

Ultimate
AMOS

The complete guide to games programming with AMOS

Ultimate
AMOS

The complete guide to games programming with AMOS

Jason Holborn

Ultimate AMOS
Copyright © 1993 Future Publishing
All rights reserved. No part of this book may be duplicated, stored in a retrieval system
or used as part of any other book, database, program or other commercial application
without the publisher's express written permission.

Book design and production Rod Lawton

Cover design Rod Lawton

Cover illustration Paul Kidby

Author Jason Holborn

First published in 1993 by Future Publishing, Beauford Court, 30 Monmouth Street,
Bath, Avon BA1 2BW

ISBN 1 89827502 5

Printed in the UK by Beshara press

Acknowledgement of copyright and trademarks
This book contains copyright or trademark product names owned by the companies
which produce them. Description of these products without mention of their legal status
does not constitute a challenge to this status. The author and Future Publishing fully
acknowledge such copyright names or trademarks.

The included disk
The programs on this disk have been written for their instructional value. They are not
guaranteed for use in any specific situation. The publishers accept no liability for
problems arising from their use. The contents of the disk are copyright, and are not to
to be copied or distributed in the public domain.

v

Contents

Preface xi

Using this book xii

Chapter 1: Introduction
• What i s AMOS, what con i t da?

1

• The AMOS 'family'
• AMOS utilities
• Getting started with AMOS

Chapter 2: How AMOS works
• The AMOS Editors (Easy AMOS, AMOS 1 .35, AMOS Pro)

2 1

• The AMOS Monitor (Easy AMOS and AMOS Pro only)

Chapter 3: Programming principles
• Program planning

39

• 'Pseudo code'
• Sub-routines
• Code comments
• Code indentation
• Procedures
• Handling variables

Ultimate AMOS

vi

Chapter 4: Screens
• Screen modes

5 1

• Opening screens
• Screen management
• Screen palettes
• Resizing and positioning screens
• Loading and saving screens

Chapter 5: Screen scrolling
• Screen synchronisation

73

• Hardware & software scrolling
• Superbitmaps and viewports
• Screen Copy scrolling
• Parallax scrolling
• Continuous scrolling
• Using screen 'blocks'
• AMOS TOME extension

Chapter 6: Screen effects
• The Amiga's co-processor ('copper')

1 03

• Copper effects and rainbows
• Screen synchronisation & 'double-buffering'
• Screen compaction

Chapter 7: Sprites and bobs
• Hardware and software ' sprites' (sprites and 'bobs')

1 33

• Creating sprites and bobs (objects)
• Displaying and moving objects
• 'Virtual' sprites
• Animating objects
• Flipping objects - 'hot spots'
• Collision detection
• The Object Editor & menus
• The Animation Editor

Ultimate AMOS

vii

Chapter 8: Obiect control
• Keeping track of objects with ' data structures'

1 71

• Controlling on-screen objects using a joystick or keyboard
• Setting boundaries for object movement
• Creating a 'bouncing' movement
• More advanced object movement patterns

Chapter 9: AMAL
• Multi-tasking and interrupts

223

• How AMAL works
• AMAL Editor versus ' embedded' code
• Assigning and handling channels
• AMAL registers -local, global and 'special'
• AMAL instruction set
• AMAL functions
• Using more than 16 channels
• Useful AMAL routines

Chapter 10: Sound and music
• Built-in sound effects

25 1

• Sound samplers
• Sample banks
• Handling samples
• The Amiga's sound filter
• Music modules
• VU meters
• O-Sam extension
• Sample Bank Maker

Chapter 1 1: Games programming
• Games programming principles

269

• The 'main game loop'
• Game types
• Optimising game code

U ltimate AMOS

viii

Chapter 12: Shoot 'em ups
• Moving the player's ship

279

• Handling aliens
• Firing missiles
• Explosions

Chapter 13: Maze games
• Drawing the maze

293

• Detecting walls
• Picking up objects
• Intelligent 'baddies'
• 'Dungeon Master' clones

Chapter 14: Platform games
• Drawing plarlorms

32 1

• Tying bad dies to plarlorms
• Jumping between plarlorms
• Picking up objects

Chapter 15: Adventure games
• Designing an adventure

34 1

• Writing a parser
• Moving around ' locations'
• Handling objects and monsters
• Adding graphics

Ultimate AMOS

Appendix A: Useful routines
• Mandelbrot generator
• 'Splerge' effect
• Parallax starfields
• Multitasking text input
• Co-ordinates finder
• High-score routine
• Bubble sorting arrays

Appendix B: Getting your game published
• Appraaching a softWare house
• Stopping yourself from getting ' ripped off'
• Hiding your game's creator!
• The PO options - including shareware & licenseware

Appendix C: Where to go next
• 'The AMOS Club'
.'Total ly AMOS'
• Magazines
• Bulletin boards

Index

ix

36 1

383

393

399

U ltimate AMOS

x

About the author
Jason Holborn is a freelance writer and journalist who has worked on the
Amiga throughout his journalistic career. His writing career began in
1 988 when he joined Future Publ ishing's then new publication, ST
Amiga Format. When ST Amiga Format split into two magazines in
1 989, Jason moved across to work as technical editor on Amiga Format,
a post he held until he left to pursue his freelance career in 1 990.

Jason has been programming a wide range of computers for considerably
longer than he has been a journalist, during which time he has worked
with just about every programming language - including assembler, C,
Cobol and Pascal - athough AMOS remains his favourite language.

Jason lives and works in Somerset with a Cockatiel called Cosworth, an
XR3 i Cabriolet called Derek and an Amiga A 1 200 called Cyri l . His
hobbies include fast cars (especially Ford Cosworths), Japanese martial
arts, history and culture, l istening endlessly to his collection of Depeche
Mode compact disks and mucking out his girlfriend 's horses !

Thanks to ••.

Ultimate AMOS

Special thanks must go to Georgina (my girlfriend) for putting up with
me, Nicki, Tammy and Benson, the local Spar shop for keeping me
supplied with microwave doner kebabs, my regular drinking partners
Bany and Max who constantly remind me what it feels like to have a
hang-over, Rod at Future for being so understanding when deadline after
deadline passed, Stuart, Marcus and Cliff for the same reason, Richard
Vanner at Europress, Dave Smithson for his great ideas , Cos worth for
keeping me company, Alfie Noakes for his total lack of jokes, Ross
McPharter for his amazing show-stoppers, Derek's mum for being here
quite long enough thank you and Depeche Mode for keeping me
entertained through those long winter nights.

xi

Preface

The BASIC programming language is available on every home computer.
It's most people's ' first' programming language, combining reasonable
programming speed and power with easy-to-understand commands and
structures.

The Amiga too has its own standard BASIC In the early days it was the
universally disliked AmigaBASIC This disappeared from Amiga packs,
and was not replaced by Commodore. At the same time, a new type of
program appeared. AMOS was BASIC-based, but utilised the Amiga's
own custom hardware to provide a programming language which was not
only easy to learn and understand, but extremely powerful too.

AMOS has come to be accepted as the Amiga's ' standard' BASIC
Although it can be used to program just about any application under the
sun, its main strength (and the reason for its huge

·
popularity) is its

abilities as a games creator. The results can be stunning.

AMOS has evolved since its launch. It's got faster, more powerful and
more versatile, culminating in the release of AMOS Pro, and the brand
new AMOS Pro Compiler. The Compiler converts AMOS programs into
machine code, resulting in much faster and more compact code. Nearly
as fast, in fact, as code written by the 'experts' in assembly language.

In fact, AMOS now has to be considered the ultimate games creation
package. Which is why we 've produced what we intend to be the
ultimate AMOS guide.

Ultimate AMOS

xii

� CJ

Ultimate AMOS

Using this book
We're assuming you already have some basic (sorry !) knowledge of
BASIC programming. Not much, but enough to grasp the principles of
variables, loops, conditional operators and other BASIC basics (there we
go again). Note, though, that you don't have to be a BASIC expert to use
Ultimate AMOS. Far from it.

The first few chapters in Ultimate AMOS are arranged in sequence,
starting from the basics and building up to special AMOS features and
techniques. After that, though, feel free to dip into the chapters that most
interest you when you need the information. You don 't have to read this
book from cover to cover (although it wouldn't hurt).

To make things easier and more useful, we've included icons in the
margins to indicate things of special interest in the text. Here are those
icons, together with what they mean:

Make a note Most of the things you read get stored away in your head
somewhere or other. When you see this icon, though, make sure you
store this particular item somewhere prominent. It's quite important.

Product spotlight You don't use AMOS on its own. Screens and
backgrounds may be drawn in DPaint, in-game music will be written
using a dedicated music program, and there are a number of special
AMOS 'extensions' which boost its power. Here 's where we point them
out to you.

Top Tip There are lots of ways of saving time, money and effort - and of
spectacularly improving results - that you won 't find written down
anywhere. Except here, that is .

Clever Coding Programming is a funny business . For any given end
result there are usually half a dozen different ways of programming it.
Some are obvious, some are devious. Clever, in other words.

xiii

What does it mean? Programming is ful l of jargon. You can 't get rid
of it, you just have to l ive with it. But that doesn 't mean to say you can't
explain it. Which is our rather long-winded way of explaining that we do.

Warning! You won't see this icon too often, but when you do, take note !
Ignoring it could cost you time, money or your sanity. People often have
precious little of any of these, so don 't take chances.

Icons for program listings

� �

(@]81I1) 1!J0
OOMPl[COO(

[il!l@][!]I
COMMAt(} OUl'lrTlON

We have another selection of icons for the parts of the book where we
print program l istings. Here's what they mean:

Type this in Actual ly, you don 't have to, since al l the complete l istings
in the book are also on the disk supplied. This icon means that the l isting
is a complete, working AMOS routine. Printing the listings in the book
lets you examine the code to see how it works without having to print out
a l isting yourself from the disk (not everyone has a printer).

Pseudo code To program successfully you have to plan what you 're
going to do. And this is often easier using 'pseudo code ' . These l istings
won 't actually work - they 're a kind of programming shorthand
representing what the program should do and how it should be
structured.

Sample code This icon means that what you 're looking at isn't a
complete listing - it is working AMOS code, but only as part of a larger
routine. It 's intended to demonstrate AMOS commands, functions and
techniques.

Command definition Speaks for itself really. AMOS commands (and
functions) are defined all the way through the book, together with their
syntax, parameters (if any) and usage.

Ultimate AMOS

xiv

Ultimate AMOS

1

Introduction
• What is AMOS, what can it do?

• The AMOS 'family'

• AMOS utilities

• Getting started with AMOS

Ultimate AMOS

2

Ultimate AMOS

Chapter 1

W hether you ' re a hardened Amiga fanatic or just a Sunday
afternoon games player, there's something intrinsically
appealing about writing your own programs. I 'm sure that most

of us have dreamed of joining the ranks of those rich and famous
programmers we see month after month within magazines l ike Amiga
Format and Amiga Shopper. Fuelled by images of bright red Porsches,
international recognition and the sort of expensive jewellery than would
drown limmy Saville, it's not surprising that programming languages
such as AMOS have done so wel l .

Even i f you don 't achieve the same levels of success as such big names as
DMA Design's Dave 'Lemmings' lones, David 'Elite' Braben or Daniel
'DPaint' Si lva, learning to program can be a deeply rewarding
experience. Perhaps its got something to do with that feel ing of utter
satisfaction you get when you finally manage to get that program that
you' ve been working on for the last 2 weeks up and running ! What's
more, the only limit that programming imposes is your imagination ! . . .

What makes programming languages such as AMOS so special , though,
is flexibility. No other software product you could possibly buy for your
Amiga can be applied to so many different tasks. Take a paint program,
for example. Although you can paint just about any picture that you could
possibly think of, you're still essentially producing the same results (a
picture).

A word processor is the same - although you could use it to write
anything from a love letter to a major work of English l iterature, you ' re
essential ly getting the same results over and over again (formatted text).
Al l fine and dandy, but what else can these applications do? Nowt, that's
what !

OK, so this is a l ittle unfair - after all , comparing a programming
language to any other kind of software is like comparing a tool box with a
chair - although the tools within the toolbox could theoretically be used
to build a chair (providing you have some wood), the chair was designed
to fulfil a specific task and no other. (You're probably wondering what all
this talk of chairs and toolboxes has to do with programming languages,
but the comparison between the two is surprisingly appropriate .)

Introduction

� MM'A
NOT(!

Other
programming

languages

3

Like the tool box , a programming l anguage does nothing more than
provide you with a set of tools in the form of general purpose commands
- how you apply these tool s is up to you. Because the commands offered
by the l anguage have been designed to be as general purpose as possible,
a programming l anguage places absolutely no restriction on the type of
programs that you can write - all that is required of you is that are able to
shape your ideas (essentially the wood that we used to build our chair !)
into working programs using the commands provided.

50 why choose AM05?
After all , AMOS isn't the only programming language available for the
Amiga - you could, if you really wanted to torture yourself, achieve
almost exactly the same results using l anguages such as assembler
(machine code), C or even that student's favourite (but not mine !), Pascal .
In many respects, these l anguages offer benefits that make them better
equipped to handle certain programming projects - assembler, for
example, is considerably faster than AMOS and C is the natural l anguage
of the Amiga (most of the Amiga's operating system was written in C) , so
it's ideally suited to applications programming.

AMOS is such a damned good choice for Amiga programming simply
because it offers the sort of low-level programming power normally only
associated with assembler, but with the kind of user-friendliness only
associated with BASIC, a l anguage designed specifically with beginners
in mind (this is hardly surprising when you consider that AM OS is built
upon the BASIC language anyway !) . Assembler l anguage, on the other
hand, is notorioLlsly difficult to learn, especially when YOLl consider that
you also need to learn the Amiga's hardware and operating system inside
out before you can get even the simplest of programs to work. AMOS
shields you from all this by providing a ready-made set of commands that
give you with power of assembler but without the hass le ! And, because
most of the hard work is done for you, AMOS programs are considerably
smaller than their assembler equivalents, which means that they don't
take so long to write.

What's more, AMOS also turns in some pretty impressive performance
ratings, something that certainly isn't usually associated with most
BASIC dialects (as anyone who used Commodore's AmigaBASIC

Ultimate AMOS

4

� L::J
Easy AMOS

Ultimate AMOS

If you're a complete

beginner, then Easy

AMOS is for you.

Designed more as a

teaching tool than a

serious alternative to

AMOS, Easy AMOS is stiff

capable of great things.

Chapter 1

Interpreter will no doubt agree!) . Indeed, AMOS is probably as fast as
your average C program, even before it has been compiled ! In many
ways, AMOS is stil l the next best thing to assembler language.

AMOS at its best
Ok, time for bit of a 'u' turn - Although I 've gone to great lengths to
extol AMOS' ability to more than adequately handle just about any
programming project thrown at it, it has to be said that AMOS really
comes into its own when applied to games programming. Although it is
stil l being used extensively as a vehicle for databases, word processors
and education software (Europress's own 'Mini Office' and 'Fun School '
products vividly demonstrate this), AMOS was originally designed with
the games programmer in mind.

Just take a look at the sort of tasks that AMOS can handle - high speed
screen scrolling, interrupt-driven animation, multiple blitter objects and
sprites, interrupt driven music and the ability to play sound samples.
Come on, let's face it - these are hardly the sort of facilities you' d expect
to find in a programming language designed for writing databases !
AMOS is a programming language designed with games programming in
mind and that's a fact.

I ntroduction

�:::l W
Blitz Basic 2,

3D
Construction

Kit

5

Once again, there are alternatives available, but no other games creation
system even comes close. OK, so Acid Software' s B litz B asic 2 is getting
there, but di stribution problems have stopped it from gaining any real
foothold in any country other than New Zealand. Domark's 3D
Construction Kit certainly gives AMOS 3D a run for its money, but,
because it's not a programming language, it places too many restrictions
on the user to be of any real use. Once again, this is where AMOS really
scores over the competition - think of any particular genre of game, and
the chances are that AMOS wil l be able to handle it.

The AMOS family
The release of AMOS, way back in 1 990, spawned a whole range of
support products, not just from Europress, but from third party developers
too. Compilers, alternative sprite editors, sound manipulation utilities and
even a complete 3D graphics extension are all now available to the
AMOS programmer, making AMOS the most flexible language available
for the Amiga. Even AMOS itself is no longer a single product - in an
attempt to make AMOS of interest to all Amiga users, AMOS is now
available in three different flavours, each aimed at a particular user.

1. Easy AMOS
Many users found the original AMOS somewhat too complicated (which
wasn' t particularly surprising as the manual was so appall ing), so
Europress did the decent thing and launched Easy AMOS. Designed more
as a teaching tool than a serious rival for AMOS, Easy AMOS offers
pretty much the same facilities as its big brother apart from some minor
omissions (the AMAL animation language, for example). It's nowhere
near as powerful as AMOS Professional, but it still manages to provides
an ideal introduction to AMOS programming.

In many ways, Easy AMOS laid the foundations for AMOS Professional,
the successor to AMOS 1 .35 . Many of the features introduced in Easy
AMOS eventually found their way across into AMOS Professional
including Easy AMOS's excellent Sprite Editor and Sample Bank Maker
accessories, and the very useful 'Tutor' facility (this was enhanced and
renamed the ' AMOS Monitor' in AMOS Professional) . Indeed, much of
Easy AMOS was actually superior to AMOS 1 .35 .

Ultimate AMOS

6

AMOS
upgrades

Cheap AMOS!

Ultimate AMOS

Chapter 1

What makes Easy AMOS such an attractive proposition to beginners is its
excellent manual which was written by computer industry veteran Mel
Croucher, he of AutoMata PieMan fame (oops, I showed my age a bit
there) . Written more as a step-by-step walk-through of the Easy AMOS
editor and language than a traditional reference manual , the Easy AM OS
manual is ideally suited to beginners as it not only documents Easy
AMOS, but also teaches the fundamentals of computer programming.

2. AMOS 1.35
Francois Lionet's original AMOS, version 1 .0, was released onto an
expectant Amiga market way back in late 1 990, almost a year later than
expected. For the first time ever the average user could produce programs
of the sort of quality that would have turned your average assembler
programmer green with envy. Using just a few simple BASIC-like
commands, AMOS users were able to scroll screens at high speed, play
music modules and sound effects, display IFF pictures and move sprites
and blitter objects around the screen at break-neck speeds. No wonder
AMOS became such an overnight success !

AM OS has undergone many revisions since that first release, the latest of
which - at the time of writing - is version l.35 , a fairly minor revision
that makes AMOS fully compatible with Workbench 3 .0-based machines .
Before that, AMOS was upgraded quite substantially with the release of
version 1 .34, which not only fixed a few bugs, but also added many new
features including direct support for Sound Tracker modules. If you own
a copy of AMOS that hasn 't already been upgraded, then contact your
local PD supplier for the latest AMOS 'updater' disk. Many AMOS
extensions and utilities (the AMOS Compiler, for example) will not work
on versions of AMOS older than 1 .34, so it's up to you to keep your copy
of AMOS as current as possible. Better still , why not upgrade to AMOS
Professional !

AMOS 1 .35 is no longer seen as a commercially viable product by
Europress and has, as a result, found its way onto several magazine
coverdisks including the January 1 993 issue of Amiga Format. If you' d
like to test the water before splashing out o n something like AMOS
Professional, buying a back issue of one of these magazines is a sensible
move. Although you don' t get a manual with these special magazIl1e

I n troduction

�:::l t:::J
AMOS 1.35

The original AMOS may be

showing its age a bit

these days, but it's still

one of the most powerful

BASICs available for the

Amiga.

7

versions of AMOS, at least you can follow the examples published within
this book and perhaps, once you feel confident enough with AMOS,
you' l l want to take your AMOS coding further by buying a fully
packaged version !

3. AMOS Professional
Up until the last few weeks of 1 992, AMOS ruled the roost, but all that
has now changed with the release of AMOS Professional, the latest and
most certainly the greatest version of AMOS yet. Most of the AMOS
industry were expecting Europress simply to enhance AMOS 1 .35 by
bolting on a couple of extra bits and pieces, but Europress have done us
all proud by virtually rewriting AMOS from the ground up. Although the
foundations have remained pretty much the same, AMOS Professional is
far slicker and certainly more capable than its predecessor. If you ' re
serious about your AMOS coding, then this is the one to buy.

Apart from some flashy new packaging and an excellent manual written
by Mel Croucher (the author of the very readable Easy AMOS manual),
AMOS Professional boasts many new and improved features that make it
a definite step up from AMOS 1.35. The most immediate of these is
AMOS Professional 's editor, which is a vast improvement over the rather
quirky editors employed by both AMOS 1 .35 and Easy AMOS. Designed
to look and perform more like Workbench 2.0, the AMOS Professional

Ultimate AMOS

8

tl W
AMOS

Professional

� MM£A
NOTE!

Pro's extra
features

Ultimate AMOS

If you want the best, then

AMOS Professional is the

one to go for.

Chapter 1

editor lends itself so much better to heavy coding sessions . Cosmetic
changes aside, the new editor offers many powerful features including
pull-down menus, keyboard macros, mUltiple windows (even multiple
source files) and some of the most advanced undo/redo facilities ever to
be found within an Amiga text editor.

The enhancements offered by AMOS Professional go so much further
than just the editor, though - it also offers a plethora of new commands
(over 200 in total) that extend AMOS to over 700 commands ! These
include commands that allow AMOS programs to communicate with
ARexx ports (and therefore other programs), load and play animations in
standard IFF ANIM format (AMOS can actually run animations faster
than Deluxe Paint !) , perform double precision floating point maths
(handy if you own an Amiga equipped with a maths co-processor chip),
play Sound Tracker and MED modules and so much more besides.

By far the most important addition to AMOS Professional, though, is its
powerful 'Interface' language, an interrupt-driven subset of AMOS
commands that have been specifically designed for the task of handling
user intelfaces (the bit of your program that the user sees on the screen).
Interface allows you to quickly and easily create complex front ends for

I n troduction 9

your programs, complete with buttons, scroll gadgets and active l ists.
What's more, AMOS Professional does most of the work of handling
these gadgets for you - all you have to do is to check each gadget now
and then to see whether the user has clicked on any of them.

AMOS Utilities
Although AMOS comes complete with a fairly comprehensive selection
of tools to aid you with your programming, both Europress and several
third party developers have been quick to produce a range of add-ons that
further expand AMOS's already impressive arsenal of features. Read on
to find out more . . .

AMOS 3D • £34.99 Europress Software
One of the first and arguably the most impressive add-ons ever to be
released for AMOS was AMOS 3D, an extension to AMOS specifically
designed to handle 3D graphics. Written by 3D specialists Voodoo
Software (authors of the hit 3D game Xiphos), AMOS 3D adds over 30
new commands to AMOS that enable you to manipulate 3D objects in
real-time to create StarGlider-like effects. Up to 20 3D objects can be
placed onto the screen and then moved around, rotated and even stretched
in 3D space at speeds that more than match commercial 3 D games such
as Elite and StarGlider.

The heart of AMOS 3D is undoubtedly the language extension, but
AMOS 3D also comes complete with a very powerful 3D object editor
called 'OM' (short for 'Object Modeller') written by Voodoo to handle
the task of constructing 3D objects. Working in 3D is usually a rather
hair-raising experience, but OM makes the process of designing even the
most complex of 3D objects child's play.

The AMOS Compiler. £29.99 Europress Software
In order to distribute AMOS programs to other users who may not
already own the AMOS Interpreter, Europress have produced the AMOS
Compiler, which can take any AMOS source program and convert it into
stand-alone machine code. Like AMOS 1 .35, this too has found its way
onto magazine coverdisks, so keep your eyes peeled for back issues.

Ultimate AMOS

1 0

� w
AMOS

Compiler

Ultimate AMOS

Add an extra spurt of

speed to your AMOS code

with the AMOS Compiler.

Chapter 1

The AMOS Compiler consists of a very pretty Compiler ' Shell ' program
and an extension to the AMOS language. The extension effectively builds
the compiler into AMOS, allowing the Shell to be run as an accessory
within AMOS itself. The compiler offers many advantages to the AMOS
programmer, including the ability to produce code that is not only
independent of AMOS 1 .35, but also runs considerably faster than the
original source code - Europress quote speed increases of over 60% !
What's more, compiled programs are automatically compressed too,
considerably reducing the size of your programs.

AMOS Pro Compiler. £34.95 Europress Software
Although the standard AMOS 1 .35 Compiler will happily compile
programs written under AMOS Professional (note that previous versions
don' t work with AMOS Pro), only code that is downwardly-compatible
with AMOS 1 .35 will work. AMOS Pro provides a 'Check 1 .3 ' menu
option that allows you to check whether your code is compatible with
AMOS 1 .35 . The only disadvantage with this is that the standard AMOS
Compiler can't handle the extra commands provided by AMOS
Professional for such things as IFF animation and the powerful Interface
language.

Obviously, using the standard AMOS Compiler to compile source code
from AMOS Professional defeats the object of owning this enhanced
version of AMOS altogether, so Europress have also released the AMOS
Pro Compiler, a completely new compiler written specifically to handle
not only the standard AMOS instruction set, but all those new AMOS Pro

Introduction

AMOS Pro
Compiler

Stand·alone
compiler

The AMOS Pro compiler is

a considerable

improvement over the

original AMOS compiler.

Even if you don't own

AMOS Pro, this is the

compiler to buy.

1 1

commands too. The new compiler works with both Easy AMOS and
AMOS 1 .35, but it really comes into its own when used with AMOS
Professional. What's more, you don' t even need AMOS to use the AMOS
Pro compiler. You can even wlite your AMOS code using your favourite
ASCII text editor (Cygnus Ed, for example) and then compile it directly
without ever having to load up AMOS Professional ! This will allow you
to create a development environment to C by running both the editor and
compiler from the Shell .

Not only is the AMOS Pro Compiler powerful, it 's also very easy to use.
Running from a front end similar to the look and feel pioneered by
AMOS Pro, the AMOS Pro compiler offers a far more intuitive front end
that is a doddle to use. What 's more, Europress have designed the
compiler to be far more integrated into the AMOS Professional
programming environment. What this basically means to the average
programmer is that the compiler will look and feel as if it were actually
built into AMOS - a bit like the AMOS Professional Sprite Editor.

AMOS Tome. £24.99 Shadow Software
Shadow Software are a household name to established AMOS users. One
of their first releases was AMOS Tome (Total Map Editor), a professional
version of the 'TAME' Map Editor bundled with the original AMOS.
Tome adds over 60 commands to AMOS that let you create huge game
play areas that use up very little memory.

Ultimate AMOS

1 2

Ultimate AMOS

Chapter 1

Why is Tome so useful? Well , you've probably already played games that
use a very similar technique to that employed by Tome - just check out
any game (Team 1 7 's hit 'Assassin' and 'Alien Breed' games are good
examples) that allows you to scroll around a play area that appears to be
much larger than the tiny display that can be viewed on your Amiga's
monitor. In order to save memory, the play area used by these games are
built up like a j igsaw using tiny 'tiles' that can be used over and over
again . And, because the tile needs only to be held in memory once, you
get a considerable saving in memory.

Don't WOITY if map-based games sound complicated - AMOS Tome
provides you with a whole selection of commands specifically designed
to take the hard work away from you. All you have to do is to design the
play area using the Tome Map Editor, load it into AM OS and then call a
few simple commands to get your Alien Breed beater up and running !

CTEXT • £3.50 Shadow Software
Shadow Software strikes back with CText (short for Colour Text), an
AMOS extension that allows you to use fonts with up to 64 colours
w ithin your AMOS programs. CText does cheat a little - unlike the
ColorText facility built into Workbench 2.0 upwards, the colour fonts that
CText uses aren' t true fonts. Instead, CText stores its colour fonts as an
AMOS Icon Bank with each letter treated as a single icon that can be
pasted down anywhere on the screen. In some ways this is a more flexible
approach - you can use CText's colour fonts for scrolling messages.

CText does make handling these Icon-based characters easier, though, by
providing you with a number of commands designed specifically to
handle colour fonts. The most important of these is the 'Ctext' command
that is basically the CText equivalent of AMOS's own 'Text' command.

D-SAM • £ 19.95 Al Software
If you need to be able to manipulate sound samples, then AZ Software's
D-Sam is for you. D-Sam is an AMOS extension that adds over 46 new
commands to AMOS that will allow you to perform all manner of
sample-based operations, including the ability to play sound samples
direct from hard disk or floppy. By playing your samples from disk, even
a S 1 2K Arniga becomes capable of playing samples megabytes in size !

Introduction 1 3

D-Sam also provides direct support for Aegis AudioMaster's sample
sequences faci lity, which embeds a whole series of loop points into a
single sample, therefore giving the impression of a much larger sample
when played back. D-Sam also provides such powerful sample
manipulation facilities as fading, oversampling, playing of raw, IFF and
even compressed samples.

NCOMMAND • £7.50 Oasis Software
If you need to add an Intuition-like front end to your AMOS programs
but you ' re not lucky enough to own AMOS Professional, then Oasis
Software's NCommand could prove a worthwhile alternative. Although
not strictly an AMOS extension, NCommand consists of a series of
powerful procedures that can be merged into your code and then called to
create Workbench 2.0-like user interfaces complete with scroll gadgets,
buttons and even the new 'rollo' gadgets and ' radio' buttons added to
Intuition with the release of Workbench 2.04.

AMOS futures
Europress isn' t the sort of company that rests on its laurels, so it should
come as no surprise that the AMOS family is expanding even now. Here' s
a quick rundown of the products that Europress hadn' t released a t the
time of writing. By the time you read this book, though, they should
hopefully be available, so keep your eyes peeled . . .

Intuition Extension
We all know that AMOS is the 'bee's knees' when i t comes to
programming the Amiga's hardware-level facil ities such as scrolling,
sprites and bobs etc, but there is one area of AMOS that is sadly lacking -
Intuition support. Intuition is the name given to the Amiga's WIMP
management system, the part of the machine's operating system that
handles al l those pretty windows, pull-down menus and gadgets that you
see on the Amiga's Workbench.

Many would-be applications programmers have turned their noses up at
AMOS in the past, simply because it is not possible to write programs
that communicate with the user through Intuition windows and gadgets.
In some ways, this view is quite understandable - after all, the whole

Ultimate AMOS

1 4

t L::J
AMOS Intuition

extension

Ultimate AMOS

The forthcoming AMOS

Intuition extension will let

AMOS Professional

programmers write

applications that run

under Workbench, making

AMOS ideal for

applications

programming.

Chapter 1

point of the Amiga is that it can multitask and (whilst AMOS can
multitask to a certain extent), you really do need to run applications under
Intuition to get the full benefits of multitasking.

Help should be at hand very soon, though, as Europress plan to release an
extension to AMOS Professional that will allow applications
programmers to open screens and windows under Intuition. Coupled with
AMOS Professional's powerful ' Interface' language, this extension could
prove to be the key to AMOS's final domination of the Arniga
programming language market. Let's hope so !

AGA support
By the time you read this book, Europress should hopefully have shipped
the long-awaited AGA-compatible release of AMOS Professional.
Obviously this won 't make a lot of difference if you're running AMOS
Professional on an Amiga based around the original or enhanced chip sets
(the ASOO, A600, A lSOO etc), but it's well worth acquiring if you're one
of those people with enough charm to sweet-talk your parent/spouse into
forking out for an A 1 200 or A4000 (my girlfriend wouldn' t let me have
an A4000 until this book had been written !) .

Specific details were a little thin on the ground a t the time of writing, but
Europress's project manager (a very nice chap who goes by the name of

I ntroduction 1 5

Richard Vanner) assured me that AGA-support will enable AMOS
programmers (that's you and I !) to write AMOS programs that take fuI J
advantage of the vastly enhanced graphic capabilities offered by this
super-dooper chip set. This will probably mean that you ' ll be able to
access the extended colour palette offered by AGA (don't forget that the
AGA chip set offers a ful l 24-bit colour palette - that's over 1 6.7 mjllion
colours !) and hopefully also the new 256-colour and HAM-8 screen
modes.

We won't actually be covering either of these new screen modes within
this book, simply because Europress were still hard at work on the
upgrade at the time of writing, but I will try to include as much AGA
information as possible. My guess is that the ' Screen Open' command,
Rainbow commands and the colour palette wil l probably be the only
aspect of AMOS to feel any AGA influence.

Getting started with AMOS

Hardware
requirements

SO you're already the proud owner of an Amiga and you ' ve taken the
plunge and bought yourself a copy of AMOS (be it Easy AMOS, AMOS
1 .35 or AMOS Professional, it doesn't really matter - all three of them
are very powerful). All that now remains is to get stuck into some coding,
right? Wrong ! Although an Amiga running AMOS will allow you to
create a fairly wide selection of programs, some extra bits and pieces are
highly recommended if you want to take AMOS to the max.

Let's start with a look at the sort of hardware setup that you' l l need. Wel l ,
obviously you'll need an Amjga - what type of Amiga you own doesn ' t
really matter (AMOS doesn't discriminate), but some additional memory
is well worth investing in. All three versions of AMOS insist on at least
1 Mb of RAM, but - to be perfectly honest - this isn ' t really enough if
you want to create anything more than the simplest of programs. Games
and demos take up lots of memory (especially if you start to use long
sound samples and lots of colourful graphics), so an extra 1 Mb of RAM
should be at the top of your shopping list.

A hard drive definitely makes AMOS a much friendlier beast to work
with (especially AMOS Professional), but don't feel that your system is

U l timate AMOS

1 6

� 'AAXEA
NOTE!

Extra
software

U ltimate AMOS

Chapter 1

second best if you can' t afford such a lUxury (a twin drive system is a
more than acceptable alternative) . With the release of machines such as
the IDE-equipped A600 and A 1200, hard drives have dropped in price
faster than stock market shares, so you might just be surprised just how
cheap hard drives have become. If you do decide to take the plunge,
you' ll be amazed just how much a hard drive enhances AMOS - not only
do your source files load faster, but the AMOS accessories are
permanently on tap and everything runs so much smoother.

A monitor is a definite must if you intend to code anything more than the
odd little utility. Because you ' ll be doing a lot of typing, trying to run
AM OS on a TV could eventually damage your eyes. Televisions are OK
for running games and watching demo programs, but programming is a
totally different kettle of fish altogether - if you can afford a monitor,
then do your eyes a favour and get one. Even a cheap green-screen
monitor will do for programming. You can then swap back to your TV as
soon as you need colour.

Finally, we come to the subject of software. Although Europress have
done their very best to provide you with all the tools that you will need to
use AMOS ful ly, there are still a couple of extra programs that you ' ll
need. Don' t worry, you don' t need to spend out a lot more money - most
of these you' l l probably already have anyway. Even if you don't, most of
the programs mentioned below can be picked up for little more than
peanuts these days.

1. Get a paint program
Even if you' ve only just bought your Amiga, the chances are you already
own a paint program such as Electronic Arts' excellent Deluxe Paint.
Even though the AMOS Sprite Editors are pretty capable (particularly
AMOS Professional 's Sprite Editor), it's still worth having a paint
package handy for drawing backgrounds, title pages and even sprites.

Most AMOS programmers tend to use DPaint for designing sprites that
are then pulled across into the AMOS Sprite Editor. This is certainly how
I work - although I 'm a great fan of the AMOS Sprite Editor, nothing can
touch DPaint for its speed, convenience and power.

Introduction

tl W
DPaint

tl \�
StereoMaster

AMAS 2

The AMOS Sprite Editor is

a very powerful beast

indeed, but you'll still need

a decent paint package

for background graphics,

title screens and even

some sprites.

2. Get a sound sampler

1 7

If you intend to write games using AMOS, a sound sampler is a definite
must. Even if your game is the most playable thing since Rainbow
Islands, it's an unfortunate fact of life that game players often judge even
the most play able of games on the quality of their graphics and sound.
DPaint pretty much covers the graphics aspect, but your game won't be
half as impressive if you use the AMOS 'Shoot' and 'Bang' commands to
generate your game's sound effects.

With a sound sampler such as MicroDeal 's excellent StereoMaster or
AMAS 2 (my personal favourite !) , you' l l be able to grab all manner of
weird and wonderful sound effects from just about any audio source.

3. Get a sound tracker
Unless you' ve already experienced the delights of Public Domain
software, the chances are that you haven't encountered the Sound Tracker
utility. Originally designed by hackers for writing sound tracks for demo
programs, Sound Trackers are now so popular amongst programmers that
even most commercial games programmers use them these days ! Based
around an editing system similar to a drum machine, a Sound Tracker
allows you to write music by arranging sampled instruments into short
'patterns' which are then strung together to form songs.

U ltimate AMOS

1 8 Chapter 1

AMOS provides direct support for both the standard SOLlnd Tracker
'MOD' format (short for module) and Teijo Kinnunen's excellent Sound
Tracker alternative, MED. If you want to write your own music for your
AMOS programs, then you should strongly consider spending a couple of
quid on a PO disk that contains a decent Sound Tracker. Coupled with a
sound sampler (as discLlssed above), you could even write tunes complete
with your own instrument samples !

4. Put the kettle on!
Any type of programming is thirsty work, so always keep the kettle
topped up and a ready supply of coffee and chocolate chip cookies to
hand. Music is always a good bet too if you want the old creative juices
to flow - what you choose is up to you, but I personally favour a bit of
Depeche Mode's 'Songs of Faith and Devotion' . . .

Selling your Software

Ultimate AMOS

If you' ve written an AMOS program that you're particularly proud of,
you may want to distribute it so that other AMOS users can get their
hands on it. This sort of thing is a good idea as it will not only allow other
Amiga users to benefit from your programming prowess, but - providing
you handle it cOlTectly - you may even get a little fame and fortune
chucked in for good measure. Unlike some game creation packages I
could mention, it's pelfectly possible to actually sell AM OS programs. If
yours is extremely good, you could even have it marketed as a
commercial product which could (hopefully) make you a lot of money.

AMOS is such a powerful programming language that there's absolutely
no reason whatsoever why it couldn ' t be used to produce software of
commercial quality. Quite a few titles have already made it - Europress's
Mini Office and even its range of Fun School education titles being just
two examples - so there's no reason why you too couldn't get in on the
act. Obviously, software houses such as Europress don't accept any old
tosh - your program (be it a game, utility or application) needs to be of a
suitable standard to be of marketable value.

We don' t really have the space here to discuss the various options
available to you, but by the time you reach the end of this book

I ntroduction 1 9

(providing you read it from cover to cover), you too should be capable of
producing AMOS programs of commercial quality ! Oh, and if you do
become rich and famous, don't forget me will you - I ' ll be happy to
accept an Escort RS Cosworth as a token of your gratitude !

Ultimate AMOS

20

Ultimate AMOS

2 1

How AMOS works
• The AMOS Editors (Easy AMOS, AMOS 1 .3 5, AMOS Pro)

• The AMOS Monitor (Easy AMOS and AMOS pro only)

U ltimate AMOS

22

'Integrated'
programming

Ultimate AMOS

Chapter 2

P rogramming in AMOS may come as bit of a shock if you 're more
used to the sort of unfriendly programming languages that the so
called 'professionals ' swear by. Unless you enjoy spending the first

few days of your time with a programming language actually installing
the damned thing onto ten floppy disks and then another few days trying
to figure out how to run the damned thing, I 'm afraid AMOS is going to
come as bit of a disappointment. There 's no complicated setup procedure
(well , Easy AMOS does need to be installed, but even then all the work
is done for you), no complex commands to type in just to get AMOS
running - simply insert your AM OS program disk and AMOS will
spring to life .

Once AMOS has loaded, you ' ll be presented with a very pretty-looking
AMOS Editor. How your particular editor looks depends entirely upon
what version of AMOS you ' re running - Easy AMOS owners have to
contend with a cyan on dark blue front end, whilst AMOS 1 .35 owners
have the same cyan on blue but there's also some very nice red and white
in there too. As for AMOS Pro owners, well you lot have the ultimate in
AMOS editors !

AMOS is perhaps the first true example of a totally integrated
programming environment. Although such a tag sounds rather
complicated, what it essentially means is that every single step involved
in the development of a program can be canied out from within the
AMOS Editor. Whether you ' re writing the program 's code, designing
sprites or pulling together al l the sound samples that your program uses
(the last two of these tasks can be carried out using AMOS's powerful
accessory programs), you need never leave the AMOS Editor. Obviously
there are some tasks that still need to be carried out within a separate
program - writing a game's soundtrack, for example - but even then the
wonders of the Amiga's multitasking operating system allow other
programs to be run concurrently alongside the AMOS editor. Isn't the
Amiga wonderful !

Over the next few pages or so, we ' ll be taking a pretty in-depth look at
the editors used by the three different versions of AMOS. The Easy
AMOS and AMOS 1 .35 editors are virtually identical, so anything that
you read that applies to AMOS 1 .35 will almost certainly apply to Easy

How AMOS works 23

AMOS too. AMOS Pro offers a number of extra editing options that
aren't present in other versions, so I 've tried to mention these too.

The AMOS Editor

'Direct' mode

The AMOS Editor is essentially a text editor specifically designed for
handling AMOS source code fi les (your programs). It allows you to type
in and edit AMOS programs, load and save AMOS programs and even
run them. This last facility gives away the major difference between the
AMOS Editor and a conventional text editor such as ASDG's excellent
CygnusEd 2.0 - unlike other text editors, the AMOS Editor has the
AMOS language actually built into it. What this essentially means is that
you can run your programs from within the AMOS Editor without
having to use a separate runtime tool or compiler.

The AMOS Editor offers two different working modes - Edit and
Direct mode. When you first load AMOS, it automatically goes straight
into Edit mode, the part of AMOS that lets you actually edit AMOS
programs. From here you can type in your AMOS programs, save them
off to disk, load existing source code and perform a whole host of editing
functions on your code. Through either pull-down menus or an options
within-an-icon-strip (depending upon what version of AMOS you 're
running), you can also run your source code.

The second mode on offer is ' Direct' mode which, as its name suggests,
provides the AMOS programmer with direct access to the AMOS
interpreter. Unlike the programs that you type into the AMOS editor,
entering an AMOS command in Direct mode will force it to be
performed the moment you press the 'Return ' key. Direct mode is a bit
like the Shell interface (or 'eLl ' , if you like) offered by the Amiga's
Workbench. Every command you type is executed immediately, allowing
you to carry out tasks such as loading graphic files without having to
code them directly into your programs. (The reasons for doing this wi l l
become more apparent later when we look at AMOS memory banks.)

You can toggle backwards and forwards between Direct mode and Edit
mode by pressing the 'Escape' key on your Amiga's keyboard.

Ultimate AMOS

24

� MAKE A
NOTE!

Accessing
functions

U ltimate AMOS

Chapter 2

Editor options
Running along the top of the Easy AMOS and AMOS Editor screens are
a strip of icons that contain a selection of editing functions that help to
make working with the AMOS Editor that bit more productive. Just l ike
a conventional text editor, the AMOS Editor includes a whole host of
editing options including full block cut, copy and paste, ASCII merge
and the usual search and replace options. Not all of these options are
immediately accessible, though - because only ten options can be
displayed at once (there are only ten icons), most of them are hidden
from view.

In order to access all these extra functions, you ' 1 1 need to hold down one
of three ' qualifier ' keys - Control, Shift or ALT. To actually select an
option, simply move the mouse pointer over the icon you want and then
press the left mouse button. Alternatively, you can avoid having to reach
for your digital rodent altogether and simply press one of the Amiga's ten
function keys. Each function key corresponds directly with each of the
ten menu icons on offer - F I will select the top left icon, F2 will select
the icon immediately to the right and so on. It's a l ittle hard to explain in
words, so I suggest you try it for yourself - you 'I I be able to see which
icon is selected by which function key as AMOS highlights the function
that has been selected. Anyway, enough of the theory - let's take a look
at what all those menu options actually do. First, the Editor menu . . .

The Editor menu
At the very top level of AMOS ' menus is the Editor menu that provides
all those important options required to get your code up and running once
it has been entered. No qualifier keys need to be held down to access this
menu - it's permanently on tap, so simply move the mouse pointer over
the icon you want and click on it.

How AMOS works 25

IIIImliIIII RUN Typing in a program is all very well and good, but it won 't actually
do a lot unless you select this option (or press F l). When you do run your
program, AMOS first checks through it to make sure that there are no
syntax errors (you've entered a command incorrectly, for example). If
everything checked out fine, AMOS then runs your program.

� TEST Testing a program may seem rather pointless, but it's very
important if you wish to compile your code at a later date. Testing your
code forces AMOS to check through each and every line for any syntax
errors that may have sneaked in. You should note, however, that AMOS
can't spot logic errors (that is, errors that will cause your program to do
something that it shouldn't - a sprite moving in the wrong direction, for
example) . A syntax error can be anything from an incorrectly spelt
command (typing PRNT instead of PRINT) or the incorrect use of a
command (A$=Print, for example) .

• ljJlm. INDENT The Indent option comes in very handy if your code is
somewhat unreadable. What it does is to tidy up the appearance of your
program by indenting code within loops and control structures . If you
don 't already use this option (or, like me, intend code automatically
anyway), try it - I think you ' l l be surprised just how much more readable
your code will become.

I:UitiJD!r:rnt! BLOCKS MENU Clicking on this option will take you into the blocks
menu. It 's basically the same as pressing the Control (CTRL) key.

�'fENi!ilH:tjIJ! SEARCH MENU Another quickie way of accessing another bank of ten
icons. The Search menu provides you with a selection of options for
locating text within your code .

• 8.11. RUN OTHER The AMOS Editor is capable of holding more than one
program in memory at once by loading each program in individually
using the 'AC.NEW/LOAD' option from within the System menu (don 't
worry, we'll get to this menu shortly). Selecting this icon will bring up a
requester l isting all the 'Other' programs currently held in memory.
Simply click on the one you want and you 're away.

Ultimate AMOS

26 Chapter 2

I�UI •• IJIm EDIT OTHER The Edit Other option is very simi lar to the Run Other
option but for one major difference - instead of running the program of
your choice, Edit Other allows you to edit the program of your choice .

• mrm- INSERT This option toggles between the two editing modes offered by
the AMOS Editor. By default, the editor runs in ' Insert' mode (text is
inserted in between any existing characters) but it can also run in
'Overwrite ' mode (text is typed over existing characters).

IAI!IIr;IAI! FOLD/UNFOLD If you use procedures within your AMOS code, cl icking
on this icon will cause the procedure that the cursor is currently
positioned over to fold (only the procedure's name is displayed). To
unfold a procedure (reveal all the code held within it), simply position
the cursor over the procedure name and select this option again. Don 't
worry if you don't understand procedures at the moment - we ' ll be
covering them in chapter 4.

LINE INSERT Clicking on this option will cause a blank line to be
inserted between the current line (the l ine that the cursor is on) and the
line directly above it. You can achieve the same effect s imply by pressing
the ' Return' key.

The System menu
The System menu provides you with a selection of file management
options that give you the option to load and save AM OS programs, load
accessories etc . To access this menu hold down either the ' Shift' key or
the right mouse button.

I L-l C-2 Text-32766 Chip-B35664 Fast-7928988 Edi t :

-.m.. LOAD Unless you intend to enter a program from scratch, you 'll need to
use the Load option to pull in a previously saved AMOS program.
Clicking on this option will bring up the AMOS file requester.

Ultimate AMOS

How AMOS works 27

� SAVE If you want to keep your AMOS programs for posterity, then click
on the ' Save' option. The Save option stores the current AMOS program
that you 're editing on disk. To make life easier when reloading AMOS
programs, always save your AMOS programs with the file extension
' .AMOS ' (SCRABBLE.AMOS, for example).

aWM- SAVE AS Unlike the ' Save' option, the ' Save As' option will always ask
you what filename you wish to save the current program under. If you
click on ' Save ' once a program has already been named, AMOS will
save the program to disk without even asking you whether you 're happy
with its filename.

� MERGE As its name suggests, the ' Merge' option allows you to combine
the current program being edited with an AMOS program held on disk.
The code loaded from disk will automatically be inserted at the current
cursor position.

� MERGE ASCII AMOS doesn 't store programs in ASCII format, so the
standard 'Merge' option won't work if you want to pull in a section of
ASCII text into your program. Not surprisingly, this option will do the
job instead.

'.JIIH'!ItrJm.l AC.NEW/LOAD AMOS allows you to load and run accessories (the
AMOS Sprite Editor, for example) directly into the AMOS Editor,
allowing you to edit sprites, generate AMAL code etc without having to
save your AMOS code first. The AC.NEW/LOAD option clears any
accessories that may have already been loaded and then loads all files
that end in ' .ACC' into memory. Once loaded, use the 'Run Other'
option from the Editor menu to actually run an accessory.

1!.Dtl'IIIt4!J.i LOAD OTHERS If you can 't afford the memory to hold a whole set of
accessories in memory at once, then use the 'Load Others' option to load
a single accessory into memory.

IH'!IIIinm NEW OTHERS If memory starts to get a little tight, then you can delete
one or all accessories using this option.

U ltimate AMOS

28 Chapter 2

NEW Need to wipe the slate clean and start coding again from scratch?
Click on this option and the current AMOS program being edited wil l be
wiped from your computer's memory, along with any banks that it may
have assigned. Just to make sure you haven't totally flipped, AMOS will
give you the option of saving your code first.

QUIT In the unlikely event that you 've had enough of coding for one day,
selecting the 'Quit' option will exit AMOS and return your Amiga to the
Workbench or CLl that AMOS was originally launched from. Note that
you don't have to exit AMOS to access the Workbench or CLl - just
press the left Amiga key and ' A' to toggle between AMOS and the
Workbench.

The Blocks menu
The B locks menu provides the AMOS programmer with a healthy
selection of editing tools that allow you to cut, copy and paste whole
sections of code. Simply hold down the 'Control ' key to access this
menu.

I L-1 C-1 Text-32748 Chip-824352 Fast-7911916 ElIi t :

B l ock S tal\ t BLOCK START In order to mark a block, you must tell AMOS where it
starts and finishes. Position the cursor where the block is to start and then
click on this option to mark the Block's stlli1 position. Alternatively,
press the right mouse button and drag to mark the block.

� BLOCK CUT Once a block has been defined, it can be removed by
selecting this option. Note that once a block has been cut, it can still
rescued simply by clicking on the ' B lock Paste' option.

1:lm.:fitID BLOCK MOVE The 'Block Move ' option comes in handy when you need
to move a block of code from one place to another within your program.
Simply mark the block to be moved, position the cursor where the block
is to be moved to and then click on this option.

Ultimate AMOS

How AMOS works 29

1:lm.:mrn BLOCK HIDE If you no longer need a block that you 've defined, cl ick on
this option and the block will be deselected.

aue Se l l SAVE ASCII The 'Save ASCII' option saves the current block to disk as
an ASCII fi le. Note that it should be stored first using the 'Block Store'
option.

� BLOCK END Once you've marked the start of a block, you need to mark
the end of the block using this option. Alternatively, just let go of the
right mouse button.

I:lmlmll BLOCK PASTE Once a block has been stored or cut, it can be pasted down
anywhere within your program using this option. Although very similar
to the 'Block Move' option, ' B lock Paste ' can paste down the same
block as many times as you like.

1:lmallitrl BLOCK STORE B lock Store takes a copy of the currently defined block
and effectively ' remembers ' it. Once it has been remembered, the block
can be pasted, saved or printed.

I:lm_m BLOCK SAVE This option is very similar to the ' Save ASCII ' option, but
instead of saving the file in ASCn format, the ' Block Save' option saves
the current block to disk in AMOS format which can later be loaded or
directly merged into another program.

1 :1 m 1:JI1jI! BLOCK PRINT AMOS does provide a direct method of getting a printout
of a program listing, so the 'B lock Print' option comes in handy. Simply
define the block you wish to print, store it (using the ' Block Store'
option) and then click on this little beauty. Providing that your printer is
all set up and ready to go, you should get a printout of the currently
defined block.

The Search menu
The Search menu comes in very handy when you need to locate a
particular string of text within a l isting. Instead of you having to
manually search through the l isting yourself, AMOS wil l happily do the
job for you and even replace any instances that it finds with an
alternative of your choice. You could, for example, change the name of a

Ultimate AMOS

30 Chapter 2

variable simply by specifying the name of the variable and the name it is
to be changed to. You don't have to search for this menu though - just
hold down the 'ALT' key!

Entel' s!l'ing to Seal'CII: ,AMOS.

-rlnil-� FIND AMOS's 'Find' option allows you to search for every occurrence
of a given string within your program. Note that AMOS wil l not search
folded procedures - these should be unfolded before you start the search.

IIJI'Mlrrml FIND NEXT Once AMOS has found the first occurrence of a string, select
this function to move onto the next occurrence .

• mllll_ FIND TOP The 'Find Top ' option i s identical to the ' Find' function, but
instead of starting the search from the current cursor position, 'Find Top'
starts from the first line of your l isting.

� REPLACE The 'Replace' option allows you to replace one string with
another. Note that this function only changes the first occurrence, so
you' ll need to restart it once a string has been replaced. Better still, use
the 'Replace All ' explained below . . .

lmfl{'JII REPLACE ALL The 'Replace All ' option does essentially the same job as
the 'Replace ' option but instead of changing just the first occurrence,
'Replace All ' replaces every occurrence that it finds.

IM,HI. LOW = UP This option acts as a toggle to control the case-sensitiv ity of
the searching algorithm. By default, this option is set to 'Low = Up'
(case insensitive) but it can also be changed to 'Low <> Up' which turns
on case-sensitivity (i .e. 'HAPPY' is different from ' HaPPY') .

IlU41aJlI OPEN ALL Because folded procedures are not searched, the 'Open All '
option can be used to unfold every procedure within your program,
therefore automatically including the code within those procedures in
any search operations you carry out.

Ultimate AMOS

How AMOS works

Close 11

3 1

CLOSE ALL The opposite to the 'Open All ' option is, not surprisingly, the
'Close All ' function, which folds all the procedures that are defined
within your program.

mlm.:! SET TEXT B. This function is used to adjust the size of AMOS 's text
buffer (the area of memory used to hold program listings). The larger this
setting, the more l ines of code can be fitted into memory. Don't adjust
this unless you have to though - the more memory you allocate to
AMOS 's text buffer, the less you have left for graphics, music etc.

artlm. SET TAB Not surprisingly, the ' Set Tab' function is used to set how many
spaces are inserted when you press the 'Tab' key on your keyboard.

AMOS Pro menus
Although AMOS Professional no longer uses the same embedded menu
system as its predecessors, all of the options covered above (plus a lot
more besides) can be found in AMOS Pro's pull down menus. I'm sure I
don't need to explain how to access these menus - after all, if you 've
already used any other Amiga application that uses pull-down menus,
then you ' ll already know that all you have to do is to hold down the left
mouse button to reveal the menu strip.

AMOS Professional does have its own menu icons (they 're the little
squares running along the top of the editor screen), although they are
somewhat harder to recognise than their AMOS 1 .35 and Easy AMOS
counterparts (let's face it, Europress couldn 't have made the originals any
plainer!) . Let's take a look at what they do. Don 't expect too much detail,
though - most of them are virtually identical to their AMOS
counterparts, so just refer back to the descriptions above for more
information.

DIRECT MODE The ' Direct Mode ' icon switches AMOS back to Direct
Mode. Pressing the ' Escape' key on your keyboard will have the same
effect.

Ultimate AMOS

32

Ultimate AMOS

Chapter 2

RUN Not surprisingly, this is the same as the 'Run' menu option in
AMOS 1 .35 and Easy AMOS. Click on this icon to execute your AMOS
program. Once again, pressing function key 1 will do the same job.

TEST The 'Test' icon checks through your code for any syntax errors.

INDENT The ' Indent' icon attempts to make your code more readable by
indenting code held within loops and program control structures.

MONITOR The 'Monitor ' icon is a completely new function that is only
offered by AMOS Professional (Easy AMOS owners have a similar
function called 'Tutor ' but it's nowhere near as powerful). The AMOS
Pro Monitor is documented fully at the end of this chapter, but - for
those of you who are interested - it's essentially a tool designed to make
the task of removing 'bugs ' from AMOS programs as easy as possible.

HELP The ' Help' icon brings up AMOS Professional 's ' on line ' help
faci lity. We' l l be covering the Help facility later within this chapter.

SEND TO BACK Working with several listing windows at once can be
confusing, so the AMOS Pro Editor offers two options that allow you to
arrange windows to suit your particular needs. The first of these is the
'Send To Back' option that, not surprisingly, sends the currently active
window behind any others that are currently open.

BRING TO FRONT Another window arrangement function is ' Bring To
Back' that is used to bring the currently active window to the front of all
others.

EDIT MODE The 'Edit Mode' icon switches the edit mode between insert
J and overwrite.

FOLD/UNFOLD Exactly the same as its AMOS counterpart, the
'Fold/Unfold' icon opens and closes procedures . Once again, pressing
'F9 ' will have the same effect.

How AMOS works

Quicker
working

33

INSERT The ' Insert' function inserts a blank line at the cursor position.
Exciting, eh?

MEMORY These two bars graphically display the total amount of chip
and fast memory available to your AMOS program.

WB The 'WB ' icon switches AMOS Professional back to the Amiga's
Workbench screen, allowing you to run other programs simultaneously.
If you need to then switch back to AMOS Professional, just press the
'Left Amiga' and ' A' keys .

Keyboard shortcuts
If you 're not overly keen on the idea of having to reach for your mouse
every time you wish to access a menu function, most of AMOS's menu
functions can also be performed through keyboard shortcuts - that is, by
pressing a special combination of keys together. We've already discussed
how to access the menu function within Easy AMOS and AMOS 1 .35 -
simply press the correct qualifier key followed by one of the ten function
keys. AMOS Pro users have an almost bewildering selection of keyboard
short cuts on offer. These are listed along with the option within the
editor's pull down menus, so it may be worth noting down the shortcuts
required for any option that you use regularly.

A helping hand • • •

In order to make AMOS Professional as easy to get to grips with as
possible, those clever chaps at Europress built in a very handy 'on line '
help facility that allows you to get helpful information on any aspect of
AMOS Professional without having to resort to the manual (not that
you 'd need the manual now you 've got this book !).

The AMOS Pro help facility works in two ways. At its simplest level,
you can simply call it up by pressing the ' Help' key on your Amiga
keyboard. This wil l bring up a window containing a menu of all the
subjects covered. Obviously, not every function is listed here simply
because of the bewildering number of functions covered. Like the users '
manual, the help facility breaks everything up into more manageable
sub-menus. For example, if you want to find out information on the

Ultimate AMOS

34

Quick 'help'

Chapter 2

'Dual Playfield' command, you would first enter the 'Screen Control '
menu and then the ' Setting Up Screens' menu.

A much quicker way to access the information you need on AMOS
commands is to simply move the cursor over the first character of the
command in question and then press 'Help ' - AMOS Professional will
then display help information on that command without you having to
faff around with all those help menus.

Another handy feature of the Help faci lity is its ability to automatical ly
load an example program that demonstrates the command in question in
action. When you pull up help information on a command, the command
will be highlighted (red writing on a black background) in the top left
hand corner of the help window. Click on this and AMOS Professional
will prompt you whether you want to load the demonstration. If you
accept, AMOS will load it into a separate window (you don't even have
to save your own listing first !) .

AMOS Monitor

Ultimate AMOS

Regardless of your programming talent, it's an accepted fact of life that
computer programs never work perfectly first time. Even the most
experienced programmers make mistakes which often result in their code
not working quite how it should. The side-effects of these so-called
'bugs ' can be anything from a sprite not being displayed or a sample not
playing on cue to a complete system crash! What 's more, bugs can be
very hard to track down, often resulting in hours (and possibly even
days) struggling through printed listings.

Bugs come in many different flavours, too, ranging from old favourites
such as the mis-spelt variable, to those really infuriating logic errors that
you really have to sweat over for days to resolve. To make the task of
hunting down bugs that bit easier, both AMOS Professional and Easy
AMOS (not AMOS l .35, though) have a debugging tool called the
AMOS monitor U ust to make life complicated, Easy AMOS 's monitor is
called 'The Tutor') . For those of you who have never come across a
program of this kind before, a debugger is a program specifically written
to aid the process of hunting down bugs within a program. A debugger

How AMOS works

�.\ M[AN

Monitor

35

won 't remove bugs for you, though, so don ' t expect to be able to feed
your buggy source code in one end and get ' bug '-free source code out
the other end - the monitor is simply there help you track down bugs that
bit faster.

The AMOS monitor is really quite a simple little tool, but it's very, very
useful indeed (as you will find out yourself once you start to use it).
What it does is to allow you to examine the inner workings of any
AMOS program whilst it is running, therefore allowing you to see at a
glance when problems start to occur. You can check the value held within
a variable and even the result returned by an expression at any point
within a program, giving you the chance to spot bugs far more easily
(and therefore quicker) . The monitor is instantly available from the
AMOS Professional or Easy AMOS Editors - click on the ' M ' icon from
within AMOS Pro or select 'Tutor ' from the menus within Easy AMOS .

You should see a screen appear that is split into essentially four different
sections, one of which (the middle one) contains your program listing. At
the top left hand corner of the monitor screen is the Graphic Output
window that is used to show you a representation of the output from your
program. Next to this are a set of icons that control the workings of the
monitor (these are explained below).

Below this is the program l isting window that, not surprisingly, contains
your program listing. As you run through your program, the monitor will
automatically move a small pointer through your code to display what
instruction is currently being executed, therefore allowing you to see
what instructions are causing the results that you see within the graphic
output window. Finally, we have the information window at the very
bottom of the monitor screen that displays all sorts of useful infonnation
as you step through your code, such as error messages any other
information you might request.

Anyway, let's take a look at what those gadgets in the top right hand
corner of the screen actually do . . .

Ultimate AMOS

36

I N IT

@ I

U ltimate AMOS

Chapter 2

SCREEN SELECT If the program that you' re monitoring opens more than
one screen, then you can display any one by flicking through those
available using these screen selection controls. Note that only low
resolution screens are scaled - if you open a high resolution screen, it
cannot be scaled and therefore only a small section of the screen will be
displayed.

INITIALISE Before you can monitor a program, it must first be initialised.
Initialising instructs the monitor to set up the display and to test your
AMOS code for syntax errors .

QUIT No prizes for guessing what this feature does ! Yep, it orders you a
pizza . . . er, . . . quits you back to the AMOS Pro Editor.

HELP If, whilst fl icking through a program, you spot an instruction you
don't quite understand, simply click on this gadget and then click on the
instruction that's baffling you and AMOS Pro wil l give you a complete
break down of the instruction 's workings.

SET BREAK This function allows you to create what AMOS cal ls a
' break point ' . That is, a position within your program where AMOS will
stop the program's execution. Simply click on this icon, click on the
command that the break point is to be attached to and voila! - Run the
code again and the monitor wil l always stop at this point.

EVALUATE The 'Evaluate ' function is very handy indeed. What it does is
to allow you to evaluate the result of an expression within your program.
For example, if you had an expression that calculated the result of two
variables being added together, this option will allow you to instantly see
what the result would be at any time during program execution. To use it,
simply click on this icon and then click on the first character within the
expression and (whilst holding down the left mouse button) drag out a
highlight that completely covers all the characters within the expression.

How AMOS works

lID
--

l>

37

STOP The first of the program control icons is the ' Stop' icon, which,
er. . . stops program execution.

SINGLE STEP If you need to step through your code very precisely, then
there 's nothing more precise than single step. Click on thjs icon and the
next single instruction will be executed.

SLOW If ' S ingle Step ' sends you to sleep, then 'Slow ' mode may be
somewhat more usefu l . S low mode continuously executes your program
code very slowly indeed, allowing you to see what instruction is being
executed at any one time.

NORMAL Normal mode runs your AMOS program at full speed in the
screen preview display in the top left-hand corner of the monitor screen.
Note that the monitor does not show which instructions are being
executed.

FAST Full speed mode runs' at the same speed as normal but allows your
program to take over the entire screen, therefore blanking the monitor
display. You can still return to the monitor at any time though, simply by
pressing the 'Control ' and 'C ' keys together.

Wot, no editor?

� MAKE ,
NOT£.!

Using other
'editors'

With the release of the AMOS Professional Compiler, you no longer
have to use the AMOS Editor if you don 't want to. Because the AMOS
Pro Compiler can accept code that has been saved in ASCII format, you
can write your AMOS code using any standard ASCII text editor. Some
programmers, especially those more used to languages such as C and
Pascal, prefer this way of working as it allows you to work from the
Amiga's powerful Shell (CLl) environment using their favourite text
editor (CygnusEd, for example). But this does have its disadvantages.

For starters, an ASCII text editor cannot handle the special permanent
memory banks that AMOS can store as part of a program's source code.
These memory banks provide a very convenient method of storing

U ltimate AMOS

38

U ltimate AMOS

Chapter 2

graphics, music and sprites without having to store them as separate files.
What's more, an ASCII editor will not be able to handle the AMOS
accessory programs unless they have been compiled first. Even then, the
accessories will not be able to automatically pull in and edit data held
within a program's memory banks (a very handy facil ity when editing
sprites and icons) .

Programming
principles
• Program planning

• 'Pseudo code'

• Sub-routines

• Code comments

• Code indentation

• Procedures

• Handling variables

39

Ultimate AMOS

40

Learning
BASIC

Chapter 3

I t can be a lot of fun just experimenting with AMOS. Indeed, I
strongly recommend it if you don' t ful ly understand the AMOS
instruction set and how the various commands work together. Many

of the more complex aspects of AMOS will be covered in quite some
depth within this book, so it may be worth your while just tinkering
around with sprites, bobs, scrolling etc just to build a solid understanding
of these fundamentals within your mind.

Everyone had to start programming at one time or another - yes, even
celebrated programmer Jez San didn't know a bit from a byte before he
started to program. If you ' re completely new to this programming l ark,
then may I suggest that you lay your hands on a decent book on BASIC
programming. The 'core' of AMOS is based around a very powerful
B ASIC interpreter which is almost identical to every other dialect of
BASIC available for the Amiga and other computers. You don' t even
have to buy a book that even mentions the Amiga, let alone AMOS .
BASIC is usually so generic that any book on the subject wil l do the job.

I'm not trying to fob you off here - BASIC programming i s such a
complex subject that it would fi l l an entire book on its own !

Meanwhile, the aim of this book is to concentrate entirely upon AMOS's
own special talents - scrolling, blitter objects, music, AMAL etc - and to
show you how these talents can be applied to games and demo
programming. Rest assured that all the commands that are AMOS
specific will be documented within this book, so if you do already have
even a basic (pardon the pun) understanding of the BASIC language
(even if you've never programming in AMOS before), then this book is
all you will need.

Planning your program

Ultimate AMOS

Always plan your program before committing yourself to code. When I
was first taught to program, it was constantly drummed into us that you
should never approach a large programming project by sitting down in
front of a computer terminal. As my oid programming lecturer would say
'coding is a fairly minor aspect of the programmer's art' . So what do you
do for the rest of the time? Well , the first thing you do is to turn off your

Programming principles

Start o f game

4 1

Amiga, pick up a pen and paper, go and sit in a comfy chair and plan the
whole project out on paper!

Planning a program isn't as long-winded as it sounds. You don't, for
example, write all your code out on paper (this would be defeating the
object of not coding directly !) . At this stage in development, all you need
to do is to think about what wi l l be involved. Let's take the example of a
game (PacMan, say). If you were to simply sit in front of your Amiga
and start coding, you 'd soon run into problems. But if you sit and plan it
first, you' ll find that games (and indeed most programs) aren't that
complex at all .

'Pseudo code'
You should start by breaking the game down into a series of steps, each
of which describes a single operation that must be performed. In the case
of our PacMan game, we' d end up with a list of steps l ike the following.

Move PacMan according to j oystick posit ion
� �

Increase score i f PacMan eats ' dot ' or ' Power P i l l '

Make PacMan invinc ible i f he eats ' Power pi l l '

I f PacMan i s invincible

Move Ghosts away from PacMan

E l s e

Move Ghosts towards PacMan

End I f

Check that PacMan and Gho s t s haven ' t col l ided

I f they have coll ided

If PacMan is invinc ible

Kill Ghost

Else

Ki l l PacMan

End If

End I f

End o f game loop

On first impressions, our list looks very similar to conventional program
code and, to be honest, it's supposed to. This is what programmers call

Ultimate AMOS

42 Chapter 3

'pseudo code ' . Pseudo code won 't actually work if you type i t into
AMOS, though (try it if you don't believe me !) - it 's simply designed as
a guide to the programmer to show them how the program is structured
in plain English. Pseudo code is very much simplified. It doesn't, for
example, tell the programmer how to actually write a routine that moves
PacMan according to the player's joystick position .

