

Copyright Notice

ARexx software and documentation are Copyright ©1987 by William S. Hawes. No part
of the software or documentation may be reproduced, transmitted, translated into other
languages, posted to a network, or distributed in any way without the express written
permission of the author.

Disclaimer

This product is offered for sale "as is" with no representation of fitness for any particular
purpose. The user assumes all risks and responsibilities related to its use. The material
within is believed to be accurate, but the author reserves the right to make changes to the
software or documentation without notice.

Distribution

ARexx software and documentation are available from:

William S. Hawes
P.O. Box 308
Maynard, MA 01754
(508) 568-8695

Please direct orders or inquiries about this product to the above address. Site licenses are
available; write for further information.

About ...

ARexx was developed on an Amiga 1000 computer with 512K bytes of memory and two
floppy disk drives. The language prototype was developed in C using I,attice C, and the
production version was written in assembly-language using the Metacomco Assembler. The
documention was created using the TxEd editor, and was set in 'lEX using Amiga'lEX. This
is a 100% Amiga product.

Trademarks

Amiga, Amiga WorkBench, and Intuition are trademarks of Commodore-Amiga, Inc.

Table of Contents

ARexx User's Reference Manual

Introduction. · 1
1 Organization of this Document . · 1

1 Using this Manual2
2 Typographic Conventions · 2

2 Future Directions · 2
Chapter 1. What is ARexx? · 3

1 Language Features . · 3
2 ARexx on the Amiga4
3 Further Information .4

Chapter 2. Getting Acquainted · 5
1 Installing ARexx · 5

1 ARexx and WorkBench · 5
2 Installation · 5
3 Starting the Resident Process · 6
4 Naming Conventions . · 6
5 The REXX: Directory. . . . · 6

2 Program Examples · 7
Chapter 3. Elements of the Language . 11

1 Format 11
2 Tokens 11

1 Comment Tokens 11
2 Symbol Tokens 11
3 String Tokens. . 12
4 Operators 12
5 Special Character Tokens . 13

3 Clauses 14
1 Null Clauses 14
2 Label Clauses 14
3 Assignment Clauses 14
4 Instruction Clauses 15
5 Command Clauses . 15
6 Clause Classification 15

4 Expressions 16
1 Symbol Resolution 16
2 Order of Evaluation 16

5 Numbers and Numeric Precision 17
1 Boolean Values . 17
2 Numeric Precision .. 17

6 Operators 18
1 Arithmetic Operators 18
2 Concatenation Operators 20
3 Comparison Operators . 20
4 Logical (Boolean) Operators 21

7 Stems and Compound Symbols 21

ARexx User's Reference Manual

Chapter 3. Elements of the Language (cont.)
8 The Execution Environment .

1 The External Environment
2 The Internal Environment
3 Input and Output .
4 Resource Tracking .

Chapter 4. Instructions .
1 ADDRESS
2ARG ..
3 BREAK.
4 CALL
5 DO ..
6 DROP
7 ECHO
8 ELSE.
9 END.
10 EXIT
11 IF ..
12 INTERPRET .
13 ITERATE
14 LEAVE .
15 NOP
16 NUMERIC
17 OPTIONS
18 OTHERWISE
19 PARSE

1 Input Sources .
2 Templates .

20 PROCEDURE
21 PULL .
22 PUSH ..
23 QUEUE .
24 RETURN
25 SAY ..
26 SELECT
27 SHELL
28 SIGNAL
29 THEN.
30 TRACE
31 UPPER
32 WHEN

Chapter 5. Commands
1 Command Clauses .
2 The Host Address .
3 The Command Interface
4 Using Commands in Macro Programs .
5 Using ARexx with Command Shells
6 Command Inhibition

11

22

22

22

23

24

25

25

25

26

26

27

28

28

28

29

29

29

30

30

31

31

31

32

32

33

33

34

35

35

36

37

37

38

38

38

38

39

40

40

41

43

43

44

44

45

45

46

Table of Contents ii

''''..­

Chapter 6. Functions 47
1 Syntax and Search Order 47

1 Search Order 47
2 Internal Functions . . 48
3 Built-In Functions . . 49
4 External Function Libraries . 49
5 Function Hosts 50

2 The Built-In Function Library 50
1 ABBREVO . 51
2 ABSO ... 51
3 ADDLIBO . 51
4 ADDRESSO 51
5 ARGO .. 52
6 B2CO .. 52
7 BITANDO . 52
8 BITCH GO . 52
9 BITCLRO 53
10 BITCOMPO . 53
11 BITORO 53
12 BITSETO . 53
13 BITTSTO . 53
14 BITXORO 54
15 C2BO 54
16 C2DO .. 54
17 C2XO .. 54
18 CENTERO or CENTREO 55
19 CLOSEO .. 55
20 COMPRESSO 55
21 COMPAREO 55
22 COPIESO .. 55
23 D2CO ... 56
24 DATATYPEO 56
25 DELSTRO 56
26 DELWORDO 57
27 EOFO ... 57
28 ERRORTEXTO 57
29 EXISTSO ... 57
30 EXPORTO .. 57
31 FREESPACEO 58
32 GETCLIPO . 58
33 GETSPACEO 58
34 HASHO .. 58
35IMPORTO 59
36INDEX() 59
37INSERTO . 59
38 LASTPOSO 59
39 LEFTO .. 60
40 LENGTHO 60

ARexx User's Reference Manual iii

41 MAXO .. .
42 MINO .. .
43 OPENO .. .
440VERLAYO
45 POSO
46 PRAGMAO
47 RANDOMO
48 RANDUO .
49 READCHO
50 READLNO
51 REMLIBO
52 REVERSEO .
53 RIGIITO
54 SEEKO ..
55 SETCLIPO
56 SIIOW()
57 SIGNO ..
58 SPACEO
59 STORAGEO
60 STRIPO ..
61 SUBSTRO
62 SUBWORDO
63 SYMBOLO
64 TIMEO ...
65 TRACEO ..
66 TRANSLATEO
67 TRIMO ..
68 UPPERO .
69 VALUEO ...
70 VERIFYO
71 WORDO ...
72 WORDINDEXO
73 WORDLENGTHO
74 WORDSO ..
75 WRITECIIO
76 WRITELNO
77 X2CO
78 XRANGEO .

Chapter 7. Tracing and Interrupts
1 Tracing Options
2 Display Formatting. . .

1 Tracing Output . . .
2 Command Inhibition .

3 Interactive Tracing . . .
1 Error Processing ..
2 The External Tracing Flag

4 Interrupts

60

60

60

61

61

61

62

62

62

63

63

63

63

63

64

64

64

64

65

65

65

66

66

66

67

67

67

67

68

68

68

68

68

69

69

69

69

69

71

71

72

72

73

73

74

74

74

Table of Contents iv

Chapter 8. Parsing and Templates 77
1 Template Structure . . . 77

1 Template Objects . . 78
2 The Scanning Process 78

2 Templates in Action 79
1 Parsing by Tokenization 79
2 Pattern Parsing . . 80
3 Positional Markers 80
4 Multiple Templates 80

Chapter 9. The Resident Process 83
1 Command Utilities 83

1 HI. .. 83
2 RX 84
3 RXSET 84
4RXC 84
5 TCC. 84
6TCO 84
7 TE 84
8 TS 84

2 Resource Management 85
1 The Global Tracing Console 85
2 The Library List 85
3 The Clip List 86

Chapter 10. Interfacing to ARexx 89
1 Basic Structures 90
2 Designing a Command Interface . 91

1 Receiving Command Messages 92
2 Result Fields 92
3 Multiple Host Processes 92

3 Invoking ARexx Programs . 93
1 Message Packets 93
2 Command Invocations 94
3 Function Invocations . 95
4 Search Order 95
5 Extension Fields 96
6 Interpreting the Result Fields 97

4 Communicating with the Resident Process . 97
1 Command (Action) Codes 97
2 Modifier Flags 99
3 Result Fields 100

5 External Function Libraries 100
1 Design Considerations 100
2 Calling Convention 101
3 Parameter Conversion 101
4 Returned Values 101

6 Direct Manipulation of Data Structures 102

ARexx User's Reference Manual v

Appendix A. Error Messages
Appendix B. Limits and Compatibility

1 Limits
2 Compatibility

Appendix C. The ARexx Systems Library
1 Functional Groups
2 Library Functions

Appendix D. The ARexx Support Library
1 ALLOCMEMO
2 CLOSEPORTO
3 FREEMEMO
4 GETARGO ..
5 GETPKTO ..
60PENPORTO
7 REPLYO ...
8 SHOWDIRO .
9 SHOWLISTO .
10 STATEFO
11 WAITPKTO

Appendix E. Distribution Files
1 Directories

1 The : C Directory . . .
2 The : INCLUDE Directory
3 The :LIBS Directory .
4 The : REXX Directory .
5 The :TOOLS Directory
6 Miscellaneous Files

2 Listings of Header Files
1 storage.h
2 rxslib.h
3 rexxio.h
4 errors.h

Glossary.
Index.

~-~-

103

109

109

109

· 111

· 111

· 113

127

127

127

128

· 128

128

128

129

129

129

130

· 130

131

131

131

131

132

132

132

· 132

· 133

133

· 139

· 142

· 144

· 147

· 151

Table of Contents vi

Introduction

Welcome to ARexx, an implementation of the REXX language for the Amiga computer.
ARexx is a powerful programming tool, but one which by virtue of its clean syntax and
sparse vocabulary is also easy to learn and easy to use.

1 Organization of this Document

This document will attempt to fill the roles of User's Manual, Language Reference, and
Programmer's Guide. The chapters that follow have been organized to provide a gentle
introduction to the language.

• 	 Chapter 1, What is ARexx?, gives an overview of the ARexx language and its imple­
mentation on the Amiga.

• 	 Chapter 2, Getting Acquainted, tells how to install ARexx on your Amiga and presents
several example programs to illustrate the features of the language.

• 	 Chapter 3, Elements of the Language, introduces the language structure and syntax.

• 	 Chapter 4, Instructions, describes the action statements of ARexx.

• 	 Chapter 5, Commands, describes the program statements used to communicate with
external programs.

• 	 Chapter 6, Functions, explains how functions are called and documents the Built-In
Function library.

• 	 Chapter 7, Tracing and Interrupts, describes the source-level debugging features useful
for developing and testing p.rograms.

• 	 Chapter 8, Parsing and Templates, describes the instructions used to extract words or
fields from strings.

• 	 Chapter 9, The Resident Process, describes the capabilities of the global communica­
tions and resources manager.

• 	 Chapter 10, Interfacing to ARexx, describes how to design and implement an interface
between ARexx and an external program.

• 	 Appendix A, Error Messages, lists the error messages issued by the interpreter.

• 	 Appendix B, Limits and Compatibility, discusses the compatibility of ARexx with the
language standard.

• Appendix C, 	The ARexx Systems Library, documents the functions in the ARexx sys­
tems library.

• Appendix D, The Support Library, documents the library of Amiga-specific functions.

• Appendix E, Distribution Files, lists the files on the distribution disk.

Finally, a Glossary and an Index are provided.

1

Using this Manual

If you are new to the REXX language, or perhaps to programming itself, you should review
chapters 1 through 4 and then play with ARexx by running some of the sample programs
given in chapter 2. Further examples are available in the : rexx directory of the distribution
disk.

If you are already familiar with REXX you may wish to skip directly to chapter 5,
which begins to present some of the system-dependent features of this implementation.
A summary of the compatibility of ARexx with the language definition is contained in
Appendix B.

Typographic Conventions

Describing a language is sometimes difficult because of the multiple and changing contexts
involved. To help clarify the presentation here, a simple typographic convention has been
adopted throughout the document. All of the terms and words specific to the REXX
language, as well as the program examples and computer input and output, have been set
in typewriter font like this. This should help to distinguish the language keywords
and examples from the surrounding text.

2 Future Directions

ARexx, like most software products, will probably evolve somewhat over the next few
years as new features are added, old bugs are removed, and market imperatives become
more apparent. While the core language will probably undergo few modifications, many
capabilities will be added to the function libraries supported by ARexx. Your comments
and suggestions for improvements to ARexx are most welcome.

The author sincerely hopes that other software developers will consider using ARexx
with their products. The advantages of having a rich variety of software products sharing
a common user interface and a common procedural interface cannot be overstated. This is
the underlying promise of the Amiga's multitasking capability, and that which most sets it
apart from other inexpensive computers.

Example Programs. One of the best ways to learn a computer language is to study
examples written by more experienced programmers. The ARexx distribution disk includes
a few example programs in the : rexx directory, and more programs will be added in future
releases.

Ifyou have written a REXX language program (for any computer) that you think would
be of interest to a more general audience, please send it to the author for consideration.
Programs should be ofinterest either in terms oftheir specific functionality or as an example
of programming technique. Each program submitted should include an author credit and
a few lines of commentary on its intended function.

Introduction 2

Chapter 1

What is ARexx?

ARexx is a high-level language useful for prototyping, software integration, and general
programming tasks. It is an implementation of the REXX language described by M. F.
Cowlishaw in The REXX Language: A Practical Approach to Programming (Prentice-Hall,
1985), and follows the language definition closely. ARexx is particularly well suited as
a command language. Command programs, sometimes called "scripts" or "macros", are
widely used to extend the predefined commands of an operating system or to customize an
applications program.

As a programming language, ARexx can be useful to a wide cross section of users. For
the novice programmer, ARexx is an easy-to-Iearn yet powerful language that serves as a
good introduction to programming techniques. Its source-level debugging facilities will help
take some of the mystery out of how programs work (or don't work, as is more frequently
the case.)

For the more sophisticated user, ARexx provides the means to build fully integrated
software packages, combining different applications programs into an environment tailored
to their needs. A common command language among applications that support ARexx will
bring uniformity to procedural interfaces, much as the Amiga's Intuition provides uniformity
in the graphical interface.

Finally, for the software developer, ARexx offers a straightforward way to build fully
programmable applications programs. Developers can concentrate their efforts on making
the basic operations of their programs fast and efficient, and let the end user add the frills
and custom features.

1-1 Language Features

Some of the important features of the language are:

Typeless Data. Data are treated as typeless character strings. Variables do not have
to be declared before being used, and all operations dynamically check the validity of the
operands.

Command Interface. ARexx programs can issue commands to external programs that
provide a suitable command interface. Any software package that implements the command
interface is then fully programmable using ARexx, and can be extended and customized by
the end user.

Tracing and Debugging. ARexx includes source-level debugging facilities that allow the
programmer to see the step-by-step actions of a program as it runs, thereby reducing the
time required to develop and test programs. An internal interrupt system permits special
handling of errors that would otherwise cause the program to terminate.

What is ARexx? 3

Interpreted Execution. ARexx programs are run by an interpreter, so separate compila­
tion and linking steps are not required. This makes it especially useful for prototyping and
as a learning tool.

Function Libraries. External function libraries can be used to extend the capabilities of
the language or as bridges to other programs. Libraries also allow ARexx programs to be
used as "test drivers" for software development and testing.

Automatic Resource Management. Internal memory allocation related to the creation
and destruction of strings and other data structures is handled automatically.

1-2 ARexx on the Amiga

ARexx was designed to run on the Amiga, and makes use of many of the features of its mul­
titasking operating system. ARexx programs run as separate tasks and may communicate
with each other or with external programs. The interpreter follows the design guidelines
expected of well-behaved programs in a multitasking environment: specifically, it uses as
little memory as possible and is careful to return resources to the operating system when
they are no longer needed. Memory requirements were minimized by implementing the
entire ARexx system as a shared library, so that only one copy of the program code must
be loaded.

1-3 Further Information

The aforementioned book by M. F. Cowlishaw is highly recommended to those interested
in further information about REXX. It presents an interesting discussion of the design and
development of the language.

Chapter 1 4

Chapter 2

Getting Acquainted

This chapter explains how to install ARexx on your Amiga computer and shows some
example programs.

2-1 Installing ARexx

ARexx requires an Amiga computer with at least 256k of memory, and will operate under
VI.I or V1.2 of the operating system. It uses the double-precision math library called
"mathieeedoubbas . library" that is supplied with the Amiga WorkBench disk, so make
sure that this file is present in your LIBS: directory. The distribution disk includes the
language system, some example programs, and a set of the INCLUDE files required for
integrating ARexx with other software packages. The distribution files are listed in Ap­
pendix E.

ARexx and WorkBench

ARexx can be installed and loaded from within the icon-based environment provided by
the Amiga WorkBench. However, it is a primarily a text-oriented language system and
requires a good text editor and file management environment to be most effective. Unless
you purchased ARexx as part of an applications package that includes an integrated editor,
you'll probably find it useful to become familiar with the Command Line Interface (CLI)
environment on the Amiga.

Installation

The ARexx language system consists of a shared library, a resident program, and several
command utilities. All of the required files are contained in the : c and :libs directories
of the distribution disk. ARexx may be installed on any of the system disks with which it
will be used, but first check the : c and : libs directories of each disk to make sure that
there are no naming conflicts. The following steps will then install ARexx on the system
disk, provided that two disk drives are available:

1. Activate a CLI window.

2. Copy the ARexx : l1bs directory to the system LIBS: directory with the command
"copy df1: libs to libs:".

3. Copy the ARexx : c directory to the system C: directory with the command

"copy df1:C to c,"

Single-Drive Systems. Installing software in a single-drive system can be very confusing,
so an installation utility has been provided with the ARexx distribution disk. It copies the
: c and : l1bs directories of the distribution disk into memory, and then prompts the user
to insert each disk tha.t is to receive the files. Follow these steps to run the installation
utility:

Getting Acquainted 5

1. 	Activate a CLI window.

2. Insert the distribution disk into drive 0 and type "dfO: rx install" .

3. 	At the program prompt, insert the system disk on which ARexx is to be installed into
drive O.

4. Repeat step 3 as required.

Starting the Resident Process

ARexx: programs are launched by a background program called the resident process. It
can be started by issuing the command rexxmast and must be active before any ARexx:
programs can be run. The raxxmast program briefly displays a small window to announce
itself, and then disappears into the background to await your next request. If you will be
using ARexx: frequently, you can place the rexxmast command in the "startup-sequence"
file that resides in the system S: directory. This will start the resident process automatically
when you reboot the computer.

After the resident process has been loaded, ARexx: programs can be run from the
CLI by typing the command rx followed by the program name and any arguments. For
example, the sample program calc.rexx, which evaluates an expression, could be run by
typing "rx :rexx/calc 1+1."

You may not need to start up the resident process if you are using a software package
that starts it automatically. Applications that use ARexx can test whether the resident
process is active by checking for a public message port named "REXX." If the port hasn't
been opened, the program can issue the rexxmast command directly.

The resident process can be dosed using the command rxe; it will then exit as soon
as the last ARexx: program finishes execution. Unless you are very short on memory space,
there is usually no reason to dose ARexx, as it simply waits in the background for the next
program to run.

Naming Conventions

ARexx: programs can be named anything, but adopting a simple naming convention will
make managing the programs much easier. Programs to be run from the CLI are usually
given the file extension. rexx to distinguish them from programs written in other languages.
Programs written as "macros" or "scripts" for a particular applications program should
be given a file extension specific to that program. For example, a macro written for a
communications program called "MyComm" might be named "download.mye". ARexx: uses
this file extension when it searches for a program file to be executed.

The REXX: Directory

You can designate one directory as the system-wide source for ARexx programs by defin­
ing a REXX: "device" with the assign command. This directory should reside on a vol­
ume that is usually mounted, such as SYS: or a hard disk. For example, the command
"assign rexx: sys:rexx" defines the REXX: device as the :rexx directory on the system
disk. Once defined, the REXX: device is searched after the current directory when looking
for an ARexx: program.

Chapter 2 6

2-2 Program Examples

Before introducing the structure and syntax of the language, let's look at a few examples
of ARexx programs. Readers familiar with other high-level programming languages should
find many points of similarity between ARexx and other languages. In the examples that
follow, new terms are highlighted in the text as they are introduced, and will be covered in
depth in the next few chapters.

These short programs can be created using any text editor and then run from the
Command Line Interface (CLI), or may simply be read as samples of the language. If the
examples are to be run, first complete the installation procedures outlined in the previous
section, and then start the ARexx resident process. Example programs can then be run by
entering, for example, "rx age" at the CLI prompt.

We'll begin with a "Hello, World" program that simply displays a message on the
console screen.

1* A simple program *1
say 'Hello, World'

This program consists of a comment line that describes the program and an instruction that
displays text on the console. For historical reasons, ARexx programs begin with a comment
line; the initial "1*" says "I'm an ARexx program" to the interpreter when it searches for
a program.

Instructions are language statements that denote a certain action to be performed, and
always start with a symbol, in this case the word say. Symbols are translated to uppercase
when the program is run, so the symbol say here is equivalent to SAY. Following say is an
example of a string, which is a series of characters surrounded by quotes ('). Double quotes
(") could also have been used to define the string.

In the next program we'll display a prompt for input and then read some information
from the user.

1* Calculate age in days *1
say 'Please enter your age'
pull age
say 'You are about' age*365 'days old'

This program uses the pull instruction to read a line of input into a variable called age,
which is then used with a say instruction. Variables are symbols that may be assigned
a value. The words following say form an expression in which strings are joined and an
arithmetic calculation is performed.

Note that the variable age did not have to be declared as a number; instead, its value
was checked when it was actually used in the expression. To see what would happen if age
wasn't a number, try rerunning the program with a non-numeric entry for the age. The
resulting error message shows the line number and type of error that occurred, after which
the program ends.

Getting Acquainted 7

The next program introduces the do instruction, which allows program statements to
be executed repeatedly. It also illustrates the exponentiation operator, which is used to
raise a number to an integral power.

1* Calculate some squares and cubes *1
do i = 1 to 10 1* 10 iterations*1

say i i**2 i**3 1* calculations *1
end 1* end of loop *1

say 'all done'

The do instruction causes the statements between the do and end instructions to be executed
10 times. The variable i is the index variable for the loop, and is incremented by 1 for each
iteration. The number following the symbol to is the limit for the do instruction, and could
have been a full expression rather than just the constant 10. Note that the statements
within the loop have been indented. This is not required by the language, but it makes the
program more readable and is therefore good programming practice.

The subject of the next example is the if instruction, a often-used control statement
that allows statements to be conditionally executed. The numbers from 1 to 10 are classified
as even or odd by dividing them by 2 and then checking the remainder.

1* Even or odd? *1
do i • 1 to 10

if il12 =0 then type 'even'
else type 'odd'

say i 'is' type
end

This example introduces the II arithmetic operator, which calculates the remainder after
a division operation. The if instruction tests whether the remainder is 0 and executes the
then branch if it is, thereby setting the variable type to "even." If the remainder was not
0, the alternative else branch is executed and type is set to "odd."

The next example introduces the concept of a function, which is a group of statements
that can be executed by mentiouing the function name in a suitable context. Functions are
an important part of most programming languages, as they allow large, complex programs
to be built from smaller modules. Functions are specified in an expression as a name
followed by an open parenthesis. One or more expressions called arguments may follow the
parenthesis; these are used to pass information to the function for processing.

Chapter 2 8

1* Defining and calling a function *1
do i = 1 to 5

say i square(i) 1* call square *1

end

exit 1* all done *1

square: 1* function name *1

argx 1* get the "argument" *1

return x**2 1* square it and return *1

The function square is defined in the lines following the label square: up through the
return instruction. Two new instructions are introduced here: arg retrieves the value of
the argument string, and return passes the function's result back to the point where the
function was called.

One final example will suffice for now. A new instruction called trace is used here to
activate the tracing features of ARexx.

1* Demonstrate "results" tracing *1

trace results

sum=O;sumsq=O;

do i = 1 to 5

sum = sum + i

sumsq =sumsq + i**2

end

say 'sum=' sum 'sumsq=' sumsq

When this program is run, the console displays the source lines as they are executed,
and shows the final results of expressions. This makes it easy to tell what the program is
really doing, and helps reduce the time required to develop and test a new program. One
minor point is illustrated here: the third line shows two distinct statements separated by
a semicolon (;). The semicolon is an example of a special character, characters that have
particular meanings within ARexx programs.

The following chapters will present further information on the language statements
illustrated here and will introduce others that have not been shown. Take heart, though;
ARexx is a "small" language and there are relatively few words and rules to learn.

Getting Acquainted 9

Chapter 3

Elements of the Language

This chapter introduces the rules and concepts that make up the REXX language. The in­
tent is not to present a formalized definition, but rather to convey a practical understanding
of how the langauge elements "fit together" to form programs.

3-1 Format

ARexx programs are composed of ASCII characters and may be created using any text
editor. No special formatting of the program statements is required or imposed on the
programmer.

3-2 Tokens

The smallest distinct entities or "words" of the langauge are called tokens. A token may
be a series of characters, as in the symbol MyName, or just a single character like the "+"
operator. Tokens can be categorized into comments, symbols, strings, operators, and special
characters. Each of these groups are described below.

Comment Tokens

Any group of characters beginning with the sequence "1*" and ending with "*1" defines a
comment token. Comments may be placed anywhere in a program and cost little in terms
of execution speed, since they are stripped (removed) when the program is first scanned by
the interpreter. Comments may be "nested" within one another, but each "1*" must have
a matching "*1" in the program.
Examples:

1* Your basic comment *1
1* a 1* nested! *1 comment *1

Symbol Tokens

Any group of the characters a-z, A-Z, 0-9, and . !?$_ defines a symbol token. Symbols are
translated to uppercase as the program is scanned by the interpreter, so the symbol MyName
is equivalent to MYNAME. Four types of symbols are recognized:

• Fixed symbols begin with a digit (0-9) or a period (.).

• Simple symbols do not begin with a digit, and do not contain any periods.

• Stem symbols have exactly one period at the end of the symbol name.

• Compound symbols include one or more periods in the interior of the name.

Stems and compound symbols have special properties that make them useful for building
arrays and lists.

Elements of the Language 11

Symbol Values. The value used for a fixed symbol is always the symbol name itself (as
translated to uppercase.) Simple, stem, and compound symbols are called variables and may
be assigned a value during the course of the program execution. A variable is uninitialized
if it has not yet been assigned a value; the value used for an uninitialized variable is just
the variable name itself.
Examples:

123.45
MyName
a.
a.l.Index

1*
1*
1*
1*

a fixed symbol
same as MYNAME
a stem symbol
a compound symbol

*1
*1
*1
*1

String Tokens

A group of characters beginning and ending with a quote (') or double quote (") delimiter
defines a string token. The delimiter character itself may be included within the string by
a double-delimiter sequence (' • or II "). The number of characters in the string is called its
length, and a string of length zero is called a null string. A string is treated as a literal in
an expression; that is, its value is just the string itself.

Strings followed immediately by an "X" or "B" character that is not part of a longer
symbol are classifed as hex or binary strings, respectively, and must be composed of hex­
adecimal digits (0-9,A-F) or binary digits (0,1). Blanks are permitted at byte boundaries
for added readability. Hex and binary strings are convenient for specifying non-ASCII char­
acters and for machine-specific information like addresses in a program. They are converted
immediately to the "packed" internal form.
Examples:

"Nov is the time" 1* a simple example *1
1* a null string *1

'Can"t you see??' 1* Can't you see?? *1
'4A 3B CO'X 1* a hex string *1
'00110111'b 1* binary for '7' *1

Operators

The characters - +-*1=><& 1- may be combined in the sequences shown in Table 3.1 to form
operator tokens. Operator sequences may include leading, trailing, and embedded blanks,
all of which are removed when the program is scanned. In addition to the above characters,
the blank character is treated as a concatenation operator if it follows a symbol or string
and is not adjacent to an operator or special character.

Each operator has an associated priority that determines the order in which operations
will be performed in an expression. Operators with higher priorities are performed before
those with lower priorites.

Chapter 3 12

Sequence

+

**
* I
Yo

1/
+

II
(blank)

==

==
=

>
>=, -<
<
<=, ->
&:

-,11

Special Character Tokens

Table 3.1 Operator Sequences
Priority
8
8
8

7

6
6
6
6

5
5

4
4

3
3
3
3
3
3
3
3
2

1
1

Operator Definition
Logical NOT
Prefix Conversion
Prefix Negation

Exponentiation

Multiplication
Division
Integer Division
Remainder

Addition
Subtraction

Concatenation
Blank Concatenation

Exact Equality
Exact Inequality
Equality
Inequality
Greater Than
Greater Than or Equal To
Less Than
Less Than or Equal To

Logical AND

Logical Inclusive OR
Logical Exclusive OR

The characters : 0 ;, are each treated as a separate special character token and have par­
ticular meanings within an ARexx program. Blanks adjacent to these special characters are
removed, except for those preceding an open parenthesis or following a close parenthesis.

Colon (:). A colon, if preceded by a symbol token, defines a label within the program.
Labels are locations in the program to which control may be transferred under various
conditions.

Opening and Closing Parentheses (0). Parentheses are used in expressions to group
operators and operands into subexpressions, in order to override the normal operator pri­
orities. An open parenthesis also serves to identify a function call within an expression;
a symbol or string followed immediately by an open parenthesis defines a function name.
Parentheses must always be balanced within a statement.

Semicolon (;). The semicolon acts as a program statement terminator. Several statements
may be placed on a single source line if separated by semicolons.

Elements of the Language 13

Comma (,). A comma token acts as the continuation character for statements that must

be entered on several source lines. It is also used to separate the argument expressions in a

function call.

3-3 Clauses

Tokens are grouped together to form clauses, the smallest language unit that can be executed

as a statement. Every clause in ARexx can be classified as either a null, label, assignment,

instruction, or command clause. The classification process is very simple, since no more

than two tokens are required to classify any clause. Assignment, instruction, and command

clauses are jointly termed statements.

Clause Continuation. The end of a source line normally acts as the implicit end of a

clause. A clause can be continued on the next source line by ending the line with a comma

(,). The comma is then removed, and the next line is considered as a continuation of

the clause. There is no limit to the number of continuations that may occur. String and

comment tokens are automatically continued if a line ends before the closing delimiter has

been found, and the "newline" character is not considered to be part of the token.

Multiple Clauses. Several clauses can be placed on a single line by separating them with

semicolons (;).

Null Clauses

Lines consisting only of blanks or comments are called null clauses. They have no function

in the execution of a program, except to aid its readability and to increment the source line

count. Null clauses may appear anywhere in a program.

Example:

1* perform annuity calculations *1

Label Clauses

A symbol followed immediately by a colon defines a label clause. A label acts as a place­

marker in the program, but no action occurs with the "execution" of a label. The colon is

considered as an implicit clause terminator, so each label stands as a separate clause. Label

clauses may appear anywhere in a program.

Examples:

start: 1* begin execution
syntax: 1* error processing

Assignment Clauses

Assignments are identified by a variable symbol followed by an "=" operator. In this context
the operator's normal definition (an equality comparison) is overridden, and it becomes an
assignment operator. The tokens to the right of the "=" are evaluated as an expression, and
the result is assigned to (becomes the value of) the variable symboL

Chapter 3 14

Examples:

when = 'Now is the time'
answ = 3.14 * fact(5)

Instruction Clauses

Instructions begin with certain keyword symbols, each of which denotes a particular action
to be performed. Instruction keywords are recognized as such only at the beginning of
a clause, and may otherwise be used freely as symbols (although such use may become
confusing at times.) The ARexx instructions are described in detail in Chapter 4.
Examples:

drop abc 1* reset variables *1
say 'please' 1* a polite program *1
if j > 5 then leave; 1* several instructions *1

Command Clauses

Commands are any ARexx expression that can't be classified as one of the preceding types
of clauses. The expression is evaluated and the result is issued as a command to an external
host, which might be the native operating system or an application program. Commands
are discussed in Chapter 5, and the details of the host command interface are given in
Chapter 10.
Examples:

'delete' 'myfile' 1* a DOS command
'jump' current+10 1* an editor command?

Clause Classification

The process by which program lines are divided into clauses and then classified is important
in understanding the operation of an ARexx program. The language interpreter splits the
program source into groups of clauses as the program is read, using the end of each line as
a clause separator and applying the continuation rule as required. These groups of one or
more clauses are then tokenized, and each clause is classified into one of the above types.
Note that seemingly small syntactic differences may completely change the semantic content
of a statement. For example,

SAY 'Hello, Bill'

is an instruction clause and will display "Hello, Bill» on the console, but

"SAY 'Hello, Bill'

is a command clause, and will issue "SAY Hello, Bill" as a command to an external pro­
gram. The presence of the leading null string changes the classification from an instruction
clause to a command clause.

Elements of the Language 15

3-4 Expressions

Expression evaluation is an important part of ARexx programs, since most statements
include at least one expression. Expressions are composed of strings, symbols, operators,
and parentheses. Strings are used as literals in an expression; their value in an operation
is just the string itself. Fixed symbols are also literals (remember that symbols are always
translated to uppercase,) but variable symbols may have an assigned value. Operator tokens
represent the predefined operations of ARexx; each operator has an associated priority that
determines the order in which operations will be performed. Parentheses may be used to
alter the normal order of evaluation in the expression, or to identify function calls. A symbol
or string followed immediately by an open parenthesis defines the function name, and the
tokens between the opening and (final) closing parenthesis form the argument list for the
function.

