




AReJCJC: Your 
Amiga's Built-in 

rurlJocharger 
Discover the potential of your Amiga's best·kept secret! 





AReJCJC: Your 
Amiga's Built-in 

rurltocltarger 
Discover the potential of your Amiga's best-kept secret! 

Toby Simpson 



• IV 

ARexx: Your Amiga's Built-in Turbocharger 
Copyright© Future Publishing 1994 
All rights reserved. No part of this book may be duplicated, stored in a 
retrieval system or used as part of any other book, database, program 
or other commercial application without the publisher's express written 
permission. 

Author Toby Simpson 

Book design Rod Lawton 

Book production Ian Pemble 

Cover design Frank Bartucca 

First published in 1994 by Future Publishing, Beauford Court, 30 
Monmouth Street, Bath, Avon BA 1 2BW 

ISBN 1-898275-09-2 

Printed in the UK by Ashford Colour Press 

Acknowledgement of copyright and trademarks 
This book contains copyright or trademark product names owned by 
the companies which produce them. Description of these products with
out mention of their legal status does not constitute a challenge to that 
status. The author and Future Publishing fully acknowledge such copy
right names or trademarks. 

ARexx: Your Amiga's Built-in Turbocharger 



v 

Contents 

e d ••• 
rflre""""' ·······································"''' 

Preface 

Secti11n A Introduction ........................................ I 
Running ARexx .......................................................................... 5 

The history of ARexx ................................................................. 5 

ARexx on the Amiga .................................................................. 7 

ARexx for 1.3 machines ............................................................. 8 

Secti11n 8 Programming in ARexx .......................... 9 
Getting started ........................................................................ 11 

Introducing variables ............................................................... 16 

Simple programming ............................................................... 22 

More on looping and decisions ................................................. 30 

More about variables ............................................................... 37 

Functions ............................................................................... 48 

Program arguments ................................................................ 6 7 
The PARSE statement. ............................................................. 69 
Files ....................................................................................... 77 

Signals, tracing and debugging ................................................ 83 

Programming style .................................................................. 95 

Advanced programming ........................................................... 95 

ARexx: Your Amiga's Built-in Turbocharger 



vi Contents 

Section C Controlling External Applications ....... I I 3 
Communicating with applications ............................................ 118 

Information from the host ...................................................... 123 

Host addresses & commands ................................................ 129 

How much support will you get? ............................................ .136 

Programs that support ARexx ................................................ 138 

Section D ARexx in Real Applications ............... I 43 
The Error Checker ................................................................ 145 

Listing 1: The Error Checker .................................................. 149 

The Picture Modifier .............................................................. 161 

Listing 2: The File Processor .................................................. 164 

Other Applications ................................................................. 171 

Section E Reference Section ........................... I 77 
Language Specifications ........................................................ 178 

ARexx keywords .................................................................... 180 

Function Reference ............................................................... 218 

Rexxsupport.library ............................................................... 279 

Utility Programs Reference .................................................... 297 

Section F Adding support to your programs ....... 303 
Adding ARexx support in ARexx .............................................. 305 

ARexx Support: non-ARexx Applications .................................. 312 

The ARexx Resident Process .................................................. 326 

A Matter of Style ................................................................... 328 

ARexx: Your Amiga's Built-in Turbocharger 



Contents vii 

Appendix I Error Codes .............................. 329 

Appendix 2 Further Reading ......................... 339 

Appendix 3 ASCII codes ............................. 34 I 

Otlter tltings we do ................................. 351 

ARexx: Your Amiga's Built-in Turbocharger 



viii Foreword 

Fore1¥ord 
This is a book on ARexx, an easy-to-learn yet powerful 
computer language for the Amiga. Not only that, but for 
most Amiga owners ARexx is free! Every Amiga since the 
ASOO+ has been supplied with ARexx, which makes it an 
ideal first computer language to learn. 

The aim of this book is to teach you how to program ARexx, 
to act as a handy reference guide to the language, and to 
give you some ideas about how ARexx can be put to work 
to make your life easier. 

I'd like to say thanks to all my family and friends (and to 
the loads of other people who helped as well) and, in 
particular, to Rod Lawton of Future Publishing - for giving 
me the opportunity to write this book in the first place, and 
for his astonishing patience in waiting for me to finish it. 

Toby Simpson, 18 July 1994 

A•ouf tlte Autltor 
Toby Simpson is 24, unfit, and lives in a little house in 
Cambridge, England. He writes computer games for a 
living. His hobbies include (rather sadly) computers and 
pinball, and he's not particularly good at the latter. 
Fortunately an increasing interest in caving and climbing 
offers a chance at redemption. He drinks abnormal amounts 
of single malt Scotch whisky, has never met aliens, and has 
yet to successfully grow any form of plant whatsoever. His 
favourite dinosaur is a Stegosaurus, and he's a whole bunch 
more interesting than he sounds. Probably. 

ARexx: Your Amiga's Built-in Turbocharger 



ix 

Pref ace 
'ARexx: Your Amiga's Built-in Turbocharger' was the most 
descriptive title we could think of. We could have called this 
book 'Introducing ARexx', or the 'ARexx Reference Guide', 
but this would miss the point. 

And the point is that your Amiga (unless it's an old 
Workbench 1.3 model) comes with a little-documented but 
startlingly powerful program called ARexx which really can 
make your day to day Amiga jobs happen at twice the 
speed. Not by accelerating the CPU or doubling the RAM, 
but by letting you write scripts and programs that take the 
work away from you and hand it over to the machine and 
the software. 

Now then, there's a big difference between what ARexx 
appears to be, and what it is ... 

It appears to be a rather complicated scripting language for 
high-end multi-tasking operations. It's buried deep in the 
system disks and hardly gets a mention in your Amiga's 
documentation. 

What is is, is a powerful stand-alone programming 
language every bit as capable as BASIC and hardly more 
difficult to learn. That's the big secret. And this book shows 
you how to write programs in this excellent Amiga 
language. 

What people also know about ARexx is that it's got 
something to do with multitasking, and only some software 
supports it. Well, it's a bit more useful than that. Imagine 
you had a permanent assistant that would (a) carry out odd 
jobs for you and (b) tell everyone else what you wanted 
them to do, and make sure they did it. That's what ARexx 
will do with your Amiga and its software. 

ARexx: Your Amiga's Built-in Turbocharger 



x Preface 

Apart from its ability to produce stand-alone programs, 
ARexx can 'talk' to any applications that support it. It can 
make that application carry out a sequence of operations 
you would normally have to do manually - and it can do 
them a damed sight quicker. It can also 'talk' to more than 
one application at a time. For example, it can carry out a 
sequence of operations on a piece of artwork in one 
application, then import it into a DTP document running 
under another application. It could then print the document 
out if you wanted it to. That's just a simple example. The 
real potential is up to your own imagination. 

Why do you need this boolc? 

Commodore have a habit of making some very sound 
decisions - and some very strange ones. In this case, the 
sound decision was bundling ARexx with all Amigas from 
Workbench 2 on. The strange one was including 
documentation only on the high-end models. Which means 
that most Amiga owners have this fabulous untapped 
resource at their fingertips, and no way of knowing what to 
do with it. 

Which is why we produced this book! 

What the icons mean 

Books are very big things and can easily tum into a grey 
mass of words that definitely contain that piece of 
information you want - if only you could find it. 

We've picked out important pieces of information carefully, 
setting them in bold type and putting an icon in the margin 
alongside. These are those icons: 

ARexx: Your Amiga's Built-in Turbocharger 



Preface 

W G 
~ 

MAKE A 
NOTE! 

xi 

Warning! Speaks for itself, really. When you see 
this sign, do make sure you read the text 
alongside. It could save you money, save you time 
and even save your sanity. 

Make a note. You'll see this icon alongside 
important details or information you're going to 
want to keep referring back to in future. This is 
our way of making it easy to find. 

Top Tip. Another obvious one. Wherever there's a 
tip to save you a few minutes, a few quid, or even 
a few sleepless nights, here's how we mark it. 

That's enough waffle 

Time to get started! Beginners should tackle this book by 
starting at the beginning and working through as their 
understanding develops. More experienced users should 
use the Contents to find the information they most need to 
know. While even ARexx experts will need the formidable 
ARexx reference section at the back of the book. 

Toby Simpson knows a lot about programming. He also 
knows a lot about ARexx. The reference information in this 
book is more complete and up to date even than the official 
Commodore documentation ... 

ARexx: Your Amiga's Built-in Turbocharger 



•• XII 

ARexx: Your Amiga's Built-in Turbocharger 



Section A 
Introduction 

1 

ARexx: Your Amiga's Built-in Turbocharger 



2 

MAKE A 
NOTE! 

Section A 

Your Amiga is a multi-tasking computer. Although it only 
has one microprocessor chip, its advanced programming 

allows it to give the appearance of running many programs 
at once, by carefully dividing up the chip's available time. 
The program responsible for handling this on a computer is 
called the Operating System - in the Amiga, this is your 
Kickstart ROM. 

As an increasing number of people buy extra memory and 
hard disks, more and more are making use of the Amiga's 
multi-tasking by running more than one program at once, 
or by moving information from one application to another. 
An example might be a user with an art package and a 
desktop publishing (DTP) package, moving a drawing from 
the art package into the DTP one to use as an illustration 
within a document. 

This movement of information from one program to another 
can be very time consuming, repetitive and extremely 
boring and, if there's a lot of it to do, then it's easy to make 
mistakes. The thing is, computers are particularly good at 
doing repetitive, boring tasks like this. Wouldn't it be great 
if there was a way of getting the computer to move all this 
information from application to application for you? Well, 
there is. Its called "ARexx", and it has been supplied with 
every Amiga sold sinc_e the ASOO+. If you have Kickstart 2 
or above, you have ARexx. 

ARe.xx is a programming language rather like 
BASIC or C. But what makes ARe.xx particularly 
clever, and different from other computer 
languages, is that it can talk to other programs 
and make them do things. 

It might be possible, for example, to write a program in 
ARexx that could check a document in a word processor to 
make sure that there was a space after every full stop and 

ARexx: Your Amiga's Built-in Turbocharger 



Introduction 

ARexx can control several 
programs at once (provided each 
has a built-in ARexx "port"}. In 
this hypothetical example, ARexx 
is combining the output from an 
art package and a word 
processor in a DTP program file, 
which it then sends to a printer. 

3 

Pies & illustrations 

Using ARexx as a 
multi-tasking "hub" 

comma - a sort of grammar-checking facility. The ARexx 
program would communicate with the word processor 
through its "ARexx Port", issuing it with instructions on 
what to do. 

ARexx can also act as a central hub, and control several 
applications all at once. Suppose you had a painting 
package, like Art Department Pro, and 400 pictures that you 
needed to put a border around and change from Hi-Res to 
Lo-Res - you would be faced with a very big job indeed. 
You would need to load each picture into your paint 
package and add the border, then you'd have to run each 
frame through Art Department to convert it into Lo-Res. But 
this job becomes straightforward, quick and easy using 
ARexx. You can write a small program that runs each 
picture through the paint package, and through Art 
Department. You could then sit back and watch your 
computer do the work for you. However, before you get too 

ARexx: Your Amiga's Built-in Turbocharger 



4 

WHAO 
DOESIT. 

MEAN 

Section A 

excited, ARexx can't talk to every program, only those that 
come with an "ARexx Port". 

An ARexx port is the name for a special point in 
an application which allows ARexx to 
communicate with it. 

In addition, the amount of control you have over 
applications with ARexx ports depends on the commands 
that they allow you to use. When you run a program which 
supports ARexx, you get a whole load of new commands 
which directly control that program. So a word processor, 
for example, might add commands such as "Bold On", 
"Print Document", and "Load Document". 

Armed with these extra commands, and ARexx's flexibility, 
you can start to make the most of your multi-tasking 
computer, and those expensive applications - making them 
do things that you never thought possible. This book will 
teach you the basics of ARexx, and act as a useful reference 
guide to the language. It contains a whole section on writing 
ARexx programs to control popular Amiga applications, 
from communications packages to word processing, 
illustrating how to add additional features to these 
programs yourself. 

But as well as being an application control language, ARexx 
is a very powerful general-purpose language, and quite 
easy to learn. 

The section on Programming ARexx shows how to use 
ARexx as a stand-alone programming language, and 
demonstrates the sort of things you can achieve with it. 

ARexx: Your Amiga's Built-in Turbocharger 



Introduction 5 

Running ARexx 

ARexx is an interpreted computer language, which means 
that a special program (the ARexx interpreter) is needed in 
order to run ARexx programs. This interpreter is found in 
the System drawer, on your Workbench disk, and it's called 
"RexxMast". Before you can run ARexx programs you first 
need to run this, which is done by opening your System 
drawer and double-clicking on the RexxMast icon. A small 
window will pop up to tell you that ARexx is now running, 
and you're in business. 

Running ARexx will take up about SOK of 
memory. If you are likely to make extensive use 
of ARexx, and you don't mind losing SOK, then 
you can configure ARexx to run automatically 
every time you boot your Amiga by copying the 
Rexx.Mast program into your WBStartup drawer. 
This is easily done using the Workbench by 
dragging the icon from the System drawer into the 
WBStartup drawer. Now re-boot your Amiga, and 
ARexx will start up. 

Running the interpreter will not affect the operation of your 
Amiga in any way, other than the loss of SOk of RAM, but 
without it you cannot run ARexx programs. 

If you are using 1.3, then follow the installation instructions 
that come with ARexx. 

Tlte History ol ARexx 

ARexx stands for "Amiga Rexx." REXX is a language which 
began its life in 1979 at IBM, in the hands of Mike 
Cowlishaw. He wanted to create a language that was easy 
to use and learn, yet flexible and powerful at the same time. 

ARexx: Your Amiga's Built-in Turbocharger 



6 Section A 

So REXX was designed to be best at processing the 
information that people use from day to day, such as words 
and numbers. It is highly readable and, because it is a 
"typeless" language (you don't have to specify whether 
you're storing numbers or text - the language will figure it 
out for you) and it's very easy to program in. 

The single most important feature in RE:XX, which has 
made it particularly special for Amiga users, is its ability to 
"talk" to other applications. The result of this is that users 
only needed to learn one language. This means not having 
to learn a totally different script language for each 
application used and, more importantly, it was easily 
possible to write programs that would allow these 
applications to share information, thus giving the user the 
power to make the most of a multi-tasking environment. 

REXX was developed through the early '80s, and was used 
extensively on IBM mainframes. In 1987 it became the 
standard procedures language for all IBM Systems 
Application Architecture operating systems (a large number 
of big machines!). 1987 was also special for another reason. 
This was the year that William Hawes ported REXX to the 
Amiga - and ARexx was born. 

The Amiga was an ideal platform for a language such as 
REXX because of its true multi-tasking, something other 
microcomputers in its price range could not offer. William 
Hawes developed, supported and sold the product himself, 
and as its popularity grew, more and more major Amiga 
applications came with an ARexx Port. When Commodore 
released Workbench 2, they decided to ship ARexx as 
standard, and have done so with every Amiga since. 

ARexx is the ideal tool for anyone who uses power 
applications such as art packages, DTP programs, rendering 

ARexx: Your Amiga's Built-in Turbocharger 



Introduction 7 

MAl<E A 
NOTE! 

software and so on - it lets users automate repetitive tasks, 
and move information from application to application. 

REXX is still developing, and anyone interested in 
further details, might like to read the book, ''The 
REXX Language, A Practical Approach to 
Programming", published by Prentice Hall, 2nd 
Edition, and written by the designer of the 
Language, M. F. Cowlishaw. 

ARexx on the Amiga 

When ARexx first became available for the Amiga there 
were no applications to take advantage of it. However, 
support of the language grew rapidly as software 
companies realised that ARexx was an excellent way of 
allowing users to control their programs. Its rapid rise in 
popularity was certainly helped by the fact that the Amiga 
implementation of ARexx was so well written, and this 
contributed to its acceptance as a standard. 

The language is extremely reliable. ARexx does not crash, so 
it's possible to trust it - a major advantage. 

As has already been mentioned ARexx requires very little 
memory in order to run - about SOk is all it needs. Because 
of this, it's easier for people to take advantage of it, and they 
don't have to worry about massive memory requirements in 
order to do anything useful with it. When it was initially 
developed, back in 1987, lMb of RAM was an awful lot, and 
not many people had fast Amigas - so it was written to 
work with these low-end machines too. 

ARexx: Your Amiga's Built-in Turbocharger 



8 Section A 

Because the language is so easy to learn and 
understand, everyone can make use of it. If your 
word processor does not have a particular feature 
that you need, but has good ARexx support, then 
there's a chance that you can add this feature 
yourself, or even use another application to do it. 
Before ARexx, this sort of self-expandability was 
out of the question. 

As more and more programs come with ARexx support, a 
knowledge of the language becomes increasingly useful. 
Your Amiga is a very powerful machine - ARexx gives 
everyday users access to this power. 

ARexx for I .3 machines 

MAKE A 
NOTE! 

What if you have an older Amiga without ARexx and you 
would like to use it? There is a way. ARexx has been around 
for a very long time, and is available as a separate package. 
(Remember that if you have Workbench 2 or above, you 
already have ARexx and you do NOT need to buy it.) 

Contact the author, William Hawes, at PO Box 
308, Maynard, MA 01754, USA 
Tel: (617) 568-8695. 

It should also be available in the UK from large Amiga 
dealers. 

ARexx: Your Amiga's Built-in Turbocharger 



Section B 
Programming in 
ARexx 

9 

ARexx: Your Amiga's Built-in Turbocharger 



10 Section B 

F rom the moment you switch your computer on, to the 
moment you switch it off, all it ever does is perform 

huge amounts of very simple instructions, such as "Add" 
and "Subtract." 

A long list of these instructions is called a program, and the 
computer simply acts on each one sequentially. Some 
instructions allow you to go around in loops, others will 
allow you to take decisions. These simple instructions are 
called "Machine Code". 

It's very hard to learn to program in Machine Code -
because it's so very simple! In order to perform any major 
action, such as printing your name on the screen, you may 
need to use several hundred machine code instructions, 
which makes the programs take longer to write, and it's 
more likely that you will make errors while typing it in. Of 
course, the advantage of using Machine Code is that you do 
have total control over every single tiny operation that takes 
place while your specified task is carried out. 

Learning machine code is not an easy undertaking, and for 
most of us, who just wish to write a few simple programs, it 
is totally unnecessary. 

It's far better to get to know a language that is quicker to 
learn, easy to write, powerful and flexible. But learning to 
program any language on the Amiga can be an expensive 
undertaking in terms of documentation and software. When 
learning C, for example, you can easily spend £500, and still 
not have half of what you'd really like to own. 

ARexx is an ideal starting point for a beginner because it's 
supplied free with the Amiga, and it's also very powerful. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx , , 
Getting Started 

First, you are going to need to run the ARexx interpreter, as 
described in the introduction. Once this is running, you are 
ready to write your first ARexx program. However, in order 
to program in ARexx there are a few things you will have to 
be familiar with: 

e Using the shell. The shell is found in the "System" drawer 
on your Workbench disk. You can open a shell by double 
clicking on its icon. With a shell open, you are able to issue 
commands to your computer from the keyboard, and view 
the results. 

• Using a Text Editor. A text editor allows you to type in your 
programs, and then save them to disk so that you can test 
and run them. An editor called "Ed" is supplied with every 
Amiga. You can only run this editor from the shell. You 
might also like to look at Micro Emacs, a more powerful but 
much harder to use editor which you will find in your 
"Tools" drawer. 

Instructions to use the editor and a simple introduction to 
the shell can be found in the manuals which came with your 
computer (or see the back of this book for details of Amiga 
Format magazine's Workbench & AmigaDOS Reference). 
Owners of A1200s might find the instructions on how to use 
the shell a little sparse, though, and might like to consider 
buying a book on how to use it that goes into greater detail. 

Now let's get going with our first simple program. The first 
program to write in any unfamiliar programming language 
is one that prints "Hello World" on the screen! Open a shell, 
and type: 

ed ram:hello.rexx 

ARexx: Your Amiga's Built-in Turbocharger 



12 Section B 

Ed will load, and you'll then have a nice empty window 
ready to type your program in. Type in this, pressing return 
at the end of each line: 

/* OUr first program */ 
SAY "Hello World!" 
EXIT 

When you've finished, select save and then quit the editor. 
Your first ARexx program is now ready to run! Assuming 
you have correctly run the RexxMast program, you can now 
type this: 

rx ram:hello.rexx 

And, if you have not made any mistakes, then the result 
should be: 

Hello World! 

W G 
~ 

Well done, you've written your first ARexx program. Now 
let's go through it in more detail. The first line is a comment. 
Comments in ARexx start with a /* and end with a *I. This, 
incidentally, is the same way in which comments are 
expressed in the C programming language. 

In order for your program to work, you must 
ensure that the first line of EVERY program is a 
comment, otherwise ARexx will not recognise the 
program! The best thing to do is to briefly describe 
the purpose of the program in the comment. 

SAY is an ARexx keyword. Although we will be using 
capital letters for keywords to make them clearer in this 
section, they are not case sensitive as far as ARexx is 
concerned, so you could have written: 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 13 

say "Bello World" 

or even: 

sA,y "Bello World" 

It's best to decide which case you are going to use for 
keywords, and stick to it. SAY means "Show some 
information to the current output console with a new-line at 
the end". The current output console in this case, is your 
shell window, so that's where the "Hello World" goes. 

The last line of our program contains the ARexx keyword 
"EXIT". This means "Stop running this program now.". 
You'll notice that we won't use this in most of our early 
example programs - with simple scripts like this it is not 
necessary, because the last line in our script is always the 
last thing to be done in our program. In some of our more 
complicated examples later, this may not be the case. 

ARexx has a compact and comprehensive range of 
keywords and additional power is added by other 
applications using ARexx Ports, and by special libraries. For 
your interest, here is the list of actual ARexx Keywords. It 
probably won't mean too much at this state, but you'll see 
us introduce them as we proceed through this section, and 
learn how to use them. 

If you're particularly curious about any of them, and 
perhaps already know a different programming language, 
you may be interested in looking them up in the reference 
section. 

ARexx: Your Amiga's Built-in Turbocharger 



14 Section B 

·1:.-·i:>, 

OQ 
£XIT. 
NW:, 
p~URE· 
SAY. 
~~t4· 

So, what happened when we ran our first program? Well, 
ARexx itself consists of the RexxMast interpreter, and a 
whole load of other assorted little programs required to 
actually run ARexx programs, normally referred to as 
"Arexx scripts". For us the most important of these, is the 
"Rx" command, which means Run ARexx script. This 
actually sits in a drawer on your Workbench disk called 
Rexxc, along with some other small programs which we'll 
come to later in the book. 

When you type Rx, it expects you to tell it where the file 
containing your ARexx program is. We did this in our first 
example by simply specifying the direct path, which was 
ram:hello.rexx. The Rx program will add the .rexx to the 
end of the file if you don't specify it, so if we'd typed "rx 
ram:hello" then our script would still have run. 
Furthermore, it's possible to create a drawer and put all 
your ARexx programs in it, and tell the ARexx interpreter 
where that drawer is, then you don't even need to specify a 
path, you can simply type "rx hello". All ARexx programs 
should have a .rexx on the end of the filename so that you 
can recognise them. 

The default place to put ARexx programs is in the S: drawer 
on your Workbench disk. Your Amiga will set up an 
"Assign" called "Rexx:" which points to the S: drawer. I 
would recommend that you don't store all your programs 
here, because the S: drawer will become very cluttered. The 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 15 

best thing to do is to change this assign to point to a new 
drawer which you can create especially. Its easy to do this 
from the shell. Firstly, make a drawer somewhere, using the 
makedir command. For example: 

makedir sys:ARexx_Programs 

MAKE A 
NOTE! 

If you have a hard disk in your Amiga, you may want to 
put this drawer on another partition, such as your "work:" 
partition for example. Then, you need to edit your s:user
startup sequence: 

If you are using Workbench 1.3, then you won't 
have a s:user-startup file, instead, edit your 
s:startup-sequence file, and add the below assign 
line to the END of that file, iust before the 
LOADWB line. Workbench 2 users should NEVER 
alter their S:Startup-sequence file, only their 
s:user-startup. 

Ed s:user-startup 

And add one line to the bottom of the file: 

assign rexx: sys:ARexx_Programs 

If you are using 1.3, then you will have to add this line to 
the bottom of your s:startup-sequence, not your s:user
startup. "sys:" just refers to the disk which you booted off, 
which is likely to be a copy of your workbench floppy, or a 
hard disk partition containing the Workbench software. 

When you have made this change, reset your computer, and 
you should now have rexx: set up. Now, you should create 
your ARexx scripts in this new drawer. You could create a 
program called "world.rexx" like this: 

ARexx: Your Amiga's Built-in Turbocharger 



16 Section B 

Ed rexx:world.rexx 

Now, you could run it with: 

Rx world 

And the ARexx interpreter will find your program by itself, 
by looking in the rexx: drawer for a file called world.rexx. 

Introducing variables 

The power of a programming language comes from its 
ability to store information and perform operations on it. 
Variables are used to store this information in. It's very easy 
to assign values to variables in ARexx. For example: 

age = 23 

This assigns the value 23 to the variable age. We can now 
easily perform operations on this value. If we wanted to add 
5 to age, we could do this: 

age = age + 5 

SAY age 

28 

This simply means "Set the variable age to whatever age is 
currently equal to, plus 5". 

We can then show this value on the screen by using the SAY 
statement, which we used earlier to print "Hello World" on 
the screen: 

The result on the screen will be: 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 17 

age 

Note that we didn't put quotes around the variable name. If 
we had, the result would have been: 

The difference is simple. If we put quotes around 
something, it is treated as a string. A string is simply a series 
of alphanumeric characters and punctuation, surrounded 
with quotes. 

As well as adding, we can perform a number of 
mathematical operations on variables. The Arithmetic 
operators are shown below: 

ARlTHMETIC OPERATORS 

Operator Narne Priority Exa"'ple ·Result 

+ Addition 5 3+4.5 7.5 
+ Subtraction 5 4-1 3 
* Multipfication 6 3*1.1 3.3 
I Division 6 10/2 5 
% Integer Division 6 10/3 3: 
II Remainder 6 Hl/3 I ..... Exponention 7 1.4**2 1.96 

Prefix Negation* 8 -10.3 -10.3 
+ Pre'fix Conversion* 8 +n 12.123n 12.123 

ARexx: Your Amiga's Built-in Turbocharger 



18 Section B 

COMPARISON OPERATORS 

Operator · Name Priority Example Result 

~= 

> 
< 
>=or-< 
<=Or,->· 

Exact Equality* 3 
Exact Inequality*· · 3 
Equality 3 

. .Inequality · 3 
Grea~rthan 3 

.. smaller than 3 
·Greater than or equal to 3 
Smaller than or equal to 3 

LOGICAL OPERATORS (Boolean) 

Operator 

~-. 

& 
I . 
Not.&& 

·Name Priority 

NOT 8 
AND' 2 
OR 1 
Exclusive or 1 

Example Result 

* Pr~fi~ negation and conversion may appear to be a little confusing~ We 
us~ Prefix CQC:lversionin. ARexx to .convertstrings to numbers:, as in the 
0){ar:riple give9; Pren negation may appear a little tnore cotnplex, take 
this ~ample:.· 

SAY}! 
·.. . 

It 11'\fi!Y not occur thatthe ,_. is an operator at au, and just part of the 
number. Butit is in fact an operator, the prefix n~gation. Its priority is 
suffiqiently high that you can think·· of it as a: part of the number itself. 

* Exact eq1,1ality/inequality differ from the normal equality/inequality 
operators in that the C(?mparison has to be totally exact to evaluate to 
TRUE (i.e. succeed). Take this example: 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 

i* r4ual~~ t~~t *I · ; 
·~ , •.• ii&•. · 

D' Sbring; = •uaat. Tlllfllf• SAY D~ W&fl: a lien~ 1• 
D' strhci == 11licm• '1'BBR' SAY •tt -S. a l~ 2·• 

19 

The output wiH only show the first SAY, because our string contains or:ie 
space.at the front Normal• equality will q~tly ignore this, ~d assume 
that ii . lion ".is the sam¢ as "Don" ~nd so on. E)(act equality requires 
that both Parts of ·the comparison at!e exactly identical tn eV!!ry respect 
tor ittQ succeed.· - · · 

there are -~lso twa "concatenation" operators, I~ and a ~iaitk spac~: We 
·. h•ve ~sed. ibese to join string$. n differs ttom a. blank ~ace in toot it joins 
•sfDngs-Wi& no intehtemng blmtk. Tbe j:JtjorifJ ef concat~oo. epeiators 
j$;4.: }, :> . '• ·''' - - . 

Variables aren't limited to storing numeric values. They can 
also be used to store strings. We could, for example, do this: 

name = DTobyD 

And, then using the SAY statement, we can print out the 
contents of this variable, as before: 

SAY name 

ARexx is a "typeless" language. What this means is that it 
automatically detects and checks to see whether variables 
hold numbers or strings before using them, and gives an 
error message if it is incorrect. In other programming 
languages, you have to define whether a variable is going to 
hold a number, or a string. If you try to perform an illegal 
operation with a variable - say, for example add 5 to the 
string "Fred" - then ARexx will show an error message and 
will not run the program until you fix it. 

ARexx: Your Amiga's Built-in Turbocharger 



20 Section B 

Varia•le names 
You can name your variables pretty much what you like. 
But one of the easiest ways to create totally unreadable 
programs is to skimp on variable names, opting for simple 
ones like 'X' and 'N'. This can get you into trouble very 
quickly, especially with larger programs, because although 
you can remember what each variable does in the short 
term, after a few days it gets a little harder. Finding errors in 
your program with a whole bunch of single letter, or 
meaningless variable names is very difficult. 

VARIABLE TERMS 
.:... ;,·--· --,.: -
'' ' 

Chitracter! A single digit, letter or. puoctuatiofr ;mark. ~xamples of a 
cqa~acter: Z;:cor $, .or~•,Eachp~~.ractar~;~sa uniq~.e·numert~'cadey.ihich 

, wEt ¢an use to refer tq it. The~e are call~~ ASCII ~()des. "fheiASCU code 
for the capital letter A is 65, for example, and the ASCll"code for the 
ntirnber O is 48. 

String: A collection· of characters joined together. An example· of a string 
is 'Hello', or 'Counting down 5-4-3-2-1-ZERO!!!'. In a lot of<programming 
languages we tend to mark the end of a string with a character with the 
ASCII code of 0, and refer to such strings as "Nullterminate(;:tstrings"; By 
searching for the Null character you are •able to find the end, and hence 
the length, of the string itself. 

Integer: A whole number with no fractional parts. An example of an 
integer is 0, or 1,234, or-68. 

Floating point number: A nurnber with possibleAractionatparts. Some 
examples of floating point values are 1.5, 10.0, 3.141592654. The 
~.911acy of the floating point arithmetic in ARexx, and the Way in which it 
outputs it, can be defined by using the NUMERIC keYWord~ See Section E · 
for further information. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 21 

The best thing is to name variables according to what they 
are and what they will hold. Variables can be made up of 
any combination of letters, numbers and the characters 
"$?!_"(dollar, question mark, exclamation mark and 
underscore). Variables cannot begin with a number and, 
unlike some other computer languages, they are not case 
sensitive. Be careful with this, because it means that 
"x_position" and "X_POSITION" are the same variable. In 
this example, all three variables are identical: 

/* Variables */ 

i_am_a_variable = 2 

l:_aM_a_VaRi.AbLe = 4 

SAY i_am_a_variable J:_aM_a_VaRi.AbLe l:_AM_A_VARI:ABLE 

We often use the underscore character"_" where we would 
normally use a space. Since you can't use spaces in variable 
names, the underscore allows for more readable names. 

/* Some very readable variable names! *I 
cost_to_learn_arexx = price_of_amiga + price_of_monitor 
+ cost_of_this_book 

SAY "You spent" cost_to_learn_arexx "learning this 
language!" 

Obviously, you can get carried away. There's no point in 
using variable names 10 feet long because they'll take 
months to type in but, in general, think about your variable 
names to ensure that they make sense to you - and 
programming in ARexx will be much easier! 

ARexx: Your Amiga's Built-in Turbocharger 



22 Section B 

Simple Programming 

The sort of programs we have tried so far are totally 
sequential, in that they start at the top and every instruction 
in the program is acted upon, one after the other, until we 
run out. 

But before you can do anything useful with a computer 
language, you have to be able to take decisions and perform 
loops. Lets have a little look at this example, which prints 
the 12 times table on the screen: 

/* Show the 12 times table on the screen */ 
SAY "Here is the 12 times table:" 

DO loop = 1 TO 10 
SAY loop * 12 
END 

SAY 0 All Done! 0 

MAKE A 
NOTE! 

The important part of this example is the three lines starting 
from the DO statement. In this example, all the instructions 
between the DO and the accompanying END will be 
executed 10 times, and each time around, loop will be 
incremented by l. 

Note that in ARexx we denote multiplication with 
an asterisk (11*") rather than the "x" that you 
might expect, to avoid confusion between the 
lower case X letter. 

Also note that we have indented the statements which get 
executed as part of the loop. This is just programming style, 
and it makes the script easier to read because you can see 
where the loops fall at a glance. See the section below on 
"Programming Environment and Style" for further 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 23 

information. Indenting your scripts like this is quite 
optional, but definitely recommended! 

We could change it to be this: 

DO loop = 100 TO 200 

... and we'd get the 12 times table from 100 x 12 to 200 x 12. 
In fact, we could change it to do any part of the 12 times 
table by changing these two numbers. At the moment, the 
results on screen are not very tidy, just a list of the results. It 
would look much nicer it we tidied it up. Change the SAY 
line to look like this: 

SAY loop II x 12 = II loop*12 

Here is 
1 x 12 
2 x 12 
3 x 12 
4 x 12 
5 x 12 
6 x 12 
7 x 12 
8 x 12 
9 x 12 

This looks a little more complex, but it's quite straight 
forward. Firstly, the SAY command would print the current 
value of the variable loop on the screen, then the string 11 x 
12 = 11 and finally, the value of the loop variable times 12. 
The results of this new program would be this: 

the 12 times table: 
12 

= 24 
36 

= 48 
= 60 

72 

= 84 
96 
108 

10 x 12 = 120 
All Done! 

This is far better. It's easy to change this to print the 16 times 
table, by changing every instance of 12 to 16. But it would 

ARexx: Your Amiga's Built-in Turbocharger 



24 Section B 

be even better if we asked the user to enter the times table 
they wanted and printed that. This is done with the PULL 
command. PULL is used to ask the user to input a value, 
which is then assigned to a specified variable. For example: 

/* Times Table example */ 
SAY "Which times table would you like? 0 

POLL timestable 

SAY "Ok, here is the 0 timestable 0 times table. 0 

DO loop = 1 'l'O 10 
SAY loop 0 x 0 timestable0 = 0 loop * timestable 
END 

SAY 0 All Done! 0 

This is far more flexible, because the user gets to decide 
which times table they want to see. Try entering a string 
instead of a number when you run the program, to see what 
happens when ARexx tries to perform multiplication on it: 

6.System3.1:> rx ram:hello.rexx 
Which times table would you like? 
fred please 
Ok, here is the FRED PLEASE times table. 
+++ Error 47 in line 9: Arithmetic conversion error 
Command returned 10/47: Arithmetic conversion error 
6.System3.1:> 

ARexx is pretty helpful with its error messages. It tells you 
what line the error happened on, and what the error 
actually was. In this case it's pretty obvious what is 
happening, ARexx is trying to multiply FRED PLEASE by 1 
and failing dismally, exactly as you'd expect. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 25 

MAKE A 
NOlE 

Where we show the example output of a script, to 
show the line we used to actually run our script 
the shell prompt is also shown with the text. This 
will be x.System3.1 :>, where x is an unimportant 
number. Whatever is shown after the shell prompt 
is what you type to run the script itself, in the 
above example, you type: 

rx ram:hello.rexx 

... from the shell to run our program. 

Now we can perform loops. An important part of writing 
programs is being able to make a decision. If something, do 
something. In ARexx there are a number of mechanisms to 
allow us to make decisions, and the simplest is the IF 
statement. Let's illustrate its use using this simple example, 
which will ask you to input your age and then come up 
with a suitably inspiring comment depending on what 
you entered: 

I* OUr Age Cruelty Program! */ 

SAY "Please J:np11t your Age: 0 

PULL age 

:IF age> 29 THEN SAY 0 You are really past it! 0 

ELSE SAY 0 You •re still very young. 11 

:IF age > 25 &: age < 30 THEN SAY 11 • • but 30 is loaming 
closer. 0 

Here is an example of us running this program, if we were 
to enter the age as 27: 

6.System3.l:> rx ram:hello.rexx 
Please Input your Age: 

ARexx: Your Amiga's Built-in Turbocharger 



26 Section B 

27 
You're still very young . 
.. but 30 is looming closer. 
6.System.3.1:> 

OK, so 30 isn't really past it and I certainly won't think that 
way in a few years time! But this does demonstrate the 
decision-making process. We were able to adapt the results 
of the program to suit what the user entered. 

In the above example we used the IF statement a couple of 
times; let's go into these in more detail. The structure for IF 
looks a little like this: 

IF expression THEN conditional statement 

The ARexx interpreter evaluates the expression to see if it is 
true. If it is, then the "conditional statement" is executed. 
For example: 

IF 5=5 THEN SAY "Hello" 

This will always show the string "Hello" on the screen, 
because 5 definitely equals 5, so the statement evaluates to 
true. If we were to change it to read: 

IF 5=4 THEN SAY "Hello" 

Then we would never get the string "Hello" on the screen. 
The expression can be quite complex, and can consist of a 
number of individual operators. In our age example, we use 
the"&" operator, which means AND, in order to check to 
see if your age was greater than 25 and smaller than 30 in 
order to work out if you were nearly 30 years old. In 
addition to the AND operator, there is an OR operator " I ". 
Using OR allows us to do things like this: 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 

J:F age < 20 I age > 80 THEN SAY 0 You're either veey 
young or vezy old0 

27 

You can also use the"-" operator, which means "not", or 
invert the result of the expression, to do things like this: 

J:F -(5=5) THEN SAY 0 Hello0 

The expression 5=5 evaluates to TRUE and we then invert 
this result, making it FALSE, so Hello is not shown. Dealing 
with TRUEs and FALSEs this way is referred to as simple 
Boolean algebra - because the expression evaluates to either 
TRUE or FALSE, there is no in between. In programming 
we tend to associate FALSE with the value 0 (Zero), and 
TRUE with -0 (Not Zero). ARexx treats the value TRUE as 
1. If we tried this small example program: 

I* Boolean test */ 
J:F 0 THEN SAY "Zero" 
J:F 1 THEN SAY "One" 

We would get the results: 

7.System3.1:> rx bool 
One 

This is because 1 is TRUE, so the IF statement can work, but 
the first one will never happen, because the expression is 
simply 'O', which is FALSE. Obviously using IF like this is 
pretty pointless, because we know what the result will be. 
As one final footnote on Boolean results, try this out: 

J:F 12345 THEN SAY 0 Hello0 

When run, it produces the result: 

7.System3.1:> rx bool 

ARexx: Your Amiga's Built-in Turbocharger 



28 Section B 

+++ Error 46 in line 3: Boolean value not 0 or 1 
Command returned 10/46: Boolean value not 0 or 1 

You should be able to realise why this is. IF tried to evaluate 
the expression '12345'. The result was '12345', which is 
neither TRUE nor FALSE. So it rejected it with an error 
statement along the lines of "That should have been 
Boolean. But it wasn't. What are you up to?". 

As well as IF's single conditional statement, we can also 
have a statement that is run if the expression is not true. For 
this, we use the ELSE command. This is also demonstrated 
in our age example, because we are able to show one string 
if your age is greater than 29, or another if it is not. 

Of course the problem with what we know so far is that we 
can only have one conditional statement. What if we 
wanted to do a number of things? 

This is where the DO and END statements come in. We've 
already seen DO and END used to perform a loop in our 
times table example. We can also use it to group together a 
number of statements into one block. For example, we could 
alter our age program to show you how old you will be in 
10 years if you're older than 30, replacing the existing IF age 
> 29 lines with these: 

J:F age > 29 THEN DO 
SAY "You are really past it!" 
SAY "And in 10 years time you will be "age+lO" 

years old 11 n 

END 
ELSE SAY "You I re still very young. n 

We could have any number of statements between the DO 
and END. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 29 

A Note A•out Quotes 
Single and double quotes are interchangeable in ARexx as 
long as pairs match up. For example: 

name = UToby'll 

... and ... 

name = 'Toby' 

... are identical as far as ARexx is concerned. You can't mix 
them in pairs, though, so: 

name = "Toby' I 

... is not valid, and will generate an error "Unmatched 
quote". This feature, however, can be quite useful at 
occasions. Imagine if you wanted to show the string: 

"Watch it!", said the AJ:ma.dillo, "Don't do that." 

Just typing it in with a SAY command will generate all sorts 
of errors, but we can show it by using other quotes: 

/* Show the AJ:ma.dillo string: */ 
SAY I "Watch it! II, said the Armadillo, n I 11 "Don It do 
that. n 1n1 

Here is another example: 

/* Quotes */ 

single_quote = 
double_quote = 

111 n 

I II I 

SAY single_quote 
SAY double_quote 

ARexx: Your Amiga's Built-in Turbocharger 



30 Section B 

When run, this program will show a single quote ( ') and a 
double quote(") on the screen on separate lines. 

Although quotes are interchangeable in this way, it makes 
good sense to stick to using one type consistently. In this 
book, we use double quotes for everything, except for 
sending commands to another application (see Section C), 
when we put our commands in single quotes to make it 
easier to distinquish between the two. You can choose 
whatever convention you like, but sticking to the one used 
in this book will help to make your more complicated 
ARexx programs easier to read. 

More on looping and decisions 

We've looked at some simple ways of performing loops, 
and making basic decisions, now let's move on to some 
more complex options. There are instances where the 
methods discussed above are simply not efficient enough, 
and result in unnecessarily long and complicated programs. 
ARexx provides a wide range of powerful choices, all 
operating slightly differently and all designed to suit 
different circumstances. 

l'lte 5/E1/ECI' Statement 
Suppose you have a program which pops up a requester on 
the screen, gives the user a choice of five buttons and, 
depending on the button pressed, causes a particular action 
to take place. We can simulate this kind of requester now 
with a PULL statement, so we can input a number and 
make one of the actions occur. If we use the ARexx 
commands we already know, we might end up with a 
program that looks a little like this: 

/* Button test program */ 
SAY "Input the button number: 11 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 

PULL button_pressed 

J:F button_pressed = O THEN 00 
SAY 0 'l'his is the action on button 0 (Cancel)" 
END 

J:F button_pressed = 1 THEN 00 
SAY 0 'l'his is the action on button 1° 
END 

J:F button_pressed = 2 THEN 00 
SAY 0 This is the action on button 2° 
END 

31 

... and so on. The more options we have, the more IF 
statements we will require. However, programs designed 
like this can soon get very long and complex and it's easy to 
make errors. At the moment, if we typed in a button which 
does not exist, then the program could not cope with it. 
There are some ways around this. If, for example, the 
maximum button was 5, we could encase all of the IF 
statements in another IF statement, like this: 

J:F button_pressed >=0 & button_pressed < 6 THEN' 

00 
put all our J:Fs here 
END 

ELSE 
SAY 0 J:llegal button pressed" 

SELEC'l' 

Generally, we can work around it, but it's certainly not 
ideal. However, there is an ARexx command which does all 
of this for you and which results in neater programs. It's 
called "SELECT" and it operates like this: 

WHEN button_pressed = 0 THEN 
00 

ARexx: Your Amiga's Built-in Turbocharger 



32 

SAY "Button O here" 
END 

Section B 

WHEN button_pressed = 1 THEN 
00 
SAY "Button 1 here" 
END 

OTHERWISE 
SAY "Illegal button pressed" 

END 

This is a much neater way of solving the problem. It's a far 
neater program and it's easier to read. SELECT is ideal for 
situations where you need to make a number of decisions 
based on some action taking place. Menus, for example, are 
very easy to implement with the SELECT statement - you 
simply allow the user to input a choice from the menu, and 
then act on it accordingly. You can also detect incorrect 
entries easily, and act on them using OTHERWISE. Before 
we leave SELECT, let's just summarise its operation: 

SELECT 
WHEN expression THEN statement 
WHEN expression THEN statement 
•••• as :many WHENs as you like .... 
OTHERW::CSE statement 
END 

You can have as many WHEN lines as you like, but only 
one otherwise. When you use SELECT in your program, 
ARexx then expects one or more WHEN lines. As we 
showed above with IF, you can use DO and END to allow 
more than one statement to happen. The OTHERWISE line 
is optional. If it is included, then if ARexx does not execute 
any of the WHEN lines it will run the OTHERWISE. When 
you have finished with select, you have an END line to tell 
ARexx this. A common mistake in your program might be 
to miss off END statements when they were needed. ARexx 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 33 

will report an error in this case. If it says something along 
the lines of "Invalid statement in SELECT" then it is quite 
likely that this is your problem: 

7.System3.l:> rx button 
Input the button number: 
1 
Button 1 here 
+++ Error 23 in line 25: Invalid statement in SELECT 
Command returned 10/23: Invalid statement in SELECT 

The above output came as a result of running the SELECT 
example program above, without the final END statement. 

l'lte DO statement 
We've already seen this used in a number of examples, 
mostly to allow us to make a number of statements happen 
after an IF, and for some simple looping. DO is actually 
much more flexible than this, and can be used to perform 
some powerful looping. One of the first programs most 
schoolchildren write is one which prints their name all over 
the screen in an endless loop. In ARexx, we can use DO 
FOREVER, like this: 

I* The DO statement */ 

DO FOREVER 

SAY "Enter your name" 
PULL users_name 
SAY 0 Bello 0 users_name 0 , how are you?" 
END 

In this example, we're getting a name and then saying 
"Hello name, how are you?" forever. It's a pretty pointless 
program, but there are occasions where looping like this is 
quite useful, particularly if you have a way out. In the 
program above, the only way to quit is to hold down CTRL 

ARexx: Your Amiga's Built-in Turbocharger 



34 Section B 

and press C, (CTRL-C) then releasing CTRL and C, and 
pressing return. ARexx will then halt execution of the 
program like this: 

Enter your name 
john 
Hello JOHN, how are you? 
Enter your name 

+++ Error 2 in line 6: Execution halted 
Command returned 10/2: Execution halted 
7.System3.1:> 

You may notice, incidentally, that the PULL instruction 
appears to have converted the lower case "john" that we 
actually entered into upper case. Surely it should not have 
done this? Well, actually it is working correctly. PULL is the 
shorthand for a much more complex command, called 
PARSE. PULL really means "PARSE UPPER PULL". We 
shall be dealing with PARSE later on. In the meantime, if 
you wish string variables to retain their correct case, then 
you can use: 

PARSE PULL 

... instead of PULL. PARSE is a complex but powerful 
instruction, and we have purposely left it till later. Full 
information on it is in the Reference section. 

Fortunately, ARexx has provided us with a proper way of 
exiting from a DO FOREVER loop, while continuing to run 
the program. This is the LEA VE statement. We could, for 
example, add this line right after the PULL instruction in the 
program above: 

J:F users_name = "Qu:I'l'" THEN LEAVE 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 35 

If, instead of a name, we now typed QUIT, the program will 
end. This could be quite handy, for example, if you had 
written a telephone number storing program, and you 
wanted the user to be able to enter a number of phone 
numbers into the book and exit easily when they'd finished. 
You could use a word like QUIT to exit the DO loop. 

We have also used DO in simple loops, which looked a little 
like this: 

00 loop = 1 'ro 10 
SAY loop " x "timestable" = "loop * timestable 
END 

DO is capable of far more than this because it allows much 
more control over the looping range than a simple start and 
stop value. 

Normally, our loop counter increases, or increments, by one 
each time starting from the first value, until it reaches the 
last. We can specify the amount it goes up by using BY: 

/* The 00 statement */ 
00 loop = 10 TO 1 BY -2 

SAY "Loop value is "loop 
END 

This program produces a list of the numbers 10 8 6 4 2 and 
then exits. 

We can also loop while, or until, an expression evaluates to 
TRUE. Take this simple example, which continues until the 
user types in an age greater than 30: 

/* The 00 statement */ 
00 UNTIL age > 29 

SAY "Enter your age:" 
PULL age 

ARexx: Your Amiga's Built-in Turbocharger 



36 Section B 

END 
SAY "You are too old!" 

age = 0 

In this case, the loop will continue until age is greater than 
29, i.e. 30 or above, and then exit. We could have also 
written this using WHILE: 

00 WHILE age < 30 
SAY "Enter your age: " 
PULL age 
END 

SAY "You are too old!" 

This loop will continue while age is less than 30. Notice that 
in the WHILE example, we set "age" to a known value 
before the DO loop starts. This is to prevent the loop going 
wrong the first time around, before the user has had a 
chance to enter an age. This is not necessary for the UNTIL 
example, as we shall see below. 

A common programming fault is "uninitialised variables". 
Some computer languages will spot this and prevent you 
from running a program if some variables have not 
properly been set up. ARexx, however, does not - when it 
sees a variable for the first time, it creates it on the spot. This 
sort of thing is not a problem in the "DO loop = 1 TO 100 BY 
-2" type loops, because the starting value is specified. 

So when do you use WHILE and UNTIL? And how do you 
know which to use? Well, there is a distinct difference 
between WHILE and UNTIL. Let us briefly look at the 
structure of a DO WHILE loop: 

00 WHILE expression 
statements . .. 
END 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 37 

The statements between the DO WHILE and the END will 
be executed WHILE the expression evaluates to true. 
WHILE expressions are evaluated and tested before each 
loop starts. DO UNTIL loops, however, are different, 
because the UNTIL expression is only evaluated and tested 
at the end of each loop. This means that in the above age 
testing example program we did not really need to set the 
age variable to 0 before we started (as we had to do in the 
WHILE example), because it will have been set to 
something sensible - an age value - before the UNTIL 
expression gets evaluated. 

If you are unsure about how any of these commands work, 
try saying them to yourself: 

00 WHILE age < 30 
END 

... "Loop while the age value is smaller than 30". You'll find 
that it can help a lot to read a program back to yourself in 
real English. ARexx is excellent for checking in this way. 

More about variables 

As we discussed above, variable names are made up of a 
load of alphanumeric characters, are not case sensitive, can 
contain the punctuation symbols $?!_and may not begin 
with a digit. Sensible variable names are vital for large 
programs, because they make them considerably easier to 
understand - and to debug - should something go wrong. 
However, try not to go overboard with the length of the 
name, instead make it more readable by sensible use of 
upper and lower case characters: 

COSTOFBOOK = 12.50 
costofbook = 12.50 

ARexx: Your Amiga's Built-in Turbocharger 



38 Section B 

CostOfBook = 12.50 
Cost_Of_Book = 12.50 

The first three examples above are equivalent, because case 
is ignored. The last however is not, because we've used 
some underscores to space the words out and make the 
variable more readable. 