Once you' ve got your game (or program) broken down into these s imple
steps, you can then break each step down further. Here's the pseudo code
that moves PacMan according to the player's joystick position.

S tart of rout ine � � Check p l ayer ' s j oystick

I f the j oystick i s pushed right

I f PacMan can move in thi s direction

Move PacMan

End I f

End I f

I f the j oystick i s pushed left

If PacMan can move in this direct ion

Move PacMan

End I f

End I f

I f the j oystick i s pushed up

I f PacMan c an move in this direct ion

Move PacMan

End I f

End I f

I f the j oyst i ck i s pushed down

I f PacMan can move in this direction

Move PacMan

End I f

End I f

End o f rout ine

Ultimate AMOS

Once again, the pseudo code looks very similar to conventional program
code, but it still isn ' t program code. But now we've increased the amount
of detail that i t shows, you can start to see how your AM OS code would

Programming principles 43

be structured. Indeed, if you're a pretty experienced coder, you could
probably translate this pseudo code into working program code .

Subroutines & modular programming
Without even real ising it , we' ve also hit upon another programming
concept that is very, very important - subroutines. A subroutine i s
essentially a mini-program that is embedded in a larger program. I t i s
designed to perform a single operation (in this case, moving PacMan) . A
typical AMOS program should contain many of these subroutines, each
of which is responsible for handling a particular aspect of your game or
program. Writing a program using subroutines is what is known as
'modular programming' as opposed to the ' l inear' programming
techniques that most amateur programmers use.

Modular programming allows you to write a program in such a way that
new modules (subroutines) can be added and old modules removed
without having to rewrite large sections of code to cope with the changes.
By splitting your program up into subroutines, you can also quickly and
easily see how the program flows, making your code much more
readable in case you need to make changes at a later date.

Is your code 'readable'?
Here's another very important concept - code readabi lity. OK, so it may
only be you that ever gets to see your source code (source code is just a
programmer's term for program code), but it's very important to structure
your code in such a way that it will remain completely readable no
matter how long you leave it .

If you were to write for a commercial software house (which is the
ultimate aim of most amateur programmers), they would insist that your
code remains readable so that in the event that you were to suddenly
leave (for an unplanned lifetime holiday or whatever), they could pass
your code onto another programmer who could continue working on it. If
you write your code in a totally unreadable way, the new programmer
would probably be forced to dump your code and start from scratch !

Take Electronic Arts' Deluxe Paint, for example - although DPaint was
originally written by Dan Silva (a very nice chap who I was lucky

Ultimate AMOS

44 Chapter 3

enough to meet !) , later versions of DPaint were passed onto Lee Taran
(who, contrary to popular belief, is actually a woman). If Dan had not
made his code readable, Lee would have had a real hard time of i t !

Code comments
AMOS provides the programmer with a number of useful facil ities that
can make the task of making code readable that bit easier. The first of
these is the 'REM' command that simply inserts comments (REMarks)
into program code. Make use of these as much as possible. For example,
try to use REM commands at the start no just of your program, but each
and every subroutine too. Something l ike this is always a good idea.

REM * * * MoveSprit e Rout ine (@]0]0)
REM * * * Thi s rout ine control s the movement of the

REM * * * p l ayer ' s spri t e .

010
EXAMPlE COO(

REM * * *

REM * * *

REM * * *

REM * * *

REM * * *

Comments come i n handy when you start to write subroutines that need
to be passed parameters (values). If, for example, you had a routine that
needed to be passed three parameters, you could put a comment at the
start of the routine about what the three variables are for. For example:

MoveSprite Rout ine (@JJ0]lD) Expec t s to b e fed three variables - Name $, X and Y 0l0J
EXAMPL[COOE

Name $

X

Y

Name of player

X coordinate of player ' s sprite

Y coordinate of player ' s sprite

Putting comments at the start of a routine helps to make the overall flow
of a program that bit easier to understand - but it doesn ' t make the
workings of the code any easier. It might, therefore, be worth inserting
code comments 'on the fly' just to increase the readabi l ity of your code.

Code indentation
Another very useful programming technique that is actually built into
AMOS is code indentation. Code indentation is basically a technique
used to make code easier to understand by formatting the layout of the
program. By simply indenting code within a particular control structure
using the tab key, you ' l l be amaz�d just how much more readable AMOS

Ultimate AMOS

Programming principles 45

code becomes. To demonstrate this, let's take a look at a short AMOS
program (and yes, it wil l work if you type it into AMOS).

Input "Please enter your age " ; AGE

I f AGE < 1 6

Print "You ' re too young t o smoke ! "

E l s e

I f AGE > 1 7

Print "You ' re old enough to watch a n ' 1 8 ' film ! "

E l s e

Print "But you ' re s t i l l not over 1 8 ! "

EndI f

I f AGE > 5 9

Print " I sn ' t i t t ime you ret ired ? "

End I f

End I f

OK, so this program is sti l l straightforward enough to understand. But
we can make it much more readable by indenting sections of code, either
manually (using the 'TAB ' key) or let AMOS do it for you by selecting
' Indent' from the menus? The result is a much more 'readable program' :

Input "Please enter your age " ; AGE

I f AGE < 1 6

P rint "You ' re too young to smoke ! "

E l s e

I f AGE > 1 7

Print "You ' re o l d enough to watch a n ' 1 8 ' film ! "

E l s e

Print " But you ' re s t i l l not over 1 8 ! "

EndI f

I f AGE > 5 9

Print " I sn ' t i t time you ret ired? "

EndI f

End I f

U ltimate AMOS

46 Chapter 3

AMOS procedures
One of the most useful facilities that AMOS Basic offers the programmer
for making code readable is the good old 'procedure ' . Most B ASIC
dialects offer a procedures facility in one form or another, but AMOS's
are particularly powerful . A procedure isn ' t like a normal command,
though - on their own, procedures don' t actually do anything at all . What
they can do, however, is to organise program code into a series of
subroutines that can be called from your main program with a single
command. Indeed, once a procedure has been defined, it can be called
almost as if it were an AMOS command in its own right.

Defining a procedure is very simple indeed. All you need to do is to start
the section of code that you wish to be a procedure with the fol lowing
command (replace <procname> with your own procedure's name).

Procedure <procname >

Once you' ve issued this command, you can then enter all the code that is
to be contained within the procedure and then, once this is done, you
need to mark the end of the procedure using the 'End Proc' command.
Here's a little demonstration program that shows how procedures work.
Feel free to type it in and run it within AMOS if you so wish.

REM * * * Procedures demo * * *

MYPROC

End

Procedure MYPROC

Print "He l l o there ! "

End Proc

Ultimate AMOS

Handling variables
One of the great advantages of procedures is the fact that any variables
that you define within a procedure are kept completely separate from
both your main program and any other procedures you may have defined.

Programming principles 47

You can, therefore, use the same variable name within several procedures
without having to worry about one procedure changing the value of a
variable defined by another procedure. In this respect, any variables that
you define within a procedure are what is known as ' local ' variables. For
a demonstration of this, try entering the following program.

REM * * * Local Variables Demo * * *

NAME $ = "Frank Smith"

MYPROC

Print NAME$

End

Procedure MYPROC

NAME $ = " John Bloggs "

Print NAME $

End Proc

'Local'
variables

OK, so there's nothing special about this little demo, but it does
demonstrate beautiful ly how the variables used within a procedure are
completely separate from the main program. If this was not the case, the
value of the variable 'NAME$' that we defined at the start of the
program would have been changed when the program called the
procedure 'MYPROC ' . B ut, because the procedure creates it own local
variable under the same name, the value of the first variable is not
changed.

One thing to note, however, is that local variables are only temporary. If
you define a variable within a procedure and then return to the main
program, you can't call the procedure again and expect it to have
remembered the value of a local variable used within that procedure. If
you do need to retain the value of a variable defined within a procedure,
you should either return the value to the main program (using 'End
Proc[<variablename>] ' and the 'Param' command) or you should define
a 'global' variable.

Global variables come in particularly handy when you wish to define a
variable that can be accessed by any part of your program code. Say, for

Ultimate AMOS

48

'Global'
variables

Chapter 3

example, you wanted every procedure within your program to
automatically know the whereabouts of a sprite on screen. This is done
using the 'Global ' command. You should be aware, however, that a
variable can only be defined as global within the main part of your
program. Also, the global command does not actually create the variable
for you - thjs must be done before you issue the command within your
program. Let's take another look at the demo we used above, but this
time let's use define the 'NAME$' variable as a global variable.

REM * * * Global Variables Demo * * *

NAME$ = "Frank Smith"

Global NAME $

MYPROC

Print NAME $

End

Procedure MYPROC

NAME $ = "John Bloggs"

Print NAME $

EndProc

Ultimate AMOS

When you run this version of the program, instead of getting 'Frank
Smith ' and 'John Bloggs' printed on the screen, you should get 'John
Bloggs' printed twice. By defining the 'NAME$' variable as global ,
instead of creating a local variable that is separate from the main
program, the procedure 'MYPROC' actually changes the value of the
'NAME$' variable defined within the main program.

If you do need to keep certain variables local but you 'd sti l l like a
particular procedure to have access to those variables, then AMOS
allows us to give a procedure access to those variables using the 'Shared'
command. Thjs command must live within the procedure that needs
access to the variables and the variables must have been defined
beforehand within the main program. If you simply declare a set of
variables as 'Shared' within the procedure without defining them first,
AMOS will simply treat them as local variables. Here's another demo:

Programming principles 49

REM * * * Shared variables demo * * *

NAME$ = "Frank Smith"

MYPROC

End

Procedure MYPROC

Shared NAME $

Print NAME$

End Proc

Parameters

AMOS also allows you to define a set of parameters that can be passed to
a procedure. When you come to call a procedure that expects parameters,
it's a bit like passing parameters to a normal command but, instead of
simply entering the parameters after the command name within your
main program, they need to be enclosed within a set of square brackets
(' [' and '] ' symbols) . The great thing about this approach is that it allows
you to share the value of any given variables with a procedure without
having to worry about whether the procedure will actually change them.
In effect, passing parameters to a procedure simply provides it with
working copies of variables that are passed. Here's yet another demo:

REM * * * Parameters demo * * *

NAME$ = " Frank"

MYPROC [NAME $]

Print NAME$

End

Procedure MYPROC [NEWNAME $]

NEWNAME $ =NEWNAME$ + " Smith"

Print NEWNAME$

End Proc

One thing to note from this short demo is that the name given to the
parameter can be completely different from that passed to the procedure.
AMOS allows us to do this because the variable defined by the procedure
to hold the parameter that we passed is a local variable that is simply

Ultimate AMOS

50

U ltimate AMOS

Chapter 3

used to temporarily hold the value that is passed by the main program.
Once the procedure has finished and control has been passed back to the
main program, this local variable is then forgotten along with any
changes that may have been made to it.

5 1

Screens
• Screen modes (including AGA)

• Opening screens

• Screen management

• Screen palettes

• Resizing and positioning screens

• Loading and saving screens

Ultimate AMOS

52

Amiga screen
hardware

U ltimate AMOS

Chapter 4

5 0 far within this book we haven 't really covered anything that can' t
already be found within other BASIC programming languages, both
on the Amiga and indeed lesser machines . Procedures, integrated

programming environments and even 3D and compiler extensions can
also be found running on other BASIC dialects . But - as we all know -
AMOS is more than a bit special. Then again, you shouldn 't need me to
tell you that - after all, you 've already bought AMOS (and this book!) .

One of the most fundamental aspects of AMOS programming that you
must be aware of is that of screens, those wonderfully colourful thingies
(who needs jargon when you 've got such a great grasp of the English
language) you see on your Amiga's monitor or TV. Screens are very
important within AMOS - without a screen, your program won 't be able
to display anything. A screen acts as a portal between the computer and
the user and lets it communicate with us humans.

As an Amiga user, you probably already know just how powerful the
Amiga's screen hardware really is - not only can you create screens in a
number of different resolutions and with a maximum of 4096 colours (or
262,000 on an AGA machine), but you can even mix and match screens
so that the display you see on your monitor or TV comprises several
(completely independent) different screen zones, each with its own
resolution and colour palette. What's more, because AMOS bypasses the
Amiga's operating system, all screen handling is done at hardware level,
therefore ensuring that everything runs as fast as possible.

You 've probably already experienced this hardware phenomenon if
you 've played around with the Amiga's Workbench - if you load a
program such as DPaint, you can literally drag the program's screen
down to reveal the Workbench screen behind it. If you 're not aware of
the technicalities involved, though, you may have taken this for granted.
What the Amiga is actually doing is displaying two entirely separate
screens with in the same display.

The Amiga isn't restricted to just a couple of screens, though - AMOS,
for example, can 'open ' and d isplay up to eight of these screens, which
can then be moved about, resized and even scrolled to your heart 's
content.

Screens

�1rW
MAK[A
NOTE!

AMOS and AGA

The Amiga's video

hardware allows

programmers to split the

screen into a number of

independent sections,

each with their own

resolutions and colour

palettes. A good example

of this is the Amiga's

Workbench which can be

dragged down to show a

screen running behind it.

53

The key to all this screen jiggery-pokery is a little sl iver of silicon built
into the Amiga's Denise chip (renamed 'Lisa ' on AGA machines) called
the 'copper ' which has nothing whatsoever to do with the great British
Bobby but a great deal to do with screen synchronisation and display.
We're not trying to put the Commodore Hardware Reference Manual to
shame here, so I won 't say to much about the technicalities involved.
Suffice to say that all the hard work is handled by AMOS, so you can
take advantage of all this powerful screen hardware without ever getting
your hands dirty.

It's important to know a little about the sort of screen combinations that
the Amiga's hardware is capable of. We won 't be covering them all here
though - only those that are addressable by AMOS. With the advent of
the Enhanced Chip Set (ECS) and the new super swanky Advanced
Graphics Architecture (AGA) chips sets, the Amiga is now capable of
handling far more screen modes, but AMOS can only take advantage of
those present in the original chip set built into the A500 and 2000 series
Amigas. By the time you read this, Europress may have launched the
promised AGA-compatible version of AMOS Professional , which will
be able to handle the AGA chip set's new VGA-style 256-colour and
262,000-colour HAM8 screen modes as well as the SuperHiRes modes
originally found in the ECS chip set upgrade.

Ultimate AMOS

54 Chapter 4

Screen combinations

Ultimate AMOS

The standard Amiga chip set is capable of basically four different screen
modes, all of which have their own pros and cons.

1. Low resolution
The most basic of these is low resolution mode, the screen mode used by
95% of all Amiga games. Low resolution offers 320 pixels across by 256
(or 200 on an NTSC Amiga) pixels down. Low resolution mode is
capable of displaying a maximum of 32 colours, although extra colours
can be squeezed out of the machine using Extra HalfBrite and the rather
quirky HAM modes.

2. Extra Half Brite
Extra Half Brite (yes, ' Brite ' is spelt correctly !) is a rather strange screen
mode that doubles the maximum number of colours available from 32 to
64 colours. Unfortunately, the extra 32 colours are not independent -
instead, they are simply copies of the first 32 colours, but the Amiga's
hardware effectively halves their brightness (hence the name, Extra Half
Brite). HAM mode is a rather useless mode that is sometimes useful for
displaying digitised pictures but little else. It can display the entire 4096
colour palette of non-AGA machines (don't forget that AGA offers a
1 6.7 mill ion colour palette !) on-screen at once. This mode i s very
complex, so we won 't be covering it in any great detail.

3. Medium resolution
Next up comes medium resolution, which is the default screen mode
used by the Amiga's Workbench. Medium resolution offers 640 pixels
across by 256 pixels down. Unless you 're lucky enough to own a swish
AGA machine, the maximum number of colours that the Amiga can
handle is 1 6. Once again, until Europress launch an AGA upgrade for
AMOS, this is the maximum number of colours that we can use
regardless of the type of chip set you have inside your Amiga.

4. Interlace mode
Finally, we have interlace mode, which effectively doubles the vertical
resolutions of both the low and medium resolution screen modes. Low
resolution therefore increases to 320 by 5 1 2 (that 's 2 x 256) and medium

Screens

NTSC

Until the AGA version of

AMOS Professional is

released, AMOS supports

four basic screen modes

- Iow, interlaced low,

medium and high

resolution.

55

resolution mode increases to 640 by 5 1 2 pixels. Although we refer to an
interlaced low resolution screen as ' low resolution laced' , medium
resolution laced screens are called ' high resolution' . Confusing, I know,
but bear this in mind. Interlacing a screen mode doesn't have any effect
on the number of colours that it can display - a 1 6-colour medium
resolution screen that is reopened as a high resolution screen can still
only display a maximum number of 1 6 colours.

You may have noticed that earlier we mentioned 'NTSC ' mode. This has
absolutely nothing to do with the actual screen modes itself, but refers
instead to the vertical resolution of the screen. NTSC is a television
standard that is used in the States and is slightly different to the PAL
system we have over here. OK, I know that the Amiga's not a television,
but it does have video hardware that has to work in conjunction with the
NTSC or PAL monitors and TVs used over here and across the pond. Put
simply, NTSC Amigas can only display a maximum of 200 vertical lines
in non-interlaced mode and 400 l ines in interlaced mode. PAL Amigas,
on the other hand, have a higher resolution - 256 pixels 10 11011-
interlaced modes and 5 1 2 pixels when interlacing is used.

So why 's this so important? Well , if you intend to write software that will
be distributed to other users, you need to be aware that whilst your PAL

Ultimate AMOS

56

Screen Format

Chapter 4

software will work perfectly well in Britain, American users won 't be
able to see all of the screen. If you intend writing commercial software,
most software houses will insist that your games run under NTSC
resolutions.

Sounds complicated? You ain 't seen nothing yet! Finally, we have
overscan, which is a special feature offered by the Amiga's screen
hardware that allows you to remove the border around all standard screen
modes. Overscan is primarily designed for desktop video, but it can also
be very effective when used within games. By removing the border
around the screen, the Amiga allows the screen to fill the entire display
rather like the coin-op machines you' l l see down your local arcades.
Anyway, here 's a quick table for your reference:

Resolution * OverScan Max Colours

PAL Low Resolution 320 x 256 3 68 x 283 32 * *

PAL Low Resolution Laced 320 x 512 3 68 x 566 32 * *

PAL Medium Resolution 640 x 256 7 3 6 x 283 16
PAL High Resolution 640 x 512 7 3 6 x 566 16

NTSC Low Resolution 320 x 200 3 68 x 241 32 * *

NTSC Low Resolution Laced 320 x 400 3 68 x 482 32 * *

NTSC Medium Resolution 640 x 200 7 3 6 x 241 16
NTSC High Resolution 640 x 400 7 3 6 x 482 16

* Resolutions are expressed as width x height
* * These three screen modes can use extra colours using Extra Half Brite and HAM

modes.

U ltimate AMOS

Screens 57

AGA screen modes
As I said earlier, Europress hadn 't launched the AGA version of AMOS
Professional at the time of writing, but I will give you a quick overview
of the new improved screen modes that the AGA chip set has to offer.

Extended Palette
The new AGA chip set dramatically increases the colour palette offered
by the Amiga from 4096 colours to a massive 1 6.7 million. This
effectively means that for every 1 colour offered by the old chip set,
AGA can produce an extra 4096 !

New Screen Modes
The only real new screen mode offered by AGA is SuperHiRes, which
was actually built into the Enhanced Chip Set used on the A500 Plus and
A600. SuperHiRes mode offers a maximum resolution of 1 280 pixels
across and either 256 (non interlaced) or 5 1 2 (interlaced) pixels down.
SuperHiRes isn 't very practical for games, though - even on an
A4000/040, SuperHiRes mode is rather slow.

VGA Compatibility
Under AGA, the maximum number of ' real ' (i.e. non-HAM) colours that
can be displayed on any screen has been increased to 256 colours . This
really is genuinely useful to games programmers, so the new AGA
compatible AMOS Professional will definitely support this facility.

HAM-8
Another new screen mode offered by AGA is HAM-8, whjch is a vastly
extended version of the original chip set's HAM mode that can display a
maximum of 262, 1 44 colours on-screen at once on any screen (yes, even
a SuperHiRes screen !) . It's very impressive, but oh-so-slow. Ideal for
flash title screens, but totally useless for game screens.

Delnterlacer
All AGA machines have what is called a 'deinterlacer ' that removes the
annoying flicker that is an unavoidable side effect of interlaced screens.
It works by doubling the horizontal scan rate of any screen from 1 5 KHz
to 29 KHz. As all TVs and RGB monitors can only display images with a

Ultimate AMOS

58

�:::l L::J
AMOS Pro AGA

When the AGA version of

AMOS Professional is

finally released, you'll be

able to open screens with

up to 262,000 colours

with a maximum

resolution of 1 280 by

5 1 2 pixelsl

Chapter 4

horizontal scan rate of 1 5 KHz, you ' l l need a VGA or multisync monitor
to take advantage of this . Delnterlaced screens are referred to as 'DBL'
modes (short for 'Double ') . Once again, DBL modes are pretty useless
for games as most users don 't even have VGA monitors !

Opening screens

U ltimate AMOS

Phew! Thank heavens we've got all that theory out of the way. By now
you should have a pretty sound understanding of the sort of screen
combinations available on the Amiga and the sort of screens that AMOS
itself can handle. Now that all that theory has been filmly implanted into
your brain, we can actually move onto some AMOS coding.

In order to display anything on your Amiga's TV or monitor, you need to
open a screen using the AMOS command 'Screen Open ' . By default,
AMOS already kindly opens up a low resolution NTSC-style screen with
1 6 colours, but we can open our own in any of the screen modes shown
within the table above. What's more, a maximum of eight such screens
can be opened simultaneously with their own resolutions and colour
palettes. AMOS keeps track of all these screens using a screen number
between 0 and 7 - the default screen, for example, has a screen number
of O. This screen number is very important once you start to create

Screens 59

displays that use more than one screen simultaneously, as you ' l 1 need to
tel l AMOS which screen to use by passing it the screen's number.

The Screen Open command needs to be passed a number of parameters
in order to by able to successfully open a screen. Here's the command in
all its glory plus a brief description of what each parameter does:

Screen Open S c reen Number , Width , Height , Colours , Mode

Screen Number The screen number is an integer between 0 and 7 which
is used by AMOS to distinguish multiple screens. The default screen
opened by AMOS has a screen number of O. If you therefore attempt to
open a screen using this number, AMOS will close its default screen and
open a new screen in its place using the parameters that you define.

Width This is an integer value that defines the width of your new screen
in pixels. For a detailed breakdown of the sort of width combinations
available, refer to the table earlier this chapter. If you pass a value greater
than 320 (for low resolution screens) or 640 (high resolution), AMOS
will automatically turn on horizontal overscanning. You're not just
restricted to those values detailed within the table above, however.
Thanks to AMOS 's powerful screen scrolling hardware (which we shall
be covering later), it's perfectly possible to create screens that are much
larger than can be displayed on your TV or monitor. When you start
using hardware scrolling, this feature will become very important indeed.

Height The height parameter defines the vertical resolution of your
screen in pixels. Once again, you ' re not restricted to the standard 256 or
5 1 2 (interlaced) screen height settings. If you define a height greater than
these values, AMOS will automatically turn on vertical overscanning.

Colours The colours parameter tel ls AMOS how many colours you 'd
like your new screen to use. Normal non-AGA rules apply here, so
there 's no point trying to use more than 1 6 colours in medium or high
resolution, for example. If you intend opening a low resolution (both
interlaced and non-interlaced) screen mode, however, you can also pass a
values of 64 (or Extra Half Brite) or 4096 (for HAM).

Ultimate AMOS

60

Colour and
memory

Chapter 4

It's important to remember too that the more colours you allocate to a
screen, the more memory it uses. A standard PAL low resolution screen
with just 2 colours will only eat up only 1 OK. If you use 32 colours,
however, this increases to SOK ! What's more, the more colours you use,
the slower AMOS 's drawing and blitter object (Bob) commands become.
Unless you're using an AGA machine (these can happily handle just
about any non-HAM screen mode with little or no speed decrease) , try to
restrict your games to just 1 6 colours. OK, so they won 't be as colourful,
but at least they ' l l remain fast.

Mode The mode parameter is used to tell AMOS what type of screen
you wish to open. There are three alternatives - Lowres, Hires, Laced.
Lowres creates a non-interlaced low resolution display (320 pixels
across) and Hires creates a non-interlaced medium res display (640 pi x
els across) .

The Laced option must be used in conjunction with the Lowres and Hires
parameters to double the vertical resolution of these two screen modes
using interlacing. This option is not available in very early releases of
AMOS (if your version of AMOS can 't handle laced screens, then get
your hands on an AMOS updater disk !) . To create a low res interlaced
display, you 'd therefore pass ' Lowres+Laced' for the mode parameter.

As you can see, the Screen Open command is certainly straightforward
enough. If, for example, you wanted to open a low resolution PAL screen
with 32 colours as screen 0, you would use the following line.

Screen Open O , 3 2 0 , 2 5 6 , 3 2 , Lowres (@]001) 010
EXAMPlE COOE

Screen management

Ultimate AMOS

Once you start opening more than one screen simultaneously, it's all too
easy to lose track of which screen AMOS is currently working with.
AMOS can only ever work on a single screen at any one time, regardless
of the number of screens that you've opened. By default, AMOS also
treats the last screen that you opened as the 'current screen' unless you
tell it otherwise. Most of the drawing commands that AMOS offers do

Screens

Multiple
screens

6 1

not allow you to specify which screen that are to operate on, so it's down
to you to make sure that AMOS knows which screen you wish to work
with before attempting to carry out any form of drawing or blitter
operations.

AMOS allows you to change the current screen using a very simple
command called the 'Screen' command. All you have to do is to tel l the
command which screen (using the screen number) you wish AMOS to
treat as the current screen and it goes away and does the rest. Say, for
example, you had opened three screens number 0, 1 and 2 , but (because
screen 2 was the last to be opened) AMOS was performing all drawing
and blitter operations into screen 2, despite the fact that you actually
wanted to draw into screen 1 . You would therefore use the line 'Screen l '
to instruct AMOS to switch over to screen 1 .

Opening and switching between multiple screens is all very well and
good, but you also get into the habit of closing them once they are no
longer needed. Closing a screen removes it from view and returns the
memory it used to the system so that it can be used for other things
(opening other screens, for example). This is very important if you intend
to write software that can be run on Amiga systems with less than 1 Mb
(do such machines still exists?) - if you start opening screens willy nilly,
you may find that your program will crash on Amigas that aren't fitted
with RAM expansions, due to a lack of valuable memory. Even if you are
lucky enough to own an expanded Amiga, you ' ll be able to maximise the
number of potential users for your software if you make it 'memory
friendly ' . Not only that, but - as my oid mum used to say - you should
always clean up after yourself!

Closing a screen is even simpler than opening a screen. Unlike the
Screen Open command, all you need to is to pass the number of the
screen that you wish to c lose to the Screen Close command - if you
wanted to close screen 2, you would use the line 'Screen Close 2 ' . The
fol lowing listing demonstrates all three of the screen commands covered
so far:

Ultimate AMOS

62

Rem * * * Screen handl ing demonstrat ion

Rem * * * F i lename - Screens . AMOS

Screen Open 0 , 3 2 0 , 1 0 0 , 3 2 , Lowres

Screen Open 1 , 6 4 0 , 2 0 0 , 4 , Hire s + Laced

Screen Open 2 , 6 4 0 , 1 6 , 2 , Hires

Screen Display 1 " 14 7 , ,

Screen Display 2 " 2 5 0 , ,

Screen 2

Locate 0 , 0

Locate 0 , 1

Centre "Press < SPACE BAR> to swap s creens ! "

Centre "Press ' Q ' to Qui t "

SCR= O : Screen SCR

Repeat

KEE $ = I nkey$

I f KEE $ = " "

SCR=SCR + 1

I f SCR=2

SCR = O

End I f

Screen SCR

End I f

Print "AMOS ! " i
Unt i l Upper$ (KEE $) = "Q"

Screen Close 0

Screen Close 1

Screen Close 2

Screen palettes

Chapter 4

When a screen is first opened, AMOS automatically allocates a preset
selection of colour settings to the screen's palette. These can be changed
quite easily to suit your own particular needs using either one of the two
palette editing commands AMOS has to offer. These are 'Palette' (for
setting up colour palettes 'en masse ') and the imaginatively named

U ltimate AMOS

Screens

command

Hex values

The 'Screen' command

can be used to instruct

AMOS which screen you

wish all drawing

operations to be carried

out on.

63

'Colour ' (for altering single colours) . Until the AGA release of AMOS
Professional finally becomes available, you can choose from any of the
4096 colours offered by the standard and Enhanced chip sets. The AGA
version promises to extend this so that your screens can draw upon the
massive 1 6.7 million colour palette offered by the AGA chip set.

Both commands need to be fed hex values that define colours as three
digit hex numbers. Don 't worry too much about having to work with hex
- yes, I know that it's usually very complicated, but you don't need a
degree in computer science to work out the hex values required by
AMOS ! As you will probably already know, all colours are specified in
terms of their red, green and blue content. Each of these three 'colour
components ' can be set to one of 1 6 different ' intensities ' ranging from 0
(black) to 1 5 (maximum intensity) . Solid white, for example, is all three
colour components set to maximum - a value of 1 5 for red, 1 5 for green,
15 for blue - whereas black is all three colour components set to zero.

For AMOS to understand a colour setting, these three colour component
values must be converted to hex format and then combined into a three
digit hex value. As a value of 15 is represented using the hex value $F,
solid white would be hex $FFF (1 5 , 1 5 , 1 5) . Note the order that the hex
values are combined - red first, followed by green and then blue. If you
had a colour with a red value of hex $6 (decimal 6), a green value of hex
$F (decimal 1 5) and a blue value of hex $A (decimal 10) , the colour
would be expressed as $6FA.

Ultimate AMOS

64

Converting
decimal-hex

values

Ultimate AMOS

Chapter 4

The AGA chip set, however, extends the palette settings so that each
colour component can be set to a value between 0 and 255, allowing the
ful l 1 6.7 mil lion colour palette to be accessed. In hex terms, this
basically means that instead of expressing a colour as three hexadecimal
digits, an AGA colour is defined using six digits - two for the red
component, two for green and two for blue. An AGA palette setting of
red 255, green 1 40 and blue 20 would therefore be written in hex as
$FF8CI4 . If you're unsure about converting decimal values to hex, you
can make life very easy by using the AMOS 'Hex$O' function. For
example, entering 'Print Hex$(l40)

,
would cause AMOS to print the

value '$8C' on the screen .

'Palette' command
Anyway, back to the 'Palette' and 'Colour ' commands. First, the Palette
command. As its name suggests, this command allows you to define a
screen 's colour palette. Unlike the Colour command we ' l l be covering
next, the palette command allows you to set up a whole string of colour
registers in one go. The format of the Palette command is simple enough
- all you do is to enter the command fol lowed by a string of three-digit
hex numbers that define the colour palette of the screen. Al l the colour
settings must be entered in order, though, so it's no good trying to set up
colour register 4 before colour register 3. Similarly, each colour setting
must be in the exact position so that AMOS knows which colour register
the setting must be loaded into. For example, if you wanted to change
just colour registers 4 and 5, you would enter 'Palette " ,$FFF,$FA6' -
note the commas that effectively blank off the first three colour registers.

'Colour' command
Finally, we have the 'Colour ' command, which is very similar to the
Palette command, but works on only one colour register at any one time.
What it does offer, however, is the ability to set any colour register 'on
the fly ' without having to suffer the hassle of inserting commas to mask
off any colour registers that precede the one you wish to change. The
format of the Colour command is 'Colour Register, Hex Value ' . If you
wanted to change colour register 1 7 to hex $6A5, for example, you
would enter 'Colour 1 7 ,$6A5 ' . Here 's a quick demo program that shows
both techniques in action:

Screens

Rem * * * Palette and Colour Demonstrat ion

Rem * * * Filename - ScreenPalette . AMOS

Screen Open O , 3 2 0 , 1 0 0 , 8 , Lowres

Flash Off

Screen Open 1 , 3 2 0 , 1 0 0 , 8 , Lowres

Flash Off

Screen Display 1 " 1 5 5 , ,

Screen 0

Palette $ 6 6 6 , $FFF , $ 6AC , $ 2 2 2 , $ F O O , $F O , $ F , $ FF

_SHOWCOLOURS [8]

Screen 1

Colour O , $B2C

Colour 3 , $ 2 B4

Colour 6 , $BD2

_SHOWCOLOURS [8]

Colour 1 , $FFO

Colour 4 , $ F O F

Colour 7 , $ 2 8 F

Colour 2 , $CA6

Colour 5 , $ F O

End

Procedure _SHOWCOLOURS [NUMCOL S]

C l s 0 : P e n 1 : Paper 0

Print HHere ' s your colour paletteH

Print

For C = O To NUMCOLS - 1

Paper 0 Print HColourH ; C ; H

Paper C : Print H

Next C

End Proc

H . ,

Resizing and positioning screens

65

Once a screen has been opened, it can be positioned and even resized on
your monitor or TV screen using the AMOS command ' Screen Display ' .
The screen display command comes in particularly useful when you start
to open more than one screen simultaneously - because all new screens

Ultimate AMOS

66

SCREEN
DISPLAY

command

�
Screen

arrangement

U ltimate AMOS

The Screen Display

command allows you to

alter the position and size

of a screen's viewport. A

viewport acts as a sort of

'window' onto a screen's

bitmap, allowing you to

see sections of a bitmap

that is much larger than

the maximum resolution

of the display hardware.

When used with AMOS'

hardware scrolling

facilities, the viewport can

even move around the

bitmap.

V1ewport

Chapter 4

SuperBitmap

are automatical ly opened using the top left hand corner of the screen as
the origin, they will overlap. You therefore need to use the Screen
Display command to arrange them correctly on your monitor display.
Due to a limitation in the Amiga's screen hardware, however, screens can
only be arranged vertically. You cannot, therefore, having two screens
side-by-side. If you attempt to put two screens next to each other, the
screen that was opened last will completely cover the screen beneath it.

The Screen Display command can also be used to resize a screen. This
isn't quite as straightforward as it may first seem, however. Whenever
you resize a screen, it's not the actual screen you are resizing, but the
'viewport' that is used to display it. A viewport is best thought of as a
sort of window that is used to view the contents of a screen. If you l ike,
think of it as the window in a house - if you're ins ide the house, you can
look through the window to see bl itter objects and sprites outside in your
garden (time to get out the greenfly spray, methinks !) . The garden itself
is much bigger than the window, so you can only see a tiny proportion of
the garden at any one time. You can, however, al ter the size of the
window (using your trusty sledgehammer!) which will reveal more of
your garden.

One thing worth noting, however, is that even if you do resize a screen so
that it is effectively bigger than it was when it was first opened, the
screen itself remains the same size. What you must remember is that

Screens

Screen size

Several screens can be

arranged vertically, but

they cannot be arranged

horizontally due to a

limitation in the Amiga's

hardware design . .

x

67

when a screen i s first opened, a section o f memory is set aside to hold the
screen 's bitmap (the part of the screen that AMOS draws into). If the
Screen Display command were to increase the size of the screen, it
would also have to increase the size of the bitmap. The width and height
parameters (the height parameter is discussed below) are really only
designed to allow you to alter the size of the screen's 'viewport' so that
screen bitmaps that are larger than the default 320/640 by 256/5 1 2 pixel
screen sizes can be displayed in overscan format.

The Screen Display command really comes into its own when used in
conjunction with AMOS's hardware scrolling command, Screen Offset
(more on this in the next chapter). Because the Screen Offset command
works by scrolling a bitmap that is larger than the physical display, the
Screen Display command needs to be used to create a sort of 'window'
that restricts how much of this ' superbitmap' we can actually see.

Let's take a look at the Screen Display command and its fonnat:

01[!JJ�1!lI
COMMAtIO DEfltMlON

Screen Di splay Screen Number , X , Y , Width , Height

Screen Number Once again, the Screen Number parameter is simply a
pointer to the screen that you wish to manipulate. If, for example, you
had opened a screen using a value of 2 as its screen number, you would
pass a value of 2 to this parameter so that the Screen Display command
knows exactly which screen you are referring to.

U ltimate AMOS

68

�
Parameter

values

Contractingl
expanding the

viewporl

Ultimate AMOS

Chapter 4

X The X parameter is an integer value between 0 and 448 that controls
where your screen is to be positioned horizontally. In practice, however,
this range of values don't quite perform how they should (a bug in the
Amiga hardware?). If you can, try to stick to values between 1 1 2 and
432. If you use values any higher or lower than these, strange things tend
to happen!

Also worth noting is that the Amiga automatically rounds the X
parameter to the nearest multiple of 1 6, so even if you do pass a value of
1 8 , AMOS will treat it as a value of 1 6. It's not until the value reaches 32
that a changes will become visible. A stupid limitation imposed by the
Amiga's hardware, but one you can get around quite easily usmg
hardware scrolling (more on this in the next chapter, though !) .

Y Just like the X parameter, the Y parameter controls the vertical position
of the screen. The range for this parameter is 0 to 3 12, although even on
a PAL system, any values higher than 300 wil l usually make the screen
disappear completely. Note that the Y parameter doesn 't have to conform
to the silly 1 6-pixel l imitation imposed by movements in along the X
axis, so you 're free to specify any value.

Width Now here's an interesting parameter that can be used to create
some quite interesting results. Simply by passing a value that is greater
or smaller than the width of the screen you specified when it was first
opened, the Screen Display command can quite literally collapse or
expand the horizontal length of your screen 's viewport. The top left hand
corner of the screen is taken as the origin, so the viewport will collapse
or expand from the right hand side.

Once again though, the value you pass will be rounded down to a multi
ple of 1 6, so the same rules that applied for the X parameter apply here
as well .

Height Just like the Width parameter, the vertical size of your screen's
v iewport can be increased or decreased by passing a value that is greater
or smaller than the screen 's actual vertical size. Like the Y parameter, the
1 6 pixel rule does not apply, so the screen 's viewport can be resized with
single-pixel resolution.

Screens 69

Right, that's enough of the theory - let's put what we've learned into
practice. The demonstration listing below opens a low resolution NTSC
screen which can be moved around on your TV or monitor using a
joystick connected to port 2 on your Amiga. Don't worry about the
joystick-handling routine for the moment - we' l l be covering these later:

Rem * * * Screen Di splay Demonstrat i on

Rem * * * Filename - ScreenDi splay . AMOS

Screen Open 0 , 3 2 0 , 2 0 0 , 3 2 , Lowres

Flash Off : Curs Off

Locate 0 , 1 0 Centre HMove me with the j oystick ! H

Locate 0 , 1 2 : Centre HPress F IRE to Quit H

X= 1 2 8 : Y=4 8 : Rem * * * Defau l t values

Repeat

I f Joy (l) = l Then Y=Y- 1 6

I f Joy (1) = 2 Then Y=Y+ 1 6

I f Joy (1) = 4 Then X=X- 1 6

I f Joy (1) = 8 Then X=X+ 1 6

I f X>4 3 2 Then X=4 3 2

I f X< 1 1 2 Then X= 1 1 2

I f Y>3 0 0 Then Y= 3 0 0

I f Y< O Then Y= O

Wait Vbl

Screen Di splay O , X , Y "

Unt i l Joy (1) = 1 6

Screen Close 0

If that wasn't enough, here's another l isting that demonstrates the Screen
Display command's ability to resize a screen. The l isting below opens up
a screen of exactly the same dimensions as our first demo and

Ultimate AMOS

10 Chapter 4

continuously collapses and expands it both horizontally and vertically.
Have fun !

Rem * * * Screen Res i z ing Demonstrat ion

Rem * * * F i lename - ScreenRe s i z e . AMOS

Screen Open O , 3 2 0 , 2 0 0 , 3 2 , Lowres

Locate 0 , 1 0 : Centre npre s s <Ctrl > and <C> to Quit n

Do

For A= 3 2 0 To 48 Step - 1 6

Wait 5

Wait Vbl

Screen Display O " , A,

Next A

For A=4 8 To 3 2 0 Step 1 6

Wait 5

Wait Vbl

Screen Display O " , A ,

Next A

For A= 2 0 0 To 2 Step - 2

Wait Vbl

Screen Display O " " A

Next A

For A=2 To 2 0 0 Step 2

Wait Vbl

Screen Display O " " A

Next A

Loop

Screen Close 0

Loading and saving screens

Ultimate AMOS

Finally, we move onto the subject of AMOS 's support for the IFF
graphics standard. As those of you in the know will confirm, IFF is a
very handy method of storing a variety of different types of data in a

Screens

IFF format

7 1

common fi le format. IFF (which, for the nosy amongst you stands for
' Interchangeable File Format ') has been adopted by virtually every
Amiga software developer so that any files that you produce can be
directly loaded into another package without modification, providing the
software you are trying to load the files into is designed to handle that
type of data. There 's l ittle point, therefore, trying to load a music score
into a paint package - even if the package does support IFF, a IFF music
score still won't load into a paint program.

So what 's this got to do with AMOS? Well , AMOS just happens to be
IFF-compatible, that's what ! What this basically means to the average
AMOS programmer is that the contents of any screen that you create in
AMOS can be saved out to disk as an IFF file, allowing them to be
loaded into an IFF paint program. More exciting, however, is the ability
to load IFF pictures into an AMOS screen. This comes in particularly
handy when you need to design title screens and even backgrounds for
your AMOS games - because an IFF picture can be loaded directly into
AMOS, you can use a paint program such as Electronic Arts ' Deluxe
Paint IV to draw all your game graphics. AMOS may be the ultimate
programming language, but it's a fact of life that you' l l still need a paint
program sooner or later.

The two commands used to load and save screens are 'Load IFF' and
'Save IFF' respectively. Their format is as follows:

Load IFF "Filename " , Screen Number

Save IFF "Filename " , Screen Number

The Filename is simply a string that defines the name that the screen is to
be loaded or saved under. Unless you 're loading or saving pictures from
the current directory, you 'l l also need to add in ful l path information -
for example, to load a picture called 'TitleScreen ' stored in a directory
called 'Pictures' on DFO: , the fi lename string would be
'DFO:Pictures(TitleScreen' .

Ultimate AMOS

72

�
Screen types

Ultimate AMOS

AMOS's 'Load IFF'

command allows you to

design your game

graphics within a

traditional paint program

such as Deluxe Paint and

then pull them directly

into your program.

Chapter 4

The ' Screen Number ' parameter is optional. If you don 't use it, the
current screen will be used, but it can often be handy to be able to tell
AMOS exactly what screen you'd l ike saved when more than one screen
is currently opened. In the case of the 'Load IFF' command, passing a
screen number that points to a screen that is not currently open will cause
AMOS to open one for you in the format required for the picture. If you
attempt to load a picture into a screen of the wrong type (not enough
colours, for example), you' l l get an error message.

73

Screen scrol ling
• Screen synchronisation

• Hardware & software scrolling

• Superbitmaps and viewports

• Screen Copy scrolling

• Parallax scrolling

• Continuous scrolling

• Using screen 'blocks'

• AMOS TOME extension

U ltimate AMOS

74

Ultimate AMOS

Chapter 5

I f you ' ve ever played shoot 'em up games such as Team I Ts brilliantly
executed 'Project X' or 'Alien Breed' , then you' ve already witnessed
a vivid example of screen scrolling in action. Scrol ling may be a

rather cliched programming technique these days, but no-one could
possibly doubt that it is a very powelful tool in the games programmer's
arsenal . Screen scrolling allows you to move a screen along either the
horizontal or vertical axis (or even both) to give the i llusion of
movement.

Take Project X, for example - the game starts with your ship flying
through space but as you proceed through the game, your ship stays in
the centre of the screen whilst the background graphics behind your ship
move smoothly off to the left-hand side of the screen. It's a bit l ike the
effect you'd see if you were looking out of the window of a moving car -
although technically it's you that's doing the moving, the scenery on
either side of the car appears to move past you. Screen scrolling works in
a similar manner - in order to give the appearance of continuous
movement without the player 's sprite disappearing off the screen, the
background is moved instead. The player's sprite is only allowed to
move within the boundaries of the screen display. Even if the ship stays
perfectly sti l l , scrolling the background gives the il lusion that the ship is
actually moving.

Screen scrolling isn't just restricted to shoot 'em ups, however. It can be
applied to just about any genre of game ranging from beat ' em ups and
arcade adventures to platforms games - indeed, any game that needs to
give the player the i l lusion of movement whilst keeping the player's
sprite on the screen. Other examples of games that employ screen
scrol ling include Team I Ts 'SuperFrog' , Dino Dini's 'Goal' (or should
that be 'Kick Off 4' ?), 'Body Blows ' , 'Prince of Persia' etc.

Before we go any further though, it's worth mentioning the subject of
screen synchronisation. Although we' l l be covering this in great detail in
the next chapter, I thought that now would be a good time to at least
introduce a little bit of theory. Al l Amigas redraw their displays every
50th (for PAL systems) or every 60th of a second (for NTSC systems),
depending upon the type of TV system used in your country. British
Amigas are based around the PAL system, so the screen display is

Screen scrolling

WAIT VBL
command

Scroll types

Screen scrolling is used

to great effect within

shoot 'em ups such as

Team 1 7's excellent

'Project X'. By moving the

background at speed past

the player's sprite, you

get the illusion of rapid

movement without moving

the player's sprite off the

screen.

75

redrawn 50 times a second. AMOS can scroll screens much faster than
just 50 times a second, so you need to tie in your screen scroll with the
TV standard using a command called 'Wait VbI ' . This command simply
tells AMOS to halt every 50th of a second in order for the screen
hardware to catch up with it . There's no point in getting your AMOS
programs to scroll any faster than this - if you do, you ' l l get some very
strange effects indeed. Check out the next chapter for more information
on this important concept.

As you'd expect, AMOS is fully equipped to handle the scrolling
requirements of just about any game. Whether you �ant to scroll the
entire screen or just a small section, AMOS is more than up to the job.
What's more, because AMOS makes extensive use of the Amiga's blitter
and built-in scroll hardware, you can scroll screens as fast (or as slowly)
as you l ike.

AMOS offers basically two types of scrolling to the games programmer -
software scrolling and hardware scroll ing - each of which has its own
particular pros and cons. Let's take a look at each in turn.

Ultimate AMOS

16

Hardware
scrolling

limitations

Software
scrolling

limitations

Ultimate AMOS

Chapter 5

Hardware Scrolling
Hardware scroll ing gets its name from the fact that it uses the Amiga's
own built-in screen scroll ing hardware. Yes, even without a
programming language as powerful as AMOS, the Amiga's hardware i s
capable of scrolling screens at unbelievable rates. Indeed, its hardware
scrolUng is so fast that it's actually possible to scroll a screen so fast that
the Amiga's display hardware (the bit of circuitry that converts the
screen image held in memory to an RGB or TV signal that can be
displayed on a monitorrrV) cannot redraw the screen fast enough to
show the scroll moving smoothly . . .

Hardware scrolling does have its l imitations, though. Because i t can only
scroll whole screens, it does tend to be rather memory-intensive. Say, for
example, you wanted to write a game l ike Team 1 7 's Project X, which
employed a scrolling background that was 20 low-resolution screens
long. If you were to use hardware scrolling, the resulting bitmap would
be over 200K in size - and that's only for a 2-colour bitmap ! A 32-colour
bitmap would be over a megabyte in s ize. Obviously, there are ways to
get around this l imitation, but it's down to you to code a more efficient
hardware scroll ing routine (or, better stil l , just type in the l isting that
you ' l l find later in this chapter !) .

Software Scrolling
Software scrolling gets its name from the fact that it's not built into the
hardware, but is actually a scrolling technique provided by AMOS itself.
Instead of using the Amiga's own scroll hardware, AMOS's scroll
commands make use of the Amiga's powerful blitter chip. The big
advantage of this technique is that not only is it more memory-efficient,
you're not restricted to scrolling whole screens - you could, for example,
scroll just a tiny section of a screen's bitmap.

Unfortunately, software scrolling too isn't without its l imitations.
Although the blitter can operate much faster than the Amiga's own
processor, it's still not as fast as the built-in scroll hardware. The blitter
could theoretically scroll just as fast, but (as assembler programmers will
tell you) setting up the blitter takes time. Although this done for you at
machine code level, there 's still a very slight delay between the time it
takes to initiate the blitter and actually getting it to start doing its stuff.

Screen scrolling 77

Using hardware scrolling

SCREEN OFFSET
command

Hardware scrolling is perhaps one of AMOS's most powerful facilities
yet, considering its complexity, you'l l be pleased to learn that
incorporating hardware scrolling into your own AMOS creations is
surprisingly simple. Indeed, all that is required to get things moving (if
you ' ll pardon the pun) is a single command - Screen Offset.

The Screen Offset command is very similar to the 'Screen Display'
command that we discussed in the last chapter but, instead of moving the
viewport, the screen bitmap that the viewport displays is moved instead
by adjusting the position of the viewport's 'oligin ' . This origin tel ls
AMOS where to start reading screen information. Let's take a look at
viewports and screen bitmaps in a little more detail . . .

The Amiga's display is split into basically two components - the main
screen display bitmap (the area that your programs draw into) and the
display viewport. Imagine if you wil l that the screen bitmap is a
landscape stretching for hundreds of miles and the viewport is a window
in a house. If you were standing inside that house, the amount of scenery
that you could see through the window would directly relate to the size
and position of that window. Unless you had your eyes pressed against
the glass, only a small proportion of the scenery outside could ever be
seen. Imagine what it would be like if you could actually move that
window around the wall , however. Because the window has been moved,
you would be able to see previously invisible parts of the scenery
outside. Dreamy stuff maybe, but this is exactly what the 'Screen Offset'
command allows you to do.

All well and good, but there's one big problem If the window is 320 by
256 pixels wide then the scroll area outside the window must be larger.
After all , if the scroll area is scrolled one pixel to the left, a blank 1 pixel
line will appear on the right. If the display then scrolled another pixel to
the left, another blank line would appear. To get around this problem, you
need to create what is known as a 'SuperBitmap' . A SuperBitmap is
simply an image held in memory which is much larger than the
rectangular area that you can see on your TV or monitor screen. Take a
SuperBitmap that is 640 by 256 pixels in size, for example. If your

U ltimate AMOS

78 Chapter 5

'SuperBitmap'

Hardware scrolling works <0,0)
by progressively changing i'-'------�----------____,
the position of the

screen's viewport so that

a different section of a

SuperBitmap is exposed,

SuperBitmap

Viewport

viewport were 320 by 256 pixels, then only half of the SuperBitmap
could be displayed at any one time. Using hardware scrolling, however, it
is possible to change the viewport origin so that all of the SuperBitmap
can be viewed. With a game that needs the background to be scrolled
continuously in one direction, programmers cheat by looping the position
of the viewport around the SuperBitmap so that when the scroll reaches
the far end of the SuperBitmap, the viewport origin is reset to display the
first part again. As we' ll see later, this can be used to great effect.

Now that we' ve covered the theory, the time has come to put all that
we' ve learned into practice. First though, let's take a look at the Screen
Offset command in detail. The format of the command is as follows:

[!][!][!J1!lI
CQMt.WIO [)[FtlfTOi

Screen Offset SCREEN NUMBER , X OFFSET , Y OFFSET

Ultimate AMOS

Screen Number The Screen Number parameter is a valid pointer to a
currently open screen. If, for example, you had opened a screen as screen
number zero, then a value of zero would be placed here.

X Offset/y Offset These two values denote the X and Y position of the
top left-hand corner of the viewport relative to the top left-hand corner of
the SuperBitmap. If, for example, you had a 640 by 256 pixel

Screen scrolling 79

SuperBitmap and you wanted the viewport to display the middle 320
pixels (we' l l ignore the Y parameter for now), the top left hand corner of
the viewport would have to be placed at 1 60 pixels left of the start of the
SuperBitmap. The middle 320 by 256 pixels would be displayed with
1 60 by 256 pixels hidden on both sides of the viewport. To get this kind
of display, you would enter the line 'Screen Offset 0, 1 60,0' (presuming
the screen you wish to scroll is screen zero).

Anyway, here's a short of demonstration listing that shows the Screen
Offset command in action:

Rem * * * Screen Offset Demonstrat ion

Rem * * * F i lename - ScreenOff set . AMOS

Screen Open O , 6 4 0 , 5 12 , 3 2 , Lowres

Flash Off : Curs Off

Screen Display 0 , 1 2 8 , 4 0 , 3 2 0 , 2 5 6

For C = O To 5 0 0

X=Rnd (64 0)

Y=Rnd (5 12)

S=Rnd (5 0) + 1

Ink Rnd (3 2)

Bar X , Y To X+S , Y+S

Next C

Ink 0 , 0

Ink 2 , 0

Bar 2 2 , 8 0 To 3 0 0 , 1 0 0

Text 3 0 , 9 3 , "Move screen around with Joyst ick ! "

SCRX = O : SCRY= O

Repeat

I f Joy (l) = l Then SCRY=SCRY - 4

I f Joy (l) = 2 Then SCRY=SCRY+4

I f Joy (l) =4 Then SCRX=SCRX - 4

I f Joy (l) = 8 Then SCRX=SCRX+4

U ltimate AMOS

80 Chapter 5

I f SCRX< O Then SCRX= O

I f SCRY< O Then SCRY= O

I f SCRX> 3 2 0 Then SCRX= 3 2 0

I f SCRY > 2 5 6 Then SCRY=2 5 6

Screen Offset O , SCRX , SCRY

Wait Vbl

Unt i l Joy (1) = 1 6

Screen Close 0

End

Seamless
continuous
scrolling

Ultimate AMOS

Scrolling a Superbitmap smoothly is s imply a matter of adjusting the
position of the viewport origin so that the SuperBitmap is shown
progressively. In many ways, the demonstration l i sting above produces
the same effect - the only difference being that instead of controll ing the
screen scroll through software, the joystick is used instead. It's worth
noting too how the position of the screen viewport is continuously
monitored so that i t never goes above or below a set of minimum and
maximum values.

The minimum value (0) is pretty obvious, but you may well be asking
yourself why the above l isting doesn't allow the viewport position to go
above 320 pixels when the SuperBitmap is 640 pixels in size? This i s
because the viewport is positioned according to a viewport origin at the
top left-hand corner of the screen, the position of viewport only dictates
where the Amiga's screen hardware is to start reading screen data from.
Our l isting, for example, opens a viewport that i s 320 pixels in size, so if
you position the viewport at 320 pixels across, all the pixels up to 640
pixels across wil l be shown.

In order to produce smooth continuous scrolling in a particular direction,
the Superbitmap must be made to wrap around. Obviously tills wil l cause
a noticeable jump if the second half of the screen doesn ' t exactly match
the first, so most game scroll routines have two identical copies of the
same image that l ink together to produce a seamless join. Here's another
l isting that demonstrates how to produce a continuous screen scroll
similar to the type of scroll you might find in an arcade shoot 'em up.

Screen scrolling

Rem * * * Hardware Scroll Demonstrat ion

Rem * * * By Jason Holborn

Screen Open O , 64 0 , 2 5 6 , 3 2 , Lowres

F lash Off : Curs Off

S c reen Display 0 , 1 2 8 , 4 0 , 3 2 0 , 2 5 6

Load Iff IAMOSBOOK : Pi c tures / HardScrollBackground . IFF"

Screen Copy 0 , 0 , 0 , 3 2 0 , 2 5 6 To 0 , 3 2 0 , 0

SCRX= O

Repeat

SCRX=SCRX+4

If SCRX= 3 2 0 Then SCRX=O

Screen Offset O , SCRX , O

Wait Vbl

Unt il Joy (1) = 1 6

S c reen Close 0

End

Using software scrolling

8 1

There's no doubt that the Amiga's own hardware-based scrolling faci lity
is the fastest form of scrolling AMOS has to offer, but it does have its
limitations. As we have already seen, hardware scrolling is restricted to
scrolling entire screens only. If you need to scroll only a small section of
a screen, you need to use AMOS's own software scrolling commands.

Software
scrolling

Unlike hardware scrolling, which uses dedicated hardware to scroll the
screen, software scroll ing uses the Amiga's powerful blitter chip to shift
large areas of the screen around at high speed. Many games programmers
prefer software scrolling because it offers a far more flexible method of
scroll ing the screen. Indeed, many professional AMOS coders now use
software scrolling in preference to hardware scrolling simply because of

Ultimate AMOS

82

SCROLL &
DEF SCROLL
commands

Chapter 5

its flexibility. It may not be quite as fast but, if used correctly, even
software scrolling can turn in some very acceptable scroll speeds.

Software scrolling can be achieved using one of two different methods.
By far the easiest method of software scrolling a section of a screen is to
use the 'Scrol l ' command. However, before you can use this command
you have to tell AMOS which section of the screen is to be scrolled using
the 'Def Scroll ' command. AMOS enables you to define up to 1 6
different scroll 'zones ' , each of which must be defined first using the Def
Scroll command. The format of this command is as fol lows :

Def Scroll N , Xl , Yl To X2 , Y2 , DX , DY 0J[!lJ�0J
COMMAND DUINITK)N

Ultimate AMOS

N The parameter 'N' is an index number which is used to identify the
scrol l zone that you are defining. Up to 1 6 scroll zones can be defined
simply by passing a value between 0 and 1 5 .

X l /y l X l and Y l define the top left-hand corner of the scroll zone in
terms of screen pixels . If you wanted your scroll 'zone' to start at 10
pixels across and 20 pixels down, you would pass values of 1 0 and 20
respecti vely.

X2/y2 X2 and Y2 define the bottom right-hand corner of the scroll
zone.

DX/DY DX/DY define the number of pixels the zone wil l be scrolled in
a single operation. Positive numbers in DX and DY will scroll the zone
to the right and down whilst negative values will cause the zone to be
scrolled to the left and up.

DX and DY don't actual ly tel l AMOS where the scroll zone is to be
placed on the destination screen, however - they are actually nothing
more than 'delta' (relative) values that define the direction and speed of
movement. Placing a value of - 1 into DX, for example, would cause the
scrol l zone to be scrolled 1 pixel to the left every time the ' Scroll '
command is called.

Screen scrolling 83

Now use the Scroll command • • •

SCROLL
command

The 'Def Scroll ' command won't do a lot on its own. To make the screen
scroll , you need to use the 'Scroll ' command. Its format is simple as i t
needs only one parameter - 'Scroll N' - where 'N ' i s the index number
of the scroll zone that we defined using the 'Def Scroll ' command. The
scroll command is really nothing more than a block copier that uses the
Amiga's blitter to cut out a rectangular section of the screen and paste it
down at a given position. The command keeps track of how far the scroll
has progressed, so there's no need to use any sort of counter to fix the
CUITent scroll position . One limitation of the scroll command is the way it
leaves a trail as the rectangular zone is scrolled, so you have to redraw
the cOITupted sections of the screen. Here's a short demonstration:

Rem * * * Software Scroll ing Demo us ing ' Scrol l ' command

Rem * * * Filename - Scrol ldemo . AMOS

S creen Open O , 3 2 0 , 2 5 6 , 3 2 , Lowres

F la sh Off : Curs Off : C l s 0

Load I f f IAMOSBOOK : Picture s / DemoPicture . 1FF"

Locate 0 , 1 6

Pen 3 1 : Paper 0 : Centre "Pre s s Left Mouse Button to Quit ! "

Double Buffer

AutoBack 0

Def Scrol l 1 , 2 0 , 1 0 To 3 0 0 , 1 1 0 , 1 , 0

Def Scroll 2 , 2 0 , 1 5 0 To 3 0 0 , 2 5 0 , - 1 , 0

Repeat

Scroll 1

Scroll 2

wait Vbl

Screen Swap 0

Unt i l Mouse Key

Screen Close 0

End

U ltimate AMOS

84 Chapter 5

Screen Copy scrolling
A more flexible method of scrolling the screen under software control is
to use the AMOS 'Screen Copy' command, which is now the preferred
method of software scrolling screens amongst most professional AMOS
programmers. With a little bit of clever coding, it can be made to scroll
the screen smoothly at quite an acceptable rate and you can even create
some quite complex 'parallax' scrolling effects with it .

The Screen Copy command was primarily designed as a quick and easy
method of copying the contents of a rectangular region from one screen
to another using the Amiga's bl itter. Because the Screen Copy command
makes use of the blitter, it is very fast indeed. It isn ' t just restricted to
simple cut and paste operations, however - it's also a very capable scroll
command too ! The format of the Screen Copy command is as follows:

S creen Copy SOURCE , Xl , Yl , X2 , Y2 To DESTINATION , DX, DY , MODE 011!ll�W1
COMMAND DUtUoot!

U ltimate AMOS

Source/Destination These two parameters define the two screens to be
used for the Screen Copy operation. The 'Source' parameter tells AMOS
which screen the rectangular scroll area is to be cut from and
'Destination' defines the area to be pasted into. The Screen Copy
command can be used to transfer rectangular sections of one screen to
another - but quoting the same screen number for both source and
destination screens lets you scroll a section on the same screen.

Say, for example, you were writing a game which required a small area
of the screen to be continuously scrolled to the right or left (Defender, for
example). Using a separate screen that is hidden from view (using the
Screen Hide command), you could have the entire scroll area drawn into
a single screen as a series of rectangular strips that could be cut out and
pasted into the visible screen using the Screen Copy command.

X 1 ,Y 1 ,X2,Y2 The X l ,Y l and X2,Y2 parameters defines the size and
location of the rectangle (in screen pixels) that the Screen Copy
command cuts out relative to the top left hand corner of the screen
(screen position 0,0).

Screen scrolling

Smooth
scrolling

The Screen Copy

command may not be

designed for scrolling, but

it can be used to great

effect to produce smooth

screen scrolling effects.

Source screen

85

. I)x.�l:)y .

Destination screen

DX,DY The DX and DY parameter define where the rectangular region
cut from the source screen is to be placed within the destination screen.
AMOS places the top left hand corner of the region at these co-ordinates
on the destination screen.

Mode The mode parameter (which is optional) isn't particularly
applicable to software scrolling, but let's take a look at it nonetheless.
What it does is to allow you to take advantage of the blitter's ability to
perform logic operations on an area of screen memory as it is being
transferred. The values that you pass are called 'Minterms' and they're in
the same format as assembler programmers use. The default value is
% 1 1000000 (this is a binary number) which just copies the block 'as is ' ,
but some interesting results can be achieved by altering this value. If
you're feeling adventurous, why not try values of %00 1 10000,
% 1 1 1 00000 and %0 1 0 1 0000, for example? You can find out more about
Minterms in the Commodore 'Hardware Reference Manual' (published
by Addison Wesley).

Rem * * * Software Scro l l ing Demo us ing ' ScreenCopy ' command

Rem * * * F i lename - ScreenCopy . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 3 2 , Lowres

U ltimate AMOS

86 Chapter 5

Flash O f f : Curs Off : C l s 0

Load I f f "AMOSBOOK : P i c ture s / DemoPicture . IFF"

Locate 0 , 1 6

Pen 3 1 : Paper 0 : Centre "Press Left Mouse Button to Quit ! "

Do

For C=2 0 To 2 0 0

Screen Copy O , C , 1 0 , C+ 1 0 0 , l 1 0 To 0 , 1 1 0 , 1 5 0

Wait Vbl

If Mouse Key Then End

Next C

For C = 2 0 0 To 2 0 S t ep - 1

Screen Copy O , C , 1 0 , C+ 1 0 0 , l 1 0 To 0 , 1 1 0 , 1 5 0

Wait Vbl

If Mouse Key Then End

Next C

Loop

Screen Close 0

End

Parallax scrolling

U ltimate AMOS

So far, the scroll ing routines that we've covered have only scrolled
screens at a fixed rate. Whilst they sti l l look damned impressive, these
days this sort of thing is starting to look decidedly old hat. If you own
even a half decent shoot 'em up such as the classic 'StarRay' (remember
that one?) or an arcade exploration game such as Psygnosis' 'Shadow of
the Beast' , then you may have noticed that the scroll routines used by
these games manage to give a far greater illusion of 3D depth to the
screen. There's nothing magical about this effect and, although it is a
little more complex, there's no reason why you can't achieve simi lar
results with AMOS . This technique is called 'parallax' scrolling and it
works simply by scrolling certain areas of the screen at different speeds.

Parallax scrolling is a simple yet very effective scrolling technique that
attempts to emulate the way we see moving objects in the real world. As

Screen scrolling

DUAL
PLAYFIELD
command

87

your physics teacher no doubt tried to drum into you back in your
schooldays, the rate at which an object appears to move is directly
related to the distance that it is from the viewport - even if a group of
objects are moving at the same speed, they will appear to move past you
at different speeds depending upon how far away they are. If an object is
close, then it will appear to move at high speed. If, however, the same
object was further away from you, it would appear to move more slowly.

We can emulate this natural phenomenon within AMOS by scroll ing
sections of the screen at different speeds using a technique that has been
used to great effect within many high-speed arcade games. Potentially
the fastest method of producing parallax scrolling is to use the AMOS
'Dual Playfield' command. This enables you to overlay one screen on top
of another to create a dual playfield display. What's more, the
background colour from the foreground screen is made transparent
therefore allowing any graphics that are displayed on the background
screen to show through the gaps in the first screen. You can create
parallax effects quite simply by using the Amjga's own hardware
scrolling capabil ity.

This may sound like j ust what we need, but the bad news is that dual
playfield displays have a number of quite major limitations that make
them virtually unusable. One is the number of colours that can be used -
because you ' re effectively combining two screens into one, the Amjga's
hardware only allows a maximum of sixteen to be displayed on each in
low resolution mode (this drops to just eight when using medium and
high resolution dual playfield displays !) . What's more, both screens have
to be the same resolution (you cannot therefore have a low resolution
screen overlayed on top of a medium resolution screen).

The greatest limitation of dual playfield screens is not imposed by the
Amiga, but AMOS itself. Although it pains me to admit it, AMOS seems
to have considerable problems with dual playfield screens - indeed, even
operung a dual playfield display can sometimes produce weird (and not
so wondelful) effects (corruption), so don't blame yourself if you can't
get dual play field mode to work correctly - the chances are that AMOS
is to blame ! The best way to avoid such problems is to open the two
screens that you wish to combine using odd index numbers (screen 1 and

U ltimate AMOS

88

Parallax
scrolling

Objects that are further

away appear to move

more slowly - this is the

basic theory behind paral

lax scrolling.

•

Chapter 5

Appears t/
move ve(y slowly

��y

Appears to
move fost

�
Using 'dual
playfields'

3, for example) and don' t attempt to do horizontal hardware scrolling !
Vertical scrolling usually works OK, but even this sometimes produces
weird results. Just for the sake of an example, however, here's a l isting
that demonstrates dual playfield displays and the problems you can
encounter - keep your eyes open for the juddering background ! - you
can blame AMOS for this:

Rem

Rem

* * *

* * *

Dual Playfield Paral lax demo

Filename - DualPlayfield . AMOS

Screen Open l , 6 4 0 , 2 5 6 , 4 , Lowres

Flash Off : Curs Off : C l s 0

Screen Open 3 , 6 4 0 , 2 5 6 , 4 , Lowres

Flash Off : Curs Off : Cls 0

Screen Display 1 , 1 2 8 , 4 2 , 3 2 0 , 2 5 6

Screen Display 3 , 12 8 , 4 2 , 3 2 0 , 2 5 6

Screen 1 : Load l f f "AMOSBOOK : Picture s / Foreground . lFF"

Screen 3 : Load l f f "AMOSBOOK : Picture s / Background . lFF"

Screen Copy 1 , 0 , 0 , 3 2 0 , 2 5 6 To 0 , 3 2 0 , 0

Screen Copy 3 , 0 , 0 , 3 2 0 , 2 5 6 To 0 , 3 2 0 , 0

Ultimate AMOS

Screen scrolling 89

Wait Vbl

Dual Playfield 1 , 3

PF1POS= O

PF2POS = O

Repeat

PF1POS=PF 1POS+ 2

PF2POS=PF2PO S + 1

I f PF1POS= 3 2 0 Then PF1POS = O

I f PF2POS= 3 2 0 Then PF2 POS= O

Screen O f f set 1 , PF1POS , O

Screen O f f set 3 , PF2POS , O

wait Vbl

Unt i l Mouse Key

Screen Close 1

Screen Close 3

End

SCREEN COPY
command

A far safer (and considerably easier) method of producing a dual
play field display is to make use of our old friend, the 'Screen Copy'
command. It's not quite as impressive as a true dual playfield display
(you cannot, for example, have sections of one scroll area showing
through another), but it's considerably faster and a lot more flexible than
dual playfield mode. Another great advantage of using Screen Copy to
produce your parallax scroll is that it doesn't restrict you to just two
scrolling areas like a dual playfield parallax scroll . Finally - and rather
importantly - the great thing about using Screen Copy is that it actually
works - something that most certainly can' t be said of a dual playfield
scroll !

