down Searches down through your program to find the next label
or procedure definition.

Cntrl+F Find. Asks you to enter some text to be searched for in your
program. Then jumps to the first copy it can find, starting
from the current cursor position.

Cntrl+N Find Next. Use this after a find to jump to the next occurrence
of your string.

Cntrl+R Replace. If you use this prior to Find, you will be prompted
for a replacement string. After you've started a search with
Find however, Cntrl+R will replace your word with the new
text, and jump to the next occurrence of the search string.

Tabs

Tab Move the entire line at the current cursor to the next Tab
stop.

Shift+Tab Move the line to the previous Tab.

Cntrl+Tab Sets the Tab value.

34

4: Basic principles

This chapter discusses the ground rules used to construct AMOS Basic programs and
shows you how to improve your programming style with the help of AMOS Basic
procedures.

Variables
Variables are the names used to refer to storage locations inside a computer. These
locations hold the results of the calculations performed in one of your programs.

The choice of variable names is entirely up to you, and can include any string of
letters or numbers. There are only a couple of restrictions. All variable names must begin
with a letter and cannot commence with an existing AMOS Basic instruction. However it
is perfectly permissible to use these keywords inside a name. So variables such as
VPRINT or SCORE are fine.

Variable names must be continuous, and may not contain embedded spaces. If a
space is required, it's possible to substitute a “_” character (Shift minus) instead.

The following are examples of legal names:
AWHILES, HIGH_SCORE, TEST_FLAG, HEIGHT#

The maximum length of these variable names is 255 characters, for example:
A_VERY_LONG_NAME=10 : Rem This is ok

Here are some examples of illegal names. The illegal bits are underlined to make things
clearer.

WHILES, 5C, MODERN#, TOAD

Types of variables

AMOS Basic allows you to use three different types of variables in your programs.

Integers

Unlike most other Basics, AMOS initially assumes that all variables are integers. Integers
are whole numbers such as 1, 3, or 8, and are ideal for holding the values used in your
games.

Since integer arithmetic is much faster than the normal floating point operations,
using integers in your programs can lead to dramatic improvements in speed. Each
integer is stored in four bytes and can range from -147,483,648 to +147,483,648.
Examples of integer variables:

A, NUMBER, SCORE, LIVES

35

Real numbers

In AMOS Basic these variables are always followed by a hash (#) character. Real
numbers can hold fractional values such as 3.1 or 1.5. They correspond directly to the
standard variables used in most other versions of Basic. Each real variable is stored in
four bytes and canrange between 1E-14 and 1E-15. All values are accurate to a precision
of seven decimal digits. Examples:

P#, NUMBER#, TEST#

String variables

String variables contain text rather than numbers. They are distinguished from normal
variables by the $ character at the end. The length of your text can be anything from 0 to
65,500 characters. Examples of string variables:

NAMES$, PATHS, ALIENS
Giving a variable a value

Assigning a value to a variable is easy. Simply choose an appropriate name and assign
it to a value using the “=" statement.

VAR=10
This loads the variable VAR with a value of 10. Depending on the type of your variable
it can contain either a number or a list of characters. To assign a string to a variable, you
enclose it with a pair of double quotes like so:

A$="Hello”

Notice the $ sign after the name. This tells AMOS that the variable will contain characters
rather than a number.

Arrays
Any list of variables can be combined together in the form of an array. Arrays are created
using the DIM instruction.

DIM (Dimension an array)

DIM var(x,y,z,...)

DIM defines a table of variables in your AMOS Basic program. These tables may have
as many dimensions as you want, but each dimension is limited to a maximum of 65,000
elements. Example:

Dim A$(10),B(10,10),C#{10,10,10)

In order to access an element in the array you simply type the array name followed by the

36

index numbers. These numbers are separated by commas and are enclosed between
round brackets (). Note that the element numbers of these arrays always start from zero.
Example:

Dim ARRAY(10)
ARRAY(0)=10:ARRAY(1)=15
Print ARRAY(1);ARRAY(0)
1510

Constants

Constants are simply numbers or strings which are assigned to a variable or used in one
of your calculations. They are called constants because they don’t change during the
course of your program. The following values are all constants:

1,42, 3.141, “Hello”

As adefault, all numeric constants are treated as integers. Any floating point assignments
to an integer variable are automatically converted to a whole number before use.
Examples:

A=3.141:Print A
3

Print 19/2

9

Constants can also be input using binary or hexadecimal notation. Binary numbers are
signified by preceding them with a % character, and hexadecimal numbers are denoted
by a $ sign. Here's an example of the various different ways the number 255 could be
expressed.

Decimal: 255
Hexadecimal: $FF
Binary: %11111111

Note that any numbers you type into AMOS Basic are automatically converted into a
special internal format. When you list your program these numbers are expanded back
into their original form. Since AMOS Basic prints all numbers in a standard way, this will
often lead to minor discrepancies between the number you entered and the number which
is displayed in your listing. However the value of the number will remain exactly the same.

Floating point constants are distinguished from integers by a decimal point. If this
pointis not used, the number will always be assumed to be aninteger, even if this number
occurs inside a floating point expression. Take the following example:

For X=1 To 10000

A#=A#+2
Next X

Every time the expression in this program is evaluated, the “2” will be laboriously

37

converted into areal number. So this routine will be inherently slower than the equivalent
program below.

For X=1 To 10000
A#=A#+2.0
Next X

This program executes over 25% faster than the original one because the constant is now
stored directly in floating point format. You should therefore always remember to place
a decimal point after a floating point constant even if it is a whole number. Incidentally,
if you mix floating point numbers and integers, the result will always be returned as areal
number. Example:

Print 19.0/2
95

Print 3.141+10
13.141

Arithmetic operations

The following arithmetic operations can be used in a numeric expression.

A Power

/and * Divide and multiply

MOD Modulo operator (remainder of a division)
+and - Plus and minus

AND Logical AND

OR Logical OR

XOR Logical XOR

We've listed these operations in descending order of their priority. This priority refers to
the sequence in which the various sections of an arithmetic expression are evaluated.
Operations with the highest priority are always calculated first. Here is an example of how
this works in practice:

Print 10+2*5-8/4+5"2

This evaluates in the following order:

572 (Equal to 5*5) =25
2*5 =10
8/4 =

10+10 =20
20-2 =18
18+25 =43

If you wanted this to evaluate differently, you would simply enclose the parts of the
expression you wished to execute first in round brackets:

38

Print (104+2)*(5-8/4+5)"2

This gives the result 12*(8"2) or 1264 or 768. As you can see, the addition of just two pairs
of brackets has changed the sense of the expression completely.

While on the subject of arithmetic, it's worth mentioning three simple instructions
which can speed up your programs considerably.

INC (Add 1 to an integer variable)
INC var

INC adds 1 to aninteger variable using a single 68000 instruction. Itis logically equivalent
to the expression var=var+1, but is much faster. Example:

A=10:Inc A:Print A
11

DEC (Subtract 1 from an integer variable)
DEC var

This instruction subtracts 1 from the integer variable var. Example:

A=2
Dec A
Print A
1

ADD (Fast integer addition)
ADD v,exp [, base TO top]

The standard form of this instruction immediately adds the result of the expression exp
to the integer variable v. It's equivalent to the line: V=V+EXP

The only significant difference between the two statements is that ADD performs
around 40% faster. Note that the variable v must be an integer. Example:

Timer=0

For X=1 To 1000
Add T,X

Next X

Print T,Timer

500500 7

The second version of ADD is a little more complicated. It is effectively identical to the
following code:

V=V+A

39

If V<Base Then V=TOP
If V>Top Then V=BASE

Like the first version of ADD this command is considerably faster than the separate
instructions. Here’s an example:

Dim A(10)
For X=0 To 10:A(X)=X:Next X
V=0
Repeat
Add V,1,1 To 10
Print A(V)
Until V=100:rem This is an infinite loop as V is always less than 10!

As you can see, ADD is ideal for handling circular or repetitive loops in your games.
String operations
Like most versions of Basic, AMOS will happily allow you to add two strings together.
A$="AMOS”+” Basic”
Print A$
AMOS Basic

But AMOS also lets you perform subtraction as well. This operation works by removing
all occurrences of the second string from the first. Examples:

Print “AMOS BASIC”-"S”

AMO BAIC

Print “AMOS BASIC”-"AMOS”
BASIC

Print “ A String of Characters™-” “
AStringofCharacters

Comparisons between two strings are performed on a character by character basis using
the Ascii values of the appropriate letters. Examples:

“AA” < “BB”
“Filename”="Filename”
“XE > X

“HELLO” < “hello”

Type in the following program:
Input “Enter your First name”;C$

Input “Enter your Surname “;S$
If C$>S$ Then Print §$;” “;C$ Else Print C$;” “;S$

40

Parameters

The values you enter into an AMOS Basic instruction are known as parameters. i.e

IncN
Add A,10
Ink 1,2,3

The parameters inthe above instructionsare N, A,10,1,2and 3respectively. Occasionally,
some of the parameters of a command can be omitted from an instruction. In this case,
any unused values will automatically be assigned a number by default. Take the following
example:

Ink 5,,

This changes the ink colour without affecting either the paper or outline colours. Notice
the commas in their normal positions, even though the values themselves have been
omitted. AMOS uses these commas to work out which order the parameters are to be
entered into the instruction. This allows you to input a value in the middle of a command
like so:

Ink 3,

Ink now sets the paper colour leaving the ink and outline colours untouched.

The same principle can also be applied to many other AMOS Basic instructions.
Providing you remember to keep the commas in their original positions, you can use this
technique to avoid a great deal of unnecessary typing in your programs. If a parameter
is essential you'll be presented with an illegal function call. Soit’s well worth experimenting
with the various combinations.

Line numbers and labels

Earlier versions of Basic expected each program line to begin with a number. This line
number served as a target for the GOTO or GOSUB instructions. It was also used by the
Basic editor. While there’s nothing wrong with this approach (it was even used in STOS
Basic), it's not really necessary with AMOS. In AMOS Basic all line numbers are
completely optional; they are only provided for compatibility purposes with STOS Basic.

You may be wondering how you can use GOTO or GOSUB without line numbers.
Well, you can replace them using /abels.

Labels

Labels are just a convenient way of marking a point in your AMOS Basic programs. They
consist of a string of characters formed using the same rules as AMOS variables. Labels
should always be placed at the start of a line, and must be followed immediately by a “:”
(colon) character. There should be no spaces between the label and the colon. Otherwise
the label will be treated as a procedure and you'll get an Undefined procedure error.
Here’s a simple example:

41

TESTLABEL: Rem This is a label
Print “Hi there”
Goto TESTLABEL

This program repeatedly prints the words “Hi there” on the screen. It can be aborted by
pressing Control+C.

Labels are much easier to read than line numbers. You are therefore advised to use
them extensively in your AMOS Basic programs.

Procedures

If you've ever attempted to write a really large Basic program, you'll appreciate how easy
itcan be to getcompletely lost halfway through. Nowadays most professional programmers
split their programs into small modules known as procedures.

Procedures allow you to concentrate your efforts on just one problem at a time
without the distractions provided by the rest of your program. Once you’ve written your
procedures you can then quickly combine them in your finished program.

Programs which use procedures are easy to write, easy to change and easy to
debug. AMOS Basic procedures are totally independent program modules which can
have their own program lines, variables, and even data statements. So there’s absolutely
no excuse for not making full use of them in your AMOS Basic programs.

PROCEDURE (Create an AMOS Basic procedure)

Procedure NAME[parameter list]
iind ProciExpression]

This defines an AMOS Basic procedure called NAME. NAME is a string of characters
which identify the procedure. It is constructed in exactly the same way as a normal Basic
variable. Note that it's perfectly acceptable to use identical names for procedures,
variables and labels. AMOS will automatically work out which object you are referring to
from the context of the line.

Procedures are similar to the GOSUB commands found in earlier versions of Basic.
Here’s an example of a simple AMOS procedure.

Procedure ANSWER
Print “Forty-Two!”
End Proc

See how the procedure has been terminated with an END PROC statement. You should
also note that the Procedure and the End Proc directives are both placed on their own
separate lines. This is compulsory.

If you type the previous procedure into AMOS Basic as it stands, and attempt to run
it, nothing willhappen. That's because you haven’t actually called the new procedure from
your Basic program. This can be achieved by simply entering its name at the appropriate
point in the program. As an example, enter the following line at the start of the program
and run it to see the result of the procedure.

42

ANSWER

Important! When you are using several procedures on the same line, it’s advisable to add
an extra space at the end of each statement. This will avoid the risk of the procedure being
confused with a label. For example:

TEST : TEST : TEST:Rem performs the test procedure three times
TEST:TEST:TEST: Rem defines the label TEST and executes TEST just twice

Alternatively, you can preclude your Procedure calls with a Proc statement like so:
Proc ANSWER
Example:

Rem Shows you for sure that it is a Procedure being called,
Rem not just a command.
Proc ANSWER
Rem The same can be achieved without the Proc
ANSWER
Procedure ANSWER
Print “Forty-Two!”
End Proc

If you run this program again, the procedure will be entered, and the answer will be printed
out on the screen. Although the procedure definition is positioned at the end of the
program, it's possible to place it absolutely anywhere. Whenever AMOS encounters a
Procedure statement, it installs the procedure and immediately jumps to the final End
Proc. This means there is no danger of accidentally executing your procedure by mistake.
Once you've created a procedure, and tested it to your satisfaction, you can suppress it
in your listings using the fold option from the main menu.

These folding procedures reduce the apparent complexity of your listings and allow
you to debug large programs without the distractions of unimportant details. You can
restore your procedure listings to the screen at any time by selecting the unfold menu
option.

Local and global variables
Allthe variables you define inside your procedures are independent of any other variables

used in your program. These variables are said to be local to your particular procedure.
Here’s an example which illustrates this:

A=1000:B=42

TEST

Print A,B

Procedure TEST
Print A,B

End Proc

43

It should be apparent that the names A and B refer to completely different variables
depending on whether they are used inside or outside the procedure TEST. The variables
which occur outside a procedure are global and cannot be accessed from within it. Let's
take another example:

Dim A(100)
For V=1 to 100: A(V)=V:Next V
TEST_FLAG=1
APRINT
End
Procedure APRINT
If TEST_FLAG=1
For P=1To 100
Print A(P)
Next P
Endif
Endproc

This program may look pretty harmless but it contains two fatal errors.

Firstly, the value of TEST_FLAG inside the procedure will always have a value of
zero. So the loop between the IF and the ENDIF will never be performed. That's because
the version of TEST_FLAG within the procedure is completely separate from the copy
defined in the main program. Like all variables, it's automatically assigned to zero the first
time it's used.

Furthermore, the program won’t even run! Since the global array A() has been
defined outside APRINT, AMOS Basic will immediately report an array not dimensioned
error at the line:

Print A(P)

This type of error is extremely easy to make. So it's vital that you treat procedures as
separate programs with their own independent set of variables and instructions. Don‘tfall
into the trap of using the same variable names inside and outside a procedure. Otherwise
you could be hoodwinked into believing they are the same variables, which could lead to
inexplicable errors in your programs.

Fortunately, there are a couple of extensions to this system which make it easy for
you to transfer information between a procedure and your main program. Once you're
familiar with these commands you'll have few problems in using procedures successfully
in your programs.

Parameters and procedures

One possibility is to include a list of “parameter definitions” in your procedure. This creates
a group of local variables which can be loaded directly from the main program. Here's an
example:

Procedure HELLO[NAMES]
Print “Hello “;NAMES$
End Proc

44

The value to be loaded into NAMES$ is entered between square brackets as part of the
procedure call. So the HELLO procedure could be performed in the following ways:

Rem Loads N$ into NAME$ and enters procedure

Input “What’s your name”;n$

HELLO[n$]

Rem Load the literal string “Stephen” into NAME$ and call HELLO
HELLO[“Stephen”]

As you can see, the parameter system is general purpose and works equally well with
either variables or constants. Only the type of the variables are significant.

This process can be used to transfer integer, real or string variables. However you
cannot pass entire arrays with this function. If you want to enter several parameters you
should separate your variables using commas. For example:

Procedure POWER[A,B]
Procedure MERGE[A$,B$,C$]

These procedures might by called using lines like:

POWER[10,3]
MERGE[“One”,”Two”, " Three”]

Shared variables

Another way of passing data between a procedure and the main program is to use the
SHARED instruction.

SHARED (Define a list of global variables)
SHARED variable list

SHARED is placed inside a procedure definition and takes a list of AMOS Basic variables
separated by commas. These variables are now treated as global variables, and can be
accessed directly from the main program. Any arrays which you declare in this way should
of course have been previously dimensioned in your main program. Example:

A=1000:B=42

TEST

Print A,B

Procedure Test
Shared A,B
A=A+B:B=B+10

End Proc

TEST can now read and write information to the global variables A and B. If you want to
share an array you should define it like so:

Shared A(),B#(),C$():rem Shares arrays A,B# and C$

45

GLOBAL (Declare a list of global variables from the main program)
GLOBAL variable list

When you're writing a large program, it's commonplace for a number of procedures to
share the same set of global variables. This provides a simple method of transferring large
amounts of information between your various procedures. In order to simplify this
process, we've included a single command which can be used directly in your main
program. GLOBAL defines a list variables which can be accessed anywhere inside your
Basic program, without the need for an explicit SHARED statement in your procedure
definitions. Example:

A=1000 : B=42

Global A,B

TEST1

Print A,B

TEST2

Print AB

Procedure TEST1
A=A+B : B=B+10

End Proc

Procedure TEST2
A=A*B : B=B+10

End Proc

Returning values from a procedure

If a procedure needs to return a value which is only local to itself, it must use the following
command so thatit can inform the calling PROCEDURE command where to find the local
variable.

PARAM (Return a parameter from a procedure)
PARAM

The PARAM functions provide you with a simple way of returning a result from a
procedure. They take the result of an optional expression in the END PROC statement,
and return itin one of the variables PARAM,PARAM#, or PARAM$ depending on its type.
Example:

MERGE_STRINGS[“Amos”,” “,"Basic"]

Print PARAM$

Procedure MERGE_STRINGS[A$,B$,C$]
Print A$,B$,C$

End Proc[A$+B$+C$]

Note that END PROC may only return a single parameter in this way. The PARAM
functions will always contain the result of the most recently executed procedure.Here’s
another example, this time showing the use of the PARAM## function.

46

E E BN EEEEEEEEERESNR

CUBE[3.0]

Print Param#

Procedure CUBE[A#]
C#=CUBE#*CUBE#*CUBE#

Endproc[C#]

Leaving a procedure

POP PROC (Leave a procedure immediately)
POP PROC

Normally, procedures will only return to the main program when the END PROC
instruction is reached. Sometimes, however, you need to exit from a procedure in a hurry.
In this case you can use the POP PROC function to exit inmediately. Example:

Procedure TERMINATE
ForBORING=1 to 100000
IfBORING=10 Then Pop Proc
NextBORING
Print “This line is never executed”
End Proc

Local DATA statements

Any data statements defined inside one of your procedures are held completely
separately from those in the main program. This means each procedure can have its own
individual data areas. Example:

Read A$:Print A$,
EXAMPLE
Read B$:Print BS,
Procedure EXAMPLE
Read X$,Y$
Print X$,Y$
Data “Basic”, “is”
End Proc
Data “AMOS”,”amazing!”

Hints and tips

Here are a few guidelines which will help you make the most out of your AMOS Basic
procedures:

« It's perfectly legal for a procedure to call itself, but this recursion is limited by the amount

of space used to store the local variables. If your program runs out of memory you'll
get an appropriate error.

47

« All local variables are automatically discarded after the procedure has finished
executing.

Procedure ADD
A=A+1:Print A
End Proc

No matter how many times you call this procedure, it will always print the same value

().

« AMOS procedures are equivalent to subroutines created using the Amiga Basic SUB
commands. The only significant difference is that you can’t pass arrays as parameters.
If you need to access an array from within a procedure, you should declare itas shared
instead.

Memory banks

AMOS Basic includes a number of powerful facilities for manipulating sprites, bobs and
music. The data required by these functions needs to be stored along with the Basic
program. AMOS Basic uses a special set of 15 sections of memory for this purpose called
banks.

Each bank is referred to by a unique number ranging from 1 to 15. Many of these
banks can be used for all types of data, but some are dedicated solely to one sort of
information such as sprite definitions. All sprite images are stored in bank 1. They can be
loaded into memory using a line like:

Load “AMOS_DATA:Sprites/Octopus.abk”

There are two different forms of memory bank: Permanent and temporary. Permanent
banks only need to be defined once, and are subsequently saved along with your program
automatically. Temporary banks are much more volatile and are reinitialised every time
aprogram is run. Furthermore, unlike permanent banks, temporary banks can be erased
from memory using the CLEAR command.

Types of memory bank
AMQS Basic supports the following types of memory bank:

Class Stores Restrictions Type

Sprites Sprite or bob definitions Only bank 1 Permanent
Icons Holds icon definitions Only bank 2 Permanent
Music Contains sound track data ~ Only bank 3 Permanent
Amal Used for AMAL data Only bank 4 Permanent
Samples The Sample data Banks 1-15 Permanent
Menu Stores MENU definition Banks 1-15 Permanent
Chip Work Temporary workspace Banks 1-15 Temporary
Chip Data Permanent workspace Banks 1-15 Permanent
Fast Work Temporary workspace Banks 1-15 Temporary
Fast Data Permanent workspace Banks 1-15 Permanent

48

RESERVE (Reserve a bank)
RESERVE AS type, bank, length

The banks used by your sprites or bobs are allocated automatically by AMOS.The
RESERVE command allows you to create any other banks which you mightrequire. Each
different type of bank has its own unique version of the RESERVE instruction.

RESERVE AS WORK bankno,length

Reserves length bytes for use as a temporary workspace. Whenever possible this
memory area will be allocated using fast memory, so you shouldn’t call this command in
conjunction with instructions which need to access the Amiga’s blitter chip.

RESERVE AS CHIP WORK bankno,length.

Allocates a workspace of size length using chip ram. You can check whether there’s
enough chip ram available with the CHIP FREE function.

RESERVE AS DATA bankno,length

Reserves a permanent bank of memory lengthbytes long. This data area will be allocated
using fast memory if it's available.

RESERVE AS CHIP DATA bankno,length

Reserves length bytes of memory from chip ram. This bank will be automatically saved
along with your AMOS programs.

bank may be any number between 1 and 15. Since banks 1 to 5 are normally
reserved by the system, it's wisest to leave them alone. Note that the only limitto the length
of a bank is the amount of available memory.

LISTBANK (List the banks in use)

LISTBANK lists the numbers of the banks currently reserved by a program, along with
their location and size. The listing is produced in the following format:

Number Type Start Length

1 — Sprites S:$040F60 L:$00002F
2 - Work S: $05F7A0 L:$014000
S: = The start address of the bank in hexadecimal.
L: = The length of the bank in hexadecimal.

Normally the length of a bank is returned in bytes, but in the case of sprites and icons the
value represents the total number of images in the bank instead. The reason for this is

49

that the storage of each image can be anywhere in the Amiga’s memory, the bank is
therefore not a continuous block of memory. So don't BSAVE a sprite bank, simply use
SAVE “filename.ABK”.

Deleting banks

During the course of a program you may need to clear some banks from memory so as
toload in additional data. Sprites may need to change for a new part of agame or a special
piece of music is required to be played. The ERASE command gives you quick control
for data deletion.

ERASE (Delete a bank)
ERASE b

ERASE deletes the contents of a memory bank. The bank number b can range from 1 to
15. Note that any memory used by this bank is subsequently freed for use by your
program.

Bank parameter functions
If you want to have direct access to the bank data using commands such as poke, doke
and loke then use these commands to find a bank’s address in memory and its size.

=START (Get the start address of a bank)
s=START(b)

This function returns the start address of bank number b. Once it's been reserved, the
location of the bank will never subsequently change. So the result of this function will
remain fixed for the lifetime of the bank. Example:

Reserve As Work 3,2000
Print Start(3)

=LENGTH (Get the length of a bank)
I=LENGTH(b)

The LENGTH function returns the length in bytes of bank number b. If the bank contains
sprites then the number of sprites or icons will be returned instead. A value of zero
indicates that bank b does not exist. Example:

Reserve as work 6,1000
Print Length(6)

Erase 6

Print Length(6)

50

Loading and saving banks

Some programs will require many banks of information, a good example is an adventure.
This would need to load various graphics and sounds for the different locations within the
games domain. An Amiga 500 would have great difficulty holding all this data at once and
so it’s best to simply load the data at the appropriate time of use.

LOAD (Load one or more banks)
LOAD “filename”[,n]

The effect of this command varies depending on the type of file you are loading. If the file
holds several banks, then all current memory banks will be erased before the new banks
are loaded from the disc. However if you're loading just a single bank, only this bank will
be replaced. The optional destination point specifies the bank which is to be loaded with
your data. If it's omitted, then the data will be loaded into the bank from which it was
originally saved.

Sprite banks are treated slightly differently. In this case the parameter n toggles
between two separate loading modes. If nis omitted or is assigned a value of zero, the
currentbank will be completely overwritten by the new sprites. Any other value for nforces
the new sprites to be appended to this bank. This allows you to combine several sprite
files into the same program. Example:

Load “AMOS_DATA:Sprites/Octopus.abk”
SAVE (Save one or more banks onto the disc)
SAVE™filename”[,n]

The SAVE command saves your memory banks onto the disc. There are two possible
formats:

SAVE “filename.ABK”
This saves all the currently defined banks into a single file on your disc.
SAVE “filename.ABK”,n
The expanded form just saves memory bank number n. One should also be sure to use

the extension ABK at the end of the filename as this will ensure you can identify that the
file contains one or more memory banks.

BSAVE (Save an unformatted block of memory in binary format)
BSAVE file$, start TO end

The memory stored between startand endis saved on the disc in file$. This data is saved
with no special formatting. Example:

Bsave “Test”,Start(7) TO Start(7)+Length(7):rem Saves a memory bank

51

The above example saves the data in memory bank 7 to disc. The difference between
this file and a file saved as a normal bank is that SAVE writes out a special bank header
that contains information concerning the bank. This header is not present witha BSAVED
file so it cannot be loaded using LOAD.

Warning: The sprites andiconbanks are not stored as one chunk of memory. Each object
can reside anywhere in memory. Because AMOS uses this flexible system of data
storage you simply can’t save the memory bank using BSAVE.

BLOAD (Load binary information into a specified address or bank)
BLOAD file$, addr

The BLOAD command loads a file of binary data into memory. It does not alter the
incoming information in any way. There are two forms of this function.

Bload file$, addr
File$ will be loaded from the disc into the address addr.
Bload file$, bank

File$ will be loaded into bank. This bank must have been previously reserved, otherwise
an error will be generated. Also be sure not to load a file that is larger than the reserved
bank, otherwise it will over run the bank and start corrupting other areas of memory.

Memory fragmentation

Sometimes, after a busy editing session, you may get an “Out of memory” error, even
though the Information line implies that you have plenty of available memory.This is not
abugin AMOS Basic. It's justan unavoidable side effect of the Amiga’s memory allocation
system.

The Amiga’s memory system is rather like a cake. Once you've cut a slice there’s
absolutely no way of replacing it in it's original position.Every time you reserve some
memory,a single slice is cut from the memory cake.When you return this memory back
to the system, it's placed on a special’stack” of all the currently unused slices. (Maybe its
a current cakel)

The nexttime you reserve an area of memory, the Amiga will check each slice inturn
for a region of the required size.lf it finds a section which is larger than the one you
requested,it willautomatically cutitinto two pieces, keeping any unused memory for itself.
After a while, the memory will fragment into a large number of very small slices. So when
you ask for some more, there’s no way of allocating it from a single chunk, and you'll get
an annoying “Out of memory” error.

The only reliable way of solving this problem, is to turn off your Amiga and reboot.
This will restore the memory area to it's original, state, and you'll be able to allocate
memory as and when you need it.

Note that the above difficulty only crops up during development. Providing you
reserve all your memory at the start of your programs, you'll never have to worry about
the problem in one of your actual programs.

52

|

Finding space for your variables

As a default, all variables are stored in a memory area of exactly 8k in length. Although
this may seem incredibly meagre, it's easily capable of holding around 2 pages of normal
text, or 2000 numbers. We've intentionally set it as small as possible so as to maximize
the amount of space available for your screens and memory banks.

Don’t Panic however! The size of this area can be increased directly from within your
Basic programs using a simple SET BUFFER command. So the only physical limit to the
size of your arrays and string variables will be the amount of memory you've installed in
your computer.

SET BUFFER (set the size of the variable area)
SET BUFFER n

Sets the size of the variable area in your current program to n kilobytes. This must be
the FIRST instruction in your program (excluding Rems). Otherwise you'll get an
appropriate error message. For an example of this feature see EXAMPLE 4.1 in the
MANUAL folder.

SET BUFFER should be used in your program whenever you get an out of string
space error. Increase the value in 5k increments until the error disappears. If you run out
of memory during this process, you'll probably need to reduce the requirements of your
program in some way. See the CLOSE WORKBENCH and CLOSE EDITOR commands
for more details.

=FREE (Return the amount of free memory in the variable area)
f=FREE

FREE returns the number of bytes which are currently available to hold your variables.
This value can be increased as required using the previous SET BUFFER command.

Whenever FREE is called, the variable area is reorganized to provide the maximum
space for your variables. This process is known as garbage collection, and is normally
performed automatically.

Due to the power of AMOS Basic, the entire procedure is usually accomplished
practically instantaneously. But If you're variable area is very large and you're using a lot
of strings, the garbage collection routine might take several seconds to complete.
Conceivably, this could lead to a unexpected delay in the execution of your programs.
Since the garbage collection is totally essential, (just as in real life!) you may need to add
an explicit call to the FREE command when it will cause the least amount of harm in your
program.

53

5: String functions

AMOS Basic comes complete with a full range of string manipulation instructions. We've
taken care to use the standard Basic syntax, so if you're an experienced Basic programmer,
you'll be familiar with most of these commands already.

=LEFT$= (Return the leftmost characters of a string)

d$=LEFT$(s$,n)
LEFT$(d$,n)=s$

LEFT$ reads the first ncharacters to the left of string s$and copies them into the destination
string d$.

As you can see, there are two general forms of this command. The first version is a
function which creates a new destination string d$ out of the first n characters from the
source s$. Examples:

Print Left$(“AMOS Basic”,4)
AMOS

A$=Left$(“0123456789ABCDEF”,10)
Print A$
0123456789

Do
Input “Input a String ?”;S$
Input “Number of Characters ;N
Print Left$(S$,N)

Loop

The second form of LEFT$ replaces the leftmost ncharacters in the destination string with
the equivalent characters in s$. Example:

A$="*** Basic”
Left$(A$,4)="AMOS”
Print A$
AMOS Basic
=RIG HT$= (Return the rightmost character of a string)

d$=RIGHT$(s$,n)
RIGHT$(d$,n)=s$

RIGHT$ copies n characters from s$ to d$ starting from the right. Examples:
Print Right$(“AMOS Basic”,5)
Basic

54

A$=Right$(“0123456789ABCDEF”,10)
Print A$
6789ABCDEF

Do
Input “Input a string?”;V$
Input “Enter the number of characters?”;N
Print Right$(V$,N)

Loop

Like LEFT$ there’s also a second version of RIGHT$ which is set up as a Basic instruction.
RIGHT$(d$,n)=s$

This loads the rightmost n characters of the source string s§into the destination string d$.
Any excess characters in s$ will be totally ignored. Example:

A$="AMQS *++++>
Right$(A$,5)="Basic”
Print A$

AMOS Basic

=M D$= (Return a string of characters from within a string)

d$=MID$(s$,p,n)
MID$(d$,p.n)=s$

The MID$ function returns the middle section of the string held in s$. p denotes the offset
of characters to the start of this substring, and n holds the number of characters to be
fetched. If a value of nis not specified in the instruction then the characters will be read right
up to the end of your string. Examples:

Print Mid$(“AMOS Basic”,6)
Basic

Print Mid$(“AMOS Basic”,6,3)
Bas

Do
Input “Input a string”;V$
Input “Enter the starting position, and the number of characters”;S,N
Print Mid$(V$,S,N)
Loop
There’s also a MID$ instruction.

MID$(d$,p,n)=s$

55

This version of MID$ loads n characters into d$ starting from position p+17in s$. If a value
of nis not specified directly then the characters will be replaced up to the end of the source
string s$. Examples:

A$="AMOQS *++++>
Mid$(A$,5)="Magic”
Print A$

AMOS Magic
Mid$(A$,5,3)="Bas”
Print A$

AMOS Basic

Do
Input “Input a target string”;V$
Input “Input a substring”;T$
Input “Enter the starting position, and the number of characters”;S,N
Mid$(V$,S,N)=T$
Print V$
Loop

=INSTR (Search for occurrences of a string within another string)
f=INSTR(d$,s$ [,p])

INSTR allows you to search for all occurrences of one string inside another. It is often used
in adventure games to split a complete line of text into its individual commands. There are
two possible forms of the INSTR function.

f=INSTR(d$,s$)

This searches for the first occurrence of s$ in d$. If the string is found then its position will
be returned directly, otherwise the result will be set to zero. Examples:

Print Instr(“AMOS Basic”,”AMOS”)
1

Print Instr(“AMOS Basic”,”S”)

4

Print instr(“AMOS Basic”,”AMIGA”)
0

Do

Input “String to be searched”;D$

Input “String to be found”;S$

X=Instr(D$,S$)

If X=0 Then Print $$;” Not found”

If X<>0 Then Print S$;” Found at position “;X
Loop

56

Normally the search will commence from the first character in your text string (d$). The
second version of INSTR lets you test a specific section in the string at a time.

p is now the position of the beginning of your search. All characters are
numbered from left to right starting from zero. Therefore p ranges from 0 to
LEN(s$). Examples:

Print Instr(“AMOS BASIC”,”S”,0)

4

Print Instr(“AMOS BASIC”,”S”,5)
8

=UPPER$ (Convert a string of text to upper case)
s$=UPPER$(n3)

This function converts the string in n$ into upper case (capitals) and places the result into
s$. Example:

Print Upper$(“AmOs BaSic”)
AMOS BASIC

=LOWER$ (Convert a string to lower case)

s$=LOWER$(n$)

LOWERS translates all the characters in n$ into lower case. This is especially useful in
adventure games, as you can convert all the user’s input into a standard format which is

much easier to interpret. Examples:

Print Lower$(“AMOS Basic”)
amos basic

Input “Continue (Yes/No)”;ANSWER$
ANSWERS$=Lower$(ANSWERS) : If ANSWER$="no” Then Edit
Print “Continuing with your program...”

=FL|P$ (Invert a string)

1$=FLIP$(n$)

FLIP$ simply reverses the order of the characters held in n$. Example:

Print Flip$(“AMOS Basic”)
cisaB SOMA

=SPACE$ (Space out a string)
s$=SPACE$(n)

57

Generates a string of nspaces and places them into s$. It's often used to pad out a piece
of text before it's printed out onto the screen. Example:

Print “Twenty” ; Space$(20); “spaces”
=STR|NG$ (Create a string full of a$)
s$=STRINGS$(a$,n)
STRINGS$ returns a string with n copies of the first character in a$. Example:

Print String$(“The cat sat on the mat”,10)
TTTTTTTTTT

Note that STRING$(“ “N) is identical to SPACE$(N)

=CH R$ (Return Ascii character)

s$=CHR$(n)

Creates a string containing a single character with Ascii code n. Example:
For 1=32 To 255 : Print Chr$(l); : Next |

Note that only the characters with codes 32 to 255 are actually printable on the screen. The
rest are used internally as control codes. See text commands like CUP$ for more details.

=ASC (Get Ascii code of a character)
c=ASC(a$)
ASC supplies youwith the internal Ascii code of the first character in the string a$. Example:

Print Asc(“B”)
66

=LEN (Get length of string)
I=LEN(a$)
LEN returns the number of characters stored in a$. Example:

Print Len(“12345678")
8

Don’t confuse this with the LENGTH function used to calculate the length of an AMOS
memory bank.

58

=VAL (Convert a string to a number)

v=VAL(x$)
vi#=VAL(x$)

VAL converts a list of decimal digits stored in x$ into a number. If this process fails for some
reason, a value of zero will be returned instead. Example:

X=Val(“1234”) : Print X
1234

=STR$ (Convert a number to a string)
s$=STRS$(n)

STR$ converts an integer variable into a string. This can be very useful because some
functions, such as CENTRE, do not allow you to enter numbers as a parameter. Example:

Centre “Memory left Is “+Str$(Chip Free)+” Bytes”

Do not confuse STR$ with STRING$

Array operations

SORT (Sort all elements in an array)

SORT a(0)
SORT a#(0)
SORT a$(0)

The SORT instruction arranges the contents of any array into ascending order. This array
can contain either strings, integers, or floating point numbers. The a$(0) parameter
specifies the starting point of your table. It must always be set to the first item in the array
(item number zero). Example:

Dim A(25)

P=0

Repeat
Input “Input A Number (0 To Stop)”;A(P)
Inc P

Until A(P-1)=0 Or P>25

Sort A(0)

For I=0 To P-1
Print A(})

Next|

59

MATCH (Search an array)

r=MATCH(t(0),s)
r=MATCH(t#(0) s#)
r=MATCH(1$(0),s$)

MATCH searches through a sorted array for the value s. If this is successfully found then
rwill be loaded with the relevant index number. But if the search fails, the result will be
negative. Taking the absolute value of this figure will provide you with the item which came
closest to your original search parameter.

Note that only arrays with a single dimension can be checked in this way. You'll also
need to sort the array with SORT before calling this function. Example:

Read N

Dim D$(N)

Forl=1ToN
Read D$(l)

Next |

Sort D$(0)

For I=1To N : Print D$(I) : Next |
Else
POS=Match(D$(0),A$)
If POS>0 Then Print “Found”,D$(POS);” In Record “;POS
IfPOS<0And Abs(POS)<=NThen PrintA$,”Not Found. Closest To“,D$(Abs(POS))
If POS<0 And Abs(POS)>N Then Print A$,”Not Found. Closest To”;D$(N)
Endif
Loop
Data 10,”Adams”,”Asimov”,”Shaw”,”Heinlien”,”Zelazny”, Foster”,”Niven”
Data “Harrison”,”Pratchet”,”Dickson”

Note that MATCH could be used in conjunction with the INSTR function to provide a

powerful parser routine. This might be used to interpret the instructions you entered in an
adventure game.

60

-
]
6: Graphics
AMOS Basic provides you with everything you need to generate some amazing graphics.
There’s a comprehensive set of commands for drawing rectangles, circles and polygons.
As you would expectfromthe Amiga, all operations are performed practically instantaneously.
But even here AMOS Basic has a trick or two up its sleeve.

The AMOS graphical functions work equally well in all the Amiga’s graphics modes
including hold and modify mode (HAM). It's therefore possible to create breathtaking HAM
pictures directly within AMOS Basic!

Furthermore, you're not just limited to the visible screen. If you've created an extra
large playing area, you'll be able to access every part of your display using the standard
drawing routines. So it's easy to generate the scrolling backgrounds required by arcade
games such as Defender.

Colours

The Amiga allows you to display up to 64 colours on the screen at a time. These colours
can be selected using the INK, COLOUR and PALETTE commands.

INK (Set colour used by drawing operations)
INK col[,paper][,border]

col specifies the colour which is to be used for all subsequent drawing operations. The
colour of every point on the screen is taken from one of 32 different colour registers.These
registers can be individually set with a colour value chosen from a palette of 4096 colours.

Although the Amiga only provides you with 32 actual colour registers, AMOS lets you
use colour numbers ranging from 0 to 63. This allows you to make full use of the colours
available from the Half-Bright and HAM modes respectively. A detailed explanation of
these modes can be found in the Screens chapter.

The paper colour sets the background colour fill patterns generated by the SET
PATTERN command.

The bordercolour selects an outline colour for your bars and polygons. This option can
be activated using the SET PAINT command like so:

Rem Draws boxes with random sizes at random positions
Set pattern 0 : Set Paint 1
Repeat
C=Rnd(16) : Ink 16-C,0,C
X=Rnd(320)-20 : Y=Rnd(200)-20 : S=Rnd(100)+10
Bar X,Y To X+S,Y+S
Until Mouse Key

Note that any of the parameters col, paper and border may be omitted. Simply include
empty commas at the appropriate places in the instruction. For example:

Ink ,,5:Rem Just sets the border colour

61

COLOUR (Assign a colour to an index)
COLOUR index,$RGB

The COLOUR instruction allows you to assign a colour to each of the Amiga’s 32 colour
registers.

Index is the number of the colour you wish to change, and can range from 0-31. As
you may know, any colour can be created by mixing specific amounts of the primary colours
Red, Green and Blue. The shade of your colour is completely determined by the relative
intensities of the three components.

The Amiga’s hardware allows you to select each colour component from a range of
16 intensities. This can be used to generate 16x16x16 (4096) different colours. It's normal
practice to specify these colours in hexadecimal format (base 16).

Hex digit 01 23456789A B C D E F
Decimal 012345678910 11 12 13 14 15

The expression $RGB consists of three digits ranging from 0 to F. Each component sets
the strength of one of the primary colours, Red (R), Green (G) or Blue (B). The size of the
componentis directly proportional to the brightness of the associated colour. So the higher
the values, the brighter the eventual colour.

Here are a few examples of this notation:

Components Hex form Final Colour

R=0 G=0 B=0 $000 Black
R=F G=0 B=0 $FO0 Bright red
R=8 G=0 B=0 $800 Dark red
R=F G=F B=0 $FFO Yellow
R=0 G=F B=0 $0F0 Green
R=8 G=0 B=F $FOF Violet
R=F G=F B=F $FFF White
R=6 G=6 B=6 $666 Grey

So if you wanted to load colour number 5 with yellow, you would type:
Colour 5,$FF0

When this statement is executed, any graphics displayed on the screen which use colour
number 5 will be immediately changed to the new colour. Note that HAM and Extra Half

Bright modes use these indices slightly differently. See Chapter 9 for more details.

=COLOUR (Read the colour assignment)
¢c=COLOUR(index)

62

The COLOUR function takes an index number from 0 to 31, and returns the colour value
which has been previously assigned to it.

index is simply the colour number whose shade you wish to determine. You can use
this function to produce a list of the current colour settings of your Amiga like so:

For C=0to 15
Print Hex$(Colour(C),3)
Next C

PALETTE (Set the current screen colours)
PALETTE list of colours

The PALETTE instruction is really just a rather more powerful version of COLOUR. Instead
of loading the colour values one at a time, the PALETTE command allows you to install a
whole new palette of colours in a single statement.

However you don't have to set all the colours in the palette at once. Any combination
of colours can be loaded individually, for example:

Palette $100,$200,$300 : Rem Sets just three colours
You can also change selected colours in the middle of your list like so:
Palette $200,,$400 : Rem Change colours 0 and 2

It's important to realise that only the colours in the palette which are specifically set by this
command will actually be changed. All other colours will retain their original values. Here
are some examples:

Palette 0,$F00,50F0

Palette 0,$770

Palette 0,,$66

Palette 0,$1,$2,$3,$4,$5,$6,$7,$8,$8,$9,$A,$B,$C,$D,5E,$F

At the start of your program the colour palette is automatically loaded using a list of default
colour values. These settings can be adjusted using a simple option from the AMOS
configuration program.

This command can also be used to set the colours used by the Half-Bright and Ham
modes. These extend the existing colour palette to generate dozens of extra colours on the
screen. See Chapter 10 for a detailed explanation.

Line drawing commands

GR LOCATE (Position graphics cursor)
GR LOCATE x,y

63

This sets the position of the graphics cursorto screen coordinates x,y. The graphics cursor
is used as the default starting point for most drawing operations. So if you omit the
coordinates from commands such as PLOT or CIRCLE, the objects will be drawn at the
current cursor position. For example:

Gr Locate 10,10 : Plot ,
Gr Locate 100,100 : Circle ,,100

=XGR (Return X coordinate of graphics cursor)
=YGR (Return Y coordinate of graphics cursor)

x=XGR
y=YGR

These functions return the present coordinates of the graphics cursor. For example:

Circle 10,100,100
Print Xgr,Ygr

PLOT (Plot a single point)
PLOT x,y [,c]

The PLOT command is the simplest drawing function provided by AMOS Basic. It plots a
point at coordinates x,y using colour ¢. The new ink colour will now be used in all
subsequent drawing operations.

If the colour cis omitted from this instruction, the point will be plotted in the current ink
colour. For example:

Curs Off : Flash Off : Randomize Timer
Do

Plot Rnd(319),Rnd(199),Rnd(15)
Loop

It's also possible to omit the X or Y coordinates from this instruction. The point will now be
plotted at the graphic cursor position.

Plot 100,100,4
Plot ,150
Cls : Plot,

POINT (Get the colour of a point)
¢c=POINT(x,y)

POINT returns the colour index of a point at coordinates x,y. For example:

Plot 100,100
Print “The colour at 100,100 is “;Point(100,100)

64

-

DRAW (Draw a line)

DRAW is another very basic instruction. Its action is to draw a simple straight line on the
Amiga’s screen.

DRAW x1,y1 TO x2,y2

Draws a line between the coordinates x7,y1 and x2,y2.

DRAW TO x3,y3

Draws a line from the current graphics cursor to x3,y3. For example:
Colour 4,707 : Ink 4
Draw 0,50 To 200,50

Draw To 100,100
Draw To 0,50

See also POLYLINE, INK.

BOX (Draw a hollow rectangle on the screen)
BOX x1,y1 TO x2,y2

The BOX command draws a hollow rectangular box on the Amiga’s screen. x1,y1 are the
coordinates of the top left hand corner of the box, and x2,y2are the coordinates of the point
diagonally opposite. For example:

Curs Off : Flash Off : Randomize Timer
Do

Ink Rnd(15)

X1=Rnd(320) : Y1=Rnd(200) : Box X1,Y1 To X1+Rnd(50),Y1+Rnd(50)
Loop

See also SET LINE, INK and BAR
POLYLINE muttipie line drawing)

POLYLINE is very similar to DRAW except that it draws several lines at a time. It's capable
of generating complex hollow polygons in just a single statement.

POLYLINE x1,y1 TO x2,y2 TO x3,y3 ...
POLYLINE TO x1,y1 TO x2,y2 ...

Where x1,y1 = coordinates of point 1, x2,y2 = point 2 and x3,y3 = point 3

POLYLINE draws a line between each pair of coordinates in your list. So the first line is
drawn from point 1 to point 2, the second from point 2 to point 3, and so on.

65

It's equivalent to the following lines:
Draw x1,y1 To x2,y2
Draw To x3,y3
Draw To x4,y4
Here’s a simple example which draws a triangle on the Amiga’s screen:

Polyline 0,20 To 200,20 To 100,100 To 0,20

Also see SET LINE, INK and POLYGON.

CIRCLE (Draw a hollow circle)
CIRCLE x,y,r

The CIRCLE command draws a hollow circle with radius r and centre x,y. For example:

Curs Off : Flash Off : Randomize Timer
Do

Ink Rnd(15)

X=Rnd(200) : Y=Rnd(100) : R=Rnd(90) : Circle X,Y,R
Loop

As normal, if the coordinates are omitted from this command, the circle will be drawn from
the current cursor position. For example:

Plot 100,100 : Circle ,,50
ELLIPSE (Draw a hollow ellipse)
ELLIPSE x,y,r1,r2
The ELLIPSE instruction draws a hollow ellipse at coordinates x,y. r1 is the horizontal
radius. It corresponds to exactly half the width of the ellipse. r2is the vertical radius and
is used to set the height of the ellipse. The total height of the ellipse is r*2.

The radii of an
Ellipse

66

Curs Off : Flash Off : Randomize Timer

Do
Ink Rnd(15) : X=Rnd(200) : Y=Rnd(100) : R1=rnd(90) : R2=rnd(90)
Ellipse X,Y,R1,R2

Loop

Line types

AMOS Basic allows you to draw your lines using a vast range of possible line styles.

SET LINE (Set the line styles)
SET LINE mask

The SET LINE command sets the style of all lines which are subsequently drawn using the
DRAW, BOX and POLYLINE commands.

Mask is a 16-bit binary number which describes the precise appearance of the line.
Any points in the line which are to be displayed in the current ink colour are represented
by a one, and any points which are to be set to the background colour are indicated by a
zero. So a normal line is denoted by the binary number %1111111111111111 and will be
displayed as: . Similarly, a dotted line like: _ _ _ _ will be produced by a mask of
%1111000011110000.

By setting the line mask to values between 0 and 65535, it is possible to generate a
great variety of different line types. For example:

Set Line $FOF0
Box 50,100 To 150,150

This line style is only applicable to straight lines, and has no effect on any shapes drawn
with the CIRCLE or ELLIPSE commands.

Filled shapes
PAINT (contour fill

PAINT x, y, mode

The PAINT command allows you to fill any region on the Amiga’s screen with a solid block
of colour. Additionally you can select afill pattern for your shapes using the SET PATTERN
command.

x,y are the coordinates of a point inside the area to be filled. mode can be set to either
0 or 1. A value of 0 terminates the filling operation at the first pixel found with the current
border colour.

A mode of 1 halts the filling operation at any colour which is different from the existing
ink colour.

PAINT will happily fill any surface you like, providing itis completely enclosed by lines.
However, if there is a gap in one of these lines, the fill colour will leak out into the rest of
the screen. See EXAMPLE 6.1 in the MANUAL folder for a demonstration.

67

BAR (Draw a filled rectangle)
BAR x1,y1 TO x2,y2

Draws a filled bar from x1,y1 — the coordinates of the top left corner of the bar, to x2,y2 -
the coordinates of the corner diagonally opposite. For example:

Curs Off : Flash Off : Randomize Timer

Do
X1=rnd(200) : Y1=rnd(100) : W=rnd(100) : H=rnd(80)
Ink Rnd(15) : Bar X1,Y1 To X1+W,Y1+H

Loop

See also BOX, SET PAINT and INK

POLYGON (Draw a filled polygon)

POLYGON x1,y1 TO x2,y2 TO x3,y3 ...
POLYGON TO x1,y1 TO x2,y2 ...

POLYGON generates a filled polygon in the current ink colour. It's basically just a solid
version of the standard POLYLINE command. As usual the fill colour can be set using the
INK instruction, and the fill pattern with SET PAINT.

The coordinates (x1,y1), (x2,y2),(x3,y3) indicate the starting and ending points of the
lines making up the polygon. There’s no real limit to the number of coordinate pairs you may
use, other than the maximum line length permitted by AMOS Basic (255 characters). This
means you can create some very complicated shapes with this instruction.

There’s also a second form of POLYGON which starts your polygon from the current
cursor position. This has the format:

POLYGON TO x1,y2 TO x2,y2 ...
Apart from the starting coordinates, it's identical to the standard POLYGON instruction.

Do
Ink Rnd(15)
X1=Rnd(200) : Y1=Rnd(100) : H=Rnd(100) : W=Rnd(90)
Polygon X1,Y1 To X1+W,Y1 To X1+W/2,Y1+H To X1,Y1
Loop

The program above fills the screen with pretty coloured triangles. Also see POLYLINE,
INK, SET PAINT.

Fill types

In AMOS Basic you're not just restricted to filling your shapes with a solid block of colour.
There are dozens of fill patterns to choose from, and you can even load your own patterns
directly from the sprite bank.

