
By Merrill Callaway 
A Tutorial Guide to the ARexx Language on the Commodore Amiga -  Personal Computer 



By Merrill Callaway 



Copyright 
Copyright © 1992 by Merrill Callaway. All rights reserved worldwide. No part of this publication may 
be reproduced, transmitted, translated into another language, posted to a network, or distributed in 
any way without the express written permission of the author. The programs in this publication and 
on the optional disk may be reproduced for the purpose of one backup copy made only for the 
personal use of the purchaser of this book, but otherwise the above restrictions on distribution apply. 

Printed in the USA 

ISBN 0-9632773-0-8 
Library of Congress Catalog Card Number 92-081371 

Disclaimer 
This product is offered for sale as is with no representation of fitness for any particular purpose. 
The user assumes all risks and responsibilities related to its use. The author makes no warranties, 
expressed or implied, regarding the fitness or compatibility of this product. 

Trademarks 
Amiga, WorkBench, and Intuition are registered trademarks of Commodore International, Ltd. 
TurboText is a registered trademark of Oxxi, Inc. Proper Grammar and Electric Thesaurus are 
registered trademarks of Softwood, Inc. Art Department Professional is a registered trademark of 
ASDG, Inc. Wordperfect is a registered trademark of Wordperfect Corp. BibleReader! is a registered 
trademark of EasyScript! PostScript is a registered trademark of Adobe Systems, Inc. 

Distribution 
The ARexx Cookbook and its optional Companion Disk (ISBN 0-9632773-1-6) are available from: 

WHITESTONE 
511-A Girard Blvd. SE 
Albuquerque, NM 87106 
(505) 268-0678 

Dealer and Distributor inquiries invited. The ARexx Cookbook is $30 including postage and handling 

in the USA, and $35 outside the USA. The optional Companion Disk is $12 postage paid in the USA 

and $17 outside the USA. Send check, money order, or VISA/MC information. US dollars only. 

About 
This book was written and published using Wordperfect, TurboText, ARexx, Snap, Proper Grammar, 
Electric Thesaurus, and PageStream2. The draft was output in PostScript to an Epson EPL 7500 
laser printer. It is a 100% Amiga product. Many thanks to my Dad who financed this project. I am 
grateful to Adrian Vyner-Brooks who encouraged me along the way. Most of all I am grateful to the 
Lord Jesus Christ, the giver of all perfect gifts and inspirations. 



The ARexx Cookbook 

Table of Contents 
Chapter 1: 
Introduction to the ARexx Language 

About This Book 1-1 

Typography, Syntax, and Semantics 1 -2 
References 1 -2 

Is ARexx Hard to Learn? 1-3 

What Kind of Language is ARexx? 1-3 

What Happens When I Run ARexx Programs? 

1-5 
What Can I Do With ARexx? 1-8 

General Programs 1 -8 
Graphical User Interface 1 -9 
Word Processing Support 1-10 

Controlling Other Programs Directly 1-10 

The Universal Amiga Macro Language 1-11 

What Features Does ARexx Have? 1-11 

The ARexx Tool Kit 1-12 

Documentation and Utilities 1 - 12 
Your Text Editor 1 - 12 
Your Command Shell 1 - 13 

Chapter 2: ARexx Basics: 
Files, Strings, and Arrays 

Modular Coding: Building a Foundation 2-1 

How to Open and Read A Text File 2-1 

Pseudo-Code 2- 1 
An Alternate to Steps 5, 6, 7, 8, and 9: 2-2 

Start ARexx, Create a Test Text File, Make the 

Program 2-3 

Choose a Form for Readability 2-3 
Improving the Opening of a File 2-12 

Error Checking 2-13 

Counting Lines 2-14 

Some Fine Points About the End Of File 2-14 

Returning the Value of an Expression 2-15 

Arrays: Stems with Nodes are Compound 

Symbols 2-15 

Initializing and Counting with Arrays 2-16 

Expressions Can Mix and Match Symbols 2-16 
Count from Zero or One? 2-16 

Exhausting All Possible Outcomes 2-17 

How to Take Apart Lines of Text Into 
Words 2-17 

Breaking Lines into Words 2-17 
Format for Future Readability 2- 18 
Notes on the Code 2-20 

A Key Word Instruction 2-21 

Calling an Interior Function 2-21 

The PROCEDURE Key Word Instruction 2-22 

Exposing Symbols 2-22 

The Internal Function 2-23 

Parsing Multiple Arguments 2-24 
Parse Templates 2-24 

The Comma is a Special Template Pattern 2-25 
Templates Assign Variables 2-25 

The DO Loop 2-26 

Parsing: One Word, One Variable 2-26 

The Last Variable Gets All the Rest of the 
Parse String 2-27 

Using Self-Reference to Advantage 2-27 

The Effects of EXPOSING Variables 2-27 

Chapter 3: Parsing Made Easy 

Parsing is Central to Most ARexx 

Programs 3-1 

A Useful PARSE Utility 3-1 

Making a Parse Tester Program 3-2 

Pseudo Code 3-2 
Parse Test.rexx 3-3 
Running the Parse Test Program 3-5 

Testing a Variable Position Marker 3-5 

i Contents 



Table of Contents 

Notes About the Theory of Operation of 
Parse Test.rexx 3-6 

Self-modifying Code 3-6 
Parsing by Tokenization: Words into Targets 3-7 
Targets are Variables in the Template 3-7 
Forced Tokenization 3-7 
Pattern Markers and Scan Position 3-8 
How Parsing with a Pattern Marker Divides the 

Parse String 3-9 
The Pattern is Removed During a Re-Scan 3-9 
The Source String Remains the Same 3-9 
Parsing Using Positional Patterns (Absolute and 

Relative Markers) 3- 10 
The Scan Position and Multiple Scans 3- 10 
Absolute, Relative, and Variable Positional 

Markers 3-10 
Point of Reference for Relative Positional 

Markers 3- 11 
What If PARSE Cannot Find a Match? 3- 11 
Multiple Scans and Multiple Templates 3- 12 
Patterns as Variables 3- 12 

More Ways to Parse 3-13 
In-line Variable Patterns 3- 13 
The Period as a Placeholder 3-13 
Using the Relative Marker +0 3-14 
Using Parsing by Forced Tokenization for 

Screen Data Input 3- 14 
Parsing Multiple Input Lines from the 

Screen 3- 15 
Other PARSE OPTIONS 3- 16 
EXTERNAL: Not Recommended! 3- 16 
The PARSE expression VALUE WITH 

template Option 3- 16 
Updating the Scan Position with Multiple 

Sequential Patterns 3- 17 
Direct and Indirect Control of the Scan 

Position 3- 18 
Parsing with the NUMERIC, SOURCE and 

VERSION Options 3- 18 
Summary of the PARSE Instruction 3-19 

Chapter 4: Numbers, Logic, and 
Recursion 

Logical and Mathemetical Operators 4-1 
The Door Problem 4-2 

A Brief Definition of Probability 4-2 
The Question 4-3 
Pseudo Code to Solve the Door Problem 4-3 
Door.rexx 4-5 
Explanation of the ARexx Code 4-6 
Getting a Random Number 4-6 
The Possibilities: Where is the Car? 4-7 
Modelling Choices 4-7 
The RANDUO Function 4-7 
The Cumulative Probability of Winning by 
Standing Pat 4-8 
Calculating the Probabilities of Winning by 
Switching 4-8 
Boolean Operators 4-8 
Screen Output 4-9 
Continuing a Line of Code 4-9 
The Proof of the Door Problem 4- 10 
Still Not Convinced? 4- 11 
Table of Possibilities 4- 11 

Summary 4-12 
Recursive Function Calls in ARexx 4-13 

Iteration 4- 13 
Algorithms 4-13 
Computer Proofs 4- 14 

The Coconut Problem 4-14 
An Ideal Candidate for Recursion 4- 15 
Coconut.rexx 4- 16 
The Central Recursion 4- 16 

Dealing with Number Bases and Character 
Codes 
The Binary Number System 4-17 
Expanding Numbers 4- 17 
Hexadecimal Numbers 4- 18 
Octal Numbers 4- 18 
Character Codes 4- 18 

ii Contents 



The ARexx Cookbook 

A Useful Conversion Program 4-18 
ARexx and Custom Conversion Functions 4-19 
Pseudo Code 4- 19 
Hex. rexx 4-20 
Notes on the Hex.rexx Conversion 

Program 4-23 
Translating Binary to Octal 4-25 
Translating Octal to Binary 4-26 

Chapter 5: Sorting and Working with 
Arrays and Lists 

Sorting With ARexx 5-1 
The Bubble Sort 5- 1 
A Pseudo-Trace of our Example Using the 

Bubble Sort Pseudo Code 5-4 
Coding the Bubble Sort into ARexx 5-6 

Bubblesort. rexx 5-6 
Input and Output 5-7 
How the Shell Sort Modifies the Bubble Sort 

5-7 
Shellsort.rexx 5- 10 

Extracting a Word List without Duplicates from 
Text 5-14 
The Proper Handling of Arrays 5-14 
The Differences Between Interior and 

Exterior Functions 5- 14 
Receiving an Expression Result 5-14 
Interior Functions 5-14 
Exterior Functions 5-15 

Overcoming Limitations by Encoding an Array 
into a String 5- 15 

Building Up an Array From a String 5- 15 
An Array Cannot be a Node 5- 16 
Tearing Down an Array and Making It into a 

String 5- 16 
Stripping Blanks Left and Right 5- 17 
Pay Attention to Variable Types 5- 18 
Pseudo Coding the Program to Remove 

Duplicate Words from a Text File 5- 18 
Modular Programming 5- 19 

Expanding Step 3. The Internal Function 5-20 
Uniword.rexx 5-22 
The Internal Function, Unique: 5-24 
How to Get Rid of Punctuation 5-24 
The Boolean Array at the Heart of the 
Program 5-26 
Non Numeric Nodes 5-27 
Building the Return String from the 

Array 5-27 
The External Function Sortword.rexx 5-27 
Sortword. rexx 5-26 
Exercises 5-29 
Can You Use Higher Dimensional 

Arrays? 5-29 

Chapter 6: Debugging, Tracing and 
Interrupting ARexx Programs 

Handling Mistakes 6-1 
Tracing 6- 1 
Arexx Interrupts 6- 1 
Further Documentation 6- 1 

Tracing an ARexx Program 6 -2 
Trace Options 6-2 
Trace Modes 6-2 
The Special Variable RC 6-2 
Combining Mode and Option 6-3 
Interactive Tracing 6-3 
TRACE OFF 6-3 
Example 6-4 
Looking at a Trace 6-4 

ARexx Command Utilities 6 -5 
The Global Tracing Console 6-5 
Interactive Inputs 6-5 

Setting Trace Flags 6 -6 
External Trace Flag 6-6 
Global Halt Interrupt (HI) Flag 6-6 
The ARexx rx, rxc, rxlib, rxset Commands 6-6 
The Trace Background Option 6-7 

Exercises 6-7 

iii Contents 



Table of Contents 

ARexx Interrupts 6-8 
Name the Labels After the Interrupts 6-9 
Special Variables 6-9 
Yes, ARexx Has a GO TO Statement 6- 10 
An Example of the Use of Interrupts 6- 10 
Int rexx 6- 10 

The ARexx Support Libraries 6 -13 
Loading ARexx Libraries 6- 14 
LAL.rexx 6- 14 
What Do These Libraries Do? 6- 15 
Obtaining Libraries 6- 16 
Library Documentation 6- 16 

Chapter 7: Controlling Host 
Applications with ARexx 

A Model for ARexx Remote Control 7-1 
Addresses and Programs 7- 1 
The Public Message Port 7-2 
Asking for Results 7-2 
DOS Commands 7-2 

A Word About the Examples of 
ARexx Control 7-3 

The ADDRESS Instruction vs the ADDRESS() 
Function 7-3 
The SHOW() Function 7-4 
The Current, Previous, and COMMAND Host 

Addresses 7-6 
Writing a TurboText ARexx Macro 7 -7 

uniword. ttx 7-8 
The RC Special Variable 7- 10 
The Current Host Address is Where the 

Program Starts 7- 10 
Using TurboText Commands Saves Some 

Steps 7- 11 
A Boolean Array We Have Seen Before 7- 11 
Building the Array of Words 7- 12 
Sorting the Array Directly 7- 12 
Inside the New Window 7- 13 

An Example of ARexx Interprocess  

Control 7-13 
Souping Up TurboText with the Electric 

Thesaurus 7- 13 
Working with a Thesaurus 7- 14 
Pseudo Code 7- 14 
Th.ttx 7- 15 
Notes on the ARexx Thesaurus Program 7- 16 
Get the Word Under the Cursor 7- 17 
Details of Launching ET 7- 17 
ET Options and Finding Its Port 7- 17 
Is the Port Name Really the One? 7- 18 
Look Up the Word in ET 7- 18 
How Can ET Get Our Latest Choice Once We 

Exit? 7- 19 
Back in TurboText 7- 19 
The OK/Cancel Requester 7-20 
Building Up the Insert String 7-20 
Quotes: Powerful but Tricky 7-21 

A More Complex Interprocess 
ARexx Program 7-22 
TurboText Controlling Proper Grammar 7-22 
Pseudo Code for PG from a TurboText 

Document 7-23 
A Support Library Function 7-26 
Launch Proper Grammar 7-26 
Inside Proper Grammar: Set the 

Preferences 7-27 
Return Text Formatting 7-28 
Back in TurboText 7-29 
The Exterior ARexx Function to Reformat the 

TurboText Document 7-30 
ForPar.ttx 7-30 
The Complete Listing 7-31 
PG.ttx 7-31 

Chapter 8: Using ARexx and 
PostScript Together 

Use ARexx to Make a PostScript Driver for a 
Text Editor 8-1 

iv Contents 



The ARexx Cookbook 

The Evolution of a Good Idea 8-2 

A Flash of Insight 8-2 

How Does PostScript Work? 8-3 

The LIFO Stack or Postfix Notation 8-3 

PostScript Operators 8-4 

Mixing PostScript Objects, ARexx Instructions, 

and ARexx Commands 8-4 

Load the Necessary Library 8-5 

PStextprint. ttx 8-5 

How the Program Works 8-6 

Constructing Other Stack Objects 8-7 

Formatting the Document for PostScript 8-7 

The Main Program 8-8 

X and Y Coordinates 8-8 

Moveto and Show Set the Text Line 8-8 

Emulating a Line Feed/Carriage Return and 

Pagination 8-8 

The Simplified Structure 8-9 

Installing the Program in Turbo Text 8-9 

Adapting a Different Editor 8-10 

Gotchas to Consider 8-10 

Other Ideas 8-11 

References for PostScript 8-11 

Printing Envelopes with 

ARexx and PostScript 8-12 

Some Useful Utilities 8-12 

The Envelope Print Program 8-13 

E.Rexx 8-13 

Program Design 8-15 

Getting the Data 8-15 

Using the Address Data Base 8-15 

Print, Save, or Both? 8-16 

How to Pass an Entire Array to an Internal 

Function Procedure 8-16 

The PostScript/ARexx Print Function 8-17 

Transforming the Page Coordinates for 

Envelopes 8-17 

The PostScript Coordinate System 8-17 

Rotate 8-17 

90 Rotate 8-18 

0 -612 Translate 8-18 

Landscape Printing 8-18 

The Output 8-18 

Determining the (X, Y) Coordinates in the 

Transformed System 8-19 

The Return Address 8-19 

Conclusion of the ARexx Tutorials 8-19 

Appendix A 

ARexx and Art Department 
Professional (ADPro) 

Aspects of Pixels and Images A-1 
ARexx to the Rescue A-3 

Monitor Image Aspect Adjustment A-3 

Scaling to Pixel Aspect A-3 

Building a GUI A-3 

Environment Variables A-4 

Operation A-5 
The Listings 

F2.adpro A-6 

guiSPO.rexx A-8 

guiSPD.rexx A-9 

guiPostMsg. rexx A-10 

guiHELP.rexx A-12 

guiMakeVar.rexx A-13 

StartScOnly. rexx A-13 

guiScalePixAsp. rexx A-15 

guiAddons.rexx A-16 

guiSetYOSET. rexx A-17 

guiEX.rexx A-18 

guiCPA.rexx A-22 

UNlarray.rexx solution to exercise 
on page 5-29 

UNlarray.rexx A-24 

v Contents 



Table of Contents 

Searching Large Text Files 

Extracting Bible Verses A-26 

Bible Verse Extraction Program Listings 

bv.rexx A-27 
bv2. rexx A-28 
bv.thnkr A-33 
bft.thnkr A-34 

Table of Equivalent Terminology 

Table A-36 

Index 

List of Illustrations 
ARexx Interpreter: rexxmast viii 

PostScript page coordinates 8-6 

PostScript right hand coordinate system 8-17 

PostScript rotate operator 8-18 

PostScript translate operator 8-18 

How to Scale an Image to Fit the Screen A-2 

How to Scale to a New Pixel Aspect A-3 

Companion Disk 
An optional companion disk with all the programs 

in this book and several additional programs may 

be ordered from the publisher. See the copyright 

page under Distribution for details. 

vi Contents 



The ARexx Cookbook 

Preface 
Not long after you first bought an Amiga computer, you began to hear 
about something called ARexx. In the software reviews and magazine 
ads you may have noticed the buzz words ARexx Support. The 
implication was that this ARexx support somehow added value and 
power to an application program, and was therefore worth having. 
Perhaps you asked yourself the question, "Just what is ARexx, 
anyway?" You soon found that ARexx is a programming language. 
Because the price was very reasonable, you may have bought ARexx 
sight unseen because everyone said it was wonderful. You may have 
bought a new Amiga and discovered that ARexx was already installed in 
the system software. Maybe you aren't a programmer and the 
documentation you received seems too hard to understand; or you may 
have some experience in another language, and you are really wanting 
to start programming in ARexx, but haven't found the time to learn it, so 
you've put it off time and again. Perhaps you simply need some 
creative ideas and some usable code examples to apply to your own 
system. The ARexx Cookbook is for you! 

The purpose of The ARexx Cookbook is twofold: To bring less 
experienced Amiga users quickly up to speed in ARexx; and to provide 
some really useful ARexx programs that can be easily adapted or used 
as is for real world applications. This book provides some interesting, 
useful, and fun things to do with ARexx that make learning it fast and 
painless. ARexx truly is wonderful, and with a minimum of study, is 
easy to use. Everyone who uses an Amiga computer deserves to 
become proficient at ARexx, because it opens the real power of the 
Amiga multi-tasking system. I wrote this book because I went through 
some of the same frustrations you may be experiencing trying to start to 
use ARexx. Wading through a language reference manual is not the fun 
way to learn ARexx, but I persevered because I sensed it would be 
worth it. Much sooner than it looked like at first, I reached a level of 
competence that now allows me to customize my Amiga operating 
environment in ways I only dreamed of before. The ARexx Cookbook 
was written to help some of you get over your initial fear of programming 
and to accelerate your climb up the first hump of the learning curve, and 
to lead you to the level where you can begin to use the full power of your 
Amiga. For others, at a more intermediate stage, the book is an 
immediate source of useful code (and inspiration) that you can use to 
make your own programs in ARexx to customize your Amiga 
applications. 

Merrill Callaway 
December 10, 1991 

VII 



ARexx Interpreter: rexxmast 

VI I I 

The lines represent dif-
ferent kinds of ARexx ap-
plications: Macros, Shell 
Programs, DOS com-
mands, and Interprocess 
control programs. A pro-
gram may send com-
mands to the ARexx 
command interface, 
(which "strains out" these 
commands and sends 
them to the specified host 
address); or it may also 
send instructions and 
functions to, and receive 
replies from rexxmast. 
The Shell may launch any 
ARexx program and 
receive output in its con-
sole window. Since 
ARexx is multitasking, 
any combination of these 
routes may be used in 
any ARexx program. 



The ARexx Cookbook 

Chapter 1: 
Introduction to the ARexx Language 
About This Book 
The ARexx Cookbook is not designed to take the place of the excellent 
ARexx language description contained in the manual by William S. 
Hawes, the author of ARexx. It is expected that the reader will study 
this book with their copy of the ARexx Hawes or Commodore 
documentation close at hand, because there will be a need to reference 
one or the other of those texts frequently. The spiral binding and the 
index referencing not only this book, but Hawes and Commodore, too, 
are designed for easy use, and the handy size is meant for the desktop, 
not the bookshelf. Rather than presenting yet another list of instructions 
and function definitions that would essentially duplicate the ARexx user 
manual (which is already adequate in this respect), The ARexx 
Cookbook explains how to program your own applications in ARexx, by 
demonstrating good techniques such as pseudo-coding and modular 
thinking, along with specific examples of useful code which may be 
adapted to match your own needs. The ARexx instructions and 
functions are not the basis of organization of the book. Rather, the 
proper use of ARexx instructions occurs implicitly in the broader context 
of specific application examples, in much the same way that a tutorial in 
a foreign language presents literature instead of a steady diet of 
grammatical rules. This book refers to the ARexx manual when the 
context calls for it in order to save weight and bulk as much as to avoid 
duplication. 

A good understanding of jargon, rigorous (formal) definitions, semantics, 
and syntax are all essential to programming properly in any computer 
language. The Cookbook attempts to de-mystify ARexx jargon and 
definitions that may seem unfamiliar to readers who have little 
programming experience, but does not provide an ordered or complete 
set of definitions as these are covered in Hawes or Commodore ARexx 
documentation. The book contains explanations which shed light upon 
the use and inter-relationships of various ARexx features as they apply 
to actual examples; but it leaves it up to the reader to study the ARexx 
manual for the complete formal definitions of things. This book uses 
terms throughout the text according to their formal ARexx definitions and 
introduces them to the reader even if not completely defining them. The 

1-1 Introduction 



One 

Hawes and Commodore references are noted, however. 

Typography, Syntax, and Semantics 
New terms appear in bold type. If there are several equivalent terms for 
something, the most intuitive term comes first, with the more rigorously 
defined term(s) following (in parentheses), to provide a sort of lexicon. 
This way, if one term doesn't seem familiar, a synonymous term will be 
alongside to assist the reader to learn a working vocabulary of ARexx. 
ARexx terminology is not always as intuitive as some older computer 
programming terminology. The ARexx Cookbook initially includes 
several equivalent words for things, but gradually, as the book 
progresses, the more rigorously defined or formally correct ARexx terms 
will have supplanted the more intuitive but looser terms. By then, the 
reader will be familiar with them. In the same way, semantics (the 
meaning of instructions) and syntax (the physical arrangement of 
symbols, words, and punctuation) will be explained in great detail at first 
and later less so. The emphasis shifts to programming later on, just as 
the lessons become more conversational and literary when you learn a 
foreign language. 

Margin References 

Cross references: 
William S. Hawes and 
Commodore Manual 
" (Part No. 363313-05) 
are cross referenced by 

Subject and 

H = Hawes 
C = Commodore 

followed by page 
number; for example: 

VERIFY() function 

H 68 
C 10-122 

*Older Commodore 
pages will not match. 

References 
If you don't have the original ARexx manual, but have the Commodore 
version of ARexx installed, you should realize that the Commodore 
documentation largely duplicates William S. Hawes' manual, but leaves 
out some of the original material. If the Commodore documentation 
covers the subject under discussion, this book will reference it as well. If 
you want to go deeper into ARexx you really should get the original 
manual, too, just for the extra documentation. The Hawes manual, by 
the way, is much handier to use because it's spiral bound, and the 
pages are easier to turn. You will have a well thumbed manual before 
you become an expert! You will also receive many useful utilities and 
ARexx programs on disk which make the purchase even more 
worthwhile. 

Wherever possible, regarding teaching method, the Cookbook uses the 
concrete example over the abstract definition; attempting, however, to 
clarify some of the definitions, commands and functions that seem a 

1-2 Introduction 



The ARexx Cookbook 

little opaque in the manual. Overall, I wrote the book to infuse you with 
the enthusiasm and downright affection I feel for this wonderful and 
indispensible tool for the Amiga. After answering a few general 
questions some less experienced readers may have about ARexx, The 
ARexx Cookbook gets down to the applications examples. 

Is ARexx Hard to Learn? 
You may think, "Yes, it is!", based upon a first reading of the manual, but 
let's think about a foreign language for a minute. No one learns a 
foreign language by studying a dictionary or grammar book only, in spite 
of their essential importance. One learns to communicate by mimicking 
a native speaker. Total immersion is the quickest way to learn: One is 
forced to try speaking or else not communicate at all. Total immersion 
has a tendency to make us overcome our fear and embarrassment at 
seeming stupid, and it isn't long before we are talking away! The 
situation with you, the Amiga, and ARexx is similar. You really have no 
idea what you are missing by being wary of learning ARexx. You do not 
have to be extremely fluent in any language before you can 
communicate, and neither must you memorize every command and 
function before you can do satisfying things in ARexx, because it is easy 
to learn. After only a short time in this book and doing some work on 
your own, you will be appreciating the clarity and readability of ARexx 
code as well as its ingenious and powerful elegance. 

What Kind of Language is ARexx? 
ARexx comes from a parent language called Rexx. Rexx was 
developed by Michael F. Cowlishaw at the IBM UK Laboratories, Ltd. in 
the mid 1980's. The design goals of Rexx were all aimed at one simple 
objective: To make programming easier than ever before. In every 
design decision, people were considered first, but language power was 
not sacrificed. People's perception of things like "Readability" and 
"Ease of Use" were actual design criteria that took on a high priority. 
Since people who deal with computers work with things such as words, 
numbers, names, and so on, Mr. Cowlishaw made Rexx especially 
adept at handling these symbolic objects, and therefore very accessible 
to the casual user. At the same time he made it easy to write small 
"quick and dirty" programs, he included in the language advanced 
facilities that make it possible (and feasible) to write large, well behaved 
(robust) programs as well. 

1-3 Introduction 



One 

Rexx was intended not only for personal use, but also as a command 
program interpreter. This is a relatively new technique where a general 
purpose language (Rexx) is also used to tailor the command 
environment of the operating system of the host computer. In other 
words you can program your own custom commands in your particular 
operating system. These custom commands are really Rexx programs 
which can run in a command shell environment. Since Rexx is so good 
at manipulating strings (those symbolic objects mentioned before), it 
lends itself to becoming a general use macro language to control 
application software running in the system. 

Finally, Rexx was designed to make prototyping easy. The overall 
design prototype of any software system can be tested and modified 
readily, before coding into a more difficult compiled language. It is no 
wonder that millions of lines of Rexx code do service every day in 
prestigious mainframe installations around the world! ARexx is the 
implementation of Rexx on the Amiga. Until recently, when IBM PC 
Rexx came out, ARexx was the only implementation of this wonderfully 
easy and powerful language on a personal computer platform. We all 
have William S. Hawes to thank for his brilliant implementation of 
ARexx. ARexx inherits all the power and ease of use of its parent 
language. We already know that ARexx is a programming language. 
ARexx is what is known as a high level, interpreted language. By high 
level, we mean that the code is readable, intuitive, and accomplishes 
complex tasks with a minimum of coded instructions. For instance, a 
single ARexx instruction, if translated into a low level language such as 
Assembler Language might take up dozens of lines or even several 
pages of source code (the original instructions typed into the editor by 
the programmer), expressed as cryptic and difficult to read instructions, 
each of which accomplishes only a small part of the complex task 
handled by the one ARexx instruction. 

An interpreted language is one which uses a single program, called 
oddly enough an interpreter, to execute your list of coded instructions 
one at a time and in the sequence they occur. Where does your list of 
instructions come from? Any computer program (a list of coded 
instructions) starts life within an editor as lines of text and numbers 
representing instructions which the programmer types in and saves in 
ASCll text format. No one writes program code in a word processor 
unless they remember to save their file as an ASCII text file. Word 

1-4 Introduction 



The ARexx Cookbook 

Rexxmast 
Resident Process 

H 6, 83, 89 
C 10-7 

Make sure that in 
addition to running 
rexxmast in your 
startup-sequence, you 
also ASSIGN REXX: to 
the REXX or REXXC 
directory where you 
keep your ARexx 
programs. This 
assignment is best 
made at startup, too. 

processors add their own formatting codes that render the program code 
useless. This is the reason that programmers use an editor rather than 
a word processor to write their programs: They save all their files in 
ASCII and they appreciate the features in a good programmer's editor 
that make entering program code easier. 

The other type of programming language is a compiled language. 
Although its program code starts out in an editor, too, this type of 
language depends on at least two programs, one called a compiler 
which translates the code you typed into your editor (called source 
code) into a transition code (called object code). Yet another program 
(called a linker) takes the object code and transforms it into its final 
form: machine readable, stand alone binary code. After you finish 
compiling and linking your program, it can be run without further 
dependence on any other program. 

What Happens When I Run an ARexx Program? 
Although you do not need to know all about what happens when you run 
any program on the Amiga, it certainly helps to have a basic 
understanding. ARexx, as an interpreted language, depends on a 
program running in the background which is, among other things, the 
ARexx interpreter, or the program that takes care of launching all 
ARexx programs by interpreting their coded instructions and then 
running each program as a separate task (really a DOS process) in the 
multi-tasking environment of your Amiga. The name of this background 
program is rexxmast. It is also properly called the ARexx resident 
process. Without its presence, no ARexx programs will work. 

Rexxmast can be (and usually is) run from within the startup-sequence, 
so that any ARexx program you want it to launch will be interpreted and 
executed right away. Rexxmast takes up little memory and no system 
resources until needed. Remember we are in a multi-tasking 
environment on the Amiga! Rexxmast just sleeps, waiting until you 
need it. The way you request this resident process to run your ARexx 
program from the CLI or shell is to type the command rx followed by 
your program name (and any of its arguments) at the CLI prompt. It 
feels just like issuing an AmigaDOS command except that you precede 
your program name with the command rx to signal the resident process 
to launch your ARexx program. Under AmigaDOS, the command rx 

1-5 Introduction 



One 

returns a Usage:rx filename [arguments] message if you do not supply 
a filename. The [arguments] are optional, and represent arguments, if 
any, to your ARexx program. An ARexx program must always be 
launched, (or started, or run) as any other program must be run. You 
should keep your ARexx program files in the Rexx directory in your sys: 
device. In system 2.0 of the Amiga the directory is called Rexxc. The 
rexxmast program searches first for your program in this Rexx or 
Rexxc directory. It is a good idea to give your general use ARexx 
programs a filename extension .rexx and ARexx programs launched 
from an application program a different extension. 

For example, if you have a program called TurboText®  with ARexx 
support, it has several ARexx programs with names like AddChars.ttx 
to remind you that they are programs that you use in your TurboText 
editor program. All programs with an extension .rexx will run without 
your typing in the extension. The rexxmast interpreter will recognize 
and run your program without it. This does not apply to extensions 
different from .rexx, however, unless the application program has 
implemented this feature. 

ARexx has some powerful features that set it apart from other 
languages. It has the ability to control outside programs! It can control 
programs (which have ARexx support) running as separate tasks within 
the Amiga multi-tasking environment. It can perform this remote control 
of other programs by means of the command interface, which is 
composed of two parts: the rexxmast resident process, and the 
implementation of the ARexx command interface in some outside 
application program running at the same time. Any Amiga application 
program capable of communication with an ARexx program (receiving 
commands, sending replies) is called a host application, and is also 
said to provide an ARexx command interface. Any host application, 
once started, makes its presence known to the Amiga operating system 
by opening one (or more) of what is called a public message port 
through which it can receive its own commands from ARexx programs, 
and send back replies. 

This is exactly what is meant when you see the term ARexx support in 
application software advertising. The rexxmast resident process is a 
communications center for all of ARexx. It does more than just interpret 
and launch ARexx programs. It allocates memory, keeps track of 

Rexx Directory 

H6 
C 10-15 

Naming Conventions 

H6 
C 10-13 

T = TurboText Manual 
see page 1-12 

AddChars.ttx Macro 

T 10-4 

Command Interface 

H 3, 43, 89 
C 10-15, 10-78 

1-6 Introduction 



Public Message Port 
Host Address 

H 44 
C 10 -5, 10 -75 f 

Commands 

H 43 thru 46 
C 10-74 thru 10-82 

The ARexx Cookbook 

libraries and global system resources, and processes commands 
(which we will define later) through the command interface, sending 
them to an outside program to do things within that program using the 
internal set of commands unique to that program. The resident process 
itself has a public message port called 'REXX' (Public message ports 
are always case sensitive), through which it sends and receives 
commands and replies, respectively. The resident process implicitly 
determines the destination for any commands it processes through the 
command interface by maintaining a current host address (for 
convenience, it also maintains a previous host address). 

A host address is the same name as the public message port 
maintained by a host application program, and until your ARexx program 
tells rexxmast to change to another host address, commands are sent 
to the current host address. Whenever an ARexx program is launched 
from a host application, the current host address automatically becomes 
the address of that host application (for that ARexx program). The 
default host address is 'REXX', so until a host application program 
overrides this default, the resident process will send itself any 
commands it encounters, and attempt to execute them. The resident 
process itself is therefore a host application, because it is able to receive 
ARexx commands. As we saw above, the rx command used in the CLI 
or Shell invokes the resident process to interpret your program's 
statements and launch them as a DOS process. This recursive quality 
of ARexx is a little confusing at first, but it is worth your while to 
contemplate its ramifications, because it presents a very powerful 
control mechanism, not only for your Amiga operating system, but also 
for any software having an ARexx command interface. 

What Exactly Are Commands? ARexx has the unusual feature that it 
reserves a whole syntactical class of program statements called 
commands which are actual ARexx executable statements, but which 
are not required to have any meaning (in programming, meaning is 
sometimes called semantics) within the ARexx language itself! What 
do we mean by a syntactical class? This means commands are known 
by their syntax or the overall arrangement or aspect of the command 
statement within the ARexx code statements. Commands are usually 
surrounded by quotes (punctuation is a part of syntax), if the commands 
are to be sent to some program outside the host program (assuming 
your ARexx program changes the address appropriately). If these 

1-7 Introduction 



One 

Clauses 

H 14 
C 10-31 ff 

commands are to be sent back to the host program as its own 
commands in a macro, then it is safe to leave off the quotes (but 
including them will not hurt). 

Also, the position in the ARexx program statement itself can determine if 
a statement is a command statement. Simply put, a command 
statement is any expression that rexxmast cannot identify and classify 
as one of the three other types of ARexx statements that do have 
meaning within ARexx itself (statements are also called clauses). The 
resident process uses the unique and powerful command interface to 
send these meaningless commands to outside programs, through their 
public message ports, where they finally take on meaning, because they 
are part of that program's internal command set; and where they will 
actually control that outside program exactly as if the commands had 
been issued internally in that program! 

The primary purpose of the rexxmast resident process is to launch 
ARexx programs, but since it also serves as the communications center 
between ARexx and all other entities in the Amiga multi-tasking 
environment, rexxmast is much more than simply a host application. 
General use ARexx programs are usually run from your Amiga shell or 
the CLI. In case you didn't know, the shell and the CLI are programs 
themselves which launch AmigaDOS commands and start up other 
programs. The CLI is capable of receiving messages from the system in 
its console window, and when you send an ARexx program from a CLI, 
the resident process inherits the input and output streams from that CLI 
and communicates its replies to the output stream of the console 
window, so you can see your program's replies. When you send your 
ARexx program from the CLI by hitting the [Rtn] key, your command line 
enters the input stream from the console window, to be found and 
processed by the resident process. Thankfully, coding in ARexx is 
much more simple than understanding the Amiga system environment, 
and you need not worry excessively if you do not learn everything about 
it. What you do learn, however, will benefit you. 

What Can I Do With ARexx? 

General Programs 
ARexx is a very good way to make general use programs or utilities. 

1-8 Introduction 



The ARexx Cookbook 

Note: Shared library 
names are case 
sensitive! 

Suppose we want to make a program to solve a word or number puzzle. 
Write a quick ARexx program to analyze and solve the puzzle. We'll 
see an example later in the famous Coconut Problem. As for creating 
and launching an ARexx program, simply type it into your favorite editor 
and save the resulting ASCII text file in the Rexx directory in your Sys: 
device. Let's say you named your program file coconut.rexx. To run 
your ARexx program, from the shell (or CLI) you type in at the 
prompt>Rx coconut hit [Rtn], and your program runs! Output is 
written to your CLI window, unless you redirected it. Remember you 
don't need to type in the .rexx extension, but it won't hurt if you do. It's 
very simple to write and run an ARexx program! ARexx is an interpreted 
language as we discussed above, so you have very little overhead in 
preparing a program to run. 

Graphical User Interface 
To continue: Maybe you want to open a window on your work bench 
with some gadgets for your favorite programs. You want to be able to 
click on these and start up your programs without opening the disk 
partitions and drawers. By way of something called the 
rexxarplib.library, you have a great deal of control over windows and 
screens and menus. Arexx itself is not capable of accessing the Amiga 
Intuition graphical user interface, but it is capable of using shared 
libraries, so you have the full power of libraries written by expert 
programmers. rexxarplib.library is a shared library that provides a way 
to access the Intuition (graphical interface) features of your Amiga from 
an ARexx program. This very useful library was written by Willy 
Langeveld of the Stanford Linear Accelerator Center. An example of the 
use of functions from this library is included in Appendix A. It 
constructs a graphic interface to perform complex ARexx macros in Art 
Department Professional (ADPro) by ASDG, Inc. It is possible to bash 
the code of the example program to make a customized graphic user 
interface for your own environment. The custom window in the example 
demonstrates an ARexx program which starts up other programs, 
creates and communicate with ARexx message ports, opens shared 
libraries and much more. The rexxarplib.library was developed with 
D.O.E. Federal Government funds, and since you already paid for it with 
your taxes, you may have a free copy of this professional tool for the 
asking. You may obtain rexxarplib.library free on most Computer 
Bulletin Boards that support the Amiga (e.g. BIX). 