As I 've already said when we looked at the Screen Copy command
earlier, it allows you to copy l arge areas of the screen using the Arniga's
fabulous blitter chip. As a result, it's very, very fast indeed. The Screen
Copy command can be used to produce a parallax scroll by splitting the

Ultimate AMOS

90

By scroll certain areas of

the screen at different

speeds, an illusion of true

3D depth can be added to

your scrolling screens.

This technique is called

'Parallax' scrolling.

Chapter 5

screen into a series of bands, each of which is scrolled at a different
speed using a separate 'Screen Copy' command. By arranging these
scroll bands so that they move progressively faster (band 1 moves at a
rate of 1 pixel, band 2 at 2 pixels and band 3 at 3 pixels etc), a very sexy
looking parallax effect can easily be achieved. Here's a l isting that
demonstrates the Screen Copy command in action:

Rem * * * Para l l ax Demo Using ' Screen Copy '

Rem * * * F i lename - Paral l ax . AMOS

Dim POS (S)

Global POS ()

INITSCROLL

Do

_PARASCROLL

Screen Swap 0

Wait Vbl

Loop

Ultimate AMOS

Screen scrolling 9 1

Procedure INITSCROLL

Screen Open 7 , 6 4 0 , 2 0 0 , 8 , Lowres

Flash Off : Curs Off : Cls 0

Load I f f "AMOSBOOK : Pi c ture s / Paral laxBackground . I FF"

Screen Copy 7 , 0 , 0 , 3 2 0 , 2 0 0 To 7 , 3 2 0 , 0

Screen Hide 7

Screen Open 0 , 3 2 0 , 2 5 6 , 8 , Lowres

Flash Off : Curs Off : C l s 0

Get Palette 7

Double Buf fer : Autoback 0

For C = O To 4

POS (C) = O

Next C

End Proc

Procedure _PARASCROLL

For C = O To 3

Screen Copy 7 , POS (C) , 1 6 * (C) , POS (C) + 3 2 0 , 1 6 * (C+ l) To

0 , 0 , 1 0 0 + (1 6 * (C+ l »

POS (C) = POS (C) +C+2

I f POS (C » = 3 2 0

POS (C) = O

End I f

Next C

Screen Copy 7 , POS (4) , 64 , POS (4) +3 2 0 , 9 6 To 0 , 0 , 8 4

POS (4) =POS (4) + 1

I f POS (4 » 3 2 0

POS (4) = 0

End I f

End Proc

Ultimate AMOS

92 Chapter 5

Continuous scrolling

Screen 'blocks'

Ultimate AMOS

The only real problem with both the hardware and software scrolling
techniques that we've covered so far is that they work on a very l imited
scroll area. Take hardware scrolling, for example - because the scroll
wraps around when you reach the end of the bitmap, the same
background graphics will be shown over and over again. Unless your
game is based in a ban-en desert of out in deepest space (so deep in fact,
that there's nothing but stars around you !) , this isn't particularly useful .

As any seasoned games player wil l acknowledge, most modern arcade
games don't just scroll the same background screen over and over again.
Take a game such as Psygnosis's 'Blood Money' , for example - although
the game will happily run on a S 1 2K Arniga, its four levels are absolutely
massive and as you progress through the game, the background graphics
seem to change continuously. If you were to hold each level as a
continuous bitmap, you 'd end up needing a machine equipped with
several megabytes (all of which was chip RAM !) of memory just to
handle the background bitmaps.

So how do professional games programmers manage to squeeze so much
into so little? Well, they use a little software trick that has been around
for almost as long as home computers themselves. The break the bitmap
down into a series of tiny 'blocks ' , each of which is a regular size (1 6 x
1 6 or 32 x 32 pixel blocks are most common). If you look carefully at the
bitmap, you' l l notice that quite a few of the blocks are very similar - a
wall, for example, would use a same pattern of bricks that would not
change between different blocks. You could therefore cut down on the
amount of memory used simply by using the same block again and again.

Virtually all arcade games that feature continually changing scrolling
backdrops use pretty much the same technique. Instead of holding the
entire bit map in memory, a small screen-sized area of the scrolling area is
drawn by building up the display from a set of graphic blocks . As the
screen is scrolled, the game interrogates a ' map' that holds nothing more
than the numbers of the blocks that should be placed at certain positions
on the screen. By using this data, only the areas of the screen that can
actually be seen are ever drawn. What's more, because we use the

Screen scroll ing 93

The entire scrolling screen area is built up using just a small selection of screen blocks. Using this technique, massive scrolling backdrops

can easily be used without swallowing large chunks of memory.

Memory
savings

Amiga's super-fast blitter, we can continuously draw the bitmap as the
game progresses without slowing the game down at all !

Holding the screen as a 'map' offers considerable memory savings. The
demo listing below, for example, creates a scroll area that is effectively
1 280 by 200 pixels in size yet the entire program (which, incidentally, i s
on the disk bundled with this book) is under 20K in size (including the
graphics themselves) . When you consider that this same scroll area held
as a continuous bitmap would eat up 1 28K, you can see that we' ve saved
ourselves a lot of memory.

The great thing about this routine is that no matter how much you extend
each screen, the amount of memory used will only increase by a couple
of K (each 320 by 256 screen eats up only 80 bytes !) . You could, for
example, have a screen that was over 1 2800 pixels in size (that's ten
times the size of the original) and the amount of extra memory used
would only increase by a matter of K !

Our AMOS version of this routine works using a combination of
hardware scrolling and the 'Screen Copy' command which is used to
draw the blocks onto the screen very quickly indeed. The best way to
explain how it works is to break the process down into a series of steps
(see the diagram over the page) :

Step A Before the scroll begins, the initial screen area is initialised by drawing
the visible screen area, the scroll area and the two boundaries on either
side of the viewport. Note how the screen viewport is initially offset so
that there is a invisible area to the left of the screen - this will eventually

Ultimate AMOS

94 Chapter 5

be displayed when the scroll routine reaches step 'F' . To start the ball
roll ing, strip 5 is drawn into it.

Step B The screen is then hardware-scrolled, and while it scrolls to reveal strip
4, strip 6 is drawn on either side of the viewport. All the icons that must
be drawn to complete both strips are drawn at once to keep the scroll
speed up.

Step C While the scroll moves on to reveal strip 5, strip 7 is drawn on either side
of the viewport. Note that we will effectively need two pointers to keep
thjs redraw process up - one that keeps track of the screen offset position
and another that keeps track of which strip is to be drawn during each
pass of the scroll routine.

Step D Whjle the scroll moves to reveal strip 6, strip 8 is drawn on either s ide of
the viewport.

Step E Again, the viewport is scrolled to the right and strip 9 is drawn on either
side.

Step F Loobng at the diagram opposite, you wil l now notice that the screen
contains two copies of the same display which, in turn, is split into five
strips - 5, 6, 7, 8 and 9. At this point, the viewport wraps around to the
start so that it now displays the first half of the bitmap.

Step G With the viewport position reset, the whole scroll ing process starts again
by scrolling the viewport to display strip 9 whilst drawing strip 1 0 onto
either side of the viewport. Once this is done, the scroll routine then
jumps to step 'B ' and the whole process begins again.

As I have already said, the actual layout of the screen is held as nothing
more than a series numbers that define which blocks are to be pasted on
the screen at certain positions. But how do you go about designing such a
monolithjc display? Wel l , I find the best way is to use a paint package
such as DPaint. Simply by splitting the scroll area up into a series of
smaller chunks (DPaint, for example, will quite happily handle a 1 280 by
5 1 2 bitmap), you can design the screen by pasting down your blocks
using DPaint's 'Grid' tool . Once one section is complete, you can

Ultimate AMOS

Screen scrolling

Scrolling

95

convert it manually into a series of block numbers that can be fed
directly into your program. Drawing a grid over the finished bitmap
makes life easier here.

A I+I+I+I I I I I E
5 6 7 8 9 5 6 7 8 9

,.'

8 1+1+1+1'1 I 1 1 F I+I+H 1 1 1 1 1
C I+I+I+I+I I I G I+I+I+I I I I I
D I+I+H+I+I I � ����F= A

rea

If you were to view the entire bitmap as it was being scrolled, this is the sort of thing you'd see, Note how the entire image is built up using

little graphic blocks.

Ultimate AMOS

96 Chapter 5

If you do use this technique, make sure that the sections of screen that
you design link together without a visible seam - as any games
programmer will tell you, there 's nothing tackier than being able to spot
that the display was drawn using screen blocks. Anyway, here's the code
for your pemsal :

Rem * * * Cont inuous screen scroll

Rem * * * F i lename - Cont inuous Scrol l . AMOS

Dim LEVELMAP (6 , 8 0)

SCRPOINTER= O : BLOCKPOINTER= O : LEVELSIZE=O

BLOCKNUM= O : SCRLCOUNTER= O

Global SCRPOINTER, BLOCKPOINTER, LEVELMAP () , LEVELSIZE

Global XDATA, BLOCKNUM, SCRLCOUNTER , X , Y , BLOCK

INIT

INITSCROLL

Repeat

Rem * * * Scroll screen . . .

SCROLLSCREEN

Rem * * * Rest of your game code goes here . . .

Wait Vbl

unt i l BLOCKPOINTER=LEVELS I ZE

End

Rem * * * Ini t i a l i se screen map array . . .

Procedure INIT

Rem * * * Read l ength of screen in screen blocks . . .

Read LEVELS IZE

Rem * * * Read l evel data into array . . .

For A= O To 5

Ultimate AMOS

Screen scrolling

For B = O To LEVELSIZE

Read LEVELMAP (A , B)

Next B

Next A

Rem * * * Level 1 (12 8 0x2 0 0) data

Data 3 9

STRIP1 :

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

STRIP2 :

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 3 , 1 5 , 1 5 , 1 5 , 5 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

STRIP3 :

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 2 , 14 , 14 , 14 , 14 , 14 , 6 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

STRIP4 :

Data 1 , 1 , 1 , 1 , 3 , 1 8 , 1 5 , 1 5 , 5 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 2 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 1 0

Data 1 6 , 1 6 , 17 , 5 , 1 , 1 , 1 , 1 , 1 , 1

STRIPS :

Data 1 , 1 , 1 , 2 , 14 , 14 , 14 , 14 , 14 , 7

Data 1 6 , 5 , 1 , 1 , 1 , 1 , 1 , 1 , 3 , 1 8

Data 9 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14

Data 14 , 14 , 14 , 14 , 1 0 , 1 5 , 1 5 , 1 5 , 5 , 1

STRIP6 :

Data 4 , 4 , 9 , 14 , 14 , 14 , 14 , 14 , 14 , 14

Data 14 , 14 , 7 , 4 , 17 , 15 , 1 5 , 9 , 14 , 14

Data 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14

Data 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 7

97

U ltimate AMOS

98

End Proc

Procedure INITSCROLL

Rem * * * Open up invi s ible bitmap for s creen blocks

Screen Open 7 , 64 0 , 4 0 , 1 6 , Lowres

Flash Off : Curs Off : Cls °

Rem * * * Load in screen blocks . . .

Load I f f IIAMOSBOOK : Pi c ture s / ScroI IBlocks . IFFII

S creen Hide 7

Rem * * * Open up scroll bitmap . . .

Screen Open 0 , 7 3 6 , 1 9 2 , 1 6 , Lowres

Flash Off : Curs Off : C l s °
Screen Di splay 0 , 12 8 , 4 8 , 3 2 0 , 2 0 0

Screen Offset 0 , 3 2 , 0

Get Palette 7

Screen Hide °

Rem * * * Ini t i al i se screen disp l ay

SCRPOINTER= 3 2

XDATA= O

BLOCKPOINTER=XDATA+ 1 0

Rem * * * Draw main display + scroll buffer . . .

For A= O To 5

For B = O To 9

BLOCK=LEVELMAP (A , XDATA+B)

X=SCRPOINTER+ (B* 3 2)

Chapter 5

Screen Copy 7 , (BLOCK- 1) * 3 2 , 0 , BLOCK* 3 2 , 3 2 To 0 , X , A* 3 2

Next B

Next A

Rem * * * Draw new strips . . .

BSTRIP=SCRPOINTER - 3 2

FSTRIP=SCRPOINTER* ll

For A=O To 5

Ultimate AMOS

Screen scrolling

BLOCK=LEVELMAP (A , BLOCKPOINTER)

Screen Copy 7 , (BLOCK- l) * 3 2 , O , BLOCK* 3 2 , 3 2 To O , BSTRIP , A* 3 2

Screen Copy 7 , (BLOCK- l) * 3 2 , O , BLOCK* 3 2 , 3 2 To O , FSTRIP , A* 3 2

Next A

Rem * * * Bring scrol l bitmap into view . . .

Screen Show 0

End Proc

Procedure SCROLL SCREEN

Rem * * * Reset scroll pointer if edge

Rem * * * of screen bitmap has been reached . . .

I f SCRPOINTER= 3 5 2 Then SCRPOINTER= O

Rem * * * Draw new strips . . .

I f SCRLCOUNTER< 12

I f BLOCKNUM< 6

X=SCRPOINTER+ 3 2 0

Y=BLOCKNUM* 3 2

BLOCK=LEVELMAP (BLOCKNUM , BLOCKPOINTER)

E l s e

X=SCRPOINTER- 3 2

Y= (BLOCKNUM- 6) * 3 2

BLOCK=LEVELMAP (BLOCKNUM- 6 , BLOCKPOINTER)

End I f

Screen Copy 7 , (BLOCK- l) * 3 2 , O , BLOCK* 3 2 , 3 2 To O , X , Y

Inc BLOCKNUM

El se

End I f

Rem * * * Scro l l bitmap . . .

Screen O f f set O , SCRPOINTER+SCRLCOUNTER , O

Rem * * * Re set redraw delay i f screen has s c rol l ed 3 2 t imes

Inc SCRLCOUNTER

I f SCRLCOUNTER= 3 2

99

Ultimate AMOS

1 00 Chapter 5

SCRLCOUNTER= O

SCRPOINTER=SCRPOINTER+ 3 2

Ine BLOCKPOINTER

BLOCKNUM= O

End I f

End Proe

AMOS TOME Extension

Tome support

U ltimate AMOS

If you own AMOS 1 .35, you can cut out a lot of the hassle of scrolling
large continuous bitmaps by making use of Shadow Software's excellent
'Tome' , an AMOS extension designed specifically for handling 'map'
based games. Now in its forth incarnation (although even as I write this ,
Tome Series V is on the drawing board !) , Tome gives you an extra 60
commands designed specifically for the task of handling big scroll areas.
The only real problem with this extension is the fact that it will not work
with either Easy AMOS or even AMOS Professional, so I 'm afraid the
rest of us will have to make do with the code above.

The Tome package consists of primarily two basic elements - the Tome
language extension and a Map Editor utility that is used to design your
scrolling backgrounds. Tome works in pretty much the same way as our
continuous scrolling routine above but, thanks mainly to the fact that the
Tome commands are written completely in assembler, i t can redraw the
background much, much faster than our Screen Copy-based routine. The
first step is to design a series of 'Tiles' (Blocks) that will form the
building blocks of the map display. Tome allows you to use just about
any paint package for this, but DPaint is perhaps better qualified than
most. Once you 've done this, you can then load up the Tome Map Editor,
cut out your blocks from the IFF file created by your paint package and
then piece together these tiles into a massive scrolling area.

The latest release of Tome (series IV) includes a couple of extra utilities
that are built into the Tome Map Editor that make designing maps easy.
The most impressive of these is a small utility called 'Picture To Map
Converter' that takes an IFF picture and produces a massive map by
converting each pixel in the picture into a Tome tile. This comes in
particularly handy if you' re designing games that use a lot of very similar

Screen scrolling

AMOS Tome

The Tome Map Editor

allows you to design enor

mous scrolling

backgrounds that can

then be incorporated into

your own games software

using the 60+ commands

in the Tome extension.

1 0 1

blocks - an arcade adventure based in a wi lderness, for example. To
accelerate the process of designing a map for this sort of game, all you
would have to do is to draw a quick picture with each type of tile
represented by a particular colour. Tome Series IV also supports
' animated tiles, so you can animate sections of a scrolling background !

Once the map is designed, a few quick 'Load' commands are all that is
needed to pull your map into your AMOS program. From here on you
can use the 60 or so Tome commands to automatically redraw the screen
map to create the i l lusion of scrolling. Here 's a rundown of a few of
Tome's obvious commands just to show you how easy it is to use.

Map Do X,Y
This command draws an area of the map into the current screen. Tome
starts drawing the map at the top left-hand corner of the screen using the
tile at position X and Y within the map.

Map View X l ,Y l To X2,Y2
If you need to limit the size of the visible map area (say, for example,
you'd like to leave the bottom of the screen free for a status panel), you
can use this command to create a sort of 'window' which restricts the
size of the screen area that the 'Map Do' command draws the map into.

U ltimate AMOS

1 02

U ltimate AMOS

Map left X,Y
Map Right X, Y
Map Top X,Y
Map Bottom X, Y

Chapter 5

These four commands are used in conjunction with your screen scrolling
code to produce smooth scrolling. All you do is to scroll the screen and
use one of these four commands to fi l l in the gap left by the screen being
scrolled.

Map Plot TILE,X,Y
This command draws tile number 'TILE' at position X,Y within the map.
Note that these two co-ordinates are not screen-based - passing a value
of 1 2,20, for example, would plot a tile at position 12 x 20 within the
map (even if that position can' t currently be seen !) .

Map Fall TILE
If you've ever wanted to write your own 'BoulderDash' clone, then this
is the command for you. What it basically does is to scan through the
map, causing certain tiles to fall downwards. It's a bit complicated to
explain how it works, but it works very well indeed !

The AMOS Tome extension costs £24.95 and is available from Shadow
Software at 1 Lower Moor, Whiddon Val ley, Barnstaple, North Devon
EX32 8 NW. Bear in mind that, as stated earlier, at the time of writing,
Tome is not compatible with either AMOS Professional or Easy AMOS.

1 03

Screen effects
• The Amiga's co-processor ('copper')

• Copper effects and rainbows

• Screen synchronisation & 'double-buffering'

• Screen compaction

Ultimate AMOS

1 04

Denise/Lisa,
Agnus/Alice,

copper

Colour
limitations

Using the
copper!

Ultimate AMOS

Chapter 6

At the heart of every Amiga is a wondrous little sl iver of s il icon
called ' Denise' (or 'Lisa' , if you have an AGA machine) that is
solely responsible for translating the screen bitmaps generated by

the Amiga's graphics chip 'Agnus' ('Alice ' on AGA systems) into the
displays that you see on your Amiga's monitor or television. Built into
the heart of Denise is a sort of mini co-processor called the 'copper'
(short for 'co-processor') that allows the Amiga to change certain
hardware registers (a screen's colour palette, for example) every scan
line. By creating what the techies call a 'copper l ist ' , all manner of weird
and wonderful screen effects are possible.

Most games programmers use the copper extensively simply because it
allows you to beat the 32-colour l imitation imposed by the Amiga's
graphics hardware. As you will know, AMOS allows us to use no more
than 32 colours on any screen. You could, of course, make use of HAM
mode, but this rather quirky screen mode is more bother than i t 's worth.
What's more, HAM mode doesn't l ike blitter objects (bobs), so it 's not a
lot of use for game screens. The only other solution is the AGA chip set,
which breaks these barriers completely with its new 262,OOO-colour and
256-colour VGA screen modes, but unti l Europress launch an AGA
upgrade for AMOS, I 'm afraid no amount of creative coding is going to
allow AMOS users to take advantage of these wondrous screen modes .
Let's just hope that the AGA upgrade doesn 't take too long to arrive !

The Amiga's copper chip

allows the AMOS

programmer to change

the setting of a colour

register anywhere on the

screen, giving the illusion

of many more colours.

COlour O Changed.D�������======�
to red

Colour 0 changed -;.l"j.; ..;.,r.WlqJ,q.�Mi'i'l.-
to green "�'ih�o'.:h'Y

Colour 0 changed
to blue

Screen effects 1 05

This then is where the copper comes in handy. Because it allows us to
change the colour of any colour register at any point on the screen,
there 's no reason whatsoever why you couldn't have the same colour
register (colour 0, for example) displaying several different colours on
the same screen. You could, for example, have colour 0 set to black at the
top of the screen and then change it to red half way down the screen !

Compared to the power of the copper, even this is a very simple example
of what's possible - if you wanted to, you could change its colour on
every scan l ine to create beautiful multi-colour effects using just a single
colour! Don't believe me? Try typing in this example listing :

Rem * * * Rainbow Effect Demo

Rem * * * Filename - RainbowDemo . AMOS

Screen Open 0 , 32 0 , 2 5 6 , 2 , Lowres

Flash Off : Curs Off : Cls 0

Set Rainbow 0 , 0 , 28 0 , " (1 , 1 , 15) " , "" , ""

Rainbow 0 , 0 , 0 , 2 8 0

End

When you run this l isting, you should see a screen fi l led with beautifully
shaded red colour bars that fade gradually between black and bright red.
OK, so it's nothing special, but hang on a second - study the listing and
you ' ll see that the screen that we open at the start only uses 2 colours. So
where are all those extra colours coming from?

Well, they're actually the same colour! Al l we've done i s to create a
copper l ist that changes the value of colour 0 every scan line so that it
appears that we actually have loads of different shades of red. But,
believe it or not, what you are actually looking at is nothing more than a
completely blank screen!

AMOS calls its copper lists ' rainbows' and there 's a whole range of
commands that allow you to create some quite exciting copper effects.

Ultimate AMOS

1 06 Chapter 6

Defining a Rainbow
AMOS lets us create 'copper l ists ' us ing three commands - 'Set
Rainbow' , 'Rainbow' and 'RainO ' . Before you can display a rainbow
effect, however, you need to initialise your copper list using the ' Set
Rainbow' command. The format of this command is as fol lows:

Set Rainbow NUMBER, REGISTER, SIZE , RED, GREEN, BLUE 0H�1l[!]]1lI
COWoWIO DEflMOON

Ultimate AMOS

NUMBER This first parameter is a number between 0 and 3 that defines
the identifier number of the copper l ist. AMOS allows us to create up to
four different copper l ists, each of which must have its own unique
identifier number.

REGISTER The register parameter tel ls AMOS which colour regi ster is to
be affected by your copper l ist. If you open a low resolution screen with
32 colours, then you can attach your copper l ist to any one of these
colours. If you were to place a value of '0' here, for example, then colour
o (the background colour) would be affected. Place a value of ' 1 ' and
colour 1 is affected and so on.

Unlike real copper l ists, only a single colour register can be effected by
each copper l ist that you define, so only four colour registers can be
changed by creating four separate copper l ists.

SIZE The size parameter defines the size of your copper list in scan lines.
This parameter therefore te lls AMOS how many scan l ines are to be
affected by your copper list so, even if you wish to change a colour
register only once, the size of your copper list must be big enough to
reach down to where the change is to take place.

Say, for example, you wanted to change the background to red on scan
line 1 and then change it to green on scan l ine 200. Even though you 're
only making two changes, the total length of the copper list would have
to be set to 200 so that all the scan lines between the start and finish of
your copper l ist are covered.

Screen effects 1 07

RED/GREEN/BLUE These three strings allow you to create graduated
fades from one colour to another. Each colour component comprises a
string containing three values held within closed brackets. The format of
each string is as follows:

(SCANLINES, STEP, COUNT)

SCAN LINES The scanlines parameter defines how many scan lines will be
effected by each colour change. If, for example, you wanted to fade
between black and red in sixteen steps, sixteen scan lines would be
required. You could expand this change, however, by increasing the value
held in the ' scanlines' parameter. Passing a value of 1 , for example,
would make each colour change affect 1 scan l ine. A value of 4 though,
would effectively quadruple the size of the change because four scan
lines would be used for each new colour rather than 1 . If you had set the
size of the copper list to just 1 6, you would need to increase it to 64 so
that all the scan lines would be covered.

STEP The step value allows you to specify a value that would be added to
the colour setting each time that colour is changed. A value of 1 , for
example, would increase the colour by 1 and so on. Passing a negative
value will cause the colour value to be decreased.

COUNT The count parameter controls how many times the value held in
step is added to the colour register. It's a bit l ike a loop counter - if you
pass a value of 4, for example, the colour would change 4 times.

The Rainbow command
Once you 've defined your rainbow, you can get AMOS to display i t using
the 'Rainbow' command. This command simply takes the copper list you
created with the ' Set Rainbow' command and draws it onto the screen at
the position that you specify. The format is as fol lows:

Rainbow NUMBER, OFFSET, POSITION, LENGTH

Ultimate AMOS

1 08

RAINBOW
command

Ultimate AMOS

AMOS's powerful

'Rainbow' commands can

be used to great effect to

create wonderful shaded

backgrounds for game

screens.

Chapter 6

NUMBER The number parameter simply tells the Rainbow command
which copper list to use. This must be exactly the same value that you
specified when you first created the copper l ist using the ' Set Rainbow'
command. If you specify a copper list that hasn 't been defined, you will
get an 'out of memory' error.

OFFSET This sets an internal pointer telling AMOS where to start the
copper list. It can be used to create animated rainbow effects.

POSITION The position defines where on the screen the copper list is to
be placed. This value defines the start position of the copper list , so all
colour changes are performed after this screen position. Note that this
value isn't the same as the pixel co-oridinates used for drawing
operations, though - it's what's known as a 'hardware ' co-ordinate. As a
result, only values between 40 and 298 are acceptable. To convert a pixel
position into a hardware co-ordinate, use the AMOS ' Y HardO' function.

LENGTH The length parameter tells AMOS how many scan l ines the
copper list is to cover. If you create a copper l ist that is only 1 6 scan lines
in length, specifying a length larger than this will cause the copper list to
be repeated. If you have a copper l ist that is 1 6 scan lines in length and
you specify a length of 32 scan lines, for example, the copper list will

Screen effects 1 09

repeat twice. If you therefore want the copper list to be shown only once,
then this value must be the same as the total length of the copper l ist.
Here 's a demonstration of the 'Set Rainbow' and 'Rainbow' commands:

Rem *** Rainbow Effect Demo 2

Rem * * * Filename - RainbowDemo2 . AMOS

Screen Open O , 64 0 , 2 5 6 , 2 , HiRes

Flash Off : Cls 0

Input "Enter number of scan l ines per colour change : " i SIZE

Print "Try moving the rainbow with the j oystick ! "

RED$=" ("+Str$ (SIZE) + " , 1 , 15) "

POSMIN=4 0 : POS=POSMIN

POSMAX=298- (SIZE* 1 6)

Locate 1 , 4 : Print "Rainbow maximum position

Set Rainbow O , O , 16*SIZE , RED$, "" , ""

Rainbow O , O , POS , 16 * SIZE

CUrs Off

Repeat

If Joy (l) =l Then POS=POS-1

If Joy (l) =2 Then POS=POS+1

If POS<POSMIN Then POS=POSMIN

If POS>POSMAX Then POS=POSMAX

" i POSMAX

Locate 1 , 5

Locate 1 , 6

Print "Rainbow position = " i POS i " "

Print "Rainbow size = " i 16*SIZE

Rainbow O , O , POS , 16*SIZE

Wait Vbl

Until Joy (l) =16

End

Ultimate AMOS

1 1 0 Chapter 6

The RainO function

SET RAINBOW
command

RAINO function

The 'Set Rainbow' command is fine for creating simple fades between
one colour and another (usually black), but it does have its l imitations.
For starters, you 're not given any form of real control over the colour
assignment of individual scan l ines, so it's hard to create anything other
than the simplest of copper effects. Not only that, but you can only really
produce sixteen colour changes which can only be placed at fixed widths
between each other, so it 's a little limiting to say the least. Say, for
example, you wanted to change the background to white at position 10 ,
change i t to black at position 1 00 and then back to white at position 200.
Using the 'Set Rainbow ' command, this would be impossible.

This then is where the 'RainO ' function comes in. What it allows you to
do is to change the colour setting of a scan line at any position within
your copper l ist. Only a s ingle scan l ine is affected, so the colour will
revert back to its original value on the next scan l ine. If you wanted a
colour to be set to a particular value across several scan l ines, it's
therefore up to you to change each and every scan line manually by
calling the 'RainO ' function for each line to be affected. This isn't as
involved as it sounds, however - all you need to do is to create a loop that
fi l ls in the gaps. The format of the 'RainO ' function is as follows:

Rain (NUMBER, SCANLlNE) = COLOURSETTING

Ultimate AMOS

NUMBER Not surprisingly, this parameter simply tel ls AMOS which
copper l ist we wish to modify . . .

SCANLlNE The scanline parameter defines which scan line is to affected
by the change. A value of 200, for example, would tel l AMOS that we
want to change the colour setting for scan line 200.

COLOURSETTING This parameter defines the colour setting (expressed as
a 3-digit hex value) to be placed into the copper l ist at the position
defined by the ' Scanline' parameter. A value of $000, for example, would
place black into the copper l ist whilst a value of $FOO would place red
into the l ist.

Screen effects 1 1 1

The ' RainO ' function can also be used to read colour values held within a
copper list simply by reversing the command. For example, the line
'Rain(0,200)=$FFF' would change the colour affected by copper list 0 to
white ($FFF) at position 200 whilst the line 'RGB=Rain(0,200) ' would
copy the colour assignment at position 200 in copper list 0 to an AMOS
variable called ' RGB ' .

Here's a quick demonstration that shows the 'RainO' function in action.
All it does is to change the background colour 4 times on the screen. It's
worth noting how the gaps between each colour change are automatically
filled by a FOR . . . NEXT loop.

Rem *** Rain () function demo

Rem * * * Filename - RainFunct ion . AMOS

Screen Open 0 , 32 0 , 2 S 6 , 2 , Lowres

Flash Off : CUrs Off : Cls 0

Set Rainbow 0 , 0 , 28 0 , "" , "" , " "

Rem * * * Fill first 4 0 scanlines with yellow

For C=O To 4 0

Rain (O , C) =$FFO

Next C

Rem *** Fill scanlines 4 1 to 120 with red

For C=41 To 12 0

Rain (O , C) =$FOO

Next C

Rem * * * Fill scanlines 12 1 to 180 with green

For C=41 To 180

Rain (O , C) =$FO

Next C

Rem * * * Fill scanlines 181 to 2 7 9 with blue

For C=181 To 279

U ltimate AMOS

1 1 2

Rain (O , C) =$F

Next C

Rainbow 0 , 0 , 0 , 2 8 0

End

Chapter 6

You can also animate a copper l ist by altering the value held in the
Rainbow command's 'offset' parameter. This can be used to great effect
to produce the sort of 'copper bar' effects seen in many Amiga demos.
Try typing in this short example program for a vivid demonstration:

Rem * * * Animated Rainbow Effect

Rem * * * Filename - AnimatedRainbow. AMOS

Screen Open 0 , 32 0 , 2 56 , 2 , Lowres

Flash Off : Curs Off

Set Rainbow 0 , 0 , 192 , "" , "" , ""

Rem * * * Set up copper list

COUNT=O

For R=O To 15

RGB=Val (Hex$ (R) + " 0 0 ")

Rain (O , COUNT) =RGB

Rain (0 , COUNT+1) =RGB

COUNT=COUNT+2

Next R

For R=15 To ° Step -1

RGB=Val (Hex$ (R) + " O O ")

Rain (O , COUNT) =RGB

Rain (0 , COUNT+1) =RGB

COUNT=COUNT+2

Next R

For G=O To 15

RGB=Val ("$ O"+Right$ (Hex$ (G) , l) +"O")

Rain (O , COUNT) =RGB

Rain (0 , COUNT+1) =RGB

Ultimate AMOS

Screen effects

COUNT=COUNT+2

Next G

For G=15 To 0 Step -1

RGB=Val ("$ O"+Right$ (Hex$ (G) , l) +" O ")

Rain (O , COUNT) =RGB

Rain (O , COUNT+1) =RGB

COUNT=COUNT+2

Next G

For B=O To 15

RGB=Val (" $OO"+Right$ (Hex$ (B) , l))

Rain (O , COUNT) =RGB

Rain (O , COUNT+1) =RGB

COUNT=COUNT+2

Next B

For B=15 To 0 Step -1

RGB=Val (" $OO"+Right$ (Hex$ (B) , l))

Rain (O , COUNT) =RGB

Rain (O , COUNT+1) =RGB

COUNT=COUNT+2

Next B

Rem * * * Turn on and animated copper list

IX:>

Loop

For C=O To 191

Rainbow O , C , O , 2 8 0

Wait Vbl

Next C

Screen synchronisation

1 1 3

The Amiga's video hardware can shift blocks of graphics around the
screen at a phenomenal rate, but there 's one weak link in the chain that
stops you from writing the sort of arcade game that would need three
brains running in parallel just to keep track of the player's sprite - screen
refresh. I briefly touched on this subject in the last chapter, but further
coverage is definitely needed. Before we dive in too deeply, however,
let's take a look at the theory behind screen synchronisation.

Ultimate AMOS

1 1 4

Screen
drawing

WAIT VBL
command

Ultimate AMOS

The Amiga's display is

drawn onto your monitor

or TV using an electron

beam which scans from

left to right down the

screen 50 times a

second. When it reaches

the end, it is switched off

and then reset to the top

left hand corner.

..
..

..

..
..
..
..
..
..

Chapter 6

As you will already know, the picture you see on your Amiga's monitor
is redrawn every 50th of a second (or every 60th of a second on NTSC
Amigas) using an electron beam (called the 'raster beam') which scans
from the top left-hand corner of your monitor (or TV), drawing each
horizontal l ine of the display as it goes. When the beam reaches the
bottom right hand corner of the display, it is switched off and then reset
to the top left-hand corner and the whole process then starts again. The
time period during which the beam takes to move from the bottom right
hand corner of the screen to its start position is called the ' vertical
blanking period ' . Obviously because the display is only redrawn 50 times
a second, if your program redraws the screen any faster than this, strange
things can happen. It's therefore best to redraw the screen during this
vertical blanking period in order to avoid horrible flickers.

Most programs are based around a loop which will redraw the screen
once each time the loop is performed. AMOS, being the super-slick
programming language it is, can often perform several of these loops
before the raster beam reaches the end of the display - OK, so your
program will be running very fast indeed, but what's the point in
redrawing the screen several times when your monitor can only redraw it
once every 50th of a second? Thankfully AMOS has the answer with a
handy little command called 'Wait VbI ' that, when placed inside a loop,
forces the loop to be performed only once every 50th of a second. Wait

Screen effects 1 1 5

Vbl doesn't actually do anything though - all it does is to instruct your
AMOS program to wait until the vertical blanking period before
commencing any further drawing operations.

We used this command extensively in the last chapter to slow down many
of the scroll routines - if we hadn 't have used 'Wait VbI ' , many of the
scrolling demos would have scrolled the screen so fast that your monitor
wouldn't have been able to keep up. Here's a demonstration program that
shows screen synchronisation in action:

Rem * * * Wait Vbl Demonstration

Rem * * * Filename - WaitVBL . AMOS

Screen Open 0 , 32 0 , 2 56 , 32 , Lowres

Flash Off : Curs Off : Cls 0

Load Iff "AMOSBOOK : Pictures/DemoPicture . IFF"

Pen 3 1 : Paper 0

Print "This is what happens when screen"

Print "synchronisation isn ' t used .. "

Print "Now let ' s turn it 011. .. press space ... "

COUNTER=10

Repeat

Screen Copy 0 , COUNTER, 3 2 , COUNTER+12 0 , 82 To 0 , 1 0 0 , 130

COUNTER=COUNTER+1

If COUNTER=2 0 0 Then COUNTER=O

Until Inkey$=" "

Print "Now isn ' t that so much better ! ! ! "

COUNTER=10

Repeat

Screen Copy 0 , COUNTER, 3 2 , COUNTER+120 , 82 To 0 , 1 0 0 , 13 0

COUNTER=COUNTER+2

I f COUNTER=2 0 0 Then COUNTER=O

U ltimate AMOS

1 1 6 Chapter 6

Rem * * * Wait for vertical blanking period ..

Wait Vbl

Until Inkey$=" "

End

'Double
Buffering'

U ltimate AMOS

If you 're writing a particularly complex game or demo, there are times
when even the fastest computers can't quite handle the task of updating a
screen completely during the blanking period (yes, even an A4000/040
occasionall y encounters speed problems !) , so programmers use a system
called 'Double Buffering' to ensure that screen redraw is kept silky
smooth. Double buffering works by 'doubling up' a screen so that it
actually consists of two separate bitmaps. Whilst one is being displayed
on your monitor or TV screen, the other is used for all drawing
operations. This hidden bitmap is called the ' logical ' screen whilst the
bitmap you can see on your TV or monitor is called the ' physical ' screen.

Once all your drawing operations are complete (the screen has been
scrolled and any bobs have been moved, for example), the physical and
logical screens are swapped so that the logical screen is displayed on
your monitor and the physical screen is hidden from view. At this point,
the old physical screen becomes the new logical screen and vice-versa.
You then perform all your drawing operations into the new logical screen
and the process continues. Although double buffering doubles the
amount of memory that a screen will eat up, the smoothness that it offers
is well worth the memory penalties.

Setting up a double buffered screen is very easy indeed. All you have to
do is to create the screen that you wish to double buffer (using the
'Screen Open ' command) and then issue the ' Double Buffer' command
and AMOS wil l automatically create the second logical bitmap for you.
Whenever you call the 'WaitVbl ' command, the physical and logical
screens will automatically be swapped for you, so there 's no extra work
involved whatsoever. What's more, because the physical and logical
bitmaps are treated as one and the same screen, you don 't have to tel l
AMOS which bitmap i s the logical screen and which i s the physical - a l l
this is done for you automatically !

Screen effects

Screen
swapping

Double buffering virtually

removes all screen flicker

by performing all drawing

operations into a spare

screen that is hidden from

view. When all drawing

operations are complete,

the two screens are

swapped as soon as the

vertical blanking period is

reached. This process is

performed over and over

again ensuring flicker free

movement on screen.

J ..
PHYSICAL SCREEN

(VISIBLE)

I , '" I 11

-

("-
LO

1 1 7

�
GICAL S�
(HIDDEN)

U
!--f

There are - as always - a couple of minor problems with double
buffering. For starters, AMOS does so much work for you that drawing
into a double buffered screen is considerably slower than working with a
normal screen. Once again, though, you can get around this l imitation too
by switching off AMOS 's AutoBack system by adding the line
'AutoBack 0' after you have created the double buffered display. Once
this is done, AMOS heaps all the work of swapping screens onto your
program - don't worry, this isn't as complicated as it sounds. Al l you
have to do is to perform all your drawing operations and then simply call
the 'Screen Swap SCRNUMBER' command. To be perfectly honest,
automatic screen swapping is fine for very simple programs, but you' l l
probably find it more trouble than it's worth - most programmers these
days switch it off almost instantly !

The second problem with double buffered displays is that because you 're
working with two bitmaps, any drawing operations that are carried out on
the logical screen are not automatical ly transferred to the physical screen
when the screens are swapped. It's therefore down to you to ensure that
both screens are updated accordingly. Say, for example, you copied a
section of graphic into the logical screen - unless you copy it into the
physical screen too, you ' l l get a noticeable flicker because the Screen
Copy command wil l have pasted the graphic into only one of the two
bitmaps.

Once again, though, there is a way of getting around this too. Although
both the physical and logical bitmaps are tied to the same screen, it's still

Ultimate AMOS

1 1 8 Chapter 6

possible to directly access either using a pair of very handy functions -
'Physic(SCRNUMBER)

,
and 'Logic(SCRNUMBER)

,
. These two

functions allow you to extract a unique identification number that points
to the current physical and logical bitmaps. If, for example, you wanted
to copy the entire contents of the physical screen to the logical screen
using ' Screen Copy ' , all you 'd have to do is to issue the fol lowing
command.

Screen Copy Physic (O) To Logic (O) (@]Ell0l) 1!lI0I
(X,AMPI.I cOO[

It's worth noting, however, that if you perform drawing operations onto a
screen before the ' Double Buffer' command is called, the Double Buffer
command will automatically copy the graphics into both the physical and
logical screens. This can be handy if you need to load an IFF picture into
a double buffered screen as a backdrop - all you have to do is to load the
picture first and then turn on double buffering ! Anyway, in time
honoured fashion, here's an example l isting that demonstrates double
buffering in action. Type it in and have a play around with it - as they
say, the best way to learn anything complicated is to experiment:

Rem * * * Double Buffering Demonstration

Rem * * * Filename - DoubleBuffer . AMOS

Global XPOS , YFOS

Screen Open 0 , 32 0 , 2 5 6 , 3 2 , Lowres

Flash Off : Curs Off : CIs 0

Load Iff IAMOSBOOK : Pictures/DemoPicture . IFF"

Screen Hide 0

Rem * * * Create a 'mask ' around the area to be copied

Rem * * * This effectively removes the old graphic

Rem * * * when the graphic is moved .. clever eh !

Ink 0

Box 60 , 0 To 2 5 9 , 127

Box 6 1 , 1 To 2 5 8 , 12 6

Ultimate AMOS

Screen effects

Screen Open l , 3 2 0 , 2 56 , 32 , Lowres

Flash Off : CUrs Off : Cls 0

Get Palette 0

Pen 3 1 : Paper 0

Print "Here ' s a screen using just ' Wait Vbl ' "

Print "Move the graphic around with a j oystick"

Print "Press fire button to double buffer it ! "

XPOS= 5 0

YPOS=100

Repeat

_CHECKJOYSTICK

Screen Copy 0 , 6 0 , 0 , 2 6 0 , 128 To l , XPOS , YPOS

Wait Vbl

Until Joy (l) =16

Print "Now try moving the graphic ! ! ! "

Double Buffer

Autoback 0

Rem * * * Wait for fire button to be released ..

Wait 10

Repeat

_CHECKJOYSTICK

Screen Copy 0 , 6 0 , 0 , 2 6 0 , 128 To l , XPOS , YPOS

Screen SWap 1

Wait Vbl

Until Joy (1) =16

End

Procedure _CHECKJOYSTICK

1 1 9

U ltimate AMOS

1 20 Chapter 6

If Joy (l) =l Then YPOS=YPOS-l

I f Joy (l) =2 Then YPOS=YPOS+l

I f Joy (l) =4 Then XPOS=XPOS-l

I f Joy (l) =8 Then XPOS=XPOS+l

If XPOS< O Then XPOS= O

I f XPOS> 1 2 0 Then XPOS=120

If YPOS<40 Then YPOS=40

If YPOS>129 Then YPOS=129

End Proe

Screen icons

Saving
memory

Ultimate AMOS

Conserving memory is all-important whenever you 're coding games,
especially if you want users with less than a megabyte of RAM to be able
to run your software. As any games programmer will tel l you, by far the
most wasteful aspect of any game is its graphics - typically, they can eat
up to 80% of the memory required to run an average game. It's unlikely
that you'l l encounter problems if your game uses just one or two screens,
but how do you cram tens or even hundreds of different screens into
memory simultaneously? Well , you could buy yourself an absolutely
enormous RAM expansion, but how many other users do you think will
have this sort of power at their disposal? Very few, I can assure you (most
users have no more than 1 Mb) .

A far better (and certainly much cheaper) method is to take advantage of
a programming technique used by just about every games programmer
these days. By splitting a screen up into a series of tiny blocks (often just
16 by 1 6 pixels in size), you simply build up each screen by pasting
down and reusing the same blocks over and over again. It 's a very similar
technique to the screen redrawing routine we used in the 'Continuous
Scroll ' program covered in the last chapter. Because each screen is
simply held as a series of numbers that define which blocks are to be
pasted where, hundreds of screens can be packed into memory without
having to WOITY about memory constraints.

The key to all this screen trickery is AMOS 's ' Icon' commands, which
allow you to paste down rectangular areas of graphics onto the screen in
double-quick time using the Amiga's blitter chip. As a result, it's often

Screen effects

Hundreds of screens can

be crammed into a game

by building each screen

up from a small set of

graphic blocks held in an

AMOS Icon Bank.

1 2 1

considerably faster to use this technique rather than to load each screen
from disk as the player completes a level.

In order to make use of screen icons, you need to draw up each block in a
paint program (I personally use DPaint) and then transfer them across
into an AMOS ' Icon Bank' using the AMOS Object Editor accessory
(we' l l be taking a look at this in the next chapter). Each icon must be of
exactly the same s ize and it's best to stick to multiples of 16 pixels for
both the horizontal and vertical size of your icons. Note that when you
save your bank, you must tel l AMOS that the bank is to be saved as an
' Icon Bank' rather than a 'Sprite Bank ' .

Once you 've done that, you need to design each level using DPaint by
picking up each block as a brush and then pasting it down to form a
representation of the final display. DPaint is very good for this sort of
work as it features a 'Grid ' tool that allows you to lock all drawing
operations to a grid of a fixed size. You can then take thjs representation
and convert it into a series of data statements containing the numbers of
the icons that are to be pasted down. To make this task somewhat easier,
you may want to type l ittle numbers into the blocks before drawing up
the screen representation. Then all you have to do is to switch back and
forth between AMOS and DPaint, reading off and then entering data
statements as you go.

U ltimate AMOS

1 22 Chapter 6

With all your data entered, all you need to draw the screen display is to
load in the icon bank using the 'Load' command and then code a little
loop that reads of each block number in turn and pastes it down onto the
screen using the 'Paste Icon ' command. The format of the 'Paste Icon'
command is as fol lows:

Paste Icon X, Y, ICONNUM

XIV Not surprisingly, the 'X' and 'Y ' parameters define the position on
the screen where the icon is to be placed. Note that pastes the top left
hand corner of the icon at these co-ordinates.

ICONNUM The ' IconNum' parameter is simply a value that tel l s AMOS
which Icon in the ' Icon Bank' is to be pasted down.

Rem * * * Screen Icons Demonstration

Rem * * * By Jason Holborn

Screen Open O , 32 0 , 2 5 6 , 32 , Lowres

Flash Off : Curs Off : Cls 0

Rem * * * Load icons ...

Load "AMOSBOOK :AbkFiles/DungeonBlocks .ABK"

Get Icon Palette

Rem * * * Point read pointer to level data ...

Restore LEVEL1

Rem * * * Draw Screen from map data ...

Screen Hide 0

For Y=O To 15

For X=O To 19

Read BLOCK

Paste Icon X* 16 , Y* 1 6 , BLOCK

Next X

Next Y

Ultimate AMOS

Screen effects

Screen Show 0

LEVEL1 :

Data 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

Data 2 , 1 , 1 , 4 , 2 , 4 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 3

Data 2 , 1 , 1 , 4 , 2 , 1 , 1 , 1 , 1 , 2 , 1 , 6 , 4 , 2 , 1 , 1 , 1 , 1 , 1 , 2

Data 2 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 2

Data 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 2

Data 2 , 2 , 2 , 2 , 1 , 2 , 1 , 2 , 2 , 2 , 1 , 4 , 1 , 2 , 1 , 1 , 2 , 1 , 1 , 2

Data 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 4 , 1 , 1 , 1 , 1 , 2

Data 2 , 1 , 2 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 2

Data 2 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 2 , 1 , 1 , 1 , 4 , 2 , 1 , 1 , 1 , 1 , 2

Data 3 , 1 , 1 , 2 , 2 , 2 , 1 , 2 , 1 , 2 , 1 , 5 , 1 , 1 , 2 , 1 , 2 , 2 , 2 , 2

Data 2 , 2 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 2

Data 2 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 1 , 2

Data 2 , 1 , 7 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 2

Data 2 , 1 , 4 , 4 , 1 , 2 , 1 , 4 , 6 , 1 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 1 , 1 , 2

Data 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 2

Data 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

End

Screen zones

1 23

If you 're wntmg a platform game or indeed any type of game that
requires objects such as Bobs and hardware sprites to interact with the
background, then AMOS has the answer. Built into AMOS is a facility to
create what are known as ' Screen Zones ' . These act as rectangular 'hot
spots ' on the screen which allow the programmer to check when either
the mouse pointer or a specified point lies within a screen zone. In many
ways, checking when the mouse pointer enters a screen zone is very
similar to checking for collisions between objects (don't worry, we' l l be
covering this in chapter 7) .

Defining a screen zone is very simple indeed. All you need to do is to
start by tel ling AMOS how many screen zones you wish to define using
the following command:

Ultimate AMOS

1 24 Chapter 6

Reserve Zone NUMBEROFZONES

The 'Reserve Zone' command essentially tells AMOS to set aside an
area of memory that will hold the co-ordinates of your screen zones.
How much memory is set aside depends entirely upon how many screen
zones that you tel l it to reserve with the 'NUMBEROFZONES '
parameter. Once you 've done this, you can define each screen zone in
turn using the following command:

Set Zone ZONENUMBER, Xl , Yl To X2 , Y2

Ultimate AMOS

ZONENUMBER The 'ZoneNumber' parameter is a value between 1 and
the number of zones that you've defined with the 'Reserve Zone '
command. Note that the first zone is 1 and not O.

X l /Y l The ' X l ' and ' Y 1 ' parameters define the top left hand corner of
the screen zone. These co-ordinates should be entered as screen co
ordinates .

X2/y2 After setting the 'origin' of your zone with the ' X l ' and ' Y 1 '
parameters, you need to define its length and height by passing two
values that define the bottom right hand corner of the zone. If, for
example, you set the origin of the zone at (50,20), setting the 'X2' and
'Y2' parameters to (200,200) would create a screen zone that is 1 50
pixels across and 1 80 pixels down.

Once you've set up your screen zones, you can perform a check on them
all to detect when the mouse pointer lies directly over one of your screen
zones. The command to do this 'Mouse Zone ' and it returns either a
value of 0 (indicating that the mouse pointer isn 't directly over a screen
zone) or the number of the screen zone that the mouse pointer is over. If,
for example, you created three zones numbered 1 , 2 and 3 and the mouse
pointer was moved over screen zone 2, the value returned by the 'Mouse
Zone ' command would be 2. Here's a quick demonstration listing.

Screen effects

Rem * * * Screen Zones Demonstration

Rem * * * Filename - ScreenZones .AMOS

Screen Open O , 32 0 , 2 56 , 8 , Lowres

Flash Off : CUrs Off : Cls 0

Load Iff "AMOSBOOK : Pictures /ZoneBackdrop . IFF"

Rem * * * Reserve enough memory for 4 zones . . .

Reserve Zone 4

Rem

Set

Set

Set

Set

Pen

Do

Loop

* * * Initialise zones . . .

Zone 1 , 18 , 17 To 103 , 50

Zone 2 , 2 1 , 134 To 134 , 194

Zone 3 , 19 1 , 37 To 292 , 142

Zone 4 , 229 , 174 To 2 88 , 2 3 5

3 : Paper 0

Rem * * * Read zone under mouse pointer . . .

A=Mouse Zone

I f A< >O

Bell

End If

Locate 2 , 11

Print "Screen Zone

Wait Vbl

11 i Ai 11 11

1 25

Checking for the position of the mouse pointer over a screen zone isn 't
very useful if you 're writing a game that uses either blitter objects or
hardware sprites other than the mouse pointer. For this purpose, AMOS
provides two extra commands that can be used to check whether a set of
co-ordinates lies within a screen zone. Simply by passing the 'hot spot'

U ltimate AMOS

1 26

Rem

Rem

* * *

* * *

Screen zones allow your

bobs and sprites to

interact with the

background.

Chapter 6

of an object (read more about hot spots in the next chapter) of an object
to the appropriate function, you can check whether the object has moved
over a screen zone. Unlike true collision detection, however, only a
single point is checked, so it's quite possible that a large section of a bob
could overlap into a screen zone before AMOS was aware of it. For a full
demonstration of how to use screen zones in a game, check out the
section on programming platform games at the end of this book.

Anyway, back to the two functions. AMOS provides two functions for
checking when a set of co-ordinates lie within the boundaries of a screen
zone - 'ZONE(X,Y)

,
and 'HZONE(X,Y)

,
. The only difference between

these two functions is the co-ordinates systems that they handle -
'ZoneO ' works with screen co-ordinates and 'HzoneO' works with
hardware co-ordinates (more on both of these co-ordinate systems can be
found in the next chapter). For those of you that can 't wait that long,
here's a wonderfully sculptured l isting !

Bob Screen Zones Demonstration

By Jason Holborn

Screen Open O , 32 0 , 2 5 6 , 8 , Lowres

Flash Off : Curs Off : Cls 0

Ultimate AMOS

Screen effects

Load Iff IAMOSBOOK : pictures/ZoneBackdrop . IFF"

Load IAMOSBOOK : AbkFiles /Helicopter . ABK"

Get Sprite Palette

SPRX=120 : SPRY=8 0

Hot Spot 1 , $11

Bob 1 , SPRX, SPRY, 1

Rem * * * Reserve enough memory for 4 zones . . .

Reserve Zone 4

Rem

Set

Set

Set

Set

Pen

Do

* * * Initialise zones . . .

Zone 1 , 18 , 17 To 1 0 3 , 50

Zone 2 , 2 1 , 134 To 134 , 194

Zone 3 , 1 9 1 , 37 To 2 9 2 , 142

Zone 4 , 22 9 , 174 To 2 88 , 2 3 5

5 : Paper 0

If Joy (l) and 1

SPRY=SPRY-2

End If

If Joy (l) and 2

SPRY=SPRY+2

End If

If Joy (l) and 4

SPRX=SPRX-2

End If

I f Joy (l) and 8

SPRX=SPRX+2

End If

Bob 1 , SPRX, SPRY, 1

Rem *** Read zone under mouse pointer . . .

1 27

U ltimate AMOS

1 28 Chapter 6

A=Zone (SPRX, SPRY)

If A< >O

Bell

End If

Locate 2 , 11

Print "Screen Zone 11 i Ai " 11

wait Vbl

Loop

Screen compaction

'Banks'

Ultimate AMOS

When you 're writing games or demos in AMOS, it's often handy to be
able to store all the graphics that the program needs as part of the
program itself. This removes the need to load the graphics in from disk
every time the program is run (slowing your program down) , and stops
any would-be hackers from messing around with or even stealing your
graphics.

Say, for example, you were writing a game in AMOS. If you were to load
in the game's title screen every time the player finished a game, this
would become very tiresome for the player. Not only that, but if you 've
been slaving away in DPaint for hours to produce a title screen, the last
thing that you want is to see it hacked about by some hacker with about
as much artistic (and programming) ability as a lemming.

As always, though, AMOS comes to the rescue with it's powerful
'banks ' facility. Banks are really nothing more than areas of memory that
can be used to hold pictures, sounds, music modules and even sprites and
bobs. In the case of all these examples except pictures, AMOS
automatically places these fi les into their own banks, so their use is pretty
much transparent. What's more, some of these banks are permanent so
when you save your program out to disk, any banks that they use wil l be
saved too as part of the program code. AMOS can also place the contents
of entire screens into a memory bank too, so you can have all your
game's graphics on tap instantly without having to load them first.

Screen effects

If you own either AMOS

1 . 35 or Easy AMOS, then

you'll have a utility called

'IFF _ Compactor.AMOS'

that will pack screens

automatically.

1 29

However, there 's one small problem - graphics eat up large amounts of
memory. Even a low resolution screen with just 1 6 colours would eat up
40K. OK, so maybe a single picture isn't going to cause any memory
problems, but imagine what would happen if you wanted to store just ten
of these little beauties - you'd loose well over 400K of valuable memory !
Amigas may come equipped with a minimum of 2Mb these days, but you
have to bear in mind that there are still Amiga users out there who have
nothing more than 5 12K OK, so they 're l iving in the dark ages, but why
limit your game to users with high-powered Amigas?

Again, AMOS comes to the rescue - with its very clever screen
compaction routines that can crunch any screen down to a fraction of its
original size. What's more, crunched screens are automatically placed
into a permanent memory bank, so they 're saved as part of your program.
All you then have to do is to call AMOS's decompaction routines to view
your crunched pictures in all their pixelised glory !

Screen packing
So how do you go about packing a screen in the first place? Wel l , the first
thing you need to do is to give AMOS something to pack by creating a
screen with the 'Screen Open' command covered in chapter 4 and then
either load a picture into it (using the 'Load IFF' command) or draw
whatever you want into it using AMOS's vast array of drawing
commands. Once you 've got a screen, you can pack it. Under AMOS
l .35 and Easy AMOS, up to 1 6 memory banks can be used, not all of

U ltimate AMOS

1 30 Chapter 6

which are available for holding packed pictures (if your game uses
sprites or bobs, for example, AMOS will automatically steal a bank to
hold these !) . Under AMOS Professional, however, there 's virtually no
limit to the number of memory banks that you can use (well , you are
limited to 65,536 actually, but I challenge you to use them all). The
command to pack a screen into a memory bank is ' Spack ' :

Spack SCREENNUMBER To BANKNUMBER

Ultimate AMOS

SCREENNUMBER The Screennumber parameter is simply a pointer to a
currently open screen.

BANKNUMBER Banknumber is a number between 0 and 1 6 (for Easy
AMOS and AMOS 1 .35 owners) or 0 and 65536 (for AMOS Pro owners)
that identifies the bank that the screen is to be packed into.

It's best not to add this command into your program, simply because it
only needs to be used once. Once a picture has been packed into a
memory bank, you no longer need to either load the picture or call the
'Spack' command. I personally tend to halt a program once the picture I
wish to pack has been displayed and then I pack the picture into a
memory bank from AMOS 's 'Direct Mode' . Packing a picture can take
time, however, especially if the picture uses a lot of different colours and
its high resolution. Once you have packed a picture, you can check to
make sure that all went well by entering 'List Bank' in Direct mode. You
should see something like this on your screen.

1 - Pac.Pic. S : $003FBAA8 L: 37 1 92

This is AMOS 's way of telling us that a packed picture (hence the
'Pac.Pic.' bit) is stored in memory bank 1 . The ' S : ' and 'L: ' extensions
tell you where in memory the picture can be found Gust ignore this
unless you're an advanced programmer) and the total size of the bank in
bytes (in this case, the bank is approximately 37K in size). The 'L: ' value
doesn't always tel l you a bank's size, however - if you load in either
bobs, sprites or icons, this value will tell you how many bobs, sprites or
icons are in the bank. Rather confusing I know, but bear this in mind.

Screen effects 1 3 1

Once you've got a picture safely packed into a memory bank, it will stay
there until you remove it using the 'Erase BANKNUMBER' command.
Even if you turn off your machine and then load your program back in
again, it will sti l l be there simply because AMOS saves all its permanent
memory banks as part of your program l isting. Anyway, to get it back, all
you have to do is to open the screen which you 'd like it decompressed
into using the ' Screen Open' command and use the following command:

Unpack BANKNUMBER To SCREENNUMBER

BANKNUMBER The number of the bank that holds your packed picture.

SCREENNUMBER The number of the screen that you'd like your packed
picture placed into. Note that when a picture is unpacked into a screen,
all the settings of the original picture are restored too. So if you set up the
original picture with a strange-sized viewport, this will be restored too.

Anyway, enough of the theory - why not try typing in this listing for an
example of the power of these screen compaction routines:

Rem * * * Screen compaction demo

Rem * * * By Jason Holborn

FILENAME$=Fsel$ (" **" , " " , "Please select IFF picture to load" , "")

Load Iff FILENAME$, O

Screen Open 1 , 640 , 48 , 2 , Hires

Screen Display 1 " 24 0 , ,

Palette $ 6 0 , $FFF : CIs ° : CUrs Off

Print "Picture loaded .. now let ' s pack it"

Print "Press left mouse button to start . . . "

_WAITMOUSE

Ultimate AMOS

1 32

Cls 0 Print "Packing picture "

Spack 0 To 1

Print "OK .. picture packed into memo:ry bank 1"

Print : List Bank

Print : Print "Now let ' s unpack it into a couple of screen... " ;

Print "Press left mouse button. .. "

_WAITMOUSE

For C=2 To 7

Unpack 1 To C

Screen Display C " 5 0 + (C*2 0) , ,

Next C

Screen To Front 1

Screen 1 : Cls 0

Print "Eh voila ! Five more screens unpacked from bank 1 ! "

Print "Press left mouse button to quit ... "

_WAITMOUSE

For C=O To 7

Screen Close C

Next C

Erase 1

End

Rem * * * Erase packed picture bank

Procedure _WAI�10USE

Repeat

Wait Vbl

Until Mouse Key

End Proc

Ultimate AMOS

Chapter 6

1 33

Sprites and bobs
• Hardware and software ' sprites' (sprites and 'bobs')

• Creating sprites and bobs (objects)

• Displaying and moving objects

• 'Virtual' sprites

• Animating objects

• Flipping objects - 'hot spots'

• Collision detection

• Object Editor & menus

• The Animation Editor

Ultimate AMOS

1 34

�7i?\

Sprites/
'objects'

Hardware
sprites

U ltimate AMOS

Chapter 7

I f you're writing an arcade game or even a simple demo, chances are
that you 'll want to have sprites flying around the screen at high speed.
I 'm sure that even if you 've only ever played a single arcade game in

your life, chances are that game used sprites in one form or another.
Virtually every arcade game, be it a shoot 'em up, a platform game or
even 'weird' games like 'PaperBoy' and 'First Samurai ' , use sprites - a
shoot 'em up, for example, wil l use a sprite for the player 's spaceship,
even more sprites for the alien nasties that attack you and all the game's
missiles and other destructive paraphernalia will be sprites too. As you
can see, sprites are a very important aspect of just about any arcade
game!

Amiga sprites are somewhat confusing, however. Unlike lesser
machines, the Amiga offers two different types of sprite - ' hardware '
sprites and ' software' sprites (better known as 'Bl itter Objects' or just
plain 'Bobs ') . The word ' sprite' should therefore be treated as a generic
term that refers to both hardware sprites and blitter objects. Just to make
life somewhat less confusing, however, I ' ll be using the term 'Object '
whenever I mean to refer to both hardware sprites and bobs . Let's start
then by taking a look at the strengths and weaknesses of each in turn.

Hardware Sprites
Hardware sprites are generated completely separately from a screen's
bitmap by the Amiga's display chip Denise (or 'Lisa' on an AGA
machine) on what is known as the ' sprite playfield ' , a sort of transparent
sheet that is placed in front of all screens. As a result, they're almost
completely independent of the screen they are being displayed on. Al l
hardware sprites are low resolution only, so even if you open an AMOS
screen in high resolution mode (640 by 5 1 2 pixels) , any hardware sprites
that you create will sti l l be displayed in low resolution format. A good
example of a hardware sprite is the mouse pointer that you use on the
Amiga's Workbench to select icons and pull down menu items.

Hardware sprites are very fast indeed simply because they do not interact
with a screen 's bitmap whatsoever. So - unl ike software sprites - the
Amiga doesn't have to worry about redrawing any sections of the screen
that a hardware sprite passes over. Hardware sprites do have their
limitations, however. For starters, the Amiga's sprite generating

Sprites and bobs

Sprite size

Hardware sprites are

generated completely

separate from the screen

bitmap, on what the

techies call the 'sprite

playfield'.

1 35

..--t.-._ +-@-+
. �---------��--

hardware can only handle a maximum of eight sprites at any one time.
Even then, you' re restricted to just 3 colours per hardware sprite and
each sprite can be no bigger than a maximum of 1 6 pixels across and 255
pixels down. If you try to display a sprite wider than 1 6 pixels , AMOS
will join several hardware sprites together - a 48 pixel wide hardware
sprite, for example, would be made up of 3 separate sprites, leaving just
5 spare. You could theoretically create a hardware sprite 1 28 pixels
across, but that would use up all 8 hardware sprites in one go!

It is possible to create I S-colour sprites but, because the Amiga's
hardware simply layers two 3-colour hardware sprites (one on top of the
other), using 1 5 colour hardware sprites immediately halves the total
number of hardware sprites available from 8 to just 4.

Hardware sprites take their colour information from the screen that they
are currently being displayed over. Each sprite reads its three colours
from colour registers 1 7 through to 3 1 - hardware sprites 0 and 1 , for
example, read their colours from colour registers 1 7 , 1 8 and 1 9. Sprites 2
and 3 read their colour information from registers 2 1 , 22 and 23, Sprites
4 and 5 from registers 25, 26 and 27 and finally Sprites 6 and 7 read their
colour information from registers 29, 30 and 3 1 . Confusing I know, but
that's the Amiga's display hardware for you !

Ultimate AMOS

1 36

�
Bobs

Chapter 7

AMOS does allow you to get around this limitation a little by making use
of what are called 'computed' sprites. This clever bit of AMOS trickery
essentially allows you to ' re-use' the same hardware sprite at different
vertical positions down the screen. Unfortunately, strange things can
happen if you attempt to align two computed sprites generated by the
same hardware sprite along the horizontal axis. We 'll be covering these
in quite some depth later within this chapter, so I won't say too much
about them at the moment.

Software Sprites (Bobs)
Software sprites (Bobs) are drawn directly into a screen's bitmap by the
Amiga's ultra fast blitter chip. As a result, the number of colours that a
bob can contain is limited only by the number of colours available on the
screen that it is being drawn into, so you can create bobs with up to 64
colours (Extra Half Brite) if you so wish. AMOS automatically handles
the process of drawing a bob into a screen and then restoring the screen's
original contents when the bob is moved, so they 're very easy to use
indeed. Bobs have the added advantage of not being restricted in size
either, so you can create truly massive bobs with ease.

The only real disadvantage of bobs is the speed at which the Amiga's
blitter chip can move them. Although the blitter is very, very fast indeed,
bobs will never be as fast as true hardware sprites, especially if they are
large and contain lots of colours. By restricting both the size and the
number of colours used by a bob however, you ' ll find that bobs are stil l
the choice of most AMOS games programmers simply because they offer
virtually unlimited flexibility with only a minor trade-off in speed. For
games that require objects to move very fast however, hardware sprites
may still be better.

Creating sprites and bobs
In order to place either a sprite or a bob onto your Amiga's screen, you
must first define the appearance of the object that you wish to use by
creating what is known in AMOS terms as a ' Sprite Bank ' . A Sprite
Bank is simply a file that contains all the images that you want to attach

Sprite bank to any sprites or bobs that you create. AMOS does allow you to 'grab'
the image for an object directly from a screen using the 'Get Bob'

Ultimate AMOS

Sprites and bobs

Bank types

Before you can display an

object, you need to

create a sprite bank using

the Object Editor

accessory bundled with

your copy of AMOS.

1 37

command, but it's much simpler to define the image for all your sprites
and bobs 'en masse' using the 'Object Editor' (or 'Sprite Editor' , as it is
called under AMOS 1 .34 and Easy AMOS) accessory bundled with your
AMOS interpreter.

I ' m sure that I don't need to tell you how to use the Object Editor. If
you' re not entirely sure, it's more complex operations are fully
documented at this end of this chapter.

Once you 've created your Sprite B ank, you need to pull it into your
AMOS program using the 'Load' command. Although this command is
also used to load other types of banks (sample and music banks, for
example), you don 't have to worry about having to tell AMOS that
you 're trying to load a Sprite Bank - AMOS is intelligent enough to
work that out for itself! If, for example, you had created a sprite bank
called 'MySprites.Abk' (all bank files should end in ' .Abk' so make
them easy to recognise), all you 'd have to do is to add the fol lowing l ine
at the start of your program and AMOS will be able to load it into
memory.