68

E B EEEESEESEESEES

SET PATTERN (select fill pattern)
SET PATTERN pattern

This command allows you to select a fill pattern for use by your drawing operations.
There are three possibilities:

pattern=0
This is the default, and fills your shapes with a solid block of the current INK colour.

pattern>0

If the pattern number is greater than zero, AMOS Basic selects one of 34 built-in fill styles.
These are found in the MOUSE.ABK file on your start-up disc, and can be edited using the
AMOS Basic sprite definer. Note that the first three images in this file are required by the
mouse cursor (see CHANGE MOUSE). The fill patterns are stored in the images from four
onwards.

pattern<0

This is the most powerful option of all. pattern now refers to a sprite image in bank one. The
image number is calculated using the formula:

SPRITE IMAGE = PATTERN *-1

The selected image will be automatically truncated before use, according to the following
rules.

- The width of the image will be clipped to sixteen pixels
« The height will be rounded to the nearest power of two, ie 1, 2, 4, 8, 16, 32, 64.

Depending on the type of your image, the pattern will be drawn in one of two separate ways.
Two—colour images are drawn in monochrome. The actual colours in your image are
completely discarded, and the pattern is drawn using the current ink and paper colours.

It's also possible to produce multi-coloured fill patterns. In this case the foreground
colours of your image are merged with the current ink colour using a logical AND. Similarly
the paper colour of your pattern is OR’ed with the sprite background (colour zero). If you
wish to use your original sprite colours, you'll need to set the ink and background colours
like so:

Ink 31,0

Don't forget to load your sprite palette from the sprite bank with GET SPRITE PALETTE
before using these instructions, otherwise the display is likely to look rather messy.
Examples of this instruction can be found in EXAMPLE 6.2 in the MANUAL folder. See

CIRCLE, ELLIPSE, BAR and POLYGON. ‘
69 |

SET PAINT (Set / reset outline mode)
SET PAINT n

The SET PAINT commandtoggles the outline drawn by the POLYGON or BAR instructions.
As a default this mode set to OFF.

If n=1then outline mode will be activated, and a line will be drawn around your shape
using the border colour specified in the previous INK command. For example:

Ink ,,5 : Set Paint 1 : Bar 100,100 to 200,150

You can turn the outlining off again by using SET PAINT with a value of zero.
Writing styles
GR WRITING (Change writing mode)

GR WRITING bitpattern

Whenever you draw some graphics on the Amiga’s screen, you naturally assume that
anything underneath it will be overwritten. The GR WRITING command allows you to
choose from a range of four alternative drawing modes. These can be used to generate
dozens of intriguing effects.

bitpatternholds a sequence of binary bits which specify which graphics mode you wish
to use. Here’s alist of the various possibilities along with a brief explanation of their effects:

JAM1 mode Bit 0=0

JAM1 only draws the parts of your graphics which are set to the current ink colour. Any
sections drawn in the paper colour are totally omitted. This is particularly useful with the
TEXT command as it allows you to merge your text directly over an existing screen
background. For example:

Ink 2,5 : Text 140,80,”Normal Text” : Gr Writing 0 : Text 140,71,”JAM1"

JAM2 mode Bit 0=1
This is the default condition. Any existing graphics on the screen will be completely
replaced by your new image.

XOR mode Bit 1=1

XOR combines your new graphics with those already on the screen using a logical
operation known as eXclusive OR. The net result is to change the colour of the areas of
a drawing which overlap an existing picture.

One interesting side effect of XOR mode is that you can erase any object from the
screen by simply setting XOR mode and drawing your object again at exactly the same
position. EXAMPLE 6.3 contains a simple demonstration of this technique and produces
a neat rubber banding effect.

70

INVERSEVID Bit 2=1
This reverses the image before it is drawn. So any sections of your image drawn in the ink
colour will be replaced by the current paper colour and vice-versa. INVERSEVID mode is
often used to produce inverted text.

Since these modes are set using a bitpattern, it's possible to combine several modes
together.

Gr Writing 4+1 : Rem set JAM2 and INVERSEVID

Gr Writing 4+2+1: Rem chooses JAM2, INVERSVID and XOR
Ink 2,5 : Text 140,80,”Normal Text”

Gr Writing 5 : Text 140,71,”Inversevid+Jam2"

Note: This command only affects drawing operations such as CIRCLE, BOX and graphical
text (TEXT). The drawing mode used by normal text commands like PRINT and CENTRE
is set using a separate WRITING command. See also AUTOBACK and WRITING.

CLIP (Restrict all graphics to a section of the screen)
CLIP [x1,y1 TO x2,y2]

The CLIP instruction limits all drawing operations to a rectangular region of the screen
specified by the coordinates x1,y1 to x2,y2.

x1,y1represent the coordinates of the top left hand corner of the rectangle, and x2,y2
hold the coordinates of the bottom right corner.

Note that it's perfectly acceptable to use coordinates outside the normal screen
boundaries. All the clipping operations will work as expected, even if only a section of the
clipping rectangle is actually visible.

A detailed example of this command can be found in EXAMPLE 6.4 in the MANUAL
folder.

As you can see, only the parts of the circle which lie within the clipping rectangle have
been drawn on the screen. The clipping zone can be restored to the normal screen area
by omitting all the coordinates from this instruction.

Advanced techniques

SET TEMPRAS (Set Temporary Raster)
SET TEMPRAS [address,size]

This instruction allows experienced Amiga programmers to fine tune the amount of
memory used by the various graphics operations. Warning! Improper use of this instruction
can crash your Amiga completely!

Whenever an AMOS program performs a fill command, a special memory area is
reserved to hold the fill pattern. This memory is automatically returned to the system after
the instruction has terminated. The size of the memory buffer is equivalent to a single bit
plane in the current screen mode. So the default screen takes up a total of 8k.

The size and location of the graphics buffer can be changed at any time using the SET

71

TEMPRAS instruction.
sizeis the number of bytes you wish to reserve for your buffer area. It ranges between

256 and 65536.
The amount of memory required for a particular object can be calculated in the

following way:

« Enclose the object to be drawn with a rectangular box.
- The area required will be given by: Size=Width/8*Height

If you are intending to use the PAINT command, you should take care to ensure that your
figure is closed, otherwise more memory will be needed and the system may crash.

buffer can be either an address or a memory bank. The memory you reserve for this
buffer should always be chip ram. Since the buffer area is now allocated once and for all
atthe start of your program, there’s no need to continually reserve and restore the memory
buffer. This can speed up the execution of your programs by up to 5%.

You can restore the buffer area to it's original value by calling the SET TEMPRAS
command with no parameters.

See the EXAMPLE 6.5 program on the MANUAL folder for a demonstration of this

command.

72

7: Control
structures

Most modern programming languages include a range of statements which allow you to
make decisions and perform loops in your programs. These instructions are technically
known as control structures. AMOS provides you with the full complement of Basic control
structures. All your old favourites like GOTO and FOR...NEXT are supported, along with
several intriguing new twists such as the ON...EVERY command.

GOTO (Jump to a new line number)

In the bad old days of computing, GOTO was probably the most commonly used of all the
Basicinstructions. Nowadays it's slightly unfashionable, and can be replaced by structured
commands such as DO...LOOP and IF...ELSE...ENDIF. These are usually a great deal
easier to read and you are recommended to avoid GOTO whenever possible.

The action of a GOTO is to transfer the control of the program one place to another.
There are three forms of the GOTO command allowed in AMOS Basic.

GOTO label

label is an optional place marker at the side of a line. Label names are defined using the

:” colon character like so:
label:

The label name can consist of any string of alphanumeric characters you like, including “-".
It's constructed using the same rules which apply for variables and procedure names.

GOTO line number

Any AMOS Basic line can be optionally preceded with a number. These line numbers are
included solely for compatibility purposes with other versions of Basic (such as STOS for
the Atari ST). It's better to rely on labels instead, as these are much easier to read and
remember.

GOTO variable

Variable can be any allowable AMOS Basic expression. This expression may be either a
normal integer or a string. Integers return a line number for your GOTO, whereas strings
hold the name of a label.

Technically speaking, this construction is known as a computed goto. It's generally
frowned upon by serious programmers, but it can be incredibly useful at times. Examples:

ROOM=3
BEGIN:
Goto “ROOM”+Str$(ROOM)-” «

73

End

ROOM3:

Print “Room three!”
Goto BEGIN

See also ON GOTO
GOsuB (Jump to a subroutine)

GOSUB is another outmoded instruction, and provides you with the useful ability to split
a program into smaller, more manageable chunks, known as subroutines. Nowadays,
GOSUB has been almost entirely supplanted by AMOS Basic’s procedure system.
However, GOSUB does form a useful half-way house when you’re converting programs
from another version of Basic such as STOS.

As with GOTO, there are three different forms of the GOSUB instruction.

GOSUB n Jump to the subroutine at line n.

GOSUB name Jump to an AMOS label.

GOSUB exp Jump to a label or line which results from the expression in exp.

Example:

Forl=1To 10
Gosub TEST
Nextl
Direct
TEST:
Print “This is an example of GOSUB” : Print “I equals |
Return : Rem Exit from subroutine TEST and return to main program

It's good practice to always place your subroutines atthe end of your main program as this
makes them easier to pick out from your program listings. You should also add a statement
like Edit or Direct to the end of your main program, as otherwise AMOS may attempt to
execute your GOSUBs after the program has finished, generating an error message.

RETURN (Return from a subroutine called by a GOSUB command)
RETURN

RETURN exits from a subroiitine which was previously entered using GOSUB. Itimmediately
jumps back to the next Basic instruction after the original GOSUB.

Note that a single GOSUB statement can contain several RETURN commands. So
you can exit from any number of different points in your routine depending on the situation.

74

POP (Remove the RETURN information after a GOSUB)
POP

Normally it's illegal to exit from a GOSUB statement using a standard GOTO. This can
occasionally be inconvenient, especially if an error occurs, which makes it unacceptable
to return to your program from the precise point you left it.

The POP instruction removes the return address generated by your GOSUB, and
allows you to leave the subroutine in any way you like, without first having to execute the
final RETURN statement. Example:

Do
Gosub TEST
Loop
BYE:
Print “Popped out”
Direct : Rem keep subroutines separate from main program
TEST:
Print “Hi There!”
If Mouse Key Then Pop : Goto BYE
Return

See ON GOSUB
IF...THEN. [ELSE] (Choose between alternative actions)

The IF... THEN instruction allows you to make simple decisions within a Basic program. The
format is:

IF conditions THEN statements1 [ELSE statements 2]

conditions can be any list of tests including AND and OR. statements? and statements2
must be a list of AMOS Basic instructions. If you want to jump to a line number or a label,
you'll have to include a separate GOTO command like so:

If test Then Goto Label : Rem this is fine

If you forget about this, and attempt to omit the GOTO statement as in normal Basic, AMOS
will treat your Label as a procedure name, and you'll get a procedure not defined error.

If test Then Label : Rem This Calls a PROCEDURE

The scope of this IF... THEN statement s limited to just a single line of your Basic program.
It has now been superceded by the much more powerful IF...ELSE...ENDIF command.

75

|F...[ELSE]...END|F (Structured test)

Although the original form of IF...THEN is undoubtedly useful, i's rather old fashioned
when compared with the facilities found in a really modern version of Basic such as AMOS.
This allows you to execute whole lists of instructions depending on the outcome of a single

test.

IF tests=TRUE
List of statements 1

ELSE
List of statements 2

ENDIF

The list of statements can be any group of AMOS Basic instructions you wish, including
other IF...ENDIF commands. However, it's illegal to use a normal IF...THEN inside a
structured test. These should be replaced by their equivalent IF...ENDIF instruction like so:

If test Then Goto Label Else Label2
This now becomes:

If test : Goto Label : Else goto Label2 : Endif

or:

If test
Goto Label
Endif

Here is an example of the IF...ENDIF statement in action:

Input “Enter values for a,b and ¢”;A,B,C
If A=B
Print “Equal”
Else
Print “Different”;
If A<>B and A<>C
Print “, and C Is Not The Same Too!”
End If
End If

Each IF statement in your program must be paired with a single ENDIF command as this
informs AMOS Basic precisely which group of instructions are to be executed inside your

test.
Note that “THEN” is not used by this form of the instruction at all. This may take a little

76

getting used to if you are already experienced with one of the other versions of Basic for
the Commodore Amiga.

See AND, OR, NOT, TRUE, FALSE.

FOR...NEXT (Repeat a section of code a specific number of times)

This is the classic way of repeating sections of your Basic programs. The format of the
instruction is:

FOR index=first TO last [STEP inc]
list of instructions

NEXT [index]

A FOR...NEXT command repeats your list of instructions a specific number of times.

index holds a counter which will be incremented after each and every loop. Atthe start
of the loop, this counter will be loaded with the result of the expression in first.The
instructions between the FOR and the NEXT are now performed until the NEXT is reached.

inc is a value which will be added to the counter after each loop by the NEXT
instruction. If it's omitted, the increment will be automatically set to 1. After NEXT has
updated this counter, it tests whether the current value is greater than /ast. If so, the loop
is terminated immediately, and Basic executes the instruction straight after the NEXT.
Otherwise the loop is restarted again from the top.

Note that if inc is negative, the loop will be halted when the counter is less than the
value in first. So the entire loop will be performed in reverse.

Onceinside your loop, indexcan be read from your program justlike anormal variable.
But you are not allowed to change its value in any way as this will generate an error
message.

Each FOR statement in your program must be matched by a single NEXT instruction.
You can’t use the shorthand forms found in other Basics like NEXT R1,R1.Here are a
couple of simple examples of these loops.

For 1=32 To 255:Print Chr$(l); : Next |

For R1=20 To 100 Step 20
For R2=20 To 100 Step 20
ForA=0To 3
Ink A
Ellipse 160,100,R1,R2
Next A
Next R2
Next R1

See how we've placed a number of FOR...NEXT loops inside each other. This is known
as nesting.

77

WHILE...WEND (Repeat a section of code while a condition is true)

The WHILE command provides you with a convenient method of repeating aseries of Basic
instructions until a certain condition has been satisfied.

WHILE condition

ﬁst of étatements

WEND

condition can be any set of tests you like and can include the constructions AND, OR., and
NOT. A check is made on each turn of the loop. If the test returns a value of -1 (true), then

the statements between the WHILE and the WEND will be executed, otherwise the loop
will be aborted and Basic will proceed to the next instruction.Type the following example:

Input “Type in a number”;X
Print “Counting To 11”
While X<11

Inc X

Print X
Wend
Print “Loop terminated”

The number of times the WHILE loop in this program will be executed depends on the value
youinputto the routine. If you enter a number larger than 10, the loop will never be executed
atall. WHILE will therefore only execute the statements if the condition is TRUE at the start

of your program.

REPEAT...UNT“. (Repeat until a condition is satisfied)
REPEAT

list of statements

UNTIL condition

REPEAT...UNTIL is similar to WHILE... WEND except that the test for completion is made
atthe end of the loop rather than the beginning. The loop will be repeated continually until
the specified condition is FALSE. So it will always be performed at least once in your
program. Example:

Repeat
Print “AMOS Basic”
Until Mouse Key<>0

As with WHILE...WEND you should always remember to match each REPEAT with an
UNTIL.

78

DOLOOP (Loop forever)
DO

Lisf of statements

LoopP

The DO...LOOP commands take a list of Basic statements and repeat them continually.
In order to exit from this loop, you'll need to use a special EXIT or EXIT IF instruction.

Do
Print “Hi there”
Loop

The advantage of this system is that it's a structure alternative to the GOTO loops that tend
to crop up in earlier versions of Basic. Take the following example:

TEST:

Input “Another game (Y,N)”;AN$

If Upper$(AN$)="N" Then Goto BYE
GAME : Rem call play game procedure
Goto TEST

BYE:

End

This a fairly common type of routine but it's hardly easy to read. Now for a second version
using DO...LOOP.

Do

Input “Another game (Y,N)”;AN$

Exit If Upper$(AN$)="N"

GAME : Rem call play game procedure
Loop
End

Hopefully, you'll agree that the new routine is much clearer.

EXIT (Exit from a DO...LOOP)
EXIT [n]

The EXIT command exits immediately from one or more program loops created with the
FOR...NEXT, REPEAT...UNTIL, WHILE...WEND, or DO...LOOP statements. Your AMOS
program will now jump directly to the next instruction after the current loop.

nis the number of loops you wish to leave. If it's omitted, then only the innermost loop
will be terminated. Here’s an example:

79

Do
Do
Print “Inner loop”
If Mouse Key =1 Then Exit
If Mouse Key=2 Then Exit 2
Wait 5 : Rem Slow loop so you can see it running
Loop
Locate 20, : Print “Outer loop”
Wait 5
Loop

EXIT IF (Exit from a loop depending on a test)
EXIT IF expression[,n]

As you can see from the previous EXIT instruction, it's often necessary to terminate a loop
depending on the outcome of a specific set of conditions. This is simplified using a special

EXIT IF command. ,
expression consists of a series of tests in the standard AMOS format. The EXIT will

only be performed if the result evaluates to -1 (true).
The n parameter allows you to quit from several loops at the same time. If it's omitted

then only the current loop will be aborted. Example:

While L=0
Z=0
Do
Z=Z+1
For X=0 To 100
Exit If Z=10,2 : Rem Exits two Loops, DO and FOR

Next X

Loop
Exit 1 : Rem Terminates While...Wend

Wend
EDIT (Stop running the program and return to the Editor)

|
EDIT

The EDIT directive stops the current program and returns to the AMOS Basic editor. This
can be very useful when you are debugging one of your programs.

DIRECT (Exit to direct mode)
DIRECT

DIRECT terminates your program and jumps immediately back to the direct mode. You can
now examine the contents of your variables or list your programs out to the printer.

80

"

END (Exit from the program)
END

This instruction exits from a program. You'll now be given the option to return to either the
editor or to direct mode. Press SPACE to edit your program, or hit the ESCAPE key tojump
to direct mode.

ON...P ROC (Jump to one of several procedures depending on a variable)

ON v PROC proct, proc2, proc3, ...procN

Jumps to a named procedure depending on the contents of variable v. Note that any
procedures you use in this command cannot include parameters. If you need to transfer
information to this procedure, you should place them in global variables instead. See
PROCEDURES for a full explanation of this technique.

The On...PROC command is effectively equivalent to the following lines:

If v=1 Then Proc1
If v=2 Then Proc2

I.f v=n Tﬁen ProcN
ONGOTO (Jump to one of a list of lines depending on a variable)
ON v GOTO line1 ,line2,line3...lineN

The ON GOTO instruction lets your program jump to one of a number of lines depending
on the result of an expression in v. It's equivalent to the following lines:

If v=1 Then Goto Line1
If v=2 Then Goto Line2

If v=n Then Goto LineN

In orderto have an effect, nmustbe a normal integer between 1 and the number of possible
destinations. linemay be either aline number or alabel. See GOTO, GOSUB, ON GOSUB

ONGOSU B (GOSUB one of a list of routines depending on var)

ON var GOSUB line1,line2,line3...

This is identical to ON...GOTO except that it uses a gosub rather than a gototo jumpto the
line. When the subroutine has finished executing, it should use a RETURN to jump back
to the next instruction after the ON...GOSUB statement.

See also GOSUB and ON GOTO

81

EVERY n GOSUB (Call a subroutine at regular intervals)
EVERY n GOSUB label

The ON EVERY statement calls the subroutine at /abel at regular intervals, without
interfering with your main program.

nis the length of your interval in 50ths of a second. The time taken for your subroutine
to complete must always be less than this period, or you'll get an error.

After a subroutine has been entered, the system will be automatically disabled. In
orderto call this feature continuously, you'll therefore need to add an EVERY ON command
before the final RETURN statement. Here’s an example:

Every 50 Gosub TEST
Do
Print “Main loop”
Loop
TEST:
Inc | : Print “This is call number ;I
Every On:Return

Note that ON EVERY is similar to the ON TIMER instruction in Amiga Basic.

EVERY n PROC (Call a procedure at regular intervals)
EVERY n PROC name

EVERY PROC executes the required procedure automatically at regular intervals using a
powerful interrupt system.

nis the delay between each successive procedure call measured in units of a 50th of
a second.

As with the previous command, the interrupt must be reactivated before leaving your
procedure, otherwise the routine will only be called just once. Soyou’ll needto use EVERY
ON before returning to your main program with END PROC.

Every 50 Proc TEST
Do
Print “Main loop”
Loop
Procedure TEST
Shared |
Inc I : Print “This is call number ;I
Every On
End Proc

EVERY ON/OFF (Toggle automatic procedure calls)
EVERY ON/OFF

82

I

EVERY ON restarts the interrupt system used by the EVERY commands. It should be
called just before the procedure or subroutine has finished executing.

Similarly EVERY OFF disables the calls completely. It's automatically executed at the
start of one of these procedures.

BREAK ON/OFF (Turn on or off the Control+C Break key)
BREAK ON/OFF

Normally you can interrupt a program and return to Basic at any time by simply pressing
the two keys Control and C. This function can be deactivated using the BREAK OFF
command, providing your program with a crude form of copy protection. As you might
expect, you can also restart the Break keys using BREAK ON.

But be warned: Never run a protected program unless you have made a backup copy
onthediscfirst. Otherwise if the program gets stuckin aloop, you could easily end up losing
several hours of your work.

Error handling

ON ERROR GOTO (Trap an error within a Basic program)
ON ERROR GOTO label

The ON ERROR command allows you to detect and correct the errors inside an AMOS
Basic program, without having to return to the editor window. Sometimes, errors can arise
in a program which are impossible to predict in advance. Take, for instance, the following
routine:

Do
Input “Enter two numbers”;A,B
Print A;” divided by “;B;” is “;A/B
Loop

This program works fine until you try to enter a zero for B. AMOS Basic will now attempt
to divide A by zero which will give you a division by zero error.

You can avoid this problem by trapping the error with an ON ERROR GOTO
instruction like so:

ON ERROR GOTO label

Whenever an error occurs in your Basic program, AMOS will now jump straight to /abel.
This will be the starting point of your own error correction routine which can fix the error and
safely return to your main program.

Note that the error handler must exit using a special RESUME instruction. You are
not allowed to jump back to your program with a normal GOTO statement.

On Error Goto HELP
Do

83

Input “Enter two numbers”;A,B
Print A;” divided by “;B;” is “;A/B
Loop
Rem Error Handler
HELP:
Print : Print : Bell
Print “m afraid you've attempted to divide”
Print “your number by zero.”
Resume Next: Rem Return back to the next instruction

In order for this system to work, it's essential that an error does not arise inside your error
correction routine, otherwise AMOS will halt your program ignominiously.
The action of ON ERROR GOTO can be disabled by calling ON ERROR with no

parameters.

On Error : Rem Kill error traps

You can also use ON ERROR GOTO 0 for this purpose.

ON ERROR PROC (Trap an error using a procedure)
ON ERROR PROC name

Selects a procedure which will be called automatically if there’'s an error in the main
program. It's really just a structured version of the previous ON ERROR GOTO statement.

Although your procedure must be terminated by an END PROC in the normal way,
you'll need to return to your main program with an additional call to RESUME. This can be
placed just before the final END PROC statement. Here’s an example:

On Error Proc HELP
Do
Input “Enter two numbers”;A,B
Print A;” divided by “;B;” is “;A/B
Loop
Rem Error Handler
Procedure HELP
Print : Print : Bell
Print “I'm afraid you’ve attempted to divide”
Print “your number by zero.”
Resume Next : Rem Return back to Basic from the next instruction

End Proc

Your error handler can freely call any Basic procedure you like. Each routine can be
safeguarded with its own individual error traps. However it's not possible to detect errors
within the error handler itself. So if a problem occurs inside the HELP routine, AMOS will

abort your program completely.

84

RESUME (Resume execution of the program after an error)

RESUME allows you to return to a section of Basic after an error handler which you've
created with ON ERROR, has corrected the original problem.You should NEVER attempt
to use GOTO in this context.

There are five possible formats of this instruction:
RESUME

Jumps back to the statement which caused the error and tries again.

RESUME NEXT

Returns to the instruction just after the one which generated the error.

RESUME line

Jumps to a specific line point in your main program. line can refer to either a label or a
normal line number. This may NOT be used to re-enter a procedure!

Procedures are treated slightly differently. If you want to jump to a particular label, you
have to place a special marker somewhere in the procedure you are checking for errors.
This may be accomplished using the RESUME LABEL command. There are two separate
versions.

RESUME LABEL label

Defines the label which is to be returned to after an error. This must be called outside your
error handler just after the original ON ERROR PROC or ON ERROR GOTO statement.

RESUME LABEL

Used inside your error handler to jump straight back to the label you've set up with the
previous command. Example:

On Error Proc HELP

Resume Label AFTER

Error 12

Print “Never printed”

AFTER : Print “I've returned here”

End

Procedure HELP
Print “Oh Dear, | think there is an error!”
Resume Label

85

Endproc

=ERRN (Return number of the last error)
e=ERRN

If you're creating your own error handling routines using the ON ERROR command, you'll
need to be able to check precisely which error has occurred in the main program.

When an error occurs, ERRN is automatically loaded with its identification number.
See the Appendix at the back of this manual for a full list of the possible errors.

Print Errn

ERROR (Generate an error and return to the AMOS Editor)
ERRORn
The action of the ERROR command is to actually generate an error. This may sound rather
crazy, but it's often quite useful.
Supposing you have created a nice little error handling routine which is able to cope

with all possible disc errors. ERROR provides you with a simple way of simulating all the
various problems, without the inconvenience of the actual error. Example:

Error 40

Quits the program and prints out a Label not defined error. Another useful form of this
instruction is:

Error Errn

This uses the ERRN function to print the current error condition after a problem in your
program.

86

E E E E E EEEEEEES

8: Text and windows

This chapter describes the text and windowing features supported by AMOS Basic. There
are dozens of available commands which can be used to generate anything from a simple
hi-score table to a fancy dialogue box.

Text attributes

PEN (Set colour of text)
PEN index

The PEN instruction sets the colour of all the text which will be displayed in the current
window. This colour can be chosen from one of up to 64 different possibilities depending
on the graphics mode you are using. For example:

For INDEX=0 To 15
Pen INDEX

Print “Pen number “;INDEX;At(20,);”Colour”
Next INDEX

As a default the pen colour uses index number 2 (white).
=PEN$(I‘I) (Change the pen colour using control characters)
a$=PEN$(n)

PENS$ returns a special control sequence which changes the pen colour inside a string. The
new pen colour will be automatically assigned whenever this string is subsequently printed
on the screen. For example:

C$=Pen$(2)+"White “+Pen$(6)+”Blue”
Print C$

The string returned by PENS$ is in the format: Chr$(27)+"P"+Chr$(48+n).
See COLOUR, PALETTE, PAPER.

PAPER (Set colour of text background)

PAPER index

PAPER chooses a colour for the background of your text. As with PEN, index must be a
colour number between 0 and 63. For example:

Pen 2 : For INDEX=0 To 15
Paper INDEX : Print “Paper Number “;INDEX;Space$(10)

87

Next INDEX

The screen background normally defaults to colour number one (orange). See SCREEN
OPEN for a list of the various other possibilities.

=PAPER$(I1) (Return a control sequence to set the paper colour)
x$=PAPER$(index)

PAPERS returns a character string which automatically changes the background colour
when it is printed on the screen. For example:

Pen 1 : C$=Paper$(2)+”White “+Paper$(6)+”Blue”
Print C$

See PEN, COLOUR, PALETTE.

INVERSE ON/OFF (Enter inverse mode)

INVERSE ON
INVERSE OFF

The INVERSE command swaps the text and background colours set by the PEN and
PAPER commands. This inverts the text which is printed in the current window.

INVERSE ON activates inverse printing. Similarly the mode can be turned off using
a simple call to INVERSE OFF. For example:

Print “This Is Some Text In Normal Mode”
Inverse On : Print “This Is Some Inverted Text”:Inverse Off

See SHADE, UNDER, WRITING.

SHADE ON/OFF (Shade all subsequent text)

SHADE ON
SHADE OFF

SHADE ON highlights your text by reducing the brightness of the characters with a mask
pattern. The shade of your text can be returned to normal using SHADE OFF. Examples:

Shade On : Print “Shaded text”
Shade Off : Print “Normal text”

See UNDER, INVERSE, WRITING.

88

UNDER ON/OFF (Set underline mode)

UNDER ON
UNDER OFF

UNDER ON underlines your text when it’s printed on the screen. Use UNDER OFF to turn
off this mode. For example:

Under On :Print “Underlined”
Underlined

Under Off:Print “Normal”
Normal

See SHADE, INVERSE, WRITING.

WRITING (Change text writing mode)

WRITING w1 [,w2]

The WRITING command allows you to change the writing mode used for all subsequent
text operations. This determines precisely how your new text will be combined with the
existing screen data.

The first value chooses one of four writing modes:

w1=0 REPLACE (Default) Your new text will obliterate anything underneath it.

wi=1 OR Merges the characters onto the screen with a logical OR
wi=2 XOR Characters are now combined with the screen using XOR
wi1=3 AND ANDs the new text with the screen background.

wi=4 IGNORE All printing operations will now be completely ignored!

The second number chooses which parts of the text will be printed on the screen. This
option can be omitted if required.

w2=0 Normal The textis output to the screen along with its background.
w2=1 Paper Only the background of the text is drawn on the screen.
w2=2 Pen Ignores the paper colour and writes the text on a

background of colour zero.

Do not confuse with GR WRITING.

Cursor functions

When you use the PRINT statement your characters will always be displayed at the current
cursor position. AMOS includes a range of facilities which let you move this cursor to any
part on the screen.

89

LOCATE (Position the cursor)

LOCATE xy
LOCATE x,
LOCATE y

LOCATE moves the text cursor to the coordingtes x,y. This sets the starting point for all
future printing operations.

All screen positions are specified using a special set of text coordinates. These are
measured in units of a single character relative to the top left corner of the text window. For
instance the coordinates 15,70 refer to a point 10 characters down and 15 characters to
the right.

The acceptable range of these coordinates will vary depending on the precise
dimensions of your window and the size of your character set. If you attempt to print
something outside these limits an error will be generated.

Note that the current screen is always treated as window 0. So you don’t have to
actually open a window before using one of these functions. For example:

Locate 10,10 : Print “Hi”

If you want to position the cursor on the current line, you can omit the Y coordinate
completely. For example:

Print “Hi Score 10000”; : Locate 9, : Print “12345”;
Similarly you can move the cursor vertically without affecting the existing X coordinate.
Clw : Locate ,10 : Print “Tenth Line”;
See CMOVE, AT, XCURS, YCURS.
CMOVE (Relative cursor movement)
CMOVE w,h
CMOVE moves the cursor a fixed distance away from its present position. It works by
adding the contents of the variables w and h to the current cursor coordinates. So if the
cursor was at 10,10, then typing:
Cmove 5,-5
would move the cursor to 15,5.
Like LOCATE you can omit either one of the coordinates as required. For example:

Cmove ,2 : Rem Move the cursor two places down
Cmove 2, : Rem Move the cursor two places to the right

90

=AT (Return a sequence of control characters to position the cursor)
x$=AT(x,y)

The AT function allows you to change the position of text directly from inside a character
string. It works by returning a string in the format:

Chr$(27)+”X+Chr$(48+X)+Chr$(27)+"Y"+Chr§(48+Y)

Whenever this string is printed, the text cursor will be moved to the coordinates x,y. For
example:

A$="This”+At(10,10)+”Is”+At(1,2)+”The Power Of"+At(20,20) + “AMOS!”
Print A$

These AT commands are perfect for hi—score tables as they allow you to position your text
once and for all during your programs initialisation phase. You can now update the score
at the correct point on the screen using a single print statement. Here’s an example:

HI_SCORE$=At(20,10)+”HI Score
SCORE=1000
Print HI_SCORES;SCORE

This is identical to the lines:

SCORE=1000
Locate 20,10 : Print “Hi Score”;SCORE

The first version is easier to change as you can move the high score table by editing just
one string, no matter how may times it's used in your program.

See LOCATE, CMOVE, CUP$, CDOWNS$, CLEFT$ and CRIGHTS.
Conversion functions

AMOS Basic provides you with four useful functions which readily enable you to convert
between text and graphics coordinates.

=XTEXT (Convert an X coordinate from graphic format to text format)
t=XTEXT(x)
This function takes a normal X coordinate and converts it to a text coordinate relative to the

currentwindow. If the screen coordinate lies outS|de this window then a negative value will
be returned. See EXAMPLE 8.1.

91

See YTEXT, LOCATE, WINDOPEN, XGRAPHIC, YGRAPHIC.

=YTEXT (Convert a Y coordinate from a graphic format to text)
t=YTEXT(y)

YTEXT converts a Y coordinate from the standard screen format into a text coordinate
relative to the current window.

See XTEXT for more details. Also YGRAPHIC, XGRAPHIC, LOCATE.

=XG RAPH'C (Convert an x coordinate from text to graphic format)
g=XGRAPHIC(x)

The XGRAPHIC function is effectively the inverse of XTEXT in that it takes a text X-
coordinate ranging from 0 to the width of the current window and converts it to an absolute
screen coordinate. It's used to position text over an area of graphics on the screen. For a
demonstration of this command see EXAMPLE 8.2in the MANUAL folder. See YGRAPHIC,
XTEXT, YTEXT.

=YG RAPHIC (Convert a y coordinate from text to graphic format)
g=YGRAPHIC(y)

This function converts a text Y-coordinate into an absolute screen coordinate.

See XGRAPHIC, XTEXT, YTEXT.

Cursor commands

The text cursor serves as a visible starting point of all future text operations. It's usually
displayed as a flashing horizontal bar, although this may be changed using the SET CURS
and CURS OFF commands.

By moving the cursor on the screen, you can position your text practically
anywhere you like. Remember, all coordinate measurements are taken using text
coordinates relative to the current window.

AMOS provides you with dozens of simple commands which allow you to
position the cursor precisely on the screen. It's also possible to change the
physical shape of the text cursor directly from your Basic program.

HOME (Cursor home)
HOME

HOME moves the text cursor to the top left hand corner of the current window (coordinates
0,0). For example:

Clw : Rem Clear current window

92

Locate 10,10 : Rem Move cursor to 10,10
Print “A demonstration of “
Home : Print “Home” : Rem Move cursor to 0,0

See LOCATE, XCURS, YCURS.
CDOWN (Cursor down)
CDOWN
CDOWN pushes the text cursor down by a single line. Example:
Print “Example” : Cdown : Cdown : Print “of cdown”
=CDOWN$ (Return a chr$(31) character)
x$=CDOWNS$
CDOWNS$ is a function which returns a special control character which automatically
moves the cursor when it is printed. So Print CDOWN@$ is identical to COOWN. CDOWN$
allows you to combine several cursor movements in a single string. Occasionally this can
be extremely useful. For example:
C$="\"+Cdown$
For A=0 to 20

Print C$;
Next A

See CUP, CLEFT, CRIGHT, AT.
CUP (Cursor up)
CUP

CUP moves the text cursor up a line in the same way that CDOWN shifts it down. For
example:

Print “Example” : Cup : Cup : Print “of cup”
=CU P$ (Return a chr$(30) character)
x$=CUP$

CUPS$ returns a control string which moves the cursor up by a single character. For
example:

Print “The cursor jumps “+CUP$+”up a line...”

93

See CLEFT, CDOWN, CRIGHT, AT.

CLEFT (cursor et
CLEFT

The CLEFT instruction displaces the text cursor one character to the left. For example:
Print “Example” : Cleft : Cleft : Print “of cleft”

=CLEFT$ (Control string for CLEFT chr$(29))

x$=CLEFT$

The CLEFTS$ function returns a control character which performs a CLEFT operation when
it is printed. Example:

Print “Hello
Print Cleft$+Cleft$+”p «;

See CUP, CRIGHT, CDOWN, AT.

CRIGHT (Cursor right)

CRIGHT

CRIGHT is the exact opposite of CLEFT and moves the cursor one place to the right.
Print “Example” : Cright : Cright : Print “of cright”

=CRIG HT$ (Generate a chr$(28) control string for CRIGHT)

x$=CRIGHT$

CRIGHTS$ returns a control string which performs a CRIGHT operation inside a text
sequence. Example:

Print Cright$:Rem This has the same effect as CRIGHT

See CLEFT, CUP, CDOWN, AT.

XCURS (Return the X coordinate of the text cursor)
x=XCURS

XCURS is a variable containing the current X coordinate of the text cursor (in text format).
Example:

Locate 10,0 : Print Xcurs

94

E E E E E EEEEEEEESN

10

YCURS (Return the Y coordinate of the cursor)
y=YCURS

YCURS holds the Y coordinate of the text cursor (in text format).

SET CU RS (Set text cursor shape)
SET CURS L1,L2,L3,L4,L5,L6,L7,L8

This instruction allows you to change the shape of the cursor to anything you like. The
shape is specified by a list of bit-patterns held in the parameters /7-/18. Each parameter
determines the appearance of one horizontal line of the cursor, numbered from top to
bottom.

Every bit represents a single pointin the current cursor line. If it's set to 1 then the point
will be drawn using colour number 3 — otherwise it will be displayed in the current PAPER
colour. The best way to familiarise yourself with this instruction is with an example.

L1=% 11111111
L2=%11111110
L3=%11111100
L4=%11111000
L5=%11110000
L6=%11100000
L7=%11000000
L8=%10000000
Set Curs L1,L2,L3,L4,L5,L6,L7,L8

Normally the text cursor will be flashing continually. To remove this effect simply make a
call to the FLASH OFF command before using this instruction.

CURS ON/ OFF (Enable/disable text cursor)

CURS ON
CURS OFF

This command hides or re—displays the flashing cursor from the current window. It has no
effect on the cursors used by any other window.

MEMORIZE X/Y (Save the X or Y coordinate of the text cursor)

MEMORIZE X
MEMORIZE Y

The MEMORIZE commands store the current cursor position in a safe place.You may now
print any text on the screen you like without destroying the original cursor coordinates.

95

These may be reloaded using the REMEMBER commands.

REMEMBER X/Y (Restore the X or Y coordinate of the text cursor)

REMEMBER X
REMEMBER Y

REMEMBER positions the cursor atthe coordinates saved by a previous callto MEMORIZE.
If MEMORIZE has not been used then the appropriate coordinate will be set to zero.

An example of this command is included in the MANUAL folder under EXAMPLE 8.3.
CLINE (Clear part or all of the current cursor line)

CLINE [n]

Clears the line on which the cursor is positioned. If n is present then n characters are
cleared starting at the current cursor position (without moving it).
Type in the following lines from the direct window:

Print “Testing Testing Testing”;
Cmove -7,
Cline7
Cline
CURS PEN (Choose a new colour for the text cursor)

CURS PENn
Changes the colour of the text cursor to index number n. If your screen mode provides you
with four or more colours then the cursor will default to colour three. This colour is animated
using a flash sequence which is automatically assigned when AMOS is loaded. So if you
choose a different colour, the cursor will be completely static. In order to produce a flashing
cursor you would then need to define a new colour sequence using the FLASH command.
Also note thatthe new colour only applies to the currently open window. It has no effect
on the cursors used by any other windows. Example:

Curs Pen 5

See FLASH, CURS ON/CURS OFF.
Text input/output

CENTRE (Print a line of text centred on the screen)
CENTRE a$

CENTRE takes astring of characters in agand prints itin the centre of the screen. This text

96

is always output on the current cursor line. For example:

Locate 0,1

Centre “This is a centered TITLE”
Cmove ,3

Centre “And this is another one”

:TAB$ (Print tabulation)
x$=TAB$

TABS$ returns a control character known as a TAB (Ascii 9). When this character is printed
the text cursor will be immediately moved several places to the right. The size of this
movement can be set using the SET TAB command. As a default, the tab spacing is set
to four.

SET TAB (Change the tabulation)
SET TABn

This specifies the distance the text cursor willmove when the next TAB character is printed.
For example:

Home : Rem Move cursor to coordinates 0,0
Set Tab 5 : Rem Set tab spacing To 5

Print Tab$;”Hi”; : Rem Prints Hi starting at 5,0
A$=Tab$+Tab$

Print A$;"There” : Rem Prints text at 15,0

See TABS, CRIGHT.

REPEAT$ (Repeat a string)
x$=REPEATS$(a$,n)

The REPEATS$ function allows you to print out the same string of characters several times
using a single PRINT statement.

It works by adding a sequence of control characters into variable X$. When this string
is printed, AMOS simply repeats a$ to the screen n times. Possible values for n range
between 1 and 207. A full demonstration of this command can be found in EXAMPLE 8.4.
The format of the control string is:

Chr$(27)+"RO"+A$+Chr$(27)+ R"+Chr(48+n)

97

Advanced text commands

ZONE$ (Set up a zone around a piece of text)
x$=ZONE$(a$,n)

The ZONES$ function surrounds a section of text with a screen zone. After you've defined
one of these zones you can check for collisions between the zone and the mouse using
the ZONE function. This allows you to create powerful on-screen menus and dialogue
boxes without having to resort to any complicated programming tricks.

a$ is a string containing the text for one of the “Buttons” in your dialogue box. This
button will be activated automatically when you print x$ to the screen.

n specifies the number of the screen zone to be defined. The maximum number of
these zones depends on the value you previously specified with RESERVE ZONE.

See the EXAMPLE 8.5 program in the MANUAL folder for a demonstration of this
command. The format of the control string is:

Chr$(27)+"Z0"+A$+Chr$(27)+"R"+Chr$(48+n)
See ZONE, SET ZONE, RESERVE ZONE, RESET ZONE, BORDERS.
BORDER$ (Add a border to some text)
x$=BORDER$(a$,n)
This returns a string of control characters which instructs AMOS to draw a border around
the required text. It's commonly used in conjunction with the ZONE$ command to produce
the fancy buttons found in dialogue boxes and alert windows.

nis the border number ranging from 1 to 16 and a$ holds the text to be enclosed by
the border. The textin ag will start at the current cursor position so don’t be surprised when
you get strange results printing at 0,0. Example:

Locate 1,1 : Print Border$(“AMOS Basic”,1)

To create a screen zone surrounded by a border you would use a line like:

Print Border$(Zone$(“ CLICK HERE “,1),2)

This would enclose the text with zone number 1 and border 2 The control sequence
returned:

Chr$(27)+"EO"+A$+Chr$(27)+"R"+Chr$(48-+n)
See ZONE$, ZONE, BORDER.

HSCROLL (Horizontal text scrolling)
HSCROLL n

98

This scrolls all the text in the currently open window horizontally by a single character
position. n can take the following values:

1 = Move current line to the left

2 = Scrolls entire screen to the left
3 = Move current line to the right
4 = Move screen to the right

Don’t confuse this command with the SCROLL instruction which moves the entire screen.

VSCROLL (Vertical text scrolling)
VSCROLL n

Scrolls the text in the currently open window vertically by a single character

1 = Any text at the cursor line and below is scrolled down.

2 = Text at cursor line or below is moved up.

3 = Only text from the top of the screen to the cursor line is scrolled up.

4 = Text from top of the screen to the current cursor position is scrolled down.

Blank lines are inserted to pad out the gap left by the scrolling operation.

Windows

The AMOS windowing commands allow you to restrict your text and graphics operations
to just a part of the current screen.

AMOS windows can be used with the zone commands to produce effective dialogue
boxes such as file selectors and high score tables. A typical warning box, for instance, can
be easily generated with just a couple of lines of AMOS Basic.

WINDOPEN (Create a window)
WINDOPEN n, x ,y ,w ,h [,border [,set]]

The WINDOPEN instruction opens a window and displays it on the Amiga’s screen. This
window will now be used for all subsequent text operations.

nis the number of the window to be defined. AMOS allows you to create as many
windows as you like, limited only by the amount of available memory. As a default, window
number zero is assigned to the current screen. So don't attempt to re-open this window
using WINDOPEN or change it with WIND SIZE or WIND MOVE.

x,y are the graphics coordinates of the top left hand corner of your new window. Since
AMOS windows are drawn using the AMIGA’s blitter chip, the window area must always
lie on a 16-pixel boundary. In order to achieve this, the x coordinates are automatically
rounded to the nearest multiple of 16. Additionally, if you've included a border for your
window, the X coordinate will be incremented by a further eight. This will ensure that the
working area of your window always starts at the correct screen boundary.There are no

99

restrictions whatsoever on the y coordinates.

w,h specify the size in characters of the new window. These dimensions must always
be divisible by 2.

Border selects a border style for your window. There are 16 possible styles, with
values ranging between 1 and 16.

Window borders can also include up to two optional title lines. One title is displayed
along the top of the window and another may be added at the bottom.

AMOS windows may contain either textor graphics, just like the Intuition system. Each
window can be assigned it's own individual character set with the powerful WINDOW
FONT command.There’s also a powerful WIND SAVE instruction which saves the screen
area inside your windows. Whenever you move one of these windows the contents
underneath will be automatically redrawn. For example:

AMOS windows may contain either text or graphics, just like the Intuition system.
There's also a powerful WIND SAVE command which saves the screen area inside your
windows. Whenever you move one of these windows the contents underneath will be
automatically redrawn. For example:

For W=1To 3
Windopen W,(W-1)*96,50,10,10,1
Paper W+3: Pen W46 : Clw
Print “ Window “;W

Next W

You can flick between these windows using the WINDOW command. Try typing the
following statements from direct mode.

Window 1 : Print “AMOS”
Window 3 : Print “in action!”
Window 2 : Print “Basic”

The active window can always be distinguished by a flashing cursor — though this can be
turned off using the CURS OFF command if required.

WINDOW FONT (Change window font)

WINDOW FONT n

Changes the font used by the current window to set n. nis the number of a graphics font
which has been previously installed with the GET FONT command. This font must have
dimensions of exactly 8x8. Proportional fonts are not allowed.

Since the window borders make use of some of these characters, you may get rather
odd results when you're using standard Workbench fonts.

WINDSAVE (Save the contents of the current window)
WINDSAVE

The WIND SAVE command allows you to move your windows anywhere on the screen

100

without corrupting your existing display.

Once you've activated this feature, any windows you subsequently open will
automatically save the entire contents of the windows underneath. This area will be re-
drawn whenever you close a window or move it to a new position.

It's important to note that this option saves the contents of the current window, rather
than the one you are defining with WIND OPEN.

At the start of your program the current window will be the default screen and will take
up a massive 32k of memory. If you wished to save the background underneath a dialogue
box the most of this memory would be completely wasted.

The solution is to create a dummy window of the required size, and to position it over
the zone you wish to save. You can now execute a WIND SAVE command and continue
with your program as normal.

When you subsequently call up your dialogue box the area underneath will be saved
as part of your dummy window. So it will be automatically restored after your box has been
removed.

BORDER (Change the window border of the current screen)
BORDER n,paper,pen

The BORDER command sets the border of the current window to style number n. This
border is drawn using a group of characters installed in the default font. It is therefore
possible to create your own border styles using the font definer accessory.

The paper and pen options allow you to freely choose the colours of your border.
Acceptable border numbers range from 1 to 16.

Any of the parameters may be omitted from this instruction so the following commands
are all perfectly legal:

Border 2,,

Border 1,2,3

Border 2,,3 : Rem Don’t forget to include the commas for any missing values
TITLE TOP (Define the upper title for the current window)

TITLE TOP t$

The TITLE TOP instruction sets the top line of the current window to the title string in t$.
This title will now be displayed along the top border of your window. Only bordered windows
may be titled in this way.

Windopen 5,1,1,20,10

Title Top “Window number 5”
Wait Key

TITLE BOTTOM (Define the lower title for the current window)
TITLE BOTTOM b$

101

This command assigns the string b$ to the bottom title of the current window.

Windopen 5,1,1,20,10
Title Bottom “Window number 5”
Wait Key

WINDOW (Change current window)
WINDOW n

WINDOW activates window n as the current window. This window will now be used for all
future text operations.

If the automatic saving system has been initiated, this window will be immediately
redrawn along with any of its contents. Load EXAMPLE 8.6 from the MANUAL folder for
a demonstration.
=WINDON (Return the value of the current window)

w=WINDON

WINDON returns the identification number of the currently active window. Example:
Windopen Rnd(12)+1,10,10,10,10
Print “Window number “;windon,” Activated”

WIND CLOSE (Close the current window)

WIND CLOSE

The WIND CLOSE command deletes the current window. If you've previously called the
WIND SAVE command, this window will be replaced by the saved graphics, otherwise the
area will be erased from the screen completely.

Windopen 1,1,8,38,18,1 : Print “Press a key to close this window”

Wait Key
Wind Close

WINDMOVE (Move a window)

WIND MOVE x,y

WINDMOVE moves the current window to graphics coordinates x,y. As with the original
window definitions the x coordinate will be rounded to the nearest 16-pixel boundary.

Examples:

Wind Save
Wind Open 1,0,2,30,10,1

102

Wind Save

For M=1to 100
Pen Rnd(15) : Paper(15) : Print : Centre “ Move the window! “
Wind Move Rnd(30)+1,Rnd(100)+1
Wait Vbl

Next M

Wind Save : Wind Open 1,0,2,10,5 : Wind Save

Curs Off : Paper5: Pen 0: Clw

Print : Print “ Move the” : Print “ Mouse” : Print “ Pointer”
BEGIN:

On Error Goto STP

LOP:

WX=X Screen(X Mouse) : WY=Y Screen(Y Mouse)

If 0X=WX and OY=WY Then Goto LOP Else Wind Move WX,WY
OX=WX : 0Y=WY : Goto LOP

STP:

OX=WX : 0Y=WY : Resume BEGIN

If window saving has been activated then this window will be redisplayed at the new
position, otherwise the screen will be completely unchanged.

WINDSIZE (Change the size of the current window)
WIND SIZE sx,sy

This command changes the size of an AMOS window. The new sizes, sx and sy, are
specified in units of a single character. Sx must be divisible by two. See EXAMPLE 8.7

If you've previously called the WIND SAVE command, the original contents of your
window will be redrawn by this instruction. If the new window is smaller than the original
one, any parts of the image which lie outside it will be lost. Alternatively, if you've expanded
your window, the area around your saved region will be filled with the current paper colour.
Also note that after a WINDSIZE command the text cursor is always reset to coordinates
0,0.

CLW (Clear the current window)
CLW

CLW erases the contents of the current window and fills it with a block of the present
PAPER colour. For example:

Rem Clears window number W

Procedure CLEAR_WIN[W]
WIND_OLD=Windon
Window W : Clw
Window WIND_OLD

End proc

103

Slider bars

AMOS incorporates three instructions which allow you to display a standard slider bar on
the screen. These sliders cannot be manipulated directly with the mouse. In order to create
aworking slider bar, you'll need to write a small Basic routine to perform this operate in your
main program. Due to the sheer power of the AMOS system, this is extremely easy to
accomplish, and the results can be extremely impressive, as can be seen from EXAMPLE
8.8.

HSLIDER (Draw a horizontal slider)
HSLIDER x1,y1 TO x2,y2,total,pos,size

Draws a horizontal slider bar from x17,y1 to x2,y2. x1,y1 hold the coordinates of
the top left corner of the bar. x2,y2set the position of the point diagonally opposite.

total is the number of individual units which the slider will be divided into. Each unit
represents a single item in the object you are controlling with the slider. So in the editor
window, tofal would be set to the number of lines in the current program.

The size of each unit is calculated from the following formula.