1-9 Introduction 



One 

Word Processing Support 
Next, let's say you have a word processor (without ARexx support) that 
does everything you like, except it doesn't have a way to make an index. 
Even so, you can write an ARexx program to make that index from an 
ASCII text file of your document. In this book, you will get some hands-
on experience making an ARexx program that takes a text file and 
makes an alphabetic list of all the unique words in the file after leaving 
out trivial words (a, and, the, etc.). One could make this bit of code the 
core program for a larger one that also finds the page number(s) for 
each word from the original document and then makes and saves the 
index list which you can bring into your word processor for final 
formatting. Notice you do not necessarily need to have ARexx support 
in your application software in order to use ARexx to increase its power 
and flexibility. As in the example, any application which can save and 
retrieve files is a possible candidate for ARexx enhancement even if it 
must be done indirectly. There are many, many other things you can do 
with ARexx programs! 

Controlling Other Programs Directly 
This brings us to the second major way to use ARexx: launching an 
ARexx program from a program that has ARexx support. This means 
that the program has the ability to launch an ARexx program from within 
itself. A program with ARexx support has an ARexx Port which you can 
think of as a software back door through which any ARexx program 
(including those launched within this host application itself) can 
communicate with this application program and execute this program's 
command set. A host application program, as we saw before, can both 
send and receive via its ARexx public message port. The vehicle with 
which hosts communicate is what is called an ARexx message packet. 

Whenever any ARexx port receives a message the program which owns 
that port takes the message, deals with it and sends out a reply. A reply 
is always sent back in a special variable, usually but not always, called 
result. The host that sent the packet in the first place then does what 
it's programmed to do with this result variable. In the case of the self-
referential or recursive use of an ARexx program launched within a host 
application and sending itself its own commands, the host application 
also replies to itself with the result variable. 

ARexx Message 
Packet 

H 90 ff 
C no reference, but see 
C 10-5 f 

Result Special Variable 

H 26 
C 10-53 

1-10 Introduction 



The ARexx Cookbook 

ARexx Macro 

H 45  
C 10-79 

Think of ARexx as a very polite society that's gone a little crazy: 
Everyone always gives a reply when addressed; and everyone always 
listens for messages as well as replies; and people who talk to 
themselves, always answer themselves! An ARexx program that can 
tell itself what to do and then reply to itself like this is sometimes called 
an ARexx macro. One can build up very complex command 
sequences in any program with ARexx support, and most such 
programs then allow you to map this macro program to some key such 
as a function key. When ARexx is used to go outside an application and 
control or communicate with another application program via its ARexx 
port, we call it interprocess control, although it's still technically a 
macro, too. 

ARexx: The Universal Amiga Macro Language 
One of the definite advantages to learning ARexx is that it is the 
standard for Amiga interprocess controls and macros. Commodore is 
including ARexx on all its computers now for a good reason. You don't 
need to learn ten different macro languages as you do on other 
platforms; on the Amiga, you do it all with ARexx. An increasing number 
of software developers are making their products with ARexx ports. The 
time cost of the ARexx learning curve, spread over so many programs, 
is actually quite reasonable. When you make the next logical leap and 
consider the ramifications of several application programs each with an 
ARexx port; each hosting its own ARexx program to send a set of 
commands to another application program (via its ARexx port), then 
bringing back and processing the result from the execution of those 
commands inside the other program, ... you soon find the possibilities 
mind boggling, but exciting, and undoubtedly powerful. 

What Features Does ARexx Have? 
Some of the following terms may be unfamiliar to you but you'll soon 
know them well, as we get into some tutorials. People who have 
programmed in other languages already, or even a little in ARexx, will 
appreciate the fact that they do not have to declare variables, as 
integers, floating point numbers, arrays, etc. nor do they have to declare 
precision (unless they want to). ARexx is smart. It types (declares) 
your variables from their context, on the fly! You can initialize your 
arrays with one line of code. There is no better language for performing 
string manipulations, thanks to the ARexx PARSE insMexxtion. 

1-11 Introduc:-79 



One 

TurboText 
by 
Oxxi, Inc. 
P.O. Box 90309 
Long Beach, CA 
90809-0390 
(310) 427-1227 

Recursive calls are easy in ARexx. You can CALL an internal function 
and protect the variables so the calling program cannot confuse its own 
variables with those inside the internal function, or you can expose any 
variables you choose and let the results of changing them in the interior 
function filter back to the main calling program. You can make multi-
dimensional arrays with almost anything as a node (qualifier); not just 
integer numbers but strings or the values of any variable (but not a 
direct expression. This you must assign first.). There are so many other 
things you can do, but rather than continue to sing the praises of ARexx, 
let's just get down to some concrete examples! 

The ARexx Tool Kit 
Perhaps some specific examples of the tools you need will help, so 
before we get into coding ARexx examples, please allow some specific 
recommendations as to what you need in order to make an ideal 
environment for creating your ARexx programs. 

Documentation and Utilities 
The original ARexx package distributed by William S. Hawes contains 
more complete and easier to use documentation including some 
valuable material left out of the free ARexx implementation provided by 
Commodore. Even though it is not strictly necessary, Hawes' version 
includes some very useful utilities and the rexxarplib.library, too. 

Your Text Editor 
Although you can get by using any editor to write ARexx code, you will 
benefit greatly by gettinga good one. There is no better ARexx editor 
than TurboText by Oxxi. It not only has a full implementation of 
ARexx support, but it has a special ARexx window and a console 
window which allow you to code and test your programs without leaving 
the editor itself. It has the added feature of emulating all the other 
popular editors, so if you are used to a particular older editor, you can 
use its emulation if you like. We will look at some example programs 
that control TurboText in the tutorials. TurboText is a wonderful editor 
for any programming language and it contains some specific features for 
C, Module 2, and Assembly Language. It has a stand-alone calculator 
for programmers. It converts among all computer number bases from 

1-12 Introduction 



The ARexx Cookbook 

WShell 2.0 
by 
Wishful Thinking 
Development Corp. 
P.O. Box 308 
Maynard. MA 01754 
(508) 568-8695 

binary to hex, and has logical operators, too. TurboText is fully 
configurable which means you can customize your keys to do whatever 
you want, even launch ARexx programs. It allows you to fold (hide) 
sections of the text. As you finish a block and you know it works, you 
can make it disappear so you can see the main program more easily. 
There are many more useful features in TurboText. It has a superb 
manual. Finally, it contains a wealth of ARexx examples that do useful 
things, and which provide some great examples to study. 

Your Command Shell 
WShell by William S. Hawes is the best shell environment for ARexx. 
You do not strictly need a special shell to run ARexx, but if you do a lot 
of things in ARexx, and particularly if you want to customize your 
AmigaDOS environment, WShell is wonderful. ARexx is transparent to 
WShell and runs just like a DOS command, without the rx command, 
because WShell is a bonafide host application program with its own 
message port and address. Also, there are some powerful utilities that 
come with WShell such as a file completer called FComp that saves 
your typing in path names to files. After you type only a few characters 
of the path, FComp finds the rest of the name for you and types it in for 
you. WShell features the ability to send itself resident ARexx macros, 
create complex or simple aliases, to push and pop current directories, 
and to perform concurrent piping. WShell contains a set of resident 
commands, maintains a command history, allows programmable 
prompts and custom window title bars, and is compatible with system 
1.3 and 2.0. You may of course keep your Amiga shells as well. 
Frankly, it's difficult to understand why Commodore chose to keep using 
their Amiga Shell: They went so far as to recognize the indispensability 
of ARexx, but stopped short of adopting WShell, the one shell made for 
ARexx, and by the same author! It isn't logical, so it must be marketing. 
For a modest cost, you can put WShell into your system. 

1-13 Introduction 



One 

Notes 

1-14 Introduction 



The ARexx Cookbook 

Case Sensitivity 

Only names of 
public message ports, 
addresses of host 
applications and names 
of shared libraries and 
logical files are case 
sensitive in ARexx. 

Commands and 
instructions and 
functions are not. 

Chapter 2: 
ARexx Basics: Files, Strings, and 
Arrays 

Modular Coding: Building a Foundation 
In this section we start the tutorials and show you how to make ARexx 
programs that depend solely on rexxmast and are to be launched from 
your shell or CLI. Each tutorial is a complete program, but the code can 
and will be used in other larger programs quite easily. Feel free to use 
this code in your applications. That's what it's there for. The complexity 
will build as we learn new techniques and improve our code. Each 
tutorial may build upon whatever material has gone before both as a 
means to review, and to suggest to you how to make your code 
modular (in pieces which can stand alone). This modularity will teach 
you something about good programming habits and techniques. We will 
learn to write pseudo-code to outline what the program is to do, so that 
when things get more complicated, you'll have the tools to sort out what 
you want to do before you get down to coding ARexx. In all the tutorials, 
the ARexx instructions are in CAPITALS, and the variables and strings 
that are supplied by the programmer are in lower case. This is to make 
the code easier to read. Note, however, that ARexx does not require 
this. The only case sensitive expressions in ARexx are the names and 
addresses of public message ports; and library and logical file names. 
Instructions, commands, and assignments can be mixed case. 

How to Open and Read A Text File 
Assume that you have a text file somewhere that you wish to manipulate 
with ARexx. Write down, or at least study the pseudo-code of what we 
want to our program to do: 

Pseudo-Code: 
Step 1: Start the program with a comment /* All ARexx programs start 
with a comment delimited (begun and ended) as you see here */ 

Step 2: Solicit user input of filename and path to the file, by putting up a 

2-1 Basics: Files, Strings, and Arrays 



Two 

prompt on the screen to ask for this information. 

Step 3: Take the user input from the screen and assign it to a string 
variable (a group of ASCII characters, a symbol) that ARexx can deal 
with. 

Step 4: Open a logical file (a name to represent the file in the 
program) for reading. (logical file names are 'quoted') Use the string 
variable from Step 3 to represent the file name and path to this logical 
file. If open was successful, go on. If not, do Step 9 (Exit). 

Step 5: In a loop, test for the end of file (EOF) marker in your text file. If 
the program is not at the EOF, do Step 6. If at end of file, do Step 9 
(exit). 

Step 6: Read (next) line of the logical file (reading starts at the 
beginning, and each read line reads next line in turn, sequentially). 

Step 7: Write the line to the console window (your shell window). 

Step 8: Go back to Step 5. This is the end of the loop. 

Step 9: Exit the program with a return code of 0 to say all went well. 

An Alternate to Steps 5, 6, 7, 8, and 9: 
Step 5: By means of a loop, read each line and write it to the console 
window (your shell window). Exit when you reach EOF (end of file). 

At this point, our pseudo-code tells us pretty much what we want to do. 
All we have to do now is make a text file to test and write some ARexx 
code to accomplish the work. Note that the pseudo-code can be as 
simple or as complex as we want. The alternate to Steps 5 through 9 is 
one complex step that takes the place of four steps. The "Dick and 
Jane" Steps 5, 6, 7, 8, and 9 explain what our program does in greater 
detail, however. We will come to a discussion of the subtle differences 
between attending to details and ignoring details after we have coded 
our little program, but for now, keep in mind that these seemingly trivial 
things are frequently the source of headaches and mysteries, so do not 
take details lightly. 

2-2 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

SAY instruction 
H 38 
C 10-70 

PARSE UPPER PULL 
instruction 
H 33 
C 10-64 ff 

IF instruction 
H 29 
C 10-58 ff 

OPEN() function 
H 60, 61 
C 10-109 

DO WHILE instruct. 
H 27 
C 10-53 ff 

EOF() function 
H 57 
C 10-103 

READLN() function 
H 63 
C 10-113 

END instruction 
H 29 
C 10-57 

EXIT instruction 
H 29 
C 10-57 

Start ARexx, Create a Test Text File, Make the Program 
If you haven't done so, start rexxmast from its icon (double click on it), or 
start it from the CLI, by changing directory to where rexxmast resides 
and type rexxmast[Rtn] at the prompt. Take time now to make a text 
file in your editor of the three lines below. Make sure to put a carriage 
return at the end of each line by pressing the [Rtn] key. Enter the 
following in an ASCII editor such as TurboText (or Ed or other editor): 

An example of a text file. This is line 1. 
Line two of our file looks like this. 
Three lines to read from our file, and we are done! 

Save it to RAM:Text . file (and also somewhere permanent, because 
we will use it again later on.), and then enter the following in your editor 
(again in ASCII): 

/* OpenRead.rexx Start with a comment! */ 
SAY 'Input filename and path.' 
PARSE UPPER PULL infile 
IF OPEN('textfile',infile,'READ') THEN DO 

DO WHILE ~EOF('textfile') 
line=READLN('textfile') 
SAY line 
END /* end of do while... */ 

END /* end of if open(... */ 
EXIT 0 

Choose a Form for Readability 
Take the time and effort to indent as you see the program here. ARexx 
doesn't care if you indent, but you will on longer programs when you 
need to go back and change them later. A systematic way of indenting 
your code blocks increases the readability and helps to minimize 
mistakes, so try to start now to develop good coding habits. Also think 
of comments as lifesavers later. It is always a good idea to identify all 
your END instructions with comments as you see here. Notice that they 
do not interfere with the executable code on the same line as long as 
they are delimited (set apart) properly with /* and 1. Save this program 
text you have just typed in as OpenRead.rexx (put it in your Rexx or 
your Rexxc directory). From now on, Rexx and Rexxc will be the 
interchangeable; Rexxc is in system 2.0 and Rexx is in system 1.3. 
We'll always refer to the Rexx directory but you will know what we 
mean. Open a shell or a CLI. We will denote what the system or ARexx 

2-3 Basics: Files, Strings, and Arrays 



Two 

writes on the screen in bold; what you type and send is in courier 
type. [Rtn] means hit the return key. Notes about other things are in 
italics. Type in: 

prompt>CD  sys : rexx [Rtn] 

This command changes the current directory to the Rexx directory. At 
the next prompt you type: 

prompt> rx OpenRead. rexx [Rtn] 

What Happens? The console takes our input to rexxmast which 
interprets it and returns a reply. I want you to be clear exactly what you 
are putting in and what the system is sending back to you. The 
messages will appear on your screen without a prompt, and the cursor 
will appear just below it all the way to the left, like this: 

prompt> rx OpenRead. rexx 
Input filename and path.
<--cursor will be here. 

You now type in the path information (no need for a prompt; you are in 
your first ARexx program!). You type in the last line: 

prompt>rx OpenRead. rexx 
Input filename and path. 
RAM:Text.file[Rtn] 

The system comes back, and the screen now looks like: 

prompt> rx OpenRead. rexx 
Input filename and path. 
RAM: Text. file 
An example of a text file. This is line 1. 
Line two of our file looks like this. 
Three lines to read from our file, and we are done! 
<--a mysterious blank line appears here. Do you know why? 
prompt><--cursor will be here, ready for your next command. 

You are no longer a beginner! You have written and run an ARexx 
program, and that's about all there is to it (except the details). Opening 

2-4 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

Rye Clause Types 

H 14. 15 
C 10-31 thru 10-35 

Keyword Instructions 

H 25 
C 10-50 ff 

and reading files will be something you use over and over, so we will go 
over our code line by line and show you why it works. This is about the 
simplest way to open a file and read it. You will always have one 
version or another of this routine at the start of most general use ARexx 
programs. We will soon see how to improve on our original code, but 
first. the simple, and later the complex. 

/* OpenRead.rexx Always start with a comment! */ 

The first line of our ARexx program is a comment line. It accomplishes 
Step 1 of the pseudo-code. Comments may appear anywhere in the 
code and do not affect anything, but there must be a comment at the 
very start of every ARexx program. The /* is how we begin a comment 
and the */ is how we end it. These are called comment delimiters in 
computer programmer's jargon. Also, you are allowed to put in blank 
lines, as they do not affect anything either, but can make complex code 
much easier to read later. Lines consisting only of comments or entirely 
of blanks are called null clauses in the ARexx definitions. You see the 
other four types of clauses defined in the margin reference. A clause or 
a statement is the smallest unit of ARexx that can be executed by 
ARexx. We mentioned before that these other four types of clauses 
may be interchangeably called statements, but null clauses are always 
clauses. Three of the five types of clauses appear in our first program. 

SAY 'Input filename and path.' 

The second line is known as a key word instruction clause (or 
statement), and performs Step 2 of the pseudo-code. SAY is an 
instruction clause, but if we were merely to put SAY on a line by itself, 
the program will return a blank line, or skip down one line before writing 
other output to your shell window. We use the key word SAY here 
followed by a string in quotes (single or double). SAY is not a function; it 
is an instruction; but it is somewhat similar in that it signifies doing a 
specific action upon information following it. That is why we call it a key 
word instruction: The key word SAY completes an action using the 
rest of its own line. Instructions are defined to be clauses (statements) 
with an initial keyword symbol that is not followed by a colon : or an 
equals =. The latter tokens (entities : and =) identify label clauses and 
assignment clauses, respectively. A keyword instruction may contain 
subkeywords, expressions, or other information specific to the 
instruction. 

2-5 Basics: Files, Strings, and Arrays 



Two 

Review 

H 11 thru 16, 25 
C 10-26 thru 10-37 
C 10-44 thru 10-50 

Expressions 

H 15 thru 17 
C 10-35 thru 10-37 

Quotes are used to delimit a 'string token'. SAY returns a reply to the 
screen exactly like what is between the quotes, but without returning the 
quotes themselves. If you want to include the quotes themselves in a 
string token, you must double them. A token is the smallest unit 
corresponding to a word in an ARexx clause. So, loosely speaking, 
clauses are "sentences" made up of "words" which we call tokens. In 
the syntax of ARexx, tokens can also be comments; symbols (what we 
think of as variables); operators (+, *, etc.); and special characters: 
parentheses() ; the colon (:); the semi-colon (;); and the comma (,). Re-
read pages 11 through 16 and the top of page 25 of the Hawes ARexx 
manual (pages 10-26 through 10-37 and 10-44 through 10-50 of the 
Commodore documentation) unless this is all perfectly clear to you. 
Realize the trade off between easy, no-declaring-of-variables ARexx 
and boring, "Dick and Jane" declaration of variables in some different 
language. You are responsible to know "with which and to whom" when 
you code in ARexx! Your initial confusion between and among the 
different elements of ARexx will cause you headaches until you sort out 
the differences between an instruction clause and a command clause, 
between a symbol token and a string token, and so on. Now back to 
SAY... If we put a variable (a symbol token) which has previously been 
assigned a value, or an expression (a mixture of different kinds of 
tokens which can be evaluated), after SAY, then SAY replies with the 
value of the variable or of the expression. This is more powerful than it 
seems as we shall soon see. In our simple case SAY is used to prompt 
the user to enter some information into the console (shell) window. 

PARSE UPPER PULL infile 

The PARSE UPPER PULL instruction is used to take input from the user 
from the screen , and is the ARexx code equivalent of Step 3 of the 
pseudo-code. PULL waits until you type something in and hit return. 
The PULL instruction used alone without the PARSE UPPER in front of 
it accomplishes the same task with less typing on your part. I include 
the PARSE instruction here for you to make its acquaintance, because it 
is the single most powerful instruction in ARexx when it comes to 
dividing up (parsing) strings. In our example, the entire line you enter is 
first converted to UPPER CASE (that's what the UPPER option is for, 
and UPPER must immediately precede all other options). Then it is 
parsed (a way of assigning a string or part of a string to a variable or 
several variables). In this case the entire line you type in is put into the 

2-6 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

Symbol Tokens 

H 11, 12, 21, 78 
C 10-28 ff, 10-44 
C 10-148 

string variable (a simple symbol token) infile. Now, whenever we refer 
to infile, the ARexx resident process will evaluate it as the exact line or 
string we entered after the SAY instruction above it. The only way it will 
change, is if we decide to assign it another value in an assignment 
statement. PARSE UPPER PULL or PULL will take any input from the 
user. If you sent 

Mary had a little lamb.[Rtn] 

    

    

 

the variable infile would end up as a string variable evaluated to: MARY 
HAD A LITTLE LAMB. If you had entered 1234[Rtn] after the SAY 
instruction, the value of infile would be the integer 1234. This is why we 
say ARexx types our variables on the fly from context. (Now if I could 
only get ARexx to type my correspondence as well...) Variables are 
therefore what you make them and you can change them any time at all, 
you just have to be aware that this can get you into trouble at times. For 
instance if your program had tried to open a filename and path called 
MARY HAD A LITTLE LAMB or 1234, your program wouldn't get very 
far! 

  

Special Characters 

H 13 
C 10-30 f 

IF OPEN('textfile',infile,'READ') THEN DO 

The next line of our program, Step 4 of the pseudo-code translated to 
ARexx, is a bit more complicated. It demonstrates the wonderful 
compactness of ARexx in that it combines an instruction and a function 
in one line: an IF instruction and an OPEN() function. Functions are 
easy for you to identify. If it has the parentheses (), it is a function; in 
our case here, we have an example of one of the built-in functions of 
ARexx, OPEN(). Later, we will see how you can "roll your own" 
functions in ARexx with a minimum of effort. Remember that a function 
is a special kind of expression (because it can be evaluated). 
Functions have the following syntax: A function is a string followed 
immediately by an open parenthesis, then arguments separated by 
special characters (commas), then a closing parenthesis. Are you 
beginning to see how everything is inter-related and neatly arranged and 
defined? Not yet? You will soon! 

Let's take the OPEN() function first. All functions take arguments, the 
stuff inside the parentheses. Arguments are always separated 
(delimited) by a comma ,. Here we have three: 'textfile', infile, and 

2-7 Basics: Files, Strings, and Arrays 



Two 

'READ'. The quotes are important. 'Textfile' is the logical name (a 
string token) of the file we will open. This is a name you make up. Here 
we call it 'textfile' to remind us that we are reading a text file. The 
second argument is infile (no quotes). We don't use quotes because 
infile is a string variable (a simple symbol token) which when evaluated 
is the exact string you entered at the console window, translated to 
UPPER case. That's what the PARSE UPPER instruction did for you. 
You could leave out the SAY and the PARSE lines if you knew you 
would always read a certain file with a certain path. Let's pretend you 
have a text file called MyNotes.doc in a directory called Docs in your 
hard drive partition DH0:. If this example program were intended to 
read only the lines in MyNotes.doc every time you ran this program, 
you could leave out the lines with SAY and PARSE, and make the 
statement into: 

IF OPEN('textfile','DH0:Docs/MyNotes.doc','READ') THEN DO 

Note that the second argument is now a name (a string token) and not a 
variable (a symbol token), so you use quotes. The SAY and the PARSE 
lines are merely a way to vary the files our program 'reads'. The third 
argument is 'READ' one of three options which tells the OPEN() 
function that we wish to 'READ' the file instead of 'WRITE' to it or 
'APPEND' (add to the end of an existing file). We may use 'R', 'W', or 
'A' (upper or lower case) to denote these options, also, but leave in the 
quotes ('options' when they are arguments to a function are string 
tokens, too. Remember, by definition, string tokens need quotes around 
them. 

Now we need to discuss something the manual leaves a little unclear. 
Functions (unlike instructions) always, always return something, in the 
way of a reply, so you must never forget to do something with the 
returned value, or your ARexx program in the host application will 
attempt to execute what is returned, and it probably won't make sense 
as a command! Remember, if it doesn't make a positive ID on anything 
it gets sent, rexxmast will call it a command and send it to the current 
host address. Now, the function OPEN(), if successful returns the 
number 1 (boolean or logical true); and if it fails (i.e. you've let MARY 
HAD A LITTLE LAMB stand for infile), then it returns (you guessed it!) 
the number zero (0) to stand for a logical or boolean false. Imagine my 
chagrin when I finally found out why my programs were hanging up with 
messages saying unknown command: 1. The resident process was 

2-8 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

simply trying to execute the replies from my OPEN() functions! It 
thought they were commands, so it sent them back to the WShell as 
commands. 

I was using WShell which is a host application (unlike the Amiga Shell 
which won't quibble about this), so it can send and receive messages. 
The WShell makes the current host address to be 'WSH_6' or whatever 
number of shell was running the program. When the OPEN() was 
successful, it returned a 1 to the WShell which WShell did not know as a 
command, so I got an error message. If you try this with and ordinary 
Amiga Shell, nothing will seem to go wrong because the current host 
address is 'REXX', but you will not be doing it correctly, and you will get 
into trouble when you start working with bonafide host applications. 

There are three ways to do something with the reply from your OPEN() 
function (if you are in a host application) and prevent an error from 
happening. Note: you can deal with any function by doing one of the 
following. First you can CALL it: 

CALL instruction 
	 CALL OPEN ( ) 

H 26 	 Refer to page 26 of the Hawes ARexx manual (page 10-53 of the 
C 10-53 	 Commodore documentation) for the CALL definition. Notice the fine 

print. The value returned by the function is assigned to the special 
variable RESULT, so CALL automatically does something with the 
returned value. It assigns it, and so rexxmast doesn't think it's a 
command. The second way to prevent trouble is to assign it yourself to 
anything at all. For example: 

reply=OPEN() 

If OPEN() succeeds, reply will have the value 1 assigned to it, and it will 
be 0 if OPEN() fails. 
The third way is more subtle. You make the result mean something to a 
key word instruction that uses an expression (our function) in performing 
its work. If we write: 

SAY OPEN () 

then a 1 will appear on our screen if OPEN() worked, and a 0 will appear 
if not. Remember SAY can write the value of something like a variable 

2-9 Basics: Files, Strings, and Arrays 



Two 

(a symbol token). In our example, the IF instruction is one that tests for 
a 0 or a 1 directly, so it is quite natural and ingenious that ARexx allows 
the IF instruction to do something directly with the returned value of 
OPEN(), or with any other function that returns a boolean value. No 
matter how complicated you may think logic is, it all boils down to a true 
or a false; a 1 or a 0 in the end. Every IF statement in every computer 
language evaluates some conditional expression (no matter how 
convoluted) into a 1 (true) or a 0 (false) and branches accordingly! In 
our example, IF OPEN() THEN DO boils down to: If the returned value 
of OPEN() is 1, then do the following block of instructions down to the 
END instruction for this DO block of instructions. If the value is 0, then 
skip to the first clause after the END instructicn. In our example this 
would be the EXIT 0 instruction clause. Naturally, we can use IF and 
other logical instructions to deal directly only with functions (and 
expressions) that return a boolean value (1 or 0). If a function returns a 
string, for example, we have to use a less picky instruction like SAY, or 
assign it to a variable of our own, or CALL it. 

DO WHILE ~EOF('textfile') 

The next line is the start of a DO WHILE loop, which encodes to ARexx 
Step 5 of the pseudo-code. A DO WHILE loop tests a conditional 
expression and proceeds as long as it is true. The expression here is 
-EOF('textfile') which is pretty readable to start with, don't you think? 
Translated, the whole line reads, While we are not past the end-of-file 
marker of our logical file, 'textfile', then we will continue to iterate (do 
over and over) the instructions contained in the block delimited by the 
DO WHILE instruction and its END instruction. The tilde (~) is used to 
mean not in ARexx and may be compounded with any expression (or 
function that returns a boolean value (0 or 1) to negate it. Here, we 
want to continue something as long as we are not somewhere: the 
EOF. EOF() is a function, too, and like OPEN(), it returns a boolean 
value, so we can use it in a test expression, in this case negated so that 
not EOF will return a 1 and EOF will return a 0. You may have noticed 
by now that we have two instruction blocks in our program, one 
connected to the IF OPEN() THEN DO line, and one nested inside that 
block (a DO WHILE instruction block). Block instructions always have 
an END instruction to delimit the block. If our END instructions do not 
match the ends of the blocks we intended, or if we leave one out (easy 
to do in longer programs), we get some strange and unwelcome errors. 

2-10 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

Quotes must match up as well. If you are at all experienced at 
programming in any language, you will not find it strange to see me 
stress small, obvious points, because you will have undoubtedly 
experienced firsthand the old proverb, It's the little foxes that spoil the 
whole vineyard! Syntax can be taxing, in other words. 

line=READLN('textfile') 
SAYline 

OK. so now we have two lines of instructions to execute over and over 
until we get to the end-of-file marker. The first is an example of an 
assignment clause where we set something equal or equivalent to 
something else. We assign the value of the return from the function 
READLN() (which means to read one line from a file) to a variable (a 
simple symbol token) we call line. Notice that this time our function 
returns something else besides a boolean 0 or 1. It returns an entire 
line from our file, but we still must do something with it or else expect 
rexxmast to try and execute that line, fail, and send it out as a 
command. We assign the value of this line (the evaluated string 
expression) to our variable line. Note that we don't need to type or 
classify line beforehand, we just let ARexx do its thing and classify it for 
us as a simple symbol token. The assignment clause then causes 
rexxmast to evaluate the tokens to the right of the = as an expression 
and the result becomes the value of line. Note that line has no quotes; 
its not a name. It's a string variable (a simple symbol token). The 
following line is the familiar SAY instruction to illustrate its utility in 
printing out the value of a variable to the screen. We could have 
combined two lines into one: 

SAY READLN('textfile') 

would accomplish the same output to the console, but usually you'll 
need to do something more with what you read in from a file and the 
assignment clause is therefore essential to know. 

END /* end of do while... */ 
END /* end of if open(... */ 

EXIT 0 

We now come to the END of the DO WHILE loop (Step 8 of the pseudo- 
code) and go back to test for EOF. When the DO WHILE loop is 
satisfied, it passes control to the next instruction past its END 

2-11 Basics: Files, Strings, and Arrays 



Two 

instruction, which is another END instruction, this time the one that 
finishes up the original IF OPEN() THEN DO block. Since this isn't a 
loop, we keep going to find an EXIT 0 instruction to exit the program, 
replying with a Return Code of 0 to the shell or CLI. Although it's not 
necessary to use it here, it's a good practice to get into, and a return 
code of 0 means everything went OK. In Shell, you can program its 
prompts, and displaying the return code is one option. If you do a lot 
with ARexx, program the Shell prompt to display the return code. 

You now understand a lot more than when you started. As we progress, 
we will not discuss old topics in as much detail as in this tutorial, but 
from time to time we shall repeat important things as a review. If you 
want to do some exercises to gain confidence before you go on, try 
modifying this program to do different things, and think about how you 
would answer the following questions. 

1. How will I deal with input mistakes from the user in my ARexx code? 

2. What if I want to deal with only some of the words in lines I read from 
the file? How do I deal with individual letters of those words? 

3. What can I do to warn myself if the file is wrong or doesn't exist? 

4. Where did that blank line in the output come from? 

Improving the Opening of a File 
Now that we know how to open a file, let's improve our first program and 
try to answer some of the questions at the end of the last section. Type 
in the following into your editor and save as OpenReadImp.rexx as 
always in your rexx directory: 

/* OpenReadImp.rexx Improved file reading 
PARSE UPPER ARG infile 
IF infile = '' THEN DO 

SAY 'Input text filename and path: ' 
PULL infile 
END 

IF ~OPEN('textfile',infile,'READY') THEN DO 
SAY 'File cannot be opened. ' 
EXIT 20 
END 

DO UNTIL EOF('textfile') 

2-12 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

line=READLN('textfile') 
SAY line 
END 

EXIT 0 

This program illustrates the way we can implicitly ask for the file and 
path as an argument to an ARexx program. We have met the PARSE 
instruction before, but this time we are parsing an ARGument (the file 
name and path) on the same input line as our program. ARG by itself is 
shorthand for PARSE UPPER ARG, which is similar to the way PULL 
operates. Let's say our text file is still in RAM:text, so at our prompt we 
input (remember the .rexx qualifier is optional): 

prompt> rx OpenReadImp.rexx RAM:text[Rtn] 

and our program runs in one step. The output is the same as for the 
first example. Notice that we do not need to put quotes around 
RAM:text. Why? Because as before, the program is parsing it directly 
into the variable infile which gets assigned the value of the argument. If 
we put quotes they would be evaluated because we are dealing with a 
simple symbol token and not a string token. Quotes can be a pain in 
ARexx until you understand how they work. The program checks to see 
if you have supplied an argument, infile, and if not (it's the null string") 
then ARexx prompts you to enter the file name and path as before, and 
then PULLs it from the screen. 

Error Checking 
Notice how the program begins to check for errors. If we put 1234 after 
our program name, then the OPEN() function will fail and return a 0 and 
the IF statement will be true because OPEN() is negated by the tilde - 
which you recall means not. So if not open is true (an error) then the 
program puts a message on the screen and sends back a return value 
of 20 to show it failed. The rest of the program is exactly like the first 
one, except we've used UNTIL instead of WHILE and not negated 
EOF() to show you one more way to do the same thing. WHILE is 
evaluated at the start of each iteration, and UNTIL is evaluated at the 
end of each iteration. This is useful if you need to leave the loop in 
different ways, but here these two instructions are interchangeable. 
Now let's find out some details and learn to count lines, and later on 
words and letters. 

2-13 Basics: Files, Strings, and Arrays 



Two 

Counting Lines 
Make this program just like before. Call it CountLines.rexx: 

/* CountLines.rexx */ 
/* Opening & Reading a File. Finding the EOF. How 
many lines? */ 

SAY 'Input filename and path.' 
PULL infile 
rcode=20 
IF OPEN('textfile',infile,'READ') THEN DO 

rcode=0 
i=1 
DO WHILE ~EOF('textfile') 

line.i=READLN('textfile') 
/*IF line.i ~= '' THEN*/ SAY 'Line#'i'='line.i 
i=i+1 
END 

i=i-1 
/*IF line.i-1 = '' THEN i=i-1 */ 
SAY 'There were 'i' lines in this file.' 
END 

ELSE SAY 'Could not open your file!' 
EXIT rcode 

Notice the way we have commented out two sections of the code by 
putting 1* in front and */ behind the sections. This is a good way to 
change a program temporarily and leave out code you aren't sure you 
want to use or delete just yet. Our purpose here is to test the number 
of lines in our file. 

Some Fine Points About the End Of File 
Run the program as it stands on your file RAM:text and see if it comes 
out correctly. What? We have the wrong number of lines? No? 
Everything is fine? Why expect to get different answers? It depends 
on how you entered your text, where the EOF marker ends up. If you 
entered the text exactly as instructed before, you hit [Rtn] after every 
line and our program says we have more lines than we put in. But wait! 
Text editors do a Carriage Return and a Line Feed at every [Rtn] so 
that last [Rtn] we put in added an extra blank (or null) line which now 
consists of only the EOF marker. If you use an editor like TurboText, 
you can make the end-of-lines and end-of-files visible as a special 
patterned character, and you can then see two ways of having the 

2-14 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

"same" file. So our program is "right" after all, and we are "wrong". The 
parts of the program /* commented out */ if put back in, will take care of 
all possibilities, so that no matter how we save the lines into a file, the 
lines will be counted properly and null lines left out. 

Returning the Value of an Expression 
Other new things we are using here are the IF THEN ELSE construction 
to return a code (we call it rcode) to the caller (the shell) depending on 
whether we were successful or not in opening our file. Note that we 
make our own rcode here. Do not confuse our return code with the 
special variable Return Code RC in ARexx, which changes after every 
function call, and is primarily used to carry error messages at interrupts 
which we will look at later. Here, we just want to signal the shell with a 0 
if all went OK, and a 20 if we couldn't open the file. We just assign 
rcode a value according to how everything came out and the instruction 
EXIT rcode carries it back to the shell. We are developing good habits 
here. Our rcode is not necessary to run the program, but use it anyway. 
When you must write complex programs you'll be glad you took the time 
to learn how to do it right. 

Arrays: Stems with Nodes are Compound Symbols 
We are introducing Arrays (Compound Symbols) for the first time 
here, too. We want to count lines. So what better way than to set 
(assign) a counter (i=1), and use this number as the node of our stem 
symbol (the name of the array). Reading pages 11 and 21ff of Hawes, 
(or 10-28 and 10-44 ff of Commodore), we notice that a stem symbol 
has exactly one period (.) at the end of its name (here, line. is our stem 
symbol). A node is what comes after the period(s) in a stem symbol, 
and we are allowed to have multiple nodes: node1, node2,... etc. up to 
as many dimensions as we need. We only need one dimension to count 
lines. In ARexx, a node is defined to be a fixed or a simple symbol, so 
you can't put in a node that is an expression such as i+1 without first 
assigning it to a fixed or a simple symbol. We could write n=i+1 and 
only then could we use n as a node. When the node is combined with 
its stem symbol, the whole thing is called an array element in general 
terms, and a compound symbol in ARexx jargon. A node which is 
itself a compound symbol is illegal, and must be assigned to a simple 
symbol before becoming a valid node in an array. 

Array elements and 
Compound Symbol 
Tokens are equivalent 
terms. 

H 11, 21ff 
C 10-28, 10-44 ff 

2-15 Basics: Files, Strings, and Arrays 



Two 

Initializing Arrays 
(assigning Stem 
Symbols) 

H 21 
C 10-44 

Each node, evaluated and combined with its stem makes up a new 
name which is used in place of the compound symbol 
(stem.nodel.node2.node3 ... is the compound symbol). In English this 
means each of our lines from our file will be given a different name. Our 
three lines will be represented by three compound symbols: line.1, 
line.2, and line.3 ...simple enough! 