Load IDFO : MySprites . Abk"

Ultimate AMOS

1 38 Chapter 7

If the colour palette of the screen that you intend to display your sprites
and bobs on does exactly match the palette of the images in your sprite
bank, the next step is to tell AMOS to transfer the sprite banks palette to
the current screen using the following command:

Get Sprite Palette

It 's worth noting that if you 've opened a screen that uses no more than
sixteen colours and you want to display hardware sprites, you should still
call this command even if the screen already has an identical palette.
Even though the screen will not be able to take advantage of the extra
colours used by the hardware sprites, it will still retain them, therefore
allowing your sprites to be displayed in their true colours. Now, after all
this j iggery pokery, we 're ready to start using sprites and bobs . . .

Displaying an obiect
Placing sprites and bobs onto the screen through any other programming
language is a tiresome and somewhat long-winded process (especially if
you 're working with blitter objects), but AMOS makes it very s imple
indeed. All you need are two commands, one for each type of object.
These two commands effectively turn on a sprite or bob and place it on
the screen at the required position.

Sprite NUMBER , X, Y , IMAGE

Bob NUMBER , X, Y , IMAGE
�]![!lI�1!lI

COMMAND DUt4rrlON

Ultimate AMOS

NUMBER The 'Number' parameter is simply a value that is used by
AMOS as an ' identifier ' that allows it to keep track of each and every
object on the screen. Every object must have its own unique identifier,
although you can use the same number with two separate objects
providing that they are of a different type (one's a sprite and the other is a
bob). If you want to create a hardware sprite, then you're restricted to
values between 0 and 7. Sprite number 0 is normal ly the Amiga's mouse
pointer, so this cannot be used unless you turn it off (or ' free ' it, as the
techies would say) using the AMOS ' Hide' command.

Sprites and bobs

Efficient sprite
use

1 39

It 's also worth noting that if you 're attempting to display a I S-colour
hardware sprite, not only does the maximum number of hardware sprites
available drop from eight to four (don 't forget that I S-colour sprites are
effectively nothing more than two 3-colour sprites combined), but the
'Number ' parameter must be even (0, 2, 4 or 6). If you specify an odd
number, AMOS will be forced to use the next pair of available sprites,
therefore wasting a sprite in the process. AMOS is thankfully much more
generous with the number of blitter objects that you can create. By
default, however, AMOS restricts itself to just 64 blitter objects, although
this can be increased to a maximum of 2SS, providing you have enough
memory. Don' t forget that blitter objects not only eat up a lot of memory,
but the more you use, the slower the screen is updated. On the whole,
most games can get by with a maximum of 1 6 bobs on the screen at any
one time.

X/Y Not surprisingly, the 'X' and 'Y ' parameters define the position of
the sprite or bob on screen. You should, however, be aware that although
the 'Bob ' command will happily accept co-ordinates in the form of
screen pixel positions relative to the top left hand corner of the screen,
hardware sprites use a slightly different system that is wholly
incompatible with the pixel-based co-ordinates system used by AMOS 's
Bob and drawing commands.

Sprites use 'hardware co-ordinates' - a special co-ordinates system used
by the Amiga's video hardware. Thankfully AMOS does provide us with
a set of functions that allow us to convert to and from hardware and
pixel-based co-ordinates in the form of the following functions:

P IXELXCOORD = X Hard (HARDXCOORD)

P IXELYCOORD = Y Hard (HARDYCOORD)

HARDXCOORD x S c reen (PIXELYCOORD)

HARDYCOORD = Y S c reen (PIXELYCOORD)

Note how there are two functions for each type of co-ordinates system.
This is necessary because a set of hardware X and Y co-ordinates with
the same value (32, for example) would produce two different pixel
based X and Y co-ordinates. In this particular case, if both the X and Y

Ultimate AMOS

1 40 Chapter 7

hardware co-ordinates were 32, the equivalent pixel-based X and Y co
ordinates would be 1 60 and 74 respectively. Confusing maybe, but the
four functions above will make your life considerably easier.

IMAGE The ' Image ' parameter is a number that tel ls the Sprite or Bob
command which image in the sprite bank it should attach to this
particular object. It's worth noting that both sprites and bobs share the
same sprite bank, so it is theoretically possible to assign the same image
to both a sprite and a bob. Unlike the 'Number ' parameter, you don't
have to give each object a unique image, so it's perfectly possible to
share the same image within the sprite bank amongst several objects .

Moving an obiect

�
Screen

updating

Ultimate AMOS

Moving an object around the screen is very easy indeed and involves
nothing more than increasing or decreasing the 'X ' and 'Y ' co-ordinates
of the object that you have created and then passing the new set of co
ordinates to the ' Sprite' or 'Bob' command. Increasing the value of an
object's X or Y co-ordinate will make it move to the left or down
respectively and - not surprisingly - decrease either of these co-ordinates
will have the opposite effect.

In order to produce smooth object movement, it's best to store the 'X '
and 'Y ' co-ordinates of an object in a set of variables ('MYBOBX' and
'MYBOBY' , for example) and then simply subtract or add values to
these two variables. Each time you update these two variables, simply
call the ' Sprite' or 'Bob' command to make the movement take effect.

Every time you move an object (or several objects) , you should always
wait for a vertical blank (using the 'Wait Vbl ' command) before
attempting to move the object (or objects) again. If you attempt to move
the same object more than once during a single vertical blank, not only
will your objects shoot around the screen so fast that you won't be able
to see them, but they will flicker terribly. If you need an object to move
very fast, simply increase the amount that you increase or decrease the
object's co-ordinates by (adding a: value of 4 to a co-ordinate will make
an object move twice as fast than it would if you passed a value of 2) .

Sprites and bobs 1 4 1

Time for a quick demonstration. The fol lowing listing shows not only
how to move both a hardware sprite and a bob across the screen, but also
how to convert the set of pixel-based co-ordinates (called ' MYSPRX'
and 'MYSPRY ') used to hold the hardware sprite 's X and Y position to
the hardware co-ordinates required by the ' Sprite' command. When you
run this demonstration, keep an eye on how the hardware sprite glides
over the top of the blitter object and how certain areas of the sprite are
transparent, allowing the blitter object to show through !

Rem * * * Creat ing and Moving a Sprite Demonstrat ion

Rem * * * F i lename - MoveObj ect . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 4 , Lowres

Flash Off : Curs Off : Cls 0

Load "AMOSBOOK : AbkF i l e s / Faces . ABK"

Get Sprit e Palette

Doubl e Buf fer

Rem * * * Free up mouse pointer !

Hide

Rem * * * Define X and Y pos i t ion of both obj ect s

MYSPRX = O MYSPRY= 1 2 8

MYBOBX= O : MYBOBY=12 8

Do

Sprit e O , X Hard (MYSPRX) , Y Hard (MYSPRY) , 2

Bob O , MYBOBX , MYBOBY , l

MYSPRX=MYSPRX+4

MYBOBX=MYBOBX+ 2

I f MYSPRX> 3 2 0 o r MYSPRX< O

MYSPRX= 3 2 0 -MYSPRX

End I f

Ultimate AMOS

1 42 Chapter 7

I f MYBOBX> 3 2 0 or MYBOBX< O

MYBOBX= 3 2 0 -MYBOBX

End I f

wait Vb l

Loop

'Virtual' sprites

Ultimate AMOS

Hardware sprites are very fast and quite flexible in their own way, but
they do have one big disadvantage that makes them somewhat less useful
for most arcade games - you can only display eight of them at any one
time and even then you ' re restricted to just three colours per sprite and
each sprite can only be a maximum of 1 6 low resolution pixels across.
AMOS does allow you to bear this l imitation, however, thanks to a very
clever bit of hardware trickery called ' virtual ' (or 'computed') sprites.

Virtual sprites have a number of distinct advantages over normal
hardware sprites. For starters, the number of virtual sprites that you can
display on screen at once is considerably greater than the 8 object l imit
imposed by the Amiga's own hardware sprites. If they ' re used correctly,
you can theoretically cram up to 56 virtual sprites on screen at once, each
of which can be up to 1 28 or 64 low resolution pixels in width with
either 3 or 15 colours. Don't get too excited though - virtual sprites do
have their disadvantages. To understand these disadvantages, let's take a
look at how AMOS generates virtual sprites.

Virtual sprites are based around the theory that although every normal
hardware sprite can be up to 270 pixels in height, most of the sprite is
effectively wasted every time you create sprite smaller than this.
However, thanks to the wonders of the Amiga's 'copper' co-processor
(the chip responsible for the fantastic ' rainbow' effects we covered in the
last chapter), the wasted sprite area can be ' reused' for another hardware
sprite further down the screen. This system of ' re-using ' sprites is so
powerful that a s ingle hardware sprite can be split into up to 1 6 different
'virtual ' sprites. In theory, when you display 1 6 virtual sprites, as far as
the Amiga is concerned, it's only displaying a single hardware sprite.

Sprites and babs

'Virtual'
sprites

Virtual sprites allow you to

increase the number of

sprites that you can

display simultaneously by

're-using' the same

hardware sprite over and

over again at different

vertical screen positions.

These areas
are wasted

Sprites 0·7

1 43

, :ill

The only real problem with virtual sprites is that every virtual sprite
generated by the same hardware sprite must not be displayed on the same
set of horizontal scan lines (in theory, at least one scan l ine must be kept
between each virtual sprite generated from the same hardware sprite). If,
for example, you placed two virtual sprites at screen positions 20,30 and
20,60 they would be displayed fine. However, if you moved the second
virtual sprite up so that it was alongside the first, the second sprite would
disappear from view.

Virtual sprites are created and moved using exactly the same commands
as hardware sprites, but in order to create a virtual sprite, you must
specify a sprite number between 8 and 63 (sprites ° to 7 are hardware
sprites). Despite their limitations, however, virtual sprites are great for
'Galaxian ' and ' Space Invaders ' -style games.

Unfortunately, because of the amount of time required to keep track of a
large number of objects, virtual sprites aren't quite as fast as their
hardware-based counterparts simply because the code required to
individually handle more than twenty or so virtual sprites will slow your
program down. AMOS does compensate a little thanks to the ' Sprite
Update Off' and 'Sprite Update' commands that allow you to turn off
automatic redrawing of sprites and then manually draw them all yourself
when you want. The 'Sprite Update Off' command should be placed at

Ultimate AMOS

1 44 Chapter 7

the start of your program and then when you want to redraw all your
sprites, simply call the ' Sprite Update ' command. Even this technique
won 't stop virtual sprites from appearing to move rather jerkily - if you
want to rid your sprites of jerky movement altogether, you ' 11 need to
compile your program. Try this listing for a demonstration of virtual
sprites in action.

Rem * * * virtual Sprites Demonstrat ion

Rem * * * Filename - virtualSprites . AMOS

FRAME = 1 FRAMEDELAY=O

NUMROWS= 7 : Rem * * * Number of rows of spri tes

SPEED=2 : Rem * * * Speed of sprite movement

POS I TION= O : Rem * * * Number of movement steps counter

DROPOFFSET = O : Rem * * * Y of fset of all sprites

DROPRATE= 1 0 : Rem * * * How far the sprites drop down the screen

Screen Open O , 3 2 0 , 2 5 6 , 1 6 , Lowres

Flash Off : Curs Off : Cls 0

Load "AMOSBOOK : ABKF i l e s / SpaceInvader . ABK"

Get Sprite Palett e

Sprite Update O f f

Rem * * * S e t up colour palette of all sprites

For C = O To 3

Colour 17 + (C * 4) , $ F O O

Colour 1 8 + (C * 4) , $ F

Colour 1 9 + (C * 4) , $FFO

Next C

Rem * * * Turn off mouse pointer !

Hide

Rem * * * Ini t i a l i s e posit ions of 5 6 virtual sprites

Dim INVADER (NUMROWS * 8 , 2)

Ultimate AMOS

Sprites and bobs

INVADERNUM= 0

For B= O To NUMROWS - l

For C = O To 7

INVADER (INVADERNUM , 0) =C * 2 5

INVADER (INVADERNUM , 1) =B * 2 0

INVADERNUM= I NVADERNUM + l

Next C

Next B

Repeat

Rem * * * Move all virtual sprit e s

For ROW= O T o NUMROWS - l

OFFSET=ROW * 8

F o r C = O T o 7

INVADER (C+OFFSET , 0) = INVADER (C +OFFSET, O) +SPEED

X=X Hard (INVADER (C+OFFSET , O))

Y=Y Hard (INVADER (C+OFFSET , l) +DROPOFFSET)

Sprite C+OFFSET+ 8 , X , Y , FRAME

Next C

Next ROW

Rem * * * Reverse direct ion of a l i ens i f they

Rem * * * reach edge of s c reen

POS ITION=POSITION+SPEED

If POS ITION> 1 3 0 or POSITION< - 1 3 0

SPEED = - SPEED

POS ITION= O

DROPOFFSET=DROPOFFSET+DROPRATE

I f DROPOFFSET > 1 1 4

DROPOFFSET= O

End I f

End I f

Rem * * * Update animation frame number

If FRAMEDELAY= 5

1 45

U ltimate AMOS

1 46

FRAME = FRAME + 1

I f FRAME= 3

FRAME = 1

End I f

FRAMEDELAY= O

End I f

FRAMEDELAY=FRAMEDELAY+ 1

Rem * * * Draw a l l virtual sprites now

Sprite Update

Rem * * * Wait for vert ical blank be fore proceeding

Wait Vbl

Chapter 7

Unt i l Inkey$ < > " "

Obiect animation

Ultimate AMOS

Virtually all games feature some form of object animation, where the
central sprite (the sprite controlled by the player) and any other objects
on the screen are animated to add a greater feeling of life and movement
to them. Take a game like DMA Design's 'Walker ' - not only does the
Walker sprite l iterally 'walk' back and forth across the screen, but its
cannons and missile launchers realistically recoil whenever the player
fires the walker 's cannons. Without animation, the Walker sprite would
look rather silly as it simply glided across the play area. Even a basic
game can benefit from animation, even if the animation is fairly simple.

Animating an object is very simple indeed. All you need to do is to draw
up the ' frames' that will form the animation within the AMOS object
editor as a series of separate object images running in sequence from the
first frame to the last frame. Designing complex animations such as a
character running or walkjng is quite difficult unless you 're an
experienced animator, but writing the code to handle that animation is
considerably easier. The simplest way of designing a complex animation
such as a character walking is to take an existing animation (such as the
'Mario' sprite bank on the AM OS 'Sprites 600' disk - this is still
available from various public domain libraries if you don 't already own
it) and simply modify the graphics to suit your needs.

Sprites and bobs

S lowing down
animations

Any object can be

animated simply by

changing the image that it

displays at regular

intervals. This 'Super

Mario' object, for

example, can be found on

the 'Sprites 600' disk

bundled with the original

AMOS.

1 47

FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME 5 FRAME 6

C :J
Taking all the frames that you 've designed and animating an object with
them is very simple too. Say, for example, you had defined a sprite bank
containing an animation of a horse running. If the frames within the
sprite bank were numbered from 1 to 1 0, all you'd have to do is to cycle
through these frames in sequence, one frame every vertical blank. The
current frame number is placed into a variable (something l ike
'CURRENTFRAME' , for example) which is then passed to the
' IMAGE' parameter of the 'Sprite' or 'Bob' commands. You may well
find that your animation runs too fast - after all, if the animation is
updated every vertical blank, then it will run at a rate of 50 frames per
second on a PAL Amiga or 60 frames per second on an NTSC Amiga.

The best way of slowing down an animation is to include some sort of
delay counter that is increased every vertical blank. Then, when the delay
counter reaches a certain value, you update the animation and reset the
delay counter and start counting again. If, for example, you only updated
the animation every time the delay counter reached 5, the animation
would be updated at a rate of 1 0 frames per second (5* 1 0 = 50 vertical
blanks = 1 second).

Objects can also be animated very easily using AMOS 's very powerful
'AMAL' animation language which we 'l l be covering in a later chapter.
In the meantime, however, try this very simple listing for size:

Rem * * * Obj ect Animat ion Demonstrat ion

Rem * * * Filename - Obj ectAnimat ion . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 3 2 , Lowres

U ltimate AMOS

1 48

Flash Off : Curs O f f : C l s 0

FRAME = 1

DELAY= O

SPEED= 5

Rem * * * Current frame number

Rem * * * Animation delay counter

Rem * * * Speed of animation in vertical blanks

Rem * * * Try changing the ' SPEED ' variable to increase or

Rem * * * decrease the speed of the animat ion

Load "AMOSBOOK : ABKFiles /Mario . ABK"

Get Sprite Palette

Do

Rem * * * I s it t ime to update animat ion yet ?

I f DELAY=SPEED

Rem * * * Increase frame number

FRAME = FRAME + 1

Rem * * * Loop back around i f all frames displayed

I f FRAME=7

FRAME = 1

End I f

Rem * * * Rest de lay variable

DELAY= O

End I f

Rem * * * Add 1 to delay

DELAY=DELAY+l

Rem * * * Draw Bob

Bob 1 , 1 6 0 , 12 8 , FRAME

Wait Vbl

Loop

Ultimate AMOS

Chapter 7

Sprites and bobs 1 49

Interrupt-driven animations
If you' re creating a particularly complex object animation, you may find
it rather difficult and certainly code-intensive to update the animation
manually. Although manual control of an animation gives you far greater
control over the animation process, you may find it easier just to let
AMOS handle the task for you. AMOS provides a very handy ' Anim'
instruction that runs under interrupt, so your program is free to do its
stuff without you having to worry about updating the animation yourself.
What's more, the ' Anim ' command also includes a very handy 'delay '
parameter which removes any need for you to slow down an animation
yourself.

The 'Anim' command runs under AMOS 's powerful AMAL animation
language, which we shall be taking a look at in chapter 9. The format of
the ' Anim' command is as fol lows:

Anim CHANNEL, " (IMAGE , DELAY) , (IMAGE , DELAY) • • . • L" II! (!] !!JJ[!lI
COMMANO DEFfill1()N

CHANNEL The 'Channe l ' parameter is a number betwe�n 1 and 1 6 that
tell s AMOS which of its interrupt channels the animation is to be
assigned to. These interrupt channels are exactly the same as those used
by AMOS 's animation language AMAL, so it's not possible to assign
both an animation and an AMAL program to the same channel.
Similarly, each animation must be assigned to its own unique channel.

IMAGE Each and every frame that you wish to be included in the
animation must be enclosed in a set of brackets complete with two
parameters. There 's virtually no limit to the number of frames that you
can assign to an animation. The first of the two parameters required by
each frame is the ' image' parameter which, not surprisingly, tells AMOS
which object image in the Sprite Bank it should display for a particular
frame. What's more, the same image can be used over and over again at
different positions within an animation, so some quite complex
animations can be created with ease.

Ultimate AMOS

1 50 Chapter 7

DELAY The ' Delay ' parameter tells AMOS how long a particular frame is
to be displayed before moving on to the next. Each delay unit lasts
exactly 1 /50th of a second (one vertical blank) and you 're free to specify
any size of delay. For example, a delay value of ' 1 00' would make
AMOS wait 2 seconds before updating the animation again (l OO == 2 x 50
== 2 seconds).

'L' Normally AMOS will run through an animation and then stop when it
reaches the last frame, but you can force it to loop your animation by
putting a capital 'L' after the last set of frame parameters.

Running an animation
In order to get your animation to run, a few extra operations must be
performed in the following order.

1 First, the object (be it a sprite or a bob) should be created and placed on
the screen using either the 'Bob' or ' Sprite ' commands covered earlier.

2 Next, the interrupt channel that is to handle the animation
assigned to the object you wish to animate using the
command. For the purpose of animating an object, the
command has two forms :

should be
'Channel '
'Channel '

Channel CHANNELNUMBER To Bob BOBNUMBER

Channel CHANNELNUMBER To Sprite SPRITENUMBER
0HElI�[!I

COMMAND {)(flNlTION

Ultimate AMOS

The 'ChanneINumber ' parameter is simply a value between 1 and 1 6
which tells AMOS which of its sixteen interrupt channels are to be used
to run your animation. Secondly, both forms of the 'Channel ' command
expect to be fed the number of the sprite or bob that you wish to animate.
This should be exactly the same identifier number that you specified
when the object was first created.

3 With the interrupt channel assigned, you can then define your animation
string using the ' Anim' command covered above. Note that in order to
get the interrupt channel that you defined in step 2 to recognise your
animation, you must specify the same channel number.

Sprites and bobs 1 5 1

4 Finally, the animation is ready to run and all that is needed is the ' Anim
On' command. This turns on the interrupt channel and sets the animation
in motion.

Changing the sequence of frames
Once you 've created an animation, you may want to change it so that a
different sequence of frames are displayed. This can be particularly
handy if you' re writing an arcade game that requires an object to act
different according to what it is doing - in a beat 'em up game, for
example, you could easily assign an animation to each martial arts move
the character is capable of performing. Thankfully, AMOS allows you to
do this too without having to go through the hassle of setting the entire
animation up from scratch. All you need to do is to turn off the animation
using the 'Anim Off' command, define your new animation with the
'Anim' command and then simply turn the animation back on again with
the ' Anim On' command.

It's worth noting, however, that each time you change an object's
animation, the same channel number must be specified for each new
animation string in order for the interrupt channel that you have assigned
to the object to recognise the new animations. What could be simpler?
And, just to prove it, here's a short demonstration listing:

Rem * * * Anim Command Demonstrat ion

Rem * * * By Jason Holborn

Screen Open 0 , 3 2 0 , 2 5 6 , 1 6 , Lowres

Flash Off : Curs Off : C l s 0

Load "AMOSBOOK : AbkFi les /Mario . ABK"

Get Sprite Palette

Bob 1 0 , 145 , 12 8 , 1

Channel 1 To Bob 1 0

Anim 1 , " (1 , 4) (2 , 4) (3 , 4) (4 , 4) (5 , 4) (6 , 4) L"

Anim On

U ltimate AMOS

1 52 Chapter 7

Pen 1 : Paper 0

Locate 0 , 5 : Centre " Pre ss any key to change animation"

Wait Key

Anim Off

Anim 1 , " (6 , 1 0) (2 , 4) (6 , 1 0) (2 , 4) L"

Anim On

Locate 0 , 7

Wait Key

Centre " Press any key to quit"

Obiect 'flipping'
Unless your objects all move in a single direction, it's often handy to be
able to adjust their orientation so that they face in the direction that they
are moving. The most obvious way of achieving this would simply be to
design a set of images for each direction of movement and then change
to another set whenever the object changed direction. Although you can
do this in AMOS, it is rather wasteful of memory because you ' l 1 need
four sets of object images (one for each direction) instead of one.

AMOS comes to the rescue by letting display the same set of images in
different orientations. All you need are these three very basic functions:

FLIPPEDIMAGE = Hrev (IMAGE) 0J[!]@](!]
CQMl.wK) DEfffilON

which flips an image In the sprite bank identified by the parameter
' IMAGE' horizontally,

FLIPPEDIMAGE = Vrev (IMAGE) [IJ[!JJ@][!]J
COMMAND DEFI'I!TION

which flips an image vertically, and

FLIPPEDIMAGE = Rev (IMAGE)

Ultimate AMOS

which fl ips an image both horizontally and vertically. In all three cases,
the image number of the flipped image is stored into the variable

Sprites and bobs

Flipping with
hex

NEW IMAGE

1 53

' FLIPPEDIMAGE' (this is only an example, so you can call this variable
whatever you like). It's worth noting that these three flipping functions
won't flip an image back to its original orientation once they have been
flipped. In order to do this , you must restore the object back to its
original orientation by passing the original image number (' 1 " for
example).

The value stored in the variable 'FLIPPEDIMAGE' has a very distinct
format that can easily be manipulated. If you call the ' HrevO ' function, a
value of hex $8000 is simply added to the image number that you passed
to the function (passing an image number of '4 ' , for example, would
return a value of ' $8004') . As you can see, you can quite easily
horizontally flip objects yourself just by adding hex $8000 to the image
number yourself. The other two functions ('VRevO ' and ' RevO') add
hex $4000 and $COOO with the image number respectively. If you know
your hexadecimal, you may notice that the value returned by the 'RevO '
function ($COOO) i s simply the two values returned by the ' HrevO ' and
'VRevO ' functions added together ($4000 + $8000 = $COOO).

To be perfectly honest, AMOS 's image fl ipping commands are a bit
inflexible because they won't automatically fl ip an image back to its
original orientation if they are called a second time, which is somewhat
annoying. I personally find it much easier to simply use the values that
the functions add to the image number and then manually perform a
'XOR' logic operation on the image number. For example, a line such as

IMAGE xor $ 8 0 0 0 (@]ElI0J) [!]I 01
EXAMI'lE COOE

would give you a value of $8004 if the value in ' IMAGE' was 4, flipping
the image horizontally in the process. If you then called the same line
again, $8000 would be removed, effectively horizontally flipping the
image in the opposite direction. Clever, eh?

It's worth noting that AMOS cannot rotate an image in the sprite bank, so
you ' l l still need to create a second set of images for your objects if you
want an object to appear to rotate 90 degrees . Anyway, here 's a quick
demonstration of object flipping and hot spots (which we 'll be covering
next) in action.

Ultimate AMOS

1 54

Rem * * * Bob flipping demonstrat ion

Rem * * * Filenarne - Obj ectFl ipping . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 1 6 , Lowres

F lash Off : Curs O f f : C l s °

Load "AMOSBOOK : Abkftles / Hand . abk"

Get Sprite Palette

SPRX= 1 6 0 : SPRY=12 8 : FRAME= l

Rem * * * Set hot spot t o middle of image

Hot Spot 1 , $ 1 1

Do

If Joy (l) and 4

I f SPRX > O

SPRX=SPRX- 2

End I f

Rem * * * Get Fl ipped Image

FRAME=Hrev (FRAME)

End I f

I f Joy (l) and 8

I f SPRX< 3 2 0

SPRX=SPRX+2

End I f

Rem * * * Re store Image

FRAME = $ l

End I f

Bob 1 , SPRX, SPRY , FRAME

wait Vbl

Loop

Ultimate AMOS

Chapter 7

Sprites and bobs

'Hot spots'

1 55

Flipping an image cOITectly isn't just a case of calling the appropriate
function, however. Whenever an object is placed onto the screen, it is
positioned relative to an invisible point called the 'hot spot' which, by
default, i s placed at the top left hand corner of all sprites and bobs. If
you ' re simply moving an object around the screen, the default hot spot
setting is fine - but you may find it rather l imiting when you come to fl ip
an object either horizontally or vertically. The hot spot is also used to
define the axis along which the object is fl ipped and therefore the default
setting wi l l cause an object to be 'miITored' rather than flipped along the
object's centre point. This can be rather annoying when you need to flip
and object so that it appears to turn around - a spaceship, for example.

AMOS comes to the rescue here too with a handy little function called
' Hot Spot ' that - not surprisingly - allows you to adjust the hot spot
setting of any image in the sprite bank. Note that whenever you change
the hot spot setting of an image, all objects that use that image will
automatically have their hot spot setting adjusted accordingly. The
format of the ' Hot Spot ' command is as fol lows:

Hot Spot IMAGE , X, Y

IMAGE Not surprisingly, the ' Image' parameter is simply a value that
contains the number of the image in the sprite bank that you wish to
work on.

XIV These two parameters define the position of the hot spot relative to
the top left hand corner of the image (position 0,0). If, for example, you
wanted to place the hot spot exactly 1 0 pixels across and 20 pixels down
from the top left hand corner of the object, you'd simply pass a value of
1 0 for the 'X ' parameter and 20 for the ' Y ' parameter.

Obviously there 's one big disadvantage with this approach - you 're left
to do the hard work of having to calculate exactly where you want the
hot spot placed. Wouldn 't it be so much easier if you could simply tell
AMOS to place the hot spot in the middle of the object or even in the
bottom right hand corner? Wel l folks, AMOS can do this too thanks to a
second version of the ' Hot Spot' command:

Ultimate AMOS

1 56

Unless you adjust an

object's 'Hot Spot',

objects will not be flipped

correctly. Instead, AMOS

simply 'mirrors' the

image, as this diagram

shows.
Default 'Hot Spot'
position "

HrevO' ed image � /

Chapter 7

VrevO'ed
image

)
Original Image

Hot Spot IMAGE , PRESET [JJ[E)]@][JJ
cow.WIt) D£FtHTION

Ultimate AMOS

IMAGE The ' Image ' parameter is exactly the same as the first version of
the command. Simply tell it which image in the sprite bank you wish to
work on.

PRESET Built into AMOS are a set of nine preset hot spot positions that
cover the most commonly used hot spot settings . These settings are as
fol lows:

$00 Top left hand corner of image (default position)
$ 0 1 Middle of left edge
$02 Bottom left hand corner
$ 1 0 Middle of top edge

. $ 1 1 Middle of image
$ 1 2 Middle of bottom edge
$ 20 Top right hand corner
$ 2 1 Middle of right edge
$ 22 Bottom right hand corner

Sprites and bobs

Changing an object's 'hot

spot' setting controls not

only the object's 'handle',

but also the axis setting

when the object is flipped.

(Default)
$00

•

M

$01 .. """
m

• $02

b� Bl
M lib .i

1.
[�� �n l:.J !ill �

!:EL ;i1

1 57

$10 $20
rcll •

I l�H i �<-�� 1i::J �
I !t4 �:,1!

l_l�+ : ',,�
' H: ..

• """ $21
�§j � k � El

E,:: r," :' C
�

I • • $12 $22

Collision detection
Having hordes of sprites and bobs whizzing around the screen is all very
well if you' re writing nothing more than a fancy demo, but they need to
be able to interact if you' re writing just about any form of arcade game.
If you 're writing a shoot 'em up game, for example, you need to be able
to detect when the player 's missiles strike an attacking alien spaceship or
vice-versa. If you ' re unable to detect when an object comes into collision
with another, all your objects are going to move past (and even through !)
each other totally oblivious to the fact that they 've come into contact
with one another.

The technique of detecting when objects have col lided is called - not
surprisingly - ' collision detection' and it's used in just about every
arcade game you could possibly imagine. If the game needs to be able to
sense when two or more objects come into contact, then col l ision
detection is used.

Not surprisingly, AMOS allows you to detect coll isions too thanks to a
powerful array of functions designed specifically for the task. Detecting
col l isions from within any other programming language is notoriously
difficult, but AMOS makes it an absolute doddle.

Ultimate AMOS

1 58 Chapter 7

In order to detect collisions, AMOS uses what is known as a ' mask '
around all objects that you create. These masks aren 't just used for
collision detection, however - because the Amiga's blitter works on
whole multiples of 2 bytes only (1 6 bits), the mask is used to ensure that
any pixels around the image coloured in the background colour (colour
0) are made transparent, therefore allowing objects to be displayed in just
about any irregular shape that you define (a spaceship, for example). By
default, AMOS automatically creates a mask for all blitter objects, but
it's up to you to tel l it to create a mask for an image whenever you intend
to use it as a hardware sprite. If you don't create a mask for a hardware
sprite, AMOS wil l be unable to detect collisions between it and other
objects. The command to create a mask for a hardware sprite image is as
follows:

Make Mask IMAGE

STATUS

STATUS

Ultimate AMOS

IMAGE The ' Image' parameter is simply the number of the image in the
sprite bank that you wish to create a mask for. For example, if you
wanted to create a mask for image number 1 in the sprite bank, you 'd
pass a value of 1 . This parameter is optional. If you want to create a
mask for all the objects in the sprite bank, just enter the ' Make Mask'
command on its own.

Once you've created a mask for all your sprite images, you 're ready to
start checking for collisions. For this purpose, AMOS provides four
different functions, each of which is designed to handle a collisions
between different combinations of objects. They are as follows:

Bob Col (BOBNUMBER) [JJ[!Jj�[!]
Bob Col (BOBNUMBER , FIRSTBOB To LASTBOB) COMMAND DU ... IT(lt4

The first function checks for collisions between the Bob you specify with
the 'BOBNUMBER' parameter and any other bobs. The second form of
this function allows you to limit the number of bobs that the Bob you
specify can collide with by passing a range of Bob numbers between the
value held in ' FIRSTBOB ' and the value held in 'LASTBOB ') . For

Sprites and bobs 1 59

STATUS

STATUS

STATUS

STATUS

STATUS

STATUS

STATUS

example, if you wanted to check whether the player 's spaceship (Bob
number 0) had coll ided with a series of alien Bobs numbered from 1 to
1 0, something l ike the following would do the job.

Bob Col (O , l To 1 0)

This can be handy if you're writing a game where only collisions with
certain bobs wil l have an effect (missiles colliding with a spaceship, the
player 's bob running into a power-up etc).

Sprite Col (SPRNUMBER)

Sprite Col (SPRNUMBER , FIRSTSPR To LASTSPR)

The 'Sprite CoIO' function detects collisions between the hardware sprite
that you specify with the 'SPRNUMBER' parameter and any other
hardware sprites on the screen. Just like the 'Bob CoIO ' function, the
'Sprite CoIO ' function can limit the range of sprites checked by limiting
the collision detection to a specified range of hardware sprites.

Spritebob Col (SPRNUMBER)

Spritebob Col (SPRNUMBER , FIRSTBOB To LASTBOB)

Both of these first two types of collision detection work on only a single
type of object - 'Bob CoIO ' , for example, will only detect collisions
between Bobs and 'Sprite CoIO' only works with hardware sprites. The
'Spritebob ColO function, however, lets you detect collisions between a
specified hardware sprite (SPRNUMBER) and either all Bobs on the
screen or a specified range of Bobs.

Bobsprite Col (BOBNUMBER)

Bobsprite Col (BOBNUMBER , FIRSTSPR To LASTSPR)

Finally, we have the ' Bobsprite ColO' function which, detects collisions
between a single specified Bob (BOBNUMBER) and either all hardware
sprites or a specified range of hardware sprites.

Ultimate AMOS

1 60 Chapter 7

If any of these functions detect a collision, AMOS places a value of ' - 1 '
into the variable ' STATUS ' . If no collisions are detected, a value of '0 ' is
returned. Using the 'Bob CoIO' function as an example, you could
therefore detect whether a collision had taken place using something like
the following snippet of code:

STATUS = Bob Col (O , l To 1 0)

I f STATUS = - 1

([iJlEl0J) 01 0
E.XAMPLE CODE

Print " Co l l i s ion detected ! "

Else

Print " No col l i s i ons took place . "

End I f

STATUS

Ultimate AMOS

Obviously there 's one big problem with this - although AMOS tel ls you
that a collision has taken place, it doesn 't tell you which object collided
with which. This is where the 'CoIO' function comes in . The ' CoIO '
function allows you to find out which objects were involved in a
collision. The format of the 'CoIO' function is as follows:

Col (OBJECTNUMBER)

STATUS The value returned by the 'CoIO ' function is placed into this
variable. Obviously you can call it whatever you want, but I 've used
'STATUS ' just to keep things nice and neat. The return value will depend
entirely upon whether the object specified with the 'OBJECTNUMBER'
was involved in a collision. If it was, a value of ' - 1 ' is returned otherwise
a value of '0 ' is returned.

OBJECTNUMBER The 'ObjectNumber ' parameter is the number of the
object that you 'd like to check. If you tested for a colli sion between
object '0 ' and objects ' l ' through to ' 1 0 ' , for example, you would have
to check objects ' 1 ' through to ' 1 0' individually to see if they had
collided with object '0 ' .

Using the 'CoIO' function is a bit l ike checking to see what cars in your
street have dents in them when you wake up in the morning, only to find
that your car has been hit during the night. In real life, this is hardly a

Sprites and bobs 1 6 1

reliable way of nailing the culprit, but it's AMOS equivalent is very
reliable because the status of each and every object is updated every time
one of the four collision detection functions is called. So if a bob was
involved in a collision before you called the 'Bob CoIO' function, for
example, it would have been sent off to the body shop, hammered out,
resprayed and put back onto the road (in a manner of speaking at least !)
by the time you call the ' Bob CoIO ' function again. Obviously if it's
been involved in a collision again, then the scars will be there and the
'CoIO' function will detect them.

One question does arise, however - what happens if you have a series of
hardware sprites that use the same set of numbers as a series of Bobs
(Sprite 0 and Bob 0, Sprite 1 and Bob 1 etc)? Wel l , the 'CoIO' function
isn 't stupid - it knows automatically that if you 've called a collision
detection function that checks for collisions with sprites, then it will
check sprites and if you ' re checking for collisions with Bobs, then it will
check Bobs. As I said, AMOS isn 't stupid.

So how do you go about detecting which objects collided with your
sprite or Bob? Simple - you just tell the 'CoIO ' function which object
you'd like it to check and it wil l either return a value of ' - 1 ' or '0 ' . If a
value of ' - 1 ' is returned, then you know that the object in question
coll ided with your sprite or bob. If you want to check a series of objects,
the easiest way is to use a simple FOR . . . NEXT loop such as the one
used in the following snippet of code:

STATUS = Bob Col (O , l To 1 0)

I f STATUS = - 1 (@lH!lI[!]) 0101
EXAMPlE COOf

For A = 1 To 1 0

I f C o l (A) - 1

Print " Obj ect " ; A ; " was envolved i n a c o l l i s i on ! "

End I f

Next A

End I f

This short piece of code simply checks to see whether objects ' 1 ' through
to ' 1 0' were involved in a collision. If they were, a short message is
printed on the screen. Fancy a fully working demonstration?

Ultimate AMOS

1 62

Rem * * * Col l i s ion Detection Demonstrat ion

Rem * * * Fi lenarne - Col l i s i onDetect ion . AMOS

Screen Open 0 , 3 2 0 , 2 5 6 , 3 2 , Lowres

Flash Off : Curs Off : Cls 0

Pen 1 : Paper 0

Locate 0 , 1

Centre uKnock heads together with the j oyst ick ! U

Double Buf fer

Load uAMOSBOOK : AbkFile s / Face s . ABKu

Get Sprite Palette

Rem * * * Create c o l l i s ion mask for hardware sprit e

Make Mask 3

Rem * * * Turn off mouse pointer to free up sprite

Hide

Rem * * * Give sprite DMA chance to catch up

wait 1

SPRX= 1 6 0 : SPRY= 1 2 8

Global SPRX , SPRY

SPRNUM= O

Rem * * * Create 4 Bobs and 2 Hardware Sprites

Bob 1 , 4 0 , 5 0 , 2

Bob 2 , 1 1 0 , 5 0 , 2

Bob 3 , 19 0 , 5 0 , 2

Bob 4 , 2 6 0 , 5 0 , 2

Sprite O , X Hard (7 5) , Y Hard (2 0 0) , 3

Sprite 4 , X Hard (2 3 0) , Y Hard (2 0 0) , 3

Do

_MOVE FACE

Ultimate AMOS

Chapter 7

Sprites and bobs

Rem * * * Has Bob h i t another bob?

STATUS =Bob Col (SPRNUM)

I f STATUS = - l

Rem * * * Which Bob did i t hit ?

For C = l T o 4

I f Col (C) = - l

Boom

TXT $ = " Coll ided with Bob number " + Str$ (C) + " "

Locate 0 , 14

Centre TXT$

End I f

Next C

End I f

Rem * * * Has Bob h i t a hardware sprite?

STATUS=Bobsprite Col (SPRNUM)

I f STATUS= - l

Rem * * * Which Sprite did i t hit ?

For C = O To 4 S t ep 4

I f Col (C) = - l

Boom

TXT $ = " Coll ided with Sprite number"+Str$ (C) + " "

Locate 0 , 14

Centre TXT$

End I f

Next C

End I f

Bob SPRNUM , SPRX , SPRY , l

Wait Vbl

Loop

Procedure _MOVE FACE

I f Joy (l) = l and SPRY > 1 6

SPRY=SPRY - 4

End I f

1 63

Ultimate AMOS

1 64

I f Joy (1) = 2 and SPRY< 2 3 0

SPRY=SPRY+4

End I f

I f Joy (1) =4 and SPRX > 1 6

SPRX=SPRX - 4

End I f

I f Joy (1) = 8 and SPRX< 3 0 0

SPRX=SPRX+4

End I f

Chapter 7

End Proe

The Obiect Editor

Ultimate AMOS

Before you can use sprites or bobs within your AMOS programs, you
must first create a sprite bank using the powerful 'Object Editor '
accessory bundled with AMOS. The Object Editor is essentially nothing
more than a paint program geared towards the task of drawing images for
use with AMOS Sprites and bobs. Just l ike a conventional paint package
such as Electronic Arts' Deluxe Paint, the AMOS Object Editor provides
you with a whole range of drawing tools including freehand, circle, box
and line etc. What's more, it can even import images stored in standard
IFF format, so there 's no reason why you couldn't use your favourite
paint package to design your object images and then simply use the
Object Editor to pull them into a sprite bank. It can also be used to draw
' Icons' and 'Blocks ' , but we'll cover this aspect of the Object Editor
later.

We don 't really have the space to document the object editors bundled
with al l three different versions of AMOS, so we'll be concentrating on
the Object Editor bundled with AMOS Professional. This is v iltually
identical to the Object Editor including with Easy AMOS, so Easy
AMOS users will find the following information useful too. I'm sorry if
you are using the original AMOS, but then isn 't it time you upgraded
anyway? With AMOS Professional now selling for peanuts, you 're
missing out big time if you don 't upgrade. Not only that, but AMOS 's
Object Editor is so dire (SOITY Aaron !) , that it's worth buying AMOS
Professional just for the vastly improved object editor.

Sprites and bobs

The AMOS Professional

Object Editor is so good

that it alone makes

upgrading to AMOS Pro

worthwhile.

1 65

So how does the AMOS Professional Object Editor work? Well , as I said
earlier, it's very similar to a conventional paint program. Of course there
are differences - for starters, the object editor isn 't restricted to just a
single screen. Each object image that you create is allocated its own
' frame' that just happens to correspond with the image numbers required
by AMOS 's sprite and bob commands. These frames can be of any size,
although the horizontal size is always a multiple of 1 6. This is necessary
because both the Amiga's sprite hardware and blitter work on multiples
of 1 6 too, so the Object Editor makes sure that your object image is
always of the required size.

When you first boot up the Object Editor (either by selected 'Edit
Objects ' from AMOS Professional 's 'User ' menu or by selecting 'Bob
Editor ' from Easy AMOS ' ' System Menu ') , you' l l be presented with a
very pretty-looking main menu screen that contains a strip of icons along
the top and the main object editing screen below this . The object editing
screen is split into three areas - a very thin palette selector along the left
hand side, the bank frame selector (allows you to select any image from
the current sprite bank simply by double clicking on it) along the right
and the rest of the display is split between two views of the object that
you ' re currently editing (one is magnified and the other is normal size).

Ultimate AMOS

1 66

}��.,-.. ::�, �iI .. · :" "::'[
�::: _1 1 1 1 1 1 1 1 1 1 1 1 __ �.;:

��:i �.':.. f.iI- ; ;.: :�rl �\.. ' I I ! I I I I I I 1 1 f ':\�

Ultimate AMOS

Chapter 7

The real power of the Object Editor is hidden away behind that obscure
line of icons that run along the top of the object editor screen just above
the line of drawing tool icons. Most of them are fairly self-explanatory -
the disk drive icon, for example, brings up the disk menu that allows you
to load, merge, save and ' save as ' (save under a different filename) a
sprite bank. Some are not so straightforward, so let's take a look at them
in a bit more detail .

The Bank Menu
The Bank menu gives you extensive control over the current sprite bank,
letting you to extract and replace, insert and delete object frames easily.

Get Obiect Essentially the same as double-clicking on one of the images
shown in the bank frame selector, the 'Get Object' icon will pull the
image held in the current frame into the main editing screen, allowing
you to work on it.

Put Obiect Every time you make a change to an image you've extracted
from the sprite bank, you must put it back into the bank using this option.
To be perfectly honest, you don't have to use this option - if you select a
different frame from the one you are currently editing, the Object Editor
will automatically put it back for you.

Put Obiect To This option allows you to place the object you are
currently editing into any of the frames available in the current sprite
bank. If the frame that you select already holds an image, it will be
replaced with the new image.

Insert Obiect The ' Insert Option' icon allows you to insert the image
being edited directly into the sprite bank at the current position. If any
icons proceed that position, they will be shunted down one position to
make room.

Delete Obiect Lets you delete the currently selected frame from the
sprite bank. If there are sprites after the current frame, the resulting gap
will be closed effectively decreasing the image number of all frames that
follow it.

Sprites and bobs

-;:--�] , -
; , I I I I I I I I I I I I

1 67

New Bank Wow ! Heavy stuff If you click on this icon, the entire
contents of the sprite bank that you are currently editing will be wiped
from memory completely. Once you delete the sprite bank, there 's no
way of getting back unless you saved it to disk first.

Auto Get/Put This icon toggles the Object Editor's automatic object
get/put feature on and off. If it is turned on and you double-click on a
frame that contains an image, it will be instantly transferred to the editing
screen. If you double-click on the next empty frame (marked with an 'E ')
after creating a new image, i t wi l l be automatically placed into the sprite
bank at that position.

The Grabber Menu
The Grabber Menu is used exclusively to allow you to grab rectangular
sections for use as object images from IFF standard picture files.

Grab Obiect If you haven't already loaded (and either packed or kept)
an IFF picture file, the 'Grab Object' option will bring up a file requester
asking you to select an IFF file to load. Once the image has been loaded,
it will be displayed along with a set of cross-hairs. Images are grabbed as
rectangular blocks by clicking the mouse pointer at the top left hand
corner of the screen and then dragging the mouse pointer away to
increase the size of the selected area. Once you're happy that you 've
selected the object you ' re interested in, let go of the left mouse button
and it will be pulled straight into the Object Editor.

Put Obiect This option works in exactly the same way as the 'Put Object
To' icon in the ' bank' menu. It basically allows you to put the image you
have grabbed into the sprite bank.

load Picture This option allows you to select the IFF file that you wish
the grabber to load. If you turn on either the 'Keep' or 'Pack' options,
this wil l only have to be performed once.

Ultimate AMOS

1 68

•

U ltimate AMOS

Chapter 7

Grab Palette By default, this option is tumed on. What it does is to
instruct the Object Editor to pull in not only the selected object, but also
the palette of the picture the selected object was grabbed from.

Re-load Picture The ' Re-load Picture' toggle tel ls AMOS that you want
to select a new IFF picture every time you click on the 'Grab Object'
option.

Pack Picture If you want to grab several objects from the same picture
but your Amiga is a little short on memory, this option will automatically
pack the picture that you want to grab from.

Keep Screen This instruct the Object Editor to hang onto the picture that
you have selected, therefore allowing you to grab several objects from
the same picture without having to reload it each time.

The Hot Spot Menu
All Sprites and Bobs have what is known as a ' hot spot ' which
effectively acts as the object's 'handle' - that is, the point at which
AMOS treats as its origin. The Hot Spot menu allows you to change the
hot spot setting for any object to any one of nine presets.

Auto On/Off This option allows you to define a default hot spot setting
that will be assigned to all objects that you edit from then on. Simply
select the hot spot setting that you want and then tum this option on.

Presets If the Auto On/Off option is tumed off, clicking on one of these
nine presets will change the hot spot setting of the object that you are
editing to the selected setting.

Sprites and bobs

The Object Editor's

animation editor provides

a quick and easy method

of testing your sprite and

bob animations.

The Animation Editor

1 69

The Object Editor animation tool allows you to test a sprite or bob 's
animation by placing the sequence of frames that make up the animation
into the Animation Editor. It's very easy to use - all you have to do is to
click on the frames in the order that they are to be displayed and AMOS
will do the rest. It's worth noting, however, that the animation editor is
purely a tool for testing animations and therefore it's up to you to handle
the animation manually within your program.

Ultimate AMOS

1 70

Ultimate AMOS

1 7 1

Obiect control
• Keeping track of objects with ' data structures'

• Controlling on-screen objects using a joystick or keyboard

• Setting boundaries for object movement

• Creating a 'bouncing' movement

• More advanced object movement patterns

U ltimate AMOS

1 72

Data structure

Chapter 8

K eeping track of two or three objects on the screen is very easy
indeed, but if you 're writing a particularly frantic arcade game that
uses many different objects, chances are that you ' l l soon find the

task of keeping track of them all rather code-intensive. Take a shoot 'em
up like the classic 'Asteroids ' , for example. Because the aliens do not fly
in fixed attack waves (which we' l l be covering later), it's not possible to
simply position each attacker in relation to others. Of course you could
simply assign a unique set of variables to each bob. Unfortunately, this
approach can complicate matters considerably, since each bob would
have to be processed separately.

When this problem does arise, the simplest method is to take advantage
of an age-old games programming concept called the ' Data structure ' . As
any C or Pascal programmer will tel l you, a data structure is essentially a
type of array that allows you to group several different variables together
under a single heading. AMOS doesn't support real data structures l ike
the C programming language (via the ' struct' command) , so we 've had to
make do with AMOS 's still more than capable anays .

AMOS allows us to create anays consisting of many different
' dimensions ' . A single dimensional anay ('Dim Anay(Number of
Bobs) ' , for example) can only hold a single item of infOlmation per bob.
To be perfectly honest, this isn't really a lot of use as a data structure.
Thankfully, you can extend the number of data items that could be held
on a single bob simply by adding an extra dimension to the anay. For
example, 'Dim Anay(Number of Bobs, Number of Items) " would give
each bob as many number of data items as you wish. Adding an extra
dimension to an anay effectively tells AMOS that for every element
defined by the value of 'Number of Bobs ' , you want to attach 'n ' ('n ' is
the value defined by 'Number of Items ') number of individual items of
data.

If, for example, you had 20 bobs, each of which needed 4 items of data
attached to it, you want define a data structure to handle all that data
using something like this:

Dim MyBobs (2 0 , 4)

U ltimate AMOS

Object control 1 73

Each Bob could be given its own data structure that holds a number of
important facts about it - its current X and Y position, Its type (what type
of space ship is it?), its bob image number, its direction of movement and
perhaps even its status, for example. Using data structures also adds an
extra benefit - a simple 'FOR . . . NEXT' loop can be used to control the
movements of all Bobs within your game. Although the same code would
be used to process the movements of all your bobs, the loop still treats
each bob independently of the others. Here's a bit of skeleton code that
demonstrates what I mean:

NUMBOBS = 2 0 (lr!E][!)
Dim MYBOBS (NUMBOBS , 4) [I [I]

EXAMPlE CODE

For A = °
Print

Print

Print

Print

Next A

to NUMBOBS- l

MYBOBS (A, O) Rem * * * Data item 1

MYBOBS (A, 1) Rem * * * Data item 2

MYBOBS (A, 2) Rem * * * Data item 3

MYBOBS (A, 3) Rem * * * Data item 4

As you can see, the program starts by creating an array that handles 20
bobs, each of which has 4 data items associated with it. These 4 items of
data are then extracted by using a FOR . . . NEXT loop to count from 0 to
1 9 (don 't forget that the first element in an array is '0' and not ' 1 ') . The
variable 'A' is used to define which bob is to be processed during a single
loop and the data for that bob is extracted by reading off elements (A,O),
(A, l), (A,2) and (A,3).

Most professional games programmers use data structures to keep track
of all moving or animated objects within a game. Once you start coding
complex arcade games that employ tens of sprites, rather than just the
four that our game uses, you' l l soon come to realise that data structures
are the only way to control the movement of sprites without your code
grinding to a halt. From now on, think data structures !

Before we move onto the next subject in this chapter, why not have a
play with this demonstration l isting which shows the data structure at its
best. . .

Ultimate AMOS

1 74

Rem * * * Handling Multiple Bobs Demonstration

Rem * * * Filename - DataStructure .AMOS

Screen Open 0 , 3 2 0 , 2 5 6 , 16 , Lowres

Flash Off : Curs Off : Cls 0

Bob Update Off

Double Buffer

Autoback 0

Load IAMOSBOOK : ABKFiles/Ball . ABK"

Get Sprite Palette

SPEED=10 : NUMBALLS=16

Rem * * * Initialise ' Balls ' data structure

Rem * * * BALL (n , O) Current ball X Position

Rem * * * BALL (n , l) Current ball Y Position

Rem * * * BALL (n , 2) Width of bounce

Rem * * * BALL (n , 3) Height

Dim BALL (NUMBALLS , 4)

For C=O To NUMBALLS - 1

BALL (C , O) =O

BALL (C , 1) = 8 +Rnd (2 0 0)

BALL (C , 2) =Rnd (SPEED) +1

BALL (C , 3) =Rnd (SPEED) +1

Set Bob C, 1 , ,

Next C

Do

Bob Clear

For C=O To NUMBALLS-1

of bounce

Rem * * * Update position of ball

BALL (C , 3) =BALL (C , 3) +1

BALL (C , 0) =BALL (C , 0) +BALL (C , 2)

Ultimate AMOS

Chapter 8

Object control 1 75

Loop

BALL (C , l) =BALL (C , l) +BALL (C , 3)

Rem * * * Has ball hit ground?

I f BALL (C , l » 2 0 0

BALL (C , l) =2 0 0

BALL (C , 3) = - BALL (C, 3)

End I f

Rem * * * Has ball reached right hand side

Rem * * * of screen?

If BALL (C , O » 3 0 0

BALL (C , 2) = - Rnd (SPEED) +1

BALL (C , 3) =Rnd (SPEED) +1

End If

Rem * * * Has ball reached left hand side

Rem * * * of screen?

If BALL (C , O) <O

BALL (C , 2) =Rnd (SPEED) +1

BALL (C , 3) =Rnd (SPEED) +1

End If

Bob C+1 , BALL (C , O) , BALL (C, l) , l

Next C

Bob Draw

Screen Swap 0

Wait Vbl

Interactive obiect control
Although many of the demonstration listings that we 've looked at in the
last few chapters have made use of the joystick, now is as good a time as
any to take a look at how you can use the joystick and even the keyboard
to control objects within your own games. A lthough the joystick is still
generally the favoured method of controlling games, you may want to
consider offering keyboard control for the benefit of ' purist' game

U ltimate AMOS

1 76

ti\
Joystick inputs

Ultimate AMOS

All digital joysticks can

produce only five basic

signals - up, down, left,

right and fire. AMOS

assigns values to these

signals and other

directions can be

detected simply by

combining two of these

values together.

1

Chapter 8

players that stil l yearn for the old 8-bit days (many still believe that the
keyboard is the only way to control certain types of game !) . Better still,
using a combination of joystick and keyboard control can add an extra
dimension of control to most games - a shoot 'em up, for example, could
be primarily controlled by the joystick but the keyboard could also be
used to allow the player to quickly and easily select different weapons.

Let's start by taking a look at joystick control . The Amiga offers two
control ports, one of which is usually used by the mouse controller. You
can, however, read joystick inputs for two-player games from both ports
by reading the values returned by the 'Joy(l) ' and ' Joy(2) ' functions.
Confusingly, 'Joy(l) ' reads its input from control port 2 (the joystick
port) and ' Joy(2) ' reads its input from control port 1 (the mouse port).

The values returned by these functions are in the form of what is known
as a 'bit pattern' . That is, each direction of movement is assigned its own
bit in an 8-bit value and so several joystick movements (up, left and fire,
for example), can be read simultaneously.

Object control 1 77

Don't let the thought of bit patterns worry you, however - because
AMOS automatically converts the bit pattern into a decimal number, you
can easily translate the values returned into a useable format.

Translating the input from a joystick is very simple indeed, because all
the values returned are really nothing more than different combinations
of a set of five basic values. If you think about it, a basic digital joystick
(all current Amiga joysticks are digital) can only do five things - it can
be pushed up, down, left, right or the fire button can be pressed.

All other joystick inputs are nothing more than combinations of these
five basic operations - up, left and fire, for example. These five
operations have the following values assigned to them.

Joystick up
Joystick down

Joystick left

Joystick right

Joystick fire

Joy(1) = 1

Joy(1) = 2

Joy(1) = 4

Joy(1) = 8

Joy(1) = 16

So, in order to check whether the joystick was being pushed up, a l l you
would do is to compare the value returned by the ' Joy(1) ' function to ' 1 ' .
For more complex joystick inputs, AMOS simply combines the values
above to produce other unique values. For example, if the joystick were
being pushed up and left with the fire button, the 'Joy(1) ' function would
return a value of ' 2 1 ' (1 + 4 + 1 6 = 2 1).

Obviously your code would start to get rather complex if you checked for
every possible joystick combination, so the easiest way of keeping track
of them all is to make use of the 'AND' logic operation. Here's a very
simple demonstration listing:

Rem * * * Basic Joystick input demonstration

Rem * * * Filename - Joystick . AMOS

CUrs Off

Locate 0 , 10 Centre "Move the j oystick ! "

Ultimate AMOS

1 78

Do

Loop

Chapter 8

If Joy (l) and 1

Locate 0 , 1 Print "The j oystick was pushed up"

Else

Locate 0 , 1 Print Space$ (4 0)

End I f

If Joy (l) and 2

Locate 0 , 2 Print "The j oystick was pushed down"

Else

Locate 0 , 2 Print Space$ (4 0)

End I f

I f Joy (l) and 4

Locate 0 , 3 Print "The j oystick was pushed left"

Else

Locate 0 , 3 Print Space$ (4 0)

End If

I f Joy (l) and 8

Locate 0 , 4 Print "The j oystick was pushed right"

Else

Locate 0 , 4 Print Space$ (4 0)

End I f

If Joy (l) and 1 6

Locate 0 , 5 Print "The j oystick fire button was pressed ! "

Else

Locate 0 , 5 Print Space$ (4 0)

End If

If al l this messing around with logic operations seems a bit long-winded,
then you may want to take advantage of another set of joystick reading
functions built into AMOS.

Ultimate AMOS

Object control

RESULT

RESULT

RESULT

RESULT

RESULT

1 79

Jright (PORTNUM)

Jleft (PORTNUM)

Jup (PORTNUM) �[!)]�I!]
COMMANO 0U\NIll0f{

Jdown (PORTNUM)

Fire (PORTNUM)

PORTNUM Just like the ' JoyO ' function, all five functions can read from
either control port by passing either a value of ' 1 ' or a ' 2 ' . A value of ' 1 '
denotes the joystick port (port 2) and a value of ' 2 ' denotes the mouse
port (port 1) .

RESULT All five functions return one of two possible results. If a value of
, l ' is returned, then the joystick is being pushed in the direction of the
test. If a value of '0 ' is returned, however, then the joystick is not being
pushed in that direction.

So how do you tie the movement of an object in the joystick? Well , it's
very simple indeed. All you have to do is to create two variables that
contain the 'X' and 'Y ' co-ordinates of the object that you 'd like to
control with the joystick. Then simply check the status of the joystick
and add or subtract a fixed amount from the two co-ordinates. The
amount you add or subtract will define the speed of an object's
movement, so the larger the amount, the faster the object will move.
Here's a quick demonstration:

Rem * * * Basic Joystick control of an object

Rem * * * Filename - JoyMove .AMOS

Screen Open 0 , 32 0 , 2 5 6 , 4 , Lowres

Flash Off : CUrs Off : Cls 0

Load "AMOSBOOK : AbkFiles/Spacelnvader .ABK"

Get Sprite Palette

Paper 0 : Pen 1

Locate 0 , 10 : Centre "Move me with the j oystick ! "

U ltimate AMOS

1 80

SPRX=160

SPRY=128

FRAME = 1

Do

Loop

If Jup (l) =- l

SPRY=SPRY-2

End If

If Jdown (l) =-l

SPRY=SPRY+2

End If

If Jleft (l) = - l

SPRX=SPRX-2

End If

If Jright (l) =-l

SPRX=SPRX+2

End If

If Fire (l) =-l

Boom

FRAME=2

Else

FRAME = 1

End I f

Bob 1 , SPRX, SPRY, FRAME

Wait Vbl

Ultimate AMOS

Chapter 8

Object control 1 8 1

Keyboard control
Although the joystick is undoubtedly the most popular method of
controlling the player's sprite within a game, some games still lend
themselves particularly well to keyboard control . Many game players
find keyboard control favourable because it offers far greater precision
than the rather haphazard results returned by your average joystick.
Platforms games are a good example - positioning the player's sprite in
exactly the position necessary to jump between platforms is considerably
easier when the game is played with the keyboard. Even games that don 't � obviously need keyboard control can benefit too - a shoot 'em up, for \k:IJ example, could use certain keys on the Amiga keyboard to give the

Extra control player the ability to change weapons, drop a ' smart' bomb or even
activate a cheat mode.

Scan codes

The simplest form of keyboard input offered by AMOS is the ' Input'
command, but this has the distinct disadvantage of stopping program
executing until the user presses the ' RETURN' key - hardly an ideal
solution in a fast-paced arcade game ! The answer lies in what the techies
call ' Scan codes' - these are special codes generated by the Amiga's
keyboard hardware that can easily be read 'on the fly' without halting
program execution. Each and every key on the Amiga's keyboard has its
own unique scan code value and - unlike 'asci i ' codes, they never
change, regardless of the type of keymap setting the user has assigned to
their keyboard.

In order to read the scancode of a particular key, you need to start by
calling the 'MYKEY$=Inkey$ ' function, which checks for a key
depression and stores the key character CA' , 'a ' , ' B ' , 'd ' etc) into a string
variable (in this case, the string variable is called 'MYKEY$') .

The result returned by this function is of no interest to us , but it's vitally
important that this function is called in order for the scan code for that
key to be read. Once the ' Inkey$' function has been called, the scan code
for the key that the user pressed is held internally and you can then read
it into a variable using the fol lowing command:

Ultimate AMOS

1 82 Chapter 8

SCANCODEVALUE = ScanCode [jH!I�[!)J
COr.t�WI) OEfNilON

This command would put the scan code value of the key that the user
pressed into an integer variable called 'SCANCODEVALUE' . The
values returned by the ' Scan Code' function do not cover the extra
'control keys' offered by the Amiga (Left and right shift and the two
Amiga keys, for example), because they do not have scan codes
associated with them. In order to detect them, you need to check the
status of them all using the fol lowing command:

CODE Key Shift [J) [!jH!1 (!]
COMMAND O[fNTlON

U ltimate AMOS

The value returned by the ' Key Shift' function is in the form of a ' bit
pattern' (remember those from our coverage of the 'JoyO' function !) and
so several control keys can be detected simultaneously by combining
these eight basic values.

Left Shift

Right Shift

Caps Lock

Ctrl

Left Alt

Right Alt

Left Amiga

Right Amiga

Key Shift = 1

Key Shift = 2

Key Shift = 4

Key Shift = 8

Key Shift = 16

Key Shift = 32

Key Shift = 64

Key Shift = 128

If, for example, you wanted to check to see whether the 'Right Shift' and
'Right Amiga' keys were being pressed simultaneously, all you 'd have to
do is to compare the value returned by the 'Key Shift' function with
' 1 30 ' (2 + 1 28 = 1 30).

Here's a short l isting that displays both the scan codes and 'key shift'
status of control keys. You ' l l find this program useful for getting the scan
code values for particular keys :

Object control 1 83

Rem * * * Keyboard Scan Code Reader

Rem * * * Filename - ScanCodeReader . AMOS

Curs Off

Rem * * * Clear Keyboard buffer

Clear Key

Do

A$=Inkey$

KEY=Scancode

CTRLKEY=Key Shift

If KEY< >O

Locate 1 , 1

End If

If CTRLKEY < > 0

Locate 1 , 2

End If

Loop

Print "Key Scancode " ; KEY; " "

Print "Control Key " ; CTRLKEY; " "

KEY STATE
function

You could quite easily use the ' Scancode' function to detect certain keys,
but it's not that fast. The 'Key StateO' function is much faster. It simply
monitors the status of a single key and you don't even have to call the
' Inkey$ ' function first to make it work! It has the following format:

RESULT Key State (SCANCODE)

SCANCODE The scan code for the key that you want the function to
monitor. For example, feeding it a value of '49' will instruct it to monitor
the '2 ' key. A ful l list of scan codes is given overleaf, but the ' Scan Code
Reader' program above will provide you with the scan codes you require
- just run the program and press the key that you are interested in.

RESULT This function returns one of two possible values. If the key was
being pressed when the test was made, a value of ' - 1 ' wil l be returned. If
the key wasn 't being pressed, however, a value of '0 ' will be returned.

Ultimate AMOS

1 84 Chapter 8

Amiga keyboard scan

codes (above).

Applying all this theory to control the movements of an on-screen object
is very simple indeed. Below is a short demonstration listing that uses
both functions to move a Bob around the screen:

Rem * * * Basic Keyboard control of an obj ect

Rem * * * By Jason Holborn

Screen Open 0 , 32 0 , 2 56 , 4 , Lowres

Flash Off : Curs Off : Cls 0

Load "AMOSBOOK :AbkFiles/SpaceInvader .ABK"

Get Sprite Palette

Paper 0 : Pen 1

Locate 0 , 10 Centre "Use ' Z ' , ' X ' and ' # ' , ' / ' keys to move me"

Locate 0 , 11 Centre "Press ' Right Shift ' to fire ! "

SPRX=160

SPRY=128

FRAME = 1

Do
Rem * * * Check for ' # ' key ...

If Key State (42) = - 1

SPRY=SPRY-2

End If

Rem *** Check for ' / ' key ...

Ultimate AMOS

Object control 1 85

Loop

If Key State (58) =- 1

SPRY=SPRY+2

End If

Rem *** Check for ' Z ' key ...

If Key State (4 9) =-1

SPRX=SPRX-2

End If

Rem *** Check for ' X ' key ...

If Key State (5 0) = - 1

SPRX=SPRX+2

End If

If Key Shift=2

Boom

FRAME=2

Else

FRAME = 1

End If

Bob 1 , SPRX, SPRY, FRAME

Wait Vbl

Restricting obiect movement
Simply increasing or decreasing the values of an object's 'X' and 'Y ' co
ordinates every vertical blank will cause an object to move, but it's also
important to keep track of the object's movement so that it doesn't
disappear off of the screen completely, never to be seen again. Although
you may want this to happen for certain objects (an attack wave in a
shoot 'em up, for example), the player's sprite must always be kept
within the boundaries of the current screen.

Thankfully, thjs is very easy to do. All you need to do is to keep track of
an object 's 'X' and 'Y ' co-ordinates and when they drop below or rise
above a set of minimum and maximum values (0 and 320 for horizontal

Ultimate AMOS

1 86 Chapter 8

movement on a low resolution screen, for example), you simply reset
them to the appropriate value. If, for example, the player moved the
sprite to the far left of the screen and the 'X' co-ordinate for that object
dropped below 0 (say, for example, it dropped to ' -4 ') , all you do is reset
it to '0 ' . So, no matter how hard the player tried to move the object off of
the screen, the 'X ' co-ordinate of that object would never be allowed to
drop below '0 ' once the object was drawn onto the screen. Here 's a short
demonstration that puts that theory into practice:

Rem * * * ' Boundary Restricted ' obj ect movement

Rem * * * Filename - BoundaryRestricted . AMOS

Screen Open O , 32 0 , 2 56 1 4 I Lowres

Flash Off : CUrs Off : Cls 0

Load IAMOSBOOK :AbkFiles /Ball . ABK"

Get Sprite Palette

Bob Update Off

Double Buffer

Autoback 0

XSIZE=16

SPRX=160

YSIZE=1 6

SPRY=128

Rem *** X and Y size of Bob

Rem * * * Define boundary

XMAX=320 -XSIZE XMIN=O

YMAX= 2 5 6-YSIZE : YMIN=O

Do

Bob Clear

If Joy (l) and 1

SPRY=SPRY-2

If SPRY<YMIN

SPRY=YMIN

End I f

Ultimate AMOS

Object control 1 87

Loop

End If

If Joy (l) and 2

SPRY=SPRY+2

If SPRY>YMAX

SPRY=YMAX

End If

End If

If Joy (l) and 4

SPRX=SPRX-2

If SPRX<XMIN

SPRX=XMIN

End If

End If

If Joy (l) and 8

SPRX=SPRX+2

If SPRX>XMAX

SPRX=XMAX

End If

End If

Bob 1 , SPRX, SPRY, 1

Bob Draw

Screen SWap 0

Wait Vbl

If you 're writing a game like the classic 'Asteroids ' , it's often useful to
be able to 'wrap' a bob around so that when it disappears off of any one
of the four edges of the screen, it appears on the opposite side. Other
games that have used this technique include 'Bubble Bobble ' (if Bub or
Bob - or indeed the ghosts that chase them - dropped off the bottom of
the screen, they would instantly reappear at the top) and even - to a lesser
extent - the infamous classic PacMan.