For example, the expression "J 'factorial is' fact(J)" is composed of a symbol
J, a blank operator, the string 'factorial is', another blank, the symbol fact, an open
parenthesis, the symbol J again, and a closing parenthesis. FACT is a function name and
(J) is its argument list, in this case the single expression J.

Symbol Resolution

Before the evaluation of an expression can proceed, the interpreter must obtain a value for
each symbol in the expression. For fixed symbols the value is just the symbol name itself,
but variable symbols must be looked up in the current symbol table. In the example above,
the expression after symbol resolution would be "3 'factorial is' FACT(3) ," assuming
that the symbol J had the value 3.

Suppose that the example above had been "FACT (J) 'is' J 'factorial'." Would
the second occurrence of symbol J still resolve to 3 in this case? In general, function
calls may have "side effects" that include altering the values of variables, so the value
of J might have been changed by the call to FACT. In order to avoid ambiguities in the
values assigned to symbols during the resolution process, ARexx guarantees a strict left­
to-right resolution order. Symbol resolution proceeds irrespective of operator priority or
parenthetical grouping; if a function call is found, the resolution is suspended while the
function is evaluated. Note that it is possible for the same symbol to have more than one
value in an expression.

Order of Evaluation

After all symbol values have been resolved, the expression is evaluated based on operator
priority and subexpression grouping. Operators of higher priority are evaluated first. ARexx
does not guarantee an order of evaluation among operators of equal priority, and does not
employ a "fast path" evaluation of boolean operations. For example, in the expression

(1 = 2) & (FACT(3) = 6)

the call to the FACT function will be ma.de, although it is clear that the fina.l result will be
0, since the first term of the AND operation is O.

Chapter 3 16

3-5 Numbers and Numeric Precision

An important class of operands are those representing numbers. Numbers consist of the
characters 0-9, .+-, and blanks; an 8 or E may follow a number to indicate exponential
notation, in whlch case it must be followed by a (signed) integer.

Both string tokens and symbol tokens may be used to specify numbers. Since the
language is typeless, variables do not have to be declared as "numeric" before being used
in an arithmetic operation. Instead, each value string is examined when it is used to verify
that it represents a number. The following examples are all valid numbers:

33
12.3 II"

0.321812

'+ 15.'

Note that leading and trailing blanks are permitted, and that blanks may be embedded
between a "+" or "-" sign and the number body (but not within the body.)

Boolean Values

The numbers 0 and 1 are used to represent the boolean values False and True, respectively.
The use of a value other than 0 or 1 when a boolean operand is expected will generate an
error. Any number equivalent to 0 or 1, for example "0.000" or "0 .1El," is also acceptable
as a boolean value.

Numeric Precision

ARexx allows the basic precision used for arithmetic calculations to be modified while a
program is executing. The number of significant figures used in arithmetic operations is
determined by the Numeric Digits environment variable, and may be modified using the
NUMERIC instruction.

The number of decimal places used for a result depends on the operation performed
and the number of decimal places in the operands. Unlike many languages, ARexx preserves
trailing zeroes to indicate the precision of the result. If the total number of digits required
to express a value exceeds the current Numeric Digits setting, the number is formatted in
exponential notation. Two such formats are provided:

• In SCIENTIFIC notation, the exponent is adjusted so that a single digit is placed to the
left of the decimal point .

• 	 In ENGINEERING notation, the number is scaled so that the exponent is a multiple of 3
and the digits to the left of the decimal point range from 1 to 999.

The numeric precison and format can be set using the NUMERIC instruction.

Elements of the Language 17

3-6 Operators

Operators can be grouped into four categories:

• 	 Arithmetic operators require one or two numeric operands, and produce a numeric
result.

• 	 Concatenation operators join two strings into a single string.

• 	 Comparison operators require two operands, and produce a boolean (0 or 1) result.

• 	 Logicaloperators require one or two boolean operands, and produce a boolean result.

Arithmetic Operators

The arithmetic operators are listed in Table 3.2 below. Note the inclusion of the integer
division (7.) and remainder (II) operators, along with the usual arithmetic operations. The
result of an arithmetic operation is always formatted based on the current Numeric Digits
setting, and will never have leading or trailing blanks.

Table 3.2 Arithmetic Operators
Sequence Priority Operation
+ 	 8 Prefix Conversion

8 Prefix Negation

** 	 7 Exponentiation

6 Multiplication*
1 	 6 Division
7. 6 Integer Division
/I 6 Remainder

+ 	 5 Addition
5 Subtraction

Prefix Conversion (+). This unary operator converts the operand to and internal numeric
form and formats the result based on the current Numeric Digits settings. This causes any
leading and trailing blanks to be removed, and may result in a loss of precision.
Examples:

3.12 ==> 3.12

1.5001 ==> 1.500 1* If digits =3 *1

Prefix Negation (-). This unary operator negates the operand. The result is formatted
based on the current Numeric Digits setting.

Chapter 3 18

Examples:

-' 3.12 ==> -3.12

-1.5E2 ==> -150

Exponentiation (**). The left operand is raised to the power specified by the right

operand, which must be an integer. The number of decimal places for the result is the

product of the exponent and the number of decimal places in the base.

Examples:

==> 8
==> .333333333
==> 0.125

Multiplication (*). The product of two numbers is computed. The number of decimal

places for the result is the sum of the decimal places of the operands.

Examples:

12 * 3 ==> 36
1.5 * 1.50 ==> 2.250

Division (I). The quotient of two numbers is computed. The number of decimal places

for the result depends on the current setting of the numeric DIGITS variable; the number is

formatted to the maximum precision required.

Examples:

6/3 ==> 2
8/3 ==> 2.66666667

Integer Division (7.). The quotient of two numbers is computed, and the integer part of

the quotient is used as the result.

Examples:

57.3 ==> 1
-8 7. 3 ==> -2

Remainder (II). The result is the remainder after the two operands are divided. The
remainder for "a/ /b" is calculated as "a- (a7.b)*b." If both operands are positive integers,
this operation yields the usual "modulo" result.

Elements of the Language 19

Examples:

5 	 /I 3 ==> 2
-5 II 3 	 ==> -2
5.1 /I 0.2 ==> 0.1

Addition (+). The sum of two numbers is computed. The number of decimal places for

the result is the larger of the decimal places of the operands.

Examples:

12 + 3 	 ==> 15
3.1 + 4.05 ==> 7.15

Subtraction (-). The difference of two numbers is computed. As in the case of addition,
the number of decimal places for the result is the larger of the decimal places of the operands.
Examples:

12 - 3 	 ==> 9
5.55 - 1.55 ==> 4.00

Concatenation Operators

ARexx defines two concatenation operators, both of which require two operands. The first,
identified by the operator sequence "II", joins two strings into a single string with no
intervening blank. The second concatenation operation is identified by the blank operator,
and joins the two operand strings with one intervening blank.

An implicit concatenation operator is recognized when a symbol and a string are di­
rectly abutted in an expression. Concatenation by abuttal uses the "II" operator, and
behaves exactly as though the operator had been provided explicitly.
Examples:

'why me,' II 'Mom?' ==> why me,Mom?

'good' 'times' ==> good times

one'two'three ==> QNEtwoTHREE

Comparison Operators

Comparisons are performed in one of three modes, and always result in a boolean value (0
or 1.)

• 	 Exact comparisons proceed character-by-character, including any leading blanks that
may be present .

• 	 String comparisons ignore leading blanks, and pad the shorter string with blanks if
necessary.

20 	 Chapter 3

• 	 Numeric comparisons first convert the operands to an internal numeric form using the
current Numeric Digits setting, and then perform a standard arithmetic comparison.

Except for the exact equality and exact inequality operators, all comparison operators dy­
namically determine whether a string or numeric comparison is to be performed. A numeric
comparison is performed if both operands are valid numbers; otherwise, the operands are
compared as strings.

Table 3.3 Comparison Operators
Sequence Priority Operation Mode
== 3 Exact Equality Exact
.... == 3 Exact Inequality Exact

3 Equality 	 String/Numeric
3 Inequality String/Numeric

> 3 Greater Than String/Numeric
>=.~(3 Greater Than or Equal String/Numeric
(3 Less Than String/Numeric
<=,-> 3 Less Than or Equal String/Numeric

Logical (Boolean) Operators

ARexx defines the four logical operations NOT, AND, OR, and Exclusive OR, all of which
require boolean operands and produce a boolean result. Boolean operands must have values
of either 0 (False) or 1 (True.) An attempt to perform a logical operation on a non-boolean
operand will generate an error.

Table 3.4 Logical Operators
Sequence Priority Operation

8 NOT (Inversion)
& 2 AND
I 1 OR
~, U 1 Exclusive OR

3-7 Stems and Compound Symbols

Stems and compound symbols have special properties that allow for some interesting and
unusual programming. A compound symbol can be regarded as having the structure
stem. nl . n2' na ... nk where the leading name is a stem symbol and each node nl ... nk

is a fixed or simple symboL Whenever a compound symbol appears in a program, its name
is expanded by replacing each node with its current value as a (simple) symbol. The value
string may consist of any characters, including embedded blanks, and is not converted to
uppercase. The result of the expansion is a new name that is used in place of the compound
symbol. For example, if J has the value 3 and Khas the value 7, then the compound symbol
a.j.k will expand to A.3. 7.

Stem symbols provide a way to initialize a whole class of compound symbols. When
an assignment is made to a stem symbol, it assigns that value to all possible compound

Elements of the Language 21

symbols derived from the stem. Thus, the value of a compound symbol depends on the
prior assignments made to itself or its associated stem.

Compound symbols can be regarded as a form of "associative" or "content-addressable"
memory. For example, suppose that you needed to store and retrieve a set of names and
telephone numbers. The conventional approach would be to set up two arrays NAME and
NUMBER, each indexed by an integer running from one to the number of entries. A number
would be "looked up" by scanning the name array until the given name was found, say in
NAME .12, and then retrieving NUMBER. 12. With compound symbols, the symbol NAME could
hold the name to be looked-up, and NUMBER.NAME would then expand to NUMBER. Bill (for
example), which be the corresponding number.

Of course, compound symbols can also be used as conventional indexed arrays, with
the added convenience that only a single assignment (tothe stem) is required to initialize
the entire array.

3-8 The Execution Environment

The ARexx interpreter provides a uniform execution environment by running each program
as a separate task (actually, as a DOS process) in the Amiga's multitasking operating system.
This allows for a flexible interface between an external host program and the interpreter,
as the host can either proceed concurrently with its operations or can simply wait for the
interpreted program to finish.

The External Environment

The external environment of a program includes its task (process) structure, input and
output streams, and current directory. \Vhen each ARexx task is created, it inherits the
input and output streams and current directory from its client, the external program that
invoked the ARexx program. The current directory is used as the starting point in a search
for a program or data file.

External Programs. The external environment usually includes one or more external
programs with which the ARexx program may communicate. Any program that supports
a suitable interface can receive commands from ARexx programs. The command interface
is discussed in Chapter 5.

The Internal Environment

The internal environment of an ARexx program consists of a static global structure and one
or more storage environments. The global data values are fixed at the time the program
is invoked, and include the argument strings, program source code, and static data strings.
The storage environment includes the symbol table used for variable values, the numeric
options, trace option, and host address strings. \Vhile the global environment is unique,
there may be many storage environments during the course of the program execution. Each
time an internal function is called a new storage environment is activated and initialized.
The initial values for most fields are inherited from the previous environment, but values may
be changed afterwards without affecting the caller's environment. The new environment
persists until control returns from the function.

Chapter 3 22

Argument Strings. A program may receive one or more argument strings when it is first
invoked. These arguments persist for the duration of the program and are never altered.
The number of arguments a program receives depen~s in part on the mode of invocation.
ARexx programs invoked as commands normally have only one argument string, although
the "command tokenization" option may provide more than one. A program invoked as a
function can have any number of arguments if called as an internal function, but external
functions are limited to a maximum of 15 arguments.

The argument strings can be retrieved using either the ARG instruction or the ARGO
Built-In function. ARGO can also return the total number of arguments, or the status (as
"exists" or "omitted") of a particular argument.

The Symbol Table. Every storage environment includes a symbol table to store the value
strings that have been assigned to variables. This symbol table is organized as a two-level
binary tree, a data structure that provides an efficient look-up mechanism. The primary level
stores entries for simple and stem symbols, and the secondary level is used for compound
symbols. All of the compound symbols associated with a particular stem are stored in one
tree, with the root of the tree held by the entry for the stem.

Symbols are not entered into the table until an assignment is made to the symbol. Once
created, entries at the primary level are never removed, even if the symbol subsequently
becomes uninitialized. Secondary trees are released whenever an assignment is made to the
stem associated with the tree.

For the most part ARexx programmers need not be concerned with the details of
storage environments except to understand what values are saved when a function is called.
Applications developers who need to manipulate environment values should refer to the
structure definitions in the INCLUDE files provided on the ARexx distribution disk.

Input and Output

Most computer programs require some means of communicating with the outside world,
either to accept input data or to pass along results. The REXX language includes only a
minimal specification of input and output (I/O) operations, leaving the choice of additional
functionality to the language implementor. This is in keeping with the design of many
computer languages. For instance, the "C" langauge has no statements dedicated to I/O,
but instead relies on a standardized set of I/O functions.

ARexx extends the I/O facilities of REXX by providing Built-In functions to manipu­
late external files. Files are referenced by a logical name associated with the file when it is
first opened. The initial input and output streams are given the names STDIN and STDOUT.

ARexx maintains a list of all of the files opened by a program and automatically closes
them when the program finishes. There is no limit to the number of files that may be open
simultaneously.

Elements of the Language 23

Resource Tracking

ARexx provides. complete tracking for all of the dynamically-allocated resources that it
uses to execute a program. These resources include memory space, DOS files and related
structures, and the message port structures supported by ARexx. The tracking system was
designed to allow a program to "bail out" at any point (perhaps due to an execution error)
without leaving any hanging resources.

It is possible to go outside of the interpreter's resource tracking net by making calls
directly to the Amiga's operating system from within an ARexx program. In these cases
it is the programmer's responsibility to track and return all of the allocated resources.
ARexx provides a special interrupt facility so that a program can retain control after an
execution error, perform the required cleanup, and then make an orderly exit. Chapter 7
has information on the ARexx interrupt system.

Chapter 3 24

Chapter 4

Instructions

Instruction clauses are identified by an initial keyword symbol that is not followed by a
colon (:) or an equals (=) operator. Each instruction signifies a specific action, and may be
followed by one or more subkeywords, expressions, or other instruction-specific information.
Instruction keywords and subkeywords are recognized only in this specific context, and are
therefore not "reserved words" in the usual sense of the term. Keywords may be used freely
as variables or function names, although such usage may become confusing at times.

In the descriptions that follow, keywords are shown in uppercase and optional parts of
the instruction are enclosed in brackets. Alternative selections are separated by a vertical
bar (I), and required alternatives are enclosed in braces ({}).

4-1 ADDRESS

Usage: ADDRESS [symbol I string I [[VALUE] [expression]]

This instruction specifies a host address for commands issued by the interpreter. A host

address is the name associated with an external program to which commands can be sent;

external hosts are described in Chapter 5. ARexx maintains two host addresses: a "current"

and a "previous" value. Whenever a new host address is supplied, the "previous" address

is lost, and the "current" address becomes the "previous" one. These host addresses are

part of a program's storage environment and are preserved across internal function calls.

The current address can be retrieved with the Built-In function ADDRESS 0 . There are four

distinct forms for the ADDRESS instruction:

• 	 ADDRESS {string I symbol} expression. The expression is evaluated and the result is
issued to the host specified by the string or symbol, which is taken as a literal. No
changes are made to the current or previous address strings. This provides a convenient
way to issue a single command to an external host without disturbing the current
host addresses. The return code from the command is treated as it would be from a
command clause.

• 	 ADDRESS {string I symbol}. The string or symbol, taken as a literal, specifies the new
host address. The current host address becomes the previous address.

• 	 ADDRESS [VALUE} expression. The result of the expression specifies the new host address,
and the current address becomes the previous address. The VALUE keyword may be
omitted if the first token ofthe expression is not a symbol or string.

• 	ADDRESS. This form interchanges the current and previous hosts. Repeated execution
will therefore "toggle" between the two host addresses.

Examples:

address edit 1* set an new host address *1

address edit 'top' 1* move to the top *1

address VALUE edit n 1* compute a new host address *1

address 1* swap current and previous *1

Instructions 25

4-2 ARG

Usage: ARG [template} [, template ... }
ARG is a shorthand form for the PARSE UPPER ARG instruction. It retrieves one or more of
the argument strings available to the program, and assigns values to the variables in the
template. The number of argument strings available depends on the whether the program
was invoked as a command or a function. Command invocations normally have only one
argument string, but functions may have up to 15. The argument strings are not altered
by the ARG instruction.

The structure and processing of templates is described briefly with the PARSE instruc­
tion, and in greater depth in Chapter 8.
Example:

arg first,second 1* fetch arguments *1

4-3 BREAK

Usage: BREAK

The BREAK instruction is used to exit from the range of a DO instruction or from within

an INTERPRETed string, and is valid only in these contexts. If used within a DO statement,

BREAK exits from the innermost DO statement containing the BREAK. This contrasts with the

otherwise similar LEAVE instruction, which exits only from an iterative DO.

Example:

do 1* begin block

if i>3 then break 1* all done?

a = a + 1

y.a = name

end 1* end block

4-4 CALL

Usage: CALL {symbol I string} [expression} [,expression, ... }
The CALL instruction is used to invoke an internal or external function. The function name
is specified by the symbol or string token, which is taken as a literal. Any expressions that
follow are evaluated and become the arguments to the called function. The value returned
by the function is assigned to the special variable RESULT. It is not an error if a result string
is not returned; in this case the variable RESULT is DROPped (becomes uninitialized.)

The linkage to the function is established dynamically at the time of the call. ARexx
follows a specific search order in attempting to locate the called function; this process is
described in Chapter 6.
Example:

call center name,length+4,'+'

Chapter 4 26

4-5 DO

Usage: DO [var=exp fro exp} {BY exp}} /FOR exp} /FOREVER} fWHILE exp I UNTIL exp}

The DO instruction begins a group of instructions to be executed as a block. The range of

the DO instruction includes all statements up to and including an eventual END instruction.

There are two basic forms of the instruction:

• 	 The DO keyword by itself defines a block of instructions to be executed once.

• 	If any iteration specifiers follow the DO keyword, the block of instructions is executed
repeatedly until a termination condition occurs.

An iterative DO instruction is sometimes called a "loop", since the interpreter "loops
back" to perform the instruction repeatedly. The various parts of the DO instruction are
described below.

Initializer expression. An initializer expression of the form "variable=expression"
defines the index variable of the loop. The expression is evaluated when the DO range is
first activated, and the result is assigned to the index variable. On subsequent iterations
an expression of the form "variable = variable + increment" is evaluated, where the
increment is the result of the BY expression. If specified, the initializer expression must
precede any of the other subkeywords.

BY expression. The expression following a BY symbol defines the increment to be added to
the index variable in each subsequent iteration. The expression must yield a numeric result,
which may be positive or negative and need not be an integer. The default increment is 1.

TO expression. The result of the TO expression specifies the upper (or lower) limit for the
index variable. At each iteration the index variable is compared to the TO result. If the
increment (BY result) is positive and the variable is greater than the limit, the DO instruction
terminates and control passes to the statement following the END instruction. Similarly, the
loop terminates if the increment is negative and the index variable is less than the limit.

FOR expression. The FOR expression must yield a positive whole number when evaluated,
and specifies the maximum number of iterations to be performed. The loop terminates
when this limit is reached irrespective of the value of the index variable.

FOREVER. The FOREVER keyword can be used if an iterative DO instruction is required but no
index variable is necessary. Presumably the loop will be terminated by a LEAVE or BREAK
instruction contained within the loop body.

WHILE expression. The WHILE expression is evaluated at the beginning of each iteration
and must result in a boolean value. The iteration proceeds if the result is 1; otherwise, the
loop terminates.

Instructions 27

UNTIL expression. The UNTIL expression is evaluated at the end of each iteration and
must result in a boolean value. The instruction continues with the next iteration if the
result is 0, and terminates otherwise.

The initializer, BY, TO, and FOR expressions are evaluated only when the instruction is
first activated, so the increment and limits are fixed throughout the execution. Note that
a limit need not be supplied; for example, the instruction "DO i=l" will simply count away
forever. Note also that only one of the WHILE or UNTIL keywords can be specified.
Example:

do i=l to limit for 5 vhile time < 50
y.i = i*time
end

4-6 DROP

Usage: DROP variable [variable...]
The specified variable symbols are reset to their uninitialized state, in which the value of
the variable is the variable name itself. It is not an error to DROP a variable that is already
uninitialized. DROPping a stem symbol is equivalent to DROPping the values of all possible
compound symbols derived from that stem.
Example:

a = 123
drop a b
say a b

1* assign a value
1* drop some
1* ==> A B

4-7 ECHO

Usage: ECHO [e:cpression]
The ECHO instruction is a synonym for the SAY instruction. It displays the expression result

on the console.

Example:

echo "You don't SAYl"

4·8 ELSE

Usage: ELSE [;] [conditional statement]
The ELSE instruction provides the alternative conditional branch for an IF statement. It is
valid only within the range of an IF instruction, and must follow the conditional statement
of the THEN branch. If the THEN branch wasn't executed, the statement following the ELSE
clause is performed.

Binding. ELSE clauses always bind to the nearest (preceding) IF statement. It may be
necessary to provide "dummy" ELSE clauses for the inner IF ranges of a compound IF
statement in order to allow alternative branches for the outer IF statements. In this case
it is not sufficient to follow the ELSE with a semicolon or a null clause. Instead, the NOP
(no-operation) instruction can be used for this purpose.

Chapter 4 28

Example:

if 1 > 2 	then say 'really?'
else say 'I thought so'

4-9 END

Usage: END {variable]
The END instruction terminates the range of a DO or SELECT instruction. If the optional
variable symbol is supplied, it is compared to the index variable of the DO statement (which
must therefore be iterative). An error is generated if the symbols do not match, so this
provides a simple mechanism for matching the DO and END statements.
Example:

do i=1 to 5 1* index variable is I *1
say i
end i 1* end' 'I" loop *1

4-10 EXIT

Usage: EXIT {expression]

The EXIT instruction terminates the execution of a program, and is valid anywhere within a

program. The evaluated expression is passed back to the caller as the function or command

result.

Results Processing. The processing of the EXIT result depends on whether a result string

was requested by the calling program, and whether the current invocation resulted from a

command or function call. If a result string was requested, the expression result is copied to

a block of allocated memory and a pointer to the block is returned as the secondary result

of the call.

If the caller did not request a result string, and the program was invoked as a command,
then an attempt is made to convert the expression result to an integer. This value is
then returned as the primary result, with 0 as the secondary result. This allows the EXIT
expression to be interpreted as a "return code" by the caller. Refer to Chapter 10 for further
information on the data structures used to return the result string.
Examples:

exit 	 1* no result needed
exit 12 	 1* an error return?

4-11 IF

Usage: IF expression {rHEN] {i] {conditional statement]
The IF instruction is used in conjunction with THEN and ELSE instructions to conditionally
execute a ·statement. The result of the expression must be a boolean value. If the result is
1 (True), the statement following the THEN symbol is executed; otherwise, control passes
to the next statement (which might be an ELSE clause.) The THEN keyword need not im­
mediately follow the IF expression, but may appear as a separate clause. The instruction

Instructions 29

is actually analyzed as "IF expression j THEN j statement;." In essence, the IF state­
ment begins a syntactic range and establishes the test condition that determines whether
subsequent THEN or ELSE clauses will be performed.

Any valid statement may follow the THEN symbol; in particular, a "DO; END;"
group allows a series of statements to be performed conditionally.
Example:

if result < 0 then exit 1* all done? *1

4-12 INTERPRET

Usage: INTERPRET expression

The expression is evaluated and the result is executed as one or more program statements.

The statements are considered as a group, as though surrounded by a "DO; ... ;END"

combination. Any statements can be included in the INTERPRETed source, including DO or

SELECT instructions.

An INTERPRET instruction activates a control range when it is executed, which serves
as a "fence" for LEAVE and ITERATE instructions. These instructions can therefore be used
only with DO-loops defined within the INTERPRET. The BREAK instruction can be used to
terminate the processing of INTERPRETed statements. While it is not an error to include
label clauses within the interpreted string, only those labels defined in the original source
code are searched during a transfer of control.

The INTERPRET instruction can be used to solve programming problems in interesting
and novel ways. Programs can be constructed dynamically and then executed using this
instruction, or program fragments may be passed as arguments to functions, which then
INTERPRET them.
Example:

inst ;: 'say' 1* an instruction
interpret inst hello 1* ... "say HELLO"

4-13 ITERATE

Usage: ITERATE [variable}
The ITERATE instruction terminates the current iteration of a DO instruction and begins
the next iteration. Effectively, control passes to the END statement and then (depending on
the outcome of the UNTIL expression) back to the DO statement. The instruction normally
acts on the innermost iterative DO range containing the instruction. An error results if the
LEAVE instruction is not contained within an iterative DO instruction.

The optional variable symbol specifies which DO range is to be exited, in the event
that several nested ranges exist. The variable is taken as a literal and must match the
index variable of a currently active DO instruction. An error results if no such matching DO
instruction is found.

Chapter 4 30

Example:

do 	 i=l to 3

if i = j then iterate i

end

4-14 LEAVE

Usage: LEAVE [variable]

LEAVE forces an immediate exit from the iterative DO range containing the instruction. An

error results if the LEAVE instruction is not contained within an iterative DO instruction.

The optional variable symbol specifies which DO range is to be exited, in the event
that several nested ranges exist. The variable is taken as a literal and must match the
index variable of a currently active DO instruction. An error results if no such matching DO
instruction is found.
Example:

do 	 i = 1 to limit

if i > 5 then leave 1* maximum iterations *1

end

4-15 NOP

Usage: NOP

The NOP or "no-operation" instruction does just that: nothing. It is provided to control the

binding of ELSE clauses in compound IF statements.

Example:

if i = j then 1* first (outer) IF *1

if j = k then a = 0 1* inner IF *1

else nop 1* binds to inner IF *1

else a = a + 1 1* binds to outer IF *1

4-16 NUMERIC

Usage: NUMERIC {DIGITS I FUZZ} expression
or: NUMERIC FORM {SCIENTIFIC I ENGINEERING}

This instruction sets options relating to the numeric precision and format. The valid forms
of the NUMERIC instruction are:

• 	NUMERIC DIGITS expression. Specifies the number of digits of precision for arithmetic
calculations. The expression must evaluate to a positive whole number.

• 	NUMERIC FUZZ expression. Specifies the number of digits to be ignored in numeric
comparison operations. This must be a positive whole number that is less than the
current DIGITS setting.

• 	NUMERIC FORM SCIENTIFIC. Specifies that numbers that require exponential notation
be expressed in SCIENTIFIC notation. The exponent is adjusted so that the mantissa
(for non-zero numbers) is between 1 and 10. This is the default format.

Instructions 31

• 	 NUMERIC FORM ENGINEERING. Selects ENGINEERING format for numbers that require
exponential notation. ENGINEERING format normalizes a number so that its exponent
is a multiple of three and the mantissa (if not 0) is between 1 and 1000.

The numeric options are preserved when an internal function is called.
Examples:

numeric digits 12 1* precision

numeric form scientific 1* format

4-17 OPTIONS

Usage: OPTIONS {FAILAT expression]
or: OPTIONS JPROMPT expression]
or: OPTIONS /RESULTS]

The OPTIONS instruction is used to set various internal defaults. The FAILAT expression
sets the limit at or above which command return codes will be signalled as errors, and must
evaluate to an integer value. The PROMPT expression provides a string to be used as the
prompt with the PULL (or PARSE PULL) instruction. The RESULTS keyword indicates that
the interpreter should request a result string when it issues commands to an external host.

The internal options controlled by this instruction are preserved across function calls,
so an OPTIONS instruction can be issued within an internal function without affecting the
caller's environment. If no keyword is specified with the OPTIONS instruction, all controlled
options revert to their default settings.
Example:

options failat 10

options prompt "Yes Boss?"

options results

4-18 OTHERWISE

Usage: OTHERWISE [;] [conditional statement]
This instruction is valid only within the range of a SELECT instruction, and must follow the
"WHEN .. , THEN" statements. If none of the preceding WHEN clauses have succeeded, the
statement following the OTHERWISE instruction is executed. An OTHERWISE is not mandatory
within a SELECT range. However, an error will result if the OTHERWISE clause is omitted
and none of the WHEN instructions succeed.
Example:

select

when i=1 then say 'one'

when i=2 then say 'two'

otherwise say 'other'

end

Chapter 4 32

Usage: PARSE {uPPER] inputsource [template] [,template ...]
The PARSE instruction provides a mechanism to extract one or more substrings from a
string and assign them to variables. The input string can come from a variety of sources,
including argument strings, an expression, or from the console. The template provides both
the variables to be given values and the way to determine the value strings. The template
may be omitted if the instruction is intended only to create the input string. The different
options of the instruction are described below.

Input Sources

The sources for the input strings are specified by the keyword symbols listed below. When
multiple templates are supplied, each template receives a new input string, although for
some source options the new string will be identical to the previous one. The input source
string is copied before being parsed, so the original strings are never altered by the parsing
process.

UPPER. This optional keyword may be used with any of the input sources, and specifies that
the input string is to be translated to uppercase before being parsed. It must be the first
token following PARSE.

• 	 ARG. This input option retrieves the argument strings supplied when the program was
invoked. Command invocations normally have only a single argument but func­
tions may have up to 15 argument strings. Multiple templates may be given to retrieve
successive argument strings.

• 	 EXTERNAL. The input string is read from the console. Ifmultiple templates are supplied,
each template will read a new string. This source option is the same as PULL.

• 	 NUMERIC. The current numeric options are placed in a string in the order DIGITS, FUZZ,
and FORM, separated by a single space.

• 	 PULL. Reads a string from the input console. If multiple templates are supplied, each
template will read a new string.

• 	 SOURCE. The "source" string for the program is retrieved. This string is formatted
as "{COMMAND I FUNCTION} {O I 1} called resolved ext host." The first token indicates
whether the program was invoked as a command or as a function. The second token
is a boolean Hag indicating whether a result string was requested by the caller. The
called token is the name used to invoke this program, while the resolved token is the
final resolved name of the program. The ext token is the file extension to be used for
searching (the default is "REXX"). Finally, the host token is the initial host address
for commands.

• 	 VALUE expression WITH. The input string is the result of the supplied expression. The
WITH keyword is required to separate the expression from the template. The expression
result may be parsed repeatedly by using multiple templates, but the expression is not
reevaluated.

• 	 VAR variable. The value of the specified variable is used as the input string. When
multiple templates are provided. each template uses the current value of the variable.

Instructions 33

This value may change if the variable is included as an assignment target in any of the
templates .

• 	 VERSION. The current configuration of the ARexx interpreter is supplied in the form
"ARexx version cpu mpu video free/'. The version token is the release level of the in­
terpreter, formatted as V1. O. The cpu token indicates the processor currently running
the program, and will be one of the values 68000, 68010, or 68020. The mpu token
will be either NONE or 68881 depending on whether a math coprocessor is available on
the system. The video token will indicate either NTSC or PAL, and the freq token gives
the clock (line) frequency as either 60HZ or 50HZ.

Templates

Parsing is controlled by a template, which may consist of symbols, strings, operators, and
parentheses. During the parsing operation the input string is split into substrings that are
assigned to the variable symbols in the template. The process continues until all of the
variables in the template have been assigned a value; if the input string is "used up", any
remaining variables are given null values.

Templates are described in depth in Chapter 8, so only a simplified description is
presented here. The goal of the parsing operation is to associate a "current" and "next"
position with each variable symbol in the template. The substring between these positions is
then assigned as the value to the variable. There are three basic methods used to determine
the value strings.

Parsing by Tokenization. When a variable in the template is followed immediately by
another variable, the value string is determined by breaking the input string into words
separated by blanks. Each word is assigned to a variable in the template.

Values determined by tokenization will never have leading or trailing blanks. Normally
the last variable in the template receives the untokenized remainder of the input string,
since it is not followed by a symbol. A "placeholder" symbol, signified by a period (.), may
be used to force tokenization. Placeholders behave like variables in the template except
that they are never actually assigned a value.

1* Numeric string is: "9 0 SCIENTIFIC" *1
parse numeric digits fuzz form
say digits 1* => 9 	 *1
say fuzz /* => 0 	 *1
say form 	 1* => SCIENTIFIC */

Parsing by Position. If the fields in the input string have known positions, value strings
can be specified by absolute or relative positions. Relative positions are indicated by a
number preceded by a "+" or "-" operator. Each positional marker updates the scan
position in the string. The value assigned to a variable is the string from the current
position up to, but not including, the next position in the string.