Initializing and Counting with Arrays 
Don't let arrays scare you. They are a "bear" in other languages, but 
this is ARexx and they're fun and easy here. Want to initialize a whole, 
gigantic array to make every element = 0? Let's call our gigantic array 
GAR. and our elements go from GAR.1.1 to GAR.1000.2000 ...but one 
simple instruction in ARexx initializes every element: GAR.=0 (For any 
array; any dimension: same instruction!). 

Now make those commented out sections of your CountLines.rexx 
program active, and re-save the file. Each time we go through the DO 
WHILE loop, we are reading a line from our file, only this time we assign 
a different compound symbol (line.i) to th

(stem.node1.node2.node3we increment i (add 

1 to  i ) each time 
through. 

Expressions Can Mix and Match Symbols 
The IF instruction takes care of SAYing only those lines which are not

Iine.1("Iine.2 expreIine.3after SAY is worth looking at, however. It is an 
expression because it mixes literal string symbols ('Line #' and '='); a 
simple symbol (i); and a compound symbol (line.i). This expression 
is evaluated during each loop iteration to one of the three strings that 
you see on your screen: 

Line #1=An example of a text file. This is line 1. 
Line #2="Line two" of our file looks like this. 
Line #3=Three lines to read from our file, and we are done! 

Count from Zero or One? 
After the loop finishes, we need to decrement (subtract 1 from) i 
because it got incremented once too often. We could have started with 
i=0 and avoided this. Inside computers most things are counted starting 
from 0 instead of 1 for the reason that it is easier to reset things in a 

2-16 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

binary (1 or 0) environment by initializing to 0 (low or off) instead of 1 
(high or on). We will do this sometimes, too, but it seems more natural 
to start counting things at 1 and not 0, so we do that here. 

Exhausting All Possible Outcomes 
The next line takes care of the situation if we put in a [Rtn] at the end of 
the last line of our file. If we did, then there is an extra line containing 
only an EOF marker, and i is still one too many, so we need to 
decrement it again. We output a message to check our final line count 
and come to the end of the loop. 

Now we see an example of the ELSE instruction. It goes with the IF 
OPEN() instruction, and takes care of the other possibility: we didn't 
open our file, in which case the program tells us it couldn't open the file. 
Finally, we exit with the appropriate rcode of 0 (success) or 20 (failure). 

You've seen three variations on the way to open a file and read in the 
lines of that file, and have had a taste of the power of compound 
symbols which are arrays of related variables. In the next section we'll 
use some of these techniques to start taking apart lines into words, so 
you can witness the unique power of ARexx when it comes to string 
manipulations. You will find if you experiment on your own that even 
taking apart arrays of words into arrays of letters is merely a simple 
extension of this technique. It is easy to make a stem let. with three 
nodes that represent for instance the value of the second letter of the 
second word ('example') of the first line or our sample data file: 
let.1.2.2='x'. An example program (UNIarray.rexx) using multi-
dimensional compound symbols is in the Program Listings in the 
Appendix. Compare it to the program discussed in the next section. 

How to Take Apart Lines of Text Into 
Words 

Breaking Lines into Words 
Now we want to break up our lines into words. The best way to do this 
is by using compound symbols (arrays). Since we've learned to put our 

2-17 Basics: Files, Strings, and Arrays 



Two 

lines into arrays, we have the necessary tool already. Let's combine 
one of the programs from the previous section with a custom made 
internal function (a string followed by () containing arguments) to give 
you a taste of how easy it is to make modular programs in ARexx. 

Format for Future Readability 
In your editor, open the previous tutorial's program file called 
OpenReadImp.rexx as a start and type in the changes shown and save 
as GetWords.rexx Note the use of comment blocks. Comments never 
affect the program. Also note the use of null clauses (blank lines) to 
make the readability better. We do this to make future reference easier. 

/* GetWords.rexx Getting a WORD List from file.*/ 

SAY 'Input filename and path.' 
PULL infile 
rcode=20 
IF OPEN('textfile',infile,'READ') THEN DO 

rcode=0 
i=1 

DO WHILE ~EOF('textfile') 
line.i=READLN('textfile') 

/**********************************/ 
/* modify code into a new block 	*/ 
/**********************************/ 

IF line.i ~= '' THEN DO 
SAY 'Line #'i'='line.i 

/*******************************/ 
/* call an internal function 	*/ 
/* named Stripword (see below) */ 
/*******************************/ 

CALL Stripword(i,line.i) 
END 

/**********************************/ 
/* end of new block */ 
/****** ************************* 

i=i+1 
END 

i=i-1 
IF line.i = '' THEN i=i-1 
SAY 'There were 'i' lines in this file.' 
END 

2-18 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

RETURN instruction 

H 37 
C 10-70 

RETURN is similar to 
EXIT and is used as the 
final instruction of an 
internal function. 

The value of an 
expression may also be 
returned as in: 

RETURN expression 

See margin note on 
page 2-21 of this book. 
The value of Fun(args) 
becomes the value of 
iits returned expression. 

ELSE SAY 'Could not open your file!' 
EXIT rcode 

/*******************************/ 
/* end of main program 	 */ 
/*******************************/ 

/*******************************/ 
/* add a new internal function */ 
/*******************************/ 
Stripword: PROCEDURE 	/*label*/ 

/* get the argument list from caller */ 
PARSE ARG j,list 

/* how to strip off words from a line*/ 
k=0 
DO WHILE list ~= '' 

PARSE VAR list kthword.k list 
k=k+1 
END 

SAY 'There are 'k' words in iine.'j 

/* write a list of words 	*/ 
DO n=0 to k-1 

SAY 'WORD#'n+1' is:'kthword.n 
END 

/* RETURN to caller in main program */ 
RETURN /*******************************/ 

/* end of internal function */ /*******************************/ 

As before, run GetWords.rexx from your shell or CLI. Unless you use 
Shell don't forget rx in front of it! When asked for the filename and 
path use Text.file from the previous sections and your screen output will 
look like this: 

Line #1=An example of a text file. This is line 1. 
There are 10 words in line.1 
WORD#1 is:An 
WORD#2 is:example 
WORD#3 is:of 
WORD#4 is:a 
WORD#5 is:text 
WORD#6 is:file. 
WORD#7 is:This 
WORD#8 is:is 

2-19 Basics: Files, Strings, and Arrays 



Two 

WORD#9 is:line 
WORD#10 is:1. 
Line #2=Line two" of our file looks like this. 
There are 8 words in line.2 
WORD#1 is:"Line 
WORD#2 is:two" 
WORD#3 is:of 
WORD#4 is:our 
WORD#5 is:file 
WORD#6 is:looks 
WORD#7 is:like 
WORD#8 is:this. 
Line #3=Three lines to read from our file, and we are done! 
There are 11 words in line.3 
WORD#1 is:Three 
WORD#2 is:lines 
WORD#3 is:to 
WORD#4 is:read 
WORD#5 is:from 
WORD#6 is:our 
WORD#7 is:file, 
WORD#8 is:and 
WORD#9 is:we 
WORD#10 is:are 
WORD#11 is:done! 
There were 3 lines in this file. 

Notes on the Code 
We will explain the sections of code we have modified. 

/**********************************/ 
/* modify code into a new block 	*/ 
/**********************************/ 

IF line.i ~= '' THEN DO 
SAY 'Line #'i'='line.i 

/******************************/ 
/* call an internal function */ 
/* named Stripword (see below)*/ 

/******************************/ 

 

2-20 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

CALL Stripword(i,line.i) 
END 

Keyword Instructions 

H 25 
C 10--50 

An Internal Function 
may be invoked with 
the CALL instruction, or 
by implicitly calling it by 
name. If the function is 
named Fun(), then you 
may 
CALL Fun(arguments) 
or assign something to 
it as in 
variable=FUN(args) 
In any case, the 
function Fun() is 
identified by the label 
clause Fun: 

Functions 

H 8, 14, 15, 26, 35 
C 10-21, -35, - 47, - 48 
C 10-82 thru 10-91 

A Key Word Instruction 
First, we put in a DO block so that we can do several commands instead 
of simply one SAY instruction. The comments show our new block 
clearly. We've kept the old SAY instruction, but after it we put in a CALL 
instruction. To review: Remember instructions which have something 
on the same line on which to operate, are called key word 
instructions. SAY is a key word instruction, an instruction clause that 
starts with a keyword, not followed by a colon (:) or an equals (=), that 
identifies the instruction. It is followed by: one or more subkeywords; 
expressions upon which the keyword(s) operate; or any other 
information specific to that instruction. Refer to page 25 of Hawes or 
page 10-50 ff of Commodore to get the entire formal definition. This will 
help us not to confuse a keyword instruction with a function which 
operates upon arguments. 

Calling an Interior Function 
So, our newest keyword instruction is a CALL instruction which calls a 
function (a type of expression) named Stripword(). This is a custom 
made interior function. We identify this interior function by putting in a 
label clause. This is the only type of clause (or instruction) we have not 
met until now. A label clause is a name with a colon (:) at the end of it. 
It acts like a place marker in our program, so that the interpreter 
rexxmast can find our function. An interior function is actually the code 
between its label clause and a RETURN keyword instruction (which may 
return the value of an expression). 

Look at the code below the main program and you will see our function 
Stripword() . In our case here RETURN does not return an expression 
value, because we do not need it to, and using the CALL instruction 
insures that the RESULT will be dealt with, remember? If not, refer to 
page 26 of Hawes or page 10-53 of Commodore. 

/******************************/ 
/* call an internal function */ 
/* named Stripword (see below)*/ 
/******************************/ 

2-21 Basics: Files, Strings, and Arrays 



Two 

CALL Stripword(i,line.i) 

CALL instruction 

H 26 
C 10-53 

Arguments 

H 8, 22, 26 
C 10-21, 10-48, 10-53 

PROCEDURE instr. 
EXPOSE option 

H 35 
C 10-68 f 

Symbol Table 

H 23 
C 10-48 

We CALL a function, the function does something and it returns. What 
does it do and to what? To answer "to what?" is why we need to include 
arguments to our function (the stuff inside the parentheses). 
Stripword(i, line.i) passes two arguments: the value of i (which 
depends upon which iteration we are in), and the value of line.i (also 
dependent upon which iteration we are in). The arguments are 
delimited (separated by) a comma (,). The parentheses are optional 
when using CALL, but they match the syntax of ARexx built-in functions 
(with which they must be used), so we include them here for better 
syntactical consistency. 

The PROCEDURE Key Word Instruction 
Rexxmast, when it encounters the call, looks for and finds a label called 
Stripword: and the program branches to that label. On the same line 
with our label is a PROCEDURE keyword instruction. This is used 
within an internal function to build a new symbol table. This is how 
ARexx protects the variables in the calling program (the main program 
we just left) from being altered. In a big program, you may well forget 
that you had a variable named furbz in your main program, and once 
you are coding an internal function, you might create a different variable 
that represents different things from your original furbz. If there were no 
protection available by way of a separate symbol table in the interior 
function, then you (or at least your program) would get into deep 
guacamole soon enough. 

Exposing Symbols 
Just in case you want to expose a variable (symbol) in the main program 
to the effects of operations in the interior function, there is an optional 
subkeyword to PROCEDURE called EXPOSE, following which you put 
in the list of variables you want to expose to the machinations of your 
interior function. Variables in an EXPOSE list are processed from left to 
right. If you are trying to pass a variable that is a compound symbol to 
be exposed in a function, make sure to list the symbol(s) of its node(s) 
before (to the left of) the compound symbol itself, or it won't be 
evaluated fully. Take time now to read section 4-20, page 35 of Hawes, 
or pages 10-68 and 10-69 of Commodore for the definitions of the 
PROCEDURE instruction. 

2-22 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

Later, we will make a program to show how EXPOSE works. Unless 
you put in the EXPOSE subkeyword explicitly, the default is to protect all 
of your main program's symbols by building a new symbol table. The 
program has now branched to our internal function in which all symbols 
are protected, and we follow it. 

The Internal Function 

* add a new internal function */ 
/******************************/ 

Stripword: PROCEDURE 	/*label*/ 

/* get the argument list from caller */ 

PARSE ARG j,list 

/* how to strip off words from a line*/ 

k=0 
DO WHILE list ~= 	'' 

PARSE VAR list kthword.k list 
k=k+1 
END 

SAY 'There are 'k' words in line.'j 

/* write a list of words */ 

DO n=0 to k-1 
SAY 'WORD#'n+1' is:'kthword.n 
END 

/* RETURN to caller in main program /* 

RETURN 
/****************************/ 
/* end of internal function */ 
/****************************/ 

The next instruction after we get to the label clause 

Stripword: PROCEDURE 

2-23 Basics: Files, Strings, and Arrays 



Two 

is our old friend PARSE. We PARSE ARG this time, because we do not 
want to change everything to UPPER case, and neither PARSE UPPER 
ARG nor its equivalent ARG will avoid this. We simply parse the 
arguments in the same order they were sent: i first, then line.i. 

Notice we do not need to name them the same in our function 
procedure. The originals are protected because we didn't EXPOSE 
them, and we could have used their exact names with complete 
impunity, but we've used different symbols to emphasize that fact. 

Parsing Multiple Arguments 
Now when we use PARSE ARG (or use ARG as a shorthand for 
PARSE UPPER ARG), ARexx provides the capability of parsing 
multiple strings at one time (only for the ARG option to the PARSE 
instruction, however), which is what we are doing here. We have two 
strings arguments sent from the caller (the main program) to parse: i 
and line.i. 

Parse Templates 
We introduce here a new term used to discuss parsing: the template. A 
template is simply a pattern. When a furniture maker is cutting out scroll 
work for use on all four sides of a table, he makes a template first, and 
then cuts the wood according to the template to insure uniformity. 
Parsing is similar except it cuts out a pattern from a string or strings, and 
multiple patterns may be cut from the same string. Think of our 
woodworker being able to use the same piece of wood for all four sides 
of the table. Every time he cuts it, the entire piece of wood is available 
for another cut using the same or a different pattern. The woodworker 
can build these cut pieces into anything he wants: table sides, 
bookshelves, etc. Even though with wood it is physically impossible, 
this is exactly analogous to how parsing can assign any pieces of the 
string to any kind or number of variables, over and over again if 
necessary. 

Parsing uses several kinds of templates. In our examples up to now the 
template, as such, was one variable name to which an entire line is 
assigned; simple, but not too interesting. The ARexx PARSE instruction 
is very powerful and it is definitely worth studying how the PARSE 

PARSE instruction 

H 33 thru 35 
H 77 thru 81 
C 10-64 thru 10-68 
C 10-146 thru 10-154 

See also the next 
chapter of this book. 

2-24 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

instruction works until you learn how to use it. The next chapter 
discusses parsing in detail, but for now, we will discuss only one kind of 
template at a time and concentrate on using PARSE in actual examples. 
It will accelerate your progress and increase your options if you always 
review Hawes, section 4-19 on pages 33 to 35, and also chapter 8 on 
pages 77 to 81, whenever we discuss parsing. The equivalent 
Commodore documentation is on pages 10-64 to 10-68 and 10-146 to 
10-154. You will begin to see the powerful ways strings (and therefore 
commands for application software) can be manipulated easily. Now 
back to the example... 

The Comma is a Special Template Pattern 
PARSE ARG j,list 
In our example, the template is a special one used only within ARG or 
PARSE ARG. Parsing multiple strings is accomplished by a special 
pattern, the comma (,) in the template (our pattern for assigning 
multiple strings to variables or symbols). The template itself is always 
the information following the PARSE instruction itself, in this case j,list 
is the template. 

In our first Tutorial, in the PARSE UPPER ARG infile line, the template 
was simply infile a single variable name which was also a template in 
disguise. This is some of that self-referential or recursive power 
mentioned before. Think about how clever and how ingenious it is to 
name your variables, create a pattern (template) with which to assign 
values to these variables, and make the assignments all in one line of 
code! Try doing this in some other language and you will immediately 
appreciate the beauty and compactness of ARexx. ARexx can get 
slightly abstract at times because so little code can stand for so much 
power, but once you get to a certain level of prowess, you'll never look 
back. 

Templates Assign Variables 
Our two argument strings, i and line.i were sent by the main program. 
The template says, "Take the first argument string and assign its value 
to j, then take the second argument string and assign its value to list. 
The comma in the template says we have two separate strings. We are 
allowed to use multiple commas to PARSE ARG multiple argument 
strings. The comma is very important; don't leave it out or you will see 

2-25 Basics: Files, Strings, and Arrays 



Two 

strange results. The result of all this is that the original values are put 
into variables like this: 

i --> j 
line.i --> list 

You may be more comfortable with the equivalent notation: 
j = i 

list = line.i 

The DO Loop 
/* how to strip off words from a line*/ 

k=0 
DO WHILE list ~= '' 

PARSE VAR list kthword.k list k=k+1 

END 
SAY 'There are 'k' words in line.'] 

Now we come to a DO loop right after we initialize a counter, k . This 
should look familiar as it is the same way we counted lines. We are 
starting from 0 this time however as a variation on our theme. In this 
familiar loop, we come to another of those PARSE instructions, except it 
has a subkeyword of VAR. This time the template is 

list kthword.k list 

What pattern is this template? First notice that we are using a new type 
of PARSE instruction itself, a PARSE VAR instruction. This means to 
parse a VARiable, and you tell it which variable to parse by naming the 
variable immediately following the VAR option. So PARSE VAR list 
means we are to cut up the variable list somehow and assign the parts 
according to the rest of the template. 

Parsing: One Word, One Variable 
The next symbol is a compound symbol kthword.k which stands for the 
kth word of our line. The k counter just as we did for lines, counts up 
the words in our line one at a time and each word in the line gets a 
unique name indexed by its node k. So kthword.k is assigned to some 
part of the variable list, but which part? Our template operates implicitly. 
Unless we say otherwise, the first variable named in the template gets 

2-26 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

assigned the value of the first word of the VARiable, in this case list. A 
word is defined to be the first part of the string delimited by one or more 
blanks. Since very few people enter text without putting spaces 
between their words, it is a safe bet that you'll see the first word of the 
original line (now represented by list) assigned to the compound symbol 
kthword.k. 

The Last Variable Gets All the Rest of the Parse String 
The other implicit operation of a template is that when the last variable in 
our template is to be assigned a value, it gets assigned the value of all 
that is left over from the original parse string (the input string to the 
parse instruction). In our case, in the first iteration of our DO loop, we 
have only put the first word of list into a variable called kthword.0; we 
still have the rest of list (minus its first word) to go. 

Using Self-Reference to Advantage 
By using a clever trick of letting the very symbol which represents list 
get the assigned value of all the leftovers, we set it up for the next time 
through the loop, all in one shot! Next time the 

PARSE VAR list kthword.k list 

is executed, list will be shorter by one word (its original first word), and 
will be ready to get its first word (this time the original list's second word) 
stripped off and assigned to a new kthword.k because k will have been 
incremented to the next higher number. Then the remainder of list (now 
shorter by two words is assigned to itself, and we go on. 

Each time through this loop, one word gets nibbled off and assigned to 
the element of an array. Since we are in the DO loop only as long as 
our list is not the null string (''), we get all the words assigned to a 
unique name in our array, which is now ready for anything. 

The Effects of EXPOSING Variables 
Before moving on, we need to look at some of the subtle things that 
happen if we EXPOSE our variables to an internal function. Let's do an 
experiment. Is there a way we can get the same results as the previous 
example and EXPOSE i and line.i to our function Stripword()? Try 

2-27 Basics: Files, Strings, and Arrays 



Two 

substituting the following code for the function in our GetWords.rexx 
program and save it under another name such as Tst.rexx. 

/* Same main program as before 

/* an experiment with exposing variables to an 
internal function */ 
Stripword: PROCEDURE EXPOSE i line.i 
k=0 
DO WHILE line.i ~= '' 

PARSE VAR line.i kthword.k line.i 
k=k+1 
END 

SAY 'There are 'k' words in line.'i 
DO n=0 to k-1 

SAY 'WORD#'n+1' is:'kthword.n 
END 

RETURN 

Now try running it. Do you get exactly the same results? You will if the 
EOF marker is on its own separate line, but the last message in the 
screen will say we have one line too few if the EOF marker was at the 
end of the last line of our text file. 

Try creating two text files, one in which you save it after backspacing 
until your cursor is at the end of the last line of the text (and nothing is 
after it) and another file that you save with the cursor on a "blank" line. 
Using the original GetWords.rexx program, it will make no difference 
which file you use, both outputs will be correct. But using our Tst.rexx 
program, the former text file will display an incorrect number of lines in 
the final screen message. Why? Because we have exposed our 
variables to the function and the effects filter back to the main program. 

Since we stripped off the words one at a time from line.i until it was the 
null string (''), this final line.i is picked up by the main program as a null 
line and the IF line.i = " THEN i=i-1 statement in the main program that 
decrements again if necessary is always true, so we decrement when 
we really don't want to (in the case of the EOF at the end of the last line 
of the text file and not on a separate line). 

We can fix this by making two assignments in the internal function: 
line=line.i as the first instruction after the label clause, and a line.i=line 
assignment clause as the last instruction before the RETURN 
instruction. This fix stores the value of the original Iine.i in line and 

2-28 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

restores its value when we leave, but this is de facto what protecting our 
variables does (by not using EXPOSE in the first place). This rather 
subtle glitch demonstrates why we have to be very careful what we do 
with variables which we EXPOSE to an internal function after that 
function executes. 

2-29 Basics: Files, Strings, and Arrays 



Two 

Notes 

2-30 Basics: Files, Strings, and Arrays 



The ARexx Cookbook 

Chapter 3: 
Parsing Made Easy 

Parsing H 33 thru 35 H 77 thru 81 C 10-64 thru 10-68 C 10-146 thru 10-154 Keep your ARexx documentation open to the above sections as you read this section. If possible, enter the programs ParseTest.rexx and PU.rexx (function) and run ParseTest.rexx as you read this section. It will help you to see the results of a parse instruction immediately. 

C 10-70 

5 

 

Parsing is Central to Most ARexx Programs 
Since parsing is central to almost anything you do in ARexx, it is 
essential that you become fluent in this instruction at the earliest 
possible opportunity. We have been discussing the PARSE instruction 
frequently in the preceding sections, and this would be a good place to 
enter into a more rigorous tutorial concentrating solely on parsing and 
templates. Remember the general definition of parsing: an operation 
that extracts substrings (pieces) from a larger string and assigns them 
to variables called targets. The way in which these substrings are 
extracted is determined by a pattern called a template. The source 
string on which PARSE operates is specified by the option 
subkeywords. So far, we have met the options, (sometimes modified 
by the elective subkeyword UPPER which must come immediately after 
PARSE): VAR, ARG, and PULL. In this chapter, we will also cover the 
remaining options, NUMERIC, SOURCE, VALUE expression WITH, and 
VERSION. You will want to turn in your Hawes ARexx manual to pages 
33 through 35; and the whole of Chapter 8, pp 77 through 81 as we 
study some examples. In the Commodore documentation, use pages 
10-64 through 10-68; and pp 10-146 through 10-154. 

We will code a program that will help us to experiment with various ways 
to parse a source string with different templates. It will display the 
strings assigned to template targets. Copy the following two programs, 
PU.rexx and ParseTest.rexx and save in your rexx directory. You 
need not pay too much attention to understanding how the 
ParseTest.rexx program works in order to learn to parse. The program 
is more complex than our fare so far. The program is described, 
however. You may wish to review it later if you find it difficult, and skip 
over its description for now. 

A Useful PARSE Utility 
Let's make a utility function to help visualize the scan positions in a 
parse source string. We will write it as an exterior function, which we 
may CALL from within our parse emulation program: 

3-1 Parsing 



Three 

This small function will help us to see the column positions of any 
expression we send it for purposes of parsing the string without having 
to count the characters every time. It is a simple matter to send this 
function any string variable and see the column positions. The function 
returns the value of the expression in the EXIT instruction, in case we 
want to use it. In returning from an exterior function, we use EXIT 
instead of RETURN, but both accomplish the same thing. We have 
used the SAY expression instruction to verify that PU.rexx is passing 
back the value of our expression. 

/* PU.rexx PARSE function */ 
OPTIONS RESULTS 
PARSE ARG expression pos1='1234567890123456789012345678901234567890123456789012345678901234567890' 
pos2='         1111111111222222222233333333334444444444555555555566666666667' 
SAY 
SAY pos2 
SAY pos1 
SAY expression 
EXIT expression 

Making a Parse Tester Program 
The following program uses ARexx to modify its own code. Self-
reference is not easy to understand at first glance, but this program 
illustrates just how powerful ARexx can be. What we want to do is 
simple enough, but its implementation is subtle. 

Pseudo Code 
We want to choose a PARSE option, and then display (using the 
function above) the appropriate parse string. Next we want to enter 
single or multiple templates with targets, markers, and so on. Then we 
want the program to display the actual evaluation of the substrings 
assigned to each target, with markers at each end to reveal leading and 
trailing blanks if any. (The program will therefore have to modify its own 
code and then execute a PARSE instruction.) The program should 
allow us to begin again with a new PARSE option; enter a new template 
for the same source string; input a new value for a position or numeric 
pattern variable; or exit. It should be a useful tester to try out various 
parse templates and options while we are learning to parse. 

3-2 Parsing 



The ARexx  Cookbook 

/* ParseTest.rexx Parse experiments */ 
start: /* a label cIause for use by SIGNAL start*/ 

/* default test line */ 
line='This is a line of text. No.123456 #98765. The last sentence!, 

SAY 'Enter PARSE OPTION: 1=NUMERIC 2=SOURCE 3=VAR 4=VERSION' 
PARSE PULL option 
SAY 'Parse UPPER? Y/N' 
PULL uo 
IF uo='Y' THEN uo='UPPER';ELSE uo='' 
name=' ' 
SELECT 

WHEN option=1 THEN DO 
PARSE NUMERIC line 
option='NUMERIC' 
END 

WHEN option=2 THEN DO 
PARSE SOURCE line option='SOURCE' 

END 

WHEN option=4 THEN DO 
PARSE VERSION line option='VERSION' 

END 

OTHERWISE DO 
option='VAR' 
SAY 'Enter test parse source string or [Rtn] to use built-in test.' 
PARSE PULL input 
IF input='' THEN input=line; ELSE line=input 
name=' line ' 
END 

END 

CALL PU.rexx line 

mid: /* label for SIGNAL mid */ 
position='' 

SAY 
SAY 'Enter PARSE Template (only template string).' 
PARSE PULL template 

/* get only alphabetic targets and not markers */ 
temp=template n=1 
DO WHILE temp ~='' 

PARSE VAR temp tar.n temp 

/* take off the commas, keep the targets */ 
IF RIGHT(tar.n,1)=',' THEN tar.n=LEFT(tar.n,LENGTH(tar.n)-1) 
IF LEFT(tar.n,1)=',' THEN tar.n=RIGHT(tar.n,LENGTH(tar.n)-1) 

/* get rid of non alpha stuff */ 
IF ~DATATYPE(tar.n,MIXED) THEN ITERATE 

n=n+1 
END 

n=n-1 
pat=0 /* set default flag for column number */ 

3-3 Parsing 



/* the expression we wish to execute */ 
template='PARSE' uo option||name||template 

pos: /* label for SIGNAL pos */ 
/* if we find "position" used in the template string, ask for value */ 
/* depending upon whether it is a pattern or a column number */ 
IF FIND(template,'(=position)')~=0|FIND(template,'(position)')~=0, 
THEN DO 

/* pattern */ 
IF FIND(template,'(position)')-=0 THEN DO 

pat=1 /* set flag for pattern */ 
SAY 'Enter pattern variable' 
PARSE PULL position 
SIGNAL out /* get out of here! skip the rest.*/ 
END 

/* a column number */ 
SAY 'Enter position number' 
PARSE PULL position 
/* check for vald column number */ 
IF ~DATATYPE(position,WHOLE) THEN DO 

SAY 'Not a valid column position. Try again.' 
SIGNAL pos /* do over again */ 
END 

END 

out: 
/* display stuff */ 
SAY 
CALL PU.rexx line 
SAY 
SAY template 
SAY 
/* the heart of the matter. execute the code we built */ 
INTERPRET template 

/* display the targets and their values */ 
DO i=1 TO n 

SAY tar.i'==>'VALUE(tar.i)'<' 
SAY 
END 

/* if we use position, display its value depending on flag 
position~=" 

 
IF position~='' THEN DO 

IF pat=0 THEN SAY 'Position='position' =Position is at column 'position 
IF  pat=1 THEN SAY, 

"Position="position" (Position) matches pattern '"position"'." 
SAY 
END 

/* control options */ 
SAY 'Enter S=start over; N=new template; P=new position; Q=quit.' 
PARSE UPPER PULL in 
SELECT 

WHEN in='Q' THEN EXIT 
WHEN in='S' THEN SIGNAL start 
WHEN in='N' THEN SIGNAL mid 
WHEN in='P' THEN SIGNAL pos 
OTHERWISE SIGNAL START 
END 

EXIT 0 

Three 

3-4 Parsing 



The ARexx Cookbook 

Running the Parse Test Program 
Launch this program from a Shell or WShell. Enter the number for the 
option you want to parse. If you select VAR, then you may enter your 
own parse string (called line by the program), or use the program's 
default test string. The other options will display the correct parse string 
for that option. Choose whether to PARSE with the UPPER subkeyword 
next. When prompted, enter a template only, the PARSE OPTION part 
is automatic. Templates using patterns, markers, absolute and relative 
positions, and targets of any alphabetic characters name may be 
entered. Make sure to separate template elements by a space. 
Commas separating templates may be next to a target, however. While 
ARexx will support just about any character string for a variable name, 
even numbers, our emulator will not. Your targets must be alphabetic or 
they will not display, even though correctly parsed. You may also start 
over, make another template, or enter a new variable position by 
entering S, N, or P respectively. Entering Q quits. 

Testing a Variable Position Marker 
To use a variable as a scan position, then use the lower case name 
=position or (position) in your template (position acts as a variable 
name). You will be prompted to supply the position pattern or its value; 
a whole number. If you wish to use position as a position marker, use 
=position as the template entry; if you want to use position as a 
variable pattern to match, use (position) as your template target. 
Patterns not represented by a variable should be entered normally 
inside single quotes in the template. You may also experiment with 
multiple templates separated by commas. The options ARG, PULL, and 
VALUE expression WITH are not included as their templates work 
exactly the same as the VAR option. 

The output shows the names of your targets and the exact strings 
assigned to them by the PARSE template: target<==>string<== on 
separate lines. You can then see leading and trailing blanks if present. 
If you are using the variable position, the program will display the value 
you entered for position, and whether it is a pattern to match or a 
column position. You can learn much about parsing by experimenting 
with this utility. It is handy when you are developing a program to check 
to see if you are parsing your strings the way you intended. 

3-5 Parsing 



Three 

INTERPRET Instr. 

H  30 
C 10-59 

A related subject is 
Inline Arexx Program 
W = WShell 2.0 Manual 

W 78, 79 

An inline ARexx 
program may run within 
a shell or another 
ARexx program. It is 
delimited by double 
quotes (") and program 
steps are sepatated by 
semicolons (;) thus: 
"step1;step2;step3" 

will run as a separate 
process .  

SELECT instruction 
H 38 
C 10-70 

SIGNAL instruction 
H 38 
C 10-71 ff 

VALUE() function 
H  68 
C 10-122 

FIND() function 
H  disk notes only 
C 10-104 

LEFT() function 
LENGTH() function 
H 60 
C 10-108 

RIGHT() function 
H 63 
C 10-114 

Notes About the Theory of Operation of ParseTest.rexx 
We list the program here, because it will help you to explore the PARSE 
instruction. You may wish to skip ahead to the Parsing by 
Tokenization section to continue to learn to parse. This program may 
seem a bit out of sequence until you explore a few later sections. 

Self-modifying Code 
Most of the program is straightforward but it does depend upon self-
modifying code. The INTERPRET instruction is used to execute an 
expression. This is the part of our program that after modifying its own 
code, it actually executes a PARSE instruction according to the template 
you have entered; first building up an expression containing the modified 
code. This expression is a valid ARexx statement and the INTERPRET 
instruction causes it to execute. To make the program as readable as 
possible, we assign the expression to the variable template and then 
INTERPRET it. An INTERPRETED statement or program is not a 
separate process, but the instruction itself activates a control range for it 
as though it were a DO...END block of instructions. Hawes, page 30; 
and Commodore, page 10-59 document the INTERPRET instruction. 

Most of the code is to take care of the string handling necessary to build 
up our expression to be executed. We use an array for the target 
names, and check them for commas (separating templates) and remove 
them if necessary from the target name. Then we check for alphabetic 
characters to distinguish target names from markers. The SELECT and 
SIGNAL instructions are covered later in this book. SELECT is used for 
multiple choice options. SIGNAL is used here as a simple GO TO some 
label instruction, to handle our choices, and to handle the possibilities 
for a pattern as opposed to a numeric variable. Note the use of the 
VALUE() function to distinguish between a name for a target tar.i and its 
actual evaluation VALUE(tar.i). We must evaluate tar.i with VALUE() 
because the variable whose name is represented by tar.i first acquires a 
value when we INTERPRET template. Hawes, page 68; and 
Commodore, page 10-122 document VALUE(). 

For now, use the program to learn what PARSE does, and do not be 
overly concerned if you do not fully understand this program. After you 
have studied the later chapters, you may want to review this program. 

3-6 Parsing 



The ARexx Cookbook 

Tokenization, 
Forced Tokenization 

H 34. 79 
C 10-147. 10-150 

Note: These exercises 
assume you have NOT 
chosen  to PARSE 
UPPER at the second 
prompt. but you may try 
them with the UPPER 
subkeyword if you like. 

Targets 

H 77 
C 10-146 f 

Parsing by Tokenization: Words into Targets 
We have studied PARSE VAR before, but not where we had fewer 
variables than words in the line. Notice what happens. Run the 
program ParseTest.rexx and choose VAR option by entering the 
number 3. Press [Rtn] twice again to use the default string. At the 
prompt to enter the template, enter (Enter always means to type in the 
line and hit [Rtn]): 

a b c d rest 

Now look at each target symbol in the template. The variables 
(symbols) a b c d all get assigned only one word, but the variable rest 
gets the rest of the line assigned as its value. Note also that the value 
of rest includes the leading blank space as well. Blanks, both leading 
and trailing are not included in the value of any variable which is 
assigned a word in the string as its value. In other words, when PARSE 

matches up words (tokens) in a string to variables (targets,symbols), it 
doesn't matter how many blanks separated the words (tokens); they will 
not be part of the variable's value. The last variable always gets what is 
left over in the line, that has not been assigned. What happens if there 
are more variables than words? The extra variables are assigned the 
value of the null string ("). 

Targets are Variables in the Template 
In ARexx the variables (symbols) in the template line are called targets. 
In this example, our five targets are a b c d  and rest. The tokens 
(words) assigned to them are the words from line. This type of parsing 
is called parsing by tokenization. Genuine parsing by tokenization 
always insures that there are no leading or trailing blanks in the 
variables assigned in this manner. In order to make sure that you are 
parsing by tokenization, always include an extra period (.) at the end of 
the parse template. If you have exactly as many variables to assign as 
you have words in the input string, ARexx will leave a leading blank on 
the last target value in the template. The period (.) acts like a 
placeholder for a valid target except it is assigned no value. 

Forced Tokenization 
An extra placeholder period is essential to prevent strange errors from 

3-7 Parsing 



Three 

Scanning 

H 78, 79 
C  10-149 f 

happening should the leading blank interfere with your intentions. 
Including an extra period (.) is called forced tokenization. In the 
ParseTest.rexx program, enter S  to return to the start. Choose option 3 
again (or [Rtn] because option 3 is the default). Now enter this line: 

one two three 

Supply a template a b c and then look at the strings assigned to these 
targets. Did you notice c has a leading blank? Enter N to use another 
template and this time supply the template a b c . (note the extra period 
in this template). Now forced tokenization has eliminated the leading 
blank. 

Pattern Markers and Scan Position 
Our second example, is how to PARSE VAR using a pattern marker 
instead of words. The other general type of template object besides the 
target is what ARexx calls a marker which determines the scan 
position within the parse string. The scan position ranges from 1, the 
start of the parse string, to the length of the string plus 1, the end of the 
string. There are three types of marker objects: absolute, relative and 
pattern. The parse string is scanned from left to right and the template 
determines, implicitly by tokenization, or explicitly with markers, just how 
the variables (targets) will be assigned substrings from the parse string. 
Notice the differences between the way the PARSE instruction works 
with a pattern marker and the way it works with tokenized words, as in 
the first example. Begin again (enter S). Use the default test string in 
the program, and supply this template: 

a b '#' c d rest 

With the program, verify that this template assigns the value of the first 
word (token) "This" to the variable a. The pattern marker #, however, 
which occurs at the start of the second number 98765 in our string, tells 
the PARSE instruction to assign to the second variable b the part of the 
string running from the current scan position up to but not including 
the first character in the pattern #. Look at the value of b with the 
program. 

Since PARSE always scans the PARSE string (the variable line) from 
left to right, the current scan position is where this scan of the string left 

3-8 Parsing 



The ARexx Cookbook 

off after the last target was assigned the value of some substring. In the 
example, when PARSE gets finished with assigning the value of the first 
word (token) This to the target a, the current scan position is at the end 
of This in the string line. 