Achieving this effect in AMOS is very simple indeed. All you have to do
is to continuously check the 'X ' and 'Y' co-ordinates of your objects and
when they drop below or rise above a set of minimum and maximum

Ultimate AMOS

1 88

For games like the classic

'Asteroids', the objects

'wrap around' the screen

so that when the

disappear off of one side,

the reappear on the other

side.

Chapter 8

values (0 and 320 for horizontal movement on a low resolution screen,
for example), simply subtract the appropriate co-ordinate from the width
or the height of the screen. If, for example, the 'X ' co-ordinate for the
object dropped below 0 (let's say it was set to ' -4 ') , subtracting it from
320 would give you a new 'X' co-ordinate of 3 1 6, therefore effectively
causing it to re-appear on the opposite side of the screen. If, on the other
hand, it rose above 320 (say ' 324') , subtracting it from 320 would give
you a new 'X' co-ordinate of ' -4 ' . However, in order to stop it from
wrapping back around again, it should - in theory at least - rise above
the minimum value by the time it is checked again because it would be
updated again by the joystick movement routine. Try this demonstration :

Rem * * * ' Wrap around ' obj ect movement

Rem * * * Filename - WrapAround . AMOS

Screen Open O , 32 0 , 2 5 6 , 4 , Lowres

Flash Off : Curs Off : Cls 0

Load "AMOSBOOK : AbkFiles/Ball . ABK"

Get Sprite Palette

Bob Update Off

Double Buffer

Autoback 0

Ultimate AMOS

Object control 1 89

SPRX=160 SPRY=128

Do

Bob Clear

If Joy (l) and 1

SPRY=SPRY-2

End If

I f Joy (l) and 2

SPRY=SPRY+2

End If

If Joy (l) and 4

SPRX=SPRX-2

End If

If Joy (l) and 8

SPRX=SPRX+2

End If

Rem *** Check obj ect X and Y co-ordinates

If SPRX>3 2 0 or SPRX< O

Rem * * * Wrap around X axis

SPRX=3 2 0 -SPRX

End If

If SPRY>2 5 6 or SPRY<O

Rem * * * Wrap around Y axis

SPRY=256-SPRY

End If

Bob 1 , SPRX, SPRY, 1

Bob Draw

Screen SWap 0

Wait Vbl

Loop

Ultimate AMOS

1 90 Chapter 8

'Bouncing' a bob

Ultimate AMOS

So far we 've looked at how to restrict the movement of a bob within a
predefined boundary and how to make a bob 'wrap around' to the
opposite side of the screen when it goes beyond those boundaries. The
only type of bob movement control routine left that I can think of is the
classic 'Break Out' -style bouncing movement, where an object bounces
off the edges of a screen. Obviously this only really works if the object is
constantly moving (an object can 't bounce if it stops whenever it hits a
boundary !), so it's only really of use when the object is either computer
controlled or is never allowed to stop moving.

The key to this little routine is the way both the object's 'X ' and 'Y' co
ordinates and direction of movement are stored together in a data
structure. With each loop of the program, the direction of movement
along both the 'X ' and 'Y' axis are added to the object's co-ordinates. If
the object strikes the left or right hand side of the screen, the object's
direction of movement along the 'X ' axis is reversed and if the object
strikes the top or bottom edges of the screen, the direction of movement
along the 'Y ' axis is reversed. Obviously this routine doesn't allow you
to change the angle of the object's movement, but you should find it more
than suitable for most 'Break Out' -style games.

Games like 'Block Buster',

Ronny Simpson's brilliant

'Break Out' clone restrict

the movement of an

object by 'bouncing' it off

the edges of the boundary

that contains it.

Object control

Rem *** Bouncing Bob Demonstration

Rem *** Written by Jason Holborn

Screen Open O , 32 0 , 2 56 , 4 , Lowres

Flash Off : CUrs Off : Cls 0

Double Buffer

Autoback 0

Bob Update Off

Load "AMOSBOOK :AbkFiles/Ball .ABK"

Get Sprite Palette

Rem * * * Initialise Ball data structure

Dim BALL (4)

BALL (O) =160 : Rem * * *

BALL (1) =128 : Rem * * *

BALL (2) =5 Rem * * * X

BALL (3) =5 : Rem

Hot Spot 1 , $11

Set Bob 1, 1 "

Do

Bob Clear

* * * Y

X position of Ball

Y position of Ball

Direction of Ball

Direction of Ball

Rem *** Update Ball position

BALL (O) =BALL (O) +BALL (2)

BALL (1) =BALL (l) +BALL (3)

Rem *** Has ball hit top or bottom edge of screen?

If BALL (O » 310 or BALL (O) <2 0

BALL (2) =-BALL (2)

End If

Rem *** Has ball hit left or right edge of screen?

1 9 1

Ultimate AMOS

1 92

Loop

If BALL (1 » 2 4 6 or BALL (1) < 2 0

BALL (3) =-BALL (3)

End If

Bob 1 , BALL (O) , BALL (1) , 1

Bob Draw

Screen Swap 0

Wait Vbl

Chapter 8

Advanced obiect movement

Ultimate AMOS

Getting a bob or sprite onto the screen and then moving it is a very
simple aspect of AMOS programming, but the real challenge comes
when you want to apply what you've learned to 'real ' programming
projects like games and demos. So far all the examples that we've
covered have assumed that all we want to do is to simply move objects in
the four basic directions - up, down, left and right. Whilst this may be
fine for basic shoot 'em ups, very few games or demos employ such
simplistic movement of objects.

Writing the sort of object movement routines that you find in arcade
games is not quite as simple as it may first appear. For example, have you
ever sat down and considered how much work is involved in making an
object like the infamous Nintendo plumber 'Super Mario ' jump from one
level to another? Believe it or not, calculating the jump involves a lot of
complex mathematics using trigonometric functions such as Cosine and
Sine ! And how do you make an object move in any of the 360 degrees of
movement? Once again, some complex mathematics are involved. And
you thought games programmers had it easy!

Thankfully, you don't have to worry about coding such complex routines
yourself because I 've written them all for you ! Over the next few pages
you' ll find a whole range of game and demo-related routines that cover
just about every conceivable way of moving a sprite or bob. If you can
think of a particularly obscure way of moving a bob, then chances are
that there 's a routine somewhere within this chapter that wil l do the job!
I 've tried to cover as many different types of object movement that I

Object control

AMOS's maths
functions

1 93

could possibly think of. Attack waves, 360 degree movement, making an
object jump - they're al l here plus a few more besides.

360 degree movement
Simply adding or subtracting a fixed value depending upon the direction
of a joystick is fine for basic object control, but is does have the
disadvantage of producing rather rigid-looking movements - up, down,
up and left, right etc . Unless you 're lucky enough to have an analogue
joystick (and you know how to read the values that it returns !) , eight
basic directions are all that standard Amiga joysticks allow. Whilst this is
fine for your average shoot 'em up and platform game romp, real objects
just don't behave that way. In the real world, any object is capable of
turning and moving in a ful l 360 degrees of movement.

You can emulate this through AMOS by taking advantage of AMOS 's
powerful mathematical functions, CosO and SinO, to calculate the
direction of movement of an object in any direction.

It's worth noting however, that in order to use these functions, you must
have the file 'mathtrans . l ibrary' in the ' LIBS ' directory of your boot disk.
Bear this in mind if you intend to produce a game that runs from its own
disk - even once compiled, AMOS programs stil l expect to find this file!
The routine works by increasing or decreasing a variable that contains

Objects can easily be

moved in 360 degrees of

movement using AMOS'

powerful trigonometric

functions 'Cos()' and

'Sin()'.

Y-axisl------I·-�\\-I--

X-axis

U ltimate AMOS

1 94 Chapter 8

the ' angle ' of the object whenever the joystick is pushed left or right -

'0 ' degrees denotes a movement to the right and the angle variable would
increase to 360 in an anti-clockwise direction. Whenever the object i s
moved, the direction along the 'X' axis i s calculated using the formula
'Cos(angle) * speed' and the direction along the 'Y' axis is calculated
using the formula 'S in(angJe) * speed' . Note how the 'Degree' command
tells AMOS to perform its calculations using degrees rather than radians.

Rem * * * 3 6 0 degree obj ect movement

Rem * * * Filename - 3 6 0DegreeMovement . AMOS

Screen Open O , 32 0 , 2 56 , 4 , Lowres

Flash Off : Cls 0 : CUrs Off

Load "AMOSBOOK : AbkFiles/Ball . ABK"

Get Sprite Palette

Bob Update Off

Double Buffer

Autoback 0

Rem * * * Define Ball ' s data structure

Dim OBJ# (4)

OBJ# (0) = 1 6 0 : Rem * * * Ship X Position

OBJ# (1) =128 : Re.1ll * * * Ship Y Position

OBJ# (2) =0 Rem * * * Speed

OBJ# (3) =0 Rem * * * Angle (0 = North)

Degree

Do

Bob Clear

Rem * * * Update speed of obj ect

If Joy (l) and 2

OBJ# (2) =OBJ# (2) - 0 . 1

Ultimate AMOS

Object control

Loop

If OBJ# (2) < 0

OBJ# (2) =0

End If

End If

If Joy (l) and 1

OBJ# (2) =OBJ# (2) +0 . 1

If OBJ# (2 » 10

OBJ# (2) =10

End If

End If

Rem *** Update angle of obj ect

If Joy (l) and 4

OBJ# (3) =OBJ# (3) -OBJ# (2) /2

End If

If Joy (l) and 8

OBJ# (3) =OBJ# (3) +OBJ# (2) 12

End If

Rem *** Calculate new bearing

OBJ# (O) =OBJ# (O) +Sin (OBJ# (3 » *OBJ# (2) /2

If OBJ# (O » 320 or OBJ# (O) < O

OBJ# (O) =320 -0BJ# (O)

End If

OBJ# (l) =OBJ# (l) +Cos (OBJ# (3 » *OBJ# (2) /2

If OBJ# (l » 2 5 6 or OBJ# (l) < O

OBJ# (l) =256 -0BJ# (l)

End If

Bob 1 , OBJ# (O) , OBJ# (l) , 1

Plot OBJ# (O) , OBJ# (l)

Bob Draw

Screen Swap 0

Wait Vbl

1 95

Ultimate AMOS

1 96

Ultimate AMOS

The same 'CosO' and

'Sin!)' functions that we

used to move an object in

360 degrees of

movement are used to

make an object jump.

Making a bob 'iump'

Chapter 8

x = Cos(ongle) x Width
Y = Sin(angle) x Height

If you 're writing a game where you need to make an object appear to
jump from one place to another, then this routine is for you. What it does
is to calculate the points required to smoothly move an object through a
semi-circle using the same ' SinO ' and 'CosO' functions that we used to
produce the 360 degree movement routine above.

In many respects, this routine is actually considerably simpler, because
all it does is to calculate a invisible semi-circle which is split into a series
of points which the object is moved through. I 've written it in such a way
that the procedure '_JUMP' can easily be pulled out and imported into
your own games software with minimal changes needing to be made.

Once again, a data structure is created for the object that contains two
very important elements - the object's status (is he walking or jumping?)
and the current angle of the jump. If the object isn't moving, then the
angle is ignored and the status is given a value of ' 1 ' . If the player then
presses the fire button, the status is changed to '0 ' so that all joystick
input is ignored until the jump is finished (once in the air, the object
should not be allowed to change direction !) . The angle of the jump i s
then used to calculate the CU1Tent position of the object using the ' SinO '
and 'CosO' functions. A ' speed' variable is also used to calculate the
speed of the jump. The value held in this variable is simply added to the

Object control 1 97

angle each time a new position for the object is calculated and when the
angle increases above 1 80, the jump is finished and the object 's status is
reset to ' l ' allowing it to move under joystick control again.

Below is a l isting that demonstrates this movement technique in action.
Note how the height, width and the speed of the jump can easily be
adjusted from within the '_JUMP' procedure ! Believe it or not, you now
have one of the most complex routines needed for writing platform
games !

Rem *** Bob ' Jump ' Demonstration

Rem * * * Filename - BobJump . AMOS

Screen Open 0 , 3 2 0 , 2 5 6 , 16 , Lowres

Flash Off Curs Off : Cls 0

Bar 0 , 2 0 0 To 3 2 0 , 2 5 6

Bob Update Off

Double Buffer : Autoback 0

Load IAMOSBOOK :AbkFiles/Mario . abk"

Get Sprite Palette

Rem * * * Define Mario Bob data structure

Dim MARIO (4)

MARIO (O) =160 : Rem * * * Bob X Position

MARIO (1) =200 : Rem * * * Bob Y Position

MARIO (2) =0

MARIO (3) =0

Rem *** Status O =Walk l=Jump

Rem * * * Jump angle

For C=l To 6

Hot Spot C , $12

Next C

FRAME = 1 FRAMEDELAY=O SPEED=4

U ltimate AMOS

1 98

Global DRECTION, XOFFSET, YOFFSET, MARIO () , SPEED

Do

Bob Clear

If Joy (l) and 4

If MARIO (2) =0

MARIO (O) =MARIO (O) -SPEED

DRECTION=-l

FRAME = FRAME or $8000

End I f

End If

I f Joy (l) and 8

If MARIO (2) =0

MARIO (O) =MARIO (O) +SPEED

DRECTION=l

FRAME = FRAME and %111

End If

End If

If Joy (l) =O

I f MARIO (2) =0

DRECTION=O

FRAME=FRAME and $ 8 0 0 0

FRAME=FRAME+3

End If

End If

I f Joy (l) and 16

If MARIO (2) =0

MARIO (2) =1

XOFFSET=MARIO (O)

YOFFSET=MARIO (l)

End If

End If

If MARIO (2) =1

_JUMP

FRAME = FRAME and $ 8 0 0 0

FRAME=FRAME+3

End If

Ultimate AMOS

Chapter 8

Object control

Loop

I f MARIO (O) > 3 2 0

MARIO (O) = 3 2 0

End I f

If MARIO (O) < O

MARIO (O) = 0

End If

Bob l , MARIO (O) , MARIO (l) , FRAME

Bob Draw

Screen SWap 0

Wait Vbl

I f FRAMEDELAY>6-SPEED

FRAMEDELAY=O

FRAME=FRAME+l

I f FRAME=? or FRAME=$800?

FRAME=FRAME and $8000

FRAME=FRAME+l

End I f

End I f

FRAMEDELAY=FRAMEDELAY+l

Procedure _JUMP

HEIGHT=160 : Rem * * * Maximum height of Jump

WIDTH=8 0 : Rem * * * Width of Jump

JUMPSPEED=SPEED*2 : Rem * * * Speed of Jump

Degree

If MARIO (3) < 18 1

Rem * * * Jump left

If DRECTION=-l

X=Cos (MARIO (3 » *WIDTH/2

MARIO (0) =XOFFSET+X-WIDTH/ 2

1 99

Ultimate AMOS

200

Else

End If

Rem * * * Jump Right

If DRECTION=l

X=-Cos (MARIO (3 » *WIDTH/2

MARIO (O) =XOFFSET+X+WIDTH/2

End If

Y=-Sin (MARIO (3 » *HEIGHT/2

MARIO (l) =YOFFSET+Y

MARIO (3) =MARIO (3) +JUMPSPEED

Rem * * * Reset angle and status

MARIO (l) =YOFFSET

MARIO (2) =0

MARIO (3) =0

Chapter 8

End If

End Proe

Ultimate AMOS

Attack waves
If you 're writing arcade games of the shoot 'em up variety then one of
the most important aspects of the game 's design is to create attack waves
for all the marauding aliens that will challenge the player's gaming
abilities. Most would-be games programmers tend to stick with the rather
boring ' straight line ' approach that simply moves your aliens across the
screen without changing their direction. Although this can be effective at
times, just about any games player worth their salt will eventually realise
that the game can easily be conquered simply by being in the right place
at the right time.

A far more challenging approach is to make use of AM OS 's powerful
math functions to calculate the route of an alien 'on the fly ' . Most
commercial shoot 'em ups use the math approach simply because it
allows the programmer to produce complex sprite and bob movements
with a minimal amount of hassle. The keys to all this digital trickery are
the AMOS 'SinO' and 'CosO ' functions that, as any mathematician will
tell you, are used to calculate the sine and cosine values of a given value.

Object control

Complex attack waves for

shoot 'em ups can easily

be created using the

'SinO' function.

20 1

Note that in order to use the values returned by either, you should include
the 'Degree' command near the start of your program. This tells AMOS
to convert the ' radian' values returned by AMOS's math functions to far
more manageable ' degrees ' . This l isting moves an spaceship along a
series of sine waves, drawing the waves to show you the movement path:

Rem * * * Sine Attack Wave Demonstration

Rem * * * Filename - SineAttack . AMOS

SPRX=O : SPRY=O : FRAME=8 : FRAMEDELAY=O

Screen Open O , 32 0 , 2 56 , 16 , Lowres

Flash Off : Curs Off : Cls 0

Load "AMOSBOOK : AbkFiles/ SpaceShip . abk"

Get Sprite Palette

Bob Update Off

Double Buffer : Autoback 0

HEIGHT=60 : Rem * * * Height of wave

Ultimate AMOS

202

WIDTH=l : Rem * * * Width of wave

POSITION=128 : Rem * * * Centre POSITION OF Wave

SPEED=l : Rem * * * Speed of bob movement

Ink 5

Degree

Do

Loop

For SPRX=3 2 0 To -40 Step -SPEED

Bob Clear

Rem * * * Calculate Bob position

SPRY=Sin (SPRX*WIDTH) *HEIGHT+POSITION

Bob l , SPRX- B , SPRY-8 , FRAME

Plot SPRX, SPRY

Bob Draw

Screen SWap 0

Wait Vbl

Rem * * * Update animation

If FRAMEDELAY=5

FRAME=FRAME-l

If FRAME=O

FRAME = 8

End If

FRAMEDELAY=O

End I f

FRAMEDELAY=FRAMEDELAY+l

Next SPRX

WIDTH=WIDTH+l

If WIDTH=5

WIDTH=l

End If

Ultimate AMOS

Chapter 8

Object control 203

What's more, if you want to generate an attack wave that flies in
sequence Uust like the Red Arrows), you don 't even have to calculate a
new position for each bob by calling the ' SinO' or 'CosO ' functions over
and over again. The simplest way is to simply have a single set of co
ordinates (the 'X' and Y' positions of the ' central ' bob) and then simply
calculate the positions of all bobs around this single set of co-ordinates
simply by 'offsetting' them. Here's a slightly modified version of the
same listing :

Rem * * * ' V ' Shape Sine Attack Wave Demonstration

Rem * * * Filename - V-AttackWave .AMOS

SPRX=O : SPRY=O : FRAME=8 : FRAMEDELAY=O

Screen Open 0 , 32 0 , 2 5 6 , 16 , Lowres

Flash Off : Curs Off : Cls 0

Load "AMOSBOOK : AbkFiles/SpaceShip . abk"

Get Sprite Palette

Bob Update Off

Double Buffer Autoback 0

HEIGHT=60

WIDTH=l

POSITION=128

SPEED=2

Ink 5

Degree

Do

For SPRX=3 2 0 To -40 Step -SPEED

Bob Clear

Rem * * * Calculate Bob position

SPRY=Sin (SPRX*WIDTH) *HEIGHT+POSITION

Ultimate AMOS

204

Loop

Bob 1 , SPRX, SPRY, FRAME

Bob 2 , SPRX+ 2 0 , SPRY-3 0 , FRAME

Bob 3 , SPRX+2 0 , SPRY+30 , FRAME

Bob 4 , SPRX+4 0 , SPRY- 6 0 , FRAME

Bob 5 , SPRX+40 , SPRY+60 , FRAME

Bob 6 , SPRX+40 , SPRY, FRAME

Bob Draw

Screen Swap °
Wait Vbl

Rem * * * Update animation

If FRAMEDELAY=5

FRAME=FRAME-l

If FRAME=O

FRAME = 8

End If

FRAMEDELAY=O

End If

FRAMEDELAY=FRAMEDELAY+l

Next SPRX

WIDTH=WIDTH+l

If WIDTH=5

WIDTH=l

End If

'Snake' attack waves

Chapter 8

The only real problem with this approach is that the attack wave looks
rather 'wooden' and therefore it lacks the sort of fluidity that you find in
most commercial arcade games. If you want to create an attack wave
with each ship following in the other's path (forming a sort of ' snake'
formation), then all you have to do is to calculate a new 'Y' co-ordinate
for each ship by offsetting the 'X ' co-ordinate of the ship by a fixed
number of units. The great thing about this routine is that you really only
need to keep track of the 'X ' co-ordinate of a single ship - because the

U ltimate AMOS

Object control

More complex attack

waves can be generated

simply by calculating the

position of each alien

separately on the sine

wave.

205

positions of all the other ships are simply calculated by offsetting the 'X'
co-ordinate of the first ship, there 's no need to waste valuable memory.
Fancy a demonstration? Wel l , as if by magic, here's a demonstration
listing that I prepared earlier (Blue Peter eat your heart out !) .

Rem * * * Sine ' Snake Wave ' Demonstration

Rem * * * Filename - SnakeWave . AMOS

SPRX=O : SPRY=O : FRAME=8 : FRAMEDELAY=O

Screen Open O , 32 0 , 2 5 6 , 16 , Lowres

Flash Off : Curs Off : Cls 0

Load IAMOSBOOK :AbkFiles/ SpaceShip . abk"

Get Sprite Palette

Bob Update Off

Double Buffer Autoback 0

HEIGHT=60

WIDTH=l

POSITION=128

SPEED=2

U ltimate AMOS

206

Degree

Ink 5

Do

Loop

For SPRX=3 1 9 To -200 Step -SPEED

Bob Clear

Rem * * * Calculate new ' Y ' co-ordinate

Rem * * * for all obj ects

OBJNUMBER=O

For C=O To 2 0 0 Step 2 0

Y=Sin « SPRX+C) *WIDTH) *HEIGHT+POSITION

Bob OBJNUMBER, SPRX+C , Y, FRAME

OBJNUMBER=OBJNUMBER+l

Next C

Bob Draw

Screen SWap 0

Wait Vbl

Rem * * * Update animation

If FRAMEDELAY=5

FRAME=FRAME-l

If FRAME=O

FRAME = 8

End If

FRAMEDELAY=O

End I f

FRAMEDELAY=FRAMEDELAY+l

Next SPRX

WIDTH=WIDTH+l

If WIDTH=5

WIDTH=l

End If

Ultimate AMOS

Chapter 8

Object control 201

Circular attack waves
Some very fancy attack waves can be produced by combining both the
' SinO ' and ' CosO ' functions. As you will probably already know,
performing a loop that calculates and then plots the Cosine and Sine
values between 0 and 360 will produce a perfect circle, and you can use
this to produce some very nice looking attack waves. Type in this listing
for a vivid example - This code too draws the paths of the objects, so
you '11 be able to see the effect of each 'S inO ' and 'CosO' calculation.
Who said trigonometry was useless !

Rem * * * Complex Sine and Cosine Attack Wave Example

Rem * * * Filename - CosineSineAttack . AMOS

FRAME=8 : FRAMEDELAY=O

Screen Open 0 , 32 0 , 2 56 , 16 , Lowres

Flash Off : Curs Off : Cls 0 : Hide

Load "AMOSBOOK :Abkfiles/SpaceShip . abk"

Get Sprite Palette

Bob Update Off

Double Buffer : Autoback 0

XPOSITION#=360

YPOSITION=128

SIZE=50

Degree

Do

For C=O To 3 6 0 Step 4

Bob Clear

Xl=Cos (C) *SIZE+XPOSITION#

X2=Cos (C-90) *SIZE+XPOSITION#

Yl=Sin (C) *SIZE+YPOSITION

Y2=Sin (C-90) *SIZE+YPOSITION

Ultimate AMOS

208

Loop

Bob 1 , Xl , Yl , FRAME

Bob 2 , X2 , Yl , FRAME

Bob 3 , Xl , Y2 , FRAME

Bob 4 , X2 , Y2 , FRAME

Ink 2 Plot Xl , Yl

Ink 3 Plot Xl , Y2

Ink 5 Plot X2 , Yl

Ink 6 Plot X2 , Y2

Bob Draw

Screen SWap 0

Wait Vbl

Rem * * * Note how a ' real ' number is used to

Rem * * * slow down movement ! AMOS simply rounds

Rem * * * these numbers down for the ' Bob ' command

XPOSITION#=XPOSITION#-O . 5

I f XPOSITION#<-20

XPOSITION#=3 60

End If

FRAMEDELAY=FRAMEDELAY+l

If FRAMEDELAY=5

FRAMEDELAY=O

FRAME=FRAME-l

If FRAME=O

FRAME = 8

End If

End If

Next C

Ultimate AMOS

Chapter 8

Object control 209

Firing missiles
What makes shoot 'em up games so appealing is the chance to vent all
that fury and frustration that builds up inside us all during the day on
some poor hapless alien that just happens to have wondered in front of
your laser cannons. All shoot 'em ups and quite a few other game genres
allow the player's sprite (and perhaps even the aliens that you 're
attacking) to fire objects at other sprites in the hope of bringing about
their untimely demise. In a game l ike 'Xenon 2 ' , for example, the ability
to fire projectiles at other sprites is taken to extremes with a whole range
of alien-splattering hardware available (including the infamous ' Super
Nashwan Power' weaponry).

If you 're writing a shoot ' em up, then the routine below will definitely be
useful to you. It displays a small spaceship on the screen that can be
moved around with the joystick. When you press the firebutton, however,
a pair of missiles shoots from the front of the ship and flies across the
screen. Give it a try - I 've also added a sampled sound effect which helps
to give the program a l ittle bit of extra atmosphere.

Once again, the missiles are handled internally using a set of four data
structures, one for each missile. When the player presses the firebutton,
the '_FIRE' routine checks to see whether a missile is available for firing
(all four missiles could still be on the screen !) . If there is , the missile i s
effectively fired by setting the missile 's status flag, 'MISSILE(n,O) ' - 'n '

I f you're writing a shoot

'em up, then the player's

ship must be able to fire

missiles at the attacking

aliens.

Ultimate AMOS

2 1 0 Chapter 8

is the number of the missile - to 1 . The starting position of the missile is
then calculated by offsetting it from the position of the spaceship. Any
missiles that have been fired are then constantly moved until they leave
the screen. Once a missile has left the screen, it's then effectively
available for refiring. Clever, eh?

Rem * * * Firing Missiles Demonstration

Rem * * * Filename - FireMissile .AMOS

Screen Open O , 3 2 0 , 25 6 , 16 , Lowres

Flash Off : Curs Off : Cls ° : Hide

Double Buffer : Autoback °
Bob Update Off : Sprite Update Off

Load "AMOSBOOK :AbkFiles /CosmoSoundFX . ABK"

Load "AMOSBOOK :AbkFiles/CosmoShips . ABK"

Get Sprite Palette

Rem * * * Initialise ship Bob . . .

SPRX=4 0 : SPRY=128

Rem * * * Initialise Missiles Data structure

Rem * * * Missiles (n, O)

Rem * * * Missiles (n, l)

Rem * * * Missiles (n, 2)

Dim MISSILE (4 , 3)

MISSILEDELAY=O

Missile status O=Ready

Missile X position

Missile Y position

Global SPRX, SPRY, MISSILE () , MISSILEDELAY

Do

Bob Clear

If Joy (l) and 1

SPRY=SPRY-2

End If

Ultimate AMOS

l=Fired

Object control

Loop

If Joy (l) and 2

SPRY=SPRY+2

End I f

If Joy (l) and 4

SPRX=SPRX-2

End I f

If Joy (l) and 8

SPRX=SPRX+2

End I f

Rem * * * Has firebutton been pressed?

If Joy (l) and 16

_FlREMISSILE

End If

Rem * * * Update and redraw all missiles

_MOVEMISSlLES

Rem * * * Redraw ship bob . . .

Bob 1 , SPRX, SPRY, 1

Bob Draw : Sprite Update

Screen Swap 0

Wait Vbl

Procedure _FlREMISSILE

MISSILENUM=-l

MXDELAY=14 : Rem *** Delay between firing of missiles

Rem * * * Has enough time passed before firing next missile?

I f MISSILEDELAY>MXDELAY

Rem * * * Is there a missile available?

For C=O To 3

If MISSILE (C , O) =O

MISSILENUM=C

2 1 1

Ultimate AMOS

2 1 2

End I f

Next C

Rem * * * Has a spare missile been found?

If MISSILENUM> -l

Rem * * * Initialise missile . . .

MISSILE (MISSILENUM, 0) =1

MISSILE (MISSILENUM, l) =X Hard (SPRX) +22

MISSILE (MISSILENUM, 2) =Y Hard (SPRY) +7

MISSILEDELAY=O

Rem * * * Play fire sound effect . . .

Sarn Play 1

End If

End If

End Proc

Procedure _MOVEMISSILES

SPEED=lO : Rem * * * Speed of missiles . . .

For C=O To 3

Rem * * * Has missile been fired?

If MISSILE (C , O) =l

Rem * * * Draw sprite . . .

Sprite 2 * (C+10) , MISSILE (C, l) , MISSILE (C , 2) , 3

Rem * * * Move missile . . .

MISSILE (C , l) =MISSILE (C , l) +SPEED

If MISSILE (C , l » X Hard (3 2 0)

MISSILE (C , O) =O

Sprite Off 2 * (C+10)

End If

End If

Ultimate AMOS

Chapter 8

Object control 2 1 3

Next C

Rem * * * Increase missile delay counter . . .

MISSILEDELAY=MISSILEDELAY+l

End Proc

Keeping up the speed

Use of colours

No one could possibly cast doubts on AMOS 's admirable turn of speed,
but things can slow down occasionally when using blitter objects. The
problem isn't so bad with hardware sprites, simply because they are not
drawn as part of the screen bitmap. But if you've ever written a game or
demo that uses more than a couple of highly colourful bobs, then chances
are you've already encountered this rather annoying problem - although
AMOS keeps everything running smoothly, the redraw rate drops to such
a slow pace that even displays that are sync 'ed correctly become very
jerky indeed.

One of the best ways to increase the speed of bob redraws is the decrease
the number of colours you use on your game screens - as any games
programmer will tell you, the more colours you use, the slower your
screen updates. Most arcade games will squeeze into an eight colour
screen, and don't forget that you can increase the number of apparent
colours by making use of hardware sprites (they use colour registers 1 7
through to 3 1) and even the 'Rainbow' command we covered i n the last
chapter.

Another reason why bobs can be very slow is caused by AMOS '
insistence on taking most of the work away from the programmer.
AMOS actually shields the programmer from most of the drudgery
usual ly associated with screen, sprite and bob handling. Take dual
playfield displays, for example. To an assembler programmer, a dual
playfield display is simply two separate bitmaps which he must manually
keep track of. Whenever he needs to swap the two screens, this must be
performed manually by redirecting screen DMA to the logical screen.
AMOS, on the other hand, does all this work for you - just issue the
'Double Buffer' command and AMOS wil l then automatically swap the
physical and logical screens every 50th of a second.

Ultimate AMOS

2 1 4

Bob handling

U ltimate AMOS

Chapter 8

You 're probably wondering why I am criticising what is undoubtedly one
of AMOS ' strengths . After all, the easier it is to program a computer, the
better, surely? To an extent this is true, but unfortunately AMOS 's
simplicity comes at a price. Because AMOS's bob handling has not been
optimised for a particular program, there 's an unavoidable loss in speed.
This decrease in speed isn 't always noticeable, but I can guarantee you' l l
notice it if you try writing a game !

As always, though, AMOS offers us a solution. Using a couple of very
powerful commands built into every version of AMOS (yes, even Easy
AMOS), it is possible to speed up most programs by turning off AMOS's
automatic bob handling. This obviously creates more work for the
programmer (after all, if AMOS isn ' t looking after your sprites and bobs,
it's down to you), but the little bit of extra work involved is more than
worth the effort when compared to the increase in the rate of screen
redraw. Programs that veritably crawled along using AMOS ' automatic
screen and bob handling can be totally transformed into the sort of super
slick affairs that we've all come to expect from AMOS.

Because AMOS takes away so much of the work involved in moving
blitter objects, few of us truly appreciate what goes on whenever the
position of a bob is changed. Unlike sprites (don't forget that they aren 't
technically part of the screen display), the Amiga's blitter has to carry
out some pretty complex operations in order to move any bob. To
appreciate this process more fully, let's take a look at exactly what's
involved:

1 When your program tel ls AMOS to
display a bob, the first thing that the blitter
does is to transfer a rectangular area of the
screen that will be obscured by the Bob to a
temporary 'safe ' area of memory.

Object control 2 1 5

2 With the background image safely stored,
the Bob is pasted down directly into the
screen bitmap, therefore destroying the
background graphics beneath it.

3 Wait for a vertical blank before
proceeding . . .

4 The bob is now removed by copying the
rectangular area of background graphics
that was stored in a temporary memory
location back to the screen bitmap.

5 With the entire bob redrawing process
complete, loop back to step 1 .

As you can see, moving a bob isn 't simply a process of redrawing it at a
new screen position. Most of the time, all this work is carried out almost
instantly by the very rapid blitter chip inside your Amiga. But things can
start to slow down considerably when you attempt to move more than
one blitter object at once. Because the blitter is forced to redraw all your
bobs one at a time before the screen can be swapped, the amount of
setting up required to make the blitter work causes an unavoidable
slowing down.

In order to keep things running as fast as possible, though, AMOS allows
us to turn off the automatic redrawing of blitter objects that causes the

U ltimate AMOS

2 1 6 Chapter 8

reduction in speed. All you need to do is to issue the 'Bob Update Off'
command at the start of your program and AMOS will no longer redraw
blitter objects unless you expressly tel l it to do so. Even if your program
directly moves blitter objects using the 'Bob' command, they won't
actually be drawn into the logical screen (the hidden screen) until you
issue the 'Bob Redraw ' command. What's more, the old bobs that have
to be removed won't be removed until you issue the ' Bob Clear'
command. Let 's take a look at some skeleton code that makes this
process somewhat clearer (you won 't find this in the disk bundled with
this book) :

Rem ** Start of Program **

Bob Update Off

"w E

A S
()()£

Do

Loop

Rem * * * Remove all our old bobs

Bob Clear

Rem * * Move Bobs now **

Rem * * * Draw all bobs onto screen

Bob Draw

WaitVBL

Before you type in this code only to find that it doesn't work (hence the
reason I haven't put it on the disk !), I must stress that it is purely skeleton
code. That is, it's serves only to demonstrate the placement of the three
Bob commands discussed above. As an example of how to use controlled
bob redraws, though, it serves our purposes beautifully.

As you can see from the l isting, the ' Bob Update Off' command is issued
at the very start of our program. This only needs to be executed once, so
there 's no need to place it inside the program's main loop. It really acts
as nothing more than a toggle that turns AMOS 's automatic bob updating
facility on and off. You can therefore (if you really want to) turn bob
updating back on again using the 'Bob Update On' command.

Ultimate AMOS

Object control

Screen
redrawing

2 1 7

Moving on, the l isting then enters a loop that forms the backbone of all
well programmed computer games. The very first instruction that should
be performed within your main game loop is the 'Bob Clear' command
that - not surpris ingly - removes all bobs that have been previously
drawn into the logical screen by redrawing the background graphics that
they obstructed. Once this is done, the rest of the loop is performed as
normal without any changes needing to be made.

Even if the loop moves the bobs, they will not be drawn onto the screen.
Instead they will all be buffered up ready to be performed as soon as you
give the go ahead. It's a bit like turning a stop valve on and off - if you
leave the stop valve open, you' l l get a very slow trickle of water. But
close it for a while and then re-open it and you' l l get a sudden rush of
water - although the same amount of water has passed through the stop
valve, restraining its flow until you were ready allowed a greater amount
of water to pass through in less time. Think of the water as blitter
operations and you won't go far wrong!

The instruction that opens that stop valve is none other than 'Bob Draw ' ,
which instructs AMOS to perform all bob movements that were
requested since the last time the instruction was called. And, because
your bobs are being moved 'en masse ' , AMOS will move them
considerably faster than would have previously been thought possible.
Finally, the whole bob drawing process is sync'ed in with the vertical
blanking period using the 'WaitVbl ' instruction before the screen is
automatically brought into view.

If your bobs are being drawn onto a plain background, then it 's w0l1h
taking advantage of the 'Set Bob' command's ability to turn off the
automatic screen redrawing process normally performed whenever a bob
is moved. As you wil l know, when you place a bob on top of a graphic,
the area of the graphic is saved into memory. When you then move the
bob to another part of the screen, the background is restored
automatically by transferring the area of saved background graphics back
to the screen.

Whilst this is necessary if your bobs are moving over a picture (or
whatever), it isn't needed if the background is plain. You must, however,

Ultimate AMOS

2 1 8

tell AMOS what colour the background is.
background was coloured using colour register
following command:

Chapter 8

For example, if the
3 , you would use the

Set Bob BOBNUMBER, 4 " [!][!)]�[!]
CQMt.w.lD [)(FtrnoN

Manual screen
swapping

Ultimate AMOS

Note how a value of 4 is passed instead of the actual colour register
number 3. Don 't worry too much about this - it's just a pecul iarity of
AMOS. Just bear in mind that you must add 1 to the colour that you pass
to the ' Set Bob' command.

Remember screen synchronisation, which we covered in the last chapter?
Screen synchronisation plays a very important role in bob handling too.
Because bobs are drawn into a screen bitmap just like any other graphic
(our scrolling routines, for example), it's equally important to keep
AMOS 's double buffering on the leash when using bobs too. If you want
to keep your bobs moving smoothly, I strongly suggest you turn off
AMOS 's automatic screen fl ipping faci lity (using AutoBack 0) and swap
screens manually using the 'Screen Swap' instruction.

Switching to AutoBack 0 mode does have its disadvantages, however.
Because the entire process of updating a double buffered display is left to
the programmer, drawing normal graphics directly onto the display is
complicated somewhat.

Say, for example, you wanted to write some text onto the screen at a
given screen position. If you were running under AutoBack 0, it would
be left down to you to ensure that both the physical and logical screens
are updated. AMOS does come to the rescue here a bit, however, with
AutoBack mode 1 . Simply change 'AutoBack 0' to 'AutoBack l ' and
AMOS will stil l allow you complete control over screen flipping, but will
continue to make sure that graphics (not including Bobs) are drawn into
both the physical and logical screens .

Here's a quick demonstration program that shows how much smoother
bob movement is when handled manually :

Object control

Rem *** Smooth Bob Movement Demonstration

Rem * * * Filename - BobUpdate .AMOS

Screen Open O , 32 0 , 2 5 6 , 16 , Lowres

Flash Off : Curs Off : Cls 0

Screen Open l , 320 , 17 , 2 , Lowres

Flash Off : Curs Off : Cls 0

Palette $FO O , $FFF

Locate 0 , 0

Locate 0 , 1

Screen 0

Centre "Move ship with j oystick and then"

Centre "Press SPACE BAR to make Bob smooth"

Load "AMOSBOOK :ABKFiles /LargeShip . ABK"

Get Sprite Palette

Double Buffer

SPRX=O : SPRY=12 8 : FRAME=l : FRAMEDELAY=O

Global SPRX, SPRY, FRAME , FRAMEDELAY

Rem * * * Normal bob update ...

Repeat

_MOVESHIP

Bob l , SPRX, SPRY, FRAME

Wait Vbl

Until Inkey$=" "

Screen 1 : Cls 0

Centre "Now for some smooth movement "

Screen 0

Bob Off 1

Cls 0

Set Bob 1, 1 , ,

Bob Update Off

Autoback 0

2 1 9

UI�mote AMOS

220

Rem *** Manual Bob update with Autoback 0 . . .

Do

Loop

Bob Clear

_MOVESHIP

Bob 1 , SPRX, SPRY, FRAME

Bob Draw

Screen SWap 0

Wait Vbl

Procedure _MOVESHIP

If Joy (l) and 1

SPRY=SPRY-4

If SPRY< -40

SPRY=-40

End If

End If

I f Joy (l) and 2

SPRY=SPRY+4

If SPRY>23 0

SPRY=230

End I f

End I f

If Joy (l) and 4

SPRX=SPRX-4

If SPRX< -180

SPRX=-180

End I f

End If

I f Joy (l) and 8

SPRX=SPRX+4

If SPRX>3 0 0

SPRX=300

Ultimate AMOS

Chapter 8

Object control

End If

End If

If FRAMEDELAY>2

FRAME=FRAME+l

If FRAME=3

FRAME = 1

End If

FRAMEDELAY=O

End If

FRAMEDELAY=FRAMEDELAY+l

End Proe

22 1

Ultimate AMOS

222

Ultimate AMOS

223

AMAl
• Multi-tasking and interrupts

• How AMAL works

• AMAL Editor versus ' embedded' code

• Assigning and handling channels

• AMAL registers - Ioeat global and 'special'

• AMAL instruction set

• AMAL functions

• Using more than 1 6 channels
• Useful AMAL routines

Ultimate AMOS

224

Interrupts

U ltimate AMOS

Chapter 9

M ost modern computers, including the Amiga, use what can best
be described as a 'serial processor' . These rather ageing devices
(even the Amiga 4000/040 is based around a microprocessor

design that is older than most AM OS users themselves !) are limited to
performing just a single task at once. Even the Amiga's multitasking
capabilities are just a clever form of 'task switching' where the main
processor shares its time between several programs, performing a few
lines from each as it goes. However, the Amiga's processor runs so fast
that you ' re unlikely to ever notice the difference between its task
switchjng technique and a true 'parallel processor' such as the infamous
transputer chip.

Until Commodore get around to designjng an Arruga that uses a parallel
processor (which is very unlikely anyway), every program you write in
AMOS - and indeed any programming language - is executed by the
Arruga an instruction at a time. Obviously this doesn ' t impose too many
limitations if you ' re writing a fairly simple utility or demo, but games are
considerably more complex. Every fiftieth of a second an average game
will perform a myriad of different tasks in order to keep everything
running smoothly. Even on an Amiga 4000, you may often find that your
program is so complex that the Arruga is unable to update the game fast
enough to keep it running at an acceptable rate. The AMOS compiler can
help, but even compiled games may still not be fast enough.

Thankfully Motorola, the company that produces the processor inside
your Amiga, took this into account and they very cleverly built into
every 68000 series processor what are known as 'interrupts ' . Most
processors offer interrupts in one form or another, but the Amiga's
processor is particularly well served. An intelTupt is simply a clever
hardware-level trick that forces the Al1l.iga's processor to run several
programs simultaneously using a task-switching technique similar to that
used by the Arruga's multitasking operating system. Every 50th of a
second or so, the Amiga switches from the program that it is running and
runs another separate program instead. Both the program and any
interrupt-driven programs that you create are assigned their own 'time
slice ' , effectively giving the Arruga the ability to run programs in
parallel.

AMAL

AMAL

Easy AMOS

225

AMOS supports interrupt-driven routines too in the form of AMAL, a
very powerful facility that is effectively a separate programming
language in its own right. AMAL (which, for the nosy amongst you,
stands for 'AMOS Animation Language') has been specifically designed
to handle the sort of mundane tasks that you would have normally have
been forced to handle yourself, therefore eating up valuable processor
time. Obviously, AMAL programs eat up processor time themselves, but
the amount is miniscule when compared to normal AMOS code. Because
each and every AMAL instruction works at a very low-level, they run
considerably faster than their AMOS counterparts, making AMAL a
valuable time saver.

As its ful l name suggests, AMAL is primarily designed for handling the
movement and animation of objects. As a result, it gives us a nice and
easy (and very fast !) method of producing the sort of smooth animation
effects usually associated with commercial arcade games . AMAL is
capable of handling three different types of object - sprites, bobs and
screens (yes, AMAL treats screens as just another type of object that can
be moved around your monitor or TV display) . The great thing about
AMAL (apart from the obvious time savings) is the fact that once you 've
set an AMAL program running, you can virtually forget about it and
carry on with the rest of your program. If you 've written an AMAL
'program' to move and animate a Bob, for example, it will continue to
fly around the screen even if your program is doing something entirely
different !

Before we go any further, I ' m afraid I 've got some bad news for Easy
AMOS users - Easy AMOS doesn' t support AMAL in any shape or
form. As a result, unless you ' re considering upgrading to either AMOS
1 .35 or - better still - AMOS Professional, I 'm afraid this entire chapter
is going to be of little use to you. Sorry guys !

AMAL principles
In order to get AMAL to do anything even remotely useful , you need to
write an AMAL 'program' . AMAL programs can be created in one of
two ways - either using the 'AMAL Editor' accessory bundled with
AMOS or by embedding them directly into your program code. Most

U ltimate AMOS

226

AMAL Editor

'Embedding'
AMAL code

AMAL programs can be

coded directly into a

memory bank using the

AMAL Editor bundled with

AMOS. Although this

makes AMAL coding

faster, your AMAL

programs will not be

visible from the main

AMOS Editor.

Chapter 9

programmers prefer the latter approach because it allows you to edit your
AMAL programs alongside the AMOS program that will use them. The
AMAL Editor, on the other hand, stores AMAL programs into a memory
banle Although this gives you a far greater level of code security (your
AMAL programs will be invisible to anyone who takes a sneaky look at
your source code !) , i t can make program development somewhat more
complex as you wil l have to load the AMAL Editor each time you wish
to make a change to your AMAL programs. For these reasons, we shall
not be covering the AMAL Editor within this book. If you want to find
out more, then check your user 's guide.

Embedding an AMAL program into an AMOS program is very easy
indeed. All you have to do is to assign the AMAL program to a string
variable at the start of your program. Although the AMOS Editor can
horizontally display only 80 characters at once, you can assign enormous
AMAL programs to the same string variable using something like the
following:

A$

A$

"Your AMAL program code goes here . If you want " (@)JEll0l)
A$ + "to add extra code then you ' l l have to append"

A$ A$ + "the extra l ines us ing this technique . "

[!JJ[D
EXAMPlE COD(

Once you' ve defined your AMAL program, you need to do a bit of
setting up to get it running. Just l ike the ' Anim' command we covered in
chapter 7 , AMAL programs are run under interrupt using what are

U ltimate AMOS

AMAL 227

known as 'channels ' . Before you can assign your AMAL program to a
channel, however, it's important that you start by telling AMAL which
object you wish the AMAL program to affect.

By default, AMAL automatically assigns the first 1 6 channels to the first
1 6 hardware sprites, but it's far better programming practice to
specifically tell AMAL which object you wish it to use. For sprites and
bobs, AMAL offers two strains of the 'Channel' command:

Channel CHANNEL To Sprite SPRNUM

Channel CHANNEL To Bob BOBNUM
(!][!lH!I(!JI

COMMAND DEfMT10N

Channel

Channel

Channel

Channe l

CHANNEL The 'Channel ' parameter is a value between 1 and 1 6 that tells
AMOS which interrupt channel the object is to be assigned to. Note that
in order for this command to work, the object must have been created
first using either the 'Sprite' or 'Bob' commands.

SPRNUM/BOBNUM The 'SprNum' and 'BobNum' parameters are
simply the identifier number of the sprite or bob that you wish to tie to
the channel.

AMAL isn ' t just restricted to controlling sprites and bobs, however. Four
more fOlms of the 'Channel ' command are also on offer that give you
extensive control over the size, position and offset of any screen. If
you 've created a rainbow, AMAL can control this too.

Here are those extra 'Channel' commands in all their AMOS glory. The
parameter format of them all is fairly obvious - just specify the channel
number followed by the identifier number of the screen that you wish to
tie to that channel .

CHANNEL To Screen D i sp l ay SCRNUM

CHANNEL To Screen O f f set SCRNUM (!][!Jj�(!JI
CHANNEL To Screen S i z e SCRNUM """","" DEfNlTXlN

CHANNEL To Rainbow SCRNUM

Ultimate AMOS

228 Chapter 9

Once you've assigned an object to an interrupt channel, you' re ready to
pass your AMAL program to that channel so that it knows what it must
do. The command that you need is as follows:

Amal CHANNEL , STRING$ 01[!JJ@lI(IJ
COMMAND DUMTK)N

CHANNEL The 'Channel' parameter is a value between 1 and 1 6 that tells
AMOS which interrupt channel your AMAL program is to be assigned
to. Although you can theoretically create more than 1 6 channels (as we
shall see later in this chapter), only the first 16 channels will run under
interrupt.

STRING$ The 'String$' parameter is the name of the string variable that
contains your AMAL program. As a result, you should ensure that your
AMAL program is defined before calling this command.

With both the object you wish to control and your AMAL program
assigned to a interrupt channel, all that remains is to bring the AMAL
program to life with the 'Amal On' command. Here's a quick
demonstration listing to whet your appetite - not only does it
demonstrate how to move and animate a bob under AMAL control, but it
even exits the program and goes back to AMOS's 'Direct' mode after
everything has been set up, leaving the AMAL program running ! Don't
worry too much about the AMAL program for the moment - we' ll be
covering the format of AMAL programs later.

Rem * * * Simple AMAL Demonstrat ion

Rem * * * Filename - AmaIDemo . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 1 6 , Lowres

Flash Off : Curs Off : Cls 0

Load "AMOSBOOK : AbkF i l e s / He l icopter . ABK"

Get Sprite Palette

Double Buf fer

U ltimate AMOS

AMAL

Rem * * * Define AMAL Program. ..

MOVESHI P $ = "

MOVESHIP$ =MOVESHI P $ + "

Let RA = - 4 8 "

Anim 0 , (1 , 2) (2 , 2) (3 , 2) "

MOVESHIP$ =MOVESHI P $ + "A : Let RA = RA + 4 "

MOVESHIP$ =MOVESH I P $ + " I f RA > 3 2 0 Jump B "

MOVESHIP$ =MOVESHIP $ + " Jump C If

MOVESHIP$ =MOVESHIP $ + "B : Let RA = - 4 8 "

MOVESHIP$ =MOVESH I P $ + " C : Let X = RA"

MOVESHIP$ =MOVESHI P $ + "

MOVESHIP$ =MOVESHI P $ + "

Rem * * * Create Bob

Bob 1 0 , 0 , 5 0 , 1

Pau s e "

Jump A "

Rem * * * Ass ign Channel 1 to our Bob ...

Channel 1 To Bob 1 0

Rem * * * As s ign AMAL program to Channel 1...

Amal 1 , MOVESHIP$

Rem * * * Turn AMAL channel on ...

Amal On

Rem * * * Return to AMOS ' Direct ' mode ...

Direct

AMAL registers

229

One of the most important fundamentals of just about every
programming language is the variable, a sort of electronic pigeon-hole
used to store anything from a string of characters to a number. AMOS
uses them and AMAL does too, although AMAL's variables are
somewhat different. For starters, AMAL calls its variables 'registers' and
with good reason too - unlike a 'real' programming language, AMAL
does not allow you to give your variables personalised labels. Instead,
AMAL provides a set of 36 pre-defined 'registers' which can be used to
temporarily store information. What's more, AMAL's variables can only

U ltimate AMOS

230

'Local' &
'global'

registers

Chapter 9

handle numbers. Even then, any numbers you use must be within the
range of 32768 to -32767.

AMAL registers come in two flavours - local registers and global
registers. Both are very similar except for the fact that global registers
are shared between all AMAL programs and local registers are unique to
each AMAL program that you run. If you place a value into a global
variable, each and every AMAL program that you run wil l be able to
access it. As a result, you should always restrict yourself to using local
registers unless you specifically want each and every AMAL program to
be able to read and modify the same data. This can be useful if you ' re
using AMAL to scroll a screen using hardware scrolling and you need to
keep all your bobs static whilst the screen scrolls - all you have to do is
to keep the current screen offset value in a global variable and then add it
to the 'X' or 'Y ' co-ordinates (depending upon the direction of your
scroll).

AMAL provides 26 global registers, each of whjch starts with the letter
'R' (for 'Register ') followed by a letter of the alphabet. The first global
variable, for example, is called 'RA' and the last is called 'RZ' . Local
variables follow a very similar pattern, but instead of having 26 registers
at your disposal , AMOS gives each AMAL program only 1 0, numbered
° to 9. Like global registers, however, local registers must start with the
letter 'R ' . 'RO' , for example, is the first local variable and 'R9' is the last.

On the whole, AMAL keeps itself to itself, but there may be times when
you need to read and write to AMAL registers from within your main
AMOS code. Thankfully, AMOS provides the command to do this too in
the shape of 'AmregO' function. The command has two different formats
- one for handling global AMAL registers and one for local registers.
First, let's take a look at the format required to read the contents of a
global AMAL register:

VALUE Amreg (REGISTER)

Ultimate AMOS

VALUE The variable 'Value' contains the value returned by the 'AmregO'
function. Once the 'AmregO' function has been called, your AMOS

AMAL 23 1

program will be able to use the data returned simply by reading the
contents of this variable.

REGISTER The 'Register' parameter is a value between 0 and 25 that
corresponds to AMAL registers 'RA' through to 'RZ' . A value for '0' ,
for example, would instruct AMOS to return the value of 'RA' .

VALUE Arnreg (CHANNEL , REGI STER)

Arnreg (4 , 3)

This second strain of the 'AmregO' function allows you to read the
contents of an AMAL local variable from any of your AMAL programs
that are current running. In order to identify the set of local variables
you ' re interested in (don' t forget that each and every AMAL program
you create can have its own set), you need to specify the number of the
interrupt channel that the AMAL program is running under. Finally, the
'Register' parameter must contain a number between 0 and 9 that
corresponds to AMAL registers 'RO' to 'R9 ' .

You can also write to an AMAL register simply b y reversing the format
of either form of the 'AmregO' command. Say, for example, you wanted
to write a value held in a variable called 'MYNUM' to the local register
'R3' for an AMAL program running under interrupt channel '4' . All
you 'd need is the fol lowing command:

MYNUM (@JJE!01) 0101
EXAMPlECOOE

AMAL also provides three special AMAL registers that are 'hard-wired'
into the objects that your AMAL programs can control. These are:

X This special register holds the current X co-ordinate of the object your
AMAL program is controlling. If you're controlling a bob, then the co
ordinate will be in the form of a screen co-ordinate. For screens and
hardware sprites, though, the co-ordinate wil l be a hardware co-ordinate.

In the case of the 'Rainbow' form of the 'Channel' command, the 'X'
register holds the value of the first colour in the rainbow. By changing
this colour, the rainbow will appear to cycle.

Ultimate AMOS

232 Chapter 9

Y Not surprisingly, this register holds the cunent Y co-ordinate of the
object current under AMAL control. Once again, the same co-ordinate
formats apply.

The 'Y' register has a slightly different purpose when AMAL is used to
control a screen's size and a rainbow. In the case of screen resizing, the
'Y' register holds the cunent height of the screen. By changing this
value, you can shrink and expand a screen under AMAL control . For
Rainbows, the 'Y' register will contain the line on the screen (as a
hardware co-ordinate) where the rainbow effect starts.

A The 'A' register holds the number of the current image assigned to the
object under AMAL control. If the object is being animated, the contents
of the 'A' register will change accordingly.

When used within an AMAL program that controls a screen's size, the
'A' register holds the screen's cunent width. For rainbows too, the 'A'
register has a different role - it holds the height of the rainbow in scan
lines. By changing this value, you can easily shrink and expand a
rainbow under intenupt.

The AMAL instruction set

Capital letters

U ltimate AMOS

When compared to AMOS, the AMAL instruction set is surprisingly
small . However, you ' l l be surprised just how capable this small selection
of AMAL commands are. Before we go any further, however, it's worth
saying a few words about the format of AMAL programs. Unlike
AMOS, AMAL is very touchy about case sensitivity. Although all the
commands documented below are listed using their full names, to be
perfectly honest, AMAL only takes notice of the first one or two
characters . Even then, these special characters must be entered as
capitals. Anything that you enter in lower case will be ignored
completely by AMAL. Take the AMAL command 'Move' , for example.
The only letter that AMAL actually understands is 'M' - the 'ove' bit is
entered simply to make AMAL programs more readable. In theory,
there 's nothing stopping you from entering 'M' , 'Move' , 'Movement' or
even 'Mildred' .

AMAL 233

Right, now that we've got that out of the way, let's get stuck into
AMAL's instruction set:

Move DELTAX , DELTAY , NUMBEROFSTEPS

The 'Move' command ('M') moves an object using a set of 'delta' values
defined by the two parameters 'DELTAX' and 'DELTAY' . If you 've
never encountered delta values before, they're simple enough. Instead of
specifying an object's new position in relation to the top left-hand corner
of the screen (the conventional method), the values are entered relative to
the object's last position. If, for example, you entered a 'DELTAX' value
of '2' and the object you were trying to move was at an X-position of
' 100' , it would move to position ' 1 02 ' .

The 'NumberOfSteps' parameter tel ls AMAL how many vertical blanks
it should spread the movement across. For example, if you wanted to
move an object 1 00 pixels across the screen over 5 vertical blanks, the
object would move at a rate of 20 pixels per vertical blank.

Anim REPEAT , (IMAGE , DELAY) , (IMAGE , DELAY) ...

The 'Anim' command ('A') works in virtually the same way as AMOS's
own 'Anim' command which we covered in Chapter 7. It can be used to
animate an object by changing the image attached to the object from the
sprite banle Each frame of your animation is enclosed between brackets
with two parameters - the image number (' IMAGE') and the length of
time in vertical blanks that the image is to be displayed for ('DELAY') .
Any number of frames can be defined and you can easily mix and match
images to your heart's content.

The 'Repeat' parameter tells AMAL how many times the animation is to
be repeated. If you specify a value of '0 ' , the animation will loop
indefinitely.

Ultimate AMOS

234

Jump LABEL

Chapter 9

1!JJ[!JJ[2:iHIJJ
COWoWlO DHINITXJt.

The AMAL 'Jump' command (T) is identical to AMOS's own 'Goto'
command and is used to branch from one part of an AMAL program to
another. The 'LABEL' parameter is a legal AMAL label . AMAL allows
you to define labels using any of the characters in the alphabet providing
that each label you define ends with a colon C : ') . Once again, only the
first character (which must be a capital) is recognised.

Let REGI STER = EXPRESSION �[!JJ@JI[II
C()MI.W()OUtaOON

The 'Let' command CL') assigns a value to a register. The 'Expression '
parameter can be just about any legal AMOS expression. For example,
you could assign the contents of the AMAL register 'R i ' to 'R2' and
automatically add a value of '4' to it using 'Let R2 = R i + 4' .

I f TEST Jump LABEL

The AMAL ' If. . .Jump' command ('I ' and T) allows you to perform a
test (is the value in register 'RO' greater than 10 , for example?) and then
branch to another part of your AMAL program if the result is true.

For REGISTER = START To END . . . Next REGISTER

Ultimate AMOS

Pretty self-explanatory this one. If you ' re used to using AMOS 's own
'For . . . Next' construct, then you ' l l instantly recognise this command. It
simply performs a loop by incrementing the contents of 'Register'
(which is an AMAL register) using a set of start and end values defined
by the parameters 'Start' and 'End' . The Loop is then closed by calling
the 'Next' CN') command.

AMAL

Pau s e

235

The 'Pause' command ('P ') is AMAL's version of the AMOS 'Wait Vbl'
command. It is used to temporarily halt the execution of an AMAL
program until the next vertical blank occurs. In order to keep your
AMOS and AMAL programs running in sync, this command should
always be used.

AMAl functions

VALUE

VALUE

Although AMAL's commands form the backbone of an AMAL program,
the real workhorses of any AMAL program are AMAL's impressive set
of functions, which allow you to monitor the activity of a range of
different events. You can, for example, read the status of a joystick,
check for coll isions between objects and even convert hardware co
ordinates to screen co-ordinates and vice-versa. Let's take a look at each
in turn.

Bob Col (BOBNUMBER , FIRSTBOB , LASTBOB)

Sprite Col (SPRNUMBER , FIRSTSPR, LASTSPR)

AMAL's 'Bob CoIO' function ('BCO') is identical to AMOS's own 'Bob
Col' command. It's used to check for collisions between a specified bob
(,Bobnumber') and a range of other bobs between 'FirstBob' and
'LastBob ' . If a collision is detected, a value of '- 1 ' is returned. It's worth
noting, however, that this function does not work unless your AMAL
program is run directly with the AMOS 'Synchro' command. We' ll be
covering this next.

If the 'BC' function checks for collisions between blitter objects, then
I 'm sure you ' l l already have guessed that the 'Sprite CoIO' function
(,sq)

,
) does the same job for hardware sprites. Once again, however,

this function will not work unless your AMAL programs are run directly
with the 'Synchro' command. Note also that you must sti l l create a mask
for each hardware sprite that you wish to check, using the 'Make Mask'
command covered in Chapter 7 .

Ultimate AMOS

236

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

Chapter 9

Col (OBJECTNUMBER)

JoyO

Joy!

Key!

Key2

This function ('CO') returns the status of a specified object
('Objnumber') after a collision check. If the object was involved in a
collision, a value of '- 1 ' will be returned.

If you need to read the status of joystick port 2 from within your AMAL
programs, then you need this function. 'JoyO' ('JO') returns the status of
the joystick in the form of a bitmap. Not surprisingly, the 'Joy l ' ('n ')
function returns the status of control port 1 (the mouse) port whenever a
joystick is connected to that port. Once again, the status of the joystick i s
returned in the form of a bitmap. Refer back to Chapter 8 for more
information on the format of this bitmap.

The 'Key l ' function ('K l ') returns the status of the left mouse button. If
it is being pressed, a value of ' - 1 ' will be returned. Otherwise, a value of
'0' is returned. The 'Key2' function ('K2') , on the other hand, returns the
status of the right mouse button. The return values are exactly the same -

'0' if the button isn't being pressed and ' - 1 ' if it is.

VU (VOICE) I!JJ[!JJ@]�
CotM'ANOOCrrmlON

If you ' re writing a demo, then you' ll almost certainly want to include
what demo coders call 'VU meters ' , that is, those flashy bouncing bar
effects that look just like the 'VU' meters on a real stereo. The 'VUO'
function returns a value between 0 (silent) and 63 (loud) for the current
intensity of a sound voice specified with the 'Voice' parameter.

Ultimate AMOS

AMAL

XHARDCOORD

YHARDCOORD

XSCRCOORD

YSCRCOORD

XHARDCOORD

YHARDCOORD

XHard (SCREEN , SCRXCOORD)

YHard (SCREEN , SCRYCOORD)

237

If you need to be able to convert hardware and software co-ordinates
from within your AMAL programs, then help is at hand. AMAL includes
all four of the functions present in AMOS's own instruction set. The first
of these, 'XHardO' ('XHO') converts a screen 'X' co-ordinate held in the
'SCRXCOORD' parameter to a hardware co-ordinate relative to the
screen defined by the 'Screen' parameter. The 'YHardO' function
('YHO') converts a screen 'Y' co-ordinate to a hardware 'Y' co-ordinate
relative to the specified screen.

XScreen (SCREEN, HARDXCOORD)

YScreen (SCREEN , HARDYCOORD)

AMAL allows you to convert hardware co-ordinates to screen co
ordinates too using this pair of functions. The 'XScreenO' function
('XSO') converts a hardware 'X' co-ordinate to a screen 'X' co-ordinate
and the 'YScreenO' function ('YSO') converts a hardware 'Y' co
ordinate to a screen 'Y' co-ordinate. Once again, the values are taken
relative to a screen defined by the 'Screen' parameter.

XMouse

YMouse

These two functions are pretty obvious - the 'XMouse' function ('XM')
returns the ' X ' co-ordinate o f the mouse pointer and the 'YMouse'
function ('YM') returns the 'Y' co-ordinate of the mouse pointer. Once
again, the co-ordinates are returned in the form of hardware co-ordinates.

VALUE Z (NUMBER) [Jj1!Jl[!][!JJ
COMMAND D£f1NlTlON

If you need to generate a random number from within your AMAL
program, then this is the function for you. Simply by passing it a ' seed'

Ultimate AMOS

238 Chapter 9

value in the 'Number' parameter, the 'ZO' function returns a random
number. To be perfectly honest, the 'ZO ' function is not the greatest
random number generator - if you need to create truly random values,
then it may be best use AMOS's own 'RndO' function and pass the
values to your AMAL programs using the 'AmregO' function.

Beyond 1 6 channels •••

SYNCHRO
command

Collision
detection

Ultimate AMOS

Under normal circumstances, AMAL allows you to run no more than 1 6

AMAL channels at once. This i s caused by the Amiga's processor being
unable to handle any more than this number. If you need more channels,
however, you can get around this limitation using the ' Synchro'
command. The 'Synchro' command allows you to turn off the Amiga's
hardware-based interrupts and run the programs directly from your
AMOS program. Obviously, this has the unavoidable side effect of
stopping programs running under true interrupts, but it's unlikely that
you ' ll notice the difference.

One big benefit of running AMAL programs directly is that not only are
you no longer restricted to just 1 6 AMAL channels (you can create up to
64 AMAL channels with the Arniga's interrupts turned off!) , you can
also make use of AMAL's collision detection functions 'BCO' , ' SC()

,

and 'CO ' . When running AMAL programs directly, it 's perfectly possible
to write games and demos that run entirely under AMAL!

In order to make use of this facility, you need to start your program by
turning off the Amiga's hardware interrupts using the 'Synchro Off'
command. Once this is done, you can define your AMAL programs and
then run them. However, each time any of your AMAL programs waits
for a vertical blank (using the AMAL 'Pause' function), you have to
specifically tell them when to start running again. If you don 't, they' l l
just sit there dumbly.

The command to start an AMAL program running again after a vertical
blank is 'Synchro ' . This tel ls all AMAL channels that are currently
halted to start running again. Here's a quick demonstration:

AMAL

Rem * * * ' Synchro ' Demonst ration

Rem * * * By Jason Holborn

Screen Open O , 3 2 0 , 2 5 6 , 1 6 , Lowres

Flash Off : Curs Off : C l s 0

Load IAMOSBOOK : AbkF i l e s /Hel icopter . ABK"

Get Sprite Palette

Double Buffer

Rem * * * Define two AMAL programs ...

MOVESHIP $ = "

MOVESHIP$ =MOVESHIP $ + "

Let R1 = - 4 8 "

Anim 0 , (1 , 2) (2 , 2) (3 , 2) 11

MOVESHIP$ =MOVESHIP $ + "A : Let R1 = R1 + 4 "

MOVESHIP$ =MOVESHIP$ + " I f R 1 > 3 2 0 Jump B "

MOVESHIP$ =MOVESHIP$ + " Jump C "

MOVESHIP$ =MOVESHIP$ + "B : Let R1 = - 4 8 "

MOVESHIP$ =MOVESHIP$ + " C : Let X = R1"

MOVESHIP$ =MOVESHI P $ + " Pau s e "

MOVESHIP$ =MOVESH I P $ + " Jump A "

MOVESHIP2 $ = " Let R1 = 3 2 0 "

MOVESHIP2 $ =MOVESHIP 2 $ + " Anim 0 , (1 , 2) (2 , 2) (3 , 2) "

MOVESHIP 2 $ =MOVESHIP 2 $ + "A :

MOVESHIP2 $ =MOVESHIP 2 $ + "

MOVESHIP2 $ =MOVESHIP2 $ + "

MOVESHIP2 $ =MOVESHIP2 $ + " B :

MOVESHIP2 $ =MOVESHIP2 $ + " C :

MOVESHIP 2 $ =MOVESHIP2 $ + "

MOVESHI P 2 $ =MOVESHIP2 $ + "

Let R 1 = R 1 - 4 "

I f R 1 < - 4 8 Jump B"

Jump C "

Let R1 = 3 2 0 "

Let X = R1"

Pau s e "

Jump A "

Rem * * * Turn o f f AMA L interrup t s ...

Synchro Off

Rem * * * Create five Bobs

239

U l timate AMOS

240

Bob 1 , 0 , 2 0 , 1

Bob 2 , 0 , 6 0 , 1

Bob 3 , 0 , 1 0 0 , 1

Bob 4 , 0 , 14 0 , 1

Bob 5 , 0 , 1 8 0 , 1

Rem * * * Ass ign Channel s to our Bobs ...

Channel 1 To Bob 1

Channel 2 To Bob 2

Channel 3 To Bob 3

Channel 4 To Bob 4

Channel 5 To Bob 5

Rem * * * Assign AMAL program to all five Channels ...