It's a matter of personal choice how you use variable names. 
Personally, I prefer to keep them all lower case, separate 
words with underscores, and keep all functions and 
statements in upper case, for better readability. If you use a 
variable and do not put a value into it, it will default to the 
variable name itself, in upper case. For example: 

/* A test to see what happens with an uninitialised 
variable */ 
SAY new_variable 

Produces the result: 

7.System3.l:> rx new 
NEW_ VARIABLE 

The other key thing to remember about variables in ARexx 
is that they are typeless. This means that you do not 
specifically have to state what each variable is going to hold. 
In other languages, such as C, you have to declare all 
variables before you use them and state what type they are 
- such as an integer, or floating point, or string variable. 

One of the things that makes ARexx so attractive to 
beginners is that it does not require any such declarations, 
ARexx sorts out the types for you when you use them. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 39 

flte DROP statement 
Perhaps not the most useful of statements, but there are still 
occasions when it is handy to be able to "uninitialise" a 
variable, i.e. put it back to its initial empty state - which 
means that its contents will be the variable name itself in 
upper case. ARexx has a special statement for this - DROP: 

I* DROP example */ 

SAY Test_Variable 
Test_Variable = 5 
SAY Test_Variable 
DROP Test_Variable 
SAY Test_Variable 

/* Set variable to 5 */ 

/* Forget it again */ 

Which produces the result: 

7.System3.l:> rx drop 
TEST_ VARIABLE 
5 
TEST_ VARIABLE 

As you can see, we first showed the contents of the variable 
without initialising it, which was simply its own name in 
upper case. Then, we assigned a value to it, and used SAY 
to show that too. Finally, we DROP' d the variable and then 
displayed the variable contents one last time. 

Compound symlJols 
The variables we've used so far have been simple and 
straightforward - as each variable stores one value. Imagine 
you have just written a program in ARexx to store friends' 
phone numbers. How would you go about doing this? 

Well, with the knowledge we have acquired so far, we 
might end up with a pretty large, long-winded program 
that could look like this: 

ARexx: Your Amiga's Built-in Turbocharger 



40 Section B 

/* 3 name phone directory */ 

00 FOREVER 

SAY "Which record to change?" 
PULL record_id 

SELECT 
WHEN record_id = 1 THEN 

00 
SAY "Name?" 
PULL name_l 
SAY "Number? II 
PULL number_l 
END 

WHEN record_id = 2 THEN 
/* Etc etc, repeat above for EVERY number */ 

END 
END 

Goodness, what a nightmare. If we had 100 names and 
phone numbers, the above program would contain 100 of 
the WHEN chunks in the select. And that's just to enter the 
names and numbers. Repeat that lot again for a routine to 
display each name and phone number? It doesn't take an 
Einstein to come to the conclusion that there really must be 
a better way of doing this and, amazingly enough, there is. 

In most computer languages there is a mechanism for 
arrays. What is an array? An array is a list of similar items 
which share the same variable name. Still lost? OK, let's use 
a small example: 

/* Array exanple */ 

name.1 = "Toby S~son° 
name. 2 = "Mr Blobby0 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 

name.3 = 0 Stegosaurus 0 

naJlle o 4 = 8 Hahbish II 

SAY name.1 
SAY 0 Which name to see? n 

PULL name_id 
SAY name.name_id 

41 

Firstly, although in most other programming languages, 
such as C and BASIC we use the word array, in ARexx, they 
are "compound variables", and as you'll see, they are very 
powerful indeed - far more so than simple arrays. But 
before we discuss the above example, it's probably best just 
to see some results of running it, because that way you'll 
probably be able to guess what is going on: 

7.System3.1:> rx array 
Toby Simpson 
Which name to see? 
3 
Stegosaurus 
7.System3.1:> rx array 
Toby Simpson 
Which name to see? 
8 
NAME.8 
7.System3.1:> rx array 
Toby Simpson 
Which name to see? 
john 
NAME.JOHN 

The first thing our program does is to set up a compound 
variable called "name". This is called the "stem symbol". 
What then follows is a number of nodes, each separated by 
a full stop. 

ARexx: Your Amiga's Built-in Turbocharger 



42 Section B 

In our simple example, we only have one node, which is a 
numeric value dictating which of the names we would like 
to view. A node is a fixed or simple symbol. Fixed symbols 
are just numeric values, such as 9876, or 10. Simple symbols 
are variables, like the ones we have dealt with before. So 
how does this all work? When ARexx encounters the use of 
a compound variable, it expands it fully by replacing each 
node with its current value. In our program, for example, 
we did this: 

name.3 = "Stegosaurus" 

name is the name of our stem symbol, and since 3 is a fixed 
symbol, the string "Stegosaurus" is assigned to name.3. Later 
on we could view this by doing something a little like this: 

name_id = 3 
SAY name.name_id 

name.3 

ARexx expands this out to: 

... which just happens to contain the value "Stegosaurus". 
So, what happens if we refer to a node which does not exist? 
Well, just like with simple symbols that we have used 
before, they default to the name, used in upper case. In our 
above example program output, we tried to get the result of 
name.8 and name.john. Both values did not contain 
anything, hence the result. 

If an assignment is made to the stem symbol, then that 
value is automatically assigned to every possible compound 
symbol made up from that stem, a sort of "default value". 
This means, that if we were to make such an assignment 
before we put the names in, like this: 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 43 

name. = "No name entered" 

... then if we tried to SAY a value which we had not yet 
defined, such as name.john, we would get this result instead: 

No name entered 

Neat, isn't it? Note that we have tried name.john a couple of 
times, and john is quite obviously not a number, it's a name, 
or a variable. ARexx compound variables can be regarded 
as "associative memory", in that you look things up by 
name rather than the single numeric index which normal 
array systems in other computer languages use. This makes 
for some incredibly powerful uses. Take this small example 
of a phone book: 

I* Phone book example */ 

name. = 11 (no name entered) 11 

name.stag = "Stegosaurus 0101 010 101 10101° 
name.toby = "Toby Simpson 1234 566 789 98762° 

SAY "Which name would you like to look up?" 
PULL person•s_name 

SAY name .person' s_name 

This is what happens when we run this little program: 

7.System3.l:> rx array 
Which name would you like to look up? 
fred 
(no name entered) 
7.System3.1:> rx array 
Which name would you like to look up? 
steg 
Stegosaurus 0101 010 101 10101 

ARexx: Your Amiga's Built-in Turbocharger 



44 Section B 

By typing in the actual name of the person we wanted, the 
compound symbol was then expanded on the SAY line at 
the end. If we type in a name which we do not have, we 
simply get (no name entered) on the screen, which is of 
course the value we assigned to our stem symbol at the start 
of the program. 

As well as using compound symbols to look up by name, as 
we have demonstrated above, they can also be used as 
conventional integer indexed arrays, such as those you 
might find in C or BASIC. Have a look at this example, 
which shows a list of all the names we have in our phone
book using a DO loop: 

/* Zndexed Array example */ 

name. = n (no name entered) n 

name.1 = "Stegosaurus 0101 010 101 10101° 
name.2 = "Toby Silq;>son 1234 566 789 98762° 

loop = 1 

DO UNTIL name. loop = 0 (no name entered) 11 

SAY name.loop 
loop = loop + 1 
END 

SAY "Elld of list" 

When it's run, the results of this program are: 

7.Systern3.l:> rx array 
Stegosaurus 0101 010 101 10101 
Toby Simpson 1234 566 789 98762 
End of list 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 45 

We're using DO UNTIL so that we are able to detect when 
we've reached the end of the list. Since we've assigned "(No 
name entered)" to our stem symbol, we are able to stop as 
soon as we encounter it. In the meantime, we're 
incrementing our index loop counter by one each time. 

This is a pretty simple example, and if our names ran from 
1-5 and 10-15 then this listing routine would stop at 5 when 
it found the first empty array entry, but at least it 
demonstrates how this sort of compound symbol can be 
very useful to the programmer. 

Records and llelds 
We've seen how to use compound symbols, both 
associatively, by name, and also in a more conventional 
indexed manner to store simple information. In the case of 
our small telephone directory, we were storing the name 
and phone number. We might also want to store the 
address, perhaps a postcode and some additional 
information for each person. 

A much better way of handing more complex data like this 
is by using records. 

Normally in such a situation we would have a single file -
either a space on your floppy or hard disk, or an area of 
memory which contained everyone's name, address and 
other data. Each person's unit of data is called a record. 
Each single part of this record, such as "Postcode", or 
"Phone number'' is called a field. In ARexx, setting up a file 
of records and fields is very easy using compound symbols. 
Let's expand on this phone book to hold addresses and 
postcodes too. First, we create a new stem symbol, and set 
everything to a string 'Empty': 

/* Records example */ 
address_book. = "Empty" 

ARexx: Your Amiga's Built-in Turbocharger 



46 Section B 

Then, for demonstration purposes, we'll create one record, 
for 'steg'. We'll have four fields in our record-name, 
address, phone number and postcode: 

/* Create one record, for "steg" */ 
address_book.steg.name = "Stegosaurus" 
address_book.steg.phone = 11 123456789" 
address_book.steg.postcode = "STEG 999" 
ad.dress_book.steg.ad.dress = ".J'urassic Park, Pangea" 

Our compound symbol is now made up of three parts - the 
stem, the name of the record, and finally the name of the 
field itself. Finally, we get the name of the record we'd like 
to examine, and then show it on the screen using SAYs: 

I* Ask user for choice of person to see *I 
SAY "Whose details would you like to see?" 
POLL persons_:name 

/* Now show the contents of that record */ 
SAY ad.dress_book.person•s_name.name 
SAY address_book.person' s_name.phone 
SAY address_book.person•s_name.postcode 
SAY address_book.person•s_name.address 

The name of the record we're after is stored in the variable 
'persons_name', and compound symbol expansion does the 
rest for us. The result might look like this: 

7.System3.1:> rx array 
Whose details would you like to see? 
fred 
Empty 
Empty 
Empty 
Empty 
7.System3.1:> rx array 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 

Whose details would you like to see? 
steg 
Stegosaurus 
123456789 
STEG 999 
Jurassic Park, Pangea 

47 

We could take our program one step further and ask the 
user for a field name too, by altering our program from the 
first PULL statement onwards: 

/* Ask user for choice of person to see */ 
SAY "Whose details would you like to see?" 
PULL person• s_name 
SAY "And which field?" 
PULL field_name 

I* Now show the contents of that record */ 
SAY address_book.person•s_name.field_name 

Quite clever isn't it? Of course, if instead of using record 
names we'd used record numbers, for example: 

address_book.1.name = "Stegosaurus" 

Then we could use DO loops to scan through the list and 
perform actions on them. Compound variables are complex, 
as you can see, and it's quite easy to get into a bit of a pickle 
with them, particularly over substitution - where ARexx 
expands your compound symbol by replacing every node 
by its current node name's value. It gets worse because, in 
theory, it's pretty much unlimited: 

I* Compound symbol nightmare */ 
eccmamic_data.england.ex;ports.car.rover.214.engine.bhp 
= 105 
SAY 

ARexx: Your Amiga's Built-in Turbocharger 



48 Section B 

economic_data.england.exports.car.rover.214.engine.bhp 

Here we have economic data. The first node is the country 
we're after, the second is either exports or imports, the third 
cars (could be wheat), next is car name, type, engine details, 
and finally the bhp value ... 

Functions 

The programs we have written and experimented with so 
far have been reasonably straightforward. They have a start, 
some statements in the middle, and an end. They are all 
entirely self-contained, they do not need to relate to the 
outside world for anything. 

This may sound pretty obvious, but it's an excellent 
introduction to functions. 

Without functions we have a pretty plain programming 
language as you have seen. With them, we have the ability 
to execute a group of statements which might perform an 
action, or provide us with information. We can write our 
own functions in ARexx itself and use them many times 
from within a program, or we could use functions which 
ARexx has built in, or maybe even use new functions in the 
form of external function libraries. 

Does this still leave you baffled? Let's explain with the aid 
of a simple example. 

Our Program: 

/* Test Program */ 

/* Call the date function, perform the action and ., 
then return *I the_date = DATE ("NORMAL") 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 49 

SAY the_date 

What happens here? The first line of the program says: 

the_date = DATE ( "NORMAL") 

DATE is the name of the function. When ARexx executes 
this line, it sees that we are assigning something to the 
variable "the_date", and recognises it as a possible function. 
DATE() just so happens to be one of the built-in functions 
internal to ARe:xx, so it actually transfers control AW A Y 
from your program, and to the DATE() function code itself. 
The DATE() function takes one additional parameter, to 
define what sort of date type you'd like. We'd like the 
normal date, DD MMM YYYY (for example, 10 Jan 1994), so 
we specify NORMAL. When this function completes, it 
actually returns to us in the form of a string, the correct 
date, which is then assigned to our variable "the_ date". 
Then, we can use SAY to show this on the screen. So long as 
your date is set correctly and you have a real-time clock, 
running the above program will indeed show the correct 
date on the screen. We have now called our first function. 

It's important to realise that functions are simply small 
programs, that may optionally take some parameters to 
describe which operation they are to take, and may or may 
not return a result to your program. There are three types of 
function in ARe:xx, and they are listed below in their search 
order. (See the section below: 'a final note on functions') 

Internal Functions: These are functions that you write 
yourself, in ARexx, in your own program. See the section 
below: 'Internal Functions' 

ARexx: Your Amiga's Built-in Turbocharger 



50 Section B 

Built-in Functions: These are functions provided by 
ARexx for your use and are built in. Their names are in 
upper case, like the one we used above called 'DA TE'. There 
are over 80 of these in total, and they are very fast and 
efficient. See the reference section (E) for a detailed 
description of all these functions, or below for further 
examples of their use. 

External Function Libraries: In addition to the built-in 
functions, it's possible to add other functions to ARexx. One 
such library, called "rexxsupport.library", is supplied with 
ARexx and, once it has been added, provides a range of 
special functions for the advanced ARexx programmer. 
We'll discuss how to add such external libraries later. As 
well as the supplied library, other third party developers, 
particularly in the public domain and shareware arena, 
have written external function libraries. 

As well as the three types of function listed above, there is 
one other type of external function, and that is one supplied 
by an external host or, to put it in English, supplied by 
another program entirely separate from ARexx which is 
able to make functions available. Documentation about 
these functions is supplied with supporting applications, 
but they work like the built-in and external functions. 

As well as external function hosts, it's worth mentioning 
that the power of ARexx is extended considerably by the 
addition of host applications and their associated 
commands. Section C is devoted to discussing this powerful 
ARexx feature. 

Internal functions 
One of the key parts of modem, organised structured 
programming is the ability to call sub-routines and 
functions. As we have discussed above, when you call a 
function, program control is transferred away from where 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 51 

you were when you called the function and goes to that 
function. When the function is completed, then your own 
program will continue where it left off. In the case of 
internal functions that you might write, there are two basic 
types of function: 

• Those that perform an action, but do not return a result. 

• Those that perform an action and then return a result. 
These are "real" functions, in that some kind of value is 
returned to you. 

Both of these types may or may not require some 
parameters in order to work. We call these "function 
arguments". Here's an example which demonstrates a 
function of the first type, without parameters, which shows 
a message on the screen stating that an error has occurred: 

/* Function test */ 

ShowE:rror: 
SAY "An error has occurred. n 

RE'l'ORN 

We've introduced a few new concepts here. First, you may 
recall at the start of this section we used the ARexx 
statement "EXIT" to leave a program and then stopped 
using it because, as I explained, it was not really necessary 
because in all of our programs the point when we wanted to 
stop running them just happened to be the last line. In the 
above example, this is no longer the case. The first line of 
the program uses the statement CALL to call a function 
named "Show Error". This function takes no parameters. 
Then we exit our program. 

ARexx: Your Amiga's Built-in Turbocharger 



52 Section B 

So, what happens when the the function call happens? Well 
at this point ARexx searches to see if we have defined a 
function of the name ShowError(). We have done this, at the 
end, by stating the function name with a colon at the end. 
All statements after this identifier can be considered part of 
the function itself until a RETURN keyword is reached, and 
at this point, control goes back to where the function was 
originally called. When we run this script, predictably, we 
get the result: 

7.Systern3.l:> rx function 
An error has occurred. 

Well, it seems a pretty pointless function. It takes no 
parameters, produces a fixed non-flexible result, shows it 
directly to the screen for us, and returns no information at 
all. It's hardly general! So why would we need such 
functions? In the above example, it would have been much 
simpler just to have the line: 

SAY "An error has occurred" 

... whenever we needed it, and save having to write a 
function to do it. Good point. But suppose that, as well as 
printing the message "An error has occurred", we also 
wanted to show the time and date when the error 
happened, and format the result neatly too. 

Well, by now we're up to a couple of lines; we have to read 
the time, and the date and produce a result. If we wanted to 
do this, say, 30 times in our program, it would mean a lot of 
repetition. And what if we wanted to change the format? 
Get rid of the date and just show the time? Well, we'd have 
to search for, and painstakingly change, 30 small chunks of 
code - and that's asking for trouble. This is an occasion 
when you need a function to do the job. That way the 
routine only appears once in your program, but you can use 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 53 

it as often as you like, and if you want to change it, you only 
have to change the function itself. 

Let's make our error-reporting function more useful. It 
would be nice if we could specify what the error actually 
was, and perhaps put the time of day somewhere as well, so 
we know when the error occurred. In order to show the 
error name, we're going to need an argument ("ARG"): 

/* Function with argument test *I 
CALL ShowError ( "OUt of memo:cy") 
EXJ:T 

ShowError: 
SAY "Error at" TIME("C:IVJ:L") 
SAY " >" ARG(l) 
RE'l'lJRN 

So what happens now when we run this program? Well, 
first we call our function as normal, but this time we are 
specifying one argument - in this case, the string "Out of 
Memory". The ShowError function uses the ARexx built-in 
function TIME in order to print the time of day on the 
screen, and then shows the error name itself by using 
another built in function -ARG. Since we are only going to 
deal with one argument, we specify ARG(l), which is the 
first. Then, having shown this information, we exit. 

The results of running this particular script are: 

.System3.1:> rx function 
Error at 1:17AM 

> Out of memory 

This function may now be finished. But in order to make it 
even more flexible, instead of showing the error message 
directly on the screen, we might return it as a function 

ARexx: Your Amiga's Built-in Turbocharger 



54 Section B 

result, allowing the caller to decide what to do with it. After 
all, it might be logged in a file and not necessarily shown on 
the screen. 

With this in mind, we might change our ShowError function 
to look a little like this: 

ShowE:rror: 
error_string = "Error at " 11 TIME{"CI:VIL"} 11 ": " 

11 ARG{l} 
RETURN error_string 

We've introduced another new concept here, the 
concatenation of strings. We're building a string variable 
called "error_string". We use the concatenation operator I I 
to join strings together in this way, joining the string "Error 
at " to the current time, a single colon, and then the first 
argument of the function. After building the string, we 
return it. Previously we've just used RETURN on its own 
but, by specifying an expression, the value of that expression 
is returned to the caller. This means, we can call it like this: 

SAY ShowError{"This is MY' error"} 

Or ... 

JIW'_error = ShowError{"Errors! Errors! Evexywb.ere! But .., 
not a bug in sight!"} 
SAY JIW'_error 

Note that we are using our function in the same way we 
have used the built in DATE() and TIME() functions in 
previous examples. So what happens to the variable 
"error_string" which we define inside our ShowErrorO 
function? Surely, we could call the function, and just do: 

SAY error_string 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 55 

... and ignore the result of the function altogether? Well, we 
could - but this is not good programming practice and 
indeed could be the cause of problems in the future. If our 
program uses a lot of variables it's possible that some might 
clash with variables inside other functions, or in the main 
program, and cause problems. 

OK, so this would not be a disaster by any means - we would 
simply ensure that all our variable names were different. 
However, a better way to handle this kind of problem is to 
ensure that the variables which a function uses are totally 
local to itself and can not affect any other variables in the 
program, ev.en if they were to share the same name. 

Another, good side effect (although you might not think so 
while you're getting to grips with programming!) is that it 
forces you to program properly and adopt good healthy 
programming practices. It makes you write your functions 
with more care, ensuring that all the information they 
require is provided in arguments, and that the result of the 
function, if any, is returned using RETURN - rather than 
generating spaghetti programs where functions steal values 
out of your main program. A bad habit which can easily be 
the cause of many program failures. 

So how do we make a function's variables all local to it in 
this way? 

Procedure and /Expose 
Let's write a small test program: 

/* Procedure test */ 

a_variable = "Chocolate Pudding" 
CALL Test{) 
SAY a_variable 
EXIT 

ARexx: Your Amiga's Built-in Turbocharger 



56 Section B 

Test: 
a_variable = "Strawberry Cheesecake" 
RETURN 

As you would expect, when we run this program we get the 
following result: 

7.System3.1:> rx function 
Strawberry Cheesecake 

Test: 

Although we set the variable "a_ variable" to Chocolate 
Pudding at the start of the program, when we call our 
function Test() it sets it to Strawberry Cheesecake which, 
apart from not being nearly as nice as Chocolate Pudding, 
may not be the desired result. Let's make a small change to 
the program in the first line of our function. From 

... to this: 

Test: PROCEDURE 

... and then run the program again. 

7.System3.1:> rx function 
Chocolate Pudding 

Now that's more interesting. This time, when we alter the 
variable "a_ variable" from within our function, we are 
altering our own version of it, which has no effect on the 
main program's variable at all. All variables within a 
function which is declared as a PROCEDURE in this way 
are local to the function. When you exit the function, using 
RETURN, its contents are lost. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 57 

However, all this good programming is great in theory, but 
what happens when we want to affect a main program 
variable in some way? Or indeed, since RETURN only 
allows us to return one value, what if our function returned 
several? Surely it would be much better to store the results 
in variables that the main program could read? Well, yes. 
There are occasions when a function might want to alter 
main program variables in this way, but not often. ARexx 
provides a proper method for doing this, and it's best to use 
it sparingly. There are very few occasions where you will be 
forced to do this and, in general, it can result in messy, 
unreliable code which does not comply with modern 
modular programming techniques. On the same line as the 
PROCEDURE keyword and function name you can also 
specify a list of variables which we want to share with the 
caller, using the EXPOSE statement. Let's alter our original 
example to show Strawberry Cheesecake using EXPOSE: 

/* Procedure test */ 
a_variable = "Chocolate Pudding" 
CALL Test() 
SAY a_variable 
EXIT 

Test: PROCEDURE EXPOSE a_variable 
a_variable = "Strawberry Cheesecake" 
RETURN 

The result of running this program is "Strawberry 
Cheesecake" because, since we are now sharing the variable 
"a_ variable" with the main program, if we alter it from 
within our function we also alter the main one. All other 
variables we might define and use within our function 
remain local. Only those we name as EXPOSE' d are shared 
with the function caller. 

ARexx: Your Amiga's Built-in Turbocharger 



58 Section B 

So wlten migltt you need to use EXPOSE? 
• For returning more than one value from a routine. If you 

wrote a graphics routine, for example, which returned an 
X and a Y co-ordinate, EXPOSE could be used to allow 
you to put values into an X and Y variable that the main 
program could read. 

• Accessing major global variables. In large programs there 
is often a collection of important global information which 
applies for every routine, and frequently it would become 
silly to put in every bit that might be needed as 
parameters for functions. Alternatively there might be a 
single data structure, such as a file containing large 
numbers of records which might need to be accessed 
globally. In this case, EXPOSE can be useful. 

In the case of both the above examples of places you can use 
EXPOSE, there are ways around it which would mean you 
don't have to. But let's face it, there is a limit to how far you 
can take "good programming" before it stops becoming fun 
and becomes seriously tedious. The best policy is, when you 
think you might want to use EXPOSE, stop and think again. 
Ask yourself "Do I really need to do this?" and if the answer 
is yes then it's probably OK. 

Using tlte •uilt-in functions 
There are over 80 built-in functions in ARexx and the 
reference section (E) lists them all in alphabetical order. It's 
obviously beyond the scope of this programming guide to 
show you a use for every single one, but we'll certainly look 
at a handful of them and give some examples of their use. 

Once you have read this section, you might find it 
interesting to have a browse through the list of functions at 
the end of this book to see for yourself. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 59 

The built-in functions all return some information to you 
and, for some functions, you may not have to bother 
checking the result. The kind of information returned varies 
dramatically, and ranges from time date, or time in various 
formats (which we have already encountered) to Boolean 
results which indicate whether a function failed or 
succeeded - TRUE or FALSE - and, if you recall from our 
discussion of Boolean results at the start of this section, in 
ARexx's case this will either be a 1 for TRUE or 0 for FALSE. 
With Boolean results, we can normally assume that FALSE 
means that the function failed, and TRUE that it succeeded, 
but it is always best to check the function's documentation if 
you're not sure. 

Types of functions availa•fe 
The built-in functions have been chosen carefully to provide 
a wide range of operations that will be useful in day-to-day 
programming. We have only used a few of them so far in 
our programs - TIME, DATE and ARG. There are many 
more, quite a few of which will be introduced later in this 
section as we get to external functions, arguments, files and 
advanced programming techniques. 

Some of the most awkward things to deal with in any 
computer language are strings. We've used quite a few 
examples of strings so far, mostly to hold names or in the 
use of compound symbols. In languages such as C, string 
handling can be a pain at the best of times and C provides a 
range of basic string-handling functions for the programmer 
but, if you want to do anything remotely complicated, you 
have to write your own routines. ARexx, on the other hand, 
has stacks of very flexible string processing routines which 
will do everything from extracting parts of strings to 
automatically stripping out unwanted characters. 

Let's try an example: 

ARexx: Your Amiga's Built-in Turbocharger 



60 

/* String functions test */ 
SAY "You are in a dark room. What next?" 

/* Enter the command */ 
words = 0 
DO UNTIL words = 1 I words = 2 

PULL camnand name 
words = WORDS(command_name) 
IF words = 0 THEN SAY "You entered nothing" 

Section B 

IF words > 2 THEN SAY "Too many words, expecting ., 
VERB NOUN" 

END 

/* Process the words */ 
SELECT 

WHEN words = 1 THEN 
SAY "You entered one word, it was" ., 

WORD ( command_name, 1) 
WHEN words = 2 THEN 

SAY "You entered two words, they were" ., 
WORD(command_name, 1) "and" WORD(command_name, 2) 

END 

This is a simple part of an adventure game, the bit where 
you have been given the description of the room and now 
have to enter a command. 

Imagine that in our simple adventure, written entirely in 
ARexx, we only accept simple VERB/NOUN structures, 
such as "TAKE APPLE", and "GO NORTH" and, in some 
circumstances, single words like "LOAD" to load a game off 
disk. The above example achieves this in ARexx by using 
the WORD and WORDS functions. 

First we use a DO UNTIL loop to continue getting a 
command until the user inputs one with one or two words. 
We input a string from the user using PULL as normal, and 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 61 

then use the WORDS function to return the number of 
words. Our two IF statements deal with the two illegal cases 
- no words at all and too many words. 

We then use a SELECT to perform operations depending on 
how many words were entered, and in this simple case, 
simply show them back to the user using the WORD() 
function, which takes two arguments, the string and the 
word number we want. If we were to run this we might get 
the result: 

8.System3.1:> rx adventure 
You are in a dark room. What next? 
take the apple and give it to the old man 
Too many words, expecting VERB NOUN 
go north 
You entered two words, they were GO and NORTH 

In addition to string functions, there are many numerical 
ones. Let's demonstrate a couple with an example: 

/* Nmllerical functions test */ 

/* Pick a nice seed */ 
our_seed = TDIE( 0 SECOMDS 0 ) 

SAY ":Random seed was 0 our_seed 

/* Pick a randan number */ 
:nw_number = RANDOM(l,5,our_seed) 

/* Get the users guess */ 
SAY 0 :I am thinking of a number from 1 to 5. Make a 
guess." 
PULL users_guess 
:IF users_guess < 0 THEN DO 

users_guess = ABS(users_guess) 
SAY "You entered a negative number. :I've converted it 

ARexx: Your Amiga's Built-in Turbocharger 



62 Section B 

to positive" 
END 

/* Print results */ 
IF users_guess = ~_number THEN SAY "Well done! " 

ELSE SAY "Bad luck." 

This is our first game. Hardly a blockbuster, but it works. 
The computer picks a number between 1 and 5, and you 
have to guess it. Now let's look at the functions we've 
introduced. Note that we read the SECONDS value from the 
clock. This is the number of seconds since midnight, and 
one of the many handy things you can use the TIME 
function for. We're using this to seed the random number 
function so it will generate a different number each time. 

RANDOM takes up to three parameters: a minimum and 
maximum number, and a seed. It then returns a random 
value between the minimum and maximum. The default 
minimum value is 0, and maximum is 999, so if you tried: 

SAY RANDOM () 

... you'd get a value from 0 to 999 inclusive. Once we have 
been given the computer's guess, we ask the user for a 
choice of their own. If they enter a negative number we use 
the ABS function to convert it to a positive one, so if you 
entered -3, it would be converted to +3 by the ABS() line. 
Finally, we then see if the user's guess was correct and show 
an appropriate message on the screen. Running this 
program would produce a result like this: 

8.Systern3.1:> rx numeric 
Random seed was 60577 
I am thinking of a number from 1 to 5. Make a guess. 
2 
Well done! 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 

8.System3.1:> rx numeric 
Random seed was 60580 
I am thinking of a number from 1 to 5. Make a guess. 
3 
Bad luck. 

63 

Well, you win some and you lose some. Note the seed 
value. Since we happen to know it is elapsed seconds since 
midnight, you can see that there was a three second delay 
between the first and second running of the script, and 
armed with a calculator you can see that it was 16:49 when 
the programs were run. Alternatively, we could just do SAY 
TIME("NORMAL")- but that's the easy way out! 

Using external function lilJraries 
As well as built-in functions, you can add external function 
libraries. An external function library is a special program in 
the form of an Amiga shared library. You don't need to 
worry too much about this, except that it will be found in 
your LIBS: drawer. You will already have many libraries and 
you can see them by opening a shell and typing "dir libs:". 

You can't add just any old library and expect it to work, you 
have to add ARexx external function libraries. There is one 
which comes with ARexx called "rexxsupport.library". But 
before we can use any of the functions in it we have to tell 
ARexx to add the library to its search list. 

We can do this in either of two ways: from the shell using 
the utility command "RXLIB" (see the reference section for 
further information), or by using the built-in function 
ADDLIB. Adding it from the shell is easy: 

8.System3.l:> rxlib rexxsupport.libra:ry 0 -30 0 

ARexx: Your Amiga's Built-in Turbocharger 



64 Section B 

RXLIB means "add a new external function library" and it 
takes four parameters: the name of the library itself (which 
is case sensitive), a priority, an entry point and a version 
number. The priority can be important, because when 
ARexx comes to see if the function it has belongs to any of 
your external functions libraries, it will check with them in 
priority order. Priorities run from 100 (high) to -100 (low). 
For example, suppose you had two libraries - called 
fredrexx.library and tyranosaurusrexx.library - and they 
both contained the function "DINOSAUR". If 
fredrexx.library was at a higher priority, then its 
DINOSAUR function would be executed, and the other one 
would not. Normally it's best to add libraries at a priority of 
0 unless you have problems with conflicting function names. 

The entry point is a special value for libraries which tells 
ARexx where to find its information. Look at the 
documentation that came with any libraries you might have 
for this data. In the case of rexxsupport.library, this value is 
-30. The final parameter is the library minimum version 
number. If this is not important, specify zero. 

As well as adding external libraries using the shell 
command RXLIB, we did mention that it can be done using 
the built-in function ADDLIB. Here's an example: 

/* Addlib demo */ 
:IF -ADDLJ:B( 0 rexxsupport.library11 ,0,-30,0) THEN DO 

SAY 0 Csnnot add this library" 
EX:IT 
END 

SAY "Library added. Ready for use" 

A reason why ADDLIB might fail is if the library is already 
available. Adding a library using ADDLIB or RXLIB does 
not load it off disk and make it immediately ready to use, it 
simply adds it to ARexx's library search list. Then, when a 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 65 

function is used that is not internal, or built-in, ARexx opens 
each of these libraries in tum, in their priority order, sees if 
the function belongs to that library and, if so, runs it. You 
can remove a library using the function REMLIB. 

Wftat's In tfte rel{J{support.llllrary? 
The short answer is, a lot of complex, advanced functions 
that can get you into a real pickle very quickly unless you're 
quite sure what you're doing. When using REXX's built-in 
functions and keywords it's fairly unlikely that you could 
crash the computer no matter what you did and, to a certain 
extent, it would also be quite hard to corrupt files - unless 
you were exceptionally careless. Once you get to the 
rexxsupport.library, however, it's not at all difficult to crash 
your computer completely. The moral of this lecture, of 
course, is that you should be careful. Read the reference 
section on rexxsupport.library (Section E) very carefully 
before using any of its contents, and make sure you 
understand what they do first. 

Unlike ARexx's normal functions, some of those in 
rexxsupport.library are not resource tracked. This means 
that ARexx does not know what you're doing, and therefore 
can't un-do any mess you make when your program exits. 
This is particularly true for memory allocation. Should you 
need to allocate any memory to perform a particular 
function using the rexxsupport.library, you must free it 
before exiting your program, otherwise it will never be 
freed - and you will slowly run out of memory until you are 

·forced to reset your computer. 

Lectures aside, there are some extremely handy functions 
that you can use, such as SHOWDIR, with which you can 
fetch directories off your disks, and SHOWLIST which 
builds lists of all sorts of useful system structures. For 
example, you can use SHOWLIST to generate a list of 
waiting tasks currently on your computer, or all the 

ARexx: Your Amiga's Built-in Turbocharger 



66 Section B 

ASSIGNs you might have. It will generate many lists of this 
sort. Let's use an example to demonstrate these: 

/* rexxsupport.library demo */ 

IF -SHOW("L", 0 rexxsupport.library0 ) THEN DO 
IF ADDLIB( 0 rexxsupport.library0 ,0,-30,0) THEN 

SAY "rexxsupport.library added" 
ELSE DO 

SAY "rexxsupport.library not available" 
EXIT 10 
END 

END 

SAY "Here is a directory of your SYS: drawer:" 
SAY SHOWDIR("sys:") 

SAY "And a list of assigns:" 
SAY SHOWLIST ( 11 A") 

Whether you have a lot of assigns and maybe a hard disk or 
two, will dictate just how much output you get on the 
screen. You will see that both functions return one long 
string, with each item separated by one space. You could 
now use the WORDS() and the WORD() function we used 
in the earlier section on built-in functions to process this 
string or, by more advanced use of the 
SHOWLIST /SHOWDIR function, you can get it to change 
the space to an alternative character. SHOWLIST is 
particularly handy because it lets you see if a given name is 
in a given list. For instance, you could check if a particular 
task was running, or an assign existed, and report to the 
user accordingly. In this case, SHOWLIST returns a Boolean 
TRUE/FALSE rather than a string to indicate whether the 
name was in that list. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 67 

A final note on functions 
Now you have been introduced to the various kinds of 
functions, there are just a couple of things to add - the first 
of which is the search order. When ARexx comes across a 
function it first checks to see if it is an internal function -
one that you have written yourself. Then, if it can't find it 
there, it checks against its built-in functions and, if there is 
still no luck, it moves on to the external function libraries in 
priority order (remember that when you add a library, such 
as rexxsupport.library, you specify a priority), and external 
function hosts. Finally, should it not find it in any of these 
places, it checks to see if your function name is an external 
ARexx program, searching in the current directory first. 

One of the advantages of all this to the programmer is that 
since internal functions are checked first, you can override 
any of the built-in or external functions and replace them 
with ones of your own, just by using the same name. This 
means that ARexx will come to yours first, and simply stop 
searching - it never gets as far as the built-in and external 
function lists. 

A second minor point concerns case sensitivity. The built-in 
functions, for example, are normally referred to using upper 
case, but are not actually case sensitive - nor are those 
defined in the rexxsupport.library. Some external function 
hosts, however, might be case sensitive. Check with the 
documentation that came with an application before 
making any assumptions. 

Program Arguments 

We've seen that it is possible for functions to have many 
arguments. However, programs run from the shell using the 
RX command can only have one argument - although you 
can PARSE this yourself into separate parts using the built-

ARexx: Your Amiga's Built-in Turbocharger 



68 Section B 

in string functions, or by using the PARSE instruction (see 
the following section for more detailed information on 
PARSE). 

Let's use this little program example, which takes a string 
and shows us some statistics about it: 

/* Program arguments demo */ 
PARSE ARG line 

SAY 11 Argument is: 11 line 
SAY "It has "WORDS (line) 11 words in it. 11 

SAY "The first word is "WORD(line, 1) 
IF DATATYPE(line, 11BDIARY11 ) THEN 

SAY "It was a valid binary string!" 

SAY "The string is 11 LENGTH(line) 11 characters long." 

Note the use of the DATATYPE function to check if the 
argument was a valid binary number. A binary number 
consists of l's and O's. See the section 'Advanced 
programming techniques' for more information. Running 
this could produce: 

8.System3.1:> rx parse fred is a ginger cat 
Argument is:fred is a ginger cat 
It has 5 words in it. 
The first word is fred 
The string is 20 characters long. 
8.System3.l:> rx parse 1001 
Argument is:lOOl 
It has 1 words in it. 
The first word is 1001 
It was a valid binary string! 
The string is 4 characters long. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 69 

Program arguments are useful when you want to write 
Arexx scripts which take parameters. There are examples 
later in the book. 

The PARSE statement 

The PARSE statement is an incredibly complex instruction 
designed to extract one or more sub-strings from a string 
and assign them to variables. Everything it does can be 
done using the built-in string functions, but since PARSE is 
more generalised, it's often better to use it than to manually 
PARSE strings yourself - not just because it is quicker, but 
because you are less likely to make errors. PARSE is 
particularly useful for processing strings input by the user 
from the console window, or from function arguments. 
However, some of its more complex operating modes can 
take a bit of understanding. 

There are many occasions where you might want to use 
PARSE, because of the powerful way it allows you to strip 
down strings into component parts and get those parts into 
variables which you can use. 

So how does it work? PARSE takes a string and then, by 
searching for markers, breaks it up and puts the parts into 
variables. You can specify where and what these markers 
actually are, and how many target variables are used, by 
specifying a template. The PARSE statements format looks 
like this: 

PARSE [UPPER] inputsource [template] [,template ••• ] 

Items in square brackets are optional. The UPPER keyword, 
when specified, ensures that the input string is translated to 
upper case before being PARSE' d. Following this is the 
input source. This describes where the string that is going to 

ARexx: Your Amiga's Built-in Turbocharger 



70 Section B 

be PARSE' d is coming from. It can be from many sources, 
such as arguments of a function by specifying ARG (we've 
seen this in use in the earlier section on Program 
Arguments), or from a variable using VAR variable_name. 
Finally, after the input source comes the template itself. This 
tells PARSE how to break up the string received from the 
input source, and which variables to put the parts into. 

So what does a template actually look like? Well, it consists 
of a list of target variables broken up by markers. In its 
simplest form, this is just a variable list separated by spaces. 
In this case, the spaces are treated as markers. PARSE 
searches the string from left to right for a space and assigns 
the section of the string to the left of it to the first variable, 
before going on to the next ... until it runs out of spaces. 
Let's illustrate this with an example: 

/* Parsing example */ 

our_string = "This is our string" 
PARSE VAR our_string one two remainder 
SAY "*"one11 * 11 two11 *11 rema.inder11 *11 

When run, it produces this result: 

8.System3.l:> rx parse 
*This*is* our string* 

Let's talk through this. First, we set up our string variable to 
contain something sensible. Since we'd like to PARSE from 
a variable, we specify PARSE VAR and the variable name 
itself. After that we need to specify the template, which is 
just three variable names; one, two and remainder. Then, 
when we have completed the PARSE, we show the results 
one after the other with *' s between them so we can see 
exactly what the results are. It should be pretty obvious 
what has happened here, except perhaps for the result of 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 71 

the last variable, remainder. There is an implied marker at 
the end of a string and when PARSE meets that it puts the 
remainder, whatever that might be and including the space, 
into the last target. 

If the input source string is used up before all the target 
variables in the template are filled, then the remaining 
targets are assigned null values. As well as specifying 
markers within a template, with some PARSE usages you 
can also specify more than one template. Templates are 
separated using commas. This is handy when using 
PARSE ARG, and PARSE PULL. 

Templates and pattern markers 
So far we've looked at a basic template with a simple list of 
target variables, and PARSE assumed that a space was a 
marker when parsing the source string. PARSE becomes 
particularly clever when we start specifying markers. 

Let's illustrate this with an example in which we read the 
current time, and then separate it into hours and minutes 
and decide whether it's am or pm: 

/* Parsing example */ 
current_ time = TIME ("NORMAL") 
PARSE ~ current_time hours 0 : 0 minutes 0 : 0 seconds 

SAY "Hours: "hours 
SAY "Minutes: "minutes 
SAY "Seconds: 0 seconds 

When you run this program, depending on the time of day, 
the result will be something like this: 

9.System3.1:> rx parse 
Hours:l9 
Minutes:54 

ARexx: Your Amiga's Built-in Turbocharger 



72 Section B 

Seconds:24 

So it's 7.54pm. With a PARSE template, any strings specified 
are always markers. We specified two markers, both colons, 
because the TIME('NORMAL') function returns a time in 
the format HH:MM:SS, that is, hours, minutes, seconds 
separated by colons. 

A•solufe markers 

1:51PM 

In the above examples, the targets have all been of variable 
length. In our time example, if the TIME() function had 
returned "0:0:0", we'd have still got valid values out. There 
are occasions, however, where you might want to be able to 
specify fixed markers - for instance, the first target might be 
exactly 10 characters long, and the next four, and the next 
three. This is where absolute markers are especially useful. 

One excellent application is in the area of fixed-length 
records in files. Suppose you have an address book 
application where you have the name of the person 20 
characters long, the address 50, the postcode 10, and finally 
the phone-number, another 20. Using fixed-length markers, 
you can extract this information very easily. We can 
demonstrate a simple use of fixed-length markers with 
another TIME() example. In a different mode, time returns 
the time of day in a 12 hour clock, with an am/pm after it. It 
might look like this: 

With our current marker system we have nothing to search 
for to separate the minutes from the am/pm flag, but there 
is one key thing - the minutes are always two digits, and 
am/pm is also always two characters. So, armed with 
absolute markers, we can write a new program: 

/* Parsing exang;>le */ 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 

current_time = TJ:ME ( °CJ:VJ:L") 
PARSE VAR current_time hours 0 : 0 minutes +2 ampm +2 

SAY 0 Hours: "hours 
SAY 0 Minutes: "minutes 
SAY 0 AM/PM: 0 ampm 

73 

When this is run, depending once again on the time of day, 
we will get a result like this: 

.System3.l:> rx parse 
Hours:ll 
Minutes:l5 
AM./PM:PM 

How did this work? And what did the +2 and +2 mean? 
Well, absolute markers can also be relative. We can say 
move on two characters, or move back four characters. As 
well as moving relative distances from our current position, 
we can also move to a fixed point. Positions are measured 
from 1, so be careful. For instance, if we had a line that we 
wished to PARSE, which was defined as this: 

whisky_name = 0 Springbank 
nice winter warmer II 

2545Extremely ., 

This might be for our whisky database. The name of the 
whisky is 20 characters long (which is why there are spaces 
after the word "Springbank"), then there is the two-digit 
number of years old it is (if less than 10 it has a leading 
zero), then the percentage volume of alcohol, also two digits 
(rounded up if there is a fraction), and finally a 40 character 
description. We could PARSE this information out like this: 

/* Parsing example */ 
whisky_name = "Springbank 
nice winter warmer n 

2545Extremely ., 

ARexx: Your Amiga's Built-in Turbocharger 



74 Section B 

PARSE~ whisk;y_name name 21 years 23 ale 25 desc 65 

SAY name 
SAY years 
SAY ale 
SAY desc 

The results, as you might expect, are: 

9.System3.1:> rx parse 
Springbank 
21 
45 
Extremely nice winter warmer 

This time we used fixed absolute markers. We stated the 
exact positions at which the targets begin, bearing in mind 
that since we start at 1, something 20 characters long ends at 
20, not 19. 

Parsing user input 
We have already used the PULL instruction in ARexx to get 
information from the user. As previously mentioned, PULL 
is actually shorthand for PARSE UPPER PULL, which is 
why everything we enter always seems to end up in upper 
case characters. If we wanted to get a string from the user 
which was not converted, we could use the long-hand 
version of PULL, but without the UPPER: 

/* Parse PULL example */ 
SAY "Type something in lower case" 
PARSE PULL something 
SAY "You entered: "something 

Of course, you could specify a full template and PARSE the 
string inputted as you would with other PARSE operations. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 75 

Parsing arguments 
In previous examples we have seen both the built-in 
function ARGO, and the PARSE ARG functions used to 
process arguments. Now we have dealt with PARSE in 
more detail, you can see that it is possible to PARSE 
arguments to a function in a comprehensive way, using 
templates, all in one line which may not be possible using 
the ARGO function. The ARexx keyword ARG, which you 
will encounter in the reference section (E), is shorthand for 
PARSE UPPER ARG, and of course, converts all arguments 
to upper case, which you might not necessarily want. 

Extracting environment information 
Although not particularly useful in day-to-day applications, 
it is possible to extract some general information about the 
environment in which you are running, using PARSE 
VERSION and PARSE SOURCE. By using PARSE VERSION 
you can get information about the actual system you are 
running on, and the version of the ARexx interpreter in use: 

ARexx VERSION CPU FPU VIDEO FREQ 

Where VERSION is the ARexx interpreter version, CPU is 
the processor type, FPU is the floating point unit (or NONE 
if not present), VIDEO is either PAL for UK and European 
systems or NTSC for American systems, and FREQ is the 
mains frequency - normally SOMhz. For example: 

/*Version Information*/ 
PARSE VERSION whole_lot 
SAY whole_lot 

Which, depending on the type of Amiga you have produces 
something along these lines: 

9.Systern3.l:> rx version 
ARexx Vl.15 68030 68881 PAL 50HZ 

ARexx: Your Amiga's Built-in Turbocharger 



76 Section B 

Of course, as with other PARSE usages, you could specify a 
template to extract, for example, just the processor type, or 
video type. PARSE SOURCE is generally more useful, and 
can be used to find information about how your script was 
called, where it was called from, and whether a result is 
going to be required from it or not. The format of the 
returned string looks like this: 

{COMMAND I FUNCTION} {0 I 1} CALLED RESOLVED EXT HOST 

This will tell you the following information. You will be 
shown COMMAND or FUNCTION, which tells you if your 
program was executed as a function or a command. The 
number which follows states whether a result is expected 
from your program or not. This is a Boolean flag, so 0 would 
mean no result was expected. Then you get the name used 
to run your program, normally the script name without a 
.rexx at the end. The resolved section shows you the final 
filename used to run your program, and host shows the 
initial host address for commands. Here is an example of 
what might happen if you simply had a script which did 
PARSE SOURCE variable and then SA Y'd the result: 

8.System3.1:> rx source 
COMMAND 0 source Development:ARexx/source.rexx REXX REXX 

This tells us that we ran our program as a command, no 
result was expected, we were called as "source", our 
complete file path, the default file extension is .REXX, and 
the initial host for commands is REXX. 

Final notes on PARSE 
Try not to think of PARSE solely as a mechanism for 
processing arguments and user input. Think of it as a 
powerful string processor. It has uses other than those 
described above - for a complete run-down of the PARSE 
instruction, take a look at the reference section. In the 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 77 

meantime, as one final example of an application of PARSE, 
the following program takes a string and strips each word 
out, one by one, until there are no more, and shows them on 
the screen: 

I* Parse word stripper example */ 
words = "These are llW' words, Oh YES they are!" 

00 WBJ:LE words -= "" 
PARSE VAR words single_word words 
SAY "Word was: "single_word 
END 

To explain briefly, we have a DO WHILE loop which 
continues while the words string still has some content, and 
we use the comparison operator not equal to(-=). We then 
PARSE the string words into two targets - one contains the 
first word, while the other contains the rest of the string. We 
just happen to PARSE the rest of the string back into the 
words variable, so next time round words has one word 
less, and we've just PARSE'd and shown that word on the 
screen. Have a go at it yourself ... Clever isn't it? 

Files 

When we talked about compound symbols earlier in this 
section, we mentioned such terms as "files", "records" and 
"fields" when talking about address books or other such 
applications. The problem with all of our examples was that 
the information we were processing was held in the 
computer's memory, so when the program finished, the file 
was lost. Ideally, of course, we would be able to save out 
our data to floppy or hard-disk and recall it next time 
around, so that we could then write a really useful address 
book application. 

ARexx: Your Amiga's Built-in Turbocharger 



78 Section B 

It's a fact of life that there are very, very few programs that 
do not require input or output. In fact any that don't can't 
actually do that much. That input could come from the 
keyboard, like the examples we have used, and the output 
could be to the screen, but in a lot of cases programs need to 
be able to store and recall information on a more permanent 
basis. This is where we start dealing with file access. 

What exactly is a file? Well, if you want to see a whole load 
scroll past on your screen, open a shell, and type: 

clir sys: all 

Everything that doesn't have the word (dir) after it is a file. 
There are lots of them aren't there! A file is simply an area 
on your disk that holds information of some kind. We can 
refer to a file by name. A file can hold a program, or 
perhaps some data for a program (such as a document you 
have saved from a word processor). 

ARexx contains some special built-in functions to allow you 
to deal with files. 

But be warned: only deal with files you know are 
yours to deal with. If you alter files that belong to 
other programs, particularly executable programs 
off your disk, you can damage them. Another 
point - OS files, such as those which contain your 
preferences settings, will change in the future. So 
if you write a script which fiddles with these files 
and works right now, it may not work in the 
future and could have disastrous consequences. 

Dealing witlt files 
When you wish to either read information from a file or 
write information to it, you have to first "open" it. When 
you open a file you are issued with a magic number called a 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 79 

file handle. This is your key to the file. Whenever you wish 
to perform any operation on it, you have to quote your 
filehandle, so that ARexx knows which file you are talking 
to. When you have finished with your file, you are expected 
to close it. This frees up any system resources which may 
have been used and ensures that all data that you were 
writing to that file is totally written. 

In theory, you could have a whole load of files open at a 
given time and, as long as you quoted the right handle at 
the right file, you would be able to perform actions on them 
all at once. 

With languages such as C the file handle is a fixed number. 
In ARexx you are able to decide what you'd like to call that 
file by - in effect, to name your own file-handle. 