The assignment of b, therefore is the value of the substring that goes 
from the first character (a blank) following This to the last character 
before '#' (also a blank), which we see printed to the screen as the value 
of b. 

How Parsing with a Pattern Marker Divides the Parse String
The next variable is c which takes the value of the first word in what is 
left of the string to the right of the # character. The pattern marker in the 
template effectively divides the string into two pieces which may be 
parsed with their own templates just like one string may be parsed: that 
familiar self-reference once again! Wait! What happened to the # 
character? The ARexx parser removed it from the PARSE string. 

The Pattern is Removed During a Re -Scan 
Whenever a match with a pattern marker is found by the scanner, then 
the entire pattern is removed from the PARSE string. If you try to scan 
the string again from the beginning, you will find the pattern gone. Enter 
S, choose the default string, and supply a new template a b '#' c d 1 e 
and you will find # missing when you look at the target e. The positional 
pattern 1 started the scan over at position 1 and assigned the entire 
string to e (see below). 

The Source String Remains the Same 
The original source string is never altered by PARSE pattern matching, 
however. The PARSE instruction makes a copy of the source string for 
actual parsing. For example, our variable line, if displayed after the 
above PARSE pattern matching instruction would have the character "#" 
in its proper place. 

Try the above template with a comma after d. This signifies a second 
template using the original source string and e will now include the # 
character. A re-scan removes the patterns previously matched and a 
new template uses a new copy of the original source string. 

3-9 Parsing 

Pattern Parsing 
Positional Parsing 

H 80 
C  10-151 



Three 

Parsing Using Positional Patterns 

(Absolute and Relative Markers) 
The next way we are going to parse is by using a position pattern in the 
template. This marker may be an explicit number, designating the 
absolute character column in the parse string; a relative marker, 
specifying a certain positive or negative offset from the current scan 
position; or a variable marker, where the position or pattern is 
determined by the value of a variable. 

The Scan Position and Multiple Scans 
Start over (enter S) and use the default string and this template: 

=1 wA +1 wB =position wC 19 wD 'No.' -4 rest 1 all 

Choose the number 5 when prompted for position. The template starts 
with a number, =1. This tells the PARSE instruction to start scanning at 
the start of the PARSE string, which you can see is position 1. We 
mentioned our ability to scan more than once. The last target (variable) 
all is preceded by a 1 also. The = sign is optional with integer position 
markers. The last 1 tells the PARSE scanner to start at the beginning 
(absolute position 1) of the parse string. Notice also, as before, the 
patterns are removed from the parse string as the pattern marker 
matches them, so by the time we scan for the assignment of the entire 
parse string to all, the pattern No. is missing. 

Absolute, Relative, and Variable Positional Markers 
In between the first absolute positional marker, (1) and the second 
relative positional marker, (+1), lies the target (variable) wA. Exactly 
as before, the PARSE scanner assigns the value of a substring of the 
parse string to our variable based upon the template. Translated, the 
template says, "Assign to the target wA the value of the substring lying 
between absolute column 1 and the column determined by addition (+1). 
The number 1 is to be added to the last scan position (column 1 in this 
example)." The template fragments 1 wA +1 and 1 wA 2 therefore 
produce identical results. 

3-10 Parsing 



The ARexx  Cookbook 

Point of Reference for Relative Positional Markers 
Relative markers may also use subtraction to back up a specified 
number of places in the position of the scanner, as we find in the 
assignment of the variable rest. The point of reference of a relative 
positional marker is the index of the first character of the last matched 
pattern, or it is the previous absolute positional marker. Relative 
positional markers preceded by a minus sign subtract from the same 
point of reference. Remember that patterns are removed from the parse 
string. If no match was found for a pattern marker, then the index is 
placed at the end of the parse string. The scan proceeds from left to 
right from index 1. The scan position is updated whenever PARSE finds 
a marker object, according to the type and value of the marker. 

Variable positional markers may use the value of a variable previously 
assigned a value, as in the case here of the variable position, which we 
assigned a value of 5. The template fragment +1 wB =position 
therefore assigns the value of the substring from position 2 (1 +1) up to 
position 5 (=position) to the target (variable) wB. As before, the left 
column position is included in the string, and the right column position is 
not. 

Continuing the scan, from left to right, the target wC takes its value from 
the variable position (=5) up to but not including position 19 designated 
by an absolute marker. Note the substring assigned to wC has a 
leading and a trailing blank. 

The next target is wD, which has a trailing blank, because parse scans 
from position - 19 up to the last character bposition 19attern No. as we 
saw before. 

We now tell the parse scanner to back up 4 places (a relative marker -4) 
and assign the rest of the line to the variable rest. The scanner counts 
backwards: space, period, t, x, and therefore will begin the new 
substring with x. 

What If PARSE Cannot Find a Match? 
Since the next marker is an absolute marker 1, the beginning of the line, 
the scanner cannot get a match by continuing from left to right, so by 
default, it matches the end of the parse string, line. This is a general 

3-11 Parsing 

The Scanning Process 

H 78f 
C  10-149 f 



Three 

principle of the PARSE instruction: When it cannot find a pattern or 
a positional match in the current scan, it matches automatically the end 
of the parse string. Therefore, our variable rest is the rest of the parse 
string. Note again that the pattern No. is now missing because it was 
used as a pattern marker before. 

1 If you PARSE VAR 
with multiple templates 
and one of the 
templates uses the 
VARiable itself as an 
assigned target, then 
the value of the source 
string in this case could 
change since the 
current value of the 
source string is used. 

Multiple Scans and Multiple Templates 
There is still one more variable left: all. The 1 tells the scanner to make 
another pass starting with position 1 and since there are not any more 
targets (variables) to assign, the entire parse string is put into the target 
all. The pattern No. is missing as noted above. If we wanted to use this 
pattern in another assignment, we could either assign it to a target with 
the template before using it as a pattern marker, or put in a second 
parse template after this one to scan the source string line anew. Each 
new template is separated by a comma from the previous template as 
we did in our experiment above, putting a comma after d to start a new 
template. Try a new template (enter N), and put a comma after rest. 
Did the pattern 'No.' come back when all displayed? 

In order to distinguish between multiple templates we are using a 
special character, the comma (,) to separate templates, just as we did 
with the internal function call to separate its arguments. Even though 
only one parse source string may be used at a time with PARSE VAR 
(as compared with PARSE ARG, which, you remember, can parse up to 
15 multiple source strings), you may use multiple templates with all 
options of the PARSE instruction. Remember, the parse source is never 
altered

i 
 ; line dstill contains the paltered1 

Patterns as Variables 
The next example illustrates how small changes in syntax can mean big 
changes in results. Enter N to make a new template, and change the 
=position variable marker to (position) in the parse template. It makes 
a big difference! This syntax, putting parentheses around the variable in 
the template, tells the PARSE instruction we are specifying a pattern, 
not a position with our variable. This time, the assignment, position=5, 
means something entirely different when interpreted by the template. It 
means match the pattern '5' and not the position 5, so both wB  and wC 

 are different this time, because the parser finds a match on the number 

Multiple Templates 

H 80 f 
C 10-153 f 

3-12 Parsing 



The ARexx Cookbook 

5 in the parse string and divides the parse string at the position of that 
pattern, rather than at position 5. 

Notice that the character 5 is left out of the parse string when scanned 
later. because it is classified as a pattern marker now, and not any kind 
of numeric position marker. Note: you may leave off the parentheses 
around position if it is to be a pattern variable, and it will work, but 
syntactically, and for ease of readability later, using the parentheses is 
better. Always use the parentheses around position as a pattern 
variable when using ParseTest.rexx or it will think position is an 
ordinary target. This will reinforce your using the better syntax. 

More Ways to Parse 
We will now look at some various other ways to parse, some new, some 
variations on the above techniques. Replace the source strings and the 
parse templates with the ones we show now, if you want to try out 
various input strings and templates. Display and study the targets until 
you see what is happening during the PARSE instruction. Practice and 
experimentation are good ideas until you feel thoroughly at home with 
parsing. We will now list some source strings and templates. 

In-line Variable Patterns 
Choose option 3: VAR 
The test line is... 
This&is*a line of text. No.123456 #98765. The last sentence! 
Use this template: 
wA =position delim +1 wB (delim) wC (delim) rest 
position=4 

Study all the targets. Note the way we can make an in-line call to a 
variable pattern delim; in this case the pattern is the letter s, and we use 
it to delimit our targets. The first instance of delim gets assigned the 
value s and the subsequent variable patterns (delim) are evaluated to 
the same pattern value during parsing. 

The Period as a Placeholder 
The use of a period (.) as a placeholder in a template is an important 
feature of the PARSE instruction we have discussed before. You may 

3-13 Parsing 



Three 

use a period (.) as a placeholder for any target in the parse string to 
which you do not wish to assign a value. This is useful if the source 
string has more words in it than you have variables (targets) to assign 
and you want to avoid assigning the last variable in your template the 
value of the rest of the parse string. 

Choose option 3: VAR 
The test line is the default... 
This is a line of text. No.123456 #98765. The last sentence! 
Use this template: 
. '#' num '.' . 

Look at the target num. Since we are only interested in the number 
coming after the # character, we use two periods (.) to represent parts of 
the string which we do not want to assign. They act exactly like any 
bonafide target in the parse template, except they never get assigned a 
value. We also use two pattern markers, a '#' and a period '.' to assign 
only the number, and not the # character or the period at the end. 

Using the Relative Marker +0 
We now illustrate the use of the relative marker +0 to include the 
previous literal or variable pattern. The following shows how to assign 
the same substring to two different targets (variables) without re-
scanning the line. 

Choose option 3: VAR 
The test line is the default... 
This is a line of text. No.123456 #98765. The last sentence! 
Use this template: 
. 'No.' num . +0 j . 

Study num and j. The relative marker +0 tells the parse scanner to use 
the last pattern matched (No.) as the start of the next variable. The 
period after both variables num and j prevents the scan from including 
anything except the number, by acting as a placeholder for the rest of 
the string. 

Using Parsing by Forced Tokenization for Screen Data Input 
Sometimes you will need to input data from the screen to fill data fields 

3-14 Parsing 



The ARexx Cookbook 

in an ARexx program. The PARSE instruction used to tokenize the 
input makes this a simple process. Suppose you are entering expense 
account data. You have the item name, the amount you spent, the date. 
and the category, for instance. You want to place these data into 
variables for calculations and eventual entry into your data base file. 
You may use the PARSE (or the PULL) instruction to take the data from 
the screen to your variables in one step. PARSE PULL will preserve the 
case of your entries, and PULL will convert everything to upper case, 
but otherwise they operate identically. 

Let's assume you will enter your data in this order: 
date, item, category, amount. The following program illustrates how to 
use PULL to parse these into targets by tokenizing them. 

/* TokenScreen.rexx Example program to tokenize 
screen input */ 
SAY 'Enter: date item category amount' 
PULL date item cat amt . 
SAY date 
SAY item 
SAY cat 
SAY amt 
EXIT 0 

The period as a placeholder is used to prevent the last item from having 
a preceding blank. Remember tokenizing removes blanks from the 
target, but assigning the rest of the line to a target does not. Experiment 
with this program and try it with different inputs. See how the program 
assigns your data neatly to the variables. What would you do to prevent 
mistakes on entry? Can you write some error checking routines to 
improve the program? Can you write some routines to make each entry 
format consistent; for example the date entry? 

Parsing Multiple Input Lines from the Screen 
Suppose you need to ask ARexx to parse multiple input lines from the 
screen. The way to do this is to use multiple templates separated by 
commas, as we have discussed. Use the PARSE PULL instruction, or 
PULL by itself which will translate all the strings to UPPER case. In the 
preceding example, change lines two and three as follows: 

SAY 'Enter: date item category [Rtn] amount' 
parse pull date item cat .,amt . 

3-15 Parsing 



Three 
 

We have changed the prompt to remind the user to put the amount on a 
separate line by hitting the [Rtn] key. Then, we have put a comma (,) in 
line three to tell the PARSE PULL instruction to wait for two lines of 
input: the first template date item cat . will tokenize date, item name, 
and category from the first screen input line; and after you hit [Rtn], and 
type in the amount, and hit [Rtn] again, the second template will 
tokenize your entry into the target amt. Slick! You may use multiple 
templates to parse different strings in this way from the screen. 

Other PARSE OPTIONS 
The remaining four PARSE options are EXTERNAL, NUMERIC, 
SOURCE, and VALUE expression WITH. They allow you to parse 
some special information from the ARexx program environment, and 
you may use templates exactly like the ones we have discussed 
already. The VALUE expression WITH option evaluates and parses an 
expression on the same line, which frequently proves useful. 

EXTERNAL: Not Recommended! 
The option EXTERNAL is supposed to be equivalent to PULL, but it 
does some unexplainable things once in a while, like putting in a 
mysterious extra line in the output of the above example of multiple line 
screen inputs. The extra line appears between the SAY cat and the 
SAY amt output instructions. Apparently, the extra line is generated 
somehow if we use a PULL EXTERNAL instruction instead of PULL or 
PARSE PULL. Since EXTERNAL may not be used alone (like PULL), 
and since the above example doesn't work using a PARSE EXTERNAL 
instruction, there doesn't seem to be much reason left to use it at all! 
You're better off if you forget all about the EXTERNAL option. 

The PARSE expression VALUE WITH template Option 
If you do not have a VARiable, but an expression to parse, use this 
option. It operates exactly like the PARSE VAR option, except that the 
expression is first evaluated, and then its value parsed. ll you use 
multiple templates with this option, the expression is evaluated only 
once, at the start of the instruction. The subkeyword, WITH, must 
always immediately precede the template. Here is what this option 
produces if we use the default line from our emulator program as part of 
a larger expression. 

3-16 Parsing 



The ARexx Cookbook 

The test line is... 
This is a line of text. No.123456 #98765. The last sentence! 
PARSE VALUE 'Example #1:'line WITH . pre ':' all, nm . '#' '#' num +5 
The targets evaluate to: 
pre = #1 
all =This is a line of text. No.123456 #98765. The last sentence! 
nm =Example 
num =98765 

The format of this instruction is always: 
PARSE expression WITH template[, template][, template]... 

We have shown the instruction using two templates, separated by the 
required comma (,), but any number of templates may be used. In the 
first template, . pre ':' all the scan starts with a placeholder (.) target 
because we do not want the first word in the parse string (the value of 
the expression 'Example #1'line ) to be assigned to a target. Note that 
the parse string is just the string 'Example #1' appended to the start of 
our variable line, so expanded, the parse string is 

Example #1:This is a line of text. No.123456 #98765. 
The last sentence! 

You may enter this evaluated string into ParseTest.rexx to experiment, 
and verify that PARSE VALUE expression WITH acts exactly like 
PARSE VAR once the expression has been evaluated. 

The second target in the first template is the variable pre, lying between 
the end of the first word of the string and the pattern marker ':'. It has a 
preceding blank, because it isn't a tokenized target. How would you 
make it a tokenized target and get rid of the blank? Putting a period 
placeholder target . immediately after pre and before ':' will do it. Try it! 
The use of the colon (:) as a pattern marker insures that it will be 
removed from the parse string and will not appear as part of our variable 
pre. The variable (target) all now takes the entire left over string which, 
thanks to the use of the pattern marker ':', is the entire original string 
variable line. The comma after all ends template one. 

Updating the Scan Position with Multiple Sequential Patterns 
Template two is the pattern nm . '#' '#' num +5 which ought to be 

3-17 Parsing 



NUMERIC instruction 

H 31 
C 10-61 f 

SOURCE option 

H 33 
C 10-65 

VERSION option 

H 34 
C 10-66 

Three 

somewhat easy for you to read by now. It tokenizes the first word 
"Example" of the parse string into nm, skips the substring from the end 
of the first word until the first instance of the pattern '#', skips to the 
second instance of and assigns the five digit number found there to 
the target num by means of a relative position marker, +5. The only 
thing new here is to observe the use of two pattern markers in a row 
without any targets (variables) in between. This is legal. 

Direct and Indirect Control of the Scan Position 
You may use multiple patterns in a template without needing to assign 
anything to a target; even a placeholder period (.) is not necessary. This 
is because the scan position is updated every time a marker object is 
encountered. Therefore, a pattern marker object, without an associated 
target, explicitly and directly updates the scan position without 
demanding that the parser assign a string to a target. A template may 
therefore control the current scan position explicitly and directly or 
implicitly and indirectly. Notice that since we have ended up by 
controlling the scan position directly with the +5 relative marker, it is not 
necessary to use a placeholder or any other targets in the second 
template, even though part of the parse string is left over. 

Parsing with the NUMERIC, SOURCE and VERSION Options 
The only options we have not yet met are the NUMERIC, SOURCE and 
VERSION options of the PARSE instruction. You may look at their 
source strings by selecting the other options in ParseTest.rexx, and you 
may also experiment with various templates applied to these options. 
The only real difference between these options and VAR is that they 
supply their own source strings. To learn more about NUMERIC 
settings which have to do with precision and numeric display formatting, 
refer to Hawes, page 31; or Commodore page 10-61 f. 

The SOURCE option returns information about the program you are 
running: whether it is a COMMAND or a FUNCTION; a boolean 0 or 1 to 
reflect whether a RESULT string was requested by the caller; its name; 
its path; its file extension; and the name of the host application port. 
Use this option when you are doing interprocess control with ARexx and 
want to check on the status of a function or a command. Hawes, page 
33; and Commodore, page 10-65 document the SOURCE option. 

3-18 Parsing 



The ARexx Cookbook 

The VERSION option returns information about the hardware, and the 
version of ARexx we have installed. These values are explained on 
page 34 of Hawes and page 10-66 of Commodore. 

Summary of the PARSE Instruction 
Perhaps it seems we have beaten parsing to death by now. When you 
realize how much you'll use it, you will appreciate these lessons as 
much as you appreciate your third grade teacher for drilling those 
multiplication tables into you when you were little! Parsing is essential 
to almost every ARexx program. To review: 

PARSE provides a way to extract one or more substrings from a string 
and assign them to variables called targets. 

PARSE uses a pattern called a template to describe how substrings of 
the parse string will be assigned to the targets, which are variables 
(symbols) written into the template. Besides targets there are markers, 
the other type of template object. The parse string is scanned from left 
to right. The markers serve to keep track of the current scan position, 
and to determine the endpoints of substrings assigned to targets. There 
are three types of marker objects: absolute, relative, and pattern 
(which may be variables) explicitly determine the scan position of the 
parse string. Tokenization implicitly determines the scan position by 
assigning words from the parse string to targets one-for-one. 

PARSE operates on an input string, called the source string. PARSE 
never alters the source string. It makes a copy called the parse string. 
Pattern markers alter the parse string. Patterns are removed from the 
parse string as they are matched. 

Markers may be explicitly represented as absolute numbers; relative 
numbers with an accompanying arithmetic operator (+, =); patterns in 
quotes; or they may be implicitly represented by a variable name, 
preceded by an operator (+, -, =) for +positional markers, or enclosed 
in parentheses to denote a variable (pattern). 

Targets are either a variable name or a placeholder period (.) which 
represents a target not assigned a value. 

3-19 Parsing 



Three 

The special character comma (,) serves to separate multiple 
templates and multiple source strings passed as ARGuments to a 
function. 

If a template is used to parse a string word-for-word to its targets, it is 
called parsing by tokenization and blanks are automatically removed 
from the beginning and the end of the target values. If an additional 
period (.) is placed at the end of a template, it forces tokenization. 

The source strings can come from various places, and we use different 
PARSE OPTIONS to handle them: 
For function or command arguments use PARSE ARG 
For numeric settings use PARSE NUMERIC 
For program source information use PARSE SOURCE 
For version information use PARSE VERSION 
For expressions use PARSE VALUE expression WITH 
For variables use PARSE VAR 
For console input use PARSE PULL, PULL, and PARSE UPPER 
PULLThe optional subkeyword UPPER must follow the keyword PARSE 
immediately. It translates everything in the parse string into 
UPPERCASE. 

3-20 Parsing 



The ARexx Cookbook 

Chapter 4: 
Numbers, Logic, and Recursion 

Logical and Mathemetical Operators 
Arexx offers a full complement of mathematical and logical operators to 
enable you to program mathematical solutions to various problems. 
Refer to Hawes, pages 12 and 13; or Commodore, pages 10-29 through 
10-31 for the definitions and examples of operators. There are in 
general four types of operators in ARexx: 

Arithmetic operators use one or two numeric operands and return a 
numeric result. 

Concatenation operators join two strings into one string. 

Comparison operators compare two expressions and return a 0 or a 1 
(boolean) result. 

Logical operators require one or two boolean operands and return a 
boolean result. 

To demonstrate the power of ARexx to solve mathematical problems, 
let's solve one about probability, using a few of these ARexx operators. 
The problem is an interesting one, because it caused a storm of publicity 
and controversy when it first appeared in the Sunday newspaper's 
Parade Magazine in the "Ask Marilyn" column. The "Ask Marilyn" 
column frequently exhibits intriguing puzzles whose solutions are by no 
means intuitive. When she proposed this puzzle, and offered her proof, 
Marilyn aroused so much controversy, much of it from prestigious 
university professors who "proved" that she was "wrong", that she 
published several follow-up articles both to hold her ground and to invite 
people to convince themselves of the correctness of her proof, by 
conducting a series of experiments. The program we will write here is a 
computer simulation of an empirical proof of Marilyn's puzzle. 

Operators 

H 12, 13, 18 thru 21 
C 10-29 thru 10-31 

10-39 thru 10-44 

Arithmetic Operators 
H 18 ff 
C 10-39 ff 

Concatenation Oper. 
H 20 
C 10-42 

Comparison Operators 
H 21 
C 10-43 

Logical Operators 
H 21 
C 10-44 

4-1 Numbers, Logic, and Recursion 



Four 

The Door Problem 
The problem goes like this. A man is a contestant on a game show. 
There are three doors, behind one of which is a new sports car. If the 
contestant picks this door, he of course wins the car. He is invited to 
pick a door. He does, but now the game show host introduces a twist. 
He opens one of remaining two doors that the contestant has not 
picked. It is empty. He now asks the contestant, "Do you want to stay 
with the door you have picked, or will you switch your choice to the 
remaining door?" The question is this: Is the contestant better off to 
stay with his original choice, or to switch to the remaining door? In other 
words is the probability (the contestant's chances) of a win higher if he 
stays or if he switches? 

A Brief Definition of Probability 
Probability uses pretty simple arithmetic. In an experiment, the total 
number of equally possible outcomes is represented by an integer n. 
The number of ways one particular event E can happen is represented 
by another integer, call it h. There are h ways of E happening out of a 
total of n possibilities. The probability of E is represented by the number 
(a fraction, a rational number) h/n. 

The convention is to write the probability of success Pr{E} (event E 
happens) as p = Pr{E} = h/n. So, in a flip of a coin, the probability of 
heads is 1/2, because heads can occur in one of two possible ways: 
heads or tails. Since an event either happens or it doesn't happen, the 
probability of failure Pr{not E} may be represented by 

q = Pr{not E} = (n-h)/n = 1 - (n/h) = 1 - p = 1 - Pr{E} 

Thus p + q = 1. All probabilities are fractions which lie between 0 and 1. 
If an event is certain to happen, it takes on a probability of 1. 
Conversely, if it can never happen, it has a probability of 0. 

4-2 Numbers, Logic, and Recursion 



The ARexx Cookbook 

The Question 
Our "door problem" is a bit more tricky. What do you think? Are the 
contestant's chances equal if he stays with his original choice or are 
they better if he switches? What is his probability of success (winning 
the car)? 

Many people thought that he had a 50-50 chance of winning and it did 
not matter if he switched or not; Marilyn maintained he had a 2/3 chance 
of winning if he switched! Let's not spoil the fun of ARexx by giving a 
rigorous proof right away, but let's proceed as if we know nothing. Here 
is a good opportunity to write some pseudo code to organize our 
thoughts and list the steps in our empirical (experimental) solution. 

Pseudo Code to Solve the Door Problem 
1. Assign a variable pat to count successes in staying or standing pat. 

2. Assign a variable switch to count successes in switching doors. 

3. Get screen input for number of games or number of experimental 
trials to calculate: limit. Assign a variable prt a value of limit minus 3 to 
be used in choosing only the last three trials to output to screen. 

4. Loop for  i to limit, the number of games input in step 3. Loop ends 
at step 16. Note: all integer nodes n, k, I, j range from 1 to 3, and index 
a particular door number. 

5. Initialize to value 0 an array: door.1, door.2, and door.3. 

6. Pick a random number n between 1 and 3 to represent the door 
behind which is the prize sports car. 

7. Assign the value 1 to door.n. Now we have the prize door flagged. 

8. Get a random guess between 1 and 3 from the contestant, and 
assign it to a variable j. 

4-3 Numbers, Logic, and Recursion 



Four 

9. If the car is behind door.1, make the host open a losing door.k, one 
which does not hide the car, and one which has not been chosen by the 
contestant. If the host has a choice, make him open a door at random. 

10. If the car is behind door.2, make the host open a losing door.k, 
one which does not hide the car, and one which has not been chosen by 
the contestant. If the host has a choice, make him open a door at 
random. 

11. If the car is behind door.3, make the host open a losing door.k, 

one which does not hide the car, and one which has not been chosen by 
the contestant. If the host has a choice, make him open a door at 
random. 

12. If the contestant was correct in his original guess (door.j = 

door.n), increment the pat counter for standing pat. 

13. Calculate the cumulative success probability of standing pat; 
assign it to the variable stand. 

14. Calculate directly (without relying on the probability definitions), the 
cumulative success probability of switching to door.l: Make a logic 
table; determine success of switching; as appropriate, increment 
switching success counter switch, and assign the cumulative probability 
to variable change. 

15. If i>prt, arrange for the program to output data and results from the 
last three iterations of the loop. Do loop again. 
16. End of experimental loop. 

17. Exit. 

The pseudo code is more detailed this time. Notice that we have named 
our variables and defined loops and tests explicitly in order to clarify the 
process. You may make your pseudo code detailed or not as your 
needs dictate. In step 14, we could have calculated the success of 
switching by using the identity p+q=1, but we choose not to, in order to 

4-4 Numbers, Logic, and Recursion 



The ARexx Cookbook 

demonstrate the truth of the identity empirically, and more important, to 
introduce you to some useful logic operators in ARexx. Here is one way 
to code the problem in ARexx: 

/* Door.rexx Three door game show */ pat=0 
switch=0 SAY 'Input total number of trials.' PARSE PULL limit prt=limit-3 /* Loop for repeating experimental trials */ DO i=1 to limit door.=0                        /* initialize array to 0        */ n=RANDOM(1,3)                  /* pick a door at random        */ door.n=1                     /* flag it as a win             */ j=RANDOM(1,3)                  /* contestant guesses at random */ IF door.1=1 THEN DO            /* In case car is behind door 1 */ IF j=1 THEN k=RANDOM(2,3)   /* Host opens random loser door */ IF j=2 THEN k=3             /* Host must open door 3        */ IF j=3 THEN k=2 	 /* Host must open door 2        */ END IF door.2=1 THEN DO IF j=2 THEN DO h=RANDU()            /* How to pick- either 1 or 3    */ 	IF h>0.5 THEN k=3        /* at random, based upon a       */ ELSE k=1             /* random fraction h             */ END IF j=1 THEN k=3 IF j=3 THEN k=1 END IF door.3=1 THEN DO IF j=3 THEN k= RANDOM(1,2)/* Similar to first block IF      */ IF j=2 THEN k=1 IF j=1 THEN k=2 END IF door.j=1 THEN pat=pat+1  /* increment win by standing pat   */ stand=pat/i                 /* cumulative wins by standing pat */ /* Calculate the losing probabilities. The situation if */ /* the player stands pat and loses if he doesn't switch */ IF j=1 & k=2 ^ j=2 & k=1 THEN l=3 IF j=1 & k=3 ^ j=3 & k=1 THEN l=2 IF j=2 & k=3 ^ j=3 & k=2 THEN l=1 IF door.1=1 THEN switch=switch+l /* increment win by switching */ 

change=switch/i                  /* cumulative wins by switching*/ 

4-5 Numbers, Logic, and Recursion 



Four 

/* output controls write to screen */ 

IF i>prt then do 
SAY, 
'trial #'i': car in door #'n'; guess #'j'; host opens door #'k'.' 
IF door.j=1 THEN SAY 'staying wins. 	' 
IF door.l=1 THEN SAY 'switching to #'1 'wins. 
SAY 'cumulative wins:' 
SAY 'switching: 'change'='switch' wins out of 'i' tries.' 
SAY 'standing: 	'stand'='pat' wins out of 'i' tries.' 
SAY '' 
END 

END /* i loop. Do another test */ 
EXlT 0 

DO instruction 
H 27 f 
C 10-53ff 

RANDOM() function 
H 62 
C 10-112 

Explanation of the ARexx Code 
Thanks to our pseudo code, it is pretty easy to read this program without 
needing a lot of explanation. The first three pseudo code steps are 
completed between the first and second comments in our ARexx listing. 
They present nothing new. The pseudo code step 4 loop begins in 
ARexx with the familiar DO instruction. The DO instruction-specific 
information is i=1 to limit which means to count up from 1 to the 
number of trials limit we specified and use the index I to keep track. 
This information is called the iteration specifier. Iteration specifiers 
cause a DO instruction to execute repeatedly until a termination 
condition occurs which makes the loop stop. In our problem, this 
termination condition is that i reaches the number limit. Step 5 of the 
pseudo code is to initialize an array door. which is accomplished in one 
step as we have seen in a previous example. 

Getting a Random Number 
Step 6 introduces a new ARexx built in function called RANDOM(). The 
arguments for this function are integers which define a range from which 
to select a pseudo-random number (an integer). The function returns an 
integer which we assign to the variable n according to our pseudo code 
in step 6. 

Now that we have a random node with which to identify the door with the 

4-6 Numbers, Logic, and Recursion 



The ARexx Cookbook 

car behind it, we assign the value of 1 to door.n and flag that door as 
the winner. Since we initialized all doors to 0 before, we have only one 
door.n in the array with a value of 1. We let the RANDOM() function 
serve as an independent trial and stand for the contestant's guess (a 
random number j between 1 and 3) as well. 

Thinstructionties: Where is the Car? 
Next we come to three IF THEN DO blocks which correspond to steps 
9 through 1RANDU()RANDU()do code. These blocks model the situation when 
the car is actually behind door 1, door 2 and door 3, respectively. Notice 
the way the game show host is constrained to pick his open door in two 
out of three cases, in each block. He must pick a door both not picked 
already by the contestant and not hiding the car. If the contestant picks 
a loser for a door, the game host has only one choice for his pick! For 
you analytical types, this should be a clue as to where the red herring in 
this little problem lies! Anyway, we will assume complete innocence and 
proceed. 

Modelling Choices 
In each IF block, if the contestant has indeed picked the winner, then the 
game show host has two choices and we model his choice by 
randomizing it. In blocks one and three he must pick between two 
numbers in a row: 2 and 3; or 1 and 2, respectively, so we can use the 
same function RANDOM() to return a number for us. However in the 
second IF block, what do we do when we need to choose at random 
between two numbers 1 and 3, not in sequence? 

The RANDU() Function 
We use an ARexx function not yet introduced, the RANDU() built-in 
function. RANDU() returns a value at random between 0 and 1. Note 
that this function returns a decimal fraction and not an integer. 
RANDU() may take an argument called a seed. This is to make it 
choose a different first number, when required, by initializing the internal 
state of the ARexx pseudo-random number generator. The seed 
argument is optional and we did not need it here. For the fine points of 

W instruction 
H 29 f 
C  10-58 f 

THEN 
instruction/keyword 
H 39 f 
C 10-58 f. 10-73  

DO instruction 
H 27 f 
C 10-53 ff 

RANDU() function 

H 62 
C  10-112 f 

4-7 Numbers, Logic, and Recursion 



Four 

ELSE instruction 
H 28 f 
C  10-56 f 

IF instruction 
H 29 f 
C  10-58 f 

the functions RANDOM() and RANDU(), refer to Hawes, page 62; and 
Commodore page 10-112. Here, we simply let RANDU() choose a 
random fraction and after assigning its value to the variable h, we test h 
to see if it is greater than 0.5 and if it is, we let k=3 ; and if not, we use an 
ELSE clause to assign the other value k=1. All three IF blocks are 
similar except that each takes care of a different door hiding the prize. 

The Cumulative Probability of Winning by Standing Pat 
The fourth IF instruction takes care of step 12 of the pseudo code. All 
we do here is increment the counter pat which represents the wins 
when the contestant guesses correctly and stands pat rather than 
switching. Step 13 of the pseudo code is the next ARexx assignment. 
We calculate the expression pat/i and assign its value to the symbol 
(variable) stand. This is the cumulative probability of wins by standing 
pat. Each time pat wins, it is incremented and the ratio of this pat total 
to the total of all the trials so far is the cumulative probability of 
winning by standing pat. The variable stand thus represents the 
ultimate number we are searching for, because the number it converges 
to as the number of trials increases, will be the theoretical probability we 
are trying to find. It is easy to see that stand will lie between 0 and 1 
because pat will always be less than or equal to i, and greater than or 
equal to 0. 

Calculating the Probabilities of Winning by Switching 
As we mentioned before, we could easily let the probability of failure in 
standing pat (which is the probability of winning by switching) be 
represented by the value of 1--stand, but we are going to be obtuse on 
purpose and assume nothing in our model. Therefore, we come to the 
next group of three IF instructions. Simply stated they are the ARexx 
encoding of all the possibilities that obtain if the contestant fails to guess 
the prize door correctly on the first try and after the host tempts him with 
the opened losing door. 

Boolean Operators 
The first IF statement translates into, "IF either [the contestant has 

4-8 Numbers, Logic, and Recursion 



The ARexx Cookbook 

picked door 1 and the host has opened door 2] or (the mutually 
exclusive event) [the contestant has picked door 2 and the host has 
opened door 1] THEN the car must be behind door 3." ARexx uses an 
elegant shorthand to make complicated logical comparisons and return 
a boolean value. In these IF instructions, j is the node of the door array 
that the contestant guesses; k is the node of the door the host opens 
and I is the node of the prize door. 

In the next ARexx line, we test the array element door.I to see if it is 
equal to 1. If it is, we increment the switch codoor.lto show that 
switching wins, and we calculate the cumulative wins by switching in the 
same way we did for stand and pat. We use the logical operators & 

 and A  which mean logical and and exclusive or (XOR). Since &  has 
priority over ^, we do not need to use parentheses as the expressions 
j=1 & k=2, and j=2 & k=1 are evaluated first, and only then is the XOR 
operator ^ applied to the resulting boolean values which returns a single 
boolean value. To learn more about operator sequences and priorities, 
refer to Hawes, page 13 and Commodore page 10-29 ff. 

Screen Output 
The final section of the code is the output to the screen. We don't want 
to output every trial to the screen as that would slow down the program 
execution considerably. We are only interested in the numbers stand 
and change and their values for a high number limit of trials. We use a 
DO instruction to accomplish this quickly. We do a simple test to check 
whether i exceeds the value of prt which has an integer value of three 
less than limit. If it exceeds limit, we output some expressions to the 
screen to tell us the values we are interested in. 

Continuing a Line of Code 
Note the use of a comma after the first keyword SAY. A comma (,) is 
used to continue a line that is too long to fit on one line, but which is 
part of the same instruction line. If you need to split a line that contains 
a comma at a comma (for instance between two arguments), don't 
forget to use the continuation comma as well. You would in that case 

4-9 Numbers, Logic, and Recursion 

BOOLEAN operators 

H 13. 21 
C  10-30. 10-43 f 

BOOLEAN values 

H 17 
C  10-38 



Four 

have two commas in a row, the first one for separating the arguments 
and one to continue the instruction line. The rest of the listing is routine 
and familiar to you by now and we will not discuss it. Try entering the 
program and running it with 3000 as the number of trials. In a minute or 
two, you will have the result on your shell window. What can you 
conclude about the probabilities of switching as opposed to standing 
pat? Can you make a "real" proof instead of just a computer simulation? 

The Proof of the Door Problem 
The notion of independent trials is crucial to understanding the Door 
Problem. An independent trial is one that has no dependence upon any 
other event; in other words it can be deemed to be a random event, 
such as the repeated flipping of a coin. Whether the coin shows heads 
or tails on any one particular flip is independent of any other flip. 

In our door problem, there are only two independent trials: the 
placement of the prize car behind a door and the original guess by the 
contestant. All other events are dependent upon something else: the 
host's opening another door is dependent upon where the car is and the 
original guess by the contestant. Similarly, if the contestant chooses to 
switch, this event is dependent upon his original guess and the door 
which the host has opened. 

If we concentrate upon only the independent trials, we can see that 
there are only three ways the contestant may pick a door the first time, 
and there are only three ways in which the car may be hidden behind 
one of three doors. Therefore, there are 3 x 3 = 9 different possible 
outcomes in first picking one of three (hiding the car) and then picking 
one of three things (choosing a door). If we enumerate the possible 
wins when the contestant stands pat, we see that he can win only when 
his guess coincides with the door behind which the car is hidden. This 
can happen only 3 times out of the 9 possibilities. Since the contestant 
is constrained to either win or lose, the probability of winning by 
switching is therefore 1 - 1/3 or 2/3. Q.E.D. 