(X2-X1)/TOTAL

pos is the position of the slider box from the start of the slider, measured in the uiits you
specified using fotal. size is the length of the slider box in the previous units. Examples:

Hslider 10,10 to 100,20,100,20,5
Hslider 10,50 to 150,100,25,10,10

For a working demonstration of one of these sliders, load EXAMPLE 8.9 from the manual
folder.

VSLIDER (Draw a vertical slider)
VSLIDER x1,y1 TO x2,y2,total,pos,size

VSLIDERis almostidentical to the previous HSLIDER instruction. ltdisplays a simple slider
from x1,y1 to x2,y2. x1,y1 and x2,y2 set the position and size of your slider. Examples:

Vslider 10,10 To 20,100,100,20,5
Vslider 0,0 To 319,199,10,2,6

An additional example can be found in EXAMPLE 8.10. This provides you with a fully
working vertical slider bar for you to examine.

SET SLIDER (Sets the fill patterns used in a slider)
SET SLIDER b1,b2,b3,pb,s1,52,s3,ps

104

Although this command looks incredibly complicated, it's actually rather simple. SET
SLIDER enters the colours and patterns to be used in the slider bars created with the
HSLIDER and VSLIDER commands.

b1,b2,b3 set the ink, paper and outline colours for the background of the box. pb
chooses the fill pattern to be used for these regions

Similarly, s1,s2,s3input the colours of the slider box, and sp selects the patternitis to
be filled with.

bp and sp can be any fill patterns you wish. ASs usual, negative value refer to a sprite
image from the current sprite bank. This allows you to create amazing colorful slider boxes.
Example:

Centre “<Press a key>” : Curs Off
Do
B1=Rnd(15) : B2=Rnd(15) : B3=Rnd(15) : BP=Rnd(24)
' $1=Rnd(15) : S2=Rnd(15) : S3=Rnd(15) : SP=Rnd(24)
Set Slider B1,B2,B3,BP,51,52,53,SP
Hslider 10,50 To 300,60,100,20,25
Vslider 10,60 To 20,180,100,20,25
Wait Key
Loop

Fonts

There are two different types of fonts available in AMOS —text fonts and graphic fonts. The
text fonts are those used by the PRINT and WINDOW commands. Text fonts are known
as character sets and each AMOS Basic window can have its own individual set. The
graphic fonts are much more flexible and offer a wider range of styles:

Graphic text
Your Amiga computer is capable of displaying animpressive variety of different text styles.
The original Workbench disc was supplied with eight attractive fonts in a range of sizes,
and many more of these fonts are freely available from the public domain. If you've
upgraded to Workbench 1.3 you'll also be able to design your own fonts using the FED
program on the Extras disc.

AMOS Basic provides you with total support for these fonts. Text can be printedin any
of the available typefaces at any point on the screen.

AMOS fonts can be used to add spice to even the most basic games. These are
invaluable for producing the loading screens and hi-score tables in your games. So it’'s a
good idea to make full use of them in your AMOS Basic programs.

105

TEXT (Print graphical text)
TEXT x,y,1$

TEXT prints a line of text in t$ at graphical coordinates x,y. All coordinates are measured
relative to the characters baseline. This can be determined using a special TEXT BASE
function.

Normally the baseline is positioned at the bottom of the character, but some lowercase
letters — such as g — have a tail which extends slightly below this point, as shown in the
following diagram:

The text base

As adefaultthe type style is setto eight-point Topaz. This may be changed at any time using
the SET FONT instruction. Try the following program and notice how text can be placed
at any pixel position on the screen.

Do
Ink Rnd(15)+1,Rnd(15): Text Rnd(320)+1,Rnd(198)+1,”AMOS Basic”
Loop

Also notice how the colour of your text is set with INK rather than the expected PEN and
PAPER commands. This emphasizes the fact that the TEXT command is basically a
graphical instruction. So the control sequences created by functions like CUP$ will be
printed on the screen instead of being correctly interpreted.

There is no automatic line feed when the text reaches the end of the current window.
If you attempt to print something too large, the text will be neatly clipped at the existing
screen boundary. This can be seen by the example below.

Print String$(“A”,100):Text 0,100,String$(“A”,100)

GET FONTS (Create list of all available fonts)
GET FONTS

106

The GET FONTS command creates aninternal list of all the fonts available from the current
start-up disc. This listis essential to the running of the SET FONT command, so you should
always call GET FONTS at least once before attempting to change the present font setting.
The contents of this list can be examined using the FONTS$ function.

Warning! In order for GET FONTS to work, your current AMOS work disc must always
contain a copy of the standard LIBS folder along with its contents. It's important to
remember this fact when you are distributing run-only or compiled programs because
unless your discs contain the required files, AMOS Basic will aimost certainly crash!

GET DISC FONTS (create a list of the DISC fonts)
GET DISC FONTS

This command is identical to the previous GET FONTS instruction except that it only
searches for fonts on the disc. These fonts are contained in the FONTS folder on your
current boot-disc. If you want to use your own fonts with AMOS Basic, you'll need to copy
these onto your normal start-up disc. See the manual supplied with your Amiga for details
of this procedure.

GET ROM FONTS (Create a list of the rom fonts)
GET ROM FONTS

GET ROM FONTS produces a list of the fonts which are built into the Amiga’s rom chips.
At the present time there are just two of these fonts: Eight-point Topaz and nine-point
Topaz.

Get Rom Fonts

Set Font 1

Text 100,100,”Topaz 9"
Set Font 2

Text 100,120,”Topaz 8"

=FONT$ (Return details about the available fonts)
a$=FONT$(n)

FONT$ returns a string of 38 characters which describes font number n. This function
allows you to examine the font list created by a previous call to one of the GET FONT
commands. nis the number of the font you wish to examine.

a$contains a list of characters which hold the name and type of your font. If a font does
not exist, a$ will be loaded with a null value ", otherwise a string will be returned in the
following format:

107

Character Description

1-29 Font name

30-33 Font height

34-37 Identifier (set to either Disc or Rom)

An example of this command can be found in the file EXAMPLE 8.11 in the MANUAL folder
of your AMOS Program disc. This contains a number of useful procedures which may be
freely used in your own programs.

SET FONT (Choose a font for use by the TEXT instruction)

SET FONT n

SET FONT changes the character set used by the TEXT command to font number n. If the
font is stored on the disc it will be automatically loaded into your Amiga’s memory. At the
same time any previously sets which are not in use will be removed.

Here is a simple example of this command in action.

Get Fonts
Set Font 2 : Text 100,100,”AMOS” : Set Font 1 : Text 100,120,”Basic”

Notice how the GET FONTS instruction is called before selecting the font. This is because

SET FONT makes use of the font list created with GET FONTS. A full demonstration of the
SET FONT command can be found in EXAMPLE 8.12.

SET TEXT (Set text style)
SET TEXT style

The SET TEXT command allows you to change the style of a font. There are three styles
to choose from: Underline, bold and italic.

style is a bit pattern in the following format:

Bit Effect

0 Set this bit to one to underline your characters.
1 Selects bold characters.

2 Activates italic mode.

By setting the appropriate bits in this pattern you can choose between a total of eight
different text styles. Here’s an example for you to enter into your computer.

Colour 2,0 : Colour 1,$fff : Flash Off : Get Rom Fonts : Set Font 1
For S=0To 7: Set Text S : Text 100,5*20+20,”AMOS Basic” : Next S

108

=TEXT STYLE (Return current text style)
s=TEXT STYLE

This function returns the text style previously set from the SET TEXT command. The result
in sis a bit-map in the same format as that used by SET TEXT.

=TEXT LENGTH (Return the length of a section of graphic text)
w=TEXT LENGTH(t$)

The TEXT LENGTH function returns the width in pixels of the character string a$ in the
current font. The width of a character varies depending on the size of your fonts. In addition,
proportional fonts such as Helvetica assign different widths for each individual character.
Here is a simple example:

T$="Centred Text”
L=Text Length(T$)
Text 160-L/2,100,T$

=TEXT BASE (Return the current text base)
b=TEXT BASE

This function returns the position of the baseline of your font. The baseline is the number
of pixels between the top of a character and the point it will be printed on the screen. It's
basically similar to the hot spot of a sprite of bob.

Installing new fonts

Ifyou wish to use your own fonts within AMOS Basic, you'll need to install them onto a copy
of your AMOS program disc. The basic procedure is as follows:

» Copy the required font files into the FONTS: directory of your boot disc.

« Further information can be found in the Extra’s manual supplied with the Workbench 1.3
upgrade.

Troubleshooting

Although fonts are easy enough to use, there are still a couple of pitfalls for the unwary.
Here’s a list of the solutions to your more common problems.

Problem: GET FONTS seems to ignore any of the fonts on the current disc.

Solution: You've probably removed the original boot disc from your default drive. The
Amiga’s library routines expect to find the FONTS: directory on your start-up disc. This can
be changed using the ASSIGN program in the UTILITIES folder. See GET DISC FONTS
for more details.

109

Problem: GET FONTS crashes the Amiga completely.

Solution: This problem can easily occur when you're creating programs in run-only or
compiled format. GET FONTS requires the DISCFONT library in the LIBS folder in order
to work. If you forget to copy this folder onto your distribution discs you’ll get a system error
which may crash your Amiga.

Problem: The SET FONT command returns a fonts not examined error.
Solution: Add a call to GET FONTS to the start of your program. This will create a list of
all the currently available fonts for use by the SET FONTS command.

110

9: Maths functions

AMOS Basic includes a wide variety of the more commonly needed mathematical
functions.To conserve memory, AMOS uses the standard Amiga library routines. The
appropriate libraries will be loaded automatically from your workbench disc the first time
you call one of these functions in a particular session.You should therefore ensure that the
current disc contains the file MATHTRANS.LIBRARY in the LIBS folder.

Trigonometric functions

The trigonometric functions provided you with a useful array of mathematical tools. These
can be used for a variety of purposes, from education to the creation of complex musical
waveforms.

DEGREE (Use degrees)

DEGREE

Generally all angles are specified in radians. Since radians are rather difficult to work with,
it's possible to instruct AMOS to accept angles in degrees. Once you've activated this
feature any subsequent calls to the trig functions will expect you to use degrees.

Degree
Print Sin(45)

RADIAN (Use radian measure)
RADIAN

The RADIAN directive informs AMOS that all future angles are to be entered using radians
—this is the default.

=P|# (A constantr)

a#=Pl#

This function returns the number called Pl which represents the result of the division of the
diameter of a circle by the circumference. Pl is used by most of the trigonometric functions

to calculate angles. Note that a # character is part of the token name. This is to avoid
clashes with your own variable names.

=SIN (Sine)

s#=SIN(a)
s#=SIN(a#)

The SIN function calculates the sine of the angle in a. Note that this function always returns

111

a floating point number. Example:

Degree
For X=0 To 319
Y#=Sin(X)
Plot X,Y#*50+100
Next X

See HSIN

=COS (Cosine)

c#=COS(a)
c#=COS(a#)

The cosine function computes the cosine of an angle. Normally all angles are measured
inradians. This may be changed using the DEGREE command. Add the following two lines
to the example above, ensuring they are inserted between the Plot and Next instructions.

Y#=Cos(X)
Plot X,Y#*50+100

See ACOS, HCOS

=TAN (Tangent)

t#=TAN(a)
t#=TAN(a#)

TAN generates the tangent of an angle. Examples:
Degree : Print Tan(45)
0.9999998
Radian : print Tan(Pi#/8)
0.4141
|
See ATAN, HTAN
=ACOS (Arc cos)
c#=ACOS(n#)

The ACOS function takes a number between -1 and +1 and calculates the angle which
would be needed to generate this value with COS.

So if X#=COS(ANGLE) then ANGLE=ACOS(X#).

Note, we haven't provided you with ASIN, because it’s not really needed. It can be readily

112

computed using the formula:

ASIN(X)=90-ACOS(X) : Rem Measured in degrees
ASIN(X)=1.5708-ACOS(X) : Rem using Radians

Example:

A#=Cos(45)
Print Acos(A#)

See COS, HCOS

=ATAN (Arc tangent)

t#=ATAN(n#)

ATAN returns the arctan of a number. Example:
Degree : Print Tan(2)
0.03492082

Degree : Print Atan(0.03492082)
2

=HSIN (Hyperbolic sine)

s#=HSIN(a)
s#=HSIN(a#)

HSIN computes the hyperbolic sine of angle a.

=HCOS (Hyperbolic cosine)

c#=HCOS(a)
c#=HCOS(a#)

HCOS calculates the hyperbolic cosine of angle a.

=HTAN (Hyperbolic tangent)

t#=HTAN(a)
t#=HTAN(a#)

HTAN returns the hyperbolic tangent of the angle a.

113

Standard mathematical functions

=LOG (Logarithm)

rit=LOG(v)
r#=LOG(v#)

LOG returns the logarithm in base 10 (log10) of the expression in v#.
Examples:

print Log(10)
V#=Log(100)

=EXP (Exponential function)
r#=EXP(e#)

Calculates the exponential of e#.
Examples:

Print Exp(1)
2.71828

=LN (Natural logarithm)

rit=LN(I#)

LN computes the natural or naperian logarithm of I#. Examples:
Print Ln(10)
2.30258

R#=Ln(100) : Print R#
4.60517

=SQR (Square root)

s#=SQR(v)
s#=SQR(v#)

SQR calculates the square root of a number. Example:
Print Sqr(9)
3

Print Sqr(11.1111)
3.33333

114

\.--I-.I.-.--

=ABS (Absolute value)

r=ABS(v)
r#=ABS(v#)

ABS returns the absolute value of v, taking no account of its sign. .Example:

Print Abs(-1),Abs(1)

=INT (Convert floating point number to an integer)

i=INT(v#)

INT rounds a floating point number in v down to the nearest whole integer. Examples:
:mm Int(1.25)

Print Int(-1.25)
-2
=SGN (Find the sign of a number)

s=SGN(v)
s=SGN(v#)

SGN returns a value representing the sign of a number. There are three possibilities:

-1 if vis negative
0if vis zero
1 if vis positive

Creating random sequences

=RND (Random number generator)
v=RND(n)

RND generates arandom integer between 0 and ninclusive. But If nis less than zero, RND
will return the last value it produced. This can be very useful when debugging one of your
programs.
Examples:

Do

C=Rnd(15) : X=Rnd(320) : Y=Rnd(200) : Ink ¢ : Text X,Y, “ RANDOM
Loop

115

RANDOMIZE (Set the seed of a random number)
RANDOMIZE seed

In practice, the numbers produced by the RND function are not really random. They're
computed internally using a complex mathematical formula. The starting point for this
calculation is taken from a number known as the seed. This seed is set to a standard value
whenever you load AMOS Basic into the computer. So the sequence of numbers
generated by RND will be exactly the same every time you run your game!

Although this may be acceptable for arcade games, it would obviously cause serious
problems if you wanted to simulate a card game such as Poker.

The RANDOMIZE command allows you to solve this problem by setting the value of
the seed directly.

seed can be any value you wish. Each seed generates its own individual sequence
of numbers.

In order to generate true random numbers, you need some way of varying the seed
from game to game. This can be achieved using the TIMER instruction:

Randomize Timer

TIMER is a Basic function which returns the amount of time which has elapsed since your
Amiga was switched on in the current session. All timings are measured in units of a 50th
of a second.

The best place to use this instruction is just after the user has entered some
information into the computer. Even something simple as waiting for a keypress before
starting the game will suffice, as it’s obviously impossible to predict to the nearest 50th of
a second when the user will hit a particular key.

Providing the contents of TIMER are reasonably changeable, the sequence of
numbers produced by the RND function will be different in every game.

Manipulating numbers

=MAX (Get the maximum of two values)

r=MAX(x,y)
rit=MAX(x#,y#) -
r$=MAX(x$,y$)

MAX compares two expressions and returns the largest. These expressions can be
composed of numbers or strings of characters, providing you don’t try to mix different types
of expressions in one instruction.

Print Max(10,4)

10

Print Max(“Hello”,”Hi”)
Hi

116

=MIN (Return the minimum of two values)

r=MIN(x,y)
rit=MIN(x#,y#)
r$=MIN(x$,y$)

The MIN function returns the smallest value of two expressions. These may consist of
strings, integers or real numbers. However you must only compare values of the same type.
Examples:

A=Min(10,4) : Prirt &

4
Print Min(“Hello”,”Hi”)
Hello

SWAP (Swap the contents of two variables)

SWAP x,y

SWAP xi#,y#

SWAP x$.,y$

Swaps the data between any two variables of the same type. It's equivalent to a line like:
DUMMY=X : X=Y : Y=DUMMY

Example:
A=10:B=40 : Swap A,B : Print A,B

FIX (Set precision of floating point output)

FIX(n)

FIX changes the way your floating point numbers will be displayed on the screen or printer.
There are four possibilities.

If 0<n<16 then n denotes the number of figures to be output after the decimal point.

If n>16 the printout will be proportional and any trailing zeros will be removed.
If n=16 then the format will be returned to normal.

If n<0 then all floating point numbers will be displayed in exponential format, and the
absolute value of n (ABS(n)) will determine the number of digits after the decimal point.
Examples:

Fix (2) : Print PI# : Rem Limits the number to two digits after the point.
Fix (-4) : Print PI# : Rem Forces exponential mode with four figures after the point.

117

Fix (8) : Print Pl # : Rem Reverts to the normal mode.

Warning: This function is completely different from the equivalent command in AMIGA
Basic .

DEF FN (Create a user-defined function)
DEF FN name [(list)]=expression

The DEF FN command lets you create your own user-defined functions within an AMOS
Basic program. These can be used to compute commonly needed values quickly and
easily.

nameis the name of the function you wish to define. listis a set of variables separated
by commas. Only the type of these variables is significant. When you call your function, any
variables you enter with, will be automatically substituted in the appropriate positions.

expression can include any of the standard AMOS functions you wish. Like all Basic
expressions, it’s limited to just a single line of your program.

The new function can be called using the FN statement.

FN (Call a user-defined function)

FN name [(variable list)]

FN executes a function defined using DEF FN. Here are a couple of simple examples:

Def Fn Asin(X)=90-Acos(X)
Degree

Print Fn Asin(0.5)

30

Def Fn SLICE (A$,X,Y)=Mid$(A$,X,Y)
Print Fn SLICE(“Hello”,2,3)
ell

See how we've defined the function with DEF FN before we used it in our program. This
is essential.

118

10: Screens

Your Commodore Amiga is capable of displaying some truly breathtaking pictures. AMOS
Basic allows you to incorporate these images directly into your games with an impressive
range of screen animation commands.

Each graphics mode is treated in exactly the same way, so it's as easy to create a
4096-colour Ham screen as it is to produce a standard 16-colour display. It's also possible
to link two separate screens together using the dual playfield system. This can be exploited
to produce amazing parallax effects similar to those in top commercial games such as
Xenon Il or Silkworm!

The default screen

Whenever you run an AMOS Basic program a default screen is created as screen zero.
This forms a standard display which will be used for all your normal drawing operations.

The system defaults to a 16-colour screen with dimensions 320x200, which can easily
be altered from within your program. In addition, you can also define up to seven further
screens with the powerful SCREEN OPEN command.

Defining a screen

SCREEN OPEN (Open a screen)
SCREEN OPEN n,w, h, nc, mode

SCREEN OPEN opens a screen, and reserves some memory for it. The new screen will
now be used as the destination of all subsequent text and graphical operations in your
program.

nis the identification number of the screen which is to be created by this instruction.
Possible values range from 0-7. If this screen already exists, it will be totally replaced by
your new definition.

wholds the width of the screen in pixels. This is not limited to the physical size of your
display. It's perfectly legal to define extra large screens which may be manipulated using
SCREEN OFFSET.

h sets the height of your screen using the same system. Providing you've enough
memory, you can easily create screens which are much larger than the visible screen area.
These screens can be used in conjunction with all the normal screen operations. So you
can construct yourimages off-screen, and scroll them into view with the SCREEN OFFSET
command.

ncrequests the number of colours required for the new screen. The range of available
colours varies from 2 and 64 (Extra Half Bright). You can also access the Amiga’s special
Hold and Modify (Ham) mode with a value of 4096.

mode allows you to choose the width of the individual points on the screen. The Amiga
supports screen widths of either 320 or 640 pixels. You can select the required width by
setting Mode to either LOWRES (0) or HIRES ($8000).

Here’s a list of the possible screen options along with an indication of the amount of
memory they consume.

119

Colours Resolution Memory Notes
2 320x200 8k PAPER=0 PEN=1
Cursor=1, no flash
640x200 16k PAPER=0 PEN=1
Cursor=1, no flash
4 320x200 16k PAPER=1 PEN=2
Cursor=3, flash=3
640x200 32k Do
8 320x200 24k PAPER=1 PEN=2
Cursor=3, flash=3
640x200 48k
16 320x200 32k This is used by screen 0
(default).
640x200 64k
32 320x200 40k
64 320x200 48k Extra Half bright mode
4096 320x200 48k Hold and modify mode

Note that the memory sizes in the table only apply to a standard screen. If you create taller
or wider screens, the amount of memory which is consumed will obviously be considerably
greater. Screen zero is equivalent to:

Screen Open 0,320,200,16,Lowres

Here are some more examples of AMOS screens.

Rem Opens a 640x200 hires screen with 8 colours
Screen open 1,640,200,8,Hires

Rem Opens screen 2 as a HAM screen
Screen open 2,320,256,4096,Lowres

Rem Opens screen 3 as a large 8 colour screen.

Rem Only the first 320x256 will be visible at any one time.
Screen open 3,500,400,8,Lowres

Rem This demo opens 8 screens and prints to all of them!
Curs Off : Cls 13 : Paper 13
Print : Centre “Pm screen 0 at the back!”
ForA=1To7
Screen Open A,320,20,16,Lowres
Curs Off
Cls A+5
Paper A+5
Centre “I'm screen “+Str$(A)
Screen Display A,,50+A*25,,8
Next A
Direct

120

See SCREEN OFFSET, SCREEN DISPLAY and VIEW

SCREEN CLOSE (Erase a screen)
SCREEN CLOSE n

SCREEN CLOSE deletes screen number n, and frees the memory area it uses for the rest
of your program.

AUTO VIEW ON/OFF (Control viewing mode)

AUTO VIEW OFF

When you open a screen using SCREEN OPEN the new screen is usually displayed
immediately. This can be very inconvenient during the initialisation stages of your
programs.

The AUTO VIEW OFF command provides you with full control over the updating
process. It turns off the automatic display system completely. You can then update the
screen display at a convenient point in your program using the VIEW instruction.

AUTO VIEW ON

Activates automatic screen updating. In this mode, any screen change will be immediately
displayed on your TV set.

DEFAULT (Reset screen to its default)
DEFAULT

Closes all current open screens and restores the display back to it's original
default setting. Example:

Load Iff “AMOS_DATA:IFF/AMOSPIC.IFF”,0
Wait Key
Default

VIEW (Display the current screen settings)
VIEW

VIEW displays any changes to the current screen settings at the next vertical blank period.
You only have to use this command when AUTOVIEW is OFF.

Special screen modes

The colour of every point on the screen is determined by a value held in one of the Amiga’s
32 colour registers. Each register can be loaded from a selection of 4096 different colours.
Although 32 colours may seem rather a lot, particularly by ST standards, it wasn’t

121

enough for the Amiga’s designers. The easiest solution would have been to increase the
number of colour registers, but this was quickly ruled out for reasons of cost.

Instead, they invented two special graphics modes which cleverly exploited the
existing registers to increase the maximum number of colours on the screen.

You've probably encountered these modes already. They're the infamous Extra Half
Bright and Ham modes. AMOS Basic provides full support for both Ham and Half Bright
modes. Here’s a brief explanation.

Extra Half Bright mode (EHB)

Extra Half Bright mode doubles the maximum colours on the screen to a grand total of 64.
It works by generating two colours for each of the 32 possible colour registers.

The first 32 colours load the colour value directly from one of the registers. Each
register contains a value between 0 and 4095 which sets the precise shade of the final
colour.

The second group of colours, with numbers from 32 to 63, take one of the previous
registers and divide its contents by two. This produces 32 extra colours which are exactly
half as bright as the normal colour registers.

Supposing colour zero contained a value of $FFF (White). Colour number 32 would
now be displayed using a value of $777 (Grey). The shade of the colours from 32 to 63 can
be worked out using the following simple formula:

colour n=(colour n—32)/2
Here’'s an example which demonstrates this principle:

Screen Close 0
Screen Open 2,320,167,64,Lowres : Flash Off
For I=1 To 32
Ink |
Bar 0,(I-1)*5 To 160,(2+I-1)*5
Ink 1432
Bar 160,(I-1)*5 To 319,(2+1-1)*5
Next |

In order to exploit EHB mode to the full, it's necessary to load the 32 registers with the
brightest shades in your palette. This will automatically generate alist of intermediate tones
in colours 32-63.

Aside from the colour palette, EHB screens are identical to any other screen mods.
There are no restrictions whatsoever to their use. It's even possible to create Bobs in this
mode!

Hold And Modify mode (HAM)

The Amiga’s hardware currently limits you to a maximum of six bit planes per screen. This
allows your to display up to 64 different colours on the screen at once. If you wanted to
display a photograph though, you'd require hundreds or even thousands of colours on the
screen.

This was the problem faced by Jay Miner when he was designing the Amiga’s display

122

T A B B E BB EEEEEETS

system. His solution was to exploit a trick which has been known by artists for centuries.

If a professional artist had to take every conceivable colour on an assignment, he
would be faced with an impossible task. It's therefore common practice to mix the exact
shade on the spot, out of a small set of basic colours. This provides millions of potential
shades, without the need to carry several large lorry loads worth of paint.

The same technique can also be applied to a computer screen. Instead of specifying
each colour individually, you can take an existing colour and modify it slightly. This
increases the number of available colours tremendously, and forms the basis of the
Amiga’s powerful Hold And Modify mode (Ham).

Each colour value on the Amiga is created from a mixture of three separate
components. These determine the relative strength of the primary colours Red, Green, and
Blue in the final colour. Possible intensities range from 0 to 15.

Ham mode splits the Amiga’s colour values into four separate groups:

. Colour registers 0-15: The first 16 colours take a value directly from a colour register.
These colours are treated just like those on a standard 16 colour screen.

« Red Components 16-31: However, if a point is set to a colour number in the range 16
to 31, the colour value is loaded from the pixel to its immediate left. The Red component
of this colour is now replaced with a value from 0 to 15 which is calculated from the
formula:

Intensity=Colour index-16

. Green components 32-47: Similarly, a colour number from 32 to 47 takes the current
shade, and changes the green component. The intensity of this component is setto a
value of Colour-32.

. Blue components 48-63: These colour numbers grab the colour value from the point
on the left of the current pixel, and load a new blue component from your colour number
like so:

Intensity=Colour Index-48

The colour of a particular point therefore depends on the colours of all the points to the left
of it. This allows you to create smooth gradations of colour which are ideal for flesh tones.
However, you can't choose the colour of each point on the screen independently. In
practice, it takes a maximum of three pixels to shift from one colour to another.

When the Amiga was first released, Ham initially was regarded as little more than
curiosity. Nowadays, the situation is very different, with the advent of excellent Ham
graphics packages such as Photon Paint.

AMOS allows you to perform the full range text and graphics operations directly on to
aHam screen. Example 10.1 provides you with a simple example of how you can generate
an entire screen in just a few lines of Basic code.

Another point to consider, is that Ham screens can be manipulated using the normal
SCREEN DISPLAY and SCREEN OFFSET commands. Here are some simple guidelines
to their use:

* The first point in each horizontal line should be set to a colour number from 0 to 15. This
will serve as the starting colour for all the shades on the current line.

* Don't attempt to subject your Ham screens to horizontal scrolling. If you try to scroll one
ofthese screens, you'll get colour fringes at the sides of your picture. These are generated
by the changes in the starting colours for each line. There are no such restrictions to
vertical scrolling.

* Fringing effects can also be produced by SCREEN COPY. The solution is to ensure that
the border of your zone is drawn using a colour from 0 to 15. This will ensure that your
Ham screens will be redrawn at their new position with their original colours.

Loading a screen

LOAD IFF (Load an IFF screen from the disc)
LOAD IFF “filename”[,screen]

LOAD IFF loads an IFF format picture from the disc. IFF format is now supported by the
vastmajority of the Amiga’s drawing packages, so you should have little difficulty in loading
own your artwork directly into AMOS Basic.

screenindicates the number of the screen which is to be loaded with your picture. This
screen will be opened automatically for your use. If it already exists, anything inside it will
be erased competely.

To load the picture into the present screen, omit the screen parameter altogether.
Example:

Load Iff “AMOS_DATA:IFF/AMOSPIC.IFF”,1
Saving a screen
SAVE IFF (Save an IFF screen)

SAVE IFF “filename”[,compression]

SAVE IFF saves the current screen as an IFF picture file on the disc. compressionis aflag
which allows you to choose whether your file will be compacted before it is saved. A value
of one specifies that the standard file compression system is to be employed and zero
saves the picture as it stands. As a default all AMOS screens are compressed.

SAVE IFF automatically appends a small IFF “chunk” to your picture file. This stores
the present screensettings including SCREEN DISPLAY, SCREEN OFFSET and SCREEN
HIDE/SHOW. When you load this file back into AMOS Basic it will be returned to exactly
its original condition. This extra IFF data will be completely ignored by external graphics
packages such as DPaint 3.

Note that it's not possible to save double buffered or dual playfield screens with this
command.

124

Moving a screen

SCREEN DlSPLAY (Position a screen)
SCREEN DISPLAY n [, x, y, w,h]

Once you have defined your screen with SCREEN OPEN, you'll need to position it on your
screen. Unlike most other computers, the Amiga is capable of displaying a plcture
anywhere you like on the TV screen. This can be easily exploited to produce amazing
“pbouncing” screen effects. With AMOS Basic, it's even possible to perform these animations
using interrupts (see AMAL).

Another application is to overlay several screens alongside each other. This allows
you to create your display out of a combination of different screen modes.

nindicates the number of the screen to be positioned. x and y specify the location of
the screen in hardware coordinates.)

The x coordinates of a screen can range from 0 to 448 and are automatically rounded
down to the nearest 16-pixel boundary. Only the positions between 112 and 448 are
actually visible on your TV though, and you are strongly advised to avoid using an x
coordinate below 112.

The y coordinates of your screen can range between 0 and 312. The visible region will
largely depend on your TV or monitor, but you'll probably find that coordinates between 30
and 300 are satisfactory for the majority of systems.

At the time of writing, there appears to be a minor bug in the Amiga’s HAM mode.
These pictures cannot be displayed with a Y coordinate of exactly 256. So set your
coordinates to intermediate values such as 255 or 257 instead. We're not sure if it's a
hardware or software fault yet but it won't restrict you by any means.

w holds the width of your screen in pixels. If this is different from the original setting,
only a part of your image will be shown, starting from the top left corner of the display. Like
the x coordinates, the screen width will be rounded to the nearest 16 pixel boundary.

Similarly, hsets the apparent height of the screen. Changing this value will reduce the
depth of your image.

Generally SCREEN OPEN will automatically select the d|splay position for you using
a standard setting in the AMOS configuration file. If a screenis larger than the display then
AMOS sets the screen into overscan.

SCREEN DISPLAY provides you with a simple way of changing these values from the
default. Any of the parameters x,y,h, and w may be omitted as appropriate. The unused
values will be automatically assigned to the default settings, and should be separated by
commas.

Screen Display 0,112,45,, : Rem Position the screen at 112,42

When you are positioning your screens, try to ensure that the screen starts at the left of the
display and ends towards the right. This is essential if the Amiga’s hardware is to mterpret
your screen correctly. In practice, you may need to experiment a little to get the precise
effect you want. Fortunately, the worst that can happen is that you'll get a silly looking
display. The Amiga won't crash if you make a mistake. Here are some guidelines to help
you along:

125

* Only a single screen can be displayed on each horizontal line. However, you can safely
place several screens on top of each other. All will be well, providing only one of the
screens is visible.

* There will always be a one pixel thick “dead zone” between each pair of screens. This is
generated by the copper list and is completely unavoidable. The dead zone will be
noticeable whenever you move a sprite between the screens. As an example, try moving
the mouse pointer from the editor window to the menu line. You should see a small black
line through your mouse pointer at the border between the two screens.

SCREEN OFFSET (Hardware scrolling)
SCREEN OFFSET n, x, y

The Amiga’s display is not just limited to the visible dimensions of your TV screen. There’s
absolutely nothing stopping you from generating images which are much larger than the
actual screen. It's obviously not possible to display such pictures in their entirety, but you
can easily view a section of your image using the SCREEN OFFSET command. Look at
the following diagram.

Using an extra large screen

Y

(0,0)
TV SCREEN

320,200)

AMOS SCREEN

As you can see, the selected area of the screen is displayed through a view port positioned
at the coordinates x and y. You can move the view port through the whole screen by
changing the values of these coordinates.This produces a smooth hardware scrolling
effect which is perfect for many games.The size of your view port is taken from the
dimensions you set in a previous call to the SCREEN DISPLAY command.

nis the number of the screen to be displayed. x,y measure the offset from the top left
hand corner of the screen to the starting point for your display. x and y are specified in units

126

of asingle pixel, so there’s nothing stopping you from generating some delightfully smooth
scrolls.

You can also use negative offsets with this instruction, allowing you to display any part
of the Amiga’s memory on the screen. See Example10.2 for a full demonstration of this
command.

Screen control commands

SCREEN CLONE (Clone a screen)
SCREEN CLONE n

The SCREEN CLONE command assigns a second version of the current screen to screen
number n. This clone uses exactly the same memory area as the original screen.

Normally, the cloned screen is displayed at the same place as its parent. However it
can be manipulated separately using any of the normal screen operations such as
SCREEN DISPLAY and SCREEN OFFSET.

Since there’s only a single copy of the original screen data in memory, you can't
access a clone with the SCREEN command. You'll get an illegal screen parameter error
if you try. Another point to consider is that any colour flash sequences you've set up on the
original screen will not be copied during the cloning operation. See EXAMPLE 10.3. Notice
the use of the WAIT VBL command. This ensures that the clone is repositioned off-screen
and keeps the movements running smoothly.

If you experiment with SCREEN CLONE, you'll quickly find that there’s a real limit to
the amount of movement you can perform without spoiling the effect completely. Even
something as trivial as adding an extra calculation to your movement routine can often
introduce an unacceptable delay into your animations.

The screen display can also be adjusted directly from the AMAL animation language.
This is capable of animating large numbers of screens smoothly and easily. See
EXAMPLE 10.4 for a demonstration. The animations are now so fast you actually have to
slow them down in order to see them!

DUAL PLAYF'ELD (Combine two screens into dual playfield)
DUAL PLAYFIELD screen1, screen2

The Amiga’s dual playfield mode allows you to display two complete screens simultaneously
at the same x and y coordinates. It's almost as if you'd drawn each screen on cellophane
and overlayed them on top of each other. Each screen can be manipulated totally
independently. You can exploit this to produce a smooth parallax effect which is ideal for
screen scrolling games such as Silkworm.

The two components of a dual playfield are treated just like any other AMOS screen
and can be written to in the normal way. They can even be animated within AMAL or double
buffered.

screent and screen2 refer to screens which have been previously defined with the
SCREEN OPEN command. Only certain screen combinations are acceptable. Both
screens must use the same resolution, as it's illegal to use hires and lowres screens in the
same playfield.

127

Here is a list of the possibilities

Screen 1 Screen 2 Notes
No of colours No of colours
2 2
4 2
4 4
8 4 Lowres only
8 8 Lowres only

Although the colour ranges are predefined, the sizes of the two screens can be completely
different. By creating a background screen which is larger than the foreground you can
create a delightfully realistic parallax effect.

The colours of these screens are all taken from the palette of screen? with colour zero
being treated as transparent.

creen Colour indexes (from screen 1)

1 0-7
2 8-15

When you are drawing to the second screen, AMOS Basic will automatically convert your
colour index to the appropriate number before using it. So INK 2 will use colour nine from
the first palette.

This conversion process does not apply to the assignment statements such as
COLOUR or PALETTE. It's important to remember this when you are changing the colour
settings, otherwise your new colours will not be reflected on the actual screen. Always
make screent the current screen before changing your colour assignments.

Screen 1: Rem where screen 1 is the number of the first screen

There are a couple of impotant points which you must be aware of before setting up a dual
playfield screen:

* The screen offsets for both screens must never be set to zero.
* If you set a dual playfield screen up and then want to position it with SCREEN OFFSET
be sure to specify dual screen 1 not the second.

DUAL PLAYFIELD is an extremely powerful instruction. A full demonstration can be found
in EXAMPLE 10.5.

DUAL PRIORITY (Choose order of dual playfield screens)
DUAL PRIORITY screent,screen2

Thefirstscreen of adual playfield is normally displayed directly over the second. The DUAL

128

B

PRIORITY command allows you to change this order around so that screen2 appears in
front of screen 1.

Warning! This instruction only changes the order of the display. It has no effect on
the screen organization. The first screen in the dual playfield list should therefore still be
used for all colour assignments and with SCREEN DISPLAY.

SCREEN (Set current screen)
SCREENn

The SCREEN command allows you to direct all graphical and text operations to screen
number n. If this screen is hidden or is positioned outside the display area, the command
will have no visible effect. However the graphics will still be drawn in memory and they will
be displayed when the screen is moved into view.

=SCREEN (Get current screen number)
s=SCREEN

Returns the number of the currently active screen. This is the screen which is used for all
drawing operations but it is not necessarily visible.

SCREEN TO FRONT (Moves screen to front of display)
SCREEN TO FRONT [s]

This instruction moves screen sto the front of the TV display. If the parameter sis omitted,
then the current screen will be used instead.

Screen Close 0 : Load Iff “AMOS_DATA:IFF/AMOSPIC.IFF”,0
Load Iff “AMOS_DATA:IFF/Magic_Forest.IFF”,1
Wait Key : Screen To Front 0

Note: If the AUTOVIEW system has been turned off, you'll need to call the VIEW command
before the effect will be visible on the screen.

SCREEN TO BACK (Move screen to back of the display)
SCREEN TO BACK]n]

SCREEN TO BACK moves a screen to the background of your display. If there is another
screen at the same coordinate this will now be displayed in front of the selected screen.

SCREEN HIDE (Temporarily hide a screen)
SCREEN HIDE [n]

Removes a selected screen from view completely. This screen can be redisplayed using

129

a call to SCREEN SHOW. If nis omitted, this instruction will hide the current screen.
SCREEN SHOW (Restore a screen)
SCREEN SHOW n

Screen SHOW returns a screen onto the display after it has been hidden with the SCREEN
HIDE command.

Load Iff “AMOS_DATA:IFF/AMOSPIC.IFF”,1
Screen Hide : Wait Key : Screen Show

=SCREEN HEIGHT (Return height of the current screen)
h=SCREEN HEIGHT [n]

Returns the height of an AMOS screen. If you don’tinclude a parameter with this instruction
the height will be returned for the current screen.

Print Screen Height
=SCREEN WIDTH (Return the width of the current screen)
w=SCREEN WIDTH [n]
SCREEN WIDTH retrieves the width of either the current screen or screen number n.

Print Screen Width

=SCREEN COLOUR (Return the number of colours)
¢=SCREEN COLOUR

The SCREEN COLOUR instruction returns the maximum number of colours in the
currently active screen.

Print Screen Colour

=SC|N (Returns screen number at a selelcted postion)
s=SCIN(x,y)

Returns the number of the screen which is underneath the hardware coordinates
x,y. If this screen does not exist, then s will be loaded with a negative value (null).

SCIN is normally used in conjunction with the X MOUSE and Y MOUSE functions to
check whether the mouse cursor has entered a particular screen.Example:

Print Scin(X Mouse,Y Mouse)

130

Defining the screen colours
DEFAULT PALETTE (Load screen with standard palette)
DEFAULT PALETTE c1,c2,¢3,,,c6,,,—> up to 32 colours

This command simplifies the process of opening many screens with the same palette. It
defines a list of colours which will be used for all subsequent screens which you create with
the SCREEN OPEN. instruction. As usual, the allowable colour values range from $000
to $FFF ($RGB). Also see GET SPRITE PALETTE.

GET PALETTE (Set the palette from a screen)
GET PALETTE n [,mask]

The GET PALETTE instruction copies the colours from screen nand loads them into the
current screen. This can be very useful when you’re moving information from one screen
to another with SCREEN COPY, as it's usually vital that both the source and destination
screens share the same colour settings.

The optional mask parameter allows you to load just a selection of the colours. See
GET SPRITE PALETTE for full details of mask. Example:

Load iff “AMOS_DATA:IffAMOSPIC.IFF”,0
Screen Open 1,Screen Width, Screen Height, Screen Colour, Lowres
Screen Copy 0,0,0,160,100 To 1,80,80

Centre “<Press a key to grab the palette>” : Wait Key
Get Palette 0

Clearing the screen
CLS (Clear the screen)

CLS erases all or part of the current screen. There are three possible formats of this
command.

CLS

Clears the current screen by filling it with colour zero and clears any windows which may
have been set up.

CLS col
Fills your screen with colour col.
CLS col,x1,y1 to x2,y2

Replaces the rectangular region at coordinates x1,y1,x2,y2 with a block of colour col. co/

131

can take any value from 0 to the maximum number of available colours.
x1,y,x2,y2hold the coordinates of the top left and bottom right corners of the area to
be cleared by this command. Example:

Cls : Circle 100,98,98 : Cls 1,50,50 To 150,150
Manipulating the contents of a screen

SCREEN COPY (Copy sections of the screen)
SCREEN COPY scri TO scr2

SCREEN COPY scri,x1,y1,x2,y2 TO scr2,x3,y3 [,mode]

SCREEN COPY makes it possible to copy large sections of a screen from one place to
another at amazing speed.

scr1holds the screen used as the source of yourimage. This can be either a standard
screen number or the number of a logical or physical screen generated using the LOGIC
and PHYSIC commands.

scr2 selects an optional destination screen into which this data will be copied. If it's
omitted, the area will be copied into the current screen.

x1,y1and x2,y2hold the dimensions of a rectangular source area, and x3,y3 contain
the coordinates of the destination. There are no limitations to these coordinates whatsoever.
Any parts of your image which lie outside the current screen area will be automatically
clipped as appropriate.

An example of SCREEN COPY can be found in EXAMPLE 10.6 in the MANUAL
folder.

The optional mode parameter chooses which of the 255 possible blitter modes will be
used for your copying operation. These modes determine how your source and destination
areas will be combined together on the screen. The mode is set using a bit-pattern in the
following format:

Mode Bit Source bit Destination Bit
4 0 0
5 0 1
6 1 0
7 1 1

Note that the bottom four bits in the pattern are not used by this instruction and should
always be set to zero.

Each bitin mode represents a single combination of bits in the source and destination
areas. If a mode bit is set to one, then the associated bit on the screen will also be loaded
with a one, otherwise the result will be zero.

In order to select the correct drawing mode for your application, you simply decide
which combinations should result in a one and set the appropriate bits in the mode
parameter accordingly.

Supposing you only wanted to set a bit on the screen if both the source and destination

132

bits were the same. You would now look through the table for the points where your
requirement was satisfied. This would produce the following value for mode:

%10010000
If you’re not familiar with binary notation, you may find this command a little opaque. Rather

than boring you silly with an explanation of binary we’ll now provide you with a detailed list
of the more common requirements along with the associated bit-maps.

Mode Effect Bit-pattern

REPLACE Replaces the destination with a direct %11000000
copy of the source image (default).

INVERT Replaces the destination image %00110000
by a reversed copy of the source image.

AND Combines the source and destination ~ %10000000
with a logical AND operation.

OR OR’s the source with the destination %11100000
image.

XOR Combines the source and destination ~ %01100000

area with an Exclusive OR.

Technically-minded users should note that SCREEN COPY combines the source and
destination using blitter areas B and C and that blitter area A is not used by the system at
all.

Scrolling the screen

DEF SC ROLL (Define a scrolling zone)
DEF SCROLL n,x1,y1 to x2,y2,dx,dy

DEF SCROLL allows you to define up to 16 different scrolling zones. Each of these zones
can be associated with a specific scrolling operation which is determined by the variables
dx and dy.

n holds the number of the zone and can range from 1 to 16. x1,y7 refer to the
coordinates of the top left-hand corner of the area to be scrolled and x2,y2 to the point
diagonally opposite.

dx signifies the number of pixels the zone will be shifted to the right in each operation.
Negative numbers indicate that the scrolling will be from right to left, and positive numbers
from left to right.

Similarly, dy holds the number of points the zone will be advanced up or down during
the scroll. In this case negative values of dy are used to indicate an upward movement and
positive values a downward motion.

133

SCROLL (Scroll the screen)
SCROLL n

The SCROLL command scrolls the screen using the settings you have specified with the
DEF SCROLL instruction. n refers to the number of the zone you wish to scroll.

Load Iff “AMOS_DATA:IFF/Frog_Leap.IFF”,2
Def Scroll 1,0,0 to 320,200,1,0
Do
Scroll 1
Loop

Larger examples can be found in EXAMPLE 10.7 and EXAMPLE 10.8. These load an
image from the AMOS system disc and rotate it around on the screen. The variable Sholds
the number of points the picture will be moved during each SCROLL. The larger the value
of S, the faster and jerkier the scrolling. Note the use of screen switching to improve the
quality of the motion.

Screen switching

In orderto produce the smooth movement effects found in a computer game, it's necessary
to complete all the drawing operations within a time span of no more than a fiftieth of a
second. This represents areal challenge for the fastest computer, and it's often impossible
to achieve even on the Amiga. If the animation is complex, your graphics will therefore tend
to flicker annoyingly as they are being drawn.

Fortunately, there’s a solution at hand which has been successfully exploited in the
vast majority of modern arcade games. This screen switching technique can easily
generate flicker-free screen animation using just a fraction of the Amiga’s computing
power.

The basic idea is extremely simple. Instead of constructing your images on the actual
screen, you perform all your drawing operations on a separate /ogical screen. which is
completely invisible to the user. This is distinct from the physical screen which is currently
being displayed on your TV. Once the graphics have been completed, you can then swap
the logical and physical screens to produce a smooth transition between the two screen
images. The old physical screen now becomes the new logical screen, and is used to
construct the next picture in your sequence.

Atfirstglance, this process looks pretty complicated, butit’s all performed automatically
by the AMOS Basic DOUBLE BUFFER command. This forces all drawing operations to be
performed directly on the logical screen without affecting the current display. All you need
to do within your program is to synchronise your drawing operations with the screen
switches. This can be achieved with the help of the SCREEN SWAP instruction.

SCREEN SWAP (Swap the logical and physical screens)
SCREEN SWAP [n]

SCREEN SWAP swaps the physical and logical screens. This enables you to instantaneously

134

switch the physical display between the two screens.

If you're using DOUBLE BUFFER, these screens will have been created for you
already. However, you will need to switch off the automatic screen switching system with
BOB UPDATE OFF, as otherwise the screens will be swapped 50 times a second, and will
interfere with your own drawing operations. It's also necessary to kill the autoback feature
with AUTOBACK OFF. This normally copies your graphical operations onto both physical
and logical screens. It's useful when you wish to combine simple graphics with moving
bobs, but it destroys the effect of your screen switching operations totally.

As an illustration of the power of this command, have a look at the programs
EXAMPLE 10.9 and EXAMPLE 10.10.

EXAMPLE 10.9 moves a triangle across the screen without using any form of screen
switching. As the triangle proceeds, it generates an intense and annoying flicker. Now let's
add a little screen switching to this program. We will draw the triangle on an invisible logical
screen and flick it into view when it's been completely drawn. The new program can be
found in EXAMPLE 10.10.

EXAMPLE 10.10 draws each new triangle on the screen without affecting the current
display. The SCREEN SWAP instruction then swaps the logical and physical screens
around, so the finished version of the triangle appears on the screen immediately, without
atrace of flicker. The old triangle is now erased from the logical screen and redrawn at the
next position. As the program runs, the triangle will smoothly progress from one side of the
screen to the other.

Note that we've intentionally exaggerated the flickerin EXAMPLE 10.9 to illustrate the
screen switching technique. In practice it would be very easy to reduce this problem
considerably even without the use of the SCREEN SWAP instruction.

=LOGBASE (Return the address of part of the logical screen)
address=LOGBASE(plane)

The LOGBASE function is aimed at expert programmers who wish to access the Amiga’s
screen memory directly.

plane refers to one of the six possible bit-planes which make up the current screen.
After LOGBASE has been called, address will contain either the address of the required
bit-plane, or zero if it doesn't exist.
=PHYBASE (Return the address of the current screen)

address=PHYSBASE (plane)

PHYSBASE returns the address in memory of bit-plane number plane for the current
screen. If this plane does not exist, then a value of zero will be returned by this function.
Example:

Loke Phybase(0),0 : Rem Pokes a thin line directly onto the screen

=PHYSIC (Return identiﬁef of the physical screen)

=PHYSIC
=PHYSIC(s)

135

The PHYSIC function returns an identification number for the current physical screen. This
number allows you to directly access the physical image which is being displayed by the
double buffering system.

The result of this function can be substituted for the screen number in the ZOOM,
APPEAR and SCREEN COPY commands.

sisthe number of an AMOS screen. Ifitis omitted, then the present screen will be used
instead. Do not confuse with the LOGBASE function.

= LOG | C (Return identifier of the logical screen)

-LOGIC
-LOGIC(s)

Returns an identification number of a logical screen. This can be used in conjunction with
the SCREEN COPY, APPEAR and ZOOM commands to change your image off-screen,
without affecting the current display.

Screen synchronisation

Like most home computers the AMIGA uses a memory-mapped display. This is a technical
term for a concept you are almost certainly already familiar with. Put simply, a memory-
mapped display is one which uses special hardware to convert an image stored in memory
into a signal which can be displayed to your television screen. Whenever AMOS Basic
accesses the screen it does so through the medium of this screen memory.

The screen display is updated by the hardware every 50th of a second. Once a screen
has been drawn, the electron beam turns off and returns to the top left of the screen. This
process is called the vertical blank period or VBL. Atthe same time, AMOS Basic performs
anumber of important tasks, such as moving the sprites and switching the physical screen

address if it has changed. The actions of instructions such as ANIM or SCREEN SWAP

will therefore only be fully completed when the screen is redrawn.

Since a 50th of a second is quite a long time for AMOS Basic, this can lead to a serious
lack of coordination between your program and the screen, which is especially noticeable
in tight program loops. The best way of avoiding this difficulty, is to wait until the screen has
been updated before you execute the next Basic command. -

WAIT VBL (wait for a vertical blank)

The WAIT VBL instruction halts the AMIGA until the next vertical blank period. It is
commonly used after either a PUT BOB instruction or a SCREEN SWAP.

Special effects

APPEAR (Fade between two pictures)
APPEAR source TO destination,effect [,pixels]
The APPEAR command enables you to produce fancy fades between the source and

destination screens. Source and destination are simply the numbers of screens you've

136

previously opened using SCREEN OPEN.You can also substitute the LOGIC and PHYSIC
functions in these positions if required.

effect determines the type of fade which will be produced by this instruction. The size
of this parameter can vary from 1 to the number of pixels in your current screen.

pixels specifies the number of points which are to be affected. Normally this value is
set to the TOTAL screen area, but you can reduce it to fade only a part of the screen. All
screens are drawn in strict order from the top of the screen to the bottom.

The appearance of your fades will naturally vary depending on the screen mode you
are using. A program is provided in EXAMPLE 10.11 to allow you to experiment with the
various possibilities.