When you open your file, you specify what your file handle 
is going to be, what the filename is, and what you intend to 
be doing with that file. The last bit is optional but if you 
omit it, the file will be opened for reading. You can open a 
file in one of three ways: for reading, for writing, or for 
appending. If you open a file for writing, it is created as a 
new file, and the old copy of the file (if there was one) is 
deleted - so be warned. If you open a file for reading, then 
when it's opened you are positioned at the beginning of the 
file. If you open a file for appending, you are positioned at 
the end of the file. 

READ and APPEND are essentially the same (they both 
open an existing file), the difference being the position you 
start from. The confusing thing is that even if a file is 
opened in READ mode, you can still WRITE to it - and so can 
other programs! If you open a new file yourself, you have 
exclusive access to it until you close it. But if you open a file 
for reading or appending, you share it with the rest of the 

ARexx: Your Amiga's Built-in Turbocharger 



80 Section B 

system. Usually this won't be a problem because, if you are 
dealing with your own files, you are normally the only user! 

So, how do we open a file? Let's look at the following 
example, which creates a new file in the RAM disk and 
writes a string to it: 

/* Open example */ 
IF -OPEN( 11WriteFile11 , "RAM:test.file11 , "WRITE") THEN DO 

SAY 11 J: can't open llW' file! 11 

EXJ:T 

END 

SAY WRJ:TELN( "WriteFile", "This is a test!") 

CLOSE ( 11WriteFile") 

When run this program creates a file called ram:test.file. 
Here is the result of running it, and also of using the shell 
command TYPE to see what the file contents were when the 
program finished: 

7.Systern3.l:> rx open 
16 
7.Systern3.l:> type ram:test.file 
This is a test! 

Let's look at this program in detail. The OPEN function 
returns a Boolean value - TRUE for success, FALSE for a 
failure - so we use the NOT operator "-" so that, by using 
an IF statement, we can detect if the OPEN failed. We are 
going to call our file "ram:test.file", and it is going to be a 
new file created from scratch. Our file handle will be 
"WriteFile". If we successfully open our file, we call the 
WRITELN function, which is built in. This takes two 
parameters: the file handle, and the string to write to the 
file. It returns the number of characters that were written. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 81 

Finally, we close the file. You can see that when we ran the 
program, it reported that 16 characters were written to the 
file, the 15 characters in the string, and an end of line 
character, which has the ASCII code of 10 (New Line). 

If we change the file access mode from WRITE to APPEND, 
and re-run the program, then an extra line is added to the 
end. This is because the APPEND mode opens the file and 
positions us at the end of it, ready to add more data. As well 
as the WRITELN function, there is one called WRITECH, 
which operates in the same way, but does not add the end 
of line character. 

There are corresponding READ functions to complement the 
WRITE functions, READLN and READCH. This example 
counts the number of words in a file, using READLN and 
other functions we have used earlier in this section: 

/* Word counter */ 
PARSE UPPER ARG file_name 

:IF -OPEN("Word.File 0 , file_name, "READ") THEN DO 
SAY "J: can't open the file 0 file_name 
EXJ:T 
END 

total_words = 0 
DO UNTJ:L EOF ("Word.File") 

this_line = READLN( "Word.File") 
total_words = total_words + WORDS(this_line) 
END 

SAY "Words in file:" total_words 

CLOSE ("Word.File") 

ARexx: Your Amiga's Built-in Turbocharger 



82 Section B 

This program uses several of the more advanced features 
we have already come across. It takes a parameter which is 
the filename to work on, opens the file for reading, reads 
each line in tum, counting the number of words in it, and 
continues until the end of file has been reached. The EOF() 
function returns TRUE if the end of file has been reached for 
the quoted file-handle. When we're done, we simply show 
the total on the screen and then close the file. Here's the 
result when used on my startup-sequence: 

9.System3.1:> rx wordcount s:startup-sequence 
Words in file: 161 

As well as the functions we have seen for reading, writing 
and detecting the end of file, there is one other that is 
necessary when working with complex files - particular 
those that are made up of records with fixed-length fields 
(like the whisky example we used when dealing with fixed 
markers in the PARSE section earlier). This function is 
SEEK, and it allows you to position yourself in the file 
relative to the current position, the beginning, or the end of 
the file. Here are three examples. They are not part of a full 
program, but are shown so that you can see how they might 
be usefully employed: 

SAY SEEK(°FileHandle0 , 10, "BEGIN") /* Seek to ... 
character position 10 from the start of the file */ 
SAY SEEK(°FileHandle0 , 0, "END") /* Move to the end .., 
of the file */ 
SAY SEEK("FileHandle, 10, "CURBEN'l'") /* Move 10 ... 
characters forward */ 

Seek returns the new position that you have reached in the 
file. It takes up to three parameters. The first is the file
handle we are talking to, the second is the offset from the 
anchor position, and the third parameter - which is either 
the BEGINning of the file, the END of the file, or relative to 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 83 

the current position. If no anchor position is specified, then 
it is assumed to be CURRENT. 

Signals, tracing and debugging 

Programmers of compiled languages, such as C, are used to 
dealing with their own errors in an orderly fashion. ARexx 
programs, however, are interpreted and if an error occurs 
during execution the program will stop and an error will be 
shown in the console window - usually the shell. This may 
not always be a good idea - there comes a time with larger 
ARexx programs when you may wish to deal with these 
conditions yourself. ARexx provides a facility for 
programmers to do this by using the SIGNAL statement. A 
number of things can happen which will cause an ARexx 
program to stop, but they are all controllable using 
SIGNAL. It is possible to decide which of the conditions you 
wish to intercept. For example, one of the signal conditions 
is called "SYNTAX" and it occurs when a syntax or 
program execution error occurs. To catch this yourself, you 
simply use the statement: 

SIGNAL ON syntax 

syntax: 

... and then provide an internal function called syntax, 
perhaps like this: 

SAY "An error occurred, you silly billy. It was ., 
"ERRORTEX'l'(rc) 
EXIT 

When a syntax error occurs, ARexx jumps to your syntax: 
function. When control arrives at your function, the variable 
RC contains the error code and there is a built-in function, 
called ERRORTEXT() which shows the appropriate error 

ARexx: Your Amiga's Built-in Turbocharger 



84 Section B 

string. In the above example, we simply exit. It is possible, 
however, to then return control back to a sensible point, by 
using the signal statement in a special form: 

S:CGNAL label_name 

This is the ARexx equivalent of the "GOTO" instruction found 
in many popular programming languages, such as C and 
BASIC. It means "jump immediately to the named point in 
the program". The label name refers to a name with a colon 
after it, just like an internal function definition. For example: 

/*Goto from the depths of ... */ 

a_label: 
SAY "Hello" 
S:CGNAL a_label 

This just continues forever, just like a DO FOREVER loop. 
GOTOs are generally frowned upon, and quite rightly so -
they encourage messy, disorganised programming which 
leads to bad habits. However, there are occasions, such as 
those which arise from error handling using SIGNAL, 
where you have no choice. But use SIGNAL in its GOTO 
format sparingly. The only way to exit from the above 
example program is to use the CTRL-C sequence (hold 
control down, tap C, release control). Of course you can 
trap this too, using SIGNAL, to present a gloriously un
exitable program: 

/*Goto frcan the depths of ... */ 

re_start: 

S:CGNAL ON break_c 

a_label: 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 85 

SAY 0 Bello" 
S:IGNAL a_label 

break_c: 

HI 

SAY "You're not getting out that easily ••• " 
S:IGNAL re_start 

Try getting out of that one. In fact, there are several ways. If 
you do try it and then want to exit it, open another shell 
window and type: 

... at your shell prompt and press return. This sets the global 
halt flag, which makes all currently running ARexx scripts 
stop immediately. It's a useful debugging tool to allow you 
to make those runaway programs come back under control. 
(You can trap the halt too with SIGNAL halt.) The HI 
command is one of several useful command utilities, 
described in detail in the reference section (E). Some are also 
discussed below when we get on to the subject of 

. debugging your programs. 

For a complete list of all the signals you can trap, look up 
the SIGNAL statement in the reference section (E). 

Tracing and de•ugging 
With most of the scripts we have written so far, there is little 
that can go wrong - apart from the odd typing error 
perhaps, which is easy to remedy. 

However, as you start to use ARexx in real, everyday 
applications by writing your own scripts you will find that 
they get increasingly larger. This means that sooner or later 
errors (bugs) are going to creep in which may not be so easy 
to find. This is when ARexx's powerful tracing abilities 
spring into action. 

ARexx: Your Amiga's Built-in Turbocharger 



86 Section B 

Tracing is a way of letting you see what is going in inside 
your program and it's an invaluable debugging facility. 
ARexx will show you each line that it has executed and, 
depending on the trace mode set, other information about 
each line as well. If you set a special tracing mode called 
''Interactive tracing" you are able to "single step" through 
your program. In this mode, after each line in your program 
has been run, it pauses and waits for you before continuing. 
This means that you can go through your program a line at 
a time, see exactly what is going on - and find the source of 
problems quite easily. 

There are three ways in which you can start tracing. The 
first is by using the TRACE ARexx statement, followed by 
the tracing mode you require. The second is to use the built
in function TRACE(), which takes the same tracing mode 
parameter as the trace instruction, and also returns the 
previous tracing mode that was in operation. One of the 
advantages of this is that you can revert to the previous 
tracing mode if you wish to. The final method is by using 
the global tracing utilities. These are described in detail in 
the reference section (E). 

Normal tracing information is shown in the console 
window, normally that of the shell from which you ran your 
script. If you had run your script from within another 
program, there may not be such a console window. The 
global tracing facilities allow you to open a special tracing 
window and get tracing information sent to that for any 
ARexx program currently running. 

l'racing witlt tlte l'IUlCE statement 
The TRACE statement takes a parameter to indicate which 
mode of tracing you would like. There are quite a few to 
choose from and they range from the ALL option, which 
traces everything; to BACKGROUND, which means that no 
tracing takes place and the program cannot be forced into 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 87 

interactive tracing mode using the TS option (see section E). 
Tracing mode normally defaults to NORMAL, which means 
that when an error occurs, or a command called returns an 
error code, the execution of the program stops and tracing 
information is shown for the line that failed. Let's take a 
look at an example: 

/* A Tracing example */ 

TRACE ALL 

DO loop = 1 TO 10 
SAY 0 loop is 0 loop 
END 

When you run this program you will suddenly see a whole 
load of information rushing past in front of your eyes - this 
is the tracing data. Let's have a look at a little of this in 
closer detail: 

5 *-* DO loop = 1 TO 10; 
6 *-* SAY "loop is "loop; 

loop is 10 
7 *-* END; 

For every "clause" executed, a line of information is shown. 
A clause is the smallest single unit of a language that can be 
executed as a statement. Up until now we've only put one 
command clause on each line. For example: 

SAY 0 J: am an instruction clause" 

However, ARexx does allow us to put multiple clauses on a 
line by separating them with a semi-colon. Like this: 

SAY 0 Bi 0 ; SAY 0 Bi Again ° 

ARexx: Your Amiga's Built-in Turbocharger 



88 Section B 

Incidentally the reason I'm bringing this up now is that, if 
we ran the above example with two SAYs in it through 
TRACE, we'd get two trace lines here, one for each clause. 

Back to the tracing information itself. We can see that 
during trace, each executed clause is shown before it is 
actually executed. By changing our TRACE ALL to TRACE 
SCAN we get an entirely different method of tracing. In this 
mode the entire program is examined and checked for 
errors, but nothing actually happens. It's neat way of giving 
a new program a "test drive" knowing that it cannot cause 
any damage. 

Perhaps the most useful tracing mode is TRACE RESULTS. 
In this mode all statements are traced, as in TRACE ALL, 
but the final result of each executed expression is shown as 
well. This is perhaps the most useful form of tracing for 
general purpose debugging, because it clearly shows what 
is going on in your program. 

For a really complex display, try TRACE INTERMEDIATES, 
where almost everything you can imagine is displayed, 
showing you the intermediate results during expression 
evaluation. The following table shows a complete list of 
tracing modes and gives a brief description of their use. 

TRACING .MODES & COPS$: 

All the tracing optio11s below may·:Oe shortened. to one Jetter. For 
example, TRACE A is the same as TRACE ALL 

ALL All clauses are traced 

BACKGROUND· The program tul\I~ With no tra&ing information, .and 
.cannot b~ . force~:.,i~to intet~&tlve tra~irag. using the 
TS/TCO comrn~n~:·gti,lities {see SectieniiEl.. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 89 

COMMANDS Command clauses ate traced. Command clauses are 
clauses which are sent to an external. host for 
exe¢ution. Non-zero return codes are displayed on 
the. ,console. (Normally your shell window or the 
glO~al trace console,}. 

ERRORS All commands that ~nerate a non-zero r:eturn code 
are traced after the cfairse ·has been executed. 

INTERMEDIATES All .clauses are traced· and intermediate results are 
displayed during the «waluation of expressions. This 
gea,~rates a con~detaple ·quant{1y .Of trace 
inf<iiroation and inclules v~ues of variable$'. . 

LABELS Only label clauses ate traced. Labels ate specific 
points in the program to which control can be directly 
transferred. They are traced after such a transfer 
takes place. 

NORMAL This.is the default tracing mode and nothing is traced 
unless an error occurs - in which case the failed 
clause is shown with an error message. 

OFF Tracing is switched off. 

RESULTS All clauses are traced before execution and the final 
result of every expression is displayed. This is one of 
the most useful tracing operations because it shows 
the values assigned to variables from PARSE and 
other such statements. 

SCAN All qlauses are. traced and checked for errors, but 
nothtng is executed. This Is a program dry run facility 
- a kind of ''test drive". 

ARexx: Your Amiga's Built-in Turbocharger 



90 Section B 

TRACING CODE$ 

Special. three.letter codes are; .. Used during tracing to indicate what 
information is actually b~ng dQ.ed. Th\S ls what they all mean: 

+++· Command or·~ntax •· 
>C> Expanded ~~poun. · .e 
>F> Result of a f~f;ttian , . ·. 
>L:> Label. clause.:;.,: . . . •. . 
>0·> Result of a d~dic r:Jl)eta~n 
>P> Res:l:llt of a prefil 0Jilef:ttim1 
>lJ,. Uninitialised variable1 • • • 

>V> Value of a variable . 
>>> EXJ)ression ortemplatere$IJft 
>.> "Place Holder' token >lcifue 

Here are the trace results for the execution of one clause in 
our tracing test program: 

6 *-* SAY "loop is "loop; 
>L> "loop is " 
>V> "2" 
>O> "loop is 2" 
>>> "loop is 2" 

loop is 2 

What does all this mean? Well, the first line shows us the 
line number of the clause, and the clause itself. We are then 
shown lots of information preceded by codes such as "> L>". 
These codes are intended to show you what information is 
shown after them. > V> for example, means "value of a 
variable". >>> is "expression or template result". 

Interactive tracing 
Simple tracing is all very well, but a lot of information goes 
flying past you on the screen and you are unable to stop it 
and go through it slowly, a step at a time. This is where 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 91 

interactive tracing comes in. This does allow you to single
step through your program, executing statements if you 
wish and examining the results. Interactive tracing can be 
activated to work with all of the tracing modes by simply 
prefixing it with a question mark. For example: 

TRACE ?RESULTS 

>+> 

This would start interactive tracing using the RESULTS 
option. In this case, after each clause has been shown, 
executed and the expression result also shown, the program 
pauses and gives the prompt"+++" in the console window. 
Simply pressing return at this point makes the program 
continue to the next pause point and, in the case of the 
tracing mode RESULTS, this means the next clause. If we 
typed an equals character and pressed return, the preceding 
clause would be executed again. Anything else we type is 
treated as a special debugging statement and is actually 
executed. Using our small DO loop example program 
above, tracing in ?RESULTS mode, we might get something 
like this: 

7 *-* END; 
5 *-* DO loop = 1 TO 10; 

>>> "2" 
6 *-* SAY "loop is "loop; 

>>> "loop is 2" 
loop is 2 
>+> SAY loop 
2 
>+> 6 

Note that we are able to examine the contents of variables. 
Interactive tracing in this manner is incredibly powerful, as 
you will soon discover. 

ARexx: Your Amiga's Built-in Turbocharger 



92 

MAKE A 
NOTE! 

Section B 

While in interactive tracing, all TRACE statements 
are IGNORED. This means once you start 
interactive tracing, any further TRACE statements 
in your program are not executed. Should you 
need to get around this, you can use the built-in 
function TRACE(} instead which, as well as 
returning the previous tracing mode, allows you to 
set a new one, even during interactive tracing. 

Another advantage of using the TRACE function is that it 
cari take a string expression as a parameter. This means that 
you could, for example, ask the user to type their desired 
trace mode and set it from that variable: 

/"! A Tracing exmq;>le */ 

sAY "Type in your desired tracing mode" 
PULL trace_mcde 
CALL TRACE ( trace_mcde) 

DO loop = 1 TO 10 
SAY 0 loop is 0 loop 
END 

Running this and typing ? ALL would trace the program in 
interactive mode using ALL as a tracing option - which 
means all clauses will be traced before execution. 

De•ugging ltelp witlt Command Utilities 
Several special utilities are provided with ARexx to help 
programmers with debugging. These are found in the 
RexxC drawer, and are all run directly from the shell. Full 
reference on them can be found in Section E - Utility 
Programs Reference. Some of them are particularly useful, 
particularly the global tracing window. 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 93 

One of the Murphys Laws of programming is that, when 
there is a serious bug in your program, itwill happen either 
when you're not looking, or when tracing mode is not on. 
The global tracing window allows you to open a special 
console window (from the shell) for tracing, and then with a 
further utility command, force all active ARexx programs 
into interactive tracing mode. Very useful! 

To open the global tracing window, use the command TCO, 
and to close it, TCC. You can then use the TS command to 
force all active programs into tracing mode, or TE to switch 
tracing off again for all programs. 

In addition to these tracing utilities, there is a special 
command which will cause any ARexx programs running to 
be terminated immediately. This can be useful if something 
has gone horribly wrong and you just want everything to 
quit. This is the HI command. 

The WaitForPort command can be a useful way of waiting 
for an external port to arrive. You will learn more about this 
in section C, but its syntax is quite simple: 

WaitForPort port_name 

There is a command to help access the Global Clip List (see 
below) called RXSET. When called with no parameters, 
RXSET lists all current entries in the clip list, with their 
corresponding values. 

Finally, in the RexxC drawer is the RX command, which is 
used to run an ARexx program. But we already know how 
to use this one! 

ARexx: Your Amiga's Built-in Turbocharger 



94 Section B 

ARexx offers several debugging utilities. 

General de•ugging fecltniques 
Debugging a program can be a very stressful way of 
spending your time. If you don't approach it in the right 
way, you can end up shouting, throwing things around, and 
turning to drink! However, if you are calm and methodical 
about it, then more often than not it will all be over in no 
time and will be a relatively painless experience. Like a visit 
to the dentist!? 

When you are debugging a program, think of yourself as a 
detective. Once you've worked out where the bug can't 
possibly be, then what's left is where the bug is! Say you 
have a bug in a huge 10,000 line program. That can be quite 
daunting, but the bug can't be everywhere. Simply discount 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 95 

the areas where you know for a fact that it isn't, and the 
amount of program code you actually have to look through 
will become much smaller. 

Effective debugging is an art-form in itself but, with 
ARexx's powerful tracing facilities, and a little calm 
common sense, you can continue to lead a long healthy life! 

Programming style 

Programming style? It's best to have some! Keep your 
programs neat and tidy. Indent your loops so that you can 
see at a glance where they all are. Comment your code well. 
You may think something is obvious now, but when you 
come back to a program to update it several months later, 
you can find yourself wasting time trying to figure out how 
it worked in the first place. Make sure you use meaningful 
variable names - variables like a, b and xyz are no use to 
anyone. They may be quicker to type but, in the long run, 
you'll quickly forget what they meant. 

If you write neat, tidy, well commented and structured 
programs, you will find it considerably easier to find bugs, 
or to update the program, in the future. Don't learn the 
lesson the hard way like I did. One of my first programs in 
C was 15,000 lines long and had a skeleton crew of 
comments. In the end I found it so hard to follow and 
understand that I re-wrote it from scratch ... 

Advanced programming 

We've covered the basics of programming in ARexx now, 
but we've left a few loose ends - more advanced subjects 
which have not neatly fitted in to the "plot". The remainder 
of this section is concerned with these items and, although 

ARexx: Your Amiga's Built-in Turbocharger 



96 Section B 

none of them are strictly necessary for you to be able to 
program and use ARexx, you may find some useful 
background information that's quite handy in the future. 

Fite Interpret statement 
INTERPRET is a unique and very special statement. It treats 
any specified expression as an actual block of ARexx 
clauses. The expression is evaluated, and the result is 
executed, as one or more program statements. This may 
sound a little odd. Let's illustrate with an example: 

I* Example of interpret: A simple calculator *I 

OPTIONS PROMPT n > n 

SAY "Calculator. Enter a command: 0 

PULL statement 

J:NTERPRET SAY statement 

There are a couple of new things here. The first is using the 
OPTIONS statement to change the prompt which appears 
whenever ARexx expects something to be typed from the 
keyboard. It can be quite useful in instances like this. Then 
we enter a string into a variable using PULL, and use 
INTERPRET to evaluate and SAY the result. This program 
is not just a calculator, it can do anything that SAY can now: 

8.System3.1:> rx interpret 
Calculator. Enter a command: 
>TIME( 'C') 

8:39PM 
8.System3.1:> rx interpret 
Calculator. Enter a command: 
>4+3/3*2 
6 
8.System3.1:> 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 97 

... and if we were to remove the SAY from our interpret line 
altogether, we could just type in any ARexx statement we 
wished and have it executed. This could be the basis for an 
ARexx shell - a small program which allows you to try out 
ideas by simply typing in anything and viewing the result. 

I* Sin;>le ARexx shell */ 

OP'l'J:ONS PROMPT 11 >11 

RC = 0 

/* Deal with host commands retw:ning non-zero retw:n 
code */ 
error: 

SIGNAL ON error 

J:F RC -= 0 THEN DO 

SAY 0 +++ Error: RC =0 RC 
RC = 0 
END 

/* Deal with syntax errors */ 
syntax: 

SIGNAL ON syntax 

J:F RC -= 0 THEN DO 
SAY "+++ Syntax Error: 0 ERRORTEXT(RC) 
RC = 0 
END 

I* 
**Loop until 0 QmT0 is entered, asking for and ., 
then executing 
**entered statements 
*I 

ARexx: Your Amiga's Built-in Turbocharger 



98 Section B 

DO FOREVER 
PARSE PULL shell_line 

/* Deal with the user typing QUIT to leave the .., 
shell */ 

IF UPPER(shell_line) == "QUIT" THEN EXIT 

/* Interpret the cammand now */ 
INTERPRET shell_line 
END 

You will find this a very useful program because you can 
see the results of simple command tests and functions easily 
and quickly without having to write an entire program 
every time. For example: 

8.System3.l:> rx shell 
>SAY "Multiple Clauses"; SAY "Using Semi-Colons!" 
Multiple Clauses 
Using Semi-Colons! 
>SAY TIME( 'C') 
8:50PM 
>SAY TRACE ( ) 
N 

>SAY ABS(-2.2340) 
2.2340 
>quit 
8.System3.1:> 

I use this program regularly as a simple test bed and 
calculator. Interpret is a very powerful statement and allows 
you to actually build and execute programs dynamically. 

G01'0 or not G01'0 
If you've programmed in BASIC before, one command you 
are likely to be familiar with is the GOTO statement. It's 
quite simple, it's a direct absolute jump. It allows you to go 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 99 

from where you are now, directly to another part in the 
program - normally by specifying a line number. In these 
modern days, we don't need line numbers (indeed, even 
some modern versions of BASIC have dispensed with 
them), we get to specify "arrival points" for GOTO style 
commands ourselves, using names. In ARexx these "arrival 
points" are called labels, and we have already seen them 
used in conjunction with the ARexx SIGNAL statement -
which is our equivalent of GOTO. Take this example: 

/* Goto or not goto */ 
JIW'_label: 

SAY "Forever ••• " 
SIGNAL JIW'_label 

MAKE A 
NOTE! 

This program will continue forever until it is terminated 
with CTRL-C or by using the global program halt command 
utility 'HI' from another shell window. 

With the exception of using SIGNAL to trap error 
conditions, as we have used it in this section, there 
is no need at all to use SIGNAL as a direct GOTO. 

Lecture over. GOTOs are generally frowned upon in these 
modern programming times because they tend to create 
unstructured, disorganised spaghetti programs which are 
hard to follow and get you into a mess. Having said this, 
there are some rare occasions where using SIGNAL in this 
manner could save you a lot of work. But usually, when you 
think there is no other solution but to use SIGNAL as a 
GOTO, there is always a way around it using alternative 
methods - it's just that sometimes the work involved is not 
worth it in a small program. But don't get into the habit of 
using SIGNAL in this way! 

ARexx: Your Amiga's Built-in Turbocharger 



100 Section B 

l'lte NUMIRIC statement 
This is of particular interest to anyone who uses ARexx to 
perform complex mathematics, and it allows yol,1. to alter the 
precision, among other things, of ARexx numerical results. 
For example, we could change the number of digits of 
precision from the default of 9 to 2 like this: 

NUMERIC DIGITS 2 

Then, using our ARexx shell, we could try this result: 

SAY 1.23+2.34 

... and get the result 3.6. If we tried 14.2 + 23.34 we could get 
the result 38. Trying to create a result with more than 2 
digits gives us a result in exponential notation, either 
scientific or engineering, depending on what we have set it 
to. The default form for expressing exponential notation is 
scientific. We can change it using NUMERIC FORM 
SCIENTIFIC or NUMERIC FORM ENGINEERING. 

As well as dealing with the precision and the way in which 
exponential results should be expressed, we can specify the 
number of digits that will be ignored in a numeric 
comparison operation. This allows us to make two different 
numbers appear equal as far as ARexx is concerned. It's a 
risky thing to do, and is not always entirely accurate - at 
least not on the current version of ARexx. (1.15) 

Operator Priority 
We first dealt with arithmetic operators at the very start of 
this section. A full list of them is detailed in the table on 
page 17. Mathematicians will recognise the importance of 
operator priority and how it affects the results of a 
calculation. We've all seen lines like this at school: 

(x+y) * (2x+2y) 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 101 

In this case, we specify brackets to show that the two 
sections inside brackets must be evaluated and multiplied 
together. If we simply omitted them, we'd end up with this: 

x+y*2x+2y 

And if Xis 2; and Y is 2, the result would be 20, whereas in 
the correct version which we intended, above, the result 
would be32. 

Running the above statement through ARexx gives yet 
another result-14. Why is this? 

Operators in ARexx have priority values which dictate 
which will be done first. Since multiply is a higher priority 
than add, the y*2x will be executed first, giving the result 8, 
to which the remaining 2y (4) and x (2) are added, giving 
the incorrect result 14. It is vital to be aware of how operator 
priority works and, if in doubt, specify by using brackets 
how each individual part of your expression is to be 
grouped, or you will get the wrong answer. 

rite Clip £ist 
The Clip List is a list of global variables which can be 
accessed by all ARexx programs running on the same 
system. A clip is a name with an associated value, a bit like 
a variable with something in it. We can use the built-in 
functions SETCLIP and GETCLIP to either read or write to 
these values, and in addition, the SHOW function can be 
used to list clip values. The command utility RXSET, used 
from the shell, can be used to change values of clips directly 
from outside ARexx programs. This can be handy if a lot of 
your programs share the same global values, or need to pass 
information between each other in a very simple way. Here 
is an example: 

ARexx: Your Amiga's Built-in Turbocharger 



102 Section B 

I* Clip Demo */ 

00 FOREVER 
SAY GETCLIP ( "Jey" _name") 
END 

This is an extremely pointless program, but if you run it 
you'll see a list of empty strings flying past. If you open 
another shell and either use the command utility RXSET, 
like this: 

RXSET my_name "F'Tang" 

... or run the ARexx shell listed when we talked about 
INTERPRET earlier in this section and use the SETCLIPO 
function: 

CALL SETCLIP("my_name", "Habbish") 

You'll see that as soon as these commands occur, the result 
in the window changes, and it starts immediately showing 
the new result. 

Data storage and advanced number formats 
With languages such as ARexx we deal with information at 
a very high-level, like strings and numbers, without ever 
having to worry about how this information is dealt with 
inside the computer. This is because, in most cases, we do 
not need to know and are shielded from this additional 
complexity. However, there are instances where you might 
need to deal with information, particularly with strings and 
characters, on a much lower level, closer to the way which 
the computer itself understands them. 

We know that a string is made up of a collection of 
characters. ARexx stores these characters in memory one 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 103 

.8 
9 
10 

11 

after the other, with a special character with the value of 
zero to mark the end of a string. This is often referred to as a 
NULL terminated string. Each character you use is assigned 
a unique numeric code by which it is recognised. In the 
1960' s and 70' s there were several different codes in use, but 
the most common now is the ASCII code. ASCII stands for 
American Standard Code for Information Interchange. 

In ASCII, for example, the character "A" has a code of 65, 
and the character "2" has the code 50. There are 128 defined 
codes in the normal ASCII set, with a further 128 used to 
cover special foreign characters, such as the German umlaut 
"""",and some mathematical symbols like pi "7t" 

Codes with values less than 32 are special. There are many, 
no longer in use, which were designed for the control of 
teletype terminals back in the days when you didn't have a 
screen - just an electronic typewriter-style device on which 
you typed your commands and then viewed the results on 
paper. All very slow (as bad as 10 characters per second for 
results from the computer), tedious and noisy. 

The code 0 means NULL and, as we have already explained, 
it is used in ARexx to mark the end of strings (and several 
other languages, such as 'C'). Here is a brief list of some of 
the other more common special ASCII codes and what they 
do. They all apply when shown on an ASCII terminal 
output, such as the Shell window, for example. 

EXAMPLES OF ASCII CODES 

Back Space . 
Forwardtab 
Line Feed. 

Reverse feed 

MovesJhe cursor. back,,one position. 

On the Amiga this moves to the beginning of 
the next line, and is used to separate lines of 
ASCJI text inside text files. 
Goes IJP to the previous line 

ARexx: Your Amiga's Built-in Turbocharger 



104 

12 

27 

Section B 

New .@age, Oil ·the .Aflllj~a this cclears the 
scr_e_e.n~ /-'f~:<o- .. 

c;arr1~~1~.1111eierrl!lfi., .. Mev~,,the Cllr~o~ to ti ,. ·art '.ef11the current 
finewOOhaut mo~img to : > ~xt. .:: 
This is a speci~l charaq.(~11 and, on the Amiga, 
it is used te>· then gen.~tate ttie ANSbt text 
sequemces, which can.cnartgethe text colour, 
for example. 

ANSUAmeric .. an.··.··.·.·. ·.·.·.Ni·.···.;J .. tion ... alS·'ta· ndat;.ds /nst.itute.J seq .. 11.·.e. nC.··1.e: .. s .. are det·a·· iled in the 
Ami~a.flam lfetmel Manual; Devices, in the section. am:the console device. 

Perhaps the oddest thing about ASCII is that there are 256 
total combinations. A strange number? Well, it is and it 
isn't. To us, 256 is a pretty odd number. So are 32, 64, 128 
and 512. But the odd thing is that when we deal with 
computers they pop up all the time. 512k of memory for 
example. Why 512? 

Computers are digital devices. They only deal in straight 
ONs and OFFs, with no in-betweens. We refer to an ON as 
being TRUE, or a Binary 1, and OFF as FALSE, or Binary 0. 
It's likely you've heard of binary and it's the base two 
number system. We refer to each individual binary digit as 
a BIT (Binary digIT) 

In everyday life we all work to base 10, or the Decimal 
system, which gives us 10 digits, from zero to nine. When 
we reach 10, we add one to the "tens" column and clear the 
"units" (think back to when you were at primary school and 
doing this in the classroom!). For larger numbers we might 
have a thousands, hundreds, tens and units column, 
because our column headings are in powers of 10. 

In Binary arithmetic we only have two digits, 0 and 1, so our 
column headings are in powers of 2. So instead of units, 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 105 

16s 
1 

tens, hundreds, we have units, twos, fours, eights and so 
forth. The number 10101 in Binary therefore looks like this: 

8s 
0 

4s 
1 

2s 
0 

ls 
1 

You can see we have one in the 16, 4 arid 1 column. Add 
these together and we get the result 21. So, the Binary for 21 
is 10101. You can easily convert from Decimal to Binary and 
back again this way by writing down the column headings 
and then filling in the ones and zeros accordingly. 13 in 
Binary, for example, would have ones in the 8, 4 and 1 
columns (1101). 

So, lets pop back to the number 256. There are 256 valid 
ASCII character codes, running from 0 to 255. And the 
binary for 255is:l1111111! 

A-ha! A nice round computer number. Eight BITS together. 
A group of eight bits like this is called a BYTE, and 1,024 of 
them is a kilobyte, or a k. 1,024k is a Megabyte, or an Mb. 

Your computer might have several Mb of memory. The 
Amiga A1200, for example, as 2Mb of RAM, or 2,048k, or 
2,097,152 individual bytes of storage space available. Since 
each ASCII code is one byte, that follows that you can store 
a document 2,097,152 characters in length or, assuming an 
average word length of 4.4 characters, 487 thousand words. 

In reality your 2Mb of memory gets eaten up in huge 
chunks by the Amiga itself. If you do own an A1200 with 
only 2Mb of memory and you look at the workbench title 
bar, you will see a display saying how much "graphics 
mem" you have - and this number will be a whole lot less 
that 2097152! 

ARexx: Your Amiga's Built-in Turbocharger 



106 Section B 

Obviously Binary is a very people-unfriendly number 
system because, with even relatively small numbers such as 
60,000, we end up with Binary numbers 16 digits long. So, 
when we are dealing with computers, instead of talking in 
Binary, people use Hexadecimal. 

Hexadecimal is base 16, which means that it has 16 digits, 
which run from 0 to 9 and then A to F, where F equals 15. 
The convenient thing about hexadecimal (normally called 
Hex), is that when you have a long binary number, each 
four bits in it can be shown as a single Hex digit, as the 
maximum number you can store in four bits is 1111, which 
is 15 and the value for Fin Hex. So, ASCII codes consist of 
eight bits, or any value from 00 to FF in Hex. You may well 
have seen Hex used but not known what it meant or what it 
was supposed to do. 

Open a shell and type the following: 

type s:startup-sequence opt h 

... and you'll get a result on the screen like this: 

0000: 
3B202456 45523A20 53746172 7475702D 

; $VER: Startup-
0010: 

53657175 656E6365 5F4D6170 524F4D20 
Sequence_MapROM 

This is a "Hex Dump" of the file "s:startup-sequence", 
which you should recognise as the file which is executed 
when your computer starts up. Down the right hand 
column we have the ASCII characters themselves in text 
form, and in the centre are their ASCII codes, in 
Hexadecimal. At the far left is the offset into the file from 
the first character, again in Hex. Notice that 16 characters 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 107 

are shown on each line, so the start of the second line will be 
16 from the beginning, and 16 in Hex is 10. 

If you haven't already managed to confuse Decimal and 
Hexadecimal, you soon will - especially Hex numbers that 
don't have A-Fs in them. To get round this we distinguish 
between the two by adding a special identifier to every Hex 
number to set it apart. Unfortunately each different 
computing language seems to do this in a different way. 
Assembly language programmers are used to adding the $ 
(dollar) prefix before a Hex number; for example, $123AO. In 
'C' the Ox prefix is added, as in Ox123AO. In ARexx, 
however, we refer to Hex numbers using the x postfix 
character. For example: 

SAY 1141 11x 

A 

... produces the result: 

on the screen. This is because 41 in Hex is the ASCII code 
for the letter A. 

In the same way we can define Binary strings with the b 
postfix, and if we did this: 

SAY "100001"b 

We would also get an A on the screen because 1000001 in 
Binary is $41 in Hex, or 65 in Decimal- and all are the 
ASCII code for A. 

The most useful way of using Binary and Hex strings in 
general, day-to-day ARexx programming is to insert special 

ARexx: Your Amiga's Built-in Turbocharger 



108 Section B 

ASCII characters into strings, such as the linefeeds for 
example: 

I* Hexadecimal characters into strings */ 
SAY 0 A st:c:ing01 0a 1x 0 with a new line in the middle!" 

This produces the result: 

A string 
with a new line in the middle! 

The ARexx built-in function library contains loads of 
functions especially for the conversion of Hex and Binary to 
Decimal and vice versa (see Reference Section E for further 
information and examples of using these functions). This 
may all seem a bit irrelevant right now but the first time you 
find you need to deal with calls to the Amiga operating 
system, or do any remotely advanced string handling, you'll 
find the information above very useful. . 

A knowledge of how ASCII works and how numbers are 
stored can be a life saver when it comes to certain routines. 
For example, did you know that to convert lower case 
characters to upper case ones, you simply subtract 32 (Hex 
$20) from their ASCII code values? Armed with this 
knowledge, and a few of the string-handling functions 
ARexx offers, you could write a script which neatly · 
formatted a sentence and corrected the spacing if the 
original didn't have spaces after full stops. Appendix 3 at 
the end of the book shows the entire ASCII character set. 

Anotlter loolc at Boolean alge•ra 
Although, strictly speaking, it's not necessary to teach 
Boolean algebra in a book like , you'll have a much better 
understanding of how ARexx programming works if you 
have a little background information. Besides, the fog which 
will cloud your appreciation of a large number of functions 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx 109 

such as BITXOR() will mysteriously clear and you might 
even find yourself using them! 

Computers are simple beasts, very simple beasts indeed. 
They are made up of hundreds of thousands of little 
electronic switches, and these switches can either be on, or 
off. Instead of a mechanical switch, where human 
intervention is required to change it from on to off, or vice 
versa, with these electronic switches the on-or-off state is 
controlled with a third input. Those of you who have 
tinkered with electronics in the past might recognise these 
as transistors. 

Certain combinations of these switches can be used to 
generate "black box" functions, where by what you shove in 
one end dictates what you get coming out of the other. For 
most Boolean algebra you really only need to understand a 
few of these "black boxes" AND, OR, and NOT (which 
we're going to call "logic gates"). And it's all amazingly 
simple. 

Lets deal with the simplest first - the NOT logic gate. This 
has one input and one output. We have already seen the
NOT operator in ARexx. It simply inverts the state so that, 
for instance, if you put a binary 1 (TRUE) in; you get a 0 
(FALSE) out, and vice versa. 

How about an AND gate? Well, AND is slightly more 
complex, it has two inputs, and one output. If we label these 
inputs A and B, and the output Q, we can draw the 
following truth table: 

ARexx: Your Amiga's Built-in Turbocharger 



110 

Q 

o. 

0 

I 

Section B 

'~ 1,; 

If you followed the above using Binary, you'll realise that 
with two inputs, there are four possible combinations we 
can put in, 0 0, 0 1, 1 0 and 1 l. With an AND gate, if we put 
1 and 1 in, we get a 1 out, but any other combination gives 
us 0 (FALSE). We've used the ARexx & (AND) symbol 
before, in IF statements. Now, we can see exactly how works: 

J:F age>lO &: age<lS THEN SAY ni:t gets worse now" 

We know from our first discussion of Boolean algebra that 
ARexx will evaluate the two sub-expressions (age > 10 I age 
< 15) and come up with a TRUE/FALSE. If both are TRUE, 
then the SAY gets executed. Let's assume TRUEs are ls. 
Now run that through the above truth table and you should 
see that the & operator in ARexx actually performs an AND 
gate operation to get the result, because it's only when both 
parts of the expression are 1 that the entire expression 
evaluates to l. 

OR, and the ARexx OR symbol " I " works in much the same 
way. Here is the truth table for an OR gate: 

ARexx: Your Amiga's Built-in Turbocharger 



Programming ARexx Ill 

"OR" TRtrdt TABLE 

A 

0 

0 

1 

1 

B Q 

0 0 

1 1 

0 1 

1 t 

The way it works is that if either of the two inputs are TRUE 
(1) then the output is 1. Again, let's use an IF statement as 
an example: 

:IF age < 10 I age > 80 THEN SAY "You're either very 
young, or old. 0 

The two sub-parts of the expression are evaluated and fed 
into an OR logical operation. If either one of them were 
TRUE, then the output is TRUE. 

It may be difficult for you to see why you might need these, 
but if you get into programming ARexx seriously then you 
probably will have to use functions which work with logical 
operations like this. 

The moral of this sub-section is that, if we'd been born with 
16 instead of 10 fingers, using computers would be a whole 
load easier than it is today ... However, having said that, 
many veteran machine code programmers can do everyday 
mental arithmetic in Hexadecimal just as easily as you can 
in Decimal! 

ARexx: Your Amiga's Built-in Turbocharger 



, 12 

ARexx: Your Amiga's Built-in Turbocharger 



Section C 
Controlling External 
Applications 

113 

ARexx: Your Amiga's Built-in Turbocharger 



, 14 Section C 

We've seen ARexx used as a language in its own right 
but, as you'll recall, there is one vital feature which 

allows it to talk to other applications and control them. 
However, you may still be wondering why this is so useful. 

Imagine you had 300 pictures that had just been generated 
using a ray tracing package, such as Real 3D, and which 
formed an impressive animation of a spaceship flying past a 
planet. These frames may well have taken you days to 
produce. If the pictures were all 640 x 512, in HAM mode, 
and you wanted them in 320 x 200, and 32 colours as well, 
how would you go about converting them all? Well, even if 
the ray tracing package had the facility to output in 320x200, 
32 colours and you could re-generate the frames, this would 
take a long time. 

Alternatively, you could load each picture, one at a time, 
into a package such as Art Department Pro, and convert 
them all that way. A very boring, repetitive task. 

Then again, you could write a very short ARexx script 
which loaded each picture into Art Department, converted 
it, and saved it for you, while you went and put the kettle 
on and watched TV. 

If you regularly use a simple text editor for writing small 
documents and so on, you might be pining for some of the 
full wordprocessor features, such as a spell-checker and 
thesaurus. But if your text editor had an ARexx port, and 
you also had a word-processor that had these features, you 
could write a small ARexx script which, at the press of a 
button, did the work for you. In the same way, you could 
make a wordprocessor have text-editor style operations, or 
simply write an ARexx program which, when used from the 
shell, spell-checked a named file, or looked up a word in the 
thesaurus for you. 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 115 

It's this ability to use other applications' features in a 
controlled way that makes ARexx so powerful. It can be 
used for a vast range of things - with a paint package and 
ARexx, you could draw graphs of results of mathematical 
equations, for example (useful in education applications) -
and the ARexx scripts you would need to write are all very 
straightforward and use techniques that we have already 
covered in Section B. 

If this is still not enough to convince you of the power 
ARexx gives you to squeeze every ounce of usefulness out 
of your Amiga applications, then look at the section on 
controlling specific applications in this book. This gives real, 
useful examples of a number of diverse programs, and even 
shows how to use two applications together, with ARexx, to 
create whole new features. 

ARe.JCX 11ports11 and degrees of support 
If you intend to make regular use of ARexx, then it makes 
sense to buy software which supports it, and which 
provides you with a wide range of control. Most major 
commercial applications in the fields of desktop publishing, 
word processing, text editors, utilities, and art packages for 
example, now come with an ARexx "port". 

Programs which have an ARexx port are able to act as "host 
applications". This means the application provides a range 
of commands to allow ARexx to communicate with it. 
Depending on the level of ARexx support, and the type of 
application, this might include commands to control the 
application directly- or get information which can be used 
by the ARexx script to make decisions. 

As you come to know ARexx a little better, and read the 
section on controlling specific software (D), you'll learn 
which kind of ARexx commands will be useful to you. It's 
then much easier to decide which programs to buy, because 

ARexx: Your Amiga's Built-in Turbocharger 



116 Section C 

with good ARexx support you can expand the program 
yourself as you go along. 

ARexx-supporting programs differ greatly in the type of 
commands provided. They could provide ARexx control of 
the user interface, allowing an ARexx script to bring up 
requesters, open windows and access the options present on 
the menu bar. 

You might also be able to control the core features of the 
program. In the case of an ARexx-supporting paint package, 
this might allow you to draw lines, circles and squares and 
to colour areas of the screen. In a wordprocessor you might 
be able to scan a document for specific words, and perhaps 
generate an index at the end. 

You might also be able to get information out of specific 
features of packages using ARexx. Wordprocessors might 
allow you to write a script which passed words in, had 
them spell-checked, and returned a list of closest matches if 
the word was incorrectly spelt - very handy for spell
checking files directly from your shell window without 
having to do the work yourself. A paint package might let 
you cut brushes out and save them. You could then load 
these brushes directly into another program and perform 
some other operation with them, all with the help of ARexx. 

And by using a Mandlebrot fractal generator program with 
ARexx, it is possible to write simple ARexx scripts which 
will generate animations as if you were travelling around 
the fractals, all while you were free to do something else. 

AReJIJ( support today 
In the early days it was quite hard to find major commercial 
programs which supported ARexx - now it is equally 
difficult to find one that does not. A brief (and certainly in 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications , 17 

no way exhaustive) list of some of the applications 
supporting ARexx can be found at the end of this section. 

Software publishers have realised how useful ARexx can be 
for themselves (to add missing features and flexibility by 
writing some simple scripts) and for the user (to enable 
them to perform repetitive operations automatically, and to 
expand the power and uses of their investment). 

Increasingly, public domain and shareware titles also come 
with good ARexx support. Communications programs 
allow you to write scripts which log on to bulletin boards by 
themselves, wait for all the routine prompts and then 
respond with the appropriate answers - all without you 
having to press a key. 

A good source of shareware and public domain 
(PD) utilities in general, and a wide range which 
support ARexx, can be found on the Fred Fish PD 
disks. Any good magazine will have plenty of 
adverts for such disks, and they normally cost 
around £2-3 each. Users with CD-ROM drives can 
buy CDs with over 500 disks-worth of PD and 
shareware software. Bulletin boards are also an 
excellent source of ARexx PD software. 

Finding .AReJCJC scripts 
Other than the scripts which you write yourself, and any 
that may have come included with programs, there are 
many scripts which are available in the public domain. You 
can find these on disks from PD libraries, and also from 
bulletin boards around the world. It can be a good way to 
learn more about the language by seeing what other people 
have done with it to solve their problems. 

As we'll see later in this section some applications also 
provide you with a recording facility which allows you to 

ARexx: Your Amiga's Built-in Turbocharger 



118 Section C 

perform actions within a program, while recording what 
you're doing as an ARexx script which you can "play back" 
at a later date. 

Communicating with applications 

ARexx can only talk to one ARexx port at a time. Every 
ARexx port has a name, which is called its "host address". 
To talk to an application, you tell ARexx the host address, 
using the "address" command: 

address "ProWrite" 

This sets the CURRENT HOST to the Pro Write 
wordprocessor. ARexx also remembers the previous host 
address, and you can return to this quickly and simply by 
using "address" with no host name. 

Assuming the address existed, which means that Pro Write 
would first have to be loaded, we can now access it: 

/* ProWrite Demonstration! */ 
ADDRESS "ProWrite" 

ScreenToFront 

00 loop = 1 TO 10 
StyleBold 
Type "Bold " 
StylePlain 
Style:Italic 
Type ":Italic n 

StylePlain 
END 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications , 19 

Bold Italic Bold ltaacBoldltaacBoldttaacBoldltaacBoldltaacBoldlt..OcBoldttaacBoldltaacBoldltaaC: 

ProWrite supports ARexx and we can write a little ARexx script to type the words bold 
and italic ten times in the appropriate style in a ProWrite document. 

The results of this little script can be seen in the screen grab 
shown above. 

So, what did we do? First, we set the name of the ARexx 
host, using the address command. Since we are now talking 
directly to this host, any keyword we use which ARexx does 
not understand will be passed on to Pro Write, to see if it is a 
valid ProWrite ARexx command. ScreenToFront simply 
brings ProWrite's screen to the front so that you can see the 
action occur. 

We then used a simple DO loop to show the words "bold" 
and "italic" 10 times, in the appropriate style. The ProWrite 

ARexx: Your Amiga's Built-in Turbocharger 



120 Section C 

ARexx command "Type" acts as though the text that 
follows it had been typed into the wordprocessor directly 
from the keyboard. 

It's certainly not the most useful ARexx script since the 
dawn of mankind, but it is our first example of 
communicating with an ARexx port - and we can use the 
same type of loop to do far more useful things, such as print 
out numeric tables from spreadsheets and so on. 

What would happen if the host name did not exist? If we 
change the address line to read 

ADDRESS "ProJelly" 

instead, and then run the script, ARexx would stop when it 
could not execute "ScreenToFront": 

7.System3.l:> rx write 
+++ Error 13 in line 5: Host environment not found 
Command returned 10/13: Host environment not found 
7.System3.l:> 

An unfriendly error like this is all well and good, but it 
would be much more professional if we could detect 
whether the host name required actually existed and, if not, 
load the appropriate application. 

Although there is not an ARexx keyword to do this, there is 
an in-built function which does the job called Show(): 

/* ProWrite Demonstration! */ 

IF -Show{Ports, 11 Pr0Write 11 ) THEN 00 
SAY "Prowrite is not running!" 
EXJ:T 0 
END 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 121 

ADDRESS "ProWrite" 
SAY "ProWrite is rwming" 

In this example, if the ProWrite host address is not 
available, the script exits with a message to say why it 
failed, which is far neater. Show(), used in this way, returns 
TRUE if the named port existed, or FALSE if it did not. So, 
by using the NOT symbol "-", we are able to say "If the 
host address 'Pro Write' is NOT available then do ... ". Of 
course, to put the icing on the cake, we could make our 
ARexx script load up Pro Write if it was not already loaded: 

I* ProWrite Demonstration! */ 
ADDRESS canmand 

/* Run ProWrite if it is not alrea.cfy running */ 
J:F -Show(Ports, 0 ProWrite0 ) THEN "run ., 
programs:prowrite/prowrite" 

SAY "Finding Prowrite .• 0 

/* Wait until port becomes available */ 
DO UNTJ:L Show(Ports, 0 ProWrite0 ) 

END 

SAY 0 ProWrite is rwming" 
ADDRESS 0 ProWrite0 

When run, the script produces the following message: 

7.System3.l> rx write.rexx 
[CLI 8] 
Finding Prowrite .. 
ProWrite is running 
7.System3.l> 

ARexx: Your Amiga's Built-in Turbocharger 



122 Section C 

By now your ARexx knowledge should tell you how the 
above script works. Perhaps the most interesting line is the 
first "ADDRESS command". In this case "command" is the 
host address of the Shell, allowing you to run AmigaDOS 
commands. In this example if the Pro Write port is not 
currently available, we run the program. Then, using a DO 
UNTIL loop, we wait until the port appears before 
continuing. We could improve this script still further, 
particularly in the DO UNTIL loop. If the loading of Pro Write 
failed, the loop would continue forever, or until the user used 
CTRL-C to stop it. A better method might be to check the 
port every second for 10 seconds, and then give up. 