Chapter 4 34

Example:

1* assume argument is "1234567890" *1
parse arg 1 a 3 b +2 1 c
say abc 1* ==> 12 34 1234567890 *1

Parsing with Patterns. Fields in the input string separated by specific characters or
strings can be parsed using a pattern, which is matched against the input string. A pattern
is specified in the template as a string token, or alternatively as a symbol enclosed in
parentheses. The position in the parse string matched by the pattern determines the value
strings. The pattern is removed from the input string when a match is found; this is the
only parsing operation that modifies the input string.
Example:

check = 'one,two,three'
parse var check a ',' b ',' c
say abc 1* ==> one two three *1

4-20 PROCEDURE

Usage: PROCEDURE /EXPOSE variable [variable ...Jj
The PROCEDURE instruction is used within an internal function to create a new symbol
table. This protects the symbols defined in the caller's environment from being altered by
the execution of the function. PROCEDURE is usually the first statement within the function,
although it is valid anywhere withing the function body. It is an error to execute two
PROCEDURE statements within the same function.

Exposing Variables. The EXPOSE subkeyword provides a selective mechanism for access­
ing the caller's symbol table, and for passing global variables to a function. The variables
following the EXPOSE keyword are taken to refer to symbols in the caller's table. Any
subsequent changes made to these variables will be reflected in the caller's environment.

The variables in the EXPOSE list may include stems or compound symbols, in which
case the ordering of the variables becomes significant. The EXPOSE list is processed from
left to right, and compound symbols are expanded based on the values in effect in the new
generation. For example, suppose that the value of the symbol J in the previous generation is
123, and that J is uninitialized in the new generation. Then PROCEDURE EXPOSE J A. J will
expose J and A .123, whereas PROCEDURE EXPOSE A. J J will expose A. J and J. Exposing a
stem has the effect of exposing all possible compound symbols derived from that stem.
Example:

fact: procedure 1* a recursIve functIon *1
arg I
if i <= 1

then return 1
else return i*fact(i-l)

Instructions 35

4-21 PULL

Usage: PULL [template] [,template ...]
This is a shorthand form of the PARSE UPPER PULL instruction. It reads a string from the
input console, translates it to uppercase, and parses it using the template. Multiple strings
can be read by supplying additional templates. The instruction will read from the console
even if no template is given.

Templates are described briefly with the PARSE instruction and in greater depth in
Chapter 8.
Example:

pull first last . 1* read names *1

4-22 PUSH

Usage: PUSH [expression]
The PUSH instruction is used to prepare a stream of data to be read by a command shell
or other program. It appends a "newline" to the result of the expression and then stacks
or "pushes" it into the STDIN stream. Stacked lines are placed in the stream in "last-in,
first-out" order, and are then available to be read just as though they had been entered
interactively. For example, after issuing the instructions

push line 1

push line 2

push line 3

the stream would be read in the order "line 3," "line 2," and "line i."

There are several restrictions governing the use of the PUSH instruction and its alter
ego QUEUE. These instructions use a special I/O mechanism to accomplish their task, and
as a result can be used only with an interactive (stream-model) I/O device like a console
or pipe. The stream must be managed by with a DOS handler that supports the special
ACTION-STACK (for PUSH) or ACTION..QUEUE (for QUEUE) command.

PUSH allows the STDIN stream to be used as a private scratchpad to prepare data for
subsequent processing. For example, several files could be concatenated with delimiters
between them by simply reading the input files, PUSHing the lines into the stream, and
inserting a delimiter where required. Once the stacked lines are exhausted, the stream
reverts to its normal source of data.
Example:

1* Stack commands for compile and link *1

push "blink c.o+main.o library amiga.lib to myprog"

push "CC main"

Chapter 4 36

4-23 QUEUE

Usage: QUEUE [expression}
The QUEUE instruction is used to prepare a stream of data to be read by a command shell
or other program. It is very similar to the preceding PUSH instruction, and differs only in
that the data lines are placed in the STDIN stream in "first-in, first-out" order. In this case
the instructions

queue line 1

queue line 2

queue line 3

would be read in the order "line 1," "line 2," and "line 3." The QUEUEd lines always
precede all interactivly-entered lines, and always follow any PUSHed (stacked) lines.

The same restrictions noted with the use of the PUSH instruction apply to the QUEUE
instruction. The queueing mechanism uses the ACTIDN.-QUEUE command, so the DOS handler
associated with the STDIN stream must support this command.

In most cases the choice of whether to use PUSH or QUEUE is just a matter of conve­
nience or personal preference. Each of them provides a "scratch pad" facility similar to
that provided by an I/O pipe, but useful within one program or task rather than just for
interprocess communications.
Example:

1* Queue commands for compile and link *1

queue "CC main"

queue "blink c.o+main.o library amiga.lib to myprog"

4-24 RETURN

Usage: RETURN [expression}

RETURN is used to leave a function and return control to the point of the previous function

invocation. The evaluated expression is returned as the function result. If an expression is

not supplied, an error may result in the caller's environment. Functions called from within

an expression must return a result string, and will generate an error if no result is available.

Function invoked by the CALL instruction need not return a result.

A RETURN issued from the base environment of a program is not an error, and is
equivalent to an EXIT instruction. Refer to the EXIT instruction for a description of how
result strings are passed back to an external caller.
Example:

return 6*7 1* the answer *1

Instrll ctions 37

4-25 SAY

Usage: SAY [expression}
The result of the evaluated expression is written to the output console, with a "newline"
character appended. If the expression is omitted, a null string is sent to the console.
Example:

say 'The answer is ' value

4-26 SELECT

Usage: SELECT
This instruction begins a group of instructions containing one or more WHEN clauses and
possibly a single OTHERWISE clause, each followed by a conditional statement.

Only one of the conditional statements within the SELECT group will be executed. Each
WHEN statement is executed in succession until one succeeds; if none succeeds, the OTHERWISE
statement is executed. The SELECT range must be terminated by an eventual END statement.

Example:

select

when i=1 then say 'one'

when i=2 then say 'two'

otherwise say 'other'

end

4-27 SHELL

Usage: SHELL [symbol I string} [expression}

The SHELL instruction is a synonym for the ADDRESS instruction.

Example:

shell edit 1* set host to 'EDIT'

4-28 SIGNAL

Usage: SIGNAL {ON IOFF} condition
or: SIGNAL {VALUE} expression

There are two forms of the SIGNAL instruction. The first form illustrated controls the state
of the internal interrupt flags. Interrupts allow a program to detect and retain control when
certain errors occur, and are discussed in Chapter 7. In this form SIGNAL must be followed
by one of the keywords ON or OFF and one of the condition keywords listed below. The
interrupt flag specified by the condition symbol is then set to the indicated state. The valid
signal conditions are:

• BREAK_C A "control-C" break was detected.

• BREAK..D A "control-D" break was detected.

• BREAK.E A "control-E" break was detected.

Chapter 4 38

• BREAK...F A "control-F" break was detected.

• ERROR A host command returned a non-zero code.

• HALT An external HALT request was detected.

• IOERR An error was detected by the I/O system.

• NOVALUE An uninitiaJized variable was used.

• SYNTAX A syntax or execution error was detected.

The condition keywords are interpreted as labels to which control will be transferred if the
selected condition occurs. For example, if the ERROR interrupt is enabled and a command
returns a non-zero code, the interpreter will transfer control to the label ERROR:. The
condition label must of course be defined in the program; otherwise, an immediate SYNTAX
error results and the program exits.

In the second form of the instruction, the tokens following SIGNAL are evaluated as an
expression. An immediate interrupt is generated that transfers control to the label specified
by the expression result. The instruction thus acts as a "computed goto."

Interrupts. Whenever an interrupt occurs, all currently active control ranges (IF, DO,
SELECT, INTERPRET, or interactive TRACE) are dismantled before the transfer of control.
Thus, the transfer cannot be used to jump into the range of a DO-loop or other control
structure. Only the control structures in the current environment are affected by a SIGNAL
condition, so it is safe to SIGNAL from within an internal function without affecting the
state of the caller's environment.

Special Variables. The special variable SIGL is set to the current line number whenever
a transfer of control occurs. The program can inspect SIGL to determine which line was
being executed before the transfer. If an ERROR or SYNTAX condition causes an interrupt,
the special variable RC is set to the error code that triggered the interrupt. For the ERROR
condition, this code is usually an error severity level. The SYNTAX condition will always
indicate an ARexx error code.
Examples:

signal on error 1* enable interrupt *1
signal off syntax 1* disable SYNTAX *1
signal start 1* goto START *1

4-29 THEN

Usage: THEN [;] [conditional statement]

The THEN instruction must be the next statement following an IF or WHEN instruction, and is

valid only in that context. It tests whether the preceding expression evaluated to 1 (True),

in which case the conditional statement following the THEN is performed. If the expression

result was a 0 (False), the conditional statement is skipped.

Instructions
 39

Example:

if i j
then say 'equal'
else say 'not equal'

4-30 TRACE

Usage: TRACE [symbol I string I [tvALUE] expression]]
The TRACE instruction is used to set the internal tracing mode. If a symbol or string is
supplied, it is taken as a literal. Otherwise, the tokens following the VALUE keyword are
evaluated as an expression. The VALUE keyword can be omitted if the expression doesn't
start with a symbol or string token.

In either case the result string is converted to uppercase and checked first for one
of the "alphabetic" options. The valid alphabetic options are ALL, COMMANDS, ERRORS,
INTERMEDIATES, LABELS, RESULTS, and SCAN. These can be spelled out in full or shortened
to the initial character, and are described in Chapter 7. If the result doesn't match any of
these options, the interpreter attempts to convert it to an integer. A conversion failure here
will be reported as an error.

Prefix Characters. Two special symbol characters may precede any of the alphabetic
keywords. The' "?" character controls interactive tracing, and the"!" character controls
command inhibition. These characters act as "toggles" to alternatively select and de-select
the respective modes. Any number of prefix characters may precede an alphabetic option.
Interactive tracing and command inhibition are described in Chapter 7.

Numeric Option. If the specified trace option is a negative whole number, it is accepted
as a trace suppression count. The suppression count is the number of clauses (that would
otherwise be traced) to be passed over before resuming the tracing display. Suppression
counts are ignored except during interactive tracing.
Examples:

trace ?r 1* interactive RESULTS *1
trace off
trace -20 1* skip 20 clauses *1

4-31 UPPER

Usage: UPPER variable [variable ...]

The values of the variables in the list are converted to uppercase. It is not an error to

include an uninitialized variable in the list, but it will be trapped if the NOVALUE interrupt

has been enabled.

The TRANSLATEO or UPPER 0 Built-In functions could also be used to convert variables
to uppercase, but the instruction form is more concise (and faster) if several variables are
being converted.

Chapter 4 40

Example:

when = 'Now is the time'

upper when

say when 1* NOW IS THE TIME *1

4-32 WHEN

Usage: WHEN expression {rHEN [;} [conditional statement}}
The WHEN instruction is similar to the IF instruction, but is valid only within a SELECT
range. Each WHEN expression is evaluated in turn and must result in a boolean value. If the
result is a 1, the conditional statement is executed and control passes to the END statement
that terminates the SELECT. As in the case of the IF instruction, the THEN need not be part
of the same clause.
Example:

select;

when i<j then say 'less'

when i=j then say 'equal'

otherwise say 'greater'

end

Instructions 41

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

Chapter 5

Commands

The REXX language is unusual in that an entire syntactic class of program statements
are reserved for commands, statements that have meaning not within the language itself
but rather to an external program. When a command clause is found in a program, it
is evaluated as an expression and then sent through the command interface to an explicit
or implicit host application, an external program that has announced its ability to receive
commands. The host application then processes the command and returns a result code
that indicates whether the command was performed successfully. In this manner every host
program becomes fully programmable, and with even a limited set of predefined operations
can be customized by the end user.

This chapter discusses the ARexx command interface and examines some of the ways
in which commands can be used to build programs for an external program. Such programs
are often called "macro programs" because they implement a complex ("macro") action
from a series of simpler "micro" commands.

Chapter 10 has detailed information on the data structures required to implement a
command interface for an applications program.

5-1 Command Clauses

Syntactically, a command clause is just an expression that can't be classified as another
type of clause. The actual structure of the command is dictated by the external host to
which it is intended, but in most cases will follow the model of a name or letter followed by
parameter data. Command names can be given as either a symbol or a string. However,
it is generally safer to use a string for the name, since it can't be assigned a value or be
mistaken for an instruction keyword. For example, the following might be commands for a
text editor:

JUMP current+10 1* advance to next
'insert' nevstring 1* blast it in
'TOP' 1* back to the top

Since command clauses are expressions, they are fully evaluated before being sent to the
host. Any part of the final command string can be computed within the program, so
virtually any sort of command structure can be created.

The interpretation of the received commands depends entirely on the host application.
In the simplest case the command strings will correspond exactly to commands that could
be entered directly by a user. For instance, positional control (up/down) commands for
a text editor would probably have identical interpretations whether issued by the user or
from a program. Other commands may be valid only when issued from a macro program;
a command to simulate a menu operation would probably not be entered by the user.

Commands 43

5-2 The Host Address

The destination for a command is determined by the current host address, which is the
name of the public message port managed by an external program. ARexx maintains two
implicit host addresses, a "current" and a "previous" value, as part of the program's storage
environment. These values can be changed at any time using the ADDRESS instruction (or
its synonym, SHELL,) and the current host address can be inspected with the ADDRESSO
Built-In function. The default host address string is "REXX", but this can be overridden
when a program is invoked. In particular, most host applications will supply the name of
their public port when they invoke a macro program, so that the macro can automatically
issue commands back to the host.

One special host address is recognized: the string COMMAND indicates that the command
should be issued directly to the underlying DOS. All other host addresses are assumed to
refer to a public message port. An attempt to send a command to a non-existent message
port will generate the syntax error "Host environment not found."

Single commands can be sent to a specific host without disturbing the host address
settings. This is done using the ADDRESS instruction, as the following example illustrates:

ADDRESS MYEDIT 'jump top'

This example would send the command "jump top" to an external host named "MYEDIT."

It is important to note that you cannot send commands to a host application without
knowing the name of its public message port. Writing macro programs to communicate
with two or more hosts may require some clever programming to determine whether both
hosts are active and what their respective host addresses are.

5-3 The Command Interface

ARexx implements its command interface using the message-pa~sing facilities provided by
the EXEC operating system. Each host application must provide a public message port,
the name of which is referred to as the host address. ARexx programs issue commands
by placing the command string in a message packet and sending the packet to the host's
message port. The program "sleeps" while the host processes the command, and awakens
when the message packet returns. The entire process can be regarded as a dialogue between
the host application and a macro program: the host initiates the dialogue by invoking the
macro, and the macro program replies with one or more command strings. The commands
that can be sent are not limited to simple text strings, but might be address pointers or
even bit-mapped images.

After it finishes processing a command, the host "replies" the message packet with a
return code that indicates the status of the command. This return code is placed in the
ARexx special variable RC so that it can be examined by the program. A value of zero is
assumed to mean that no errors occurred, while positive values usually indicate progressively
more severe error conditions. The return code allows the macro program to determine
whether the command succeeded and to take action if it failed, so it is important for each
applications program to document the meanings of the return codes for its commands.

Chapter 5 44

5-4 Using Commands in Macro Programs

ARexx can be used to write programs for any host application that includes a suitable
command interface. Some applications programs are designed with an embedded macro
language, and may include many predefined macro commands. \Vith a well-designed macro
language interface the user will be usually be unaware of whether a given action is imple'
mented as a primitive operation or as a macro program.

The starting point in designing a macro program is to examine the commands that
would be required to perform it manually. The documentation for the host application pro­
gram should then describe the possible return codes for each command; these codes can be
used to determine whether the operation performed by the command was successful. Check
also for "shortcut" commands that may be available only to macro programs; some appli­
cations programs may include very powerful functions that were implemented specifically
for use in macro programs.

5-5 Using ARexx with Command Shells

Although ARexx was designed to work most effectively with programs that support its
specific command interface, it can be used with any "command shell" program that uses
standard I/O mechanisms to obtain its input stream. There are several ways to use ARexx
to prepare a stream of commands for such program.

One obvious technique is to create an actual command file on the "RAM:" disk and
then pass it directly to the command shell. For example, you could open a new CLI window
to run a standard "execute" script using the following short program:

/* Launch a new CLI */
address command
conwindow ="CON;O/O/640/100/NewOne"

/* create a command file on the fly */
call open out,"ram:$$temp",write
call writeln out, 'echo "this is a test'"
call close out

/* open the new CLI window */
'newcli' conwindow "ram:$$temp"
exit

Since no disk accesses are required, this method is actually fairly fast, if not very elegant.

Another alternative is to use the command stacking facility provided by the PUSH and
QUEUE instructions. These instructions allow an ARexx program to stack an arbitrary
stream of commands and data for the command shell or other program to read. Any set
of commands that could be "typed ahead" at a command prompt can be prepared in this
fashion. After the ARexx program exits, the next program that uses the input stream will
read the prepared commands and can process them in the normal fashion.

Commands 45

5-6 Command Inhibition

Sometimes it is necessary to write and test macro programs that issue potentially destructive
commands. For instance, a program to find and delete unneeded files would be difficult to
test safely, since it might accidentally delete the wrong files and would require a continual
source of new files for testing.

To simplify the development and testing of such programs, ARexx provides a special
tracing mode called command inhibition that suppresses host commands. While in com­
mand inhibition mode, command processing proceeds normally except that the command
is not actually issued and the variable RC is set to O. This allows the program logic to be
verified before any commands are actually sent to the external program. Chapter 7 has
further information on this facility.

Chapter 5 46

Chapter 6

Functions

The basic concept of a function is a program or group of statements that will be executed
whenever the function name appears in a certain context. Functions are an important
building block of most computer languages in that they allow modular programming - the
ability to build a large program from a series of smaller, more easily developed modules. In
ARexx a function may be defined as part of (internal to) a program, as part of a library, or
as a separate external program.

6-1 Syntax and Search Order

Function calls in an expression are defined syntactically as a symbol or string followed
immediately by an open parenthesis. The symbol or string (taken as a literal) specifies the
function name, and the open parenthesis begins the argument list. Between the opening and
eventual dosing parentheses are zero or more argument expressions, separated by commas,
that supply the data being passed to the function. For example,

CENTER('title'.20)
ADDRESS 0
'AllocMem'(256*4.1)

are all valid function calls. Each argument expression is evaluated in turn and the resulting
strings are passed as the argument list to the function. There is no limit to the number
of arguments that may be passed to an internal function, but calls to Built-In or external
functions are limited to a maximum of 15 arguments. Note that each argument expression,
while often just a single literal value, can include arithmetic or string operations or even
other function calls. Argument expressions are evaluated from left to right.

Functions can also be invoked using the CALL instruction. The syntax of this form is
slightly different, and is described in Chapter 4. The CALL instruction can be used to invoke
a function that may not return a value.

Search Order

Function linkages in ARexx are established dynamically at the time of the function call.
A specific search order is followed until a function matching the name symbol or string is
found. If the specified function cannot be located, an error is generated and the expression
evaluation is terminated. The full search order is:

1. 	 Internal Functions. The program source is examined for a label that matches the
function name. If a match is found, a new storage environment is created and control
is transferred to the label.

2. Built-In Functions. The Built-In function library is searched for the specified name. All
of these functions are defined by uppercase names, and the library has been specially
organized to make the search as efficient as possible.

Functions 47

http:CENTER('title'.20

3. 	 Function Libraries and Function Hosts. The available function libraries and function
hosts are maintained in a prioritized list, which is searched starting at the highest
priority until the requested function is found or the end of the list is reached. Each
function library is opened and called at a special entry point to determine whether
it contains a function matching the given name. Function hosts are called using a
message-passing protocol similar to that used for commands, and may be used as
gateways for remote procedure calls to other machines in a network.

4. 	 External ARexx Programs. The final search step is to check for an external ARexx
program file by sending an invocation message to the ARexx resident process. The
search always begins in the current directory, and follows the same search path as the
original ARexx program invocation. The name matching process is not case-sensitive.

Note that the function name-matching procedure may be case-sensitive for some of the
search steps but not for others. The matching procedure used in a function library or
function host is left to the discretion of the applications designer. Functions defined with
mixed-case names must be called using a string token, since symbol names are always
translated to uppercase.

The full search order is followed whenever the function name is defined by a symbol
token. However, the search for internal functions is bypassed if the name is specified by a
string token. This allows internal functions to usurp the names of external functions, as in
the following example:

CENTER: 1* internal "CENTER" *1

arg string , length 1* get arguments *1

length =min(length,60) 1* compute length *1

return 'CENTER'(string,length)

Here the Built-In function CENTERO has been replaced by an internal function of the same
name, which calls the original function after modifying the length argument.

Internal Functions

The interpreter creates a new storage environment when an internal function is called, so
that the previous (caller's) environment is preserved. The new environment inherits the
values from its predecessor, but subsequent changes to the environment variables do not
affect the previous environment. The specific values that are preserved are:

• The current and previous host addresses,

• The NUMERIC DIGITS, FUZZ, and FORM settings,

• The trace option, inhibit flag, and interactive flag,

• 	 The state of the interrupt flags defined by the SIGNAL instruction, and

• 	 The current prompt string as set by the OPTIONS PROMPT instruction.

The new environment does not automatically get a new symbol table, so initially all of the
variables in the previous environment are available to the called function. The PROCEDURE

Chapter 6 48

instruction can be used to create a new symbol table and thereby protect the caJler's symbol
values.

Execution of the internal function proceeds until a RETURN instruction is executed.
At this point the new environment is dismantled and control resumes at the point of the
function caJl. The expression supplied with the RETURN instruction is evaluated and passed
back to the caJler as the function result.

Built-In Functions

ARexx provides a substantial library of predefined functions as part of the language system.
These functions are always available and have been optimized to work with the internal
data structures. In general the Built-In functions execute much faster than an equivalent
interpreted function, so their usage is strongly recommended.

The Built-In Function Library is not user-extensible, but additional functions will be
included in later releases.

External Function Libraries

External function libraries provide a mechanism with which users and applications develop­
ers can extend the functionality of ARexx. A function library is a collection of one or more
functions together with a "query" entry point that serves to match a name string with the
appropriate function. External function libraries are supported as standard Amiga shared
libraries, and may be either memory or disk-resident. Disk-resident libraries are loaded and
opened as needed.

The ARexx resident process maintains a list, caJled the Library List, of the currently
available function libraries and function hosts. Applications programs can add or remove
function libraries as required. The Library List is maintained as a priority-sorted queue,
and entries can be added at an appropriate priority to control the function name resolution.
Libraries with higher priorities are searched first; within a given priority level, those libraries
added first are searched first.

During the search process the ARexx interpreter opens each library and caJls its "query"
entry point. The query function must then check to see whether the requested function name
is in the library. If not, it returns a "function not found" error code and the search continues
with the next library in the list. Function libraries are always closed after being checked so
that the operating system can reclaim the memory space if required. Once the requested
function has been found, it is caJled with the arguments passed by the interpreter, and must
return an error code and a result string.

The ARexx language system includes an external function library in a file caJled
"rexxsupport . library." It contains a number of Amiga-specific functions and is described
in Appendix D. Chapter 10 provides information on designing and implementing function
libraries.

Functions 49

Function Hosts

Function hosts are called by sending a function invocation message packet to the public
message port identified by the host's name. No constraints are imposed on the internal
design of the host except that it must eventually return the invocation message with an
appropriate return code and result string. The function call may result in a new program
being loaded and run, or might even be sent to a network handler as a remote procedure
call.

The available function hosts, along with the function libraries, are contained in the
Library List maintained by the resident process. This list provides a general mechanism for
resolving function names in a priority-controlled manner.

The ARexx resident process is an example of a function host. It is added to the Library
List at a nominal priority of -60 when the resident process is started, using the same name
("REXX") that is used for command invocations. When it receives a function invocation
packet, it searches for an external file matching the function name, just as it would for a
command invocation of the same name. In particular, the search begins with the current
directory and proceeds to the system REXX: directory. Two names are used in the search:
the function name with the current file extension appended, and the name by itself. The
name matching process is not case-sensitive, but is affected by the presence of explicit
directory specifications or file extensions in the name string. The rules governing the search
for external programs are covered in Chapter 9.

External programs are always run as a separate process in the Amiga's multitasking
system. The calling program "sleeps" until the called function finishes and the message
packet returns. The result string and error code are returned in the packet.

6-2 The Built-In Function Library

This section of the chapter is devoted to descriptions of the individual Built-In functions,
which are listed alphabetically. Many of the functions have optional as well as required
arguments. The optional arguments are shown in brackets, and generally have a default
value that is used if the argument is omitted.

Maximum Arguments. While internal functions can be called with any number of argu­
ments, the Built-In functions (and external functions as well) are limited to a maximum of
15 arguments.

Pad and Option Characters. For functions that accept a "pad" character argument,
only the first character of the argument string is significant. If a null string is supplied,
the default padding character (usually a blank) will be used. Similarly, where an option
keyword is specified as an argument, only the first character is significant. Option keywords
may be given in uppercase or lowercase.

I/O Support Functions. ARexx provides functions for creating and manipulating exter­
nal DOS files. The functions available at the present time are OPENO, CLOSEO, READCHO,
READLN 0, WRITECH 0, WRITELN (), EOF 0, SEEK 0, and EXISTS (). Files are referenced by
a "logical name," a case-sensitive name that is assigned to a file when it is first opened.

Chapter 6 50

There is no limit to the number of files that may be open simultaneously, and all open files

are closed automatically when the program exits.

Bit-Manipulation Functions. The functions BITCHGO, BITCLRO, BITCOMPO, BIT­

SET 0, and BITTST 0 are provided to implement extended bit-testing on character strings.

These functions differ from similar string-manipulation functions in that the elementary

unit of comparison is the bit rather than the byte. Bit numbers are defined such that bit 0

is the low-order bit of the rightmost byte of the string.

ABBREVO

Usage: ABBREV(stringl,string2,{lengthj)

Returns a boolean value that indicates whether string2 is an abbreviation of stringl with

length greater than or equal to the specified length argument. The default length is 0, so

the null string is an acceptable abbreviation.

Examples:

say abbrev('fullname' ,'ful') ==> 1

say abbrev('almost','alm' ,4)
 ==> °
sayabbrev('any',") ==> 1

ABSO

Usage: ABS(number)

Returns the absolute value of the numbe.r argument, which must be numeric.

Examples:

say abs(-5.35) ==> 5.35

say abs(10) ==> 10

ADDLIBO

Usage: ADDLIB (name,priority,[offset, versionj)
Adds a function library or a function host to the Library List maintained by the resident
process. The name argument specifies either the name of a function library or the public
message port associated with a function host. The name is case-sensitive, and any libraries
thus declared should reside in the system LIBS: directory. The priority argument specifies
the search priority and must be an integer between 100 and -100, inclusive. The offset and
version arguments apply only to libraries. The offset is the integer offset to the library's
"query" entry point, and the version is an integer specifying the minimum acceptable release
level of the library.

The function returns a boolean result that indicates whether the operation was suc­
cessful. Note that if a library is specified, it is not actually opened at this time; similarly,
no check is performed as to whether a specified function host port has been opened yet.
Example:

say addlib(lrexxsupport.library",0,-30,0) ==> 1

call addlib "EtherNet" ,-20 1* a gate'\lay *1

Functions 51

http:abs(-5.35

ADDRESSO

Usage: ADDRESS 0
Returns the current host address string. The host address is the message port to which
commands will be sent. THe SHOWO function can be used to check whether the required
external host is actually available.
See Also: SHOW 0
Example:

say address() ==> REXX

ARGO

Usage: ARG([numberj,['Exists' I 'Omitted' j)
ARGO returns the number of arguments supplied to the current environment. If the number
parameter alone is supplied, the corresponding argument string is returned. If a number
and one of the keywords Exists or Omitted is given, the boolean return indicates the status
of the corresponding argument. Note that the existence or omission test does not indicate
whether the string has a null value, but only whether a string was supplied.
Examples:

/* Assume arguments were: ('one' , ,10) */

say argO ==> 3

say arg(1) ==> one

say arg(2, '0') ==> 1

B2C()

Usage: B2C(string)
Converts a string of binary digits (0, 1) into the corresponding (packed) character repre­
sentation. The conversion is the same as though the argument string had been specified as
a literal binary string (e.g. '1010'B). Blanks are permitted in the string, but only at byte
boundaries. This function is particularly useful for creating strings that are to be used as
bit masks.
See Also: X2CO
Examples:

say b2c('00110011') ==> 3

say b2c('01100001') ==> a

BITANDO

Usage: BITAND(stringl,string2,[padj)
The argument strings are logically ANDed together, with the length of the result being
the longer of the two operand strings. If a pad character is supplied, the shorter string is
padded on the right; otherwise, the operation terminates at the end of the shorter string
and the remainder of the longer string is appended to the result.
Example:

bitand('0313'x,'FFFO'x) ==> '0310'x

Chapter 6 52

BITCHGO

Usage: BITCHG(string,bit)
Changes the state of the specified bit in the argument string. Bit numbers are defined such

that bit 0 is the low-order bit of the rightmost byte of the string.

Example:

bitchg('0313'x,4) ==> '0303'x

BITCLRO

Usage: BITCLR(string,bit)
Clears (sets to zero) the specified bit in the argument string. Bit numbers are defined such

that bit 0 is the low-order bit of the rightmost byte of the string.

Example:

bitclr('0313'x,4) ==> '0303'x

BITCOMPO

Usage: BITCOMP(stringl,string2,[padj)
Compares the argument strings bit-by-bit, starting at bit number O. The returned value is
the bit number of the first bit in which the strings differ, or -1 if the strings are identical.
Examples:

bitcomp('7F'x,'FF'x) ==> 7

bitcomp('FF'x.'FF'x) ==> -1

BITORO

Usage: BITOR(stringl,string2,[padj)
The argument strings are logically ORed together, with the length of the result being the
longer of the two operand strings. If a pad character is supplied, the shorter string is padded
on the right; otherwise, the operation terminates at the end of the shorter string and the
remainder of the longer string is appended to the result.
Example:

bitor('0313'x.'003F'x) ==> '033F'x

BITSETO

Usage: BITSET(string,bit)
Sets the specified bit in the argument string is 1. Bit numbers are defined such that bit 0

is the low-order bit of the rightmost byte of the string.

Example:

bitset('0313'x.2) ==> '0317'x

BITTSTO

Usage: BITTST(string, bit)

The boolean return indicates the state of the specified bit in the argument string. Bit

Functions
 53

numbers are defined such that bit 0 is the low-order bit of the rightmost byte of the string.

Example:

bittst('0313'x,4) ==> 1

BITXOR()

Usage: BITAND(stringl,string2,[padj)
The argument strings are logically exclusively-ORed together, with the length of the result
being the longer of the two operand strings. If a pad character is supplied, the shorter striIlg
is padded on the right; otherwise, the operation terminates at the end of the shorter string
and the remainder of the longer string is appended to the result.
Example:

bitxor('0313'x,'001F'x) ==> '030C'x

C2BO

Usage: C2B (string)

Converts the character string into the equivalent string of binary digits.

See Also: C2XO

Example:

say c2b(' abc') ==> 011000010110001001100011

C2DO

Usage: C2D(string,[nj)

Converts the string argument from its character representation to the corresponding decimal

number, expressed as ASCII digits (0-9). If n is supplied, the character string is considered

to be a number expressed in n bytes. The string is truncated or padded with nulls on the

left as required, and the sign bit is extended for the conversion.

Examples:

say c2d('0020'x) ==> 32

say c2d(> FFFF') ==> -1

say c2d('FF0100'x,2) ==> 256

C2X()

Usage: C2X(string)

Converts the string argument from its character representation to the corresponding hex­

adecimal number, expressed as the ASCII characters 0-9 and A-F.

See Also: C2B 0

Example:

say c2x('abc') ==> 616263

Chapter 6 54

CENTERO or CENTREO

Usage: CENTER(string,length,[padj) or CENTRE(string,length,[padj)

Centers the string argument in a string with the specified length. If the length is longer

than that of the string, pad characters or blanks are added as necessary.

Examples:

say center('abc',6) ==> ' abc

say center('abc',6,'+') ==> '+abc++'

say center('123456',3) ==> '234'

CLOSEO

Usage: CLOSE(file)
Closes the file specified by the given logical name. The returned value is a boolean success

flag, and will be 1 unless the specified file was not open.

Example:

say close('input') ==> 1

COMPRESSO

Usage: COMPRESS (string,[listj)

If the list argument is omitted, the function removes leading, trailing, or embedded blank

characters from the string argument. If the optional list is supplied, it specifies the characters

to be removed from the string.

Examples:

say compress(' vhy not ') ==> vhynot

say compress('++12-34-+','+-') ==> 1234

COMPAREO

Usage: COMPARE(stringl,string2,[padj)
Compares two strings and returns the index of the first position in which they differ, or
o if the strings are identical. The shorter string is padded as required using the supplied

character or blanks.