FADE (Blend one or more colours to new colour values)

FADE speed [,colour list]
FADE speed TO screen [,mask]

The FADE command allows you to smoothly change the entire palette from one set of
colours to another. This can be used to generate professional-looking fade effects for your
loading screens.

The standard version of the instruction takes the currentpalette, and slowly dissolves
the screen colours to zero. Each colour value is successively reduced by one until they
reach zero. Example:

Fade 15:Wait 225

speedis the number of vertical blank periods that must occur before the next colour change
is performed.

Since the fading effects are executed using interrupts, it's best to wait until the
operation has completely finished before proceeding to the next Basic instruction. The time
taken for the fade WAIT can be calculated by the formula:

wait value = fade speed * 15

FADE can be extended to generate a new palette directly from a list of colour values.

Fade 15,$100,$200,$200,$300

Any number of colours can be specified in this instruction, up to the maximum allowed in

the current graphics mode. Like most AMOS commands, it's possible to omit selected

parameters completely. These colours will be totally unaffected by the FADE command.
Fade 15,,$100,$800,$F00

The most powerful form of FADE smoothly transforms the colours from the current screen
into a palette taken from an existing screen.

FADE speed TO s [,mask]

The present colours are slowly converted into the palette of screen s. It’s also possible to

137

load the palette from the sprite bank using the same technique. Simply use anegative value
for the screen number s.

mask is a bit-pattern which specifies which colours should be loaded. Each colour is
associated with a single bit in this pattern numbered from 0 to15. If a bit is set to 1, then
the relevant colour will be changed. See EXAMPLE 10.12.

FLASH (Set flashing colour sequence)

This command gives you the ability to periodically change the colour assigned to any colour
index. It does this with an interrupt similar to that used by the sprite and the music
instructions. The format of the flash instruction is:

FLASH index,”(colour, delay)(colour, delay)(colour,delay)...”

Index is the number of the colour which is to be animated. Delay is set in units of a 50th
of a second.

Colour is stored in the standard RGB format (See COLOUR for more details). The
action of FLASH is to take each new colour fromthe listin turn, and then load itinto the index
for a length of time specified by the delay. When the end of this list is reached, the entire
sequence of colours is repeated from the start. Note that you are only allowed to use a
maximum of 16 colour changes in any one FLASH instruction. Here is a small example:

Flash 1,”(007,10)(000,10)”

This alternates colour number 1 between blue and black every 10/50 (1/5th) of a second.
Now for something more complex:

Flash 0,”(111,2)(333,2)(555,2)(777,2) (555,4)(333,4)"

I this gives you a headache, you will be glad to learn that you can turn the flashing off using
the instruction:

FLASH OFF

Also note that on start-up, colour number 3 is automatically assigned a flash sequence for
use by the cursor. It's a good idea to turn this off before loading any pictures from the disc.

SHIFT UP (Colour rotation)
SHIFT UP delay,first,last,flag

The SHIFT UP command rotates the values held in the colour registers from first to last.
The firstcolourin the listis copied into the second, the second into the third, and so on, until
the /ast colour in the series is reached.

Each AMOS screen can have its own unique set of colour animations. Colour shifts
can be used to create amazing hyperspace sequences similar to those found in Captain
Blood and Elite. Since these animations are performed using interrupts, they can be
executed while your program is running, without affecting it in the slightest.

138

delay is the time interval between each stage of the rotation, measured in 50ths of a
second.

flag controls the type of rotation. If its set to one, the last colour index in the list will be
copied into the first, and the first to the last. So the colours will rotate continuously on the
screen. When flagis set to zero, the contents of the firstand /astindexes will be discarded,
and the region between firstand /ast will gradually be replaced by a copy of the first colour
in the list. For example:

Shift Up 100,1,15,1
Shift Up 10,1,15,0

These colour shifts can be turned off at any time using the SHIFT OFF command.

SHIFT DOWN (Rotate a list of colour values down)
SHIFT DOWN delay first,last,flag

SHIFT DOWN is similar to the previous SHIFT UP command, except that it rotates the
colours in the opposite direction. So the second colour will be copied into the first, the third
colour into the second, and so on.

first and /ast input a list of colour indices to be rotated. delay species an interval
between each colour shift in units of a 50th of a second.

flag sets the type of rotation. A value of one results in a continuous colour cycle, and
a zero shifts the colours without saving the original contents of first and /ast. After a
complete cycle, all the colours between first and /ast will contain a copy of the colour held
in last. See also FLASH, PALETTE and COLOUR.

SHIFT OFF (Stops all colour cycles for the current screen)
SHIFT OFF

SHIFT OFF immediately terminates all colour rotations produced by the SHIFT UP or
SHIFT DOWN instructions.

SET RAINBOW (Define a rainbow effect)
SET RAINBOW n,colour,length,r$,g$,b$

SET RAINBOW defines an attractive rainbow effect which can be subsequently displayed
using the RAINBOW command. It works by changing the shade of a colour according to
a series of simple rules.

nis the number of your rainbow. Possible values range from 0 to 3. colouris a colour
index which willbe changed by the instruction. This colour can be assigned a different value
for each horizontal screen line (or scan line). Note that only colours from 0 to 15 can be
manipulated using this system.

length sets the size of the table used to store your colours. There’s one entry in this
table for each colour value on the screen. The size of this table can range from 16 to 65500.
If length is less than the physical height of your rainbow, then the colour pattern will be

139

repeated several times on the screen.

The r$,g$,b% command strings, progressively change the intensities of the red, green
and blue components of your final colour. These values are loaded into a special colour
table. Each colour in the table determines the appearance of a single horizontal scan line
on the screen.

At the start of the rainbow, all the components in your colour are initially loaded with
a value of zero. This will be changed according to the information held in the colour table.

Any command string may be omitted if required, but you'll still have to include the
quotes and the commas in their expected positions.

Each string can contain a whole list of commands. These will be cycled continually to
produce the final rainbow pattern.The format is:

(n,step,count)

n sets the number of lines to be assigned to a specific colour value in the rainbow.
Increasing this number will change the height of each individual rainbow line.

step holds a number to be added to the component. This number will be used to
generate the colour of the succeeding line on the screen. A positive step will increase the
intensity of colour component, and a negative value will reduce it.

Whenever a particular component exceeds the maximum of 15, a new value will be
calculated from the formula:

new component=old component Mod 15

count is the number of times the current operation is to be repeated. The best way to
demonstrate this command is with an example. Type in the following lines into your
computer.

Set Rainbow 0,1,64,”(8,2,8)”,””,””
Rainbow 0,56,1,255 : Rem Displays rainbow
Wait key

This creates a new rainbow with number zero using colour index one. As you can see, SET
RAINBOW only defines your rainbow. In order to display it on the screen you need to make
use of the RAINBOW command (see below).

The rainbow effect first loads your colour with a value of zero. Every four scan-lines,
the red component will be automatically incremented by two. So the contents of colour zero
will progressively change from $000 to $E00. When the component exceeds the maximum
of 15, its remainder will be calculated, and the colour will be returned to its starting point
(zero). The pattern will now be repeated down the screen.

By defining a separate pattern for each of the red, green and blue components of your
colour, you can easily generate some startling patterns on the screen. Since each rainbow
only uses asingle colour index, there’s nothing stopping you from creating the same effects
using just two colour screens. These are ideal for the backgrounds of an arcade game, as
they consume very little memory. Example:

Screen Open 0,320,256,2,Lowres
Set Rainbow 0,1,128,”(8,1,8)”,”(8,1,8)”,””
Rainbow 0,1,30,128

140

Colour 1,0 : Curs Off : Cls 1 : Flash Off
Locate 0,2 : Centre “Amos Basic” : Wait Key.

For a further demonstration of the superb effects that can be achieved with this instruction,
load up EXAMPLE 10.13.

Rainbows can also be animated using a powerful interrupt system. See the section
on AMAL for more details.

RAINBOW (Create a rainbow effect)
RAINBOW n,base,y,h

RAINBOW displays rainbow number n on the screen. If AUTOVIEW is set to OFF, the
rainbow will only appear when you next call the VIEW command.

base is an offset in the first colour in the table you created with SET RAINBOW.
Changing this value will cycle the rainbow on the screen.

y holds the vertical position of the rainbow in hardware coordinates. The minimum
value for this coordinate is 40. If you attempt to use a coordinate below this point, the
rainbow will be displayed from line 40 onwards.

h sets the height of your rainbow in scan lines.

Rainbows are totally compatible with the AMOS system including bobs and sprites.
However, don't attempt to rainbow a colour which is currently being changed using the
FLASH or SHIFT instructions, as this will lead to unpredictable screen effects.

Note that only a single rainbow effect can be displayed on a particular scan line, even
if they use different colours on the screen.

Normally the rainbow with the highest screen position will be displayed first. But if
several rainbows start from the same scan line, then the rainbow with the lowest
identification number will be drawn in front of the others.

=RAIN (Change the colour of an individual rainbow line)

RAIN(n,line)=c
c=RAIN(n,line)

This is the most powerful of all the rainbow creation commands, as it allows to change the
colour of an individual rainbow line to any value you like.

nis the number of the rainbow you wish to access. /ineis the individual scan-line to
be changed. Example:

Curs Off:Centre “An AMOS Rainbow!”
Set Rainbow 1,1,4097,””,””,”” : Rem set up rainbow with dummy values
For Y=0 To 4095

Rain(1,Y)=Y : Rem Load rainbow with a colour value from 0-4095
NextY
For C=0 To 4095-255

Rainbow 1,C,40,255 : Rem display rainbow 255 lines long starting at 40
Next C
Wait Key

141

This smoothly scrolls the entire palette through colour number one.

ZOOM (Magnify a section of the screen)
ZOOM source,x1,y1,x2,y2 TO dest, x3,y3,x4,y4

ZOOM is a simple instruction which allows you to change the size of any rectangular region
of the screen.

Source is the number of a screen from which your picture will be taken. You can also
use the LOGIC function to grab your image from the appropriate logical screen. The
rectangular area to be affected by this instruction is entered using the coordinates
x1,y1,x2,y2. x1,y1holds the position of the top left hand corner of this region and x2,y2sets
the coordinates of the corner diagonally opposite. destholds the destination screen for your
image. Like the source, it can be either a screen number, or alogical screen specified using
LOGIC.

The dimensions of this screen are taken from the coordinates x3,y3and x4,y4. These
hold the dimensions of the rectangle into which the screen segment will be compressed.

The effect of this instruction depends on the relative sizes of the source and
destination rectangles. The source image is automatically resized to fit exactly into the
destination rectangle. So the same instruction can be used to reduce or enlarge your
images as required. Here’s an example:

F$=Fsel$(“*.*”,””,"Load screen”) : If F$="" then Direct

Load Iff F$,0 : Screen Open 1,320,256,Screen Colours,Lowres

Flash off : Get Palette(0)

Screen Display 1,,,,256 : View : Limit Mouse

Repeat

Zoom 0,0,70,320,175 To 1,0,0,X Screen (X Mouse)+1,Y Screen (Y MOUSE)+1
Until Mouse Key

A further demonstration can be found in EXAMPLE 10.14.

Changing the copper list

The Amiga’s coprocessor (copper) provides total control over the appearance of every line
on your screen. This copper is a separate processor with its own internal memory and
uniguie set of instructions. By programming the copper it's possible to freely generate a
massive variety of different screen effects. Normally the copper is managed automatically
by the AMOS system. Each of the available copper effects can be performed directly from
within AMOS Basic without the need to indulge in complicated machine-level programming.
In practice these instructions will be more than sufficient for the vast majority of applications.

Obviously, no one can think of everything though. Expert programmers may wish to
access the copper directly to create their own special screen modes.

Be warned: The copper list is notoriously difficult to program, and if you don’t know
precisely what you are doing, you'll almost certainly crash your Amiga. Before embarking
on your copper experiments for the first time, you are therefore advised to read one of the
many reference books on the subject. A good explanation can be found the Amiga System
Programmers Guide from Abacus.

142

COPPER OFF (Turn of the standard copper list)
COPPER OFF

This freezes the current AMOS copper list and turns off the screen display completely. You
can now create your owndisplay using a series of COP MOVE and COP WAIT instructions.

As adefault, alluser-defined copper lists are limited to amaximum of 12k. On average,
each copper instruction takes up two bytes. So there’s space for around six thousand
instructions. This may be increased if required, using a special option from the CONFIG
utility.

Note that all copper instructions are written to a separate logical list which is not
displayed on the screen. This stops your program corrupting the display while the copper
list is being created. To activate your new screen, you'll need to swap the physical and
logical lists around with the COP SWAP command.

It's also important to generate your copper lists in strict order, starting from the top left
of your screen and progressing downward to the bottom right. See EXAMPLE 10.15. inthe
MANUAL folder for a demonstration.

COPPER ON (Restart the copper list)
COPPER ON

COPPER ON restarts the AMOS copper list calculations and displays the current AMOS
screens. Providing you haven’t drawn anything since the COPPER OFF instruction, the
screen will be restored to precisely its original state.

COP MOVE (Write a MOVE instruction into the logical copper list)

COP MOVE addr,value
Generates a MOVE instruction in the logical copper list.
addris an address of a 16 bit register to be changed. This must lie within the normal copper

DATA ZONE ($7F-$1bE). value is a word-sized integer to be loaded into the requested
register.

COP MOVEL (Write a long MOVE instruction into copper list)
COP MOVEL addr,value

This is identical to the standard COP MOVE command, except that adar now refers to a
32-bit copper register. value contains a long word integer.

COP WAIT (Copper WAIT instruction)
COPY WAIT x,y[, x mask, y mask]

COP WAIT writes a WAIT instruction into your copper list. The copper waits until the
hardware coordinates x,y have been reached and returns control to the main processor.

143

Note that line 255 is automatically managed by AMOS. So you don't have to worry about
it at all.

x maskand y maskare bit maps which allow you to wait until just a certain combination
of bits in the screen coordinates have been set. As a default both masks are automatically
assigned to $1FF.

COP RESET (Reset copper list pointer)
COP RESET

COP RESET restores the address used by the next copper instruction to the start of the
copper list.

=COP LOG'C (Address of copper list)
addr=COP LOGIC

The COP LOGIC function returns the absolute address in memory of the logical copper list.
This allows you to poke your COPPER instructions directly into the buffer, possibly using
assembly language.

Hints and tips

« Before creating a screen with a user-defined copper list, you'll first need to allocate some
memory for the appropriate bit-maps. Although you can use RESERVE for this purpose,
it's much easier to define a dummy screen with the SCREEN OPEN command instead.
The copper registers can be loaded with the addresses of the required bit-maps using the
LOGBASE function.

You'll now be able to access your screen using all the standard AMOS drawing
features. In order to reserve the correct amount of memory, set the number of colours to
the maximum used in the new screen. This may be a little wasteful, but simplifies things
enormously.

« It's perfectly acceptable to combine user-defined screens with AMOS bobs. If you're
using double buffering though, you'll have to define a separate copper list for both the
logical and physical screens. This may be achieved using the following procedure;

1 Define your copper list for the first screen

2 Swap the logical and physical copper lists with COP SWAP
3 Swap the physical and logical screens with SCREEN SWAP
4 Define your copper list for the second screen

This will ensure that your bobs will be updated correctly on your new screens. All the
normal AMOS commands can be used including AMAL.

144

1

11: Hardware sprites

One of the biggest attractions of the Commodore Amiga is its ability to produce high quality
gameswhichrivalthose found on genuine arcade machines. This can be amply demonstrated
by terrific programs such as Battle Squadron and Eliminator.

Now, for the first time, all these amazing features are at your fingertips! AMOS Basic
provides you with complete control over the Amiga’s hardware and software sprites. These
sprites can be effortlessly manoeuvred with the built-in AMAL animation language, so you
don’thave to be amachine code wizard in order to create your own stunning arcade games.

Hardware sprites are separate images which can be automatically overlayed on the
Amiga’s screen. The classic example of a hardware sprite is the mouse pointer. This is
completely independent of the screen, and works equally well in all the Amiga’s graphics
modes.

Since sprites don't interfere with the screen background, they are perfect for the
moving objects required by an arcade game. Not only are they blindingly fast, but they also
take up very little memory. So when you're writing an arcade game, hardware sprites
should always be at the top of your list.

Each sprite is 16 pixels wide and up to 255 pixels high. The Amiga’'s hardware
supports a maximum of eight three-colour sprites or four fifteen-colour sprites. Colour
number zero is transparent — that’s the reason for the odd colour ranges.

At first glance, these features don’t seem particularly impressive. But there are a
couple of useful tricks which can increase both the numbers and sizes of these sprites
beyond recognition.

One solution is to take each hardware sprite and split it into a number of horizontal
segments. These segments can be independently positioned, allowing you to apparently
display dozens of sprites on the screen at once. Similarly, the width restriction can be
exceeded by building an object out of several individual sprites. Using this technique it's
easy to generate objects up to 128 pixels wide.

Until recently the only way to exploit these techniques was to delve into the mysterious
world of 68000 assembler language. So you'll be delighted to discover that AMOS Basic
manages the entire process automatically! Once you've designed your sprites with the
AMOS sprite editor, you can effortlessly manipulate them with just a single Basic
instruction.

The sprite commands

Remember to have a sprite bank loaded into memory when trying out the various
commands in this chapter. We advise you use the file SPRITES.ABK from the AMOS data
disc.

SPRITE (Display a hardware sprite on the screen)

SPRITE n,x,y,i
The SPRITE command displays a hardware sprite on the screen at the coordinates x,y
using image number /.

N is the identification number of the sprite and can range from 0 to 63. Each sprite
can be associated with a separate image from the sprite bank, so the same image can be

145

used for several sprites.

x and y hold the position of the sprite using special hardware coordinates. All
measurements are taken from the hot spot of your images. This serves as a sort of ‘handle’
on the sprite and is used as a reference point for the coordinates. Normally the hot spot is
set to the top left hand corner of an image. However it can be changed within your program
using the HOT SPOT command.

Hardware coordinates are independent of the screen mode and effectively start from
(-129,-45) on the default screen. AMOS provides you with several built-in functions for
conversions between hardware coordinates and the easier to use screen coordinates. See
the X HARD, Y HARD, X SCREEN and Y SCREEN functions for more details.

Iisthe number of a particularimage stored in the sprite bank. This bank can be created
using the AMOS sprite editor, and is automatically saved along with your Basic program.
It can also be loaded directly with the LOAD instruction. In addition you can use the GET
SPRITE command to grab an image straight off the current screen.

Any of the parameters x,y, and i may be optionally omitted, but the appropriate
commas must be included. For example:

Load “AMOS_DATA:Sprites/Octopus.abk”
Sprite 8,200,100,1

Sprite 8,,150,1

Sprite 8,300,

For a demonstration of sprites in action, load EXAMPLE 11.1 from the MANUAL folder on
the AMOS data disc.

Computed sprites

Although the Amiga only provides you with eight actual sprites, it's possible to use them
to display up to 64 different objects on the screen at once. These objects are known as
computed sprites and are managed entirely by AMOS Basic. Computed sprites can be
assigned by calling the SPRITE command with a number greater than seven. For example:

Load “AMOS_DATA:Sprites/Octopus.abk”
Sprite 8,200,100,1

The size of a computed sprite is taken directly from the image data, and can vary between
16 and 128 pixels wide, and from 1 to 255 pixels high.

Before you can make full use of these sprites you need to understand some of the
principles behind them. Each hardware sprite consists of a thin narrow strip 16 pixels wide
and up to 256 pixels deep. Depending on the number of colours, you can have either eight
or four of these strips on the screen at a time.

146

-

THE HARDWARE SPRITES

- mM-—21VTW®W
MM —TTW®W
wm-——-—XTTW
APMH4—DTTOTW
oOm-d—XTToTWw
NmM——T oW
om—A—JTT®

om-H4—30T0TW

It should be obvious that most of the area inside these sprites is effectively wasted. That's
because few programs need sprites which are taller than about 40 or 64 pixels. However
there is a simple trick which enables us to borrow this space to generate dozens of extra
objects on the screen. Look at the sprite below which contains the letters A, M, O and S.

A single hardware sprite

wo=>»

This sprite can be split into four horizontal segments each enclosing a single letter. The
Amiga’s hardware allows each section to be freely positioned anywhere on the currentline,
making a total of four computed sprites. Here’s a diagram which illustrates this process.

147

Splitting a hardware sprite into computed sprites

As you can see, a computed sprite is really just a small part of a hardware sprite displayed
at a different horizontal screen position. Notice the line between each object. This is an
unavoidable side effect of the repositioning process, and is generated by the Amiga’s
hardware.

Due to the way computed sprites are produced, there are a couple of restrictions to
their use. Firstly, you can’t have more than eight computed sprites on a single line. In
practice the system is complicated by the need to produce sprites which are larger than the
16 pixel maximum. AMOS generates these objects by automatically positioning several
computed sprites side by side. This can be seen from the diagram below:

Combining two sprites together

/N

1]2

Hardware Sprites

The maximum of eight hardware sprites therefore imposes a strict limit to the number of
such objects you can display on a horizontal line. The total width of the objects must not

148

exceed:
16*8=128 pixels for three-colour sprites
16*4=64 pixels for fifteen-colour sprites

If you attempt to ignore this limitation, you won't get an error message, but your computed
sprite will not be displayed on the screen. So it's vital to ensure that the above restriction
is never broken.This can be achieved using the following procedure:

Add together the widths of all your computed sprites, multiplying the dimensions of any
fifteen-colour sprites by two. If the total is greater than 128, you'll need to space your sprites
on the screen so that their combined width lies below this value. Take particular care if you
are animating your sprites with AMAL as certain combinations will only come to light after
you've experimented with the sequence for some time. These problems will be manifested
by the random disappearance of one or more sprites on the screen.

If the worst comes to the worst, you'll need to substitute some of your larger sprites
with Blitter Objects. This will increase the overall size of your program significantly, but it
should have a negligible effect on the final quality of your game.

These restrictions are not confined to AMOS Basic of course. They apply equally well
to all games on the Amiga, even if they're written entirely in machine code! So there’s
nothing stopping you from producing your own Xenon Il clone using exactly the same
techniques.

Note that, normally, hardware sprite number zero is allocated to the mouse cursor.
You can release this sprite with a simple call to the HIDE command. See EXAMPLE 11.2.

Creating an individual hardware sprite

The only real problem with computed sprites is that you never know precisely which
hardware sprite is going to be used in a particular object. Normally the hardware sprites
used in an object will change whenever the object is moved. Occasionally this can be
inconvenient, especially when you are animating objects such as missiles which need to
remain visible in a wide range of possible sprite combinations.

In these circumstances it's useful to be able to allocate a hardware sprite directly.
Individual hardware sprites can be assigned using the SPRITE instruction with an
identification number between 0 and 7. Example:

Sprite 1,100,100,2

This loads hardware sprite number 1 with image number 2. N now corresponds to the
number of a single hardware sprite, and can range between 0 and 7. If your image is larger
than sixteen pixels wide, AMOS will automatically grab the required sprites in consecutive
order, starting from the sprite you have chosen. For example:

Sprite 2,200,100,1
Supposing image number 1 contained a 32-bit image with three colours. This command
would allocate hardware sprites 2 and 3 to the image. Nothing would happen if you were

now to attempt to display hardware sprite 3 with a command like SPRITE 3,150,100, 1
because this sprite has already been used. You would only have access to sprites 0,1,4,5,6

149

and 7, and the maximum numbers and sizes of your computed sprites would be reduced
accordingly.

Each 15-colour sprite is implemented using a pair of two three-colour sprites.
However, it's not possible to combine any two sprites in this way. Only the combinations
0/1,2/3,4/5,6/7 are allowed. One side effect of this, is that you should always assign your
hardware sprites using even sprite numbers. Otherwise, AMOS will start your sprite from
the next group of two, effectively wasting the first sprite.

Also note thatif you try to create alarge fifteen-colour sprite with this system, you could
easily use up all the available sprites in a single object.

Warning! If you are writing a screen scrolling game, you may encounter problems
using sprites in conjunction withthe SCREEN OFFSET and SCREEN DISPLAY commands.
These generate a DMA clash between the sprite system and the screen bit-maps, and can
occasionally lead to unwanted screen effects.

This problem is only relevant if you are using hardware sprites 6/7. When the screen
is shifted to the left with SCREEN OFFSET, the amount of time for your sprite updates is
reduced, as the screen DMA has priority over the sprite system. Unfortunately, there isn't
enough processing time to draw sprites 6/7, and they will be therefore be corrupted on your
display.

Toclear up this problem, create sprites 6/7 as individual hardware sprites and position
them off the screen using negative coordinates. This will stop AMOS Basic from using them
in your computed sprites. Providing sprites 6/7 are never displayed on the screen during
your scrolling operations, all will be well.

The sprite palette
The colours required by a hardware sprite are stored in the colour registers 16 to 31.
Providing your current screen mode doesn’t make use of these registers, the sprite colours
will be completely separate from your screen colours. Interestingly enough, this is also the
case for the 4096-colour Ham mode. So there’s nothing stopping you from producing some
mind-blowing Ham games with this system!

However you will encounter real problems when using 32 or 64 colour screens in
conjunction with three colour sprites. This is because the colours used by these sprites are
grouped together in the following way:

Hardware sprites Colour registers

01 17/18/19
2/3 21/22/23
4/5 25/26/27
6/7 29/30/31

Colour registers 16,20,24 and 28 are treated as transparent.

The difficulty arises due to the way AMOS generates computed sprites. The hardware
sprites used to produce these objects vary during the course of a game, so it’s vital to
ensure that the three colours used by each individual sprite are set to exactly the same
values, otherwise the colours of your computed sprites will change unpredictably. Here’s
a small AMOS procedure which will perform the entire process for you automatically.

150

Procedure INIT_SPRITES
Get Sprite Palette
ForS=0To 3
ForC=0To 2
Colour $*4+C+17,Colour(C)
Next C
Next S
Endproc

The above restriction does not, of course, apply to fifteen-colour sprites. If you want to make
the most of the Extra Half Bright or 32-colour modes, you may find it easier to avoid using
four-colour sprites altogether.

GET SPR'TE PALETTE (Grab sprite colours into screen)
GET SPRITE PALETTE [mask]

This loads the entire colour palette used for your sprite images into the current screen. The
optional mask allows you to load just a selection of the colours from the sprite palette. Each
of the 32 colours is represented by a single bit in the mask, numbered fromright to left. The
right-most bit represents the status of colour zero, the next bit colour 1, and so on. Toload
a colour, simply setthe appropriate bit to 1. If, for instance, you wanted to copy just the first
four colours, you would set the bit pattern to:

Get Sprite Palette %0000000000001111

Incidentally, since bobs use the same sprite bank as sprites, this command can also be
used to load the colours of a bob.

Controlling sprites

SET SPRITE BUFFER (Set height of the hardware sprites)
SET SPRITE BUFFER n

This sets the work area in which AMOS creates the images of the hardware sprites.
Acceptable values for nrange from 16 to 256. To set the correct value for n, simply examine
the sprites in the sprite editor and work outwhich is the largest sprite length wise. Any sprite
that is larger than n will simply be truncated at the appropriate cut off point.

SET SPRITE BUFFER is supplied for your use so that you can claim back any
redundant memory that your game or application simply does not use.

151

The amount of memory consumed by the sprite buffer can be calculated using the
formula:

Memory = N*4*8*3 = N*96

So the minimum buffer size is 1536 bytes and the maximum is 24k. Note: This command
erases all current sprite assignments and resets the mouse cursor to its original state.

SPRITE OFF (Remove one or more sprites from the screen)
SPRITE OFF [n]

The SPRITE OFF command removes one or more sprites from the screen. All current sprite
movements are aborted. In order to restart them, you'll need to completely reinitialize your
movement pattern.

SPRITE OFF Removes all the sprites from display
SPRITE OFF n Only deactivates sprite n

Note thatyour sprites are automatically deactivated whenever you call up the AMOS Basic
editor. They will be autmatically returned to their original positions the next time you enter
direct mode.

SPRITE UPDATE (Control sprite movements)
SPRITE UPDATE [ON/OFF]

The SPRITE UPDATE command provides you with total control of the movements of your
sprites. Normally, whenever you move a sprite, its position is updated automatically during
the next vertical blank period (see WAIT VBL). But it you are moving a lot of sprites using
the SPRITE command, the updates will occur before all the sprites have been moved. This
may result in a noticeable jump in your movement patterns. In these circumstances, you
can turn off the automatic updating system with the SPRITE UPDATE OFF command.

Once your sprites have been successfully moved, you can then slide them smoothly
into place with acallto SPRITE UPDATE. This will reposition any sprites which have moved
since your last update.

See UPDATE EVERY, UPDATE and BOB UPDATE.

=X SPRITE (Get X coordinate of a sprite)
x = X SPRITE(n)

Returns the current X coordinate of sprite n, measured using the hardware system. This
command allows you to quickly check whether a sprite has passed off the edge of the
Amiga’s screen.

152

=Y SPR'TE (Get Y coordinate of a sprite)
y = YSPRITE(n)

Y SPRITE returns a sprite’s vertical position. As usual, nrefers to the number of the sprite
and can range from 0 to 63. Remember, all sprite positions are measured in hardware
coordinates. See EXAMPLE 11.3.

GET SPRITE (Load a section of the screen into the sprite bank)
GET SPRITE [s,]i,x1,y1 Tox2,y2

This instruction enables you to grab images directly off the screen and turn them into
sprites. The coordinates x1.y7 and x2,y2 define a rectangular area to be captured into the
sprite bank. Normally all images are taken from the current screen. However it's also
possible to grab the image from a specific screen using the optional screen number s.

Note: There are no limitations to the region that may be grabbed in this way. Providing
your coordinates lie inside the existing screen borders, everything will be fine.

I denotes the number of the new image. If there is no existing sprite with this number,
anew image will be created automatically. AMOS will also take the trouble of reserving the
sprite bank if it hasn’t been previously defined. See EXAMPLE 11.4.

There’s also an equivalent GET BOB instruction which is identical to GET SPRITE in
every respect. Since the sprite bank is shared by both bobs and sprites, the images are in
exactly the same format. Soiit’s perfectly acceptable to use both instructions in conjunction
with either bobs or sprites. Try changing the sprite instruction in the previous example to
something like:

Bob 1,0,0,1
Conversion functions

=X SCREEN (Convert hardware coordinates into screen coords)

=Y SCREEN

X=X SCREEN([n,] xcoord)
Y=Y SCREEN([n,] ycoord)

Transforms a hardware coordinate into a screen coordinate relative to the current screen.
If the hardware coordinates lie outside the screen then both functions will return relative
offsets from the screens boundaries. Type the following from direct mode:

Print X Screen(130)

The result will be -2. This is because the x screen coordinate 0 is equal to hardware
coordinate 128 and thus the conversion of 130 to a screen coordinate results in a position
two pixels to the left of the screen.

153

If the optional screen number is included then the coordinates will be returned relative
to screen n.

=X HARD (Convert screen coordinates into hardware coordinates)

=Y HARD

X=XHARD ([n,] xcoord)

These functions convert a screen coordinate into a hardware coordinate. There are four
separate conversion functions, the above syntax converts xcoord from a coordinate
relative to the current screen to a hardware coordinate.

Y=Y HARD([n,] ycoord)

Transforms a Y coordinate relative to the current screen into a hardware coordinate. As

before n specifies a screen number for use with the functions. All coordinates will now be
returned relative to this screen.

=l SPRITE (Return current image of a sprite)
Image=I Sprite(n)

This function returns the currentimage number being used by sprite n. A value of zero will
be reported if the sprite is not displayed.

154

12: Blitter objects

While hardware sprites are certainly powerful, they do suffer from a couple of annoying
restrictions. Not only is there a maximum of eight sprites per horizontal line but each sprite
is also limited to just fifteen colours.

The solution is to make use of the Amiga’s infamous Blitter chip. This is capable of
copying images to the screen at rates approaching a million pixels per second! With the
help of the blitter it’s possible to create what are known as bobs (or Blitter objects).

Bobs, like sprites, can be moved around completely independently of the screen
without destroying any existing graphics. But unlike sprites, bobs are stored as part of the
current screen, so you can create them in any graphics mode you wish. This allows you
to generate blitter objects with up to 64 colours. Furthermore the only limit to the number
of bobs you can display is dictated by the available memory.

Of course all this power doesn’'t come without a price. In practice bobs are slightly
slower than sprites and they consume considerably more memory. Therefore there’s a
trade-off between the speed of sprites, and the flexibility of bobs. Fortunately there’s
nothing stopping you from using both bobs and sprites in the same program. This is the
approach which is adopted in the majority of commercial games. Bobs are used for larger
objects like spaceships, while hardware sprites are often reserved for small fast-moving
objects such as missiles.

BOB (Draw a blitter object on the current screen)
BOB n,x,y,i

The BOB command creates bob n at coordinates x,y using image number /.

nis the identification number of the bob. Permissible values normally range from 0 to
63, but the number of bobs may be increased using an option from the AMOS configuration
program. Providing you've enough memory, you can set this limit to any number you wish.

x and y specify the position of the bob using standard screen coordinates. These
coordinates are not the same as the hardware coordinates used by the equivalent SPRITE
command. Like sprites, each bob is controlled through a hot spot. This may be changed
at any time with the HOT SPOT command.

irefers to animage which is to be assigned to the bob from the sprite bank. The format
of this image is identical to that used by the sprites, so you can use the same images for
either sprites or bobs.

After you've created a bob, you can independently change either its position or its
appearance by omitting one or more parameters from this instruction. Any of the numbers
x, y or image may be left out, with the missing parameters retaining their original values.
This is particularly useful if you are animating your bob with AMAL, as it allows you to move
your object anywhere you like, without disturbing your existing animation sequence.
However you must always include the commas in their original order, otherwise you'll be
presented with a syntax error. For example:

Load “AMOS_DATA:Sprites/Octopus.abk”
Flash Off : Get Sprite Palette

Channel 1 To Bob 1

Bob 1,0,100,1

1565

Amal 1,”Anim 0,(1,4)(2,4)(3,4)(4,4)”
Amal On
For X=1 To 320
Bob 1,X,,
Wait Vbl
Next X

Whenever a bob is moved, the area underneath is replaced in its original position,
producing an identical effect to the equivalent SPRITE command.Unlike STOS on the ST,
each objectis allocatedits own individual storage area. This reduces the amount of memory
used by bobs, and improves the overall performance dramatically. Due to the Blitter, of
course, there’s no real comparison between STOS sprites and AMOS bobs.

Although the BOB command works fine for small numbers of bobs, there’s an
annoying flicker when you try to use more than three or four objects on the screen at once.
This happens because the bobs are updated at the same time as the screen. You can
therefore see the bobs while they are being drawn which results in an unpleasant
shimmering effect.

One alternative for improving the quality of your animations is to just limit your bobs
to the bottom quarter of the screen. Since bobs are redrawn extremely quickly, the updates
can often be completed before the lower part of the screen has been displayed. This
provides you with acceptably smooth movements while consuming very little memory, so
it's a useful trick if you're running short of space. See EXAMPLE 12.1.

Obviously this cannot be seen as a serious solution to such a glaring problem. So
before you throw away your copy of AMOS Basic in disgust, you'll be relieved to hear that
there’s a simple way of eliminating this flicker completely, even when you're using dozens
of bobs anywhere on the screen:

DOUBLE BUFFER (Create a double screen buffer)
DOUBLE BUFFER

The DOUBLE BUFFER command creates a second invisible copy of the current screen.
All graphics operations, including bob movements, are now performed directly in this
logical screen, without disturbing your TV picture in the slightest. Once the image has been
redrawn, the logical screen is displayed, and the original physicalscreen becomes the new
logical screen. The entire process now cycles continuously, producing a rock solid display
even when you are moving hundreds of bobs around on the screen at once.

The entire procedure is performed automatically by AMOS Basic, so after you've
executed this instruction you can forget about it completely. Note that since the hardware
sprites are always displayed using the current physical screen, this system will have
absolutely no effect on any existing sprite animations.

Double buffering works equally well in all of the AMIGA’s graphics modes. It can even
be used in conjunction with dual playfields. But be warned: Double buffering doubles the
amount of memory used by your screens. If you attempt to double buffer too many screens,
you'll quickly run out of memory. See EXAMPLE 12.2.

In practice, double buffering is an incredibly useful technique, which can be readily
exploited for most types of games. It has seen service in the vast majority of commercial
games, including Starglider —that's why it's such anintegral part of AMOS Basic. A detailed

156

explanation of this process can be found in the SCREENS Chapter. Also see the SCREEN
SWAP and AUTOBACK commands.

SET BOB (set drawing mode of bob)
SET BOB n,back,planes,minterms

The SET BOB command changes the drawing mode used to display a blitter object on the
screen. nis the number of the bob you wish to affect.

back chooses the way the background underneath your bob will be redrawn. There
are three possibilities:

+ Avalue of zero indicates that the area underneath your bob should be saved in memory.
The old image data is automatically replaced when the bob is moved, resulting in a
smooth movement effect.

- If the back parameter is positive then the original background will be discarded
altogether, and the area behind the bob will be filled with colour back-1. This is ideal for
moving bobs over a solid block of colour such as a clear blue sky, as it's much faster than
the standard drawing system.

« Turn off the redrawing process completely by loading back with a negative value such
as -1. You can now deactivate the automatic updating process using BOB UPDATE, and
manually move your bobs with a call to BOB DRAW. This allows you to regenerate the
screen background using your own customised drawing routines.

planes is a bit-map which tells AMOS which screen planes your bob will be drawn in. As
you may know, the Amiga’s screen is divided up into a number of separate bit-planes. Each
plane sets a single bit in the final colour which is displayed on the screen.

The first plane is represented by bit one, the second by bit two and so on. Normally
the bob is drawn in all the bit-planes in the current screen mode. This corresponds to a bit-
pattern of %111111.

By changing some of these bits to zero, you can omit selected colours from your bobs
when they are drawn. This can be used to generate a number of intriguing screen effects.

minterms selects the blitter mode used to draw your bobs on the screen. A full
description of the available drawing modes can be found in the section on SCREEN COPY.
minterm is usually set to one of two values:

%11100010 If the bob is used with a mask
%11001010 |f NO MASK has been set

Feel free to experiment with the various combinations. There’s no danger of crashing your

Amiga if you make a mistake. Advanced Amiga users may find the following information
useful.

157

Blitter source Purpose
A Blitter Mask
B Blitter object
C Destination screen

Note that you are recommended to use SET BOB before displaying your bobs on the
screen. If you don't, the Amiga won't crash, and you won't get an error message, but your
screen display may be corrupted.

NO MASK (Remove blitter mask)
NO MASK [n]

As adefault, a blitter mask is automatically created for every bob you display onthe screen.
This mask is combined with the screen background to make colour zero transparent. It's
also used by the various collision detection commands.

The NOMASK command removes this mask, and forces the entire image to be drawn
on the screen. Any parts of the image in colour zero will now be displayed directly over the
existing background.

n is the image number whose mask is to be removed. This mask should never be
erased if the image is active on the screen, otherwise the associated bob will be corrupted.
If you must remove the mask in this way, it's important to deactivate the relevant bobs with
BOB OFF first. Here’s an example:

Centre “Click mouse button to remove mask”
Double Buffer : Load “AMOS_Data:Sprites/Octopus.abk” : Get Sprite palette
Do
Bob 1,X Screen(X Mouse),Y Screen(Y Mouse),1
If Mouse Click Then Bob Off : No Mask 1
Loop

See MAKE MASK

AUTOBACK (Set automatic screen copying mode)
AUTOBACK n

When you are using a double buffered screen, it’s essential to synchronize your drawing
operations with the movements of your blitter objects. Remember that each double
buffered screen consists of two separate displays. There’s one screen for the current
picture, and another for the image whilst it's being constructed. If the background
underneath a bob changes while it's being redrawn, the contents of these screens will be
different, and you'll get an intense and annoying flickering effect.

The uniqgue AMOS AUTOBACK system provides you with a perfect solution to this
problem. It allows you to generate your graphics in any one of three graphics modes,
depending on the precise requirements of your program. Just for a change, we'll list these

158

options in reverse order.

AUTOBACK 2 (Automatic mode — default)

In this mode, all drawing operations are automatically combined with the bob updates. So
anything your draw on the screen will be displayed directly underneath your bobs, as if by
magic. The principles behind this system can be demonstrated by the following code.

Rem Draw on first screen

Rem Remove Bobs

Bob Clear

Rem Perform Graphics operation

Plot 150,100 : Rem This can be anything you wish
Bob Draw : Rem Redraw Bobs

Screen Swap : Rem Next Screen

Wait Vbl

Rem Draw object on next screen

Bob Clear

Plot 150,100 : Rem Perform you operation a second time
Bob Draw

Screen Swap : Rem Get Back to first screen

Wait Vbl

As you can see, all screen updates are performed exactly twice. There’s one operation for
both the logical and the physical screen. See EXAMPLE 12.3 for a demonstration.

One obvious side effect, is that your graphics now take twice as long to be drawn.
Furthermore, the program will be halted by at least 2 vertical blanks, (or 2/50th of asecond),
every time you output something to the screen. This may cause annoying delays in the
execution of critical activities such as collision detection.

AUTOBACK 1 (Half-automatic mode)
Performs each graphical operation in both the physical and logical screens. Absolutely no
account is taken of your blitter objects, so you should only use this system for drawing
outside the current playing area.

Unlike the standard mode, there’s no need to halt your program until the next vertical
blank. Mode 1 is therefore ideal for objects such as control panels or hi-score tables, which
need to be updated continually during the game.

AUTOBACK 0 (Manual mode)

Stops the AUTOBACK system in it's tracks. All graphics are now output straight to the
logical screen at the maximum possible speed. You should use this option if you need to
repeatedly redraw large sections of your background screen during the course of a game.
This will allow you to safely perform your collision detection routines at regular intervals,
without destroying the overall quality of the animation effects. Here’s atypical programloop
for you to examine.

Bob Update Off : Rem Kill Automatic screen updates
Repeat
Screen Swap

159

Wait Vbl

Rem Erase your Bobs from the screen

Bob Clear

Rem

Rem Now redraw any of your graphics which have changed.
Rem Perform your game routines (Collision detection etc...)
Rem Update your Bob images

Rem

Bob Draw

Rem Swap Physical and logical screens

Until WIN : Rem Continue until the game has finished

Note that this procedure will only work if there’s a smooth progression from screen to
screen. It's entirely up to you to keep the contents of the physical and logical screens in step
with each other. An example of this technique can be found in EXAMPLE 12.4

Supposing for instance, you wanted to display a bob over a series of random blocks.
You might try to use a routine like :

Load “AMOS_DATA:Sprites/Sprites.abk” : Flash Off : Get Sprite Palette
Double Buffer : Cls 0 : Autoback 0 : Update Off
Bob 1,160,100,1
Do
Bob Clear
X=Rnd(320)+1 : Y=Rnd(200)+1 : W=Rnd(80)+1 : H=Rnd(50)+1 : I=Rnd(15)
Ink I : Bar X,Y TO X+W,Y+H
Rem This would normally be a call to your collision detection routine
Bob Draw
Screen Swap : Wait Vbl
Loop

But since there’s no relationship between the physical and logical screens, the display will
now flick continuously from screen to screen. To overcome this problem, you'll need to
mimic the original AUTOBACK system like so:

Load “AMOS_DATA:Sprites/Sprites.abk” : Flash Off : Get Sprite Palette
Double Buffer : Cls 0 : Autoback 0 : Update Off
Bob 1,160,100,1
Do
Rem Update first screen
Screen Swap : Wait Vbl
Bob Clear
X=Rnd(320)+1 : Y=Rnd(200)+1 : W=Rnd(80)+1 : H=Rnd(50)+1 : I=Rnd(15)
Ink | : Bar X,Y To X+W,Y+H
Bob Draw
Rem Update second screen
Screen swap : Wait Vbl
Bob Clear
Ink I : Bar X,Y To X+W,Y+H

160

i

Bob Draw
Loop

The two screens are now updated with exactly the same information, and the display
remains as steady as a rock, even though there’s a great deal of activity going on in the
background.

Autoback can be safely used at any point in your program. So it's perfectly possible
to use separate drawing methods for the different parts of your screen. It's also totally
compatible with all graphics operations including Blocks, Icons, and Windowing.

Bob control commands
BOB UPDATE (Control bob movements)
BOB UPDATE [ON/OFF]

Normally all bobs are updated once every 50th of a second using a built-in interrupt routine.
Although this is convenient for most programs, there are some applications which require
much finer control over the redrawing process.

BOB UPDATE OFF turns off the bob updates and deactivates all automatic screen
switching operations if they’ve been selected. You may now redraw your bobs at the most
appropriate point in your program using the BOB UPDATE command. This is ideal when
you are animating a large number of objects as it enables you to move your bobs into
position before drawing them on the screen. Inevitably this results in far smoother
movements in your game.

One word of warning: The bob updates will only occur at the next vertical blank. Also
note that BOB UPDATE will always redraw the bobs on the current logical screen, so if you
forget to use the SCREEN SWAP command, nothing will apparently happen.

BOB CLEAR (Remove all the bobs from the screen)
BOB CLEAR

The BOB CLEAR instruction removes all active bobs from the screen, and redraws the
background regions underneath. It's intended for use with BOB DRAW to provide an
alternative to the standard BOB UPDATE command.

BOB DRAW (Redraw bobs)
BOB DRAW

Whenever the bobs are redrawn on the screen, the following steps are automatically
performed:

1. All active bobs are removed from the LOGICAL screen and the background regions are
replaced. This step is performed by BOB CLEAR.

2. A list is made of all bobs which have moved since the previous update.

3. The background regions under the new screen coordinates are saved in memory.

161

4. All active bobs are redrawn at their new positions on the logical screen.
5. If the DOUBLE BUFFER feature has been activated, the physical and logical screens
are now swapped.

The BOB DRAW command performs steps 2 to 4 of this process directly. Supposing you
wished to create a screen scrolling arcade game. In this situation, it would be absolutely
vital for your scrolling operations to be perfectly synchronized with movement effects. If the
aliens were to move while the scrolling was taking place, their background areas would be
redrawn at the wrong place. This would totally corrupt your display, and would result in a
hopeless jumble on the screen. Load EXAMPLE 12.5 from the MANUAL folder for a
demonstration of this process:

=X BOB (Get X coordinate of bob)
x1=X BOB(n)

Returns the current X coordinate of bob number n. This coordinate is measured relative to
the current screen. See also Y SPRITE, X MOUSE and Y MOUSE .

=Y BOB (Get Y coordinate of bob)
y1=YBOB(n)
Y BOB complements the X BOB command by returning the Y coordinate of bob number

n. The value will be returned using normal screen coordinates. See also X BOB, X SPRITE,
Y SPRITE, X MOUSE and Y MOUSE.

=| BOB (Return current image of a bob)
Image=! Bob(n)

This function returns the current image number being used by bob n. A value of zero will
be reported if the bob is not displayed.

LIMIT BOB (Limit a bob to a rectangular region of the screen)
LIMIT BOB [n,] x1,y1 TO x2,y2

This command restricts the visibility of your bobs to a rectangular screen area enclosed by
the coordinates x1,y1 to x2,y2 measured relative to the current screen. The x coordinates
are rounded up to the nearest 16—pixel boundary. Note that the width of this region must
always be greater than the width of your bobs, otherwise you'll get an illegal function call
error.

If it's included, n specifies the number of a single bob which is to be affected by this
instruction, otherwise all bobs will be restricted. You can restore the visibility limit to the
entire screen by typing:

Limit Bob

162

GET BOB (Load a section of the screen into the sprite bank)
GET BOB [s,] i,x1,y1 To x2,y2

This instruction is identical to the GET SPRITE command. Itgrabs animage into the sprite
bank from the current screen.
x1,y1to x2,y2 are the coordinates of the top and bottom corners of the rectangular
area to be grabbed. -
ispecifies the image number which is to be loaded with this area. sselects an optional
screen number from which the image is to be taken. See GET SPRITE for more details.
For example:

Load Iff “AMOS_DATA:IFF/AMOSPIC.IFF”
Get Sprite 1,0,64 To 320,164

Clw

Bob 1,0,0,1

A larger example can be found in EXAMPLE 12.6.This loads a picture into memory and
allows you to grab a bob into the sprite bank from any section of the screen. See HOTSPOT
and MASK.

PUT BOB (Fix a copy of a bob onto the screen)
PUT BOB n

This is the exact opposite of the previous GET BOB command. The action of PUTBOBis
to place a copy of bob number natits present position on the screen. It works by preventing
the background underneath the bob from being redrawn during the next vertical blank
period. In order to synchronise the bob updates with the screen display, you should always
follow this command with a WAIT VBL instruction.

Note that after this instruction has been performed, the original bob may be moved
or animated with no ill effects.

PASTE BOB (Draw an image from the sprite bank on the screen)
PASTE BOB x,y,i
The PASTE BOB command draws a copy of image number i at screen coordinates x,y.

Unlike PUT BOB this image is drawn on the screen immediately, and all the normal clipping
rules are obeyed. See PASTE ICON.

BOB OFF (Remove a bob from the display)
BOB OFF [n]

Occasionally, you may wish to remove certain bobs from the screen altogether. The BOB
OFF command erases bob number n from the screen and terminates any associated

163

animations. If nis omitted, all bobs will be removed by this instruction. Try the following:

Load “AMOS_DATA:Sprites/Octopuss.abk”
Get Sprite Palette

Bob 2,110,110,2

Wait Key

Bob Off 2

Direct

164

amms 13: Object control

In this section you will find out how the various objects generated using the sprite and bob
commands can be controlled from within an AMOS Basic program. The topics under
discussion include collision detection, using the mouse cursor and reading the joystick.

The mouse pointer

The mouse cursor provides the games programmer with a valuable alternative to the
standard joystick. With the CHANGE MOUSE command you can replace the mouse with
an image in the current sprite bank. There’s also a group of instructions which allow you
to determine both the position and status of this mouse at any time. These include the X
MOUSE, Y MOUSE and MOUSE KEY instructions.

HIDE (Remove mouse pointer from the screen)
HIDE [ON]

This command removes the mouse pointer from the screen completely. A count of the
number of occasions you have called this function is kept internally by the system. This
needs to be matched by an equal number of SHOW instructions before the pointer will be
returned on the screen.

There’s also another version of this instruction which can be accessed with HIDE ON.
This ignores the count and always hides the mouse, no matter how many times you've
called the SHOW command.

Note that HIDE only makes the mouse pointer invisible. It has no effect on any other
AMOS commands, so you can still use the X MOUSE and Y MOUSE functions to read the
coordinates of the mouse as normal.

SH ow (Activate the mouse pointer)

SHOW [ON]

This returns the mouse pointer to the screen after a HIDE instruction. As a default, a count
is kept of the number of previous HIDE commands. If the number of SHOWs is less than

the number of HIDEs the pointer will stay invisible. To ignore this count and activate the
mouse immediately, use the SHOW ON command instead.

CHANGE MOUSE (Change the shape of the mouse pointer)
CHANGE MOUSE m

This allows you to change the shape of the mouse at any time. Three mouse patterns are
provided as standard. These can be assigned using the numbers 1 - 3 as follows:

165

M Shape

1 Arrow pointer (Default)
2 Crosshair

3 Clock

If you specify a value of mgreater than 3, this is assumed to refer to an image stored in the
sprite bank. The number of this image is determined using the expression /=m-3. Soimage
number 1 would be installed by a value of 4, and image 2 would be loaded by a 5.