This method of waiting for a port to become available will 
work with any disk-loadable application which supports 
ARexx. Simply change the host address. NComm, for 
example, is a shareware communications package. You 
could write a script which automatically dials and connects 
to your favourite bulletin board, in this case the popular 
CIX service: 

/* NCamm dial exanQ;>le */ 

ADDBESS command 

/* Run NCamm if it is not already running */ 
:IF -Show(Ports, 0 ncomm0 ) THEN "run ncamm:ncamm" 

SAY "Finding NCamm . . 0 

/* Wait until port becomes available */ 
DO UNTIL Show(Ports, 0 ncomm0 ) 

END 

ADDBESS "ncomm.0 

/* Dial the number: */ 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 

SAY "Dialing BBS . . 11 

dial 0 cix" 
wait 0 login: 0 

send 0 qix\n" 

123 

We're using three of NComm's ARexx commands here -
one to dial a number that is in the phone book, the next to 
wait for the string "login:", and finally to send the correct 
response together with a newline (\n) to enter it. 

One of the problems with the scripts we have shown so far 
is that they are only giving instructions to the host 
application and are not receiving any responses. 

We would have no way of knowing, in the second example, 
if the dial command had failed for any reason (say the 
phone number at the other end was engaged), and our 
script would quietly wait forever for the "login:" string to 
arrive from our modem, even though it would never 
actually appear. 

To really make the most of a host interface, you have to be 
able to make decisions based on what is happening. In the 
previous section we looked at functions as a way of finding 
things out and acting on the results. 

Information from the host 

If ARexx host commands are simply treated as functions, 
some of which just perform direct actions with no result, 
and some which return information of some sort, then it's 
easier to understand them. There are two basic ways in 
which a host can return information to your ARexx script. 

ARexx: Your Amiga's Built-in Turbocharger 



124 Section C 

RC: Return Code 
The first is by using a special variable called RC, meaning 
"Return Code". Normally, a host command would return 0 
(i.e. a low number), which would indicate "Everything was 
OK." Returning any other value normally means that an 
error has occurred - the higher the number, the more severe 
the error. ARexx can be told at what stage to treat a 
returned error as fatal, and it will then automatically halt 
execution of a script. This defaults to 10, although you are 
able to set it yourself using the "OPTIONS FAILAT" 
command, for example: 

OPT:IONS FA:ILAT 20 

Now only host commands returning a value in RC greater 
than 20 will cause your program to stop. This can be quite 
useful if you wish to deal with errors yourself, respond with 
sensible messages, and perhaps give the user a way of 
continuing. In this example a script attempts to load an IFF 
picture into Art Department Professional. We're assuming 
the host will be available: 

/* Art Department Pro, Picture loading script */ 
ADDRESS 0 ADPro0 

I ADPRO_TO_FRON'l' I 
I I.FORMAT I :IFF 
1LOAD1 1 nm;y __pie n 1 

:IF RC >0 THEN SAY "Could not load picture!" 

This script initially brings ADPro's screen to the front so 
that we can see it, and then sets the load-format to IFF. 
Finally, using the LOAD command, it attempts to load the 
picture "my _pic". If the picture does not exist, LOAD 
returns 10 in RC. We're then testing it with an IF statement 
to show an error message if the LOAD command failed. 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 125 

There are two things of interest about this particular script. 
The first is that we've put ADPro's commands in single 
quotes. This is to force ARexx to treat them as external host 
commands rather than trying to recognise them as internal 
functions, variables and keywords. Because both single and 
double quotes are interchangeable (as discussed in Section 
B), we could achieve this by using double quotes- but the 
convention in this book is to use single quotes when forcing 
commands to be sent directly to a host without further 
processing by the interpreter. We'll talk more about this 
later, but to illustrate why it's important, if we'd just used: 

LOAD ' "llW' _pie" ' 

... instead of surrounding LOAD with quotes, then ARexx 
would have first tried to see if it was an internal keyword -
in this case it was not. Then it would search the variable list, 
and see if there was one called "LOAD" and, if so, 
substitute the variable with its contents. If we'd had a 
variable called LOAD this would have caused the line to 
fail, and ARexx would have used the contents of the 
variable as a command. (There are occasions where this is 
useful, see "Variable Substitution" later on.) 

But it gets worse. If it could not recognise it as a variable, 
then it would convert it to upper case and then pass it to the 
current host. This may or may not make a difference, 
depending on whether the host is case-sensitive. NComm is 
not, for example, but other applications might be. 

The moral of the story is to put quotes around any 
command that is intended to been passed directly 
to a host application without translation. It's also 
faster, because ARexx does not try and recognise 
it as a keyword or variable before sending it to 
the host. 

ARexx: Your Amiga's Built-in Turbocharger 



126 Section C 

The second thing about this script is that it does not actually 
do what we want at all! When running it, if the picture is 
not recognised, you'd expect the IF line to print the string 
"Could not load picture!" on the screen. It doesn't. Instead, 
ARexx halts execution with this message: 

5 *-* 'LOAD' '"my_pic"' 
+++ Cormnand returned 10 

Because the default value for FAILAT is 10, ARexx stops 
running your script immediately. If we wanted our IF line 
to work, we'd have to raise the F AILAT value to something 
a little higher, by adding a line something like this to the 
start of the program: 

OPTJ:ONS FAJ:LAT 20 

You can also process host command failures using the 
SIGNAL command, and interrupts. See the previous section 
for a more thorough discussion of interrupts. 

Using tlle OJll'f'IONS RESU1TS line 
More often than not host commands that perform actions 
will want to return something more substantial than a 
simple error code indicating success or failure. This could 
be a numeric or a string value. ARexx provides a standard 
mechanism for this, using a special variable called 
"RESULT". When you call a host command, it is able to 
place values in the ARexx RESULT variable, and you can 
then process it as required. The only catch is that you must 
remember to tell ARexx that you are expecting host 
commands to return values in RESULT using the OPTIONS 
RESULTS line. This should be placed very near to the start 
of your program: 

/* CygnusED line counter exa.nQ;>le */ 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 127 

ARexx can be used to call up a filename requestor in CygnusED and return a text string 
(the chosen filename). 

ADDRESS 11 rexx_ced11 

OPTIONS RESULTS 

'cedtofront' 
•status 17' 

• okayl • "Lines in file: " RESULT 

This example shows the number of lines in the currently 
selected text window on ASDG' s CygnusEd Professional 
text editor. Having set the host address and told ARexx to 
use the RESULT variable, we bring the CygnusED screen to 

ARexx: Your Amiga's Built-in Turbocharger 



128 Section C 

the front, and call the status command. Status 17 means 
"return the number of lines in the current text file". We then 
pop up a little requester on CED' s screen showing the total 
number of lines. The RESULT variable in this case returned 
an integer value. Again, using CygnusEd, we could get a 
filename choice, and the result would be a string: 

/* Get a filename choice from the user */ 
ADDRESS 11 rexx_ced11 

OPTJ:ONS RESULTS 

'cedtofront• 
•getfilename' 
SAY RESULT 

When running this script, CED shows a file requester and 
allows us to make a choice. That choice will then appear on 
the screen. Running this program might result in this: 

7.System3.l:> rx ced 
Devs/DataTypes/Windows Bitmap 
7.System3.1:> 

Take a look at the grab on the previous page to see the 
script running. 

Quite a few ARexx supporting programs allow you to make 
use of user interface functions, such as file requesters and 
information requesters, in this way. It means that you can 
make your ARexx scripts fit in and look neat. CygnusEd 
gives you functions to get all sorts of information from the 
user in this fashion, and also display data-in requesters. 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 129 

Host addresses & commands 

In this section we've talked to several applications which 
support ARexx, and each has a very different range of 
commands - and there are certainly things to be wary of. 

Although it has been mentioned before, do watch 
out for command case-sensitivity. Check the 
documentation with a software package and 
follow the instructions carefully. It's definitely 
recommended that you surround any commands 
intended to go to a host application with single 
quotes, since this avoids ARexx misunderstanding 
what you wanted to do and, instead, treating your 
command as an ARexx Keyword, or a variable. 

VariafJle sufJstitution 
As we've already established, if ARexx can't identify a 
command as an internal keyword it tries variable 
substitution before passing it to the current host. Let's look 
at this example: 

I* SUbstitution Demo */ 
ADDRESS command 

SAY 0 Enter a c01111Mnd: 0 

·PARSE PULL BLOOP 

BLOOP 

We're using the "command" host address, which allows us 
to use AmigaDOS commands. If you run this program, and 
type "dir", then you will get a directory. When ARexx gets 
to the line BLOOP, it realises that it is not an ARexx 
keyword, so it looks at the variable list. Since BLOOP 
contains a valid value, this is converted first to upper case, 
and then passed to the host - in this case, the Shell. So if we 

ARexx: Your Amiga's Built-in Turbocharger 



130 Section C 

enter "list", we'll get a detailed directory listing. If we had 
typed an invalid command, ARexx would still send it to the 
host, but the host would reply to ARexx saying "No, that 
isn't a valid command here.", and ARexx would stop- a 
little like this: 

8.System3.1:> rx variable 
Enter a command: 
list downloads: since Wednesday 
Directory "downloads:" on Wednesday 24-Nov-93 
ar134.lha 81368 -rwed Monday 
18:28:17 
scratchpad.old 
13:38:27 
SCRATCHPAD 

14:23:04 
wack.lha 
16:22:37 
4 files - 466 blocks used 
8.System3.1:> rx variable 
Enter a command: 
feedle-de-de! 

69351 -rwed Today 

11177 -rwed Today 

73728 --arwed Wednesday 

feedle-de-de ! : unknown command 
feedle-de-de! failed returncode 10 

8 *-* BLOOP; 
+++ Command returned 10 
8.System3.1:> 

We could also type ARexx commands in and run them too: 

/* SUbstitution Demo */ 
SAY "Enter a command: 0 

PARSE PULL BLOOP 

BLOOP 

Here's a likely result of running this script: 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 

8.System3.l:> rx variable 
Enter a command: 
'SAY Hello "Hello"' 

HELLO Hello 
8.System3.l:> 

Host addresses 

131 

We've used the ADDRESS keyword throughout this section 
to demonstrate communications with other hosts. Host 
addresses (ARexx port names) are case-sensitive. This 
means that "ADPro" and "adpro" are two different port 
names so you will have to get it right before you can make 
use of that host. Check with the application's 
documentation to be sure. 

Since the Amiga has a multi-tasking environment, there are 
times when you might have several copies of a program 
running at once. But if the program supports ARexx, 
doesn't this mean you would get several copies of the same 
ARexx port? And if this was the case, how would you 
specifically talk to one in particular? 

Well, programs which can be run multiple times usually 
append a number to the end of additional ports which are 
created. If you were to run CygnusEd Professional twice, 
the first one would have a host address of "rexx_ced" and 
the second "rexx_cedl". 

Applications can handle circumstances like this in various 
ways, but the most common method is to add ".X" to the 
end of a host address, where X is a number which 
increments depending on how many copies of this program 
are running. 

In addition to ARexx's ADDRESS keyword, there is also a 
special function available in the built-in function library, 

ARexx: Your Amiga's Built-in Turbocharger 



132 Section C 

also called ADDRESS. This returns the name of the current 
host address. 

/* Address () Demo */ 

ADDRESS command 
SAY ADDRESS () 

ADDRESS 
SAY ADDRESS () 

When we run this program we are likely to get a result 
like this: 

7.System3.l:> rx addr 
COMMAND 

REXX 
7.System3.1:> 

This also demonstrates the way that the ARexx keyword 
ADDRESS, on its own, reverts to the previously set host 
address, in this case ARexx itself. Incidentally, if you ever 
want to clear the current host, so that you are no longer 
sending unrecognised variables/keywords, then you can 
use ADDRESS "REXX". 

Using ADDD55 11REJCJC11 

REXX is the name of the default host. If you don't specify an 
ADDRESS at all in your program before running it from the 
Shell, then if ARexx comes across something it would 
normally send to the host address, it tries to execute it as an 
ARexx script instead. This means that you can run scripts 
from within scripts: 

/* Save this as dinol.rexx */ 
I* This address statement below isn't strictly 
necessaey as REXX is the default, but it's there for 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 

completeness in this example */ 
ADDRESS "REXX" 
DINOSAUR 

SAY "Ok, it's finished that now. 11 

And the second script: 

/* And this as 11dinosaur.rexx11 */ 
SAY "STEGOSAURUS IS THE BEST DINOSAUR EVER" 

If you now run the first script, dinol, you will get: 

8.System3.1:> rx dinol 
STEGOSAURUS IS THE BEST DINOSAUR EVER 
Ok, it's finished that now. 
8.System3.l:> 

133 

Notice that the first script waited patiently for the second 
one to complete before continuing. 

More on ADDR/ESS(J 
You may wonder what use ADDRESS() actually is because, 
to set the address in the first place, you must know what it 
is - so why would you need to find it in this way? 

As you get to know ARexx in more detail you'll begin to see 
how useful it can be. If your script is executed from within 
an application the address is often set for you to that of the 
program. This is quite important because, for the reasons set 
out above, the address may not necessarily be the same each 
time- it could be "APP.1" or "APP.2" depending on the 
number of copies of the host application running at the 
time. So you may wish to add some code which verified that 
the address was correctly set or, bearing in mind that 
ADDRESS only remembers one previously set address, if 
you're going to communicate with several hosts during a 
script you may need to remember which host you were at: 

ARexx: Your Amiga's Built-in Turbocharger 



134 

/* Address {) Demo */ 

/* Confirm we're using Mand.2000 */ 
:mand_addr = ADDRESS { ) 

IF LEFl'{:mand_addr, 8) -= "MAND2000° THEN DO 

Section C 

SAY :mand_addr 0 is not a valid MAND 2000 address! 0 

EXIT 0 
END 

/* Now find out which Mand.2000 we're using */ 
IF LENGTH{:mand_addr) = 10 THEN DO 

:mand_number = RIGHT{:mand_addr, 1) 
SAY 0 This is Mand 2000 number" :mand_number 
END 

/* Now do lots of address things */ 
ADDRESS command 
ADDRESS 0 ProWrite 0 

ADDRESS 0 REXX0 

/* Now back to Mand 2000 */ 
ADDRESS v:ALUE :mand_addr 
SAY 0 I came back to address" ADDRESS{) 

This is an ARexx script which was run from a user-defined 
menu in CygnusSoft's excellent Mandlebrot program. It 
uses several functions to verify that we're using the correct 
address, and then extracts the number from the end of the 
address to work out which we are using. 

The grab opposite shows the results of this script when run 
from two different copies of Mand2000 both loaded at the 
same time. 

Notice at the end of the program we're using ADDRESS 
VALUE, rather than address. This is the format of 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 

Address() can be used to keep track of your host applications when things get 
complicated and you're running several at once. 

135 

ADDRESS you need if you intend to use variables to store 
host addresses. Look at this example: 

/* Address test */ 
Il\Y_address_name = "ProWrite" 
ADDRESS Il\Y_address_name 
SAY ADDRESS () 

You might normally expect the host address to be set to 
"Pro Write", but ADDRESS takes "my _address_name" 
literally, and the output of this script is: 

8.Systern3.l:> rx pro 
MY_ADDRESS_NAME 

ARexx: Your Amiga's Built-in Turbocharger 



136 Section C 

8.System3.l:> 

If you use ADDRESS VALUE then this will work as 
expected. Bear in mind that if the host address specified did 
not exist, ARexx would not object with an error until you 
tried to send a command to it, at which point it would say 
"Host environment not found". 

ff ow much support will you get? 

The degree to which software supports ARexx varies 
considerably from application to application. Some only 
allow a little basic control of the program, while others have 
integrated ARexx into their very core, providing a powerful 
and flexible ARexx interface with facilities to record and 
play back ARexx scripts and recall them off disk at the 
touch of a button. 

Macros and scripts 
Unfortunately, you'll find that both these terms can be used 
to describe a number of things in the computing world, and 
different programs use them to describe different things. In 
this book we refer to our ARexx programs as "scripts". A lot 
of programs (particularly in the IBM-PC and 
telecommunications world) use the term "scripts" to 
describe special programs written in custom script 
languages, sometimes not unlike a simple version of ARexx. 
But remember that these scripts are unlikely to be ARexx
compatible so a program that claims it supports "execution 
of scripts" does not necessarily support ARexx. 

A number of programs have the facility to record sequences 
of actions carried out by the user and then play them back 
at the press of a button. This feature is mostly found in text 
editors and is there to allow you to program in simple 
sequences of key presses and repeat them quickly 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 137 

throughout a document - although this facility is rapidly 
becoming popular in other applications too. 

These recorded sequences are often referred to as macros. 
Programs which support macros in this fashion usually 
integrate them with ARexx support so that sequences are 
actually recorded as ARexx scripts. This allows you to look 
at and edit the results easily. It is a handy way of generating 
quite complex scripts very rapidly. The really useful thing 
about recorded sequences such as these is that you can 
effectively "teach" a program how to do something, by 
going through it once (and then maybe making some minor 
changes to the ARexx script yourself) so that it can repeat 
the job next time. 

This allows you to perform repetitive tasks within 
applications very efficiently indeed. You could teach an art 
package, for example, how to load a picture, make changes 
to the palette, add a picture frame around the outside, and 
then save it out. Now you could encase the resulting script 
in a DO loop= 1 TO Number_Of_Frames loop and convert 
an entire animation in one go -yet all you've had to do is 
write a couple of lines in ARexx. 

As well as macro recording, ARexx-supporting programs 
frequently have a menu set aside for execution of ARexx 
scripts. ProWrite, for example, has a macro menu which 
enables you to specify 10 ARexx scripts which can be run 
directly from the menu or by pressing a key. This way you 
can write a number of useful wordprocessor-related scripts 
and integrate them into the program - making them 
available at the touch of a button. 

CygnusED and Art Department Professional can also run 
ARexx scripts this way, but ADPro does not have a special 
menu and uses function keys to activate scripts instead. 

ARexx: Your Amiga's Built-in Turbocharger 



138 Section C 

Programs that supp-ort ARexx 

To give you some idea of what kind of programs have 
ARexx ports, here are some of the most common application 
types on the Amiga, and a few which support ARexx. Some 
of these are dealt with in much greater detail in the next 

section, Controlling Specific Applications. Please remember 
that this list is in no way complete or comprehensive. 

A list which is maintained voluntarily by Daniel 
Barrett in America currently contains a list of 340 
applications, shareware, public domain and 
commercial packages, all of which support ARexx. 
Users with modems might like to try and get a 
copy of this list, which is available for FTP from 
AmiNet sites, and is called '' Arexx:AppList.l:zh". 

New applications with ARexx support appear every day, so 
check the ads in the latest Amiga magazines. Unless 
indicated otherwise, all software listed below is commercial 
and you'll have to check for the latest prices and 
availability. Where possible a contact number is given for 
the company supplying the package. The numbers include 
all necessary dialing codes to call from within the UK. 

Text /Editors and Wordprocessors 

Title: 
Description: 
Author: 
Contact: 

Pro Write 
Powerful wordprocessor 
New Horizons Software Inc., USA. 
0101 512 328-6650 

ARexx: Your Amiga's Built-in Turbocharger 



Control Ii ng applications 

Title: Final Copy 
Description: Wordprocessor 
Author: Softwood, Inc., USA 

Title: CygnusEd Professional 3 
Description: Text editor. Ideal for software 

development. Very fastl 
Author: ASDG Inc., USA 
Contact: 0101 608 273-6585 

Utilities, Data & File Management 

Title: Directory Opus 4 

139 

Description: Advanced File Management (Copying, 
Renaming and so forth) 

Author: 
Contact: 

Title: 
Description: 

Author: 
Contact: 

lnovaTronics Inc. 
0707660992 

AmiBackV2 
Hard disk backup software with tape 
drive support. 
Moonlighter Software Inc., USA 
0101 407 384 9484 

Communications 

Title: NComm Version 2 and 3. 
Description: Terminal software. Shareware! 

Available for evaluation from most 
Amiga BBSs and PD libraries. 

Author: Torkel Lodberg 

ARexx: Your Amiga's Built-in Turbocharger 



1 40 Section C 

Title: Lucy 
Description: Offline Reader for CIX. 

(Whisk.yware!). Requires 
Workbench 2. Available from CIX for 
evaluation. 

Author: Toby Simpson 
Contact: toby@cix.compulink.co.uk 

Title: Term 3 
Description: Terminal software. Giftware! 

Requires Workbench 2. Available 
from most Amiga BBSs and PD 
libraries. 

Author: Olaf Barthel 

Art and Rendering 

Title: 
Description: 

Author: 
Contact: 

Title: 
Description: 
Author: 
Contact: 

Title: 
Description: 

Author: 
Contact: 

Art Department Pro 2.5 
Graphics Conversion and Image 
Processing. 
ASDG Inc., USA 
0101 608 273 6585 

Digi Paint 3 
HAM-based paint package 
Newtek Inc., USA 
0101 913 354 110584 

Video Toaster 
Video effects and 3D rendering 
system (hardware & software) NTSC 
only. Comes with the world-famous 
LightWave 3D rendering software, as 
used in Babylon 5 and Seaquest DSV 
on TV. 
Newtek Inc., USA 
0101913354 1583 

ARexx: Your Amiga's Built-in Turbocharger 



Controlling applications 141 

Title: SCALA Multimedia MM200/MM300 
Description: Multimedia presentation software 
Author: Scala Inc. 
Contact: 0920 444230 

Development 

Title: SAS C 6.5 
Description: ANSI C/C++ Development System. 

Various component parts, such as the 
editor, support ARexx.. 

Author: SAS Institute Inc., USA 
Contact: HiSoh 00525 718181 (UK Distributor 

and Support) 

ARexx: Your Amiga's Built-in Turbocharger 



142 

ARexx: Your Amiga's Built-in Turbocharger 



Section D 
ARexx in Real 
Applications 

143 

ARexx: Your Amiga's Built-in Turbocharger 



144 Section D 

As we have discovered, ARexx is very useful as a stand
alone programming language. Not only can we write 

entire programs to perform useful functions, but it can be 
used to put together small routines to perform repetitive 
tasks. However, ARexx really starts to show its power when 
we use it to communicate with other applications, because it 
uses the features of those applications as if they were part 
and parcel of ARexx itself. 

In this section we will demonstrate two small ARexx 
applications which communicate with other programs. The 
first uses the popular text editor "CygnusED" (or CED) to 
do a basic error check of a file, spotting such mistakes as 
failing to put a space after a full stop, and not capitalising 
the first word in a sentence for example. The second uses 
Art Department Professional (ADPro) to process a large 
number of picture frames. 

You may be thinking, "I don't have the applications you're 
demonstrating." This isn't a big problem because there are 
many other ARexx-supporting programs which can 
perform the same sort of operations but by using different 
commands. So converting the error-checker to use 
TurboText instead of CygnusED, for instance, is relatively 
straightforward; and the pictures in the second program 
could be converted using any one of the many image
processing and art packages which support ARexx. 

Using tlte Example Programs 
If you do have the applications we are using as examples 
here, then the programs can be typed in and used 
immediately. If you don't, you'll need to do some 
conversion work. Section B and C contain the information 
you will need in order to adapt them. 

Both examples will load and run the application used if it is 
not already running. They do this by using the AmigaDOS 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 145 

shell command "run" and the program name. For this to 
work, the program has to be available in one of the current 
paths (you can find information on the "path" command in 
any AmigaDOS shell reference guide). For example, if Art 
Department Pro was stored on your hard disk partition 
"Work", in the "ADPro" drawer, you could add a path to it 
from a shell window by typing: 

path work:ADPro add 

You will then be able to type /1 AD Pro" and press Return to 
run it directly, without even having to go to the right 
drawer using the "cd" command. More advanced users 
might want to add such a path to their startup sequence, by 
adding the path line above to their "user-startup" file. 

~ Remember! If there is something boring and 
i,.{" repetitive you do often on your computer, ask 

yourself whether ARexx couldn't do the iob 
instead. It might be worth writing a program to 
solve the problem. It may take longer initially, but 
it will save you time in the long run. 

rite Error Checker 

When you are typing out a letter it is easy to make silly 
mistakes which a spell checker might not find. Programs 
like CygnusED do not have a built-in way of checking for 
this, but we can add such a feature by creating a suitable 
ARexx script. This program will work from within 
CygnusED, check a document for problems (even correcting 
them automatically if that's what you want) and then show 
you some useful information about the document, such as 
average word length. 

ARexx: Your Amiga's Built-in Turbocharger 



146 Section D 

There are lots of nice additional features too. If run from a 
shell window, it will load up CygnusED and prompt you to 
select a file to load. If the document which is to be checked 
has unsaved changes, you will be prompted to save it first 
in case something goes wrong. 

l'lte Program 
This error checker is not infallible. If you type "fro" instead 
of "for" for instance it won't pick it up- any more than a 
decent spell checker would ("fro" exists as a word in the 
sense of "to and fro"!). And although it checks for spaces 
after full stops I have not included quotation marks (double 
or single) in the punctuation because they can have spaces 
before or after them. 

However, the program does demonstrate a lot of the ARexx 
string-handling functions, particularly those used for 
deleting and inserting text. 

It should be relatively easy to improve on it by adding new 
features for it to check, and you could even turning it into a 
spell checker in conjunction with a suitable wordprocessor 
with an ARexx port. Some of the techniques used are 
certainly worth discussing further, however. 

As mentioned in Section C, you occasionally have to put 
quotes around commands you wish to be sent to an external 
program. The convention in this book is to use single ones 
for commands to external functions, with double quotes for 
all other uses. This is to help us to see at a glance which is a 
command, and which is a string. 

In this example, some of the commands we send to 
CygnusEd contain ARexx reserved words, such as "End", 
for instance. To avoid ARexx showing an error, we put the 
entire command in single quotes to force it to be sent as one 
command without further parsing by the interpreter. 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 147 

/* Quote problem example */ 

ADDRESS "rexx_ced.0 

END OF L:INE 

EXIT 

This, when run will generate an error: 

+++ Error 26 in line 4: Missing or unexpected END 
Command returned 10/26: Missing or unexpected END 

Although we wanted to send the command "END OF 
LINE" to CygnusED, ARexx detected the END keyword 
and generated the error. However, by simply changing the 
CED command to: 

'END OF LINE' 

... the problem is solved. In fact if you do get strange errors 
like this while developing applications which control 
external programs, this could be the answer. If you're at all 
unsure, put all the commands you intend to be sent out in 
single quotes. You won't do any harm, and at the same time 
you could make it easier to spot bugs in your program. 

We will also be lowering the numeric accuracy from its 
default level to 2 by using the NUMERIC command: 

NUMERJ:C DIGITS 2 
/* This is for average word length precision */ 

... the reason for this is that one of our error checker's 
functions is to tell you the average word length when the 
program has finished. Setting the level to two prevents it 
giving us ridiculous answers like "2.3645374", when really 

ARexx: Your Amiga's Built-in Turbocharger 



148 Section D 

"2.4" would have been more than enough (unless you are 
particularly fussy!). 

The single most important line in the program is also worth 
a brief mention: 

OPTIONS RESULTS 

Without this, the program would not work because it would 
not be able to process information received back from 
CygnusED. This is another common problem encountered 
by beginners and experts alike, so do remember that you 
will need this statement at the start of your program if you 
wish to see data which is returned to you by an external 
function or command call. 

Adapting it fo worlc wifltout CygnusED 
There are two ways in which this program can be adapted 
to work without CygnusED. The first and potentially easiest 
way is to make it work with another text editor which 
supports ARexx, such as Turbo Text. If you do not have 
access to either editor, it is possible to make it work without 
an external application at all so that it operates as a stand
alone ARexx program. This does require some additional 
work, but the program has been designed to make this a 
little easier. The Procedure "ErrorCheckLine" makes only a 
couple of specific application calls, so the main program 
loop could be adapted to read files in from a text file, using 
the ARexx READLN function, and pass them directly to 
"ErrorCheckLine". The recommended way for doing it 
would be to have a separate output file, rather than 
modifying the existing one. At the end of "ErrorCheckLine" 
you would simply WRITELN out the line you have just 
processed to the new file. 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 149 

Listing J: the error checker 

/*$Zd: error.rexx 1.03 (17.7.94)** 
**AD error checker for CygnusED Professiaaal (CED)** 
**By Toby Simpson*/ 

OP'l'ZONS RESUL'l'S 

/* This is for average word length precision */ 
NUMERJ:C DZGZTS 2 

/* Zf CED is not being :run, then :run it, and prompt for 
a file to be checked */ 
ZF -SHOW(ports, nrexx_ced") THEN 

DO 
ADDRESS COMMAND "run ced0 

ADDRESS COMMAND "waitforport rexx_ced" 

ADDRESS 0 rexx_ced0 

OPEN 

/* Zf user selected CANCEL, abort: */ 
ZF -result THEN 

END 

DO 
OKAYl "Operation aborted" 
EXJ:T 

END 

I* We have CED now, so set the port address: */ 
ADDRESS 0 rexx_ced0 

CEDTOFRONT 

/*CED Screen·to the front*/ 

/* Set up aey important variables: */ 
LF = noA0 X 

/* Line feed ASCZZ code */ 

ARexx: Your Amiga's Built-in Turbocharger 



150 

/* Ask for user ccmfixma.tion: *I 
OKAY2 ° Are you sure you wish to continue? 0 

ZF -result '!'BEN 
DO 
OKAn °0peration aborted" 
EXJ:T 

END 

Section D 

/* Ask if the user wants this file saved first if there 
were ~ changes made since the last save: */ 
STATUS 18 
/* Fetches changes since last save */ 
ZF result > 0 THEN 

DO 
OKAY2 °Do you wish to make a back up., 
copy0 LF0 before performing the check? 0 

:rF result '!'BEN 'SAVE AS' 

I* :rf user selected CANCEL, abort: */ 
:rF -result THEN 

DO 
OKAYl 0 0peration aborted" 
EXJ:T 

END 

END 

/* All rea.d;y to go, so start the check: */ 
'BEG OF F:rLE' 
/* Move to first line in file *I 
current_line = 1 
STATUS 17 
/* Total lines in file */ 
total_lines = result 
STATUS 16 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 

Our ARexx error checker running in coniuncfion with CygnusEd 

/* Total characters in file */ 
total_characters = result 

corrections_made = O 
problems_found = O 
warnings = 0 
word_cowit = O 
last_fs = 1 
/* First word of document must be upper cased *I 

DO UNTIL (total_lines + 1)= current_line 
/* Fetch a line: */ 
'JUMP TO LINE' current_line 
'BEG OF LINE' 

151 

ARexx: Your Amiga's Built-in Turbocharger 



152 

STATUS 55 

/* Error-check it {and abort if error was 
detected): */ 
line_to_process = result 

IF -ErrorCheckLine{line_to_process) THEN 
00 

Section D 

OKAYl "An error has occurred, aborting check" 
EXIT 
END 

/* Done this line, proceed to next, after 
updating word-count: */ 
'JUMP TO LINE' current_line 
STATUS 55 
word_count = word_count + WORDS{result) 

current_line = current_line + 1 
END 

/* Operation finished, show statistics and information: 
*I 
string = "Problems Found:" 11 problems_found 11 LF 
string = string 11 "Warnings: " 11 warnings 11 LF 
string = string 11 "Corrections Made: 0 ., corrections_made 
11 LF 11 LF 
string= string ll"Characters in file:"-. 
total_characters 11 LF 
string = string I I "Lines in file: 11 total_lines I I LF 
string = string I I 11Words in Doc:mnent: 11 word_count-i 11 
LF 

average_word_length = total_characters I word_count 

string = string 11 "Average word length: n-, 

average_word_length 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 153 

OXAYl string 

EXJ:'l' 

/* Procedure to error check one line supplied as a 
parameter. 'l'Wo variables are exposed for global use, 
0 corrections_made0 and 0 problems_found" - total error 
corrections, and total problems found respectively. 
This function returns FALSE if it has an error, or 'l'RtJE 

if it succeeds.*/ 

ErrorCheckLine: PROCEDURE EXPOSE problems_found.., 
corrections_made last_f s w.unings 

/* Grab argument for processing: */ 
PARSE ARG line_to_process 

/* If the line is empty, retUJ:n now: */ 
IF LENG'l'B(line_to_process) <= 1 THEN RE'l'tJRN 1 

/* Initialise checker: */ 
current_word = 1 
line_changed = 0 
punctuation= ":;.-,!?" 
capitalise_after_fs = 0 :?!." 

/* Loop through all words now: */ 
DO UN'l'IL current_word >= WORDS(line_to_process) 

alter_word = O 

/* Fetch the word to work on: */ 
word = nn 11 WORD(line_to_process, current_word) 

/* Check for first word of sentence having a 
capital letter: */ 

ARexx: Your Amiga's Built-in Turbocharger 



154 

IF last_fs & LowerCase(LEFT(word, 1)) THEN 
DO 

problems_found = problems_found + 1 
IF CapitaliseWord(word) THEN 

DO 

corrections_made = corrections_made + 1 
alter_word = 1 
END 

END 

I* If "I" is used as a word, it :must be 
capitalised: */ 
IF word = "i" THEN 

DO 

problems_found = problems_found + 1 

IF CapitaliseWord(word) THEN 

DO 

corrections_made = corrections_made + 1 
alter_word = 1 
END 

END 

Section D 

/* Check for punctuation without a space after 
it: */ 
IF VERJ:FY(RJ:GH'l'(word, 1), punctuation, "lm.'l'CH")., 

THEN 

DO 

IF VERJ:FY(RJ:GBT(word, 1),., 
capitalise_after_fs, "lm.'l'CH") THEN 

DO 

last_fs = 1 
END 

ELSE :NOP 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 155 

ELSE 

DO 

punc_match = VERI:F!'(woxd, punctuation, 0 MA'l'CH0 ) 

last_f s = O 

:IF punc_match > 1 'l"BEN 

DO 

problems_found = problems_found + 1 

:IF AddSpaceAfterPunc (word, punc_match) THEN 
DO 

cor.rections_made = cor.rectians_made + 1 
alter_woxd = 1 

/* Check for punctuation without a space 
an new woxd: */ 
:IF VER.:IF!'(RJ:GR'l'(WORD(word, 1), 1), -. 
capitalise_after_fs, 0 MATCH0 ) 'l"BEN 

DO 

last_fs = 1 
END 

I* Check for words with no vowels: */ 
:IF VER.:IF!'(word, 0 AE:IOtJaeiou0 , 0 MATCH0 ) = 0 THEN 

DO 

problems_found = problems_found + 1 

ARexx: Your Amiga's Built-in Turbocharger 



1 56 Section D 

result_type = ProcessAbbrev(word) 

SELEC'1' 
WHEN result_type = 1 '1'HEN' 

DO 
corrections_made = corrections_made + 1 
alter_word = 1 
END 

WHEN result_type = 2 '1'HEN' warnings =., 
warnings + 1 

OTHERw.ISE NOP 

I* Make changes if required: */ 
IF alter_word '1'HEN' 

DO 
/* Note word insertion point */ 
insert_position = WOBDINDEX(line_to_process,., 
current_word) - 1 

/* Delete old word */ 
SAY current_word 
line_to_process = DELWORD(line_to_process,., 
current_word, 1) 

I* Insert new word *I 
word= word II n n 

line_to_process = DTSER'l'(word, ., 
line_to_process, insert_position, ., 
LENGTH (word) ) 

/* Mark this line as changed */ 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 

line_changed = 1 
END 

current_word = current_word + 1 

END 

I* Insert new line: *I 
IF line_changed THEN 

00 
I DELETE LINE I 

TEXT line_to_process 
END 

RETURN 1 

/* Function which returns TRUE if the character 
supplied is lower case. */ 

LowerCase: PROCEDURE 

/*Get the argument: */ 
PARSE ARG first_char 
IF first_char >= "a" &: first_char <= "z" THEN., 
RETURN 1 

RETURN 0 

157 

/* Function to capitalise the supplied word if required 
*I 

CapitaliseWord: PROCEDURE EXPOSE word 

/* Get user confi:rma.tion: */ 
OKAY2 "The word [" J I word 11 "] should be ., 
capitalised. Should I correct it?" 

ARexx: Your Amiga's Built-in Turbocharger 



158 

IF -result THEN RETURN 0 
/* Return without change */ 

/* Make the correction: */ 
character = LEFT(word, 1) 

character = UPPER(character) 

word = OVERLAY(character, word, 1, 1) 

Section D 

/* Process spaces after punctuation. Allows the user to 
add spaces after punctuation where they should be. */ 

AddSpaceAfterPunc: PROCEDURE EXPOSE word 

word = ARG(l) 
offset_to_punc = ARG(2) 

SAY word offset_to_punc 

/*Get confi:r:ma.ti911 from user: */ 
OKAY2 °Can I add a space after punctuation? : " 11 ., 
word 

IF -result THEN RETURN 0 

/* Make the correction: */ 
word= INSERT(" 11 , word, offset_to_punc, 1) 

RETURN 1 

/*Process abbreviations. Abbreviations should all be 
upper case and should have a full stop at the end. This 
function returns 0 for no action, 1 for a change and 2 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 

for a warning. */ 

ProcessAhbrev: PROCEDURE EXPOSE word 

/* Get user confi:cmation of change: */ 
corrections_made = O 

159 

OKAY2 "Is word [ 0 11 word 11 °] an abbreviation?" 
IF -result THEN 

00 
I* User said this is not an abbreviation: */ 
OKAYl 0 This word could be incorrectly spelt. 0 

RETtmN 2 
END 

ELSE 

00 
/* User said that this is an abbreviation: */ 
lower_case = 0 

00 loop = 1 TO WORDLENG'l'H(word, 1) 
IF LowerCase(SUBSTR(word, loop, 1)) THEN., 
lower_case = 1 
END 

IF lower_case THEN 
00 
OKAY2 "Shall I capitalise the lower case in ., 
this abbreviation?" 
IF result THEN 

00 
word = UPPER(word) 
corrections_made = 1 
END 

END 

ARexx: Your Amiga's Built-in Turbocharger 



160 

We can get a report on our text which provides useful information. 

iF lUGHT(word, 1) -= "." THEN 
DO 

Section D 

OKAY2 "Shall i add a full stop to the end?" 
iF result THEN 

DO 
word = INSERT ( n • "I word, WORDLENGTH (word, ., 
1), 1) 
correction_made = 1 
END 

END 

END 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 161 

RETURN corrections_made 

/* End of File */ 

The Picture Modifier 

One of the things that the Amiga is particularly good at is 
processing video information. Because of the poor quality 
and/ or high price of many applications like 3D picture
renderers and landscape-generators, many Amiga users 
spend a lot of time dealing with large batches of video 
images, a boring, laborious task - especially if you are 
dealing with several hundred frames that all need one 
simple alteration. You could solve this problem by spending 
a quiet night in with DeluxePaint, or save yourself a lot of 
time by writing a short ARexx program to do the entire task 
for you. You can now spend a loud night out somewhere 
else and let your computer get on with the hard work- it's a 
lot less likely to get bored and make silly mistakes! 

This example demonstrates some of the features of Art 
Department Professional (ADPro), from ASDG, in the field 
of image processing. ADPro allows the user to load in a 
picture file (from any number of different formats), process 
it in some way and then allow it to be saved back out to 
disk, again in one of many different graphics formats. A lot 
of users find it handy for converting GIP (Graphics 
Interchange File) picture files from IBM-PC compatible 
computers to IFF (Interchange File Format) for use on the 
Amiga. But it can do much more than that, it can change a 
picture to a different size or its number of colours - and this 
is where it starts to get useful for the more advanced user. 

Murphy's Law states that the program that is generating all 
of your pictures will not able to generate them in the format 
you'd really like. A particularly nasty example might be if 
you had a video digitiser, which took running video from a 

ARexx: Your Amiga's Built-in Turbocharger 



162 Section D 

household VCR and converted it into hundreds of 
individual 640x256 Amiga IFF screens in 256 colours. 
Unfortunately, you want them in Lo-Res 320x200 in 16 
colours. Armed with DeluxePaint, ADPro, or another such 
application, you can solve the problem, but it is going to 
take hours. This is where the ARexx facility offered by some 
image programs, such as ADPro being demonstrated here, 
becomes invaluable. We are able to write a program, only a 
handful of lines long, which will do the entire job for us 
without any intervention at all. 

l'lte Program 
This program will process a large number of pictures by 
loading them into ADPro, converting them to an alternative 
format, displaying them, and finally saving the new file out. 
The program makes a lot of assumptions about the 
operations performed, but it's easy to customise. It expects 
the files to be in the format: 

framename.1 
framename.2 
framename.3 

... and so on You can specify what the filename part is and, 
when numbering begins, how many frames there are. 

A couple of the programming techniques used in this 
program are also useful for other ARexx programs. One of 
the problems you encounter when you're calling multiple 
external host commands is checking to see if each one 
returns an error. If external commands set the RC (return 
code - see Section C) to a value greater than the current fail
at level (normally 10), then the script will show an error. 

We can deal with these individually, but an easier way of 
doing it is to use the SIGNAL ERROR interrupt (see the 
reference section, E, for more information on SIGNAL). This 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 163 

way, we can handle all errors returned by commands sent 
to ADPro in one handy routine: 

/*'l'his is the error interrupt when a camnand sent to 
ADPro failed.*/ 

ERROR: 

/* Xf ADPro is running still, kill it: */ 
XF SHOW(ports, 0 ADPro 0 ) THEN ADPRO_EXJ:'l' 

/* Now shaw error message: */ 
SAY 0 Error: Command returned Error code at line ., 
0 SXGL 

EXIT 

This is a simple case; it will terminate ADPro and show an 
appropriate message on the screen together with the line 
number in the ARexx program where the error occurred. 

Notice also that we are using the built-in DATATYPEO 
function to confirm that the user enters a number when they 
are required to. You can never guarantee what the user of 
your ARexx program is going to type in. It's better to detect 
these and give them a chance to correct it, rather than having 
your ARexx program fail because of an error later on: 

XF DA'l'A'l'YPE(number) = 0 NOM0 THEN 

DO 
number_valid = 1 
END 

Of course, in this particular example we could have used 
ADPro' s "GETNUMBER" command which shows a neat 
requester on the screen with a box for entering a number. 
ADPro will ensure that only a number is actually entered. 

ARexx: Your Amiga's Built-in Turbocharger 



164 Section D 

Here is how we could adapt the GetNumber function in the 
listing to use ADPro's function instead of keyboard entry on 
the shell window: 

*/This function fetches a number. J:f the user enters 
something which is not numeric (checked with the ARexx 

DATATYPE function) then the user is prompted to enter 
it again.*/ 

GetNumber: PROCEDtJBE 

ADPRO_TO_FROR!' 

GETNUMBER "Enter a Number" 

ADPRO_TO_BACK 

RE'l'tJBN ADPRO_RESOLT 

ADPro returns additional information in the 
ADPRO _RESULT variable, and in the case of the 
GETNUMBER function that is the number which was 
entered. We encompass the GETNUMBER call inside 
functions to bring the ADPro screen to the front so that the 
user can see the requester that they have to type into! If the 
user clicks on the number-requester's CANCEL button, 
ADPro will return an RC of 10, which will cause a jump to 
our error processing function "ERROR:". 

Listing 2: the fife processor 

/* Art Department Pro picture processor */ 

/*$J:d: adpro.rexx 1.01 (18.7.94) */ 
/*This is a "work-horse" program, one that perfo:r:ms a 
large amount of otherwise repetitive work automatically, 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with· Applications 

using the ARexx abilities of ADPro *I 

OP'l'J:ONS RESULTS 
NUMERJ:C DJ:GJ:TS 2 
I* This is for average word length precision */ 

SJ:GNAL ON ERROR 

165 

/*J:f ADPro is not being run, then run it, and prompt 
for a file to be checked.. */ 
J:F -SHOW(ports, 0 ADPro0 ) THEM 

DO 

ADDRESS COMMAND "run adpro0 

ADI>BESS COMMAND 0 waitforport ADPro 0 

ADI>BESS "ADPro0 

END 

/*We have ADPro now, so set the port address: */ 
ADDRESS 0 ADPro0 

ADPRO_TO_BACK 

/* Set up the ASCJ:J: linefeed string */ 
LF = "0A0 X 

/* Fetch info:cmation fran the user about the conversion 
process: */ 
SAY 0 Which frame to start at?" 
frame_start = Get.Number () 

SAY "Which frame to end at?" 
frame_end = GetNumber ( ) 

/*The frame end 11Ust be larger than start, so check 
this: */ 
J:F frame_end < frame_start THEM 

DO 

ARexx: Your Amiga's Built-in Turbocharger 



166 Section D 

SAY "End frame camiot be large than start frame!" 
EXIT 
END 

SAY "What is the base name of the files?" 
PARSE PULL ba.se_name 

I* Show the user the infonnation for confi.nnation: */ 
SAY "Processing from:" GetFileName(frame_start) 
SAY " to:" GetFileName(frame_end) 

SAY LF 11 "Enter y to continue: n 

PULL confi.:cm 
IF UPPER(confi.rm) -= "Y" THEN 

DO 
SAY "Operation aborted" 
EXIT 
END 

/* Now we initialise things before the ma.in loop: */ 
done = 0 
current_frame = frame_start 
frames_processed = 0 

/* This is the ma.in processing loop, it ends when the 
job is camplete or an error occurs. */ 
DO UNTIL done 

I* Generate correct file name: */ 
file_name = GetFileName(current_frame) 
SAY "Processing:" file_name 

/* Confirm this file exists by trying to open it: */ 
IF -EXISTS(fi.le_name) THEN 

DO 
SAY "I can't find the file In 11 file_name 11 n I. n., 

11 LF 11 "Check start and end frame numbers ., 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 

were correct." 
done = 1 
END 

ELSE 

00 

167 

/* Perform processing operation on this file: */ 
IF -ProcessPicture(file_name) THEN 

00 
/* An error occurred, ask if user wants to 
ignore it and continue ~y: */ 
SAY "An error occurred processing ' 0 I I ., 
file_name I I " ' • " 
SAY "Continue ~y? Enter Y to continue:" 
PULL confi:cm. 
IF UPPER(confirm) -= "Y" THEN 

00 
SAY "Operation aborted" 
done = 1 
END 

ELSE 
NOP 

END 

ELSE 

00 
frames_processed = frames_processed + 1 
SAY 0 •• C011Q;>lete 0 

END 

END 

/* Proceed to next frame, and exit if we have 
just done the last: */ 

ARexx: Your Amiga's Built-in Turbocharger 



168 Section D 

current_frame = current_frame + 1 
IF (current_frame = frame_end + 1) THEN done = 1 

END 

/* Operation canplete! Inform user: */ 
ADPRO_EXIT 

SAY "Operation canplete," frames_processed " frames ., 
converted. " 

EXIT 

/*This function fetches a number. If the user enters 
something which is not numeric (checked with the ARexx 

DATATYPE function) then the user is pranpted to enter 
it again. */ 

GetNl.mlber: PROCEDURE 

number_valid = 0 

00 UNTIL number_valid 

PULL number 

IF DATATYPE(number) = "NUM" THEN 
00 
number_valid = 1 
END 

ELSE 

00 
SAY "Please enter a numeric value, '" I I ., 
number I I " ' is not· a number" • 
END 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 169 

END 

RETURN number 

/* This function builds a complete filename for the 
picture number argument provided and returns it. */ 

GetFileName: PROCEDURE EXPOSE base_name 

PARSE ARG picture_number 

file_name = base_name 11 II II 11 picture_number 

RETURN file_name 

/*This function processes a picture. It loads it into 
ADPro, converts it to the GIF file format, and changes 
the resolution from 640x256 16 colours down to 4 
colours, and then saves it out. */ 

ProcessPicture: PROCEDURE 

/*Fetch the picture name argument: */ 
PARSE ARG picture_name 

/* Bring ADPro to the front, set loader and load 
picture: */ 
ADPRO_TO_FRONT 

LFO:RMAT "IFF" 

LOAD picture_name 

/* Set to 4 colours, redo picture and show it for 
1 second on screen: */ 
RENDER_TYPE 4 

ARexx: Your Amiga's Built-in Turbocharger 



170 

Our file processor in action. 

EXECUTE 

ADPRO_DISPLAY 
PAUSE 50 

I* Set save fo:cnat and save picture with . out 
appended to it: */ 
SFORMAT "GIF" 

output = picture_name 11 ".out" 

SAVE output SCREEN 

RETURN 1 

ARexx: Your Amiga's Built-in Turbocharger 

Section D 



Using ARexx with Applications 171 

I* End of file */ 

/* This is the error interrupt when a command sent to 
ADPro failed. */ 

ERROR: 

I* If ADPro is running still, kill it: */ 
IF SHOW(ports, "ADPro") THEN ADPRO_EXIT 

/* Now show error message: */ 
SAY "Error: Command returned Error code at line ., 
"SIGL 

EXIT 

Other Applications 

There are many ways to use ARexx. This section has just 
suggested a couple, with examples of the sort of time-saving 
program that will perform repetitive tasks automatically. 
Here are a few other possible uses of ARexx that might give 
you a few ideas for other uses. 

Co111111unicafions 
Users of modems who regularly call bulletin boards could 
find ARexx invaluable. It can be very tedious having to 
remember what to type to connect to any particular service, 
especially since some require you to type in all kinds of 
stuff, including a username and a password, before you get 
started This is just the job for a computer, because the 
sequence for connecting (or "logging on") to a bulletin 
board is the same every time for that given service. 

ARexx: Your Amiga's Built-in Turbocharger 



172 Section D 

If you use a terminal program with an ARexx port, then you 
can program ARexx to dial the right phone number for you 
and "type in" all the necessary information. Then all you 
have to do is write an ARexx script for each bulletin board 
or service that you use regularly. 

Here is an example which uses the popular shareware 
terminal software NCOMM. It can be adapted to work with 
''Term" as well. It's a program for really lazy people who 
can't even be bothered to move the mouse far enough to 
select a phone book entry! For it to work, a file called 
"PhoneBook" must be created consisting of lines containing 
phonebook entries, for example: 

cix 0813901255 ogin:lqix userl<JIW'_username>~ 
assword I <DW" _password> 

Respectively: the first parameter is the service name, 
followed by the telephone number to dial, and up to three 
wait and response strings ("ogin" and "assword" avoid any 
problems with upper or lower case "l"s and "p"s). The 
script, once it has dialled the number, will go through each 
of the wait-response sequences. If you need less than three, 
put a "-" for unused ones, for example: 

a_bbs 123456789 Name: I fred Password: I juggle -~ 

The I symbol is used to separate the wait string and 
response. NCOMM will wait for the text left of the I and 
then respond with the text on the right of the I . 