4-10 Numbers, Logic, and Recursion 



The ARexx Cookbook 

Still Not Convinced? 
What the game show host does, really doesn't affect the contestant if he 

stand pat. A later event in probability has no effect on the probability of 
a previous independent event, it only may affect events later than itself 
which depend upon it. Let's make a table of all possible outcomes of 
placing the car and choosing a door. The first number in the pair 
represents the number of the door behind which the car is in fact hidden. 
The second number represents the first choice (guess) of door number 
by the contestant who doesn't know which door the car is behind. If we 
assume a random placement of the car and a random guess by the 
contestant, by the definition of randomness, each of these ordered pairs 
or combinations of truth and guess occur equally often. Therefore, each 
combination has a probability of 1/9, since the table exhausts all 
possible ways of hiding a car behind one of three doors followed by a 
contestant's guess at one of the three doors. Remember that by the 
definition of probability, the probabilities of all possibilities must add up 
to unity (1). 

Table of Possibilities 

Car in #1;Guess #1  Car: #1;Guess #2  Car:#1;Guess #3 "stay"   wins       "stay"   loses    "stay"   loses "switch" loses      "switch" wins     "switch" wins Car in #2;Guess #1  Car: #2;Guess #2  Car:#2;Guess #3 "stay"   loses      "stay"   wins     "stay"   loses "switch" wins       "switch" loses    "switch" wins Car in #3;Guess #1  Car: #3;Guess #2  Car:#3;Guess #3 "stay"   loses      "stay"   loses    "stay"   wins "switch" wins       "switch" wins     "switch" loses 

Clearly, there are nine (9) possibilities. Out of these nine, only in three 
cases underlined--those in which the guess matches the truth -- is it 
successful to stand pat with the original guess; switching would in these 
three cases guarantee failure, no matter which of the possible two losing 
doors the host opened! In the remaining six cases out of nine (6/9=2/3) 
it is uniformly successful to switch to the correct door. There are no 

other possibilities! 

Note that in the six cases not underlined, the host is constrained to open 

4-11 Numbers, Logic, and Recursion 



Four 

a specific door the number of which is not either of the numbers in the 
table entry; e.g. "Car in #1; Guess #3" constrains the host to open door 
#2, which means that switching will inevitably be to the correct door #1. 
Success always occurs when switching outside the underlined entries 
(6/9=-2/3 of the time); and failure always occurs when standing pat 
outside the underlined entries. It is easy to see that winning and losing 
are thus mutually exclusive with respect to standing pat and switching 

within and between each of the two groups: underlined  and not 
underlined. Therefore switching is successful 2/3 of the time and 
standing pat is successful only 1/3 of the time. Q.E.D. 

It is worth reiterating that the independent trial of the first guess, which is 
equivalent to standing pat in the second choice, really is independent of 
later events with respect to the probabilities of its success. We also 
should be able to see that the host directly influences only the six out of 
nine entries not underlined when he opens a losing door in that he 
guarantees the success of the second choice if it happens to be switch. 
The contestant's second choice is clearly neither entirely independent 
nor random (only standing pat remains independent and random). The 
red herring in this simple problem comes with the temptation to "mix 
pears and apples and oranges and nuts": independent trials, dependent 
revelations, doing nothing, and dependent choices. It is also worth 
noting that the host's action reduces the contestant's number of choices 
from three to two, but he does not change the probability of winning of 
the original guess! 

Summary 
The above discussions and proofs are meant to give examples of the 
ways in which a problem may be analyzed, and then solved using 
ARexx logical operators. If we cannot characterize (write down) a 
problem, how do we expect to solve it? Programming is more than 
simply understanding syntax and semantics. It is an art as much as a 
science; perhaps more so. If we practice using our imagination with 
ARexx, to propose and then solve puzzles, problems, or anything else 
that yields to a programming solution, we will soon become fluent in 
ARexx and will have trained our minds to think in such a way that we 

4-12 Numbers, Logic, and Recursion 



The ARexx Cookbook 

ITERATE instruction 
H 30 
C 10-60 

make our computers work for us instead of the other way around. 
Recreational programming in ARexx is a fun and painless way to learn 
the language! It is never a waste of time as perhaps computer gaming 
can be. 

Recursive Function Calls in ARexx 
A recursion is a self-referential structure in which a function or a routine 
calls itself during its own execution or performs some other form of self-
reference such as modifying its own code. Recursions are powerful, but 
they can be tricky. In programming it is generally best to avoid 
recursions if possible, but in some cases they are convenient and 
useful, as we saw in the ParseTest.rexx program which modifies its 
own code. ARexx is capable of running recursive functions that call 
themselves from within the function procedure itself. An example of 
such a recursive function (that computes factorials) is in Hawes, page 
35 and in Commodore, page 10-68. A function call outside a procedure 
may itself be recursive as we will demonstrate here. 

Iteration 
In general, whenever you can make a function use only one "kernel" 
computation that starts with a "seed" estimate and feeds the result of 
that computation into the same computation as a new "seed", it is a 
candidate to become either a recursive function or a to be called 
recursively. When many calculations must be accomplished, this 
method is sometimes referred to as an iterative technique, and proves 
useful in solving all sorts of number theoretic problems and finding 
solutions to systems of equations that do not yield to ordinary algebraic 
means. An entire branch of mathematics called Numerical Analysis 
concerns itself with these iteration techniques and the theory of their 
operation. 

Algorithms 
Iteration (not to be confused with the ARexx ITERATE instruction) and 
other mathematical computation procedures are called algorithms. 
You may think of an algorithm as analogous to a recipe in a cookbook. 

Recursive Functions 

H 35 
C  10-68 

ParseTest.rexx 
program 

see page 3-3 

4-13 Numbers, Logic, and Recursion 



Four 

An iteration algorithm is a set of procedures for doing multiple 
calculations evaluating one formula over and over again until some sort 
of criterion is met such as convergence to one value with an arbitrary 
degree of accuracy. The number of calculations sometimes runs into 
the millions. The famous Mandelbrot Set is a map of the complex 
number plane showing the results of multiple recursions of one simple 
formula called the Mandelbrot fractal iterated thousands or millions of 
times to determine only one criterion for each coordinate: Is it inside or 
outside of the Mandelbrot Set? Whether the value of the expression 
converges or not (as each new evaluation is fed into the expression as 
the new seed) determines whether the point is in or out. 

Computer Proofs 
With a computer, you may find solutions that are difficult or even 
impossible to obtain otherwise. If the solution is involved in a proof of a 
theorem, it is called a computer proof, and usually sneered at by pure 
mathematicians. Mathematicians also call such proofs "brute force 
solutions", and they may have a point. Although computer proofs are 
not usually elegant or even ingenious, they do find answers and 
therefore have a practical side to them. Here is a famous number 
theoretic brain teaser that yields its answer readily to ARexx. 

The Coconut Problem 
It seems that there are four shipwrecked sailors on an island with a 
large grove of coconut palms, and upon the coconuts they are 
surviving. One day a typhoon sweeps the island and although the 
sailors survive by hiding in caves, the grove (and their only food 
source) is destroyed, but there are a number of coconuts left littering 
the ground. The sailors collect them into a large pile, and agree to 
divide them equally the next day as it is now dusk. 

Each sailor happens to be both dishonest and greedy. During the 
night, the first sailor wakes up and hatches a selfish scheme. In the 
moonlight, he sneaks over to the pile without waking his mates, and 
counts the coconuts and finds that their number can be evenly divided 

4-14 Numbers, Logic, and Recursion 



The ARexx Cookbook 

into four equal piles with one coconut left over which he throws to a 
nearby monkey. He hides one of the four piles for himself as a hedge 
against starving before his three mates, groups the remaining three piles 
into one, and sneaks back to bed and sleeps. 

As you may have guessed (mathematics isn't much on plot twists), the 
other three sailors do exactly the same thing: They find the remaining 
pile may be evenly divided into four parts with one coconut left over, 
which they throw to the monkey. Then they hide one of the four piles for 
themselves and regroup the other three piles into one and go back to 
bed. In the morning, since all four are guilty as sin, they pretend not to 
notice the much diminished pile of coconuts, but once again they find 
that the pile may be evenly divided into four equal piles with one coconut 
left over which they throw to the monkey (who ends up with five 
coconuts). What is the minimum number of coconuts that must have 
been in the original pile last night? 

An Ideal Candidate for Recursion 
This tricky little problem is ideal to demonstrate recursion in ARexx, 
because it does the same thing five times: subtract one; divide by four; 
multiply by three. However, it cannot be readily solved by ordinary 
algebraic means, because it has only one equation and an infinite set of 
unknown quantities, one of which has the minimum value. 

If N represents the original number, then the first sailor leaves a pile 
containing 3*[(N -1)/4] coconuts. The next sailor uses the value of this 
expression as his N and so on. By means of ARexx we can find the 
answer by brute force if we start with a seed n equal to the integer 1 
(coconuts are a code word for integers or whole numbers). We then try 
the kernel computation above as a recursion formula nested five deep. 
At the end, we test if the result is an integer or not. If it is, we stop and 
report that we have found N, the minimum number of coconuts, and if 
not, we increment n to the next integer and try again. We've just written 
the pseudo code, so we can start on ARexx coding right away. 

/* Coconut.rexx The coconut problem */ 

4-15 Numbers, Logic, and Recursion 



Four 

FOREVER iteration 
specifier for DO 
instruction 
H 27 f 
C 10-53 ff 

DATATYPE() function 
H 56 
C 10-101 f 

PROCEDURE 
instruction 
H 35 
C 10-68 f 

ARG instruction 
H 26 
C 10 -52 

RETURN instruction 
H 37 
C 10--70  

HI command utility 

H 83 
C 10-155 

n=1 	/* Start with integer 1*/ 
DO FOREVER 
/* THE RECURSlVE CALL */ 
num=fun(fun(fun(fun(fun(n))))) 

/* Test for whole number */ 
IF DATATYPE(num,whole) THEN DO 

SAY 'The number 'n 'is valid. It is the minimum.' 
EXIT 0 
END 

/* Try the next iteration */ 
n=n+1 
END 

/* THE INTERNAL FUNCTION */ 
fun: PROCEDURE 
ARG i 
i=i-1 	/* Throw one to the monkey */ 
i=i/4 	/* Divide into 4 equal piles*/ 
i=3*i 	/* Group the other 3 piles*/ 
RETURN i 

The program is very simple. We use a DO FOREVER loop with only 
one way to exit, when we satisfy the DATATYPE() function with a whole 
number n (an integer). This would be dangerous if we never reached a 
solution. 

If you ever get stuck in an endless loop, to stop all ARexx activity in the 
system, open another shell, and at the prompt enter: HI (for Halt 
Interrupt) and all ARexx programs will stop. 

DATATYPE() is very useful to check strings for UPPER or miXed case, 
Alphanumeric data, numbers of various sorts, valid ARexx symbols, and 
more. The manual reference is Hawes, page 56 or Commodore, page 
10-101. This is an important function to know and a little study will pay 
off. 

The Central Recursion 
Our recursion is a five-deep nest of calls to the function fun, an internal 
procedure. The only thing different here that we have not covered 
before about function calls is that the recursive call does not assign a 
value to num until the internal function fun has been called five times by 
the nested assignment expression. Next, if the value of num satisfies 

4-16 Numbers, Logic, and Recursion 



The ARexx Cookbook 

the DATATYPE() 'whole' then we exit and SAY the message. 
Otherwise we increment our n guess and do it all over again. 

See if you can succeed in making fun itself recursive. You will soon run 
into trouble, as it modifies its argument i each time through and any 
attempt to keep track of five iterations will confront you with a problem in 
computing called self-modification. Any attempt on your part to 
implement a loop to count from 1 to 5 within fun will be a part of any 
recursive calls to fun and you will soon get into deep guacamole. This 
is why you must be very careful with recursions, should you use them. 
Run this coconut.rexx program from a shell and in a little while you will 
know the answer. If you were to prove this result in a more rigorous 
mathematical sense, you must expect to spend a lot more time! Try it! 

Dealing with Number Bases and Character Codes 

The Binary Number System 
Programmers frequently must deal with numbers expressed in different 
number bases, or translate characters into their ASCII decimal codes. A 
computer, as you probably know, operates with logic based on the 
binary number system composed of only two digits (properly called 
bits): 0 and 1, to represent the logical state of electronic devices as 
either "high" (1) or "low" (0). In binary, instead of having numbers based 
upon powers of ten, they are based upon powers of two. 

Expanding Numbers 
In our base ten decimal system, a number such as 103 can be 
expanded as: (1x100)+(0x10)+(3x1)=103. We never think about it, but 
the digits of our numbers are ordered so as to fit into the units, tens and 
hundreds positions. In binary, we position bits (binary digits) by powers 
of two, because instead of ten digits we have only two bits, counting in 
binary: 1, 10, 11, 100, 101, 110, 111, 1000, etc. The binary number 
101 ('101'b in ARexx notation), is expanded to 
(1x4)+(0x2)+(1x1)=decimal number 5. The binary number 110 ('110'b in 
ARexx notation)
, is expanded to (1x4)+(1x2)+(0x1)=decimal number 6. 

For proper ARexx 
notation for binary, hex numbers, see 

 
STRING TOKENS 

H 12 
C  10-28 f 

4-17 Numbers, Logic, and Recursion 



Four 

It is straightforward but inconvenient to convert number bases one to 
another, so ARexx includes a complement of functions to do these 
conversions easily. 

Hexadecimal Numbers 
Since binary number strings can become very long, programmers 
frequently use the hexadecimal system of numbering to make binary 
codes more compact and readable. Instead of ten digits or two, 
hexadecimal is based upon 16 digits: 0 through 9, plus the letters A 
through F. Conversion is easy between a base two binary number and 
a base sixteen hexadecimal or "hex" number because the hex base 16 
is also a power of two. Each four places of a binary number represents 
one place in a hex number: For instance, the binary number 1111 
translates to the hex number 'F'x in ARexx notation (decimal 15). 

Octal Numbers 
Another popular representation of computer numbers is octal or base 
eight numbers, where the digits run from 0 to 7. It is also easy to 
convert to or from binary as 8 is a power of two (3 bits = 1 octal digit). 

Character Codes 
All computer languages represent letters and printable characters, as 
well as control characters by means of numeric codes. ARexx provides 
functions to convert characters into or from their decimal, binary, or hex 
representations. 

A Useful Conversion Program 
In this exercise, we will make a program to convert and display the 
translation of any number (in decimal, octal, hex or binary), or any 
character string, into all the other representations. This is a handy utility 
for when you are programming and need to convert number base or 
translate a character or string. ARexx has no built in functions to handle 
octal numbers, but by means of a couple of simple interior functions we 
can take care of this. 

4-18 Numbers, Logic, and Recursion 



The ARexx Cookbook 

DATATYPE() function 
H  56 
C  10-101 f 

ARexx and Custom ConC2Dnctions 
The ARexx conversion functions appear alphabetically in the sect
ion on functions in both Hawes and Commodore. Some of the functions in 

Hawes were added after the manual was printed, and are in the update 
notes. We will list them here. The format is always letter2letter, as in 
x2c() which means to convert a hex number to characters. In the 
function set, d stands for decimal; c for character; b for binary; and x for 
hexadecimal. The ARexx set includes: d2c(),d2x() , x2c(), x2d(), b2c(),  
c2d(), c2x(), and c2b().  

If you think about it, you decide that several possibilities are 
missing; such as b2d() for instance. We will demonstrate how these 
missing functions may be constructed easily by nesting the existing 
functions together. Also, since x2d()x has no facilities for conversion to 
or from octal, we will build that in, too, and make for instance a b2o() 
and an o2b() function; o standing for octal. 

We will also demonstrate the correct use of the SELECT instruction for 
times when there are a number of options we need the program to 
select from its execution. Since the program code is very readable, 
we can dispenseboo()  all but the most rudimentary pseudo code: 

Pseudo Code 
1. Get the user input string and option to designate number base: x will 
denote hex; o octal; and b binary. 

2. Check the option and determine if the number base is valid: i.e. for 
binary are all digits l's or 0's? We will use ARexx's DATATYPE() 
function for all cases except octal where we will need to make a custom 
datatype check function to insure that all digits are less than 8, since 
octal is not an option of the ARexx 

DATATYPE() 

 function. 

3. Make a selection block to convert based upon the selection: 
Decimal, Characters, Hex, Octal, or Binary. Code in the appropriate 
conversion functions or make the missing ones with recursive calls, or 

4-19 Numbers, Logic, and Recursion 

B2C() function 
H  52 
C  10-94 

C2B() function 
H 54 
C 10-97 

C2D() function 
H  54 
C 10-97 

C2X() function 
H  54 
C 10-97 

D2C() function 
H  56 
C  10-99 

D2X() function 
H  disk 
C 10-100 

X2C() function 
H  69 
C 10-124 

X2DO function 
H  disk 
C 10-124 

SELECT instruction 
H 38 
C 10-70 f 



Four 

internal functions or both. If the string to convert is binary, then we will 
need to use (or make): b2d(), b2x(), b2o(), and b2c(). Each selection 
will have similar entries with appropriate conversions. 

Here is the program, called Hex.rexx (for its poetic sound!). 

Notes on the Hex.rexx Conversion Program 

/* Hex.rexx Number & character translator */ 

DO FOREVER 

SAY 'Input string [Rtn] option (x or b or o => hex, bin, oct),, 

Quit=[Rtn][Rtn].' 

PARSE PULL answer, option . 

option=UPPER(LEFT(option,1)) 

IF option='H' THEN option='X' 

IF answer='' THEN EXIT 0 

IF option='' THEN IF DATATYPE(answer)='NUM' THEN option='D' 

IF option='X' THEN IF ~DATATYPE(answer,'x') THEN DO 

SAY 'Invalid hex number. Try again.' 

ITERATE 

END 

IF option='B' THEN IF ~DATATYPE(answer,'binary') THEN DO 

SAY 'Invalid binary number. Try again.' 

ITERATE 

END 

IF option='O' THEN IF ~octal(answer) THEN D0 

SAY 'Invalid octal number. Try again.' 

ITERATE 

END 

SELECT 

WHEN option='D' THEN D0 

cha=d2c(answer) 

hex=d2x(answer) 

bin=c2b(d2c(answer)) 

oct=b2o(c2b(d2c(answer))) 

4-20 Numbers, Logic, and Recursion 



The ARexx Cookbook 

SAY 'decimal number='answer 'and is equivalent to:' 

SAY 

SAY 'character='cha 'hexadecimal='hex 'octal='oct 'binary='bin 

SAY 

END 

WHEN option='X' THEN DO 

cha=x2c(answer) 

dec=x2d(answer) 

bin=c2b(x2c(answer)) 

oct=b2o(c2b(x2c(answer))) 

SAY 'hex number='answer 'and is equivalent to:' 

SAY 

SAY 'character='cha 'decimal='dec 'octal='oct 'binary='bin 
SAY 

END 

WHEN option='B' THEN DO 

cha=b2c(answer) 

hex=c2x(b2c(answer)) 

dec=c2d(b2c(answer)) 

oct=b2o(answer) 

SAY 'binary number='answer 'and is equivalent to:' 

SAY 

SAY 'character='cha 'decimal='dec 'hexadecimal='hex 'octal='oct 

SAY 

END 

WHEN option='O' THEN DO 

bin=o2b(answer) 

cha=b2c(o2b(answer)) 

hex=c2x(b2c(o2b(answer))) 

dec=c2d(b2c(o2b(answer))) 

SAY 'octal number='answer 'and is equivalent to:' 

SAY 

SAY 'character='cha 'decimal='dec 'hexadecimal='hex 'binary='bin 

SAY 

END 

4-21 Numbers, Logic, and Recursion 



Four 

OTHERWISE DO /* characters */ 

dec=c2d(answer) 

hex=c2x(answer) 

bin=c2b(answer) 

oct=b2o(c2b(answer)) 
SAY 'character string='answer 'and is equivalent to:' 

SAY 

SAY 'decimal='dec 'hexadecimal='hex 'octal='oct 'binary='bin 

SAY 

END 

END /* SELECT Block */ 

END /* DO FOREVER Block */ 

/* The Internal Functions */ 
/* check for valid octal number */ 

octal: PROCEDURE 

PARSE ARG octnum 

DO WHILE octnum~='' 

PARSE VAR octnum 1 first 2 octnum 

IF first>7 THEN RETURN 0 

END 

RETURN 1 

/* convert octal number to binary */ 

o2b: PROCEDURE 

PARSE ARG octnum 

k=1 

DO WHILE octnum~='' 

PARSE VAR octnum 1 num.k 2 octnum 

k=k+1 

END 

k=k-1 

n=k-1 

sum=0 

DO i=1 TO k 

sum=(num.i)*(8**n)+sum 

n=n-1 

END 

binnum=c2b(d2c(sum)) 

RETURN binnum 

4-22 Numbers, Logic, and Recursion 



The ARexx Cookbook 

/* convert binary to octal */ 
b2o: PROCEDURE 

PARSE ARG binnum 

k=1 

DO WHILE binnum~='' 
PARSE VAR binnum 1 num.k 2 binnum 

k=k+1 

END 

k=k-1 finalsum
finalsum='' 

/*TRACE i*/ /* We will uncomment this in the next section */ 

DO i=k TO 1 BY -1 

sum=0 

DO n=0 TO 2 
IF DATATYPE(num.i)=CHAR THEN LEAVE 

sum=(num.i)*(2**n)+sum 

i=i-1 

END 

finalsum=sum||finalsum 

i=i+1 

END 

/*TRACE OFF */ /* We will uncomment this in the next section * / 

RETURN finalsum 

First we put the program into a DO FOREVER loop, because we may 
need to convert several strings and don't want to exit until we are done. 
Exiting is done via a [Rtn] and the answer tested for the null string ". 

FOREVER iteration 
specifier for DO 
instruction 

H 27 f 
C 10-53 ff 

MULTIPLE 
TEMPLATES in 
PARSE instruction 

H 80 f 
C 10-153 

If you make two input lines and parse the option separately using the 
ARexx capability of parsing multiple templates, then you can use 
embedded blanks and all characters for input. Note the comma in the 
parse template between answer and option. The comma is the special 
character that tells ARexx to parse two lines of input from the user. This 
multiple template assigns the entire first line of input to the string 
variable answer, and forces tokenization of the option. The comma at 
the end of the first line is the continuation character which is used to 
continue an ARexx instruction line that is too long to fit on the page. 

4-23 Numbers, Logic, and Recursion 



Four 

After we parse the option, we reassign only the first letter of option in 
UPPER CASE to option, and next reassign option to the value of 'X' if 
the user forgot and entered hex or h instead of X as the option. This is a 
small example of how you can make ARexx user friendly. 

The next two IF clauses check for valid hex and binary numbers, 
respectively. Notice how they use the not operator ~ attached to the 
function. The final IF block before the SELECT instruction uses a 
custom internal function to accomplish the same thing as the 
DATATYPE() tests above, using a function procedure called octal(). 

The octal: PROCEDURE comes after the main program, the END of the 
DO FOREVER loop. It first parses the argument sent to it (answer) into 
a variable clled octnum, which is protected. Then we do a loop: DO 
WHILE octnum is not the null string. The loop parses the variable one 
digit at a time and checks to see that it is not greater than 7, illegal in 
octal base eight. After it checks, it either finishes and RETURNs a 1 for 
true, or it sends back a 0 for false. The call to octal is in an IF clause, so 
it is looking for a boolean return, which we supply. 

The SELECT block is a new structure that we have not yet discussed. 
Use SELECT when there are a number of possibilities to select from. 
We have an ideal use of SELECT here, because our string is one of five 
possibilities and cannot be two at once. Note the syntax of the SELECT 
block. It starts with the keyword on a line by itself and each possibility is 
accounted for in a WHEN condition THEN block constructed just like 
any other block of instructions, terminated by an END clause. Each 
specific option is enumerated by the WHEN clauses. There is an 
OTHERWISE clause at the last. This clause is mandatory, not optional, 
so don't leave it out of your own code! If you've covered all your 
possibilities in the WHEN blocks simple insert a NOP (no operation) 
instruction in the OTHERWISE clause and you're home free. 

In our example, however, we have a use for the OTHERWISE block: to 
take care of the cases where we want to translate characters, and not 
numbers. If the input string was a valid decimal number, the option 
became 'D', so the only other time the option will be null will be when we 

IF instruction 
H 29 f 
C 10-58 f 

UPPER() function 
H 67 
C 10-121 

LEFT() function 
H 60 
C 10-108 

SELECT instruction 
H 38 
C 10-70 f 

WHEN instruction 
H 41 
C 10-73 

OTHERWISE 
instruction 
H 32 
C 10-63 

DATATYPE() function 
H 56 
C 10-101 f 

PROCEDURE 
instruction 
H 35 
C 10-68 f 

END instruction 
H 29 
C 10-57 

RETURN instruction 
H 37 
C 10-70 

OTHERWISE 
instruction 
H 32 
C 10-63 

4-24 Numbers, Logic, and Recursion 



The ARexx Cookbook 

WHEN instruction 

H  41 
C  10-73 

  C2B()  function 

H  54 
C  10-97 

D2C()  function 

H  56 
C  10-99 

ARRAYS  see 
STEMS and 
COMPOUND symbols 

H  21 f 
C 10-44 ff 

translate a character. The WHEN blocks are fairly straightforward. but 
notice the times we have nested functions of functions of functions. This 
is an example of the compactness and power of ARexx. In the first 
WHEN block, for instance, there is no ARexx function for converting 
decimal into binary, but we can nest two functions together as in the 
line: 

in=c2b(d2c(answer)) 

which first converts answer from decimal into character representation 
d2c(), and then its result, a character string, is converted by the outer 
function c2b()  into binary number as we desire. Nested functions 
always work from the innermost parentheses outward. The next clause 
is nested three deep. The outermost function is b2o(), another 
necessary custom function which converts from binary into octal 
numbers. 

Translating Binary to Octal 
Look at the last PROCEDURE in the program, b2o: It receives the 
argument from the caller and parses it into a variable called binnum. 
Then the DO loop parses binnum into an array called num. which ends 
up with k-1 elements. How do you convert binary to octal? First of all it 
takes a binary number three places long to describe only one digit of an 
octal number. Why? Because the eight octal digits run from 0 to 7, so 
the largest single digit of octal, 7, is the binary number 111, which you'll 
recall is (1x4)+(1x2)+(1x1)=7. For each place in an octal number, we 
therefore need three corresponding binary digits to represent it. Since 
the octal base 8 matches the powers of two in binary every three binary 

digits, then all we have to do is count every three binary digits from right 
to left and place that group's decimal representation into the placeholder 
of the octal number. 

It's OK to use the decimal representation, because at most, three binary 
digits will equal 7. We simply need to count three binary digits from right 
to left, calculate the decimal representation of the three-place binary 
number, place that number as the least octal digit; and begin counting 
three more binary digits to the left of the first three; convert them; and 

4-25 Numbers, Logic, and Recursion 



Four 

place the result into the next place to the left in our octal string; and so 
on until we run out of binary digits. 

For example, we start with the binary string 010110111. The first three 
digits starting on the right, 111 convert via b2d() to decimal 7, so 7 is the 
least digit of the octal translation. The next three binary digits are 110 
and they equate to decimal 6, so our octal number is now at 67. The 
final step converts 010 into decimal 2. The translation of binary 
010110111 is therefore octal 267. 

We accomplish this algorithm in ARexx by means of two nested loops, 
one to count the binary digits backwards (since the binary digit array 
was built from left to right instead of from right to left); and the nested 
loop to evaluate every three binary digits. We don't really need to apply 
b2d() to these digits as its easier to calculate the result (never more 
than 7) directly. Otherwise we'd need to do something to get the binary 
digits the other way around again, in order to apply the function b2d().  

Notice that we actually decrement the outer loop counter i inside the 
inner loop, too. The inner loop contains an escape clause in the case 
that the array element num.i is not a number. This is because the 
length of the binary number may not be an exact multiple of three and at 
the leftmost group to evaluate in the binary string, the inner loop may try 
to decrement past the end of the binary string. 

Finally we build up the output variable finalsum into an octal number 
string using concatenation. We must increment i before we do another 
iteration of the outer loop because i was decremented once too often 
when we finished the inner loop. The function RETURNs finalsum to 

the caller. 

Translating Octal to Binary 
The other WHEN blocks operate in a similar manner. We find one more 
custom function to make in the o2b() function. How do we turn an octal 
number into binary? To use the ready made ARexx functions as much 
as possible, we need to turn the octal number into a decimal called 

Nested function: 
 b2d(n) =c2d(b2c(n)) 

C2D()  function 
H 54 
C  10-97 

B2C()  function 
H 52 
C  10-94 

DATATYPE() function 
H 56 
C  10-101 f 
(used for the test in the 
escape clause.) 

LEAVE instruction 
H 31 
C  10-60 f 
(used to get out of 
loop.) 

RETURN instruction 

H 37 
C  10-70 

4-26 Numbers, Logic, and Recursion 



The ARexx Cookbook 

C2B() function 
H  54 
C  10-97 

D2C() function 
H  56 
C  10-99 

PROCEDURE 
instruction 
H 35 
C  10-68 f 

sum. and then use a nested pair of ARexx conversion functions to 
transform sum first into a character with d2c(), and then from a 
character into binary using c2b(). By means of a simple loop in the o2b: 
PROCEDURE, we calculate the decimal number by computing the 
powers of 8 multiplied by the octal digits in each position, and then 
summing the results. 

We now have a handy tool for looking up the equivalents for various 
numbers and strings. Note: In the ARexx manual, there is no mention 
of the limits of some of these functions, but the length of the string is 
limited and if you enter too long of a string, you will get some ARexx 
error messages. The intent of the conversion functions is to transform 
short strings and numbers. For instance, you may legally enter 12 
decimal digits but only four characters to convert. Longer strings will 
produce an error message. Later, we will look at the ARexx facilities to 
debug and trace your programs, and we will look at sections of 
Hex.rexx as they are traced. 

4-27 Numbers, Logic, and Recursion 



Four 

Notes 

4-28 Numbers, Logic, and Recursion 



The ARexx Cookbook 

ARRAYS see STEMS 
and COMPOUND 
symbols 

H 21 f 
C 10-44 ff 

Chapter 5: 
Sorting and Working with Arrays and 
Lists 

Sorting With ARexx 
The subject of sorting and searching could and does fill volumes, so we 
will not go deeply into the general subject here; but everyone should 
have a good sort routine in their bag of tricks, so we will look at a 
particularly good one in some detail and learn a few useful ARexx and 
pseudo-coding methods as well. The sort routine we demonstrate here 
is called the Shell Sort after its inventor, Donald L. Shell. It is 
complicated, but very fast and efficient, and has the best performance 
when the list is mostly sorted to start with; so it is handy for sorting a list 
after you make a few more entries to it. 

The Shell Sort is a modified bubble sort. It uses the bubble sort to sort 
and merge together many interleaved smaller lists. At the last, Shell 
Sort merges the smaller sorted lists together into one list. Its speed is 
much faster than a bubble sort alone. Before we can understand the 
Shell Sort, we need to take a look at the so-called bubble sort. 

The Bubble Sort 
For the sake of example, let us assume that you have a list of seven 
numbers to sort: 11, 33, 20, 44, 22, 60, and 31. We will make some 
commented pseudo-code to express the way to sort these numbers 
using the bubble sort: 

1. Set up an array list. with nodes i  or j, where i  or j stands for the 
place in the array that the number occupies: e.g. List.1 =11; list.2=33; 
Iist.3=20; etc., is the initial assignment. As we sort the list, the value of 
any specific Iist. element, list.i, will change. Think of Iist. as a set of 
pigeon holes in a post office which we fill with the values of our numbers 
by assigning variables as we did above in the initial assignment. 

5-1 Sorting, Arrays, and Lists 



Five 

2. a) Start with i=1 and j=2. In a loop, continue until all pairs i and j in 
the array list. have been compared as prescribed in the following steps. 
In the example, i runs from 1 to 6 and j runs from 2 to 7, so in an outer 
loop, we will compare six pairs of numbers in all: 1 and 2; 2 and 3; etc. 
b) Compare  list.i  with list.j  (11 with 33 initially). 

3. If Iist.i  is greater than list.j  then do step 4. Otherwise increment i 
 and j  (set i=2 and j =3 in the second pass), end the iteration of the outer 

loop, and go back to step 2 b). 

4. Store the value of list.j  in a temporary variable (we'll call it store). 
Then assign the value of list.i  to the variable list.j  (list.i=list.j) . Now 
We have now created a bubble at position i  since we have reassigned 
the value originally in pigeon hole i  to list.j , and the original list.j , we 
safely tucked away temporarily in the variable store. The position of the 
bubble will change dynamically, so we will call the Iist. array node which 
denotes the bubble position, bubpos instead of i or j , to distinguish it: 
bubpos=i at the moment. 

5. Calculate a new bubpos as old bubpos-1. In other words, we are 
concerned with the node (position) one before the list.i (i=old bubpos) 
element in Step 4. Why? We need to check and see whether the 
variable in store is less than the variable list.bubpos (the value at the 
new bubpos). This number list.bubpos was placed by the previous 
loop iteration, so we need to look at it now to coordinate with the present 
iteration's results. If store is less than list.bubpos, then we must insure 
that the variable in store is put into its proper place in the array list.! 
The bubble serves as a placeholder to determine where (in which node) 
to put the number in store. We do this with an inner, nested loop which 
moves the bubble's position, counting backwards from (new) bubpos 
TO 1, BY -1 because we don't know exactly where store will fit in. It 
may even be the least of all the numbers we are sorting, and we would 
need to count (move the bubble) all the way back to 1 before we could 
place (assign) store. We must further control the loop execution with a 
WHILE store<list.bubpos conditional test, because we want to stop 
once we find the proper bubble position for store. To summarize: We 
will move the bubble's position to receive the variable store's value. We 

5-2 Sorting, Arrays, and Lists 



The ARexx Cookbook 

therefore want to do a loop, counting down from bubpos (the old 
bubpos-1) to 1 BY -1, but only WHILE store is less than Iist.bubpos 
(note that bubpos changes dynamically as it is the loop counter or 
index; and therefore so does list.bubpos). In the body of this inner 
loop, we want to make a variable called nextnode which is our new 
bubpos+1. Then we assign the value of list.bubpos to the position of 

Iist.nextnode, effectively moving the bubble to the position of 
list.bubpos. Note we have not created a new bubble, we have just 

floated the current bubble to another position; one closer to the top of 
our list, hence the name bubble sort. The inner loop repeats until store 
is no longer less than list.bubpos (which changes with every iteration of 
the inner loop), or our counter bubpos reaches 1. The bubble follows 
according to the counter bubpos which is also the node position. At the 
end of every iteration of the inner loop, the bubble position has moved 
up one position in the list, and the number formerly occupying its 
position has moved down one position in the list. After we do all the 
iterations of the inner loop which satisfy the conditions, we reach the 
end of the inner loop. 

6. We pop out of the inner loop, back to a continuation of the outer loop. 
Now add 1 to bubpos to get back to the correct bubble position. As we 
left the loop above, we decremented the counter (bubpos) once too 
often. Even if we did not actually do the loop because of not satisfying 
the WHILE statement, the value of bubpos still was assigned a value of 
old bubpos-1. So whether we went through the inner loop or not, we 
still need to add 1 to bubpos. Finally we assign the value of store to 

list.bubpos. (list.bubpos=store). The number in temporary storage is 
now placed correctly in relation to this iteration of the outer loop, but it 
may get moved down by the sort in a later iteration if a smaller number 
in the list is found. 

7. This is now the end of the outer loop. We return to step 2 b) and 
compare a new pair of numbers in the sequence: 1 and 2; 2 and 3; 3 
and 4; etc. until all pairs are used up. At the finish, the list.i for i=1 to 

listlength will be sorted. Listlength is the number of things to be 
sorted in our original list. 

5-3 Sorting, Arrays, and Lists 



Five 

A Pseudo-Trace of our Example Using the Bubble Sort 

Pseudo Code 
The above pseudo code, even though extensively commented, may not 
be clear to you yet, so we will look at a step-by-step trace of the results 
of a bubble sort on our example numbers, and it should become more 
apparent how it works. Note the two methods open to you: a narrative 
and detailed pseudo-code in which you may describe what you wish to 
do; or a pseudo-trace of how the results should look at any one moment 
of program execution. Both methods can help you to clarify or 
understand complex routines. Although it may seem trivial and obvious, 
it will astonish you how much your coding can benefit if you try to write 
down a procedure in ordinary words. Words, after all are just one more 
form of code! One code can be mapped on to another, so if you start 
with a code familiar to you (words), you can facilitate your coding into a 
language less familiar to you. In the pseudo-trace, only the numbers 
that are relevant at the time are shown. Other numbers are represented by"--". 

The Bubble Sort 7 entries to sort... Outer DO loop for i = node = 1 to number of pairs. number of pairs=6 1  2  3  4  5  6  7  * * * nodes of array list. 11 33 20 44 22 60 31  * * * example list of numbers Outer DO loop. i=node=1 11 33 -- -- -- -- -- >node=1 Step 2: i=1; j=2. Compare: list.1>list.2? NO: Do step 2 again. End of outer loop iteration. Outer DO loop. i=node=2 -- 33 20 -- -- -- -- >node=2 Step 2: i=2; j=3. Compare: list.2>list.3? YES; Do step 4: store=list.3=20 11 () 33 -- -- -- --  node=2 Step 4: list.3=list.2 = 33. bubpos=2. Step 5: bubpos=2-1=1. WHILE stor(20)<list.1=11? NO: skip inner loop. -- 20 33 -- -- -- --  node=2 Step 6: bubpos=bubpos+1=1+1=2. List.2=store=20. End of outer loop iteration. Outer DO loop. i=node=3 -- -- 33 44 -- -- -- >node=3 Step 2: i=3; j=4. Compare: list.3>list.4? NO: Do step 2 again. End of outer loop iteration. 