In order to use this option, your sprite image must be exactly 16 pixels wide and have
no more than four colours. However there’s no such limit to the height of your image. See
also HIDE, SHOW, X MOUSE, Y MOUSE, MOUSE KEY, LIMIT MOUSE.

=MOUSE KEY (Read status of mouse buttons)
k=MOUSE KEY

The MOUSE KEY function enables you to quickly check whether one or more of the mouse
keys have been pressed. It returns a bit-pattern which holds the current status of the mouse
buttons.

This bit-pattern has the following format:

Bit0 Set to 1 if the LEFT button pressed, otherwise zero
Bit 1 Status of RIGHT button using the same format
Bit 2 Status of THIRD button if available

Example:

Curs Off
Do

Locate 0,0
M=Mouse Key: Print “Bit Pattern “;Bin$(M,8);” Number”,M
Loop

=MOUSE CLICK (Check for a mouse click)
¢=MOUSE CLICK

The MOUSE CLICK function checks whether the user has “clicked” on a mouse
button. It returns a bit-pattern in the format:

Bit 0 One shot test for LEFT button
Bit 1 One shot test for RIGHT Button
Bit 2 One shot test for THIRD Button if available

One shot tests are only setto 1 when the mouse key has just been pressed. These bits are
automatically reset to zero after they’ve been tested once. So they will only check for a

166

single key press at a time. Here’s an example:

Curs Off
Do
M=Mouse Key

If M<>0 Then Print “Bit Pattern “;Bin$(M,8);” Number”,M
Loop
=X MOUSE= (Get /set the X coordinate of the mouse pointer)

x1=X MOUSE

X MOUSE returns the current X coordinate of the mouse pointer in hardware notation.
You canalso use this function to move the mouse on to a specific screen position. This
can be achieved by assigning X MOUSE with avalue, just like a Basic variable, for example:

X Mouse=150 : Rem Moves mouse to hardware coordinate 150, Y coord is not affected

=Y MOUSE= (Get/set the Y coordinate of the mouse pointer)
y1=Y MOUSE

This function returns the Y coordinate of the mouse pointer. As with X MOUSE the resulit
uses hardware coordinates rather than the more normal screen coordinates. Y MOUSE
can also be used to reposition the mouse pointer on the screen. Simply load the new
coordinate into Y MOUSE like so:

Y Mouse=100

For an example of the X MOUSE and Y MOUSE functions load EXAMPLE 13.1 from the
MANUAL folder.

LIMIT MOUSE (Limit mouse to a section of the screen)
LIMIT MOUSE x1,y1 TO x2,y2

Restricts mouse movements to the rectangular area defined by the hardware coordinates
(x1,y1) and (x2,y2). x1,y1 denotes the top left hand corner of this box and x2,y2 the point
diagonally opposite. Note that unlike LIMIT BOB, the mouse is completely trapped inside
this zone and cannot be moved beyond it. Load up EXAMPLE 13.2 from the manual folder
for a demonstration of this command. Simply use the instruction with no parameters to
restore the mouse to the full screen area.

Limit Mouse
Reading the joystick

AMOS Basic includes six functions which allow you to immediately check the movements
of a joystick inserted in either of the available sockets.

167

=JOY (Read joystick)
d=JOY(j)

This function returns a binary number which represents the current status of a joystick in
port number j. Normally your joystick will be placed in the left socket (number 1). However
you can remove the mouse from the right-hand socket and replace it with a joystick. This
can be accessed using port number zero.

The state of the joystick can be read by inspecting the pattern of binary bits in the
result. Each bitindicates whether a specific action has been performed by the user. If a bit
is set to one then the test has proved positive and the joystick has been moved in the
appropriate direction.

Here’s a list of the various bits and their meanings:

Bit number Significance

Joystick moved up
Joystick moved down
Joystick moved left
Joystick moved right
Fire button pressed

A WON—=O

Don’t worry if you are not familiar with this binary notation. You can also access each of
the directions individually with the functions JLEFT, JRIGHT, JUP, JDOWN and FIRE. See
EXAMPLE 13.3 for a demonstration of this command.

=JLEFT (Test joystick movement left)

x=JLEFT(j)
JLEFT returnsavalue of -1 (True) if the joystick in port jhas been pulled to the left, otherwise
0 (False) is returned. The joystick sockets are numbered from right to left, starting at zero.
So the default joystick socket is accessed using port number 1. For example:

Do

If Jleft(1) Then Print “LEFT”
Loop

=JRIGHT (Test joystick movement right)
x=JRIGHT(j)

JRIGHT tests joystick number jand returns -1(True) if has been moved right, otherwise 0
(False). See JLEFT, JUP, JDOWN.

=JUP (Test joystick movement up)

168

x=JUP(j)
JUP returns -1 ifjoystick jhas been pushed up, otherwise 0. See JRIGHT, JLEFT, JDOWN.

=JDOWN (Test joystick movement down)
x=JDOWN(j)

The JDOWN function returns the value -1 if a joystick has been pulled down, otherwise it
returns 0. See JRIGHT, JLEFT, JUP.

=FIRE (7est fire button state)
x=FIRE(j)

This function only returns a value of -1 if the fire button on joystick number j has been
pressed. See JUP, JDOWN, JLEFT, JRIGHT, JOY .

Detecting collisions

If you're writing an arcade game it's vital to be able to accurately check for collisions
between the various objects on the screen. AMOS Basic includes five powerful functions
which allow you to perform these tests quickly and easily.

Detecting collisions with a sprite

SPRITE COL (Detect collisions between two hardware sprites)
¢=SPRITE COL(n[,s TO €])

This provides you with a simple way of testing to see whether two or more sprites have
collided on the screen. The number n refers to an active hardware sprite which is to be
checked for a collision. If a collision has occurred a value of -1 (true) will be returned,
otherwise the result will be set to 0 (false).

The standard form of this function checks for all collisions. But you can also test a
whole group of sprites using an extended version of the command:

¢=SPRITECOLNn,sTOe

The above instruction checks for collisions between sprite nand sprites sto e (inclusive).
Once you've detected a collision, you can then get the individual sprite numbers which have
collided using the COL function.

Note that in order to use this function, you'll need to create a sprite mask with the
MASK command first, otherwise your collisions will not be detected. A detailed example
of this command can be found in EXAMPLE 13.4.

169

Detecting collisions with a bob

BOB COL (Detect collisions between two Blitter objects)
c=BOB(n [,s TO €])

The BOB COL function checks bob number n for a collision with another bob. If a collision
has been detected, the value returned in cwill be setto -1 (true), otherwise it will be loaded
with O(false).

Normally the command will check for all collisions, but you can specify a collection of
bobs to be tested using the optional range parameters sto e. The status of these bobs can
be individually examined with the COL command. See EXAMPLE 13.5.

Collisions between bobs and sprites
In AMOS Basic you're not just limited to detecting collisions between the same types of
objects. It's also possible to check for any combination of sprites and bobs on the screen.

SPRITEBOB COL (Test for a collision between sprites and bobs)
¢=SPRITEBOB COL(n [,s TO €])

This function checks for a collision between sprite n and one or more bobs. The value of
c will be either -1 if a collision has been discovered, or 0 if there have been no collisions.
The starting and ending points specify that collisions will only be detected between the bobs
sto e. If they are not included then all active bobs will be tested by this function. See the
COL command for more details.

Warning! Collision detection between a sprite and a bob is only possible on a low
resolution screen. In Hires mode, the pixel sizes used for bobs and sprites are totally
different, and the results from this function will be unreliable.

BOBSPRITE COL (Test for collision between bobs and sprites)
¢=BOBSPRITE COL(n [,s TO €])

The BOB SPRITE COL function checks for collisions between a single bob and several
sprites. If the test is successful a value of -1 will be returned, otherwise it will return a 0. The
optional range parameters list a group of sprites to be tested from sto e. If itis omitted then
all the currently active sprites will be checked by this function.

Note thatBOB SPRITE COL only works with low resolution screens. So don't attempt
to use it in conjunction with Hires or you'll get an unpredictable result. A full demonstration
of this command can be found in EXAMPLE 13.6 in the MANUAL folder.

=COL (Test the status of a sprite or bob after a collision detection instruction)
¢=COL(n)

The COL array holds the status of all the objects which have been previously tested by the
collision detection functions.

170

Each object you have checked is associated with one element in this array. This
element will be loaded with -1 if a collision has been detected with object number n, or 0
if it has not. The numbering system is simple: The first element in the array holds the status
of object number 1, the second represents object number 2, and so on. See EXAMPLE
13.7.

If you are using the SPRITE COL or BOB SPRITE COL instructions then the objects
will be hardware sprites, otherwise they will be Blitter objects. In order to avoid confusion,
it's sensible to call this instruction immediately after the relevant detection command.

HOT SPOT (Set the hot spot for an image in the sprite bank)

HOT SPOT image,x,y
HOT SPOT image,p

This command sets the hot spot of an image stored in the current sprite bank. The hot spot
of the object is used as a reference point for all coordinate calculations. There are two
versions of this instruction.

HOT SPOT image,x,y
x and y coordinates measured from the top left hand corner of the image. These

coordinates will be added to the sprite or bob coordinate to position an object precisely on
the screen.

Sprite Image

Y

Hot Spot

Note that it's perfectly legal for the hot spot to lie outside the actual image.
HOT SPOT image,p

This is a short form of the instruction which moves the hot spot to one of nine predefined

171

positions. The positions are shown in the diagram below where the centre point of the
image is represent by a value of $11.

$00 $10 $20
$01 $11 $21
$02 $12 $22

See EXAMPLE 13.8.

MAKE MASK (Make a mask around an image for collision detection)
MAKE MASK [n]

MAKE MASK defines a mask around image number nin the sprite bank. This is used by
all the AMOS Basic collision detection commands. You should therefore create a mask for
every object you wish to check. If you omit the image number n, then a mask will be
generated for each image in the sprite bank. This may take a little time.

It's important to note that masks are generated automatically when a bob is firstdrawn
on the screen. This might cause a significant delay in the running of your program, so it's
worthwhile placing an explicit call to MAKE MASK during your initialisation procedure.

Collisions with rectangular blocks

AMOS Basic includes a number of functions which allow you to quickly check whether a
sprite or bob has entered a rectangular region of the screen.

These screen zones are especially useful for collision detection in rebound games
such as Arkanoid as each block can be assigned its own individual screen zone. You can
also use zones to construct the buttons and switches needed for control panels and
dialogue boxes.

RESERVE ZON E (Reserve space for a detection zone)
RESERVE ZONE [n]

RESERVE ZONE allocates enough memory for exactly ndetection zones. This command
should always be used before defining a zone with SET ZONE.
The only limit to the number of zones is the amount of available memory, so it's
perfectly feasible to define hundreds or even thousands of zones in one of your programs.
To erase the current zone definitions and restore the memory back to the main
program, simply type RESERVE ZONE with no parameters.

SET ZONE (Set a zone for testing)
SET ZONE z,x1,y1 TO x2,y2
Defines a rectangular zone which can be subsequently tested using the various ZONE

commands. z specifies the number of the zone to be created and x1,y 7 and x2,y2input the
coordinates of the top left and bottom right hand corners of the rectangle.

172

Before using this instruction you'll need to reserve some space for your zones with
RESERVE ZONE.

See ZONE, RESET ZONE , RESERVE ZONE, ZONES.

=ZONE (Return the zone under the requested screen coordinates)

t=ZONE([s],x,y)

ZONE returns the number of the screen zone at the graphic coordinates x,y. Normally the
coordinates are relative to the current screen — you can also include an optional screen
number s in this function.

After ZONE has been called, twill hold either the number of the zone at the specified
coordinates or a value of 0 (false).

Note that ZONE only returns the first zone at these coordinates — it won’t detect any
other zones which lie inside this region.

In order to demonstrate this command we've included two examples programs in the
MANUAL folder. These can be found in the files EXAMPLE 13.9 and EXAMPLE 13.10.
Feel free to modify them for use in your own games.

It's possible to use this function in conjunction with the X BOB and Y BOB functions
to detect whether a bob has entered a specific screen zone. This can be accomplished
using the following code:

X=Zone(X Bob(n),Y Bob(n))

See HZONE, SET ZONE, RESET ZONE, X BOB, Y BOB.

=HZONE (Return the zone under the requested hardware coordinates)
t=HZONE([s],x,y)

HZONE is almost identical to ZONE except that the screen position is now measured in
hardware coordinates. You can therefore use this function to detect when a hardware sprite
enters one of your screen zones. For example:

X=Hzone(X Sprite(n),Y Sprite(n))

A demonstration of this command can be found in EXAMPLE 13.11. See ZONE,MOUSE
ZONE,SET ZONE,RESERVE ZONE,ZONES$.

=MOUSE ZONE (Check whether the mouse pointer has entered a zone)
x=MOUSE ZONE

The MOUSE ZONE function returns the number of the screen zone currently occupied by
the mouse pointer. It's equivalent to the line:

X=Hzone(X mouse,Y mouse)

173

See ZONE, HZONE, SET ZONE, ZONES$.

RESET ZONE (Erase a zone)
RESET ZONE [z]

This command permanently deactivates any of the zones created by SET ZONE. If the
optional zone number zis included then only this zone will be reset, otherwise all the zones
will be affected. Note that RESET ZONE only erases the zone definitions, it does not return
the memory allocated by RESERVE ZONE.

Bob priority
PRIORITY ON/OFF (Change between priority modes)

PRIORITY ON/OFF

Each bob is assigned a priority value ranging from 0-63. AMOS Basic uses this number to
decide which order the objects should be displayed on the screen. As a rule, any bob with
the highest priority will always be displayed in front of any objects with a lower priority. The
priority value is taken directly from the number of a Bob.

You should remember this fact when assigning numbers to your bobs. The choice of
number can have wide ranging effects on the appearance of your objects on the screen.

In addition to the standard system, it's also possible to arrange the bobs according to
their position on the screen. PRIORITY ON assigns the greatest priority values to the bobs
with the highest Y coordinates. This allows you to create a useful illusion of perspective in
your games. Look at the example below.

Load “AMOS_DATA/Sprites/Monkey_right.abk” : Cls : Flash Off : Get Sprite Palette
Double Buffer

Priority Off : Rem Set Normal Mode

Bob 1,160,100,2 : Bob 2,0,74,2 : Bob 3,320,128,2

Channel 2 To Bob 2 : Channel 3 To Bob 3

Amal 2,” Loop: M 320,0,320 ; M -320,0,320 ; Jump Loop”
Amal 3,” Loop: M -320,0,320 ; M 320,0,320 ; Jump Loop”
Amal On

Wait Key

Priority On : Rem Set Y Mode

Wait Key

Normally, both moving bobs pass below the object in the centre. When you change the
priority system with a call to PRIORITY ON, the bobs are now ranked in order of their
increasing Y coordinates. So bob three moves above bob one while at the same time, bob
two passes smoothly behind it.

HINT: It's usually best to position the Hot Spot of the sprite at its base. This is because
the Y coordinates used by this command relate to the position of the Hot Spot onthe screen.
Also notice that the PRIORITY OFF instruction can be utilised to reset the priority back to
normal.

174

Miscellaneous commands

UPDATE (Change automatic sprite/bob updates)

UPDATE [ON/OFF]

Normally any objects you draw on the screen will be automatically redisplayed whenever
they are animated or moved. This feature can be temporarily halted using the UPDATE
OFF command. When the updates are not active the SPRITE, BOB and AMAL commands
apparently have no effect. Actually, all your animations are working correctly —it's just that
the results are not being displayed on the screen. You can force this redrawing operation
atany time using the UPDATE command. Here are the three different forms of the UPDATE
instruction:

UPDATE OFF

Turns off the automatic updating of both the sprites and bobs. Any movements or
animations will appear to be suspended.

UPDATE
Redraws any sprites which have changed their original positions.
UPDATE ON

Returns the sprite updating to normal. See EXAMPLE 13.12. See UPDATE EVERY,
SYNCHRO, SPRITE UPDATE, BOB UPDATE.

175

= 14: AMAL

If you wish to generate the smooth movement required in an arcade game, it's necessary
to move each object on the screen dozens of times a second. This is a real struggle even
in machine code and it's way beyond the abilities of the fastest version of Basic.

AMOS sidesteps this problem by incorporating a powerful animation language which
is executed independently of your Basic programs. This is capable of generating high
speed animation effects which would be impossible in standard Basic.

The AMOS Animation Language (AMAL) is unique to AMOS Basic. It can be used to
animate anything from a sprite to an entire screen at incredible speed. Up to 16 AMAL
programs can be executed simultaneously using interrupts.

Each program controls the movements of a single object on the screen. Objects may
be moved in complex predefined attack patterns, created from a separate editor accessory.
You can also control your objects directly from the mouse or joystick if required.

The sheer versatility of the AMAL system has to be seen to be believed. Load up 1
from the MANUAL folder for a complete demonstration.

AMAL principles

AMAL is effectively just a simple version of Basic which has been carefully optimised for
the maximum possible speed. As with Basic, there are instructions for program control
(Jump), making decisions (If) and repeating sections of code in loops (For...Next). The real
punch comes when an AMAL program is run. Not only are the commands lightning fast but
all AMAL programs are compiled before run-time.

AMAL commands are entered using short keywords consisting of one or more capital
letters. Anythingin lowercase is ignored completely. This allows you to pad out your AMAL
instructions into something more readable. So the M command might be entered as Move
or the L instruction as Let.

AMAL instructions can be separated by practically any unused characters including
spaces. You can’'t however, use the colon “” for this purpose, as it's needed to define a
label. We advise you use a semi-colon “;” to separate commands to avoid possible AMAL
headaches.

‘There are two ways of creating your AMAL programs. The first is to produce your
animation sequences with the AMAL accessory program and save them into a memory
bank or you candefine your animations inside AMOS Basic using the AMAL command. The
genéral format of this instruction is:

AMAL n,a$

nis the identification number of your new AMAL program. As a default all programs are
assignedto the relevant hardware sprite. So the first AMAL program controls sprite number
one, the second sprite number two, and so on. You can change this selection at any time
using a separate CHANNEL command. a$is a string containing a list of AMAL instructions
to be performed in your program. Here’s a simple example:

Load “AMOS_DATA:Sprites/Monkey_right.abk” : Rem Load some example sprites

Get Sprite Palette
Sprite 8,130,501 : Rem Place a sprite on the screen

176

Amal 8,”S: M 300,200,100 ; M -300,-200,100 J S” : Rem Define a small AMAL program
Amal On 8 : Rem Activate AMAL program number eight
Direct

The program returns you straight back to direct mode with the DIRECT command. Try
typing a few Basic commands at this point. You can see the movement pattern continues
regardless, without interfering with the rest of the AMOS system. Also note we have used
sprite 8 to force the use of a computed sprite. All computed sprites from 8 to 15 are
automatically assigned to the equivalent channel number by the AMAL system. So there’s
no need for any special initialisation procedures. Unless you wish to restrict the amount of
hardware sprites it's safest to stick to just computed sprites in your programs. Notice how
we’ve activated the AMAL program using the AMAL ON command. This has the format:

AMAL ON [prog]

prog is the number of a single AMAL program you wish to start. If it's omitted then all your
AMAL programs will be executed at once.

AMAL tutorial

We'll now provide you with a guided tour of the AMAL system. This will allow you to slowly
familiarise yourself with the mechanics of AMAL programs, without having to worry about
too many technical details.

For the time being we'll be concentrating on sprite movements, but the same
principles can also be applied to bob or screen animations.

Start off by loading some example sprites into memory. These can be found in the
Sprites folder on the AMOS data disc. To get a directory of Sprite files type the following
from the direct window:

Dir “AMOS_DATA:”
To load a sprite file, type a line like:

Load “AMOS_DATA:Sprites/octopus.abk”

Moving an object

As you would expect from a dedicated animation language, AMAL allows you to move your
objects in a variety of different ways. The simplest of these involves the use of the Move
command.

Move (Move an object)
M w,h,n

The M command moves an object w units to the right and h units down in exactly n
movement steps. If the coordinates of your object were (X,Y), then the object would
progressively move to X+W,Y+H.

Supposing you have a sprite at coordinates 100,100. The instruction M 100,100,100

177

would move it to 200,200. The speed of this motion depends on the number of movement
steps. If nis large, then each individual sprite movement will be small and the sprite will
move very slowly. Conversely, a small value for nresults in large movement steps which
jerk the sprite across the screen at high speed. Here are some examples of the move
command:

Rem This moves an octopus sprite down the screen using AMAL
Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
sprite 8,300,0,1

Amal 8,”M 0,250,50" : Amal On 8 : Wait Key

Rem This version moves an octopus sprite across the screen
Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
Sprite 9,150,150,1

Amal 9,”M 300,0,50" : Amal On 9 : Wait Key

Rem Moves octopus down and across the screen

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
Sprite 10,150,150,1

Amal 10,”M 300,-100,50" : Amal On 10 : Wait Key

Rem Demonstrates multiple Move commands

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
M$="Move 300,0,50 ; Move -300,0,50"

Sprite 11,150,150,1

Amal 11,A$: Amal On 11 : Wait Key

Notice how we've expanded M to Move in the above program. Since the letters “ove” are
in lower case, they will be ignored by the AMAL system.

At first glance, Move is a powerful but unexciting little instruction. It's ideal for moving
objects such as missiles, but otherwise it's pretty uninspiring.

Actually nothing could be further from the truth. That’s because the parameters in the
Move instruction are not limited to simple numbers. You can also use complex arithmetical
expressions incorporating one of a variety of useful AMAL functions. Example:

Load “AMOS_DATA:Sprites\octopus.abk” : Get Sprite Palette : Sprite 12,150,150,1
Amal 12,”Move XM-X,YM-Y,32"
Amal On 12 : Wait Key

This smoothly moves computed sprite 12 to the current mouse position. X and Y hold the
coordinates of your sprite, and XM and YM are functions returning the current coordinates
of the mouse.

It's possible to exploit this effect in games like Pac-Man to make your objects chase
the player’s character. A demonstration of this procedure can be found in 2.

The Move command can also be used to animate a whole screen. Here’s a simple
example:

Load Iff “AMOS_DATA:IFF/Frog_Screen.IFF”,1

178

Channel 1 To Screen Display 1 : Rem Assigns AMAL program 1 to screen 1
Amal 1,”Move 0,-200,50 ; Move 0,200,50"
Amal On 1: Direct

CHANNEL assigns an AMOS program to a particular object. We'll be discussing this
command in detail slightly later, but the basic format is:

CHANNEL p To object n

pis the number of your AMAL program. Allowable values range from 0 to 63, although only
the first 16 of these programs can be performed using interrupts.

object specifies the type of object you wish to control with your AMAL program. This
is indicated using one of the following statements:

Sprite (Values greater than seven refer to computed sprites)
Bob (Blitter object)

Screen Display (Used to move the screen display)

Screen Offset (Hardware scrolling)

Screen Size (Changes the screen size using interrupts)

Rainbow (Animates a rainbow effect)

nis the number of the object to be animated. This object needs to be subsequently defined
using the SPRITE, BOB or SCREEN OPEN instructions. Examples:

Channel 2 To Bob 1 : Rem Animate Bob 1 using AMAL program number 2
Channel 3 To Sprite 8 : Rem Assign channel three to a computed sprite
Channel 4 To Screen Display 0 : Rem Move default screen via AMAL
Channel 5 To Screen Offset 0 : Rem Change the screen offset within AMAL

Animation

Anim (Animate an object)
A n,(image,delay)(image,delay)...

The Anim instruction cycles an object through a sequence of images, producing a smooth
animation effect. nis the number of times the animation cycle is to be repeated. A value
of zero for this parameter will perform the animation continuously.

image specifies the number of an image to be used for each frame of your animation.
delay determines the length of time this image is to be displayed on the screen, measured
in units of a 50th of a second. Examples:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
Sprite 8,260,100,1

Amal 8, “A 0,(1,2)(2,2)(3,2)(4,2)”

Amal On 8 : Direct

Load “AMOS_DATA:Sprites/Monkey_right.abk” : Get Sprite Palette

179

Sprite 9,150,50,11

M$="Anim 12, (1,4)(2,4)(3,4)(4,4)(5,4)(6,4) ; “
M$=M$+”Move 300,150,150 ; Move -300,-150,75"
Amal 9,M$

Amal On 9

Direct

The second example combines a sprite movement with an animation. Notice how we've
separated the commands with a semi-colon “;”. This ensures that the two operations are
totally independent of each other. Once the animation sequence has been defined, AMAL
will immediately jump to the next instruction, and the animation will begin.

It's important to realize that Anim only works in conjunction with sprites and bobs. So
it's not possible to animate entire screens with this command.

Simple Loops
Jum P (Redirects an AMAL program)

J label

Jump provides a simple way of moving from one part of an AMAL program to another. /abe/
is the target of your jump, and must have been defined elsewhere in your current program.

All AMAL labels are defined using a single uppercase letter followed by a colon. Like
instructions, you can pad them out with lower case letters to improve readability. Here are
some examples:

S:
Swoop:
Label:

Remember that each label is defined using just a single letter. So S and Swoop actually
refer to the same label! If you attempt to define two labels starting with an identical letter,
you'll be presented with a label already defined in animation string error.

Each AMAL program can have its own unique set of labels. Its perfectly acceptable
to use the identical labels in several different programs. Example:

Load “AMOS_DATA:Sprites/octopus.abk”
Get Sprite Palette
Rem Set up seven computed sprites down the screen
For S=8 To 20 Step 2
Sprite S,200,(S-7)*13+40,1
Next S
Rem Create seven AMAL programs
ForS=1To 7
Channel S To Sprite 6+(5*2)
M$="Anim 0,(1,2)(2,2)(3,2)(4,2) ; Label: Move “+Str$(S*2)+”,0,7 ;
M$=M$+"Move -"+Str$((6-2)*2)+”,0,7 ; Jump Label”

180

(-

s

Amal S,M$
Next S
Rem Okay, now animate it all!
Amal On : Direct

This next example repeatedly moves a sprite to the current mouse position:

Load “AMOS_DATA:Sprite/octopus.abk”

Get Sprite Palette

Sprite 8,150,150,1

Amal 8,”R: Move XM-X,YM-Y,8 ; Pause; Jump R”
Amal On 8

Since AMAL commands are performed using interrupts, infinite loops could be disastrous.
So a special counter is automatically kept of the number of jumps in your program. When
the counter exceeds ten, any further jumps will be totally ignored by the AMAL system.
Note: if you rely on this system, and allow your programs to loop continually, you'll
waste a great deal of the Amiga’'s computer power. In practice, it's much more efficient to
limit yourself to just a single jump per VBL. This can be achieved by adding a simple
PAUSE command before each Jump in your program. See PAUSE for more details.

Variables and expressions

Let (assigns a value to a register)

L register=expression

The L instruction assigns a value to an AMAL register. The action is very similar to normal
Basic, except that all expressions are evaluated strictly from left to right.

Registers are integer variables used to hold the intermediate values in your AMAL
programs. Allowable numbers range between -32768 to +32767. There are three basic
types of register:

Internal registers
Every AMAL program has its own set of 10 internalregisters. The names of these registers
start with the letter R, followed by one of the digits from 0 to 9 (R0-R9).

Internal registers are like the local variables defined inside an AMOS Basic procedure.

External Registers
External registers are rather different because they retain their values between separate
AMAL programs. This allows you to use these registers to pass information between
several AMAL routines. AMAL provides you with up to 26 external registers, with names
ranging from RA to RZ.

The contents of any internal or external register can be accessed directly from your
Basic program using the AMREG function (explained later).

181

Special Registers
Special registers are a set of three values which determine the status of your object.

X, Y contain the coordinates of your object. By changing these registers you can move
your object around on the screen. Example:

Load “AMOS_DATA:Sprites/Frog_Sprites.abk” : Channel 1 To Bob 1
Flash Off : Get Sprite palette : Bob 1,0,0,1

Amal 1,”Loop: Let X=X+1 ; Let Y=Y+1; Pause; Jump Loop”

Amal On 1 : Direct

A stores the number of the image which is displayed by a sprite or bob. You can alter this
value to generate your own animation sequences like so:

Load “AMOS_DATA:Sprites/Frog_Sprites.abk” : Get Sprite Palette : Flash Off
Channel 2 to Bob 1 : Bob 1,300,100,1

M$="Loop: Let A=A+1; “

M$=M$+”For R0=1 To 5 ; Next RO ; Jump Loop”

Amal 2,M$

Amal On 2 : Direct

The For To Next loop will be explained in more detail below. It is used here to slow down
each changeto Bob 1’simage. When the Nextof the loop is executed, AMAL won’t continue
until a vertical blank has occurred. Also note the use of “;”to separate the AMAL instructions
— although a space will serve just as well.

Operators
AMAL expressions can include all the normal arithmetic operations, except MOD. You can
also use the following logical operations in your calculations:

& logical AND
| logical OR

Note thatit's not possible to change the order of evaluation using brackets “()” as this would
slow down your calculations considerably and thus reduce the allowable time in the
interrupt. Now for some more examples for you to type in:

Load “AMOS_DATA:Sprites/octopus.abk” : Hide

Get Sprite Palette

Sprite 8,X MOUSE,Y MOUSE,1

Amal 8,”Loop: Let X=XM ; Let Y=YM ; Pause ; Jump Loop”
Amal On 8

Load “AMOS_DATA:Sprites/octopus.abk” : Hide

Get Sprite Palette

Sprite 8,X MOUSE,Y MOUSE,1

Amal 8,”Anim 0,(1,4)(2,4)(3,4)(4,4) ; Loop: Let X=XM ; Let Y=YM ; Pause ; Jump Loop”
Amal On

182

The above examples effectively mimic the CHANGE MOUSE command. However this
system is much more powerful as you can easily move bobs, computed sprites, or even
screens using exactly the same technique.

Making Decisions

If (Branch within an AMAL string)
If test Jump L

This instruction allows you to perform simple tests in your AMAL programs. If the
expression test is -1 (true) the program will jump to label L, otherwise AMAL will
immediately progress to the next instruction. Note that unlike it's basic equivalent, you're
limited to a single jump operation after the test.

It's common practice to pad out this instruction with lowercase commands like “then”
or “else”. This makes the action of the command rather more obvious. Here’s an example:

If X>100 then Jump Label else Let X=X+1

test can be any logical expression you like, and may include:

<> Not equals
< Less than
> Greater than
= Equals
Example:
Load “AMOS_DATA:Sprites/octopus.abk”
Get Sprite Palette
Sprite 8,130,50,1

C$="Main: If XM>100 Jump Test: “
C$=C$+” Let X=XM"

C$=C$+” Test: If YM>100 Jump Main “
C$=C$+” Let Y=YM Jump Main”

Amal 8,C$: Amal On : Direct

A larger example can be found in 4 which allows you to control the position of a sprite using
the joystick. This is actually quite crude and could be speeded up dramatically with the help
of the AUTOTEST command. See AUTOTEST.

Warning! Don’t try to combine several tests into a single AMAL expression using “&” or “|".
Since expressions are evaluated from left to right, this will generate an error. Take the
expression: X>100[Y>100. This is intended to check whether X>100 OR Y>100. In
practice, the expression will be evaluated in the following order:

X>100 May be TRUE or FALSE
Y OR result with Y

| 183
O

>100 Check if (Y>100]Y)>100)

The result from the above expression will obviously bear no relation to the expected value.
Technically-minded users can avoid this problem by using boolean algebra. First assign
each test to an single AMAL register like so:

Let R0O=X>100; Let R1=Y>100

Now combine these tests into a single expression using “|” and “&” and use it directly in your
If statement.

If RO | R1 then Jump L ...

This may look a little crazy, but it works beautifully in practice.
For To Next (Loop within AMAL)

For reg=start To end
Nexf reg

This implements a standard FOR...NEXT loop which is almost identical to its Basic
equivalent. These loops can be exploited in your programs to move objects in complex
visual patterns. reg may be any normal AMAL register (R0-R9 or RA-RZ). However you
can't use special registers for this purpose.

As with Basic, the register after the Next must match with the counter you specified
in the For, otherwise you'll get an AMAL syntax error. Also note that the step size is always
set to one. Additionally, it's possible to “nest” any number of loops inside each other.

Note that each animation channel will only perform a single loop per VBL. This
synchronizes the effects of your loops with the screen display, and avoids the need to add
an explicit Pause command before each Next.

Generating an attack wave for a game

These loops can be used to create some quite complex movement patterns. The easiest
type of motion is in a straight line. This can be generated using a single For...Next loop like
So:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette

Sprite 8,130,60,1

C$="For R0=1To 320 ; Let X=X+1 ; Next R0" : Rem Move Sprite from left to right
Amal 8,C$: Amal On 8 : Direct

You can now expand this program to sweep the object back and forth across the screen.
Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette

Sprite 8,130,60,1
C$="Loop: For R0=1 to 320 ; Let X=X+1; Next RO ; “ : Rem Move sprite forward

184

C$=C$+”For R0=1 To 320 ; Let X=X-1 ; Next RO ; Jump Loop” : Rem Move Sprite back
Amal 8,C$: Amal On 8 : Direct

The first loop moves the object from left to right, and the second from right to left.

So far the pattern has been restricted to just horizontal movements. In order to create
arealistic attack wave, it's necessary to incorporate a vertical component to this motion as
well. This can be achieved by enclosing your program with yet another loop.

Load “AMOS_DATA:Sprites/octopus.abk”

Get Sprite Palette

Sprite 8,130,60,1

C$="For R1=0To 10 ;”

C$=C$+"For R0=1 To 320 ; Let X=X+1 ; Next R0 ;” : Rem Move forward
C$=C$+”Let Y=Y+8 ; “ : Rem Move Sprite down screen

C$=C$+"For R0=1 To 320 ; Let X=X-1 ; Next R0 ;” Rem Move back
C$=C$+"Let Y=Y+8 ; Next R1":Rem Move Sprite down

Amal 8,C$:Amal On 8

The above program generates a smooth but quite basic attack pattern. A further
demonstration can be found in Example 14.1 in the MANUAL folder.

Recording a complex movement sequence

PLay
PLay path

If you've looked at the smooth attack waves in a modern arcade game, and thought them
forever beyond your reach, think again. The AMAL Play command allows you freely
animate your objects through practically any sequence of movements you can imagine. It
works by playing a previously defined movement pattern stored in the AMAL memory bank.

These patterns are created from the AMAL accessory on the AMOS program disc.
This simply records a sequence of mouse movements and enters them directly into the
AMAL memory bank. Once you've defined your patterns in this way, you can effortlessly
assign them to any object on the screen, reproducing your original patterns perfectly. Both
the speed and the direction of your movement can be changed at any time from your AMOS
Basic program.

The first time AMAL encounters a play command, it checks the AMAL bank to find the
recorded movement you specified using the path parameter. path is simply a number
ranging from one to the maximum number of patterns in the bank. If a problem crops up
during this phase, AMAL will abort the play instruction completely, and will skip to the next
instruction in your animation string.

After the pattern has been initialised, register RO will be loaded with the tempo of the
movement. This determines the time interval between each individual movement step. All
timings are measured in units of a 50th of a second. By changing this register within your
AMAL program, you can speed up or slow down your object movements accordingly.

Note that each movement step is added to the current coordinates of your object. So
if an object is subsequently moved using the Sprite or Bob instructions, it will continue it's

185

manoeuvres unaffected, starting from the new screen position. It's therefore possible to
animate dozens of different objects on the screen using a single sequence of movements.

Register R1 now contains the a flag which sets the direction of your movements. There
are three possible situations:

«R1>0 Forward

A value of one for R1 specifies that the movement pattern will be replayed from start to
finish, in exactly the order it was created. (Default)

*«R1=0 Backward

Many animation sequences require your objects to move back and forth across the screen
in a complex pattern. To change direction, simply load R1 with a zero. Your object will now
turn around and execute your original movement steps in reverse.

*+R1=-1 Exit

If a collision has been detected from your AMOS program, you'll need to stop your object
completely, and generate an explosion effect. This can be accomplished by setting R1 to
a value of minus one. AMAL will now abort the play instruction, and immediately jump to
the next instruction in your animation sequence.

The clever thing about these registers is that they can be changed directly from AMOS
Basic. This lets you control your movement patterns directly from within your main
program. There’s even a special AMPLAY instruction to make things easier for you.

The PLay command is perfect for controlling the aliens in an arcade game. In fact,
it's the single most powerful instruction in AMAL.

AMAL (Call an AMAL program)

AMAL n,a$
AMAL n,p
AMAL n,a$ to address

The AMAL command assigns an AMAL program to an animation channel. This program
can be taken either from a string in a$ or directly from the AMAL bank.

The first version of the instruction loads your program from the string a$ and assigns
itto channel n. afcan contain any list of AMAL instructions. Alternatively you can load your
program from a memory bank created using the AMAL accessory. p now refers to the
number of an AMAL program stored in bank number 4.

nis the number of an animation channel ranging from 0 to 63. Each AMOS channel
can be independently assigned to either a bob, a sprite or a screen.

Only the first 16 AMAL programs can be performed using interrupts. In order to exceed
this limit you need execute your programs directly from Basic using the SYNCHRO
command.

The final version of the AMAL instruction is provided for advanced users. Instead of
moving an actual object, this simply copies the contents of registers X,Y and A into a
specific area of memory. You can now use this information directly in your own Basic

186

routines. It's therefore possible to exploit the AMAL system to animate anything from a
BLOCK to a character. The format is:

AMAL n, a$ To address

address must be EVEN and must point to a safe region of memory, preferably in an AMOS
string or a memory bank. Every time your AMAL program is executed (50 times per
second), the following values will be written into this memory area:

Location Effect

Address Bit 0 is set to 1 If the X has changed.
Bit 1 indicates that Y has been altered.
Bit 2 will be set if the image (A) has changed since the last interrupt.
Address+2 Is a word containing the latest value of X
Address+4 Holds the current value of Y
Address+6 Stores the value of A.

These values can be accessed from your program using a simple DEEK.
Note: This option totally overrides any previous CHANNEL assignments.

AMAL Commands

Here is a full list of the available AMAL commands:

Move

This moves an object smoothly from one position to another. The syntax is:
Move deltaX, deltaY, steps

deltaXholds the distance to be moved horizontally. Positive numbers indicate a movement
from left to right, and negative values from right to left.

deltaY specifies the vertical displacement. If deltaY is positive then your object will
move down the screen, otherwise it will drift upwards.

nindicates the number of steps the movement is to be performed in. The smoothest
movements are generated when both deltaX and deltaY are exact multiples of n.

A (Anim)
Anim cycles,(image,delay)(image,delay)...

The Anim instruction assigns a sequence of images to either a sprite or a blitter object to
generate a realistic animation effect.

cycles specify the number of times the animation is to be repeated. If it's set to zero,
the animation will continue indefinitely. image chooses the image number for each frame
of your animation. delay sets the amount of time (in 50ths of a second) the image will be
displayed.

After the Anim command has beeninitialised, AMAL will automatically jump to the next

187

instruction. This allows you to combine both animation and movement in the same AMAL
program.

Let
Let reg=exp

This command assigns a value to an AMAL register. regis the name of the AMAL register
tobe changed. There are 10 internal registers ranging from RO to R9 available for your use,
and a further 26 external registers (RA to RZ). You can also alter the position and type of
your object directly using the special registers X,Y and A.

expris astandard arithmetical expression and is evaluated from left to right to produce
the final result.

Most of the normal operators are supported including +,-,* and /. However you are not
allowed to change the order of calculation using brackets “()".

Jump
Jump L
The Jump command jumps from the current point in your AMAL program to label L. Lis the

name of a label which has been previously defined in your AMAL string. Labels consist of
single capital letter and are created using a “.” as in standard Basic.

If
If exp Jump L
The If instruction allows you to jump from one part of an AMAL program to another
depending on the result of a test. exp is a logical expression in the standard format

If exp is TRUE then the program will jump to label L, otherwise it will immediately
execute the next instruction after the Jump.

There are two other forms of this command which are used by the AUTOTEST feature:

If exp Direct L (Chooses part of program to be executed after an autotest)
If exp eXit (Leaves Autotest)

See AUTOTEST for more information.

For To Next

For Reg=start To end ...Next Reg

This is a direct implementation of Basic’'s FOR...NEXT loops. Reg can be any internal or
external AMAL register. As normal, loops can be nested but the step size of your loop is
always set to one.

Note that AMAL will automatically wait for the next vertical blank before jumping back
to the start of your loop with Next. Since the object movements in your program will only

188

be seen after the screen is updated after the VBL, faster loops would simply waste valuable
processor time with no visible effect. So your For...Nextloops are automatically synchronized
with the screen updates to produce the smoothest possible results.

PLay
PLay path

The PL command animates your objects through a series of movements stored in the
AMAL bank. These patterns are entered directly with the mouse, using the powerful AMAL
accessory utility. So there’s no real limit to the type of patterns you can produce with this
system.

pathis the number of a pattern which has been previously saved in the AMAL bank.
If this pattern does not exist, AMAL will skip the PL instruction, and immediately jump to
the next command in your animation sequence.

All movements are performed relative to the current position of your objects. It's
therefore possible to move an entire attack wave using a single path definition. You can
also move an object directly from Basic without affecting the movementin the slightest. The
status of the current movement is controlled through two AMAL registers.

RO holds the tempo of your movement. Increasing this value will speed up the object on
the screen.

R1 contains the direction of the motion. There are three possible alternatives.
R1>0 Moves through the movement sequence in the original order .
R1=0 Executes your movement steps in reverse.

R1=-1 Stops the movement sequence completely and proceeds to the next AMAL
instruction.

The contents of these registers can be changed at any time from within your Basic program
using either the AMREG or the special AMPLAY command.

A further explanation of this instruction can be found in the AMAL tutorial near the
beginning of this chapter. Also see Example 14.2 in the MANUAL folder.

Warning: It is essential that you use semi-colons to split up your AMAL instructions.
The following string will generate an AMAL bank not reserved error simply because there
is no separator.

A$="Pause Let RO=1"

The correct syntax is:

A$="Pause ; Let R0O=1"

End

189

End

Terminates the entire AMAL program and turns off the Autotest feature if it's been defined.
Pause

Pause

Pausetemporarily halts the execution of your AMAL program and waits for the next vertical
blank period. After the VBL your program will be automatically resumed starting from the
next instruction.

Pause is often used before a Jump command to ensure that the number of jumps is
less than the maximum of 10 per VBL. This frees valuable processor time for your Basic
programs, and can have a dramatic effect on their overall speed. So try to get into the habit
of preceding your Jump commands with a Pause instruction as it's much more efficient.
AUtotest
AU (List of tests)

The Autotest feature of AMAL has been designed to provide fastinteraction between AMAL
and the user. It adds a special test at the start of the AMAL program which is performed
every VBL before the rest of the AMAL program is executed. See the Autotest system for
more details.

eXit

eXit

Exits from an Autétest and re-enters the current AMAL program.

Wait

Wait

Wait freezes your AMAL program and only executes the Autotest.

On

On

ON activates the main program after a wait command.

Direct

Direct

Sets the section of the main program to be executed after an autotest.

190

AMAL functions

=XM (Returns the X coordinate of the mouse)

This function is exactly the same as the X MOUSE function in AMOS Basic. It returns the
X coordinate of mouse cursor in hardware coordinates.

=YM (Returns the Y coordinate of the mouse)

YM returns the Y coordinate of the mouse pointer as a hardware coordinate.

=K1 (Status of left mouse key)

K1 returns a value of -1 (true) if the left mouse key has been pressed, otherwise 0 (false).
=K2 (Status of right mouse key)

Returns the state of the right mouse button. If the button has been pressed then K2 will
return -1 (true).

=J0 (Tests right joystick)

The JO function tests the right joystick and returns a bit-map containing the current status.
See JOY for more details.

=J1 (Test left joystick)
This tests the left joystick and returns a bit-pattern in standard format.
=Z(n) (Random number)

The Z function returns a random number from -32767 to 32768. This number can be limited
to a specific range using the bit-mask n.

Alogical AND operation is performed between the bit mask nand the random number
to generate the final result. So setting nto a value of 255 will ensure that the numbers will
be returned in the range 0 to 255.

Since this function has been optimized for speed, the number returned isn't totally
random. If you need really random numbers, you would be better to generate your values
using Basic’s RND and then load them into an external AMAL register with the AMREG
function.

=XH (Convert a screen x coordinate into a hardware coordinate)
=XH(s,x)

This converts a screen x coordinate into its equivalent hardware coordinate relative to
screen s.

191

=YH (Converts a screen Y coordinate into hardware format)

=YH(s,y)

YH transforms a y coordinate from screen format into hardware format relative to screen
s.

=XS (Hardware to screen conversion)

=XS(s,x)

Changes hardware coordinate x into a graphic coordinate relative to screen s.

=YS (Hardware to screen conversion)

=YS(s.y)

Transform hardware y coordinate into its equivalent screen coordinate.

=BC (Check for collisions between bobs)

=Bob Col(n,s,e)

BC is identical to the equivalent AMOS Basic BOB COL instruction. It checks bob number
n for collisions between bobs s to e.

If a collision has been detected, then BC will return a value of -1 (true), otherwise 0

(false). This instruction may not be performed within an interrupt. So it's only available
when you are executing you AMAL routines directly from Basic with the SYNCHRO
instruction.
=SC(m,s,e) (Sprite Collisions)
=Sprite Col(n,s,e)
This is equivalent to the SPRITE COL function in AMOS Basic. It checks sprite n for
collisions between sprites sto e. If the test is successful, a value of -1 (true) will be returned.
Like the previous BC function it is only allowed in conjunction with the SYNCHRO
instruction.

=C(n) (Col)

Returns the status of object nafter an SC or BC function. If the object has collided then this
function will return a value of -1 (true), otherwise 0 (false).

=V(v) (Vumeter)

The VU function samples one of the sound channels and returns the intensity of the current

192

voice. This is a number in the range 0-255. You can use this information to animate your
objects in time to the music. An example of this can be found in Example 14.3. Also see
the VUMETER function from AMOS Basic.

Controlling AMAL from Basic
AMAL ON/OFF (start/stop an AMAL program)

AMAL ON [n]

Once you've defined your AMAL program you need to execute it using the AMAL ON
command. This activates the AMAL system and starts your programs from the first
instruction.

AMAL ON activates all your programs. The optional parameter n allows you to start
just one routine at a time.

AMAL OFF [n]

Stops one or all AMAL programs from executing. These programs are erased from
memory. They can only be restarted by redefining them again using the AMAL instruction.

AMAL FREEZE (Temporarily freeze an AMAL program)

AMAL Freeze [n]

Stops one or more AMAL programs from running. Your programs can be restarted at any
time using a simple cali to AMAL ON. Note that this instruction should always be used to
stop AMAL before a command such as DIR is executed, otherwise problems with timing
can cause visual mishaps.

=AMREG= (Get the value of an external AMAL register)

r=AMREG(n, [channel])
AMREG(n, [channel])=expression

The AMREG function allows you to access the contents of internal and external AMAL
register directly from within your Basic program.

n is the number of the register. Possible values range from 0 to 25 with zero
representing register RA and twenty-five denoting RZ.

By using the optional channel parameter you can reference any AMAL internal
register. In this mode nranges between 0 and 9 representing RO to R9.

The following example shows how itis possible to retrieve a sprite’s current X position
from Basic:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette

Channel 1 To Sprite 8 : Sprite 8,100,100,1
A$="Loop: Let RX=X+1; Let X=BX; Pause; Jump Loop” : Rem X will overflow when >640

193

Amal 1,A$: Amal On : Curs Off

Do
Locate 0,0
Z=Asc(“X")-65 : Rem Note the use of ASC to get the register number
Print Amreg(Asc(“X”)-65)

Loop

AMPLAY (Control an animation produced with PLay)
AMPLAY tempo,direction[start TO end)]

Any movement sequences you've produced using the AMAL PL command are controlled
through the internal registers R0 and R1. Each object will be assigned it's own unique set
of AMAL registers. Soif you're animating several objects, you'll often need to load anumber
of these registers with exactly the same values.

Although this can be achieved using the standard AMREG function, it would obviously
be much easier if there was a single instruction which allowed you to change R0 and R1
for a whole batch of objects at a time. That’s the purpose of the AMPLAY command.

AMPLAY takes the tempo and direction of your movements, and loads them into the
registers RO and R1 in the selected channels.

tempo controls the speed of your object. on the screen. It sets a delay (in 50ths of a
second) between each successive movement step.

direction changes the direction of the motion Here’s a list of the various different
options.

Value Direction of motion
>0 Move the selected object in the original movement direction.
0 Reverses the motion and moves the object
backwards.
-1 Aborts movement pattern and jumps to the following instruction in your

AMAL animation sequence.

As adefault, thisinstruction will affect all current animation channels. This can be changed
by adding some explicit startand end points to the command. startis the channel number
of the first object to be adjusted. endholds the channel number assigned to the last object
in your list.

Note that either the tempo or the direction can be omitted as required. Examples:

Amplay ,0 : Rem Reverse your objects

Amplay 2, : Rem Slow down your movement patterns

Amplay 3,1 : Rem Set temp to three and direction to 1

Amplay ,-1 3 To 6 : Rem Stop movements on channels 3,4,5 and 6

194

=CHANAN (Test Amal animation)
s=CHANAN(channel)

This is a simple function which checks the status of an AMAL animation sequence and
returns -1 (true) if itis currently active or 0 (false) if the animation is complete. channelholds
the number of the channel to be tested. Here’s an example:

Load “AMOS_DATA:Sprites/Monkey_right.abk” : Get Sprite Palette
Sprite 9,150,150,11

M$="Anim 12,(11,4)(12,4)(13,4)(14,4)(15,4)(16,4);”

Amal 9,M$: Amal On

While Chanan(9)

Wend

Print “Animation complete”

=CHANMV (Checks whether an object is still moving)
s=CHANMV(channel)

Returns a value of -1(true) if the object assigned to channel is currently moving, otherwise
0 (false).

This command can be used in conjunction with the AMAL Move instruction to check
whether a movement sequence has “run out” of steps. You can now restart the sequence
at the new position with an appropriate movement string if required. Example:

Load “AMOS_DATA:Sprites/Monkey_right.abk” : Get Sprite palette
Sprite 9,150,50,11

M$="Move 300,150,150; Move -300,-150,75"

Amal 9,M$: Amal On

While Chanmv(9)

Wend

Print “Movement complete”

AMAL errors
=AMALERR (Return the position of an error)

p=AMALERR

AMALERR returns the position in the current animation string where an error has occurred.
Careful inspection of this string will allow you to quickly correct your mistakes. Example:

Load “AMOS_DATA:Sprites/Octopus.abk”

Sprite 8,100,100,1

A$="L: IF X=300 then Jump L else X=X+1; Jump L”
Amal 8,A$

195

This program will generate a syntax error because IF will be interpreted as the two
instructions “I” and “F”. To find the position in the animation string of this error, type the
following instruction from the direct window.

Print Mid$(A$,Amalerr,Amaller+5)

Error messages

If you make a mistake in one of your AMAL programs, AMOS will exit back to Basic with
an appropriate error message. Here’s a full list of the errors which can be generated by this
system, along with an explanation of their most likely causes.

Bank not reserved: This error is caused if you attempt to call the PLay instruction without
first loading a bank containing the movement data into memory. This should be created
with the AMAL accessory program. If you not using PLay at all then check that you've
correctly separated any Pause and Let instructions in your program.