In communications, ARexx is an eternal asset. We have 
shown above how to use it to log on to a service. It could 
then perform a number of operations automatically, 
fetching information, then disconnecting and allowing you 
to view it at your leisure - and while no longer connected to 
the phone line and racking up the bill. 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 173 

/* Auto Dialler Program by 'l'Oby Silq;>son*/ 

/* $Id: hbs.rexx 1.02 (17.7.94) */ 
/* A simple program which dials up and ccmnects to a 
bulletin board using the popular shareware NCOMM 

program. /* 

OP'l'IOHS RESULTS 

/* If NCOMM is not being run, then run it, and prompt 
for a file to be checked. */ 
IF -SHOW(ports, 0 ncamm0 ) THEN' 

DO 

ADDRESS COMMAND "run ncamm" 
ADDRESS COMMAND 0 waitfo:cport nccmm.0 

END 

I* We have NCOMM loaded now, so set the port address: 
*I 
ADDRESS 0 ncamm0 

/* Reset the modem:*/ 
H»lGUP 

/* Ask user for the service to dial: */ 
BEEP /* Brings screen to front and alerts user *I 

S'l'RJ:NGREQ "Enter service to dial" 
IF RC -= 0 THEN 

DO 

SAY "Operation aborted" 
EXI'l' 
END 

service = OPPER(REStJLT) 

ARexx: Your Amiga's Built-in Turbocharger 



174 

I* Look it up in the phone book: *I 
IF -OPEN("InFile", "ncamn:My_Phone_Book") THEN 

00 

SAY "Can't open phone-book" 
EXIT 
END 

success = 0 
done = 0 

00 WHILE -done 

book_line = READLN("InFile") 

IF UPPER(WORD(book_line, 1)) =service THEN 
00 

done = 1 
success = 1 
END 

CLOSE ( "InFile") 

Section D 

/* Exit if we could not find it in the phone book: */ 
IF -success THEN 

00 

SAY "Can't find info:i::mation for" service "in., 
phcmebook • n 

EXIT 
END 

/* Strip phone mmiher and ccmnands f:ran phone book: */ 
phone_number = WORD(book_line, 2) 
cmrmandl = WORD(book_line, 3) 
c0llll1!8Jld2 = WORD(book_line, 4) 
cammand3 = WORD(book_line, 5) 

ARexx: Your Amiga's Built-in Turbocharger 



Using ARexx with Applications 

/* Now dial the service: */ 
DI:ALHUMBER 0 081 390 1255° 

IF cammandl -= 0 - 0 THEN ProcessCommand(cammandl) 
IF cammand.2 -= 0 - 0 THEN ProcessCommanCl.(cammand2) 
IF cammand.3 -= 0 - 0 THEN ProcessCammand(cammand3) 

175 

/* Operation complete, shaw a si.DQ;>le requester to say 
so: */ 
SIMPLEREQ "Connected" 

/* A function to wait for a given message to arrive 
from the modem and respond with a set command: */ 

ProcessCommand: PROCEDURE 

PARSE ARG command 

offset= DmEX(cammand, "I"> 

wait_string = LEFT(cammand, offset - 1) 
respcmd._string = RJ:GHT(CO!lllD!U>d, LENG'l'.H(command) _.., 
offset) 11 °\n" 

WAIT wait_string 
SEND respond_string 

RETURN 0 

Word Processing and Te.xt Editing 
Wordprocessing can also involve repetitive tasks like 
reformatting documents or making simple changes. Again, 
an ARexx script can help, not only to perform simple 
operations, like counting the number of occurrences of a list 
of words, but you can add new features to a product. 

ARexx: Your Amiga's Built-in Turbocharger 



176 Section D 

It would be possible, for example, to write an ARexx 
program which generated real indexes for documents. It 
would be easy to add an index generator for CygnusED. All 
you would have to do is write a program in ARexx which 
searched a document for the word you wish to put in the 
index, note which page(s) it appeared on, and generate a 
suitable output file. If you were really smart, you could 
allow a list of words to be specified and automatically sort 
the index into alphabetical order, creating an output which 
might look like this: 

apples o••••"°"'"''••••••••••'''',.,.,,,,~,;,;.~~;., •• ;h,,,-,,,,,,,,,.,,_,,,,, .. ,.,,,,,,,,,.,,,,.,,,,.,, 2, ,3,, a 
orang~s ............................... ,. ... "~t.;o,:.-,'... ...... ,,.~ •.•• , ••.•• , .. .,, ... , ••• l, 3-1. 100~ 2QO 
pears ...................... ,.,, ••• ., .... -.~:•.,~:;~.-•• " .• "~•,..;• ........... ,.,. ................ 4, 45-60-

For wordprocessing and text applications in particular, the 
uses of ARexx are highlighted. It is easy to cobble together 
programs which will perform a number of complex 
operations in the blink of an eye. Files can be manipulated 
in many ways, they can be chopped into sections, searched, 
organised, updated, reformatted ... the list goes on. 

Multimedia 
This is a common buzzword these days and something the 
Amiga is particularly good at - the processing of 
audio/visual information from interactive experiences to 
complex presentations. Amiga programs such as 
Amiga Vision and Scala both support ARexx and it is 
possible to control both of these applications - creating 
visual presentations which can be changed entirely with a 
couple of tweaks to an ARexx program. 

ARexx: Your Amiga's Built-in Turbocharger 



177 

Section E 
Reference Section 

ARexx: Your Amiga's Built-in Turbocharger 



178 Section E 

This section contains reference information about ARexx 
and starts with the basic specification and features of the 

ARexx language before moving on to the ARexx keywords 
reference. Each keyword in the ARexx language is 
discussed and there is an example of its use. Further, more
detailed examples can be found in Section B. The function 
reference which follows lists all the built-in functions 
provided for the programmer and those present in the 
rexxsupport.library function library, and also mentions a 
few other external function libraries. Finally, there is a 
description of all the utility commands that are supplied 
with ARexx in the RexxC drawer. 

Language Specification 

ARexx is the Amiga version of REXX, an interpreted 
language written by Mike Cowlishaw of IBM and designed 
to be easy to learn and use, yet both powerful and flexible. 
The Amiga port was done by William Hawes in 1987. The 
basic features of ARexx are as follows: 

Interpreted language 
Although slower than compiled languages such as "C", an 
interpreted language has the advantage that you do not 
need to compile a program in order to run it and, because 
the interpreter is always resident, you can create and run 
programs from programs. For more on the advantages of 
interpreted languages, see the "interpret" command later in 
this reference section and in Section B. 

Typeless data 
Most high-level computer languages require that you state 
what type a variable is before you use it; that is, tell the 
language what sort of data you will be storing there, like 
floating point numbers, strings or integer numbers. ARexx 
sorts all this out for you when you use the variables. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Language specifications 179 

Resource tracking 
This is a powerful feature. In the case of ARexx, the 
interpreter tracks all the resources your program uses and 
ensures that they are released for you at the end, even if you 
don't remember to release them. It cannot, however, track 
non-ARexx resources, so if you were to allocate memory for 
your program using a system library call, ARexx would not 
be able to free it for you. Resource management of this sort 
ensures that unnecessary memory allocations are freed. 

l'racing, trapping and de•ugging features 
ARexx comes with built-in debugging features that allow 
the programmer to see and control the execution of a 
program step by step. This helps to reduce development 
time considerably. See Section B for further debugging 
information, and also the ''Utility commands reference" 
later in this section. 

Function li•raries 
This allows external programs to add to the functionality of 
ARexx, by providing additional functions for a program to 
use. This is one of the key features of ARexx. See Section C 
for further information on ARexx's ability to talk to other 
applications, and the discussion of Functions in section B. 

ARexx: Your Amiga's Built-in Turbocharger 



180 Section E 

ARexx Keywords Reference 

There are 30 keywords in the ARexx language. This 
reference section details each of these in alphabetical order, 
together with its correct syntax, a discussion about its use 
and one or more examples. Here are the conventions used 
for describing the syntax: 

All keywords are shown in upper case, all information to be 
supplied to the keyword is shown in lower case. 

(vertical bar) alternative selections are separated by this. 

II (braces) required alternatives are enclosed by braces. 

[] (square brackets) used to separate optional instruction parts. 

To retain continuity, these syntax conventions are the same 
as those used by Commodore in their documentation. The 
best example of this convention in use is shown by the 
CALL keyword: 

CALL {symbol I string} [expression] [,expression, ... ] 

This shows that first a symbol or string is required, then 
several optional expressions can also be provided. 

ADDRESS 
Syntax: 

ADDRESS [[symbol I string] I [VALUE] [expression] 

Specifies the host address for commands, which are not 
ARexx keywords, to be sent to. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 181 

ADDRESS 
host */ 

This is a flexible command which can be used to change the 
host address. ARexx remembers two hosts, the current one 
and the previous one. Issuing ADDRESS on its own swaps 
between the two. This is useful when you change host for a 
few commands and then wish to revert to the previous one. 

You can also specify the name of the host address you wish 
to change to. It's important to remember that these are case 
sensitive, and that if you do not put quotes around them 
then ARexx will convert to upper case, which may not be 
the desired result. 

If the VALUE keyword is present, then the result of the 
expression decides the host address that will be selected. If 
the first part of the expression is neither a symbol nor a 
string, the VALUE keyword can be omitted. It's best to put 
this keyword in when it is intended, just in case. For 
example: 

/* 'l'oggles between current and previous ., 

ADDRESS Lucy_OLR /* Selects host 0 LUCY_OLR0 */ 
ADDRESS "Lucy_OLR" /* Selects host "Lucy_OLR" *I 
ADDRESS VALOE variable_name /* Selects host to ., 
the contents of variable_name */ 

ARG 
Syntax: 

ARG [template] [,template ••• ] 

Gets argument strings for the program and assigns them to 
the variables specified in the template. 

ARexx: Your Amiga's Built-in Turbocharger 



182 Section E 

This command is a shorthand form of "PARSE UPPER 
ARG". It is used to recall arguments which were specified 
when running the script and to place them into variables. 
ARG returns upper case letters. When the program is 
invoked as a command there is only one argument string, 
but programs run as a function can have up to 15. (See 
PARSE for further information.) For example: 

/* Arg test */ 
ARG first, next 
SAY II Argumentl: "first n Argument2 : "next 

This produces the result: 

7.Systern3.1:> rx arg fred john 
Argumentl:FRED JOHN Argument2 

Since this example was run as a command, there is just the 
one argument string so both specified arguments went to 
the variable "first" and nothing was put in "next". We could 
now, of course, split this single argument up into 
component parts using a small program. 

BREAK 
Syntax: 

Exit from a DO instruction or from within an INTERPRET' d 
string. 

BREAK is used to allow you to exit prematurely from a DO 
loop. This can be quite handy. It only BREAKs from one DO 
loop, so if you are within several DO loops, you'll only exit 
from the current one. For example: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 

I* Break example */ 
00 loop = 1 TO 10 

IF loop = 3 THEN BREAK 
SAY loop 

END 
This produces the result: 

7.Systern3.l:> rx break 
1 
2 

183 

The IF causes the loop to terminate when the variable "loop" 
reaches 3, and before the SAY keyword gets to show it. 

CA11 
Syntax: 

CALL {symbol I string} [expression] [,expression ... ] 

Call an internal or external function with optional 
arguments. 

Any result from a function called using "CALL" is placed in 
the special RESULT variable. This can then be optionally 
interrogated by the program to see what happened. Not 
getting a result is not treated as an error because some 
functions perform actions without returning results. The 
expressions are evaluated and become the arguments to the 
function. For example: 

/* Call example */ 
CALL ADDRESS {) 
SAY RESULT 

test = ADDRESS{) 
SAY test 

ARexx: Your Amiga's Built-in Turbocharger 



184 Section E 

This produces the following: 

Systern3.l:> rx call 
REXX 

REXX 

DO 

Note that in this case, the function called does return a 
result and, as shown, the CALL example. CALL is not 
actually required to use the function. 

Syntax: 

00 [ [variable=expression] I [expression] [TO 
expression] [BY expression]] [FOR expression] [FOREVER] 
[WHILE expression I UNTIL expression] 

Marks the start of a group of statements to be executed as a 
block. This group is ended using the END keyword. 

DO is a flexible way of looping in ARexx. There are several 
kinds of loops which can be executed from a DO keyword. 
The simplest is a DO FOREVER loop in which execution of 
the loop continues forever, or until a BREAK keyword is 
issued to exit from the loop. There are several other simple 
ways in which DO can be used apart from DO FOREVER. 
For instance, DO UNTIL loops continue until the specified 
expression becomes true, and DO WHILE loops continue 
while the expression is true. 

You can also specify the start and end points of a loop and 
the increment by which the loop increases. This is the "DO 
variable = expression TO expression [BY expression]" type 
of loop. Using DO by itself, followed by a group of 
statements and an END, means that that group will be 
executed only once. This is usual with IF statements so that 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 185 

a whole load of statements can be executed rather than just 
one. See IF for an explanation. For example: 

/* Do examples */ 

/* Loop WHILE loop is smaller than 12, printing 12x 
tables as we go *I 
loop = 1 
DO WHILE loop < 13 

SAY loop "x 12 = " loop*12 
loop = loop + 4 
END 

/* Loop from 1 to 12 in steps of 4, with some 12x 
tables too */ 
DO loop = 1 TO 12 BY 4 

SAY loop "x 12 = " loop*12 
END 

Both of the above DO loops achieve the same result, using 
slightly different methods. The different DO loops can be 
used for different purposes, in this case since we have fixed 
start, end and increment values, the second version is far 
better. The results of the above script is as follows: 

7.System3.1:> rx do 
1 x 12 12 
5 x 12 60 
9 x 12 108 
1 x 12 = 12 
5 x 12 60 
9 x 12 108 

ARexx: Your Amiga's Built-in Turbocharger 



186 Section E 

DROP 
Syntax: 

DROP variable [variable . .. ] 

This tells your program to forget about the values in the 
named variables. 

DROP allows you to reset one or more variables to their 
uninitialised (empty) states, which is the name of the 
variable itself. If you DROP a variable which does not exist, 
an error will not occur. For example: 

/* Drop example */ 
a = "Lobster" 
b = "Thennidore" 

DROP b 
SAY ab 

The results of this script are as follows: 

7.System3.1:> rx drop 
Lobster B 

/ECHO 

We DROP'd the B variable, which reset it to its own name, 
in upper case. 

Syntax: 

ECHO [expression] 

ECHO is the same as the SAY keyword. See SAY for further 
information and an example. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 187 

IE'SE 
Syntax: 

ELSE [;] [conditional statement] 

Provides the alternative condition for an IF statement. 

ELSE is only valid from within an IF structure. IF allows 
you to make a statement happen if an expression is 
evaluated to TRUE. By using the ELSE instruction you can 
also make a statement happen if the expression did not 
evaluate to TRUE. The ELSE is only relevant to the nearest 
previous IF statement. For example: 

I* IF exanv;>le */ 
PULL age 
IF age > 30 THEN SAY "You're old" 

ELSE SAY "You're young" 

Running this script twice with the ages 20 and 40 specified 
produces the results: 

7.System3.1:> rx if 
20 
You're young 
7.System3.l:> rx if 
40 
You're old 

END 
Syntax: 

END [variable] 

Terminates a group of statements started with a DO 
instruction. 

ARexx: Your Amiga's Built-in Turbocharger 



188 

EX If 

Section E 

See DO for examples. If the optional variable part is 
specified then the END refers to the DO loop using that 
variable as a counter, of the type "DO i=l TO 10 ... ". It's not 
normally necessary to specify a variable name. 

Syntax: 

EXIT [expression] 

Terminates the execution of a program. 

When the EXIT instruction is found the program ends 
immediately and the optional expression is passed back to 
the caller of the program as a result. In the case of a script 
run from the shell this will be a return code or, if the 
program was called as a function, a secondary result -
normally used to specify an error. For example: 

EXIT 20 
EXIT 

IF 
Syntax: 

IF expression [THEN] [;] [conditional statement] 

If the supplied expression evaluates to TRUE the 
conditional statement is executed. 

IF is a key decision-making instruction in ARexx. By using 
the ELSE instruction you are also able to execute an 
instruction if the expression evaluated to FALSE (see ELSE). 
Only one conditional statement is allowed but ,by using a 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 

DO END structure, you are able to execute a group of 
statements. For example: 

I* IF exan;;>le */ 
PULL age 
IF age > 30 THEN 00 

SAY 0 You •re old" 
SAY 0 Well, not THAT old. 0 

END 
ELSE SAY "You're young" 

Which produces the results: 

7.System3.1:> rx if 
40 
You're old 
Well, not THAT old. 
7.System3.1:> rx if 
10 
You're young 

189 

Note the use of the DO END structure to allow us to execute 
more than one statement after the THEN part of our IF. 

INf/ERPR/Ef 
Syntax: 

INTERPRET expression 

Treats the expression as though it was actual ARexx 
program source. The expression is first evaluated and then 
executed. The source can be an entire separate ARexx script 
if you want. A BREAK statement can be used to terminate 
the INTERPRET' d statements and return control to the main 
program. The only limitation is that you cannot define 
labels within the interpreted source. Although ARexx won't 

ARexx: Your Amiga's Built-in Turbocharger 



190 Section E 

object to this, only labels in the main program are looked at 
if you attempt to go to one using SIGNAL, for example. If 
your INTERPRET' d source has more than one statement in 
it, you can separate them using the ; (semi-colon) 

INTERPRET is an extremely powerful instruction and one 
which is found almost only in ARexx. It is one of the 
benefits gained from ARexx being an interpreted rather 
than a compiled language in that, at all times, the 
interpreter has to be present when running ARexx, so 
INTERPRET can easily work by treating its parameters as 
an extension to the source itself. You can write ARexx 
programs which write their own small sub-programs and 
run them themselves. On the surface this might not appear 
to be that useful, but you'll encounter a number of 
applications where this can be put to good use. In Section B 
we saw two examples used, one to show how an advanced 
calculator program can be constructed using only a few 
lines of ARexx; plus the extremely handy ARexx shell, 
where you can just type in ARexx statements and see the 
results immediately - very good for testing things, 
controlling host applications and viewing results quickly. 
For example: 

/* INTERPRET example *I 
PARSE PULL instruction 
INTERPRET instruction 

If this script is run, you can type any valid ARexx statement 
in and view the result of it's execution immediately. 

ll'ERAl'E 
Syntax: 

:ITERATE [variable] 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 191 

Terminates the current iteration of a DO statement and 
begins the next. 

This is a useful instruction. If you are in a long DO .. END 
statement block and, near the beginning, you have a check 
which requires you to skip that loop and proceed to the 
next, you would normally have to build complex IF blocks 
to do the job. The ITERATE instruction effectively skips all 
following instructions to the END associated with the 
current DO loop and goes straight to it. If there are more 
loops to do, they will then be continued as normal. The 
optional variable parameter is used to specify directly 
which DO range is to be left. This is particularly important 
if there are a number of nested DO .. END loops and you 
wish to state which DO is to be affected. 

Errors occur if the variable did not match a currently valid 
DO .. END block, or if the program is not currently within a 
DO statement block. For example: 

I* ITERATE example */ 

SAY "We don't like odd numbers" 
00 loop = 1 TO 20 

/* Skip the number 10 always */ 
IF loop = 10 THEN ITERATE 

/* We divide our counter by 2 and if the remainder is 
greater than 0 then it must be an odd number, so 
ITERATE */ 

IF (loop // 2 > 0) THEN ITERATE 

/* If it's odd we won't get here */ 
SAY loop 
END 

ARexx: Your Amiga's Built-in Turbocharger 



192 

£/EAVE 

Section E 

In the above example we use the remainder operator to 
decide if the loop counter is odd or even, and then call 
ITERATE if it is odd, thus getting a list of even numbers 
only, except the number 10 - which is also skipped. 

Syntax: 

LEAVE [variable] 

Exits the current DO .. END statement block immediately. 

This works a little like the ITERATE instruction except that 
it terminates the current DO .. END statement block without 
proceeding with any additional iterations. The optional 
variable can be used to specify which DO .. END block is 
affected by the command. This can be useful for exiting 
from a particular range from within a nested group of DOs. 

Errors occur if the variable did not match a currently valid 
00 .. END block, or if the program is not currently within a 
DO statement block. For example: 

I* LEAVE example */ 

DO FOREVER 

/* Get a number from the user */ 
SAY "Enter a number, or 99 to exit" 
PULL number 

/* If it's 99 leave this DO block immediately */ 
IF number = 99 THEN LEAVE 

SAY "Well done, you entered "number 
END 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 

/* We got here, user mu.st have typed 99 */ 
SAY "Goodbye! II 

NOP 
Syntax: 

NOP 

No Operation. Instruction does nothing. 

193 

The NOP instruction has only one useful application - for 
dealing with the confusion of ELSE statement in compound 
IF statements. If you have more than one IF from within an 
IF, then specifying an ELSE clause could easily become 
confused with the wrong IF block. For example: 

/* NOP */ 

SAY "Enter a number from 1 to 20° 
PULL number 

IF number > 10 THEN 

IF number = 12 THEN SAY "It was a twelve" 
ELSE NOP 

/* Ensure the next else does not get confused with this 
if statement */ 

/* This else now talks to the first IF */ 
ELSE SAY "It was smaller or equal to 10 but not the 

magic number! 11 

If you miss out the NOP statement in the above example, 
the message saying whether the number entered was less 
than or equal to 10 will never be shown. 

ARexx: Your Amiga's Built-in Turbocharger 



194 Section E 

NUMERIC 
Syntax: 

NUMERIC {DIGITS I FUZZ} expression 
NUMERIC FORM {SCIENTIFIC I ENGINEERING} 

Sets options relating to the way in which ARexx deals with 
numeric precision and format. 

It is often necessary to change the way in which numbers 
are dealt with in ARexx, particularly if you are dealing with 
floating point values. The NUMERIC statement is a flexible 
way of telling ARexx how to look at numbers. 

The DIGITS and FUZZ options are concerned with the 
numeric precision and accuracy of internal calculations. You 
can use DIGITS to specify how many numbers of precision 
are used with arithmetic calculations, and FUZZ can be used 
to say how many digits are ignored in numeric comparisons. 
When dealing with extremely small differences between 
numbers, it's often useful to be able to make small 
differences count as the same in a comparison operation. The 
FUZZ setting must be less than the current DIGITS setting, 
and in both cases the expression which gives both values 
should evaluate to a positive whole number. The default for 
DIGITS is 10, and the maximum is 14. 

The two FORM options are concerned with numbers which 
will require exponential notation to be expressed, and tell 
ARexx which format to use - either engineering or scientific. 
In scientific notation the exponent is adjusted so that the 
mantissa (the bit to the right of the decimal point) for non
zero numbers is between 1and10, whereas in engineering 
notation, the number is normalised so that its exponent is a 
multiple of 3 and the mantissa, if non-zero, is between 1 and 
1,000. SCIENTIFIC is the default. For example: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 

I* NUMERIC exa:n;>le */ 

NUMERIC DIGITS 3 
NUMERIC FORM ENGINEERING 

/* Enter a number */ 
SAY "Enter a number: 0 

PULL number 

195 

/* This forces the above to be converted to a number so 
that the NUMERIC statement's effects occur */ 

number = number + O; 

SAY "That number, through the current NUMERIC settings 
is" number 

You can change the NUMERIC settings at the start of the 
example to show the effect of other options when dealing 
with the resultant number format and precision. 

OPTIONS 
Syntax: 

OPTIONS [FAILAT expression] 
OPTIONS [PROMPT expression] 
OPTIONS [ [NO] RESULTS] 
OPTIONS [ [NO] CACHE] 

Sets a number of internal options relating to the way in 
which scripts are executed. 

There are a number of options dealing with the way in 
which your programs are run. The OPTIONS statement 
allows you to change these values. Using OPTIONS by itself 
will restore all the options to their default values, which are; 

ARexx: Your Amiga's Built-in Turbocharger 



196 Section E 

CACHE ON; NO RESULTS; FAILAT, the script caller's 
"failat" value (normally 10); and PROMPT '"' (empty string). 

The CACHE option is used to switch the internal instruction 
caching system to either on or off. This defaults to ON and 
there is no real reason why you should wish to change this. 
ARexx caches instructions to speed up program execution 
and, since it keeps the previous few instructions executed in 
memory, cacheing means loops can execute very quickly. 

Often when you call an external program to perform a 
function you will expect a result back. By default ARexx 
does not ask for results from external programs. If you wish 
to get information back you have to switch RESULTS on by 
using the statement OPTIONS RESULTS. When you are 
writing scripts to control other applications, it is common 
for the only bug to be the fact that you have omitted to 
switch RESULTS on and none of the functions are returning 
any information. External function hosts can still return an 
error code in the RC variable. See Section C for further 
examples of RESULTS and the RC return code. 

The PROMPT expression is evaluated and assigned to the 
text prompt shown before a PARSE PULL response is 
required. Normally this is set to a blank and you get no 
prompt for entering information. For example: 

I* OPTIONS example */ 

OPTIONS PROMPT "Well? Eh?>" 
PARSE PULL string 
SAY "You said" string 

/* SWitch results on before calling something */ 
OPTIONS RESULTS 
ADDRESS "ProWrite" 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 197 

ScreenToFront 
StyleBold 
Type "This is in Bold (but only if you have ProWrite 
running!) II 

OTHERWISE 
Syntax: 

OTHERWISE [;] [conditional statement] 

Can only be used in connection with a SELECT statement, 
and its conditional statement is run only if none of the 
WHEN statements were executed. 

When using a SELECT statement you can deal with a 
number of options with WHENs. Often, however, it is 
necessary to be able to deal with the default case, which 
happens if none of the WHENs succeeded. OTHERWISE 
allows you to do this. It can only be used from within a 
SELECT block. Although it is not necessary to have an 
OTHERWISE in your SELECT /WHENs, if you don't have 
one and none of your WHENs are executed, ARexx will 
generate an error. For example: 

I* OTHERWJ:SE example *I 

SAY "Enter a number" 
PULL number 

SELECT 
WHEN number< 10 THEN' SAY "Smaller than 10!" 
WHEN number> 50 THEN' SAY "Greater than 50!" 
OTHERWISE SAY "Something between 10 and 50° 
END 

ARexx: Your Amiga's Built-in Turbocharger 



198 Section E 

PARSIE 
Syntax: 

PARSE [UPPER] inputsource [template] [,template ••• ] 

ARG 

Extract one or more sub-strings from a string defined in the 
input source and assign them to named variables as defined 
in the optional templates. 

PARSE is a very complex instruction. For a full discussion 
on how it works see "The PARSE statement" in Section B. 
PARSE allows you to take a string and split it into a number 
of sub-strings using a template to define how they are 
divided. As well as splitting your own string variables, 
PARSE has a number of different options for the input 
source to define where the main string comes from. The 
optional UPPER keyword before the input source makes 
ARexx convert the entire source string to upper case 
characters before applying any template options to it. The 
templates can be omitted if the only intention is to create a 
single string from the input source. 

TABLE OF \'J\LID INPllf SOUR,CES 

The input string comes from arguments supplied to 
the ARexx program when it was>initially executed. 
(See the AR.GO internal function for further methods 
of extracting program arguments) 

EXTERNAL Works like thePULL.Qption but, instead of the input 
coming from the current input source (normally the 
shell window.from which the script was run), it comes 
from the SlQERH input stream ...,.. if itis defined. If you 
open a glohaltracing window using the TCO utility, 
this will be treated as STDERR. All input that comes 
through the STDERR method does not affect any 
data which has been PUSH'd or QUEUE'd (see the 

ARexx: Your Amiga's Built-in Turbocharger 



Reference Section 199 

descriptions of these two instructions). This is 
particularly useful for inputting dE!bugging 
information. You can openyourown STDERR console 
window using the ARexx OPENO,function. Here is an 
example: ·· 

/* PARSE EXTERNAL example *I 
CALL OPEN'("S'rDERR", 0 CON:0/60/640/100/8T.DERR Window!") 
SAY "Enter a. number" 
PARSE EX'l'EBNAL.number 
SAY number 
CLOSE ("S'l'DERll"} 

NUMERIC 

PULL 

SOURCE 

This will open a new win9ow called "STDERR 
Window!" and will get the inputefrom there instead of 
the main shell window. A prompt is given for strings 
inputted using EXTERNAL as defined by OPTIONS 
PROMPT. 

The input string is made up oLthe current values for 
DIGITS, FUZZ and FORM, in that order, each 
separated with a single space. 

The input string comes from the input console, which 
is normally the shell window from which the script 
was run .. This is the primary method of inputting 
information from the keyboareLinto ARexx programs 
(see the "PULL" keyword). A.prompt is given for 
strings inputted using PULL as defined by OPTIONS 
PROMPT. (The default promptis blank,) 

Gets information about the script (including how it 
was invoked), whether a result is expected or not, 
whether the program was run as a function or a 
program, what the program name is, and full filepath 
to the program name of the script The format of the 
result is: 

ARexx: Your Amiga's Built-in Turbocharger 



200 Section E 

<caamm I FfJNCTJ:ON} {O I 1} CALLED RESOLVED EXT BOST 

A res.ult might look likE! this: 
,. ', . 

COMMAND 0 shell D$1'Ellopment :ARexx/shell. rexx REX'&: REXX 

VALUE expression 

We are first told that this was evoked as. a 
COMMAND rather than a function, and the 0 means 
that no result is expected from us. We were called as 
a program name of "shell" and the next string is the 
full file path to the program. Finally we have the 
current file extension used for searching for ARexx 
scripts (normally REXX because ARexx programs use 
the extension .rexx), and the initial host address for 
corTlrnands (in this case the REXX host). 

WITH template The input string comes from the evaluated 
expression. The WITH is necessary to separate the 
expression from the template. It is possible to PARSE 
the result of the expression multiple times using 
more than one template, although it is only evaluated 
once. 

VAR 

VERSION 

ThEtinput string comesfrom a variable. Be warned 
that if multiple templates are used then each one will 
use the current value for variable - so if the first 
template affects it then any following templates will 
use the updated result of the variable. 

Gets information on the machine configuration on 
which the script was run. The format of the resultant 
input string before going through optional templates 
is: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 201 

This might result in a string like this: 

I* PARSE VERSION example */ 
PARSE VERSION a_version 
SAY a~version 

ARexx Vl.15 68030 68881 PAL SOHZ 

The information supplied is: the version of the ARexx 
interpreter itself; the microprocessor currently in 
use; the name of the floating point unit in use (or 
NONE); the video type, PAL or NTSC; and the clock 
frequency of the current system, usually either 50 or 
60Hz. 

Don't be alarmed if ARexx reports your 68882 maths 
co-processor as a 68881, this is because ARexx 
1.15 (the current version) cannot differentiate 
between the two. With··· some modem processor · 
combinations it.· can gvess •.the processor type 
incorrectly as well. Future versions may fix these 
problems. 

A template is made up of a selection of target 
variables and markers. Markers define the starting 
position for each of the targets. Markers can either 
be absolute, relative or pattern-based. Absolute 
markers .. are ~xed µositions for. a target set by the 
number of characters from the start of the input 
string. Absolvte markers are prefixed by an = 
operator. The = is optional if the absolute marker is 
not a variable but a fixed value. By prefixing an 
absolute marker value with a + or a - sign instead of 
an =, it becomes a relative marker and specifies a 
positive or negative offset from the current marker 
position specified in characters. A pattern marker is 
an actual string, is enclosed in quotes, and is 

ARexx: Your Amiga's Built-in Turbocharger 



202 Section E 

matched in tbe input string to determine where the 
target comes from. All markers can be either fixed 
symbols, such as ~4fi" or "HELLO" or variables. For 
pattern markers, the variable name must be enclosed 
in Os (round brackets). If multiple templates are 
specified, they are separated with commas. For 
example: · 

/*;PARSI: TEIDQ;)late~f exsmpjit .1 
stt'inQ' = 11Hm.t.o wmtt.1>" ··• ·~· ... 

offsetl = "LO" 
/* A pa.ttez:n marker *I 
off set2 = 2 
/* AD. absolute marker */ 

I* ·0u.r string is divided u,p using the tenv;>late 
specified. 'l'bree ta:r:gets are used., two which we shall 
pick using the above markers, while aJJ,Ything remaining 

gets thrown into the variable "rest" which we will be 
ignoring */ 
PUSB VAR strinq (offsetl) re8'1lt1 =offset2 result2 
rest 
/*.Note the use of the ~dec~$J character OA 
~erted, which is . t:he ~I: C!~ for .L.Dil!iFEl!iD a:a.d pu.ts 
our results on. ~te ~iDes .for us (see "Advanced 
Prc>granani ng" in Section :8) *I . 
SAY resultl 0 0a"!!C result2 

I* P.ABSE example 2 */ 

I* Set the prompt for an;y P.ABSE PULL"s */ 
OP'r:tOHS PBOMP'l' "Enter a t:i.9 in the format BH:MM:SS>" 

I* System version */ 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 

PARSE 'VERSJ:-ON versicm_istri.ng 
SAY versi()#.c...s~:r:i.ng 

I* Details.about this script*/ 
PARSE SOlJBCE source_stri.ng 
SAY source--string 

203 

I* Fetch a time of day.and splilt itd.nto HB$ MINS and 
SECS using a template */ 
PARSE tJPPER. POLL string 
PARSE VAR string hours 0 : 0 miDs 0 : 0 secs 

I* Show the result */ 
SAY "Hours =" hours 0 Minutes = 0 :min.a 0 seconds = 0 

secs 

PROCIDURI 
Syntax: 

PROCEDURE [EXPOSE variable [variable ••• ]] 

Used to define an internal function as having a separate 
symbol table, thus avoiding variable collisions with the 
main program. 

Normally internal functions share the same variables as the 
program with which they were called. By using the 
PROCEDURE statement we cause that function to have its 
own variables created. These variables are totally separate 
from the caller's. Even if they happened to share the same 
name with the caller's variables, they would not affect each 
other. Variables defined in a PROCEDURE are therefore local 
variables. Under some circumstances it might be desirable for 
a function defined as a PROCEDURE to have access to some 

ARexx: Your Amiga's Built-in Turbocharger 



204 Section E 

global variables, defined by the caller. In this case EXPOSE is 
used. Any variables specified after an EXPOSE keyword are 
taken from the caller's variable table rather than being 
created as local variables. This provides an additional way of 
getting information in and out of a function. 

If a stem symbol is defined using EXPOSE, all compound 
symbols possible from that stem are exposed. 

Although the PROCEDURE statement is valid anywhere 
inside a function, it is normal to place it immediately after 
the function's label. You cannot use PROCEDURE other 
than inside an internal function and it is not valid more than 
once in any single function. For example: 

I* PROCEDURE exanq;,le */ 

/* OUr copy of input_value will remain untouched by the 
function because it will create a new local variable */ 
:input_value = 99 
SAY DivideByTwo(lO) 
SAY "Callers input_value is" input_value 

EXIT 

/* A simple function that takes one argument, divides it 
by two a:nd retw:ns the result *I 
DivideByTwo: PROCEDURE 

ARG :input_value 
RE'l'UlW' input_value/2 

PUii 
Syntax: 

PULL [ tenq;>late l [ , tenq;>late • .. l 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 205 

Reads a string from the standard input stream (STDIN) and 
assigns it to variables according to the template specified. 

This command is a shorthand version of "PARSE UPPER 
PULL". In its simplest form PARSE can be used to input a 
value from the console and assign it to a variable. By using 
templates it is possible to PARSE the string input in a 
number of ways (see PARSE for further information). All 
results given using PULL are in upper case. To get an 
accurate copy of the inputted string, including upper and 
lower case characters, use the longer PARSE PULL version 
instead. For example: 

I* PULL example */ 

OPTIONS PROMPT "Yes?" 
PULL string 
SAY "You entered "string 

PUSH 
Syntax: 

PUSH [expression] 

Evaluates the expression and pushes it into the input stream. 

PUSH works almost as the opposite of PULL. Instead of 
fetching data from the input stream (STDIN), it pushes data 
back in to be read by later accesses to STDIN - such as a 
PULL instruction. PUSH works like a stack in that the first 
line PUSH' d in is the last one PULL' d out. PUSH' d 
information acts as though it was entered by l:he user from 
the keyboard so it can be used to pre-enter strings to be read 
by ARexx or the shell window. For example: 

I* PUSH Example */ 

ARexx: Your Amiga's Built-in Turbocharger 



206 Section E 

PUSH 0 dir0 

PUSH "cd ram: 0 

PUSH 0 dir0 

PUSH "cd sys:" 

This shows that PUSH' d information can be read by anything 
which uses the standard input stream (STDIN) for input, 
such as the shell. Since strings are in a first-in-last-out stack, 
the last one we PUSH' d (cd sys:) will be the first to be run. 

PUSH does not work under Workbench 1.3 unless you have 
a special console handler. The authors of ARexx (Wishful 
Thinking Development Corp.) have an excellent shareware 
console manager called "ConMan". This should be available 
from all good PD software libraries and on large bulletin 
boards. Wishful Thinking's commercial shell replacement, 
called WShell, will allow you to use PUSH under 1.3. 

QUIUI 
Syntax: 

QUEUE [expression] 

Evaluates the expression and QUEUEs it into the input stream. 

QUEUE works almost the same way as PUSH except that 
the strings put back into the input stream are in a queue 
instead of a stack. This means that the first string QUEUE' d 
is the first one pulled back out again, when read from the 
standard input stream (STDIN). Strings QUEUE'd are 
indistinguishable from those entered interactively by the 
user from the keyboard and thus can be used to prepare 
lines to be read from ARexx using PULL, or from the shell. 
For example: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 

I* QUEUE Exaal>le */ 

QUEUE "This will be entered first n 

QUEUE "And this will be in the middle" 
QUEUE "And this last" 

PULL first 
PULL second 
PULL third 

SAY first 0 0a"xl !second 0 0a"xl ltbird 0 0a0 x 

207 

This shows QUEUE being used to prepare strings to be read 
from PULL statements. Note the use of hexadecimal ASCII 
codes to give new lines and the string concatenation operator 
"I I" to avoid spaces where we don't want them (see 
Advanced Programming in Section B for more information). 

Like PUSH, QUEUE does not work under Workbench 1.3 
unless you have a special console handler. The authors of 
ARexx (Wishful Thinking Development Corp.) have an 
excellent shareware console manager called "ConMan". 
This should be available from all good PD software libraries 
and on large bulletin boards. Wishful Thinking's 
commercial shell replacement, called WShell, will allow you 
to use QUEUE under 1.3. 

R/ITURN 
Syntax: 

RETURN [expression] 

Leaves the current function and RETURNs the evaluated 
expression to the function caller. 

ARexx: Your Amiga's Built-in Turbocharger 



208 Section E 

RETURN is used to exit from a function. If no RETURN 
value is supplied, the caller might object if he or she was 
expecting one. If RETURN is used from within the main 
body of a script and not in a function, it acts as if the EXIT 
statement was used and stops the script. A script can find 
out if a RETURN value is expected from it by using 
PARSE SOURCE. 

It is not possible to know whether the caller will make use 
of the value RETURN' d or not. For example: 

I* RETURN example */ 

SAY 'l'imeFunc (} 

I* Since we're now at the base level this next return 
will act like EXJ:'l' *I 
RE'l'URN 

SAY "This will never be run" 

/* Simple function to return the time of day. Returns 
the value RE'1'0BNED by the internal 'l'Dm function I *I 
'l'imeFunc: PROCEDUlm 

RETURN 'l'Dm ( "C"} 

SAY 
Syntax: 

SAY [expression] 

Evaluates the result and displays the output to the current 
output stream (STDIO) - normally the shell window. 

SAY is the primary way of showing output to the screen in 
ARexx. The string shown automatically has a new-line 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 209 

character appended to the end, so multiple SAYs will 
always happen on separate lines on the display. By inserting 
ASCII characters it is possible to do some basic string 
formatting, including moving the cursor around and 
inserting new lines in the middle of SAY' d results. Since a 
space anywhere is shown as a space on the screen, it is often 
useful to be able to concatenate two strings without any 
spaces. This can be done with the concatenation operator 
" I I ". For example: 

I* SAY exarrQ;>le *I 

Hello = "Howdy" 

SAY " Hello " 11 Hello 11 " Hello " Hello ., 
"Oa "x I I "On another line! " 

SIELIECI' 

SELECT 

Syntax: 

Starts a SELECT sequence, consisting of one or more WHEN 
conditional statements and optionally one OTHERWISE. 

SELECT is used to make multiple conditional checks and 
then act upon them. Each conditional check is done with a 
WHEN statement. If none of the conditions succeed the 
instructions following the OTHERWISE statement are 
executed. If no OTHERWISE is present, an error is 
generated. A SELECT sequence is terminated by an END 
statement. Only one of the WHENs, or the OTHERWISE 
conditional code will be executed. See both OTHERWISE 
and WHEN for further information. For example 

/* SELECT exarrQ;>le */ 

ARexx: Your Amiga's Built-in Turbocharger 



210 Section E 

SAY "Enter a number between 1 arJd 5° 
PULL number 

SELECT 

WHEN number = 1 'l'HEN' SAY "You entered 1° 
WHEN number = 2 THEN SAY "You entered 2° 
O'l'BElUa:SE SAY "You entered something other than 1 ., 

or 2° 
END 

SHE'' 
Syntax: 

SHELL [symbol I string] I [[VALUE] [expression] l 

Specify the host address for comm.ands which are not 
ARexx keywords. 

A direct equivalent to the ADDRESS instruction. See 
"ADDRESS" for a full description. 

SIGNA' 
Syntax: 

SJ:GNAL (ON I OFF) condition 
SJ:GNAL [VALUE] expression 

Controls the state of the internal interrupt flags, or transfers 
program control directly to a named label. 

SIGNAL is used to control the internal interrupt flags. 
When certain events occur, it is possible to cause an 
interrupt and to transfer program control to another place in 
the program for it to be dealt with. There are a number of 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 211 

these conditions and, when one occurs, ARexx jumps 
directly to a label with the same name as the interrupt itself 
- as long as you have switched that signal on using SIGNAL 
ON interrupt_name. SIGNAL can also be used as a 
unconditional transfer of control statement to jump directly 
to another position in the program. However, using it in this 
way is bad programming practice (see Section B for a 
discussion), but there are circumstances where it could be 
useful - such as recovering after an error. See the example. 

VALIDJNTERRUPT NAMES 

BREAK_C A. Controt..c sequence was detected in the STDIN 
stream. this is usually used to stop execution of a 
program scriptwith the messag~ "Execution Haltedn . 

BREAK_D 

BREAK_E 

BREAK_F 

. · ACohtrol-0 seqdenc~ wasdete~ted. 
c A Contro~E sequence was c;letecfed. 

A Contro~F sequence was detected. 

(BREAKs D,E and F differ from BREAK_C in that they do not default to 
anything; that is default produces no result unless YOl1 first switch them 
on and process therrLyourself.) · · ·· · 

ERROR 

HALT 

· A host command retumeda nol'Ftero·retum code. If 
FAILA T •is set tllis can· be used tjl .. trap:all errors up to 
but not including the FAILATthr~shol9.1t itis not set, 
theri this can be used to deal with all non-zero host 
command return values. The R(;~variable contains the 

.·. error code level. 

.···An external HALT request wasctjf!tected. This is 
useful . to prevent being · sbt¢.:doW(l by the utility 

>prqgram HI. Although this can ~~.~ed in this way it 
is best u.sed only to clean up 11eatly/and close any 

ARexx: Your Amiga's Built-in Turbocharger 



212 

IOERR 

Section E 

resources that you might have allocated before 
exiting. 

Traps errors from the lnpuVOutput system, such as 
attempting to write to a read-only device like a CD
ROM unit. After an IOERR, the RC variable contains an 
error number. 

NOVALUE Happens when an uninitialised . variable is used. 
Normally, ARexx . do.es not qbjecttQ uninitialised 
variables, . it Simply greates tfJ~rD qS YOU use them 
an~ . assigns to the vciriable th~ vati~blf:? name itself 
but in capit~l letters. This is p~tthe ca§e with many 
other computer language~·" Wher~> using an 
uo;initialised variable is. • ille~al>.Byx~.etting this 
interrupt, any attemptto· usea1l.uninitia)ised variable 

S¥NTAX 

will result irra trap. · · · 
_,________ ------c: 

-- - --

A> syntax •• 6r •· · execi:itloh .err<XF ·o/as. detected .. ·.· This 
in¢ludes maltormatton of PrngranrJii:ies, errors like 
11Unbalanced Parentheses", and execution errors like 
·running out of memory~ Afterth~interru11toccurs, RC 
contains the actual syntax errorrium®rWhich can be 
converted into a string using the'.bl.lllt fr) ERRORTEXTO 
function. · · 

To make any of the above interrupts work, they must be 
first switched on using SIGNAL ON interrupt_name, for 
example: SIGNAL ON NOV ALUE 

If the interrupt then occurs, program control will 
immediately be transferred to the label NOV ALUE:. The 
label name must be defined or a syntax error will occur. The 
label called when an interrupt occurs is the same as the 
interrupt name itself. After an interrupt the special variable 
SIGL contains the line number where the interrupt occurred. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 213 

Signals are particularly useful for trapping errors and 
dealing with them yourself. This can be very important in a 
large ARexx application when a sudden failure would look 
unprofessional and confuse the user. Often you may not 
necessarily want errors to be shown on the shell. If your 
ARexx script was talking to a text editor you might prefer to 
have the errors popping up in a window on the Editor's 
screen. SIGNAL can allow you to do this and customise the 
way you deal with the error. For example: 

/* Signal Example */ 

reset: 

S:CGNAL ON syntax 

hello= ((((1 + 2) 

EXIT 

I* Deal with Syntax Error */ 
syntax: 

SAY "A syntax error occurred. Error :CD" RC 0 , 0 

ERRORTEXT (RC) 
SAY "Type Y and press return to continue, ailiY' other 

key to halt program" 
PULL check 

I* Re-Starts program if we typed Y */ 
:CF UPPER(check) == "Y" THEN S:CGNAL reset 

EXIT 

This example sets up a signal to trap syntax errors. Straight 
after we switch on the interrupt, we cause an "Unbalanced 
Parentheses" syntax error. This is then trapped by our 
"syntax:" label, where we show the error number and 

ARexx: Your Amiga's Built-in Turbocharger 



214 

TRACE 

Section E 

description text before asking the user if they wish to re
start the program and try again, or exit. An unconditional 
branch then happens to the "reset" label at the start of the 
program. Of course, if you do type Y and re-start this 
example, the syntax error will simply re-occur. 

Syntax: 

TRACE [mode] I [ [VALUE] expression] I [num] 

Sets the trace mode. Tracing is a debugging facility where 
the interpreter allows you to see information about the way 
the program is progressing. ARexx also offers interactive 
tracing where you can single-step through the program and 
see what is going on as you work your way through. While 
interactive tracing is on, any further changes to the trace 
mode using the TRACE statement are ignored, although the 
built-in TRACE() function will still allow you to alter tracing 
mode (see Function reference). See Section B for a full 
description of tracing. 

~Y#.ILAS~~i;!('RAC~jWODE$··.·•.·· 
·,:; 

ALL AUClause~·~re traced 

BACKGROUND The prog~(fl runs v./itb no tracing information, and 
cannot ~,'·fJi>.Jced: into interactive tracing using the 
TS/TCO.¢~mmand~ utilities . 

. - - -- ·\ -~'--' - :_ - - - ·_: __ . ' 
. . 

COMMANDS Cornman<iJh6£auses are· .. traced .. Command clau~ .. are 
·clal;JSes ·ate· sent to an external host·.fOr 
~)(ecQti fle£~·.·r£~1tJm .. eo~t)s are.~isflllayed Qltif!re· 
:(;f~Jit$ll. . al,.£'~\llff -shell ~window $1'· the global. 
tt~ee--:CO ,_.,_-;o· 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 215 

ERRORS All commands that generate a non-zero return code 
are tracedaftetthe clause has been executed. 

INTERMEDIATES All clause~are traced and intermediate results are 
displayed during. the evaluation of expressions. This 
is a lot ofjoformation and generates a considerable 
quantity ~f trace inf.ormation. This data includes 

·values of variables. 

LABELS Only label clauses are traced. Labels are specific 
points in the program which control can be directly 
transferredto. They are traced after such a transfer 
takes place. 

NORMAL This is the default tracing mode, and nothing is 
traced unless an error occurs in which case the failed 
clause is shown with an error message. 

OFF Tracing is~switched off. 

RESULTS A very usefOlform ottracing. All clauses are traced 
before executiqn ary.d the final result of every 
expression is .. displayed. This is one of the best 
tracing op¢rations because it shows the values 
assigned to variables from PARSE and other such 
statements. 

SCAN All clauses are traced and checked for errors, but 
nothing ise)(:ecuted. This is a program dry-run facility. 

All of these can be abbreviated to one character. If the new 
tracing mode is preceded by a ? then it will toggle 
backwards and forwards to the interactive tracing mode. 
Note that with interactive tracing on, the TRACE statement 
will be ignored, so once on - it's on! 

ARexx: Your Amiga's Built-in Turbocharger 



216 Section E 

Interactive tracing allows you to make the program stop at 
certain points and provide a prompt so that control 
commands can be inputted. Pressing Return at this point 
will proceed to the next stop point, pressing"=" and then 
return re-executes the current statement. 

The TRACE statement also accepts a numeric parameter. 
This is useful when you are in interactive tracing and wish 
to suspend tracing for a period of time, or allow more than 
one instruction to pass before execution stops and waits for 
you to respond. If the numeric parameter, N, is positive it 
takes this to mean: "Continue tracing for N clauses before 
stopping again". If negative, it takes it to mean: ""Don't do 
any tracing for N clauses". 

While in interactive tracing mode it is possible to examine 
the contents of variables and execute program statements by 
simply typing them in. The command utilities TS, TE, TCO 
and TCC (see utility command reference below) are also 
related to the control of tracing programs and allow you to 
trace and stop "runaway" programs. 

WHEN 
Syntax: 

WHEN expression [THEN [;] [conditional statement]] 

Used like IF to execute conditional statements, but from 
within a SELECT..END structure. 

See SELECT for further information. WHEN behaves like an 
IF. The expression is evaluated and, if TRUE, the conditional 
statement is executed. You can execute more than one 
statement if the condition is true by enclosing them in a 
00 ... END. Once one of the WHEN statements has been 
successfully evaluated to TRUE and executed, control is 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Keywords 217 

passed directly to the instruction after the SELECTs matching 
END. Only one of the WHENs will ever be executed. If none 
evaluate to TRUE, ARexx looks for the OTHERWISE and 
executes any conditional statement there. For example: 

I* WHEN example */ 

SAY "Enter a number" 
PULL number 

SELECT 
WHEN number < 100 THEN SAY "Smaller than 100" 
WHEN number I I 2 THEN SAY 110dd11 

OTHERWJ:SE SAY "J: didn't catch that" 
END 

EXIT 

This demonstrates that only one of the WHENs is run. If 
you type in a number that is both less than 100 and odd - 17 
for example - you would expect both WHENs to be run. 
Only the first WHEN, for which the expression evaluates to 
TRUE, occurs. 