Examples:

say compare('abcde','abcce') ==> 4

say compare('abcde','abcde') ==> 0

say compare('abc++','abc+-','+') ==> 5

COPIESO

Usage: COPIES(string,number)
Creates a new string by concatenating the specified number of copies of the original. The
number argument may be zero, in which case the null string is returned.

Functions 55

Example:

say copies('abc',3) ==> abcabcabc

D2CO

Usage: D2C(number)
Creates a string whose value is the binary (packed) representation of the given decimal

number.

Example:

d2c(31) ==> '1F'x

DATATYPEO

Usage: DATATYPE(string,[optionj)

If the option parameter is not specified, DATATYPEO tests whether the string parameter is a

valid number and returns either NUM or CHAR. If an option keyword is given, the boolean re­

turn indicates whether the string satisfied the requested test. The following option keywords

are recognized:

Table 6.1 DATATYPEO Options
Keyword
Alphanumeric

Binary
Lowercase
Mixed
Numeric
Symbol
Upper
Whole
X

Examples:

say datatype('123')
say datatype('la f2','x')
say datatype('aBcde','L')

DELSTRO

Usage: DELSTR(string,n,{length})

Characters Accepted
Alphabetics (A-Z,a-z)
or Numerics (0-9)
Binary Digits String
Lowercase Alphabetics (a-z)
Mixed Upper/Lowercase
Valid Numbers
Valid REXX Symbols
Uppercase Alphabetics (A-Z)
Integer Numbers
Hex Digits String

==> NUM
==> 1

==> 0

Deletes the substring of the string argument beginning with the nth character for the
specified length in characters. The default length is the remaining length of the string.

Example:

say delstr('123456',2,3) ==> 156

Chapter 6 56

DELWORDO

Usage: DELWORD(string,n,{lengthj)

Deletes the substring of the string argument beginning with the nth word for the specified

length in words. The default length is the remaining length of the string. The deleted string

includes any trailing blanks following the last word.

Examples:

say delword('Tell me a story' ,2,2) ==> 'Tell story'

say delword('one two three'.3) ==> 'one two'

EOFO

Usage: EOF(file)

Checks the specified logical file name and returns the boolean value 1 (True) if the end-of­

file has been reached, and 0 (False) otherwise.

Example:

say eof(infile) ==> 1

ERRORTEXTO

Usage: ERRORTEXT(n)

Returns the error message associated with the specified ARexx error code. The null string

is returned if the number is not a valid error code.

Example:

say errortext(41) ==> Invalid expression

EXISTSO

Usage: EXISTS(filename)

Tests whether an external file of the given filename exists. The name string may include

device and directory specifications.

Example:

say exists('dfO:c/ed') ==> 1

EXPORTO

Usage: EXPORT (address,[stringj,{lengthj,[padj)

Copies data from the (optional) string into a previously-allocated memory area, which must

be specified as a 4-byte address. The length parameter specifies the maximum number of

characters to be copied; the default is the length of the string. If the specified length is

longer than the string, the remaining area is filled with the pad character or nulls (' 00' x).

The returned value is the number of characters copied.

Caution is advised in using this function. Any area ofmemory can be overwritten,
possibly causing a system crash. Task switching is forbidden while the copy is being done,
so system performance may be degraded if long strings are copied.
See Also: IMPORT 0 , STORAGEO

Functions 57

Example:

count = export('0004 OOOO'x,'The answer')

FREESPACEO

Usage: FREESPACE (address, length)
Returns a block of memory of the given length to the interpreter's internal pool. The
address argument must be a 4-byte string obtained by a prior call to GETSPACEO, the
internal allocator. It is not always necessary to release internally-allocated memory, since
it will be released to the system when the program terminates. However, if a very large
block has been allocated, returning it to the pool may avoid memory space problems. The
return value is a boolean success flag.
See Also: GETSPACEO
Example:

say freespace('00042000'x,32) ==> 1

GETCLIPO

Usage: GETCLIP (name)

Searches the Clip List for an entry matching the supplied name parameter, and returns the

associated value string. The name-matching is case-sensitive, and the null string is returned

if the name cannot be found. The usage and maintenance of Clip List entries is described

in the Chapter 9.

See Also: SETCLIP ()

Example:

1* Assume 'numbers' contains 'PI=3.14159' *1

say getclip('numbers') ==> PI=3.14159

GETSPACE()

Usage: GETSPACE(length)
Allocates a block of memory of the specified length from the interpreter's internal pool.
The returned value is the 4-byte address of the allocated block, which is not cleared or
otherwise initialized. Internal memory is automatically returned to the system when the
ARexx program terminates, so this function should not be used to allocate memory for
use by external programs. The Support Library (described in Appendix D) includes the
function ALLOCMEMO which to allocate memory from the system free list.
See Also: FREESPACEO
Example:

say c2x(getspace(32» ==> '0003BF40'x

HASHO

Usage: HASH (string)

Returns the hash attribute of a string as a decimal number, and updates the internal hash

value of the string.

Chapter 6 58

Example:

say hash(' 1') ==> 49

IMPORTO

Usage: IMPORT(address,[lengthj)
Creates a string by copying data from the specified 4-byte address. If the length parameter

is not supplied, the copy terminates when a null byte is found.

See Also: EXPORTO

Example:

extval = import('0004 0000'x,8)

INDEXO

Usage: INDEX (string,pattem,[startj)

Searches for the first occurrence of the pattem argument in the string argument, beginning

at the specified start position. The default start position is 1. The returned value is the

index of the matched pattern, or 0 if the pattern was not found.

Examples:

say index(11234561 ,"23") ==> 2

say index("123456","77") ==> 0

say index("1231231 ,123",3) ==> 5

INSERTO

Usage: INSERT (new, old, [start}, (length},[padj)

Inserts the new string into the old string after the specified start position. The default

starting position is O. The new string is truncated or padded to the specified length as

required, using the supplied pad character or blanks. If the start position is beyond the end

of the old string, the old string is padded on the right.

Examples:

say insert('ab','12345') ==> ab12345

say insert('123','++' ,3,5,'-') ==> ++-123-­

LASTPOSO

Usage: LASTPOS(pattem,string,[startj)

Searches backwards for the first occurrence of the pattern argument in the string argument,

beginning at the specified start position. The default starting position is the end of the

string. The returned value is the index of the matched pattern, or 0 if the pattern was not

found.

Functions 59

Examples:

say lastpos("123234", "2") ==> 4

say lastpos("123234","5") ==> 0

say lastpos("1232341 ,"2",3) ==> 2

LEFTO
Usage: LEFT(string,length,[padJ)

Returns the leftmost substring in the given string argument with the specified length. If

the substring is shorter than the requested length, it is padded on the left with the supplied

pad character or blanks.

Examples:

say left('123456',3) ==> 123

say left('123456',8,'+') ==> 123456++

LENGTHO
Usage: LENGTH(string)
Returns the length of the string.
Example:

say length('three') ==> 5

MAXO

Usage: MAX(number,number[,number, ... j)
Returns the maximum of the supplied arguments, all of which must be numeric. At least

two parameters must be supplied.

Example:

say max(2.1,3.-1) ==> 3

MINO

Usage: MIN (number, number[, number, ... J)

Returns the minimum of the supplied arguments, all of which must be numeric. At least

two parameters must be supplied.

Example:

say min(2.1,3,-1) ==> -1

OPENO
Usage: OPEN (file,filename,[' Append' I ' Read' I 'Write'j)
Opens an external file for the specified operation. The file argument defines the logical
name by which the file will be referenced. The filename is the external name of the file, and
may include device and directory specifications. The function returns a boolean value that
indicates whether the operation was successful. There is no limit to the number of files that

Chapter 6 60

can be open simultaneously, and all open files are closed automatically when the program

exits.

See Also: CLOSEO, READ ° , WRIrEO

Examples:

say open('MyCon','CON:160/50/320/100/MyCon/cds') ==> 1

say open('outfile','ram:temp','\I') ==> 1

OVERLAYO

Usage: OVERLAY (new, old,[startJ, [length},[padj)

Overlays the new string onto the old string beginning at the specified start position, which

must be positive. The default starting position is 1. The new string is truncated or padded

to the specified length as required, using the supplied pad character or blanks. If the start

position is beyond the end of the old string, the old string is padded on the right.

Examples:

say overlay('bb' , ' abcd') =;;> bbcd

say overlay('4','123' ,5,5,'-') ==> 123--4---­

POSO

Usage: POS(pattern,string,[startj)

Searches for the first occurrence of the pattern argument in the string argument, beginning

at the position specified by the start argument. The default starting position is 1. The

returned value is the index of the matched string, or 0 if the pattern wasn't found.

Examples:

say pos('23','123234') ==> 2

say pos('77','123234') ;;=> 0

say pos('23','123234',3) ;;;;> 4

PRAGMAO

Usage: PRAGMA (option,[valueJ)
This function allows a program to change various attributes relating to the system environ­
ment within which the program executes. The option argument is a keyword that specifies
an environmental attribute; the currently implemented options are Directory and Pri ­
0rity. The value argument supplies the new attribute value to be installed. The value
returned by the function depends on the attribute selected. Some attributes return the
previous value installed, while others may simply set a boolean success flag. The currently
defined option keywords are listed below .

• 	Directory. Specifies a new "current" directory. The current directory is used as the
"root" for filenames that do not explicitly include a device specification. The return
value is a boolean success flag .

• 	Priority. Specifies a new task priority. The priority value must be an integer in
the range -128 to 127, but the practical range is much more limited. ARexx pro­
grams should never be run at a priority higher than that of the resident process, which
currently runs at priority 4. The returned value is the previous priority level.

Functions 61

Examples:

say pragma('priority' ,-5) ==> 0

call pragma 'Directory' ,'dfO:system'

RANDOMO

Usage: RANDOM([minj,[maxj,[seedj)

Returns a pseudorandom integer in the interval specified by the min and max arguments.

The default minimum value is 0 and the default maximum value is 999. The interval max­

min must be less than or equal to 1000. If a greater range of random integers is required,

the values from the RANDUO function can be suitable scaled and translated.

The seed argument can be supplied to initialize the internal state of the random number
generator.
See Also: RANDUO
Example:

thisroll random(l,6) 1* might be 1 *1

nextroll random(l,6) 1* snake eyes? *1

RANDU()

U.9age: RANDU([.geedj)

Returns a uniformly-distributed pseudorandom number between 0 and 1. The number

of digits of precision in the result is always equal to the current Numeric Digits setting.

With the choice of suitable scaling and translation values, RANDU () can be used to generate

pseudorandom numbers on an arbitrary interval.

The optional seed argument is used to initialize the internal state of the random number
generator.
See Also: RANDOMO
Example:

firsttry = randu() 1* O.371902021? *1

numeric digits 3

tryagain = randu() 1* O.873? *1

READCHO

U.9age: READCH (jile,length)

Reads the specified number of characters from the given logical file into a string. The length

of the returned string is the actual number of characters read, and may be less than the

requested length if, for example, the end-of-file was reached.

See Also: READLN 0

Example:

instring readch('input',10)

Chapter 6 62

READLNO

Usage: READLN(file)
Reads characters from the given logical file into a string until a "newline" character is found.

The returned string does not include the "newline."

See Also: READCHO

Examples:

instring readln('MyFile')

REMLIBO

Usage: REMLIB(name)
Removes an entry with the given name from the Library List maintained by the resident
process. The boolean return is 1 if the entry was found and successfully removed. Note that
this function does not make a distinction between function libraries and function hosts, but
simply removes a named entry.
See Also: ADDLIBO
Example:

say remlib('MyLibrary.library') ==> 1

REVERSE()

Usage: REVERSE(string)
Reverses the sequence of characters in the string.
Example:

say reverse('?ton yhw') ==> why not?

RIGHTO

Usage: RIGHT(string,length,[padj)

Returns the rightmost substring in the given string argument with the specified length. If

the substring is shorter than the requested length, it is padded on the left with the supplied

pad character or blanks.

Examples:

say right('123456' ,4) ==> 3456

say right('123456' ,8,'+') ==> ++123456

SEEKO

Usage: SEEK (file,of{set,[' Begin' I 'Current' I 'End' j)

Moves to a new position in the given logical file, specified as an offset from an anchor

position. The default anchor is Current. The returned value is the new position relative

to the start of the file.

Examples:

say seek('input',10,'B') ==> 10

say seek('input',O,'E') ==> 356 1* file length *1

Functions 63

SETCLIPO

Usage: SETCLIP(name, (valuej)
Adds a name-value pair to the Clip List maintained by the resident process. If an entry of
the same name already exists, its value is updated to the supplied value string. Entries may
be removed by specifying a null value. The function returns a boolean value that indicates
whether the operation was successfuL
Examples:

say setclip ('path' , , dfO: s') ==> 1

say setclip('path') ==> 1

SHOWO

Usage: SHOW(option,{name],[pad))

Returns the names in the resource list specified by the option argument, or tests to see

whether an entry with the specified name is available. The currently implemented options

keywords are Clip, Files, Libraries, and Ports, which are described below.

• 	Clip. Examines the names in the Clip List.

• 	Files. Examines the names of the currently open logical file names.

• 	Libraries. Examines the names in the Library List, which are either function libraries
or function hosts.

• 	Ports. Examines the names in the system Ports List.

If the name argument is omitted, the function returns a string with the resource names
separated by a blank space or the pad character, if one was supplied. If the name argument
is given, the returned boolean value indicates whether the name was found in the resource
list. The name entries are case-sensitive.

SIGN(}

Usage: SIGN(number)

Returns 1 if the number argument is positive or zero, and -1 if number is negative. The

argument must be numeric.

Examples:

say sign(12) ==> 1

say sign(-33) ==> -1

SPACEO

Usage: SPACE (string, n, (pad))

Reformats the string argument so that there are n spaces (blank characters) between each

pair of words. If the pad character is specified, it is used instead of blanks as the separator

character. Specifying n as 0 will remove all blanks from the string.

Examples:

say space('Now is the time' ,3) ==> 'Now is the time'

say space('Now is the tirne,O) ==> ,Nowisthetirne'

say space('l 2 3',1,'+') ==> '1+2+3'

Chapter 6 64

STORAGEO

Usage: STORAGE([addressj,[stringj,{lengthj,[padj)

Calling STORAGEO with no arguments returns the available system memory. If the address

argument is given, it must be a 4-byte string, and the function copies data from the (op­

tional) string into the indicated memory area. The length parameter specifies the maximum

number of bytes to be copied, and defaults to the length of the string. If the specified length

is longer than the string, the remaining area is filled with the pad character or nulls (, 00' x.)

The returned value is the previous contents of the memory area. This can be used in
a subsequent call to restore the original contents.

Caution is advised in nsing this function. Any area of memory can be overwritten,
possibly causing a system crash. Task switching is forbidden while the copy is being done,
so system performance may be degraded if long strings are copied.
See Also: EXPORTO
Examples:

say storage() ==> 248400

oldval = storage('0004 OOOO'x,'The ansver')

call storage '0004 OOOO'x.,32,'+'

STRIPO

Usage: STRIP(string,[{'B' I 'L' I 'T'}j,[padj)

If neither of the optional parameters is supplied, the function removes both leading and

trailing blanks from the string argument. The second argument specifies whether Leading,

Trailing, or Both (leading and tralling) characters are to be removed. The optional pad

(or unpad, perhaps) argument selects the character to be removed.

Examples:

say stripe' say vhat? ') ==> ' say vhat?'

say stripe' say vhat? ','L') ==> 'say vhat?

say strip('++123+++' ,'B','+" ==> '123'

SUBSTRO

Usage: SUBSTR(string,start,{lengthj,[padj)

Returns the substring of the string argument beginning at the specified start position for

the specified length. The starting position must be positive, and the default length is the

remaining length of the string. If the substring is shorter than the requested length, it is

padded on the left with the blanks or the specified pad character.

Examples:

say substr('123456' ,4,2) ==> 45

say substrC'myname',3,6,'=') ==> name==

Functions 65

SUBWORDO

Usage: SUBWORD (string, n, [length))

Returns the substring of the string argument beginning with the nth word for the specified

length in words. The default length is the remaining length of the string. The returned

string will never have leading or trailing blanks.

Example:

say subword('Now is the time '.2.2) ==> is the

SYMBOLO

Usage: SYMBOL (name)

Tests whether the name argument is a valid REXX symbol. If the name is not a valid

symbol, the function returns the string BAD. Otherwise, the returned string is LIT if the

symbol is uninitialized and VAR if it has been assigned a value.

Examples:

say symbol('J') ==> VAR

say symbol ('x') ==> LIT

say symbol(' •• ') ==> BAD

TIMEO

Usage: TIME(option)
Returns the current system time or controls the internal elapsed time counter. The valid
option keywords are listed below.

Table 6.2 TIME() Options
Option Keyword Description
Elapsed Elapsed time in seconds
Hours Current time in hours since midnight
Minutes Current time in minutes since midnight
Reset Reset the elapsed time clock
Seconds Current time in seconds since midnight

If no option is specified, the function returns the current system time in the form HH: MM: SS.

Examples:

/* Suppose that the time is 1:02 AM */

say time('Hours') ==> 1

say time('m') ==> 62

say time('S') ==> 3720

call time 'R' /* reset timer */

say time('E') ==> .020

Chapter 6 66

TRACEO

Usage: TRACE(option)
Sets the tracing mode to that specified by the option keyword, which must be one of the
valid alphabetic or prefix options. The tracing options are described in Chapter 7. The
TRACEO function will alter the tracing mode even during interactive tracing, when TRACE
instructions in the source program are ignored. The returned value is the mode in effect
before the function call; this allows the previous trace mode to be restored later.
Example:

1* Assume tracing mode is ?ALL

say trace('Results') ==> ?A

TRANSLATEO

Usage: TRANSLATE(string,[outputj,[inputj,[padj)
This function constructs a translation table and uses it to replace selected characters in the
argument string. If only the string argument is given, it is translated to uppercase. If an
input table is supplied, it modifies the translation table so that characters in the argument
string that occur in the input table are replaced with the corresponding character in the
output table. Characters beyond the end of the output table are replaced with the specified
pad character or a blank.

Note that the result string is always of the same length as the original string. The
input and output tables may be of any length.
Examples:

say translate ("abcde" ,"123", "cbade". "+") ==> 321++

say translate("lov") ==> LOW

say translate("Oll0","10","01") ==> 1001

TRIMO

Usage: TRIM(string)

Removes trailing blanks from the string argument.

Example:

say length(trim(' abc ,» ==> 4

UPPERO

Usage: UPPER(string)

Translates the string to uppercase. The action of this function is equivalent to that of

TRANSLATE (string) , but it is slightly faster for short strings.

Example:

say upper('One Fine Day') ==> ONE FINE DAY

Functions 67

VALUE()

Usage: VALUE(name)

Returns the value of the symbol represented by the name argument.

Example:

1* Assume that J has the value 12 *1

say value (• j') ==> 12

VERIFYO

Usage: VERIFY (string,list,{' Match'})

If the Match argument is omitted, the function returns the index of the first character in

the string argument which is not contained in the list argument, or 0 if all of the characters

are in the list. If the Match keyword is supplied, the function returns the index of the first

character which is in the list, or 0 if none of the characters are.

Examples:

say verify('123456','0123456789') ==> 0

say verify('123a56' ,'0123456789') ==> 4

say verify('123a45' .'abcdefghij' ,'m') ==> 4

WORDO

Usage: WORD(string,n)

Returns the nth word in the string argument, or the null string if there are fewer than n

words.

Example:

say word('Now is the time ',2) ==> is

WORDINDEXO

Usage: WORD(string,n)
Returns the starting position of the nth word in the argument string, or 0 if there are fewer

than n words.

Example:

say wordindex('Now is the time ',3) ==> 8

WORDLENGTHO

Usage: WORDLENGTH (string, n)

Returns the length of the nth word in the string argument.

Example:

say wordlength('one two three',3) ==> 5

Chapter 6 68

WORDSO

Usage: WORDS(string)

Returns the number of words in the string argument.

Example:

say words("You don't say!") ==> 3

WRITECHO

Usage: WRlTECH(ftle,string)

Writes the string argument to the given logical file. The returned value is the actual number

of characters written.

Example:

say writech('output' ,'Testing') ==> 7

WRITELNO

Usage: WRITELN (ftle,string)

Writes the string argument to the given logical file with a "newline" appended. The returned

value is the actual number of characters written.

Example:

say writeln('output' ,'Testing') ==> 8

X2CO

Usage: X2C(string)
Converts a string of hex digits into the (packed) character representation. Blank characters

are permitted in the argument string at byte boundaries.

Examples:

say x2c(' 12ab') ==> '12ab'x

say x2c('12 ab') ==> '12ab'x

XRANGEO

Usage: XRANGE ([start],[endJ)

Generates a string consisting of all characters numerically between the specified start and

end values. The default start character is '00' x, and the default end character is 'FF' x.

Only the first character of the start and end arguments is significant.

Examples:

say xrangeO ==> '00010203 ... FDFEFF'x

say xrange('a','f') ==> 'abcdef'

say xrange(,'10'x) ==> '0001020304050607080910'x

Functions 69

Chapter 7

Tracing and Interrupts

ARexx provides tracing and source-level debugging facilities that are unusual in a high­
level language. Tmcing refers to the ability to display selected statements in a program as
the program executes. When a clause is traced, its line number, source text, and related
information are displayed on the console. The tracing action of the interpreter is determined
by a trace option that selects which source clauses will be traced, and two modifier flags
that control command inhibition and interactive tracing.

The internal interrupt system enables an ARexx program to detect certain synchronous
or asynchronous events and to take special actions when they occur. Events such as a syntax
error or an external halt request that would normally cause the program to exit can instead
be trapped so that corrective actions can be taken.

7-1 Tracing Options

Trace options are sometimes called an alphabetic options, since the keywords that select an
option can be shortened to one letter for convenience. The alphabetic options are:

• 	 ALL. All clauses are traced.

• 	 COMMANDS. All command clauses are traced before being sent to the external host.
Non-zero return codes are displayed on the console.

• 	 ERRORS. Commands that generate a non-zero return code are traced after the clause is
executed. ,

r
• 	 INTERMEDIATES. All clauses are traced, and intermediate results are lisplayed dur­

ing expression evaluation. These include the values retrieved for variap!es, expanded
compound names, and the results of function calls. I

• 	 LABELS. All label clauses are traced as they are executed. A label will be displayed
each time a transfer of control takes place.

• 	 NORMAL. Command clauses with return codes that exceed the current error failure level
are traced after execution, and an error message is displayed. This is the default trace
option.

• 	 RESULTS. All clauses are traced before execution, and the final result of each expression
is displayed. Values assigned to variables by ARG, PARSE, or PULL instructions are also
displayed.

• 	 SCAN. This is a special option that traces all clauses and checks for errors, but suppresses
the actual execution of the statements. It is helpful as a preliminary screening step for
a newly-created program.

The tracing mode can be set using either the TRACE instruction or the TRACEO Built-In
function. The RESULTS trace option is recommended for general-purpose testing. Tracing
can be selectively disabled from within a program so that previously-tested parts of a
program can be skipped.

Tracing and Interrupts 71

7-2 Display Formatting

Each trace line displayed on the console is indented to show the effective control (nesting)
level at that clause, and is identified by a special three-character code, as shown in Table 7.1
below. The source for each clause is preceded by its line number in the program. Expression
results or intermediates are enclosed in double quotes so that leading and trailing blanks
will be apparent.

Table 7.1 Tracing Prefix Codes
Code Displayed Values
+++ Command or syntax error
>C> EJ.:panded compound name
>F> Result of a function call
>L> Label clause
>0> Result of a dyadic operation
>P> Result of a prefix operation
>U> Uninitialized variable
>V> Value of a variable
»> Expression or template result
> • > "Placeholder" token value

Tracing Output

The tracing output from a program is always directed to one of two logical streams. The
interpreter first checks for a stream named STDERR, and directs the output there if the
stream exists. Otherwise the trace output goes to the standard output stream STDOUT and
will be interleaved with the normal console output of the program. The STDERR and STDOUT
streams can be opened and closed under program control, so the programmer has complete
control over the destination of tracing output.

In some cases a program may not have a predefined output stream. For example, a
program invoked from a host application that did not provide input and output streams
would not have an output console. To provide a tracing facility for such programs, the
resident process can open a special global tracing console for use by any active program.
When this console opens, the interpreter automatically opens a stream named STDERR for
each ARexx program in which STDERR is not currently defined, and the program then diverts
its tracing output to the new stream.

The global console can be opened and closed using the command utilities teo and
tee, respectively. The console may not close immediately upon request, however. The
resident process walts until all active programs have diverted their tracing streams back to
the default state before actually closing the console. Applications programs may provide
direct control over the tracing console by sending request packets to the resident process,
which is discussed in Chapter 10.

The trace stream (STDERR or STDOUT) is also used for trace input, so a program in
interactive tracing mode will wait for user input from this console. The global tracing
console is always shared among all currently active programs. Since it may be confusing to

Chapter 7 72

have several programs simultaneously writing writing to the same console, it is recommended
that only one program at a time be traced using the global console.

Command Inhibition

ARexx provides a tracing mode called command inhibition that suppresses host commands.
In this mode command clauses are evaluated in the normal manner, but the command is
not actually sent to the external host, and the return code is set to zero. This provides a
way to test programs that issue potentially destructive commands, such as erasing files or
formatting disks. Command inhibition does not apply to command clauses that are entered
interactively. These commands are always performed, but the value of the special variable
RC is left unchanged.

Command inhibition may be used in conjunction with any trace option. It is controlled
by the "!" character, which may appear by itself or may precede any of the alphabetic
options in a TRACE instruction. Each occurrence of the"!" character "toggles" the inhibition
mode currently in effect. Command inhibition is cleared when tracing is set to OFF.

7-3 Interactive Tracing

Interactive tracing is a debugging facility that allows the user to enter source statements
while a program is executing. These statements may be used to examine or modify variable
values, issue commands, or otherwise interact with the program. Any valid language state­
ments can be entered interactively, with the same rules and restrictions that apply to the
INTERPRET instruction. In particular, compound statements such as DO and SELECT must
be complete within the entered line.

Interactive tracing can be used with any of the trace options. While in interactive
tracing mode, the interpreter pauses after each traced clause and prompts for input with
the code "+++." At each pause, three types of user responses are possible:

• If a null line is entered, the program continues to the next pause point.

• If an "=" character is entered, the preceding clause is executed again.

• Any other input is treated as a 'debugging statement, and is scanned and executed.

The pause points during interactive tracing are determined by the tracing option cur­
rently in effect, as the interpreter pauses only after a traced clause. However, certain
instructions cannot be safely (or sensibly) re-executed, so the interpreter will not pause
after executing one of these. The "no-pause" instructions are CALL, DO, ELSE, IF, THEN, and
OTHERWISE. The interpreter will also not pause after any clause that generated an execution
error.

Interactive tracing mode is controlled by the "?" character, either by itself or in
combination with an alphabetic trace option. Any number of "?" characters may precede
an option, and each occurrence toggles the mode currently in effect. For example, if the
current trace option was NORMAL, then "TRACE ?R" would set the option to RESULTS and
select interactive tracing mode. A subsequent "TRACE 7" would turn off interactive tracing.

Tracing and Interrupts 73

Error Processing

The ARexx interpreter provides special error processing while it executes debugging state­
ments. Errors that occur during interactive debugging are reported, but do not cause the
program to terminate. This special processing applies only to the statements that were
entered interactively. Errors occurring in the program source statements are treated in the
usual way whether or not the interpreter is in interactive tracing mode.

In addition to the special error processing, the interpreter also disables the internal
interrupt flags during interactive debugging. This is necessary to prevent an accidental
transfer of control due to an error or uninitialized variable. However, if a "SIGNAL label"
instruction is entered, the transfer will take place, and any remaining interactive input will
be abandoned. The SIGNAL instruction can still be used to alter the interrupt flags, and
the new settings will take effect when the interpreter returns to normal processing.

The External Tracing Flag

The ARexx resident process maintains an external tracing flag that can be used to force
programs into interactive tracing mode. The tracing flag can be set using the ts command
utility. When the flag is set, any program not already in interactive tracing mode will enter
it immediately. The internal trace option is set to RESULTS unless it is currently set to
INTERMEDIATES or SCAN, in which case it remains unchanged. Programs invoked while the
external tracing flag is set will begin executing in interactive tracing mode.

The external tracing flag provides a way to regain control over programs that are caught
in loops or are otherwise unresponsive. Once a program enters interactive tracing mode,
the user can step through the program statements and diagnose the problem. There is one
caveat, though: external tracing is a global flag, so all currently-active programs are affected
by it. The tracing flag remains set until it is cleared using the "te" command utility. Each
program maintains an internal copy of the last state of the tracing flag, and sets its tracing
option to OFF when it observes that the tracing flag has been cleared.

7-4 Interrupts

ARexx maintains an internal interrupt system that can be used to detect and trap certain
error conditions. When an interrupt is enabled and its corresponding condition arises, a
transfer of control to the label specific to that interrupt occurs. This allows a program
to retain control in circumstances that might otherwise cause the program to terminate.
The interrupt conditions can caused by either synchronous events like a syntax error, or
asynchronous events like a "control-C" break request. Note that these internal interrupts are
completely separate from the hardware interrupt system managed by the EXEC operating
system.

The interrupts supported by ARexx are described below. The name assigned to each
is actually the label to which control will be tranferred. Thus, a SYNTAX interrupt will
transfer control to the label "SYNTAX:." Interrupts can be enabled or disabled using the
SIGNAL instruction. For example, the instruction "SIGNAL ON SYNTAX" would enable the
SYNTAX interrupt.

Chapter 7 74

• 	 BREAK_C. This interrupt will trap a control-C break request generated by DOS. If the
interrupt is not enabled, the program terminates immediately with the error message
"Execution halted" and returns with the error code set to 2.

• 	 BREAK-D. The interrupt will detect and trap a control-D break request issued by DOS.
The break request is ignored if the interrupt is not enabled.

• 	 BREAK..E. The interrupt will detect and trap a control-E break request issued by DOS.
The break request is ignored if the interrupt is not enabled.

• 	 BREAK...F. The interrupt will detect and trap a control-F break request issued by DOS.
The break request is ignored if the interrupt is not enabled.

• 	 ERROR. This interrupt is generated by any host command that returns a non-zero code.

• 	 HALT. An external halt request will be trapped if this interrupt is enabled. Otherwise,
the program terminates immediately with the error message "Execution halted" and
returns with the error code set to 2.

• 	 lOERR. Errors detected by the I/O system will be trapped if this interrupt is enabled.

• 	 NOVALUE. An interrupt will occur if an uninitialized variable is used while this condition
is enabled. The usage could be within an expression, in the UPPER instruction, or with
the VALUEO built-in function.

• 	 SYNTAX. A syntax or execution error will generate this interrupt. Not all errors such
errors can be trapped, however. In particular, certain errors occurring before a program
is actually executing, and those detected by the ARexx external interface, cannot be
trapped by the SYNTAX interrupt.

When an interrupt forces a transfer of control, all of the currently active control ranges
are dismantled, and the interrupt that caused the transfer is disabled. This latter action
is necessary to prevent a possible recursive interrupt loop. Only the control structures in
the current environment are affected, so an interrupt generated within a function will not
affect the caller's environment.

Special Variables. Two special variables are affected when an interrupt occurs. The
variable SlGL is always set to the current line number before the transfer of control takes
place, so that the program can determine which source line was being executed. \Vhen
an ERROR or SYNTAX interrupt occurs, the variable RC is set to the error code that caused
the condition. For ERROR interrupts this value will be a command return code, and can
usually be interpreted as an error severity level. The value for SYNTAX interrupts is always
an ARexx error code.

Interrupts are useful primarily to allow a program to take special error-recovery actions.
Such actions might involve informing external programs that an error occurred, or simply
reporting further diagnostics to help in isolating the problem. In the following example,
the program issues a "message" command to an external host called "My Edit" whenever a
syntax error is detected:

Tracing and Interrupts 75

/* A macro program for 'MyEdit' */
signal on syntax /* enable interrupt */

. (normal processing)

exit
syntax: /* syntax error detected*/

address 'MyEdit'
'message' 'error' rc errortext(rc)
exit 10

Chapter 7 76

Chapter 8

Parsing and Templates

Parsing is a operation that extracts substrings from a string and assigns them to variables.
It corresponds roughly to the notion of a "formatted read" used in other languages, but
has been generalized in the several ways. Parsing is performed using the PARSE instruction
or its variants ARG and PULL. The input for the operation is ca.lled the parse string and can
come from several sources; these source options are described with the PARSE instruction in
Chapter 4.

Parsing is controlled by a template, a group of tokens that specifies both the variables
to be given values and the way to determine the value strings. Templates were described
briefly with the PARSE instruction; the present chapter presents a more formal description
of their structure and operation.

String-manipulation functions like SUBSTRO and INDEXO could also be used for pars­
ing, but it is more efficient to use the instruction statements. This is especially true if many
fields are to be extracted from a string.