Instruction only valid in autotest: You've inadvertently called either the Direct or the eXit
instructions from your main AMAL program.

lllegal instruction in Autotest: Autotest may only be used in conjunction with a limited
range of AMAL commands. It's not possible to move or animate your objects in any way
inside an autotest. So check for erroneous commands like Move, Anim or For..Next.

Jump To/Within Autotest in animation string: The commands inside an autoest
function are completely separate from your main AMAL program. So AMAL does not allow
you to jump directly inside an AUtotest procedure. To leave an autoest,and return to your
main AMAL program you must use either eXit or Direct .

Label already defined in animation string: You've attempted to define the same label
twice in your AMAL program. All AMAL labels consist of just a single CAPITAL letter. So
Test and Total just different versions of the same label (T). This error is also generated
if you have accidentally separated two instructions by a “:” (colon). Use a semi-colon
instead.

Label not defined in animation string: This error is generated when you try to jump to
a label which does not currently exist in your animation string.

Next without For in animation string: Like it's Basic equivalent each For command
should be matched by a corresponding Next. statement. Check any nested loops for an
spurious Next command.

Syntax error in animation string: You've made a typing mistake in one of your animation
strings. It's easy to cause this error by accidentally entering an AMAL instructionin full, just
like it's Basic equivalent.. Remember that AMAL commands only consist of one or letters
CAPITALS. So Ifyou attempt to type instructions like:FOR or NEXT you’ll getan error. The
correct syntax of these commands are For..Next

196

Animation channels

AMOS allows you to execute up to 64 different AMAL programs simultaneously. Each
program is assigned to a specific animation channel.

Only the first 16 channels can be performed using interrupts. If you need to animate
more objects you'll have to turn off the interrupts using SYNCHRO OFF. You can now
execute the AMAL programs step by step using an explicit call to the SYNCHRO command
in your main program loop. As a default, all interrupt channels are assigned to the relevant
hardware sprite.

CHANNEL (Assign an object to an AMAL channel)

CHANNEL n TO object s

The CHANNEL command assigns an animation channel to a particular screen related
object. In AMAL, you're not restricted to a single channel per object. however. Any single
screen object can be safely animated with several channels if required. There are various

different forms of this instruction.
Animating a computed sprite
CHANNEL n TO SPRITE s

This assigns sprite number s to channel n. As a default, channels from 0 to 7 are
automatically allocated to the equivalent hardware sprite, and 8to 15 are reserved for the
appropriate computed sprites.

In order to animate the computed sprites from 16 onwards, you'llneed to allocate them
directly to an animation channel with the CHANNEL command. As normal, sprite numbers
from 8 to 63 specify a computed sprite rather than a single hardware sprite. For example:

Channel 5 To Sprite 8:Rem Animates computed sprite 8 using channel 5.

The X,Y registers in your AMAL program now refer to the hardware coordinates of the
selected sprite. Similarly the current sprite image is held in register A.

Animating a blitter object
AMAL programs can also be used to animate blitter objects.

CHANNELn TO BOB b

Allocates blitter object b to animation channel n. This object will be treated in an identical
way to the equivalent hardware sprite. The only difference is that registers X and Y now
contain the position of your bob in screen coordinates.

Note that if you've activated screen switching with the DOUBLE BUFFER command,
this will be automatically used for all bob animations. For a complete example see 8 from
the MANUAL folder.

197

Moving a screen

AMOS Basic allows you to freely position the current screen anywhere on your TV display.
Normally this is controlled with the SCREEN DISPLAY instruction. However, sometimes
it's useful to be able to move the screen using interrupts.

CHANNEL n TO SCREEN DISPLAY d

This sets the channel n to screen number d. Screen d can be defined anywhere in your
program. You'll only get an error if the screen hasn’t been opened when you start your
animation.

The X and Y variables in AMAL now hold the position of your screen in hardware
coordinates. Register A is not used by this option and you can’t animate screens using
Anim. Otherwise all standard AMAL instructions can be performed as normal. So you can
easily use this system to “bounce” the picture around the display.Examples:

Load Iff “AMOS_DATA : IFF/Frog_screen.IFF”,1

Channel 0 To screen display 1

Amal 0,”Loop: Move 0,200,100 ; Move 0,-200,100 ; Jump Loop”
Amal on 0 : Direct

Load Iff “AMOS_DATA : IFF/Frog_screen.IFF”,1

Channel 0 to screen display 1

Rem Screen can only be displayed at certain postions in the X
Amal 0,”Loop: Let X=XM; Let Y=YM; Pause; Jump Loop”
Amal On : Direct

For a further example of this technique, load Example 14.4 from the MANUAL folder. This
demonstrates how the SCREEN DISPLAY can be used in conjunction with the menu
commands to slide the menu screen up and down your display. It's similar to the display
system found in Magnetic Scrolls’ excellent series of adventures.

Hardware Scrolling

Although hardware scrolling can be performed using AMOS Basic’s SCREEN OFFSET
command, it's often easiest to animate your screens using AMAL instead as this generates
a much smoother effect.

CHANNEL n TO SCREEN OFFSET d

This assigns AMAL program number nto a screen d, for the purpose of hardware scrolling.
The Xand Y registers now refer to the section of the screen whichis to be displayed through
your TV. Changing these registers will scroll the visible screen area around the display.
Here’s an example:

Screen Open 0,320,500,32,lowres : Rem Open an extra tall screen
Screen Display 0,,45,320,250

Load Iff “AMOS_DATA:IFF/Magic_Screen.IFF”

Screen Copy 0,0,0,320,250 To 0,0,251

198

Screen 0 : Flash off : Get palette (0)

Channel 0 to Screen Offset 0

Amal 0,”Loop: Let X=XM-128; Let Y=YM-45; Pause; Jump Loop”
Amal On : Wait Key

This program allows you to scroll through the screen using the mouse. Try moving the
mouse in direct mode. For a further example of hardware scrolling, see Example 14.5.

Changing the screen size
CHANNEL n TO SCREEN SIZE s.

This allows you to change the size of a screen using AMAL. sis the number of the screen
to be manipulated. Registers X and Y now control the width and height of your screen
respectively. They're similar to the W and H parameters used by the SCREEN DISPLAY
command. Example:

Load Iff “AMOS_DATA:IFF/Magic_Screen.IFF”,0

Channel 0 To Screen Size 0

Screen Display 0,,,320,1 : Rem Set the screen size to 1
A$="Loop: For R0=0 To 255 ; Let Y=RO0 ; Next RO; “
A$=A$+"For R0=0 To 254; Let Y=255-R0; Next R0; J Loop”
Amal 0,A$: Amal On : Direct

Rainbows
CHANNEL n TO RAINBOW r

This option generates a rainbow effect within an AMAL program. As usual nis the number
of an animation channel from 0 to 63. ris an identification number of your rainbow (0-3).
X holds the current BASE of your rainbow. This is the first colour of your rainbow
palette to be displayed. Changing it will make the rainbow appear to turn. Y contains the
line on the screen at which the rainbow effect will start. If you alter this value, the rainbow
effect will move up or down. All coordinates are measured in hardware format.
Register A stores the height of your rainbow on the screen. A demonstration of this
system can be found in 11. See the AMOS Basic RAINBOW command for more details.

Advanced Techniques
The AUTOTEST system

Normally all AMAL programs are performed in strict order from start to finish. Inevitably
some commands such as Move and For...Next will take several seconds to complete.
Although this will be fine in the vast majority of cases it may lead to significant delays in the
running of certain programs. Take the following simple program:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette

199

Sprite 8,130,50,1
Amal 8,”Loop: Let R0=XM-X; Let R1=YM-Y; Move R0,R1,50; Jump Loop”
Amal On : Direct

As you move the mouse, the sprite is supposed to follow it around on the screen. However
in practice the response time is quite sluggish, because the new values of XM and YM are
only entered after the sprite movement has totally finished. Try moving the mouse in a
circle. The octopus is completely fooled!

Autotest solves this problem by performing your tests at the start of every VBL, before
continuing with the current program. Your tests now occur at regular 1/50 intervals, leading
to a practically instantaneous response!

Autotest commands
The syntax of Autotest is:

AUtotest (tests)

tests can consist of any of the following AMAL commands.
Let

L reg=exp

This is the standard AMAL Let instruction. It assigns the result of an expression to register
reg.

Jump
Jump label

The Jump command jumps to another part of the current autotest. Labelis defined using
the colon “:” and must lie inside the autotest brackets.

eXit

Leaves the autotest and re-enters the main program from the point it left off.

Wait

Wait turns off the main AMAL program completely, and only executes the Autotest.

If

In order to simplify the testing process inside an autotest routine there’s a specially

extended version of the AMAL If statement. This allows you to perform one of three actions
depending on the result of the logical expression exp.

200

i @ s B EEEEEDS

if exp Jump L (Jumps to another part of the autotest)
If exp Direct L (Chooses part of the program to be executed after an autotest)
If exp eXit (Leaves autotest)

On

ON restarts the main program again after a previous Wait instruction. This lets you wait for
a specific event such as a mouse click without wasting valuable processor time.

Direct
Direct label

Direct changes the point at which the main program will be resumed after your test. AMAL
will now jump to this point automatically at the next vertical blank period. Note that /abel
must be defined outside the Autotest brackets.

Inside Autotest
Here’s the previous example rewritten using the Autotest feature.

Load “AMOS_DATA:Sprites/octopus.abk”

Sprite 8,130,50,1 : Get Sprite Palette

A$="AUtotest (If R0O<>XM Jump Update”

A$=A$+”lf R1<>YM Jump Update else eXit”

A$=A$+"Update: Let RO=XM; Let R1=YM; Direct M)” : Rem End of autotest
A$=A$+”M: Move R0-X,R1-Y,20 Wait;” : Rem Try changing 20 to different values!
Amal 8,A$: Amal on

The sprite now smoothly follows your mouse, no matter how fast you move it. The action
of this program is as follows:

Every 50th of a second the mouse coordinates are tested using the XM and YM
functions. If they are unchanged since the last test, the Autotest is aborted using the eXit
command. The main program now resumes precisely where it left off.

However if the mouse has been moved, the autotest routine will restart the main
program again from the beginning (label M) using the new coordinates in XM and YM
respectively.

Timing considerations
UPDATE EVERY (Save some time for your Basic programs)

UPDATE EVERY n

Although most AMAL programs are performed practically instantaneously, any objects
they manipulate need to be explicitly drawn on the Amiga’s screen.

The amount of time required for this updating procedure is unpredictable and can vary
during the course or your program. This can lead to an annoying jitter in the movement

patterns of certain objects.

The UPDATE EVERY command slows down the updating process so that even the
largest object can be redrawn during a single screen update. This regulates the animation
system and generates delightfully smooth movement effects.

n is the number of vertical blank periods (50ths of second) between each screen
update. In practice you should start off with a value of two, and gradually increase it until
movement is smooth.

One useful side effectof UPDATE EVERY, is to reserve more time for Basic to execute
your programs. With judicious use of this instruction, it's sometimes possible to speed up
your programs by as much as 30%, without destroying the smoothness of your animation
sequences.

Beating the 16 object limit

SYNCHRO (Execute an AMAL program directly)

SYNCHRO [ON/OFF]

Normally AMOS Basic will allow you to execute up to 16 different AMAL programs at a time.
This limitis determined by the overall speed of the Amiga’s hardware. Each AMAL program
takes its own slice of the available processor time. So if you're using the standard interrupt
system, there’s only enough time to execute around 16 separate programs.

The SYNCHRO command allows you to exceed this restriction by executing your
AMAL programs directly from Basic. Instead of using interrupts, all AMAL programs are
now run using a single call to the SYNCHRO command. Since AMAL programs execute
far faster than the equivalent Basic routines, your animations will still be delightfully
smooth. But you will now be able to decide when and where your AMAL routines will be
performed in your program.

One additional bonus is that you can now include coilision detection commands such
as Bob Col or Sprite Col directly in your AMAL routines. These are not available from the
interrupt system as they make use of the Amiga’s blitter chip. This would be impossible
using interrupts. ’

Before calling SYNCHRO you first need to turn off the interrupts with SYNCHRO OFF.
It's important to do this before defining your AMAL programs, otherwise you won’t be
allowed to use channel numbers greater than 15 without an error.

Due of the sheer power of the animation system, it's nearly possible to write entire
arcade games completely in AMAL. This leaves your Basic program with simple jobs such
as managing the hi-score table and loading your attack waves from the disc. The results
will be indistinguishable from pure machine code. A good example is Cartoon Capers, the
first commercial games release that's written entirely in AMOS.

A demonstration of SYNCHRO can be found in Example 14.6 from the MANUAL
folder.

STOS compatible animation commands

The original STOS Basic included a powerful animation system which allowed you to move
your sprites in quite complex patterns using interrupts. At the time, these commands were
hailed as a breakthrough.

202

Although they’ve now been overshadowed by the AMAL system, they do provide a
simple introduction to animation on the Amiga. So AMOS provides you with the entire
STOS animation system as an extra bonus!

If you're intending to convert STOS programs to AMOS, you'll need to note the
following points:

+ Unlike STOS, the movement patterns in AMOS Basic can be assigned to any animation
channel you like. The Move commands can therefore be used to move bobs, sprites or
screens, using exactly the same techniques.

As a default, all animation channels are assigned to the equivalent hardware sprites.
In practice you may find it easier to substitute blitter objects as these are much closer to
the standard STOS Basic sprites. Add a sequence of CHANNEL commands to the start
of your program like so:

Channel 1 to bob 1
Channel 2 to bob 2

Don’tforgetto call DOUBLE BUFFER during your initialisation procedure, otherwise your
bobs will flicker annoyingly when they are moved.

» The same channel can be used for both STOS animations and AMAL programs. So it's
easy to extend your programs once they’'ve been successfully converted into AMOS
Basic. The order of execution is:

AMAL
MOVE X
MOVE Y
ANIM

MOVE X (Move a sprite horizontally)
MOVE X n,m$

MOVE X defines a list of horizontal movements which will be subsequently performed on
animation channel number n.

ncan range from 0 to 15 and refers to an object you have previously assigned using
the CHANNEL command. m$contains a sequence of instructions which together determine
both the speed and direction of your object. These commands are enclosed between
brackets and are entered using the following format:

(speed,step,count)

There’s no limit to the number commands you can include in a single movement string,
other than the amount of available memory.

speed sets a delay in 50ths of a second between each successive movement step.
The speed can vary from 1 (very fast) to 32767 (incredibly slow).

step specifies the number of pixels the object will be moved during each operation.

203

If the step is positive the sprite will move to the right, and if it is negative it will move left.

The apparent speed of the object depends on a combination of the speed and step
size. Large displacements coupled with a moderate speed will move the object quickly but
jerkily across the screen. Similarly a small step size combined with a high speed will also
move the object rapidly, but the motion will be much smoother. The fastest speeds can be
obtained with a displacements of about 10 (or -10).

count determines the number of times the movement will be repeated. Possible
values range from 0 to 32767. A count of 0 performs the movement pattern indefinitely.

In addition to the above commands, you can also add one of the following directives
at the end of your movement string.

The most important of these extensions is the L instruction (for loop), which jumps
back to the start of the string and reruns the entire sequence again from the beginning.
Example:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
Sprite 1,130,100,1 : Rem Define Sprite 5

Move X 1,”(1,5,60)(1,-5,60)L”

Move On

The E option allows you to stop your object when it reaches a specific point on the screen.
Change the second to last line in the above example to:

Move X 1,”(1,5,30)E100"

Note that these end-points will only work if the x coordinate of the object exactly reaches
the value you originally designated in the instruction. If this increment is badly chosen the
object will leap past the end-point in a single bound, and the test will fail. Example:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
Channel 1 To Sprite 8 : Channel 2 To Sprite 10

Print At(0,5)+”Looping OK”

Sprite 8,130,100,1

Move X 1,7(1,10,30)(1,-10,30)L”

Move On

Print At(0,10)+”Now press a key” : Wait Key

Sprite 10,140,150,2

Move X 2,”(1,15,20)L” : Move On 2

Print At(0,15)+”Oh dear!” :Wait Key

MOVE Y (Move an object vertically)

MOVE Y n,m$

This instruction complements the MOVE X command by enabling you to move an object
vertically along the screen. As before, n refers to the number of an animation sequence
you've allocated using the CHANNEL command, and ranges between 0 and 15.
m$holds amovement string in an identical format to MOVE X. Positive displacements
now correspond to a downward motion, and negative values result in an upward

204

i a & B E BB EEEEES

movement. Examples:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette

Channel 1 To Sprite 8 : Sprite 8,130,10,1 : Rem Install sprite

Move Y 1,710(1,1,180)L” : Rem Loop sprite from 10,10 to 190,10 continually
Channel 2 To Screen Display 0 : Rem Assign the screen postion to channel 2
Move Y 2,”(1,4,25)(1,-4,25)” : Rem Moves screen up and down

Move On : Wait Key

MOVE ON/OFF (Start/stop movements)
MOVE ON/OFF [n]

Before your movement patterns will be executed they need to be activated using the MOVE
ON command.

n refers to the animation sequence you wish to start, and can range from 0 to 15. If
it is omitted then all your movements will be activated simultaneously.

MOVE OFF has exactly the opposite effect: It stops the relevant movement sequences
in their tracks.

MOVE FREEZE (Temporarily suspend sprite movements)
MOVE FREEZE [n]

The MOVE FREEZE command temporarily halts the movements of one or more objects
on the screen. These objects can be restarted again using MOVE ON.

nis completely optional and specifies the number of a single object to be suspended
by this instruction.

=MOVON (Return movement status)
x=MOVON(n)

MOVON checks whether a particular object is currently being moved by the MOVE X and
MOVE Y instructions. It returns -1 (true) if object n is in motion, and 0 (false), if it is
stationary. Do not confuse this with the MOVE ON command.

Note that MOVON only searches for movement patterns generated using the MOVE
commands. It will not detect any animations generated by AMAL.

ANIM (Animate an object)

ANIM n,a$

Anim automatically flicks an object through a sequence of images creating a smooth
animation effect on the screen. These animations are performed 50 times a second using
interrupts, so they can be executed simultaneously with your Basic programs.

nis the number of the channel which specifies a sprite or bob to be animated by this

205

instruction.
a$ contains a series of instructions which define your animation sequence. Each
operation is split into two separate components enclosed between round brackets.
image is number of the image to be displayed during each frame of the animation.
delay specifies the length of time this image will be held on the screen (in 50ths of a second).
Example:

Load “AMOS_DATA:Sprites/octopus.abk” : Get Sprite Palette
Channel 1 To Sprite 8 : Sprite 8, 200,100,1

Anim 1,”(1,10)(2,10)(3,10)(4,10)”

Anim on : Wait key

Just as with the MOVE instruction, there’s also an L directive which enables you to repeat
your animations continuously. So just change the ANIM command in the previous example
to the following:

Anim 1,7(1,10)(2,10)(3,10(4,10)L”

ANIM ON/OFF (Start an animation)

ANIM ON/OFFI[n]

ANIM ON activates a series of animations which have been previously created using the
ANIM command. n specifies the number of an individual animation sequence to be
initialised. If it is omitted then all current animation sequences will be started immediately.

ANIM OFF [n]

This halts one or more animation sequences started by ANIM ON.

ANIM FREEZE (Freeze an animation)

ANIM FREEZE [n]

ANIM FREEZE temporarily freezes the current animation sequence on the screen. n
chooses a single animation sequence to be suspended. If it's not included, all current
animations will be affected. They can be restarted at any time with a simple call to the ANIM
ON instruction.

206

i i & E R B BB B EEEEETSN

15:Background
graphics

Nowadays, it's not uncommon for an arcade game to contain hundreds of different screens.
With compaction, it's possible to cram a single 32 colour screen into about 30k of memory.
So 100 screens would be the equivalent of about 3 megabytes of data. Imagine how difficult
this would be to fit into a standard A500!

The classic way of avoiding this restriction, is to construct your backgrounds out of a
set of simple building blocks. Once these tiles have been created, they can be placed on
the screen in any order you like. So the same set of tiles can be reused to generate a vast
number of potential screens. Each screen is now stored as a simple list of its components,
and requires a tiny fraction of the original memory.

In order to exploit this system, you'll obviously need some way of defining your various
screen maps. As you might have guessed, we've helpfully provided you with a powerful
map definer accessory on the AMOS program disc. Full details can be found in the
accompanying documentation file.

AMOS Basic also includes a number of special instructions for drawing your tiles on
the screen. These make it easy to generate the fast scrolling backgrounds that are the
hallmark of a modern arcade game.

Icons

lcons are separate images which have been especially designed for producing your
background screens. Once you've drawn an icon, it's fixed permanently into place. So you
can’t move it to a new position using the AMAL animation system.

All icons are stored in their own AMOS memory bank (bank 2). This bank is created
using the Sprite definer accessory (on the AMOS program disc), and will be automatically
saved along with your Basic programs.

Like Bobs, Icons are displayed using the Amiga’'s amazing Blitter chip. But since Icons
are essentially static objects, they are usually drawn in REPLACE mode. Your icons will
therefore totally erase any existing graphics at the current screen position.

PASTE ICON (Draw an icon)
PASTE ICON x,y,n

Draws icon number n on the screen at GRAPHIC coordinates x,y. nis the number of the
icon which is to be displayed. This must have been previously stored in the ICON bank (2).

Icons can be freely positioned anywhere on the screen, subject to the normal clipping
rules. Example:

Load “AMOS_DATA : Icons/Map_icons.abk”

Screen Open 0,320,256,32,Lowres : Cls 0 : Get Icon Palette

Rem Draw Border around screen

For X=1To 11 : Paste Icon X*32,0,1 : Next X

For Y=1 To 6 : Paste Icon 0,Y*32+11 : Paste Icon 288,Y*32,1 : Next Y

207

For X=1To 11 : Paste Icon X*32,223,1 : Next X

Note that if you're using double buffering, a copy of your icons will be drawn into both the
physical and logical screens. Since this is rather slow, it's common practice to add a call
to AUTOBACK 0 before drawing your icons on the screen. This restricts your icons to the
current logical screen. You can then copy the entire background straight to the physical
screen using SCREEN COPY, saving a considerable amount of time.

For a further example, see the MAPVIEW program on the AMOS DATA disc. This
displays a background screen you've created using the AMOS Map Editor.

GET ICON (Create an icon)
GET ICON [s,] i,tx,ty TO bx,by

Captures an image from the screen and loads it into icon i. If this icon does not presently
exist, it will be created for you in bank 2. This bank will be automatically reserved by the
system if required.

iis the number of your icon, starting from 1. tx,ty to bx,by define the top and bottom
corners of a rectangular zone which encloses the selected region.

sdetermines the number of the screen which will be used as the source of yourimage.
If it's omitted, the image will be taken from the current screen instead. Example:

Erase 2
F$=Fsel$(“**”,””,”Load a screen”) : If F$="" Then Direct
If Exist(f$) Then Load Iff £$,0 Else Direct
SH=Screen Height : H=SH/32-1 : Sw=Screen Width : W=SW/32-1
ForY=0To H
For X=0 To W
Rem Grab an icon
Get Icon X+Y*W+1,X*32,Y*32 To X*32+31,Y*32+31
Next X
Next Y
Cls0
Do
Paste Icon Rnd(Sw-1),Rnd(SH-1),Rnd(H*W)+1
Loop

GET ICON PALETTE (Get icon colours)
GET ICON PALETTE

Grabs the colours of the icon images in bank 2, and loads them into the current screen
palette. This command is normally used to initialize the screen after you've loaded some
icons from the disc. Example:

Rem Load some icons from the AMOS DATA disc
Load “AMOS_DATA:Icons/Map_icons.abk”

Get Icon Palette

Paste Icon 100,100,1

208

DEL ICON (Deletes icons)
DEL ICON n[TO m]

Deletes one or more icons from the icon bank. nis the number of the first icon to be
removed.

mis the optional number of the last icon to be deleted in the list. If it's included all the
icons from first to last will be erased one after another. Example:

Load “AMOS_DATA:Icons/Map_icons.abk”
Paste Icon 100,100,1

Del Icon 1

Paste Icon 100,100,1

When the final icon in a bank has been deleted, the entire bank will be removed from
memory.

MAKE |CON MASK (Set colour zero to transparent)
MAKE ICON MASK [n]

Normally, any icons you draw on the screen will completely replace the existing background.
The icon will seem to be displayed in a rectangular box filled with colour zero.

Ifyou want to avoid this effect and overlay your icons directly over the current graphics,
you'll need to create a mask for your icons. This informs AMOS that colour zero should be
treated as transparent.

nis the number of the icon to be affected. If it's omitted, a mask will be defined for all
icons in the bank.

A demonstration of this effect can be seen in EXAMPLE 15.1 in the MANUAL folder.

Screen blocks

AMOS Basic supplies you with a set of powerful BLOCK commands which allow you to grab
part of an image into memory and paste it anywhere on the screen.

These instructions are mainly used for holding temporary data, since your blocks
cannot be saved along with your Basic programs.

Blocks are especially effective in the construction of dialogue boxes, as they can be
used to save the background areas before displaying your new graphics.

They can also be exploited in puzzle games like Split Personalities. Each block can
be loaded with a single section of your image. You can then jumble your pictures by
rearranging the blocks on the screen with PUT BLOCK.

GET BLOCK (Grab a screen block into memory)

GET BLOCK n,tx,ty,w,h[,mask]

GET BLOCK grabs a rectangular area in block number n, starting at coordinates ix,ty.
nis the number of the block ranging from 1-65535. tx,ty set the coordinates of the top

left hand corner of your block. w,h hold the width and height of your block respectively.

209

mask is a flag which chooses whether a mask will be created for your new block.

mask=0 Replace mode. When the block is drawn on the screen, it will
totally destroy any graphics at that current position.

mask=1 Calculates a mask for the block. Colour zero will now be treated
as if it were transparent.

PUT BLOCK (Copies a previously created block onto the screen)

PUT BLOCK n[,x,y]
PUT BLOCK n,x,y,planes[,minterms]

PUT BLOCK copies block number nto the current screen. x,y specify the position of your
new block on the screen. If they are omitted the block will be redrawn at its original screen
coordinates.

Note that all drawing operations will be clipped to fit into the current screen, starting
from the nearest 16 pixel boundary.

For a demonstration of the BLOCK commands see the routine in EXAMPLE 15.2.
We've also provided experienced programmers with a couple of optional extras. These are
not needed for the vast majority of applications, they’re only required when you want to
achieve weird special effects on the screen!

planes holds a bit-map which sets the range of colours which will be drawn in your
block. The Amiga’s screen is divided up into segments known as bit-planes.

Each plane contains a single bit for every point on the Amiga’s screen. When the
Amiga’s hardware displays this point, it combines the bits from each plane to calculate the
required colour number. Each bitin planes represents the status of a single bit-plane. Ifit's
set to one, then the selected plane will be drawn by the instruction, otherwise it will be
completely ignored. The first plane is represented by bit zero, the second by bit one, etc.

Usually, the block will be displayed in all the available bit-planes. This corresponds to
a bit-pattern of %111111.

minterm selects the blitter mode used to copy your block on the screen. A full
description of the possible drawing modes can be found in the section on SCREEN COPY.

The best way to learn about these options is to experiment!

DEL BLOCK (Delete a screen block)
DEL BLOCK n

Deletes one or more blocks and restores the memory used to AMOS Basic.

DEL BLOCK Erases all current blocks
DEL BLOCK n Deletes block number n.
210

|

GET CBLOCK (Save and compact a screen image)
GET CBLOCK n,x,y,sx,sy

The GET CBLOCK command saves and compacts a rectangular area of the screen. The
compaction system used by this command has been especially optimized for speed. So
it's nowhere near as efficient as the dedicated AMOS compression routines provided by
the PACK or SPACK instructions.

CBLOCKS are often used to grab the area underneath your dialogue boxes. After the
dialogue has completed, the screen can be quickly restored back to its original state. See
EXAMPLE 15.3 in the manual folder for a demonstration.

n specifies the number of your block and can range between 1 and 65535.

x/y are the coordinates of the block’s top left corner. The x coordinate is rounded to
the nearest multiple of 8.

w/hhold the dimensions of the area to be saved. The width of your block in wis always
rounded to an exact multiple of eight.

PUT CBLOCK (Displays a block created using CBLOCK)
PUT CBLOCK n [,x,y]
Places block n on the current screen at coordinates x,y. If the target coordinates are

omitted, the block will be redrawn at its original screen position. Also note that x is
automatically rounded to the nearest eight pixel boundary.

DEL CBLOCK (Deletes a screen block defined with GET CBLOCK)
DEL CBLOCK [n]

Erases all blocks from memory. If nis present only block n will be deleted.

211

s 16: Menus

If you've used the Amiga for some time you'll already be familiar with the idea of menus.
Impossible as it seems, AMOS has taken the existing system and improved it almost
beyond recognition.

Menus can be created with up to eight separate levels, and each individual menu item
can be repositioned on the screen at will. Menu titles can be printed in any combination of
colours or styles. You can also include bobs or icons directly in your menus using an
amazing menu definition language.

AMOS Basic is equally impressive when it comes to reading a menu. There’s a built-
ininterrupt-driven ON MENU command which can automatically branch to a selected point
in your program depending on the option selected. Furthermore, any menu option can be
accessed directly from the keyboard using the MENU KEY instruction.

For a demonstration of the terrific effects that can be achieved with this system, load
the program EXAMPLE 16.1 which can be found in the Manual folder. You won'’t believe
the sheer power of these commands until you've seen them in action!

Using a menu

AllAMOS menus are called up by holding down the right mouse button in the standard way.
Once a menu has been activated you can then select an option directly with the mouse
cursor. When you release the button, the option number you have chosen will be returned
to your program.

Menus can be repositioned by placing the mouse cursor over the top left corner of an
item and holding down the left button. A small box will now appear on the menu bar which
can be dragged across the screen using the mouse.

In addition, holding down the SHIFT key will freeze a menu into place. This allows you
explore a menu without selecting any of the various options. You can also use any of the
mouse features such as slowing or axis selection in conjunction with your menus.

Creating a S|m!:|e menu
AMOS menus can be created either directly within your programs or using a special menu
definer included on the AMOS program disc.

Ifyou've never used menus before, the sheer variety of the available menu commands
may seem a little overwhelming. Here’s a brief description of some of the basic features
to provide you with a painless introduction to AMOS menus.

Setting the title line
The first stage in the creation of a menu is to define the title line. The title line of a menu
can be set using the MENU$ command. In its simplest form this has the format:

MEN U$ (Set a menu title)
MENU$(n)=title$

MENUS$ creates a title line for your menu. Each heading is assigned it's own individual

212

F

number starting from one, and increasing from left to right. So the leftmost title is
represented by a one, the next tile as a two, etc.

Thetextin title$holds the name of the option which will be displayed in your new menu.
Here is a simple example which constructs a menu line consisting of just two titles: ACTION
and MOUSE.

Menu$ (1)=" Action “
Menu$ (2)=" Mouse ”

Note the space after Action — this will separate it from Mouse, the next menu along. You
must now specify a list of options to be associated with each of your new headings. These
form a vertical bar which will drop into place whenever a title is selected with the mouse.

MENUS$(t,0) (Set a menu option)
MENUS$(t,0)=0ption$

This second form of MENU$ defines a set of options which will be displayed in the menu
bar.

tis the number of menu heading which your option will be displayed under. ois the
option number you wish to install in the menu bar. All options are numbered downwards
from the top of the menu, starting from one.

The only physical limit to the size of your menu is the amount of memory, but it's wise
to restrict yourself to less then about ten options for each title. This will keep the complexity
of your menus down to an agreeable minimum.

option$ holds the name of your new option. This can consist of any section of text you
like. For an example, try adding the following lines to the program above:

Rem Action menu
Menu$ (1,1)=" Quit”
Rem Mouse menu
Menu$ (2,1)=" Arrow ”
Menu$ (2,2)=" Pointer ”
Menu$ (2,3)=" Clock ”
Wait key

This specifies a list of alternatives for the ACTION and the MOUSE menus. If you try to run
this program as it stands, nothing will happen. That's because the menus need to be
initialised with a call to the MENU ON command. Enter this in the above program before
the “Wait Key” instruction. Now run the example and select the menu items with the mouse
cursor. Remember to hold down the RIGHT mouse button first!

MENU ON (Activate menu)
MENU ON

MENU ON activates a menu defined using the MENU$ command. The menu line will now
appear automatically when the RIGHT mouse button is pressed by the user. To start the

213

previous menu, insert the following line after the definition statements.
Menu On

Go to the Direct window and play around with the menus. Select options by pressing the
right mouse button.

Reading a simple menu

Once you've created your menu and activated the AMOS menuing system you'll want to
discover which options have been selected by the user. This can be accomplished using
a simple form of the CHOICE command.

=CHOICE (Read a menu)
selected=CHOICE

CHOICE returns avalue of -1 (true) if the menu has been highlighted by the user, otherwise
0 (false). It's automatically reset to 0 (false) after each test. It’s also possible to find the title
number which has been selected using a second form of this instruction.

heading=CHOICE(1)

heading now contains the number of the title which has been highlighted by the user.
Similarly you can retrieve the actual option number which has been chosen with a
parameter of two.

item=CHOICE(2)
Try adding the following lines to the previous example:

Do
Rem If Choice=-1 can be simplified to: If Choice , as seen below:
If Choice and Choice(1)=1 Then Exit
If Choice(1)=2 and Choice(2)<>0 Then Change Mouse Choice(2)
Loop

This changes the shape of the mouse cursor depending on which option you have chosen
from the menu. A full demonstration of these menus can be found in the file EXAMPLE 16.2
in the Manual folder.

Advanced menuing features

We will now cover some of the more advanced menuing features available from within
AMOS Basic. Used properly these AMOS menus can add a whole new dimension to your
programs.

214

MENU$ (Create a menu)
MENU$(,,)=normal$|,selected$][inactive$][,background$]

MENUS$ defines the appearance of each individual item in one of your menus. Unlike
normal Amiga menus these items are not restricted to standard text. They can also include
embedded commands which allow you to draw bobs, icons or graphics at any point in the
menu line.

Any of the parameters in this instruction may be optionally omitted, so you can change
parts of a menu description independently. A value of " in your menu string will erase the
existing setting. Similarly you can retain the original value by including a comma at the
appropriate point. For example:

Menu$(1)=" Action “,”” : Rem Erase second option
Menu$(2)=" Mouse 2 “,, : Rem Change title without altering anything else

The position of the menu item within the actual menu is indicated using a list of up to eight
parameters separated by commas. The general format is:

(item)/(item, option)/(item, option, sub option)...

normal$is a string which sets the normal appearance of anitem when itis displayed in the
menu. selected$ changes the effect of highlighting a menu option with the mouse. As a
default, selected items are printed in inverse text.

Inactive$ changes the appearance of an item which has been deactivated using the
MENU INACTIVE command. If this string is omitted, all inactive items will be displayed in
italics.

background$ creates a background for your menu items when they are initially drawn.
Generally this will be a box of some sort created with the internal Bar or line commands.

From now on, we'll abbreviate these parameters using a standard notation:

setting$=[,selected$][,inactive$][,background$)

The menu hierarchy
The level of an item in the menu is determined by its position in the menu hierarchy.

Menu$(1)="Title”

Menu$(1,1)="Option 1"
Menu$(1,2)="Option 2"
Menu$(1,2,1)="ltem 1"

This defines a simple menu. The structure of amenuis similar to that of an array. Each level
of the menu is represented by its own dimension in the array, and is controlled using a
separate version of the MENU$ command.

The first level represents the title line which appears at the top of your menus. It can
be set using a command like:

menu$(n)=title$[settings$]

215

nnow corresponds to the position of the title from the left of the screen, and setting$ refers
to the three optional strings which define the general appearance of the menu. It'simportant
to define the title of your menus first as this dimensions the array. All other items may be
created in any order you wish.

Each title is associated with a list of menu options which drop into view when the menu
is selected. These form the second level of the menu structure and are defined using a
second version of the MENU$ command.

Menu$(n,option)=Item$[setting$]

option holds the number of the item measured from the top left of the menu bar. There’s
no limit to the number of options which may be linked to a single title, other than the amount
of available memory.

Each individual option can in turn be associated with its own sub menus up to a total
of eight levels.

Menu$(n,option,sub option)=ltem$[setting$]

Once you've created a menu it can be expanded or changed at any point in your program.
Never change the current screen while you are creating a menu as this will lead to an error
message.

In order to familiarise yourself with the menu hierarchy, load up the program
EXAMPLE 16.3 from the MANUAL folder.

=CHOICE (Read a menu)
item=CHOICE[(dimension)]

The CHOICE function checks whether an option has been highlighted on the current menu.
If an item has been selected (down to the lowest level), CHOICE will return a value of -1
(true), otherwise it will be 0 (false). After you've called this function, the status of the menu
will be automatically restored to 0 (false). This stops a single menu access from being
accidentally detected several times.

The second form of the CHOICE command returns the option selected at the required
level.

item=CHOICE(dimension)

dimension indicates the level of the menu which is to be read. As you may recall, a level
number of 1 corresponds to the title line of the menu. Similarly the levels between 2 and
8 indicate the number of an option which has been chosen. If a menu item has not been
selected, item will be loaded with a value of zero. For example:

Menu§(1)="Menu”
Menu$(1,1)="Option 1"
Menu$(1,2)="Option 2"
Menu$(1,2,1)="Option 2.1"
Menu on

216

Do
If Choice Then Print Choice(1),Choice(2),Choice(3)
Loop

If you wanted to implement larger menus with this system, your program would need to use
alonglist of IF... THEN statements to deal with each and every possibility. This would cause
asmallbutsignificantdelay in your program while the menus were being read. It would also
make it very difficult to amend your program later.

Fortunately AMOS Basic provides you with a painless method of managing even the
largest menus.

ON MENU PROC (Automatic menu selection)
ON MENU PROC proci[,proc2....]

Each title in your menu can be assigned its own procedure which will be executed
automatically whenever an option is selected by the user. The action of this command is
similar to the following lines of AMOS Basic code:

If CHOICE
If CHOICE(1)=1
Proc1
Endif
If CHOICE(1)=2
Proc2
Endif

Endif

However there is one crucial difference between the ON MENU command and the above
instructions. ON MENU is performed 50 times a second using interrupts and does not affect
the overall running of your program. This means that your program can be doing something
totally different while the menus are being checked by the system.

Whenever the user selects a menu item the required procedure will be immediately
executed with no further action on the part of your program. Your procedure can then use
the CHOICE command to find which option has been chosen and perform the appropriate
action.

After the procedure has concluded, your program will be returned to the instruction
following the ON MENU call. Here’s an example:

Menu$(1)="Action” : Menu$(1,1)="Count” : Menu$(1,2)="Quit”
Menu on : Rem activate menu
On Menu Proc ACTION
On Menu On : Rem Activate on menu command
Do:rem Type some characters
X$=Inkeys$: If x$<>™ Then Print X$; : Inc W
Loop

217

Procedure ACTION
Shared W
If Choice(2)=1
Locate 0,0 : Print “You typed “;W;” letters” : W=0
On Menu On : Rem initialise menus
Endif
If CHOICE(2)=2 Then Edit
End Proc

There are a couple of important points to note about this example. Firstly, see how the ON
MENU sequence s activated using the ON MENU ON command. This mustbe called after
the menu handling procedure has finished as it's needed to restart the menuing system.
Also note the use of INKEY$ rather than INPUT. The INPUT command will halt the menu
checks while you are entering a line. All other commands can be used without problems,
including WAIT, WAIT VBL and WAIT KEY. For a further example see EXAMPLE 16.4.

ON MENU GOSUB (Automatic menu selection)
ON MENU GOSUB labell[, label2,...]

ON MENU GOSUB enters one of a list of subroutines depending on the option which has
been selected by the user. Once you've called this command and created your subroutines,
the menus will be checked automatically 50 times a second.

Note that each title on the menu line is handled by its own individual subroutine. This
differs from its AMIGA Basic equivalent which controls the entire menu with just a single
routine.

After using this command you should activate the menuing system with a call to the
ON MENU instruction. The menus must be reinitialised in this way before jumping back to
the main program with RETURN. Also note that /abel may not be replaced by an
expression as the label will only be evaluated once when the programis run. See ON MENU
PROC and ON MENU ON/OFF.

ON MENU GOTO (Automatic menu selection)

ON MENU GOTO label 1[, label 2,...]

This command has now been superceded by the more powerful ON MENU PROC and ON
MENU GOSUB instructions. It's intended to provide compatibility with programs written in

STOS Basic. Whenever a menu is selected, the program will jump to the appropriate label.
See ON MENU PROC, ON MENU GOSUB.

ON MENU ON/OFF (Activate/Deactivate automatic menu selection)
ON MENU ON
ON MENU ON activates the automatic menuing system created by the ON MENU PROC/

GOSUB/GOTO commands. After a sub-routine has been accessed in this way, the system
will be disabled. So it’s vital to reactivate the system with ON MENU ON before returning

218

to the main program.
ON MENU OFF

This temporarily freezes the automatic menuing system. It's useful when your program is
executing a procedure which needs to be performed withoutinterruptions —such as loading
and saving information to the disc. The menus can be reactivated using ON MENU ON.

ON MENU DEL (pefete the labels used by ON MENU)
ON MENU DEL

This erases the internal list of labels or procedures created by the ON MENU commands.
You can now redirect your menus to another part of your program using a further call to ON
MENU. Warning! Only use this command after you've deactivated the menus with ON
MENU OFF.

Keyboard shortcuts

Despite the undoubted appeal of menus, some users prefer to call up the options of a
program straight from the keyboard. Although menus are certainly easy for beginners,
once you've Familiarised yourself with a program it can be much faster to call up an option
from the keyboard.

AMOS Basic allows you to assign a keyboard shortcut to any of your menu items.
These keystrokes are interpreted exactly as if the user had accessed the equivalent option
from the menu. They can be used with any of the AMOS Basic menuing commands,
including ON MENU.

MENU KEY (Assign a key to a menu item)

MENU KEY(,,) TO c$
MENU KEY(,,) TO scan[,shift]

This allows you to assign any key to any item in a previously defined menu. The only
restriction is that the item you have specified must be at the bottom level of your menu. So
you can't use a shortcut to select a sub menu as each command must correspond to a
single option in the menu.

c$is a string containing a single character which is to be assigned to the menu option.
Any additional characters in the string will be ignored.

Each key on the Amiga’s keyboard is assigned its own individual scancode. By using
this code you can assign keys to a menu which have no Ascii equivalents. Here is a list of
scancodes which can be used with your menus.

Scancode Keys
80-89 Function keys F1-10
95 Help
69 Esc
219

shiftis an optional bitmap which allows you to check for control key combinations such as
Alt+Help or Control+D. The format of shift is:

Bit Key Tested Notes

Left Shift key Only one shift key can be tested at a time

Right Shift key

Caps Lock Either ON or OFF

Control (Cntrl)

Left Alt

Right Alt

Left Amiga This is the Commodore key on some keyboards
Right Amiga

NO GO WN—=O

Note that if you set more than a single bit in this pattern, you'll have to press several keys
simultaneously to call up your menu item. Any of these short-cuts can be deactivated by
using MENU KEY with no parameters. For example:

Menu Key(1,10):rem Turns off short cut assigned to item (1,10)

With the help of the MENU KEY command, adding shortcuts to amenuis a trivial operation,
S0 you are strongly recommended to include them as standard in your programs. Here is
an example that checks for the Amiga’s 10 function keys:

Menu$(1)=" Function Keys “
For A=1To 10
OPT$=" F"+Str$(A)+” “
Menu$(1,A)=OPT$
Menu Key(1,A) To 79+A
Next A
Menu On
Do
If Choice Then Print “You just pressed function key “;Choice(2)
Loop

Menu control commands

MENU ON (Activate a menu)

MENU ON [bank]

MENU ON activates a menu which has been previously defined in your program. The menu
will be displayed when the user next presses the right mouse button, and the options can
be selected in the usual way. If a bank number is included with the instruction, then the

menu will be taken from the appropriate memory bank. See MAKE MENU BANK for more
details.

220

-

MENU OFF (Temporarily deactivate a menu)
MENU OFF

This is the exact opposite of the MENU ON command. It temporarily freezes the action of
the entire menu. The menu can be restarted at any time using MENU ON.

MENU DEL (Delete one or more menu items)

MENU DEL erases the selected menu from the Amiga’s memory and restores the space
to the rest of your program. There are two possible forms of this command.

MENU DEL
Erases the entire menu. Warning! This command is irrevocable!
MENU DEL(,,)

Deletes just a section of the menu. The (,,) parameters contain a list of up to eight values
separated by commas. These indicate the precise position of the item in the menu
hierarchy. For example:

Menu Del(1) : Rem Delete title number 1
Menu Del(1,2) : Rem Erase option 2 of title 1

MENU TO BANK (Save the menu definitions in a memory bank)
MENU TO BANK n

This instruction allows you to save an entire menu tree into memory bank n. If bank n
already exists,you'll get a bank already reserved error.

Once you've stored a menu in this way, it will be saved automatically along with your
Basic program. By storing your menu definitions in amemory bank, you can reduce the size
of your program listings significantly. This will free valuable space in the editors memory,
and will allow you to write longer Basic programs using exactly the same amount of
memory.

BANK TO MENU (Restores a menu definition saved in a menu bank)

BANK TO MENU n
Sets up a menu definition from menu data stored in bank number n. Your menu will be

restored to exactly the same state as it was originally saved. If the menu is complex, this
process may take a little time. To activate your new menu call the MENU ON instruction.

221

MENU CALC (Recalculate a menu)
MENU CALC

One of the nicest features of AMOS menus is that they can be easily changed during the
course of a program. After you've created your initial definition you can add new items and
replace existing options at will.

All your menu items are automatically repositioned when the menu is selected with
the right mouse button. If your menus are extremely large this may take a little time. MENU
CALC allows you to perform this process at the most appropriate point in your program,
and avoid unnecessary and unwanted delays.

Note that in order to stop the user calling the menu while it's being changed, you are
strongly advised to freeze the menus with MENU OFF at the start of your procedure. The
menu can then be safely restarted using the MENU ON command after you've finished.

Evolving menus are particularly useful for adventure games as each location can have
its own individual menu options which can be updated depending on the player’s actions.

Embedded menu commands

Any menu string can optionally include a powerful set of embedded commands which allow
you to customize the appearance of your menus to an incredible degree. The list of
commands is enclosed between sets of round brackets () and individual instructions are
separated using colons “:”. For example:

Menu$(1)="(Locate 10,10 : Ink 1,1) Hello”

Each instruction consists of just two characters which can be in either upper or lower case.
Anything else will be ignored completely. Most commands also require you to input one
or more numbers. These numbers must never make use of expressions as these are not
evaluated. The commands are listed below.

Note: In the syntax the two important characters which make up the command are in

upper case and highlighted bold.
BOB (Draw a bob)
BOb n

The BOB command draws bob number natthe current cursor position. No accountis taken
of the hot spot of the bob. All coordinates are measured relative to the top left corner. Also
note that colour zero is usually treated as transparent. This may be changed using the
NOMASK command from AMOS Basic. For example:

Load “AMOS_DATA:Sprites/Octopus.abk”

Menu$(1)="(Bob 1) 1":Menu$(1,1)="(Bob 2) 2":Menu$(1,2)="(Bob 3) 3"
Menu on : Wait Key

|CON (Draw an icon)

ICon n

222

ICON draws icon number nat the current cursor position. Note that unlike bobs, colour zero
is not normally transparent. See the Basic MAKE ICON MASK command for more details.

LOCATE (Move the graphics cursor)
LOcate x,y

The LOCATE command moves the graphics cursor to coordinates x,y measured relative
to the top left corner of the menu line. Note that after an instruction the graphics cursor will
always be positioned at the bottom right of the object which has just been drawn. These
coordinates will also be used to determine the location of any further items in your menu
like so:

Menu$(1)="Example “:Menu$(1,1)="Locate (Lo 50,50) in action “
Menu$(1,2)="Guess my coords”
Menu on:wait key

INK (Set Ink and Paper colours)

INK n,value

The INK command assigns the colour indexes to be used for the PEN, PAPER and
OUTLINE colours. Here is a list of the various possibilities:

n Effect

1 Set text PEN colour

2 Set PAPER colour

3 Set OUTLINE colour
SFONT (Set font)

SFont n
SFont sets the current font to graphics font number n. This will be used in all future menu

items. Note that you must call GET FONTS before this instruction is executed, otherwise
it can only use the two rom fonts. See EXAMPLE 16.5.

SSTYLE (Set font style)
SStyle n

This command sets the style of the current font to nwhich is a bit-pattern in the following
format:

Bit Effect

o

Set this bit to one to underline your characters

223

1 Selects bold characters
2 Activates italic mode
LINE (Draw a line)

Line x,y

The LINE command draws a line from the current cursor position to the graphics
coordinates x,y. See EXAMPLE 16.6.

SLINE (Set line pattern)

SLine p

SLINE sets the line style used in all subsequent LINE commands to the bit pattern held in
p. Since there is no expression evaluation, this pattern should always be converted into

decimal notation before use. A simple demonstration of the possible line styles can be
found in EXAMPLE 16.7.

BAR (Draw a bar)
BAr x,y

Thisdraws arectangular bar from the current cursor coordinates to x,y. Forademonstration
see EXAMPLE 16.8.

PATTERN (Draw a pattern)
PAttern n

Changes the fill pattern used by the Bar command to style n. For a demonstration, load
EXAMPLE 11.8 from the AMOS MANUAL folder.

OUTLINE (Enclose bar with an outline)
OUtline flag

OUTLINE draws a border in the current outline colour (ink 3) around all subsequent bars.
A value of one activates the border and a zero removes it.

ELLIPSE (Draw an ellipse)
ELlipse r1,r2

ELLIPSE draws an oval with radii r7 and r2 at the current cursor coordinates. To draw a
circle, simply set r1 equal to r2. See EXAMPLE 16.9.

224

PROC (Call a procedure)
PRoc NAME

The PROC instruction allows you to call any AMOS Basic procedure directly within a menu
line. The called procedure must not include parameters, otherwise a syntax error will be
generated.

This command allows you to customize the menu precisely to your own needs without
having to limit yourself to the available menu commands. In order to exploit these features,
you'll need to understand a little bit of theory.

At the start of your procedure the following values are held in the 68000’s processor
registers.

DREG(0) X-Coord

This holds the graphical X coordinate of the top left corner of the current menu item. Don'’t
draw your graphics over the part of the screen to the left of this point as this will confuse
the menu redrawing process and may lead to unwanted effects.

DREG(1) Y-Coord

Register D1 contains the Y coordinate of your menu item. As with the X coordinate you
should always limit your drawing operations to the region below this point to avoid possible
errors.

DREG(2) Status of drawing operations
This register holds the current status of the menu operations. If it contains a value of 0
(false) the menu item is being drawn. In this case you will need to load DREG(0) and
DREG(1) with the coordinates of the bottom right corner of your menu zone and return from
the procedure immediately.
If DREG(0) is -1 (true) you are free to perform your graphics operations used by your
procedure. After you have finished you should return the coordinates of the bottom right
corner of your item in DREG(0) and DREG(1) as before.

DREG(3) Status of menu item

D3 is loaded with a value of -1 if the menu is highlighted and the first menu string is
displayed, otherwise it will contain a value of 0.

DREG(4)

D4 is set to TRUE when the menu branch is initially opened.