ARexx: Your Amiga's Built-in Turbocharger 



218 Section E 

Function Reference 

The function reference section describes the usage of all the 
built-in functions and the additional functions made 
available when using the rexxsupport.library. Section B has 
a full description of how to use functions, with plenty of 
examples, and also describes how to load additional 
support libraries. 

Built-in Functions 
ARexx has nearly 90 built-in functions which you can use to 
find, or process, information in some way or other. This 
reference lists them all in alphabetical order, together with 
an example of what the function does. Built-in functions are 
not case sensitive; they can be in lower or upper case 
characters. We use upper case here to help differentiate 
them from our own functions and variables used in this 
book. In addition to the function names themselves not 
being case sensitive, some functions have optional 
keywords to tell them how to behave. These are also case 
insensitive. Instead of full, working-program examples, 
only one instance of a function being used, and the result, 
are shown. In some cases, the examples are shown as if they 
had been typed into the ARexx shell (listed in "Advanced 
Programming Techniques" in Section B). In this case the 
command we typed in is shown along with the result given, 
on a separate line. For example: 

>SAY "Hello World!" 
Hello World 

For each function, the function name, the syntax, a 
description and finally an example are given. The syntax 
line clearly shows how the function might be used, with all 
of its parameters and what type of value is returned. As for 
the keyword reference, optional parameters are given in 
square brackets - "[" and "]". Valid return value types include: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 219 

Boolean 
string 
number 
result 

0 or 1, TRUE or FALSE. 
A string value is returned. 
Numerical value 
The result of the specified 
operation is returned. 

ABB•EV(J 
Syntax: 

Boolean= ABBREV(stringl, string2 [, length]) 

Returns a Boolean TRUE if string 2 is an abbreviation of 
string 1. The optional length parameter specifies how many 
characters long string 2 must be before the function will 
check it against string l. The default for length is 0 so, if you 
do not specify it, then a null string for string 2 would match 
as an abbreviation of string l. This function is particularly 
useful when you have a menu of options for the user to 
choose from and you want to allow abbreviations to be 
valid. For example: 

/* Abbrev example */ 

SAY "Menu:" 
SAY 0 HELLO Say hello" 
SAY 0 GOOI>Bm Say goodbye" 

PULL choice 

SELECT 
WHEN ABBREV("HELLO", choice, 2) THEN SAY "Hello" 
WHEN ABBREV( "GOODB!E", choice, 2) THEN SAY "Goodbye" 
OTHERWJ:SE SAY "unknown command 0 

END 

ARexx: Your Amiga's Built-in Turbocharger 



220 

EXIT 

A85(J 

Section E 

In this example we specify the optional length parameter, 
meaning that we have to enter at least two characters of the 
command before it can be recognised. 

Syntax: 

number = ABS (number) 

Returns the absolute value of the single argument. This 
function effectively strips off the minus sign if present and 
returns a positive value every time, for example: 

>SAY ABS(-1.234) 
1.234 
>SAY ABS(9876) 
9876 

ADDllB(J 
Syntax: 

Boolean = ADDLJ:B(name, priority [, offset, version]) 

Adds a function library or host to the current ARexx library 
list and makes it available to ARexx programs (see Section B 
for further information on function hosts, and the RXLIB 
command in "Utility Programs Reference" below). To use 
ADDLIB, several parameters must be specified. These are 
the name of the library itself, the priority that it will have in 
the search list and, optionally, an offset to the library's 
query point and a minimum version for the library. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 221 

Priorities can be from -100 to 100. 0 is the usual value. If you 
had two libraries which had functions with identical names, 
then you could specify which one would be used by giving 
that library a higher priority. 

If this function succeeds, it returns a Boolean TRUE. If the 
function fails, because the library did not have a new 
enough version number,or it could simply not be loaded or 
found, FALSE is returned. For example: 

/* Add the rexxsupport.library to the library list */ 
IF {ADDLIB{"rexxsupport.library", 0, -30, 0) = 0) THEN 

SAY "I could not add the rexxsupport library" 
ELSE 

SAY "Rexxsupport. library added" 

ADDRESS(J 
Syntax: 

string = ADDRESS{) 

This returns the name of the current host address, which is 
where host commands are sent. This can be particularly 
useful, because a program is able to find out which address 
is currently selected and is then able to return to that 
address after changing it. For example: 

I* ADDRESS{) example */ 

old_address = ADDRESS{) 
SAY "Old address = 0 old_address 

ADDRESS "ProWrite" 
SAY "Current address = " ADDRESS { ) 

/* In the ProWrite Word Processor, this sets the style 

ARexx: Your Amiga's Built-in Turbocharger 



222 Section E 

to bold */ 
StyleBold 

ADDRESS VALUE old_address 
SAY n And DOW, address = II ADDRESS () 

EXIT 

AR.G(J 

This example remembers the current address, then changes 
it, using the ADDRESS keyword, issues a host command, 
and then sets it back to the previous one. 

Syntax: 

result = ARG( [number][, "EXISTS" I "OMJ:'rl'ED"]) 

The ARG function can be used to find out information about 
the arguments supplied to the current function or script. It 
can be used in three basic forms: 

1 With no parameters at all. This will return the number of 
arguments present as a positive integer. 

2 With a single numeric parameter specified for "number". 
This will return that argument, if present. If it is not present, 
a null string is returned. 

3 With an argument number specified and either the EXISTS 
or OMITTED keyword. This allows you to find out the 
status of a particular argument. When used in this fashion, 
ARGO returns a Boolean result, depending on whether the 
named argument EXISTS or has been OMITTED. The 
keywords can be abbreviated and are not case sensitive. 

ExanQ;>les: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 223 

IF ARG{l, "OMITTED") THEN SAY "Arg1Dnent 1 was omitted" 
SAY ARG{2) 
/* Shows the 2nd argument on the screen */ 
SAY ARG{) 
/* Shows the total number of arguments present. */ 

82ClJ 
Syntax: 

result = B2C{string) 

Converts a binary string to characters. Spaces are permitted 
in the string of binary digits only at byte boundaries to 
make it easier to read. For example: 

>SAY B2C{"1000010") 
B 

BlfANDlJ 
Syntax: 

result= BITAND{stringl, string2 [,pad]) 

Logical ANDs string 1 and string2 (see end of Section B for 
more information on logical operations such as AND). The 
optional pad character is used to pad the shorter of the two 
strings up to the length of the longer one. If no pad 
character is provided, the OR operation terminates at the 
end of the smallest string and the remainder of the longer 
one is appended to the result. For example: 

>SAY C2X{BITAND{"123456°x, 0 ff00°x, "ff"x)) 
120056 
>SAY C2X{BITAND{"123456"x, "f0f0f0°x)) 
103050 

ARexx: Your Amiga's Built-in Turbocharger 



224 Section E 

811'CHG(J 
Syntax: 

result = BITCHG(string, bit) 

Changes the state of the specified bit in string. If it was a 
binary 0 then it becomes 1 and vice versa. Bit 0 is the least 
significant bit, the one on the far right of the first argument. 
For example: 

>SAY BITCHG("01100001°b,5) 
A 
>SAY BITCHG("a", 5) 
A 

811'C1R(J 
Syntax: 

result = BITCLR(string, bit) 

Clears the specified bit in string. Bit 0 is the least significant 
bit, the one on the far right of the first argument. For 
example, this clears bit 0, the bit on the far right, turning the 
supplied binary number from 67 to 66. It produces the result 
"B" on the screen, the ASCII character 66: 

>SAY BITCLR( 11 01000011 11b,O) 
B 

For another example see the BITSET() function example below. 

811'COMP(J 
Syntax: 

result= BITCOMP(stringl, string2 [,pad]) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 225 

Does a bit comparison of the two arguments, starting at bit 0 
(the bit at the far right of the number and the least 
significant). The returned value is the bit number at which 
the two strings first differed, or -1 if they were identical. The 
optional pad character is used to pad the smaller string to 
the same length as the larger one. If no pad character is 
provided, the default is a space. For example: 

>SAY BITCOMP( 11 89123456 11x, "123456°x, 11 99 11x) 
28 
>SAY BITCOMP( 0 123456°x, 0 3456°x) 
17 
>SAY BITCOMP(" 3456 11x, 11 3456 11x) 
-1 

81fOR(J 
Syntax: 

result= BITOR(stringl, string2 [,pad)) 

Logical ORs string 1 and string2 (see end of Section B for 
more information on logical operations such as OR). The 
optional pad character is used to pad the shorter of the two 
strings up to the length of the longer one. If no pad 
character is provided, the OR operation terminates at the 
end of the smallest string and the remainder of the longer 
one is appended to the result. For example: 

>SAY C2X(BI'l'OR( "123456 11x, 11 ff00 11x, "ff"x)) 
FF34FF 
>SAY C2X(BI'l'OR( 0 123456"x, "f0f0f0°x)) 
F2F4F6 

ARexx: Your Amiga's Built-in Turbocharger 



226 Section E 

BlfSEFIJ 
Syntax: 

result = BITSET(string, bit) 

Sets the specified bit in string to 1. Bit 0 is the least 
significant bit, the one on the far right of the first argument. 
For example, this will set bit 0 to 1. Bit 0 is the units column, 
so this will have the effect of making even numbers odd, but 
not changing numbers which are already odd: 

/* BITSET() example */ 

SAY "Enter a number" 

PULL number 
nwnber = BITSET (nwnber, 0) 
SAY "Nlmlber is " nwnber 

EXIT 

By replacing the BITSET in the above example to BITCLR, 
you can produce the opposite effect, turning odd numbers 
into even, but not affecting even ones. 

BllTSFIJ 
Syntax: 

Boolean = BITTST(string, bit) 

Returns TRUE if the specified bit in string is set to 1, or 
FALSE if it is set to 0. Bit 0 is the least significant bit, the one 
on the far right of the argument "string"'. An example of its 
use is a modification of the example program for BITSET, 
which shows whether a number entered is even or odd: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 

I* BJ:TTST () example *I 

SAY "Enter a number" 

PULL number 
:IF BJ:TTST(number, 0) = 1 THEN 

SAY 0 0dd" 
ELSE 

SAY "Even" 

EXJ:T 

BIFXOR(J 
Syntax: 

result= BJ:TXOR(stringl, string2 [,pad]) 

227 

Logical XORs (exclusive OR) string 1 and string2 (see end of 
Section B for more information on logical operations such as 
XOR). The optional pad character is used to pad the shorter 
of the two strings up to the length of the longer one. If no 
pad character is provided, the OR operation terminates at 
the end of the smallest string and the remainder of the 
longer one is appended to the result. For example: 

>SAY C2X(BJ:TXOR("123456 11x, 11 ff00 11x, "ff 0 x)) 
ED34A9 
>SAY C2X(BJ:TXOR("123456 11x, 11 fOfOf0 11x)) 
E2C4A6 

C.28(J 
Syntax: 

result = C2B(string) 

ARexx: Your Amiga's Built-in Turbocharger 



228 Section E 

String to binary conversion. Converts the characters in 
"string" to their equivalent binary bytes. The opposite of 
this function is B2C(). For example: 

>SAY C2B("A") 
01000001 

C2DIJ 
Syntax: 

result = C2D (string [, n] ) 

String to decimal conversion. Converts the argument into its 
corresponding decimal number, assuming each character in 
the string is a one byte value. Can be used to find the ASCII 
value of a single character: 

>SAY C2D( 0 A0 ) 

65 

The optional n parameter is the amount of bytes from the 
left hand side of the string which C2D will use in its 
conversion. For example: 

SAY C2D( 0 ABCD0 ,1) 
68 

C2JCIJ 
Syntax: 

result = C2X(string) 

String to hexadecimal conversion. Converts the argument 
into its corresponding hexadecimal number, assuming each 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 229 

character in the string is a one byte value. Can be used to 
find hex ASCII values of single characters. 

SAY C2X ( 0 ABCD" ) 

The above example shows 41424344 on the screen. Each 
two-number pair is the HEX ASCII for the corresponding 
character, 41 is "A", 42 is "B" and so on. 

CINl'RllJ 
Syntax: 

result = CENTRE(string, length [,pad]) 

Centres the string argument in a string of length specified 
by the length argument. The optional pad character is used 
instead of the default SP ACE to pad out each end of the 
string to centre it. Please note -both spellings are provided 
for, American and British! For example: 

SAY CEN'l'ER"Introduction", 40, "-") 

... will centre the word "Introduction" in a line 40 
characters in length. The ends are padded using a "-" 
character producing a result like this: 

---Introduction---

C10SllJ 
Syntax: 

success = CLOSE(file) 

Closes a file previously opened using the OPEN() function. 
If the operation fails for some reason (the file didn't exist, 

ARexx: Your Amiga's Built-in Turbocharger 



230 Section E 

for example), then this function will return FALSE. If the file 
was successfully closed, it returns TRUE: 

SAY CLOSE("MyFile") 
/* Will show 1 if "MyFile" was successfully closed */ 

See the OPEN() function for a further example of using 
CLOSE(). 

COMPARE(} 
Syntax: 

result= COMPARE(stringl, string2 [,pad]) 

Compares the two strings supplied and returns the offset, in 
characters, from the left-hand side, where the strings first 
differ - or returns 0 if the strings are identical. If the 
optional pad character parameter is given the shorter string 
is padded out the length of the longer one with the specified 
character, or blanks are used if none was specified. Pad 
characters are added to the right-hand side of the shorter 
string. For example: 

SAY COMPARE( 0 tobyAAA11 , 0 toby0 , 0 B0 ) 

/* Produces the result 5 */ 

/* Result of 0, strings identical. SHorter is padded 
using As making it identical to the longer one: */ 
SAY COMPARE("tobyAAA", "toby0 , "A") 

SAY COMPARE ("the quick brown fox", "the quick green 
fox") 
/* result is 11 */ 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 231 

COMPR/ESS(J 
Syntax: 

string= COMPRESS(string [,removelist)) 

COMPRESS() removes any of the characters specified in the 
optional parameter from the string specified. The default for 
the removal list, if not provided, is SPACE - which will 
remove any spaces from the string. Can be particularly 
useful for removing special characters and punctuation 
from text before performing text-based operations, such as 
word counting. Here is an example which strips vowels 
from strings entered by the user: 

I* COMPRESS() exang;>le *I 

SAY "Enter a string, and I'll take the vowels out of 
it" 
PARSE PULL string 

stringl = COMPRESS(string) 
string2 = COMPRESS(string, "aeiou") 

SAY 110Utput of Compress with no removal parameter:" 
stringl 
SAY "Vowel-less version!:" string2 

EXIT 

COPllES(J 
Syntax: 

result = COPIES(string, copytimes) 

Makes a number of copies of the supplied string, by 
appending the string to itself the number of times specified 

ARexx: Your Amiga's Built-in Turbocharger 



232 Section E 

by the "copytimes" numeric parameter. A value of 0 for this 
is valid, and COPIES() will return an empty string. 

>SAY COPIES ("Hi II, 3) . 
HiHiHi 

02CIJ 
Syntax: 

string = D2C(number) 

Converts the specified number into a character string. This 
routine is particularly useful for converting single ASCII 
code values into their appropriate number. Works a byte at 
a time through the number in the conversion process. The 
parameter must be a positive integer from 0 to 2,147,483,647 
(7FFFFFFF in hexadecimal). 

>SAY D2C(65) 
A 

02XIJ 
Syntax: 

string = D2X(number) 

Decimal to hexadecimal conversion. Converts the specified 
number into a hexadecimal string. The parameter must be a 
positive integer from 0 to 2,147,483,647 (7FFFFFFF in 
hexadecimal). 

>SAY D2C(65535) 
FFFF 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 233 

DATA'l'YPIEIJ 
Syntax: 

result = DATATYPE(string) 

Or: 

Boolean = DATATYPE(string, type) 

Determines or checks for the datatype of a particular string. 
In its first mode of operation the function attempts to 
identify what datatype has been supplied and returns either 
NUM or CHAR, depending on whether the string is a valid 
number or consists of characters. 

The second mode of operation allows checking of a string to 
see if it is a particular datatype. It will return a Boolean 
value, TRUE, if the string did consist of the datatype 
required, or FALSE if it did not. This can be used to check 
values entered by the user before processing them to avoid 
errors during the running of a program. 

ALPHANUMERIC Striag is alphanumeric cnarra<ttet$, A~z. a-z .or 0-9. 

BINARY 

LOWERCASE 

NUMERIC 
SYMBOL 

·······string is :a valid·binary nul'\'lbe~ff~bl'l$i~ting.of Os and ls. · · · · -.·· · 

$tring consists .of l~wer :~as~·\al~hal>etic characters 
only. · ·. · · 

String consists of any a!Phab~tic · ~baracters, upper 
or tower case. · · · 

· 8triflg. is a valid deeil)lilal nll!J[l9~fu ·.· 
Stnag is•a validAA~*" s¥rub~tf{' 

ARexx: Your Amiga's Built-in Turbocharger 



234 

UPPER 

WHOl..E 

x 

Section E 

String consists of upper casectrar~~$'.orlly .. 

String is a valid integer numbefl l)(f)siti\liainr negative. 

String is a valid hexadecimal number . 

... and the DATATYPEO function will return TRUE if the 
appropriate condition specified is satisfied. All of the above 
options can be abbreviated to one character. For example: 

SAY DATATYPE ( 0 Hello0 ) 

I* Shows CHAR */ 
SAY DATATYPE ( n 0101Z n I 0 BINARY") 
/* Shows 0, as the z is IJOt a valid binary character */ 

For a further example of DATA TYPE() in action, see the 
description for the SOURCELINEO function below. 

DAFElJ 
Syntax: 

result = DATE( [option] [,date] [,fo:cma.t]) 

In its default form, with no parameters, the option is 
assumed to be "NORMAL" and this function returns the 
current date in the form DD MMM YYYY - for example, 10 
Nov 1993. 

BA.'SEl:>ATE 

C8NTURY 

DAYS 

VALID OPTIONS FOR DISPLAYINGJ.lATES 

The number of days passed sincelJaf);·OOOl. 

DtiiYS passed .since l·.4afl, this<tr,ei;ttury, •. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 235 

EUROPEAN · •· f Oat~ in ttle form . of 00~ .. ..,, fofi instance, :,: 23/01/9.4 .. ·. . ... , . . 
' ,,_ 1•' 

INTERNAL;(, '?i~'J.~1~~1 ~ysterrida~~r ~ir' 

JULIAN 

MONTH 

NORMAL 

~ ., - ' ,'' . . 

Date in the Julian Date {year•~ttd day.s elapsed this 
year) format, YYDDD., eg 94Jlil 

Current month (in mixed ease - for instance, 
"January") 

Date in the AmigaDOS fottnat:;DO MMM YYYY - for 
· instance, 1 O Jan 1994 .:''' 

ORDEllED·. Tue ·date in the fottflat: .. iv'~'/DD'•,-. to~. instance, 

SORTED 

USA 

94/01/23 . . . 

. The date in the format YYVYMMDD - for instance, 
19940123 ... 

The date in the American format MM/DD/VY - for 
instance, 01/23/94 

WEEKDAY· The. day ·Of the week, in mixet.f: case. - for instance, 
"Monday' · 

These options can be abbreviated to one character. 

The second and third parameters allow you to find 
information about a specified date. For example, it is 
possible to find the day of the week for any date you like, so 
long as it is after 1Jan1978. The second parameter is the 
date itself, in one of two formats: system days (the default); 
or sorted date. For system days, the number of days since 1 
Jan 1978 is specified. For sorted, the date is specified in the 

ARexx: Your Amiga's Built-in Turbocharger 



236 Section E 

format YYYYMMDDD (the "SORTED" option above). Here 
is an example: 

SAY DA'l'E( 0 W0 ,19780101, 0 S0 ) 

I* Shows "Swida¥", the day of 1st Jan, 1978, start of 
internal time */ 
SAY DA'l'E ("MOH") 
/* Shows the current Month *I 

OIEISl'RIJ 
Syntax: 

result= DELS'l'R(string, n [,length]) 

Deletes the sub-string beginning with the "n" th character in 
from the left hand side of the string, and length characters 
in length from the supplied string. The default value for n is 
the remaining length of the string and can be therefore be 
used to abbreviate strings: 

SAY DELS'l'R ("Hello 'l'here0 , 3) 
/* Shows "He" */ 

When used with the optional length parameter, selective 
deleting can take place: 

SAY DELS'l'R ("Hello '!'here", 3, 2) 
/* Shows 0 Heo There" *I 

OIEIWOROIJ 
Syntax: 

result = DELWORD(string, n [,length]) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 237 

Deletes "length" number of words from the supplied string 
beginning with the "n"th word in from the left. The default 
value for length is the remaining number of words in the 
string, and can thus be used to shorten strings to a fixed 
number of words. White space characters, such as SP ACE 
and TAB separate words. An example: 

/* Produces the result 0 This was amazing": */ 
SAY DELWORD( 0 This is, or was amazing0 , 2, 2) 

/* Deletes the third word, producing the result 0 first 
second" */ 
SAY DELWORD ( 0 first second third 0 , 3) 

DIGll'S(J 
Syntax: 

numeric = DZGZTS() 

Returns the current DIGITS setting, as set by the ARexx 
statement NUMERIC DIGITS. DIGITS is the number of 
digits of precision used for arithmetic operations. Useful for 
recalling what the current setting is so that it can be 
changed back after a temporary alteration. 

old_digits = DZGZTS() 
/* Stores the current DZGZTS() setting in the 
old_digits variable */ 

EOF(J 
Syntax: 

Boolean = EOF(file_handle) 

ARexx: Your Amiga's Built-in Turbocharger 



238 Section E 

Returns TRUE if the End of File marker has been reached 
for the specified open file, otherwise returns FALSE. If 
reading in a file of unknown length for processing, such as a 
text file for a word count, for instance, this function can be 
used to determine when there is no more data to be read. 
For example: 

J:F EOF( 0 MyFile0 ) THEN SAY 0 End of file reached" 

ERRORl'EJCl'(J 
Syntax: 

result = ERRORTEXT(error_nwnber) 

Returns the actual error message associated with the 
error_number specified. See Appendix 1 for a complete list 
of ARexx error numbers and messages. 

EJCISl'S(J 
Syntax: 

Boolean = EXJ:STS(filename) 

Returns TRUE if the specified file exists, or FALSE if it does 
not. Complete paths can be specified allowing programs to 
determine if a file about to be used is available. For example: 

/* This example runs the text editor in your C: drawer 
if it exists */ 
J:F EXJ:STS(°C:ED") THEN DO 

ADDRESS COMMAND ED 
SAY 0 Editor run° 
EXJ:T 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 

SAY "Could not run editor" 
EXJ:T 

/EJCPORl'IJ 
Syntax: 

239 

result= EXPORT(address [,string] [,length] [,pad]) 

Copies the data from the optional string parameter to an 
area of memory specified with the address parameter. The 
address value normally comes from the GETSP ACE() 
function, used to allocate memory for your own usage. The 
length parameter, if specified, defines the number of 
characters to be copied. The default value for length is the 
actual length of the string. If the specified length is longer 
than the actual string itself, then the remaining area is 
padded out with the pad value, or the byte value 0 if no pad 
is specified. The returned value is the number of bytes 
actually copied. For example: 

bytes_copied = EXPORT("00500000°x, "SameText") 

This can be a very dangerous function. You can 
crash your computer, or worse, corrupt data on 
your hard disk if you don't use it properly. While 
EXPORTing is taking place, ARexx will disable 
multi-tasking. If you EXPORT large quantities of 
data, system performance might be adversely 
affected. 

FINDIJ 
Syntax: 

result = FDm(string, phrase) 

ARexx: Your Amiga's Built-in Turbocharger 



240 Section E 

FIND() attempts to find a smaller phrase of words in a 
larger string, and returns the word number at which the 
phrase occurred in string, or 0 if it could not find it. This 
function does not detect parts of words in strings, phrase is 
assumed to be a number of words with white spaces 
between them. For example: 

>SAY FIND("'l'his is a sentence", "sente") 
0 
>SAY FIND("'l'his is a sentence", "sentence") 
4 

PORM(J 
Syntax: 

result = FORM() 

Returns the current NUMERIC FORM setting, either 
ENGINEERING or SCIENTIFIC, depending on the value 
set. The NUMERIC FORM setting specifies the format in 
which numbers requiring exponential notation are shown. 
This example shows the current setting: 

>SAY "CUrrent setting of NtJMERJ:C FORM is "FORM () 
CUrrent setting of NtJMERJ:C FORM is SCIEN'l':IFIC 

PR££5PAC£(J 
Syntax: 

Boolean = FREESPACE(address, length) 
result = FREESPACE () 

Used to return memory allocated using the GETSPACE() 
function to the interpreter's internal memory pool. The 
"address" parameter should be the same that was returned 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 241 

from GETSPACE(). It is good practice to free any memory 
you allocate as soon as you have finished with it, but if you 
do forget, ARexx will automatically free memory allocated 
using GETSPACE() when your program exits. When 
actually freeing memory, this function should return a 
Boolean success result, but the current release version of 
ARexx, 1.15 actually returns the amount of memory in 
ARexx's internal memory pool- a fairly useless number. In 
the function's second form, with no parameters, the amount 
of memory in the internal memory pool is returned. Again, 
this is a reasonably useless value, because the pool simply 
grows if you attempt to allocate more than it contains -
assuming you have the memory available, that is. 

/* FreeSpace example */ 
memory = GETSPACE(2000) 
SAY FREESPACE ( ) 
SAY FREESPACE(memory, 2000) 
EXIT 

The above allocates 2,000 bytes of memory, shows the space 
left in the pool, and then frees our block of memory 
showing the new free space in the pool - this example takes 
into account a "misbehaviour" in ARexx 1.15. 

FUZZIJ 
Syntax: 

numeric = FUZZ() 

Returns the current value of NUMERIC FUZZ, which is the 
number of digits to ignore in numeric comparison 
operations. It is a positive whole number. 

SAY FUZZ() 
/* Shows the current NUMERIC FUZZ setting */ 

ARexx: Your Amiga's Built-in Turbocharger 



242 Section E 

G/E'IC&IP(J 
Syntax: 

result = GE'l'CLZP(clip_name) 

Attempts to find a value in the global clip list by the 
supplied name, and returns the contents of that clip. The 
clip list is globally available to all applications and is an 
easy method of sharing data. SETCLIPO is used to set clip 
values. The clip_name is case sensitive and, if no clip of that 
name is found, this function returns an empty string. 
Issuing RXSET as a command from the shell will list all 
current clips and their values (see Utility Command 
Reference, below, for information on the RXSET command). 

/* GE'l'CLZP() ex.an;>le: */ 

SAY "Enter a value for the clip:" 
PARSE PULL clip 

SE'l'CLZP("test_clip", clip) 

SAY "Clip value is :now: " GE'l'CLZP ( "test_clip") 

EXJ:T 

Typing "RXSET" from the shell, after running the above 
example, will show the name "test_clip" and the value you 
typed in assigned to it. 

G/E'ISPACIE(J 
Syntax: 

result = GETSPACE(length) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 243 

Allocates a block of memory, "length" bytes long, and 
returns the address of that memory - or NULL if the 
memory allocation failed. There is no guarantee as to the 
location of the memory, it could be in either fast or chip 
memory, and it is not initialised - so it is likely to contain 
random data. Memory allocated with GETSPACE() is 
automatically freed when the program exits, but it is good 
programming practice to free memory when you no longer 
need it using the FREESP ACE() function. For example: 

/* This allocates 1000 bytes of memory, and shows the 
address of this memory in hex *I 
SAY C2X{GETSPACE{1000)) 

HASH(J 
Syntax: 

numeric = HASH{string) 

Hashing is a process whereby a mathematical calculation 
takes place on the string, deriving a numeric value which is 
(in ideal cases) different for every string, and can therefore 
be used to quickly find items in tables. Complex hashing 
algorithms are developed to perform this operation to try to 
avoid "collisions" -where the hash value for two different 
strings is identical. The ARexx HASH() function is very 
simple though, and returns an integer value from 0 to 255. 
This example generates and showsthe hash value for a 
string entered from the console: 

I* HASH{) example: */ 

SAY "Enter a string: 0 

PARSE PULL hash 

ARexx: Your Amiga's Built-in Turbocharger 



244 Section E 

SAY 0 Ba.sh value for this string is 0 HASH(hash) 

EXJ:T 

IMPORJlJ 
Syntax: 

result= IMPORT(address [,length]) 

Reads bytes from the specified address. If no length 
parameter is specified, the reading will take place until a 
zero byte is found, otherwise the result will be of "length" 
bytes. This function is used to read values out of memory 
which has been allocated by the user. 

It is possible to crash your computer with this 
function, as you can read data from memory in 
special write-only locations. IMPORT is intended 
for occasions where you have allocated memory 
using GETSPACE(), or need to read a special 
system variable such as the ExecBase. For 
example: 

/* Shaw Execbase value */ 
SAY C2X(IMPORT( 0 00000004", 4)) 
I* My system showed 07C007F8 */ 

Programmers using a MMU (Memory Management 
Unit) and development tools like Enforcer, will get 
enforcer hits from the above example. This is 
because ARexx reads memory a byte at a time 
using IMPORT, not four bytes at a time. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 245 

INDEX(J 
Syntax: 

numeric= INDEX(string, pattern [,start]) 

Searches for the sub-string "pattern" in the larger "string" 
parameter, and returns an offset, in characters, from the 
start of the string of the first occurrence. The optional 
parameter "start" allows the user to specify an initial start 
position, as an offset in characters at which searching will 
begin. The default value for start, if not specified, is 1. This 
function returns 0 if the sub-string did not occur in the main 
string. It is identical to the POS() function, except the 
parameter ordering (the "string" and "pattern" parameters) 
is reversed. For example: 

SAY INDEX( "Contoured with touring", "to") 
/* Returns 4, the first occurrence of 0 to0 */ 
SAY INDEX( "Contoured with touring", "to", 10) 
/* Start at position 10, so returns 2:nd occurrence of 
0 to0 , which is 16 */ 

INSERT(J 
Syntax: 

result = INSERT(new, old [,start] [,length] [,pad]) 

Inserts a new string into an older one. The optional 
parameters offer control over where the new string is 
inserted, how many characters are inserted, and what 
character to pad the new string with if it is shorter than the 
supplied "length" parameters. The default pad character is 
a blank space. If the "start" position is longer than the 
string, the new string is inserted at the end of the old. The 
default value for "start" is zero, and the default for "length" 
is the length of the new string to be inserted. This function, 

ARexx: Your Amiga's Built-in Turbocharger 



246 Section E 

in conjunction with the opposite DELSTR(), and INDEX(), 
can provide quite complex editing functions including full 
search and replace facilities. 

I* INSERT{) example: */ 

SAY "Enter a string: n 

PARSE PULL string 

offset = 1 
expand_to = "expanded" 

00 WHILE new_offset > 0 

new_offset = INDEX(string, "z", offset) 

IF new_offset > O THEN 00 
SAY "Expanding one reference •• " 
string = DELSTR(string, new_offset, 1) 
string = INSERT(mrpand_to, string, new_offset - 1) 
offset = new_offset + LENGTH(expand_to) 
END 

END 

SAY "Result:" string 

EXIT 

When run, it could produce this result: 

Enter a string: 
this is the z string of zness 
Expanding one reference .. 
Expanding one reference .. 
Result: this is the expanded string of expandedness 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 247 

l.JlS'rPOSIJ 
Syntax: 

numeric= LAS'l'POS(pattern, string [,start]) 

Searches for the first occurrence of "pattern" in "string", but 
starts from the end of the string and works backwards -
unlike POSO and INDEX() which start at the beginning. 

The optional "start" parameter is the character offset to 
begin the search. The default is the last character in the 
string. The result is 0 if no match was found, or the 
character offset from the beginning of the string where the 
match occurred (assuming 1 is the first character in the 
string). This is particularly useful for dealing with strings 
where you might need to find the end section, such as the 
formatting of times and dates, and stripping the filename off 
a fully qualified AmigaDOS path. For example: 

SAY LAS'l'POS(":", 0 10:54:23°) 
/* Shows 6, the furthest right : found */ 

The next example finds the start position of the filename 
itself. Using the RIGHT or SUBSTR functions you could strip 
off the file part, or just the path part from a full filename: 

SAY LAS'l'POS("ram:directory/another_directory/file.test 0 , 

"/") 

,.,,,, 
Syntax: 

result = LEF'l' (string, length [,pad] ) 

Returns a sub string "length" characters long from the left 
hand side of the parameter "string". If length is larger than 

ARexx: Your Amiga's Built-in Turbocharger 



248 Section E 

string, it is padded with the optional pad character. If no 
pad character is specified, a blank space is used as default. 
The opposite of this is the RIGHT() function. For example: 

>SAY LEFT{"two words", 3) 

two 

1ENG1'H(J 
Syntax: 

numeric = LENGTH{string) 

Returns the length of the string in characters. For example: 

>SAY LENGTB{ 0 Hello 0 ) 

5 

LINES(J 
Syntax: 

numeric = LJ:NES{file_handle) 

This function returns the number of lines typed ahead, 
PUSH' d, or QUEUE' d (see the description of the ARexx 
QUEUE and PUSH statement for further information), or 0 
if we are up to date. For example: 

/* LINES{) function exariple */ 

PUSH "echo Hello" 
PUSH "echo Goodbye" 

SAY LINES {STD:IN) 

/* A routine to remove everything which has been 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 249 

PUSH'd/QUEUE'd or TYPE'd ahead */ 
DO WHJ:LE LJ:NES ( STDDl) > 0 

PULL string 
SAY ":I removed "string" from the input stream!" 
END 

EX:IT 

LINES() will not work with the normal Amiga shell, 
which does not support the information types 
required for LINES(). From the Amiga shell, this 
will always return 0, regardless of what has 
actually been QUEUE' d. Some commercial shells, 
such as WShell by William Hawes' (the author of 
ARexx), do work, using new console handlers. 

MAJC(J 
Syntax: 

numeric= MAX(n'l.Dllber, n'l.Dllber [,n'l.Dllber, ••• ]) 

Returns the largest of all the numeric parameters supplied. 
At least two parameters must be specified. For example: 

SAY MAX(l0,20,50,4) 
/* Shows 50, the largest of the four parameters */ 

MIN(J 
Syntax: 

numeric = MIN(number, number [,number, ••• ] ) 

Returns the smallest of all the numeric parameters supplied. 
At least two parameters must be specified. For example: 

ARexx: Your Amiga's Built-in Turbocharger 



250 Section E 

SAY MIN{l0,20,50,4) 
I* Shows 4, the smallest of the four parameters */ 

OPENIJ 
Syntax: 

success = OPm{file, filename [,"APPEND" I "BFAD" I "WRI'l'E"]) 

Opens a new file for access specified by the optional 
operation type of APPEND, READ or WRITE. The default, 
if none is specified, is READ. A file opened in WRITE mode 
is created as a new file and the opener has exclusive access 
to the file while it remains open. If a file already exists of 
that name, then it will be erased and the new file will 
replace it. READ and APPEND are almost the same, except 
that in APPEND mode the start position in the file is set to 
the end, rather than the beginning. READ and APPEND 
files are opened as existing files, and you can write to them 
as well as read from them. READ, WRITE and APPEND 
may be abbreviated to one character. There is no limit to the 
number of files you can have open at any one time, and they 
are automatically closed when your program exits. It's good 
practice, however, to always close your files when you have 
finished with them using the CLOSE() function, particularly 
in the case of files you have written to to ensure that the 
copy on disk is up to date. You can use OPEN() to open 
console windows. 

The opener specifies the name by which this file will be 
referred to (the File Handle), and the filename itself. The File 
Handle is our "Magic Cookie" (or special name, in the case 
below it is "MyFile"), which we specify when using a file 
command to access that file, so that ARexx knows which file 
we wish to talk to. 

/* Open/Close example */ 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 251 

IF OPEN{"~ile", 0 ram:test 0 , "W") = 0 '!'HEN IX> 
SAY "I could not open llW' file! 0 

EXIT 
END 

written = WR:I'l'ELN { "~ile" I n A Grand Piano would be 
fine, thanks• 0 ) 

SAY "I wrote "written" characters out to the file" 

IF CLOSE{ 0~ile0 ) = 0 '!'HEN SAY "File didn't close 
right!" 

The above example creates a new file in the RAM disk 
containing one line, which can be shown from the shell 
using the Type command: 

8.System3.l:> rx openclose.rexx 
I wrote 37 characters out to the file 
8.System3.l:> type ram:test 
A Grand Piano would be fine, thanks. 

Here is an example which opens a window on the screen: 

Information can be put in the window using the normal file 
reading and writing functions, such as READLNO and 
WRITELN(). The window can be closed using the 
CLOSE() function. 

ARexx: Your Amiga's Built-in Turbocharger 



252 Section E 

OVERUlYIJ 
Syntax: 

result = OVERLAY(new, old [,start] [,length] [,pad]) 

Overlays a new string over an existing one. 

The optional parameters allow control over where the 
overlay is going to take place: an offset in characters, "start'', 
the amount of characters to be overlaid, "length", and the 
pad character to be used to pad out the new string if it is 
less than the length parameter. The default pad character is 
a blank space. This function is very useful for direct 
overwriting one part of a string with another of the 
appropriate length. For example: 

/* This example replaces the like in i Like Chocolate 
with hate */ 
SAY OVERLAY( 0 hate", 0 i like chocolate", 3, 4) 

POS(J 
Syntax: 

numeric = POS (patte:rn., string [,start] ) 

Searches for the sub-string "pattern" in the larger "string" 
parameter, and returns an offset from the start of the string 
of the first occurrence, in characters. The optional parameter 
"start" allows the user to specify an initial start position, 
defined as an offset in characters. This is the same as the 
INDEX() function, except that the pattern and string 
parameters are reversed. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 253 

PIUlGMAIJ 
Syntax: 

result = PRAGMA(option [,value]) 

PRAGMA() is a special function designed to allow the user 
some control over the system environment in which their 
script is running. It is quite an advanced function and 
allows you, for example, to disable AmigaDOS requesters 
such as '1nsert Volume ... in any drive", or change the 
priority at which their task is run. There are 6 PRAGMA 
options: one returns information while the others allow you 
to set certain attributes. 

-~·~ ;_,.i~V.f:0 ~rn°~·1T°t"-~ii~; . 
OIRECT- ·}~~--set$. a new curtent d~ect~.tf;fue 1Va1ue" item is 

·z;.:, omifted, then the current aiteeifilry will be returned, 
• '-'and;no change will bemaae. ··· 

PRIORITY 

ID 

Changes task priority. Your Mexx script normally 
·- - - runs with a priority value of.(). Priorities can run from 

.. ~128 to +127. The retur:rl valu~ is the old priority. 
··.You. caAO,ot fetch tl'te current'-priodty value without 

~:(· s~cjfyiog a new Of)$; Alt!Jough!the lJossible range is 
~'fii~' quite li~r~~; . it. ,j~ not, vl · ·. ~r it to'.. anything higher 
;~~1i ~)'.I 4Awhich- is lie ...•. ltfci~t wpich _ the ARexx · 

'.;~:- int~rpret'er runs. Tyj)Jcaf:.IJ~e5;~or tftis are changing 
-; \. the priotity temporarily wf.IQe ycitf eall an external host 

function which requires more processor time. 

Returns the task ID. This is a$lally the address of 
the Process structure for the current scr1pt. It is an 

· &digit hexadecimal string. It· is possible to read 
fufther information about theb;lS)( when you have this 
information using the IMPORT() function. But never, 
ever write data to your ~sk s~r:ucture unless you are 

ARexx: Your Amiga's Built-in Turbocharger 



254 

sTACK 

w 

* 

Section E 

.. quite sure Y01J know what YoU are ctom!~<otherwise 
'. y~u could crash yourcom~~r~ . ;, . ,, 

- ·-:'""·,'.(>-' .: 

changes ffi~ stack site. rm•"tunetton·"~hanges the 
current stack size for your scripfs task ~nd returns 

·. the old value ... Qne of the most useful applfcations for 
· this is whenyou are calling an externaf:application or 
·· host comro~nd which requires ·a larger s.tack value in 

order to operate. You can set a new statk, store the 
old stack value in a variable and then set it.back after 
calling the c:1ppropriate program/host command. 

Enables or disables DOS requesters. Sometimes it is 
better to deal with errors like "No Oisk Present" 
yourself, ratt:rer than having requesters pop up on the 
workbench screen. The W option allows.AmigaDOS 
requesters to be switch on or off, depending on the 

.. ">t(llue" pa®;Fleter, which ~n · either tie NULL to 
disable requ~ers, or WORKBENCH to enable them. 
These two parameters can be abbreviated to one 
character. 

. . 

Changes thei el.irrent default ¢onsole hanpter. Without 
the "value" ,::fi~rameter this simply sets tbe default 
console handler back to the default one for the 

· current proce5s~ This can be used to open a new 
window and <use that for both input and output, like 
STDIN and .amour, the. file, handles fo:rtl]e normal 
console, wm@ also .· share . a · window.:~ Particularly 
useful for scripts la14nched without a shell window for 
input, like those started with RUN RX rather than just 
RX. 

The option keywords can be abbreviated to one character, 
as with other ARexx options. For example: 

SAY PRAGMA ( 0 1: 0 ) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 255 

/* Returns task ID as hexadecimal address */ 

/* Sets the stack and task priority to new values 
before running a program, and then resets them: */ 
old_pri = PRAGMA ( "PRJ:", 3) 
old_stack = PRAGMA("STA", 15000) 

/* Run the application which required the lSK stack and 
priority of 3 */ 
ADDRESS COMMAND "application" 

/* Now" return stack aDd priority to original values */ 
CALL PRAGMA("PRJ:", old_pri) 
CALL PRAGMA( "STA", old_stack) 

EXIT 

RANDOM(} 
Syntax: 

numeric = RANDOM( [minimum] [,maximum] [,seed]) 

Returns a pseudo random number. The number returned is 
greater than or equal to the "minimum" parameter, and 
smaller or equal to the "maximum" parameter. If omitted, 
the default minimum and maximum are zero and 999. The 
difference between minimum and maximum must be no 
greater than 1,000. Pseudo random numbers use a 
mathematical calculation to get the next number. This 
calculation must be seeded with a suitably random value 
itself to avoid getting the same sequence of numbers every 
time you run your program. The easiest way to achieve this 
is to seed from the TIME("S") function (seconds elapsed): 

CALL RANDOM(, ,TIME( "S")) 

ARexx: Your Amiga's Built-in Turbocharger 



256 Section E 

Larger ranges of numbers can be achieved by scaling the 
results from RANDOM(). For example: 

/* RaJJdan Day of Week *I 

day.1 = n~n 
day.2 = "Tuesday" 
day.3 = "Wednesday" 
day.4 = "Thursday" 
day.5 = "Friday" 
day.6 = "Saturday" 
day.7 = "~" 
CALL RANDOM(, ,TDm( 0 S 0 )) 

picked= RANDOM(l,7) 

SAY "Here is a random day of the week:" day.picked 

EXIT 

IU&NU(J 
Syntax: 

numeric = RANtJ ( [seed] ) 

Returns a pseudo random number between 0 and 1. 

The precision of the number returned will depend on the 
current NUMERIC DIGITS setting (see keyword reference 
earlier in this section for more information). By multiplying 
this number out, random numbers of any range can be 
generated easily. The optional parameter can be used to seed 
the generator. See the RANDOM() function above for a 
suitable method of seeding using the TIME() function. The 
seed values for RANDOM and RANU are shared, so 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 257 

changing one will have the effect of re-seeding the other. For 
example: 

SAY RANU{) 

/* Might show 0.234764734 depending on NUMERJ:C DXGXTS 
setting */ 

RIADCH(J 
Syntax: 

result = READCH{file_halldle, length) 

Reads a number of characters specified using the "length" 
parameter from the specified file_handle. It is possible that 
the required length might not be read. This can be checked 
using the LENGTH() function on the returned string, 
reasons for this might include end of file reached, or an 
error occurred. End of file conditions can be checked with 
the EOF() function. For example: 

.string= READCH{"MyFile", 30) 
/* Read 30 characters from 0 MyFile0 , previously opened 
with OPEN{) *I 

RIADIN(J 
Syntax: 

result = READLN{file_halldle) 

Read characters from the specified file handle until a new
line character is reached. The result is the entire line as read. 
The amount of bytes eventually read can be checked by 
using the LENGTH() function. The returned string does not 
include the new-line character itself. This function is 
typically used for processing text files off disk. For example, 

ARexx: Your Amiga's Built-in Turbocharger 



258 Section E 

this program will count the number of lines and characters 
that are in your S:startup-sequence file: 

/* READLN{) example */ 
:IF -OPEN{"ReadFile", "S:startup-sequence", "R") THEN' DO 

SAY "J: could not open file! 0 

EXJ:T 

END 

lines = O 
characters = O 

/* Loop through startup sequence a line at a tillle */ 
DO WHJ:LE -EOF{"ReadFile") 

string = READLN{"ReadFile") 

characters = characters + LENGTH{string) 

lines = lines + 1 

END 

/* Now show file statistics */ 
SAY "File contained" lines "lines." 
SAY "File contained" characters "characters." 
SAY "Average line length = "characters/lines 

CLOSE{"ReadFile") 

EXJ:T 

REMLIBIJ 
Syntax: 

Boolean = REMLJ:B{name) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 259 

Removes a library from ARexx' s list of libraries. This is the 
opposite to the ADDLIBO function. This function returns 
TRUE if the library was removed, or FALSE if not. The 
primary reason why REMLIBO might return FALSE is if the 
library specified did not exist. For example: 

SAY REMLIB ( 0 rexxsupport. library") 
/* Will show 1 if the lib.razy was rerooved, 0 if not */ 

REVERSEIJ 
Syntax: 

result = REVERSE(string) 

Reverses a string. The result is the string parameter in 
reverse order. For example: 

SAY REVERSE("?syas siht tahw tuo dnif ot rehtob enoyna 
lliW") 

RIGHflJ 
Syntax: 

string = RIGHT (string, length [,pad] ) 

Returns a sub string "length" characters long from the right 
hand side of the parameter "string". If length is larger than 
the string parameter, it is padded with the optional pad 
character. If no pad character is specified, a blank space is 
used as default. The opposite of this is the LEFT() function. 
For example: 

SAY RIGHT ( "two words n I 3) 
/* Will produce the result 11 rds 11 */ 

ARexx: Your Amiga's Built-in Turbocharger 



260 Section E 

SEEKIJ 
Syntax: 

result = SEEK(file_handle, offset ~ 
[, "BEGIN" I "ctJRBEN'l'" I "END"] ) 

SEEK() is a function for moving the position pointer around 
in a file relative to either the current position, the beginning, 
or the end of the file. It expects a file handle, an offset from 
the anchor point, and the anchor point itself. The anchor 
point can be abbreviated to one character, and the default is 
CURRENT. The value returned is the old position. This 
function can therefore be used to find the current position in 
a file without changing anything using SEEK(file_handle, 0), 
which will move 0 bytes relative to the current position and 
return the old one. Example: 

I* SEEK() example */ 
J:F -OPEN("WriteFile", "ram:test.txt", "W") THEN DO 

SAY "J: could not open file! " 
EXJ:T 

END 

WRJ:TELN("WriteFile", "This is a string") 

/* Move to the start of the file */ 
SEEK ( "WriteFile", 0, BEGJ:NNJ:NG) 

WRJ:TECH("WriteFile", "Rope") 

CLOSE ( "Wri teFile") 

EXJ:T 

The above writes the line ''This is a string" out to a new file 
called "ram:test.txt", then seeks back to the beginning, and 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 261 

writes over the "This" with "Rope". The results can be seen 
by TYPE'ing it from the shell: 

TYPE ram:test.txt 

S/El'C11P(J 
Syntax: 

Boolean= SE'l'CLIP(clip_name [, value)) 

Alters an existing clip value, or creates a new one in the 
global clip list. The clip list is a list of special variables 
which can be accessed by all ARexx programs, and is 
maintained by the ARexx interpreter. It is a convenient way 
of sharing data values with other ARexx programs. Clip 
names are case sensitive. If a value is not specified, the 
named clip is deleted. This function returns TRUE if it 
succeeded, or FALSE if it did not. 

SE'l'CLIP("My_Clip", "This is the value") 
/* Sets a value to the clip "My_Clip" */ 

See GETCLIPO for a further example of the SETCLIP 
instruction in action. 

SHOW(J 
Syntax: 

result = SHOW(option, [,pad]) 

Boolean = SHOW(option, name) 

This function is used to examine information about the 
current resource list. It can be used in two basic ways, one, 
which returns a string to find out what items are available 

ARexx: Your Amiga's Built-in Turbocharger 



262 

CLIP 

FILES 

PORTS 

Section E 

in a particular resource, and the other to check if a certain 
named value exists in a particular resource. 

'i~. ~· ', 

AVAILABLE RESOtJICE·PPflQfl.S:. • · ... 
' - : --- --

Examines the contents .of the GlobEJl CJfp List - see 
GETCLIPO and SETCLIPU .. 

Examines the current ,files which.haw been opened 
usingOPENO 

Exai:nines ports- oplfi,~d.· u.stqg~~-ClP.EtwORT (see 
section on the rexxst$~Jib$J:f:~fe.feti~e below) 

h'~-~ J, f-~i/·,: : ~,,}~'.C ~·: 

E~~mines tij;'.;nam~~Jl(i;.1fte .ll~i•··JiSf~vitl1fose- added 
ustr)g:.AODU$0. .;~\,, . . ;·'i;;,; -~ .. ;.;>; 

Examines th~. public $'$tem PottlisJ:; 

All of the above options can be abbreviated to one character. 
In its first form SHOW returns a list of any items in the 
named resource and separates them with the optional pad 
character. If omitted, the pad character is assumed to be a 
space. In its second form SHOW can be used to confirm if a 
particular item is present. Examples of SHOW(): 

SAY SHOW( 0 PORTS0 , 0 toby0 ) 

/* Shows 1 if the port 0 toby0 was opened using OPENPORT 
*I 
SAY SHOW(°F0 ,, 0 0A0 x) 
/* Shows any files currently open, separating them with 
the ASC:U: character OA, ~ch is Linefeed. 'l'his will 
normally show STDDT, STDOtlT and any other files you've 
opened */ 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 263 

SIGNIJ 
Syntax: 

result = SZGN(number) 

Returns -1 if the specified number is a negative one, or + 1 if 
it is a positive one. Returns 0 if the number was 0. For 
example: 

SAY SZGN(-100) 
/* Produces the result -1 */ 
SAY SZGN(100)/* Produces the result +1 */ 

SOURCIELINIEIJ 
Syntax: 

result = SOtJRCELDJE( [line]) 

Returns the text with the named line in the currently-running 
ARexx program. If the optional line parameter is omitted, this 
returns the number of lines in the current program. This is 
very useful for error trapping using the SIGNAL command, 
because you are able to show: the line where the error 
occurred, the error text using ERRORTEXT(), and the actual 
line of source code causing the problem. For example: 

/* SOURCELDJE () example: *I 
SAY 0 Total lines in program: n SOURCELDJE () 

number = 0 false start" 

DO WBZLE DATATYPE(number, 0 :m:JMERJ:C0 ) = 0 

SAY 0 Enter a line to display, fram 1 to 0 SOtJR.CELJ:NE() 

POLL mnnber 

ARexx: Your Amiga's Built-in Turbocharger 



264 Section E 

END 

IF number > SOURCELINE () I number = 0 THEN DO 
SAY "Line was illegal!" 
EXIT 

END 

SAY "Line "number" was n "SOURCELINE(number) n n II 

EXIT 

SPACElJ 
Syntax: 

string = SPACE (string, n [,pad] ) 

This function reformats the string parameter so that there 
are exactly "n" spaces between each word. If the optional 
pad character is specified, it is used instead of spaces. 
Specifying 0 for n will result in all spaces being removed 
from the string. Spaces are not added before the first word 
and after the last, only between pairs of words. For example: 

SAY SPACE("This is a test", 3, 11 - 11 ) 

/* Results in: This--is--a~test */ 

SFORAGElJ 
Syntax: 

result = STORAGE( [address] [,string] [,length] [,pad]) 

STORAGE() is a function to write information directly to 
memory. It behaves similarly to EXPORT but with two basic 
differences. First, unlike EXPORT() which returns the 
number of bytes written, STORAGE() returns the previous 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 265 

contents of that memory, allowing you to store this and set 
it back at a later point in your program. Secondly, 
STORAGE(), with no parameters, returns the total amount 
of free memory in your system. 