8-1 Template Structure

The tokens that are valid in a template are symbols, strings, operators, parentheses, and
commas. Any blanks that may be present as separators are removed before the template
is processed. The tokens in a template ultimately serve to specify one of the two basic
template objects:

• 	 Markers determine a scan position within the parse string, and

• 	 Targets are symbols to be assigned a value.

With these objects in mind, the parsing process can be described as one of associating with
each target a starting and ending position in the parse string. The substring between these
positions then becomes the value for the target.

Markers. There are three types of marker objects:

• 	 Absolute markers specify an actual index position in the parse string,

• 	 Relative markers specify a positive or negative offset from the current position, and

• 	 Pattern markers specify a position implicitly, by matching the pattern against the parse
string beginning at the current scan position.

Targets. Targets are usua.lly specified by variable symbols. The placeholder is a special
type of target, and is denoted by a period (.) symboL A placeholder behaves like a normal
target except that a value is not actua.lly assigned to it.

Targets, like markers, can affect the scan position if value strings are being extracted
by tokenization. Parsing by tokenization extracts words (tokens) from the parse string, and

Parsing and Templates 77

is used whenever a target is followed immediately by another target. During tokenization
the current scan position is advanced past any blanks to the start of the next word. The
ending index is the position just past the end of the word, so that the value string has
neither leading nor trailing blanks.

Template Objects

Each template object is specified by one or more tokens, which have the following interpre­
tations.

Symbols. A symbol token may specify either a target or a marker object. If it follows
an operator token (+, -, or =), it represents a marker, and the symbol value is used as an
absolute or relative position. Symbols enclosed in parentheses specify pattern markers, and
the the symbol value is used as the pattern string.

If neither of the preceding cases applies and the symbol is a variable, then it specifies a
target. Fixed symbols always specify absolute markers and must be whole numbers, except
for the period (.) symbol which defines a placeholder target.

Strings. A string token always represents a pattern marker.

Parentheses. A symbol enclosed in parentheses is a pattern marker, and the value of the
symbol is used as the pattern string. While the symbol may be either fixed or variable, it
will usually be a variable, since a fixed pattern could be given more simply as a string.

Operators. The three operators "+," "-," and "=" are valid within a template, and must
be followed by a fixed or variable symboL The value of the symbol is used as a marker
and must therefore represent a whole number. The "+" and "-" operators signify a relative
marker, whose value is negated by the "-" operator. The "=" operator indicates an absolute
marker, and is optional if the marker is defined by a fixed symboL

Commas. The comma (,) marks the end of a template, and is used as a separator when
multiple templates are provided with an instruction. The interpreter obtains a new parse
string before processing each succeeding template. For some source options, the new string
will be identical to the previous one. The ARG, EXTERNAL, and PULL options will generally
supply a different string, as will the VAR option if the variable has been modified.

The Scanning Process

Scan positions are expressed as an index in the parse string, and can range from 1 (the
start of the string) to the length of the string plus 1 (the end). An attempt to set the scan
position before the start or after the end of the string instead sets it to the beginning or
end, respectively.

The substring specified by two scan indices includes the characters from the starting
position up to, but not including, the ending position. For example, the indices 1 and 10
specify characters 1-9 in the parse string. One additional rule is applied if the second scan
index is less than or equal to the first: in this case the remainder of the parse string is used
as the substring. This means that a template specification like

Chapter 8 78

parse arg 1 all 1 first second

will assign the entire parse string to the variable ALL. Of course, if the current scan index
is already at the end of the parse string, then the remainder is just the null string.

When a pattern marker is matched against the parse string, the marker position is the
index of the first character of the matched pattern, or the end of the string if no match was
found. The pattern is removed from the string whenever a match is found. This is the only
operation that modifies the parse string during the parsing process.

Templates are scanned from left to right with the initial scan index set to 1, the start
of the parse string. The scan position is updated each time a marker object is encountered,
according to the type and value of the marker. Whenever a target object is found, the value
to be assigned is determined by examining the next template object. If the next object is
another target, the value string is determined by tokenizing the parse string. Otherwise,
the current scan position is used as the start of the value string, and the position specified
by the following marker is used as the end point.

The scan continues until all of the objects in the template have been used. Note that
every target will be assigned a value; once the parse string has been exhausted, the null
string is assigned to any remaining targets.

8-2 Templates in Action

The preceding section is rather abstract, so let's look now at some examples of parsing with
templates.

Parsing by Tokenization

Computer programs frequently require splitting a string into its component words or tokens.
This is easily accomplished with a template consisting entirely of variables (targets).

/* Assume "hammer 1 each $600.00" was entered */
pull item qty units cost

In this example the input line from the PULL instruction is split into words and assigned to
the variables in the template. The variable item receives the value "hammer," qty is set to
"1," units is set to "each," and cost gets the value "$600.00." The final placeholder (.)
is given a null value, since there are only four words in the input. However, it forces the
preceding variable cost to be given a tokenized value. If the placeholder were omitted, the
remainder of the parse string would be assigned to cost, which would then have a leading
blank.

In the next example, the first word of a string is removed and the remainder is placed
back in the string. The process continues until no more words are extracted.

Parsing and Templates 79

1* Assume "result" contains a string of words *1
do forever

1* Get first word of string *1
parse var result first result
if first == " then leave
1* ... process words ... *1
end

Pattern Parsing

The next example uses pattern markers to extract the desired fields. The "pattern" in this
case is very simple - just a single charader - but in general can be an arbitrary string of
any length. This form of parsing is useful whenever delimiter characters are present in the
parse string.

1* Assume an argument string "12,35.5,1"
arg hours '.' rate '.' withhold

Keep in mind that the pattern is actually removed from the parse string when a match
is found. If the parse string is scanned again from the beginning, the length and structure
of the string may be different than at the start of the parsing process. However, the original
source of the string is never modified.

Positional Markers

Parsing with positional markers is used whenever the fields of interest are known to be in
certain positions in a string. In the next example, the records being processed contain a
variable length field. The starting position and length of the field are given in the first part
of the record, and a variable positional marker is used to extract the desired field.

1* records look like: *1
1* start: 1-5 *1
1* length: 6-10 *1
1* name: O(start, length) *1
parse value record with 1 start +5 length +5 =start name +length

The "=start" sequence in the above example is an absolute marker whose value is the
position placed in the variable start earlier in the scan. The "+length" sequence supplies
the effective length of the field.

Multiple Templates

It is sometimes useful to specify more than one template with an instruction, which can be
done by separating the templates with a comma. In this next example, the ARG instruction
(or PARSE UPPER ARG) is used to access the argument strings provided when the program
was called. Each template accesses the succeeding argument string.

Chapter 8 80

1* Assume arguments were ('one two',12,sort) *1
arg first second,amount.action,option

The first template consists of the variables first and second, which are set to the values
"one" and "two," respectively. In the next two templates amount gets the value "12" and
action is set to "SORT." The last template consists of the variable "option," which is set
to the null string, since only three arguments were available.

When multiple templates are used with the EXTERNAL or PULL source options, each
additional template requests an additional line of input from the user. In the next example
two lines of input are read:

1* read last, first, and middle names and ssn *1
pull last ',' first middle,ssn

The first input line is expected to have three words, the first of which is followed by a
comma, which are assigned to the variables last, first, and middle. The entire second
input line is assigned to the variable ssn.

Multiple templates can be useful even with a source option that returns the identical
parse string. If the first template included pattern markers that altered the parse string,
the subsequent templates could still access the original string. Note that subsequent parse
strings obtained from the VALUE source do not cause the expression to be reevaluated, but
only retrieve the prior result.

Parsing and Templates 81

Chapter 9

The Resident Process

This chapter describes some of the capabilities of the ARexx resident process, a global
communications and resources manager. The material presented here is directed to the
general user; Chapter 10 covers these topics in greater depth for software developers who
wish to integrate ARexx with other applications programs.

The resident process must be active before any ARexx programs can be run. It an­
nounces its presence to the system by opening a public message port named "REXX," so
applications programs that use ARexx should check for the presence of this port. If the
port is not open, the user can either be informed that the macro processor is not available,
or else the applications program can start up the resident process. The latter option can
be done using the rexxmast command.

The primary function of the resident process is to launch ARexx programs. When
an applications program sends a "command" or "function" message to the "REXX" port,
the resident process creates a new DOS process to execute the program, and forwards the
invocation message to newly created process. It also creates a new instance of the ARexx
global data structure, which links together all ofthe structures manipulated by the program.

In addition to launching programs, the resident process manages various resources used
by ARexx. These resources include a list of available function libraries called the Library
List, a list of (name,value) pairs called the Clip List, and a list of the currently active
ARexx programs. Built-In functions are available to manipUlate the Library List and Clip
List from within an ARexx program. Applications programs can modify a resource list
either by sending a request packet to the resident process or by direct manipulation of the
list.

9-1 Command Utilities

ARexx is supplied with a number of command utilities to provide various control functions.
These are executable modules that can be run from the CU, and should reside in the
system command (C:) directory for convenience. These commands are relevant only when
the ARexx resident process is active.

The functions performed by these utilities may also be available from within an appli­
cations program. All of the utilities are implemented by sending message packets to the
resident process, so an application designed to work closely with ARexx could easily provide
these functions as part of its control menu.

HI

Usage: HI
Sets the global halt flag, which causes all active programs to receive an external halt request.
Each program will exit immediately unless its HALT interrupt has been enabled. The halt flag
does not remain set, but is cleared automatically after all current programs have received
the request.

The Resident Process 83

RX

Usage: RX name {arguments}
This command launches an ARexx program. If the specified name includes an explicit
path, only that directory is searched for the program; otherwise, the current directory and
the system REXX: device are checked for a program with the given name. The optional
argument string is passed to the program.

RXSET

Usage: RXSET name value
Adds a (name,value) pair to the Clip List. Name strings are assumed to be in mixed case.
If a pair with the same name already exists, its value is replaced with the current string. If
a name without a value string is given, the entry is removed from the Clip List.

Rxe
Usage: RXC
Closes the resident process. The "REXX" public port is withdrawn immediately, and the
resident process exits as soon as the last ARexx program finishes. No new programs can be
launched after a "close" request.

Tee
Usage: TCC

Closes the global tracing console as soon as all active programs are no longer using it. All
read requests queued to the console must be satisfied before it can be closed.

Teo
Usage: TCO
Opens the global tracing console. The tracing output from all active programs is diverted
automatically to the new console. The console window can be moved and resized by the
user, and can be closed with the "TCC" command.

TE

Usage: TE
Clears the global tracing flag, which forces the tracing mode to OFF for all active ARexx
programs.

TS

Usage: TS
Starts interactive tracing by setting the external trace flag, which forces all active ARexx
programs into interactive tracing mode. Programs will start producing trace output and
will pause after the next statement. This command is useful for regaining control over
programs caught in infinite loops or otherwise misbehaving. The trace flag remains set
until cleared by the TE command, so subsequent program invocations will begin executing
in interactive tracing mode.

Chapter 9 84

9-2 Resource Management

Individual ARexx programs manage their internal memory allocation and I/O file resources,
but some resources need to be available to all programs. The management of these global
resources is one of the major functions of the resident process. Global resources are main­
tained as doubly-linked lists, in keeping with the general design principles of the EXEC
operating system. Linked lists provide a flexible and open mechanism for resource manage­
ment, and help avoid the built-in limits common with other approaches.

The Global Tracing Console

The tracing output from an ARexx program usually goes to the standard output stream
STDOUT, and is therefore interleaved with the normal output of the program. Since this may
be confusing at times, a global trace console can be opened to display only tracing output.
The console can be opened using the teo command utility or by sending an RXTCOPN request
packet to the resident process. ARexx programs will automatically divert their tracing
output to the new window, which is opened as a standard AmigaDOS console. The user
can move it and resize it as required.

The tracing console also serves as the input stream for programs during interactive
tracing. When a program pauses for tracing input, the input line must be entered at
the trace console. Any number of programs may use the tracing console simultaneously,
although it is generally recommended that only one program at a time be traced.

The tracing console can be closed using the tee command or by sending an RXTCCLS
request packet to the resident process. The closing is delayed until all read requests to the
console have been satisfied. Only when all of the active programs indicate that they are no
longer using the console will it actually be closed.

The Library List

The resident process maintains a Library List of the function libraries and function hosts
currently available to ARexx programs. This list is used to resolve all references to external
functions. Each entry has an associated search priority in the range 100 to -100, with
the higher-valued entries being searched first until the requested function is found. The
list is searched by calling each entry, using the appropriate protocol, until the return code
indicates that the function was found.

The two types of entities maintained by the list are quite different in some respects, but
the ultimate way in which a function call is resolved is transparent to the calling program.
A function library is a collection of functions organized as an Amiga shared library, while a
function host is a separate task that manages a message port. Function libraries are called
as part of the ARexx interpreter's task context, but calls to function hosts are mediated
by passing a message packet. The ARexx resident process is itself a function host, and is
installed in the Library List at a priority of -60.

The resident process provides addition and deletion operations for maintaining the
Library List; these operations are performed by sending an appropriate message packet.
The Library List is always maintained in priority order. Within a given priority level any
new entries are added to the end of the chain, so that entries added first will be searched

The Resident Process 85

first. The priority levels are significant if any of the libraries have duplicate function name
definitions, since the function located further down the search chain could never be called.

Function Libraries. Each function library entry in the Library List contains a library
name, a search priority, an entry point offset, and a version number. The library name must
refer to a standard Amiga shared library residing in the system LIBS: directory so that it
can be loaded when needed. Function libraries can be created and maintained by users or
applications developers; Chapter 10 has information on their design and implementation.

The "query" function is the library entry point that is actually called by the interpreter.
It must be specified as an integer offset (e.g. "-30") from the library base. The return code
from the query call then indicates whether the desired function was found; if it was, the
function is called with the parameters passed by the interpreter and the function result is
returned to the caller. Otherwise, the search continues with the next entry in the list. In
either event the library is closed to await the next call.

A note of caution: not every Amiga shared library can be used as a function library.
Function libraries must have a special entry point to perform the dynamic linking required
to access the functions from within ARexx. Each library should include documentation
providing its version number and the integer offset to its "query" entry point.

Function Hosts. The name associated with a function host is the name of its public
message port. Function calls are passed to the host as a message packet; it is then up to the
individual host to determine whether the specified function name is one that it recognizes.
The name resolution is completely internal to the host, so function hosts provide a natural
gateway mechanism for implementing remote procedure calls to other machines in a network.

The Clip List

The Clip List maintains a set of (name,value) pairs that may be used for a variety of
purposes. Each entry in the list consists of a name and a value string, and may be located
by name. Since the Clip List is publicly accessible, it may be used as a general clipboard-like
mechanism for intertask communication. In general, the names used should be chosen to be
unique to an application to prevent coUisions with other programs. Any number of entries
may be posted to the list.

One potential application for the Clip List is as a mechanism for loading predefined
constants into an ARexx program. The language definition does not include a facility
comparable to the "header file" preprocessor in the "c" language. However, consider a
string in the Clip List of the form

pi=3.14159; e=2.718; sqrt2=1.414

i.e., a series of assignments separated by semicolons. In use, such a string could be retrieved
by name using the Built-In function GETCLIP() and then INTERPRETed within the program.
The assignment statements within the string would then create the required constant defi­
nitions. The following program fragment illustrates the process:

Chapter 9 86

1* assume a string called "numbers" is available*1
numbers =getclip('numbers') 1* case-sensitive *1
interpret numbers 1* ... assignments*1

More generally, the strings would not be restricted to contain only assignment statements,
but could include any valid ARexx statements. The Clip List could thus provide a series of
programs for initializations or other processing tasks.

The resident process supports addition and deletion operations for maintaining the
Clip List. The names in the (name,value) pairs are assumed to be in mixed case, and are
maintained to be unique in the list. An attempt to add a string with an existing name will
simply update the value string. The name and value strings are copied when an entry is
posted to the list, so the program that adds an entry is not required to maintain the strings.

Entries posted to the Clip List remain available until explicitly removed. The Clip List
is automatically released when the resident process exits.

The Resident Process 87

Chapter 10

Interfacing to ARexx

This chapter discusses the issues involved in designing and implementing an interface be­
tween ARexx and an external applications program. The material presented here is directed
to software developers, so a high degree of familiarity with programming the Amiga in either
"c" or assembly-language is assumed.

ARexx can interact with external programs in several ways. The command interface is
used to communicate with an external program running as a separate task in the Amiga's
multitasking environment. The interaction takes place by passing messages between public
message ports, and is in many ways similar to the interaction of a program with Intuition,
the Amiga's window and menu manager. The command interface provides both a means of
sharing data and a method of controlling an applications program.

Function libraries provide a mechanism for calling external code as part of an ARexx
program's task context. The linkages for such calls are established dynamically at run time
rather than when the program is linked, so each function library must include an entry
point to match function names with the address of the function to be called.

Function hosts are external tasks that manage a public message port for communicating
with ARexx or other programs. Both function hosts and function libraries are managed
by the Library List, which provides a prioritized search mechanism for resolving function
names. Function hosts may be used as a gateway into a network to provide a remote
procedure call facility. ARexx imposes no constraints on the internal operations of a function
host, except to require that message packets be returned with an appropriate code.

The resident process acts as the hub for communications between ARexx and external
entities. It opens and manages a public message port named "REXX," and provides a num­
ber of support services. Note that the resident process is itself a "host application" whose
function it is to launch ARexx programs and maintain global resources. The activation
structures for all ARexx programs are linked into a list maintained by the resident process,
and in principle their complete internal states are accessible to external programs.

The ARexx interpreter is structured as an Amiga shared library and includes entry
points specifically designed to help implement an interface to ARexx. Functions are available
to create and delete message packets, argument strings, and other resources. Software
developers are urged to use these library routines whenever possible, as they provide "safe"
access to the internal structures. The ARexx Systems Library functions are documented in
Appendix C. The distribution disk contains the INCLUDE files required to work with the
library and data structures.

Interfacing to ARexx 89

10-1 Basic Structures

Most developers will need to work with only two of the data structures used by ARexx. The
RexxArg structure is used for all of the strings manipulated by the interpreter. It is usually
passed as an argstring, a pointer offset from the structure base that may be treated like an
ordinary string pointer. The RexxMsg structure is an extension of an EXEC Message,
and is the message packet used for all communications with external programs.

Argstrings. All ARexx strings are maintained as RexxArg structures, which are dia­
grammed in Table 10.1 below. Note that this actually a variable-length structure allocated
for each specific string length. String parameters are sent in the form of argstrings, a pointer
to the string buffer area of the RexxArg structure. The string in the structure is always
given a trailing null byte, so that external programs can treat argstrings like a pointer
to a null-terminated string. Additional data about the string (its length, hash code, and
attributes) are available at negative offsets from the argstring pointer.

Table 10.1 The RexxArg Structure

STRUCTURE RexxArg.O
LONG ra_Size allocated length
UWORD ra_Length length of string
UBYTE ra_Flags attribute flags
UBYTE ra_Hash hash code
STRUCT ra_Buff,8 buffer (argstring points here)

Library functions are available to create and delete argstrings, and for converting in­
tegers into argstring format. The function CreateArgstring 0 allocates a structure and
copies a string into it, and returns an argstring pointer to the structure. The function
DeleteArgstringO can be used to release an argstring when it is no longer needed.

Message Packets. All communications between ARexx and external programs are medi­
ated with message packets, whose structure is diagrammed in Table 10.2 below. Functions
are provided in the ARexx Systems Library to create, initialize, and delete these message
packets. Each packet sent from ARexx to an external program is marked with a special
pointer in its name field. This can be used to distinguish the message packets from those
belonging to other programs, in case a message port is being shared.

Message packets are created using the CreateRexxMsgO function, and can be released
using the DeleteRexxMsgO function. Note that the message packets passed by ARexx to
a host application (as a command, for instance) are identical to the packets the host would
use to invoke an ARexx program. This commonality of design means that only one set of
functions is needed to create and delete message packets, and that external programs can
use the same routines that the interpreter uses to handle the packets.

Resource Nodes. A somewhat higher-level data structure called a "resource node" (a
RexxRsrc structure) is used extensively within ARexx to maintain resource lists. These
nodes are variable-length structures that include the total allocated length as a field within
the node, and that also provide for an "auto-delete" function. This latter capability allows

Chapter 10 90

the address of a clean-up function to be associated with the node so that an entire (possibly
inhomogeneous) list of resource nodes can be deallocated with a single function call.

Table 10.2 The RexxMsg Structures

STRUCTURE RexxMsg,MN_SIZE
APTR rm_TaskBlock global pointer
APTR rm_LibBase library pointer
LONG rm_Action conunand code
LONG rm_Resultl primary result
LONG rm_Result2 secondary result
STRUCT rm_Args,16*4 arguments (ARGO-ARG15)

the extension area
APTR rm_PassPort forwarding port
APTR rm_ConunAddr host address
APTR rm_FileExt file extension
LONG rm_Stdin input stream
LONG rm_Stdout output stream
LONG rm_avail reserved
LABEL rm_SIZEOF 128 bytes

10-2 Designing a Command Interface

The minimal command interface between ARexx and an applications program requires
only a public message port and a routine to process the commands received. For most
host applications this will require little extra machinery, as the program will probably
already have several message ports for key and menu events, timer messages, and so on.
Processing the command strings should be relatively straightforward for command-oriented
applications. Hosts that are entirely menu-driven will require somewhat more additional
programming, unless commands are supported only as simulated menu events. The specific
choice of which commands to support is always left up to the applications designer, as
ARexx imposes no restrictions on the structure of the commands that can be issued.

The basic sequence of events in the command interface begins when the host sends a
command invocation message to the ARexx resident process. This is usually in response
to a direct input from the user, such as a command that was not recognized as one of the
primitives supported by the host. When the resident process receives the message packet,
it spawns a new DOS process the run the macro program. The command line is parsed
to extract the command token (the first word), and the interpreter searches for a file that
matches the command name.

Once a macro program file has been found, it is executed by the interpreter and (usu­
ally) results in one or more commands being issued back to the host application's public
port. The macro program waits while each command is processed by the host, and takes
appropriate actions if the return code indicates that an error occurred. Eventually the
macro program finishes and returns the invocation message packet back to the host.

Error handling is an important consideration in the interface design. Macro programs
must receive meaningful return codes so that processing actions can be altered when errors

Interfacing to ARexx 91

occur. Normally, the host application should not return a message packet until the command
has been processed and its error status is known. Hosts that support two streams of
commands (from the user and from the command interface) will need a flag to indicate
the source of each command. Errors in user commands might normally be reported on the
screen, but errors in ARexx commands must be reported by setting the result field in the
message packet.

Return codes should generally be chosen to follow the model of an error severity level,
with small integers representing relatively harmless conditions and larger values indicating
progressively more severe errors. This will allow a characteristic failure level to be estab­
lished within a macro program, so that insignificant errors can be ignored. The choice of
the specific return code values is left to the applications designer.

Receiving Command Messages

Each host application must open a public message port to support the command interface.
When a macro program issues a command to the host, a message packet containing the
command is sent to this public port. The structure of these message packets is shown in
Table 10.2. The rm...Action field will be set to RXCOMM, and the ARGO parameter slot will
contain the command as an argstring pointer. Parameter slots ARG1-ARG15 are not used
for command messages. Two other fields are potentially of interest: the rmJtexxTask field
contains a pointer to the global data structure for the program that issued the command,
and the rm..LibBase field has the ARexx library base address. The fields in the extension
area may also be of interest to the host program; these are described later on. Except for
setting the result fields rmJtesul t 1 and rmJtesult2, the host application should not alter
the message packet.

Result Fields

When the host program finishes processing the command, it must set the primary result
field rmJtesul t 1 to an error severity level or zero if no errors occurred. This is the field
which will be assigned to the special variable RC in the macro program. The secondary
result field rmJtesult2 should be set to zero unless a result string (as described below) is
being returned. The packet can then be returned to the sender using the EXEC function
ReplyMsgO.

In some cases a macro program may request a result string by setting the RXFBJtESULT
modifier bit in the command code. If possible, the host application should then return
the result as an argstring pointer in the secondary result field rmJtesult2. A result string
should only be returned if explicitly requested and if no errors occurred during the call
(rmJtesu1t1 set to zero.) Failure to observe these rules will result either in memory loss or
in corruption of the system free-memory list.

Multiple Host Processes

Many applications programs support concurrent activities on several sets of data. For
example, most text editors allow several files to be edited at once. A command issued from
a particular instance of the editor might invoke an ARexx macro program, so clearly any
commands issued from that macro would have to be directed to the correct instance of the
editor. ARexx provides for this by allowing the applications program to declare an initial

Chapter 10 92

host address when a program is invoked. A separate message port would be opened for
each instance of the host application, and this port would be named as the initial host
address for all invocations from that instance. In the example above, if the editor opened
two ports named "MyEditl" and "MyEdit2," then programs invoked by the "MyEditl"
instance would send commands back to the "MyEditl" port.

Multiple Message Ports. Host applications are not limited to having a single message
port for commands. If several different kinds of commands are to be received, it might be
appropriate to set up more than one port. Macro programs would then use the ADDRESS
instruction to direct commands to the appropriate port. The different ports could be used
simultaneously, since ARexx programs execute as separate tasks.

10-3 Invoking ARexx Programs

ARexx programs are invoked by sending a message packet to the resident process. Programs
may be invoked as either a command or as a function. The command mode of invocation
is generally simpler, as it requires setting only a few fields in the message packet.

Message Packets

The structure of the message packet supported by ARexx is shown in Table 10.2. This
structure provides fields for passing arguments and for specifying overrides to various in­
ternal defaults. The packets are cleared (set to 0) when allocated, and the client-supplied
fields are never altered by ARexx. Message packets can be reused after being returned, and
generally only one is required.

Command (Action) Code. The rm..Action field of the message packet determines the
mode of invocation. It can be set to either RXCOMM or RXFUNC for command or function
mode, respectively. Several modifier flags can be used with the command code; these are
described later in this chapter.

Argument Strings. Command strings, function names, and argument strings must be
supplied as argstrings. Strings can be conveniently packaged. into argstrings using the
CreateArgstringO library function, which takes a string pointer and a length as its ar­
guments. Argstrings point to a null-terminated string and may be treated like an ordinary
string pointer in most cases. In principle, a host application could build the argstrings di­
rectly, but since the strings must remain unchanged for the duration of an ARexx program,
the host might need to maintain many such structures.

The argstring pointer returned by CreateArgstringO is installed in the appropriate
parameter slot of the message packet: ARGO for the command string or function name, and
ARG1-ARG15 for argument strings. Argstrings can be recycled after a packet has returned
by calling the DeleteArgstringO function.

Sending the Packet. Once the required fields have been filled in, the host application
can send the packet to the "REXX" public port using the EXEC function PutMsgO. The
address of the "REXX" port can be obtained by a call to the FindPortO function, but
this address should not be cached internally, since the port could close at any time. To be
absolutely safe, the calls to FindPort 0 and PutMsgO should be bracketed by calls to the

Interfacing to ARexx 93

EXEC routines ForbidO and Permit O. This will exclude the slight possibility that the
message port could close in the few microseconds before the message packet is actually sent
to the port address.

After sending the packet the host can return to its normal processing, since the macro
program will execute as a separate task. In most cases it will be advisable to "lock-out"
further user commands while the ARexx program is running, to preserve the integrity of
any shared data structures that may be accessed externally.

Command Invocations

In the command mode of invocation the host supplies a command string consisting of
a name token followed by an argument string. ARexx parses the string to extract the
command name, which is usually the name of a program file. The default action is to
use the remainder of the command string as the (single) argument string for the program.
This may be overridden by requesting command tokenization, which is done by setting the
RXFB_TOKEN modifier flag in the action code of the message packet. In this case the entire
command string will be parsed, and the program may have many argument strings. (There
is no limit to the number of arguments that may be derived from the command string, since
they don't have to fit into the parameter slots of the message packet.)

The parsing process uses "white space" (blanks, tabs, etc.) as the token separators,
and has a several special features.

Quoting Convention. Either single (') or double (") quotes may be used to surround
items that include "white space" and would otherwise be separated during parsing. Single
quotes may appear within a double-quote-delimited token, and vice versa; however, double­
delimiter sequences are not accepted. The quotes are removed from the parsed token. An
"implicit" quote at the end of the string is also recognized. If the command string ends
before the closing delimiter has been found, the null byte is accepted as the final delimiter.
For example,

look.rexx "Now is the time" "can't you see

is a command with the two argument strings "Now is the time" and "can't you see"
(but without the quotes.)

String Files. If the command name (the first token of the string) is quoted, it is assumed
to be a "string file" an ARexx program in a string, rather than the name of a disk
file. This is a convenient way to run very brief programs, although programs of any length
may be stored this way. If command tokenization has not been specified, the remainder of
the string is not scanned and no quote characters are removed. In this case the quoting
convention is useful only for indicating "string file" programs. The entire command string
can be declared as a "string file" by setting the RXFBJ3TRING modifier flag of the action
code. When this flag is set, no parsing at all is applied to the command.

Result Strings. Command invocations do not usually request a result string, but can do
so by setting the RXFB..RESULT modifier flag. The host application must be prepared to
recycle the returned result string once it is no longer needed.

Cha.pter 10 94

Function Invocations

In a function invocation the host application supplies a function name string and from 0 to
15 argument strings. The name string is used to locate an external program file and may
include directory specifiers and a file extension. The actual argument count (not including
the name string) must be placed in the low-order byte of the command code.

This mode of invocation is normally used when a result string is expected and the ar­
gument strings are conveniently available. Note that a result does not have to be requested,
however.

Result Strings. Function invocations request a result string by setting the RXFB...RESULT
modifier flag bit. If no errors occurred and a result string was requested, the secondary
result field in the returned packet will be a pointer to the result string. However, if the
program exited without supplying a result, the secondary field will be zero.

String Files. The function name argument may specify a "string file" rather than the
name of a filing system object. This is indicated by setting the RXFB..5TRING modifier flag.

Search Order

The search for a program file matching a command or function name is normally a two­
step process. For each directory to be checked, a search is made first with the current
file extension appended to the name string. If this search fails, the second search uses the
unmodified name string. The first step is skipped if the command or function name includes
an explicit file extension.

The default file extension is ".rexx," but this can be changed by supplying a file
extension string in an extended message packet. Host applications will usually specify a file
extension, since it provides a convenient way to distinguish the macro programs that are
specific to that application. Refer to the section on Extension Fields for further details.

The search path for a program depends on the way the program name was specified.
If an: explicit device or directory specification precedes the program name, only that di­
rectory will be searched. For example, the command-level invocation of "rx dfO:s/test"
will search only the dfO: s directory for a file named test. rexx or test. If the program
name does not include a path, the search path begins with the current directory and pro­
ceeds to the system REXX: directory. To further the above example, invoking the program
as "rx test 1 :2 3" would search for the files test.rexx, test, REXX:test.rexx, and
REXX:test, in that order.

If an ARexx program cannot be found, one alternative action may be taken. If the
rm..PassPort field of an extended packet was supplied, the message packet is passed along
to that port, which might be the next process in a search chain. Otherwise the message is
returned with a "Program not found" error indication (error code 1.)

Interfacing to ARexx 95

Extension Fields

The RexxMsg structure includes several "extension fields" that can be used to override
various defaults when a program is invoked. These extension fields can be filled in selectively,
and only the non-zero values will override the corresponding default. ARexx never modifies
the extension area.

Host applications should supply values for the file extension and host address fields
of the message packet. The file extension affects which program files will match a given
command name, and allows macro programs specific to the host to be given distinctive
names. The host address must refer to a public message port, and will usually indicate the
host's own port. Any appropriate (but usually short) strings can be chosen for these values.
Often, the name of the applications program itself can be used as its host address and file
extension.

PassPort. Th rm..PassPort field allows the search for a program to be "passed along" to
another message port after checking for an ARexx program. If the command or function
name doesn't resolve to an ARexx program, the message packet is forwarded to the message
port specified as the PassPort. This allows applications to maintain control over the search
order for external program files.

Note that the rm..PassPort field must be the actual address of a message port, rather
than a name string. The PassPort therefore does not have to be a public port, but the
port should be a secured resource, since the message is sent directly to this address without
checking to see whether it is a valid message port.

Host Address. The rm_CommAddr field overrides the default initial host address, which is
"REXX." The host address is the name of the message port to which commands will be
directed, and is supplied as a pointer to a null-terminated string. Applications that support
multiple instances of user data will usually create a separate message port for each instance.
The name of this port would then be supplied as the host address for any commands issued
from that instance.

File Extension. The rm...FileExt field is used to override the default file extension for
ARexx programs, which is "REXX." Host applications can use the file extension to dis­
tinguish the names of the macro programs specific to that application. It is supplied as a
pointer to a null-terminated string.

Input and Output Streams. The default input and output streams for an ARexx pro­
gram are inherited from the host application's process structure, if the host is a process
rather than just a task. One or both of these streams may be overridden by supplying an
appropriate value in the rm.J>'tdin or rm.J>tdout fields. The values supplied must be valid
DOS filehandles, and must not be closed while the program is executing. The streams are
installed directly into the program's process structure, replacing the prior values.