5-4 Sorting, Arrays, and Lists 



The ARexx Cookbook 

Outer D0 loop. i=node=4 -- -- -- 44 22 -- -- >node=4 Step 2: i=4; j=5. Compare: list.4>list.5? YES; Do step 4: store=list.5=22 -- -- 33 () 44 -- --  node=4 Step 4: list.5=list.4=44. bubpos=4. Step 5: (new)bubpos=4-1=3. WHILE store(22)<list.3=33? YES: DO inner loop... Step 5: D0 bubpos(3) = node(4)-1 T0 1 BY -1 WHILE store(22)<list.bubpos = list.3 = 33. -- -- 33 -- -- -- --  node=4 Step 5: nextnode = bubpos+l = 3+1 = 4. -- 20 () 33 -- -- --  node=4 Step 5: list.4 = list.3 = 33. Step 5: D0 bubpos-1=3-1=2 WHILE store(22)<list.2=20? N0: At end of inner bubble loop, bubpos=2. End of alI inner loop iterations. -- 20 22 33 -- -- --  node=4 Step 6: bubpos = 2+1=3. list.3 = store = 22. 1  2  3  4  5  6  7  * * *  nodes of array list. 11 20 22 33 44 60 31  * * *  current positions: list of numbers 0uter D0 loop. i=node=5 -- -- -- -- 44 60 -- >node=5 Step 2: i=5; j=6. Compare: list.5>list.6? NO: Do step 2 again. End of outer loop iteration. 0uter D0 loop. i-node=6 (final pass) -- -- -- -- -- 60 31 >node=6 Step 2: i=5; j=6. Compare: list.5>list.6? YES; Do step 4: store=list.6=31 -- -- -- -- 44 () 60  node=6 Step 4: list.6=list.5=60. bubpos=6. Step 5: (new)bubpos=6-l=5. WHILE store(31)<1ist.5=44? YES: D0 inner loop... Step 5: DO bubpos(5) = node(6)-1 T0 1 BY -1 WHILE store(31)<list.bubpos = list.5 = 44. -- -- -- -- 44 -- --  node=6 Step 5: nextnode = bubpos+l = 5+1 - 6. -- -- -- 33 () 44 --  node=6 Step 5: list.6 = list.5 = 44. Step 5: D0 bubpos-1=5-1=4 WHILE store(31)<list.4=33? YES: D0 inner loop... Step 5: DO bubpos(4) WHILE store(31)<list.bubpos = list.4 = 33. -- -- -- 33 -- -- --  node=6 Step 5: nextnode = bubpos+l = 4+1 = 5. -- -- 22 () 33 -- --  node=6 Step 5: list.5 = list.4 = 33. Step 5: D0 bubpos-1=4-1=3 WHILE store(31)<list.3=22? N0: At end of inner bubble loop, bubpos=3. End of alI inner loop iterations. -- -- 22 31 33 44 --  node=6 Step 6: bubpos = 3+1=4. list.4 = store = 31. End of outer D0 loop. 11 20 22 31 33 44 60  FINAL SORTED LIST! 

5-5 Sorting, Arrays, and Lists 



Five 

Coding the Bubble Sort into ARexx 
With all the pseudo-coding we have done, it is relatively easy to write 
the ARexx code for the Bubble Sort. Enter the following and call it 
BubbleSort.rexx: 

/* Bubblesort.rexx */ 
/*Input the file for sorting */ 
PARSE UPPER ARG infile' outfile 
IF infile = '' THEN DO 

SAY 'lnput sort filename and path: ' 
PARSE PULL infile END 

IF ~OPEN('sortfile',infile,'READ') THEN DO 
SAY 'File not opened. Separate arguments with space no comma.' 
EXIT 20 
END 

k=1 
DO WHlLE ~EOF('sortfile') 

list.k=READLN('sortfile') 
k=k+1 
END 

listlength = k-2 
SAY listlength 'entries to sort...' 

/* The Bubble Sort */ 
CALL TIME('R') 

DO node = 1 TO listlength-1 /* The Bubble Sort outer loop */ 
nextnode = node + 1 
IF list.node > list.nextnode THEN 

DO 
store = list.nextnode 
list.nextnode = list.node 

/* The Bubble Sort inner loop */ 
DO bubpos = node-1 TO 1 BY -1 WHlLE (store < list.bubpos) 

nextnode = bubpos + 1 
list.nextnode = list.bubpos 
END bubpos 

/* Continue in the outer loop */ 
bubpos = bubpos + 1 
list.bubpos = store 
END 

END node 

SAY 'Elapsed time='TIME('E')' seconds.' 

5-6 Sorting, Arrays, and Lists 



The ARexx Cookbook 

/* output results */ 
IF outfile = '' THEN DO 

SAY 'Specify filename and path for sorted output.' 
PARSE PULL outfile 
IF outfile='' THEN DO 

SAY 'No output written.' 
EXIT 5 
END 

END 
CALL OPEN('outfile',outfile,'WRITE') 
DO i=1 TO listlength 

CALL WRITELN('outfile',list.i) 
END iSAY 'Output has been written to 'outfile 

EXIT 0 

READLN() function 

H  63 
C  10-113 

WRITELN() function 

H 69 
C 10-124 

TIME() function 

H 66 
C  10-119 f 

Input and Output 
The code includes some coding for input and output at the beginning 
and the end to facilitate your use. There is nothing new in these blocks, 
except that you should note the way the output block is the inverse of 
the input block and reconstructs the array in an output file of your 
choice. Note the use of the WRITELN() function is the same as the 
READLN() function, and also the way we allow for various possibilities 
or errors in the output. The input and output are coded so that you have 
the option of including your input and output files on the command line 
as arguments to the program call; or if you do not specify them, the 
program prompts you to enter the names of the input and output files. 
The WRITELN() function is documented in Hawes on page 69 and in 
Commodore on page 10-124. Some instructions to keep track of the 
elapsed time are included in order to measure the speed of this sort 
routine. The use of the built-in ARexx function TIME() is found in 
Hawes, page 66, and Commodore, page 10-119 f. 

How the Shell Sort Modifies the Bubble Sort 
We stated before that if the list is mostly sorted, then the Shell Sort is 
most efficient. This characteristic it inherits from the bubble sort. It is 
relatively easy to see that if the list is mostly sorted, then the bubble sort 
will often do an early exit (because of the WHILE condition) from the 
inner nested loop, saving a great deal of time compared with the time it 

WHILE iteration 
specifier for DO 
instruction 

H  27 f 
C  10-53 ff 

5-7 Sorting, Arrays, and Lists 



Five 

takes a "brute force" sort blindly to compare every number with every 
other number. The Shell Sort takes advantage of this fact by creating, in 
a special way, many shorter sublists which sort much faster than one big 
list. 

The Shell Sort then feeds these sublists to the bubble sort, nested within 
it, and at each iteration of the Shell Sort outer loop, merges the results 
together dynamically. At every step, the overall list is improved into an 
almost sorted list, so by the end, when Shell Sort sorts only one list, the 
work is mostly done. Let's take a look at how to define the Shell Sort. 

The key to the Shell Sort is that it arranges any list into a certain number 
of smaller sublists by systematically skipping over a prescribed number 
of entries in the list. array at each iteration. These sublists are then 
sorted with the bubble sort routine nested within the Shell Sort outer 
loop. The next set of sublists is chosen in a way that merges the 
previous set of sorted sublists together, therefore improving the overall 
sort order as well. 

Here is how Shell Sort constructs the sublists. First, we must define 
some variables: listlength is the number of items to sort in our big list. 
In the above example, listlength=7. The number of pairs to compare 
(with the nested bubble sort) in the sublists of Shell Sort in any one of its 
iterations is denoted by numpairs. The prescribed number of entries to 
skip over we will call span - 1. Span is therefore the number to add to or 
subtract from any particular node in order to get to the next or previous 
node in the sublist. There is only one new variable here, span, and its 
construction is at the heart of the Shell Sort. Again, we turn first to some 
pseudo-code: 

1. Choose span so that it is both a power of 2 and greater than or 
equal to listlength.  In our example, the least power of 2 greater than or 
equal to 7 is 8. Make a short DO loop to construct span. Start with 
span=1. Then WHILE span is less than the listlength, set span equal 
to span multiplied by 2. The progression will go: 1, 2, 4, 8, 16,... and 
stop once span is greater than listlength, which is what we wanted. 

5-8 Sorting, Arrays, and Lists 



The ARexx Cookbook 

2. The outer Shell Sort loop. DO WHILE span > 1. (See the following. ∎  

3. Divide span in half using integer division because we want a 
counting number as the result. In our example, therefore, span starts 
out as 8. In this step of the Shell Sort outer loop, span becomes 4 on 
the first iteration; 2 on the second pass; and finally 1 on the last iteration. 
Because of the nature of span (a power of 2), we always end up with 
span=1 during the last iteration, where Shell Sort collapses to an 
ordinary bubble sort. We will soon see that this is the reason Shell Sort 
sorts only one list at the end. 

4. Assign the number of pairs numpairs = listlength - span. In the 
example, numpairs = 7 - 4 = 3 for the first iteration of the Shell Sort 
outer loop. In the Bubble Sort coded above, the counter node ran up to 
listlength-1. Notice how Shell Sort uniformly substitutes span instead 
of 1 in its modification of the Bubble Sort. 

5. Now we do a bubble sort on these numpairs pairs of numbers. 
Instead of the outer bubble sort counter exhausting all pairs of numbers 
in the original list, we modify the bubble sort counter (node) to run only 
from 1 to numpairs. In the first iteration of the Shell Sort using our 
example data, node runs from 1 to 3 only; comparing 3 pairs of 
numbers in three sublists. The second time through the Shell Sort outer 
loop, it compares 5 pairs of numbers contained in 2 sublists. The final 
iteration compares six pairs of numbers in one list. 

6. Modify the nextnode to become node + span instead of node + 1. 

In other words, we want to ignore the (span) numbers in between. 

7. At the inner loop, we substitute -span for -1 in the conditions, 
because we are counting by span and not by 1. We still count down TO 
1, however, as that is a limit and does not represent a number of entries 
to skip. Inside the inner bubble loop, we do a similar thing: there, 
nextnode = bubpos + span instead of bubpos + 1; again effectively 
skipping a prescribed number of nodes (span - 1) in between. We are 
merely incrementing and decrementing by span instead of by 1. 

5-9 Sorting, Arrays, and Lists 



Five 

8. Similarly, in the continuation of the outer bubble loop, we set the 
corrected bubpos = bubpos + span instead of bubpos + 1, to bump 
the counter back to the correct position for the bubble. 

Now we can use the above modifications to re-code our Bubble Sort into 
a bonafide Shell Sort. Enter and save the following lines as the 
ShellSort.rexx program. Keep your copy of the Bubble Sort, too. You 
can compare the elapsed time indications of each sort on the same data 
to convince yourself that Shell Sort is more efficient! 

/* ShellSort.rexx */ 
/*Input the file for sorting */ 
PARSE UPPER ARG infile' outfile 

IF infile = '' THEN DO 
SAY 'Input sort filename and path: ' 
PARSE PULL infile 
END 

IF ~OPEN('sortfile',infile,'READ') THEN DO 
SAY 'File not opened. Separate arguments with space no comma.' 
EXIT 20 
END 

k=1 
DO WHILE ~EOF('sortfile') 

list.k=READLN('sortfile') 
k=k+1 
END 

listlength = k-2 
SAY listlength 'entries to sort...' 
/* The Shell Sort */ 
CALL TIME('R') 

span = 1 
DO WHILE (span < listlength); span = span * 2; END 
DO WHILE (span > 1) 

span = span % 2 
numpairs = listlength - span 
DO node = 1 TO numpairs 

nextnode = node + span 
IF list.node > list.nextnode THEN 

DO 
store = list.nextnode 
list.nextnode = list.node 

DO bubpos = node-span TO 1 BY -span WHILE (store < list.bubpos) 
nextnode = bubpos + span 
list.nextnode = list.bubpos 
END bubpos 

5-10 Sorting, Arrays, and Lists 



The ARexx Cookbook 

bubpos = bubpos + span list.bubpos = store END 
END node END */ DO WHILE (span<listlength...*/ SAY 'Elapsed time='TIME('E')' seconds.' /* output results */ IF outfile = '' THEN DO SAY 'Specify filename and path for sorted output.' PARSE PULL outfile IF outfile = '' THEN DO SAY 'No output written.' EXIT 5 END CALL OPEN('outfile',outfile,'WRITE') DO i=1 TO listlength CALL WRITELN('outfile',list.i) END i SAY 'Output has been written to 'outfile EXIT 0 

TIME()  function 
H  66 
C  10-119 f 

DO  instruction 
H  27 f 
C  10-53 ff 

WHILE  iteration 
specifier for DO 

 instruction 
H  27 f 
C  10-53 ff 

Integer division, see 
ARITHMETIC 

 Operators 
H  18 ff 
C  10-39 ff 

We can incorporate this nifty sort routine as a stand alone program, or 
(as we will see later) as a function to be called by another program, and 

even lift out and use its central chunk of code intact as a built-in sort for 
a specific program. The first sections should be familiar. In them we 
read in a file and put it into an array called Iist. which we then sort 
beginning with the section commented as /* The Shell Sort */. In the 
first lines of the sort routine, we reset the time counter with CALL 
TIME('R'), and then we meet the variables Iistlength which is k-2, the 
count of how many items in our list. The variable called span, initially 
set to 1 and the first DO WHILE loop (a set of three instructions on one 

line separated by ; construct span. The one-line syntax for the short 
loop is handy for when we don't want to indent a block of instructions. 

Then we enter the Shell Sort outer loop, starting with DO WHILE 
(span>1), to be executed as long as span is greater than 1. Next 
comes integer division, the syntax % indicating that we only want the 

5-11 Sorting, Arrays, and Lists 



Five 

integer part of span divided by 2 assigned to span and not the fractional 
part, if any. There aren't ever any remainders, but integer division 
avoids any system overhead dealing with precision. 

Each element in the array Iist. at any one time through the loop is in 
exactly one sublist. The sublist's entries are span entries apart. The 
Shell Sort effectively sorts many short lists and then merges them by 
interleaving the elements at each pass through the loop. The easiest 
way to see how Shell Sort works is to refer to a trace of the results 
which shows the evolution of these lists when we have an array of 
numbers to sort. We use a specially written program using the SAY 
instruction and some loops to output the array at intermediate stages of 
the Shell Sort. The program listing is included in the optional 
companion disk under the name Sortout.rexx. 

Let's look at an example. The sample list to sort is arranged so that at 
the last iteration of Shell Sort, when span=1, the last list to be sorted is 
the same one used in the Bubble Sort example above. This 
demonstrates the fact that Shell Sort collapses to an ordinary Bubble 
Sort at its last iteration. The format of the trace is similar to the pseudo-
trace of the Bubble Sort, but not as detailed. If you have studied the 
pseudo-trace, however, you will have no difficulty seeing what is 
happening. Only the relevant list items are shown on each line as 
before. Note how seldom the Shell Sort needs to enter the inner Bubble 
Sort loop! 7 entries to sort... 1  2  3  4  5  6  7  * * *  nodes 11 33 22 44 20 60 31  * * *  list span=4 numpairs=3 1  2  3  4  5  6  7  * * *  nodes 11 33 22 44 20 60 31  * * *  list 11 -- -- -- 20 -- -- >node=1 no change -- 33 -- -- -- 60 -- >node=2 no change -- -- 22 -- -- -- 31 >node=3 no change span=2 numpairs=5 1  2  3  4  5  6  7  * * *  nodes 11 33 22 44 20 60 31  * * *  list 11 -- 22 -- -- -- -- >node=1 no change -- 33 -- 44 -- -- -- >node=2 no change 

5-12 Sorting, Arrays, and Lists 



The ARexx Cookbook 

 

-- 22 -- 20 -- -- >node=3 20->store 

-- () -- 22 -- --  node=3 22->list.5 
-- 20 -- 22 -- --  node=3 store->(20) -- -- 44 -- 60 -- >node=4 no change -- -- -- 22 -- 31 >node=5 no change Now the Shell Sort has bubble-sorted five short lists. The final pass through the loop does a straight bubble sort on a single list of seven numbers. comparing six pairs of numbers. span=1 numpairs=6 1  2  3  4  5  6  7  * * *  nodes 11 33 20 44 22 60 31  * * *  list 11 33 -- -- -- -- -- >node=1 no change -- 33 20 -- -- -- -- >node=2 20->store -- () 33 -- -- -- --  node=2 33->list.3 -- 20 33 -- -- -- --  node=2 stor->(20) -- -- 33 44 -- -- -- >node=3 no change -- -- -- 44 22 -- -- >node=4 22->store -- -- -- () 44 -- --  node=4 44->list.5 DO bubpos(3)=node(4)-span(1) TO 1 BY-span(-1) WHILE store(22)<list.bubpos(33) (new)nextnode=4 -- -- 33 -- -- -- --  node=4 store=22<33 -- -- () 33 -- -- --  node=4 33->list.4 end of bubble loop. (22)->(new)bubpos 3 -- -- 22 33 -- -- --  node=4 store->(22) -- -- -- -- 44 60 -- >node=5 no change -- -- -- -- -- 60 31 >node=6 31->store -- -- -- -- -- () 60  node=6 60->list.7 DO bubpos(5)=node(6)-span(1) TO 1 BY-span(-1) WHILE store(31)<list.bubpos(44) (new)nextnode=6 -- -- -- -- 44 -- --  node=6 store=31<44 -- -- -- -- () 44 --  node=6 44->list.6 DO bubpos(4)=node(6)-span(1) TO 1 BY-span(-1) WHILE store(31)<list.bubpos(33) (new)nextnode=5 -- -- -- 33 -- -- --  node=6 store=31<33 -- -- -- () 33 -- --  node=6 33->list.5 end of bubble loop. (31)->(new)bubpos 4 -- -- -- 31 33 44 --  node=6 store->(31) 11 20 22 31 33 44 60  final sorted list. Elapsed time=1.64 seconds. 

5-13 Sorting, Arrays, and Lists 



Five 

Extracting a Word List without Duplicates from Text 

The Proper Handling of Arrays (Compound Symbol Tokens) 
The next exercise will demonstrate how to extract a list (without 
duplicates) of all words from a text file. In the introduction, we 
mentioned that it would be useful to create an index of words from a 
text file for possible use in a document if our word processor did not 
have this capability. With ARexx, using its powerful array operations, 
this is very easy to do. We will also meet an example of using 
something other than numbers as nodes in an array. 

Before capabillty.

er, however, we need to note a few important 
principles regarding how to manipulate arrays properly (ARexx calls 
arrays Compound Symbol Tokens, and we will use these terms 
interchangeably). We have already looked at an example of stripping 
the individual words from a line. We introduced a

calis

ernal function 
labeled Stripword: which

wili

a PROCEDURE instruction to do it. 
Everything about stripping off the individual words and outputting the 
results 

llne.

d inside this internal function, however; and no variables 
were returned at the completion of the function procedure. Now we will 
explore the correct way to pass variables and even entire arrays to and 
from internal and external ARexx functions of our own design. 

The Differences Between Interior and Exteri

wili

unctions 

Receiving an Expression Result 

The most important things to note are the limits upon what ARexx is 
capable of passing to and receiving from an interior or exterior function. 
ARexx lets RETURN or EXIT (the final instructions in interior and 
exterior functions, respectively) send back only one thing: A single 
string or expression. It may be a long and complicated string, to be 
sure, but it is still only a single variable; and neither a specific entire 
array; nor explicit multiple variables. 

Interior Functions 
Interior functions are the more versatile in that you may pass an entire 

ARRAYS see STEMS 
and COMPOUND 
symbols 
H 21 f 
C 10-44 ff 

PROCEDURE 
instruction 
H 35 
C 10-68 f 

RETURN instruction 
H 37 
C 10-70 

EXIT instruction 
H 29 
C 10-57 f 

EXPRESSIONS 
H 16 
C 10-35 

5-14 Sorting, Arrays, and Lists 



The ARexx Cookbook 

EXIT instruction 
H 29 
C 10-57 f 

PARSING , see 
Chapter 3  

array to an interior function by using the EXPOSE subkeyword in the 
PROCEDURE instinstructionou may also EXPOSE specific variables 
which you wish to modify with the interior function, and after the 
RETURN they will reflect these modifications, but that is because you 
have exposed them globally, not because they were contained in the 
RETURN instruction. 

Exterior Functions 

Entire arrays may not be passed except explicitly, element by element, 
to an exterior function. Multiple arguments may be passed to either 
interior or exterior functions, but there is no facility to expose any 
variables to an exterior function, and you must deal with a single string 
or expression upon its EXIT. 

Overcoming Limitations by Encoding an Array into a String  
We will look at several ways to work around these limitations by 
implicitly encoding all the required data (such as the data in an

wili
ire 

array or the values of several variables) in the RESULT variable; to be 
decoded back into an array in the main program which called the 
function. We will also look at some examples of exposing arrays and 
variables. 

If you studied the section on PARSING

calied

may have guessed t

wili

this 
is the tool we will use to decode our RESULT strings! To encode an 
array into a single string for later parsing, we use a loop. Building up 
an

wlll

aring down arrays in ARexx is something that you must learn to 
do if you are to do very much with text of any kind whether it is a 
document file or a set of commands to pass to an outside host 
application. Let's look at some specific code fragments that do just this. 

Building Up an Array From a String 
We have met this technique before, but it is worth reviewing. Suppose 
we have a large string (called string) composed of n words each 
separated by one or more spaces. Then the following code fragment 
will construct an array composed of individual elements with nodes n=1 

5-15 Sorting, Arrays, and Lists 

PROCEDURE 
instruction 
H 35 
C 10-68 f 

RETURN instruction 
H 37 
C 10-70 

RESULT special 
variable. see CALL 
instuction 

H 26 
C 10-53 



Five 

ARRAYS see STEMS 
and COMPOUND 
symbols 
H 21 f 
C  10-44 ff 

to n=k-1, where n and k are integers: 

k=1 
DO WHILE string ~= '' 

PARSE VAR string kthword.k string 
k=k+1 
END 

SAY 'There are 'k-1' words in the string.' 

You may recall we used code much like this in the interior function 
PROCEDURE Stripword: in a previous exercise, except we started k 
from 0 instead of 1. We will not explain the code again, except to say 
that this technique is one which you will use over and over again, so it is 
worth your study and even memorization. This code uses parsing by 
tokenization to build an array of words, but you will find that it may be 
adapted to parse words into letters; or words into arrays of letters. 

An Array Cannot be a Node 
Compound symbol tokens are powerful tools for string manipulation, but 
don't make the mistake of using an array itself as a node. You must 
assign its value to a fixed or a simple symbol first before you can use 
the evaluation of an array element as a node. For instance, suppose we 
wish to make a compound symbol token (array element) to represent 
the 3rd letter of the fourth word of the example string above. Since the 
fourth word of string is kthword.4, it would be tempting to write our 
array element as letter.3.kthword.4, but this is illegal in ARexx syntax, 
and would not evaluate properly. We could assign the word itself as a 
new variable newword=kthword.4 and then letter.3.newword would 
be legal. Note that the last node is not a number, but the word itself, 
which is quite legal. Also legal of course, are the cases of letter.3.k, and 
letter.3.4 which use simple or fixed tokens as numeric nodes. 

PARSE instruction 
H 33 ff 
C  10-64 thru 10-68 

VAR subkeyword to 
PARSE instruction 
H 33 ff 
C  10-64 ff 

PROCEDURE 
instruction 
H 35 
C  10-68 f 

Tearing Down an Array and Making It into a String 
The inverse of building up an array from a string is to tear one down and 
encode the results into a long string. The following code fragment will 
prove useful time and again, so make your understanding of the 
procedure part of your ARexx tool kit. We will assume that you have a 
function that has done something to an array called list. and that you 

5-16 Sorting, Arrays, and Lists 



The ARexx Cookbook 

wish to return the entire array to the calling program in a string variable 
called output. The array has length elements in our example. We also 
assume that the array elements of list. have no leading or trailing 
blanks.  

/ * code fragment to tear down an array list. into a 
string output */ 
output='' 
DO i=1 TO length 

output = output ||list.i' ' 
END 

RETURN output 

This loop starts with assigning the string output the value of the null 
string. Then a DO loop from the index i=1 TO length follows.  
construct the string in such a way that it has no leading blanks, but one 
trailing blank. The concatenation operator I I we have not met before, 
but it simply means to connect without spaces the two variables output 

and  list.i . If we had coded this assignment clause as output=output list.i 
then ARexx would implicitly place one blank between each variable, and 
we would end up with one leading blank and no trailing blanks. This is 
merely a matter of personal preferences most of the time, but you 

need to watch those blanks if later it makes a difference to whatever use the 
RESULT string is put to. 

Stripping Blanks Left and Right 
If you want to strip away all blanks before and after the output string, 
you might consider inserting the line 

IF RIGHT(output,1)='' THEN, /* note comma */ 
output=LEFT(output,LENGTH(output)-1) 

before the RETURN instruction. We used the RIGHT(), LEFT(), and 
LENGTH() ARexx functions to look at the trailing blank, and strip it off. 
We will discuss the use of these functions in more detail as we

unwanted punctuation from words in a list. You may 
refer to Hawes page 60 or Commodore page 10-108 to learn the 
definitions of LEFT() and LENGTH(); and Hawes page 63 or 

DO instruction 
H 27 f 
C 10-53 ff 

TO iteration specifier for 
DO instruction 
H 27 f 
C 10-53 ff 

RETURN instruction 
H 37 
C 10-70 

CONCATENATION 
Operators 
H 20 
C 10-42 

IF  instruction 
H  29 f 
C  10-58 f 

RIGHT()  function 
H  63 
C  10-114 

LEFT()  function 
H  60 
C  10-108 

LENGTH()  function 
H  60 
C  10-108 

5-17 Sorting, Arrays, and Lists 



Five 

TYPELESS data 

H 12 
C 10-16 

Commodore page 10-114 for the RIGHT() function. They are extremely 
useful in string manipulations. Notice the powerful way they may be 
nested together as we see here. The LENGTH of output minus 1 is one 
of the arguments to the function LEFT(). 

The last part of the expression assigning a new value to output takes 
the leftmost all-but-one characters in the string and assigns it to output 
as its new value. Since the LENGTH() function returns an integer, we 
can do arithmetic with it on the fly, which brings up a small digression. 

Pay Attention to Variable Types 
A common mistake to fall into is forgetting about the type of value 
returned by a function and then trying to do something illegal with it. For 
instance, a function returns a character string, and then you try to divide 
it by 5. ARexx, even though it types your variables automatically, will 
not save you from this type of mistake (no pun intended). In fact, this 
uncovers one of the advantages of those other languages which forces 
you to type your variables and declare precision, etc. It also forces you 
to think about what kind of results your variables carry, and you are not 
as susceptible to the "wrong type" kinds of errors. ARexx, if it has a 
weakness, tempts you to make this kind of error. Always remember to 
look at variable types if strange errors occur. Before you make a large 
program depending upon some new algorithm or routine you dreamed 
up, make a small test program to see if your ideas work properly. 

Pseudo Coding the Program to Remove Duplicate Words 

from a Text File 
As always, let's write down what we want to do before we code. 

1. Open a file in the standard way in order to read it. Note: we could 
substitute all the pseudo code from our earlier examples of opening and 
reading a file here, but we don't have to. We plan to lift the modular 
code and use it as a header to our main program. We simply have to 
insure that variable names and so on are consistent 

smali

the main 
program. 

5-18 Sorting, Arrays, and Lists 



The ARexx Cookbook 

2. We need to make the file into one huge line. We do not want to have 
individual lines as we are interested in the file as a whole: a large list of 
words. 

3. Call an internal function to make a list of all words from the entire file 
and return a large string with all the words, but with no words duplicated. 
We will pass as an argument the large line we created in step 2. It will 
return another large string with the duplicate words removed. 

4. Call a second function, a modified Shell Sort performing as an 
external function, to sort our unique word list into alphabetical order. We 
send and receive a string as in step 3. We send an unsorted string and 
receive a sorted string. We will modify the Shell Sort to take a string 
argument instead of read a file and to return a result instead of writing to 
a file. We will change only the beginning and the end input/output 
sections, in other words. 

5. Arrange for output to the screen (or to a file). Exit. 

Modular Programming 
Now this pseudo code doesn't tell us much about coding, but it shows 
how the structure of modular programming works. We have already 
coded a useful sort routine and with minimum input/output modifications, 
we can use it for step 4. We can expand step 3 above into pseudo code 
describing how our internal function will work. The most important thing 
to learn at this stage is that you need not understand everything in a 
complex program or a system of programs at one time. You only need 
to understand the behavior of one module at a time at its interface to a 
connecting module, and to have control of the traffic flow (the input and 
the output to/from modules) throughout the program. 

Within the modules, themselves, you may further modularize as much 
as you desire or need to. In this way you can create very large and 
robust applications which you can service or modify later. You must do 
more a priori thinking with this approach, but it is worth it. If you are the 
type of individual who wrote your high school book reports after you 

5-19 Sorting, Arrays, and Lists 



Five 

ARG subkeyword to 
PARSE instruction 
H 33 ff 
C  10-64 ff 

Initializing Arrays 
see STEMS and 
COMPOUND symbols 
H 21 f 
C 10-44 ff 

VAR subkeyword to 
PARSE instruction 
H 33 ff 
C 10-64 ff 

ITERATE instruction 
H 30 
C 10-60 

LEAVE instruction 
H 31 
C 10-60 f 

watched the movie instead of reading the book; and wrote your outline 
only after you wrote your paper, then this reasoning will be lost on you, 
but thanks anyway for buying my book! To be honest, some of my best 
work has come from inspired programming the "wrong" way where I just 
sit down and code an idea. Eventually, however, we all come to grips 
with the limitations of our own memory, and modular programming 
becomes the only feasible way to structure large projects. 

As a final word, it is essential that you get into the habit of commenting 
your code even if you are the only one who will ever use it. It is always 
useful to make comments as if you are going to share your program with 
friend who doesn't know how you reasoned it out. When you go back to 
change the program in six months, you will be glad you wrote to a friend! 

Expanding Step 3. The Internal Function 
3.1 First, we need to receive the string from the caller. PARSE the 
ARGument string. 

3.2 Make an array and initialize all elements to value 0. This will be a 
Boolean array to answer "yes" or no to the question, "Is this word 
already in the output list (the list of nonduplicated words)? 

3.3 Assign the output list variable to the value of the null string. As we 
have seen in the code fragment above, we will want to build up a string 
for output. Note: We will not need to build up our string from an array, 
however. We will consider each word based upon a decision array 
instead of an array of words, and then construct the output immediately 
from the input string by including the word in the output list if the 
decision array says "no"; and skipping the word if the decision array 
says "yes". 

3.4 Make a loop to repeat while we have input string data to PARSE. 
We will use the technique of nibbling off a word at a time as we did 
previously using a PARSE VAR instruction, and using the string name 
itself as the remainder of the string variable. Note: Leaving a loop early 
in ARexx is accomplished with either the ITERATE or the LEAVE 

5-20 Sorting, Arrays, and Lists 



The ARexx Cookbook 

instruction. ITERATE means to stop the current execution of the loop 
and start the loop over, incrementing any control variables to their next 
step or value. LEAVE means to stop the loop iteration and exit the 
entire loop. We will discuss details later. 

3.5 In a loop, test the word nibbled off for punctuation, and strip off all 
leading and trailing punctuation. When all the punctuation is gone, 
LEAVE the loop. Also eliminate numbers and combinations of 
characters and numbers, as we are looking only for proper language 
words of alphabetic characters only. We could expand the pseudo code 
of this step further later on, but explaining the ARexx code directly is 
easier to understand, as it is very readable, so we will look at this step in 
more detail when we write the code. 

3.6 Use the word variable from the PARSE instruction as a node of the 
decision array! If the array is named Iisted. and the variable for the 
word is called word, then form the array element Iisted.word and see if 
it is equal to 1 or 0. If it is a 1, then start the loop with a new word 
(ITERATE the loop), as we have already listed this word. Otherwise, 
assign the value of 1 to the array element Iisted.word; and then attach 
word to the end of the output string variable, as demonstrated in the 
code fragment for tearing down an array. Since we initialized the array 
to all zeros at the first, then each word will fail the IF test the first time it 
occurs in the input string and succeed (have a value of 1) on all 
subsequent occurrences, and therefore be skipped over. In this case 
success means to do the instruction on the same line as the IF test 
which will mean to end this iteration of the loop and return to the start of 
the loop without attaching the value of word to the output string. 

3.7 Based upon the IF test failure, the remainder of the loop attaches 
the word to the output string, and continues the loop. For purposes of 
sorting later on we choose to insert a comma between each word in the 
output list. RETURN the value of the output list to the caller. 

Now that we have defined what we wish to do, let's code the ARexx 
program to do it. Call your program uniword.rexx and enter the 
following into your editor. 

5-21 Sorting, Arrays, and Lists 



Five 

/* Uniword.rexx This removes duplicate words from a string, and  */ 
/* shows the use of a compound symbol token (LISTED.) which is   */ /* indexed by arbitrary data (words). An external function sorts */ /* the list of words alphabetically. */ OPTIONS RESULTS /* Tells program to look for result variable from external calls.*/ /* Input section */ PARSE UPPER ARG infile IF infile = '' THEN DO SAY 'Input text filename and path: ' PARSE PULL infile END RC=OPEN('textfile',infile,'READ') IF ~RC THEN DO SAY 'File cannot be opened. ' EXIT 20 END /* make a large string out of the file */ list='' DO WHILE ~EOF('textfile') line=READLN('textfile') list=list line END /* 'comment out' the following SAY list instruction if you do not want*/ /* to see the original file written to the screen. */ SAY list SAY /* the internal function call to remove duplicate words. */ newlist=Unique(list) SAY newlist SAY /* A CALL to an external function sortword.rexx. Its argument: newlist.*/ CALL sortword.rexx newlist sortout=result /* result is a special variable in which the data is returned from the*/ /* external function sortword.rexx  */ SAY sortout EXIT 0 /* An example of an interior function, called a procedure follows...*/ Unique: PROCEDURE PARSE UPPER ARG wordlist LISTED.=0 /* Shows all possible words as new. */ outlist='' /* Initializes the output list  */ DO WHILE wordlist ~='' /* Loop while we have data.  */ /* Split WORDLIST into first word and remainder.  */ PARSE VAR wordlist word wordlist 

5-22 Sorting, Arrays, and Lists 



The ARexx Cookbook 

/* get rid of numbers */ IF DATATYPE(word)='NUM' THEN ITERATE /* Get rid of punctuation at end and beginning of words. */ DO FOREVER IF ~DATATYPE(RIGHT(word,1),MIXED) THEN word=LEFT(word, LENGTH(word)-1) IF ~DATATYPE(LEFT(word),1),MIXED) THEN word=RIGHT(word,LENGTH(word)-1) IF DATATYPE(LEFT(word,1),MIXED)&DATATYPE(RIGHT(word,1),MIXED) THEN LEAVE IF LENGTH(word)=0 THEN LEAVE END IF word='' THEN ITERATE IF LISTED.word THEN ITERATE  /* Loop if had word before.              */ LISTED.word=1                /* Remember we have had this word now.   */ IF outlist='' then sp='' ELSE sp=','                  /* Put a comma between words in our list */ outlise=outlist||sp||word    /* Add word to output list.              */ END RETURN outlist                 /* Finally return the result.            */ 
 

ASSIGNMENT  causes 
H 14 f 
C  10-32 f 

EOF()  function 
H  57 
C  10-103 

READLN()  function 
H  63 
C  10-113 

SAY  instruction 
H  38 
C  10-70 

RESULT  special 
variable, see CALL 

 instruction 
H  26 
C  10-53 

Now let's look at some specific sections of the code. First, we open and 
read the text file, and put some messages on the screen if the file 
cannot be opened properly. We have seen code like this before. 
Starting with the list='' assignment clause, we read the flle into one 
large string to ready the file for extracting the individual words from it. 
We simply read a line of the text file and append the line to the end of 
the string list. We do this while we are not at the EOF of the input file 
'textfile'. Then we have an option to SAY list, and add a blank line, so 
that we can check to see that the text file is one large string. You will 
want to /* comment this out */ in any final version you use as it will take 
a long time in a large file to print it all to the screen. 

The line newlist=Unique (list)  represents our internal function call 
to the routine which eliminates the duplicate words from the list. Then 
we SAY newlist to check to see that the words have been extracted 
properly. Again, you may want to comment this out in a final version. 
Finally, we call an exterior function sortword.rexx and provide an 
argument to it in the form of newlist. When the sort routine is finished 
with the list we sent to it, the RESULT variable comes back and we 
assign its value to the final list which we've named sortout. We SAY 
sortout and EXIT 0. This is the end of the main program. 

You may want to attach the code we used for writing the output of Shell 

5-23 Sorting, Arrays, and Lists 



Five 

DATATYPE() function 
H 56 
C 10-101 f 

Sort to the main program to allow you the option of saving the sorted 
output. You could also put the writing of the output in the sortword.rexx 
exterior function and not RETURN anything in which case you would not 
need the RESULT variable for anything. We have done it this way to 
demonstrate how RETURN works, but we have by no means exhausted 
the possible ways to accomplish the task at hand. 