Like EXPORT(), this can be a very dangerous 
function. You can crash your computer or, even 
worse, corrupt data on your hard disk. While 
STORAGE is copying data to memory, ARe:xx will 
disable multi-tasking. So if you use STORAGE() to 
write large quantities of data, your system's 
performance might be adversely affected. 

An example of using Storage(): 

SAY STORAGE () 
/* Shows total memoey available in bytes */ 
previous_memoey = STORAGE( 0 00500000°x, "SameText") 

STRIPIJ 
Syntax: 

result = STRJ:P(string [,{"B" I "T" I 0 L0 )] [,pad]) 

STRIP() is used to remove leading and/ or trailing spaces 
from a string. If just a string is specified as a single 
parameter, the function removes both leading and trailing 
spaces from it. The second parameter can be used to specify 
whether leading, "L", trailing, '"T", or both, "B", are to be 
removed. The optional pad parameter allows you to specify 
the character to be remove. It will not remove characters 
from the middle of a string, just the beginning or end. Here 
is an example: 

SAY STRJ:P (II hello ", "B") 
I* RetU%11S "hello" */ 

ARexx: Your Amiga's Built-in Turbocharger 



266 Section E 

SAY STRJ:P(" hello n, "L") 

/* Returns "hello " *I 

SUBSTR(J 
Syntax: 

result = SUBSTR(string, start [,length] [,pad]) 

Returns the specified sub-string of string. The "start" 
parameter specifies how many characters in to start, the 
"length" parameter is the number of characters to be 
included in the sub-string. If this is omitted, the default is 
the remainder of the string from "start" onwards. If the 
resultant sub-string is shorter than the required length, it is 
padded with blank spaces, or the optional pad character if 
specified. For example: 

SAY SUBSTR("Bello",2,2) 
/* Shows the result 0 11°, 2 characters in, 2 characters 
in length */ 

SUBWORD(J 
Syntax: 

result= SUBSTR(string, n [,length]) 

Returns the specified sub-string of string starting from the 
"n"th word, and "length" words long. If "length" is not 
specified, it is assumed to be the remaining words in the 
string from n onwards. For example: 

SAY SUBWORD( 11This is a sentence", 3, 2) 
I* Shows "a sentence" *I 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 267 

SYMBOl(J 
Syntax: 

result = SYMBOL(name) 

Checks to see if the supplied parameter is a valid ARexx 
symbol or not. Returns BAD if it is not, VAR if it is a valid 
variable with an assigned value, or LIT if it is an 
uninitialised variable. This example shows VAR LIT and 
then BAD on the screen: 

I* SYMBOL() example */ 

symboll = "Hello" 

SAY SYMBOL ( 11 symboll") 
SAY SYMBOL ( 0 symbol2 °) 

SAY SYMBOL("+!&#E") 

EXIT 

FIME(J 
Syntax: 

result= T:IME([option]) 

With no parameter, this returns the current time in 24-hour 
mode, in the form HH:MM:SS. There are several option 
keywords which allow different information to be extracted, 
either related to the current time of day, or the elapsed timer 
which counts how long the current program has been 
running in seconds. 

ARexx: Your Amiga's Built-in Turbocharger 



268 Section E 

,... . 

!J:IME'.:i• 

CML 
·' , '· , , , _, -,_,. - ·_ ·_,:-·O- ~, _'. -~~ .. _·. , "" ~ :.':. -:,,· .-- - , , 

N~tmal tirr:IJJ:i .iflc:tt4tQur format· wltll-~i AM or· PM 

H~-RS 

MINUTES:i.~%r·. 

NORMAt . .. -

·:;-,» 

appended to the efld. ·. . ···~ . 

Returns th•· tttaltime in seconds ......... "•··'"·" current 
·program ~::Qtin~pt!ilg~ . 

-· . :~~:rtent ti~~~tit0~\:lm~e mi.ditlabt. 

Current tim~~.mlliates' since midnight. 

Current time in 24-flour mode. This is the default, if 
no option keyword is $pecified. · -

RESET S;J · B~sets the gJ:AeSEP'~tner to.zero .• 
- "::,'.;'~'' 

. C~rrent tinil% secori~i· since midnight. 

All of these options can be abbreviated to one character. 
Examples: 

SAY TlME() 

/* CUrrent time, for example: 17:43:00 */ 
SAY TJME ( °CJ:VI:L0 ) 

I* CUrrent time, for example: 11:52PM */ 
SAY TlME ("EL") 
/* Elapsed time, for example: 32.22 */ 

l'RACEIJ 
Syntax: 

result = TRACE ( [option] ) 

Sets the current trace mode, and returns the old one, useful 
for restoring the old trace mode after a short change. If no 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 269 

new trace mode is specified, the old one is returned and no 
change is made to the current trace mode. The TRACE() 
function works even if interactive tracing is on and normal 
TRACE statements in the program are ignored. See Section 
B for further information on tracing and trace modes. See 
the trace statement for a list of trace modes and a discussion 
on interactive tracing. Example: 

I* 'l'RACEO example */ 

SAY •Trace mode is default at this point• 

I* Switch interactive tracing cm., ALL mode */ 
old_trace = 'l'RACE(?A) 

SAY •'!'race mode is •'l'RACE () n currently. n 

CALL 'l'RACE(old_trace) 

'rUNS&A'r•IJ 
Syntax: 

result = 'l'RABSLATE (string [,output] [,input] [,pad] ) 

TRANSLATE() is an advanced function for replacing 
selected characters in a string with others. In its simplest 
form, with just the "string'' parameter, it converts the string 
to upper case - behaving identically to the UPPER() 
function (although it's not as fast). 

This is very easy to use. Two translation strings are 
provided, one containing the characters to replace in the 
"string'' parameter, while the other contains the characters · 
which will replace them. An example: 

ARexx: Your Amiga's Built-in Turbocharger 



270 Section E 

>SAY TRANSLATE(nthis is interesting", "a", "i") 
thas as anterestang 

All the ''i''s in the string have been replaced with "a"s. 
TRANSLA TEO scans the string character by character. 
When it comes across a character which is present in the 
"input" parameter, it replaces it with the corresponding 
character in the "output" parameter. Here is another 
example, which capitalises just the vowels in a string: 

>SAY TRANSLATE("this is interesting", 11AEJ:OU11 , "aeiou") 
thl:s i:s i:ntErEstJ:ng 

The optional pad character, when specified, is used to pad 
out the shorter of the "input" or "output" parameters. The 
default is a space, for example: 

>SAY TRANSLATE ("this is interesting", "AEJ:OU", 
"aeioustn, 11 ln) 
lhi:l U J:n1ErE11J:ng 

l'RIM(J 
Syntax: 

result = 'l'RDl(string) 

Removes trailing spaces from the supplied string argument. 
For example: 

SAY '1'RDI ( " hello ") 
/* Produces the result 0 hello" */ 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 271 

'rRUNCIJ 
Syntax: 

numeric= TRUNC(number [,places]} 

Truncates the number supplied to the optional "places" 
number of decimal places. If not specified the default for 
"places" is 0, which removes any decimal fraction of the 
"number" parameter. If there are less decimal places than 
the value requested, it will be padded with "O" s as 
necessary. For example: 

SAY TRUNC(l0.123,8) 
/* Shows 0 10.12300000° */ 

UPPIERIJ 
Syntax: 

string = UPPER(string} 

Converts the supplied string parameter to upper case 
characters. This function behaves like TRANSLATE() with 
no parameters, but it is more efficient. It understands 
foreign characters and correctly converts them to upper case 
also. For example: 

SAY UPPER("This is an upper case sentence") 
/* Shows "THIS IS AN UPPER CASE SENTENCE" */ 

VALUIEIJ 
Syntax: 

result = v:ALUE(name} 

ARexx: Your Amiga's Built-in Turbocharger 



272 Section E 

Returns the value associated with the symbol specified. If 
the supplied parameter is not a currently initialised symbol, 
it will be created with a default value of the symbol name 
itself in upper case characters. For example: 

I* VALUE() example *I 

a_symbol_l = nHowdyn 

a_symbol_2 = 10.123 

SAY VALUE (a_symbol_l) 
SAY VALUE (a_symbol_2) 
SAY VALUE (a_symbol_3) 

EXJ:T 

This produces the following result when run: 

8.Systern3.l:> rx value 
HOWDY 
10.123 
A SYMBOL_3 

VIERIFYIJ 
Syntax: 

numeric= VERIFY(string, list [, 0 MATCH"]) 

This function works in two ways, depending on whether 
the optional MATCH keyword is specified or not. If it is 
specified the function returns the offset, in characters from 
the start of the string, at which any of the characters in the 
list parameter occur. For example: 

SAY VERIFY ( n Stegosaurus II, 0 ur0 , 0 MATCH") 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 273 

... will return 8, which is the first occurrence of any of the 
characters in "list" in the specified string. Without the 
MATCH parameter, the function works in the opposite 
way, returning the offset, in characters from the start of the 
string, at which any of the characters in the list parameter 
didn't occur. For example: 

SAY VERJ:FY ("Stegosaurus", 11ur11 ) 

... will return 1, because S is not in the list of accepted 
characters. 

WORO(J 
Syntax: 

result = WORD(string, n) 

Returns the "n"th word of the supplied string. In 
conjunction with the WORDS(), and other word-based 
functions listed below, this allows you to go through each 
word in a sentence successively, and could be useful for 
sentence processors such as those found in text adventure 
games. This function returns an empty string if word n does 
not exist. A word in ARexx is a group of non-white space 
characters separated by a white space, or bounded with the 
start or end of a string. For example: 

/* Example of some of the WORDS based functions */ 
SAY "Input a sentence" 
PARSE PULL sentence 

word_index = 1 

SAY "Sentence has "WORDS(sentence) 11 words in it." 

DO WH:CLE WORDLENG'l'H(sentence, word_index) > 0 

ARexx: Your Amiga's Built-in Turbocharger 



274 Section E 

SAY ":rnfonnation on word 11word_index11 , which is 
""WORD(sentence, word_index) 11011 

SAY "Word Length: 0 WORDLENG'l'H(sentence, word_index) 
SAY "Offset of Word fran start of Sentence:" 

WORD:INDEX (sentence, word_index) 
word_index = word_index + 1 
END 

SAY "Operation ConQ;>lete!" 

EXIT 

The above takes a sentence and then provides information 
about each word in tum. 

WORDINDEJCIJ 
Syntax: 

numeric = WORDJ:NDEX(string, n) 

Returns the offset in characters from the beginning of the 
string of the "n"th word. Returns 0 if there are less than n 
words in the string (see WORD() for a full program example 
of the ARexx word functions in action). 

SAY WORDJ:NDEX("Here are sane words", 4) 
/* Produces the resu1t 0 15°, the offset in characters of 
the fourth word frc:m the start of the string */ 

WORDLENGJHIJ 
Syntax: 

numeric = WORDLENGTB(string, n) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 275 

Returns the length, in characters, of the "n"th word in the 
string. This function returns 0 if the word does not exist in 
the string (see WORD() for a full program example of the 
ARexx word functions in action). Example: 

SAY WORDLENGTH ( 0 Bere are same words 0 , 4) 
/* Produces the result 11 4°, the length of the fourth 
word in the string */ 

WORDS(} 
Syntax: 

nwneric = WORDS(string) 

Returns the number of words in the supplied string (see 
WORD() for a full program example of the ARexx word 
functions in action). Example: 

SAY WORDS ( 0 Here are same words") 
/* Produces the result 0 4°, the total words in the 
string */ 

WRl'FECH(J 
Syntax: 

numeric = WRITECH(file_haruile, string) 

Writes the supplied string out to the file specified. The 
result of the function is the number of characters that were 
successfully written. This function is very similar to the 
WRITELN() function, except that it does not automatically 
add a new line to the end of the string in the same way that 
WRITELN() does. For example: 

SAY WRITECH( 0 stdout 0 , "Bello") 

ARexx: Your Amiga's Built-in Turbocharger 



276 Section E 

I* Writes the string to std.out, nonna.lly the shell 
window. The result is 11 5 11 , the number of characters 
written */ 

WRl'r/EIN(J 
Syntax: 

mmieric = WRITELN{file_handle, string) 

Writes the supplied string out to the file specified and 
appends a new line to the end of it. The result of the 
function is the number of characters that were successfully 
written. This function is almost identical to WRITECH() 
except it adds a new line to the end of the string outputted 
to the file, for example: 

SAY WRITELN{ 0 stdout 0 , "Hello") 
/* Writes the string to std.out, nonna.lly the shell 
window. The result is 11 6 11 , the m:anber of characters 
written, including the new-line character which was 
added */ 

X2C(J 
Syntax: 

result = X2C{string) 

Conversion from hexadecimal to character representation. 
This function is often used to convert hex ASCII codes into 
the appropriate character representations. Spaces are 
permitted in the string at byte boundaries only. For 
example, if you use the AmigaOOS command "TYPE" with 
"OPT H" to get a hex dump, you can use X2C to convert the 
hex characters shown into the characters themselves, here is 
the first line of my startup-sequence: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Functions 277 

say x2c("3B202456 45523A20 53746172 7475702D") 

Which produces the result: 

$VER: Startup-

X2DlJ 

Using this and the file access functions it is possible to write 
your own TYPE command complete with hex dump facilities. 

Syntax: 

result = X2D(hex_DUJDber [, digits]) 

Hexadecimal to decimal conversion. The result is the 
decimal of the hex number string supplied. The optional 
"digits" parameter is a numeric stating how many of the 
characters in the hex number we should pay attention to 
during the conversion. The default is all. The "digits" are 
counted from the right hand side of the number, the least 
significant part. For example: 

SAY X2D(ffff) 
/* Produces the result 65535, the decimal of FFFF in 
hex. */ 
SAY X2D(ffff, 4) 
I* Shows -1, the actual DUJDber of a four digit FFFF 
value */ 
SAY X2D(12345678, 2) 
/* Shows 120, the decimal of the two digits furthest to 
the right, 78 */ 

ARexx: Your Amiga's Built-in Turbocharger 



278 Section E 

JCRANGE(J 
Syntax: 

result = XRANGE( [start] [,end]) 

This function generates a sequence of characters from the 
start ASCII value to the end ASCII value. If the "start" value 
is omitted, it is assumed to be zero, and likewise if "end" is 
not supplied it is assumed to be 255 - the highest printable 
ASCII character. If no parameters are supplied, the entire 
range from 0 to 255 is generated (a string 256 characters in 
length). See the discussion on ASCII in Section B for further 
information. This function can be particularly useful for 
building translation tables for the TRANSLA TEO function. 
For example: 

SAY XRANGE( 0 41°x, 0 48°x) 
/* Result is: ABCDEFGH */ 
SAY LENGTB(XRANGE()) 
/* Result is: 256 */ 
SAY XRANGE( 0 a 0 , 11 z") 
/* Result is all lower case characters from a to z 
inclusive */ 

I* This next exanv;>le uses TRANSLATE(). :rt converts 
upper case to lower case: */ 
SAY TRANSLATE ( "TH:tS :rs Dll'EREST:tNG" I XRANGE ("a II I II z n ) I 

XRANGE("A" I "Z")) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsupport.library 279 

rexxsupport.library 

The functions given in rexxsupport.library tend to be more 
advanced so be careful when using them, otherwise you 
could crash your computer. They are intended for the 
advanced programmer and allow you to allocate blocks of 
memory and deal with intertask message communications, 
for example. Before you can use these functions, however, 
you will need to add the library to ARexx' s search list. 
There are a couple of ways of doing this. One is from within 
an ARexx program by using the ADDLIB function, like this: 

I* Add rexxsupport.library to the ARexx Library List: 
*I 
:IF -ADDLJ:B( 0 rexxsupport.library0 ,0,-30,0) '!'HEN DO 

SAY 0 Cmmot add this library0 

EXJ:'l' 

END 
SAY 0 Library added. Read;y for use0 

... or directly from your shell using the ARexx utility 
command RXLIB: 

8.System3.1:> rxlib rexxsupport.library 0 -30 0 

For a more detailed description of these two methods, see 
the appropriate reference section. 

Each function is shown with its name, its syntax, a 
description and example, in the same format as the built-in 
functions listed above. 

A110CM£M(J 
Syntax: 

memoxy_address = ALLOCMEM(length [, attributes]) 

ARexx: Your Amiga's Built-in Turbocharger 



280 Section E 

Allocates "length" bytes of memory and returns a pointer to 
where that memory is. If the allocation failed, the returned 
result is zero. The optional attributes allow you to specify 
which type of memory you would like. Unfortunately, it is 
not possible to specify simple keywords for memory types, 
you have to specify them in the format that the Amiga's 
operating system memory allocation routines require. A full 
list of memory types can be found in the Rom Kernel 
Manuals: Libraries, Edition 3 (published by Addison Wesley). 
The default is "PUBLIC", which means that you are not 
fussed what sort of memory you get, but it must be public 
RAM. It is possible to ask specifically for your allocated 
memory to be cleared for you, or to be "Chip RAM 
(Graphics Memory)". 

THE.COMMONEST TYPES OF MEMORY SPECIFICATION 

.·MEMF_CHIP 

MEMF_FAST 

l\JEMF _PUBLIC 

MEflllF _CLEAR 

"OOOOOOQ2"X 

"00000:004")( 

"00000001 "X 

"OOOlDOOO''X 

Graphics memory (Chip RAM) 

Fast memory 

Public memory (The default) 

An addjtion flag which, when 
added to any of the above, 
ensufe$ your allocated 
memory is cleared first. 

In the above list, the exec name for the type is shown first, 
followed by the exact value (specified in hexadecimal) to 
put in the attributes argument, and then the action of that 
flag. If you wanted Cleared Chip RAM, you would 
therefore specify "00010002"X as the attributes argument. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsu pport. Ii bra ry 281 

Unlike most other ARexx functions - including the 
built-in function GETSPACE() - ALLOCMEM is not 
resource tracked, which means that it is your 
responsibility to free any memory allocated with 
ALLOCMEM by using the FREEMEM() function. If 
you do not do this then your machine could run 
out of memory very quickly and crash. 
ALLOCMEM() should not be confused with the built
in function GETSPACE() which is less advanced, 
and does not allow you to specify memory types. 

Here is an example which allocates 1,000 bytes of chip 
RAM, cleared, shows us where it was (in hexadecimal), and 
then frees it before exiting: 

/* Memory A1location exan;>le */ 
memory = ALLOCMEM(lOOO, 0 00010002°X) 

IF memory = 0 THEN DO 
SAY °Could not allocate memory0 

EXIT 

END 

SAY 0 Memory was at $° C2X(memory) 
FREEMEM(memory, 1000) 

BADDR(J 
Syntax: 

result = BADDR(bptr) 

Converts a BCPL (BPTR) pointer into a standard C pointer. 

ARexx: Your Amiga's Built-in Turbocharger 



282 Section E 

AmigaDOS was originally written in the BCPL language, 
which did not use standard memory pointers like C does. A 
simple conversion is required to tum BCPL pointers into C 
pointers. Unless you are working directly with the Amiga's 
dos.library you are unlikely to need this function. (In fact a 
BPTR points to a long-word aligned memory block divided 
by four. This means that, to convert a BPTR to a CPTR, you 
simply multiply the BPTR by four.) 

The other BCPL nasty is the BSTR, which is a BCPL pointer 
to a string. Normal strings inside the Amiga are a collection 
of ASCII codes with a trailing zero to mark the end of the 
string. BCPL strings differ in that the first byte of the string 
contains the length, and the following bytes contain the 
string itself. There is no terminating zero. For example: 

cptr = BADDR(bptr) 

CLOSEPORf(J 
Syntax: 

Boolean = CLOSEPORT(name) 

Closes a message port previously opened using 
OPENPORT. If there were any messages pending on the 
port ARexx will automatically return them to their sender 
with an error code of 10. Returns TRUE if the port was 
successfully closed, or FALSE if there was an error. Here is 
an example: 

CALL CLOSEPORT ( "DinosaurMessagePort") 
SAY CLOSEPORT ( "FredPort") 
/* Would show 1 if the port was closed, 0 if not */ 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsupport.library 283 

DIEU&YIJ 
Syntax: 

DELAY (ticks) 

Delay for the specified number of ticks. A tick is 1I50th of a 
second, so to delay for 1 second, you pass the parameter 
"50". For example: 

/* Del~ for 1.5 seconds: */ 
CALL DELAY (75) 

DIE&IETIEIJ 
Syntax: 

Boolean = DELE'l'E(filename) 

Attempts to delete the specified file from disk. Returns a 
Boolean success variable, TRUE if the file was deleted, or 
FALSE if the deletion failed (which it might if the file was 
protected from deletion, or did not exist). For example: 

>SAY DELE'l'E ( 0 ram: test 0 ) 

1 
>SAY Dl!:LE'l'E( 0 ram:test 0 ) 

0 

The above example fails the second time around, because 
the file has already been deleted at that point. 

/FORBIDIJ 
Syntax: 

result = FOBBJ:D() 

ARexx: Your Amiga's Built-in Turbocharger 



284 Section E 

Stops task switching. This has the action of disabling multi
tasking. Calls to FORBID() can be nested but, for every 
FORBID() called, there must be a matching call to 
PERMIT(), otherwise the machine is likely to freeze. The 
returned result is the current nest count of FORBIDs. 

There are occasions when you will need to use FORBID in 
general programming, although under some complex 
circumstances it is used to ensure other tasks do not 
interfere with public information while you alter it. 

Do not FORBID() for any length of time because 
other tasks running in your computer will also 
stop. In addition, you must always match every 
call to FORBID with one to PERMIT. 

When you have called FORBID() your ARexx script will 
have all of the available processor time. 

FRIEIEMIEM(J 
Syntax: 

Boolean = F.REEMEM(address, length) 

Frees a block of memory which you had previously 
allocated using the ALLOCMEMO function. You must 
specify the address and length of the block you are freeing. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsu pport. Ii brary 285 

You must ensure that you free the same amount of 
memory that you originally allocated, and at the 
same place. If you get this wrong your computer is 
likely to crash very rapidly indeed - or at best run 
out of memory. This function should not be 
confused with the built-in functions GOSPACE() and 
FREESPACE(). They are not interchangeable so, for 
instance, you cannot free memory allocated with 
GOSPACE() with FREEMEM(). 

For an example of FREEMEM(), see ALLOCMEMO above. 

GEl'ARGlJ 
Syntax: 

result = GETARG(pa.cket, [D]) 

Gets a command, function name or argument string from 
the specified message packet. This is one of a collection of 
functions which are especially designed to give the ARexx 
programmer access to lower level ARexx functionality. This, 
in conjunction with other packet handling routines, allows 
you to write your own basic host interface in ARexx. See 
Section F for an example. The specified packet is an address 
obtained from a previous call to GETPKT(). The optional 
parameter "n" specifies which slot the information should 
be extracted from. The command or function name is 
always in slot 0, and any additional parameters are in slots 1 
to 15. The maximum number of arguments permissible is 
15. In addition, "n must be equal to or less than the actual 
number of arguments for the packet. If not specified, "n" 
defaults to 0, so the function/ command name is read from 
slot 0 of the packet. For example: 

ccmnnand = GETARG Cnw _packet) 
arg_l = GETARG(nw_packet, 2) 

ARexx: Your Amiga's Built-in Turbocharger 



286 Section E 

G/EFPICl'IJ 
Syntax: 

result = GETPK'l'(port_name) 

Returns a four-byte address of a packet on the specified 
port_name, or "OOOOOOOO"x if no packets were available. The 
port_name parameter is the name of a port which has been 
opened with a previous call to OPENPORTO within the 
current ARexx program. It is normal practice to use 
W AITPKT() to wait for a packet to actually arrive at a port 
before using GETPKT() to fetch it, this way your program is 
not wasting CPU time as it would if it was making constant 
calls to GETPKT() and checking the return value to see if a 
packet has arrived. See Section F for a proper example of the 
packet handling functions of ARexx in action. For example: 

/* wait for a packet and then get it on port 
"toby's_port" */ 
CALL WAJ:TPK'l' ( "toby I s_port n) 

packet = GETPK'l'("toby's_port") 

/* Cope with the possibility that the packet 
disappeared *I 
IF packet = NULL ( ) THEN DO 

SAY "Weird, I thought a packet was available, but it 
isn't!" 

EXIT 
END 

/* Show command/function name and first argument *I 
SAY "Command was:" GETARG(packet) 
SAY "Argument l was: " GETARG(packet, 1) 

EXIT 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsupport.library 287 

MJlK/EDIR(J 
Syntax: 

Boolean = MAKEDXR(directory_name) 

Attempts to create the specified directory. This function 
returns a Boolean success value, TRUE, if the directory was 
created, and FALSE if it was not (which could mean that the 
supplied path was invalid, or the directory already existed). 
For example: 

>SAY MAKEDXR( 11 ram:J11¥_directory11 ) 

l 
>SAY MAKEDXR( "ram:JD¥_directory/another_directory") 
l 
>SAY MAKEDXR ("ram: JD¥ _directory I another_directory") 
0 

The last one fails because we've attempted to create a 
directory which now already exists. 

NJEJCl'(J 
Syntax: 

result= NEXT(address [,offset]) 

Returns the four-byte value at the specified address. If the 
optional offset is specified this is added to the address 
before the value is read. This function is intended mainly for 
use with exec list structures, for following them forwards 
and backwards, although it has other uses. For example: 

/* Go to the next node and say whether it was the last 
in the list */ 
next_node = NEXT( current_node 
XF next_node = NULL () THEN SAY "Reached end of list" 

ARexx: Your Amiga's Built-in Turbocharger 



288 Section E 

NUll(J 
Syntax: 

result = NULL{) 

Returns a null pointer as a four-byte string in the form 
"0000 OOOO"X. This is primarily for use with functions which 
return pointers to items as four-byte addresses, because 
these functions will often return a null pointer if they failed. 
For example: 

>IF GETPKT ( "rqy _port") = NULL () THEN SAY "No message 
available" 
No message available 
>SAY C2X(NULL()) 
00000000 

OFFSET(J 
Syntax: 

result = OFFSET(address, displacement) 

Returns a new address having added the displacement 
parameter to the address parameter. The address is a four
byte string and the displacement is a numerical value. This 
function is particularly useful for calculating the address of 
certain fields within a system structure. Normally calls to 
C2D and D2C would be required to add four-byte string 
addresses together: 

SAY D2C(C2D(address) + displacement) 

... is functionally identical to the call: 

SAY OFFSET(address, displacement) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsupport.library 289 

... which is more straightforward, so you are less likely to 
make a mistake. For example, if you wanted to find the 
version of a library, whose library base is "07F45210", you 
can calculate the final address of the version (which is at 
offset "00000014"), thus: 

>SAY C2X(OFFSET( 0 07F45210°X,20)) 
07F45224 

OPENPORl'lJ 
Syntax: 

result = OPENPORT(port_name) 

Creates a new public message port with the provided name. 
This function returns the four-byte address of the new port, 
or "OOOOOOOO"x if the port could not be opened (the port 
opening would fail if a port with the given name already 
existed) or initialised. If you open lots of ports for one 
ARexx program you are likely to run out of signal bits. For 
more information on signal bits, consult the Amiga Rom 
Kernel Manuals: Libraries, Edition 3; published by Addison 
Wesley, which contains additional information on ports in 
general, though not in the context of ARexx. 

Ports opened with OPENPORTO are automatically closed 
when the program exits and any pending messages are 
returned to their sender. However, it is good programming 
practice to free any resource when you have finished using 
it, to avoid using memory and other machine resources that 
you no longer need. See Section F for an example of 
OPENPORT in action, in a host interface written entirely in 
ARexx. An example of OPENPORT(): 

/* Open a public message port */ 
:m,y _port = OPENPORT ( "toby • s_port 11 ) 

ARexx: Your Amiga's Built-in Turbocharger 



290 Section E 

/* Check for the possibility that the port wasn't 
created */ 
IF I1W' _port = NULL ( ) THEN DO 

SAY "I can't open the port" 
EXIT 
END 

I* Put our port handing code here */ 
SAY "A-Ok" 

/* Now close port and exit */ 
CALL CLOSEPORT ( 0 toby I s_port n) 

EXIT 

PERMlf(J 
Syntax: 

result = PERMIT() 

Re-enables multi-tasking which was previously disabled 
using a call to FORBID(). Calls to FORBID() and PERMIT() 
are nested and only succeeds when the final nested 
FORBID() has a corresponding call to PERMIT(). PERMIT 
returns the current nest count, or -1 if this call to PERMIT() 
finally re-started multi-tasking. 

Disabling multi-tasking degrades system 
performance. Only use it if strictly necessary. 
Every call to FORBID() has to have a matching 
PERMIT() call. See FORBID() for more information. 

For example: 

/* Forbid() and Pennit() example */ 
SAY FORBID ( ) 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsupport.library 

SAY "The system is all ours" 
SAY PERMIT () 

EXIT 

... produces the result ... 

0 
The system is all ours 
-1 

RENAME(J 
Syntax: 

Boolean = RENAME(old_file, new_file) 

291 

Attempts to rename the file "old_file" to the name "new _file". 
Returns a Boolean success value of TRUE if the rename 
succeeded, or FALSE if it did not (which might happen if 
the new file was invalid, or the file did not exist). Although 
you can rename a file to another directory, you cannot move 
it to a different device using rename. For instance: 

>SAY RENAME ( 11 libs: rexxsupport. library", 
0 libs:rexxsyslib.library0 ) 

0 

This fails because the new filename specified already exists. 

REPIY(J 
Syntax: 

REPLY(packet, re) 

ARexx: Your Amiga's Built-in Turbocharger 



292 Section E 

Replies to the sender of the supplied packet, setting the 
result field to the value given by the "re" parameter (return 
code). The secondary result is cleared. The packet must be a 
four-byte address as supplied from GETPKT(), and re must 
be an integer. 

REPL YO is used in connection with other port and packet 
handing routines such as OPENPORT(), WAITPKT() and 
GETPKTO. These functions can be used to write your own 
host interface entirely in ARexx. See section F for a detailed 
example of this. For example: 

/* Reply to the packet, with a return code of 10 */ 
CALL REPLY(Jl\Y_paCket, 10) 

SHOWDIR(J 
Syntax: 

result= SHOWDIR(directory, ["ALL" I "FILE" I "DIR"], 
[pad]) 

Returns a list of files, directories, or both, in the directory 
specified with the "directory" parameter. Each entry in the 
list is separated with the optional pad character. The default 
for pad, if not specified, is a blank space. The second 
parameter can be used to filter the list so only files, or only 
directories are shown. If omitted, this parameter defaults to 
"ALL". These option keywords can be abbreviated to one 
character. For example: 

/* Show files and sub-directories in the rexx: assign 
separated with a - */ 
SAY SHOWDIR("rexx:", "a", "-") 

/* Show a list of directories only in the SYS: assign, 
with a new line between each entry */ 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsupport.library 

SAY SHOWDJ:R( 0 sys: II, 0 D0 , 0 0A0 x) 

/* 0 0A11X is the ASCJ:J: code for LI:NEFEED */ 

SHOWllST(J 
Syntax: 

result= SHOWLJ:ST(list_name, [name], [pad], 
[ n ADD.RESS II] ) 

293 

This is a useful function that allows you to check various 
system lists, such as a list of ports or assigns for example, 
and find specific information about that list - such as 
whether a certain entry exists. If the "name" parameter is 
not specified, then the result is all items in the appropriate 
list, separated with the optional pad character. The default 
pad character, if not specified, is a blank space. 

If the "name" parameter is provided, then SHOWLIST() will 
return a Boolean result depending on whether "name" is 
present in the list specified. Name matching in this way is 
case sensitive. If the "ADDRESS" keyword is specified as 
well as a name, then the result of the function is a four-byte 
address of that item. 

If you are finding the addresses of system 
resources in this way, be very careful what you 
do with the information - you could easily crash 
your computer and cause loss of data. 

A table of valid values for the list_name parameter is given 
on the following page. 

ARexx: Your Amiga's Built-in Turbocharger 



294 

ASSIGNS 

DEVICES 

HANDLERS 

INTRLIST 

LIBRARIES 

MEMLIST 

PORTS 

Section E 

VALID VALUES FOR LIST"""'NAME PARAMETER . 

Lists all assigns in the system, such as "DEVS:n 

Lists devices present, such as "seriatdevice" ana 
"timer .device" 

AmigaDOS handlers, such as CON1 PJPE, SER, DFO. 

Nodes on the exec lntrlist of interrupts. 

Available libraries, such as "intuition.library" and 
"dos.library" 

Nodes on the exec Memlist, such as "expansion 
memory" and "chip memory" 

Lists public message ports on the exec PortList 
structure. 

RESOURCELIST Lists resoutces in the ···system, . such as 
"potgo.resource" 

SE~HOR~LIST Li~~s semap~ores, - dsed to avoid conflicts between 
· more than···one task .requiringaccess· to the same 

resource. 

TASKREADV 

VOLUMES 

A list of tasks in a READY state; 

A list of volumes available (disk names, such as 
"System3.1") 

WAITING A lists of tasks in a WAIT state. 

All of these can be abbreviated to one character. 
SHOWLIST() also allows you to look at lists which it cannot 
deal with normally, by specifying a four-byte address of a 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: rexxsupport.library 295 

list header, rather than one of the above list names, for the 
first parameter. It is unlikely, however, that you'll ever want 
to do that in normal circumstance. Examples: 

/* Show a list of volumes, separated with a new line */ 
SAY SBOWLIS'l' ( "V" , , 0 Oa 0 X) 

/* Say 0 Yes 0 if 0 lucyldb.libraxy0 is present */ 
IF SBOWLJ:ST( 0 L0 , 0 lucyldb.libraxy0 ) THEN SAY 0 Yes 0 

STAT/EF(J 
Syntax: 

result = S'l'A'l'EF(filename) 

Returns a string containing information about a file on disk. 
This information includes the length of the file, protection 
information and the date when it was last updated. The 
exact format of the returned string is as follows: 

{DJ:R I FILE} length blocks protection days minutes 
ticks comment 

The first keyword tells you if the file specified was a 
directory name or an actual file. Then you get the length of 
the file in bytes, and then in blocks (normally 512 bytes), the 
protection details, and the last date the file was updated in 
days since 1st January 1978 followed by the number of 
minutes since midnight, and the number of ticks in the 
minutes. Finally the file's comment, if any. For example: 

>SAY STA'l'EF( 0 libs:rexxsyslib.libraxy0 ) 

FILE 33392 66 ~ARW-D 5552 898 1530 

ARexx: Your Amiga's Built-in Turbocharger 



296 Section E 

WAl'rPICTIJ 
Syntax: 

Boolean = WAJ:'l'PR'l'(port_name) 

Waits for a packet to arrive at the specified port_name. The 
result is a Boolean value, TRUE, if a valid packet is waiting 
at that port, or FALSE if not. Normally this will return 
TRUE because it waits until a packet is available before 
returning. However, in some error conditions it may return 
FALSE, so always check the result. Having waited for a 
packet, it can be fetched with GETPKTO and finally replied 
to using REPLY(). 

W AITPKTO is used in connection with other port and 
packet handing routines such as OPENPORT(), REPLY() 
and GETPKT(). These functions can be used to write your 
own host interface entirely in ARexx. See section F for a 
detailed example of this. For example: 

>SAY WAJ:'l'PR'l' ( 0 TestPort 0 ) 

1 

Otlter li•raries 
Other function libraries are also available. Many can be 
found in PD libraries and on bulletin boards. Each offers 
different features. For example, some of the popular 
libraries for generating windows with neatly laid out 
buttons come with rexx function libraries. Check any 
supplied documentation for proper instructions on usage. 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Utilily programs 297 

Utility Programs Reference 

HI 

ARexx comes with a number of special utilities that provide 
various control functions. These can be found in the Rexxc 
directory. The RX program which actually runs ARexx 
scripts can be found here. Apart from RX the others are not 
strictly necessary in order to use ARexx, but since they are 
only a few hundred bytes each, they are worth looking at. 
Several are very useful when debugging scripts. These 
utilities are run from the shell, or from ARexx scripts after 
issuing "ADDRESS COMMAND". 

In the following reference section, optional parameters are 
specified in square brackets [], and after each command 
there is a summary of its purpose plus a detailed description. 

Stop all running scripts 

This causes all active ARexx scripts to stop immediately. It 
does this by setting a global flag which causes the HALT 
interrupt to occur within each script. Scripts which intercept 
and process this interrupt cannot resist being terminated. 
Once all programs have been interrupted, the flag is reset. 
This can be used to stop run-away ARexx scripts. 

IUC name f argu111entsJ 
Run an ARexx Script 

Runs the named ARexx script. If no path is specified, only 
the rexx: drawer and current directory are searched for the 
named script. Unless specified, RX adds ".rexx" to the end 
of the filename. Any arguments will be passed to the script 
for processing. 

ARexx: Your Amiga's Built-in Turbocharger 



298 Section E 

RJCSET [name II=J valueJ 
Set a global variable value 

Sets the value of an ARexx clip or, if no arguments are 
specified, lists any currently-defined clips in the list. An 
ARexx clip is like a global variable, a value that is available 
to all scripts which are run. This can be very useful because, 
for instance, you could set a value to a word directory 
which all ARexx scripts could then access to decide where 
to store information. There is a built-in function, called 
"GETCLIP" which allows ARexx scripts to read clips. From 
the shell, you could set a clip value like this: 

8.System3.1:> :rxset toby author_of_book 
8.System3.1:> :rxset 
toby=author_of_book 
8.System3.1:> 

This sets the value of the clip "toby'' to be equal to the string 
"author_of_book". We could then read this from within an 
ARexx script using getclip: 

/* Clip reading Demo */ 
SAY 0 value of Clip 0 toby0 is: 0 GE'l'CLJ:P ( 0 toby0 ) 

When run this produces the response: 

8.System3.1:> rx toby 
Value of Clip "toby" is: author_of_book 
8.System3.1:> 

RJCC 
Terminate ARexx 

This causes the interpreter to stop accepting new scripts and 
terminate as soon as the last currently-running script 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Utility programs 299 

rco 

rec 

finishes. It is the opposite of RexxMast. When RXC is run, 
the REXX public port is withdrawn. This prevents any new 
scripts from starting up. All memory occupied by the 
ARexx interpreter (about 45-SOk) is released as soon as the 
last script finishes. Freeing this memory is the only reason 
for using RXC - and if you have a lot of RAM in your 
Amiga then this is not much use to you. 

Opens global tracing console 

This opens a special window on the workbench screen. All 
tracing information is directed into it. In addition, when 
using interactive tracing, any input required is typed into 
this window. Normally when using TRACE (as described in 
Section B), all program-tracing information is directed to the 
default console, which is often the shell window from which 
the script was run. When TCO has been run, all TRACE 
information from currently-running scripts is directed to 
this window. A script can override this by specifying a 
STDERR output channel, in which case tracing information 
will be directed there instead. 

As TCO intercepts tracing information from every script 
running, it is best not to run too many at once because the 
trace window can become very busy and it will be harder to 
spot specific information. 

Closes global tracing console 

This closes the Global Tracing Console window after it has 
been opened using TCO. The window will only close when 
all scripts using it have indicated that they are finished. If 
any scripts are waiting for something to be input from the 

ARexx: Your Amiga's Built-in Turbocharger 



300 

I'S 

l'IE 

Section E 

tracing window, then that must also be completed before it 
will close. 

Set global tracing flag 

This sets the global tracing flag and switches on tracing 
operations in any currently-running scripts. It also means 
that any further ARexx scripts run will also have tracing on. 
This command is very useful as a debugging tool because 
you can regain control of programs that are going wrong, or 
stuck in an infinite loop, and find out what is happening. 

Clears global tracing flag 

This is a global clear tracing command. It will switch tracing 
off in any ARexx scripts which currently have tracing on, 
and they will then run normally. It also acts as a reversal of 
the TS command. 

Waif/ForPorf fport-nameJ 
Waits for a port to become active 

This command waits for up to 10 seconds for the named 
Arexx port to become available. In other examples in this 
book we have used the Show() function to find out if a port 
is present, like this: 

DO UNTIL Show(Ports, 0 rexx_ced0 ) 

END 

This would wait for the "rexx_ced" host address to become 
available. We could also use the WaitForPort command: 

ARexx: Your Amiga's Built-in Turbocharger 



Reference: Utilily programs 

ADDRESS COMMAND 
WaitForPort "rexx_ced.0 

301 

This would have had the same effect but has the added 
advantage of only waiting for 10 seconds before failing with 
a return code value of 5. This is not normally enough to halt 
operation of an ARexx script, unless OPTIONS F AILA T has 
been set to 5 or lower. It means that you can check the 
return code value, as in this example: 

/* WaitForPort Demo */ 

ADDRESS COMMAND 
WaitForPort "Stegosaurus" 

SAY 0 Return Code was: n RC 
IF RC >= 5 THEN SAY 0 Which means that it didn't find the 
portn 

Assuming, of course that you don't have a program with an 
Arexx host address of "Stegosaurus" then this program will 
produce the result shown in Figure E-1, which also 
demonstrates TCO and TS in action to show tracing 
information in the global tracing console window. 

RJCllB {name priority {offsetJ lversionJJ 
Add a new library of functions to the library list. 

This adds a new function library to those already available 
to ARexx. Function libraries are explained in more detail in 
the function reference in this section and in Section B. The 
RXLIB command is of particular use if you want to ensure 
that certain function libraries are always pre-loaded because 
you can add lines into your user-startup file like so: 

RXLIB rexxsupport.libra:ry 0 -30 0 

ARexx: Your Amiga's Built-in Turbocharger 



302 Section E 

This would load the rexxsupport.library and make all of its 
functions immediately available to ARexx scripts. You can 
also load libraries from within scripts using the built-in 
Arexx function ADDLIB. For a library to be loaded, it must 
be present in your LIBS: drawer. Typing RXLIB by itself and 
pressing return lists all libraries currently in the library list, 
for example: 

8.System3.1:> J:Xl.ib rexxsupport.library 0 -30 0 
8.System3.1:> J:Xl.ib 
rexxsupport. library (library) 
REXX (host) 
8.System3.1:> 

In the above shell session, the rexxsupport.library was 
loaded and then RXLIB issued by itself to show currently 
loaded libraries. 

ARexx: Your Amiga's Built-in Turbocharger 



303 

Section F 

Adding ARexx Support 
to Your O\Vll Progra111s 

ARexx: Your Amiga's Built-in Turbocharger 



304 Section F 

This book would not be complete without a discussion on 
how you can add ARexx support to your own programs. 

As we have seen in Sections C and D, the ability to 
communicate with other applications and expand the 
functionality of ARexx is one of its biggest advantages over 
other languages. There will come a time when you write an 
application, be it in ARexx, or in another programming 
language such as "C" or Assembly, when you will want to 
be able to allow other programs to access some of its 
features and information. This is when you will need to 
consider adding proper ARexx support. 

How you do this depends on the programming language 
you are using. The easiest way is to use ARexx itself. With 
the advanced functions provided in the rexxsupport.library, 
it is possible to set up a simple ARexx port, accept host 
commands from other applications, and act on them. The 
catch is that you can only implement command hosts, you 
cannot implement full function hosts (this ability may or 
may not be sorted in later versions of ARexx, we'll have to 
wait and see). 

Another major disadvantage with implementing ARexx 
support in ARexx itself is the speed. ARexx is not one of the 
the fastest languages in the world, but its flexibility and ease 
of use normally compensate. Adding support this way is 
relatively easy and all the information you need is in this 
book. Other advantages of this method are that it is fast to 
write, easy to debug, and a quite neat way of prototyping a 
major application in another language. 

If you wish to add ARexx support to an application which is 
not written in ARexx, then it becomes a little more complex 
-particularly if you are using Assembly. The Amiga's 
operating system isn't really designed to be programmed in 
Assembly, all of the functions provided for dealing with 
everything from opening windows to processing keyboard 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 305 

information were designed with "C" in mind. This is great if 
you are a "C" programmer, but can be a little daunting if 
not. Having said that, regardless of whether you program in 
"C", a basic "reading" knowledge of the language is very 
useful. By reading knowledge, I mean knowing enough "C" 
to be able to look at a listing and get a rough idea of what is 
going on. This makes Amiga developer documentation (the 
Amiga Rom Kernal Manuals, see Appendix 2) quite handy! 

In this part of the book will show you how to add an ARexx 
port to an ARexx program, together with a working 
program example. In addition a brief introduction to adding 
ARexx support to other applications is discussed in "C", 
together with an example. 

Ad.ding ARexx Support in ARexx 

The procedure for implementing a command host in ARexx 
itself is simple. First we have to open a port which will be 
our host address. Other applications can then "tune in" to 
us using the ARexx ADDRESS statement and by specifying 
our port name. Having opened a port, we simply wait for 
messages to arrive at it, deal with them, reply to them, and 
continue until we have finished; at which point the port is 
closed, and the program finishes. 

The example program acts as a simple passive command 
host. It accepts two commands, QUIT and DINOSAUR, and 
is passive because it does not communicate with any other 
applications. It is a very simple prehistoric animal enquiry 
program. The QUIT command makes it exit and close its 
ARexx port. The DINOSAUR command, followed by a 
single parameter of the dinosaur name in question, will 
print information about that dinosaur. In this example, any 
additional code to show something a little more meaningful I 
has been left for you to add (or at least imagine). '-' 

ARexx: Your Amiga's Built-in Turbocharger 



306 Section F 

You could create a file of dinosaurs and data as a kind of 
"reference manual". This would allow you to create a fairly 
powerful program; in fact you could make it far more useful 
by interfacing it with an ARexx picture program to display 
a graphic to accompany the information. You could take 
this even further and play sampled, narrated text to talk you 
through each entry. We might be getting a little carried 
away here, but at least you can see how easy it would be to 
link other applications into even the simplest of programs to 
add more powerful features. 

So, how do we use our command host? Well, if you type in 
and run the command host in one shell window, open 
another shell and then type in and run this small program, 
you will soon see! Our ARexx port name is "dinosaur'': 

/* Find info about a dinosaur *I 

IF .. SBQW(ports, 0 dinosaur0 ) '!'BEN 

DO 
SAY 0 The Dinosaur Enqui:ry program is not-. 
rnnning. 0 

EXIT 10 

END 

ADDRESS 0 dinosaur" 

SAY 0 ED.ter a dinosaur name: n 

PULL dino_name 

DIN'OSAtJR dino_name 

EXIT 

Clearly, it's easy to use and just like talking to any other 
command host such as the ProWrite word processor or Art 
Department Pro (see Section D). Now for how it all works ... 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 307 

Our command host does a few things to initialise itself. First 
it ensures the rexxsupport.library is available in the library 
list or, if not, it adds it. Then we check to see if we are 
already running-you can't create two of our command 
hosts at once. Most major ARexx-supporting programs, 
such as the CygnusED Professional text editor, will create 
unique port names by appending a different number to the 
end. CygnusED (CED), for example, calls its first port 
"rexx_ced" and then successive CEDs get the names 
"rexx_cedl", "rexx_ced2" and so on. 

/*Check if a copy of this program is already :running: 

*/ 
:IF SHOWLJ:ST( 0 PORTS0 , 0 dinosaur0 ) '!'HEN 

IX> 
SAY 0 Po:rt already exists, you can't run this-. 
program twice! n 

EXJ:T 10 
/* Return an error code */ 
END 

If it does already exist, the program shows an error and 
exits with an error code. If not, it moves on to create our 
ARexx port itself using the OPENPORT function. Once we 
have opened the port the actual procedure of receiving and 
processing messages is very easy and goes like this: 

1 Wait for a message to arrive at our port 
2 Confirm that it is a valid message 
3 Extract the .command and any parameters from the 

command message 
4 Process the command 
5 Reply to it 
6 Repeat until done! 

Note that when a message packet arrives at our port, it is 
not necessarily a valid one. This is common in a lot of cases 

ARexx: Your Amiga's Built-in Turbocharger 



308 Section F 

on the Amiga, so we have to check that it is not null. We do 
this not by comparing the return value to zero, but to an 
empty address "OOOOOOOO"X. The easiest way of doing this 
is by using the NULL() function: 

/* Xf its not NOLL, process it: */ 
XF packet -= NULL () THEN 

DO 

I* Got one, it's great, process it ••• */ 
END 

In addition we have to reply to the packet when we have 
finished with it. When we reply, we also get to set the return 
code value. The program returns 10 if there is a serious 
error or 0 if everything is fine: 

CALL REPLY(packet, error_level) 

... we set the "error_level" variable to our desired value. 

For more information on the functions used in this example 
look up the functions in the "rexxsupport.library", in 
Section E; Reference Section. 