The output stream is also used as the default tracing stream for the program. If
interactive tracing is to be used in a program, the output stream should refer to a console
device, since it will be used for input as well.

Chapter 10 96

In the event that an ARexx program is invoked by an EXEC task, rather than by an
DOS process, the extension field streams are the only way that the launched program can
be given default I/O streams.

Interpreting the Result Fields

The message packet that invoked an ARexx program is returned to the client when the
program finishes. The two result fields will contain error codes or possibly a result string.
The interpretation of the result fields depends partly on the mode of invocation. If the
primary result field rm..Resultl is zero, the program executed normally and the secondary
field rm..Result2 will contain a pointer to a result string, assuming that one was requested
(and available.)

If the primary result is non-zero, it represents either an error severity level or else the
return code from a command invocation. The two cases can be distinguished by examining
the secondary result. If the secondary field is also non-zero, an error occurred and the
secondary field is an ARexx error code. If the secondary result is zero, then the primary
result is the return code passed by an "EXIT rc" or "RETURN rc" instruction in the program.
The application program can use this return code either as an error indication or to initiate
some particular processing action.

Result strings are always returned as an argstring and become the property (that is,
responsibility) of the host. When the string is no longer needed, it can be released using
the DeleteArgstringO function.

Errors occurring in macro programs should usually be reported to the user. Explana­
tory messages are available for all ARexx error codes, and can be obtained by calling the
ARexx Systems Library function ErrorMagO.

10-4 Communicating with the Resident Process

All communications with the resident process are handled by passing message packets, which
were previously diagrammed in Table 10.2. The packet has a command field that describes
the action to be performed and parameter fields that are specific to the command. Message
packets are processed as they are received, and are then either returned to the sender or
passed along to another process (in the case of a program invocation.) The packet includes
two result fields that are used to return error codes or result strings. The parameter fields of
the message packet may contain either (long) integer values or pointers to argument strings.
String arguments are assumed to be argstring pointers unless otherwise specified.

Command (Action) Codes

The command codes that are currently implemented in the resident process are described
below. Commands are listed by their mnemonic codes, followed by the valid modifier flags.
The final code value is always the logical OR of the code value and all of the modifier flags
selected. The command code is installed in the rm...Action field of the message packet.

Usage: RXADDCON [RXFB...NONRET]
This code specifies an entry to be added to the Clip List. Parameter slot ARGO points to
the name string, slot ARGl points to the value string, and slot ARG2 contains the length of

Interfacing to ARexx 97

the value string. The name and value arguments do not need to be argstrings, but can be

just pointers to storage areas. The name should be a null-terminated string, but the value

can contain arbitrary data including nulls.

Usage: RXADDFH [RXFB..NONRET]

This action code specifies a function host to be added to the Library List. Parameter

slot ARGO points to the (null-terminated) host name string, and slot ARGl holds the search

priority for the node. The search priority should be an integer between 100 and -100

inclusive; the remaining priority ranges are reserved for future extensions. If a node already

exists with the same name, the packet is returned with a warning level error code. Note

that no test is made at this time as to whether the host port exists.

Usage: RXADDLIB [RXFB..NONRET]

This code specifies an entry to be added to the Library List. Parameter slot ARGO points to

a null-terminated name string referring either to a function library or a function host. Slot

ARGl is the priority for the node and should be an integer between 100 and -100 inclusive;

the remaining priority ranges are reserved for future extensions. Slot ARG2 contains the

entry point offset and slot ARG3 is the library version number. If a node already exists with

the same name, the packet is returned with a warning level error code. Otherwise, a new

entry is added and the library or host becomes available to ARexx programs. Note that no

test is made at this time as to whether the library exists and can be opened.

Usage: RXCOMM [RXFB_TOKEN] [RXFB..5TRING] [RXFB..RESULT] [RXFB..NOIO]

Specifies a command-mode invocation of an ARexx program. Parameter slot ARGO must

contain an argstring pointer to the command string. The RXFB_TOKEN flag specifies that

the command line is to be tokenized before being passed to the invoked program. The

RXFB..5TRING flag bit indicates that the command string is a "string file." Command invo­

cations do not normally return result strings, but the RXFB..RESULT flag can be set if the

caller is prepared to handle the cleanup associated with a returned string. The RXFB..NOIO

modifier suppresses the inheritance of the host's input and output streams.

Usage: RXFUNC [RXFB..RESULT] [RXFB..5TRING] [RXFB..NOIO] argcount

This command code specifies a function invocation. Parameter slot ARGO contains a pointer

to the function name string, and slots ARGl through ARG15 point to the argument strings, all

of which mllst be passed as argstrings. The lower byte of the command code is the argument

count; this count excludes the function name string itself. Function calls normally set the

RXFB..RESULT flag, but this is not mandatory. The RXFB..5TRING modifier indicates that the

function name string is actually a "string file". The RXFB..NOIO modifier suppresses the

inheritance of the host's input and output streams.

Usage: RXREMCON [RXFB..NONRET]

This code requests that an entry be removed from the Clip List. Parameter slot ARGO points

to the null-terminated name to be removed. The Clip List is searched for a node matching

the supplied name, and if a match is found the Ibt node is removed and recycled. If no

match is found the packet is returned with a warning error code.

Usage: RXREMLIB [RXFB..NONRET]

This command removes a Library List entry. Parameter slot ARGO points to the null­

terminated string specifying the library to be removed. The Library List is searched for a

Chapter 10 98

node matching the library name, and if a match is found the node is removed and released.

If no match is found the packet is returned with a warning error code. The library node

will not be removed if the library is currently being used by an ARexx program.

Usage: RXTCCLS [RXFB.JWNRET]

This code requests that the global tracing console be closed. The console window will be

closed immediately unless one or more ARexx programs are waiting for input from the

console. In this event, the window will be closed as soon as the active programs are no

longer using it.

Usage: RXTCOPN [RXFB..NONRET]

This command requests that the global tracing console be opened. Once the console is open,

all active ARexx programs will divert their tracing output to this console. Tracing input

(for interactive debugging) will also be diverted to the new console. Only one console can

be opened; subsequent RXTCOPN requests will be returned with a warning error message.

Modifier Flags

Command codes may include modifier flags to select various processing options. Modifier
flags are specific to certain commands, and are ignored otherwise.

RXFB..NOIO. This modifier is used with the RXCOMM and RXFUNC command codes to suppress
the automatic inheritance of the host's input and output streams.

RXFB..NONRET. Specifies that the message packet is to be recycled by the resident process
rather than being returned to the sender. This implies that the sender doesn't care
about whether the requested action succeeded, since the returned packet provides the
only means of acknowledgement. Message packets are released using the library function
DeleteRexxMsg O.

RXFB...RESULT. This modifer is valid with the RXCOMM and RXFUNC commands, and requests
that the called program return a result string. If the program EXITs (or RETURNS) with an
expression, the expression result is returned to the caller as an argstring. It is then the
caller's responsibility to release the argstring when it is no longer needed; this can be done
using the library function DeleteArgstringO.

RXFB...8TRING. This modifer is valid with the RXCOMM and RXFUNC command codes. It indi­
cates that the command or function argument (in slot ARGO) is a "string file" rather than
a file name.

RXFB_TOKEN. This flag is used with the RXCOMM code to request that the command string
be completely tokenized before being passed to the invoked program. Programs invoked
as commands normally have only a single argument string. The tokenization process uses
"white space" to separate the tokens, except within quoted strings. Quoted strings can
use either single or double quotes, and the end of the command string (a null character) is
considered as a.n implicit closing quote.

Interfacing to ARexx 99

Result Fields

The resident process uses the standard command-level conventions for the primary return
code installed in rm...Result1. Minor or warning errors are indicated by a value of 5, and
more serious errors are returned as values of 10 or 20. The secondary result field rm...Result2
will either be zero or an ARexx error code if applicable.

Note that RXCOMM and RXFUNC messages are returned directly by the invoked macro
program, rather than by the resident process.

10-5 External Function Libraries

ARexx supports external function libraries as a mechanism for user-defined extensions to
the language. Function libraries may be written and maintained by users or applications
developers.

Design Considerations

There are several different purposes for which a function library might be designed. In the
simplest case, a library could be used to extend the string manipulation or mathematical
capabilities of the language by defining new functions. Such a library could be entirely
self-contained or might call other system libraries to perform specific operations.

Another alternative would be to build a library that interacts closely with an external
applications program. This could allow specific operations in the host application to be be
performed as function calls rather than as commands. There are several advantages to this
approach, as it avoids the need to parse command strings and does not require the multiple
task context changes associated with message-passing. The library might include entry
points for specific operations as well as functions to support special processing required by
the applications program.

Function libraries can also serve as bridges to other system or applications libraries.
For example, if a program needed to call the functions in a graphics library, a bridge library
could be built to match the function names in the program with the appropriate entry point
in the graphics library. A related possibility would be to use ARexx as a test driver for a
program under development. Once the query table and parameter passing mechanisms for
the function library have been built, new routines under development could be tested by
just adding a table entry. Since building test programs is often very time-consuming, the
flexibility and interactive debugging capabilities of ARexx make it an attractive alternative
to compiled languages like "C."

Regardless of the intended application, all function libraries share a common structure.
The initial design follows that of the standard EXEC shared library, with the three required
entry points Open, Close, and Expunge, plus a reserved slot. The library must also have a
"query" entry point, which serves to match the name supplied by ARexx with the intended
function. Typically, this will consist of a table of function names and a routine to search
for the specified one.

Reentrancy. Functions libraries should be designed to be fully reentrant, since any number
of ARexx programs may be running at any time. If this is not feasible due to other design

100 Chapter 10

constraints, the query function should include a lockout mechanism to prevent multiple calls
to the library routines.

Calling Convention

The library's query function will be called from the interpreter's context with the address
of a message packet in register AO and the library base in A6. The structure of the message
packet is the same as that in Table 10.2, but note that although a message packet is used to
carry the arguments, it is not queued at a message port and does not need to be unlinked.
The name of the function to be called is carried in the ARGO parameter slot. The query
function must search for this function name and, if the name cannot be found, must return
an error code of 1 ("Program not found") in register DO. The library will then be closed and
the search continued in the next function library. The query function should not modify
any fields within the message packet, as it must be passed along to the next library until
the function is located.

Parameter Conversion

Once the requested function has been found, the query function may need to transform
the parameters passed by ARexx into the form expected by the function. Whether the
parameter strings need to be converted depends on how they are to be used. In some
cases it may be sufficient just to forward a pointer to the message packet to the called
function, while in other cases the query function may need to load parameters into registers
or to perform conversion operations. The parameters in ARG1-ARG15 are always passed as
argstrings, and may be treated like a pointer to a null-terminated string. Further attributes
are stored at negative offsets from the argstring pointer, and may be helpful in working
with the string.

Numeric quantities are passed as strings of ASCII characters and will need to be con­
verted to integer or floating-point format if arithmetic calculations are to be performed. The
ARexx Systems Library includes a limited set of functions to do parameter conversions.

The actual parameter count can be obtained from the low-order byte of the rm..Action
field in the message packet. The count never includes the function name itself (in ARGO),
but does include arguments specified as "defaults." Such arguments will have a zero value
in the corresponding parameter slot.

Note that the parameter block of the message packet, containing the fields ARGO-ARG15,
is structured like the argument array expected by the main(argc,argv) function of a "C"
program. This suggests a simple way that a function library could provide a bridge to a
series of "C" programs. The query function would need only to determine the address of
the called function, and then push the parameter block address and argument count onto
the program stack.

Returned Values

Each library function must return an error code and a value string. The error code is
returned in register DO, and should be 0 if no errors occurred. The value string must be
returned as an argstring pointer in register AI, unless DO indicates that an error occurred
during the call. The mechanisms for creating the proper return values can be made part of
the query function, so that all functions in the library share a common return path.

Interfacing to ARexx 101

10-6 Direct Manipulation of Data Structures

All of the data structures maintained by the resident process are built into the ARexx
Systems Library base and are therefore accessible to external programs. The Task List in
the RexxBase structure links the global data structures for all currently active ARexx
programs. This linkage uses the node contained in the message port of the RexxTask
structure, rather than at the head of the structure. The RexxTask structure is the global
data structure and initial storage environment for the ARexx program, and all descendant
storage environments are linked into the Environment List. The linkage of internal data
structures is such that the complete internal state of all ARexx programs can be reached
starting from the library base pointer.

Two library functions, LockRexxBaseO and UnlockRexxBaseO, are provided to me­
diate access to the global structures. The structure base should be locked before reading
any of the data items or traversing any of the lists. The present version of these functions
provides only a global lock, but future extensions will allow individual resouces to be locked.

In general it should not be necessary to manipulate directly any ofthese data structures.
Functions have been provided in the ARexx Systems Library to perform all of the operations
required to interface external program to the ARexx system. It is therefore recommended
that applications developers avoid using any of the internal structures except as provided
through the library functions.

102 Chapter 10

Appendix A

Error Messages

When the ARexx interpreter detects an error in a program, it returns an error code to
indicate the nature of the problem. Errors are normally handled by displaying the error
code, the source line number where the error occurred, and a brief message explaining
the error condition. Unless the SYNTAX interrupt has been previously enabled (using the
SIGNAL instruction), the program then terminates and control returns to the caller. Most
syntax and execution errors can be trapped by the SYNTAX interrupt, allowing the user to
retain control and perform whatever special error processing is required. Certain errors are
generated outside of the context of an ARexx program, and therefore cannot be trapped by
this mechanism. Refer to chapter 7 for further information on error trapping and processing.

Associated with each error code is a severity level that is reported to the calling program
as the primary result code. The error code itself is returned as the secondary result. The
subsequent propagation or reporting of these codes is of course dependent on the external
(calling) program.

The following pages list all of the currently-defined error codes, along with the associ­
ated severity level and message string.

Error: 1 Severity: 5 Message: Program not found

The named program could not be found, or was not an ARexx program. ARexx programs

are expected to start with a "/*" sequence. This error is detected by the external interface

and cannot be trapped by the SYNTAX interrupt.

Error: 2 Severity: 10 Message: Execution halted

A control-C break or an external halt request was received and the program terminated.

This error will be trapped if the HALT interrupt has been enabled.

'~~ 	 Error: 3 Severity: 20 Message: Insufficient memory
The interpreter was unable to allocate enough memory for an operation. Since memory
space is required for all parsing and execution operations, this error cannot usually be
trapped by the SYNTAX interrupt.

Error: 	4 Severity: 10 Message: Invalid character
A non-ASCII character was found in the program. Control codes and other non-ASCII
characters may be used in a program by defining them as hex or binary strings. This is a
scan phase error and cannot be trapped by the SYNTAX interrupt.

Error: 5 Severity: 10 Message: Unmatched quote

A closing single or double quote was missing. Check that each string is properly delimited.

This is a scan phase error and cannot be trapped by the SYNTAX interrupt.

Error Messages 103

Error: 6 Severity: 10 Message: Unterminated comment

The closing "*1" for a comment field was not found. Remember that comments may be

nested, so each "1*" must be matched by a "*1." This is a scan phase error and cannot be

trapped by the SYNTAX interrupt.

Error: 7 Severity: 10 Message: Clause too long

A clause was too long for the internal buffer used as temporary storage. The source line

in question should be broken into smaller parts. This is a scan phase error and cannot be

trapped by the SYNTAX interrupt.

Error: 8 Severity: 10 Message: Invalid token

An unrecognized lexical token was found, or a clause could not be properly classified. This

is a scan phase error and cannot be trapped by the SYNTAX interrupt.

Error: 9 Severity: 10 Message: Symbol or string too long

An attempt was made to create a string longer than the maximum supported by the inter­

preter. The implementation limits for internal structures are given in Appendix B.

Error: 10 Severity: 10 Message: Invalid message packet

An invalid action code was found in a message packet sent to the ARexx resident process.

The packet was returned without being processed. This error is detected by the external

interface and cannot be trapped by the SYNTAX interrupt.

Error: 11 Severity: 10 Message: Command string error

A command string could not be processed. This error is detected by the external interface

and cannot be trapped by the SYNTAX interrupt.

Error: 12 Severity: 10 Message: Error return from function

An external function returned a non-zero error code. Check that the correct parameters

were supplied to the function.

Error: 13 Severity: 10 Message: Host environment not found

The message port corresponding to a host address string could not be found. Check that

the required external host is active.

Error: 14 Severity: 10 Message: Requested library not found

An attempt was made to open a function library included in the Library List, but the

library could not be opened. Check that the correct name and version of the library were

specified when the library was added to the resource list.

Error: 15 Severity: 10 Message: Function not found

A function was called that could not be found in any of the currently accessible libraries,

and could not be located as an external program. Check that the appropriate function

libraries have been added to the Libraries List.

104 Appendix A

Error: 16 Severity: 10 Message: Function did not return value

A function was called which failed to return a result string, but did not otherwise report

an error. Check that the function was programmed correctly, or invoke it using the CALL

instruction.

Error: 17 Severity: 10 Message: Wrong number of arguments

A call was made to a function which expected more (or fewer) arguments. This error will

be generated if a Built-In or external function is called with more arguments than can be

accomodated in the message packet used for external communications.

Error: 18 Severity: 10 Message: Invalid argument to function

An inappropriate argument was supplied to a function, or a required argument was missing.

Check the parameter requirements specified for the function.

Error: 19 Severity: 10 Message: Invalid PROCEDURE

A PROCEDURE instruction was issued in an invalid context. Either no internal functions were

active, or a PROCEDURE had already been issued in the current storage environment.

Error: 20 Severity: 10 Message: Unexpected THEN or WHEN

A WHEN or THEN instruction was executed outside of a valid context. The WHEN instruction

is valid only within a SELECT range, and THEN must be the next instruction following an IF

or WHEN.

Error: 21 Severity: 10 Message: Unexpected ELSE or OTHERWISE

An ELSE or OTHERWISE was found outside of a valid context. The OTHERWISE instruction

is valid only within a SELECT range. ELSE is valid only following the THEN branch of an IF

range.

Error: 22 Severity: 10 Message: Unexpected BREAK, LEAVE, or ITERATE

The BREAK instruction is valid only within a DO range or inside an INTERPRETed string. The

LEAVE and ITERATE instructions are valid only within an iterative DO range.

Error: 23 Severity: 10 Message: Invalid statement in SELECT

A invalid statement was encountered within a SELECT range. Only WHEN, THEN, and OTH­

ERWISE statements are valid within a SELECT range, except for the conditional statements

following THEN or OTHERWISE clauses.

Error: 24 Severity: 10 Message: Missing or multiple THEN

An expected THEN clause was not found, or another THEN was found after one had already

been executed.

Error: 25 Severity: 10 Message: Missing OTHERWISE

None of the WHEN clauses in a SELECT succeeded, but no OTHERWISE clause was supplied.

Error: 26 Severity: 10 Message: Missing or unexpected END

The program source ended before an END was found for a DO or SELECT instruction, or an

END was encountered outside of a DO or SELECT range.

Error Messages
 105

Error: 27 Severity: 10 Message: Symbol mismatch

The symbol specified on an END, ITERATE, or LEAVE instruction did not match the index

variable for the associated DO range. Check that the active loops have been nested properly.

Error: 28 Severity: 10 Message: Invalid DO syntax

An invalid DO instruction was executed. An initializer expression must be given if a TO or

BY expression is specified, and a FOR expression must yield a non-negative integer result.

Error: 29 Severity: 10 Message: Incomplete IF or SELECT

An IF or SELECT range ended before all of the required statements were found. Check

whether the conditional statement following a THEN, ELSE, or OTHERWISE clause was omitted.

Error: 30 Severity: 10 Message: Label not found

A label specified by a SIGNAL instruction, or implicitly referenced by an enabled interrupt,

could not be found in the program source. Labels defined dynamically by an INTERPRET

instruction or by interactive input are not included in the search.

Error: 31 Severity: 10 Message: Symbol expected

A non-symbol token was found where only a symbol token is valid. The DROP, END, LEAVE,

ITERATE, and UPPER instructions may only be followed by a symbol token, and will generate

this error if anything else is supplied. This message will also be issued if a required symbol

is missing.

Error: 32 Severity: 10 Message: Symbol or string expected

An invalid token was found in a context where only a symbol or string is valid.

Error: 33 Severity: 10 Message: Invalid keyword

A symbol token in an instruction clause was identified as a keyword, but was invalid in the

specific context.

Error: 34 Severity: 10 Message: Required keyword missing

An instruction clause required a specific keyword token to be present, but it was not sup­

plied. For example, this message will be issued if a SIGNAL ON instruction is not followed

by one of the interrupt keywords (e.g. SYNTAX.)

Error: 35 Severity: 10 Message: Extraneous characters

A seemingly valid statement was executed, but extra characters were found at the end of

the clause.

Error: 36 Severity: 10 Message: Keyword conflict

Two mutually exclusive keywords were included in an instruction clause, or a keyword was

included twice in the same instruction.

Error: 37 Severity: 10 Message: Invalid template

The template provided with an ARG, PARSE, or PULL instruction was not properly con­

structed. Refer to Chapter 8 for a description of template structure and processing.

106 Appendix A

Error: 38 Severity: 10 Message: Invalid TRACE request

The alphabetic keyword supplied with a TRACE instruction or as the argument to the

TRACEO Built-In function was not valid. Refer to Chapter 7 for the valid TRACE options.

Error: 39 Severity: 10 Message: Uninitialized variable

An attempt was made to use an uninitialized variable while the NOVALUE interrupt was

enabled.

Error: 40 Severity: 10 Message: Invalid variable name

An attempt was made to a value to a fixed symboL

Error: 41 Severity: 10 Message: Invalid expression

An error was detected during the evaluation an expression. Check that each operator has

the correct number of operands, and that no extraneous tokens appear in the expression.

This error will be detected only in expressions that are actually evaluated. No checking is

performed on expressions in clauses that are being skipped.

Error: 42 Severity: 10 Message: Unbalanced parentheses

An expression was found with an unequal number of opening and closing parentheses.

Error: 43 Severity: 43 Message: Nesting limit exceeded

The number of subexpressions in an expression was greater than the maximum allowed. The

expression should be simplified by breaking it into two or more intermediate expressions.

Error: 44 Severity: 10 Message: Invalid expression result

The result of an expression was not valid within its context. For example, this message will

be issued if an increment or limit expression in a DO instruction yields a non-numeric result.

Error: 45 Severity: 10 Message: Expression required

An expression was omitted in a context where one is required. For example, the SIGNAL

instruction, if not followed by the keywords ON or OFF, must be followed by an expression.

Error: 46 Severity: 10 Message: Boolean value not 0 or 1

An expression result was expected to yield a boolean result, but evaluated to something

other than 0 or 1.

Error: 47 Severity: 10 Message: Arithmetic conversion error

A non-numeric operand was used in a operation requiring numeric operands. This message

will also be generated by an invalid hex or binary string.

Error: 48 Severity: 10 Message: Invalid operand

An operand was not valid for the intended operation. This message will be generated if

an attempt is made to divide by 0, or if a fractional exponent is used in an exponentiation

operation.

Error Messages 107

Appendix B

Limits and Compatibility

ARexx was designed to adhere closely to the REXX language standard. This appendix
discusses those areas where ARexx departs from the standard.

B-1 Limits

Language definitions seldom include predefined limits to the program structures that can
be created. Only a few such restrictions were imposed in implementing ARexx, and most
of the internal structures are limited only by the total amount of memory available. The
current implementation limits are listed below.

• 	 Length of Strings. Strings, symbol names, and value strings are limited to a maximum
length of 65,535 bytes.

• 	 Length of Clauses. Clauses are limited to a maximum of 800 characters after removing
comments and multiple blanks.

• 	 Nodes in Compound Names. Compound symbol names may include a maximum of 50
nodes, including the stem.

• 	 Arguments to Functions. Built-In and external functions are limited to a maximum of
15 arguments. There is no limit to the number of arguments that may be passed to an
internal function.

• 	 Subexpression Nesting. The maximum nesting level for subexpressions is 32.

B-2 Compatibility

ARexx departs in a few ways from the language definition. The differences can be classified
as omissions or extensions, and are described below.

Omissions. The only significant specification of the language standard omitted from this
implementation is the arbitrary-precision arithmetic facility. Arithmetic operations are
limited to about 14 digits of precision, and the FUZZ option is not implemented at all. Only
the SCIENTIFIC format is used for exponential notation. The full numeric capabilities will
be provided in a later release.

Extensions. The following extensions to the language standard have been included in this
implementation:

• 	 BREAK Instruction. A new instruction called BREAK has been implemented. It is used
to exit from the scope of any DO or INTERPRET instruction.

• 	 ECHO Instruction. The ECHO instruction has been included as a synonym for SAY.

• 	 SHELL Instruction. The SHELL instruction has been included as a synonym for ADDRESS.

Limits and Compatibility 109

• 	 SIGNAL Options. Several additional SIGNAL keywords have been implemented. BREAK_C,
BREAK..D, BREAK..E, and BREAK..F will detect and trap the control-C through control-F
signals passed by AmigaDOS. The IOERR' keyword traps errors detected by the I/O
system.

• 	 Stem Symbols. A stem symbol is valid anywhere that a simple symbol could be em­
ployed.

• 	 Template Processing. Templates have been generalized in several ways. Variable sym­
bols may be used as positional tokens if preceded by an operator; the "=" operator is
used to denote an absolute position, Multiple templates can be used with all source
forms of the PARSE instruction.

110 	 Appendix B

Appendix C

The ARexx Systems Library

The ARexx interpreter is supplied as a shared library named rexxsysIib.Iibrary and
should reside in the system LIBS: directory. While many of the library routines are highly
specific to the interpreter, some of the functions will be useful to applications that use
ARexx. The library is opened when the ARexx resident process is first loaded and will
always be available while it remains active.

The system library routines were designed to be called from assembly-language pro­
grams and, unless otherwise noted, save all registers except for AD/AI and DO/Dl. Many
routines return values in more than one register to help reduce code size. In addition, the
routines will set the condition-code register (CCR) wherever appropriate. In most cases the
CCR reflects the value returned in DO.

The library offsets are defined in the file rxslib. i, which should be INCLUDEd in the
program source code. Calls may be made from "C" programs if suitable binding routines are
provided when the program is linked. The definitions for the constants and data structures
used in ARexx are provided as INCLUDE files on the program distribution disk. These
should be reviewed carefully before attempting to use the library functions.

Some of the library functions are not documented here. These private entry points
are reserved for the internal use of the interpreter and should not be called from external
programs.

C-I Functional Groups

The library functions can be grouped into Conversion, Input/Output, Resource Manage­
ment, and String Manipulation functions.

Data Conversion. These functions provide many of the common data-conversion require­
ments.

Input/Output. Two levels of I/0 support are provided. The low level functions use DOS
filehandles directly, while the higher-level functions use linked lists of IoBuff structures and
support logical file names.

Resource. These functions allocate, release, or otherwise manage the data structures used
with ARexx.

String Functions. All data in ARexx are managed as strings. These functions provide
some of the more common string-manipulation operations.

The ARexx Systems Library 111

Table C.l ARexx Systems Library Functions
Name
AddClipNode
ClearMem
ClearRexxMsg
CloseF
ClosePublicPort
CmpString
CreateArgstring
CreateDOSPkt
CreateRexxMsg
CurrentEnv
CVa2i
CVc2x
CVi2a
CVi2arg
CVi2az
CVs2i
CVx2c
DeleteArgstring
DeleteDOSPkt
DeleteRexxMsg
DOSRead
DOSWrite
ErrorMsg
ExistF
FillRexxMsg
FindDevice
FindRsrcNode
FreePort
FreeSpace
GetSpace
InitList
InitPort
IsRexxMsg
LengthArgstring
ListNames
OpenF
OpenPublicPort
QueueF
ReadF
ReadStr
RemClipNode
RemRsrcList
RemRsrcNode

Functional Group
Resource
Resource
Resource
Input/Output
Resource
String
Resource
Input/Output
Resource
Resource
Conversion
Conversion
Conversion
Conversion
Conversion
Conversion
Conversion
Resource
Input/Output
Resource
Input/Output
Input/Output
Conversion
Input/Output
Resource
Input/Output
Resource
Resource
Resource
Resource
Resource
Resource
Resource
Resource
Resource
Input/Output
Resource
Input/Output
Input/Output
Input/Output
Resource
Resource
Resource

Description
Allocate a Clip node
Clear a block of memory
Release argstrings from message
Close a file buffer
Close a port resource node
Compare string structures for equality
Create an argstring structure
Create a DOS StandardPacket
Create a message packet
Get current storage environment
ASCII to integer
Character to Hex or Binary digits
Integer to ASCII
Integer to ASCII argstring
Integer to ASCII, leading zeroes
String structure to integer
Hex or binary digits to binary
Release an argstring structure
Release a DOS StandardPacket
Release a message packet
Read from a DOS filehandle
Write to a DOS filehandle
Get error message from error code
Check whether a DOS file exists
Convert and install argstrings
Locate a DOS device node
Locate a resource node
Close a message port
Release internal memory
Allocate internal memory
Initialize a list header
Initialize a message port
Test a message packet
Get length of argstring
Copy node names to an argstring
Open a file buffer
Allocate and open a port resource node
Queue a line in a file buffer
Read from a file buffer
Read a string from a file buffer
Release a Clip node
Release a resource list
Release a resource node

112 Appendix C

Table C.l Library Functions (cant.)
Name Functional Group Description
SeekF Input/Output Reposition a file buffer
StackF Input/Output Stack a line in a file buffer
StcToken String Break out a token
StrcmpN String Compare strings
StrcpyA String Copy a string, converting to ASCII
StrcpyN String Copy a string
StrcpyU String Copy a string, converting to uppercase
StrflipN String Reverse characters in a string
Strlen String Find length of a string
ToUpper Conversion ASCII to uppercase
WriteF Input/Output Write to a file buffer

C-2 Library Functions

The following descriptions ofthe ARexx Systems Library functions are listed alphabetically.
The required arguments and register assignments are shown in parentheses after the function
name. Multiple returns are shown in parentheses on the left-hand side of the call.

AddClipNodeO- allocate and link a Clip node
Usage: node =AddClipNode(list,name,length,value)

DO AO Ai DO Dl
AO

(CCR)

Allocates and links a Clip node into the specified list. Clip nodes are resource nodes contain­
ing a name and value string, and include an "auto-delete" function for simple maintenance.
The list argument must point to a properly-initialized EXEC list header. The name argu­
ment points to a null-terminated name string, the value argument is a pointer to a storage
area, and the length argument is its length in bytes. The returned value is a pointer to the
allocated node, or 0 if the allocation failed.

The RemClipNodeO function is installed as the "auto-delete" function for each node.
Clip nodes can be intermixed with other resource nodes in a list and then released with a
single call to RemRsrcListO.
See Also: RemClipNodeO, RemRsrcListO, RemRsrcNodeO

AddRsrcNodeO- allocate and link a resource node
Usage: node =AddRsrcNode(list,name,length)

DO AO Ai DO
AO

(CCR)

Allocates and links a resource node (a RexxRsrc structure) to the specified list. The name
argument is a pointer to a null-terminated string, a copy of which is installed in the node
structure. The length argument is the total length for the node; this length is saved within

The ARexx Systems Library 113

the node so that it may be released later. The returned value is a pointer to the allocated
node, or Dif the allocation failed.
See Also: RemRsrcListO, RemRsrcNodeO

ClearMemO- clear a block of memory
Usage: ClearHem(address,length)

AO DO

Clears a block of memory beginning at the given address for the specified length in bytes.
The address must be word-aligned and the length must be a multiple of 4 bytes; all structures
allocated by ARexx meet these restrictions. Register AD is preserved.

ClearRexxMsgO- release argument strings
Usage: ClearRexxHsg(msgptr,count)

AO DO

Releases one or more argstrings from a message packet and clears the corresponding slots.
The count argument specifies the number of argument slots to clear, and can be set to less
than 16 to reserve some to the slots for private use. No action is taken if the slot already
contains a zero value.
See Also: FillRexxMsgO

CloseFO- close a file buffer
Usage: boolean = CloseF(IoBuff)

DO AO

Releases the loBuff structure and closes the associated DOS file. CloseF() is the "auto­
delete" function for the loBuff structure, so an entire list of file buffers can be closed with
a single call to RemRsrcList O.

ClosePublicPortO close a port resource node
Usage: ClosePublicPort(node)

AO

Unlinks and closes the message port and releases the resource node structure. The node
must have been allocated by the OpenPublicPort 0 function.
See Also: OpenPublicPortO

CmpStringO- compare string structures for equality
Usage: test = CmpString(ssl,ss2)

DO AO Ai
(eCa)

The arguments 881 and ss2 must be pointers to ARexx string structures and are compared
for equality. String structures include the length and hash code of the string, so the actual
strings are not compared unless the lengths and hash codes match. The return value sets
the CCR and will be -1 (True) if the strings match and 0 (False) otherwise.

114 Appendix C

CreateArgstringO- create an argument string structure
Usage: argstring CreateArgstring(string, length)

DO AO DO
AO

(CCR.)