The Internal Function, Unique: 
We have covered almost all of the things we wish to do in the pseudo 
code. We define a label Unique: as a PROCEDURE, and we do not 
expose any variables. The variables in the procedure are protected 
from anything in the calling program, and vice versa. We PARSE the 
argument from the caller and put it into a string variable named 
wordlist. Note that we parse everything into UPPER CASE. This is 
because when the routine checks for words in the list, the value of the 
node will take into account the case of each letter. Therefore, the easy 
way to make all words uniform is to change them all to UPPER CASE. 
We initialize the decision array with a single instruction, and then we set 
outlist equal to the null string as we have discussed in the pseudo code. 
Now a DO WHILE wordlist is not equal t

ali

he null string loop takes care 
of going until the input string is exhausted. We split the wordlist into the 
first word and the remainder of the string as we did stripping words from 
a line before. We use a PARSE VAR instruction to do it. The next 
section shows how we get rid of unwanted punctuation and numbers. 

How to Get Rid of Punctuation 
This section of code is useful in its own right and you may want to lift it 
out to do other things in other programs. You know enough now to 
make it into a custom function that may be inserted into any program. 
We introduce the DATATYPE() ARexx function here. DATATYPE() is a 
versatile tool for testing or manipulating strings to see what kind of data 
they contain. You may find the definitions of DATATYPE() and its 
options in Hawes page 56; or Commodore page 10-101 f. Turn there 
now, if you like. DATATYPE() takes a string as its argument and an 
additional option may be specified. If you use the option, DATATYPE() 
always returns a boolean value (0 or 1). If you do not specify an option, 

RETURN instruction 

H 37 
C 10-70 

PROCEDURE 
instruction 
H 35 
C 10-681 

UPPER subkeyword to 
PARSE instruction 
H 33 ff 
C 10-64 ff 

WHILE iteration 
specifier for DO 
instruction 
H 27 f 
C 10-53 ff 

VAR subkeyword to 
PARSE instruction 
H 33 ff 
C 10-64 ff 

5-24 Sorting, Arrays, and Lists 



The ARexx Cookbook 

then DATATYPE() returns one of two strings: NUM or CHAR whic
h represent a valid NUMber or a string containing non-numeric 
CHARacters. 

The punctuation/number remover takes care of numbers: 
it tells the loop to ITERATE if PARSE has nibbled off a number from the 
input string. If the ITERATE instruction appears in the execution of a 
loop, then the counter is incremented and the loop starts over. No 
further instructions after the ITERATE instruction are executed for that 
pass (iteration) through the loop. In this example, all the ITERATE 
instructions do is to avoid attaching the variable word to the end of the 
output string outlist. They stop the execution of the loop early and tell 
the PARSE instruction to nibble off the next word from wordlist. The 
former word is discarded into limbo. 

Now that we are rid of numbers, we enter a DO FOREVER loop to take 
off any stray punctuation marks from our word. We use a FOREVER 
loop parameter in conjunction with several possibilities of leaving the 
loop via a LEAVE instruction. LEAVE is similar to ITERATE, except that 
we don't do the loop again, we leave it for good. If you write a DO 
FOREVER loop, you probably don't need to be reminded that you must 
cover all the possibilities, or your program may go on forever. Open 
another shell and enter a HI (Halt Interrupt) command if you ever need 
to stop a rampant loop. We have included the only two possibilities in 
our loop so we are safe. Either the word will begin and end with a valid 
letter of the alphabet, or else the loop will nibble off all the characters 
from the word until its length is 0, in which case we have a test to 
LEAVE if "word" is nibbled to death. This additional code is for strings 
such as #123 or 56% or 8*9. They will not pass the test for valid 
numbers and yet they are not words, so the loop will nibble from each 
end until they are nothing. 

Note that our program is far from perfect. Strings such as A#5A will be 
included in the output string going 

untll

to the calling function. Strings 
such as Z99 will end up with the letter Z included in the output as a 
word. Non-alphabetic characters embedded in letters, and 
letter/character combinations will almost certainly need to be handled 

5-25 Sorting, Arrays, and Lists 

ITERATE instruction 

H 30 
C 10-60 

FOREVER iteration 
specifier for DO 
instruction 
H 27 f 
C  10-53 ff 

LEAVE instruction 
H 131 
C  10-60 f 



Five 

explicitly if you want to eliminate them from a word list, and you will have 
some additional overhead in having to check every character of each 
word. Our program is designed to work on fairly ordinary text with 
spaces between every word. It will correctly remove all normal 
punctuation even if there are several of them at each end of the word. It 
won't remove embedded apostrophes, and we wouldn't want it to. 

Let's do an explicit translation of the first line in the loop: If the last 
character of the word is not either an upper or a lower case alphabetic 
letter (MIXED), then assign the word the value of all its leftmost 
characters except the last character. In other words, if the last character 
is not a letter, strip it off the word. The second instruction is similar 
except it checks the first character of the word, and strips it off the word 
if it's not a letter. The third instruction checks to see that both the 
beginning and the end of the word are valid letters and if they are, it 
LEAVEs the loop. We use a compound IF instruction and a boolean & 
to denote both conditions must be true before we do. 

The final instruction checks to see if we have by chance nibbled a 
character string such as #1234 to nothing; if we have, we LEAVE, and 
come to the END of the DO FOREVER loop. The very next instruction 
belongs to this group of instructions, however. We need to ITERATE 
the outer loop if we end up with a null word. We don't want to do the 
rest of the instructions if that is the case, so we make the program start 
the loop over again at the next word. 

MIXED option to 
DATATYPEO function 
H 56 
C 10-101 f 

LEAVE instruction 
H 31 
C 10-60 f 

FOREVER iteration 
specifier for DO 
instruction 
H 27 f 
C 10-53 ff 

END instruction 
H 29 
C 10-57 

ITERATE instruction 
H 30 
C 10-60 

The Boolean Array at the Heart of the Program 
The heart of the duplicate word remover is the 
IF LISTED.word THEN ITERATE 

expression. Note that we don't even have to assign anything because 
the LISTED. array is defined as a boolean array in the first place, 
specifically because we need to test it conditionally in this IF statement. 
This is the one line of code in the program that does everything. It 
decides if the word is included or skipped because its already included. 
The array design is unusual because it uses a large number of nodes 
(our words from the list) to make variables which can be only 0 or 1. 

5-26 Sorting, Arrays, and Lists 



The ARexx Cookbook 

Non Numeric Nodes 
The other unusual thing about this array is that the nodes are not 
numbers; they are strings. Don't miss the pure elegance of ARexx 
because this line of code is so compact! Try doing an equivalent 
program in another language and see how you like it. 

The next instruction assigns a value of 1 to the array element 
LISTED.word if word has not occurred before in our list and the array 
element representing it therefore failed the above conditional test 
because it had a value of zero. The next few instructions take care of 
the initial case where outlist  is null. We mentioned we wanted to put a 
comma between each word in the list (just for fun); but we don't want the 
list to start with a comma, so we introduce a variable sp to put between 
words: If we are at the start, sp is the null string, and otherwise it is a 
comma. 

Building the Return String from the Array 
Last, we build the output string for every word that made it this far by 
concatenating outlist||sp|| word and ending the loop. When the loop 
has exhausted all data from the input string wordlist, we e function 
RETURN outlist to the caller, and we are done with the internal 
function. 

The External Function Sortword.rexx 
Because we have discussed all of its features before, we will make only 
a few remarks about this sort function. Study the listing and look for the 
code we have gone over before. Notice how easy it is to construct a 
fairly involved ARexx program using bits and pieces from previous 
programs and examples. In any language, once you begin to remember 
and use common phrases and build your vocabulary at the same time, 
you get to a point where it gets easier and even enjoyable to learn more. 
ARexx is like that, too. I sincerely hope that you are beginning to get 
excited about the possibilities of ARexx! 

There is very little difference between a stand-alone program and an 

5-27 Sorting, Arrays, and Lists 

Non Numeric Nodes 
see STEMS and 
COMPOUND symbols 

H  21 f 
C 10-44 ff 

CONCATENATION 
Operators 

H  20 
C 10-42 



Five 

PARSE instruction 
H 33 ff 
C 10-64 thru 10-68 

EXIT instruction 
H 29 
C 10 -57 f 

RETURN instruction 
H 37 
C 10-70 

exterior function in ARexx. Note that we PARSE the argument from the 
caller as we did in Shell Sort, except that this time it is a long string 
instead of a file name; and we make up the array in a slightly different 
way; but there is nothing truly new or unfamiliar about this function as 
opposed to the Shell Sort program. Also notice at the end we use EXIT 
sortout to return the string variable. 

Both EXIT and RETURN may carry variables or expressions with them. 
Up to now we have been using EXIT to carry numbers as a return code, 
but it may carry string variables and expressions (which are evaluated 
before sending) as weli. Thus, you may put multiple variables (including 
specific array elements) in an EXIT expression by name. The caller will 
receive only one string, however, as we stated before; the variables will 
be evaluated before sending and the result string wili be that evaluated 
expression. One way to send a list of variable values back in one string 
is to make the EXIT expression by concatenating a particular character 
in between each of the variables and then to PARSE the result string in 
the main program using pattern matches to remove the character 
pattern from the string and to retrieve your variables. To review EXIT 
and RETURN, consult Hawes, pages 29 and 37; and Commodore, 
pages 10-57 f and 1 0-70 , respectively. Here is the listing of 
Sortword.rexx. 

/********* SECTION ONE: INPUT THE ARGUMENT MAKE THE ARRAY **********/ /* The Shell Sort sortword.rexx */ PARSE ARG stat            /* Bring in the line of data to sort */ m=1               /* Steps 3- 10 make an array of data (list.) */ DO WHILE stat ~='' PARSE VAR stat list.m','stat  /* Cut up into items          */ /* An example of parsing on a symbol, in this case ','.        */ /* The VARiable stat is cut up into an array list.m            */ /* Each time through the loop the next word is put into array. */ m=m+1                       /* increment the array index m. */ END m=m-1               /* Adjust total number of unique words  */ SAY '' SAY 'Sorting 'm 'unique words ...' /*******************************************************************/ /********* SECTION TWO: THE SHELLSORT OF ARRAY 'LIST.' *************/ /* From here until end is a good sort routine. See text, figures.  */ listlength=m span = 1 DO WHILE (span < listlength); span = span * 2; END 

5-28 Sorting, Arrays, and Lists 



The ARexx Cookbook 

DO WHILE (span > 1) 
Span = span % 2 
node = listlength - span 
D0 scan = 1 T0 node nextmode

= scan + span 
IF list.scan > list.nextnode THEN 

D0 
store = list.nextnode 
list.nextnode = list.scan 

/* The inner nested bubpos loop */ 
D0 bubpos = scan-span T0 1 BY -span WHILE (store < list.bubpos) 

nextnode = bubpos + span 
list.nextnode = list.bubpos 
END bubpos 

bubpos = bubpos 	span 
list.bubpos = store 
END 

END scan 
END 
* End of sort routine, output follows...*/ *********

 SECTI0N THREE: THE 0UTPUT AND RETURN T0 CALLER ****** 
* This block reconstructs a line to return to caller...*/ ortout=" 

DO i=1 TO listlength 

A loop to reconstruct the list, now in alphabetic order. 	*/ 

Each time through, the variable sortout is increased by a word */ 

* until all the words are rearranged in the final sortout list 
	*/ 

sortout = sortout| 
END 

EXIT sortout /* The string sortout returned to caller... */ 

Exercises 
Try out this program on the text file we made for the first tutorial. Try it 
out on various text file you may have. See if there are things you should 
modify to account for special conditions (like upper or lower case) or 
characters in your data. Think about how you would go about 
constructing an index for a text file and tying every instance of each 
word to a specific page number. It is by no means a trivial task. 

Can You Use Higher Dimensional Arrays? 
See if you can rewrite the code using two dimensional arrays instead of 
building up and tearing down arrays from long strings. Try making your 
program so that there are no interior or exterior function calls. Hint: 

5-29 Sorting, Arrays, and Lists 



Five 

make an array word. with nodes i and j to denote line number and word 

number, respectively. What must you look out for when dealing with the 
nodes of the LISTED. boolean array? A listing in Appendix A under the 
name UNIarray.rexx  is one solution to this exercise. It is more compact 
and perhaps more elegant at the expense of being more complex. 

The real elegance of ARexx, however is that you are never stuck using 
only one program to do what you want. You have the full power of every 
program in your computer which has ARexx support working for you. In  
later sections we will begin to look at the realiy sophisticated aspects of 
ARexx as we begin to control other programs as if by magic! 

5-30 Sorting, Arrays, and Lists 



The ARexx Cookbook 

Chapter 6: 
Debugging, Tracing and Interrupting 
ARexx Programs 

Handling Mistakes 
Inevitably you will make a mistake and wonder why your program 
doesn't work. ARexx is the exception among high level languages in 
that it provides a powerful set of tracing, debugging, and interrupt 
commands to aid your program development. 

Tracing 
A trace is the ability of ARexx to output the results of each instruction as 
it executes. The TRACE instruction has a number of options with which 
you may select exactly which results you want to see. You have the 
added option of selecting interactive tracing, in which mode the 
program stops after each step to allow you to input commands, re-
execute the last step, or continue. The facility for inserting and 
executing instructions in interactive tracing mode is sometimes referred 
to as a debugging facility, because the programmer may try different 
instructions and view their effects interactively and immediately. 

Arexx Interrupts 
ARexx interrupts are completely separate from AmigaDOS interrupts, 
and are commonly known in programmer's jargon as error traps. The 
ARexx interrupts allow you to trap errors of different kinds by making the 
program branch to a certain label and begin executing any routine you 
put there if an error of the kind specified occurs. You may simply want 
to write a custom error message and then exit, for instance. 

Further Documentation 
The relevant sections for the entire discussion of tracing, debugging, 
and interrupts are in Hawes, Chapter 7, pages 71 to 76; and Chapter 9, 

6-1 Debugging, Tracing, and Interrupts 

TRACING and 
INTERRUPTS 

H 71 thru 76, 83 thru 87 
C  10-134 thru 10-145 
C  10-83 f. 10-89 f, 
C  10-155 thru 10-157 

Note: The manuals are 
organized differently, 
but contain the same 
information. 



Six 

BACKGROUND option 
of TRACE instruction 
H disk 
C 10-135 ff 

OFF option of TRACE 
instruction 
H 40, disk notes 
C 10-135 ff 

TRACE instruction 
H 40, 71 
C 10-134 thru 10-145 

TRACE() function 
H 67 
C 10-120 

TRACE MODES 
H 73 
C 10-139 f 

RC special variable 
H 39, 73, 75 
C 10-73, 10-139, 

10-145  

pages 83 to 87. Or you may look at Commodore, pages 10-134 to 10-
145; 10-155 to 10-157; 10-83 f; and 10-89 f. Note: The two manuals 
include identical material, but Commodore chose to arrange it 
differently. The Hawes ARexx Update notes from disk include two 
TRACE options not included in its manual's option listing: off and 
background, which we will look at later. We will discuss tracing first. 

Tracing an ARexx Program 

Trace Options 
The TRACE keyword may be followed by several options called 
alphabetic options because they can be shortened to the first letter of 
their name. If you do not supply a letter or an option, the normal option 
is the default. The options are ALL, COMMANDS, ERRORS, 
INTERMEDIATES, LABELS, NORMAL, RESULTS, SCAN, OFF, and 
BACKGROUND. Each option may be further qualified by a mode 

character. 

Trace Modes 
There are three modes available: Normal, Command Inhibition and 
Interactive Tracing. To enter command inhibition mode, you precede 
the option by the ! character. To enter interactive tracing mode, you 
precede the option by the ? character. In command inhibition mode, 
any time rexxmast encounters a command (a syntactical line it cannot 
interpret as a meaningful ARexx instruction), it sets the return code RC 

to zero (success), but doesn't actually send the command to the host 
application. This is obviously useful for times when you need to see if 
the right values are to be sent to a host application, but do not want to 
send them, because they could potentially prove destructive as in 
altering a file or erasing data. 

The Special Variable RC 
What is RC? This is a special variable in ARexx like RESULT. RC is a 
variable used to denote the success or failure of an operation and is 
available immediately afterwards to look at. If the operation is 

6-2 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

successful, then RC=0; if it failed, RC is set to the value of the error or 
syntax code resulting from the condition that triggered the interrupt 
(error trap). Since all functions and many commands use RC to convey 
their success or failure, you must deal with its value immediately after a 
command or function is executed. Some host applications also use RC 
to return values in addition to the information returned in the RESULT 
variable. 

Combining Mode and Option 
If you wanted to trace intermediates (as defined in the options), but 
suppress command execution, you would enter the instruction TRACE ! 
in your program at the position at which you wish to start the trace. 

Interactive Tracing 
Interactive tracing is just what the name implies: You can trace a 
program one line at a time, and enter code at each line, execute the 
instruction as written, or re-execute the previous line. If you are tracing 
results, for instance, a TRACE ?r instruction will begin tracing each 
result (as defined in the options) and pause at each line for user input or 
control. If you are in interactive trace mode and happen to enter a 
wrong instruction, say one with a syntax error, rexxmast will report the 
error, but will not terminate the program as usually happens. If one of 
the instructions originally coded into the program falls however, the 
program will process that error as it usually does and the program will 
terminate. 

TRACE OFF 
This simply turns off the trace instruction at some point, assuming you 
have turned it on at some other point. Suppose, for instance you have a 
complicated set of calculations and you want to trace all the 
intermediate results of each calculation, for only a few instructions. You 
would insert the line TRACE intermediates (or TRACE i) one line 
before your area of interest and TRACE OFF just after the last 
instruction you are interested in. 

6-3 Debugging, Tracing, and Interrupts 



Six 

Example 
Let's do a specific example in line with our philosophy of hands-on 
experience. Open your editor and load the Hex.rexx program from the 
last chapter. Then go to the last PROCEDURE in the program and 
uncomment the two trace instructions. This will effectively trace all the 
intermediate results of all these instructions and turn off the trace at the 
end. 

TRACING PREFIX 
CODES 

H 72 
C  10-137 

Looking at a Trace 
Where can you see the trace? There are two possibilities. If you simply 
run the program from your shell, the trace results will be interleaved 
(written as they occur in the program) with the program's regular output 
to the console window of the shell. Since there is no program output to 
the shell window during this part of the program, there will be no 
confusion in this example. Try running the program now and watch the 
trace fly by. Remember, as always in the Amiga shells, you may stop 
the action by pressing the space bar. When you are finished looking, 
press backspace to continue. You may wish to resize the window as 
large as possible to view lengthy trace output. Note the display output 
format codes (tracing prefix codes) that tell you everything about the 
result. Refer to the manual to learn their meanings. 

Now try the program again after you have specified another option, say 
results. Observe how the trace output changes its format. As an 
exercise, try the program (or any other ARexx program) and try different 
trace options in different places until you feel comfortable using the 
different options, and can read their output. I like the TRACE RESULTS 
option best, but TRACE INTERMEDIATES is great for debugging 
sections heavy with number crunching instructions. You may use the 
TRACE instruction in several places using several options if you wish to 
vary the kind of tracing you do. You may turn off the tracing anywhere 
with a TRACE OFF instruction. ARexx provides a very flexible and easy 
to use debugging and tracing facility. There are several more variations 
open to you as we will now discuss. 

6-4 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

COMMAND UTILITIES 
H 83 f 
C  155 f 

GLOBAL TRACING 
CONSOLE 
H  72 f 
C  10-137 f 

TCO command utility 
H 84 
C  10-156 

TCC command utility 
H 
C  10-156 

TRACING OUTPUT 
H 72 f 
C  10-138 f 

ARexx Command Utilities 

The Global Tracing Console 
If you wish to trace a part or all of a program that has lots of output to 
the console window, or if you have a host application program that does 
not provide an output stream of its own, you may open the ARexx 
global tracing console. This is a window just like a shell window which 
may be resized and moved as you wish. It is opened and closed from a 

shell window. You cannot close it from within itself like you can a shell 
window. To open the global console window, issue the tco  command 
from a shell (tco stands for trace console open). To close the trace 
console window, issue its sister command tcc. It is a good idea to open 
a separate shell from which to issue these commands. 

The advantage of the trace console is that only the trace output from the 
program is directed there. The ARexx interpreter accomplishes this feat 
by looking for a logical stream called stderr. A logical stream is a 
name for an actual stream of data just as a logical file is a name for an 
actual file in the system. Rexxmast sends all tracing output to one of 
only two logical streams: stdout or stderr. Opening a global trace 
console with tco automatically opens stderr for each ARexx program 
which has not previously defined stderr. The tracing output for each 
program then goes into this new stream. Note that all ARexx programs 
currently running will share the global trace console: That's what the 
word global means. If you are tracing a program, it is a good idea to 
shut down all other ARexx programs that contain a trace instruction to 
insure that you are seeing only one program's trace output at a time. 

Interactive Inputs 
If your program is tracing in interactive mode, you input your interactive 
commands and control from the global console window and not from the 
original window. 

6-5 Debugging, Tracing, and Interrupts 



Six 

HI command utility 
H 83 
C 10-155 

Setting Trace Flags 

External Trace Flag 
There are two other global commands that affect tracing: ts  and te, 
which are used in a similar way to tcc  and tco  as a shell command. 
The command, ts sets what is called the external trace flag, which 
forces all active ARexx programs into interactive tracing mode, 
whether they contain the interactive mode character ? or not. These 
programs are forced into an interactive (TRACE ?RESULTS) option 
unless they are already set to TRACE intermediates or TRACE scan, 
in which cases they continue to trace with these options. 

Global Halt Interrupt (HI) Flag 
We have mentioned the hi or halt interrupt command before. It is also a 
global command that sets the global halt flag which issues all active 
ARexx programs a request to halt. Rather than pressing this panic 
button, you may use ts  for those times when your program gets stuck in 
an endless loop and you are not sure why. The ts  command will put the 
program into interactive tracing mode and allow you to step through the 
loop and see where you went wrong, and try various commands 
interactively to see if they will fix the problem. To turn off the interactive 
mode externally, you issue the te  command. The commands ts  and te  
set and clear the global external trace flag, so remember that all 
ARexx programs launched subsequent to the ts  command will enter 
interactive trace mode until you turn the mode off with te. That's why it's 
less confusing to have a separate shell open to do global commands, 
properly called command utilities in ARexx jargon. 

The ARexx rx, rxc, rxlib and rxset Commands 
Note that the rx command used to start your ARexx programs is such a 
command utility. Its inverse is rxc which closed the rexxmast program. 
The final ARexx command utility is rxset which adds a (name, value) 
pair to the global ARexx Clip List. This is a structure similar to the 
AmigaDOS clipboard device where you may put up constant variables 
or other information to be shared by all ARexx programs. An entry in 

TS command utility 
H 84 
C 10-156 

TE command utility 
H 84 
C 10-156 

RXLIB command utility 
H disk 
C no reference 
see page 6-14 

RX command utility 
H 84 
C 10-155 

RXC command utility 
H 84 
C 10-156 

RXSET command utility 
H 84 
C 10-155 

CLIPLIST 
H 86 
C 10-89 f 

6-6 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

BACKGROUND option 
of TRACE instruction 
H  disk 
C 10-135 f 

the Clip List may be retrieved by name using the GETCLIP() ARexx 
function and either parsed or interpreted by the INTERPRET instruction. 
In this way you may store code hunks for later interpretation and 
execution. Rxlib acts the same as the ADDLIB() function (see pg 6-14). 

The Trace Background Option 
One of the options not mentioned in either Hawes or Commodore, is the 
TRACE BACKGROUND option. This option is covered in the disk 
update notes for ARexx v1.10 and v1.15. If you have a tried and true 
ARexx program that you wish to leave running while you use ts  to trace 
another program, you may put a TRACE BACKGROUND instruction in 
the well behaved program. It will then prevent that program from being 
forced into interactive tracing if the global tracing flag is set by ts . 
Obviously, you would not want to use a mode character with this option. 

Exercises 
1. Open a shell (No. 1). Enter the command tco  to open the global 
console. Open another shell (No. 2). Run the Hex.rexx program with a 
trace instruction in it, but not in interactive mode. Watch the output in 
the global console. You enter your character string from the second 
shell. 

2. Do 1. above, except during the time that the output is whizzing past 
in the global console, enter the command in the first shell: ts . Watch the 
output stop in the global console and enter interactive mode. Step 
through a few commands by pressing [Rtn]. Go back to the first shell 
and enter te. Go to the global console and press [Rtn] and watch the 
output resume. 

3. Put an interactive trace instruction (TRACE ?R) inside the Hex.rexx 
program where we uncommented the TRACE i instruction. Save the 
program and start it from shell No. 2. Note that you must enter all 
normal input to the program from shell No. 2, but you must step through 
the program from the global console. Try entering an = instead of a 
[Rtn]. Did the last instruction re-execute? Note how easy it is to get lost 

6-7 Debugging, Tracing, and Interrupts 

GETCLIP() function 
H  58 
C 10-105 

INTERPRET instruction 
H  30 
C 10-59 



S ix 

INTERRUPTS (ARexx) 

H  74 ff 
C  10-143 ff 

if you do not input from the correct window! If you really mess up use an 
hi instruction from shell No.1. to stop everything. You may have to step 
through a few instructions before the program gets the halt instruction 
flag information. 

4. Now run a normal ARexx program without any TRACE instructions in 
it from shell No. 2. After it starts, use shell No. 1 and enter ts . Go back 
to shell No. 2 and begin to enter normal input if called for. Does the 
program enter interactive mode? If you have a global console open, 
does the trace output go there? How does it work if you do not have a 
global console opened? If you try to close a global console before an 
ARexx program using it finishes, what happens? (It should not close 
until all programs using it exit!) 

5. Remember: Turn the exterior interactive tracing on and off from 
shell No. 1. Open and close the global tracing console from shell No. 1 
also. Start the program and enter any normally requested input from 
shell No. 2. If the global console is open, step through the program in 
interactive mode from that window. You can make up lots of 
experiments and soon you will be a pro at the ARexx tracing and 
debugging facility! 

ARexx Interrupts 
We have all heard on the radio, We interrupt this program to bring you 
a special message..." Computer interrupts are functionally the same. 
Whenever something occurs that needs immediate attention, such as an 
error, or a signal from the user, all operating systems and programming 
languages provide a means to trap errors or deal with the situation 
dynamically before the program terminates. ARexx is no exception. 

When certain conditions occur within ARexx its internal interrupt 
system allows you to trap errors or detect events such as pressing the 
[Ctrl]-C keys. This syntax means you press the control key and the C 
key at the same time. We say a [Ctrl]-C break is an asynchronous 
event. Synchronous events occur when the program detects 
something like a syntax error. ARexx can handle both types of events. 

6-8 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

SIGNAL instruction 
H 38 f 
C  10-71 ff 

The internal interrupt system transfers program control to a label 
specific to the event or condition, only if the interrupt itself is enabled 
(turned on with a SIGNAL ON name-of-interrupt instruction). 

Name the Labels After the Interrupts 
The interrupts themselves are named according to the label to which 
program control transfers in the event of the interrupt (Self reference 
again!). For instance, the ERROR interrupt is also the name of the label 
to which the program will branch if the ERROR interrupt is enabled, so a 
SIGNAL ON ERROR instruction in your code will transfer program 
control to the label ERROR: in the event that an error occurs. You may 
put any code you want to execute after the label such as an orderly exit 
or a custom error message. Refer to Hawes, page 38 f; and 
Commodore, page 10 -71  ff to learn more about the SIGNAL instruction 
and its interrupt subkeywords: BREAK_C, BREAK_D, BREAK_E, 
BREAK_F, ERROR, HALT, IOERR, NOVALUE, and SYNTAX. These 
are explained in the manual. The correct syntax for using SIGNAL with, 
for instance, a control-C break is to use SIGNAL ON BREAK_C to turn 
on (enable) the interrupt, and a SIGNAL OFF BREAK_C instruction to 
turn it off (disable) it again. All the rest follow the same pattern. 

What happens during an interrupt? First, ARexx dismantles all active 
control ranges, which are the ranges in DO loops, IF instructions, 
SELECT, or INTERPRET blocks; or interactive TRACE. Then ARexx 
transfers control to the label specified by the enabled interrupt. Since 
the active control ranges are dismantled, you cannot use an interrupt to 
jump into a control structure such as a SELECT block. If you are inside 
an internal function, and an interrupt occurs, it is safe to use SIGNAL 
without affecting the environment of the calling program. Recall how 
variables are protected there as well. 

Special Variables 
We mentioned RC before, and it plays a part in interrupts, too. RC is set 
to the error code (for SYNTAX interrupts); or severity level (for ERROR 
interrupts) of the condition that caused the interrupt, and you may 
therefore check RC immediately after your label statement if you want to 

6-9 Debugging, Tracing, and Interrupts 



Six 

SIGL special variable 
H 39, 75 
C  10-73, 10-145 

SIGNAL instruction 
H 38 f 
C 10-71 ff 

know about what caused the transfer. There is another special variable 
called SIGL which returns the line number that was being executed at 
the time of the interrupt, and you may check after your label, too. You 
may thus trap and glean information about errors using the SIGNAL 
instruction with the appropriate interrupt subkeywords. 

Yes, ARexx Has a GO TO Statement 
A second way to use the SIGNAL instruction is to SIGNAL [value] 
expression, which computes the expression if supplied and jumps to a 
label with its value; or simply jumps to the supplied value if it is a string. 
This is exactly like a "GO TO instruction in other languages. For 
instance if you have a need for the program to jump to a label called 
Instead: then a SIGNAL Instead instruction will do the trick. If the label 
name is the result of an expression, then the SIGNAL VALUE 
expression acts just like a computed GO TO, jumping to whatever label 
the evaluated expression indicates. Note: Use a GO TO only when 

absolutely necessary, or your code wlll suffer. Sometimes a GO TO or 
two make sense, but all too frequently, if overused, they produce weird 
logic flow and strange, inscrutable errors to show up in your logic. Stick 
to structured programming (using only IF THEN ELSE; DO WHILE; and 
DO UNTIL type constructs). You will be better off. It is provable that 
structured programs can do any logic you need. 

An Example of the Use of Interrupts 
Here is a little program that will demonstrate what we have just 
discussed. It contains an example of the use of every interrupt except 
the IOERR interrupt. I couldn't figure a way to make my system 
misbehave in order to trap this one! The program also demonstrates the 
use of SIGNAL properly used as a GO TO statement. Although the 
program does nothing except demonstrate, you could use it as a pattern 
to insert error traps in your own code sometime. Here is Int.rexx a 
demonstration of Interrupts in ARexx: 

/* Int.rexx Demo of interrupts */ 
/* turn on the interrupts */ 
SIGNAL ON BREAK _C 
SIGNAL ON BREAK _D 

6-10 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

NOP instruction 

H 31 
C 10-61 

SIGNAL ON BREAK_E SIGNAL ON BREAK_F SIGNAL ON ERROR SIGNAL ON HALT SIGNAL ON IOERR SIGNAL ON NOVALUE SIGNAL ON SYNTAX /* error */ 'FOOBAR' ERR: /* I/O error*/ /* If I could think of an IO error example it would here! */ IO: /* uninitialized variable */ SAY 'i=v' i=v UNI: /* syntax error */ SAY 'END' END SYN: SAY 'PRESS [Ctrl]-C,D,E, or F to stop endless loop...' SAY 'OR open another shell and do a HI command...' /* stuck in an endless loop...*/ DO FOREVER NOP END START: SAY 'DONE!' EXIT 0 /* INTERRUPT LABELS FOLLOW */ /* Right here is where you would program your */ /* recovery routines */ BREAK C: SAY 'CONTROL C BREAK detected...' /* display the special variables */ SAY 'Line'SIGL 'RC='RC SAY 'Press [Rtn] to continue.' PARSE PULL answer SIGNAL START /* using SIGNAL as a GO TO */ 

6-11 Debugging, Tracing, and Interrupts 



S ix 

BREAK_D: 
SAY 'CONTROL D BREAK detected...' 
SAY 'Line'SIGL 'RC='RC 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
SIGNAL START 

BREAK_E: 
SAY 'CONTROL E BREAK detected...' 
SAY 'Line'SIGL 'RC='RC 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
SIGNAL START 

BREAK_F: 
SAY 'CONTROL F BREAK detected...' 
SAY 'Line'SIGL 'RC='RC 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
SIGNAL START 

ERROR: 
SAY 'ERROR detected...' 
SAY 'Line'SIGL 'RC='RC 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
branch='RR' 
SIGNAL VALUE 'E'||branch /* a computed GO TO */ 

HALT: 
SAY 'EXTERNAL HALT detected...' 
SAY 'Line'SIGL 'RC='RC 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
SIGNAL START 

NOVALUE: 
SAY 'UNINITIALIZED VARIABLE detected.-..' 
SAY 'Line'SIGL 'RC='RC 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
SIGNAL UNI 

SYNTAX: 
SAY 'SYNTAX ERROR detected...' 
SAY 'Line'SIGL 'Error:'RC 'Refer to documentation.' 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
SIGNAL SYN 

IOERR: 
SAY 'Line'SIGL 'RC='RC 

6-12 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

SAY 'I/O ERROR detected...' 
SAY 'Press [Rtn] to continue.' 
PARSE PULL answer 
SIGNAL IO 

Now you know how to use the ARexx Tracing, Debugging and 
Interrupts! With these tools, you need not be afraid to tackle large 
projects, because you'll have the confidence to know that you can find 
out why things don't work the first time. We have almost come to the 
most difficult but the most powerful way to use ARexx: Controlling other 
programs. You will be glad you took the time to learn to trace and 
debug when you start dealing with multiple host applications. There is 
one last thing we need to do before we take on the control of other 
programs, and that is to load the ARexx support libraries. 

The ARexx Support Libraries 
We have mentioned that ARexx is capable of using what is called a 
shared library. ARexx cannot use just any Amiga shared library, 
however, because there must be a public message port of the required 
type and certain other technical considerations must be satisfied before 
a shared library may be used by ARexx. A shared library is a collection 
of programs which serve as external functions which a program may 
call. For instance, a file requester may be structured as a library rather 
than being made a part of the main program, and whenever the program 
needs to open a file requester, it summons the requester library. Many 
of your applications programs have undoubtedly used shared libraries in 
processing your results, even if you didn't know about it. 

Shared libraries reside in the Libs: directory of your system disk, and 
often, when you install a new piece of software, part of the installation 
process is to copy a library necessary to the main program into the 
Libs: directory, so that your program can find it and load it at the 
appropriate time. ARexx provides several libraries for use by ARexx 
programs, and there are a few ARexx libraries programmed by third 
parties. Before you may use them in an ARexx program they must be 
loaded into the library list maintained by ARexx. 

6-13 Debugging, Tracing, and Interrupts 



S ix 

Loading ARexx Libraries 
You may load your ARexx libraries only when you need them in each 
individual program by means of the rxlib command utility or the 
ADDLIB() built in ARexx function, or you may do what is far simpler and load them all in your startup-sequence. Since they sleep and do not 

take up any system resources until they are called, there is not really 
any reason not to load them at your computer startup and be done with 
it. If you plan to export your ARexx programs to others, however, who 
may not have had the foresight to pre-load all the ARexx libraries, then 
you would do well to include some code to check for the library in the 
ARexx library list and to load it if it's missing. 

In either case the following little program will take care of loading some 
available ARexx libraries. You can put it into your startup-sequence 
after the start of rexxmast, or you can include appropriate pieces of the 
program in the code you export to others. Some of the support 
functions in these libraries will be necessary to our programs later. If 
you do not have one or more of the following libraries, then leave out 
the code relevant to that library! Check your libs directory. You should 
at least have rexxsupport.library. 

/* LAL.rexx Loads ARexx Libraries */ 

L.1='rexxsupport.library' 
/* extended functions (DOS,etc.) */ 

L.2='rexxarplib.library' 
/* intuition, windows, gadgets */ 

L.3='rexxmathlib.library' 
/* sin, tan, cos, and other math functions */ 

L.4='rexxutil.library' 
/* rexxutils */ 

DO i=1 TO 4 
IF ~SHOW('L',L.i)THEN CALL ADDLIB(L.i,0,-30.0) 
IF ~SHOW('L',L.i)THEN SAY L.i 'failed to open' 

END 
EXIT 0 

ADDLIB() function 

H51 
C 10-92 f 

RXLIB coL.3='rexxmathlib.library 

C no reference 

RXLIB functions 

The same as ADDLIB(). The command is 
followed by the library 
name, the priority, the 
offset, and the version, 
bu 

 used as in 

ADDLIB(). 
SHOW() function 

 

H  64, disk 
C 10-115 

Note: Library names are 
case sensitive! 

You can add this code (minus the EXIT instruction) at the start of your 

6-14 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

programs that need ARexx libraries, or you can include the line 
sys:rx LAL.rexx 

in your startup-sequence after it starts rexxmast. The documentation 
for the syntax and arguments of the ADDLIB() and SHOW() functions 
are in Hawes, pages 51 and 64; and Commodore, pages 10-92 f and 
10-115. Note: The SHOW() function is documented further in Hawes 
v1.15 Update Notes on disk to include the option SHOW('Internal') or 
SHOW('I')  to show the internal ports list (the ports that are 
open internal to the current program. 