AREG(1) Address of reserved zone

225

This is the address of the zone created with RESERVE. It's used to allow several
procedures to communicate with each other. See RESERVE for more details.

The general structure of a menu procedure is:

Procedure ITEM
If DREG(2)
X=DREG():Y=DREG(1)
...Draw the item...
Endif
DREG(0)=BX:Rem X Coord of bottom right corner of menu item
DREG(1)=BY:Rem X Coord of bottom corner of item
Endproc

The dimensions of the menu item as displayed on the screen are set using the coordinates
BX and BY. These must be loaded into registers DO and D1 before leaving your procedure
as they are needed to create the final menu bar.

While inside your procedure you can perform most AMOS instructions including other
procedures. But some instructions are absolutely forbidden! If you use these commands
you won't get an error message but your AMIGA may crash unexpectedly.

» Never change the current screen inside a menu. This will almost certainly crash your
Amiga completely!

» Don’t set or reset a screen zone.

- Avoid using instructions such as WAIT, WAIT KEY or INPUT, or INKEY$ which halt the
action of your program.

« Disc operations are absolutely forbidden!

« Any error trapping in your procedure will be ignored. If an error occurs, the menu will be
closed and your program will return to the editor.

Used with caution, the PROC command can produce some mind-blowing effects. For a

demonstration, load EXAMPLE 16.10 from the AMOS MANUAL folder.See MENU
CALLED.

R ES ERVE (Reserve a local data area for a procedure)

REserve n

Reserves nbytes of memory for this menuitem. This area can be accessed from within your
menu procedure using the address held in AREG(1). The data area you have created is

common to all the strings in the current menu object. It can be used to exchange parameters
between the various procedures called by a menu item.

MENU CALLED (Redraw a menu item continually)
MENU CALLED(,,)

The MENU CALLED command automatically redraws the selected menu item 50 times a

226

second whenever it is is displayed on the screen. It's usually used in conjunction with a
menu procedure to generate animated menu items which change in front of your eyes.

In order to make use of this function, you first need to define a menu procedure, using
the principles outlined above. Then add a call to this procedure in the required title strings
using an embedded PRoc command. Finally activate the updating process with a call to
MENU CALL. When the user displays the chosen item, your procedure will be repeatedly
accessed by the menuing system.

Since your procedure will be called fifty times a second, it should obviously return back
to the menu as quickly as possible. This will allow enough time for the rest of the menu to
be successfully updated.

Also note that your embedded procedure can safely animate your item using either
bobs or sprites. However, as the menu items are not double buffered, your bobs may flicker
slightly on the screen. So it may be better to use computed sprites for this purpose instead.
Another approachiis to draw you display with the standard AMOS graphics commands. An
example of this can be seen in EXAMPLE 16.11 in the MANUAL folder.

MENU ONCE (Turns off automatic redrawing)
MENU ONCE(,,)

MENU ONCE turns off the automatically updating system started using the MENU
CALLED command. From now on, each menu item will only be redrawn once when the
menu is called on the screen.

Menu Once(1,1)

Alternative menu styles

Normally the titles of amenu are displayed as a horizontal line and the options are arranged
below it in a vertical menu bar. If you want to create something a little unusual, you can
change the format of each level of your menu using the following three instructions:
MENU LINE (Display a menu as a horizontal line of items)

MENU LINE level
MENU LINE(,,)

The MENU LINE command displays the menu options at the requested level in the form
of a horizontal line. This menu line starts from the left-hand corner of the first title and
stretches to the bottom right corner of the last.

MENU LINE level

Defines the menu style of an entire level of your menu. This should only be called during
your menu definitions.

MENU LINE (,,)

Normally one would only use the /evel version for this command. Setting individual items

227

to Line and Bar can give bizarre results, but this may be useful for something!

MENU TLINE (Display a menu as a total line)

MENU TLINE level
MENU TLINE(,,)

MENU TLINE displays a section of the menu as a total line stretching from the very left of
the screen to the very right. The entire line will be drawn even when the first item is in the
middle of the screen.

level is a number ranging from 1 to 8 which specifies the part of the menu to be
affected. Thisis the standard form of the instruction, and should be called during your menu
definitions as otherwise it will have no effect.

You can also change the appearance of a menu after its been created using a second
form of this command. For example:

Menu Line(1,1) : Rem Displays menu 1,1 as a line

MENU BAR (Display a section of the menu as a bar)

MENU BAR level
MENU BAR(,,)

This displays the selected menu items in the form of a vertical bar. The width of this bar is
automatically set to the dimensions of the largest item in your menu.

level is a number which indicates which part of the current menu definition is to be
affected. As a default this option is used for levels 2 to 8 of your menu. Note that this form
of the MENU BAR instruction may only be used during your programs initialisation phase.
If you call it after a menu has been activated, it will have absolutely no effect.

(,,) is a list of parameters which allow you to change the style of your menus once
they’ve been installed. Here's an example of Menu Bar and Menu Tline:

FLAG=0
SET_MEN
Do
If Choice and Choice(1)=2 and Choice(2)=1 Then ALTER
Loop
Procedure SET_MEN
Menu$(1)=" Bar demo “ : Menu$(2)=" Select Below “
Menu$(1,1)=" | do nothing! “
Menu$(2,1)=" Yes, press on me! “
Menu On
End Proc
Procedure ALTER
Shared FLAG
Menu Del
If FLAG=0 Then Menu Bar 1 : FLAG=1 Else Menu Tline 1: FLAG=0
SET_MEN

228

End Proc

MENU |NACT|VE (Turn off menu item)

MENU INACTIVE level
MENU INACTIVE(,,)

As its name suggests, MENU INACTIVE deactivates a series of options on your menu. Any
subsequent attempts to select these items will be completely ignored. level allows you to
deactivates an entire section of the menu and you can also deactivate individual menu
options with the parameters in (,,). These indicate the precise position of your item in the
current menu hierarchy.

Note that the menu items you've turn off with the instruction will be immediately
replaced by the INACTIVES string you specified during your original menu definition. If this
was omitted, any unavailable menu options will be shown in italics.

MENU ACTIVE (Activate a menu item)

MENU ACTIVE level
MENU ACTIVE(,,)

MENU ACTIVE simply reverses the effect of a previously MENU INACTIVE command.
levelchooses an entire menu level to be restarted. (,,) activates a single item on your menu.

After you've called this instruction, the selected options will be automatically redisplayed
using their original title strings.

Moveable menus

AMOS menus can be displayed at any point on the Amiga’s screen. Menus can be moved
either explicitly by your program or directly by the user.

MENU MOVABLE (Activate automatic menu movement)

MENU MOVABLE level
MENU MOVABLE(,))

MENU MOVABLE informs the menuing system that the menu items at /eve/may be moved
directly by the user — this is the default.

The second form of this command allows you to set the status of each individual item
in the menu. The parameters between the brackets can indicate any position in the menu
hierarchy.

Any menu may be repositioned by moving the mouse pointer over the firstiteminthe
menu and pressing the left mouse button. A rectangular box will now appear around the
selected menu item, and this may be moved to any point on the current screen. When you
release the left button the menu will be redrawn at the new position along with all the
associated menu items.

229

Note that this command does not allow you to change the arrangement of any items
below this level. If you want to manipulate the individual menu options you'll need to use
a separate MENU ITEM command. See EXAMPLE 16.12 for a demonstration of this
system.

MENU STATIC (Fix a menu into place)

MENU STATIC level
MENU STATIC(,,)

MENU STATIC defines the menu at level to be immovable by the user.

One problem with moveable menus is that the memory they consume will change
during the course of a program. If your menus are particularly large, or if memory is running
tight, this can cause real problems as a single careless action by the user will abort your
program with an out of memory error. With the help of the MENU STATIC command you
can avoid this difficulty completely.

MENU ITEM MOVABLE (Move individual menu options)

MENU ITEM MOVABLE level
MENU ITEM MOVABLE(,,)

This command is similar to MENU MOVABLE except that it allows you to re-arrange the
various options in a particular level. So all the items in a menu bar may been individually
repositioned by the user.

Normally it is illegal to move the items outside the current menu bar, but this can be
overridden using the MENU SEPARATE command.

In order for the menu items to be movable, the whole menu bar must also be movable.
So if you fix the MENU into place with MENU STATIC, this command will have no effect.
Additionally you can’t move the first item in the menu bar as this will move the entire line.
Another side effect is that moving the last menu item will permanently reduce the size of
your menu bar. There are two possible solutions:

* Enclose your entire bar with a rectangular box like so:
Menu$(1,1)=,,,”(Bar 40,100)(Loc 0,0)”

Where MENU$(1,1) is the first item in your current bar.
+ Set the last item into place with MENU ITEM STATIC.

'MENU ITEM STATIC (Static menu item)

MENU ITEM STATIC level
MENU ITEM STATIC(,,)

This command locks one or more menu items firmly into place and is the default setting.

230

MEN U SEPARATE (Separate a list of menu items)

MENU SEPARATE level
MENU SEPARATE(,,)

MENU SEPARATE tells AMOS to separate all the items in the current level. Each item in
your menu is treated completely independently from the previous one. If you haven't
defined a background string, each item will be offset by two pixels from the one above. This
creates an attractive stepped effect which can be removed by editing the menu with the
MENU Accessory.

The optional parameters to this instruction allow you to split a menu bar at any point
in the line. Once you've separated an item it will be affected by the MENU MOVABLE
commands rather than the ITEM instructions.

MENU LINKED (Link up a set of menus)

MENU LINKED level
MENU LINKED(,,)

This links one or more menu items together. It's the opposite of the MENU SEPARATE
INSTRUCTION.

=MENU X (Return the graphical X coordinate of a menu item)
x=MENU X(,,)
The MENU X function allows you to retrieve the position of a menu item relative to the

previous option on the screen. You can use this information to implement powerful menus
such as the one found in EXAMPLE 16.13

=MENU Y (Return the graphical Y coordinate of a menu item)
x=MENU Y(,,)

Returns the Y coordinate of a menu option. Note that all coordinates are measured relative
to the previous item. So this is not a standard screen coordinate.

Moving a menu within a program

MENU BASE (Move the starting point of a menu)

MENU BASE x,y

This command moves the starting point of the first level of your menus to the absolute
screen coordinates x,y. All subordinate menu items will be displayed at their current

positions relative to the top of your menu. See EXAMPLE 16.14 for a demonstration of the
MENU BASE command in action.

231

SET MENU (Move a menu)
SET MENU (,,) TO x,y

SET MENU sets the coordinates of the top left corner of a menu item. These coordinates
are measured relative to the previous level. The starting point for the entire menu
(coordinates 0,0) may be set with the MENU BASE command.

Allthe levels of the menu below your menu will also be moved by this instruction. Their
relative positions will be unchanged. Since x,y can be negative it's possible to arrange the
items in a menu bar in the form of a control panel — see EXAMPLE 16.15.

Displaying a menu at the cursor position
MENU MOUSE (Display the menu under the mouse)

MENU MOUSE ON/OFF

The MENU MOUSE features automatically display all menus starting from the current
position of the mouse cursor. The mouse coordinates are added to the MENU BASE to get

the final position, so it's possible to place the menu a fixed distance away from the mouse
pointer if required. See EXAMPLE 16.16.

232

17: Sound and music

The Amiga’s sound system is capable of generating stereo sound effects whichwould have
been unheard of just a few years ago. The results are impressive even through your TV
speaker, but when you connect your Amiga to a Hi-Fi, the sounds can actually shake your
room!

As you would expect from AMOS, we've come a long way since the humble BEEP
command. In fact, we've provided everything you need to incorporate mind-blowing sound
effects in your own games. All the AMOS sound commands are performed independently
of your Basic programs. So your sound tracks can be played continuously, without affecting
the quality of the game-play in the slightest.

Samples may be created using any of the available sampling cartridges and can be
replayed with a simple SAMPLAY instruction. Each sample can be output in a variety of
speeds, and may be looped repeatedly. It's even possible to play a sample as a musical
note.

Music can be converted over from a separate package such as SONIX,
SOUNDTRACKER or GMC. The AMOS Music system is intelligent and will automatically
stop when a sound is played through the current channel, thus allowing you to effortlessly
combine both samples and music in the same sound channel, without the risk of unwanted
interference effects.

Each song can incorporate up to 256 separate instruments; the only limit to the
number of songs is the amount of available memory. In order to keep the memory overhead
down to an absolute minimum, all tunes are built up out of a number of separate patterns.
Once a pattern has been created, it can be accessed anywhere in your music using just
a couple of bytes. By defining just a few key patterns, you can therefore create dozens of
different tunes without running short of memory.

The best thing about the AMOS music system however, is that it's expandable. The
entire source code is supplied on the data disc for you to examine or change. So you won't
be left out in the cold by any future developments on the Amiga’s music scene.

Simple sound effects

We'll start off with a run down of the built-in sound effects included in AMOS Basic. These
are the AMOS equivalent to the Amiga Basic BEEP command.

BOOM (Generate a noise sounding like an explosion)

BOOM

Kapow! You're dead! Use BOOM to add the appropriate stereo sound effectin your games.
Traditionally this type of “White Noise” has been extremely difficult on the Amiga, but

AMOS uses a clever interrupt system to create a realistic explosion effect. Example:
Boom : Print “You're DEAD!”

SHOOT (Create a noise like a gun firing)

SHOOT

233

-

The SHOOT command generates a simple gunshot effect. Like BOOM, SHOOT does not
halt your program in any way. So if you're firing several successive shots, you may wish
to add a small delay using WAIT.

Shoot : Wait 6 : Shoot : Print “You’re DEAD!”

BELL (simpie bell sound)
BELL [f]

BELL produces a pure tone with frequency f. fsets the pitch of the note, from 1 (very deep)
to 96 (very high). Example:

Bell : Wait 40 : Rem Wait for ring to complete
For F=1To 96

Bell F:Wait F/10+1 : Rem Vary the delay along with the frequency
Next F

Sound channels

The Amiga’s hardware can effortlessly play up to four different sounds simultaneously. This
allows you to add attractive harmonics to your sound effects.

Each sound can be output through one of four voices numbered from 0 to 3. You can
think of these voices as separate instruments which can independently play their own
sequence of notes, samples, or music. All four voices are internally combined to generate
the final sound you hear through your speaker system.

The AMOS sound instructions will happily play your sounds using any arrangement
of voices you like. All AMOS sound commands use a standard way of entering your voice
settings. Each voice is assigned a particular bit in a VOICE parameter like so:

Bit 0-> Voice 0
Bit 1-> Voice 1
Bit 2-> Voice 2
Bit 3-> Voice 3

To activate the required voices, set the appropriate bits to 1. Here’s a list of common values
to make things a little easier.

Value Voices used Effect
15 0,1,2,3 Uses all four voices.
9 0,3 These voices are combined together and output to the
left speaker.
8 3
6 2,4 Played through the RIGHT speaker.
4 2
2 1
1 0
234

In order to do justice to the resulting sound effects, you'll almost certainly need to connect
your Amiga to a hi-fi system of some sort. Most TVs are just not capable of reproducing the
full range of sounds which can be generated by the Amiga’s amazing hardware.

VOLUME (Change the sound volume)
VOLUME [v,] intensity

VOLUME changes the volume of the sounds which are to be played through one or more
sound channels.

Intensity refers to the loudness of this sound. It can normally range from 0 (silent) to
63 (very loud). As adefault, the volume is set to the same intensity for all four of the available
voices. The new volume will be used for all future sound effects, including music.

The v parameter lets you change the volume of each voice independently.v now
indicates which combination of voices are to be regulated. This second option is only used
by the sound effects. It has no affect on any music you are playing. The voices are selected
using a bit map in the standard format, with each bit representing the state of a single sound
channel. If the bit is set to 1, then the volume of this voice will be changed, otherwise it will
be completely unaffected. Examples:

Volume %0001,63 : Boom : Wait 100 : Rem Set Channel 1 to a volume of 63
Volume %1110,10 : Boom : Wait 50 : Rem Channels 2,3,4 have a volume of 10
Play 40,0 : Wait 30

Volume 50 : Play 40,0

Sampled sound

If you had to generate all the sound effects you need, directly inside your computer, you
would be faced with an impossible task. In practice, it's often much easier to take a real
sound from an external source, such as a tape recorder, and convert it into a list of numbers
which can be held in your computer’s memory.

Each number represents the volume of a particular sample of the sound. By rapidly
playing these values back through the Amiga’s sound chips, you can recreate a realistic
impression of the original sound. This technique forms the basis of the sampled sound
effects found in most modern computer games.

If you want to create your own samples, you'll be forced to buy a separate piece of
hardware known as a SAMPLER CARTRIDGE. Although these cartridges are great fun,
they’re certainly not essential. AMOS Basic is perfectly capable of playing any existing
sound sample, without the need for any expensive add-ons.

Currently there are hundreds of sound effects available from the public domain,
covering the vast majority of the effects you'll need in your games. We've even included
a selection of useful samples on the AMOS data disc for you to experiment with.

SAM PLAY (Play a sound sample from the AMOS sample bank)

SAM PLAY s
SAM PLAY v,s
SAM PLAY v,s,f

235

The SAM PLAY instruction plays a sampled sound straight through your loudspeaker
system. All samples are normally stored in memory bank number five, but this may be freely
changed using the SAM BANK command.

sis the number of the sample which is to be played. There’s no limit to the number of
samples you can store in a bank other than the available memory. If you want to use your
own samples with this instruction, you'll need to incorporate them into an AMOS memory
bank. Full details can be found towards the end of this section.

vis a bit-map containing a list of voices your sample will use. As usual, there's one
bit for each possible voice. To play your samples through the required voice, simply set the
relevantbitto 1. See the previous explanation of SOUND CHANNELS for more information.

f holds the playback speed of your sample, measured in hertz. This specifies the
number of samples which are to be played each second. Typical sample speeds range from
4000, for noises such as explosions, to 10000 for recognisable speech effects. By
changing the playback rate, you can freely adjust the pitch of your sound over alarge range.
So a single sample can be used to generate dozens of different sounds.Examples:

Rem Load the sample bank with some samples from the AMOS DATA disc
Load “AMOS_DATA:SAMPLES/SAMPLE_DEMO.ABK”
For S=1to 11
Locate 0,0 : ? “Playing sample “;S
Sam Play S
Locate 0,24 : Centre”<Hit a key to continue>” : Wait Key : Cline
Next S
Wait Key
Sam Play 1,11 : Wait 5 : Sam Play 2,11 : Rem simple echo effect
Wait key
Sam Play 1,1,2000 : Rem Low Pitch
Wait Key
Sam Play 1,1,15000 : Rem High pitch

A further demonstration of this command can be found in EXAMPLE 17.1 in the MANUAL
folder.

SAM BANK (Change the current sample bank)
SAM BANK n

SAM BANK assigns a new memory bank to be used for your samples. All future SAM PLAY
instructions will now take their sounds directly from this bank.

It's possible to exploit this feature to hold several complete sets of samples alongside
each other. You can then flick between these samples at any time, with just a simple call
to the SAM BANK command.

SAM RAW (Play a sample from memory)
SAM RAW voice,address,length,frequency

236

SAM RAW plays a raw sample stored anywhere in the Amiga’s memory. voice is a bit-
pattern in standard format which specifies the list of voices your sample is to use. Each bit
in the pattern selects a single channel to be played (see sound channels).

address holds the address of your sample. Normally, this will refer to the inside of an
existing AMOS memory bank. length contains the length of the sample you wish to play.
frequency indicates the sample speed to be used for the playback (in samples per second
or Hz). This may be very different to the rate at which the sample was originally recorded.

SAM RAW lets you play standard Amiga samples straight through your loudspeaker,
without the need to create a special memory bank (see Creating a sample bank). It's now
your responsibility to manage your samples in memory, and enter the sample parameters
by hand. SAM RAW is great for browsing through files from your disc collection. Use
BLOAD to hold afileinabank and then use SAM RAW to play the data. With luck you should
come across some interesting sounds. Examples:

Reserve as work 10,55000
Bload “Samples/Samples.abk”,start(10)
Sam Raw 15,start(10),length(10),10000

SAM LOOP (Repeat a sample)
SAM LOOP ON/OFF

The SAM LOOP directive informs AMOS Basic that all subsequent samples are to be
repeated continuously. Examples:

Rem Load the sample bank with some samples from the AMOS DATA disc
Load “AMOS_DATA:SAMPLES/SAMPLEDEMO.ABK”
Sam Loop On
For S=1to 11
Locate 0,0 : Print “Playing sample ;S
Sam Play S
Locate 0,24 : Centre”<Hit a key to continue>” : Wait Key : Cline
Next S
Sam Loop Off

This looping effect can be deactivated with a simple call to the SAM LOOP OFF command.

Creating a sample bank

If you're intending to play your own samples using SAM PLAY, you'll first need to load them
into a memory bank. This can be achieved with the SAMMAKER program supplied on the
AMOS data disc.

On start-up, SAMMAKER presents you with a standard AMOS file selector. Enter the
filename of the first sample to be stored in your new bank, and press RETURN. If AMOS
can'’t find the sampling rate, you'll be asked to enter it directly. It doesn’t really matter if you
make a mistake at this point, as you can safely replay your samples at any speed you like.

After ashortdelay, you'll be prompted for the next sample to be installed into the bank.
When you've reached the end of your samples, type SAVE at the file-selector to save your
samples onto the disc. You'll be automatically prompted for the destination filename of your

237

new bank. This can now be entered into AMOS Basic using the LOAD command like so:

Load “sample.abk”
Load “sample.abk”,6 : Rem load samples into bank 6

Music

The AMOS music system allows you to easily add an attractive backing track to your
games. Music can be created from a variety of sources, including GMC, SOUNDTRACKER
or SONIX.

In order to convert these musics into the special AMOS format, you'll need to use one
of the translation programs included on the AMOS data disc. GMC music should have been
saved using the SAVE DATA icon, as this copies both the music and the instrument
definitions into a single large data file.

MUSIC (Play a piece of music)
MUSIC n

The AMOS MUSIC command starts a piece of music from the music bank (three). This
music will be played independently of your Basic program, without affecting it in the
slightest.

Normally, it's possible to store several complete arrangements in the same bank.
Each composition is assigned its own individual music number. The only exception to this
rule is music created by GMC, which only allows you to place one song in the bank at atime.
Example:

Rem Load a piece of music from the AMOS data disc
Load “MUSIC/musicdemo.abk”
Music 1

The AMOS music system is intelligent, and will automatically suspend your music for the
dura}ion of any subsequent sound effects on the current channel. When the sound has
finished, your tune will be restarted from its previous position.

Up to three separate tunes can be started at a time. Each new music command stops
the current song, and pushes its status onto a stack. Once the song has concluded, the old
music will commence from where it left off.

MUSIC STOP (Stop a single section of music)
MUSIC STOP

MUSIC STOP halts the current piece of music. If another music is active, it will be restarted
immediately.

MUS'C OFF (Turn off all music)
MUSIC OFF

238

’IIIIIIIIIIIII

The MUSIC OFF command deactivates your music completely. In order to restart it, you'll
need to execute your original series of MUSIC instructions again from scratch.

TEMPO (Change the speed of a sample of music)
TEMPO s

TEMP modifies the speed of any tune which is currently being played with the MUSIC
command. sis the new speed, and can range from 1 (very slow) to 100 (very fast). Not all
instruments are capable of playing at this maximum speed, however. The practical limit is
closer to 50.

For a demonstration, place the AMOS data disc into the current drive and type:

Load “AMOS_DATA:MUSIC/musicdemo.abk” : Rem Load music
Music 1 : Rem Play music 1

Tempo 35 : Rem Set music playing very fast

Tempo 5 : Rem Start music playing very slow

Note that music created with GMC often contains labels which set the tempo directly inside
the arrangement. These labels will override the tempo settings within AMOS Basic. So it’s
not advisable to use them in your own music.

MVOLUME (Set the volume of a piece of music)
MVOLUME n

This changes the volume of the entire piece of music to intensity n. n can range from 0
(silent) to 63 (very loud).

VOICE (Activate one or more voices of a piece of music)
VOICE mask

VOICE activates one or more voices of the music independently. Usually each voice will
contain its own separate melody which will be combined through your speakers to generate
the eventual music.

maskis a bit mask in the normal AMOS format which specifies which voices you wish
to play. Each bit represents the state of one voice in the music. If it's set to 1, the voice will
be played, otherwise it will be totally unused. Examples:

Load “MUSIC/musicdemo.abk” : Rem Load music
Music 1 : Rem Play music 1

For V=0 To 15

Locate 0,0 : Print “Voice “;V

Voice V

Wait 100

Next V

Direct

239

Voice %0001 : Rem Activate Voice 0
Voice %0010 : Rem Voice 1

Voice %1001 : Rem voices 3 and 0
Voice %1111 : Rem Voice 4

=VUMETER (Volume meter)
s=VUMETER(v)

The VUMETER function tests voice vand returns the volume of the current note which is
being played by your music. s is an intensity value between 0 and 63. v is the number of
a single voice to be checked (from 0-3).

Using this function, you can make your sprites dance to a piece of music! Load
EXAMPLE 17.2 for a demonstration.

Note there’s also an AMAL version of this instruction which allows you to create real-
time VU meters using interrupts. See the section on the VU command for more information.

Playing a note

PLAY (Play a note)

PLAY [voice,] pitch,delay

Plays a single note through the loudspeaker of your TV or Hi-FI. Pitch sets the tone of this
sound, ranging from 0 (low) to 96 (high). Rather than just being an arbitrary number, each
pitch is associated with one of the notes (A,B,C,D,E,F,G). This can be seen from the

following table.

Octave
0 1 2 3 4 5 6 7

Note Pitch

C 1 13 25 37 49 61 73 85
C# 2 14 26 38 50 62 74 86
D 3 15 27 39 51 63 75 87
D# 4 16 28 40 52 64 76 88
E 5 17 29 41 53 65 77 89
F 6 18 30 42 54 66 78 90
F# 7 19 31 43 55 67 79 91
G 8 20 32 44 56 68 80 92
G# 9 21 33 45 57 69 81 93
A 10 22 34 46 58 70 82 94
A# 11 23 35 47 59 71 83 95
B 12 24 36 48 60 72 84 96

240

It should be apparent that the notes go up in a cycle of 12. This cycle is known as an octave.
The optional voice parameter allows you to play your notes through any combination
of the Amiga’s four voices. As usual it's a bit-map in the format:

Bit 0-> Voice 0
Bit 1-> Voice 1
Bit 2-> Voice 2
Bit 3-> Voice 3

Setting a bit to a value of 1 plays the note through the relevant voice.

Delay sets the length of the pause between the play command and the next Basic
instruction. This allows you to play each note before preceding with the next one.

A delay of zero starts a note and immediately jumps to the next Basic instruction. By
playing several notes one after another, you can easily generate some attractive harmonic
effects. Examples:

Play 1,40,0 : Play 2,50,0 : Rem Play with no delay
Wait Key
Play 1,40,15 : Play 2,50,15 : Rem See the effect of delay
Rem Play a random sequence of notes
Do
T=Rnd(96) : V=Rnd(15) : Play V,T,3
Loop

PLAY is not just limited to pure notes incidentally. It's also possible to assign complex
waveforms to the sound generator using the powerful WAVE and NOISE commands.

Waveforms and envelopes

SET WAVE (Define a waveform)
SET WAVE wave,shape$

The SET WAVE instruction provides you with the ability to define your very own instruments
for use with the AMOS Basic PLAY instruction. The sound of your instrument depends on
the shape of a waveform held in the Amiga’s memory.This forms a template which is
repeated to produce your final note.

waveis the number of the waveform you wish to define. Allowable wave numbers start
from 2 onwards. That's because waves zero and 1 are already installed. Wave zero holds
a random noise pattern for producing explosion effects. Wave one is a smooth sine wave
and generates the pure tones used by the standard PLAY instruction.

The shapes of your waveforms are set using a list of 256 numbers which are entered
using the SHAPES$ parameter. Here's an example of one of these waveforms for you to
examine.

241

A Triangle wave

Intensity

VY

Each number represents the intensity of an individual section of the waveform. This is
equivalent to the height of just one point in the above graph.

Possible values for the intensity range from -128 to 127. Since AMOS strings are only
capable of holding positive numbers (0-255), you'll need to convert your negative values
into a special internal format before use. The required value can be calculated by simply
adding 256 to the negative numbers in your list. So -50 would be entered as:

-50+256=206

Here’s a program which demonstrates how the triangular wave in the previous diagram
could be created in AMOS Basic.

$$="": Rem clear waveform string
For1=-128 To 127
X=I : If X<0 Then Add X,256
$$=S$+Chr$(X)
Next|
Set Wave 2,S$

Before playing your waveform you have to tell AMOS Basic which channels are to be
assigned to yourwave. This can be achieved using the WAVE command. Add the following
line to the previous routine

Wave 2 To 15 : For S=10to 60 : Play S,10 : Next S

The best way to reproduce the effect of areal instrument is to combine several SINE waves
together. An example of one of these sine waves can be seen in the diagram below.

242

)-..-..-.I.I-

A Sine wave
Intensity &
+128
128 | \/ v v \/

Adding several of these waves together, with different sizes and separate starting points,
produces waves in the following pattern.

Complex waves

Intensity
+128

-128

This generates the smooth harmonics needed for your notes. Here’s
an example:

SHAPES$="": Degree
For $=0 To 255
V=Int((Sin(S)/2+Sin(S*2+45)/4)*128)+127
SHAPE$=SHAPES$+Chr$(V)
Next S
Set Wave 2,SHAPES : Wave 2 To 15
For N=10 To 60 : Play N,10 : Next N

WAVE (Assign a wave to one or more sound channels)
WAVE w Tov

WAVE assigns wave number wto one or more sound channels. vcontains a bit-map in the

243

standard format. If a bit in the pattern is set to 1 then the appropriate voices are used by
PLAY, otherwise they will be completely unaffected.

As a default, wave zero is reserved for the NOISE channel, and wave one contains
a sine wave. Here are some examples:

Wave 0 To %0001 : Rem Assign wave 0 to voice zero

Play 1,40,0

Wave 0 To %1100 : Rem Use voices 3,2 for noise

Play 20,10

Wave 1 To %1111 : Rem Play pure tone through all four voices
Play 60,0

NOISE (Assign a noise wave to a channel)
NOISE To voices

NOISE applies a white noise effect (wave 0) to the selected voices. This forms the basis
for a wide range of explosion and percussion effects. Load EXAMPLE 17.3 from the
MANUAL folder for a demonstration.

voices is a standard bit pattern. The first four bits represent the Amiga’s four possible
voices, starting from zero. If abitis setto 1 then noise will be played this channel, otherwise
this voice will be completely unchanged by this instruction. NOISE is equivalent to the
command:

Wave 0 To voices

Examples:

Noise To 15
Play 60,0
Play 30,0
DEL WAVE (Delete a wave)

DEL WAVE n

Deletes a wave which has previously been defined using SET WAVE. nis the number of
the wave, and starts at 2. It'simpossible to delete the built-in NOISE and SINE waves using
this instruction. After the wave has been erased, all voices will be reset to the standard SINE
wave (default).

SAMPLE (Assign a sample to a wave)
SAMPLE n To voices
This is the most powerful version of all the wave commands. It assigns a sample stored in

the sample bank to the current wave. Play will now take an instrument straight from the
sample bank.

244

Volume

Load “SAMPLES/SAMPLE1.abk”
Sample 1 To 15
For 1=20 To 50
Play i,50
Next |

As usual voices allows you to select a range of voices to be set by the instruction. It's a
standard bit-map in the format:

Bit 0-> Voice 0
Bit 1-> Voice 1
Bit 2-> Voice 2
Bit 3-> Voice 3

Each voice can be selected by setting the associated bit to 1.

Note: The range of notes that a sample can be played with, depends on its original

recording rate. If a note is too high, AMOS may not be able to play it at all. The acceptable
range varies from sample to sample, but it's usually between 10 and 50.

SET ENVEL (Create a volume envelope)
SET ENVEL wave,phase TO duration,volume

The SET ENVEL command smoothly changes the volume of a note while itis being played.
In the real world, sounds don't just spring into existence fully formed. They tend to evolve
over a period of time, according to a pattern known as the volume envelope. The shape
of this envelope varies depending on the type of instrument you are playing. Here’s a typical
example of one of these envelopes.

A typical volume envelope
1

Attack Decay Sustain Release

Time

This sound is split up into four phases: Attack, decay, sustain and release.

245

AMOS Basic allows you to define your envelopes using up to seven separate steps. Each
step represents a steady change in the volume of the current note.

wave is a number of the waveform which will be affected by this instruction. It's
possible to use any waveform you like for this purpose, including the built-in NOISE and
SINE generators.

phase holds the number of the particular phase which is to be defined, ranging from
0to 6.

duration specifies the length of the current step in units of a 50th of a second. This
determines the apparent speed of the volume change to be generated in this phase.

volume specifies the volume which s to be reached by the end of this phase. Allowable
volume levels range from 0-63.

It's important to understand that this volume is relative to the intensity you've
previously set with the VOLUME command. So even if the note is quiet, the shape of the
envelope will be perfectly preserved. Now for some examples:

Set Envel 1,0 To 200,63 : Rem Sets the length of the first step
Play 40,0 : Rem this note will be played for four whole seconds

As you can hear, the volume of your sound starts from zero, and increases to a maximum
intensity during the length of the note. Now let’s try defining something a little more
complicated:

Set Envel 1,0 To 15,60 : Rem Slow attack
Play 40,0 : Wait Key

Set Envel 1,1 To 1,50 : Rem Brief decay
Play 40,0 : Wait Key

Set Envel 1,2 To 10,50 : Rem short sustain
Play 40,0 : Wait Key

Set Envel 1,3 To 50,0 : Rem Long release
Play 40,0

Finally, here’s an example of a NOISE envelope:

Noise To 15

Set Envel 0,0 To 1000,30
Play 40,0

Wait key

Music Off : Rem Kills sound

Don’tconfuse waves and envelopes. A wave sets the frequency components of your notes,
whereas an envelope simply changes their volume according to a set pattern.

Speech
Your Amiga is supplied with a powerful speech synthesiser program which can be found
on the standard Workbench disc. With the help of this routine, your AMOS programs can
be made to speak. Speech is especially useful in education, as many young people will
respond far better to the spoken word than to boring text.

One word of caution though. Since the narrator package is independent of AMOS

246

Basic, we can't attest to its absolute reliability. You're unlikely to encounter any serious
problems, but it's well worth treating it with a little care.

SAY (Speak a phrase)
SAY t$[,mode]

The SAY command is incredibly easy to use. Enter your text in normal English, concluding
your phrase with a punctuation mark such as a full stop. SAY will now translate your words
into an internal format and speak them directly through your loudspeaker. Example:

Say “AMOS Basic can really speak.”

The first time you use this instruction, the NARRATOR device will automatically be loaded
from disc. Soit’s vital to ensure that an appropriate disc is placed in the current drive before
using this system, as otherwise you may get a Intuition style requester box.

mode toggles between two separate speech modes. As a default, your program will
wait for the duration of the speech, and any music or sound effects will be temporarily
suspended. Setting mode to a value of one activates a multitasking system which allows
you to output your speech whilst AMOS is executing your program. Inevitably, this will slow
down your basic routines considerably. To return your speech back to normal, set mode
to zero. Example:

Do
Input “Enter a phrase?”;T$
T$=T$+".”
Say T$,1

Loop

If the narrator system cannot understand what you are attempting to speak you won't get
an error message, but the command will be automatically aborted.

Also note that the narrator can occasionally get slightly confused with very short
sentences. Sometimes the remainder of the previous phrase is tagged to the end of the
current voice. The problem can be solved by simply adding a list of spaces to the end of
your text. These will wipe out the unwanted speech data.

SET TALK (Set speech effects)

SET TALK sex,mode,pitch,rate

SET TALK allows you to change the type of voice which willbe used by the SAY command.
sex chooses between a male (0) or female (1) voice. In all honesty, it's not a
particularly realistic rendition. Better effects can be created by simply increasing the
frequency of the voice using the pitch parameter.
mode adds a strange rhythmic pattern to the voice. This can be activated by setting
modeto avalue of 1. It's quite a pleasant effect, but hardly human. You can reset the voice
to normal with a parameter of zero.
pitch changes the frequency of the voice, from 65 (low) to 320 (incredibly high).
rate specifies the speed, measured in the words per minute. Allowable word rates

247

range from 40 to 400.

Any of the above parameters can be omitted if required. Providing you keep the
commas in their normal positions, you can change any set of options independently. Here
are some examples:

Set Talk 1,,, : Say “This is a female voice.”

Set Talk ,1,, : Say “This is a female voice with intonation.”
Set Talk 0,0,320, : Say “A soprano voice.”

Set Talk ,,65, : Say “A deep voice.”

Set Talk 0,0,100,400 : Say “Say this quickly.”

Set Talk ,,,40 : Say “This is slow.”

Filter effects

LED (Activate a high pass filter/change power led)
LED ON/OFF

The LED command has two completely separate actions. Not only does it toggle the
POWER led on your Amiga's console, but it also controls a special high pass filer.

The filter changes the way high frequency sounds are treated by the system.
Normally, these sounds are filtered out so as to avoid the risk of unwanted distortion effects.
Unfortunately, this robs many percussion instruments of their timbre. By turning off the
filter, you can recapture the essential quality of many instruments. Example:

Load “AMOS_DATA:MUSIC/MUSICDEMO.ABK” : Rem from the AMOS data disc.
Music 1
Do
If mouse key=1 Then Led on
If mouse key=2 Then Led off
Loop

If you experiment with this function, you'll find that some parts of the music sound much
better without the filter, whereas others distort horribly when the filter is deactivated. The
power led now lets you see the current filter setting at a glance. Warbling this in time to the
music, can considerably improve the overall effect.

248

18: The keyboard

Sometime in the far distant future, we'll probably be entering our programs directly using
some sort of mind link. Until then, the fastest way of entering information into a computer
will be to type it in from the keyboard.

AMOS Basic provides you with dozens of useful keyboard commands. These can be
used in anything from an Arcade game to an Adventure. It's even possible to write a fullly
fledged wordprocessor entirely in AMOS Basic!

=|NKEY$ (Function to get a keypress)
k$=INKEY$

The INKEY$ function checks whether the user has pressed a key, and returns its value in
the string k$.

Note the INKEY$ command doesn’t wait for your input in any way. If the user hasn't
enterad a character, INKEY$ will simply return an empty string . Example:

Do
Rem Try hitting some of the cursor keys
X$=Inkey$: If X$<>” Then Print X$;
Loop

INKEY$ is only capable of reading keys which return a specific Ascii character from the
keyboard. Asciiis a standard code used to representall the characters which can be printed
on the screen.

It's important to realise that some keys, like the HELP button or the function keys, use
arather different format. If INKEY$ detects such akey, it will return a character with a value
of zero (CHR$(0)). You can now find the the internal scan code of this key using a separate
SCAN CODE function.

=SCANCODE (Input the scancode of the last key input with INKEY$)
s=SCANCODE

SCANCODE returns the internal scancode of a key which was previously entered using
the INKEY$ function. This allows you to check for keys which do not produce a character
from the keyboard, such as HELP or TAB. Try typing in the following small example:

Do
While K$=""
K$=Inkey$
Wend
If Asc(K$)=0 Then Print “You Pressed A Key With No ASCli Code.”
Print “The Scancode Is”;Scancode
K$=""
Loop

249

=KEY STATE (Test whether an individual key has been pressed)
t=KEY STATE(s)

Checks if a specific button has been pressed on the Amiga’s keyboard. s is the internal
scancode of the key you want to check. If this key is currently being depressed then KEY
STATE will return a value of TRUE (-1), otherwise the result will be FALSE(0). Example:

Do
If Key State(69)=True Then Print “Escaped!” : Rem Esc key pressed
If Key State(95)=True Then Print “HELP!” : Rem Help Key pressed
Loop

=KEY SHIFT (Return the status of the shift keys)
keys=KEY SHIFT

KEY SHIFT returns the current status of the various control keys. These keys such as
SHIFT or Alt cannot be detected using the standard INKEY$ or SCANCODE system. But
you can easily test for any combination of control keys with just a single call to the KEY
SHIFT function. keys is a bit map in the following format:

Bit Key Tested Notes

Left SHIFT key

Right SHIFT key

Caps Lock Either ON or OFF

Control (Cntrl)

Left Alt

Right Alt

Left Amiga This is the Commodore key on some keyboards
Right Amiga

NoOOh~rWN—=O

If abitis setto a one, then the associated button has been held down by the user. Example:

Centre “<Press some control keys>”
Curs Off
Do

Locate 14,4 : Print Bin$(Key Shift,8)
Loop

=|NPUT$(I1) (Function to input n characters into a string)
x$=INPUT$(n)
INPUT$ enters ncharacters straight from the keyboard, waiting for each one inturn. As with

INKEY$, these characters are not echoed onto the screen.
x$ is a string variable which will be loaded with your new characters. n holds the

250

number of characters to be entered. Example:

Clear Key : Print “Type In Ten Characters”
C$=Input$(10) : Print “You entered “;C$

This instruction is not that same as the standard INPUT command. The two instructions
are completely different. Also note that there’s a special version of INPUT$ which can be
used to read your characters from the disc.

WAIT KEY (Wait for a keypress)
WAIT KEY

Waits for a single keypress. Example:

Print “Press A Key” : Wait Key : Print “Key Pressed”

KEY SPEED (Change key repeat speed)
KEY SPEED lag,speed

KEY SPEED lets you tailor the speed of the keyboard to your own particular taste. The new
speed will be used for every part of the AMOS system, including the editor.

lagis the time in 50ths of a second between pressing a key, and the start of the repeat
sequence.

speedis the delay in 50ths of second between each successive character. Example:

key$(1)="Key Speed 10,1"+Chr$(13) : Rem Save reasonable speed
Key Speed 10,10 : Rem Hold down a key for SLOW repeat

Key Speed 1,1 : Rem FAST repeat

Rem Press Left Amiga F1 to return your keyboard back to normal

CLEAR KEY (Initialise keyboard buffer)
CLEAR KEY

Whenever you enter a character from the keyboard, its Ascii code is placed in an area of
memory known as the keyboard buffer. It is this buffer that is sampled by the INKEY$
function to get your key presses.

CLEAR KEY erases this buffer completely, and returns your keyboard to its original
state. It's especially helpful at the start of a program, as the buffer may well be full of
unwanted information. You can also call it immediately before a WAIT KEY command to
ensure that the program waits for a fresh keypress before preceding. Example:

Clear key : Rem remove current key presses
Wait key : Rem Wait for a new key

251

PUT KEY (Put a string into the keyboard buffer)
PUT KEY a$

Loads a string of characters directly into the keyboard buffer. Carriage returns can be
included using a CHR$(13) (RETURN) character.

The most common use of PUT KEY is to set up defaults for your INPUT routines.
Here’s a demonstration:

Do
Put Key “No”
Input “Another Game”;A$
If A$="No” Then Exit
Loop

The program above assigns “No” to the default INPUT string. Hitting the RETURN key will
enter this value straight into the variable A$. Alternatively, you can edit the line using the
normal cursor keys, and type in your own value for A$ as required.

Input/Output
|NPUT (Load a value from the user and put it a variable)

INPUT provides you with a standard way of entering information into one or more variables.
There are two possible formats for this instruction:

INPUT vars[;]

Enters a list of variables directly from the keyboard. var can contain any set of variables
you like, separated by commas. A question mark will be automatically displayed at the
current cursor position.

INPUT “Prompt”;variable list[;]

Prints out the prompt string before entering your information. Note that you must always
place a semi-colon between your text and the variable list. You are not allowed to use a
comma for this purpose.

The optional semi-colon ;" at the end of your variable list specifies that the text cursor
willnotbe affected by the INPUT instruction, and will retain its original position after the data
has been entered.

When you execute one of these commands, Basic will wait for you to enter the required
information from the keyboard. Each variable in your list must be matched by a single value
fromthe user. These values mustbe of the same type as your original variables, and should
be separated by commas. Here are some simple examples:

Input A

Print “Your number was”;A
Input “Enter a floating point number”;N#

252

Print “You entered”;N#
Input “What’s your name Human?”;names$;
Locate 23, : Print “Hello “;Name$

See INPUT# and LINE INPUT

LINE INPUT (Input a list of variables separated by a Return)

INPUT “Prompt”;variable list[;]
INPUT varsl[;]

Line input is exactly the same as INPUT, except that it uses a Return instead of a comma
to separate each value you enter from the keyboard. Example:

Line Input “Enter three numbers”;A,B,C
Print A,B,C

See INPUT, LINE INPUT#

253

e 19: Other commands

Like all versions of the Basic language, AMOS also includes a variety of mundane
commands such as PRINT and DATA. As you will discover in this section, AMOS
incorporates a number of exciting new twists to these instructions. So even the boring parts
of AMOS Basic are quite interesting!

PRINT or ? (Print a list of variables to the screen)
PRINT items

The PRINT instruction displays some information on the screen, starting from the current
cursor position.

The list of items can consist of any group of variables or constants you like, providing
you don’'t exceed the maximum permitted line length (255).

Each element in your list must be separated by either a semi-colon “;” or a comma *,”
A semi-colon prints the data immediately after the previous value, whereas a comma first
moves the cursor to the next TAB position on the screen.

Normally the cursor will be advanced downwards by a single line after each PRINT
instruction. This can be suppressed by adding a separator after the print. As before, a semi-
colon will preserve the cursor position after the operation, and a comma will place the
cursor to the next TAB stop before proceeding.

Print “This Is The Story Of The Hitchhikers Guide To The Galaxy”
A=10: B=20 : C$="Thirty”: Print A,B;C$

Print 10,20*10,”Hel”;

Print “lo”

See also USING, LPRINT and PRINT#

USING (Formatted output)
PRINT USING format$;variable list

The USING statement is used in conjunction with PRINT to provide fine control over the
format of your printed output.

format$ specifies a list of characters which defines the way your variables will be
displayed on the screen. Any normal text in this string will be printed directly, but if you
include one of the characters ~#+-.;* then one of a range of useful formatting operations
will be performed.

2

(Shift+#) Formats a string variable. Every ~ is replaced by a single character from your
output string, taken from left to right.

Print Using “This is a ~~~~~ demonstration of USING”;”Small”
This is a small demonstration of USING

Each hash character specifies a single digit to be printed out from your variable. Any

254

unused digits in this list will be automatically replaced by spaces.

Print Using “####”;314211
4211

+ Adds a plus sign to a number if it is positive, and a minus sign if it is negative.
Print Using “+##”;10: Print Using “+##”;-10
+10
-10

—~ Only includes a sign if the number is negative. Positive numbers are preceded by a
space.

Print Using “-##”;10 : Print Using “-##”;-10

10

-10

(Period) places a decimal point in the number, and centres it neatly on the screen.

Print Using “Pl Is #.###";3.1415926
Plls 3.141

; Centres a number but doesn’t output a decimal point.

Print Using “Pl Is #;###”;Pl#
Plis 3141

A (Shift 6) prints out a number in exponential form.

Print Using “ Here is a number "”’;12345.678
Here is a number 1.2345678E5

REMor* (Remark)
REM comment

The REM statementis used to add comments to your Basic program. Any text typed in after
a REM statement will be completely ignored by AMOS Basic. Example:

Rem This program does absolutely nothing
‘ This is a comment

The standard REM statement can be used practically anywhere in your Basic program. But
aquote 'mark can only be placed at the absolute beginning of one of your lines. Examples:

‘ A simple comment
Print “Hell” : Rem This is ok
Print “Goodbye” : * This will generate an error

255

DATA (Place a list of data items in a AMOS Basic program)
DATA list of items

The DATA statement allows you to incorporate whole lists of useful information directly
inside a Basic program. This data can be subsequently loaded into one or more variables
using the READ instruction. Each variable in your list is separated by a single comma.
Example:

Data 1,2,3,”Hello”

Unlike most other Basics, the AMOS version of this instruction also lets you include
expressions as part of your data. So the following lines of code are all equally acceptable:

Data $FF50,$890

Data %1111111111111,%1101010101
Data A

Label: Data A+3/2.0-Sin(B)

Data “Hello”+"There”

It's important to realise that the “A” at LABEL will be input as the contents of variable A, and
not the character A. The expression will be evaluated automatically during the READ
operation using the latest values of A and B.

Also note that each DATA instruction must be the only statement on the current line.
Anything after this command will be totally ignored! Data statements can be placed
anywhere you like in your Basic program. However, any data you store inside and AMOS
procedure will not be accessible from the main program..Each procedure can have its own
individual set of DATA statements which are completely separate from the rest of your
program. Here’s a demonstration:

TEST : Read A$: Print A$
Data “Program data”
Procedure Test
Read B$: Print B$
Data “Procedure data”
End proc

See READ, RESTORE.

READ (Read some data from a DATA statement into a variable)
READ list of variables

READ loads some information stored in a DATA statement into a list of variables. READ
uses a special marker to determine the location of the next piece of data to be entered. At
the start of your program, the marker is moved to the first item of the first DATA statement.
Once this item has been read, the marker is advanced so that it points to the next item in
your list. As you might expect, the variables you read must be exactly the same type as the
data held at the current position. Example:

256

)-------

T=10

Read A$,B,C,D$
Print A$,B,C,D$
Data “String”,2,T*20+rnd(100),”AMOS”+”Basic” |

See RESTORE, DATA.

R ESTOR E (Set the current READ pointer)

RESTORE Label
RESTORE LABEL$
RESTORE Line
RESTORE number

RESTORE changes the point at which a subsequent READ operation will expect to find
the next DATA statement. Each AMOS procedure has its own individual data pointer. So
any calls to this command will only apply to the current procedure!

labelis a label which specifies the position of the first DATA statement to be read. This
label name can be calculated as part of an expression. So the following Basic commands
are all perfectly legal:

Restore L
Restore “L"+"A"+"B"+"E"+"L”

Similarly, line selects the line number of the next DATA statement. Like /abel it can be
entered as an expression:

Restore 10
Restore TEST+2

By allowing you to jump at will through the DATA statements in your program,RESTORE
lets you choose your information depending on the actions of the user. Each room of an
adventure, for instance, could have its description stored in a list of simple DATA
statements. To read this description you could use something like:

Restore ROOM*5+1000 : Rem Each ROOM has 5 data statements
Read DESCS$: Print DESC$

1000 Data “Description on Room 1”

1005 Data “Room 2 text”

1010 Data “Room 3”

Obviously, if a data statement does not exist at the line specified by RESTORE, an
appropriate error message will be generated. Beware of trying to use this command inside
a procedure. In order to work, your DATA statements MUST be within the current
procedure.

257

See also READ, DATA

WAIT (Wait in 50ths of a second)

WAIT n

Suspends an AMOS Basic program for n 50ths of a second. Any functions which use
interrupts, such as MOVE and MUSIC, will continue to work as normal during this period.
Example:

wait 50

This walits for one second.

=TIMER= (Count in 50ths of a second)

v=TIMER
TIMER=v

TIMER is a reserved variable which is incremented by 1 every 50th of a second. It’s
commonly used to set the seed of the random number generator like so:

Randomize Timer
NOT (Logical NOT operation)
v=NOT(d)

This function changes every binary digit in a number from a 1 to a 0 and vice versa. Since
True=-1 (%1111111111111) in binary and False=0, NOT(True)=False. Example:

Print Bin$(Not(%1010),4)

0101
If Not(True)=False Then Print “False”

TRUE (Logical TRUE)
v=TRUE

Whenever a test is made such as X>10, a value is produced. If the condition is true then
this number is set to -1, otherwise it will be zero.