Allocates a RexxArg structure and copies the supplied string into it. The argstring return
is a pointer to the string buffer of the structure, and can be treated like an ordinary string
pointer. The RexxArg structure stores the structure size and string length at negative
offsets to the string pointer. The string pointer can be set to NULL if only an uninitialized
structure is required.
See Also: DeleteArgstringO

CreateDOSPktO- allocate and initialize a DOS standardPacket.
Usage: packet = CreateDOSPkt()

DO
AO

(CCR.)

Allocates a DOS StandardPacket structure and initializes it by interlinking the EXEC
message and the DOS packet substructures. No replyport is installed in either the message
or the padet, as these fields are generally filled in just before the message is sent.
See Also: DeleteDOSPktO

CreateRexxMsgO- allocate an ARexx message packet
Usage: msgptr = CreateR.exxMsg(replyport,extension,host)

DO AO Ai DO
AO

(CCR.)

This functions allocates an ARexx message packet from the system free memory list. The
message packet consists of a standard EXEC message structure extended to include space
for function arguments, returned results, and internal defaults. The replyport argument
points to a public or private message port and must be supplied, as it is required to return
the message packet to the sender. The extension and host arguments are pointers to null­
terminated strings that provide values for the default file extension and the initial host
address, respectively. Additional override fields in the extended packet may be filled in
after the packet has been allocated.

The interpreter preserves all of the fields in the message packet except for the primary
and secondary result fields rm..Resul t 1 and rm..Result2.
See Also: DeleteRexxMsgO

CVa2iO- convert from ASCII to integer
Usage: (digits ,value) CVa2i{buffer)

DO Dl AO

Converts the buffer of ASCII characters to a signed long value. The scan proceeds

The ARexx Systems Library 115

until a non-digit character is found or until an overflow is detected. The function returns
both the number of digits scanned and the converted value.

CVc2xO- convert (unpack) from character string to hex or binary digits.
Usage: error eVc2x(outbuff ,string ,length,mode)

DO AO A1 DO D1

Converts the string argument to a string of hex (0-9, A-F) or binary (0,1) digits.

CVi2aO- convert from integer to ASCII
Usage: (length,pointer) = eVi2a(buffar,value,digits)

DO AO AO DO D1

Converts the signed integer value argument to ASCII characters using the supplied buffer
pointer. The digits argument specifies the maximum number of characters that will be
copied to the buffer. The returned length is the actual number of characters copied. The
pointer return is the new buffer pointer.
See Also: CVi2azO

CVi2argO- convert from integer to argstring
Usage: argstring ; eVi2arg(valua,digits)

DO DO D1
AO

(eeR)

Converts the signed long integer value argument to ASCII characters, and installs them in
an argstring (a RexxArg structure). The returned value is an argstring pointer or 0 if the
allocation failed. The allocated structure can be released using DalateArgstringO.

CVi2azO- convert from integer to ASCII with leading zeroes
Usage: (length,pointar) = eVi2az(buffer,value,digits)

DO AO AO DO D1

Converts the signed long integer value argument to ASCII characters in the supplied buffer,

with leading zeroes to fill out the requested number of digits. This function is identical to

CVi2a except that leading zeroes are supplied.

See Also: CVi2aO

CVs2iO- convert from string structure to integer
Usage: (error,value) eVs2i(ss)

DO D1 AO

The ss argument must be a pointer to a string structure. It is converted to a signed long
integer value return. The error return code is 47 ("Arithmetic conversion error") if the
string is not a valid number.

116 Appendix C

CVx2cO- convert from hex or binary digits to (packed) string
Usage: error =CVx2c(outbuff,string,length,mode)

DO AO Ai DO Di

Converts the string argument of hex (0-9,A-F) or binary (0,1) digits to the packed binary
representation. The mode argument specifies the (hex or binary) conversion mode, and
must be set to -1 for hex strings or 0 for binary strings. Blank characters may be embedded
in the string for readability, but only at byte boundaries. The error return code is 47 if the
string is not a valid hex or binary string.

CurrentEnvO- return the current storage environment
Usage: envptr =CurrentEnv(rxtptr)

DO AO

Returns a pointer to the current storage environment associated with an executing ARexx
program. The rxtptr argument is a pointer to the RexxTask structure, and may be obtained
from the message packet sent to an external application.

DeleteArgstringO- delete (release) an argstring structure
Usage: DeleteArgstring(argstring)

AO

Releases an argstring (RexxArg) structure. The RexxArg structure contains the total
allocated length at a negative offset from the argstring pointer.
See Also: CreateArgstringO

DeleteDOSPktO- release a DOS StandardPacket structure.
Usage: DeleteDOSPkt(message)

AO

Releases a DOS StandardPacket structure, typically obtained by a prior call to Create­

DOSPktO.

See Also: CreateDOSPktO

DeleteRexxMsgO- delete (release) an ARexx message packet
Usage: DeleteRexxMsg(packet)

AO

Releases an ARexx message packet to the system free-memory list. The internal MN..LENGTH
field is used as the total size of the memory block to be released, so this function can be used
to release any message packet that contajns the total length in this field. Any embedded
argument strings must be released before calling DeleteRexxMsgO.
See Also: CreateRexxMsgO

The ARexx Systems Library 117

DOSReadO- read from a DOS file
Usage: count = DOSRead{filehandle,buffer,length)

DO AO Al DO
(CCR)

Reads one or more characters from a DOS filehandle into the supplied buffer. The length
argument specifies the maximum number of characters that will be read. The returned
count is the actual number of bytes transferred, or -1 if an error occurred.

DOSWriteO- write to a DOS file
Usage: count =DOSWrite(filehandle,buffer,length)

DO AO Ai DO
(CCR)

Writes a buffer of the specified length to a DOS filehandle. The returned count is the actual
number of bytes written, or -1 if an error occurred.

ErrorMsgO- find the message associated with an error code
Usage: (boolean,ss) ErrorMsg{code)

DO AO DO

Returns the error message (as a pointer to a string structure) associated with the specified
ARexx error code. The boolean return will be -1 if the supplied code was a valid ARexx
error code, and 0 otherwise.

ExistFO- check whether an external file exists
Usage: boolean =ExistF{filename)

DO AO
(CCR)

Tests whether an external file currently exists by attempting to obtain a read lock on the
file. The boolean return indicates whether the operation succeeded, and the lock is released.

FillRexxMsgO- convert and install arguments in message packet.
Usage: boolean FillRexxMsg(msgptr, count ,mask)

DO AO DO D1
(CCR)

This function can be used to convert and install up to 16 argument strings in a RexxMsg
structure. The message packet must be allocated and the argument fields of interest set to
either a pointer to a null-terminated string or an integer value. The count argument specifies
the number of fields, beginning with ARGO, to be converted into argstrings and installed into
the argument slot. Bits 0-15 of the mask argument specify whether the corresponding
argument is a string pointer (bit dear) or an integer value (bit set).

118 Appendix C

The count argument is normally set to the exact number of strings to be passed. By
setting this count to less than 16, a number of the slots can be reserved for private uses.

The returned value is -1 (True) if all of the arguments were successfully converted. In
the event of an allocation failure, all of the partial results are released and a value of 0 is
returned.
See Also: ClearRexxMsgO

FindDeviceO- check whether a DOS device exists.
Usage: device =FindDevice(devicename,type)

DO AO DO
AO

(CCR)

Scans the DOS DeviceList for a device node of the specified type matching the null­
terminated name string. The acceptable values for the type argument are the constants
DLT..DEVICE, DLT..DIRECTORY, or DLLVOLUME defined in the DOS INCLUDE files. Device
names are converted to uppercase before checking for a match. The returned value is a
pointer to the matched device node, or 0 if the device was not found.

FindRsrcNodeO- locate a resource node with the given name.
Usage: node FindRsrcNode(list,name,type)

00 W A1 00
AO

(CCR)

Searchs the specified list for the first node of the selected type with the given name. The list
argument must be a pointer to a properly-initialized EXEC list header. The name argument
is a pointer to a null-terminated string. If the type argument is 0, aU nodes are selected;
otherwise, the supplied type must match the LN_TYPE field of the node. The returned value
is a pointer to the node or 0 if no matching node was found.

FreePortO- release resources associated with a message port
Usage: FreePort(port)

AO

This function deallocates the signal bit associated with a message port and marks the port
as "closed." The task calling FreePort 0 must be the same one that initialized the port,
since signal bit allocations are specific to a task. The memory space associated with the
port is not released.
See Also: InitPortO

FreeSpaceO- releases space to the internal memory allocator.
Usage: FreeSpace(envptr,block,length)

AO A1 DO

Returns a block of memory to the internal allocator, which must have been. obtained from
a call to GetSpace O. The envptr argument is a pointer to the base or current storage

The ARexx Systems Library 119

environment.

See Also: CurrentEnvO, GetSpaceO

GetSpaceO- allocate memory using the internal allocator.

Usage: block GetSpace(envptr,length)

DO AO DO
AO

(CCR)

Allocates a block of memory using the internal allocator. The memory is obtained from
an internal pool managed by the interpreter and is returned to the operating system when
the ARexx program terminates. The envptr argument is a pointer to the base or current
storage environment for the program.

The internal allocator must be used to allocate strings for use as values for symbols,
and is convenient for obtaining small blocks of memory whose lifetime will not exceed that
of the ARexx program.
See Also: CurrentEnvO, FreeSpaceO

InitListO- initialize a list header
Usage: InitList(list)

AO

Initializes an EXEC list header structure.

InitPortO- initialize a previously-allocated message port.
Usage: (signal,port) = InitPort(port.name)

DO Ai AO Ai

Initializes a message port structure for which memory space has been previously allocated,
typically as part of a larger structure or as static storage in a program. It installs the task
ID (of the task calling the function) into the MP..sIGTASK field and allocates a signal bit.
The name parameter must be a pointer to a null-terminated string. The signal return is the
signal bit that was allocated for the port. In the event that a signal could not be assigned,
a value of -1 is returned.

Note that the port is not linked into the system Ports List. If the port is to be made
public, this can be done after the function returns. The port address is returned in the
correct register (A1) for a subsequent call to the EXEC function AddPort O.
See Also: FreePortO

IsRexxMsgO- check whether a message came from ARexx.
Usage: boolean IsRexxMsg(msgptr)

DO AO

Tests whether the message packet specified by the msgptr argument came from an ARexx
program. ARexx marks its messages with a pointer to a static string "REXX" in the

120 Appendix C

LN....NAME field. The returned value is either -1 (True) if the message came from ARexx or
o(False) otherwise.

IsSymbolO- check whether a string is a valid symbol.
Usage: (code ,length) IsSymbol(string)

00 01 AO

Scans the supplied string pointer for ARexx symbol characters. The code return is the
symbol type if a symbol was found, or 0 if the string did not start with a symbol character.
The length return is the total length of the symbol.

ListNamesO- build a string of names from a list.
Usage; argstring =ListNames(list,separator)

00 AO 00[0:7]
AO

(CCR)

Scans the specified list and copies the name strings into an argstring. The list argument must
be a pointer to an initialized EXEC list header. The separator argument is the character,
possibly a null, to be placed as a delimiter between the node names.

The list is traversed inside a ForbidO exclusion and so may be used with shared or
system lists. The returned argstring can be released using DeleteArgstringO after the
names are no longer needed.
See Also: DeleteArgstring()

LockRexxBaseO- lock a shared resource.
Usage: LockRexxBase(resource)

DO

Secures the specified resource in the ARexx Systems Library base for read access. The
resource argument is a manifest constant for the required resource, or zero to lock the
entire structure.

Note that write access to shared resources is normally mediated by the ARexx resident
process, which operates at an elevated priority,to gain exclusive access. Locking a resource
should not be attempted from a process operating at a priority higher than the resident
process.
See Also: U nlockRexxBaseO

OpenFO- open a file buffer
Usage: IoBuff : OpenF(list,filename,mode,logical)

DO AO Ai DO D1
AO

(CCR)

Attempts to open an external file in the specified mode, which should be one of the constants
RXIO-R.EAD, RXIO_WRITE, or RXIO...APPEND defined in the ARexx INCLUDE files. If successful,

The ARexx Systems Library 121

an IoBuff structure is allocated and linked into the specified list. The list argument must
be a pointer to a properly-initialized EXEC list header.

The optional logical argument is the logical name for the file, and must be either a
pointer to a null-terminated string or zero (HULL) if a name is not required.
See Also: CloseFO

OpenPublicPortO- open a public message port
Usage: node = OpenPublicPort(list.name)

DO AO A1
AO

(CCR)

Allocates a message port as an "auto-delete" resource node and links it into the specified
list. The list argument must point to a properly initialized EXEC list header. The message
port is initialized with the given name and linked into the system Ports List.
See Also: ClosePublicPortO

QueueFO- queue a line to a file buffer.
Usage: count QueueF(IoBuff.buffer.length)

DO AO A1 DO

Queues a buffer of characters in the stream associated with the IoBuff structure. The
stream must be managed by a DOS handler that supports the ACTION..QUEUE packet.

Queued lines are placed in "firtst-in, first-out" order and are immediately available to
be read from the stream. The buffer argument is a pointer to a string of characters, and
the length specifies the number of characters to be queued. The return value is the actual
count of characters or -1 if an error occurred.
See Also: StackFO

ReadFO- read characters from a file buffer
Usage: count = ReadF(IoBuff,buffer,length)

DO AO A1 DO
(CCR)

Reads one or more characters from the file specified by the IoBuff pointer. The buffer
argument is a pointer to a storage area, and the length argument specifies the maximum
number of characters to be read. The return value is the actual number of characters read,
or -1 if an error occurred.

ReadStrO- read a string from a file
Usage: (count,pointer) ReadStr(IoBuff ,buffer. length)

DO Ai AO A1 DO

Reads characters from the file specified by the IoBuff pointer until a "newline" character is
found. The "newline" is not included in the returned string. The return value is the actual
number of characters read, or -1 if an error occurred.

122 Appendix C

See Also: ReadF()

RemClipNodeO- unlink and deallocate a list Clip node.
Usage: RemClipNode(node)

AO

Unlinks and releases the specified Clip node. The function is the "auto-delete" function for

Clip nodes, and will be called automatically by RemRsrcNodeO or RemRsrcList O.

See Also: AddClipNodeO, RemRsrcListO, RemRsrcNode()

RemRsrcList()- unlink and deallocate a list of resource nodes
Usage: RemRsrcList(list)

AO

Scans the supplied list and releases any nodes found. The list must consist of resource
nodes (RexxRsrc structures), which contain information to allow automatic cleanup and
deletion.
See Also: RemRsrcNodeO

RemRsrcNodeO- unlink and deallocate a resource node
Usage: RemRsrcNode(node)

AO

Unlinks and releases the specified resource node, including the name string if one is present.

If an "auto-delete" function has been specified in the node, it is called to perform any

required resource deallocation before the node is released.

See Also: RemRsrcListO

SeekFO- seek to the specified position in a file.
Usage: position =SeekF(IoBuff,offset,anchor)

DO AO DO Dl

Seeks to a new position in the file is specified by the IoBuff pointer. The position is given
by the offset argument, a byte offset relative to the supplied anchor argument. The anchor
may specify the beginning (-1), the current position (0), or the end of the file (1). The
return value is the new position relative to the beginning of the file.

StackFO- stack a line to a file buffer.
Usage: count StackF(IoBuff,buffer,length)

DO AO,Al DO

Stacks a buffer of characters in the stream associated with the IoBuff structure. The
buffer argument is a pointer to a string of characters, and the length specifies the number
of characters to be stacked. The return value is the actual count of characters or -1 if an
error occurred.

The ARexx Systems Library 123

Stacked lines are placed in "last-in, first-out" order and are immediately available to
be read from the stream. The stream must be managed by a DOS handler that supports
the ACTION..5nCK packet.
See Also: QueueFO

StcTokenO- break out the next token from a string
Usage: (quote,length,scan,token) StcToken(string)

DO Di AO Ai AO

Scans a null-terminated string to select the next token delimited by "white space," and
returns a pointer to the start of the token. The quote return will be an ASCII single or
double quote if the token was quoted and 0 otherwise; white space characters are ignored
within quoted strings. The length return is the total length of the token, including any
quote characters. The scan return is advanced beyond the current token to prepare for the
next call.

StrcpyAO- copy a string, converting to ASCII
Usage: hash StrcpyA(destination ,source ,length)

DO AO Ai DO

Copies the source string to the destination area, converting the characters to ASCII by
clearing the high-order bit of each byte. The length of the string (which may include
embedded nulls) is considered as a 2-byte unsigned integer. so the string is limited in
length to 65,535 bytes. The hash return is the internal hash byte for the copied string.
See Also: StrcpyNO, StrcpyU

StrcpyNO- copy a string
Usage: hash StrcpyN(destination, source ,length)

DO AO Ai DO

Copies the source string to the destination area. The length of the string (which may include
embedded nulls) is considered as a 2-byte unsigned integer. The hash return is the internal
hash byte for the copied string.
See Also: StrcpyAO, StrcpyU

StrcpyUO- copy a string, converting to uppercase
Usage: hash = StrcpyU(destination,source,length)

DO AO Ai DO

Copies the source string to the destination area, converting to uppercase alphabetics. The
length of the string (which may include embedded nulls) is considered as a 2-byte unsigned
integer. The hash return is the internal hash byte for the copied string.
See Also: StrcpyAO, StrcpyN

124 Appendix C

StrflipNO- reverse the characters in a string
Usage: StrflipN(string,length)

AO DO

Reverses the sequence of characters in a string. The conversion is performed in place.

StrlenO- find the length of a null-terminated string
Usage: length =Strlen(string)

DO AO
(CCR)

Returns the number of characters in a null-terminated string. Register AO is preserved, and
the CCR is set for the returned length.

StrcmpNO- compare the values of strings
Usage: test = StrcmpN(stringi,string2,length)

DO AO A1 DO
(CCR)

The string1 and string2 arguments are compared for the specified number of characters.
The comparison proceeds character-by-character until a difference is found or the maximum
number of characters have been examined. The returned value is -1 if the first string was
less, 1 if the first string was greater, and 0 if the strings match exactly. The CCR register
is set for the returned value.

ToUpperO- translate an ASCII character to uppercase
Usage: upper = ToUpper(character)

DO DO

Converts an ASCII character to uppercase. Only register DO is affected.

U nlockRexxBaseO- unlock a shared resource.
Usage: UnlockRexxBase(resource)

DO

Releases the specified resource, or all resources if the argument is zero. Every call to
LockRexxBaseO should be followed eventually by a call to UnlockRexxBaseO for the same
resource.
See Also: LockRexxBaseFO

WriteFO- write characters to a file buffer
Usage: count =WriteF(IoBuff,buffer,length)

DO AO Ai DO
(CCR)

Writes a buffer of characters of the specified length to the file associated with the IoBuff
pointer. The buffer argument is a pointer to a storage area, and the length argument

The ARexx Systems Library 125

specifies the number of characters to be written. The returned value is the actual number
of characters written or -1 if an error occurred.
See Also: CloseFO, OpenFO, ReadFO

126 Appendix C

Appendix D

The ARexx Support Library

The ARexx language system is distributed with an external function library that provides a
number of Amiga-specific functions. It is a standard Amiga shared library named rexxsup­
port . library and should reside in the system LIBS: directory. Unlike the Systems Library
described in the previous Appendix, the support library functions are callable from with
ARexx programs.

The support library was designed to supplement the generic Built-In functions with
functions specific to the Amiga. This library will be expanded in future releases, and users
are encouraged to submit suggestions for additional functions.

The Support Library must be added to the global Library List before it can be accessed
by ARexx programs. This can be done using the Built-In function ADDLIBO or by direct
communication with the resident process. The library name must be specified as rexxsup­
port . library, the query function offset is -30, and the version number is O. The search
priority can be set to 0 or whatever value is appropriate.

ALLOCMEMO

Usage: ALLOCMEM (length,[attributej)
Allocates a block of memory of the specified length from the system free-memory pool and
returns its address as a 4- byte string. The optional attribute parameter must be a standard
EXEC memory allocation flag, supplied as a 4-byte string. The default attribute is for
"PUBLIC" memory (not cleared).

This function should be used whenever memory is allocated for use by external pro­
grams. It is the user's responsibility to release the memory space when it is no longer
needed.
See Also: FREEMEMO
Example:

say c2x(allocmem(1000)) ==> 00050000

CLOSEPORTO

Usage: CLOSEPORT(name)

Closes the message port specified by the name argument, which must have been allocated

by a call to OPENPORTO within the current ARexx program. Any messages received but

not yet REPLYed are automatically returned with the return code set to 10.

See Also: OPENPORT 0

Example:

call closeport myport

The ARexx Support Library 127

FREEMEMO

Usage: FREEMEM(address,length)

Releases a block of memory of the given length to the system freelist. The address parameter

is a four- byte string, typically obtained by a prior call to ALLOCMEM O. FREEMEM 0 cannot be

used to release memory allocated using GETSPACEO, the ARexx internal memory allocator.

The returned value is a boolean success flag.

See Also: ALLOCMEMO

Example:

say freemem('00042000'x,32) ==> 1

GETARGO
Usage: GETARG(packet,[nJ)
Extracts a command, function name, or argument string from a message packet. The packet
argument must be a 4-byte address obtained from a prior call to GETPKTO. The optional
n argument specifies the slot containing the string to be extracted, and must be less than
or equal to the actual argument count for the packet. Commands and function names are
always in slot 0; function packets may have argument strings in slots 1-15.
Examples:

command =getarg(packet)

function =getarg(packet,O) /* name string */

arg1 =getarg(packet,1) /* 1st argument */

GETPKTO

Usage: GETPKT (name)
Checks the message port specified by the name argument to see whether any messages are
available. The named message port must have been opened by a prior call to OPENPORTO
within the current ARexx program. The returned value is the 4-byte address of the first
message packet, or '0000 0000' x if no packets were available.

The function returns immediately whether or not a packet is enqueued at the message
port. Programs should never be designed to "busy-loop" on a message port. If there is
no useful work to be done until the next message packet arrives, the program should call
WAITPKTO and allow other tasks to proceed.
See Also: WAITPKTO
Example:

packet = getpkt('MyPort')

OPENPORT()

Usage: OPENPORT(name)
Creates a public message port with the given name. The returned value is the 4-byte
address of the Port Resource structure or ' 0000 0000' x if the port could not be opened
or initialized. An initialization failure will occur if another port of the same name already
exists, or if a signal bit couldn't be allocated.

128 Appendix D

The message port is allocated as a Port Resource node and is linked into the program's
global data structure. Ports are automatically closed when the program exits, and any
pending messages are returned to the sender.
See Also: CLOSEPORTO
Example:

myport == openport("MyPort")

REPLYO

Usage: REPLY(packet,rc)
Returns a message packet to the sender, with the primary result field set to the value given

by the rc argument. The secondary result is cleared. The packet argument must be supplied

as a 4-byte address, and the rc argument must be a whole number.

Example:

call reply packet,10 /* error return */

SHOWDIRO

Usage: SHDWDIR(directory,[' All' I 'File' I 'Dir' j)

Returns the contents of the specified directory as a string of names separated by blanks.

The second parameter is an option keyword that selects whether all entries, only files, or

only subdirectories will be included.

Example:

say showdir("dfl:c") ===> rx ts te hi tco tcc

SHOWLISTO

Usage: SHDWLIST({'D' I 'L' I 'P' I 'R' I 'W'},[namej)

The first argument is an option keyword to select a system list; the options currently sup­

ported are Devices, Libraries, Ports, Ready, and Waiting. If only the first parameter is

supplied, the function scans the selected list and returns the node names in a string sepa­

rated by blanks. If the name parameter is supplied, the boolean return indicates whether

the specified list contains a node of that name. The name matching is case-sensitive.

The list is scanned with task switching forbidden so as to provide an accurate snapshot
of the list at that time.
Example:

say showlist('P') ===> REXX MyCon

say showlist('P','REXX') ==> 1

The ARexx Support Library 129

STATEFO

Usage: STA.TEF (filename)
Returns a string containing information about an external file. The string is formatted as

"{DIR I FILE} length blocks protection comment."
The length token gives the file length in bytes, and the block token specifies the file length
in blocks.
Example:

say statef("libs:rexxsupport.library")

1* would give "FILE 1880 4 RWED *1

WAITPKTO

Usage: WAITPKT(name)
"Waits for a message to be received at the specified (named) port, which must have been
opened by a call to OPENPORTO within the current ARexx program. The returned boolean
value indicates whether a message packet is available at the port. Normally the returned
value will be 1 (True), since the function waits until an event occurs at the message port.

The packet must then be removed by a call to GETPKTO, and should be returned
eventually using the REPLYO function. Any message packets received but not returned
when an ARexx program exits are automatically REPLYed with the return code set to 10.
Example;

call waitpkt 'MyPort' 1* wait awhile *1

130 Appendix D

Appendix E

Distribution Files

This appendix lists the directories of the standard ARexx distribution disk. The contents
of some of the directories may change from time to time, so your disk may not show exactly
the same files. Most notably, the :rexx directory will expand as more program examples
are included in it.

The second section of the Appendix lists the HEADER files that define the constants
and data structures used with ARexx. All of these files are available in the :INCLUDE
directory, but are listed here for convenience in studying the structures.

E·l Directories

The files are listed below as they would be using the system dir command. For example,
"dir dfl:c opt a" would list the contents of the : e directory on disk drive 1.

The : C Directory

This directory contains the command utilities used with ARexx. These files should be
copied to your system c: directory when you install the program.

e (dir)
hi loadlib
rexxmast rx
rxe rxset
tee teo
te ts

The : INCLUDE Directory

This directory has the INCLUDE and HEADER files used for assembly language and "C"
programming, respectively. These files contain the structure definitions necessary to build
an interface to ARexx.

include (dir)

errors.h rexxio.h

rxslib.h storage.h

errors.i rexxio.i

rxslib.i storage.i

Distribution Files 131

The :LIBS Directory

These are the library files for the language interpreter and the Support Library functions.
Both files should be copied to your system LIBS: directory when you install ARexx.

libs (dir)
rexxsupport.library rexxsyslib.library

The : REXX Directory

The : rexx directory contains example programs to illustrate various features of the lan­
guage. New files will be added from time to time, and users are welcome to contribute files
to be distributed in this way.

rexx (dir)
bigif.rexx break.rexx
builtin.rexx calc.rexx
cmdtest.rexx fact.rexx
factw.rexx haltme.rexx
hosttest.rexx iftest.rexx
marquis.rexx nesttest.rexx
paver.rexx potpourri.rexx
rslib.rexx select.rexx
sigtest.rexx support.rexx
test1.rexx timer.rexx

The :TOOLS Directory

These files are intended for software developers, and include examples of interfacing to
ARexx. The file rexxtest is of particular interest; it calls the ARexx interpreter directly,
and can be run under a debugger to aid with developing new function libraries.

tools (dir)

hosttest hosttest.asm

loadlib.asm rexxtest

rexxtest.asm rxoffsets.o

Miscellaneous Files

. info Install-ARexx

README Start-ARexx

132 Appendix E

E-2 Listings of Header Files

This section of the chapter consists of listings of the header mes contained in the: include
directory.

storage.h

This is the main header me and contains definitions for all of the important data structures
used by ARexx.

/* ;== rexx/storage.h ==
*
* Copyright (c) 1986, 1987 by William S. Hawes (All Rights Reserved)

*
* ============================;==
* Header file to define ARexx data structures.

*/

#ifndef REXX_STORAGE_H

#define REXX_STORAGE_H

#ifndef EXEC_TYPES_H

#include "exec/types.h"

#endif

#ifndef EXEC_NODES_H

#include "exec/nodes.h"

#endif

#ifndef EXEC_LISTS_H

#include "exec/lists.h"

#endif

#ifndef EXEC_PORTS_H

#include "exec/ports.h"

#endif

#ifndef EXEC_LIBRARIES_H

#include "exec/libraries.h"

#endif

1* The NexxStr structure is used to maintain the internal strings in REXX.
* It includes the buffer area for the string and associated attributes.
'" This is actually a variable-length structure; it is allocated for a
* specific length string. and the length is never modified thereafter
* (since it's used for recycling).

*1

Distribution Files 133

storage.h (cant.)

struct NexxStr {
LONG ns_Ivalue; /* integer value */
trWORD ns_Length; /* length in bytes (excl null) */
UBYTE ns_Flags; /* attribute flags */
UBYTE ns_Hash; /* hash code */
BYTE ns_Buff [8J ; /* buffer area for strings */
}; /* size: 16 bytes (minimum) */

#define NXADDLEN 9 /* offset plus null byte

#define IVALUE(nsPtr) (nsPtr->ns_Ivalue)

/* String attribute flag bit definitions

#define NSB_KEEP 0 /* permanent string?

#define NSB_STRING 1 /* string form valid?

#define NSB_NOTNUM 2 /* non-numeric?

#define NSB_NUMBER 3 /* a valid number?

#define NSB_BINARY 4 /* integer value saved? */

#define NSB_FLOAT 5 /* floating point format? */

#define NSB_EXT 6 /* an external string? */

#define NSB_SOURCE 1 /* part of the program source? */

/* The flag form of the string attributes

#define NSF_KEEP (1 «NSB_KEEP)

#define NSF_STRING (1« NSB_STRING)

#define NSF_NOTNUM (1« NSB_NOTNUM)

#define NSF_NUMBER (1« NSB_NUMBER)

#define NSF_BINARY (1« NSB_BINARY)

#define NSF_FLOAT (1« NSB_FLOAT)

#define NSF_EXT (1 «NSB_EXT)

#define NSF_SOURCE (1« NSB_SOURCE)

* Combinations of flags

#define NSF_INTNUM (NSF_NUMBER NSF_BINARY I NSF_STRING)

#define NSF_DPNUM (NSF_NUMBER I NSF]LOAT)

#define NSF_ALPHA (NSF_NOTNUM I NSF_STRING)

#define NSF_OWNED (NSF_SOURCE I NSF_EXT I NSF_KEEP)

#define KEEPSTR (NSF_STRING I NSF_SOURCE I NSF_NOTNUM)

#define KEEPNUM (NSF_STRING I NSF_SOURCE I NSF_HUMBER I NSF_BINARY)

134 Appendix E

storage.h (cont.)

1* The RexxArg structure is identical to the NexxStr structure, but
* is allocated from system memory rather than from internal storage.
* This structure is used for passing arguments to external programs.
* It is usually passed as an "argstring". a pointer to the string buffer.
*1

struct RexxArg {
LONG ra_Size; 1* total allocated length *1
UWORD ra_Length; 1* length of string *1
UBYTE ra_Flags; 1* attribute flags *1
UBYTE ra_Hash; 1* hash code *1
BYTE ra_Butf [8] ; 1* buffer area *1
}; 1* size: 16 bytes (minimum) *1

1* The RexxMsg structure is used for all communications vith Rexx programs.
* It is an EXEC message vith a parameter block appended.
*1

struct RexxMsg {
struct Message rm_Node; 1* EXEC message structure *1
APTR rm_TaskBlock; 1* pointer to global structure *1
APTR rm_LibBase; 1* library base *1
LONG rm_Action; 1* command (action) code *1
LONG rm_Resul t 1; 1* primary result (return code) *1
LONG rm_Result2; 1* secondary result *1
STRPTR rm_Args [16] ; 1* argument block (ARGO-ARG15) *1
struct MsgPort *rm_PassPort; 1* forvarding port
STRPTR rm_CommAddr; 1* host address (port name)
STRPTR rm_FileExt; 1* file extension
LONG rM-Stdin: 1* input stream (filehandle)
LONG rm_Stdout; 1* output stream (filehandle)
LONG rm_avail; 1* future expansion
}; 1* size: 128 bytes

1* Field definitions
#define ARGO(rmp) (rmp->rm_Args[O]) 1* start of argblock
#define ARG1(rmp) (rmp->rm_Args[l]) 1* first argument
#define ARG2(rmp) (rmp->rm_Args[2]) 1* second argument

#define MAXflMARG 15 1* maximum arguments

1* Command (action) codes for message packets *1
#define RXCOMM $01000000 1* a command-level invocation *1
#define RXFUNC $02000000 1* a function call
#define RXCLOSE $03000000 1* close the port
#define RXQUERY $04000000 1* query for information
#define RXADDFH $07000000 1* add a function host

Distribution Files 135

storage.h (cont.)

#define RXADDLIB $08000000 1* add a function library
#define RXREMLIB $09000000 1* remove a function library
#define RXADDCDN $OAOOOOOO 1* addlupdate a ClipList string
#define RXREMCDN $OBOOOOOO 1* remove a ClipList string
#define RXTCOPN $OCOOOOOO 1* open the trace console
#define RXTCCLS $ODOOOOOO 1* close the trace console

1* Command modifier flag bits

#define RXFB_NOIO 16 1* suppress 110 inheritance?

#define RXFB_RESULT 17 1* result string expected?

#define RXFB_STRING 18 1* program is a "string file"?