/* Simple Canmand Bost (Passive) example in ARexX */ 

/*'JA)ad up the rexxsupport.libraxy, we'll need it: */ 
XF -SHOW("L", "rexxsupport.libraxy") THEN 

DO 

XF -ADDLXB( 0 rexxsupport.libraxy0 , 0, -30, 0) THEN 
DO 

SAY "Could not open ARexx support library! 0 

EXJ:T 10 
/* Return an error code */ 
END 

END 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 309 

/*Check to see if a copy of this program is already 
running: */ 
J:F SHOWLJ:ST("PORTS", "dinosaur") THEN 

DO 
SAY "Port already exists, you can't run this 
program twice! 11 

EXIT 10 
/* Return an error code */ 
END 

/*Atteq;>t to create our port: */ 
J:F -OPENPORT( 0 dinosaur") THEN 

DO 
SAY "Can't create port" 
EXIT 10 
/* Return an error code */ 
END 

/*Now loop around waiting for messages: */ 
finished = 0 

DO UNTJ:L finished 

/* First, wait for a packet: */ 
CALL WAJ:~( "dinosaur") 

/* Get the packet: */ 
packet = GE'l'P.KT ("dinosaur") 

/* J:f its not NULL, process it: */ 
J:F packet -= NULL () THEN 

DO 

I* Reset error code level */ 
error_level = 0 

/* Fine, :now grab the full CCllllllllUld sent to us: */ 

ARexx: Your Amiga's Built-in Turbocharger 



310 Section F 

host_sent = UPPER(GETARG(packet)) 

:IF WORDS(host_sent) > 2 THEN 
DO 

SAY 0 :Illegal Command-Line, too man.y words In 
error_level = 10 
END 

DO 

cananand = WORD(host_sent, 1) 
I* .:rust the cananand */ 
parameter = WORD(host_sent, 2) 
/* The parameter */ 

I* Process QUIT cananand */ 
:IF command = 0 Qu:IT0 THEN 

finished = 1 

ELSE 

DO 

:IF WORD(cananand, 1) -= 0 D:INOSAUR0 THEN 
DO 

SAY 0 unlmown command: 0 WORD (command, 1) 
error_level = 10 
END 

ELSE 

DO 

/*success, fetch infonna.tion on this 
dinosaur! */ 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 

CALL Dinosaur:rnformation(parameter) 
END 

END 

END 

CALL REPLY(packet, error_level) 

/*Close our port and exit: */ 
CALL CLOSEPORT ("dinosaur") 

EXJ:T 

311 

/*Now for the function to return information about a 
specified dinosaur! */ 

Dinosaur:rnformation: PROCEDURE 

PARSE ARG dino_name 

SELECT 

WHEN dino_:name = "STEGOSAURUS" THEN' SAY., 
"Stegosaurus, the best." 
WHEN dino_name = "D:CPLODOCUS" THEN' SAY "Long., 

neck, and big tail" 
OTHERWJ:SE SAY "Unlmown. dinosaur, try another" 
END 

ARexx: Your Amiga's Built-in Turbocharger 



312 Section F 

Our prehistoric animal enquiry program in action. 

ARexx Support: non-ARexx Applications 

Adding an ARexx port to an application written in another 
language is more complex than in ARexx, but you benefit 
from additional features which would be impossible to get 
in ARexx without additional function libraries. We will 
discuss how to set up a passive ARexx port simply to 
receive messages and act on them. 

However, most major applications supporting ARexx will 
want to create an active ARexx port and communicate with 
the ARexx resident process to control the clip-list, start 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 313 

ARexx macros, modify an ARexx programs variable list, or 
communicate with other applications. Unfortunately, since 
this is such a large subject, it is beyond the scope of this 
book to provide all the information needed, including a 
break-down of the ARexx resident process and all of the 
examples that you'll need. There is a reference guide called 
Amiga: Programmer's Guide to ARexx -Amiga Technical 
Reference Series, but it is not, unfortunately, available from 
book-shops - only from Commodore. The book requires at 
least a reading knowledge of "C". 

For the remainder of this section, we'll look into some of the 
basic information for adding ARexx support to "C" 
programs. If you are an Assembly programmer, the job will 
be harder, but is certainly possible. It's worth asking 
yourself though: "Do I really have to program in 
Assembly?" For most programs it's not usually necessary 
these days, and you just make work for yourself. Even some 
modem computer games are written in "C" ! 

The first thing we need to do when adding ARexx support 
to an application is create a unique ARexx port. This can be 
anything you want, but it makes sense for it to be simple, 
and correspond to the nature of the application. Since the 
Amiga is a multi-tasking operating system, you have to bear 
in mind that several of your applications could be run 
simultaneously. If this is a problem, then you can prevent 
your program running multiple times by checking for the 
presence of a particular message port. If it is not present, 
then yours will be the first copy run, so go ahead and create 
it. If it is present, show a message to say "You can't do this" 
and then exit the program. 

We use a procedure similar to this to create our ARexx port. 
If the application can be legally run several times, each 
ARexx port has to be unique. The easiest (and standard) 

ARexx: Your Amiga's Built-in Turbocharger 



314 Section F 

way of doing this is to add a number to the end of the port 
for each successive run, for example: 

nw_port.1 
nw_port.2 

... and so on. Creating an ARexx port is easy, we simply use 
the CreatePort function: 

#define PORT_NAME 11 fred11 

void ma.in{void} 
{ 

struct MsgPort *n\Y _port = NULL; 

Forbid{}; 
/* Prevent messing with ports while we're checkiDg */ 

/*Check to ensure the port doesn't already exist: */ 
if {FindPort{PORT_NAME} == NULL} 

port = CreatePort{PORT_NAME, 0}; 
else 

{ 

/* Port existed, we could add 11 .1°, 11 .2 11 , etc, on 
the end and try again here. .. * I 
} 

PeJ:mit{}; 

/* Great stuff, we have a port ... */ 
} 

A better way to achieve this might be to put the port 
creation routine into a separate function, so that it can be 
called in a loop to find a unique port, simply adding ".l", 
".2" and so on to the end of the name each time, until the 
port is successfully created. Once we have created our port 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 315 

we are ready to use it to create an ARexx interface. The 
procedure for receiving messages on this port is simple: 

1 Use the Wait() or WaitPort() function to wait for something 
to arrive 

2 Use GetMsgO to get the message structure 
3 If this is a reply to a message we have sent, deal with it. If 

not, it is a command, so look at the command and 
arguments in question 

4 Reply to the message having stored any results that will be 
needed. 

W G 
~ 

Sending messages is similar, although we won't be covering 
that in any detail here. However, the general procedure 
involves creating a special RexxMsg structure (used for both 
sending and receiving messages), setting it up as required, 
sending it direct to the appropriate message port (which we 
can find using FindPort) using PutMsg(), and then waiting 
for the reply to come back before re-allocating any resources 
used (such as the RexxMsg structure itself, for example). 

You will notice that ARexx expects replies to all messages 
sent. If you are sending messages, you have to wait for the 
reply before freeing any resources used and, likewise, if you 
are receiving messages you have to remember to reply to 
them when you have finished. 

It is very important to remember this - failing to 
reply to messages can cause a dramatic loss in 
performance of your machine, and memory could 
vanish at a fair old rate because the sender of the 
message is not able to free memory. This could 
eventually crash your computer, so be careful. 

Now then, how do we set up our port to receive messages? 
Let's have a closer look at exactly what happens. When 
ARexx comes across a command which is sent to the current 

ARexx: Your Amiga's Built-in Turbocharger 



316 Section F 

host, it is evaluated first and them dumped straight out. It is 
up to the receiving application to then decode that and deal 
with the arguments as it sees fit. Take this for example: 

/* Send a cannand to the dinosaur cannand host program 
exanple listed at the start of this section */ 
ADDRESS "dinosaur" 
fred = 1 
john= 2 
lobster = 11The:rmidore11 

ADDRESS "dinosaur" 
DINOSAUR fred lobster john "hi 11 

EXIT 

If we now examine what it is we receive at our port (you 
can easily modify the example ARexx command host 
program to do this) we'll see that we get this: 

DINOSAUR l The:rmidore 2 hi 

You can see that the ARexx interpreter has fully evaluated 
the expression, substituting variables where required, and 
then sent the whole line to us for processing. This was easy 
to achieve in ARexx itself and it's just as easy to achieve in 
"C". Having evaluated the expression into a single string, 
the interpreter allocates a RexxMsg structure, then sets it up 
as a command message and gives us a pointer to the string. 
A RexxMsg structure looks like this: 

struct RexxMsg { 
struct Message :cm_Node; /* EXEC message structure */ 
APTR :cm_TaskBlock; /* global structure ., 
(private) */ 

APTR :cm_LibBase; /* library base (private) */ 
LONG :cm_Action; /* command (action) code */ 
LONG :cm_Resultl; /* primary result (return code) 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 317 

*I 
LONG :rm_Result2; /* secondary result */ 
STRPTR :rm_Args[16]; /*argument block., 
(ARG0-ARG15) *I 

struct MsgPort *:rm_PassPort; /* forwarding port */ 
STRPTR :rm_CommAddr; /* host address (port name) */ 
STRPTR 
LONG 
LONG 

:rm_FileExt; /* file extension */ 
:rm_Stdin; /* input stream (fileha:ndle) */ 
nn_Stdout; /* output stream (fileha:ndle) */ 

LONG nn_avail; /* future expansion */ 
}; /* size: 128 bytes */ 

The RexxMsg structure and all of the other ARexx related 
header file information is found in the rexx/ drawer with 
the standard Amiga "includes" (supplied with any 
commercial compiler or assembler). 

The interpreter sets the rm_Action field of the structure to 
RXCOMM (which means "Rexx Command Message"), and 
the rm_Args[O] to point to the string. Having done this, it 
sends the message to the command host for processing. 

We would simply check the rm_Action field to see what 
type of message it was and if it is RXCOMM we could then 
parse the rm_Args[O] field to find the command and any 
arguments, perform the appropriate action, and then reply 
to it. Replying to the message is simple, we set up any 
return code information which needs to be sent back to the 
ARexx interpreter (such as a result, or error code), and then 
use the ReplyMsgO function. The interpreter would then 
pick up the reply and free the resources used to send you 
the command, and the ARexx program which caused the 
message to be sent could continue running. 

We can find more information from the rm_Action field. An 
additional flag (RXFF _RESULT) is set if the interpreter 

ARexx: Your Amiga's Built-in Turbocharger 



318 Section F 

expects a result to be sent back (for instance, if OPTIONS 
RESULTS was set then a result would be expected). 

As well as the RXCOMM action for commands, we could 
also implement a function host (or indeed a combination of 
the two), by receiving and processing RXFUNC messages 
also (see below). Let's have a brief look at how we can 
receive and display what is sent to our ARexx port. We will 
assume that our port has already been opened, using the 
example code fragment shown above: 

WaitPort(JIW'_port); 

while ( (msg = (struct RexxMsg *) GetMsg(JIW'_port))., 
!= NULL) 

{ 

/* Got one, check if its a RXCOMM message */ 
if ( (msg->rm,_Action &: RXCODEMASK) == RXCOMM) 

{ 

I* Process our command now! *I 
printf("Cammand is [%s]\n", msg->:rm_Args[O]); 

/* Now deal with results */ 
msg->:rm_Resultl = RC_OK; 

if (msg->:rm_Action &: RXFF_RESULT) 
{ 

} 

/* Result string expected: */ 
msg->:rm_Result2 = (LONG)-. 
Create.Argstring("HELLO!", 6); 
} 

/* All done, reply to it */ 
ReplyMsg ( ( struct Message *) msg) ; 
} 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 319 

MAKEA 
NOTE! 

We check to see if the RXFF _RESULT flag is set. If 
so, then we are expected to return something; if 
we have nothing to return, then we set the msg· 
>rm_Result2 field to NULL. We must do this if there 
is no result to return, and RXFF _RESULT was set. 

We can return results using the CreateArgstring() function 
which has two parameters, the string itself, and the length 
in characters. (The CreateArgstring function is present in 
the "rexxsyslib.library", which we must have open before 
we can use CreateArgstring.) This result is then copied 
directly to the RESULT variable in ARexx, which can be 
used by the caller program. Of course, for the caller 
program to receive RESULT at all, the: 

OPTIONS RESULTS 

... statement must be used. In all cases, however, regardless 
of whether RXFF _RESULT is set, you must set the 
rm_Resultl field to the return code value. This gets copied 
to the RC variable in ARexx and, depending on the value, 
the caller's ARexx program might be halted with an error. 
The rm_Resultl field is a single integer long value, which is 
the "severity of error" level. If it is zero, then there was no 
problem, while 5 is a warning, 10 is an error, and 20 is a 
severe error. In the above fragment, we always return 0. The 
include file rexx/ errors.h defines equates for these common 
return codes: 

COMMON ERROR RETURN CODES 

RC_OK 0 
RC_WARN 5 
RC_ERROR 10 
RC_FATAL 20 

ARexx: Your Amiga's Built-in Turbocharger 



320 Section F 

... which we can use in our program as long as this file has 
been included. For example: 

msg->:r:m_Resultl = RC_E:RROR; 
/* Return an error */ 

And that's about all there is to it for simple command hosts. 
Function hosts operate in a similar fashion, except we 
process the RXFUNC rm_Action code instead of RXCOMM: 

if { {msg->:r:m_Action & RXCODEMASK) == RXFUNC) 
{ 

/* Process the function: */ 
} 

The function name is contained in rm_Arg[O] - you identify 
if it's an acceptable value and, if so, you can then fetch the 
arguments themselves from rm_Arg[l], rm_Arg[2] etc, up 
to rm_Arg[15]. As you can see from this the maximum 
number of arguments that can be passed to a function host 
is 15, but this is unlikely to be a serious limitation - if you 
need more than 15 arguments to a function, you're 
definitely doing something wrong! 

As well as identifying the function, rm_ Action also contains 
the number of valid arguments. We can get it by masking 
the rm_Action field with RXARGMASK: 

number_of_args = msg->:r:m_Action & RXARGMASK; 

As for command hosts, when we have finished we set the 
rm_Resultl field to be the RC return code (error severity 
level), and rm_Result2 to the result string if required (we 
check rm_Action & RXFF _RESULT to see if this is required). 

This simple example in "C" creates an ARexx port, and 
responds to the single command "QUIT" which makes the 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 321 

program exit. It simply shows any other possible commands 
on the screen. It is easy to call from ARexx - this brief 
ARexx program, for example allows us to send commands 
to our host: 

/* Talk to our host! */ 

IF -SHOW(ports, "Sxairi>le") THEN 
00 
SAY "The command host exaJri)le is not running" 
EXIT 10 
END 

ADDRESS "Sxairi>le" 

SAY "What would you like to send to the host?" 
PARSE PULL send 

send 

EXIT 

This listing was typed in and tested on SAS/C 6.51 but it 
should work on DICE and other "C" compilers with very 
little alteration. Consult the documentation that came with 
your "C" compiler for more information if you have 
difficulties compiling it. 

/* Simple Passive ARexx Command Host in "C". */ 
/* Compiled and tested under SAS/C 6 */ 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 

#include <exec/exec.h> 
#include <rexx/errors.h> 

ARexx: Your Amiga's Built-in Turbocharger 



322 

#include <rexx/rexxio.h> 
#include <rexx/rxslib.h> 
#include <rexx/storage.h> 

#include <clib/exec_protos.h> 
#include <clib/rexxsyslib_protos.h> 
#include <clib/alib_protos.h> 

/* Defines: *I 

#define AREXX_PORT_NAME "example" 

Section F 

I* OUr global variables, the ARexx Port, and the 
rexxsyslib.library library base: */ 

stzuctMsgPort 
stzuct Library 

*arexx_port = NULL; 
*RexxSysBase; 

/* Prototypes for functions in this module: */ 

void ProcessARexxMessages{void); 

/* Main entry point: *I 
void main{void) 
{ 

stzuct RexxMsg *msg; 

/*Open the rexxsyslib.library, required for 
CreateArgstring: */ 
if {!{RexxSysBase = ~ 
OpenLibrary { "rexxsyslib. library", OL) ) ) 

{ 

printf {"Can It open rexxsyslib. library. \n n) ; 

return; 
} 

/* Open our port: */ 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 

Forbid(); 
if (FindPort(AREXX_PORT_NAME) == NULL) 

arexx_port = CreatePort(AREXX_PORT_NAME, 0); 
else 

arexx_port = NULL; 

Permit(); 

if ( ! ( arexx_port) ) 
{ 

printf("Cannot create arexx port %s\n",~ 
AREXX_PORT_NAME); 
return; 
} 

printf("Waiting for commands at port %s\n11 ,~ 

AREXX_PORT_NAME); 
ProcessARexxMessages(); 

/* All done, free resources and exit: */ 
CloseLibrary(RexxSysBase); 

323 

/* This next bit deletes our ARexx port now we're 
done. Note that it stops :multi-tasking, and 
replies to any unanswered messages with an 
RC_FATAL return code, then deletes the port, and 
then restarts multi-tasking. This is to prevent 
any messages not been dealt with, and any calling 
applications from sending messages to a port 
which has just closed, or is closing. */ 
Forbid(); 
while ( (msg = ( struct RexxMsg *) ~ 

GetMsg(arexx_port)) !=NULL) 
{ 

msg->:rm_Resultl = RC_FATAL; 
msg->:rm_Result2 = NULL; 
ReplyMsg( (struct Message *) msg); 

ARexx: Your Amiga's Built-in Turbocharger 



324 

} 

} 

DeletePort{arexx_port); 
Permit{); 

printf {"Program Cc::mplete \n °) ; 

return; 

/*Process ARexx messages */ 

void ProcessARexxMessages{void) 
{ 

struct RexxMsg *msg; 
BOOL quit_flag = FALSE; 
char *command; 

while { !quit_flag) 
{ 

WaitPort{arexx_port); 

while { {msg = { struct RexXMsg *) ., 
GetMsg{arexx_port)) != NULL) 

{ 

Section F 

/* Got one, check if its a RXCOMM message */ 
if { {msg->xm_Action &: RXCODEMASK) == RXCOMM) 

{ 

/* Process our command now! */ 
command= msg->xm_Args[O]; 
printf{"Command is [%s]\n°, command); 

/* Deal with the quit command */ 
if { ! { strcir;;> {command, "QUIT") ) ) 
= TRUE; 

/* Now deal with results */ 

ARexx: Your Amiga's Built-in Turbocharger 

quit_flag., 



Adding ARexx support to your own programs 

msg->rm_Resultl = RC_OK; 

if (msg->rm_Action &: RXFF_RESULT) 
{ 

} 

/* Result string expected: */ 
msg->:i:m_Result2 = (LONG)., 
CreateArgstring( 0 BELL0! 0 , 6); 
} 

/* All done, reply to it */ 
ReplyMsg( (struct Message *) msg); 
} 

325 

ARexx: Your Amiga's Built-in Turbocharger 



326 Section F 

} 

} 

return; 

The ARexx Resident Process 

The ARexx resident process is very important to 
applications implementing ARexx support. It provides an 
interface between the application and a lot of ARexx-specific 
information. The resident process consists of two ARexx 
ports, "REXX" and "AREXX", to which requests can be sent. 
This is done by sending a suitably filled-out RexxMsg 
structure, and then waiting for the reply. The resident 
process can be used to perform the following actions; 

• Modifying the Clip-List 
• Call another ARexx program as a function 
• Call an ARexx function 
• Modify the Library List 
• Change the global tracing status 

Further information can be found in the "includes" and 
autodocs, and in the Amiga Programmer's Guide to ARexx (see 
details above). If you are interested in looking at some of 
this information a cheap and easy way is to get the current 
Amiga Developer's Kit (currently version 3.1 and available 
from Commodore for £23), and comes complete with the 
very latest disk-based reference for every library function, 
heaps of example code, utilities, debugging tools and so on 
- essential for every developer. If you're interested, you can 
send a cheque for £23 pounds, payable to Commodore 
Business Machines (UK) Ltd, to: 

ARexx: Your Amiga's Built-in Turbocharger 



Adding ARexx support to your own programs 327 

MAKE A 
NOTE! 

Developer Support 
Commodore Business Machines {UK) Ltd 
Commodore House 
The Switchback 
Gardner Road 
Maidenhead, Berks SL6 7XA 

Include a covering letter explaining that the cheque is for 
the "3.1 Amiga Developer's Upgrade". If you are serious 
about Amiga development, you might also like to enquire 
about becoming a registered developer at the same time. 

Function 1i•raries 
As well as command and function hosts, programmers can 
implement function libraries. These act like the 
rexxsupport.library - a shared Amiga library which exists in 
the LIBS: drawer. It can be used just like 
rexxsupport.library, and added to the ARexx library list 
using the ADDLIB function. They are set up as standard 
Amiga shared libraries, and they must be fully re-entrant. 

A Matter of Style 

If you are implementing an ARexx port in your application, 
then it is worth thinking a little about consistency when it 
comes to "the naming of parts". Commodore have 
produced a book called the User Interface Style Guide 
(around £20, ISBN 0-201-57757-7). 

This discusses a number of general style issues which are 
important for a consistent user interface between 
applications. Following this guide makes things easier for 
the computer user, who can use the same skills learned on 
one application when working with another. Among other 
things the Style Guide lists suggested ARexx command 
names for common commands, such as: 

ARexx: Your Amiga's Built-in Turbocharger 



328 Section F 

CbMMONNAMES~EGR COMMON COMMANDS:";~ 
-- - - ' ' - - -- - -- -- - - -- - ' . - - ' -;- -~f-~~,- =----

.. 

>-'>--; 
-- ~-cp~o 

NEW 

CL.EAR 

OPEN 

s~ye 
SAVEAS 

CtOSE 
PRlNJ 

QQit 

-
.iii' ... Cr~~J~ a new"; 

··z-"--, edito_r~-.:tlew,: 

cre_•·.•·•~.r;~he. P 
t·~+')~" cl;-, I '• ~· :y.·-·.;;.,·c .. ··~--·.· ;'·'.·~~:,:.·.:,·:: .. -:.'.•_;,::, . 

. .,,~~t.L'\!t' ·· ea u.e,,~' ~ . , . ne> . • . 
QPe~c~ . proj and JQ~tl it iritg,the cU,i;rent 

".'#'QrRk~rea. · '. ·< ~:;,. , ..• ,;_;; 
$~~J~f~~-·p_r.oj.e_pffc. -, -,;_- -~,---_- __ -_--_c <J:~~;. 

· ··· · .. a requester_· < :tpe can. pick 
tosav~ tlJe cur:~e~tPr'.~l 
the curr~ot prol~~~~~d~([\~Jiw 

......•..... , .~e .cQl\!~~ts.; · ot'lt~~; 1Gl!li;_t~!i;f,;project.a11d 
1 Wfl'l9~'W ·,··:,<:Vii, •• , .• ~;; ... 

> Qµit)ttie app on /· 
; /~. :,- .;·.- - ~-e..: ~i~;~_:..1'3·: · 

These are the items which you would commonly find on the 
"Project" menu for an application. Obviously not all of them 
will be relevant to your particular program, but when 
considering the naming of your ARexx commands, it is 
worth spending a few minutes browsing through the guide 
to see if you can use the naming conventions suggested 
there, because a consistent user interface is in everyone's 
best interest - both for users, and developers. 

ARexx: Your Amiga's Built-in Turbocharger 



Appendix l 
Error Codes 

329 

ARexx: Your Amiga's Built-in Turbocharger 



330 Appendix l 

If the interpreter detects an error, an error code is returned, 
together with a severity level - which is used to indicate 

what the error was and how serious it is. Errors which occur 
while your program is running can be trapped using the 
SIGNAL statement (See Section B, or Section E for 
information on SIGNAL). 

Some errors do not happen within a program, and cannot 
be trapped using SIGNAL. For example, if you attempt to 
run an ARexx program which does not exist from the shell, 
this might happen: 

8.Systern3.1:> rx no_such_prograrn.rexx 
Corranand returned 5/1: Program not found 

When errors like this occur, the first number is the severity 
level, and the second is the error code itself. As well as a 
numeric representation of the problem, ARexx also shows 
us the textual description to make it easier to understand. 
Errors which are not trapped using SIGNAL and which 
happen within a running ARexx program will cause the 
program execution to stop, and an error to be displayed: 

8.Systern3.1:> rx test.rexx 
+++ Error 21 in line 4: Unexpected ELSE or OTHERWISE 
Corranand returned 10/21: Unexpected ELSE or OTHERWISE 

From this we know that an error of severity level 10, error 
code 21, occurred in line 4 of the program. Severity levels 
are normally 5, 10 and 20, where 5 is the least serious and 20 
is very serious - such as "Insufficient Memory''. 

Two support functions are provided by ARexx for the 
processing of errors by the program itself. If the program 
traps errors using the SIGNAL ON SYNTAX, and then 
provides a function to deal with errors, information about 
the error can be gained by using these functions: 

ARexx: Your Amiga's Built-in Turbocharger 



Error Codes 331 

ERROR SUPPORT FUNCTIONS 

result = ERRORTEXT(error code) Retur~ ~or text corresponding 
to speeifted cocie .. 

result ;:: SQllRCEUNE([linel) Reb:lrns tl:le actual line of source 
corresp(}Ming to fine parameter 

Further information about these functions can be found in 
Section E. In addition to the functions, the following pair of 
variables also contain valuable information: 

QTHERUSEFUL ERROR VARIABbE.S 

RC Jhe :e~~~P c~fae which dauseo the 

SIGL . 

error)iF ··· :·,· . 

The f)fggt:atn tine at which the . 
error.ij(iijffe·ci 

The remainder of this section lists all the error codes, how 
severe they are, whether they can be trapped with SIGNAL, 
and give a brief summary of the error itself. 

The Trap column contains a single letter which indicates 
whether the error is trappable using SIGNAL, and if so, 
which interrupt to use. S equals Syntax, H equals Halt, and 
the "-" sign means "Cannot be trapped using SIGNAL". 

ARexx: Your Amiga's Built-in Turbocharger 



332 

TABLE OF ERROR CODES 

CodeSevr Trap Message 

I 5 Program not found 

2 IO H Execution Halted 

3 20 - Insufficient memory 

5 I 0 - Unmatched .quote 

Appendix l 

Description 

An attempt . was made to 
run a program which did 
not exist, or was not a valid 
ARexx program 

Program execution was 
halted. This could come 
from a user CTRL-C or the 
external halt interrupt (see 
utility command HI in 
Section E) 

Not enough memory was 
available for the interpreter 
to function. It may or may 
not be trappable depending 
on just how much memory 
is left 

Non-ASCII character found 
by ·the interpreter when 
processing a program line 

Quote was found without 
the matching close quote 

6 Uoterminatedcomment A comment was not 
terminated. A comment 

· starts with/* and ends with 
*/. This error occurs when 
the */cannotbefound 

ARexx: Your Amiga's Built-in Turbocharger 



Error Codes 

QxteS&vr Trap Message 

7 10 • Clause too long 

8 lO - Invalid token 

333 

Description 

A. program clause was too 
long for the ARexx 
interpreter to process 

Interpreter could not 
identify a token 

9 10 S Symbol or string too long Symbol or string was 
longer than the maximum 
allowed (65,535 bytes) 

l O 10 - Invalid message packet A packet sent to the ARexx 
resident process contained 
an invalid action code. The 
packet is returned without 
processing 

11 10 - · Command string error Command string could not 
be processed 

12 1 O S Error return from function Program called an external 
function which returned an 
error code {RC > 0) 

13 10 S Host environment not found The program attempted to 
call a host address which 
did not currently exist 

14 10 S .Reque.gted librarynotfound The /interpreter tried to 
open a library which was 
present in the library list, 
but could not be opened 

ARexx: Your Amiga's Built-in Turbocharger 



334 

CodeSevr Trap Message 

15 . 10 S Function not found 

16 10 S Function did not return 
value 

17 l 0 S Wrong number of 
arguments 

18 10 S Invalid argument to 
function 

19 10 s Invalid PROCEDURE 

20 10 s Une>mected THEN or 
WHEN 

21· .. · ... 10 s Unexpected ELSE or 
OTHERWISE 

22 10 s Unexpected BREAK, 
LEAVE or ITERATE 

Appendix l 

Description 

A function was called, but 
could not be found in any of 
the current loaded libraries, 
or as a program, or in the 
currently running program 

A called function did not 
return a result, but 
generated no errors 

An incorrect number of 
arguments was passed to a 
function. 

An incorrect argument type 
was supplied to a function, 
or required information may 
have been omitted. 

The PROCEDURE statement 
was misused. 

The. _WHEN<.or ... THEN 
statement was misused. 

The ·····ELSE or OTHERWISE 
statement was misused, 

The BREAK, LEAVE or 
ITERATE statement was 
misused. 

ARexx: Your Amiga's Built-in Turbocharger 



Error Codes 

CodeSevr Trap Message 

23 10 S Invalid statement in 
SELECT 

24 10 S Missing or multiple 
THEN 

25 10 S Missing OTHERWISE 

26 10 s 

27 10 s 

28 10 s 
29 10 s 

Missing or unexpected·· 
END 

Symbol mismatch 

Invalid DO syntax 

Incomplete IF or 
SELECT 

335 

J>escription 

'A: statement other than 
WliENi .. THEN and 
OTHERWISE .was found in a 
sel~ct range. 

Misuse, . or omission of a 
fHEN~tement. 

None , of the conditions 
· Wiftiut> a .. $ELECT range 
Were· > satisfied, and no 
anmaw1se·.· statement was 
-~~ovi{ed. · ~·• . 

~itbei:;' the program ended 
t>efor~" a Jl)O or SELECT 
$tate~ent block's END, or 
an ENO was found without 
.a.matching DO or SELECT. 

A :sytltboJ was specified 
after ~n END, ITERATE or 
LEAVE statement, but it 
cottkhnot ·be matched with 
aoo statement. 

DO '5tatement misused. 

Ail If or SEU:CT statement 
.block ended prematurely, 
and S()me of the required 

• ~rtS:~~re omitted. 

ARexx: Your Amiga's Built-in Turbocharger 



336 

Co(le Sevr Trap Mes$age 

30 10 S Label not found 

31 10 · S Symbol expected 

32 10 s Symbol or string 
expected 

33 10 s Invalid keyword 

34 10 s Required keyword 
missing 

35 10 S Extraneous characters 

36 10 S Keyword conflict 

37 10 S Invalid template 

Appendix l 

Description 

The program attempted . to 
transfer control to a label 
which did not exist, usually 
from a SIGNAL statement. 

Interpreter expected a 
symbol, but got something 
else. Statements such as 
DROP, END, LEAVE and 
!TERA TE require a symbol. 

The interpreter expected a 
symbol or a string but 
found something invalid. 

A keyword was not used 
correctly. 

The interpreter was 
executing a statement 
which required a keyword, 
but it was not found. 

Invalid unwanted characters 
were found at the end of an 
instruction clause. 

Keywords were misused in 
a statement, or included 
morethan once. 

Template specified for 
ARG, PARSE dr PULL was 
not valid. 

ARexx: Your Amiga's Built-in Turbocharger 



Error Codes 

Code Sevr '(rap Message 

38. 10 S Invalid TRACE request 

39 10 S Uninitialised variable 

40 10 S Invalid variable name 

41 10 S Invalid expression 

337 

Description 

TRACE or TRACE() was 
an 

tracing 
called with 
unrecognised 
option. 

Program used a variable 
which was not initialised. 
This error will only happen 
if the NOVALUE interrupt 
was enabled. 

Program attempted to 
assign a value to a fixed 
symbol. 

An expression could not be 
evaluated because of 
an error. 

42 10 S Unbalanced parentheses A bracket was used without 
a matching close bracket. 

43 10 S Nesting limit exceeded An expression contained 
more than the maximum 
number of sub-expressions 
permitted (32) 

44 10 S Invalid expression result The result of an expression 
was invalid in the context in 
which it was used. 

45 10 S Expression required An expression was required 
by a statement but not 
supplied. 

ARexx: Your Amiga's Built-in Turbocharger 



338 

' ,•,'c,' --.·:.•,> 

~5'Vr l'filll ~ge 
_-·:::.··:::.:-_{'.:·:.: :"_-< - '' :'_;·>_:, 

BooJ~arJvalue npt 0 or 

lnvalic[.operan& 

Appendix 1 

-,.,::,-~::.\··.:._ -- _.· .. <·:<i::_,.:.; 
' - --

An a~e(rlpt .\#~~ mad~ .. t() 
use <th~ . val~e of ·.· .. · an 
expre.~~ion a$ a Boolean, 
butit:was not:(> 9r 1. · 

Whjje;1, ped~~triing •·an 
arithJii~tit" op~rati<11l .. ··•.the 
interpreter w~s unable•·· to 
conv~ft <ar1 operand Jo a 
nurnericvaluel 1tlJe operand 
may •.. contain •JJOrttlumeric 
characters~ 

An attempt was made to 
use ~n .operand where it 
was .not valiq. This . is 
generated. if a program 
diviq~s by zero. or. uses a 
fracti9.nal expppent In an 
exponential op~ration. 

ARexx: Your Amiga's Built-in Turbocharger 



Appendix 2 
Furtlter Reading 
and References 

339 

ARexx: Your Amiga's Built-in Turbocharger 



340 Appendix 2 

ARexx programmers who want further information about 
the langauge - and the Amiga itself - should check out 

the publications listed below. 

Amiga owners with A1200 computers will not have 
received two of the most useful manuals: the AmigaDOS 
Reference book, and the ARexx Reference book. The 
AmigaDOS book is essential reading and explains how to 
use the shell properly - a skill which is particularly useful 
for ARexx programmers. The ARexx book contains a lot of 
technical information about the ARexx language 
specification, and reference material. To get hold of these 
books you can buy the Amiga Workbench 3.1 upgrade kit. 
This comes with a complete set of manuals and includes an 
upgrade to Kickstart 3.1 (if you don't already have it). Or 
contact Commodore at the address given in Section F. 

Furtlter reading 
Amiga Rom Kernel Manuals 

Published by Addison Wesley, these are essential for any 
serious Amiga developer and are the official Commodore 
written documentation for the Amiga. Although their 
usefulness for ARexx programmers is limited, they do offer 
a vast wealth of information about what tasks your Amiga 
can perform - and how to carry them out using 
programming languages such as C. 

Otlter useful pu•lications 
Libraries: Edition 3 ISBN 0-201-56774-1, around £30 
Devices: Edition 3 ISBN 0-201-56775-X, around £25 
Includes and Autodocs: Edition 3 

ISBN 0-201-56773-3, around £25 
The REXX Language: A Practical Approach to 
Programming, by Mike Cowlishaw, published by Prentice 
Hall. ISBN 0-137-80651-5 

ARexx: Your Amiga's Built-in Turbocharger 



341 

Appendix 3 
ASCII and ANSI Codes 

ARexx: Your Amiga's Built-in Turbocharger 



342 Appendix 3 

This table shows the ASCII (American Standard Code for 
Information Interchange) character set, showing you how 

each character is represented in both hexadecimal and 
decimal. Section B has a more detailed discussion on ASCII 
codes but, to summarise, printable characters range from 32 
to 126, various control codes are given 0 to 31 and 127. On 
the Amiga, additional codes are at 128 to 255 and these are 
special characters: some are letters of the Greek alphabet, 
for example. A few control codes have been omitted from 
this chart because they are irrelevant to the Amiga. 

Amiga ASCII Codes 
The control codes are generally only of use if you are 
working within console windows, such as the AmigaShell, 
in which case you can use them to tidy up displays or 
menus you are working on. Most of the control codes can be 
accessed directly from the keyboard for immediate use, by 
holding the control (CTRL) key down and pressing another 
key, then releasing both keys. This is called a control 
sequence. Control sequences for some of the more useful 
codes are shown in the key after the reference table. 

TABLE OF ASCII CODES 

Decimal Hexadecimal Character 

000 00 NULL1 

003 03 ETX2 

007 07 BELL3 

008 08 BS4 

009 09 HT5 

010 Oa LF6 

011 Ob VT7 
012 Oc ff8 
013 Od CR9 

ARexx: Your Amiga's Built-in Turbocharger 



ASCII and ANSI Codes 343 

024 18 CAN10 

027 lb ESC11 

032 20 SPACE 
033 21 
034 22 II 

035 23 # 
036 24 s 
037 25 % 
038 26 & 
039 27 
040 28 ( 

041 29 ) 

042 2a * 

043 2b + 
044 2c 
045 2d 
046 2e 
047 2f I 
048 30 0 
049 31 1 
050 32 2 
051 33 3 
052 34 4 
053 35 5 
054 36 6 
055 37 7 
056 38 8 
057 39 9 
058 3a 
059 3b 
060 3c < 
061 3d 
062 3e > 
063 3f ? 

064 40 @ 

065 41 A 
066 42 B 

ARexx: Your Amiga's Built-in Turbocharger 



344 Appendix 3 

067 43 c 
068 44 D 
069 45 E 
070 46 F 
071 47 G 
072 48 H 
073 49 I 
074 4a J 
075 4b K 
076 4c L 
077 4d M 
078 4e N 
079 4f 0 
080 50 p 
081 51 Q 
082 52 R 
083 53 s 
084 54 T 
085 55 u 
086 56 v 
087 57 w 
088 58 x 
089 59 y 
090 5a z 
091 5b [ 
092 5c \ 
093 5d ] 
094 5e /\ 

095 5f -
096 60 
097 61 a 
098 62 b 
099 63 c 
100 64 d 
101 65 e 
102 66 f 
103 67 g 

ARexx: Your Amiga's Built-in Turbocharger 



ASCII and ANSI Codes 345 

104 68 h 
105 69 i 
106 6a j 
107 6b k 
108 6c I 
109 6d m 
110 6e n 
111 6f 0 
112 70 p 
113 71 q 
114 72 r 
115 73 s 
116 74 t 
117 75 u 
118 76 v 
119 77 w 
120 78 x 
121 79 y 
122 7a z 
123 7b { 
124 7c I 
125 7d I 
126 7e 
127 7f DEL12 

161 al i 
162 a2 c 
163 a3 £ 
164 a4 c 
165 a5 ¥ 
166 a6 I 

167 a7 ~ 
168 a8 II 

169 a9 © 
170 aa a 

171 ab « 

172 ac .., 
173 ad 

ARexx: Your Amiga's Built-in Turbocharger 



346 Appendix 3 

174 ae ® 
175 at 
176 bO 0 

177 bl ± 
178 b2 2 

179 b3 3 

180 b4 
181 b5 µ 
182 b6 ~ 
183 b7 
184 b8 , 
185 b9 I 

186 ba 0 

187 bb » 

188 be l/4 
189 bd l/2 
190 be 3/4 
191 bf ~ 
192 co A 
193 cl A 
194 c2 A 
195 c3 A 
196 c4 A 
197 c5 A 
198 c6 JE 
199 c7 c 
200 c8 ' E 
201 c9 E 
202 ca E 
203 cb E 
204 cc i 
205 cd i 
206 ce i 
207 cf "j 
208 dO -D 
209 dl N 
210 d2 6 

ARexx: Your Amiga's Built-in Turbocharger 



ASCII and ANSI Codes 347 

211 d3 6 
212 d4 6 
213 d5 6 
214 d6 b 
215 d7 x 
216 d8 0 
217 d9 u 
218 da u 
219 db 0 
220 de 0 
221 dd y 
222 de p 
223 df B 
224 eO a 
225 el a 
226 e2 fl 
227 e3 a 
228 e4 a 
229 e5 a 
230 e6 CE 

231 e7 <;: 

232 e8 e 
233 e9 e 
234 ea e 
235 eb e 
236 ec i 
237 ed 
238 ee 
239 ef 
240 fO 
241 fl fi 
242 f 2 6 
243 f 3 6 
244 f 4 & 
245 f 5 6 
246 f 6 b 
247 f 7 

ARexx: Your Amiga's Built-in Turbocharger 



348 Appendix 3 

248 f 8 Ill 
249 f 9 u 
250 fa u 
251 f b Q 

252 f c ii 
253 f d y 
254 f e p 
255 ff y 

Key to control codes: 

Note number Name Purpose I Keystroke(s) 

NULL character often used to mark the end of a string 

2 End of Session often used to terminate a running program (CTRL.Cl 

3 BELL depending on your preferences, this will 

flash your screen, make a sound, or both (CTRL-G) 

4 BS. Back Space this moves the cursor one position to the left. (CTRL-H or the BACKARROW 

delete key) 

5 HT. Horizontal Tab moves the cursor one tab position to the right (TAB key, or CTRL~l 

6 LF. Line feed this moves the cursor down one line, and on 

the Amiga also moves the cursor to the far 

left; effectively moving to the start of the next 

line on the display (CTRL-J or RETURN or ENTER) 

7 VT. Vertical Tab moves the cursor up one line. Not much 

use on the Amiga.! (CTRL-Kl 

8 FF. Form Feed this clears the screen CTRL-Ll 

9 CR. Carriage Return moves the cursor to the start of the 

current line without moving it to the 

next or previous line (CTRL-M) 

10 CAN. Cancel used on the Amiga mostiy to abort 

the current text line. In a shell window, 

for example, it will clear the line you 

were typing and allow you to start again (CTRL-Xl 

11 ESC. Escape on the Amiga this starts an escape 

sequence, allowing you to put colours 

and other text effects in a console window 

(ie, a shell) (ESCAPE or CTRL-0 

12 DEL. Delete deletes a character to the right of the cursor DELETE) 

ARexx: Your Amiga's Built-in Turbocharger 



ASCII and ANSI Codes 349 

Amiga ANSI Codes 
In addition to the ASCII character set, the functionality of 
Amiga console windows have been extended by 
implementing part of the ANSI (American National 
Standards Institute) escape sequences. For a complete list of 
the sequences, consult the Amiga ROM Kernel Reference 
Manual: Devices (Edition 3, ISBN 0-201-56775-X). 

The chapter on the "console.device" in this book explains 
the ANSI sequences in much greater detail. In addition, a 
list of codes is included in your Workbench manual, in the 
section on "Printers". For completeness, however, some of 
the more common and useful ones are listed here. To use 
one of these you have to send the ESC character first, then 
the ANSI sequence. In ARexx this is done like this: 

I* ANSI Example */ 
/* Set ESC to be equal to the Escape Sequence Start .., 
Character */ 
ESC = "lB"XSAY ESC I I "[3ntl'his is in italics!" 
SAY ESC I I "[33ntl'his is in colour 3 (and italics!)" 
EXJ:T 

ANSI Sequences are particularly useful for making ASCII 
displays look more presentable, because you can change 
both background and foreground colours, and alter the way 
in which the text is printed. 

ARexx: Your Amiga's Built-in Turbocharger 



350 Appendix 3 

TABLE OF ANSI ESCAPE SEQUENCES 

Escape Sequence 

[Om 

[lm 
[22m 
[3m 
[33m 
[30m to [39m 
[40m to [49m 
[4m 
[24m 

Result 

Returns to normal character set 
(Disables italics, bold etc) 
Bold on 
Bold off 
Italics on 
Italics off 
Set foreground colour 
Set background colour 
Underline on 
Underline off 

ARexx: Your Amiga's Built-in Turbocharger 



su•scri•e to 
Antiga Sltopperl 

351 

Amiga Shopper is the UK's leading 'serious' Amiga magazine. It features reviews, 
news and tutorials on all major Amiga products, and its contributors include some 
of the country's leading Amiga experts. If you want to do more with your Amiga 
than just play games, Amiga Shopper is the magazine you need. And if you take 
out a subscription, all this will be yours: 

• Every month subscribers get an exclusive disk 
containing all of the listings from that issue, plus 
the pick of the month's PD. 

• You get a whof>ping 14 issues for the price of 12 -
iust £29.95 in the UK. 

• You pay no extra for higher priced issues with 
covermounts. 

• The latest issue of Amiga Shopper delivered 
directly to your door. 

• Plus you get an Amiga Shopper binder, worth 
£4.95, for absolutely nothing. 

ALL THIS FOR ONLY £29.951 

CALL OUR SUBSCRIPTIONS HOTLINE NO: 

0225 822511 

Otlter •oolcs \Ve do 
Over the next few pages you'll find out about some more Future Publishing books 
which are available right now, either via coupons in Future's own magazines, or 
off the shelves of all decent computer book stockists - or you can order directly 
using the cut-out coupon on page 355. 

ARexx: Your Amiga's Built-in Turbocharger 



352 

Amiga Deslctop 
Video 
The Amiga is the world's premier low
cost graphics workstation. But its 
basic power, built-in expandability and 
ever-widening range of quality software 
and add-ons mean it's capable of 
highly professional results. All it takes 
is the know-how. 'Amiga Desktop 
Video' shows you how to: 

•Title your own videos 
•Record animations 
•Mix computer graphics and video 
•Manipulate images 
... and much, much more 

The author, Gary Whiteley, is a 
professional videographer and Amiga 
Shopper magazine's 'tame' desktop 
video expert. In this book he explains 
desktop video from the ground up -
the theory, the techniques and the 
tricks of the trade. 

Al}liga Sllopper PD 
Directory 
Commercial software is expensive. 
Which is why more and more users are 
turning to the public 
domain/shareware market for their 
software. You can build a huge Amiga 
software library for the price of a 
couple of commercial packages! But 
first you need to know what software is 
available. And then you need to know 
what it does. And then you need to 

Other things we do 

know whether it's any good. How do 
you find out? You find out here! 

The Amiga Shopper PD Directory has 
been assembled from the first 30 
issues of Amiga Shopper. All the 
PD/shareware reviews since issue one 
have been collated, compiled and 
indexed in a single 500-page volume. 

Programs are divided into categories, 
reviewed and rated. We name the 
original suppliers of the programs and 
we've also included a directory of 
current suppliers at the back of the 
book. 

Ultimate AMOS 
Explore the full potential of AMOS with 
easy-to-understand descriptions, 
diagrams and dozens of example 
AMOS routines. All you need to 
produce your own Amiga games is a 
smattering of BASIC knowledge, AMOS 
- and this book! 

• Learn essential programming 
principles 

•Master screens and scrolling 
•Find out how to handle sprites and 

'bobs' 
•Incorporate sound and music in your 

games 
• Discover dozens of handy AMOS 

routines for incorporating into your 
own programs 

ARexx: Your Amiga's Built-in Turbocharger 



Other things we do 

400 pages packed with all the 
information you need to get the best 
out of the Amiga's ultimate games 
creation package! 'Ultimate AMOS' also 
includes a disk containing all the 
routines and programs printed in the 
book, plus four skeleton stand-alone 
games. 

Get tlte Most out of 
your Amiga I 993 
If you've got an Amiga, you've got the 
world's most powerful, versatile and 
cost-effective computer. If it can be 
done a computer, it can be done on 
the Amiga. But getting started in 
comms, desktop publishing, music or 
any other area of computing is difficult 
if you don't have a friendly guide. This 
book is your guide! It covers every 
Amiga application, from desktop video 
to programming, from games to 
music, explaining the jargon, the 
techniques and the best software and 
hardware to buy. And ... 

•Discover the Amiga's history 
•Get to grips with Workbench. 
•Find out about printers, hard disks, 

RAM, floppy disk drives and 
accelerators 

•Learn useful AmigaDOS commands 
• PLUS 2 disks of top Amiga utilities! 

353 

Poclcet Worlc•enclt 
and Amigados 
Reference 
How do you copy files? How do you 
format floppy disks? How do you move 
things from one folder to another? If 
you've just got your Amiga, Workbench 
and AmigaDOS can be confusing. This 
handy pocket guide helps you: 

•Understand Workbench menu 
options 

•Customise Workbench for your 
needs 

•Make the most of the supplied 
Tools, Utilities and commodities 

PLUS For more advanced users 
there's a full AmigaDOS 2 & 3 
command reference, listing all the 
commands in alphabetical order and 
quoting function, syntax and examples. 
This pocket-sized book contains the 
essential AmigaDOS reference section 
from "Get The Most Out of Your Amiga" 
in a ringbound, handy edition - and 
much, much more. 

Official Cannon 
Fodder™ Guide 
Sensible Software's 'Cannon Fodder' 
scored a massive hit on the Amiga in 
late 1993, and now it's available on 
the PC and Atari ST. 

ARexx: Your Amiga's Built-in Turbocharger 



354 

• Discover hints and tips on how to 
survive in the Cannon Fodder 
warzone 

• Kill kill kill! Use your firepower and 
weaponry to turn that green and 
pleasant countryside a rather nasty 
shade of red 

• Fight your way to victory in each 
phase of each mission, using our 
walk-through instructions, annotated 
maps and screen shots of key 
moments 

'The Official Cannon Fodder Playing 
Guide' gives you general playing tips 
plus a guide to every phase of every 
mission. In the Cannon Fodder 
warzone, this book will save your life. 

l'lte Official 
SJl!dicate ™ Playing 
Guide 
Syndicate was one of the biggest hits 
of 1993 on the PC. It combined tough 
strategy with glorious excesses of 
violence and sheer gameplay. 
Electronic Arts have since released a 
missions disk, 'American Revolf, which 
adds a further 21 extra-tough missions 
for battle-hardened veterans. 

'The Official Syndicate TM Playing Guide' 
also covers the Amiga version of the 
game. The strategy is identical and the 

Other things we do 

solutions to each mission are the same 
for each version of the game. 

If you've got Syndicate, and you're 
getting murdered, get this book! 

Internet, Modems, 
and Fite Wltole 
Comms l'lting 
Experts agree that comms is the 
fastest-growing area of computing. 
Falling telephone costs, expanding 
global communications and the 
growing sophistication of computer 
hardware has meant that users can 
now access vast quantities of 
information, software and technical 
expertise. 

With a modem you can send electronic 
mail, swap documents, download 
software and keep bang up to date on 
the latest developments in your field. 

But where do you start? You can't just 
plug in a modem and go. Davey 
Winder is your guide to the new world 
of global communications. He explains 
the basics of hooking up a modem and 
going on-line, and then shows you how 
to find your way round the Internet, CIX 
and a whole host of other 
communications networks. 

ARexx: Your Amiga's Built-in Turbocharger 



:t I 

Other things we do 355 

Future Books Priority 
Order Form 

You can use this tear-off coupon to order 

any of the Future Publishing books 

described on the previous pages. Simply 

fill in the details in the spaces provided 

and post your coupon, together with 

payment, in an envelope to the following 

address: 

Future Book Orders, Future 
Publishing Ltcl, Freepost 

(BS4900), Somerton, 
Somerset TA 1 1 7BR 

ARexx: Your Amiga's Built-in Turbocharger 



356 Other things we do 

Future Books Priority Order Form 

Your address--------------~--------

Postcode 

Your signature 

Please send me (tick as appropriate): 

D Get the Most out of your Amigo 1993 FLB009A £19.95 

D Pocket Workbench & AmigoDOS Reference FLB017A £9.95 

0 Ultimate AMOS FLB025A £19.95 

D Amigo Desktop Video FLB084A £19.95 

0 Amigo Shopper PD Directory FLB114A £14.95 

0 Connon Fodder Ploying Guide FLB254A £9.95 

D Syndicate Ploying Guide FLB157A £14.95 

0 Internet, Modems, etc. FLB122A £19.95 

Amount enclosed £ (Make cheques payable to Future Publishing Ltd. ) 

Method of payment (tick one): VISA D ACCESS D CHEQUE D ·POSTAL ORDER D 

CARD NUMBER DODD DODD DODD DODD 
EXPIRY DATE DODD 
Tick if you do not wish to receive direct moil from other companies D 

Now send this form and your payment to the address on the front of this coupon. You 
will not need a stamp when you post this order and postage and pack-
ing are free. There are no extra costs. Please allow 28 days for delivery. ARX 

ARexx: Your Amiga's Built-in Turbocharger 