Arnal 1 , MOVESHIP $

Arnal 2 , MOVESHI P 2 $

Arnal 3 , MOVESHIP$

Arnal 4 , MOVESHI P 2 $

Arnal 5 , MOVESHIP$

Rem * * * Turn on a l l AMAL channel s ...

Arnal On

Repeat

Rem * * * Run AMAL programs again ...

Synchro

wait Vbl

Unt il Mouse Key

Useful AMAL routines

Chapter 9

So far we've covered an awful lot of theory, but we haven' t really
applied AMAL to the sort of real programming tasks you'd commonly
find in a game. Over the next few pages or so, however, you ' ll find a
variety of listings that cover the more common uses of AMAL.

U ltimate AMOS

AMAL 24 1

Moving a bob using a ioystick
The first AMAL routine demonstrates how to move a bob around the
screen with the joystick completely under AMAL control. There's
nothing spectacular about this routine - it simply checks the status of the
joystick and updates a pair of co-ordinates held in the 'R I ' and 'R2'
registers before passing them to the 'X' and 'Y' registers tied to the bob
in question.

Rem * * * AMAL Joyst ick Bob c ontrol

Rem * * * Filename - AMALJoystick . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 1 6 , Lowres

Flash Off : Curs Off : Cls °
Double Buffer

Load "AMOSBOOK : AbkFi l e s /Hel icopter . ABK"

Get Sprite Palette

Rem * * *

A$ = "

A$=A$ + "

A$ =A$ + "

S e t Bob position t o de fau l t values ...

Let Rl= 1 6 0 "

Let R2 = 1 2 8 "

Anim 0 , (1 , 2) (2 , 2) (3 , 2) "

Rem * * * Check status of j oystick ...

A$ =A$ + " A : I f Joyl & 1 Jump B "

A$=A $ + "

A$=A $ + "

A$=A$ + "

A$ =A$ +"

If Joyl &

I f Joyl &

I f Joyl &

Jump J"

2 Jump C If

4 Jump D"

8 Jump E"

Rem * * * Update and check ' Y ' co- ordinate ...

A$=A$ + " B : Let R 2 = R 2 - 4 "

A$=A$ + " I f R 2 < ° Jump F"

A$ =A$ + "

A$=A$ + "C :

A$ =A$ + "

A$ =A$ + "

Jump J"

Let R2 = R2 + 4 "

I f R2 > 2 3 5 Jump G"

Jump J"

Ultimate AMOS

242

Rem * * * Update and check ' X ' c o -ordinate .. .

A$ =A$ + " D : Let R 1 = R 1 - 4 "

A$ =A$ + "

A$ =A$ + "

A$ =A$ + " E :

A$ =A$ + "

A$=A$ + "

I f R 1 < 0 Jump H "

Jump JII

Let R1 = R1 + 4 "

I f R1 > 2 7 2 Jump I "

Jump JII

Rem * * * Reset ' Y ' co-ordinate ...

A$=A$ + " F : Let R2 = 0 "

A$ =A$ + " Jump JII

A$ =A$ + " G : Let R2 = 2 3 5 "

A$ =A$ + " Jump JII

Rem * * * Reset ' X ' co- ordinate_.

A$ =A$ + "H : Let R1 = 0 "

A$ =A$ + " Jump JII

A$ =A$ + " I : Let R1 = 2 7 2 "

A$ =A$ + " Jump JII

Rem * * * Pass co-ordinate s to bob._

A$ =A$ + " J : Let X =

A$ =A$ + " Let Y =

A$ =A$ + " Pause"

A$ =A$ + " Jump A"

Bob 1 , 1 6 0 , 12 8 , 1

Channel 1 To Bob 1

Amal 1 , A$

Amal On

Direct

Ultimate AMOS

R1"

R2 "

Chapter 9

AMAL 243

Hardware scrolling a screen
AMAL can be used to great effect in handling the simple task of
hardware scrolling a screen, too. All you do is open your screen and then
assign the screen to the 'Screen Offset' form of the 'Channel' command.
The screen can then be scrolled under AMAL control by writing different
values to the AMAL 'X' and 'Y' registers. Don' t forget that in order to
'wrap' the screen around, your AMAL program must continuously check
for the screen offset values rising or fall ing above or below a set of
minimum and maximum values. Here's a demonstration listing that
shows how it's done:

Rem * * * AMAL Hardware Scroll demonstration

Rem * * * Filename - AMALHardS c rol l . AMOS

Screen Open O , 64 0 , 2 5 6 , 1 6 , Lowres

Flash Off : Curs Off : C l s 0

Screen Display 0 , 12 8 , 4 8 , 3 2 0 , 2 5 6

Load I f f "AMOSBOOK : pi c tures /AMALBackground . IFF"

Screen Copy 0 , 0 , 0 , 3 2 0 , 2 5 6 To 0 , 3 2 0 , 0

Rem * * * Set init ial value of screen ...

A$ = " Let RA = 0 "

Rem * * * Add 2 t o s creen o f fset ...

A$=A$ + " A : Let RA = RA + 6 "

Rem * * * Check that screen o f f set has not exceeded 3 2 0_.

A$=A$ + " I f RA > 3 2 0 Jump B "

A$=A$ + " Jump C"

Rem *** Reset screen o f f set i f it has ...

A$=A$ + "B :

A$ =A$ + "

Let RA = 0 "

Jump C"

Rem * * * Pass ' RA ' to screen o f f set ' X ' c o -ordinate ...

A$ =A$ + " C : Let X = RA"

Ultimate AMOS

244

A$ =A$ + "

A$ =A$ + "

Pau s e "

Jump A"

Chapter 9

Channel 1 To Screen Offset 0

Amal 1 , A$

Amal On

Direct

Using AMAL
for scrolling &

bobs

Ultimate AMOS

Keeping one AMAL program in sync with another
Global variables come in very handy when you need to keep one AMAL
program in sync with another. Take, for example, the task of moving a
Bob over a background that is being hardware scrolled. If you were to
simply move the Bob with no consideration for the current 'Screen
Offset' values, the Bob would soon disappear off of the screen. By
writing the screen's current 'X ' and 'Y ' positions into a set of global
variables, however, you can keep your Bobs on-screen simply by adding
the screen offset values to the Bob's 'X' and 'Y' co-ordinates. In the case
of the listing below, the screen's 'X' offset is written into the global
variable 'RA' , which is automatically added to the 'X' co-ordinate of the
Bob each time the AMAL 'X' register is updated.

AMAL can easily handle

both hardware scrolling

and the positioning of

blitter objects, leaving you

to concentrate on more

important aspects of your

game's design . .

AMAL 245

This example program demonstrates how much of a game's code can be
handed over to AMAL, letting you concentrate on the gameplay. Note
too how this program is run directly with the 'Synchro' command - as
your AMAL programs become more complex, you ' ll find that tills can
often give smoother results - especially if the program is to be compiled.

Rem * * * AMAL Bob + Scroll demonstrat ion

Rem * * * Filename - AMALBobS c rol l . AMOS

S c reen Open 0 , 64 0 , 2 5 6 , 1 6 , Lowres

Flash Off : Curs Off : Cls °
S c reen Display 0 , 12 8 , 4 8 , 3 2 0 , 2 5 6

Load "AMOSBOOK : AbkF i l e s /Hel icopter . ABK"

Get Sprite Palette

Load I f f "AMOSBOOK : Pictures /AMALBackground . IFF"

S c reen Copy 0 , 0 , 0 , 3 2 0 , 2 5 6 To 0 , 3 2 0 , 0

Double Buf fer : Autoback 1

Bob Update Off

Rem * * * AMAL Bob Control program. ..

Rem * * * Set Bob position to default values ...

A $ = "

A$ =A$ + "

A$ =A$ + "

Let R1= 1 6 0 "

Let R2 = 1 2 8 "

Anim 0 , (1 , 2) (2 , 2) (3 , 2) "

Rem * * * Check status of j oystick ...

A$ =A$ + " A : I f Joy1 & 1 Jump B "

A$ =A$ + " I f Joy1 & 2 Jump CIf

A$ =A$ + " I f Joy1 & 4 Jump D"

A$ =A$ + " I f Joy1 & 8 Jump E"

A$ =A$ + " Jump J"

Rem * * * Update and check ' Y ' co-ordinate ...

A$ =A$ + "B : Let R2 = R2 - 4 "

Ultimate AMOS

246

A$ =A$ + "

A$ =A$ + "

A$ =A$ + " C :

A$ =A$ + "

A$ =A$ + "

I f R2 < 0 Jump F "

Jump J"

Let R2 = R2 + 4 "

I f R 2 > 2 3 5 Jump G"

Jump J"

Rem * * * Update and check ' X ' co- ordinate .. .

A$ =A$ + " D : Let R l = R l - 4 "

A$ =A$ + " I f R l < 0 Jump H "

A$ =A$ + " Jump J "

A$ =A$ + "E :

A$ =A$ + "

A$ =A$ + "

Let Rl = R l + 4 "

I f R l > 2 7 2 Jump I "

Jump J"

Rem * * * Reset ' Y ' co-ordinate .. .

A$ =A$ + " F :

A$ =A$ + "

A$=A$ + " G :

A$ =A$ + "

Let R 2 = 0 "

Jump J"

Let R2 = 2 3 5 "

Jump J"

Rem * * * Reset ' X ' co-ordinate .. .

A$ =A$ + " H : Let Rl = 0 "

A$ =A$ + " Jump J"

A$=A$ + " I : Let Rl = 2 7 2 "

A$ =A$ + " Jump J"

Rem * * * Pass co- ordinates to bob ...

A$=A$ + "J : Let X = Rl + RA"

A$ =A$ + " Let Y = R2 "

A$ =A$ + " Pause "

A$=A$ + " Jump A"

Rem * * * AMAL Hardware Scrol l program. ..

Rem * * * Set init i al value of screen ...

B $ = " L e t RA = 0 "

Ultimate AMOS

Chapter 9

AMAL

Rem * * * Add 2 to screen o f f set ...

B$=B$ + "A : Let RA = RA + 6 "

Rem * * * Check that screen o f fset has not exceeded 3 2 0 ...

B $ =B$ + " I f RA > 3 2 0 Jump B"

B $ =B$ + " Jump C If

Rem * * * Reset screen of fset i f it has ...

B$=B$ + " B :

B $ =B $ + "

Let RA = 0 "

Jump CIf

Rem * * * Pass ' RA ' to s c reen o f f set ' X ' co- ordinate ...

B $ =B$ + "C :

B $ =B$ + "

B $ =B$ + "

Synchro Off

Let X = RA"

Pause"

Jump A"

Bob 1 , 1 6 0 , 12 8 , 1

Channel 1 To Bob 1

Channel 2 To Screen O f f set 0

Amal l , A$

Amal 2 , B$

Amal On

Do

Bob Clear

Rem * * * Run AMAL program. . .

Synchro

Bob Draw

Screen Swap 0

Wait Vbl

Loop

247

Ultimate AMOS

248 Chapter 9

Updating a rainbow effect
AMOS can also be used to update a rainbow effect by writing a different
values into the 'X' , 'Y' and ' A' registers. These registers are usually used
to hold the co-ordinates and image of screen objects, but they have a
slightly different use when applied to Rainbows. The 'X' register holds
the value of the first colour in the rainbow, the 'Y' register contains the
line on the screen (as a hardware co-ordinate) where the rainbow effect
starts and the 'A' register holds the height of the rainbow in scan lines.
Here's a slightly modified version of the 'Animated Rainbow'
demonstration program from chapter 6 that uses AMAL to cycle through
the rainbow under interrupt.

Rem * * * Animated Rainbow Effect

Rem * * * Filename - AMALRainbow . AMOS

Screen Open 0 , 3 2 0 , 2 5 6 , 2 , Lowres

Flash Off : Curs Off

Rem * * * Define AMAL program. . .

A$ = " Let Ri = 0 "

A$ =A$ + "A : Let Ri = Ri + 2 "

A$ =A$ + " I f Ri > 1 9 1 Jump

A$ =A$ + " Jump CIf

A$=A$ + " B : Let Ri = 0 "

A$ =A$ + " Jump CIf

A$ =A$ + " C : Let X = Ri"

A$ =A$ + " Pause"

A$ =A$ + " Jump A"

Set Rainbow 0 , 0 , 1 9 2 , " " , " " , " "

Rem * * * Set u p copper l i s t

COUNT = O

For R=O T o 1 5

RGB=Val (Hex$ (R) + " O O ")

Rain (O , COUNT) =RGB

U ltimate AMOS

B"

AMAL

Rain (0 , COUNT+ 1) =RGB

COUNT=COUNT+ 2

Next R

For R= 1 5 To ° Step - 1

RGB=Val (Hex$ (R) + " O O ")

Rain (O , COUNT) =RGB

Rain (0 , COUNT+ 1) =RGB

COUNT=COUNT+ 2

Next R

For G=O To 15

RGB=Val (" $ O " +Right $ (Hex$ (G) , 1) + " 0 ")

Rain (O , COUNT) =RGB

Rain (0 , COUNT+ 1) =RGB

COUNT=COUNT+2

Next G

For G= 15 To ° Step - 1

RGB=Val (" $ O " +Right $ (Hex$ (G) , 1) + " 0 ")

Rain (O , COUNT) =RGB

Rain (0 , COUNT+ 1) =RGB

COUNT=COUNT+ 2

Next G

For B=O To 15

RGB=Val (" $ O O " +Right $ (Hex$ (B) , l))

Rain (O , COUNT) =RGB

Rain (0 , COUNT+ 1) =RGB

COUNT=COUNT+2

Next B

For B = 1 5 To ° Step - 1

RGB=Val (" $ 0 0 " +Right $ (Hex$ (B) , 1))

Rain (O , COUNT) =RGB

Rain (0 , COUNT+ 1) =RGB

COUNT=COUNT+ 2

Next B

Rem * * * Turn on Rainbow ef fect ...

Rainbow 0 , 0 , 0 , 2 8 0

249

Ultimate AMOS

250

Rem * * * Ass ign AMA L channel to Rainbow ...

Channel I To Rainbow 0

Amal I , A$

Amal On

Direct

U ltimate AMOS

Chapter 9

25 1

Sound and Music
• Built-in sound effects

• Sound samplers

• Sample banks

• Handling samples

• The Amiga's sound filter

• Music modules

• VU meters

• O-Sam extension

• Sample Bank Maker

Ultimate AMOS

252

Ultimate AMOS

Chapter 1 0

F lashy graphics and great gameplay i s all-important to any game, but
you should never forget a game's sound effects. Although many
view sound effects purely as cosmetic additions to a game, any

magazine games reviewer will tell you that good sound effects can add a
great deal of atmosphere. In many ways, sound effects are just as
important in games programming as they are in the movies - imagine
how different a film l ike 'Jurassic Park' would have been if it weren't for
John Williams ' tense sound track and those wonderfully blood-curdling
sound effects ! If Spielberg had opted for some rather wimpy growling
effects sampled from a household cat, the Tyrannosaurus Rex wouldn't
have been even half as frightening.

Back in the days when the Commodore 64 and Spectrum still ruled the
roost, game sound effects were rather limited, but that certainly can't be
said of the Amiga. Although Commodore still haven 't touched the
Arniga's sound chip after more than eight years (who knows,
Commodore may have got around to releasing the infamous 'DSP'
upgrade by the time you read this !) , the good old Paula sound chip still
ranks up there with the best of 'em.

So what makes Paula so special? Well , much of the credit goes to its
ability to play sound samples. Indeed, the sound sample forms the
foundations of the Amiga's sound capabilities, so Paula is ideally suited
to play samples of anything from a roaring T-Rex to the bleating of a
lamb. And, unlike certain other computers I could name, playing sound
samples puts virtually no strain on the Amiga whatsoever, so your games
can run at ful l speed even with the most complex sound sample booming
from your monitor speakers !

Of course the Amiga isn 't just limited to playing a single sound sample at
any one time - no siree, it can play up to four different sounds at any one
time and this has been used extensively by demo and game programmers
to produce music using sampled instruments. Indeed, the Amiga's
musical capabilities are so powerful that many professional musicians
even use the Arniga for this very purpose - rumour has it that Paula
Abdul, Renegade SoundWave and a whole bunch of well known indie
bands use the Arniga in preference to dedicated sampling hardware.

Sound and Music 253

Sound sampling

Built-in Ix

�
Copyrighted

material

If you need a quick and easy method of incorporating some very simple
sound effects into your games software, then there 's no need to get
bogged down with AMOS 's sample handling capabilities. Francois
Lionet (the author of AMOS) very cleverly built a number of sound
effects directly into AMOS which provide the games programmer with a
number of commonly used effects 'on the fl y ' . These are accessed using
the 'Boom' (an explosion sound), 'Shoot' (a gun shot sound) and 'Bel l '
(a very simple bell sound). Try typing these three commands from
AMOS 's ' Direct ' mode.

Obviously, these three sounds are far from earth-shatteringly exciting, so
you ' l l be pleased to learn that you can make use of your own sound
samples from directly within AMOS. Before you can go any further,
however, you need to either find some pre-recorded sound effects (these
are freely available in the Amiga public domain) or - better still - grab
your own samples using a sound sampler. For the uninitiated amongst
you, a sound sampler is an inexpensive piece of hardware that, when
connected to the Amiga's parallel port, lets you literally ' record' sound
directly from any sound source (a CD player is best). And, because the
sound is held within your Amiga's memory as a series of numbers, once
you've recorded some sound into your Amiga, you can edit it to your
heart's content.

A word of warning, though. If you are intending to make money from·
your AMOS creation, then you must not use samples grabbed from
copyrighted material - music and films, for example. If you do, then I
can virtually guarantee you that you ' l l receive a visit from the boys in
blue. If you really are desperate for good source material, then one of the
many 'Sample CDs' that are available from companies such as 'Time +
Space' (0442 87068 1) and 'AMG' (0252 7 1 7333) are a far safer bet.
Time + Space, for example, produce a range of copyright-free samples
from hit movies including ' Star Trek' and 'Terminator 2' .

Most hardware add-ons are terribly expensive, but sound samplers are
certainly the exception. Indeed, they ' re so cheap these days that you can
pick up a fairly decent unit for little more than £30. Of all the sound

Ultimate AMOS

254

t W
TechnoSound

Turbo,
AMAS 2

Sample bank

Ultimate AMOS

Buying a sound sampler

will allow you to grab

sound samples direct

from any audio source.

Once grabbed, they can

be used directly within

AMOS.

Chapter 1 0

samplers I 've used during my many years as a magazine reviewer,
however, my personal faves have to be New Dimensions ' 'TechnoSound
Turbo' (around £45) and MicroDeal 's MIDI-compatible 'AMAS 2 '

(around £99). There are cheaper samplers available, but most of them
leave a lot to be desired in the sound quality department. Buying a sound
sampler is a bit like buying a can of baked beans - you may save
yourself a few pence, but it's always worth spending a bit more for
quality (you ' l l never catch me eating any brand other than Heinz !) .

Once you've collected together the samples you need for your AMOS
creation, you need to start by pulling them together into a ' sample bank' .
It i s possible to load sound samples directly into AMOS, but it's a bit
technical to say the least. For this reason alone, it's far better to pull them
together into a sample bank. A sample bank is very similar to a sprite
bank, but for the obvious difference - whereas a sprite bank contains
sprite images, a sample bank contains sound samples. Europress very
kindly provide a very handy AMOS accessory program called the
'Sample Bank Maker' that allows you to create your own sample banks.
AMOS l .35 owners won't have this tool, but it 's bundled free of charge
with both AMOS Professional and Easy AMOS. Once again, the Sample
Bank Maker is another damned good reason why you should consider
upgrading. There are a number of PD alternatives, but none of them are
as easy to use as Francois Lionet's original.

Sound and Music 255

I won't bore you by talking too much about the Sample Bank Maker,
however - if you 're still not sure how to use it, then check out the end of
this chapter for a full description of its many options.

Once you've created your sample bank, you need to start by loading it
into your AMOS program using the 'Load' command. By default, the
sample bank is automatically loaded into bank number 5, so it's best to
keep this bank free if your program uses a lot of packed pictures.

Playing a sound sample is very easy indeed. All you need IS the
following command:

Sam Play VOICE , SAMPLENUM , FREQUENCY

VOICE The 'Voice' parameter is an optional parameter that specifically
tel ls AMOS which of the Amiga's four sound voices the sample is to be
play through. The parameter must be passed in the form of a four byte
binary bitmap, with each byte representing a single voice. A bitmap of
%000 1 , for example, would tell AMOS to play the sample on voice one.
A bitmap of % 1 1 1 1 , however, would tell AMOS to play the sample
across all four voices.

SAMPLENUM The 'SampleNum' parameter is simply a number that tells
AMOS which sample stored in the sample bank to play.

FREQUENCY The 'Frequency' parameter is an optional parameter that
sets the replay speed of the sample. If you do not pass this parameter, the
sample will be played at its default frequency (this is held within the IFF
structure of the sample) . However, passing a value lower than the
sample's default frequency will cause the sample to be played at a lower
pitch. A higher value will cause the sample to be played at a higher pitch.

Both the 'Voice ' and 'Frequency ' parameters are optional , so there's no
reason whatsoever why you couldn ' t play a sample simply by passing the
sample's sample bank number.

Ultimate AMOS

256

Dimming
power light?

Chapter 1 0

The Amiga's built-in sound filter
Before we take a look at a demonstration listing, now is probably a good
time to discuss the Amiga's sound filter. Built into every Amiga is a
' high pass' filter that filters out much of the high frequency 'noise '
normally associated with 8-bit sound samples. Although this was
permanently enabled on the early Amiga A l OOO's, every Amiga that
Commodore has released since then offers the ability to turn this sound
filter off, effectively increasing the frequency response of your sound
samples. Once the filter has been turned off, you ' l l notice a far greater
amount of high frequency sound in your samples, giving a much better
sound quality. AMOS supports this feature too with a very simple
command. Simply by adding the command 'Led Off' or 'Led On ' , the
sound filter is turned off and on respectively.

You ' ll notice that when the sound filter is turned off, the Amiga's power
light will appear to dim - don't worry about this, since turning the sound
filter off will do no damage to your Amiga whatsoever. Anyway, here's
that demonstration listing that I promised you (complete with the 'Led
Off' command!) :

Rem * * * Sample Replay Demonstrat ion

Rem * * * Filename - SamplePlay . AMOS

Rem * * * Load sample bank ...

Load "AMOSBOOK : AbkFi l e s / Instrument s . ABK"

Rem * * * Turn off sound filte� ..

Led Off

Locate 0 , 5

Centre "Press any key ! "

Do

A$ = Inkey$

SC=Scancode

If A$ < > " "

Ultimate AMOS

Sound and Music 257

I f SC > O and SC < 14

Rem * * * Play samp l e 1 on voice 1...

Sam Play %1 , 1

End I f

If S C > 1 5 and SC< 2 8

Rem * * * Play samp l e 2 on voice 2 ...

Sam Play %1 0 , 2

End I f

If SC> 3 1 and SC< 4 3

Rem * * * Play samp l e 3 on voice 3 ...

Sam Play %1 0 0 , 3

End I f

If SC > 4 8 and SC< 5 9

Rem * * * Play samp l e 4 on voice 4 ...

Sam Play %1 0 0 0 , 4

End If

End If

Loop

Music modules
Great gameplay is the all··important factor in any game, but presentation
isn 't far behind. Even if your game is the most playable thing since
'Tetris ' , you still need that certain something to grab people's attention.
Sure, great graphics certainly help, but you should never forget a game 's
soundtrack. Just like a game's sound effects, the music score that plays
when a game's title screen is displayed can add a great deal to its
atmosphere.

Steven Spielberg's 'Jurassic Park' is perhaps a good example here too -
if you ever get a chance to watch the film again (who knows, it might be
out on video by the time you read this), pay particular attention to the
soundtrack playing in the background. Note how it considerably
enhances the tension of the film - if you don' t believe me, try turning the
volume right down and see the difference it makes!

U ltimate AMOS

258

U ltimate AMOS

AMOS directly supports

Sound Tracker-format

'Modules', aI/owing you to

play music scores from

within your AMOS

creations with ease.

What's more, most Sound

Tracker clones are

available for the price of a

disk from Public Domain

libraries, so you don't

have to break the bank

obtaining one.

Chapter 1 0

Obviously most games don 't play music when the game is being played,
but even the simplest ditty can add a great deal of extra sparkle to your
games. AMOS supports a number of sound track formats including it 's
own 'Music bank' format and even Teijo Kinnunen 's ' MED' format, but
by far the most popular is the good old Sound Tracker ' module' format.
AMOS' own format is perhaps the more versatile, but - due to reasons
known only to the guys at Europress Software - the utility needed to
convert Sound Tracker and MED format modules to AMOS bank format
was never included with AMOS Professional. This isn 't really surprising,
however - with Sound Tracker clones becoming more and more diverse
in the features that they offer (some, for example, now support
' Synthetic ' instruments and even eight channels of sound), Sound
Tracker module formats are changing too.

Finding Sound Tracker modules
So how do you get your hands on an original Sound Tracker module?
After all, there 's very little point in using a Sound Tracker module that
has already been used in a hundred other AMOS games ! Well , the first
option is to approach a friend who is musically inclined . If al l your
friends are totally tone deaf, however, you could try writing your own.
What you ' l l need is a Sound Tracker clone such as 'ProTracker ' ,
'NoiseTracker ' o r 'Audio Sculpture ' (my personal favourite). The good

Sound and Music 259

news is that - with the exception of 'Audio Sculpture ' at least - virtually
all Sound Tracker programs are public domain. That is, they ' re available
totally free, gratis and practically for nothing. If in doubt, contact a
friendly Public Domain library (1 7Bit Software, for example) and they ' ll
almost certainly be able to supply you with a suitable program.

Once you've got your Sound Tracker program and you've written a
module, you need to pull it into AMOS. Thankfully this is very easily
indeed. All you need is the following command:

Track Load JlFILENAME JI , BANKNUM

FILENAME The 'Filename ' parameter is simply the filename (complete
with full path information) of the module you wish to load.

BANKNUM Although a Sound Tracker module is not strictly an AMOS
bank, AMOS still stores them into a memory bank. The 'BankNum'
parameter should therefore be the number of a valid AMOS Bank.

With your Sound Tracker module loaded into an AMOS memory bank,
all that remains is to play it. AMOS is very clever here - considering the
complexities involved in playing music, you ' ll be pleased to learn that
AMOS does virtually all of the work away for you. For starters, all music
scores are played under interrupt, so once you 've set your module
playing, you never have to worry about it again. The command to start a
module playing is as follows:

Track Play BANKNUM

BANKNUM The ' BankNum' parameter tells AMOS which memory bank
your module has been loaded into. If, for example, you had loaded your
module into memory bank ' 6 ' , then you 'd pass a value of 6 to start the
module playing. As you can see, there's virtually no reason whatsoever
why you couldn 't have several modules stored in memory at once. You
could, for example, have one module for the title screen, another for the
high score screen and a rather solemn ditty for the 'Game Over' screen.

Ultimate AMOS

260 Chapter 1 0

By default, AMOS will stop playing a module once it reaches the end of
the tune, but you can force it to automatically play the module over and
over again simply by adding the line 'Track Loop On ' . If you want to
stop a module playing at any time, all you need is the 'Track Stop'
command. Simple, eh! Here's a very simple demonstration program that
plays a Sound Tracker module written by my oid mate, Dave Collins.
Dave would l ike me to add that if any software houses out there are after
a good freelance musician, then he's available. Dave is also available for
Church Fetes, supermarket openings and Barmitzvas (only joking !) .

Rem * * * Tracker Module Play Demonstrat ion

Rem * * * Filenarne - TrackPlay . AMOS

Rem * * * Load Tracker module ...

Rem * * * Module Copyright © Dave Coll ins

Track Load IIAMOSBOOK : Modules /Realthing . MODII , 6

Rem * * * Turn off audio filte� ..

Led Off

Rem * * * Play module ...

Track Play 6

Track Loop On

Direct

VU meters

Ultimate AMOS

If you' re one of these flash types that likes to own the latest in hi-fi
equipment, then no doubt your stereo boasts what the techies call 'VU
meters ' (short for 'volume meters ') . As their name suggests, VU meters
dynamically display the volumes of certain frequencies as music is being
played. Although not technically true VU meters, Amiga demo coders
have been quick to jump on the hi-fi bandwagon and many demos feature
these all -important additions. AMOS programmers too can add VU
meters to their AMOS creations thanks to the 'VumeterO ' function. The
format of the function is as follows:

Sound and Music 26 1

VOLUME Vumeter (VOICE) [J[!J@][!J]
COMMAND OEf1NITION

VOLUME The ' VumeterO ' function returns a value between 0 and 63

which defines the volume of the specified sound channel at the time that
function was called. If the sound channel was completely silent, then a
value of 0 will be returned. However, if the sound channel is booming its
heart out at the highest possible volume, then a value of 63 will be
returned.

VOICE The 'Voice' parameter tel ls AMOS which of the Amiga's four
sound channels the 'VumeterO ' function is to check. Until Commodore
get around to releasing an upgraded sound chip, I 'm afraid only four
channels of sound can be played simultaneously. As a result, you should
pass a value between '0 ' and ' 3 ' .

The values returned b y the 'VumeterO ' function can be used to create a
myriad of different effects ranging from 'Sound To Light' converters to
dancing sprites, but by far the most popular has the be the 'VU Bar '
effect that displays four vertical bars that rise and fall i n time to the
music. Coding a VU bar procedure is quite complex, but you need not
worry - below you ' ll find a demonstration program that includes a
procedure (called simply 'VU') that can be ripped out and used within
your own programs. It's a fairly adaptable little beauty - not only can
you dictate the position where the VU bars are displayed, but you ' re
even given control over the width, height and spacing of the bars ! If you
feel like being flash, why not create a 'Rainbow' effect that changes the
colours of the bars for different intensities?

Rem * * * VU Meter Demonstrat ion

Rem * * * Filename - VUMeter . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 2 , Lowres

Flash Off : Curs Off : Cls 0

Palette $ O , $FO O

Track Load "AMOSBOOK : Modu l e s / Realthing . MOD" , 6

Ultimate AMOS

262

Led Off

Track Play 6

Track Loop On

Dim VU (4)

Global VU ()

Do

_VU [8 0 , 5 0 , 4 0 , 2 0 0 , 2]

Wai t Vbl

Loop

Procedure _VU [X , Y , W, H , G]

Rem * * * _VU Procedure

Rem * * * X X posit i on

Rem * * * Y Y posit i on

of VU Meter

of VU Meter

Rem * * * W width of VU Meters

Rem * * * H Height of VU Meters

Rem * * * G Gap between each meter

Rem * * * Erase old VU Meters . . .

Ink 0

Bar X , Y To X+ ((W+G+ l) * 4) , Y+ (H+ l)

For A= O To 3

di splay

di splay

Rem * * * Read value of VU meter ...

V=Vumeter (A)

Rem * * * I s channel s i lent ?

I f V= O

Ultimate AMOS

Rem * * * I f so , decrease old value ...

VU (A) =VU (A) - 2

I f VU (A) < O

VU (A) = O

End I f

Chapter 1 0

Sound and Music 263

E l s e

Rem * * * Otherwi s e , write new value to VU () array ...

VU (A) =V

End I f

Rem * * * Calculate o f f sets f o r drawing command ...

OFFSET#= (H - ((H + O . O) / 64) *VU (A)) +Y

XOFSET=X+ (A*W) + ((G+ l) *A)

Ink 1

Rem * * * Draw VU Bar ...

Bar XOFSET , OFFSET# To XOFSET+W, Y+ (H + l)

Next A

End Proc

D-Sam extension
If you 're serious about your sampling, then you may want to to invest in
' D-Sam' , a powerlul extension for AMOS that adds a multitude of handy
sample-related commands to the AMOS instruction set. Written by 'AZ
Software' , D-Sam adds over 46 new commands that allow you to load
multiple samples into memory (without having to worry about sample
banks !) or even load and play samples direct from disk, effectively
allowing samples limited only by the storage device that contains them to
be used. You could, for example, sample an entire CD direct to disk and
then play it back using D-Sam. D-Sam also supports samples that contain
AudioMaster 'Loop tables ' . Loop tables allow you yo create complex
musical scores by looping certain sections of a sample in sequence.

D-Sam offers a number of distinct advantages over AMOS 's own sample
replaying facilities, too. Unlike AMOS, which can only handle samples
at rates of up to 29 KHz, D-Sam can play back samples at a maximum of
56 KHz which - believe it or not - is a higher sampling rate than even a
CD player can handle. Obviously, though, you won't get the same sound
quality as you 'd get from a CD player (the Amiga's sound capabilities
are only 8 -bit, whereas CD players process samples at a 1 6-bit
resolution). However, even if you play a sample at a lower rate, D-Sam
offers ' software oversampling ' , a feature very similar to the

Ultimate AMOS

264 Chapter 1 0

oversampling features available on most modem CD players.
Oversampling can dramatically improve the sound quality of a sample by
' smoothing it out ' .

Sample Bank Maker

Ultimate AMOS

As we saw earlier within this chapter, you need to create a sample bank
in order to play sound samples within your AMOS programs. To make
this task somewhat easier, Francois Lionet (the programmer of AMOS)
very kindly included a handy accessory program called the 'Sample
Bank Maker ' with all versions of AMOS since Easy AMOS . Owners of
AMOS 1 .35 won' t actually have this tool on their AMOS program disks,
but you can get a very similar tool by getting your hands on an AMOS
updater disk. Better sti l l , why not upgrade to AMOS Professiona l !

You can load the AMOS Sample Bank Maker from within AMOS
Professional simply by selecting 'Edit Samples' from the 'User ' pull
down menu. Easy AMOS owners wil l have to load it into AMOS by
clicking on 'Load' from the Easy AMOS menu strip and then selecting
the file ' Sample_Bank_Maker.AMOS ' when the Easy AMOS fi le
requester appears.

The Sample Bank Maker screen is split into three sections - the sample
display window, the sample bank list and (running along the bottom of
the screen), the Sample Bank Maker gadgets. The sample display
window displays the current sample as a waveform display. You can fine
tune the start and end points of a sample simply by moving the mouse
pointer either to the far left or to the far right of this display and then -
whilst holding down the left mouse button - dragging the mouse pointer
either left or right. As soon as you let go of the mouse button, the
shortened sample wil l be played.

The Sample bank l ist displays the contents of the sample bank from top
to bottom. Each sample is l i sted with its identification number (its
position in the sample bank), name and its length in bytes. Samples can
be transferred back and forth between the sample bank and the waveform
display by clicking on the two arrow gadgets that separate these two
windows.

Sound and Music

tI �
Sample Bank

Maker

If you intend to use

sampled sounds from

within your AMOS

programs, then you'll

need to start by building

up a sample bank using

the Sample Bank Maker

accessory program.

265

Below these two displays are the Sample Bank Maker gadgets which
form the heart of the Sample Bank Maker. These gadgets allow you to
load a sample and insert it into a sample bank, fine-tune the frequency of
a sample, delete a sample and a whole lot more besides. Let 's take a look
at each gadget in turn:

Load Sample Not surprisingly, this option allows you to load a sample
into the sample bank. Before you click on this gadget, however, you
should click on the position in the sample bank where the sample is to be
placed. AMOS automatically creates an 'Empty ' slot in the sample bank
for all new samples. The Sample Bank Maker supports two different
types of sample - IFF samples and 'Raw' samples. If you load an IFF
sample, then the Sample Bank Maker will also store the sample's replay
frequency. Raw samples, on the other hand, do not have such information
attached to them, so AMOS automatically sets the sample 's replay
frequency to 8 KHz (8363 Hz).

Save Current Sample If you need to extract a particular sample from a
sample bank, then this is the option you need. By simply selecting the
sample you wish to save from within the sample bank list and then
clicking on this option, AMOS will display a fi le requester. Enter the
fi lename, click on the 'OK' gadget' and the sample will be saved in IFF
format.

Ultimate AMOS

266

Ultimate AMOS

Chapter 1 0

Delete Current Sample Cl icking on this option wi l l instruct the
Sample Bank Maker to remove the current sample from memory. Note
that this does not remove the sample from the sample bank, however - it
simply clears the wavefolm display so that no sound is displayed.

Rename Sample By default, the Sample Bank Maker wi l l place each
and every sample into the sample bank using the sample 's original
fi lename as an identi fier. If you want to change the name of a sample,
however, simply double-click on the sample you wish to change, c l ick on
this option and a requester wil l appear al lowing you to edit the sample's
name. Note that sample names are restricted to eight characters only.

Tune Sample These rather confusing gadgets al low you to adjust the
frequency at which the current sample is played. The current frequency
of the sample is displayed in the centre of the gadget and by cl ickjng on
the set of three gadgets above and below this frequency display, the
frequency of the sample can be increased or decreased by varying
amounts. The single arrow increases or decreases the frequency by 1 Hz,
the double arrow by 1 0 Hz and the triple arrow by 1 00 Hz.

Adjust Sample Points If you don 't own a dedicated sample editor
(AudioMaster, for example), then this option comes in very handy if you
need to isolate a section of a sample. Say, for example, you had a sample
of someone saying 'Hello there ' and you only wanted the 'Hello' bit - all
you 'd have to do is to adjust the 'End' point of the sample so that the
' there' bit is ignored.

Play Sample No matter how obvious your sample fi lenames may be,
there 's nothing better than actually being able to hear a sample. And,
surprise, surprise, that's exactly what this option does.

Insert Empty Sample You may find that whi lst bui lding up your
sample bank you need to insert a sample between two existing samples.
Don 't worry - you don 't have to start from scratch! Just cl ick on this
option and an 'empty ' sample wil l be inserted between the current
sample and the sample immediately above the cun'ent sample.

Sound and Music 267

Delete Sample The ' Delete Sample ' option allows you to permanently
remove a sample from the sample bank. Simply click on the sample you
wish to delete, click on this option and a warning will pop up onto the
screen asking you if you wish to remove the sample you have selected.
Click 'Yes' to remove it and 'No' to cancel .

Erase Sample Bank I f for some reason you're not entirely happy with
your sample bank, then you can zap it from memory simply by clicking
on this option. Be very careful, however - unless you 've previously
saved it out to disk, it will be gone forever!

Load Bank The 'Load Bank' option allows you to load an existing
sample bank into memory for further editing.

Save Bank If the sample bank has previously been either saved off to
disk or loaded from disk, then clicking on this option will save the entire
sample bank back to disk under its original filename. Note that the new
file will completely overwrite the old sample bank.

Save Bank As If you want to save a sample bank to disk under either a
different name or it hasn't already been saved at least once, then this is
the option you need. The 'Save As' option will bring up a file requester
allowing you to specifically tell AMOS where and under what fi lename
the sample bank should be saved.

U ltimate AMOS

268

U ltimate AMOS

Games
Programming
• Games programming principles

• The 'main game loop'

• Game types

• Optimising game code

269

U ltimate AMOS

270

Program
speed

Ultimate AMOS

Chapter 1 1

P rogramming languages l ike AMOS can be applied to just about any
type of programming project, ranging from data bases and
spreadsheets to paint programs and even educational software.

Indeed, Europress themselves have used AMOS on numerous occasions
to produce a whole range of ' serious ' and educational packages including
'MiniOffice' and their ' Fun School ' range of programs. Look in the PD
l ibraries and you' l l find even more obscure AMOS creations such as
Biorythmn calculators, pools checkers and more.

All well and good, but ask any AMOS coder what type of program they
would really like to write and chances are you ' l l get the same reply over
and over again - games. The fact is, inside every applications
programmer is a budding games programmer just bursting to escape! So
why isn 't everyone writing games and earning the sort of mega-bucks
that big names such as Dave Jones, Andrew Braybrook and Mev Dinc
reap in? Much of the blame can perhaps be attributed to the fact that few
amateur games programmers actually understand how a game works.
That is, the internal workings of the game that actually make it tick.

Writing a program such as a utility is quite easy because they have a very
l inear form - a program to convert a picture from one image format to
another, for example, has a fairly simple structure. All that needs to be
done is to read in the image in its native image format, restructure the
image data and then save it out in the new image format. Simple.

Games, on the other hand, are a different breed altogether. Because so
many different things have to happen in just a single frame, it's all too
easy for most amateur programmers to get bogged down in code. Games
tend to be very time-critical too - if a utility takes a couple of minutes to
do its stuff, very few people are that concerned. As Lenin once said (or
so I 'm told), the end justifies the means. If you write a game that crawls
along at a snai l 's pace, however, it will be completely unplayabJe.

To be perfectly honest, the only language that is really suitable for
writing arcade games of true commercial quality is assembler
(sacrilege !) , the chosen language of professional games programmers,
but AMOS can still do a pretty good job. Obviously if you try to code
something like Team 1 7 's brilliant 'Project X ' in AMOS, then expect it

Games programming

Be
conservative!

The secrets of games

programming elude most

programmers, but with

the right knowledge you

too could be churning out

games with the best of

'em!

271

to run at a snail 's pace - but there's no reason whatsoever why you
couldn 't write a cut down version of Project X minus all the fancy thrills.
As any games reviewer will tel l you, at the end of the day the most
important aspect of any game is its playability - Tetris, for example, is
damned playable (I 've certainly wasted quite a few hours bashing away
with it) but even a slow programming language like Commodore's
original AmigaBASIC could probably handle it.

We all dream of writing the sort of mega-games that have made
programmers l ike Jez San household names, but you're in for a shock if
you think that your initial efforts are going to be even close to the quality
of commercial games such as StarGlider 2, Lemmings or Project X.
Point number one - even as a beginner, you can produce some pretty
good stuff with a little knowledge under your belt. But try to write a
game that is beyond your programming talents and you ' l l soon get totally
bogged down and very frustrated. Most amateur games programmers
make this all too common mistake - after trying to undertake a game that
is beyond their capabilities, most give up and throw in the towel
completely. The moral of this point is simple - don 't try to run before
you can walk. Always start with a simple idea and then once you've
honed your skills" move onto something a bit more elaborate.

Another very important aspect of the game programmer's art is code
optimisation - that is, trying to make your code run as fast as possible.
Most modem arcade games are updated at a rate of 50 times per second

Ultimate AMOS

272 Chapter 1 1

so your entire game code has to be executed within this time if your
game is to remain smooth. By constantly improving the performance of a
given routine, you can squeeze more and more spare time from the
Amiga's processor that could be used for extra effects such as parallax
scrolling, animated copper bars etc.

Games programming has always seemed something of a mystical art
grasped only by the chosen few, but in fact games aren't as complex as
you might think. Fact is , all games are based around pretty much the
same theory. Once you have rasped a few relatively simple principles and
you feel confident enough to put it into practice, you 'l l be churning out
games faster than you could possibly imagine ! S imple shoot 'em ups are
particularly easy - once you understand how a game is structured, it's
quite possible to write quite a play able shoot 'em up along the lines of
Project X in an afternoon !

The main game loop

Ultimate AMOS

Looking at a game in its most simplistic form, all games are based
around a loop that commercial game programmers call the 'main game
loop ' . The sole purpose of this loop is to perform all the functions that
are required to make the game run - in an arcade game like Project X, for
example, the main game loop would read the player's joystick and move
the player's ship in response, update the positions of all aliens and
missiles, check for collisions and update the score accordingly. Each time
the loop is completed, the screen is redrawn once, so the faster you can
get AMOS to execute this loop, the faster your game will run.

There is a point where the screen refresh rate of both your monitor and
Amiga won 't be able to keep up with your game, so there's little point
redrawing the screen any faster than the Amiga can refresh the screen.
On a PAL Amiga, for example, the screen is refreshed a maximum of 50

times per second, so there's little point redrawing the screen any faster
than this . Although AMOS is pretty rapid, you 're unlikely to find this a
problem unless you code large sections of your game in assembler. Even
then, you should tie screen redraws in with the vertical blanking period
of the screen using the AMOS 'Wait Vbl ' command. If you don 't use
'Wait Vbl ' , any objects that you have moving on screen will appear to

Games programming 273

flicker terribly and the entire game will be out of sync with the Amiga's
screen refresh hardware.

Main game
loop

So what does the main game loop actually do? Wel l , the best way to
understand this bit of programming trickery is to imagine a game slowed
down so that the main game loop is performed just once per second
(most well-programmed commercial games perform their main game
loop every video frame - that's fifty times per second!) . Every time the
main game loop is performed, every aspect of the game is updated just
once - the player's ship along with any aliens and missiles are moved
and any collisions are acted upon. If you were to run the main game loop
just once, very little would appear to happen - you might see a couple of
sprites move a couple pixels and then stop, but l ittle else. It's not until the
main game loop is run continuously that the game springs to life.

Let's consider a relatively simple game l ike a shoot 'em up by taking a
look at its main game loop in psuedo code form:

Start of Main Game Loop

Move alien spaceships

Move player ' s missiles

Move alien ' s missiles

Have any of the alien ' s fired a new missile?

Generate new missile sprite

Play the sound of a missile being fired

Has the j oystick being pushed?

Has it being pushed left?

Move player ' s ship left by ' n ' pixels

Has it being pushed right?

Move player ' s ship right by ' n ' pixels

Has it being pushed up?

Move player ' s ship up by ' n ' pixels

Has it being pushed down?

Move player ' s ship down by ' n ' pixels

� &1i"

Ultimate AMOS

274

Has the j oystick fire button being pressed?

Generate new missile sprite

Play the sound of a missile being fired

Have any of the player ' s missiles collided with aliens?

Remove alien sprite

Remove missile sprite

Generate explosion sprite

Play the sound of an explosion

Add ' n ' points to player ' s score

Have any alien missiles collided with the player ' s ship?

Remove player ' s sprite

Remove alien missile sprite

Generate explosion sprite

End Game ! ! !

Redraw all sprites onto screen

Swap physical and logical screens

Chapter 1 1

Wait for vertical blank before proceeding

Jump back to start

Ultimate AMOS

As you can see, the main game loop of a game consists of quite a few
decisions that control the flow of the program code. Any code that is not
embedded inside a decision will be performed every time the main game
loop is performed. Code that is embedded inside a decision will only be
performed, however, if the result of the decision is true. Take the firing of
a missile, for example. Obviously you only want a missile to be fired
when the player presses the joystick fire button, so the first thing that is
done is to check whether the fire button is being pressed (using the
'Joy(l) ' function). If, after checking the fire button, you find that it hasn't
been pressed, then there 's little point in running the code that handles this
particular aspect of the game.

As you can probably appreciate, there are a lot of steps within the main
game loop that may not always be performed. If the results of any of the
decisions made within the loop are found to be false (the player's ship
hasn't collided with a missile, for example), then huge chunks of the

Games programming 275

game's code will not be performed. Splitting up your code in this way
(programmers call this 'modular' code) not only makes your game's code
more readable, but it can also make your game run considerably faster.

We've covered some pretty heavy theory over the last few pages or so, so
we ' ll put all that theory into practice over the remaining chapters by
taking a look at how to write five of the most popular types of game -
shoot 'em ups, platform games, maze games, 'Dungeon Master' clones
and the good old graphic adventure.

Optimising your games
AMOS turns in some pretty impressive code performance ratings, but it
wil l never be anywhere near as fast as pure assembly language, the
choice for commercial games programmers . There are ways, however, of
squeezing that extra spurt of speed from your AMOS code.

1 Europress kindly bundle a runtime system with all versions of AMOS
including Easy AMOS and the latest release, AMOS Professional.
Although these runtime systems allow you to run your AMOS creations
without having to load the AMOS interpreter, your programs will still
run at the same speed. If you want to get your games running as fast as
possible, then you should seriously consider purchasing the AMOS Pro
Compiler. Because the compiler produces a machine code version of
your program, the resulting code (particularly math-intensive routines)
will run considerably faster.

2 AMAL is all fine and dandy for very simple programs, but it can create
synchronisation problems with larger games - I 've even heard horror
stories of AMAL code crashing programs once they've been compiled! If
you insist on using AMAL (most AMAL programs run no faster than
their AMOS equivalents once compiled !) , then it's well worth switching
of the AMAL interrupt system (using the ' Synchro Off' command) and
then running all your AMAL programs directly (with the 'Synchro'
command) .

3 AMOS's blitter object handling routines are very fast when compared to
the likes of GFA Basic and AmigaBASIC, but they 're still rather slow. If

Ultimate AMOS

276

�� e
AMOS

Compiler

Ultimate AMOS

If you want your games to

run at peak performance,

then you need to buy

yourself a copy of the

AMOS Compiler.

Chapter 1 1

your game uses two or more bobs, then you should seriously consider
switching off AMOS 's automatic bob redrawing feature (using 'Bob
Update Off') and then redrawing all bobs 'en masse ' with the 'Bob
Clear' and 'Bob Draw ' commands. This will produce a considerable
increase in code performance as all your bobs will be drawn onto the
screen in a single blitter operation.

It's well worth handling the process of updating a double buffered
display yourself too by switching AMOS 's 'AutoBack' facility from its
default setting (' 3 ') to AutoBack mode ' 1 ' . When you need to swap the
physical and logical screens, just add the line ' Screen Swap ' .

4 It's very tempting to write games that make full use o f the PAL display,
but there 's a very good reason why most games programmers still write
games in NTSC resolutions - redrawing those extra 56 lines eat up
valuable processor time. Try to keep your game screens as small as
possible - even if you knock your game screen down from 256 vertical
lines to 200 vertical lines, a considerable speed increase wil l be evident.

5 If you 're compiling your game, always turn off the compiler's 'Runtime
Error Checking' facil ity. Runtime error checking eats up valuable system
cycles which can better be used by your game. Obviously this means that
you ' l l have to play test your game a lot more thoroughly to ensure that
your game doesn ' t crash, but then this is a damned good habit anyway !

Games programming 277

6 32-colour game screens look very nice indeed, but they 're also very slow
to update. You should therefore try to keep the depth of your screen as
low as possible. Every extra bitplane that the Amiga's blitter has to work
on will cause a slight decrease in code performance.

When designing blitter objects, you should always try to design them so
that they use the first set of colours in a game's screen palette. Another
good idea is to restrict the depth of the bobs in your sprite bank so that
only the bitplanes that the bobs use are included in the sprite bank. Not
only will this reduce the size of your sprite bank, but AMOS can plot
them onto screen a lot faster.

7 If you 're finding it hard to nail down the procedure that is slowing down
your game, then a good tip is to insert the line ' Doke $DFF1 80,$RGB '
(where ' $RGB ' is a valid hex colour value) between each procedure in
your main game loop, each with their own unique '$RGB ' value. When
you run your program, the background colour will change at several
different vertical positions, giving you a sort of psuedo-graph of the time
required to run each procedure. If a section of colour is considerably
larger than all the others, then you know exactly which procedure is
causing the speed problems.

9 Keep it simple ! AMOS may be fast, but it's still a Basic programming
language at the end of the day. Although it can handle simple arcade
games, don 't expect it to run your AMOS version of 'Project X ' . As any
game reviewer will tell you, the most important aspect of any game is its
gameplay - something that even the simplest games can have in
abundance (check out 'Tetris ' if you don 't believe me).

Ultimate AMOS

278

Ultimate AMOS

279

Shoot 'em ups
• Moving the player's ship

• Handling aliens

• Firing missiles

• Explosions

U ltimate AMOS

280

Ultimate AMOS

Chapter 1 2

W e 've already covered virtually all the theory behind shoot 'em
ups both in the last chapter and previous chapters. Neary all the
routines that you ' l l ever need to get a shoot 'em up running can

be found somewhere in this book, so I won 't say too much about the
theory behind writing a decent shoot 'em up.

Even the pseudo code for a complete shoot 'em up can be found at the
beginning of the last chapter, so there 's little point in boring you with
information that we've already covered. But before we dive into the
listing for the simple demonstration game that you ' ll find on the disk, ask
yourself the following question - what makes a good shoot 'em up? And,
with so many games of this type available, what sort of ingredients does
a shoot 'em up need to make it a cut above the rest?

Well , first and foremost, a shoot 'em up must be fast-paced - all good
shoot 'em ups push the player's abilities to the limit by testing their
reactions and their ability to stay cool in a tight spot. If your game runs
so slowly that the player can simply move around the screen blasting
aliens without batting an eyelid, it's hardly going to be challenging.

Secondly, a shoot 'em up must be violent. OK, so people l ike Mary
Whitehouse and most of the tabloid press are dead set against violence in
computer games, but it's the satisfaction of l iterally blasting your way
through hordes of aliens that makes the shoot 'em up so appealing.
Perhaps this explains why shoot 'em ups that allow the player to collect

Programming arcade

games is surprisingly

simple providing you've

got a little bit of basic

knowledge under your

belt.

Shoot ' em ups 28 1

'power ups ' are so popular - the more power ups you get, the more aliens
you can kill in one shot. I know that this sort of thing certainly appeals to
me - there 's no nothing that can compare to that feeling of having such a
deadly array of weapons on your spaceship that even the toughest of
aliens are reduced to space dust with a single shot !

Lastly, a shoot 'em up must continue to be challenging. If you 've written
a shoot 'em up where every wave of aliens behave pretty much the same,
the old boredom factor will be very high indeed. Don't make your shoot
'em up too difficult however - that's the second easiest way of loosing
the interest of a games player !

Anyway, that's enough of the theory - let's take a look at a listing for a
playable shoot 'em up game. It's nothing special, so don't expect a game
that blows 'Project X ' out of the water. If you 're feeling adventurous,
why not have a go at adding a few extra features such as making the
attacking hordes of aliens shoot back. And how about adding some
'power ups ' and smart bombs. Good luck!

Rem * * * Shoot Em Up Demo

Rem * * * Filename - ShootEmUp . AMOS

Rem * * * This game will not work under Easy AMOS !

Rem * * * AMAL Hardware Scroll Routine . . .

SCRL$="

SCRL$=SCRL$+"A :

SCRL$=SCRL$+"

SCRL$=SCRL$+"

SCRL$=SCRL$+"B :

SCRL$=SCRL$+"C :

SCRL$=SCRL$+"

SCRL$=SCRL$+"

Let RA = A"
Let RA = RA + 1"

If RA > 320 Jump B"

Jump C"

Let RA = A"
Let X = RA"

Pause"

Jump A"

Rem * * * AMAL Joystick control routine . . .

JY$="

JY$=JY$+"

JY$=JY$+"

Let RB = 4 0 "

Anim 0 , (1 , 2) (2 , 2) "

Let RC = l O O "

Ultimate AMOS

282

JY$=JY$+" A: I f J 1 & 1 Jump B"

JY$=JY$+" I f J 1 & 2 Jump D"

JY$=JY$+" If J1 & 4 Jump F"

JY$=JY$+" If J1 & 8 Jump H"

JY$=JY$+" Jump W"

JY$=JY$+" B : Let RC = RC - 3 "

JY$=JY$+" If RC < 2 0 Jump CIf

JY$=JY$+" Jump W"

JY$=JY$+" C : Let RC = 2 0 "

JY$=JY$+" Jump W"

JY$=JY$+" D : Let RC = RC + 3 "

JY$=JY$+" If RC > 180 Jump E"

JY$=JY$+" Jump W"

JY$=JY$+" E: Let RC = 180"

JY$=JY$+" Jump W"

JY$=JY$+" F : Let RB = RB - 3 "

JY$=JY$+" I f RB < 2 0 Jump G"

JY$=JY$+" Jump W"

JY$=JY$+" G: Let RB = 2 0 "

JY$=JY$+" Jump W"

JY$=JY$+" H: Let RB = RB + 3 "

JY$=JY$+" If RB > 2 8 0 Jump I"

JY$=JY$+" Jump W"

JY$=JY$+" I : Let RB = 2 8 0 "

JY$=JY$+" Jump W"

JY$=JY$+" W: Let X = RB + RA"

JY$=JY$+" Let Y = RC"

JY$=JY$+" Pause"

JY$=JY$+" Jump A"

Dim MISSILE (2 , 3)

Rem * * * Missile Data structure

Rem * * * Missile (n, O)

Rem * * * Missile (n, l)

Rem * * * Missile (n, 2)

Status (O=Off l=Fired)

Missile X co-ordinate

Missile Y co-ordinate

NUMALIENS=5 : Rem * * * Number of alien spaceships . . .

Ultimate AMOS

Chapter 1 2

Shoot ' em ups 283

Dim ALIEN (NUMALIENS , 4)

Rem * * * Aliens Data structure

Rem * * * Alien (n, O) Alien X co-ordinate

Rem * * * Alien (n, l) Alien Y co-ordinate

Rem * * * Alien (n, 2) Alien speed

Rem * * * Alien (n, 3) Status (O=Fine l=Exploding)

Global MISSILE () , MISSILEDELAY , ALIEN () , ALIENFRAME , FRAMEDELAY

Global SCRL$, JY$, SCROFFSET, SHIPX, SHIPY, DEAD, SCORE , NUMALIENS

Global BANG$

Rem * * * Initialise game . . .

_GAMEINIT

Repeat

Like all games, there 's a fair amount of setting up to be carried out before
the game enters the main loop. Our shoot 'em up uses AMAL to control
both the screen scrolling and the movement of the player's ship. Two
AMAL programs are required which are placed into the string variables
' SCRL$' and 'JY$ ' . In order to keep both programs running in sync, the
current screen offset setting which is updated by the ' SCRL$' program is
stored into the global AMAL variable 'RA' which is used to position of
the player's ship correctly in relation to the scroll . The ship control
program C 'JY$ ') saves the horizontal C 'X ') position of the ship into a
global AMAL program too - 'RB ' . This is used later in the game to
position the missiles that the player's ship can fire relative to the ship 's
position.

Two data structures are set up at the beginning of the game - ALIENO
and MISSILEO - which control the attacking alien spacecraft and the
player's missi les accordingly.

Rem * * * Main Game Loop . . .

Bob Clear

Synchro

Ultimate AMOS

284

Rem * * * Get screen offset value from AMAL . . .

SCROFFSET=Amreg (O)

Rem * * * Get position of ship from AMAL . . .

SHIPX=Amreg (l)

SHIPY=Amreg (2)

_CHECKCOLLISIONS

_CHECKFlRE

_MOVEALIENS

_MOVEMISSILES

Bob Draw

Screen Swap 0

wait Vbl

Chapter 1 2

Until DEAD=l

End

Ultimate AMOS

Here's the main game loop in all its AMOS glory - not very exciting, is
it? Because both the running of AMAL programs and bob updates are
handled by the programmer, we have to manually remove all bobs from
the screen before proceeding. Once this is done, both our AMAL
programs are run once. Once the screen has been scrolled and the
position of the player's ship has been updated, several values are read
from our AMAL programs and stored into variables. These will be used
to correctly position both the alien bobs and the player's missiles.

Now the fun really starts. Four procedures are executed in order to make
the game run - _CHECKCOLLISIONS (which checks for collisions
between the player's sprite and the aliens and collisions between the
player's missiles and the aliens), _CHECKFIRE (which generates the
missile sprites when the player presses the fire button), _MOVEALIENS
(which updates the positions of the attacking alien spacecraft) and
_MOVEMISSILES (which moves the player 's missiles). Finally, all the
bobs are drawn onto the screen which is then swapped into view.

Shoot ' em ups

Procedure _GAMEINIT

Screen Open O , 640 , 2 0 0 , 16 , Lowres

Flash Off : CUrs Off : Cls 0

Screen Display 0 , 12 8 , 4 8 , 3 2 0 , 2 0 0

Hide

Rem * * * Load graphic and sound files . . .

Load Iff IAMOSBOOK : Pictures/CosmoBlastBackground . IFF"

Screen Copy 0 , 0 , 0 , 32 0 , 2 0 0 To 0 , 32 0 , 0

Load IAMOSBOOK :AbkFiles/CosmoShips . ABK"

Get Sprite Palette

Make Mask 3

Load IAMOSBOOK :AbkFiles /CosmoSoundFX .ABK"

Double Buffer : Autoback 1

Bob Update Off

Rem * * * Turn on player ' s ship . . .

Bob 1 0 , 4 0 , 128 , 1

Rem *** Initialise AMAL . . .

Synchro Off

Channel 0 To Screen Offset 0

Channel 10 To Bob 10

Amal 0 , SCRL$

Amal 10 , JY$

Amal On

_INITALIENS

End Proc

285

The _GAMEINIT procedure is called at the start of the program to set up
the game screen, load in the background graphics and the sprite and
sample banks. The player's ship bob is created and our two AMAL
programs are assigned to the screen and the bob we've just created. After

Ultimate AMOS

286 Chapter 1 2

turning on the two AMAL channels that we assign to our AMAL
channels , the procedure then jumps to the '_INITALIENS ' procedure
that initialises the first wave of attacking aliens.

Procedure INITALIENS

FRAMEDELAY=O

ALIENFRAME=4

For C=O To NUMALIENS-1

ALIEN (C , O) =3 2 0

ALIEN (C , l) =Rnd (18 0)

ALIEN (C , 2) =Rnd (7) +2

ALIEN (C , 3) =O

Bob C , ALIEN (C , O) +SCROFFSET , ALIEN (C, l) , ALIENFRAME

Next C

Anim On
End Proc

The movement of the attacking alien spacecraft is hardly particularly
challenging, but it does work very wel l . The _INITALIENS procedure
initialises the first wave of aliens by randomly calculating both their
vertical positions and their speed. When run, the aliens will appear to fly
past the player's ship at different speeds. As each ship is initialised, the
bob for that ship is turned on and placed at the screen position held
within its initialised data structure.

Procedure _CHECKFIRE

MISSILE=-l

Inc MISSILEDELAY

Rem * * * has fire button been pressed?

If Joy (l) and 16

Rem * * * Have guns had time to recharge?

If MISSILEDELAY>2 0

Rem * * * Are missiles still active?

Ultimate AMOS

Shoot I em ups

For C=O To 1

If MISSILE (C , O) =O

MISSILE=C

End If

Next C

MISSILEDELAY=O

Rem * * * Fire missile !

If MISSILE > - l

MISSILEX=X Hard (SHIPX)

MISSILEY=Y Hard (SHIPY)

Sprite MISSILE*4 , MISSILEX, MISSILEY, 3

MISSILE (MISSILE , 0) =1

Rem * * * calculate position of missile

Rem *** relative to spaceship position

MISSILE (MISSILE , 1) =SHIPX+10

MISSILE (MISSILE , 2) =SHIPY+7

Sarn Play 1

End If

287

End If

End If

End Proc

The _CHECKFIRE procedure handles the task of initialising new
missiles when the player presses the fire button. The routine starts by
checking whether exactly twenty loops have passed (this is indicated by
checking the value of the variable 'MISSILEDELAY') . If enough time
has passed, the routine then checks to see whether a missile is available
for firing by entering a loop that checks the value of the first element in
each missile's data structure (,Missile(n,O)

,
) . If a missile is found, the

missile's data structure is set up and a missile sprite is drawn onto the
screen. Finally, a sampled sound of a missile is played using the ' Sam
Play' command.

Ultimate AMOS

288 Chapter 1 2

Procedure _MOVEMISSILES

For C=O To 1

Rem * * * I s missile active?

If MISSILE (C , O) =l

Rem * * * Increase X position of missile . . .

MISSILE (C , l) =MISSILE (C , l) +8

Rem * * * Has missile left screen?

If MISSILE (C , l » 3 2 0

Else

Rem * * * Turn off missile . . .

Sprite Off C*4

MISSILE (C , O) =O

Rem * * * Redraw missile . . .

MISSILEX=X Hard (MISSILE (C , l »

MISSILEY=Y Hard (MISSILE (C , 2 »

Sprite C*4 , MISSILEX, MISSILEY, 3

End I f

End If

Next C

End Proc

The _MOVEMISSILES procedure is pretty self-explanatory - its sole
role in life is to update the positions of any missiles that may have been
fired by the player. It has a dual role, however - not only does it increase
the 'X' screen position of each missile, but it also checks whether a
missile has left the screen (indicated by a missile 'X ' position greater
than 320). If the missile has left the screen, the data structure associated
with that missile is reset so that the missiles becomes available and the
missile sprite is removed from the screen.

Procedure _MOVEALIENS

Rem * * * Update alien animation . . .

If FRAMEDELAY>2

FRAMEDELAY=O

If ALIENFRAME=4

Ultimate AMOS

Shoot ' em ups

ALIENFRAME=5

Else

ALIENFRAME=4

End If

End If

Inc FRAMEDELAY

For C=O To NUMALIENS- l

If ALIEN (C , 3) =O

Else

Rem * * * Move alien spaceships . . .

ALIEN (C , O) =ALIEN (C , O) -ALIEN (C , 2)

Rem * * * Check that alien has not left screen . . .

If ALIEN (C , O) < - 4 0

ALIEN (C , O) =3 2 0

ALIEN (C , 1) =Rnd (18 0)

ALIEN (C , 2) =Rnd (7) +4

End If

Bob C , ALIEN (C , O) +SCROFFSET , ALIEN (C , l) , ALIENFRAME

Inc ALIEN (C , 3)

Rem * * * Has explosion run its course?

If ALIEN (C , 3 » lO

Else

ALIEN (C , O) = 3 2 0

ALIEN (C , 1) =Rnd (18 0)

ALIEN (C , 2) =Rnd (7) +4

ALIEN (C , 3) =O

Rem * * * Update explosion . . .

Bob C , ALIEN (C , O) +SCROFFSET, ALIEN (C , 1) , 6

End If

End If

Next C

End Proc

289

The _MOVEALIENS procedure is responsible for updating the screen
positions of all the aliens. It starts by updating the animations of the
aliens. Each alien only uses two frames, so the animation frame number

Ultimate AMOS

290 Chapter 1 2

is shared between all the aliens. Each alien data structure has a value
associated with it that dictates whether the spaceship has been destroyed
(a value of 1) or whether the alien is stil l moving on the screen (a value
of 0). If the ship is still active, its position is updated by subtracting its
speed from its current 'X' screen position. If the alien leaves the screen
(indicated by a 'X' value less than zero), a new alien is generated using
exactly the same technique used in the '_INITALIENS ' procedure.

If the alien has been destroyed (indicated by a status value of 1), an
image of an explosion is displayed in the place of the normal alien
image. This explosion graphic is held on the screen using a counter that
is held in the alien 's ' speed' variable. If the counter reaches a value
greater than 1 0, the explosion has run its course and a new alien is
generated in its place.

Procedure _CHECKCOLLISIONS

Rem * * * Has missile 1 hit an alien?

STATUS=Spritebob Col (O , O To NUMALIENS- l)

If STATUS= - l

Rem * * * Which alien did it hit?

For C=O To NUMALIENS-l

If ALIEN (C , 3) =O

If Col (C) = - l

ALIEN (C , 3) =1

MISSILE (O , O) =O

Sprite Off 0

Rem * * * Add 1 to score

Inc SCORE

End If

End If

Next C

Sam Play 2

End If

Rem * * * Has missile 2 hit an alien?

STATUS=Spritebob Col (4 , O To NUMALIENS- l)

If STATUS=-l

Ultimate AMOS

Shoot ' em ups 29 1

For C=O To NUMALIENS- 1

I f ALIEN (C , 3) =0

If Col (C) =-l

ALIEN (C , 3) =1

MISSILE (1 , 0) =0

Sprite Off 4

Ine SCORE

End If

End If

Next C

Sam Play 2

End If

STATUS=Bob Col (lO , O To NUMALIENS - 1)

I f STATUS=-l

Sam Play 2

Rem * * * Enable this line to end game when player hit !

DEAD=O

End If

End Proe

The final procedure is responsible for detecting collisions between the
player's sprite and the aliens and collisions between the player's missiles
and any aliens that are unlucky enough to stand in their way. Two
separate checks are necessary to cover the two different missiles that
could be on the screen at any time - if either of them strikes an alien, the
alien's status is set to one (indicating that it is exploding), the missile is
turned off by setting its status to 0, the sprite is turned off and finally, the
player's score is increased.

The last collision check is carried out to see whether the player's ship has
collided with an alien. Although I 've left the code out, you could quite
easily add your own code that either makes the player lose a l ife or -
worse still - ends the game.

Ultimate AMOS

292

U ltimate AMOS

293

Maze games
• Drawing the maze

• Detecting Walls

• Picking up objects

• Intelligent 'baddies'

• Dungeon Master clones

U ltimate AMOS

294

Easier collision
detection

U ltimate AMOS

Chapter 1 3

M aze games come in all shapes and sizes, ranging dungeon romps
like 'Gauntlet ' , to age-old arcade classics like 'PacMan ' .
Although they may seem very different indeed, the gameplay

and indeed the programming techniques involved are very simjlar.
What's more, even state of the art 3D exploration games like FfL's
'Dungeon Master' and 'Eye of the Beholder' share much of their code
with the good old maze genre of game.