#define RXFB_TOKEB 19 1* tokenize the command line?

#define RXFB_NONRET 20 1* a "no-return" message?

1* Modifier flags

#define RXFF_RESULT (1 « RXFB_RESULT)

#define RXFF_STRING (1 « RXFB_STRING)

#define RXFF_TOKEN (1 « RXFB_TOKEN)

#define RXFF_BONRET (1 « RXFB_NONRET)

#define RXCODEMASK $FFOOOOOO

#defjne RXARGMASK $OOOOOOOF

1* The RexxRsrc structure is used to manage global resources.
* The name string for each node is created as a RexxArg structure,
.. and the total size of the node is saved in the "rr_Size" field.
* Functions are provided to allocate and release resource nodes.
* If special deletion operations are required, an offset and base can
* be provided in "rr_Func" and "rr_Base", respectively. This function
* will be called with the base in register A6 and the node in AO.
*1

struct RexxRsrc {
struct Node rr_Node;
WORD rr_Func; 1* "auto-delete" offset
APTR rr_Base; 1* "auto-delete" base
LONG rr_Size; 1* total size of node
LONG rr_Argl; 1* available ...
LONG rr_Arg2; 1* available ...
}; 1* size: 32 bytes

1* Resource node types
#define RRT_ABY 0 1* any node type ...
#define RRT_LIB 1 1* a function library
#define RRT_PORT 2 1* a public port
#define RRT_FILE 3 1* a file IoBuff
#define RRT_HOST 4 1* a function host
#define RRT_CLIP 6 1* a Clip List node

*1
*1
*1
*1
*1
*1

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

136 Appendix E

storage.h (cont.)

1* The RexxTask structure holds the fields used by REII to communicate vith
* external processes, including the client task. It includes the global
* data structure (and the base environment). The structure is passed to
* the newly-created task in its "wake-up" message.
*1

#define GLOBALSZ 200
struct RexxTask {

BYTE rt_Global[GLOBALSZ];
struct MsgPort rt_MsgPort;
UBYTE rt]lags;
BYTE rt_SigBit;

APTR rt_ClientID ;
APTR rt_MsgPkt;
APTR rt_TaskID;
APTR rt_RexxPort;

APTR rt_ErrTrap;
APTR rt_StackPtr;

struct List rt_Header1;
struct List rt_Header2;
struct List rt_Header3;
struct List rt_Header4;
struct List rt_Header5;
};

1* Definitions for RexxTask flag
#define RTFB_TRACE 0
#define RTFB_HALT 1
#define RTFB_SUSP 2
#define RTFB_TCUSE 3
#define RTFB_WAIT 6
#define RTFB_CLOSE 7

1* total size of GlobalData *1

1* global data structure

1* global message port

1* task flag bits

1* signal bit

*1
*1
*1
*1

1* the client's task ID

1* the packet being processed

1* our task ID

1* the REIX public port

1* Error trap address

1* stack pointer for traps

1* Environment list
1* Memory freelist

1* Memory allocation list
1* Files list
1* Message Ports List

*1
*1
*1
*1
*1

bits

1* external trace flag
1* external halt flag
1* suspend task?

1* trace console in use?

1* waiting for reply?

1* task completed?

1* Definitions for memory allocation constants *1
#define MEMQUANT
#define MEMMASK

#define MEMQUICK
#define MEMCLEAR

16
$FFFFFFFO

(1« 0)
(1« 16)

1* quantUIII of memory space *1
1* mask for rounding the size *1

1* EXEC flags: MEMF_PUBLIC
1* EXEC flags: MEMF_CLEAR

. Distribution Files 137

storage.h (cont.)

/. The Srclode is a temporary structure used to hold values destined for a

• segment array../ It is also used to maintain the memory freelist .

struct Srclode {
struct Srclode .sn_Succ;
struct Srclode .sn_Pred;
APTR sn_Ptr;
LOIG sn_Size;
};

#endif

/* next node

/. pointer value
/* size of object
/* size: 16 bytes

./

*/
*/
*/

138 Appendix E

rxslib.h

This file defines the library base for the ARexx Systems Library.

/* === rexx/rxslib.h ===
*
'" Copyright (c) 1986, 1987 by William S. Hawes (All Rights Reserved)

*
* ===
* The header file for the REXX Systems Library

"'/

#ifndef REXX_RXSLIB_H

#define REXX_RXSLIB_H

#ifndef REXX_STORAGE_H

#include "rexx/storage.h"

#endif

/* Some macro definitions

#define RXSNAME "rexxsyslib.library"

#define RXSID "rexxsyslib 1.0 (23 AUG 87)"

#define RXSDIR "REXX"

#define RXSTNAME "ARexx"

/* The REXX systems library structure. This should be considered as */
/* semi-private and read-only, except for documented exceptions. */

struct RxsLib {
struct Library rl_Node; /* EXEC library node */
UBYTE rl_Flags; /* global flags */
UBYTE rl_pad;
APTR rl_SysBase; /* EXEC library base */
APTR rl_DOSBase; /* DOS library base */
APTR rl_IeeeDPBase; /* IEEE DP math library base */
LONG rl_SegList; /* library seglist */
LONG rl_MaxAlloc; /* maximum memory allocation */
LONG rl_Chunk; /* allocation quantum */
LONG rl_MaxNest; /* maximum expression nesting */
struct NexxStr *rl_NULL; /* static string: NULL */
struct NexxStr *rl]ALSE; /* static string: FALSE */
struct NexxStr *rl_TRUE; /* static string: TRUE */
struct NexxStr *rl_REXX; /* static string: REXX */
struct NexxStr *rl_COMMAND; /* static string: COMMAND
struct NexxStr *rl_STDIN; /* static string: STDIll
struct NexxStr *rLSTDOUT; /* static string: STDOUT
struct NexxStr *rl_STDERR; /* static string: STDERR

Distribution Files 139

rxslib.h (cont.)

STRPTR rl_Version;
STRPTR rl_TaskName;
LOIG rLTaskPri;
LOIIG rl_TaskSeg;
LOIG rl_StackSize;
STRPTR rl_RexxDir;
STRPTR rl_CTABLE;
struct lexxStr *rl_Notice;

struct MsgPort rl_RexxPort;
WORD rLReadLock;
LOIG rl_TraceFH;
struct List rl_TaskList;
WORD rl_lmnTask;
struct List rl_LibList;
WORD rl_lmnLib;
struct List rl_ClipList;
WORD rl_NumClip;
struct List rl_MsgList:
WORD rl_lmnMsg;
};

1* Global flag bit definitions for
#define RLFB_TRACE RTFB_TRACE
#define RLFB_HALT RTFB_HALT
#define RLFB_SUSP RTFB_SUSP
#define RLFB_TCUSE RTFB_TCUSE
#define RLFB_TCOPI 4
#define RLFB_STOP 6
#define RLFB_CLOSE 7

#define RLFMASK Ox07

; Initialization constants

#define RXSVERS 2
#define RXSREV
#define RXSALLOC Ox800000
#define RXSCHUIK 1024
#define RXSNEST 32
#define RXSTPRI 0
#define RXSSTACK 4096
#define RXSLISTH 4

1* version/configuration string*1
1* name string for tasks *1
1* starting priority
1* startup seglist
1* stack size
1* REXX directory
1* character attribute table
1* copyright notice

1* REXX public port
1* lock count
1* global trace console
1* REXX task list
1* task count

1* Library List header
1* library count

1* ClipList header

1* clip node count
1* pending messages
1* pending count

RexxMaster

1* interactive tracing?
1* halt execution?

1* suspend execution?
1* trace console in use?

1* trace console open?
1* deny further invocations
1* close the master

1* passed flags

1* main version

1* revision

1* maximum allocation

1* allocation quantum
1* expression nesting limit
1* task priority
1* stack size
1* number of list headers

*1
*1
>t<1
*1
*1
*1

>t<1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

*1
*1
*1
*1
*1
*1
*1
*1

*1

*1
*1
*1
*1
*1
*1
*1
*1

Appendix E 140

rxslib.h (cont.)

1* Character attribute flag bits used in REXX. Defined only for *1
1* ASCII characters (range 0-127). *1

#define CTB_SPACE 0
#define CTB_DIGIT 1
#define CTB_ALPHA 2
#define CTB_REXXSYM 3
#define CTB_REXXOPR 4
#define CTB_REXXSPC 5
#define CTB_UPPER 6
#define CTB_LOWER 7

1* Attribute flags
#define CTF_SPACE (1 «
#define CTF_DIGIT (1 «
#define CTF_ALPHA (1 «
#define CTF_REXXSYM (1 «
#define CTF_REXXOPR (1 «
#define CTF_REXXSPC (1 «
#define CTF_UPPER (1 «
#define CTF_LOWER (1 «

#endif

1* white space characters
1* decimal digits 0-9
1* alphabetic characters
1* REXX symbol characters
1* REXX operator characters
1* REXX special symbols
1* UPPERCASE alphabetic
1* lowercase alphabetic

CTB_SPACE)
CTB_DIGIT)
CTB_ALPHA)
CTB_REXXSYM)
CTB_REXXOPR)
CTB_REXXSPC)
CTB_UPPER)
CTB_LOWER)

Distribution Files 141

rexxio.h

This file defines the data structures used for buffered I/O. ARexx uses linked lists of
IoBuff structures to keep track of the files it opens. Each IoBuff node is allocated as
an "auto-delete" structure and can be closed and released by a call to either CloseFO or
RemRsrcNodeO. An entire list of files can be closed with a call to RemRsrcList().

1* === rexx/rexxio.h ==
* * Copyright (c) 1986, 1987 by William S. Hawes (All Rights Reserved)

*
* ==
* Header file for ARexx InputlOutput related structures
*1

#ifndef REXX_REXXIO_H

#define REXX_REXXIO_H

#ifndef REXX_STORAGE_H

#include "rexx/storage.hu

#endif

#define RXBUFFSZ 204 1* buffer length

1* The IoBuff is a resource node used to maintain the File List. Nodes are
* allocated and linked into the list whenever a file is opened.
*1

struct IoBuff {
struct RexxRsrc iobMode;
APTR iobRpt;
LONG iobRct;
LOIG iobDFH;
APTR iobLock;
LOIG iobBct;
BYTE iobArea[RXBUFFSZ];
};

1* Access mode definitions
#define RXIO_EXIST -1

#define RXIO_STRF 0

#define RXIO_READ 1
#define RXlO_WRITE 2
#define RXIO_APPEID 3

1* structure for files/strings *1
1* readlwrite pointer *1
1* character count *1
1* DOS filehandle *1
1* DOS lock *1
1* buffer length *1
1* buffer area *1
1* size: 256 bytes *1

*1
1* an external filehandle *1
1* a "string file" *1
1* read-only access *1
1* write mode *1
1* append mode (existing file) *1

142 Appendix E

http:rexx/storage.hu

rexxio.h (cont.)

1* Offset anchors for SeekF()

#define RXIO_BEGIN -1
#define RXIO_CURR 0
#define RXIO_END 1

*1
1* relative to start *1
1* relative to current position *1
1* relative to end *1

1* The Library List contains just plain resource nodes.

#define LLOFFSET(rrp) (rrp->rr_Argl) 1* "Query" offset
#define LLVERS(rrp) (rrp->rr_Arg2) 1* library version

1* The RexxClipNode structure is used to maintain the Clip List. The
* value string is stored as an argstring in the rr_Arg1 field.

*1

#define CLVALUE(rrp) «STRPTR) rrp->rr_Argl)

1* A message port structure, maintained as a resource node.
* The ReplyList holds packets that have been received but haven't been
* replied.
*1

struct RexxMsgPort {
struct RexxRsrc rmp_Node;
struct MsgPort rmp_Port;
struct List rmp_ReplyList:
};

1* DOS Device types
#define DT_DEV 0
#define DT_DIR 1

2

1* Private DOS packet types
#define ACTION_STACK 2002
#define ACTION_QUEUE 2003
#endif

1* linkage node
1* the message port
1* messages awaiting reply

1* a device
1* an ASSIGNed directory
1* a volume

1* stack a line
1* queue a line

Distribution Files 143

errors.h

This file contains the definitions for all of the error messages issued by the ARexx inter­
preter.

/* == errors.h ===
* * Copyright (c) 1987 by William S. Hawes (All Rights Reserved)

*

* ===
* Definitions for ARexx error codes

*/

#define ERRC_MSG /* error code offset */
#define ERR10_001 ° (ERRC_MSG+l) /* program not found */
#define ERR10_002 (ERRC_MSG+2) /* execution halted */
#define ERR10_003 (ERRC_MSG+3) /* no memory available */
#define ERR10_004 (ERRC_MSG+4) /* invalid character in program*/
#define ERR10_005 (ERRC_MSG+5) /* unmatched quote */
#define ERR10_006 (ERRC_MSG+6) /* unterminated comment */
#define ERR10_007 (ERRC_MSG+7) /* clause too long */
#define ERR10_008 (ERRC_MSG+8) /* unrecognized token */
#define ERR10_009 (ERRC_MSG+9) /* symbol or string too long */

#define ERR10_0l0 (ERRC_MSG+l0) /* invalid message packet */
#define ERR10_011 (ERRC_MSG+ll) /* command string error */
#define ERR10_012 (ERRC_MSG+12) /* error return from function */
#define ERR10_013 (ERRC_MSG+13) /* host environment not found */
#define ERR10_014 (ERRC_MSG+14) /* required library not found */
#define ERR10_015 (ERRC_MSG+15) /* function not found */
#define ERR10_016 (ERRC_MSG+16) /* no return value */
#define ERR10_017 (ERRC_MSG+17) /* wrong number of arguments */
#define ERR10_018 (ERRC_MSG+18) /* invalid argument to function*/
#define ERR10_019 (ERRC_MSG+19) /* invalid PROCEDURE */

#define ERR10_020 (ERRC_MSG+20) /* unexpected THEN/ELSE */
#define ERR10_021 (ERRC_MSG+21) /* unexpected WHEN/OTHERWISE */
#define ERR10_022 (ERRC_MSG+22) /* unexpected LEAVE or ITERATE */
#define ERR10_023 (ERRC_MSG+23) /* invalid statement in SELECT */
#define ERR10_024 (ERRC_MSG+24) /* missing THEN clauses */
#define ERR10_025 (ERRC_MSG+25) /* missing OTHERWISE */
#define ERR10_026 (ERRC_MSG+26) /* missing or unexpected END */
#define ERR10_027 (ERRC_MSG+27) /* symbol mismatch on END */
#define ERR10_028 (ERRC_MSG+28) /* invalid DO syntax +'1
#define ERR10_029 (ERRC_MSG+29) /* incomplete DO/IF/SELECT */

144 Appendix E

errors.h (cont.)

#define ERR10_030 (ERRC_MSG+30)
#define ERR10_031 (ERRC_MSG+31)
#define ERR10_032 (ERRC_MSG+32)
#define ERR10_033 (ERRC_MSG+33)
#define ERR10_034 (ERRC_MSG+34)
#define ERR10_035 (ERRC_MSG+35)
#define ERR10_036 (ERRC_MSG+36)
#define ERR10_037 (ERRC_MSG+37)
#define ERR10_038 (ERRC_MSG+38)
#define ERR10_039 (ERRC_MSG+39)

#define ERR10_040 (ERRC_MSG+40)
#define ERR10_041 (ERRC_MSG+41)
#define ERR10_042 (ERRC_MSG+42)
#define ERR10_043 (ERRC_MSG+43)
#define ERR10_044 (ERRC_MSG+44)
#define ERR10_045 (ERRC_MSG+45)
#define ERR10_046 (ERRC_MSG+46)
#define ERR10_047 (ERRC_MSG+47)
#define ERR10_048 (ERRC_MSG+48)

1* Return Codes for general use
#define RC]AIL -1
#define RC_OK ° #define RC_WARN 5

#define RC_ERROR 10

#define RC_FATAL 20

1* label not found *1
1* symbol expected *1
1* string or symbol expected *1
1* invalid sub-keyword *1
1* required keyword missing *1
1* extraneous characters *1
1* sub-keyword conflict *1
1* invalid template *1
1* invalid TRACE request *1
1* uninitialized variable *1

1* invalid variable name *1
1* invalid expression *1
1* unbalanced parentheses *1
1* nesting level exceeded *1
1* invalid expression result *1
1* expression required *1
1* boolean value not ° or 1 *1
1* arithmetic conversion error *1
1* invalid operand *1

*1
1* something's wrong *1
1* success *1
1* warning only *1
1* something's wrong *1
1* complete or severe failure *1

Distribution Files 145

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Glossary

Allocation. A grant of a system resource, such as memory space. Programs designed
to run in a multitasking environment generally use dynamic allocation to avoid tying up
system resources.

AmigaDOS. The higher-level part of the Amiga operating system that supports the filing
system and input/output operations.

Argstring. An "argument string" structure used to pass data to an ARexx program. The
structure is passed as a pointer to the buffer area containing the string data, and can be
treated as a pointer to a null-terminated string.

Argument. A data item passed to a function, sometimes called a parameter.

Clause. A group of one or more tokens forming a "sentence" in a language. The clause is
the smallest executable language fragment.

Command Line Interface (CLI). A program that accepts input from the user and
runs programs based on the entered command. The CLI generally refers to the command
interpreter supplied with the Amiga, but other command "shells" may be used instead.

Concatenation. An operation in which two strings are joined or "chained together."
ARex:x provides two concatenation operators, one of which joins strings directly and the
other of which embeds a blank between the operands.

EXEC. The multitasking kernel of the Amiga's operating system. EXEC provides the task
scheduling, interrupt handling, and message-passing primitives used to support ARexx.

Function Host. A program that manages a public message port for receiving function
invocation messages. The message port may be the same one used for command messages.

Function Library. A collection of functions callable from ARexx and managed as an
Amiga shared library. Each function library includes an entry point to associate a function
name with the code to be called.

Host Address. The name of the public l{1essage port associated with a host application.
The host address is used as the unique identifier for the host, and should be unique within
the system message ports list. Within an ARex:x program the host address identifies the
external host to which commands will be sent.

147

Host Application. An executable program that provides a suitable command interface
to receive ARexx commands. Most host applications will also provide a means to invokde
macro programs from within the application.

Interrupt. An event that alters the normal flow of control in a program. Interrupts in
ARexx refer to events within the program execution and are distinct from the hardware-level
interrupts managed by the Amiga EXEC system.

Macro Program. A program that implements a complex "macro" operation from a series
of "micro" commands.

Message Packet. A data structure used to pass information between tasks. A message
packet is allocated and initialized by one task and then sent to another task's message port.
After the recipient has processed the message, it "replies" the message to the replyport
associated with the message.

Message Port. A data structure used as the rendezvous point for message passing. A
message port provides the anchor for a list of message packets and identifies the task to be
signalled when a message arrives.

Multitasking. The ability to run more than one program at a time. More precisely,
multitasking permits the resources of the computer to be shared among many tasks without
forcing any task to be aware of the others.

Process. An extension to an EXEC task structure that provides the data fields required
to use AmigaDOS functions. All ARexx programs run as AmigaDOS processes.

Replyport. A message port designated to receive a returning message packet. Each
message packet includes a field that specifies its reply port.

Resident Process. The program responsible for launching ARexx programs and for man­
aging various resources used by ARexx. It is structured as a host application and opens a
public message port named "REXX."

Shared Library. A collection of executable code and data managed as a resource by the
EXEC operating system. As the name "shared" implies, the code and data in a library can
be used by more than one task.

Storage Environment. The collection of data values forming the current state of an
ARexx program. Storage environments are strictly nested and only one environment is
current at any time.

Task. An entity consisting of executable code and a data structure managed by the EXEC
operating system. The task is the smallest program unit that can be scheduled and run
separately.

148 Glossary

Token. The elementary words or atoms of a language. A token can be considered as a
string of one or more characters forming the smallest unit of the language.

Typeless. Data items having no assumed structure or usage. ARexx treats all data as
typeless character strings and checks for specific characteristics only when required by an
operation.

149

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Index

ABBREVO Built-In function, 51

ABSO Built-In function, 51

absolute marker, 77

action codes, 93, 97-98

in message packet, 93

RXADDCON, 97

RXADDFH, 98

RXADDLIB,98

AddClipNodeO Library function, 113

ADDLIBO Built-In function, 51

ADDRESS instruction, 25, 93

ADDRESSO Built-In function, 52

AddRsrcNodeO Library function, 113

ALL trace option, 71

ALLOCMEM() Support function, 127

alphabetic option, 40, 71

ARG instruction, 8, 26, 106

in parsing, 77

as PARSE keyword, 33

ARGO Built-In function, 52

argstring, 90

arguments, 8, 22, 26

at invocation, 22, 26

of functions, 8

with CALL instruction, 26

B2CO Built-In function, 52

binary tree, 23

binding of ELSE instructions, 28

BITANDO Built-In function, 52

BITCHGO Built-In function, 53

BITCLRO Built-In function, 53

BITCOMP() Built-In function, 53

BITORO Built-In function, 53

BITSETO Built-In function, 53

BITTST() Built-In function, 53

BITXOR() Built-In function, 54

boolean value, 107

BREAK instruction, 26, 109

BREAK_C interrupt, 74

BREAK-.D interrupt, 75

BREAK~ interrupt, 75

BREAK..F interrupt, 75

Built-In functions, 51-69

for I/O, 23

BY expression, with DO, 27

C2B() Built-In function, 54

C2DO Built-In function, 54

C2XO Built-In function, 54

CALL instruction, 26

CENTER() Built-In function, 55

clauses, 14-15

assignment, 14

classification of, 14-15

command, 15

continuation of, 14

instruction, 15

label, 14

null, 14

ClearMemO Library function, 114

ClearRexxMsgO Library function, 114

Clip List, 83-84, 86, 97-98

adding entries, 84, 97

removing entry, 98

close parenthesis, as token, 13

CLOSE() Built-In function, 55

CloseFO Library function, 114

CLOSEPORTO Support function, 127

ClosePublicPort 0 Library function, 114

CmpStringO Library function, 114

colon, as token} 13

comma, as token, 13

in templates, 78

command clauses, 43

command inhibition, 40,73

in testing, 46

command interface, 3, 43, 89

design of, 91

error handling, 91

command invocation, 94

Command Line Interface (CLI), 5

COMHANDS trace option, 71

cornmenttokens, 11

COMPAREO Built-In function, 5.5

COMPRESSO Built-In function, 55

COPIESO Built-In function, 55

CreateArgstringO Library function, 114

CreateDOSPktO Library function, 115

CreateRexxMsg(), 90, 115

1511

Library function, 115

CurrentEnv () Library function, 117

CV2i2argO Library function, 116

CVa2iO Library function, 115

CVc2xO Library fUnction, 116

CVi2aO Library function, 116

CVi2azO Library function, 116

CVs2iO Library function, 116

CVx2cO Library function, 116

D2CO Built-In function, 56

DATATYPEO Built-In function, 56

DeleteArgstringO Library function, 117

DeleteDOSPkt 0 Library function, 117

DeleteRexxMsg 0, 90, 117

Library function, 117

DELSTRO Built-In function, 56

DEL'WORD() Built-In function, 57

display formatting, during tracing, 72

DO instruction, 7, 27

DOSRead 0 Library function, 117

DOS'WriteO I,ibrary function, 118

DROP instruction,' 28

ECHO instruction, 28, 109

ELSE instruction, 28, 105

EID instruction, 8, 29

engineering notation, 17

enlightenment

EOFO Built-In function, 57

ERROR Interrupt, 75

error processing, during tracing, 73

ErrorMsgO Library function, 118

ERRORS trace option, 71

ERRORTEXTO Built-In function, 57

ExistF() Library function, 118

EXISTSO Built-In function, 57

EXIT instruction, 29

exponential notation, 17

EXPORTO Built-In function, 57

EXPOSE keyword, with PROCEDURE, 35

expressions, 15, 16, 17

symbol resolution, 16

operators in, 17

extensions to REXX standard, 109

external tracing flag, 74

EXTERIAL keyword, with PARSE, 33

FillRexxMsgO Library function, 119

FindDeviceO Library function, 119

FindRsrcNodeO I.ibrary function, 119

FOR expression, with DO, 27

Forbid () function, 93

FOREVER, with DO, 27

FREEMEMO Support function, 128

FreePortO I.ibrary function, 119

FREESPACEO Built-In function, 58

FreeSpaceO I.ibrary function, 119

function, 8, 15

argument list, 15

function hosts, 85, 89

in Ubrary I.ist, 85

function libraries, 4, 8586, 89, 101

as bridge, 4

as test driver, 4

calling convention, 101

in I.ibrary I.ist, 85

query function, 86

parameter conversion, 101

returned values, 101

GETARG() Support function, 128

GETCLIPO Built-In function, 58

GETPKT() Support function, 128

GETSPACEO Built-In function, 58

GetSpaceO Library function, 120

halt, external flag, 83

HALT interrupt, 75, 103

HASHO Built-In function, 58

HI command, 83

host address, 25,43-44

COMMAND, 44

with ADDRESS, 43

inspecting, 43

in command interface, 44

host application, 43

input/output facilities, 23

output stream, 23

input stream, 23

IF instruction, 8,29

IMPORTO Built-In function, 59

IIDEXO Built-In function, 59

in 77

initializer expression, with DO, 27

152 Index.

InitList() Library function, 120

InitPortO Library function, 120

input stream, 96

IlISERTO Built-In function, 59

installation procedure, 5

instruction clauses, 25-41

interactive tracing, 40, 73

IlITERMEDIATES trace option, 71

INTERPRET instruction, 30

with interactive tracing, 73

interrupts, 3, 24, 74

EXEC supported, 74

with SIGUL, 39

IoBuff structure, 122-123, 125

IOERR Interrupt, 75

IsRexxMsgO Library function, 120

IsSymbolO Library function, 121

ITERATE instruction, 30

Label, 14, 106

missing, 106

language features, 3

LASTPOSO Built-In function, 59

LEAVE instruction, 31

LEFTO Built-In function, 60

LERGTH() Built-In function, 60

Library List, 83, 85, 98, 104

adding entries, 85, 98

adding library, 98

adding host, 98

deleting entries, 85, 98

ListNames() Library function, 121

LockRexxBase(), 102

Library function, 121

logical name, 23

macro programs, 45

markers, in templates, 77, 80

absolute, 77

pattern, 77

positional, 80

mathieeedoubbas library, 5

MAXO Built-In function, 60

message port, 83

REXX,83

MIllO Built-In function, 60

multiple templates, 80-81

in parsing, 80

naming conventions, 6

nesting, subexpression limit, 107, 109

no-pause instructions, 73

NOP instruction, 31

NORMAL trace option, 71

NOVALUE Interrupt, 75

NUMERIC instruction, 31

NUMERIC keyword, with PARSE, 33

omissions, from REXX standard, 109

open parenthesis, as token, 13

OPERO Built-In function, 60

OpenF() Library function, 122

OPENPORT() Support function, 128

OpenPublicPortO Library function, 122

operators, 12, 16-17,20-21,78

boolean, 21

comparison, 20

in templates, 78

order of evaluation, 16

tokens, 12, 17

types of, 17

OPTIONS instruction, 32

OTHERWISE instruction, 32, 38, 105

in SELECT range, 38

missing, 105

output stream, 96

tracing, 72

OVERLAYO Built-In function, 61

parentheses, in templates, 78

PARSE instruction, 33, 106

in parsing, 77

pattern marker, 77

patterns, 34,77,80

in parsing, 34, 80

marker, 77

PermitO function, 93

posO Built-In function, 61

positional markers, 80

PRAGMAO Built-In function, 61

precision, numeric, 17

prefix characters, 40, 73

PROCEDURE instruction, 35, 105

program examples, 7

program execution environment, 22

program format, 11

public message port, 43

1531

PULL instruction, 35, 106

in parsing, 77

as PARSE keyword, 33

PUSH instruction, 36

PutMsgO function, 93

QUEUE instruction, 37

QueueFO Library function, 122

quoting convention, for commands, 94

RAlfDOM() Built-In function, 62

RAlfDUO Built-In function, 62

RC special variable, 39, 73, 75

with interrupts, 75

with command inhibition, 73

with interrupts, 39

READCH() Built-In function, 62

READLNO Built-In function, 62

ReadStr() Library function, 122

reentrancy, requirement for, 100

relative marker, 77

RemClipNodeO Library function, 123

REMLIBO Built-In function, 63

RemRsrcListO Library function, 123

RemRsrcNodeO Library function, 123

REPLYO Support function, 129

ReplyMsgO function, 92

resident process, 6, 83-84, 89

resources managed, 83

capabilities, 83

closing, 84

starting, 6

resource tracking, 23

result fields, 92,97

setting values, 92

interpretation of, 97

RESULT special variable, 26

result string, 29, 37

from RETURN, 37

from EXIT, 29

RESULTS trace option, 71

return code, 44

RETURN instruction, 8, 37

REVERSEO Built-In function, 63

REXX: directory, 6

RexxArg structure, 89-90

RexxMsg structure, 89

RexxRsrc structure, 90

RexxTask structure, 102

RIGHTO Built-In function, 63

RX command, 84

RXADDCON action code, 97

RXADDFH action code, 98

RXADDLIB action code, 98

RXC command, 84

RXCOMM action code, 98

RXFBJlOIO modifier, 99

RXFBJlONRET modifier, 99

RXFB..RESULT modifier, 99

RXFB...sTRING modifier, 99

RXFB_TOKEN modifier, 99

RXFUNC action code, 98

RXREMCON action code, 98

RXREMLIB action code, 98

RXSET command, 84

RXTCCLS action code, 99

RXTCOPN action code, 99

SAY instruction, 7, 38

SCAN trace option, 71

scientific notation, 17

search order, 26, 47

for function calls, 26, 47

search path, 95

search priority, 85

SEEK() Built-In function, 63

SeekFO Library function, 123

SELECT instruction, 38

semicolon, as token, 13

SETCLIPO Built-In function, 63

severity level, with error code, 103

shared library, 89

SHELL instruction, 38, 109

SHOWO Built-In function, 64

SHOWOIRO Support function, 129

SHOWLISTO Support function, 129

SIGL special variable, 39, 75

with interrupts, 39, 75

SIGN() Built-In function, 64

SIGNAL instruction, 39, 103, 109

with interactive tracing, 74

single-drive systems, 6

SOURCE keyword, with PARSE, 33

SPACEO Built-In function, 64

special character tokens, 13

StackFO Library function, 123

154 Index.

STATEFO Support function, 130

StcTokenO Library function, 124

STDIII stream, 23, 36-37

with PUSH instruction, 36

with QUEUE instruction, 37

storage environments, 22

STORAGEO Built-In function, 65

StrcmplfO Library function, 125

StrcpyAO Library function, 124

StrcpyNO Library function, 124

strcpyUO Library function, 124

S'I'DERR stream, 72

STDOUT stream, 23, 72

StrfliplfO Library function, 124

string file, 94

string tokens, 12, 78

binary, 12

hex, 12

in templates, 78

STRIPO Built-In function, 65

Strlen(} Library function, 125

SUBSTR() Built-In function, 65

in parsing, 77

SUBWORD() Built-In function, 65

Support Library, 127-130

symbol table organization, 23

SYIIBOLO Built-In function, 66

symbol tokens, 11,21, 106

stem, 21

compound, 21

in templates, 78

SYNTAX Interrupt, 75

error processing, 103

Systems Library, 111-126

target, 77

TCC command, 72, 84, 85

TCO command, 72, 84

TE command, 74, 84

template, 33, 77

structure, 77

in parsing, 77

with PARSE, 33

THEN instruction, 39, 105

missing, 105

TIMEO Built-In function, 66

TO expression, with DO, 27

tokenization 34, 79

tokens, 11

tombstone, 'lEX artifact, 151-155

ToUpperO Library function, 125

TRACE instruction, 9, 40

prefix characters, 40

TRACEO Built-In function, 66, 71

tracing, 3, 71-73, 84-85

alphabetic options, 71

closing trace console, 84

external flag, 84

global console, 72

interactive, 73

opening trace console, 85

TRANSLATEO Built-In function, 67

TRIMO Built-In function, 67

TS command, 74, 84

typeless, 3

uninitialized variable, 38, 40, 75

with UPPER, 40

UnlockRexxBase(), 102

Library function, 125

UNTIL expression, with DO, 27

UPPER instruction, 40

UPPER(} Built-In function,67

UPPER keyword, with PARSE, 33

VALUEO Built-In function, 67

VALUE keyword, with PARSE, 33

VAR keyword, with PARSE, 33

VERIFY(} Built-In function, 68

VERSION keyword, with PARSE, 34

WAITPKTO Support function, 130

WHEN instruction, 41, 105

in SELECT range, 38

WHILE expression, with DO, 27

WORD () Built-In function, 68

WORDIllDEXO Built-In function, 68

WORDLENGTH(} Built-In function, 68

WORDSO Built-In function, 68

WorkBench, with ARexx, 5

WRITECHO Built-In function, 69

WriteFO Library function, 125

WRITELllO Built-In function, 69

X2CO Built-In function, 69

XRANGEO Built-In function, 69

1551