If -1 Then Print “Minus 1 Is TRUE”
If TRUE Then Print “and TRUE Is “;TRUE

See FALSE, NOT

258

FALSE (Logical FALSE)
v=FALSE

Returns a value of zero. This is used by all the conditional operations such as IF.. THEN
and REPEAT...UNTIL to represent FALSE.

Print FALSE
0

See TRUE.

259

20: Disc access

The AMOS disc commands give you total access to the Amiga’s filing system. These can
be exploited to create anything from a simple file reader to a fully fledged database.

AMOS is particularly impressive when it comes to selecting your files. There’s a built-
infile selector routine which allows you to choose your filenames from afancy dialogue box.
This is incredibly easy to use, and adds a truly professional touch to your Basic programs.

AMOS also includes the ability to read directories, delete files, or create folders
directly from one of your programs. There's even a command which lets you check for the
existence of a specific file on the disc!

Last, but not least, we've provided special support if you're upgrading from the original
STOS Basic package. AMOS is fully compatible with the powerful CROSS DOS system
from CONSULTRON. Soif you've purchased this product, it will be very easy to import your
existing STOS Basic programs straight into AMOS Basic.

Drives and volumes

As you know, the Amiga lets you label your discs in a number of different ways. If you're
unfamiliar with the CLI, you may find some of these terms a little confusing. So I'll now
provide you with a brief explanation of the various naming conventions.

Drives

Each drive connected to the Amiga is referred to by a standard three letter identification
code. In order to distinguish this code from a normal file name, it's usually terminated by
a colon character “:” when it's entered into your Basic instructions.

Floppy drives: Are assigned names in the following format:

Dfn:
nis a single digit which holds the number of your drive. The first fioppy drive in your system
(usually the internal drive) is known as Df0: then come drives Df1:, Df2: and Df3: if they're
installed
Hard drives: These are specified using:

Dhn:

where n is the number of your hard drive.

Volumes
The Amiga also creates a separate VOLUME name for each individual disc. This label can
be substituted for the drive name in any of your AMOS Basic commands. AMOS will
automatically check each available drive for the required disc. If it can't be found, you'll get
a Drive not mounted error.

Whenever you prepare a new disc from the Workbench, the disc will be assigned the
name “Empty”. To change this label from the Workbench, simply click on the RENAME

260

option and enter your new name in the dialogue box provided. This name can be practically
any string of characters you like, but it must be terminated with a colon character when it's
used in your programs, just like the drive name. Here are some typical volume names for
you to examine:

AMOS:
AMOS_DATA:

These could be used in the following way:
Load “AMOS:Sprite.Acc” : Rem Load the sprite editor from a disc called AMOS
Dir “AMOS_DATA:” : Rem Get the directory of AMOS_DATA:
Warning! If you create several discs with the same name or swap them around
indiscriminately, the Amiga can easily get confused as to which disc you are actually
referring to. In these circumstances, you'll need to enter the drive name instead. This will
tell AMOS precisely where the required disc can be found on your system. Example:
Dir “Df0:”
You are strongly recommend to assign a different name to each and every disc you use.

This takes no more than a couple of seconds from the Workbench but it does simplify things
enormously.

Logical devices
Finally, there’s also a set of objects known as logical devices.These are used by the
Amiga’s operating routines to determine the precise position ofimportant system files such
as device handlers or fonts. Each device is normally assigned to a specific directory on the
current start-up disc. Here are some examples used by AMOS.

FONTS: A directory containing the current fonts.

LIBS: Holds a library file required by the AMOS Say command.
Try typing the following line from direct mode:

Dir “LIBS:”
Cross Dos
If you've bought the separate CROSS DOS package and installed it into memory, you'll
also be able to access IBM or ST format discs within AMOS Basic. These discs are
assigned names starting with the letters DI:

Din: (Where n is the number of your drive)

In order to convert your STOS programs to AMOS Basic, you'll need to save themin ASCII

261

format using the FSAVE “*.ASC” option from STOS. Then insert the disc into an Amiga
floppy drive that has been mounted by Cross-Dos as an IBM drive.

Note: Due to the differences between AMOS and STOS, many STOS programs will
require modifying slightly before they will run under AMOS. If you want to make use of the
special features of AMOS Basic, you may need to perform some quite drastic changes to
certain programs. Despite this, it's still worthwhile taking the trouble to convert your existing
STOS programs into AMOS format. The additional power of the Amiga’s hardware can
transform your STOS games out of all recognition!

Directory Changing

DIR (Print out the directory of the current disc)
DIR [PATH$] [/W]

Lists all the files on the current disc. If the optional path$ is specified, only the files which
satisfy a certain set of conditions will be displayed. Any folders in the listing will be
distinguished by a leading “*” character .

The listing can be halted at any time by pressing the spacebar. To resume, simply
press the spacebar once again.

Note that if you change discs and try to get a directory listing, you may be presented
with a Device not mounted error. This is because you’ve removed the current disc without
informing AMOS Basic. The solution is to simply update the current directory name to the
new disc using a line like: DIR$="Df0:" before calling DIR.

/W lists the files in two columns across the screen. This effectively doubles the
number of files which can be displayed at any one time.
The path string consists of three main elements:

[Disc:][Directory/] Filter

Disc This is the name of the disc to be to examined. In order to stop your disc
name being misinterpreted as just a normal file, you'll need to add a colon

" at the end. Example:

Dir “AMOS:”
Dir “Df0:”
Dir “FONTS:”

Directory/ Holds the name of a single folder you wish to display. Examples:

Dir “AMOS:IFF/”
Dir “IFFP”
Filter Defines a set of conditions which should be satisfied for each file in your
listing.

262

\

-.-.-..-.I-.(

Normaltext:Each character in your text should match exactly one characterin the filename
to be displayed. Example:

Dir “Music”
Music

* (asterix): Matches any list of letters in your filenames up to the next control character.
Example:

Dir “M*” : Rem List all files with names starting with the letter M
Music

Mercury

Malt

As a default, this option will ignore any files which include an MS-DOS type extension. So
a file like: Mad.Asc on the-disc would be not be listed.

. (period): Matches the extension of a filename. It's commonly used in conjunction with the
“*» command to list all files with a particular extension. Here are some examples:

Dir “**” : Rem List all files on the disc with an extension
Dir “*. Amos” : Rem List all AMOS files
Dir “Program.*” : Rem Displays all names starting with Program

?: Matches a single character at the current position. So Dir “AM??” will list files like:

AMOS
AMAL

However, it will ignore a name like “AMOS-BASIC” because it's more than four characters
long. Every letter in the filename has to match just a single character in the search string
in order for the file to be displayed.

See LDIR

=DI R$= (Change current directory)

s$=DIR$
DIR$=s$

DIR$ contains the directory which will be used as the starting point for all future disc
operations, such as loading and saving. It's very similar to the CD command from the CLI,
with the added advantage of allowing you to read the directory as well as just change it.
Example:

Print Dir$: Rem Print out current directory
Dir$="AMOS:IFF/” : Rem Set directory to folder IFF on the disc AMOS

263

Like the CD function it replaces, all directories are assumed to be relative to the one you're
currently using. Supposing you enter a line like:

Dir$="MANUAL/”

This sets the current directory to MANUAL. If you now try to enter another folder, such as
FONTS with DIR$=FONTS/”you'll get a file not founderror. That's because AMOS will only
search the current directory for your folder. Since FONTS cannot be found within the
MANUAL folder, you'll get an error. To avoid this problem just include the disc name in you
assignment like so:

Dir$="AMOS:FONTS/”
or

Dir$="Df0:FONTS/”
PARENT (Sets the current path up one directory)

The Amiga’s filing system allows you to nest directories inside each other. This makes it
very easy to organize your files according to a range of categories. Let’s take a small
example:

FOLDERA/
FOLDERB/
FOLDERC/
FOLDERD/

The diagram above represents four separate folders on the disc. FOLDERA is stored in the
main or root directory and contains FOLDERB and FOLDERD. In computing jargon,
FOLDERA is known as the parent of these directories. Similarly, FOLDERB is the parent
of FOLDERC.

As you might imagine, it's extremely easy to get totally lost when you are using these
folders. The action of PARENT is to load the current directory with the parent of the present
folder. By repeatedly using this command, you can quickly get back to your original root
directory. Example:

Dir$="\IFF”
Dir

Parent

Dir

SET DIR (set style used by DIR)
SET DIR n[/filter$)

Sets the style of your directory listings. nis the number of characters ranging from 1-100
which will be displayed in each filename. Note that this setting has no effect on the actual
length of your names. It only changes the way they will be listed on the screen.

filteris a list of pathnames which are to be excluded from your directory searches. All
filenames that match this filter are completely ignored and will not be displayed as part of

264

your directory. This can be used to suppress the annoying “INFO” files which contain the
icon definitions used by the Workbench.

Note that it's perfectly possible to ignore a whole list of filepaths at once. Simply
terminate each name with a single “/” character. As a default, the filter is set to:

“INFO/*.INFO/*.*.INFO”

Example:
Set Dir 5 : Rem Only display the first five character in your names
Dir
Set Dir 30,”” : Rem No filter
Dir

Common disc operations

=DFREE (Disc free space)

f=DFREE

Returns the amount of free space remaining on the current disc, measured in bytes.
Print Dfree

MKDIR (Create a folder)

MKDIR $

Creates a new folder on the disc with the name {$. Example:
Mkdir “ DfO:TEST”
Dir

KILL (Erase a file from the disc)

KILL f$

Deletes the file f$ from the current disc. Warning! Anything you erase in this way will be
destroyed!

RENAME (Rename a file)
RENAME old$ TO new$

Changes the name of a file. If a file already exists with the new name you have chosen an
error will be generated.

265

Selecting a file

=FSEL$ (Select a file)
1$=FSELS$(path$[,default$][title 1$,title2$])

The FSEL$ function lets you choose your files directly from the disc, using the standard
AMOS file selector.

path$ sets a search pattern which determines which files will be displayed in your
listing.

After you've selected a file, FSEL$ will return either its full pathname, or an empty
string " if you selected QUIT.

default$ chooses a filename to be used as a default. This will be automatically
selected if the user aborts by pressing Return.

title 1$ and title2$ are optional text strings which describe a title to be displayed at the
top of your file selector. Example:

F$=Fsel$(“*IFF”,””,”Load an IFF file”)
If F$="" Then Edit : Rem Return to the editor if no file was chosen
Load IFF F$,0 : Rem Load File

Running an AMOS program from disc

RUN (Execute an AMOS Basic program)
RUN [file$]

Although it's easy enough to execute your AMOS programs straight from the editor, we've
also included a separate RUN command. This version of the command without file$ can
only be used from direct mode.

But the RUN file$ statement may also be placed inside a Basic program. This allows
you to chain a list of programs together. Note that when you run a program in this way, the
existing program will be removed from memory and any variables will be lost. Any data
screens that have been created though, will remain intact, thus allowing intermediate
loading screens to be displayed. Example:

Print “Executing Test”
Run “Hithere.AMOS “ : Rem On AMOS Program Disc
Print “This Line Is Never Executed”

This commandis fantastically useful, as it allows you to splitany AMOS game into a number
of levels which can be loaded separately from the disc. Each level can now be written as
acompletely independent program. So the only limitto the size of your games is the amount
of storage space on the disc! You can therefore produce some massive games with this
system!

See also PRUN

266

Checking for the existence of a file

=EXIST (check if specified file exists)
flag=EXIST(f$)

EXIST checks the current directory for the file f$. If it is found, then a value of -1 (true) will
be returned, otherwise 0 (false). This EXIST function is capable of checking for the
existence of anything from a single file to an entire disc. Here are some examples:

Print Exist(“This is a really silly name HAHA”)
Print Exist(“AMOS:”) : Rem Is a disc called AMOS: available
Print Exist(“Df1:”) : Rem Has a second drive been connected

As you can see, EXIST will happily accept total gibberish without generating a single error.
Providing the filename contains at least one character, EXIST will carry on regardiess.
Empty strings like “” should however, be tested separately. Example:

F$=Fsel$(“*.IFF”,””,”Load an IFF file”)
If F$="” Then Edit : Rem Return to the editor if no file was chosen
If Exist(F$) Then Load Iff F$,0

=DIR F|RST$ (Get first file in directory satisfying path name)
file$=DIR FIRST$(path$)

Returns a string containing the name and length of the first file on the disc which satisfies
the current search path$. When this function is called, the entire directory listing will be
loaded into memory. You can now retrieve the name of the next file in the directory using
a call to the DIR NEXT$ function.

Print Dir First$(“*.*”)

=DIR N EXT$ (Get the next file satisfying current path)
file$=DIR NEXT$

Returns the next filename in the directory listing created by a previous DIR FIRST$
command. After the lastitem has been read fromthis list, a string will be returned containing
the empty string “". The entire directory array will now be erased and the memory it
consumes will be released for the rest of your Basic program. Here’s an example which
prints out all the files in the current directory:

F$=Dir First$(“*.*”) : Rem Read directory and get the first item
While F$<>™

Print F$: Bell : Wait 30

F$=Dir Next$: Rem Get next file in list
Wend

267

A further demonstration of these commands can be found in EXAMPLE 20.1 in the manual
folder. This copies the contents of a folder from one disc to another.

Disc files

Files are just collections of information which have been grouped together in one place on
the disc. Each file is assigned its own name which may contain anything from 1 to 255
characters.

Before you can use one of these files, you first need to initialize it using either the
OPEN IN, OPEN OUT, or APPEND instructions. When you open a file, you assign it to a
channel number ranging from one to ten. This number will be used in all future disc
operations to identify the file you are currently working with.

The Commodore Amiga supports two different types of disc files: Sequential files and
random access files.

Sequential files

Sequential files are the standard files which are used on the Amiga. The reason for their
name is that they only allow you to read your information in the precise sequence it was
originally created.

This means that if you wanted to change just one piece of the data in the middle of a
sequential file, you would have to read in the whole file up to and including this value, and
then write the entire file back to the disc.

AMOS Basic allows you to access sequential files for either writing or reading, but
never for both at the same time.

Open Out 1,”file.seq”

Input “What is your name”;N$
Print #1,N$

Close 1

This creates afile called FILE.SEQ containing your name. In order to read this information
back from the file, type in the lines:

Open In 1,"file.seq”

Input #1,N$

Print “l remember your name. It is “;N$
Close 1

Notice how both these programs perform three separate operations.

* Open the file using either OPEN IN, OPEN OUT or APPEND

* Access the file with INPUT#, or PRINT#

« Close the file with CLOSE. Note that if you forget to do this, any changes to the file will
be lost!

These three steps need to be completed in exactly this order, every time you access a
sequential file.

268

OPEN OUT (Open a file for output)
OPEN OUT channel,n$

Opens a sequential file for writing. If this file already exists it will be erased. channelis a
number between 1 and 10 and is used to identify your new file in your subsequent PRINT#
commands.

n$ is the name of the file to be opened.
APPEND (Add some information to the end of an existing file)

APPEND channel,name$

APPEND opens a sequential file for output. If this file exists, the new data is added onto
the end. This allows you to expand your files at any time once they’ve been defined.

OPEN IN (Open a file for input)
OPEN IN channel,f$

OPEN IN sets up a file for reading. If this file does not exist, it will be automatically created.
channelis a number ranging from 1to 10 which is used by various INPUT instructions
to refer to your open file.

CLOSE (ciose afile)
CLOSE n

Closes file number n. Warning! If you forget to close a file after you have finished with it,
any changes you have made to the file will be completely ignored.

PR'NT # (Print a list of variables to a file or device)

PRINT#channel,variable list

This command is identical to the normal print instruction, but instead of displaying the
information to the screen, it outputs it to a file or output device specified by the channel
number. Here’s an example:

Open Out 1,"Testfile”
Print #1,”Hello”
Close 1

As with PRINT you can abbreviate PRINT# to ?#.

INPUT # (Input a list of variables from a file or device)
INPUT #channel,variable list

INPUT# reads information from either a sequential file or a device such as the serial port.
Like the standard INPUT command, it enters a list of values and loads them into a set of
Basic variables. As always, each value in the list must be separated by a single comma.
Additionally, every line of data also needs to be terminated by its own <Line feed>
character. This is equivalent to the Return you pressed when you entered a line from the
keyboard. Example:

Open In 1,”Testfile” : Rem Opens File Created In Previous Example
Input #1,A$

Print A$

Close 1

LINE INPUT # (Input a list of variables not separated by a *,”)
LINE INPUT # has two possible formats:

LINE INPUT #channel,variable list
or
LINE INPUT #channel,separators,variable list.

This function is identical to INPUT#, except that it allows you to separate your list of data
using any character you wish instead of the standard comma. If the separator is omitted,
it's automatically set to the Return character.

When you are reading text, LINE INPUT# is always the preferred choice. That's
because the commas found in normal English will be treated as a separator by the INPUT#
command. This will confuse your program completely.

SET INPUT (Set End of Line characters)
SET INPUT c1,c2

i
Sets the End-of-Line characters which will be used to terminate a line of data. The Amiga
expects a single <line feed> character at the end of each line, whereas most other
computers (including the ST) require both a Return and <line feed>. So if you try importing
your ST files via the serial cable, you'll end up with dozens of spurious Return characters
in your files. Fortunately you can sidestep this problem using SET INPUT.

c1and c2hold apair of ASCll values which will be used for your separators. If you want
to use a single character, simply load c¢2 with a negative value such as minus one. Here's
a couple of examples:

Set Input 10,-1 : Rem Standard Amiga format
Set Input 13,10 : Rem ST format

270

E E S EEEEEEESEEEES

=|NPUT$ (Inputs a number of characters from a device)
x$=INPUTS$ (f,count)

Reads count characters from device or file number f£.

=EOF (7est for end of file)
flag=EOF (channel)

EOF is a useful AMOS Basic function which tests to see if the end of a file has been reached
at the current reading position. If it has, EOF returns a result of -1, otherwise 0.

LOF (Length of open file)
length=LOF(channel)

Returns the length of an open file. It makes no sense to use this function in conjunction with
devices other than the disc.

POF (Variable holding current position of file pointer)
pos=POF(channel)

The POF function changes the current reading or writing position of an open file, for
example:

Pof(1)=1000

This sets the read/write position to 1,000 characters past the start of the file. Oddly enough
POF can be used in this way to provide a crude form of random access when using
sequential files! The reason this works is simply that disc drives are inherently random and
all sequential operations are effectively simulated using random access.

Random access files

Random access files are so called because you can access the information stored on the
disc in any random order you like. In order to use these files you first need to understand
a little bit of theory.

All random access files are composed of units called records, each with their own
unique number. These records are in turn split up into a number of separate fields. Every
field contains one individual piece of information. When you use sequential files, these
fields can be any length you wish, as the file will only be read in one direction. Random
access files, however, always require you to specify the maximum size of each of these
fields in advance.

Supposing you wanted to produce a file containing a list of names and telephone
numbers. In this case you could use the fields:

27

Field Maximum length
SURNAME$ 15
NAME$ 15
CODES$ 10
TEL$ 10

You could now define these fields using a line like:

Field #1,15 as SURNAME$,15 as NAME$,10 as CODE$,10 as TEL$
It's important to realize that the strings specified by the FIELD instruction can also be used
as normal string variables. This allows you to read and write information to any particular
field. For example:

SURNAMES$="HILL” : Rem Loads the surname into the field SURNAMES.
TEST$=SURNAMES : Print TEST$

After you've loaded your record with information, you can write it onto the disc using the
PUT command. Example:

Put 1,10
Loads data into record 10 of the file opened on channel 1.
Similarly, you can read a record using the GET instruction.
Get 1,10
OPEN RANDOM (Open a channel to a random file)
OPEN RANDOM channel,n$
Ope;ws a random access file called n$ on the current disc. When you're using this

instruction, you should always define the record structure immediately afterwards using the
FIELD$ command.

FIELD (Define record structure)
FIELD channel, length1 AS field1$, length2 AS field2$......

FIELD allows you to define a record which will be used for a random access file. This record
can be up to 65535 bytes in length.

Field 1,15 as SURNAMES,15 as NAMES,10 as CODE$,10 as TEL$

272

PUT (Output a record to a random access file)
PUT channel,r

PUT moves a record from the Amiga’s memory into record number r of a random access
file. Before use, the contents of the new record should first be placed in the field strings
defined by FIELD, using a statement such as:

SURNAMES$="HILL”

Although you can write existing records in any order you like, you are not allowed to scatter
records on the disc totally at random. This means that if you have just created a file you
can't type in something like:

Put 1,1
Put1,5

In this case, the PUT 1,5 instruction will generate an error, as there are no records in the
file with numbers between 2 and 5. Record 2 must be the next new record in the file, then
3, 4... Example:

Open Random 1,”TELEPHONE”
Field 1,30 As NAMES, 30 As TEL$
INDEX=1
Do
Input “Enter a name”; NAME$
Exit If NAME$=""
Input “Enter telephone number”; TEL$
Put 1,Index : Inc INDEX
Loop
Close 1

GET (Input a record from a random access file)
GET channel,r

GET reads record number r stored in a random access file opened using OPEN. It then
loads this record into the field strings created by FIELD. These strings can now be
manipulated in the normal way.

Note that you can only use GET to retrieve records which are actually on the disc. If
you try to grab a record number which does not exist then an error will be generated.
Example:

Open Random 1,”TELEPHONE”
Field 1,30 As NAMES$, 30 As TEL$

Do
Input “Enter Record number”; INDEX
Exit If INDEX=0

273

Get 1,INDEX : Print NAMES : Print TEL$
Loop
Close 1

The printer

If you own a printer you'll be able to get full listings of all your AMOS programs. This is an
invaluable aid during the debugging process and should be considered as an essential
purchase for all serious programmers. The following commands give you easy access to
the printer:

LLIST (Print part or all of a program on a printer)

LLIST
Lists the entire program straight to the printer. Try listing some of the Basic programs
supplied on the DATA disc. These provide a perfect demonstration of the various

programming techniques needed to write your own AMOS Basic games. Feel free to
modify them as much as you like.

LPRINT (Output a list of variables to the printer)
LPRINT variable list

LPRINT is exactly the same as PRINT but sends your data to the printer instead of the
screen. Example:

Lprint “Hello”
See PRINT, USING, PRINT#
LDIR (List a directory to the printer)
LDIR [PATH$] [/W]

Lists the directory of the current disc to the printer. See DIR for more details.
External devices

OPEN PORT (Open a channel to an I/O port)

OPEN PORT channel,”PAR:” (Opens a channel to the Parallel interface)
OPEN PORT channel,"SER:" (Open a channel to the RS232 port)
OPEN PORT channel,”PRT:" (Open a channel for the printer chosen in preferences)

OPEN PORT allows you to communicate with external devices such as the RS232 port.

All the standard sequential file commands can be performed as normal, except for
commands like LOF or POF which are obviously only relevant to disc operations. Example:

274

NN NN NNNNNNNININ.]

Open Port 1,”SER:”
For X=0 to 10
Print #1,”AMOS BASIC”
Next X
Close 1

This program prints out ten lines of text on the device connected to the RS232 port. If your
printer uses the parallel port change line 10 to:

Open Port 1,”PRT:”
Similarly you can input information from a device such as a modem with a line like:
Input #1,A$: Print A$

When accessing these external devices all the normal input statements are available for
your use, including INPUT$ and LINE INPUT.

=PORT (Function to test if channel waiting)
n=PORT(channel)

Tests to seeifan inputdevice is ready to send you some information. If the device is waiting
for you to read it, a value of -1 (true) will be returned by this function, otherwise 0 (false).

275

21: Screen
compaction

Although the Amiga’s hardware is capable of displaying some stunning pictures, it's
previously been almostimpossible to achieve these effects in an actual game. The problem
is simply one of memory. A single 320x255 64-colour screen consumes a massive 60k of
RAM. That puts a real limit on the number of screens you can use in your games, especially
if you wish the resulting programs to to run on an unexpanded A500.

One solution is to generate your screens with the AMOS Map definer. This is fine for
the background screensinan arcade game, butit’s not really suitable for the type of realistic
images you'd find in an adventure.

Fortunately, there’s a simple alternative in the form of the AMOS compaction
instructions. These can quickly compress an entire screen into just a fraction of its original
size. All the standard graphics modes are supported, including HAM. So there’s nothing
stopping you from incorporating some terrific pictures into your AMOS programs.

SPACK (Screen compaction)
SPACK s TO n [tx,ty,bx,by]

The SPACK command, (pronounced s-pack), packs screen s into memory bank n.
Everything about the current image is saved, including its mode, screen size, offset, and
display position. This allows you to recreate your screen in exactly it’s original state.

s is the number of the screen which contains your image. n holds the number of a
memory bank from 1-16. If this bank does not currently exist, it will be reserved for you
automatically. Your new bank will be stored in FAST memory if it's available, and will be
saved along with your Basic program. After you've called this function, the size of your
screen can be found using LENGTH. Example:

F$=FSEL$(“*",””,”Load A Picture”)

Load Iff F$,0

Spack 0 To 1:Rem Compress Screen Zero Into A File In Bank One
Print “The Length Of Your New Bank Is “;Length(1);” Bytes™
Wait Key

Screen Close 0

Unpack 1 To 0:Rem Recreate Compacted Screen

You don't, of course, have to compact an entire screen with this instruction. The optional
parameters let you compress any rectangular section of the display you like.

tx,ty now hold the coordinates of the top left corner of this region. bx,by set the position
ofthe bottom right corner of yourimage. All xcoordinates are rounded to the nearest 8 pixel
boundary.

Note thatin order to achieve the maximum memory reduction, SPACK will attempt to
compact your image using several different strategies. It will then compress your image
using the method which consumes the least amount of memory. One side effect of this
efficiency, is that it usually takes around 6 seconds to compress one of your images. This

276

is hardly a disadvantage however, as normally the compaction is only required when you
are writing your programs.

Since each image can be unpacked on the screen in less than a second, there’s no
risk of interference with the speed of your games. If speed is of the essence though, you
may wish to use the CBLOCK system instead. See the section on Background Graphics
for more details.

Incidentally, if you compare the compacted size of your files with their original length
on the disc, you may be mislead into underestimating the size of the memory reduction.
It's important to realize that the vast majority of these files have ALREADY BEEN
COMPRESSED using the standard IFF compaction routines. So it’s rather surprising that
AMOS can reduce them by a further 20%!

Compacted screens are perfect for the titles and hi-score tables required in an arcade
game, as they allow you to introduce snazzy screen effects without consuming enormous
quantities of memory. They can also be incorporated directly into RPGs and Adventures.

PACK (pack a screen)
PACK s TO n [tx,ty,bx,by]

PACK compresses screen s into bank number n. Unlike the previous SPACK command,
only the image data is compressed. So your compacted screen must always be unpacked
directly into an existing screen.

Because of the way images are decompressed, there will be a noticeable shimmer
effect unless you've previously double buffered your screens. Try to avoid using PACK with
single buffered screens. It's much more sensible to call the SPACK system for this purpose.

Ifthe optional coordinates are included, only a section of the image will be compressed.

tx,ty specify the position of the top left hand corner of this region. bx,by hold the
coordinates of the bottom corner of your image. As before, all x coordinates are rounded
down to the nearest 8 pixel boundary.

Since PACK is fully compatible with the standard Autoback system, it's easy to
combine compacted images with moving screens. If you are using Autoback 2 mode, you'll
even be able to unpack yourimages BEHIND existing bobs. It's therefore possible to exploit
this instruction in conjunction with SCREEN OFFSET to create fantastic scrolling
backgrounds for your games.

U N PACK (Unpack a compacted screen)

Decompresses a screen which has been previously compacted using the SPACK or PACK
instructions. Each compaction routine has its own specific form of the UNPACK command.

SPACK
UNPACKb TO s
Opens screen s and restores the compacted screen into bank b. If this screen already

exists, it will be completely replaced by the new image. Once the screen has been
unpacked, it will be neatly flicked into view.

277

PACK

PACKed screens can be unpacked using two separate instructions. These take an image
from amemory bank, and load it straight into an existing screen. Warning! The destination
screen must be in exactly the same format as your compacted picture, otherwise you'll get
an illegal function call error.

When you unpack your screens, you may notice that the effectis slightly messy. That's
because the PACK command is only really intended for use with the double buffering
system. Providing your screen is double buffered, you'll get a delightfully smooth result.

UNPACK b
Unpacks the screen at its original position
UNPACK b,x,y

Redraws yourimage starting at coordinates x,y. If the new image does notfitinto the current
screen, you'll get an appropriate error message.

278

s 22: Machine code

AMOS Basic includes a range of commands which provide the advanced programmer with
total access to the inner workings of the Amiga’s hardware. None of these instructions are
required for general programming purposes, of course.

AMOS Basic has been carefully designed to allow you to control all the Amiga’s
features using simple, easy to understand Basic instructions. So there’s no real need to
hack around in memory in order to create your games!

Number conversion

=H EX$ (Convert number to hexadecimal)

h$=HEX$(v)
h$=HEX$(v,n)

HEXS$ converts the integer vinto hexadecimal notation (base 16). It returns a sequence of
n hexadecimal characters in the string h$. Examples:

Print Hex$(Colour(1),3)
$A40

Print Hex$(65536)
$10000

Print Hex$(65536,8)
$00010000

=Bl N$ (Convert number to binary string)

b$=BINS$(v)
b$=BINS$(v,n)

Converts a number into binary notation (base 2). As with HEX$, you can choose whether
to output all the digits in the number, or only a few. Example:

Print Bin$(255)
%11111111

Print Bin$(255,16)
%0000000011111111

n specifies the number of binary digits which will be returned in b$. Each number can
include anything from 1 to 32 digits (1<=n<=31).

Memory manipulation

=PEEK (Get byte at address)
v=PEEK(address)

279

Returns the 8-bit byte stored at address.

Load “AMOS_DATA:Sprites/Monkey.abk”
Print Peek(Start(1))
For $=8 To 1 Step -1
C=peek(start(1)-S) : Print CHR$(c); : Rem So that’s where the name is
Next S
POKE (Change byte at address)

POKE address,v

Copies the number vinto address. v must always lie in the range 0-255.

You can use this function to change the contents of any part of the Amiga’s memory
you wish. But be warned that POKE can be very dangerous. If you poke around
indiscriminately, you will almost certainly crash the Amiga completely. Example:

Load “AMOS_DATA:Sprites/Octopus.abk”
Poke (Start(1)-5),asc(“0”) : Rem Change one letter in the bank name
Listbank

=DEEK (Get word at address)

v=DEEK(address)

Reads the two-byte word found at address. address MUST be even or an address error will
occeur.

DOKE (Change word at address)
DOKE address,value

DOKE loads a two-byte number between 0 and 65535 into the memory location at address.
In knowledgeable hands this function can be very useful. Since even the best of us make
mistakes however, you should always save a copy of your programs to the disc before
attempting to use this function in a new routine. Example:

Doke Phybase(1)+1000,65535

=LEEK (Read a long word at address)

v=LEEK(address)
Returns the four-byte long word stored at address. Like DEEK, the address used with this
function must always be EVEN. If bit 31 of the return value is setto a 1, vwill be displayed
as a negative number. This isn't a bug. It's just a side effect of the way AMOS deals with
numbers. Example:

Print Leek(0)

280

LOKE (Change long word at address)
LOKE address,n

LOKE copies the four-byte number ninto address. Example:

Loke phybase(1)+10000,$FFFFFFFF

Indiscriminate use of this function can lead to the Amiga crashing horribly, so take care.

=VARPTR (Get address of a variable)
address=VARPTR(variable)

Returns the address in memory of a Basic variable. Each type of variable is stored using
its own individual format:

Integers: VARPTR finds the address of the four bytes containing the contents of your
variable. Example:

A=0

Loke Varptr(A),1000
Print A

1000

Floating point: VARPTR returns the location of four bytes which hold the value of the
variable in the IEEE single precision format.

Strings: The VARPTR address points to the first character of the string. Since AMOS Basic
does not end its strings with a CHR$(0), you must obtain the length of the string using
something like: DEEK(VARPTR(A$)-2), where A$is the name of your variable. You could
also use LEN(AS$) of course.

COPY (Copy a memory block)
COPY start,finish TO destination

This command is used to rapidly move large sections of the Amiga's memory from one
place to another. startand finish are the addresses of the first and last bytes of your data

respectively. destination points to a memory area which will be loaded with your new data: .

All these addresses MUST be even, or you'll get an address error. Example:

Reserve As Data 10,1000
A$="Hi There”
Copy Varptr(A$),Varptr(A$)+Len(A$) To Start(10)
For P=0 To Len(A$)
Print Chr$(Peek(Start(10)+P));
Next P

281

FILL (Fill memory block with a longword)
FILL start TO finish,pattern

Fills a selected region of memory with the four bytes held in pattern.

start and finish determine the position and size of the block which is to be filled.
Warning! These addresses MUST be even!

pattern is a long word containing a four byte fill pattern. This will be copied into each
group of four memory locations between start and finish. Example:

Reserve As Data 10,1000
Rem create a string of four characters (4 bytes=1 Longword)
A$="AMOS”
Rem Fill Bank with string
Fill Start(10) To Start(10)+Length(10),Leek(Varptr(A$))
For P=0 To Lenght(10)
Print Chr$(Peek(Start(10)+P));
Next P

=HUNT (Find a string in memory)
f=HUNT (start TO finish, s$)

Searches through the Amiga’s memory for the sequence of characters held in s$. startis
the address of the first byte in memory to be searched, and finishis the address of the last.

On completion, fwill hold either O (if the string in a$ was not found) or the location of 3.

Bitwise operations

ROL (Rotate left)

ROL.B n,v
ROL.W n,v
ROL.L n,v

ROL is a Basic version of the ROL instruction found in 68000 assembly language. The

effect is to take the binary representation of a number in v, and rotate it left by exactly n
places.

If vis a single variable, then the number to be rotated is taken directly from v. But if
v is an expression, then it's treated as the address of your number instead. Here’s an
example:
The number 136 is represented in binary by:

%10001000

Type in:

282

V=136

Rol.B 1,V
Print Bin$(V,8)
%00010001

Notice how the first bit in the number has magically re-appeared from the back. Now for
an example of the address system.

Reserve As Work 10,1000
Poke Start(10),%00001111
Rol.B 1,Start(10)

Print Bin$(Peek(Start(10)),8)
%00011110

This will give the number 17 or binary %00010001

As you can see, the entire number has been shifted to the left, with the highest 1 being
rotated into the lowest position. The reason for the “.B”, is to instruct AMOS to treat this
number as an 8-bit byte. You can also specify the sizes “.W" (word) and “.L” (long word).
Examples:

Rem Note the . between Rol and L
A=1

Rol.L1,A

PrintA

2

Rem Take note of the . between Rol and W
A=32768

Print BIN$(A)

Rol.W 2,A

Print A

2

ROL can be used as a very quick way of multiplying a positive number by a power of 2.

ROR (Rotate right)

ROR.B n,v
ROR.W n,v
ROR.L n,v

This is very similar to ROL but rotates the number in the opposite direction. As before, v
may be either a simple variable or an expression. If it's an expression, ROL will rotate the
number stored at the resulting address. Example:

A=8
Ror 1,A
Print A
4

283

ROR is capable of dividing any positive value by a power of two. The resulting calculation
will be performed much faster than the equivalent */” operation.

=BTST (Test a bit)
b=BTST(n.v)

Tests the binary digit at position nin the variable v. If vis an expression, it will be used as
the address of the bit which is to be checked. In this case n will be automatically ANDed
with 7 before proceeding.

After BTST has been called, b will be loaded with -1 (true) if the bit at position nis set
to 1, otherwise it will be 0 (false). Example:

B=%1010
Print Btst (3,B)
-1

Print Btst (2,B)
0

See also BCHG, BCLR, BSET

BSET (setavitto1)
BSET n,v

Sets the bit at position nto 1 in the variable v. If you substitute and expression for this
variable, it will be treated as the address of a value in the Amiga’'s memory.Example:

A=0
Bset 8,A
Print A
256

BCHG (Change a bit)
BCHG n,v

Changes bit number nin the variable v. If this bit is currently 1 then the new value will be
a zero, and vice versa. As usual, if vis replaced by an expression, then the result will taken
as an address. Example:

A=0
Bchg 1,A
Print A

2

Behg 1,A
Print A
0

284

-----..-‘

BCLR (Clear a bit)

BCLR n,v

Clears bit number nin variable v by setting it to zero. Like all the Bitwise operations, if vis
an expression, then it will be used an the location of your data in memory. Example:

A=128
Belr 7,A
Print A
0

Using assembly language

AMOS Basic includes special facilities which allow you to combine assembly language
routines with your Basic programs. It's worth emphasising that, because of the sheer power
of the AMOS system, machine code is only rarely useful. We've added these features
solely for existing assembly language programmers who may wish to optimise their Basic
programs with the occasional bit of machine code.

Be warned! These commands are extremely dangerous, and can easily crash your
Amiga if they’re used recklessly. Unless you're fully at home with the intricacies of the
Amiga’s hardware, you are strongly recommended to avoid these functions completely!

PLOAD (Reserve a memory bank for some machine code)
PLOAD “filename”,bank

Reserves a memory bank and loads it with a machine-code program from the disc.

bank is the number of a memory bank which is to be reserved for your program. If it’s
negative, then the bank will be calculated using the absolute value of this number, and the
required memory area will be allocated from CHIP memory.

Once you've loaded a program in this way, you can save it on the disc as an normal
“.ABK” file. Since the banks created by this function are permanent, it will also be saved
directly with your AMOS programs.

Your program must consist of a machine code file in the standard Amiga format. In
practice, it can contain practically anything you like, with the following restrictions:

» The code must be totally relocatable. as it will be positioned at the first free memory
location which is available.

* Only the code chunk of your program will be loaded.

« The program must be terminated by a single RTS instruction.

CALL (Call a machine-code program)

CALL address[,params]
CALL bank][,params}

285

Executes an assembly language program held in the Amiga’s memory.

address can be either the absolute location of your code; or the number of an AMOS
memory bank which has been previously created with PLOAD.

On entry to your program, registers DO to D7 and AQ to A2 will be loaded from the
values stored in the DREG and AREG arrays. Your assembly language program can now
change any 68000 registers it likes. At the start the routine, register A3 will point to the
optional parameter list, and A5 will contain the address of the main AMOS data area.When
your program’s finished, you can return to Basic with just a simple RTS instruction.

params is a list of parameters which will be pushed onto the A3 stack by the CALL
command. These parameters need to be removed in REVERSE order. So the last value
you entered into the instruction will be the first on to the stack. Depending on the type of
your parameters, the values referenced by A3 will be in one of the following three formats:

Integer: Holds a long word containing a normal AMOS integer.
Floating point: Contains a floating point number in IEEE single precision format.

String: Stores the address of the string. All strings start with a single word containing their
length.

WARNING! Never poke directly into a string! When a string is initialised to a constant,
the string address will point to the original assignment statement inside the current program
listing! So if you change this value, you'll affect your original source code. This is obviously
extremely unwise, and should be avoided.

For a demonstration of PLOAD and CALL see EXAMPLE 21.1 in the MANUAL folder.

=AREG= (Variable used to pass information to the 68000’s address registers)

a=AREG(r)
AREG(r)=a

AREG is an array of six PSEUDO variables which are used to hold a copy of the first six
of the 68000’s address registers. rcan range from 0 to 6 and indicates the number of the
address register which is to be affected.

Whenever the CALL command is executed, the contents of this array are loaded
automatically into address registers A0 to A2. Atthe end of the function, they are then saved
back with any new information which has been placed in the appropriate registers.

=DREG= (Variable used to pass information to the 68000’s data registers)

d=DREG(r)
DREG(r)=d

This is an array of eight integers which holds a copy of the contents of the 68000 data
registers. r refers to the register number and canrange from 0to 7 for D1 to D7 respectively.

286

Accessing the system libraries
AMOS also allows to you call up most of the Amiga’s internal system libraries directly from
the ROM. These aren't particularly useful, since all the really interesting calls have already
been built into AMOS!

Don'’t use these routines unless you know precisely what you are doing. The Amiga
is notoriously difficult to program, and it's all too easy to crash the system and generate the
infamous GURU error by mistake.

=DOSCALL (posiibrary)
r=DOSCALL(function)

Executes a function directly from the DOS library. function s the offset to the appropriate
function. See the Amiga ROM Kernel Manuals for more details.

Before using this function, you'll need to set some of the control registers in DO to D7
and A0 to A2 using the AREG and DREG functions. When the routine exits back to Basic,
the contents of DO are returned in r. Note:The return values will not be loaded into DREG
and AREG.

=EXECALL (execLibrary)

r=EXECALL(function)

Performs a call to the Amiga’s EXEC library. On entry, DO to D7 and A0 to A2 are loaded
with the control settings from the DREG and AREG arrays. r is returned holding the
contents of DO.

=GFXCALL (Graphics library)
r=GFXCALL(function)

Calls a routine from the graphics library using the control values stored in the DREG and
AREG arrays.

function is the offset to the relevant function. ris the result of the operation returned
in DO.

=INTCALL (inwition library)

r=INTCALL(function)

Executes a command from the Intuition library. As usual the control values are loaded from
DREG and AREG arrays, and r holds the result of the call.

Since AMOS doesn't use the standard Intuition routine, this function is especially
dangerous. Only call it if you are already familiar with the Amiga’s Intuition library.

287

Inside AMOS Basic

In order to provide full access to the inner workings of the AMOS system for developers,
we've included several “hooks” into the various data areas. These are not intended for the
casual programmer, but they do enable advanced users to create their own AMOS utilities.

=SCREEN BASE (Get screen table)
table=SCREEN BASE

Returns the base address of the internal table used to hold the number and position of your
AMOS screens. See EXAMPLE 21.2 for a simple demonstration.

=SPRITE BASE (Get sprite table)

table=SPRITE BASE (n)

Provides the address of the internal data list for sprite n. If this sprite does not exist, then
the address of the table will be zero.

Negative values for n return the address of the optional MASK associated with your
sprite. table will now contain one of three possible values, depending on the status of this
mask:
table<0 Indicates that there’s no mask for this sprite at all.
table=0 Sprite ndoes have a mask, but it hasn’t yet been generated by the system.

table>0 Thisis the address of the Mask in memory. The firstlong word of this area holds
the length of the mask, and the next is followed by the actual definition.

See EXAMPLE 21.3 from the MANUAL foider.
=ICON BASE (Get icon base)
table=ICON BASE(n)

Returns the address for icon n. The format of this information is exactly the same as the
previous SPRITE BASE function.

288

Command index

CALL .ot 285
CDOWN ..o 93
CDOWNS93
CENTRE ..o 96

CHANAN195
CHANGE MOUSE165
CHANMVccoeecee195
CHANNEL ..o 197
CHOICE 214,216
CHRS ..o 58
ANIM FREEZE ..o 206 CIRCLEcoviiiiiieinicieecceee e 66
ANIM ON/OFFcccooiiiiiiiicine 206 CLEARKEY251
APPEAR ..ot 136 CLEFT it 94
APPEND ..o 269 CLEFTS ot 94
AREG ..., 286 CLINE ..ot 96
ASC e 58 CLIP s 71
AT 91 CLOSE.......cceue. 269
ATAN Lo 113 CLOSE EDITORccocceiiiiccciiicie 30
AUTO VIEW ON/OFFccccevevuenne 121 CLOSE WORKBENCH T 30
AUTOBACKccooiiiiiiiiiiiicie 158 CLS . ceereeenn 131

BANK TO MENUcccvvviiininiine 221 CLW ceverenn. 108
BAR ..o 68 CMOVE e 90
BCHG ... 284 COL170
BCLR ..o 285 COLOUR ...t 62
BELL SN 234 COP LOGIC144
BGRAB . e 31 COP MOVE........ .. 143

BINS T 279 COP MOVEL.....
BLOAD .. . 51 COP RESET

BOB ..o, 155 COP WAIT ceenenn. 143
BOB CLEARccocvviiiiiiiicce 161 COPPER OFF veeeeeen 143
BOB COL ...ooviviiriiieiciec i 170 COPPERON e 143
BOB DRAW ..ot 161 COPY e, 281
BOB OFF ..o 163 COS e 112
BOB UPDATEccooiiiiieiecee 161 CRIGHT ..o 94
BOBSPRITE COLcccoiiiiiiine 170 CRIGHTS ...t 94
BOOMooiiiiieiiiiecrec e, 233 CUP s 93
BORDER..... SR 101 CUPS .o 93
BORDERS... s 98 CURS ON/OFFocoviviirieiiniiee 95
BOX oo 65 CURS PEN ..o 96

BREAK ON/OFFccocviviiiiiiiiiens 83

BSAVE ..o 51
BSET .ot 284
BTST o 284

289

DEFAULT PALETTE..

DEL BLOCK....
DEL CBLOCK

DIR FIRSTS ...

DOUBLE BUFFER.

DUAL PLAYFIELD
DUAL PRIORITY

EVERY n GOSUB ..
EVERY n PROC
EVERY ON/OFF

FOR...NEXTccconeees
FREE

FSEL$
GET .o
GET BLOCK .
GETBOBcocciciiciicicce
GET CBLOCKccoeiiiciiiiiiiciene
GET DISC FONTS
GET FONTS
GETICON......ccocovrirnn
GET ICON PALETTE
GET PALETTE ..o
GETROMFONTS ..o
GET SPRITE......ccccoee .
GET SPRITE PALETTE
GFXCALL ...oovviiiiiiiins
GLOBAL ...

GOTO

HOT SPOT
HSCROLL
HSIN

IF.. THEN..[ELSE] oo —_—
IF.. [ELSE]...ENDIF oooooroosooeoroe 76
ING oo .39

INTCALL wovoooooorinn ..287

KEY SPEED

LIMIT MOUSE

LINE INPUT # ..

MAKE ICON MASK ...

MEMORIZE X/Y
MENU ACTIVE
MENU BASE ...

MENU CALLED

MENU INACTIVE
MENU ITEM MOVABLE ...
MENU ITEM STATIC

MENU LINE ..o 227
MENU LINKED ...2381
MENU MOUSE ...232
MENU MOVABLEccccoviirn. 229

MENU ON/OFF
MENU ONCE 227
MENU SEPARATE231
MENU STATIC230
MENU TLINE
MENU TO BANK..........

MOUSE CLICK
MOUSE KEY
MOUSE ZONE
MOVE FREEZE

MUSIC STOP ...
MVOLUME

NO MASK ..
NOT L

ON ERROR PROC

ON MENU DEL

ON MENU GOSUB
ON MENU GOTOcoviiiriiiiiics
ON MENU ON/OFFccccoevviinnne 218
ON MENU PROC217
ON...GOSUB........coeviiiiiiiceieee 81
ON...GOTO ..ot 81

ON..PROCcviiiee 81
OPENIN

OPEN OUT269
OPEN PORT274
OPEN RANDOM272
PACK277
PAINT Lo 67
PALETTE ..o 63
PAPER ... 87

PAPERS() .voveeieecieerie e 88
PARAM46
PARENT ..o 264
PASTE BOB......cccceeeeeeeereeiieee 163
PASTE ICONccoooiiiiiiiicieee 207
PEEK ..o 279
PEN87
PENS87
PHYBASE ..o 135
PHYSIC .o 135
PHE e 111
PLAY oo 240
PLOAD..... .285
PLOT 64
POF ot 271
POINT Lo 64
POKE280
POLYGON68
POLYLINE65
POP75
POP PROCcoceeevveeens .47
PORT ..o 275
PRG FIRSTS... .31
PRG NEXTS.... ... 31
PRINT# .o 269
PRINT Or 2 .o 254
PRIORITY ON/OFF ..o 174
PROCEDUREc..ooeiiieeiiee 42

PUT BOB ..o 163

READ ..ot

REPEATS
REPEAT...UNTIL

RESERVE ZONE ...
RESET ZONEc.coooviiiiirinnn

292

RESTORE......ccooioiiiiciniere 257
RESUMEccoooiiiiii e 85
RETURN74

RIGHTS ..o 54
RND 115
ROL .. 282
ROR..... ..283
RUN266

SAM BANK ...
SAM LOORP ...
SAM PLAY ...

SAM RAW236
SAMPLE244
SAVE ..o
SAVE IFF .. .124
SAY ..o247
SCANS$ e
SCANCODE249
SCIN ...

SCREEN

SCREEN BASE
SCREEN CLONE...... ... 127
SCREEN CLOSE ...

SCREEN COLOUR ..
SCREEN COPY
SCREEN DISPLAY
SCREEN HEIGHT
SCREEN HIDE
SCREEN OFFSET ...
SCREEN OPEN
SCREEN SHOW
SCREEN SWAP
SCREEN TOBACKcc.e..
SCREEN TO FRONT
SCREEN WIDTH

SCROLL
SET BOB

SET LINE
SETMENUccooiiiiiis

SET PAINT oo
SET PATTERN
SET RAINBOW ..o

SET SLIDER ..o 104 USING ..o 254
SET SPRITE BUFFER.........ccoce.. 151 VAL L 59
SETTAB ..o 97 VARPTR 281
SET TALK ..o 247 VIEW 121

SETTEMPRAS ... 71 VOICE239
SET TEXT . 108 VOLUME235
SETWAVE ... 241 VSCROLL ..o 99
SETZONE ..o, 172 VSLIDER........ ...104
SGN L 115 VUMETER240
SHADE ON/OFFcccccovvviiiiiiiinne 88 WAIT L 258
SHAREDcccooiiiiiiiiciinice 45 WAITKEY ..o 259
SHIFT DOWN ..o 139 WAIT VBL136
SHIFT OFF ... 139 WAVE243
SHIFTUP .o, 138 WHILE..WEND.cooiiiriiiiine 78
SHOOT s 233 WIND CLOSE102
SHOW s 165 WIND MOVE ... 102
SIN i 111 WIND SIZE ..o 103
SORT ..ot 59 WINDON ..o 102
SPACES ..o 57 WINDOPEN ..o 99
SPACK ..o 276 WINDOW 102
SPRITE ... 145 WINDOW FONT100
SPRITEBASE ... 288 WINDSAVE RN 100
SPRITE COLoceriiiiiiiciiciiicns 169 WRITING ..o 89
SPRITE OFF ..o 152 XBOB............ ...162
SPRITEBOB COLccccvviveiiiiie 170 XGRAPHIC ..o 92
SPRITE UPDATEccocvvviiiiiiicenne 152 XHARD154
SQR e XMOUSE167
START .. X SCREEN..... ...153
STR$.....cocec X SPRITE....... ...1562
STRINGS XCURS ..o 94
SWAP XGR .o 64
SYNCHRO XTEXT i 91
TABS..... YBOB......... 162
TAN....... Y GRAPHIC ... 92
TEMPO Y HARD 154
TEXT oo Y MOUSE167
TEXT BASE Y SCREEN...... ...153
TEXT LENGTH ... Y SPRITE....... ...153
TEXT STYLE YCURS ... 95
TIMER................ YGR .o 64
TITLE BOTTOM .. YTEXT oo 92
TITLE TOP ZONE 173
TRUE ... ZONES ..o 98
UNDER ON/OFF ZOOM ... 142
UNPACK ..o

UPDATEc......

UPDATE EVERY ...

UPPERS ...

293

P2 EEDEEEREECEE N

mEEn
. EN
E EEEEEE
|
N O

gFTWA "