Before we get too heavily bogged down with Dungeon Master-style
games, however, let's start at the very beginning with a look at the
traditional maze game, where the maze is viewed from a bird's eye view.
If you studied the 'Screen B locks ' l i sting in chapter 8, then you ' l l
already have a pretty good idea of how best to draw up a maze on the
screen. Using tiny rectangular graphic blocks drawn in DPaint and then
placed into an ' Icon Bank' using the AMOS Object Editor, you can draw
up a very complex maze that uses very little memory indeed. What's
more, because each screen takes up only 1 or 2K, there's no reason
whatsoever why you couldn't add hundreds of different screens with
ease.

There is, however, stil l a lot of extra code that needs to be added to turn
our 'Screen Blocks' listing from chapter 8 into a maze game. Think
about the following - how do you move the player's sprite around the
maze without it walking through walls? What's more, how do you add
baddies to your game that wonder around the maze looking for the
player's sprite? This isn't as simple as you might think - after all, if the
game is to be chal lenging, then the baddies need to have a certain amount
of intelligence!

Upon first inspection, the most obvious way to control the player's
movement around the maze is to use coll ision detection, but - believe it
or not - there is a considerably easier way that is virtually foolproof. If
you've studied the 'Screen B locks ' listing, then you ' l l have noticed that
the maze itself is held as nothing more than a series of numbers that are
used to identify which screen blocks are to be pasted at certain screen
positions. A value of ' 1 ' , for example, wi l l paste a 'ground' graphic, a
value of '2 ' will paste a 'wal l ' block and a value of ' 3 ' will paste a
'door' block etc. Although this technique will not produce random

Maze games

OK, so our maze game

doesn't look that exciting,

but believe it or not the

code covered in this

chapter could be used to

produce anything from a

Pacman game to a full·

blown Gauntlet cfone!

295

mazes, it does have one major advantage - because the mazes can be
defined by the programmer, we can also use the same data as an
alternative to using collision detection.

As the maze is essentially a 20 x 1 6 grid containing nothing more than
numbers between 1 and 5, all we need to do is to treat the player's
movement in the game as a series of steps through this grid expressed as
a set of co-ordinates. For example, if the player was to be placed at
position (2,2), he could theoretically move (in a single step) horizontally
and vertically up, down, left or right to positions (2, 1) , (2,3), (1 ,2) or
(3,2) respectively.

Getting this routine up and running is surprisingly simple. All you need
to do is check the status of the joystick once during the main game loop -
if the joystick is pushed up, then decrement the X co-ordinate of the
player's position in the map, increment it if the joystick is pushed down
and so on. Now this is all fine and dandy, providing that there are no
walls in the way. If there are, the player 's sprite will appear to walk
straight through them as if it were a ghost So how do we stop this from
happening?

When the joystick is tested, the first thing that the movement routine
does is to check whether the grid position that the character would move

Ultimate AMOS

296

Checking for
'walls'

Smooth
movement

Ultimate AMOS

The player's movement

routine checks the data

held in the map array to

see if the square that the

player is attempting to

move to is a floor block.

Chapter 1 3

to is actually an empty space. It does this by checking though a
dimensional array that holds the same maze data that is used to draw the
maze. Let's say, for example, that the player's sprite is at position (2,2)
and the player has attempted to move the position to (2, 1) . If there is a
wall there, the players sprite should not move. To achieve this the
movement routine would calculate the theoretical new position and then
check the maze data array to see if the value held within (2, 1) is one
(designating a floor block). If it isn't then the player 's joystick input is
simply ignored resulting in the sprite staying in its original position. If a
value of 1 is found, however, then the player 's position is updated
accordingly.

You're probably thinking that this technique would result in some rather
jerky movement - after all, the player's character is moving sixteen
pixels in a single turn. Not so with some clever programming, however.
All you need to do is to add a 'step' variable to the player sprite 's data
structure and then increment this until the entire movement step is
completely. Until the 'step' variable reaches a maximum value, all other
joystick inputs are ignored.

Maze games 297

Adding baddies
Now we have our hero happily running around the maze, all we need are
some baddies to chase after him (or her). Movement of the baddies is not
a problem - all you need to do is to adapt the routine you use for the
player's sprite so that the baddies use exactly the same rules of
movement but under computer control. What we do need, though, is a
routine that adds a bit of intelligence to our baddies so that they will
actually pursue our hero around the maze in true 'PacMan' style.
Although such a routine may initially appear rather complicated, the best
way to design a routine like this is to draw up a set of rules of behaviour
that the baddies will follow.

Some games use a routine that makes the baddies pursue the hero no
matter where he is within the maze, but this is hardly very realistic. If
you think about it, if the maze was real and you were being hunted by a
pack of drunken Millwall supporters (sorry lads !) , they would probably
be as lost as you are ! The baddies should therefore only chase the
player 's sprite if they can actually see him. If they can't see him, they' ll
just continue searching around the maze until they find him. This
obviously gives the player an advantage because they know where the
baddies are, who are totally blind until the player comes into full view.

Bearing all this theory in mind, the baddie movement routine effectively
works in two modes - Search mode (The baddies try to locate the player)
and Pursue mode (they' ve located the player and immediately chase
him). Search mode is pretty straightforward, but Pursue mode does need
a little thought. The best way to handle this is to code a l ittle routine that
continuously checks all the clear blocks directly up, down, left and right
of the baddie. If the routine encounters a wal l in any one of thes
directions before it encounter the player's sprite then this direction is
ignored. If the player's sprite is encountered, however, the baddie's
direction of movement is immediately changed so that it starts to move in
the direction of the player. This Pursue mode continues until the baddie
either tracks down the player or the player manages to move out of the
baddie's line of vision (if this happened, the baddie has effectively lost
the player and will therefore start to search again). Here's the baddie
movement code in psuedo code format.

Ultimate AMOS

298

Whenever the baddies are

moved, the movement

routine checks in all four

directions to see whether

the baddie can see the

player.

Checking
'lines of sight'

Start

Can baddie see player?

Yes

No

Move baddie in direct ion of player

Can baddie move left or right ?

Yes

No

Can baddie move forward?

Yes

No

Does baddie want to move forward?

Yes

Move baddie forward

End I f

Move baddie right o r left

End I f

Can baddie move forward?

Ye s

Move baddie forward

No

Ultimate AMOS

Chapter 1 3

� &

Maze games

Can baddie move backwards ?

Yes

Move baddie backwards

End I f

End I f

End I f

End If

End o f movement rout ine

299

With all the theory covered, let's take a look at a demonstration program
that puts all this theory into practice. Although it's not yet a game in its
own right, very little extra code needs to be added to get a very play able
maze exploration game up and running. Here we go !

Rem * * * Maz e Game Demonstrat ion

Rem * * * Filename - MazeGameDemo . AMOS

Screen Open O , 3 2 0 , 2 5 6 , 3 2 , Lowres

Flash Off : Curs O f f : C l s 0

Rem * * * Load icons . . .

Load "AMOSBOOK : AbkFile s / DungeonBlocks . ABK"

Get Icon Palette

Rem * * * Load Bobs . . .

Load "AMOSBOOK : AbkFile s / DungeonSprites . ABK"

Rem * * * Ini t i a l i s e Player Sprite Data structure . . .

Dim HERO (4)

HERO (O) = 1 8 : Rem * * * Map X locat ion

HERO (l) = l Rem * * * Map Y locat ion

HERO (2) = 2

HERO (3) = O

Rem * * * Direct ion l =North 2 =South 3 =West 4 =East

Rem * * * Movement step

Rem * * * Initialise Ghost data s t ructures

NUMGHOSTS=4

Dim GHOST (NUMGHOSTS , 4)

Ultimate AMOS

300

For A= O To NUMGHOST S - 1

Read GHOST (A , O) Rem * * * Map X locat ion

Read GHOST (A , 1) Rem * * * Map Y locat ion

Read GHOST (A , 2) Rem * * * Direct ion

Read GHOST (A, 3) Rem * * * Movement step

Next A

Data 2 , 1 , 2 , 0 , 1 , 14 , 4 , 0 , 18 , 14 , 3 , 0 , 8 , 1 3 , 1 , 0

Rem * * * Ini t i a l i s e Map data array . . .

Dim MAP (2 0 , 1 6)

Rem * * * Ini t i a l i s e Bearing array . . .

Rem * * * Holds directions of movement relat ive

Rem * * * to player ' s pos i t i on

Dim B (4 , 2)

For A= O To 3

Read B (A, O)

Read B (A , l)

Next A

Data 0 , - 1 , 0 , 1 , - 1 , 0 , 1 , 0

Global MAP () , HERO () , B () , GHOST () , NUMGHOSTS , REDRAWFLAG

Chapter 1 3

Before the player can start happily wandering around the demonstration
maze, a fair bit of setting up has to take place. The program starts by
opening up the game screen and then the sprite and icon banks are pulled
into memory. Next, we start the serious business of building up the data
structures for both the player and the 'baddies' that chase the player
around the maze. Finally, a 'bearing' array is initialised that will tell the
routines that handle both the movement of the player's sprite and the
baddies how to move around the maze. Al l these various data structures
and variables are then made global so that all our procedures can have
access to their contents.

Rem * * * Point read pointer to level data . . .

Restore LEVEL1

Ultimate AMOS

Maze games

Rem * * * Draw Screen from map data . . .

Screen Hide 0

For Y= O To 1 5

For X=O T o 1 9

Read BLOCK

Paste Icon X* 1 6 , Y* 1 6 , BLOCK

MAP (X , Y) =BLOCK

Next X

Next Y

Screen Show 0

Double Buf fer : Autoback 1

Bob Update Off : Hide

LEVELl :

Data 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

Data 2 , 1 , 1 , 4 , 2 , 4 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 3

Data 2 , 1 , 1 , 4 , 2 , 1 , 1 , 1 , 1 , 2 , 1 , 6 , 4 , 2 , 1 , 2 , 1 , 1 , 1 , 2

Data 2 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 2 , 1 , 2 , 1 , 2 , 2 , 2

Data 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 2

Data 2 , 2 , 2 , 2 , 1 , 2 , 1 , 2 , 2 , 2 , 1 , 4 , 1 , 2 , 1 , 2 , 2 , 2 , 1 , 2

Data 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 4 , 2 , 1 , 2

Data 2 , 1 , 2 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 2

Data 2 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 2 , 1 , 1 , 1 , 4 , 2 , 1 , 1 , 1 , 1 , 2

Data 2 , 1 , 1 , 2 , 2 , 2 , 1 , 2 , 1 , 2 , 1 , 5 , 2 , 1 , 2 , 1 , 2 , 2 , 2 , 2

Data 2 , 2 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 1 , 2 , 1 , 1 , 1 , 1 , 2

Data 2 , 1 , 1 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 1 , 2

Data 3 , 1 , 7 , 2 , 1 , 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 2

Data 2 , 1 , 4 , 4 , 1 , 2 , 1 , 4 , 6 , 1 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 1 , 2

Data 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2

Data 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

Repeat

Bob Clear

Rem * * * Remove obj ect from new phsyical s creen . . .

I f REDRAWFLAG= l

30 1

Ultimate AMOS

302

Paste Icon HERO (O) * 1 6 , HERO (1) * 1 6 , l

REDRAWFLAG= O

End I f

_MOVE HERO

CHECKOBJECTS

_MOVEGHOSTS

_CHECKCOLLISIONS

Bob Draw

Screen Swap 0

wait Vbl

Chapter 1 3

Unt i l MAP (HERO (O) , HERO (1 » = 3

End

Ultimate AMOS

The screen is then drawn by pasting down 1 6 x 1 6 pixel icons that are
held in the icon bank that we loaded at the start of the program. The code
that handles this is virtually identical to the 'Screen Icons ' demonstration
listing that we covered in chapter 6. There 's one big difference here,
however - instead of simply reading off and then discarding the data that
is used to plot the icons, the data is placed into a dimensional array called
'MAPO' that is also used to control the movement of both the player and
the baddies that chase him.

With the screen drawn, the program then enters the main game loop. The
main game loop starts by checking that the variable 'REDRAWFLAG'
has been set to 1 . If it i s , icon 1 is pasted down at the player's current
position. This is necessary because the AMOS command 'Paste Icon'
doesn't work properly with double buffered displays. If you were to
simply paste an icon into the current logical screen, the physical screen
would remain unchanged, causing a fl icker between the new graphic that
has been pasted into the logical screen and the graphic that was originally
placed into the physical screen. If you don't believe me, try removing
these few lines of code !

Once this is done, the real action starts. The main game loop calls four
procedures that are solely responsible for running the entire game. The
first of these, _MOVEHERO (which we' ll be looking at next), updates

Maze games 303

the position of the hero and this procedure is rapidly followed by the
associated '_CHECKOBJECTS' , '_MOVEGHOSTS ' and
'_CHECKCOLLISIONS ' procedures that check when the player has
walked over an object, updates the positions of the ghosts (this is the
most complicated routine of the whole game !) and checks whether the
ghosts have run into the player's sprite. Anyway, let's take a look at the
'_MOVEHERO' procedure.

Procedure _MOVE HERO

BRNG= O

Rem * * * Has the p l ayer stopped moving?

If HERO (3) = O

Rem * * * Check j oyst ick position . . .

I f Joy (l) and 1

BRNG=l : Rem * * * North

End I f

I f Joy (l) and 2

BRNG= 2 : Rem * * * South

End I f

I f Joy (l) and 4

BRNG=3 : Rem * * * West

End If

If Joy (l) and 8

BRNG= 4 : Rem * * * East

End If

I f BRNG< > O

Rem * * * Can the player move i n that direct ion?

If MAP (HERO (O) +B (BRNG- 1 , O) , HERO (1) +B (BRNG - 1 , l)) < > 2

Rem * * * Start t o move hero . . .

HERO (2) =BRNG

HERO (3) = 1

End I f

End I f

Ultimate AMOS

304

E l s e

Rem * * * H a s the hero moved a l l the way

Rem * * * t o the next square ?

I f HERO (3) =7

BRNG=HERO (2)

Rem * * * Update locat ion of hero . . .

HERO (O) =HERO (O) +B (BRNG- l , O)

HERO (l) =HERO (l) +B (BRNG- l , l)

Rem * * * Reset movement step . . .

HERO (3) = O

E l s e

Rem * * * Increment movement step . . .

HERO (3) =HERO (3) + 1

End I f

End I f

_DRAWHERO

Chapter 1 3

End Proc

Ultimate AMOS

It may look rather long, but there's nothing particularly complex about
this procedure. All it does is to handle the movement of the player's
sprite around the maze by making sure that the player doesn't manage to
walk through walls. The player's sprite has a status variable attached to it
that tells AMOS when it has managed to walk from one square to
another. The _MOVEHERO routine therefore starts by checking to see
whether the player 's sprite is already walking in a particular direction or
whether it has reached the grid it is walking to (which means that the
sprite has effectively stopped) . If the player's sprite has stopped moving,
the joystick is checked and the 'BRNG' variable (short for 'Bearing ') is
set to a value between 1 and 4. A value of 1 means that the player has
tried to move up, a value of 2 means down, 3 means left and 4 means
right.

The movement routine then checks the map data array to see whether the
player can actually move in that direction. The direction of movement is
taken from the 'BO' array that contains bearing values that offset the
player's current position by the correct number of units. If the player

Maze games 305

wishes to move north, for example, the values '- 1 ' and '0' are
temporarily added to the player 's current position, effectively checking
the block immediately above the player. If the player can move in that
direction (i.e. the block doesn't contain a value of '2' - indicating a
wall) , then he is moved accordingly. If he can't, however, the joystick
input is simply ignored.

If the player's sprite has already started moving to a new position, the
routine then checks to see whether the next movement will complete the
step from one block to another. If it will , the player's position within the
map is set and the status variable is reset to zero, otherwise the status
variable is increased. This status value will be used to calculate the exact
pixel position of the player's sprite relative to his position within the
map.

Procedure _DRAWHERO

FRAME = 1

Rem * * * I s the hero moving up or down?

I f HERO (2) < 3

HEROX=HERO (O) * 1 6

Rem * * * I s the hero moving down?

I f HERO (2) = 1

HEROY=HERO (1) * 1 6 - (HERO (3) * 2)

E l s e

HEROY=HERO (1) * 1 6 + (HERO (3) * 2)

End I f

E l s e

Rem * * * I s the hero moving l e f t ?

I f HERO (2) =3

HEROX=HERO (O) * 1 6 - (HERO (3) * 2)

FRAME = 2

E l s e

HEROX=HERO (O) * 1 6 + (HERO (3) * 2)

End I f

HEROY=HERO (l) * 1 6

Ultimate AMOS

306 Chapter 1 3

End I f

Rem * * * Draw Hero Bob . . .

Bob O , HEROX , HEROY, FRAME

End Proc

The '_DRAWHERO' routine is - not surprisingly - responsible for for
drawing the player 's sprite onto the screen. Because the player 's sprite
can be facing either left or right, the image that will be drawn onto the
screen is calculated by checking the direction that the player is moving
in. Not only that, but the value held in the hero's status variable could be
added to either its 'X' or 'Y' co-ordinate. The routine therefore checks
which direction the player is moving in and adds the status value to the
appropriate co-ordinate. If the player was moving north, for example,
then the step value is subtracted from the player 's 'Y' co-ordinate and if
they are moving east, it's added to the sprite's 'X' co-ordinate. Finally,
the player's sprite (well , it's a bob actually) is drawn onto the screen.

Procedure _C
·
HECKOBJECTS

Rem * * * Is the player s tanding over an obj e c t ?

I f MAP (HERO (O) , HERO (1 » > 3

Rem * * * Remove obj ect from screen map . . .

MAP (HERO (O) , HERO (l » = l

Bell

Rem * * * Clear obj ect graphic . . .

Paste Icon HERO (O) * 1 6 , HERO (1) * 1 6 , l

Rem * * * Set Redraw flag so that icon i s drawn into

Rem * * * Both the physical and logical screens . . .

REDRAWFLAG= l

End I f

End Proc

U ltimate AMOS

The '_CHECKOBJECTS ' procedure is used to check whether the
player's sprite has walked over one of the many objects scattered
throughout the maze. The routine works by checking the value held in

Maze games 307

the 'MAPO' array at the same posItIOn as the player's sprite to see
whether it is greater than 3 (indicating an item of treasure). If an object is
found, the object is effectively 'picked up' by the player and removed
from the screen by pasting down icon 1 and changing the value held at
that position in the 'MAPO' array to 1 (indicating a basic floor square).

Procedure _MOVEGHOSTS

FOUND = - 2

Rem * * * Update each ghos t in turn . . .

For A=O To NUMGHOSTS - l

Rem * * * Has ghos t stopped moving?

If GHOST (A , 3) = O

Rem * * * Can ghos t see p l ayer?

_SEARCHFORHERO [A]

FOUND=Param

Rem * * * I f s o , move ghos t . . .

I f FOUND> - l

GHOST (A , 2) =FOUND

GHOST (A , 3) = 1

End I f

I f FOUND= - l

Rem * * * Can ghost move left o r right ?

_CHECKLEFTRIGHT [A]

FOUND=Param

I f FOUND > - l

BRNG=GHOST (A , 2)

MAPX=GHOST (A , O) +B (BRNG- l , O)

MAPY=GHOST (A , l) +B (BRNG- l , l)

Rem * * * Does ghost have the opt ion

Rem * * * of going Forward?

U ltimate AMOS

308

Ultimate AMOS

I f MAP (MAPX , MAPY) =2 or MAP (MAPX , MAPY) = 3

E l s e

End I f

End I f

End I f

I f FOUND= - l

Rem * * * I f not , then g o l e f t o r right

GHOST (A , 2) = FOUND

GHOST (A , 3) = 1

Rem * * * Does ghost want to change

Rem * * * direction?

DRECTION=Rnd (2)

I f DRECTION= l

E l s e

End I f

Rem * * * I f s o , then change

Rem * * * direc t i on

GHOST (A , 2) = FOUND

GHOST (A , 3) = 1

FOUND= - l

Rem * * * Can ghost go forward?

_CHECKFORWARD [A]

FOUND=Param

I f FOUND= l

Rem * * * I f s o , go forward . . .

GHOST (A , 3) = 1

E l s e

Rem * * * Can ghost g o backwards ?

_CHECKBACKWARDS [A]

FOUND=Param

I f FOUND > - l

End I f

Rem * * * I f s o , g o backwards . . .

GHOST (A , 2) =FOUND

GHOST (A , 3) = 1

Chapter 1 3

Maze games

End I f

End I f

309

Else

Rem * * * Has the ghos t moved all the way

Rem * * * to the next square ?

I f GHOST (A , 3) =7

BRNG=GHOST (A , 2)

Rem * * * Update location of ghos t . . .

GHOST (A , O) =GHOST (A , O) +B (BRNG- l , O)

GHOST (A , l) =GHOST (A , l) +B (BRNG- l , l)

Rem * * * Reset movement step . . .

GHOST (A , 3) = O

E l s e

Rem * * * Increment movement step . . .

GHOST (A , 3) =GHOST (A , 3) + 1

End I f

End I f

Next A

Rem * * * Redraw all the ghos t bobs

_DRAWGHOSTS

End Proc

The '_MOVEGHOSTS ' procedure and the routines that it calls are the
most complex aspect of our demonstration game and they closely follow
the psuedo code that we covered earlier. The routine processes all four
ghosts using a loop that counts from 0 to 3. Just like the hero movement
routine, it starts by checking whether the ghost has completed a single
movement from one step to another. If it has, the routine calls a
procedure called '_SEARCHFORHERO' that checks to see whether a
particular ghost can actually see the hero. If the value returned by that
routine is greater than ' - 1 ' , the baddie is moved in the direction of the
player, effectively making the ghost 'chase' the player.

If the baddie can't see the player, however, it then checks to see whether
the baddie can move left or right by calling the '_CHECKLEFrRIGHT'

Ultimate AMOS

3 1 0 Chapter 1 3

procedure. If the ghost can, the routine then checks to see whether the
baddie has a choice (it might, for example, have reached the end of a
corridor and is staring at a brick wall !) . If the baddie doesn't have a
choice, then he changes direction. If the baddie does have the choice,
however, a random number is generated between one and zero. If a value
of one is returned, then the bad die changes direction, otherwise the
routine carries on.

Finally, the routine checks to see if the baddie can go forward. If the
baddie can go forward, then the move is made. If not, the routine then
checks to see if it can move backwards by calling the
'_ CHECKBACKWARDS' procedure.

The rest of the code is almost identical to the second half of the
'_MOVEHERO' procedure that we covered earlier. All it does is to
move the ghost from one block to another by incrementing the value of
the baddie's ' status ' variable (,GHOST(n,3)

,
) .

Procedure _DRAWGHOSTS

FRAME = 3

For A= O To NUMGHOSTS - l

I f GHOST (A , 2) < 3

GHOSTX=GHOST (A , O) * 1 6

Rem * * * I s the ghost moving down?

I f GHOST (A , 2) = 1

GHOSTY=GHOST (A , l) * 1 6 -GHOST (A , 3) * 2

E l se

GHOSTY=GHOST (A , l) * 1 6+GHOST (A , 3) * 2

End I f

Else

Ultimate AMOS

Rem * * * I s the ghost moving l e f t ?

I f GHOST (A , 2) = 3

GHOSTX=GHOST (A , O) * 1 6 -GHOST (A , 3) * 2

FRAME=4

Maze games

Else

GHOSTX=GHOST (A , O) * 1 6 +GHOST (A , 3) * 2

End I f

GHOSTY=GHOST (A , l) * 1 6

End I f

Rem * * * Draw Ghost Bob . . .

Bob A+ 1 , GHOSTX , GHOSTY , FRAME

Next A

End Proc

3 1 1

The '_DRAWGHOSTS ' procedure i s almost identical to the
'_DRAWHERO' procedure. For more information, refer back to that
procedure.

Procedure _SEARCHFORHERO [GHOS T]

BLOCK=O

FOUND= - l

Rem * * * I s the ghost standing on a d i f f erent square

Rem * * * from the player?

I f GHOST (GHOST , O) < >HERO (O) or GHOST (GHOST , l) < >HERO (l)

For C = O To 3

MAPX=GHOST (GHOST , O)

MAPY=GHOST (GHOST , l)

XINC=B (C , O)

YINC=B (C , l)

WALL= O

Repeat

Rem * * * Can player be seen?

If MAPX=HERO (O) and MAPY=HERO (l)

FOUND=C+ 1

End I f

Rem * * * I s a wal l block ghost ' s view?

U ltimate AMOS

3 1 2

I f MAP (MAPX , MAPY) = 2 or MAP (MAPX , MAPY) = 3

WALL= l

End I f

I f WALL= O

Rem * * * Look a square further . . .

MAPX=MAPX+XINC

MAPY=MAPY+YINC

End I f

Unt i l FOUND > - l or WALL=l

Next C

End I f

Chapter 1 3

End Proc [FOUND]

The '_SEARCHFORHERO' procedure checks to see whether the baddie
can see the player 's sprite in any one of the four directions of movement.
The routine starts by checking to see whether the see whether the baddie
is standing on a different square from the player's sprite. After all, there 's
little point in searching for the player is the ghost has already located
him.

Each of the four directions of movement are checked by starting from the
baddie 's current block position and then moving steadily out until the
baddie's l ine of vision is either obstructed by a wall or the baddie claps
his eyes on the player 's sprite. A very clever routine, I ' m sure you ' l l
agree !

Procedure _CHECKLEFTRIGHT [GHOST]

FOUND= - l

BRNG=GHOST (GHOST , 2)

MAPX=GHOST (GHOST , O)

MAPY=GHOST (GHOST , l)

Rem * * * I s the ghost fac ing north or south?

If BRNG< 3

Rem * * * Can ghost turn l e f t ?

U ltimate AMOS

Maze games

If MAP (MAPX- l , MAPY) < 2 or MAP (MAPX- l , MAPY) > 3

FOUND 1 = 3

End I f

Rem * * * Can ghost turn right ?

I f MAP (MAPX+ l , MAPY) < 2 or MAP (MAPX+ l , MAPY) > 3

FOUND 2 = 4

End I f

Rem * * * Can ghos t g o l e f t and right ?

I f FOUND 1 = 3 and FOUND 2 = 4

Rem * * * Which direct i on does ghost

Rem * * * want to go?

CHOOSEDIR=Rnd (2)

I f CHOOSEDIR = O

Rem * * * G o l e f t

FOUND=FOUNDl

Else

Rem * * * Go right

FOUND=FOUND2

End I f

Else

Rem * * * Can ' t ghos t go in e ither dire c t i on?

I f FOUND1 = O and FOUND2 = O

FOUND= - l

E l s e

Rem * * * Which direct i on can ghost go ?

I f FOUND 1 < > O

FOUND=FOUNDl

E l s e

FOUND=FOUND2

End I f

End I f

End I f

E l s e

Rem * * * Thi s code i s executed i f ghost i s

Rem * * * fac ing l e f t or right . . .

Rem * * * I t ' s virtual ly the same as the c ode above

3 1 3

Ultimate AMOS

3 1 4

I f MAP (MAPX , MAPY- l) < 2 or MAP (MAPX , MAPY- l) > 3

FOUND l = l

End I f

I f MAP (MAPX , MAPY+ l) < 2 or MA P (MAPX , MAPY+ l) > 3

FOUND2 = 2

End I f

I f FOUND l = l and FOUND 2 = 2

CHOOSEDIR=Rnd (2)

I f CHOOSEDIR=O

FOUND=FOUNDl

Else

FOUND=FOUND2

End I f

E l s e

I f FOUND l = O and FOUND 2 = O

FOUND= - l

E l se

I f FOUNDl < > O

FOUND=FOUNDl

E l se

FOUND=FOUND2

End I f

End I f

End I f

End I f

Chapter 1 3

End Proc [FOUND]

U ltimate AMOS

The '_CHECKLEFfRIGHT' procedure contains two almost identical
sections of code that check the positions directly left and right of the
baddie's current position relative to the direction it is facing. The routine
first checks to see whether the baddie can move left and then right. If the
baddie can move in both directions, then a decision must be made -
which direction is the baddie going to choose? Left or right? This is
decided by generating a random number between 0 and 1 . If, on the other
hand, the baddie can't move in either direction, then a value of ' - 1 ' is
returned. Otherwise, the direction of movement (a bearing value) is
returned.

Maze games

Procedure _CHECKFORWARD [GHOST]

FOUND= - l

BRNG=GHOST (GHOST , 2)

MAPX=GHOST (GHOST , O) +B (BRNG- l , O)

MAPY=GHOST (GHOST , l) +B (BRNG- l , l)

Rem * * * Can ghost go forward?

If MAP (MAPX , MAPY) < 2 or MAP (MAPX , MAPY) > 3

FOUND= l

End I f

End Proc [FOUND]

3 1 5

This very simple procedure checks to see whether the baddie can move
directly forward. Obviously this is directly affected by the baddie's
current direction - if the baddie is facing left, for example, then forward
will be left. If the baddie is facing down, on the other hand, then forward
will be down. The routine simply checks the block that is immediately
next to the current position of the baddie in the 'MAPO' array. If any
value other than either '2 ' or ' 3 ' is found, then the movement is allowed.

Procedure _CHECKBACKWARDS [GHOST]

FOUND= - l

BRNG=GHOST (GHOST , 2)

Rem * * * Reverse direct ion of movement

I f BRNG< 3

I f BRNG= l

BRNG= 2

Else

BRNG= l

End I f

E l se

I f BRNG=3

BRNG=4

Else

BRNG=3

End I f

Ultimate AMOS

3 1 6

End I f

MAPX=GHOST (GHOST , O) +B (BRNG- l , O)

MAPY=GHOST (GHOST , l) +B (BRNG- l , l)

Rem * * * Can ghost go backwards ?

I f MAP (MAPX , MAPY) < 2 or MAP (MAPX , MAPY) > 3

FOUND=BRNG

End I f

Chapter 1 3

End Proc [FOUND]

The baddie movement routine is completed with the addition of the
'_CHECKBACKWARDS ' procedure that checks to see whether, after all
other movement checks have been made, the baddie can move
backwards. Once again, moving backwards is directly relative to the
baddie's current direction - if the baddie is facing left, then moving the
baddie backwards would make it move right. The routine starts by
reversing the baddie's 'bearing' and once this bearing value has been
calculated, the 'MAPO' array is checked. If any value other than '2' or
' 3 ' is found, the movement is legal and the bearing value is returned.

Procedure _CHECKCOLLI SIONS

Rem * * * Has hero coll ided with any gho s t s ?

STATUS=Bob Col (O , l T o NUMGHOSTS)

I f STATUS= - l

Rem * * * Insert your col l i s ion code here !

Bell

End I f

End Proc

Ultimate AMOS

Phew ! - the last procedure. This is actually a fairly minimal procedure
that I added just to show you how to add collision detection to such a
game. At the moment, the procedure simply plays the AMOS 'Bel l '
sound if a collision takes place between the player's sprite and the
baddies, but you could quite easily add your own code. If you ' re feeling
adventurous, why not add a combat routine so that the player has a
chance of kill ing the baddies when the fire button is pressed? Happy
coding !

Maze games 3 1 7

3 D 'Dungeon Master' games
We have covered some pretty heavy games programmjng tricks and
techniques over the past few pages. If you' ve managed to master the
maze code, then you' l l be ready to transform that code into the next
dimension. Programming 3D exploration games such as FTL's 'Dungeon
Master ' or SSI's brilliant 'Eye of the Beholder 11' may seem an almost
impossible task, but you' l l be surprised to learn that they're actually very
simple indeed. OK, so they look damned impressive, but the code
required to generate those 3D displays is actually very straightforward.

Don' t worry if the thought of 3D graphics reduces you to a cold sweat -
believe it or not, but there is virtually no 3D mathematics involved at all.
What's more, you don't even need AMOS 3D to write a 'Dungeon
Master' clone - all you need to get started is a copy of AMOS and
Deluxe Paint. First, though, let's explain how we get the maze code to
work in 3D.

Although games l ike 'Dungeon Master' look very complex, if you study
them very closely you will notice that the 3D display is actually very
simple. All the walls, walkways and doors you' l l encounter in these
games are actually made up of discreet graphics blocks that are pasted
down in the correct positions to build up a 3D display. The actual 3D
map data is held as a dimensional array - in fact, i t 's exactly the same
data that is used to draw the conventional maze display we covered
earlier!

So how do you draw the 3D display? Well, all you do is to draw up a set
of icons which represent each block as it would be viewed in solid 3D.
This invariably takes time to get right - probably the best approach is to
draw up a 3D grid similar to the one shown elsewhere on this page. You
can then cut out each section and draw it in as a solid object. All these
wall parts are then saved to disk, cut out withjn the AMOS Object Editor
and placed into an Icon bank.

To draw the 3D grid, you just interrogate the map data array to find out
which blocks are empty, which blocks contain walls and which blocks
contain doors. Doors are a strange case, however - whjle they are

Ultimate AMOS

3 1 8

Drawing
'visible'

blocks only

U ltimate AMOS

Fancy writing your own

Dungeon Master clone?

Well now you can! What's

more, it's not as difficult

as you might think.

Chapter 1 3

technically the same as walkways (in that you can walk through them),
the routine that constructs the display draws them first a solid walls and
then pastes the door graphics on top of the wall icons, therefore creating
the i llusion of a door. Of course it would be ridiculous to draw every
block within the map data array (after all, a 1 00 x 100 map data array
would contain 1 0,000 possible blocks !) , so you need to draw only those
blocks that are actually visible.

As you can see from the diagram, only fifteen blocks are actually drawn,
starting from the back and then working forward - five at the back, then
another five, another three and then finally two at either side of the
player's viewpoint. Not all of these blocks will be directly visible - some
will be hidden by other blocks appearing nearer to the player's position.
If an Icon is drawn over the top of another Icon, that's the way it goes.

You could speed up your 3D drawing routine by writing a piece of code
that draws only those blocks that are actually visible, but the code
required to do this tends to slow the game down too much. I ' ve managed
to get a very playabJe 'Dungeon Master' clone up and running using the
technique covered in the last paragraph and I can assure you that it i s
very quick indeed - because AMOS uses the Arniga blitter chip to plot
these Icons, it is capable of drawing all 15 wall blocks in j ust 4 frames
Uust under a tenth of a second). As any games programmer will tell you,
that's more than enough for the most demanding 'Dungeon Master'
clone.

Maze games

The data held in the map

array is transformed into

3D by reading off the data

in strips and then plotting

the correct icons onto the

screen.

"---

/

�

V

V

"-....

V t{} 1/]

IJ
n

3 1 9

/ /
/"

'" �

�
� '"

Drawing the 3D display, however, is only half the battle. Unlike the
simple maze game that we covered earlier, the player doesn't just move
up, down, left and right. Just like the real world, a 3D game must handle
directions relative to the player's bearing - that is, the direction the
player is facing. To keep things nice and simple, all we we need are four
bearings - North, South, East and West.

As you can probably appreciate, taking account of the player's bearing
introduces another problem. To demonstrate this problem, consider the
following - will a player that is facing north move in the same direction
as player that is facing south when they move forward? Of course not ! -
Because the action of moving forward is entirely relative to the direction
that you ' re facing, a move forward in a southerly direction will produce
exactly the opposite effect to a movement forward in a northerly
direction. To handle this you need to create another dimensional anay to
hold another set of co-ordinates that control the direction of movement
relative to the player 's bearing. For example, to move a player facing
north forward, the 'Y' (up and down) co-ordinate would be decremented
whilst the 'X ' (left and right) co-ordinate would remain unchanged. To
carry out the same operation in a southerly direction, the 'Y' co-ordinate
would be incremented, therefore creating the opposite (but technically
conect) effect.

U ltimate AMOS

320

U ltimate AMOS

32 1

Platform games
• Drawing plorlorms

• Tying 'boddies' to plorlorms

• Jumping between plorlorms

• Picking up objects

Ultimate AMOS

322

Ultimate AMOS

Chapter 1 4

O ne of the most popular game genres these days is the humble
platform game, which first saw light in the early days of 8-bit
micros like the Spectrum and Commodore 64. Games like 'Manic

Miner' and ' Jet Set Willy ' were nothing special in the graphics or sound
department, but the combination of jumping up and down platforms,
picking up objects whilst avoiding nasties, gave them that all-important
spark of playability that ensured the popularity of platform games for
years to come. Even in these days of CD32s, 64-bit Nintendos and the
Sanyo 3DO games console, platform games still thrive. Indeed, platform
games are so popular that both Sega and Nintendo use characters from
two of the most popular platform games of all time as their mascots -
Sonic the Hedgehog and Super Mario. Both these games may be a far cry
from the l ikes of 'Jet Set Willy ' , but the gameplay is the same !

Writing platform games may seem very difficult indeed, but you'l l be
surprised just how easy it really is . The best way to understand just about
any type of game is to sit down and consider exactly what elements the
game contains. In the case of a platform game, you have essentially just
four different elements to the game.

Platforms Pretty obvious this. Platforms are the flat levels that the
player's sprite can walk along, fall and jump on to.

The player's sprite The player's sprite must be able to walk left and
right, jump up onto other platforms and fall down gaps between
platforms. We 've already looked at how to make a sprite 'jump' in
chapter 8, so the rest is quite simple.

Baddies All platform games ranging from ' Impossible Mission '
(remember that one?) to 'Super Mario Land ' have some form of baddie
that roams around on certain platforms to make the game a little more
challenging. Without these baddies, the player would be able to jump
between platforms with ease !

Collectables No, we're not trying to write the platform game equivalent
of the 'Antiques Road Show ' ! Collectables are objects that the player
must collect in order to either complete each screen or to increase their
score.

Platform games

Building
platform
screens

� MAKE A
NOTE!

'Screen zones'
facility

Rainbow Islands it may

not be, but with a little bit

of imaginative coding

there's no reason why our

AMOS platform game

couldn't rival the best of

'em!

323

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

C C O D D

c O D D O

Let's start by taking a look at how the platforms are handled. Most
budding games programmers make the mistake of designing their game
screens using a paint program such as DPaint. Whi lst this approach will
work, a much better solution is to use screen icons to build up the display
from an an-ay of numbers. If you skimmed through chapter 6, then you
will have missed out on the programming technique required for this sort
of thing, so why not take a quick look back to see exactly what you
missed?

Drawing up a screen display filled with platforms is all well and good,
but how to you get AMOS to recognise them? Once again, AMOS has
the answer thanks to its very useful ' Screen Zones' facility that we
covered back in chapter 6. All you do is to define the areas of the screens
that contain the platforms as screen zones. The most obvious way of
doing this is to work out the screen co-ordinates for each platform
yourself and then enter them into your program manually as data
statements. A much better way, however, is to let AMOS do the work.

The demonstration program that accompanies this section on platform
games uses this technique to great effect - what's more, because the
positions of the platform screen zones are calculated from the data used
to draw the screen up using screen icons, you can rean-ange your
platforms and even add new platforms without ever having to worry

Ultimate AMOS

324

U ltimate AMOS

The positions of the

platforms are

automatically calculated

by interpreting the same

data that is used to draw

up the screen display.

Chapter 1 4

about defining new screen zones. I have to admit that I 'm pretty chuffed
with this routine - every single attempt at an AMOS platform game that
I 've ever come in the past as always relied on the programmer to
calculate the positions of the platform screen zones themselves, so my
routine is very, very simple to use.

You can add hundreds of different screen layouts as you like and my
routine will automatically handle the different platform positions
automaticall y !

The player's sprite interacts with the platfOlms using a very handy
function called 'ZoneO ' that checks to see whether there is a screen zone
at a given screen position (in the case of a platform game, the position of
the player's sprite) . If a zone is found, then the game assumes that the
player's sprite is standing on a platform. If a value of zero is returned
however (meaning that there isn't a hot spot at this position), then the
player's sprite is made to fal l down the screen in a straight line until the
sprite either drops off the bottom of the screen (in which case you can
choose to either kill the player's sprite, or make it wrap around to the top
of the screen in true 'Bubble Bobble' fashion) or it lands on a platform
below.

Platform games 325

Adding baddies

Working from
platform
positions

Adding baddies to your platform game is surprisingly simple too. The
best way that I 've found is to create a data structure for each baddie
(aren't data structures wonderful !) that contains the screen co-ordinates
of the baddie, the baddie 's speed and direction of movement, the number
of the platform that the baddie is walking on and the number of the
image in the sprite bank that is to be used for that baddie. You' l l also
need to create a dimensional array that contains the screen co-ordinates
of each and every platform that you use. This array is automatically fi lled
with the appropriate values as the screen zones are initialised.

It's not even necessary to calculate the exact screen position of your
baddies, either. Because you 've stored the co-ordinates of the p latform
screen zones in an array, you can simply extract the necessary values
from that array by checking what platform the baddie is to stand on. The
number of the platform is then used to extract the left 'X' and top 'Y' co
ordinates of the platform from the array containing the co-ordinates of its
screen zone, which are then placed into the 'X' and 'Y ' co-ordinates of
the baddie. Moving the baddie backwards and forwards along the
platform is just as easy too - just add the value held in the baddie's speed
variable to its 'X ' screen position and then check that the baddie hasn't
walked off either end of the platform by comparing the baddie's 'X '
screen position to the left and right 'X ' co-ordinates of the platform that
the baddie is standing on. S imple, eh?

Adding 'baddies' and

objects for your AMOS

platform explorer to pick

up is surprisingly simple.

U ltimate AMOS

326 Chapter 1 4

Collectables
Collectables are handled pretty much in the same way as the baddies, the
only difference being that the collectables don 't actually move. As a
result, all you need to do is to create a data structure that contains the
number of the platform that the collectible is on, a positive offset value
that places the object to the right of the left hand edge of the platform,
the object's status (has it already been picked up? If so, don 't draw the
object bob again) and the number of points (or whatever) that the player
earns when they collect it. You can then calculate the exact screen
position of the object using exactly the same technique that we used for
the baddies. It's as simple as that!

If you manage to grasp all these concepts, then there 's absolutely no
reason why you couldn't write you own platform games along the same
lines as 'Manic Miner' and ' Impossible Mission ' . Let's take a look at a
demonstration program that illustrates the points that we've covered. In
order to make the l isting as understandable as possible, however, I 've
broken it down into small chunks which are accompanied by a short
description of how what that section of code does and how it works.

For the sake of argument we' l l call our hero 'Mario' , but please note that
this is not a copy of a Mario game, and Nintendo would get very cross if
you wrote one and tried to distribute it!

Rem *** Platform Game Demonstration

Rem * * * Filename - PlatformDemo . AMOS

Screen Open O , 32 0 , 2 5 6 , 16 , Lowres

Flash Off : Curs Off : Cls 0 : Hide

Load "AMOSBOOK : AbkFiles/PlatformIcons . abk"

Load "AMOSBOOK : AbkFiles/Mario . abk"

Get Sprite Palette

Rem *** Define Mario Bob data structure

Ultimate AMOS

Platform games

Dim MARIO (4)

MARIO (O) =32 : Rem * * * Bob X position

MARIO (1) =224 : Rem * * * Bob Y position

MARIO (2) =O Rem * * * Status O =Walk l=Jump 2 =Fall

MARIO (3) =O : Rem * * * Jump angle

Rem * * * Define Baddie Bob data structure . . .

NUMBADDIES=4

Dim BADDIE (NUMBADDIES , 5)

BADDIE (O , O) =O Rem * * * Baddie X position

BADDIE (O , l) =O Rem * * * Baddie Y position

BADDIE (O , 2) =2 Rem * * * Baddie Speed and direction

BADDIE (O , 3) =4 Rem

BADDIE (O , 4) =7 Rem

Rem * * * Baddie 2 . . .

BADDIE (l , 2) =1

BADDIE (l , 3) =2

BADDIE (l , 4) =7

Rem * * * Baddie 3 . . .

BADDIE (2 , 2) =1

BADDIE (2 , 3) =7

BADDIE (2 , 4) =7

Rem *** Baddie 4 . . .

BADDIE (3 , 2) =3

BADDIE (3 , 3) =1

BADDIE (3 , 4) =7

* * * Platform that baddie i s

* * * Baddie bob image number

Rem * * * Set hot spot of Mario and Baddie Bobs

For C=l To 7

Hot Spot C , $12

Next C

Rem * * * Platform () array holds ' Y ' position of

on

327

U ltimate AMOS

328 Chapter 1 4

Rem * * * top of platform

Dim PLATFORM (20 , 4)

FRAME=l : FRAMEDELAY=O : SPEED=4

Global DRECTION, XOFFSET, YOFFSET, MARIO ()

Global SPEED, FRAME , PLATFORM () , NUMBADDIES , BADDIE ()

_SETUP SCREEN

Ultimate AMOS

Before the player can start jumping between platforms, quite a bit of
setting up is necessary. After opening the game screen and loading the
game icons and sprites, several data structures need to be created. The
first, 'MARIOO' , holds information on the player's sprite. Four data
items are attached to the sprite - it's current 'X ' and 'Y ' screen position,
the angle value which is used by the '_JUMP' procedure and a status
variable that can contain one of three different values which tells the
program what the sprite is doing. If it contains a value of one, for
example, then the sprite is jumping between one platform and another.

The baddies the inhabit the platforms that are scattered around the screen
each have a data structure assigned to them too. Called 'BADDIEO' , the
data structure holds such information as the baddie's current 'X' and 'Y'
screen position, it's speed and direction (the baddie 's direction i s
indicated by a positive or negative value), the number of the platform that
the baddie is standing on and the baddie 's Sprite bank image number.

The 'Y ' screen position of the top of each platform is held in an array
called 'PLATFORMO' . This is used not only to correctly position the
baddies, but also to place the sprite when it either jumps or falls onto a
platform. Finally, all this data is made global so all the game procedures
have access to it and the screen is set up by calling the imaginatively
named procedure '_SETUPSCREEN' .

Platform games 329

Do

Bob Clear

_CHECKJOYSTICK

_CHECKFALL

_CHECKLANDED

_MOVEBADDIE

_CHECKCOLLISIONS

Bob O , MARIO (O) , MARIO (l) , FRAME

For A=O To NUMBADDIES-l

Bob A+l , BADDIE (A, 0) , BADDIE (A, 1) , BADDIE (A, 4)

Next A

Bob Draw

Screen swap 0

Wait Vbl

Rem * * * Update Mario animation

If FRAMEDELAY>6-SPEED

FRAMEDELAY=O

FRAME = FRAME + 1

If FRAME=7 or FRAME= $ 8 0 0 7

FRAME=FRAME and $ 8 0 0 0

FRAME = FRAME + 1

End I f

End If

FRAMEDELAY=FRAMEDELAY+l

Loop

The main game loop is fairly straightforward. Because we've turned off
automatic bob redraws, the loop starts by removing all bobs from the
screen. Five procedures are then called that form the backbone of the
game. The first, '_CHECKJOYSTICK' reads the joystick,
'_CHECKFALL' checks to see whether the player is fal ling between
platforms, '_CHECKLANDED' checks to see whether the player has
landed on a p latform, '_MOVEBADDIE' updates the positions of all

Ultimate AMOS

330 Chapter 1 4

baddie objects and '_CHECKCOLLISIONS ' is responsible for collision
detection.

Once all five of these procedures have done their stuff, both the 'Mario '
bob and the baddie bobs are drawn onto the screen. The player's sprite
uses quite a complex animation so this is the last thing to be updated by
the main game loop.

Procedure _SETUP SCREEN

PLATFORM=O Rem * * * Current platform number

PLATFLAG=O : Rem * * * 1 = Platform start 2 = Platform ended

Rem * * * Draw screen display using icons

Restore LEVEL1DATA

Rem * * * No more than 2 0 platforms per screen !

Reserve Zone 2 0

For Y=O To 7

For X=O To 9

U ltimate AMOS

Read BLOCKNUM

Paste Icon X*3 2 , Y* 3 2 , BLOCKNUM

Rem * * * Calculate start position of zone

If BLOCKNUM=2

Xl=X*32

Yl=Y*32

PLATFLAG=l

End If

Rem * * * Calculate end position of zone

Rem * * * and initialise it

I f BLOCKNUM=4

X2= (X*32) +2 3

Y2= (Y*32) +11

Set Zone PLATFORM+ l , Xl , Yl To X2 , Y2

Platform games

PLATFORM (PLATFORM, O) =X1

PLATFORM (PLATFORM, l) =Y1

PLATFORM (PLATFORM, 2) =X2

PLATFORM (PLATFORM, 3) =Y2

PLATFORM=PLATFORM+1

PLATFLAG=O

End If

Rem * * * Has the end of the screen been reached

Rem * * * and the end of a platform has not been found?

If X=9 and PLATFLAG=l

X2= (X* 3 2) +3 2

Y2= (Y*32) +11

Set Zone PLATFORM+1 , X1 , Y1 To X2 , Y2

PLATFORM (PLATFORM, O) =X1

PLATFORM (PLATFORM, l) =Y1

PLATFORM (PLATFORM, 2) =X2

PLATFORM (PLATFORM, 3) =Y2

PLATFORM=PLATFORM+1

PLATFLAG=O

End If

Next X

Next Y

Rem * * * Screen icon map data

LEVEL1DATA :

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 2 , 3 , 4 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 3 , 4

Data 1 , 2 , 4 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 1 , 1 , 1 , 1 , 2 , 4 , 1 , 1 , 1 , 1

Data 1 , 1 , 2 , 3 , 4 , 1 , 2 , 4 , 1 , 1

Data 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Data 2 , 3 , 3 , 4 , 1 , 1 , 1 , 1 , 2 , 3

331

Ultimate AMOS

332 Chapter 1 4

Bob Update Off

Double Buffer : Autoback 1

End Proc

The '_SETUPSCREEN' procedure is a very clever routine that not only
draws up the screen display using icons stored in the icon bank that we
loaded at the start of the program, but also calculates the positions of the
platforms based on the same data that is used to plot the icons. Because
the icons are stored as screen zones (refer back to chapter 6 for more on
screen zones), the routine starts by reserving enough memory to handle
up to 20 zones. Our demo game doesn't use even half this amount, but
it's always wise to reserve enough memory for later levels that may
possibly be more complex.

With the memory for our screen zones reserved, the routine then enters
two loops that are responsible for reading in the screen icon data, plotting
the appropriate icons onto the screen and then calculating the positions of
each and every platform according to this data. I have to admit that I 'm
quite pleased with this particular aspect of the program - even if you
change the level data drastically, the p latforms wiII stiII be handled
cOlTectly. So how does it work? Well , the position of each platform is
calculated according to strict rules - each platform must start with icon
two (a graphic of the beginning of a platform) and end with icon four (a
graphic of the end of a platform) . There is an extra platform graphic that
can be used to extend a platform (icon three), but the routine that
calculates the screen zones simply skips past this icon.

Procedure _CHECKJOYSTICK

If MARIO (2) <> 2

Rem * * * Has j oystick been pushed right?

If Joy (l) and 4

U ltimate AMOS

If MARIO (2) =0

MARIO (O) =MARIO (O) -SPEED

DRECTION=-l

FRAME = FRAME or $8000

Platform games

End If

End If

Rem * * * Has j oystick been pushed left?

If Joy (l) and 8

If MARIO (2) =O

MARIO (O) =MARIO (O) +SPEED

DRECTION=l

FRAME = FRAME and %111

End If

End If

Rem * * * Stop animation if Mario is standing still

If Joy (l) <3

If MARIO (2) =0

DRECTION=O

FRAME = FRAME and $ 8 0 0 0

FRAME=FRAME+3

End If

End If

Rem * * * Make Mario j ump if fire button pressed

If Joy (l) and 1 6

If MARIO (2) =0

MARIO (2) = 1

XOFFSET=MARIO (O)

YOFFSET=MARIO (l)

End If

End If

Rem * * * Start Mario jumping . . .

If MARIO (2) =1

_JUMP

FRAME=FRAME and $ 8 0 0 0

FRAME =FRAME + 3

End If

If MARIO (O) >320

333

Ultimate AMOS

334

MARIO (O) =3 2 0

End If

If MARIO (O) < O

MARIO (O) =0

End I f

End If

Chapter 1 4

End Proc

Procedure _JUMP

If you think that you 've seen this routine before, you 'd be right - the
'_CHECKJOYSTICK' procedure is virtually identical to the ' Jump Bob'
procedure we covered in chapter 8. What it does is to read the position of
the joystick and act accordingly. Most p latform games don't use the ' up '
and 'down ' joystick positions and so these are ignored - the game simply
traps the ' left ' , ' right' and ' fire ' events and updates the Mario data
structure accordingly. If the player presses the fire button, the sprite's
status variable ("MARIO(2) ') is set to one and the program jumps to a
procedure called ' _JUMP' that makes it jump.

HEIGHT=1 6 0 : Rem *** Maximum height of Jump

WIDTH=8 0 : Rem * * * Width of Jump

JUMPSPEED=SPEED*2 : Rem * * * Speed of Jump

Degree

Rem * * * I s Mario still jumping?

If MARIO (3) < 1 8 1

Rem * * * Jump left

If DRECTION=-l

X=Cos (MARIO (3)) *WIDTH/2

MARIO (O) =XOFFSET+X-WIDTH/2

End I f

Rem * * * Jump Right

If DRECTION=l

X=-Cos (MARIO (3)) *WIDTH/2

Ultimate AMOS

Platform games 335

Else

MARIO (O) =XOFFSET+X+WIDTH/2

End If

Y=-Sin (MARIO (3)) *HEIGHT/2

MARIO (l) =YOFFSET+Y

MARIO (3) =MARIO (3) +JUMPSPEED

Rem * * * Reset angle and status

MARIO (l) =YOFFSET

MARIO (2) =0

MARIO (3) =0

End If

End Proc

The '_CHECKJOYSTICK' procedure isn 't the only routine that we have
stolen from the 'Jump Bob' program in chapter 8 - the '_JUMP'
procedure is based around that program too ! It works by calculating the
angle of the jump in a number of steps which are added to the player's
sprite's 'angle' variable in its data structure. The procedure calculates the
position of the sprite using the angle variable which is passed to the
'SinO ' and 'CosO' functions. The angle variable starts with an initial
value of 1 and as the jump is processed, it increases to a maximum of
1 80 by adding the ' speed ' of the jump to the angle. If you decrease the
speed of the jump, more steps will be calculated for the jump and the
sprite will appear to move slower.

This routine can easily be tweaked to suit your own particular needs by
changing the values of the 'HEIGHT' , 'WIDTH' and 'JUMPSPEED'
variables. Increasing the value of the 'WIDTH' variable, for example,
will make the sprite jump further and increasing the value of the
'HEIGHT' variable will make it jump that bit higher.

Procedure _CHECKFALL

FALLSPEED=5

Rem * * * Is Mario already jumping?

Ultimate AMOS

336

If MARIO (2) < >1

Rem * * * Is Mario standing on a platform?

If Zone (MARIO (O) , MARIO (l)) =O

Rem * * * Make him drop down

MARIO (l) =MARIO (l) +FALLSPEED

MARIO (2) =2

End If

Rem *** Has Mario dropped off bottom of screen?

If MARIO (l » 2 5 6

Rem * * * Wrap him around t o top o f screen

MARIO (l) =0

End If

End If

Chapter 1 4

End Proc

The '_CHECKFALL' procedure is responsible for checking when the
player's sprite steps off a platfonn. This isn ' t as involved as it sounds -
all the routine does is to start by checking to make sure the sprite isn't
half way through a jump - if it is, then it ' l l still have the momentum to
carry on flying through mid-air. If it has walked off a platfonn or the
jump has run its course and the sprite hasn't landed on a platform, the
routine then decreases its 'Y ' position by a fixed amount held in the
variable 'FALLSPEED' . If the sprite continues to fall and it drops off the
bottom of the screen, it wraps back around to the top in true 'Bubble
Bobble ' style. You could easily change this particular section of the code
so that the sprite dies if you so wish.

Procedure _CHECKLANDED

Rem * * * I s Mario falling?

If MARIO (2) =2

A=Zone (MARIO (O) , MARIO (l))

Rem * * * Has he landed on a platform?

Ultimate AMOS

Plattorm games 337

If A< >O

MARIO (l) = PLATFORM (A- 1 , 1) +1

MARIO (2) =0

End If

End If

Rem *** Is Mario falling?

If MARIO (2) =1 and MARIO (3) > 9 0

A=Zone (MARIO (O) , MARIO (l »

Rem * * * Has Mario landed?

If A< >O

MARIO (l) = PLATFORM (A- 1 , 1) +1

MARIO (2) =0

MARIO (3) =0

End If

End If

End Proe

The '_CHECKLANDED' procedure works in conjunction with the
'_CHECKFALL' procedure to stop the sprite from falling when it lands
on a platfOlm. It's very simple indeed. All it does is to check whether the
sprite is already fal ling and if it is , the 'ZoneO' function is used to check
whether the object 's ' hot spot ' is inside a screen zone. If it is, then the
sprite has landed on a platfOlm and its 'Y ' position is modified to reflect
this . Note how the position of the platform is read from the
'PLATFORMO' array that we set up at the start of the program - this is
done just to ensure that if the sprite isn't directly in line with the platform
(it could be two or three pixels past the top of the platform), its position
is correctly set so that it stands on the exact ' Y ' position required for that
platform.

The procedure is also used to check when the sprite has managed to
successfully jump onto a new platform. It will only land on a platform,
however, if half of the jump is complete (indicated by a value of 90).
Because the jump effectively forms a path in the shape of a semi-circle, a
value of 90 indicates the sprite has jumped as h igh as possible. This
allows it to jump through one platform to another platfoml that is above

Ultimate AMOS

338 Chapter 1 4

the first platform. Feel free to play around with this section of code to get
the results that you want for your platform game.

Procedure _MOVEBADDIE

For A=O To NUMBADDIES

If BADDIE (A, l) =O

BADDIE (A, 0) =PLATFORM (BADDIE (A, 3) , 0) +S

BADDIE (A, 1) =PLATFORM (BADDIE (A, 3) , 1)

Else

BADDIE (A, 0) =BADDIE (A, O) +BADDIE (A, 2)

I f BADDIE (A, 0 » PLATFORM (BADDIE (A, 3) , 2) - S

BADDIE (A, 2) =-BADDIE (A, 2)

End I f

If BADDIE (A, 0) <PLATFORM (BADDIE (A, 3) , 0) +S

BADDIE (A, 2) =-BADDIE (A, 2)

End I f

End If

Next A

End Proc

Ultimate AMOS

The '_MOVEBADDIES ' procedure is pretty intelligent too. Most
platform games that I 've seen written in AMOS previously insisted that
you set the exact co-ordinates of the baddies on screen. My routine,
however, simply needs to be fed the number of the platform that the
baddie inhabits. Because the exact positions of the platforms has already
been stored in the 'PLATFORMO' array, the routine simply calculates
where the baddie should appear using the information held in this array.

The routine starts by checking to see whether the screen positions of the
baddies have already been calculated. If they haven 't, then they're
calculated on the spot. If they have been calculated, however, the baddie
is moved by adding its speed to its 'X ' screen position. If the bad die
reaches either end of a platform, its speed is reversed so that the next
time it is moved, it's 'X' position will be increased or decreased
appropriately.

Platform games 339

Procedure _CHECKCOLLISIONS

STATUS=Bob Col (O , l To NUMBADDIES)

If STATUS=-l

Rem * * * Insert your collision code here ! . . .

Bell

End If

End Proc

Finally, we have the '_CHECKCOLLISIONS ' procedure, which checks
to see if any collisions have occurred between the player's sprite and any
baddies that are wondering around on the platforms. This procedure is far
from complete - as it is, it simply plays the AMOS ' Bell ' sound if a
collision takes place. I ' l l leave it to you to extend the routine so that the
player's sprite is actually killed by any collisions with baddies. Good
luck!

Ultimate AMOS

340

Ultimate AMOS

34 1

Adventure games
• Designing an adventure

• Writing a parser

• Moving around ' locations'

• Handling objects and monsters

• Adding graphics

U ltimate AMOS

342

Ultimate AMOS

Chapter 1 5

D espite the genre's age, Adventure games continue to be popular
amongst more thoughtful games players. Games l ike Magnetic
Scrolls' 'The Pawn' and Infocom's infamous 'Hitch Hikers Guide

to the Galaxy' combine the spirit of adventuring with good old puzzle
solving. Whereas your average arcade game can usually be completed
within a matter of hours, adventure games can drag the player into a
whole new world that can take l iterally months to explore.

It's no surprise, then, that adventure games are still a popular choice
amongst would-be games programmers. Quite a few so-called
'Adventure Creators' have been released over the past couple of years or
so (including Incentive's brilliant 'Graphic Adventure Creator') , but very
few ever made it onto the Amiga (shame, I say !) . The nearest Arniga
users ever got to such programs was Aegis's rather disappointing
'Visionary ' , a programming language along the same lines as AMOS that
was unfortunately never quite what its designers had hoped for, due
mainly to the rather long-winded approach to adventure games
programming that it employed.

Fret not, however, because good old AMOS can handle adventure games
too ! What's more, writing adventure games isn't quite as difficult as one
might imagine. Not only can AMOS handle traditional text-based arcade

If you've ever wanted to

write your own adventure

games, then why not use

AMOS - it's simpler tllan

you think!

Adventure games

The parser

Parser

343

games like those produced by lnfocom (pre- ' Shogun' , that is), but
AMOS's special qualities will even let you produce adventure games
complete with colourful graphics, sound effects (imagine being able to
actually hear the scene around you) and even animations !

Writing adventure games is somewhat different from arcade games, as
the time that the game takes to run is not so critical - whereas an arcade
game must update the entire game within a 50th of a second, adventures
games can take as long as they want (to a extent).

The heart of every adventure game is the 'parser' , a routine that takes the
text that the user enters and makes sense of it. I 'm sure we've all played
adventure games that pop a little 'What now?' prompt up onto the screen
every time the game is expecting an instruction - well, it's the 'parser'
that makes sense of what you type. Your Amiga doesn' t understand
human language, so writing an intelligent parser is an art form in itself.

All parsers work by assuming that each and every sentence you feed
them has a very strict format. It's a bit like a programming language
interpreter really - unless you type in commands in the exact form that
the interpreter is expecting, you ' l l get a 'Syntax Error' . Parsers impose
exactly the same l imitation - if, for example, you were to enter
something strange like 'Attack man knife with ' , a human could easily
understand what you were trying to say by sorting the words into their
correct order, but computers still aren' t intelligent enough to do this sort
of thing themselves. Unless you type the command exactly as the pars er
expects, you ' ll get a short message informing you politely that the
computer can' t make head nor tail of your entry.

If, on the other hand, you entered the command as it should be (,Attack
Man with Knife'), the parser will have a much better chance of
understanding it. Al l parsers work by slicing the sentence that you feed
them into a series of individual words that are placed into a dimensional
array. If, for example, the parser were to work on our command 'Attack
man with knife ' , the array would contain four words - 'Attack' , 'man' ,
'with ' , 'knife' . Once the parser has done this, i t then compares the first

Ultimate AMOS

344 Chapter 1 5

word with a long l ist of commands that the programmer has taught it .
Most parsers contain at least twenty or so commands, but you could
easily get buy with a fairly minimal selection - 'Go' , 'Attack' ,
'Examine ' , 'Get' and 'Drop' etc.

If the parser manages to find a match, it then jumps to a routine
specifically designed to handle that particular command. What's more,
because the parser has interpreted the first word, it knows exactly what it
should do with any extra words that fol low it - in the above example, the
parser would know that the second word contains the name of the person
that is to be attacked and the fourth word contains the name of the object
that it should use for the attack. It would therefore then compare the
second word against a second dimensional alTay containing a l ist of all
the various objects, monsters and people depicted in the game.

Obviously it's no good just recognising the object that is to be attacked -
the parser also needs to know if the person that the player has requested
it to attack is actually nearby. Each attackable object, person or monster
therefore has a number of extra items of information attached to it - its
location within the game (is it in the same room?), how hard it is to kil l
and perhaps a number of extra items of information that wil l tell the
parser how the object, person or monster will react to being attacked
(wil l it run, stand and fight or just take it lying down?).

Obiects and monsters

U ltimate AMOS

Just l ike an arcade game, every object and person in your arcade game
has a data structure assigned to it that holds all the information required
to handle it. If you were writing a fantasy adventure along the lines of
'Dungeon 's & Dragons ' , you might have a skeletal warrior that was
control led by a data structure that contained the fol lowing information.

Name

Location

Hit Points

Strength

Skill

Alignment

Skeletal Warrior

Room 16

10 (Between 1 and 20)

5 (Between 1 and 10)

4 (Between 1 and 10)

Hostile

Adventure games 345

If you're feeling particularly adventurous (pardon the pun), you could
easi ly make the creatures within your adventure game move around the
game map simply by updating their position each time the player makes
a move. Most modern adventures allow creatures to wander, so why not
try it for yourself! Anyway, where were we . . . ?

If the parser managed to find a match with the name of the person that
the player wants to attack, it then checks whether the person is in the
same room. If they aren't, then there's little point trying to attack them !
Once the parser has managed to recognise the person that is being
attacked, it then checks the forth word to see what object the player
wishes to attack the person with. Once again, an array is checked that
contains a list of all the objects in the game. If the player doesn't have the
object that they've requested to use, a message is once again displayed
telling the player that the action that they've requested is not possible
('You don't have the knife ! ' , for example).

If everything went to plan, the pars er will have accepted your command.
All that now remains is to carry out whatever action is required to fulfil
that command. In the case of our example, the parser would then call a
routine that handled combat between the player and the person that
they've decided to pick upon. If the player survived the attempted attack
(never attack a Bullrog with a garden hose !) , the parser would go back to
the beginning and start again by displaying the 'What now?' prompt.

Moving around locations
One of the most important aspects of any adventure game is the ability to
move around the various 'rooms' that form the adventure's virtual world.
This is perhaps the most important aspect of any adventure - after all, if
the player's computerised alter ego stands in the same place all the way
through, it's hardly going to be a very exciting game ! Even on an
unexpanded S I 2K ASOO (remember them?), it's possible to create some
quite substantial game 'worlds' that the player can wander around and
explore at their leisure.

Before you sit down and code your latest Infocom-killer, however, it's
well worth taking time to design your game world. This is very important

U ltimate AMOS

346

Plan your
world first!

Ultimate AMOS

Before you can write an

adventure game, you

need to start by designing

the game map on paper

(or, as we've done here,

in Deluxe Paint!.

Chapter 1 5

indeed, as you need some fOlm of reference material to feed in all the
information that the movement routine will use. The size of the game
map is entirely up to you, but bear in mind that each and every location
needs its own textual description, which must be fed in by hand, along
with all the various movement attributes that will be needed.

So what do you need to get started? First of all you ' l l need to draw up a
game map similar to the one shown in this chapter. Every single square
within the map is a location that the player can move to via one or more
of the six directions of movement - north, south, east, west, up and
down. To make l ife somewhat more complicated, you can also control
the player's movement by making certain paths (a path is an imaginary
line that joins two locations) either one-way or ' restricted entry ' , in
which case the player needs a certain object (a gold key to unlock the
door, for example) to travel along that particular path. The paths
themselves will be completely transparent to the player - they're simply
there to serve as a reference when keying in all the location data.

Once you've drawn up your game map, you need to key all the map data
into the computer. You' l l need to create a dimensional array that holds all
the map's path data using a line such as 'Dim ROOMS (1 00,6)' . This
would create a dimensional array capable of handling 1 00 different
locations, each of which has 6 different items of information attached to
it. How many locations you use in your game is entirely up to you - if

Adventure games

Adding
graphics

347

you're feeling adventurous and enjoy a l ittle bit of hard work, there's
absolutely no reason why you couldn't create an adventure game with
literally thousands of different locations ! Each location has attached to it
6 different items which contain the movement attribute for each direction
of movement - one for north, one for south etc.

Each of these movement attributes act as a sort of pointer that tel ls the
adventure game parser which location that player would move to if they
opted to move in a particular direction. Say, for example, the player is
currently in location 10 and a movement to the north would take them to
location 1 2 . The movement attribute that holds the north direction for
location 1 0 would therefore contain a value of 1 2. Similarly, the opposite
would be true - the attribute that holds the south direction for location 1 2
would contain a value of 10, allowing the player to move south and then
move north again if they so wish. It's important to remember which
movement attribute holds the information for a particular direction -
reading the value for the north attribute when the player wants to move
south could be disastrous (who knows what lurks in that direction?) .

It's also possible to add graphics to your adventures so that the player can
not only read a description of each location, but also see it ! AMOS
makes this sort of thing very easy indeed thanks to its ability to open
multiple screens. All you need to do is to open two separate screens -
one for your graphics and one for your text - and then arrange them so
that the text screen appears below the graphics screen. You can then
extend your game map array so that it not only contains all the various
movement attributes for each location, but also the filename of a picture
held on disk that is to be displayed for that particular location.

Getting even more adventurous stil l , why not create a bank of bobs for all
the objects and lifeforms that inhabit your adventure? By simply
checking what objects and lifeforms are in a particular location each time
the player moves to that location, you could paste the bob image of that
particular object or l ifeform onto the graphic screen so that the player not
only sees the location that they've moved to, but any objects or creatures
that they encounter too ! Who ever said that AMOS couldn't be used to
write decent adventures? ! Humbug to the lot of 'em . . .

Ultimate AMOS

348 Chapter 1 5

Phew ! What a lot of theory. Anyway, here's a listing that should provide
you with the building blocks of a very flexible adventure game parser.
Let's brake the code down into more manageable chunks and take a look
at each in turn.

Rem * * * Simple Adventure Parser Demonstration

Rem * * * Filename - AdventureParser .AMOS

Rem * * * Open picture screen . . .

Screen Open O , 32 0 , 150 , 32 , Lowres

Flash Off : Curs Off

Rem * * * Open text screen . . .

Screen Open l , 64 0 , 100 , 4 , Hires

Cls 0 : Paper 0 : Pen 1

Screen Display 1 , 12 8 , 1 9 6 "

Palette $ O , $FFF, $FO O , $F

Rem * * * Number of commands , obj ects and lifeforms

NOUNS= 6 : OBJECTS=3 : LIFEFORMS=2 NUMLOCATIONS= 6

Rem * * * Initialise commands array

Dim NOUN$ (NOUNS)

Rem * * * Initialise game map array

Rem * * * �.P$ (n, O) North direction

Rem * * * MAP$ (n, l) South direction

Rem * * * MAP$ (n, 2) East direction

Rem * * * MAP$ (n, 3) West direction

Rem * * * MAP $ (n, 4) Picture filename

Dim MAP $ (NUMLOCATIONS , 5)

Rem * * * Initialise obj ects array

Rem * * * OBJECT$ (n, 0) Obj ect name

Rem * * * OBJECT$ (n , 1) Location of obj ect

Rem * * * OBJECT$ (n, 2) Status (0 = On floor

Dim OBJECT $ (OBJECTS , 3)

Ultimate AMOS

1 Picked Up)

Adventure games

Rem * * * Initialise life (monsters etc) array

Rem * * * LIFE$ (n, O) name of lifeform

Rem * * * LIFE$ (n, l) = Location of lifeform

Rem * * * LIFE$ (n, 2) = Strength of lifeform (0

Dim LIFE$ (LIFEFORMS , 3)

Rem * * * Initialise words array

Dim WORDS$ (5) : WORDCOUNT= O

Global NOUNS , OBJECTS , LIFEFORMS

Global NOUN$ () , OBJECT$ () , LIFE$ () , WORDS$ ()

Global WORDCOUNT , RooM, MAP$ () , NUMLOCATIONS

INITMAP

_INITPARSER

RooM=l

_RooMINFO [ROOM]

Do

Loop

Input "What now? " ; COMMAND$

I f COMMAND$<>""

_PARSE [COMMAND$]

End If

349

Dead)

Before the main bulk of the adventure game code starts, a fair amount of
setting up is necessary. Once the two screens have been opened (screen 0
holds the picture of the location and screen 1 holds the adventure text),
four variables are defined that tell the game how many words the parser
can handle ('NOUNS') , how many objects are scattered around the
adventure map (,OBJECTS), how many lifeforms there are
('LIFEFORMS') and how many locations are in the game map
('NUMLOCATIONS') . These variables are then used to set up all the
various data structures that are required to handle the game. These
variables and data structures are then made global before passing control
to two procedures ('_INITMAP' and '_INITPARSER') that set the game

Ultimate AMOS

350 Chapter 1 5

up. The text for the first location is then displayed by calling the
'_ROOMINFO' procedure.

Once all this setting up is complete, the game then starts by entering a
very small loop that asks the user to enter a command and then passes it
to the '_PARSE' procedure, which interprets it .

Procedure _INITMAP

End

Rem * * * Read direction data into map array

Restore MAPDATA

For A=O To NUMLOCATIONS-l

Read MAP $ (A, 0) Rem * * * North

Read MAP$ (A, 1) Rem * * * South

Read MAP$ (A, 2) Rem * * * East

Read MAP$ (A, 3) Rem * * * West

Read MAP $ (A, 4) Rem * * * Picture filename

Next A

MAPDATA :

Data

Data

Data

Data

Data

Data

Proc

" 0 " , " 3 " , " 0 " , " 0 " , "AMOSBOOK : Pictures/ADV . Rooml"

" 0 " , " 4 " , " 0 " , " 0 " , "AMOSBOOK : Pictures/ADV . Room2 "

" 1" , " 0 " , "4" , " 6 " , "AMOSBOOK : Pictures /ADV . Room3 "

"2" , "5 " , " 0 " , " 3 " , "AMOSBOOK : pictures/ADV . Room4"

"4" , " 0 " , " 0 " , "0" , "AMOSBOOK : pictures /ADV . RoomS"

" 0" , " 0 " , " 3 " , " 0 " , "AMOSBOOK : pictures /ADV . Room6"

The '_INITMAP' procedure is very important indeed. What it does is to
configure the array that holds the game map data including such details
as the paths between locations and the filenames of the picture files
associated with each location. A simple loop is used to read this
information which is held inside the program using 'Data' statements.

U ltimate AMOS

Adventure games

Procedure INITPARSER

Restore NOUNS

For A=O To NOUNS-l

Read NOUN$ (A)

Next A

Restore OBJECTS

For A=O To OBJECTS- l

Read OBJECT$ (A, O)

Read OBJECT$ (A, l)

Read OBJECT$ (A, 2)

Next A

Restore LIFE

For A=O To LIFEFORMS- l

Read LIFE$ (A, O)

Read LIFE$ (A, l)

Read LIFE$ (A, 2)

Next A

NOUNS :

Data "GO" , "ATTACK" , "INVENTORY"

OBJECTS :

Data "BOOK" , "2" , "O "

Data "SHIELD" , "l" , " O "

Data "SWORD" , "l" , "l"

LIFE :

Data "VELOCIRAPTOR" , " 1 I , "1"

Data "BULLROGI , 14 I , 12 0 "

End Proc

35 1

The '_INITPARSER' procedure sets up all the data structures that are
needed to handle all the nouns, objects and lifeforrns that the game uses.
For a more in-depth look at the structure of each data structure, refer to
the start of the program.

Ultimate AMOS

352

Procedure _PARSE [COMMAND$]

Rem * * * Slice command string into words

WOROCOUNT=O

COMMAND$=Upper$ (COMMAND$)

WORD$=""

For A=l To Len (COMMAND$)

LETTER$=Mid$ (COMMAND$, A, l)

If LETTER$< > " "

WORD$=WORD$+LETTER$

End If

I f LETTER$=" " and WOROCOUNT< S and LASTLETTER$ < > " "

WORDS $ (WOROCOUNT) =WORD$

WOROCOUNT=WOROCOUNT+l

WORD$=""

End If

If A=Len (COMMAND$) and WOROCOUNT< S

If WORD$< >""

WORDS $ (WOROCOUNT) =WORD$

End If

End I f

LASTLETTER$=LETTER$

Next A

Rem * * * Compare first word with list of commands

NOUNNUM= - l

For A=O To NOUNS-l

If WORDS $ (0) =NOUN$ (A)

NOUNNUM=A

End If

Ultimate AMOS

Chapter 1 5

Adventure games 353

Next A

Rem * * * Was a match found?

If NOUNNUM> - l

Else

If NOUNNUM= 0

_GO

End If

If NOUNNUM=l

_ATTACK

End If

If NOUNNUM=2

_INVENTORY

End If

Rem *** Rest of parser command handling code . . .

Pen 2

Print 1/* * * Sorry, I don ' t understand ! 1/

Print

Pen 1

End If

End Proc

The '_PARSE' procedure is responsible for slicing up the command that
the player enters into a series of individual words that are stored in the
global array 'WORDS$O ' . Each word is extracted by stepping through
the entire command a character at a time, appending each letter to a
temporary variable until a space is found. If a space is found, then the
parser assumes that a whole word has been extracted and it's placed into
the 'WORDS$O' array. Once this is done, the procedure then compares
the first word in the array against the list of nouns it has stored in the
"NOUN$O' array. If a match is found, then the first word is accepted
and the routine branches off to the procedure that is designed to handle
that particular noun. If the user were to enter 'Attack' , for example, the
routine would branch to the '_ATTACK' procedure which is solely
responsible for handling the rest of the user's command.

Ultimate AMOS

354

Procedure _ROOMINFO [ROOM]

Rem * * * Load and display picture if there is one . . .

I f MAP$ (ROOM- l , 4) < > " "

Screen °
Load Iff MAP$ (ROOM- l , 4)

Screen 1

End I f

Rem * * * Load and display location text here . . .

Rem * * * Display available directions . . .

Pen 2

Print "You can go - It ;
For A=O To 3

Read DRECTION$

If Val (MAP$ (ROOM- l , A)) < >O

Print DRECTION$;

End If

Next A

Pen 1

Print : Print

Rem * * * Display obj ects in room . . .

Pen 2

For A=O To OBJECTS-l

If Val (OBJECT$ (A, l)) =ROOM and Val (OBJECT$ (A, 2)) < >1

Print "Lying on the ground is a It ;
Print Lower$ (OBJECT$ (A, O))

End If

Next A

Pen 1

Rem * * * Display lifeforms in room . . .

Pen 2

For A=O To LIFEFORMS- l

If Val (LIFE$ (A, l)) =ROOM

Ultimate AMOS

Chapter 1 5

Adventure games 355

Print "A I ; Lower$ (LIFE$ (A, O » ; " is here ! "

End If

Next A

Pen 1

Data "North " , "South " , "East " , "West"

End Proc

Procedure _GO

MOVEDFLAG= 0

The '_ROOMINFO' procedure is responsible for displaying all the
information that the player needs to know about a location once they
move to it. The procedure starts by checking to see whether a picture is
attached to the current location by checking the 'MAP$O' array. If a
filename is found, the picture is loaded into screen O. I 've left out the
next section of code that should display the description that is associated
with the location. You can easily add this yourself by either reading in a
section of text from disk or by displaying text held in an array
specifically designed to hold the location text.

Most adventure games only tel l you what directions you can move in and
what objects and lifeforms are in the location if you specifically ask them
to, but our game uses a more direct (and certainly more helpful)
approach. All the possible moves, objects and lifeforms are displayed by
scanning through the appropriate arrays . In the case of objects and
lifeforms, the ' location' variable that is associated to each is checked to
see whether it matches the current location. A further check is needed for
the objects - because each object has a status variable associated with it
that tells the game if the object is either lying on the floor or whether the
player has picked up the object, the routine makes sure that only those
objects that haven' t been picked up are listed.

For A=O To 3

Read DRECTION$

Rem * * * Has direction been understood?

Ultimate AMOS

356

I f Upper$ (WORDS$ (l » =DRECTION$

Rem * * * I s it possible to move in that direction?

If Val (MAP$ (RooM- l , A» < > O

Else

RooM=Val (MAP$ (RooM- l , A»

_RooMINFO [ROOM]

MOVEDFLAG=l

Pen 2

Print " * * * Sorry, you can ' t move It ;
Print "in that direction ! "

MOVEDFLAG=l

Pen 1

End If

End If

Next A

If MOVEDFLAG=O

Pen 2

Print ,,* * * Go in which direction?"

Pen 1

End If

Chapter 1 5

Data "NORTH" , "SOUTH" , "EAST" , "WEST"

End Proc

Ultimate AMOS

The first of the specific routines to handle the commands that the user
can enter is the '_GO' procedure that handles the noun of the same name.
The procedure starts by attempting to understand the direction that the
player has requested. If the direction is understood, the routine then
checks to see if the player can actually move in that direction. If the
move is possible, then the player's command is accepted and the player's
current location is changed.

If, on the other hand, either the direction is not understood or the player
cannot move in that direction, an error message is displayed.

Adventure games

Procedure _ATTACK

Rem * * * Compare second word with list of lifeforms

LIFENUM=-l

For A=O To LIFEFORMS-1

If WORDS $ (1) =LIFE$ (A, 0)

LIFENUM=A

End If

Next A

Rem * * * Has l ifeform been identified?

If LIFENUM>-l

Rem * * * Is the lifeform in the same roam?

If Val (LIFE$ (LIFENUM, l)) =ROOM

Rem * * * Compare fourth word with list of obj ects

OBJNUM=-l

For A=O To OBJECTS- 1

If WORDS $ (3) =OBJECT$ (A , 0)

Rem * * * Does player have that obj ect?

If OBJECT$ (A, 2) ="1"

OBJNUM=A

Else

OBJNUM=-2

End If

End If

Next A

Rem * * * Was the obj ect found?

If OBJNUM>-l

Pen 2

Print ,,* * * You attack the " ; Lower$ (WORDS$ (l)) ;

Print " with your " ; Lower$ (WORDS$ (3))

Print

357

Ultimate AMOS

358

Else

End

End Proc

Else

End

Pen

Else

Pen 1

Rem * * * Jump to combat routine

Rem * * * I ' ll leave this for you to write !

If OBJNUM=-l

Pen 2

Print " * * * Attack " ; Lower$ (WORDS$ (l » ;

Print 11 with what? "

Print

Pen 1

End I f

I f OBJNUM= -2

Pen 2

Print " * * * You don ' t have the " ;

Print Lower$ (WORDS$ (3 » ; I ! "

Print

Pen 1

End If

End If

Pen 2

Print

Print

Print

Pen 1

If

2

" * * * The " ; Lower$ (WORDS$ (l » ;
11 isn ' t here ! "

Chapter 1 5

Print " * * * Attack what?"

Print

Pen 1

I f

The '_ATTACK' procedure is responsible for handling the command of
the same name. Although not complete, it does interpret the entire
command string and it would be a fairly mjnor task to write a procedure

Ultimate AMOS

Adventure games 359

that handles combat between the player and the lifeform that they choose
to attack.

The routine starts by trying to identify the lifeform that the player has
attempted to attack by comparing the second word in the 'WORDS$O'
array against the list of lifeforms held in the 'LIFEFORM$O' array. If a
match is found, the procedure then checks to make sure that the lifeform
is in the same location as the player. If all of this checking proves
positive, the procedure then compares the fourth word against the list of
objects in the 'OBJECT$O' array to see if the object that the player has
selected to attack the lifeform with exists. Even if a match is found, the
procedure must check to make sure that the player is holding that object.

If the object is found and the lifeform is in the same room, the combat
routine would then be called. If, during all these checks, something does
not prove to be true, an appropriate error message is displayed.

Procedure _INVENTORY

Pen 2

Print "You are carrying - " ;

EMPTY=-l

For A=O To OBJECTS-l

If OBJECT$ (A, 2) ="1"

Print OBJECT$ (A, O) ; " " ;

EMPTY=l

End If

Next A

If EMPTY=-l

Print "Nothing"

End If

Print

Pen 1

End Proc

U ltimate AMOS

360

Ultimate AMOS

Chapter 1 5

The last procedure is the '_INVENTORY' procedure that handles the
commands of the same name. Unlike most adventure games, objects
aren' t held in a temporary ' inventory' array - simply by changing an
object's status variable to a value of one, the program automatically
assumes that the player is holding that object. The inventory is displayed
using a loop that checks through every object in the game - if an object's
status is set to one, then the name of the object is displayed, otherwise it
is ignored.

Obviously our demo adventure is very limited indeed - after all, it uses
only six locations and a very l imited number of commands, objects and
lifeforms. Adding extra commands would be very easy indeed - the
'take' and 'drop' commands, for example, could be implemented simply
by changing the status variable of an object from zero to one when the
player wants to pick up and object and from one to zero when the player
wants to drop and object.

36 1

Appendix A:
Useful routines
• Mandelbrot generator

• 'Splerge' effect

• Parallax starfields

• Multitasking text input

• Co-ordinates finder

• High Score routine

• Bubble sorting arrays

Ultimate AMOS

362 Appendix A

Mandelbrot Generator
Although not directly relevant to games programmjng, fractal graphics
are still a fascinating area of computing. They give you the ability to
generate amazing pictures of virtually unlirruted complexity with
absolutely no artistic skills whatsoever! The following program allows
you to create Mandelbrot images and even zoom in for greater detail .

Create stunning fractal

images like this using the

Mande/brot generator

program below.

Rem * * * AMOS Mandelbrot Set Explorer

Rem * * * By Jason Holborn

Rem * * * Based on an AmigaBASIC routine by Conrad Bessant

Rem * * * Filename - Mandelbrot . AMOS

SCRX=3 2 0

SCRY=2 5 6

Screen Open O , SCRX, SCRY, 3 2 , Lowres

Flash Off : Curs Off : CIs 0

Rem * * * Load default picture . . .

Ultimate AMOS

Useful routines

Load Iff IIAMOSBOOK : Pictures/Mandelbrot . IFFII

Rem * * * Set initial boundaries for Mandelbrot

XMIN#=-2

XMAX#=O . 8

YMIN#=-1 . 2

YMAX#= 1 . 2

MXITERS=96 Rem * * * Level of detail

Do

Rem * * * Mandelbrot ' Zoom' facility

ZOOOM=O : ERR=O

Repeat

If Mouse Key=l

X1=X Screen (X Mouse)

Y1=Y Screen (Y Mouse)

Repeat

X2=X Screen (X Mouse)

Y2=Y Screen (Y Mouse)

If X2 >X1 and Y2 >Y1

Gr Writing 3

Ink 15

Box X1 , Y1 To X2 , Y2

Wait Vbl

Box X1 , Y1 To X2 , Y2

ERR=O

Else

ERR=l

End If

Until Mouse Key=O

I f ERR=O

Gr Writing 0

Box X1 , Y1 To X2 , Y2

XRANGE#= (XMAX#-XMIN#) /SCRX

YRANGE#= (YMAX#-YMIN#) /SCRY

363

U ltimate AMOS

364

Loop

XMAX#= (XRANGE#*X2) +XMIN#

XMIN#= (XRANGE#*Xl } +XMIN#

YMAX#= (YRANGE#*Yl } +YMIN#

YMIN#= (YRANGE#*Y2) +YMIN#

ZOOOM=l

End I f

End If

Rem * * * Has user pressed ' S ' key to save picture?

If Key State (33 } =- 1

FILENAME$=Fsel$ ("RAM: * *" , " " , "Save Picture" , "" }

I f FILENAME$ < > " "

Save Iff FlLENAME$

End I f

End I f

Rem * * * Has user pressed ' G ' key t o generate image?

If Key State (3 6 } = - 1

ZOOOM=l

End If

Rem *** Has user pressed ' R ' key to reset mandelbrot?

If Key State (19 } =-1

XMIN#=-2

XMAX#=O . 8

YMIN#=- 1 . 2

YMAX#=1 . 2

Rem * * * Load default picture . . .

Load Iff "AMOSBOOK : Pictures/Mandelbrot . IFF"

End I f

Until ZOOOM=l and ERR=O

_MANDELBROT [XMIN#, XMAX# , YMIN# , YMAX# , MXITERS , SCRX, SCRY]

Ultimate AMOS

Appendix A

Useful routines

Procedure _MANDELBROT [XMIN# , XMAX# , YMIN# , YMAX# , MXITERS , SCRX, SCRY]

X=O

Y=SCRY- l

XRANGE#= (XMAX#-XMIN#) /SCRX

YRANGE#= (YMAX#-YMIN#) /SCRY

Rem * * * Generate Mandelbrot

For A#=XMIN# To XMAX# Step XRANGE#

For B#=YMIN# To YMAX# Step YRANGE#

Rem * * * Set initial values of variables

P#=O

Q#=O

ITERATION=O

While P#*P#+Q#*Q#<4 and ITERATION<MXITERS

PNEW#=P#*P#-Q#*Q#+A#

Wend

QNEW#=2*P#*Q#+B#

P#=PNEW#

Q#=QNEW#

ITERATION=ITERATION+l

If Key State (64)

Pop Proc

End If

Plot X , Y , ITERATION

Y=Y-l

Next B#

Y=SCRY-l

X=X+l

Next A#

End Proc

365

Ultimate AMOS

366 Appendix A

'Splerge' effect
Adding weird and wonderful screen transition effects to your games can
add that little bit of extra sparkJe that sets a great game aside from an
average game. One of the most popular (and most impressive !) is the
'Splerge' effect which draws up a picture almost as if it were ' melting'
onto the screen. Prepare to be amazed !

Rem * * *

Rem * * *

Rem * * *

Rem * * *

One o f the most popular

screen wipes amongst

professional

programmers is the

'splerge' effect.

Fast Splerge Routine

By Jason D Banks

Updated by Jason Holborn

Filename - Splerge . AMOS

Screen Open l , 320 , 2 5 6 , 32 , Lowres

Flash Off : CUrs Off : Cls 0

Load Iff IAMOSBOOK : Pictures/DemoPicture . IFF"

Screen Open 2 , 32 0 , 2 5 6 , 32 , Lowres

CUrs Off : Flash Off : Cls 0

Get Palette 1

Ultimate AMOS

Useful routines

SPLERGE [O , 1 , 2]

A$="" : Rem * * * Type a key to start a splerge effect .

While A$< > "Q"

A$=Upper$ (Inkey$)

If A$="l" Then SPLERGE [O , 1 , 2]

If A$="2" Then SPLERGE [1 , 1 , 2]

I f A$= " 3 " Then SPLERGE [2 , 1 , 2]

If A$="4" Then SPLERGE [3 , 1 , 2]

I f A$="5" Then SPLERGE [4 , 1 , 2]

I f A$="9" Then SPLERGE [8 , 1 , 2]

Wend

End

Rem * * * SPLERGE Procedure

Rem * * * SPEED Speed of redraw (O=fastest)

Rem * * * SOURCE Source screen

Rem * * * DEST Destination screen

Procedure SPLERGE [SPEED, SOURCE, DEST]

Screen SOURCE

SOURCE_SIZE=Screen Height

Screen DEST

DEST_SIZE=Screen Height

V=Min (SOURCE_SIZE, DEST_SIZE)

Screen SOURCE

SOURCE_SIZE=Screen Width

Screen DEST

DEST_SIZE=Screen Width

H=Min (SOURCE_SIZE, DEST_SIZE)

For LOP=V- 1 To 1 Step -1

367

U ltimate AMOS

368

_FILL [DEST, O , O , H, SOURCE, LOP]

If SPEED

Wait SPEED

End If

Next LOP

End Proc

Procedure _FILL [DEST, SX, SY, WIDTH_X, SRC , LINE]

Screen Copy SRC , O , LINE , WIDTH_X, LINE+l To DEST , SX, SY

STP=l : COUNT=l

While COUNT<LINE

Wend

Screen Copy DEST, O , O , WIDTH_X, STP To DEST, O , STP

STP=STP*2

COUNT=COUNT+STP

If COUNT>LINE

Screen Copy DEST, O , O , WIDTH_X, LINE-STP To DEST , O , STP

End If

If COUNT=LINE

Screen Copy DEST , O , ° , WIDTH_X, 1 To DEST, O , LINE - l

End I f

Wait Vbl

End Proc

U ltimate AMOS

Appendix A

Useful routines 369

X-Plane Starfield
If you're writing a shoot 'em up based in space, then you can add that
extra feel ing of depth to your game by adding a 3D parallax starfield.
Most routines of this type draw the stars using AMOS's 'Plot' command
but my routine uses blitter objects instead. The advantage of this
approach is that the stars do not interfere with the background graphics,
so you're free to draw graphics onto the screen and load IFF backdrops
without the starfield interfering with them. A word of warning, however -
because this routine draws 40 blitter objects onto the screen in a single
frame, you really really do need to compile it for smooth movement. .

You can customise the routine quite a bit yourself. Simply change the
values of the 'PLANES ' and 'STARS' variables to alter the 'depth' of
the starfield and the number of stars respectively. The starfield itself is
completely random, so you ' l l never see the same starfield twice !

Rem * * * Parallax X-Plane Starfield

Rem * * * Compile this program for maximum speed

Rem * * * Filename - X-Starfield . AMOS

PLANES=5

STARS=40

Rem * * * Levels of Parallax

Rem * * * Number of Stars

Dim X (STARS) , Y (STARS) , Z (STARS)

Global PLANE S , STARS , X () , Y () , Z ()

Screen Open 0 , 32 0 , 2 56 , 16 , Lowres

Curs Off : Flash Off : Cls 0

Pen 2 : Paper 0

Locate 0 , 5 : Centre "Parallax Starfield"

Double Buffer : Autoback 0

Bob Update Off

Load "SOURCE : Star . ABK"

Ultimate AMOS

370

Get Sprite Palette

_SETUPSTARS

Repeat

Bob Clear

_MOVESTARS

Bob Draw

Screen Swap 0

Wait Vbl

Unti l Mouse Key=1

End

Procedure _SETUPSTARS

Rem * * * Assign random speed and vertical

Rem * * * position to all stars

For N=1 To STARS

X (N) =320

Y (N) =Rnd (2 5 6)

Z (N) =Rnd (PLANES) +1

Next N

End Proc

Procedure _MOVESTARS

For N=1 To STARS

Rem * * * Update position of star

Add X (N) , -Z (N)

Rem * * * Check that star hasn ' t left screen

If X (N) <O

Rem * * * If it has , generate new star

X (N) =32 0

Y (N) =Rnd (25 6)

Z (N) =Rnd (PLANES) +1

End I f

Ultimate AMOS

Appendix A

Useful routines

Rem * * * Plot new star

Ink 1

Bob N , X (N) , Y (N) , l

Next N

End Proc

Z·Plane Starfield

371

We've already covered the 'X' plane starfield, so all that remains is to
take a look at a 'Z' plane starfield. If you've ever played a game like
'Elite ' , then you ' l l be instantly farnilar with the 'Z' plane starfield. The
effect gives the impression of flying through a starfield at high speed as
viewed from the front of a spaceship. Anyway, here it is in all its AMOS
glory.

Rem * * * Z-field Starfield Effect

Rem * * * Filename - Z-Starfield . AMOS

XRANGE=lO : Rem * * * Max X axis speed

YRANGE=lO : Rem * * * Max Y axis speed

NUM=5 0 : Rem * * * Number of stars

Dim X (NUM) , Y (NUM) , XS (NUM) , YS (NUM)

Global XRANGE , YRANGE , NUM, X () , Y () , XS () , YS ()

Screen Open O , 32 0 , 2 5 6 , 2 , Lowres

Flash Off : Cls 0 : CUrs Off

Double Buffer : Autoback 1

Bob Update Off

Load "AMOSBOOK :ABKFiles/Star . ABK"

Get Sprite palette

_SETUPS TARS

Repeat

U ltimate AMOS

312

Bob Clear

_MOVESTARS

Bob Draw

Screen SWap 0

wait Vbl

Until Mouse Key=l

Procedure _SETUPSTARS

For A=O To NUM

X (A) =160 : Y (A) =128

Randomize Timer

XS (A) = (Rnd (XRANGE) + 1) - (XRANGE/2)

YS (A) = (Rnd (YRANGE) + 1) - (YRANGE/2)

Next A

End Proc

Procedure _MOVESTARS

For A=O To NUM

Add X (A) , XS (A)

Add Y (A) , YS (A)

I f X (A) < O or X (A» 3 2 0 or Y (A) <O or Y (A» 2 5 6

X (A) =160 : Y (A) =128

Randomize Timer

XS (A) = (Rnd (XRANGE) + 1) - (XRANGE/2)

YS (A) = (Rnd (YRANGE) + 1) - (YRANGE/2)

End If

Bob A , X (A) , Y (A) , l

Next A

End Proc

U ltimate AMOS

Appendix A

Useful routines 373

Multitasking text input
Here's a handy routine if you've ever wanted to get the user to enter a
string of text whilst AMOS gets on with other more important tasks -
like animating sprites, drawing graphics and playing music, etc. Unlike
AMOS's own ' Input' command, the following routine does not halt the
execution of your program until the player presses the 'RETURN' key,
so you could even (in theory at least !) have a game playing whilst the
user enters text ! Clever stuff, eh?

Rem ** GetInput Procedure

Rem ** Filename - GetInput . AMOS

_GET INPUT [1 , 3 , 1 0 , - 1]

ANSWER$=Param$

Locate 1 , 5

Print "The answer you typed was" i Val (ANSWER$)

End

Rem * * _GET INPUT Procedure

Rem * * X = X coord of number to be entered

Rem ** Y = Y coord of number to be entered

Rem ** TIME = Max number of seconds allowed

Rem ** LIMIT = Maximum number of characters

Procedure _GETINPUT [X, Y, TIME, LIMIT]

Curs Off

TIME= (TIME+ 1) * 5 0

Timer=O

If LIMIT=-l

LIMIT=2 0 0

End I f

U ltimate AMOS

374

Repeat

A$=Inkey$

A=Scancode

If A< >O

If A=6 5

STRLEN=Len (STRG$)

If STRLEN>O

Else

STRG$=Left$ (STRG$, STRLEN- l)

End I f

I f A<>O

If Len (STRG$) <LIMIT

STRG$=STRG$+A$

End If

End If

End If

End If

Wait Vbl

Locate X, Y : Print "Enter a number : "

Locate X+17 , Y : Print STRG$+"_ "

Rem ** Put your code in here if you

Rem * * would like AMOS to do something else

Until A=6 8 or A=67

End Proc [STRG$]

U ltimate AMOS

Appendix A

Useful routines 375

Co-ordinate finder
Setting up screen displays can be a pain unless you're the sort of
masochist that enjoys calculating the positions of bobs and sprites by
hand. The fol lowing routine installs as a handy little programming tool
that instantly comes on line whenever you press the 'Fl ' key on your
Amiga keyboard. Just insert it into your game's main loop, press F l and
your program will be frozen. A tiny screen will then appear complete
with read outs of the mouse pointer's current 'X' and 'Y' co-ordinates in
both screen and hardware format. You can then calculate screen co
ordinates simply by moving the mouse pointer to the screen position
you're interested in.

If you find that the co-ordinates screen obscures the area of the screen
that you're interested in, then just use the 'Up' and 'Down' arrow keys
on your Arniga keyboard to smoothly scroll the screen out of the way.
Once you've finished, just press the 'F2' key and your program will
continue running !

Setting up screen zones

and plotting bobs is

considerably easier with

this handy 'Co·ordinate

Finder' utility.

Ultimate AMOS

376

Rem * * * Co-ordinate Finder

Rem * * * Filename - CoordFinder . AMOS

Rem * * * Do not use screen 7 in your own programs !

Do

Loop

Rem * * * Add this line to your code . . .

_FINOCOORDS [0]

Wait Vbl

Procedure _FINOCOORDS [SCRNO]

Rem * * * Press F1 to start utility . . .

If Key State (8 0) =-1

SCRYPOS=250

Amal Freeze

Limit Mouse

Change Mouse 2

Show

Rem * * * Open up co-ords screen . . .

Screen Open 7 , 64 0 , 24 , 4 , Hires

Flash Off : Curs Off : Cls 0

Palette $FO O , $FFF , $FFO

Rem * * * Print headings . . .

Pen 1 : Paper 0

Locate 2 , 1 : Print "Screen X = "

Locate 2 0 , 1 Print "Screen Y

Locate 3 8 , 1 Print "Hard X

Locate 5 6 , 1 Print "Hard Y "

Pen 2 Paper 0

Ultimate AMOS'

Appendix A

Useful routines

Repeat

Rem * * * Move screen . . .

Screen Display 7 , 12 8 , SCRYFOS "

Rem * * * Has up arrow key been pressed?

If Key State (7 6) = - 1

SCRYFOS=SCRYFOS-1

End I f

Rem * * * Has down arrow key been pressed?

If Key State (7 7) = - 1

SCRYFOS = SCRYFOS + 1

End If

Screen SCRNO

Rem * * * Read mouse pointer positions . . .

SCRX=X Screen {X Mouse)

SCRY=Y Screen {Y Mouse)

HRDX=X Mouse

HRDY=Y Mouse

Screen 7

Locate 12 , 1

Locate 3 0 , 1

Locate 4 6 , 1

Locate 64 , 1

Wait Vbl

Print

Print

Print

Print

Until Key State (81) = - 1

Screen Close 7

Amal On

SCRXi " "

SCRYi " "

HRDXi " "

HRDYi " "

Rem * * * F2 to quit . . .

Change Mouse 1

End If

End Proc

377

U ltimate AMOS

378 Appendix A

High-score table
Every game player likes to feel that they achieved something, so a high
score table routine is a must for your AMOS games. And, surprise
surprise, that's exactly what I 've got for you below. It's fairly minimal, so
don' t expect any flash graphics - all it does is to handle the task of
maintaining the high score table which is held within two arrays -
HISCOREO and HISNAME$O. Here's the high score code . . .

Rem * * * Basic High Score Routine

Rem * * * By Jason Holborn

Dim HISCORES (l O) , HISNAME$ (lO)

Global HISCORES () , HISNAME$ ()

Screen Open O , 32 0 , 2 56 , 2 , Lowres

Flash Off : Palette $ O , $FFF

For C=O To 9

Read HISCORES (C) , HISNAME$ (C)

Next C

Data 1 0 0 0 0 , "Jason Holborn"

Data 9 0 0 0 , "Georgina Brown"

Data 8 0 0 0 , "Barry Whitehouse"

Data 7 0 0 0 , "Rod Lawton"

Data 6 0 0 0 , "Dave Smithson"

Data 5 0 0 0 , "Marcus Dyson"

Data 4 0 0 0 , "Cliff Ramshaw"

Data 3 0 0 0 , "Dan Slingsby"

Data 2 0 0 0 , "Richard Vanner"

Data 100 0 , "AMOS Professional"

FMAT$=" - "

Do

Input "Enter Score : " ; SCORE

Ultimate AMOS

Useful routines

Loop

HISCORE [SCORE]

SUCCESS=Param

If SUCCESS=l

Else

Print

For C=O To 9

Print using FMAT$; HISNAME$ (C) , HISCORES (C)

Next C

Print

Print ,, * * * Score too low! ! ! "

End If

Rem *** HiScore Table Routine

Procedure HISCORE [SCORE]

If SCORE>HISCORES (9)

Print "Congratulation!'! ! "

Input "Enter name - " ; NME$

For C=9 To 0 Step -1

If SCORE>HISCORES (C)

POS=C

End If

Next C

For C=8 To POS Step -1

HISCORES (C+ 1) =HISCORES (C)

HISNAME$ (C+1) =HIS�$ (C)

Next C

HISCORES (POS) = SCORE

HISNAME$ (POS) =NME$

RTURN=l

Else

RTURN=O

End If

End Proc [RTURN]

379

Ultimate AMOS

380 Appendix A

Bubble sort
Quite a few of the readers of Amiga Shopper and users of the bulletin
board system '0 1 For Arniga' asked me to include a sort routine in the
book that sorts an array filled with strings into alphabetical order. Well ,
being the helpful chap I am (!) , here's an AMOS version of a 'bubble
sort' routine I wrote in 'C' a few years back.

Rem * * * String Array Bubble Sort routine

Rem * * * Filenarne - BubbleSort . AMOS

ARAYLEN=lO : Dim ARAY$ (ARAYLEN)

Global ARAY$ () , ARAYLEN

Screen Open O , 64 0 , 2 5 6 , 2 , Hires

Flash Off : CUrs Off : Cls °
Palette $ O , $FFF

For C=O To ARAYLEN-l

Read ARAY$ (C)

Next C

Data "Jason Holborn"

Data "Georgina Brown"

Data "Barry Whitehouse"

Data "Rod Lawton"

Data "Dave Smithson"

Data "Marcus Dyson"

Data "Cliff Ramshaw"

Data "Dan Slingsby"

Data "Richard Vanner"

Data "AMOS Professional"

Print "Here ' s the array in its unsorted fonn . . . "

Print

For C=O To ARAYLEN-l

Print ARAY$ (C)

UI�mate AMOS

Useful routines

Next C

Print

Print /lPress any key to sort it . . . /I

Wait Key

_BUBBLE SORT

Print

For C=O To ARAYLEN-l

Print ARAY$ (C)

Next C

Print

Print /I . . . and here ' s the sorted array ! /I

End

Procedure _BUBBLE SORT

FLAG=O

Repeat

FLAG=-l

For C=O To ARAYLEN-2

If ARAY$ (C » ARAY$ (C+ l)

FLAG=O

TEMP$=ARAY$ (C)

ARAY$ (C) =ARAY$ (C+ l)

ARAY$ (C+ l) =TEMP$

End If

Next C

Until FLAG=-l

End Proc

38 1

Ultimate AMOS

382

Ultimate AMOS

383

Appendix B:
Getting your game
published
• Approaching a software house

• Stopping yourself from getting ' ripped off'

• H iding your game's creator !

• The PO options - including shareware & licenseware

U ltimate AMOS

384

� " "' EA
NOm

AMOS
'prejudice'!

Appendix B

L et's face it, most people bought AMOS Basic to launch them on the
way to programming fame and - hopefully - a little fortune chucked
in for good measure. Whilst sending the odd listing in to magazines

such as Arniga Shopper or Amiga Format, or even submitting a program
for a coverdisk will undoubtedly get you the former (that's the fame bit !) ,
not even the magazines themselves will try to pretend that you' l l make a
fortune from getting your listings printed within their i l lustrious pages. I f
you want to make real money from your programming effort, then you 're
going to have to release it as a commercial product.

Getting a game onto the shelves of WH Smiths isn't as easy as it may
first appear, however. As many AMOS users have discovered, most
software houses sti l l hold a very dim view of any software written any
form of B asic, let alone AMOS. Even if you were to write the ultimate
arcade game that knocks the spots off of Team 1 7 's 'Body B lows' ,
'Project X ' or 'Alien Breed 2 ' , chances are that most of the software
houses you send the game to will reject it without even viewing it
properly. The reason? - because it's written in B asic. It's a simple (and
unavoidable) fact of life that software houses are particularly keen to
distance themselves from programs written using so called 'game
creators' (AM OS may be a powerful programming language, but most
softies still tend to categorise AMOS as a 'game creator ') , so getting an
AMOS program published is no simple feat.

Facing up to reality

Ultimate AMOS

So how do you go about getting an AMOS program published? Well , the
first thing to do is to take a step backwards and ask yourself if the
program genuinely is of commercial quality. OK, so we're all very proud
of our own programs, but you must look at the situation realistically.
Better still , get a couple of your friends to take a look at the program for
you and take note of any suggestions that they make. If, for example,
they say that the graphics are a bit naff or the soundtrack is annoying,
then do something about it . The quality of gameplay is important too - if
your friends find the controls frustrating or the screen update too slow,
then don' t go into a sulk and storm out of the room ranting something
along the lines of how they couldn' t do any better. Take note of what they
say and act upon it !

Getting your game published 385

Create
something

new

If you've ever wanted to

make money from your

AMOS creations, then

read on . . .

Quite a few 'serious ' programs have been written in AMOS, but I 'm
afraid that, even if they are up and beyond the quality of current
commercial equivalents, software houses won' t touch AMOS
applications. The simple fact of the matter is that serious users like their
software to run under Intuition (the Amiga's windowing environment), so
until Europress launch the fabled AMOS Professional Intuition
extension, commercial applications written in AMOS are a definite no
no. The only exception to this rule is educational software - indeed, most
educational titles released these days are written in AMOS !

Another good idea is to take a look at the products currently out there in
the marketplace. If you've just written a game that has already been done
a hundred times before, then it's going to have to offer something
dramatically new if people are going to shell out their hard-earned cash.

When I say dramatic, I 'm not just talking about pretty graphics - where
non-original games ideas are concerned, you've got to be talking major
amounts of playability and addictiveness that will make game players
(even those that might already have a game of the same type) buy your
version ! A good example of this (once again) Team 1 7 's 'Project X' -
let's face it, horizontal scrolling space shoot 'em ups are hardly leading
edge stuff!

U ltimate AMOS

386 Appendix B

One of the areas that lets most AMOS games down the most is that of
graphic and audio presentation. But although you should try to make
your game's graphics and sound track as attractive as possible, don ' t
worry too much if your game isn ' t up to the same visual and aural
standards as a commercial release. What you must consider is that
software houses employ staff specifically for the task of designing game
graphics and writing game soundtracks. These people - that are usually
very talented anyway - spend their entire lives sat in front of DPaint and
SoundTracker creating real audio visual extravaganzas. If a software
house decides to market your game, they' ll probably suggest that one of
their graphic artists or musicians provides some new graphics or sound.

AMOS in disguise!

Compile your
game!

Ultimate AMOS

If you're still totally convinced that your game is the best thing since
sliced bread, the next thing that you absolutely must do is to disguise the
fact that it was written in AMOS Basic. I know, we're all proud to be
AMOS coders, but software houses don' t give a hoot about such banner
waving, so save it for your fellow AMOS coders. The first thing you
should do is to never (and I repeat NEVER) send your game in as
nothing more than just source code and expect the software house to own
a copy of AMOS . Not only will they not own AMOS, but it's doubtful
whether your game will ever make it into the disk drive of one of their
Amigas.

Before you even think about submitting a game, you should always
compile it. Even if you don' t own the AMOS Compiler, hold onto your
game until you 've saved up enough cash to buy a copy. Not only will
your game be far more professional (it will run from any disk without the
need for a runtime system), but it will probably benefit from the extra
spurt of speed anyway. Here's a couple of extra tips worth considering.

1 Although Europress would like you to advertise the fact that you used
AMOS to produce your game, you're not bound by any legal obligation.
Europress did originally insist that the AMOS logo was included on the
title screens of all AMOS-produced software, but after realising the
difficulties that AMOS users were encountering when trying to sell
software, they modified these obligation a bit.

Getting your game published 387

Legal
obligations

You now don' t have to advertise your program's origins at all , so the
software house that you submit your game to need be none the wiser !
Instead, all you have to do is to inform Europress (preferably in writing -
mark your letters for the attention of Chris Pay ne) that you've written an
AMOS game that will be sold commercially (note that this letter should
only be send after your game has been accepted) . Chris and the rest of
the Europress marketing team will keep this fact a secret for two months
after your game has been released. After the two months have expired
though, they' l l have the right to advertise the fact as much as they like.

Don't worry about the software house getting miffed - if they've made
bags of money out of your game, they' l l be too busy counting it to worry !
If the game is a flop though, chances are that Chris won' t say a thing
anyway.

2 It may be very handy for your own programs, but never use the AMOS
file requester within your game. Not only is this a dead giveaway, it's not
even a particularly good file requester. If you feel up to it, code your own.

3 Another way of giving the game away (if you ' l l pardon the pun) is to
stick with the standard AMOS mouse pointer, which is very distinctive to
say the least. If you want to change it to something less obvious, simply
load the file 'mouse.abk' (you' l l find it in your AMOS System folder)
into the AMOS Object Editor and change the shape of the pointer
yourself.

4 Use permanent memory banks as much as possible. There 's nothing
naffer than having all your graphics and sounds held on disk as separate
fi les. Although this isn't as bad with assembler programs (you can
encode them as you like), AMOS insists that pictures are stored in
standard IFF format, so any Tom, Dick or Harry will be able to load your
pictures. Using sprite and bob banks that are separate from the main
program is another definite giveaway too.

Ultimate AMOS

388 Appendix B

Making your move

Bug-checking

Clear
documentation

Ultimate AMOS

Now that your game is in a form that's suitable for submission, make any
final checks that are necessary to ensure that it doesn' t have any bugs.
Software houses are very quick to dismiss a program under any
circumstances, so don't send them a program that is likely to crash. What
you must consider is that the Software Manager (the guy who wil l check
out your program) is regularly sent piles of submissions, all of which he
must check through. If your program crashes after l ittle more than a few
minutes, he's unlikely to want to wait while it loads again.

Debugging a program before it is submitted is somewhat different to the
sort of debugging you'd usually do. Put yourself in the position of
someone who knows absolutely nothing about computers, let alone your
own particular program. B etter sti l l , grab someone who you consider to
be totally brain-dead (and no, I 'm not avail able for this sort of thing !) and
stick them down in front of your program. It's all too easy for someone
who is very close to a programming project to miss what would seem to
be a blindingly obvious bug to an outsider. Because you already know
how to use your program, you're unlikely to start doing things with the
program that you shouldn' t - striking the wrong key, for example.

Documentation is also another very important factor to consider.
Although your game may seem logical enough to you, the Software
Manager who wil l be testing your program doesn' t want to have to work
out how to play the game for himself. It's therefore very important that
you supply some form of documentation with your program. Don't go
totally overboard here - the Software Manager doesn't want to know the
politics behind why a lone spaceship from the outer galaxies is attacking
a race of green slimy space pirates (even the people that buy your game
probably won't be interested in this sort of information unless it is
directly relevant to the gameplay).

Don't write too much, either - if the Software Manager has to wade
through hundreds of pages of documentation just to find out how to load
your program, I can guarantee you that your game won't even get near an
Amiga disk drive ! Just a page or two is more than enough and it should
contain the fol lowing items.

Getting your game published 389

Legal eagle

Program Title
The name of your program (e.g. 'Space Mutants From the Sun '). Don' t
worry too much about the title - the software house will probably change
it anyway !

Machine
What type of machine i t runs on. Don' t write down every type of Amiga
under the sun (ASOO, A600, A600HD etc) - just write Amiga.

Memory
The minimum amount of memory required to run the program. Don' t go
overboard with your memory requirements - most software houses will
only accept games that run comfortably on a machine with no more than
1 Mb. If your game requires something ridiculous like 4Mb, then the
potential market for your game will be so small that it won' t be worth the
software house's time releasing it.

Description
Keep this very brief - all the Software Manager needs is a very btief
description of the game. Include such facts as the game type (shoot 'em
up, 3D dungeon exploration game etc), a description of how the game is
played and the structure of the game (how many levels it has, any extra
power ups that the player can collect etc.

Controls
What controls does the game use? If the game is keyboard-control led,
give a ful l list of all the keys.

Loading Instructions
Always make your game autobooting so that the Software Manager can
simply turn on his Arniga, insert the game disk and the game will load. If
any setting up is required, document these in concise detail .

With all this done, you're almost ready to send your game off. Before
you do so, however, protect yourself by posting off a copy of the game to
yourself and when it arrives DO NOT OPEN IT. This package will be

U ltimate AMOS

390

Protect
yourself!

Get noticed

Stay cool

Ultimate AMOS

Appendix B

used to prove when the game was written and you should therefore place
it in the hands of either a solicitor or (cheaper still) take it along to your
bank and ask them to hold onto it. Either way, you' l l be asked to pay a
retaining fee but this is well worth paying for if - in the unlikely event
you are ripped off - you have to prove that the game (or, in the case of
original games, the game idea) was yours. Always keep copies of all
letters that you send to a software house and, when you finally do send
off your game, ask the post office for a 'proof of postage' certificate.

So how do you get your game noticed? Wel l , one of the most common
methods used in the music industry is to send in a tape that is brightly
coloured. This works equally well in the computer industry too - because
most people send in boring blue or black disks, sending in a disk that is
brightly coloured (red, green and yellow disks are available) will make
your disk stand out from the rest.

Finally, you need to establish what software houses would be best suited
to market your particular game. If, for example, you've written an arcade
game, there's little point in trying to sell your game to a company that
specialises in strategy games. Always go for a software house that has a
proven track record in marketing the same type of game as the one that
you have written. Address your game to the 'Software Manager' and then
sit back and wait. Don't keep hassling a software house if you haven' t
received a reply from them within a month - because of the large number
of disks that they receive, they're unlikely to find time to look at your
disk within the first couple of weeks.

Feel free to send your game to several publishers, but don't tell them that
other rival publishers have also received a copy. If several companies to
express an interest, then you can tel l them about their rivals. If they are
genuinely interested in your game, they' l l be happy to compete for it.
Don't push your luck, though - as they say, a bird in the hand is worth
two in the bush !

Getting your game published 39 1

The PD option

Shareware

If your game isn't quite up to the sort of standards that commercial
software houses demand, then why not send your game to a PD software
library? OK, so PD distribution is hardly going to earn you any money,
but it's the recognition that counts - just ask any commercial games
programmer. Most games programmers started this way. Take Team 1 7,
for example. Martyn Brown (MD of Team 1 7 and all round bitter
drinking good guy) used to work for the PD software house ' 1 7 Bit
Software' (hence the name 'Team 1 7 ') and it was through his exposure to
PD demos and games that he was able to find a team of programmers,
graphic artists and musicians. All of the closed group of programmers
that work for Team 1 7 caught Martyn's eye due to their PD efforts. And,
as they old saying goes, if they can do it then so can you !

It is possible to make a little money from public domain if the thought of
international recognition isn't enough for you. PD software comes in a
number of different flavours ranging from 'Freeware' (anyone can copy
or sell your program without your consent) to 'Beerware' (the players of
your game send you a six-pack !) and - most interesting of all -
'Shareware ' . Shareware is a system where you put some sort of message
into your game that kindly asks anyone who buys a disk containing your
program to send you a donation if they like your program (usually
around £5- 1 0) .

Obviously, shareware is dependent on the honesty of the people that buy
your program. But don't knock it - Jeff Minter (he of 'LlamaSoft' fame),
for example, recently stopped issuing his games as commercial products
and put them into the PD libraries are shareware products. By promising
anyone who sent him a crispy £5 note that he would send them his next
game, Jeff received well over £ 10,000 in shareware donations !

If you want to ensure that a greater proportion of the people that use your
program donate a little money, then it's not a bad idea to limit the
shareware release in some way, to give those who use your program an
incentive to donate their hard-earned cash. If you were writing a game,
for example, you could limit the shareware version to only a couple of
screens (a 'taster' if you like) and then promise to send anyone who

Ultimate AMOS

392

Licenseware

Ultimate AMOS

Appendix B

donates money a version of the game with a lot more screens ! This is
exactly the approach that many shareware authors adopt and it certainly
seems to work.

A relatively new PD distlibution system is 'Licenseware' , formulated by
my oid friend Sandra Sharkey at Deja Vu software. The basic idea is that
if your game is good enough, Sandra will distribute it to a number of PD
libraries that are registered to sell licenseware disks. What's more, the
PD libraries in question have an obligation to charge a fixed price of £3
for all licenseware programs, of which £ 1 is paid to you, the programmer.
OK, so it doesn't sound like a lot of money, but a successful licenseware
program could easily earn the programmer a four-digit figure !

Appendix c:
Where to go from
here
• 'The AMOS Club'

• 'Totally AMOS'

• Magazines

• Bulletin boards

393

Ultimate AMOS

394

Ultimate AMOS

Appendix C

O ver the l ast 380 or so pages, I 've tried to cover just about every
programming concept you need to know in order to write arcade
games and demos in AMOS, but even the considerable amount of

routines, tricks, hints and techniques we've discussed form only a basic
knowledge of the games programmer's art. Sure, you should now know
enough about AMOS to chum out AMOS games by the bucketful, but
even I won' t try to delude you that the games programming techniques
that we've covered are going to launch you to international stardom.
Don't get me wrong - if you've fully understood and taken in every
single programming technique covered within these hallowed pages, then
you're now one of the AMOS programming elite - but it's down to you
to hone your skills from here on.

In many ways, 'Ultimate AMOS' has given you something of a head
start - when I was learning to program games many years ago, there was
nothing lke 'Ultimate AMOS' around. About the closest us veteran
programmers ever got to a games programming tutorial was a tacky
listing in 'Home Computer Weekly' (anyone remember that esteemed
publication?) that had a l ittle 'X' firing asterisks at aliens that looked
suspiciously like the letter 'M' ! Of course the hardware was no where
near as powerful as the Amigas we have today - l K of RAM and a black
and white low resolution screen was the best that money could buy !

As Dr. Ruth would no doubt agree, the best way to become better at
anything is to keep trying and to keep your mind open to new ideas and
techniques. If you're writing a game that uses a routine that you've never
tried writing before, don't just use the first version that comes into your
head - keep thinking all the time of new ideas that could possibly
enhance the routine to make it leaner and meaner than ever before. Many
amateur programmers seem to live by the old saying 'if it works, don' t
touch it' but as a games programmer you must strive to make your code
as fast as possible. Every time you squeeze that extra bit of performance
out of your code, that's space enough for you to add an extra feature to
your game . . .

There are many aspects of AMOS that we haven' t even covered within
'Ultimate AMOS' that I would have loved to have included - AMOS
Professional 's 'Interface' language, AMOS 3D, how to program 'serious '

Where to go from here 395

applications l ike databases and word processors etc - but there just
wasn' t the space. When I started this book, some very hard decisions had
to be made. Many previous AMOS books had tried to cram in everything
but the kitchen sink, but they've lacked the sort of detail that AMOS
programmers demand. By concentrating on games only, however, I 've
been able to go to town (in a manner of speaking) with a very high level
of detail and I hope that you've found the book not only very useful, but
rewarding too.

The AMOS Club
This may be the end of the book, but that doesn't mean that you're on
your own from here on. There are a number of AMOS user groups and
clubs of which the most popular is undoubtedly Aaron Fothergil l ' s
imaginatively named 'AMOS Club' which is the only AMOS club
supported by Europress Software, the guys behind AMOS. Aaron (who,
incidentally, is the programmer of the 'Tome' and 'CText' extensions as
well as being head-honcho at Shadow Software) runs a telephone support
line for AMOS Club members and there's also a regular newsletter and
disk magazine to keep you interested through those long winter nights.
The AMOS Club can be contacted at the following address.

Totally AMOS

The AMOS Club

1 Lower Moor

Whiddon Valley

Barnstaple

North Devon

EX32 8NW

Another valuable source of AMOS advice and ideas that I must mention
is 'Totally AMOS' , a disk-based magazine produced by Len and Anne
Tucker, two very well known AMOS personalities. New issues of Totally
AMOS are released every two months and they contain a wealth of
AMOS-related source code, tutorials, reviews, programming tips,
competitions and useful graphic and sound files which are contributed to
the magazine by Totally AMOS members, amongst them some of the

Ultimate AMOS

396

Magazines

Appendix (

best in the business. A year's subscription to Totally AMOS costs £ 1 8
but this also entitles you to a 1 0% discount on the purchase of disks from
the AMOS PD Library which Len and Anne also just happen to run.
Totally AMOS and the AMOS PD Library is available from the
following address.

Totally AMOS

1 Penmynydd Road

Penlan

Swansea

SA5 7EH

Antiga Shopper and Antiga Format are good sources of AMOS news and
information and both just happen to be published by the same company -
Future Publishing - that has brought you this wondrous volume. In
particular, I 'm sure you' l l be interested in the 3-page AMOS column in
Amiga Shopper.

Arniga Shopper also runs a very useful 20-page 'Antiga Answers' section
which aims to answer the technjcal questions that other magazines avoid.
The 'Answers Panel ' consists of some of the most respected Amiga
journos in the business including Mark Sntiddy, Gary Whiteley, Jeff
Walker and my humble self. Every month the Answers Panel wades
through technical questions on just about every Antiga-related subject. If
you have an AMOS query, then why not buy yourself a copy of Amiga
Shopper and find out how you can get the Answers Panel workjng for
you !

Bulletin boards

Ultimate AMOS

If you're lucky enough to own a modem, then megabytes of AMOS
source code and the answers to your AMOS queries are only a phone call
away. Quite a few bulletin board systems (BBS 's) are frequented by
AMOS users and experts alike. If you've got a problem that you just
can' t work out for yourself, all you have to do is to log onto a bulletin
board, post up a message detailing the problem that you 've got and the

Where to go from here 397

chances are that you' l l get a reply within a day or so. I myself 'hang out'
on a number of BBS' including possibly the UK's finest Amiga-only
BBS, 0 1 For Arniga, which is run by my oId friend Tony Miller.

0 1 For Arniga also offers an absolutely enormous file area which
includes a section dedicated to AMOS. Within this file area you ' l l find
AMOS extensions, demos, the latest AMOS 'updater' disks and more
source code than you could shake a stick at. Here's a l ist of BBS's that
support AMOS.

01 For Amiga

AMOS BBS

The End Zone

Amiga Pond

Cheam Amiga

CIX (Subscription only)

071 377 1358

010 325 842 2433 (Belgium)

0524 752245

051 547 3245

081 644 8714

081 390 1244

Ultimate AMOS

398

Ultimate AMOS

399

Index
Includes AMOSjAMAL commands and functions

Ultimate AMOS

400 Index

A AGA (Advanced Graphics Architecture) . 53

AGA palette . 64

AGA screen modes . 5 7

AGA support . 1 4

AMAL . 223, 275

Beyond 1 6 channels . 238

'Embedding' AMAL code . 226

'Amal' AMAL command . 228

AMAL Editor . 225

AMAL functions . 235

AMAL instruction set . 232

AMAL principles . 225

AMAL registers . 229

Special AMAL registers . 231

'AMAS 2' . 1 7 , 254

'AMOS 1 .35' . 6

'AMOS 3D' . 9

'AMOS Compiler' . 9 , 386

AMOS Editor . 22, 23

AMOS Monitor . 34

'AMOS Pro Compi!er' . l O, 275

'AMOS Professional' . 7

'AMOS TOME' Extension . 1 1 , 1 00

AMOS 'updater' disk . 6

ARexx ports . 8

Adventure games . 342

Agnus chip . 1 04

Alice chip . 1 04

'Amiga Format' magazine . 396

'Amiga Shopper' magazine . 396

Ultimate AMOS

I ndex 40 1

'AmregO' AMAL function . 230

'And' logical operator . l 77

Animation - Changing the frame sequence . 1 5 1

Slowing down animations . 147

'Anim' AMAL command . 233

'Anim Off' command . 1 5 1

'Anim On' command . 1 5 1

'Anim' command . 1 49

Animation Editor . 1 69

Array . 1 72

Attack waves . 200

'AudioMaster' . 1 3

'Auto Back' command . . 1 1 7, 2 1 8, 276

B Banks . 1 28

'Bell ' effect . 253

Bit pattern . 1 76

Bl itter . 76

'Bob Clear' command . 2 1 6

'Bob ColO' AMAL function . 235

'Bob ColO' function . 1 58

'Bob Redraw' command . 2 1 6

'Bob Update Off' command . 2 1 6

'Bob Update On' command . 2 1 6

'Bob' command . 1 38

Bob redrawing . 276

'Bobsprite ColO' function . 1 59

'Boom' effect . 253

Bubble sort . 380

Bul letin boards . 396

Ultimate AMOS

402 Index

c 'CTEXT' . 1 2

'Channel' AMAL command . 227

'Channel' command . 1 50

Circular attack waves . 207

Co-ordinate finder . 375

Code comments . 44

Code indentation . 44

'CoIO' AMAL function . 236

'CoIO' function . 1 60

Coll ision detection . 1 5 7, 294

'Colour' command . 63, 64

Colour components . 63

Computed sprites . 1 36, 1 42

Continuous scrol l ing . 92

Copper . 1 04, 1 42

Copper bar . 1 1 2

Copper l ist . l 04

'CosO' function . 1 93

D 'D-Sam' extension . 1 2 , 263

Data structure . 1 72

Delnterlacer . 5 7

Debugging . 34

'Def Scroll' command . 82

'Degree' command . 1 94, 201

'Deluxe Paint' . 1 6

Denise chip . l 04

'Dim Array' command . 1 72

Direct mode . 23

Documentation . 388

Ultimate AMOS

I ndex 403

'Double Buffer' command . 2 1 3

Double buffering . 1 1 6

'Dual Playfield' command . 87

'Dungeon Master'-type games . 3 1 7

E 'Easy AMOS' . 5

Editor menu . 24

Editor options . 24

ECS (Enhanced Chip Set) . 53

'Erase' command . 1 3 1

Extra Half Brite mode . 54

F 'FireO' function . 1 79

Firing missi les . 209

'For . . . To . . . Next' AMAL command . 234

G 'Get Sprite Palette' command . 1 38

Global AMAL registers . 230

'Global' command . 48

Global variable . 4 7

H HAM-8 mode . 53, 5 7

Hardware Scroll ing . 75, 7 6 , 243

Hardware Sprites . 1 34

'Hex$O' function . 64

High-score table . 378

'Hot Spot' command . 1 55

Hot spots . 1 23

'HrevO' function . 1 52

'HzoneO function . 1 26

Ultimate AMOS

404 I ndex

I IFF ANIM format . 8

IFF graphics standard . 70

Icon bank . 1 2 1

Icon commands . 1 20

'If . . . Jump' AMAL command . 234

' Inkey$O' function . 1 8 1

' Input' command . 1 8 1

Interface . 8

Interlace mode . 54

Interrupt-driven animations . 1 49

Intuition extension . 1 3 , 385

J 'JdownO' function . 1 79

'J leftO' function . 1 79

'Joy(l)' function . 1 77

'JoyO' AMAL function . 236

'Joy1 ' AMAL function . 236

Joystick . 1 75, 236

'Jright()' function . 1 79

'Jump' AMAL command . 234

'JupO' function . 1 79

K 'Key ShiftO' function . 1 82

'Key StateO' function . 1 83

'Key 1 0' AMAL function . 236

'Key20' AMAL function . 236

Keyboard control . 1 8 1

Keyboard shortcuts . 33

Ultimate AMOS

Index 405

L 'Led Off' command . 256

'Led On' command . 256

Left mouse button . 236

'Let' AMAL command . 234

Licenseware . 392

Linear programming . .43

Lisa chip . 1 04

'List Bank' command . 1 30

'Load IFF' command . 7 1

Loading and saving screens . 70

Local AMAL registers . 230

Local variables . 47

'LogicO' function . 1 1 8

Logical screen . 1 1 6

Low resolution . 54

M 'MED' . 1 8

Main game loop . 272

'Make Mask' command . 1 58

Mandelbrot generator . 362

'Map Bottom X,Y' TOME command . 1 02

'Map Do X,Y' TOME command . 1 0 1

'Map Fal l TILE' TOME command . 1 02

'Map Left X,Y' TOME command . 1 02

'Map Plot TILE,X,Y' TOMR command . 1 02

'Map Right X,Y' TOME command . . 1 02

'Map Top X,Y' TOME command . . 1 02

'Map View X 1 ,Y1 To X2,Y2' TOME command . 1 0 1

Mask . 1 58

Maths functions . 1 93

UI�mate AMOS

406

U ltimate AMOS

N
o

Index

Mathtrans . l ibrary . 1 93

Maze games . 294

Medium resolution . 54

Modular programming . 43

'Mouse Zone' command . 1 24

'Move' AMAL command . 233

Music . 252

Music modules . 25 7

NTSC . 55, 74

Objects . 1 34

360-degree movement . 1 93

Advanced object movement . . . 1 92

Animating objects . 1 46

Bouncing a bob . 1 90

Creating sprites and bobs . 1 36

Displaying an object . 1 38

'Fl ipping' objects . 1 52

Interactive object control . 1 75

'Jumping' movement . 1 96

Moving an object . 1 40

Restricting object movement . 1 85

Object Editor . 1 37 , 1 64

On l ine help . 33

Opening screens . 58

Optimising code . 2 1 3 , 275

Overscan . 56

Index 407

p PAL . 74

'Palette' command . 62, 64

Paral lax scrol l ing . 86

'Param' command . 4 7

Parser . 343

'Paste Icon' command . 1 22

Paula chip . 252

'Pause' AMAL command . 235

'PhysicO' function . 1 1 8

Physical screens . 1 1 6

Platform games . 322

Procedures . 46

Pseudo code . 41

Publ ic domain . 391

R 'REM' command . 44

Radians . 201

'RainO' function . 1 06 , 1 1 0

Rainbows . 1 05

Defining a rainbow . 1 06

Rainbow animation . 248

'Rainbow' command . 1 06, 1 07

Raster beam . 1 1 4

'Reserve Zone' command . 1 24

'RevO' function . 1 52

Right mouse button . 236

Runtime error checking . 2 76

Runtime system . 275

U ltimate AMOS

408 I ndex

5 'Sam Play' command . 255

Sample Bank Maker . 254, 264

Sample bank . 254

'Save IFF' command . 7 1

Scan codes . 1 8 1 , 1 84

Scan l ines . 1 1 0

'ScanCodeO' function . 1 82

Screens . 52

Resizing and positioning screens . 65

'Screen Close' command . 6 1

'Screen Copy' command . 84, 89

'Screen Display' command . 65

'Screen Offset' command . 77, 78

'Screen Open' command . 59

'Screen Swap' command . 1 1 7, 2 1 8

Screen zones . 1 23, 323

Screen combinations . 54

'Screen' command . 6 1

Screen compaction . 1 28, 1 29

Screen icons . 1 20

Screen management. 60

Screen number . 58

Screen palettes . 62

Screen refresh rate . 272

Screen scroll ing . 74

Screen synchronisation . 74, 1 1 3

Screen updating . 1 40

'Scroll ' command . 82, 83

Ultimate AMOS

Index 409

Scrol l types . 75

Using hardware scroll ing . 77

Using software scroll ing . 81

'Set Bob' command . 2 1 7

'Set Rainbow' command . l 06

'Set Zone' command . 1 24

'Shared' command . 48

Shareware . 391

'Shoot' effect. 253

Shoot 'em ups . 280

'SinO' function . 1 93

'Snake' attack waves . 204

Software scroll ing . 75, 76

Software sprites (bobs) . 1 36

'Sound Tracker' . 1 7, 258

Sound Tracker 'module' format . 258

Sound effects . 252

Sound filter . 256

Sound sampling . 1 7, 253

'Spack' command . 1 30

'Splerge' effect . 366

Sprite bank . 1 36

'Sprite ColO' AMAL function . 235

'Sprite ColO' function . 1 59

Sprite Editor . 1 37

'Sprite Update Off' command . 1 43

'Sprite Update' command . 1 43

'Sprite' command . 1 38

Sprite playfield . 1 35

'Sprite bob ColO' function . 1 59

Sprites 600 disk . 1 46

U ltimate AMOS

4 1 0

Ultimate AMOS

,

u
V

Index

Starfield . 369, 371

'Step' variable . 296

'StereoMaster' . 1 7

Subroutines . 43

SuperBitmap . 77

SuperHiRes . 5 7

'Synchro' command . 2 3 5 , 238

'Synchro Off' command . 238

Synthetic instruments . 258

TechnoSound Turbo' . 254

The AMOS Club' . 395

The Tutor' . 34

Tome Map Editor' . 1 2 , 1 00

'Totally AMOS' . 395

'Track Load' command . 259

Track Loop On' command , . 260

'Track Play' command . 259

'Track Stop' command . 260

'Unpack' command . 1 3 1

VGA . 5 7

'VUO' AMAL function . 236

VU meter . 236, 260

Vertical blanking period . 1 1 4

Viewport . 66

'Virtual' sprites . : . 1 42

'VrevO' function . 1 52

'VumeterO' function . 260

Index

w
X

y

z

4 1 1

'Wait Vb I' command . . 75 , 1 1 4, 272

'X HardO' function . 1 39

'X ScreenO' function . 1 39

'XHardO' AMAL function . 237

'XMouseO' AMAL function . 237

'XScreenO' AMAL function . 237

Xor logica l operator . 1 53

'Y HardO' function . 1 39

'Y ScreenO' function . 1 39

'YHardO' AMAL function . 237

'YMouseO' AMAL function . 237

'YScreenO' AMAL function . 237

'ZO' AMAL function . 237

ZoneO function . 1 26 , 324

Ultimate AMOS

This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/
 or send a letter to

Creative Commons,
PO Box 1866, Mountain View,
CA 94042, USA.

Copyright 1994 Jason Holborn (Content)
Copyright 1994 Future Publishing (Layout & Design)

Released under CC BY-SA 4.0 2019