What Do These Libraries Do? 
Starting at the top, the rexxsupport.library, by William Hawes, is a 
collection of AmigaDOS specific functions that supplement the built in 
ARexx functions (which adhere solely to the Rexx language standards). 
In other words they add functionality that works only in the AmigaDOS 
environment, so your code containing references to these library 
functions will not port (transfer) to another kind of computer (as if any of 
the others have Rexx!). 

The second entry, rexxarplib.Iibrary, by Willy Langeveld, is a collection 
of functions which allow you to use the Amiga Intuition Graphical User 
Interface (or GUI) to open gadgets and menus to do things from an 
ARexx program. ARexx has no graphics capabilities whatsoever on its 
own, but thanks to the Amiga shared library environment, graphics are 
possible. 

The third, rexxmathlib.library, also by Mr. Langeveld, is a collection of 
advanced math functions such as SIN, COS, TAN, etc. 

The final entry, rexxutil.library, by David Junod, is a collection of 
functions to add standard data sharing techniques to ARexx such as 
reading and writing from and to the AmigaDOS clipboard device (which 
is essential for some programs we will code later); and storing and 
retrieving environment variables. 

6-15 Debugging, Tracing, and Interrupts 

ARexx Support 
Library 

H 127 thru 130. disk 
 C 10-129 thru 134  



S ix 

The Companion Disk 
for The ARexx 
Cookbook contains a 
free copy of all libraries 
used by its programs 
and full documentation 
by the libraries' authors. 
See the copyright page 
to order. 

Obtaining Libraries 
You may or may not have all of these libraries but those you do have, 
you may load at startup using an adaptation of this code. The first 
library, rexxsupport.library comes standard on new Amigas with 
ARexx, but the others do not. The two by Mr. Langeveld are available 
with the purchase of the Hawes version of ARexx, or free from BIX BBS 
(Bulletin Board Service). The library by Mr. Junod is available free on 
BIX. Undoubtedly as the popularity of ARexx soars, there will be others. 

Library Documentation 
Since each of these libraries comes with its own documentation, and are 
often the subject of updates, I will only point out certain ways to use 
these libraries and leave it to the reader to explore the details and 
documentation of each library. The rexxsupport.library is documented 
in Hawes, Appendix D pages 127 through 130; and in Commodore, 
pages 10-129 through 10-134. However, it has many new functions not 
documented except in the Hawes ARexx v1.15 Update Notes on disk. lf 
we need any of these, we will mention how to use them. Now we are 
prepared to explore the complex and fascinating world of controlling 
your application programs with ARexx. 

6-16 Debugging, Tracing, and Interrupts 



The ARexx Cookbook 

Chapter 7: 
Controlling Host Applications with 
ARexx 

Host Address and 
Host Application 
H  25, 43 f 
C  10-50. 10-75 thru 10-
78 

Message Packets 
H  89 ff 
C  no reference 

A Model for ARexx Remote Control 
We are about to enter the realm of remote control which can become 
somewhat abstract. We would do well to visualize a model of how our 
ARexx programs will work in a multi-tasking environment, in order to 
keep track of where our program is and what it is doing and to what. 

In the introduction, we said that ARexx controls other programs by 
means of message packets sent to or received from a host application 
sporting a message port, with a HOST ADDRESS to mark it. Since the 
term address is a part of ARexx nomenclature, we can incorporate this 
word into our model directly, and use the image of a postal service 
delivering mail to visualize how ARexx communicates with other 
programs. 

Addresses and Programs 
Let's think of each ARexx host application program on our disk as an 
address in a city (your computer). In order to read the mail, or to send 
mail, any particular resident must be at home (Let's say things are a little 
crazy in our utopia. When you're not home, you take your mailbox with 
its address and lock it inside your house, so your address is no longer 
accessible!). We will pretend that you send mail only by leaving a letter 
in your mailbox for the postman to pick up, and that any time you 
receive a letter, you immediately reply to the sender with an answering 
letter left in your mailbox. If a person is not at home at his or her 
address, it is equivalent to a program not running in our system, so all 
the mail with that address will be returned to sender with a message (by 
the postmaster -rexxmast) saying "HOST ADDRESS not found". 

7-1 Controlling Host Applications 



Seven 

ARexx Commands 
H 43 thru 46 
C 10-74 thru 10-82 

COMMAND special 
address for ADDRESS 
instruction 
H 44 
C 10-76 

The Public Message Port 
Obviously, the mailbox is the public message port, and the address itself 
is the host address. The ARexx program itself is represented by the 
actions of the postman, as directed by the Postmaster -rexxmast, and 
ARexx commands are the content of each letter delivered by the 
postman. Remember that commands are "none of ARexx's business" 
any more than the content of your letters are the concern of the postman 
who delivered them, so our analogy has a good deal of relevance. Any 
letter not specifically for the Postmaster is sent on to the addressee. 

Asking for Results 
Let us suppose that each letter sent by a resident (host application) 
contains a request to some other resident to perform some research and 
write down an answer and reply by return mail in a message titled 
RESULT. Now our little utopia takes a bizarre twist, because 
occasionally, residents (host applications) write notes to themselves to 
remember to do some research themselves at home, but they never 
seem to remember to do anything unless they get a letter at the mailbox 
(slavish creatures of habit!), so they post a letter to themselves to 
remember to perform the research. 

The postman dutifully delivers the letter, (it takes three weeks to arrive); 
the resident does the research, and writes the reply; and so that he can 
find it again, puts it in his own mailbox! (These nutcases actually 
represent how ARexx macros operate.) Since the Post Office is a 
branch of the government (you can tell because of the External Flag 
flying from the rexxmast outside), each resident of the city has access to 
all government files and records. They have only to post a letter to the 
central government with ADDRESS COMMAND on the outside in order 
to access these government services. 

RESULT special 
variable, see CALL 
instruction 
H 26 
C 10-53 

RESULTS subkeyword 
of OPTIONS instruction 
H 32 
C 10-62 f 

DOS Commands 
If they want to do any detailed research, such as finding a particular line 
in a file, then they use the services of the Post Office which maintains 
close contact with the government processes. They can, and often do, 

7-2 Controlling Host Applications 



The ARexx Cookbook 

1 See: 
John 21:25 (NIV) 

send requests to their Postmaster to do such work. Wh
at is even more bizarre that in the real world, they actually get a reply every time! 
The government, of course represents AmigaDOS. Notwith

standing the silliness, our model is a pret ty accurate map of how ARexx works in the 
Amiga environment. 

A Word About the Examples of ARexx Control 
To paraphrase the Apostle John: "If every way to control programs with 
ARexx were written down, I suppose that even the world would not have 

i room for the books that would be written." 1  It is impossible to choose 
examples of ARexx macros or interprocess control which will be 
explicitly relevant to everyone. Keep in mind, however, that in the 
abstract, every ARexx program which controls another application 
shares certain characteristics. It is possible, therefore, to learn how to 
control your own programs by studying ARexx programs that control 
programs you may not even own

2
. The hardest part of making any 

ARexx interprocess control program work is keeping up with the 
sections of the program outside the actual host appliction. Once your 
letter (your command) safely arrives at its proper destination, it is 
relatively easy to execute it inside the program. It is dealing with replies 
(what is the content of each reply as expressed in the RESULT 
variable?), interleaved with issuing commands (how can I use the 
internal command set to best effect?); and keeping up with addresses 
for those commands, that are most difficult for the beginner. 

In the following examples, every effort has been make to select host 
application programs (controllable by ARexx) which are of general use 
and proven popularity. Also, the ARexx control programs themselves 
have been carefully chosen actually to do something useful for any 
owner of that application. By means of studying specific examples, you 
will soon be capable of writing your own custom programs that do 
exactly what you want done. 

The ADDRESS Instruction vs the ADDRESS() Function 
Our first order of business is to understand how to deal with addresses 
in ARexx. There are an ARexx instruction and an ARexx function to 

7-3 Controlling Host Applications 

2 Other good sources of ARexx programs to 
study are magazine articles, and macros 

and examples from 
your applications which support ARexx

. 

3 The proper way to 
surround with quotes 
the commands sent to 
the ARexx command 
parser is guaranteed to 
cause you trouble until 
you understand the 
way ARexx builds these 
command strings. The 
TRACE intermediates 
instruction is a good 
way to learn about this. 

See also: 
Symbol Resolution 
H 16 
C 10-36 



Seven 

Host Address 
H 25, 43 f 
C 10-50 
C 10-75 thru 10-78 

manipulate addresses, and they are not to be confuse with each other. 
Refer to Hawes, pages 25 and 52; and Commodore, pages 10-50ff and 
10-93 for the documentation of the ADDRESS instruction and the 
ADDRESS() function, respectively. Simply put, the ADDRESS 
instruction is used to assign an address as the current host address; 
and the ADDRESS() function is used to RETURN the current host 
address string (to allow you to see which address is the current host 
address). 

The SHOW() Function 
The previously mentioned SHOW() function may be used to see if the 
desired host address is actually available (i.e. is the program running?) 
There are also other ways to check for an available address using the 
WAITFORPORT AmigaDOS utility, as we shall see. Note that the 
ADDRESS() function takes no arguments inside the parentheses. The 
ADDRESS instruction is a keyword instruction and the syntax of its use 
determines how it behaves. There are four ways to use the ADDRESS 
instruction: 

1. Recall that rexxmast maintains two addresses: the current host 

address and the previous host address. The ADDRESS instruction 
by itself acts like a toggle to switch back and forth between the current 
and the previous host address. 

2. The ADDRESS instruction followed by a literal string (in quotes) or 
symbol (no quotes) specifies the new current host address as the literal 
string or literal symbol; and places the old current host address to be the 
previous host address. Remember that host addresses are case 
sensitive. If the host address is of mixed case, then you must use 
quotes around the address if you use this form of the ADDRESS 
instruction. Rexxmast will interpret any mixed case symbols into upper 
case! For example: If your host address is literally PortName, then 
ADDRESS 'PortName' will access that port, but ADDRESS PortName 
will not, because rexxmast will interpret the symbol PortName as 
PORTNAME, and will not be able to find the address. Note that if you 
use a symbol, it is not evaluated as a variable unless you use the 

ADDRESS instruction 
H 25 
C  10-50 f 

ADDRESS() function 
H 52 
C  10-93 

SHOW() function 
H 

6symbo.i, 

 
C 10-115 

WAITFORPORT 
command utility 
H disk 
C 10-157 

7-4 Controlling Host Applications 



The ARexx Cookbook 

subkeyword VALUE before it (see No. 4, below). 

In the case of TurboText, it names its global address as TURBOTEXT. 
so either ADDRESS 'TURBOTEXT' or ADDRESS TURBOTEXT will 
correctly find the address (as will ADDRESS turbotext, since rexxmast 
will change the undefined symbol to uppercase). We belabor this point, 
because many applications do not inform the user correctly about the 
real name of its message port (address). You will do well to verify the 
actual host addresses by running a short ARexx program while the 
application of which you wish to verify the address is running. 

/* A.rexx Check the addresses of currently running 
programs */ 
SAY SHOW('P') 
EXIT 0 

3. If you have but one single command to issue to an address different 
from the current host address, you may issue it with the form: 
ADDRESS {string | symbol} expression, which is taken to mean that the 
string or symbol specifies the address (exactly as in 2. above) to which 
the command evaluated from the expression is sent. Neither the current 
nor the previous host addresses change if you issue a command with 
this syntax. For example, if you are in one window opened by 
TurboText, with an address 'TURBOTEXT3' (the current address), and 
you want to execute the single TurboText command MOVESOF to move 
the cursor to the start of file in another open TurboText window with an 
address 'TURBOTEXT2', and you do not want to change the current or 
the previous host address, then you issue the instruction: ADDRESS 
'TURBOTEXT2' MOVESOF' in you program, and that single command 
would be executed at that address. Suppose, however, that the 
command is dependent upon the value of a variable, call it comnd. 
Suppose comnd were assigned previously as comnd='movesof'. 
Then the line ADDRESS 'TURBOTEXT2' comnd would accomplish the 
same thing, as the expression (variable) would be evaluated before 
sending. Complex command strings may be built using this technique. 

4. The fourth way is to follow the ADDRESS instruction with the 

7-5 Controlling Host Applications 

VALUE subkeyword to 
ADDRESS instruction 
H 25 
C  10-50 f 

(Same reference for 
other options below) 



Seven 

Tokens  
H  11 ff 
C  10-27 ff 

Symbol Resolution 
H  16 
C  10-36 

ADDRESS  instruction 
H  25 
C  10-50 f 

subkeyword VALUE followed by an expression to be evaluated which 
specifies the new current host address. This is useful in cases where a 
host application generates multiplehost addresses and ports. A good 
example is a text editor like TurboText which opens a new port with its 
own unique address 'TURBOTEXT0', 'TURBOTEXT1', etc., every time it 
opens a new edit window. In order to access a particular document in 
an open window with ARexx, you may need to compute the host 
address of that specific window 'TURBOTEXTn' where n is some 
integer, rather than use the TurboText global port name 'TURBOTEXT'. 
Using this syntax reassigns the current host address to the result of the 
evaluated expression, and places the former current host address into 
the previous host address. You can store the name of the port address 
in some variable, call it docname, and return to this window later on by 
means of the instruction ADDRESS VALUE docname. Do not confuse 
variables or expressions with literals! The instruction ADDRESS 
docname will not work, because rexxmast will look for an address called 
'DOCNAME'. 

The Current, Previous, and COMMAND Host Addresses 
Note that the current and the previous host addresses are preserved in 
the ARexx storage environment. This means that they will not change if 
you call an internal function. Whenever the previous address is 
replaced by the current address as in cases 2 and 4 above, the former 
previous address is lost. There is one special host address: 
COMMAND. ADDRESS COMMAND sends the AmigaDOS command 
which follows it to the underlying DOS environment ('always put your 
AmigaDOS command strings in quotes; "nested" quotes are allowed'). 
For example, the line 

ADDRESS COMMAND 'copy RAM:myfile to WORK:Stuff' 

will copy the file myfile in RAM: to the WORK:Stuff drawer of your hard 
disk from inside an ARexx program. You may not see it for how 
powerful it is, yet, but ARexx can evaluate an expression to become an 
address or a command. Since any part of the final command string may 
be computed within the ARexx program, you have the power to create 
some very sophisticated command strings and addresses! For instance, 

7-6 Controlling Host Applications 



The ARexx Cookbook 

you may want to split up the above command to compute the command 
string instead of specifying it absolutely. Maybe which file you copy is 
dependent upon something else in your ARexx program, so you assign 
the string value of the file to a variable called copyfile. If 
copyfile='myfile', then the expression: 'copy RAM:'copyfile 'to 
work:stuff' (note quotes) is first evaluated by ARexx into the final 
command string you see in the example above, and then sent to the 
COMMAND host address. Addresses as expressions work the same 
way: first they are evaluated, then sent. 

Writing a TurboText ARexx Macro 
Whenever we write an ARexx macro for any host application, we need 
to determine the answers to the questions: Which programs will be up 
and running? Do we need to start another program? Do we need 
support libraries? What do we want the program or the macro to do? 
Which host application do we want to do which operations on our data? 
Since there is a great deal of variation among ARexx host applications, 
each having its own idiosyncracies in the implementation of its internal 
command set, our greatest challenge is figuring out in which programs 
to manipulate our data, and how best to program our procedures in the 
command sets of those host application programs. 

Let's write a program to do something in TurboText. We have already 
written a program, Uniword.rexx to remove and alphabetize the word 
list from a text file. We will now write an ARexx macro to do the same 
thing from within TurboText. We will observe some useful ways to adapt 
code from a previous exercise, and how to use the internal command 
set of a host application to its best advantage, rather than blindly porting 
a former program over to a host application. The comparison between 
our previous "stand-alone" program and this macro running from a host 
application will provide some useful insights into ARexx coding 
techniques, and will assist us later when we get into true interprocess 
control programming, the next level of complexity. Each  level builds 
upon the previous level. 

To answer some of the main questions: Let's say we have a text file 

7-7 Controlling Host Applications 

TurboText 
by 
Oxxi, Inc. 
P.O. Box 90309 
Long Beach, CA 
90809-0390 
(310) 427-1227 

Uniword.rexx 
See Page 5-22 



Seven 

Stems and Compound 
symbols 

H  21 f 
C 10-44 ff 

Shell Sort 
see page 5-10 f 

Note: In the following 
program, TurboText 
ARexx commands and 
replies are in bold face 
type to aid in 
readablilty. 

loaded in TurboText with a window open. We want to list and 
alphabetize all the words in this file in a new TurboText document 
window, ready to edit or save. Therefore, we will design the program to 
run as a TurboText ARexx macro, to be run from the TurboText window 
host address. Here is an outline of what we want to do in pseudo code: 

1. Move to the beginning of the document. Use a similar boolean array 
LISTED. as we did before to test whether we have listed the word 
already. Qualify the array (stem symbol) with nodes composed of 
words, to make boolean compound stem symbols. Get each word in 
turn and write it into an array of words with integer nodes if the boolean 
array says OK. Determine some way to detect the end-of-file in our 
document so that our array writing loop will terminate. 

2. Sort the array of words alphabetically using the core code of the 
Shell sort directly on the array. 

3. Open a new document window. Do a loop to write each word in the 
sorted word array on a separate line. Exit. 

Here is the program listing. Note the file extension .ttx to identify our 
program as a TurboText ARexx macro: 

/* uniword.ttx Get an alphabetized list of words from a document */ /* This block accomplishes step 1. of the pseudo code */ OPTIONS RESULTS /* use to find end of file of doc */ SIGNAL ON ERROR MOVESOF ICONIFYWINDOW /* extract word list */ LISTED.=0 /* initialize boolean array */ n=1 DO FOREVER GETWORD /* this is the TurboText command and... */ word=RESULT /* RESULT is the reply to the command. */ word=UPPER(word) IF LISTED.word | ~DATATYPE(word,UPPER) THEN DO MOVENEXTWORD /* jump out if we get error if at end of document */ 
 

7-8 Controlling Host Applications 



The ARexx Cookbook 

ITERATE 
END 

LISTED.word=1 
list.n=word 
n=n+1 
MOVENEXTWORD  /* jump out if we get error if at end of document */ 
END 

/* An error is generated when we hit the end of document; */ 
/* program control jumps to this label at end of document */ 
ERROR: 

/* This block accomplishes step 2. of the pseudo code */ 
/* The Shell Sort. Note: this is lifted intact from former pgm */ 
listlength = n-1 
span = 1 
DO WHILE (span < listlength); span = span * 2; END 
DO WHILE (span > 1) 

span = span % 2 
numpairs = listlength - span 
DO node = 1  TO numpairs 

nextnode = node + span 
IF list.node > list.nextnode THEN 
DO 
store = list.nextnode 
list.nextnode = list.node 
DO bubpos = node-span TO 1 BY -span WHILE (store < list.bubpos) 

nextnode = bubpos + span 
list.nextnode = list.bubpos 
END bubpos 

bubpos = bubpos + span 
list.bubpos = store 
END 

END node 
END 
/* the end of the shell sort of the word list array */ 

/* This block accomplishes step 3. of the pseudo code */ 
/* output to a new document window */ 
j=listlength 
OPENDOC 
newdoc=RESULT  /* the new address is contained in the RESULT variable */ 
ADDRESS VALUE newdoc /* Note use of ADDRESS VALUE for new address */ 
MOVESOF 
DO i=1 TO j 

INSERT list.i 
INSERTLINE 
END 

EXIT 0 

7-9 Controlling Host Applications 



Seven 

TURBOTEXT Global 
and 

SlGNALnt 

ports 
T 10-1 f 

Our code is commented to reflect the three pseudo code steps. The 
TurboText internal command set has no specific command to detect the 
end-of-file. Within the TurboText command set, we can move to the 
start of the document and get each word in turn within an endless loop, 
but how will our program know when we are finished getting words? We 
combine the fact that TurboText generates an error message if we try to 
move the cursor past the end of the document, with the ARexx interrupt 
capability of branching by means of the SIGNAL ON ERROR interrupt 
instruction, to pass the program control out of the endless loop when all 
the words are exhausted. The instances of where these errors will 
happen (the MOVENEXTWORD commands) are commented, as is the 
label (ERROR:) to which the program will branch once an error occurs. 

The RC Special Variable 
Note that any error codes are contained in the special ARexx variable 
RC. In some cases, you may want to test the variable RC directly, 
rather than using the SIGNAL ON ERROR instruction. RC is non-zero 
when an error occurs, and the exact value of RC is usually is the 
severity level of the error. If you merely wanted to exit a loop when you 
hit the document boundary, a DO WHILE RC=0 loop would work fine, 
because RC=5 if you hit the document boundary, and RC=0 for all 
successful commands. Since we want to jump farther than just the end 
of a loop, the SIGNAL ON ERROR is a better choice here. 

The Current Host Address is Where the Program Starts 
Since we are running this program as a macro launched from 
TurboText, then the current host address will automatically become, for 
instance, 'TURBOTEXT3' or whatever the sequential number of the 
open document window is. TurboText maintains a global ARexx port 
address, 'TURBOTEXT', as well as individually numbered ARexx ports 
for every open TurboText window. These numbers make each port 
name unique within an operating session. Even if you close a window, 
its port name is never used again until you reboot. In this case, we are 
dealing with a specific window, which has a unique, numbered port. In 
another exercise, we will demonstrate the use of the global port 
'TURBOTEXT'. At any rate, we know that the program starts at the 

ERROR subkeyword 
for SIGNAL instruction 
H  38 f 
C 10-71 ff 

TurboText Manual 
References are 
marked with a T and 
page number. 

MOVENEXTWORD 
TurboText command 
T A-34 

RC special variable 
H  39, 73, 75 
C 10-73, 10-139 
C 10-145 

WHILE iteration 
specifier for DO 
instruction 
H  27 f 
C 10-53 ff 

7-10 Controlling Host Applications 



The ARexx Cookbook 

address of the TurboText window containing our text file. Since we 
at that address, we remember that commands will make sense at that 
host address, so it is not necessary, to put quotes around these 
TurboText-specific commands. We may use them transparently as we 
would any other ARexx instruction. (In a later example, we will see that 
sometimes we do need to use quotes around certain commands). 

MOVESOF moves our cursor to the Start Of File, and 
ICONIFYWINDOW makes the document window small so that the 
program will run faster, not having to redraw the screen at every cursor 
move. 

Using TurboText Commands Saves Some Steps 
To extract words from the document, we will not have to read a whole 
line and then parse it into words. TurboText has its own parser with the 
built-in capability to get each word in the document directly and 
separately. An added bonus is that we don't have to worry about 
punctuation, as TurboText automatically strips off all punctuation and 
returns only the pure word. That saves a few steps! Note the syntax of 
the TurboText commands: First the command, then the RESULT 
variable comes back containing the information returned by the 
command, a little like the way an internal function returns a value in the 
RETURN instruction, except that you must always remember to assign a 
variable to equal RESULT explicitly and immediately, as RESULT will 
change with the next command. In other words, don't forget to read 
your mail! 

A Boolean Array We Have Seen Before 
We start the section on extracting the words (pseudo code step 1.) by 
initializing a boolean array (LISTED.=0) so that every member is 0 or 
false, then we set our word array counter (n=1), and enter the DO 
FOREVER loop to get the words. First, we GETWORD (a TurboText 
command) and assign the RESULT to word, our temporary word 
variable. Then we transform it to UPPER case, because our Shell sort 
is case sensitive, but we desire a uniform list. 

MOVESOF  TurboText 
command 
T  A-35 

ICONIFYWINDOW 
 TurboText command 

T  A-27 

RESULT  special  
varable. see CALL 

 instruclion 
H  26 
C  10-53 

RESULTS subkeyword 
of OPTIONS  instruction 
H  32 
C  10-62 f 

RESULTS  processing 
H  29. 37 
C  10-58. 10-70 

Arrays  see Stems  and 
Compound  symbols 
H  21 f 
C  10-44 ff 

GETWORD  TurboText 
command 
T A-26 

UPPER()  function 
H 67 
C 10-121 

7-11 Controlling Host Applications 



Seven 

The first IF block warrants some discussion. We do two things at once: 
Test to see if EITHER the word has been listed before (as we did in the 
Uniword.rexx program); OR the DATATYPE() of the word is not 
UPPER case (we don't want non-alphabetic "words"). In either case, we 
do not want the word to become part of the word array, so the 
instruction block directs the program to move to the next word 
(MOVENEXTWORD) and then to ITERATE the endless loop. Because 
we have turned on the ARexx ERROR interrupt by means of the 
SIGNAL ON ERROR instruction, then if the MOVENEXTWORD 
instruction generates an error by hitting the document boundary, then 
program control will jump to the ERROR: label and remain running, 
rather than terminating. This is an example of the power of ARexx 
interrupts to do more than simply debug your programs. In the event 
word safely fails the IF test block, we assign the boolean element 
LISTED.word=1 to signify that we have now listed this word and all its 
subsequent appearances will be trapped by the IF test. 

Building the Array of Words 
The next step assigns a new word list array element list.n the value of 
word. Then we increment n, and move to the next word 
(MOVENEXTWORD), where, again, it is possible for the program to 
jump out of the loop if that command tries to move the cursor past the 
end of the document. The END instruction finishes up step 1. of our 
pseudo code intentions. We now have an array list. containing n-1 
elements, representing the values of all the words (in upper case; not 
including numbers) in our document. We are ready to sort this array. 

IF instruction 
H 29 f 
C 10-58 f 

Boolean operators 
H 13, 21 
C 10-30, 10-43 f 

DATATYPE() function 
H 56 
C 10-101 f 

ITERATE ins truction 
H 30 
C 10-60 

Hit Document 
Boundary Turbotext 
error 7 
T B-1 

END instruction 
H 29 
C 10-57 

Initializer Expression 
in DO instruction 
H 27 f 
C 10-53 ff 

Sorting the Array Directly 
Since we have a handy, ready made array, we have only to lift intact the 
core code of the Shell sort routine and insert it here. Now you know why 
we went to such pains to make the input and the output of the Shell sort 
modular. We simply pull out the central routine of the Shell sort and use 
it directly. Because we chose in this macro to name our array list., we 
do not even have to rename any variables! All we have to do is assign 
the variable listlength=n-1 to get the correct number of elements, 
because as usua.i, the counter was incremented once too often. We 

7-12 Controlling Host Applications 



The ARexx Cookbook 

omitted the SAY screen remarks from the old program as well, as there 
is no console in this macro program to display remarks. Finally, we 
need to output the sorted list. array to a new window, and accomplish 
step 3. of the pseudo code. 

Electric Thesaurus 
by 
SoftWood, Inc. 
P.O. Box 50178 
Phoenex, AZ 85076 
(602) 431-9151 

Start with j=listlength. Then we OPENDOC which is a TurboText 
command which returns the new window's host address in the RESULT 
variable, which value we assign to the variable newdoc. Now, for the 
first time since we started the program, we change to another host 
address with the ARexx instruction ADDRESS VALUE newdoc. Note 
that we need ARexx to evaluate the variable newdoc, so we must use 
the VALUE subkeyword, or we will get a "host address not found" error 
message. This is because the ADDRESS instruction is looking for a 
literal 'surrounded by quotes' as an address. The VALUE subkeyword 
makes the variable newdoc into a literal string representing the address 
of the new document window. 

Inside the New Window 
Now at the new address, the new open TurboText window, the program 
moves to start of file (MOVESOF), then enters a loop for  j  iterations, in 
which TurboText uses INSERT list.i and INSERTLINE to insert each 
array element in turn and then add a new line after it for the next entry. 
We have accomplished all the goals of our pseudo code, and now have 
a way to extract an alphabetic word list from our TurboText editor. It 
turns out that it was easier to use the power of TurboText with ARexx to 
accomplish our task than to use ARexx alone! 

An Example of ARexx Interprocess Control 

Souping Up TurboText with the Electric Thesaurus 
In the last section, we made an ARexx macro to run within only one host 
application program. Now we will increase the complexity just a little 
and write a true interprocess control ARexx program. Since the last 
example used two addresses, it effectively contained all the aspects of 
an interprocess control program, so it will not be too difficult to explain 

OPENDOC TurboText 
command 
T A-37 

VALUE subkeyword to 
ADDRESS instruction 
H 25 
C 10-50 f 

MOVESOF TurboText 
command 
T A-35 

INSERT TurboText 
command 
T A-28 

INSERTLINE 
TurboText command 
T A-28 

7-13 Controlling Host Applications 



Seven 

how to make an ARexx program that accesses two different host 
applications. In this example, we will continue to use TurboText, but 
we will add power to it by incorporating the Electric Thesaurus (ET) 
by Softwood, Inc. By means of an ARexx program, we can add to our 

editor an on-line Roget's Thesaurus to assist us when we are 

composing text in TurboText. 

Working with a Thesaurus 
Word processors frequently have an on-line thesaurus that allows you 
to substitute an alternate word whenever you want. They work upon 
the word under the cursor at the time you call up their thesaurus, and 
open a window with a list of alternate words from which you can select. 
They give you the choice to cancel and retain the original word, or to 
substitute some alternate word for the one under the cursor in your 
document. When you close their thesaurus window, your document is 
updated to reflect your choice, or left the same if you cancelled. 

Pseudo Code 
This ARexx program is designed to emulate the above procedure. We 
will let the above discussion mold our pseudo code, as it defines 
adequately what we wish the ARexx program to do. We simply need a 
way to pass the word under the cursor in a TurboText document to ET 

(first opening ET if it isn't running already); and a way to return our 
choice from ET to our document and make the substitution. This little 

program is somewhat challenging because ET has such a limited 

ARexx command set, that you cannot do much of anything except get 
the word in the ET string gadget, or look up another word. There are 
no commands to get the port name, for instance, or to open a console 

or a requester. 

Electric Thesaurus 
Manual References are  
marked with an E and 
page number. 

Electric Thesaurus 
ARexx commands 
E 2-8 

This is not that inconvenient, however, as ET is a window based, 

mouse and menu driven program, and we will implement our 
interprocess control so that the ARexx program just waits for you to 
finish what you are doing in the ET window, and when you quit by 
closing the window, the ARexx program will get what is in the ET string 

gadget and substitute it for the word in the TurboText document. The 

7-14 Controlling Host Applications 



The ARexx Cookbook 

REQUESTBOOL 
TurboText command 
T A-41 

Note: In the following 
program. TurboText 
commands and replies 
are in bold. and 
Electric Thesaurus 
commands and replies 
are in italics. 

only caveat is to make sure that the replacement word you want is in 
that string gadget before you close the ET window, because that is the 
word that you may substitute. Our emulation of cancelling is to open a 
boolean requester in TurboText asking if we want to make the 
replacement. It is a small window with a OK and a Cancel gadget, and 
we will program the requester strings to show our old and replacement 
words. 

Here is the program listing for Th.ttx , a Thesaurus for TurboText: 

/* Th.ttx Thesaurus for TurboText */ SIGNAL ON ERROR /* note: you must have rexxsupport.library loaded! */ Lib='rexxsupport.library' IF ~SHOW('L',Lib) THEN CALL ADDLIB(Lib,0,-30,0) OPTION RESULTS /* inside TurboText */ GETWORD word=RESULT GETPORT docaddress=RESULT SCREEN2BACK IF ~SHOW('P',ETHES_1') THEN DO /* run Electric Thesaurus. Change path to YOUR PATH! */ ADDRESS COMMAND "run work:thesaurus/ET WB" /* wait for ET window port */ ADDRESS COMMAND "WAITFORPORT ETHES_1" END /* current address ET window */ ADDRESS ETHES_1 /* bring WE screen, window to front */ SCRTOFRONT WINTOFRONT /* look up word from TurboText in ET */ LOOKUPND word /* wait for user to close ET window or quit */ DO FOREVER IF ~SHOWLIST('P','ETHES_1') THEN LEAVE /* if user quits */ IF SHOWLIST('P','ETHES_1) THEN DO GETWORD  

7-15 Controlling Host Applications 



Seven 

newword=RESULT  
CALL DELAY(30) /* delay so program doesn't hog CPU cycles */ 
END 

END 

/* something went wrong? program branches here. */ 
ERROR: 
/* back to TurboText */ 
ADDRESS VALUE docaddress 
SCREEN2FRONT 

/* keep the replacement string and make a "quoted string", too */ 
replacement=newword 
newword='"'newword'"' 

/* make a "requester string" from an expression */ 
/* the " quotes are for TurboText and the ' quotes are for ARexx */ 
insertstring='"<'word'> with <'replacement'>?"' 

/* Ask if OK to insert word(s) */ 
'REQUESTBOOL "Thesaurus: Replace..."' insertstring 
answer=RESULT 

/* substitute word in text */ 
IF answer = 'YES' THEN REPLACEWORD newword 
EXIT 0 

rexxsupport.library 

H 127 ff, disk 
C 10-129 ff 

Note: Library names 
are case sensitive! 

ERROR subkeyword 
for SIGNAL instruction 
H 38 f 
C 10-71 ff 

TURBOTEXT.LASTERROR 
TurboText error 
variable 
T 10-4  

Notes on the ARexx Thesaurus Program 
Because of the limitations of the ARexx interface in ET, we need to use 
ARexx itself to take care of some of these shortcomings. We will need 
to use the ARexx rexxsupport.library in an important 

way. Even though we recommended that you load this library in your startup 
sequence, we code a section to load it if you haven't, just in case. We 
use another example of the ARexx ERROR interrupt to make the 
program do an orderly exit if in fact this library cannot be loaded. First 
we turn on the error interrupt as before (SIGNAL ON ERROR). Then we 
include some familiar code to load the support library if it's not there. If 
the program cannot load the library for some reason, then it signals the 
ERROR: label near the end of the program and then you have the 
opportunity to CANCEL in the requester box. If anything goes wrong 
and returns an error, then its message will display in the title bar of 
TurboText. TurboText also maintains a special variable called 
TURBOTEXT.LASTERROR, which you may access like any other 
variable for further information. 

7-16 Controlling Host Applications 



The ARexx Cookbook 

Get the Word Under theOPTIONS  
After the request to ARexx to ask for a return of RESULTS, we enter the 
main program, started from an open TurboText document window with 
its own unique host address. Following our model, we get the word 
under the cursor with GETWORD, and assign word to the RESULT, just 
as we did in the last program. next we GETPORT and store the 
address name of our document window in the variable docaddress. 
Then we put the document window to the back with a SCREEN2BACK 
command (and this command doesn't return any RESULT, of course). 
We now have our word safely tucked away in an ARexx variable, and 
are ready to launch ET. 

Details of Launching ET 
If ARexx doesn't show the existence of the first ET window port, the 
program enters a block of instructions where we use the ADDRESS 
COMMAND special address to launch ET. Note that you must change 
the path name in the program listing to reflect where you keep your ET 
program! Also you must use the run command to launch ET, or it will 
take over the process that launched it, and although it will open a 
window, it will not let the ARexx process continue until you close the 
window. Run allows the parent process to continue r . These are small 
details but necessary to our success. 

ET Options and Finding Its Port 
The WB option means that ET opens on the WorkBench screen. There 
are several options in ET which you may use instead, such as opening a 
custom screen rather than a WB window. After we have launched a 
program, we cannot guarantee that if we next try to access its public 
message port, that we will succeed. Sometimes a program takes 
several seconds to load and open a window, a much slower process 
than executing the next ARexx instruction. We therefore must find the 
port before we try to access it! The ARexx implementation comes with 
what is called a DOS utility named WAITFORPORT (put it in your C: 
directory) which is a DOS command which does what its name implies: 
It waits for a port of some given name (for a maximum of 10 seconds). 

RESULTS subkeyword 
of OPTIONS instruction 
H 32 
C 10-62 f 

GETWORD TurboText 
command 
T A-26 

GETPORT TurboText 
command 
T A-22 

SCREEN2BACK 
TurboText command 
T A-45 

COMMAND special 
address for ADDRESS 
instruction 
H 44 
C 10-76 

1 This is sometimes 
called asynchronous 
launching of a program. 

Electric Thesaurus 
ARexx commands 
E 2-8 

WAITFORPORT 
command utility 
H disk 
C 10-157 

7-17 Controlling Host Applications 



Seven 

To check the port 
names of your running 
programs, use A.rexx. 
See page 7-5. 

Electric Thesaurus 
ARexx commands: 
SCRTOFRONT 
WINTOFRONT 
LOOKUPND 
E 2-8 

In our program, after we launch ET, we know that the first window it 
opens is named ETHES_1, so by means of another ADDRESS 
COMMAND, we tell the program to waitforport 'ETHES_1' which it 
does. As soon as 

ET
HES_1 comes up, the program continues. If 
ETHES_1 was found in the first place (ET was already running), this 
whole block is ignored. 

Is the Port Name Really the One? 
A short digression: We mentioned before that sometimes a host 
application program manual does not correctly inform you of the real 
name of its public message port, and ET is such a program. The ET 
manual, on page 2-9 states that the port is named " EThes_1" in the first 
window ET opens. We must conclude that the writer of that manual did 
not understand how ARexx interprets an address string as opposed to 
an address symbol, because in the text, the name "EThes_1" is 
inconsistent with the examples a little further down the page in which 
they use an address instruction as Address EThes_1 "LOOKUP 
esteem". Since they failed to use quotes around the address symbol, 
rexxmast correctly interprets the wrong name as the true name, 
ETHES_1, an example of two wrongs making a right. This is meant to 
warn you to be aware of the pitfalls and confusion that quotes, strings 
and interpreted symbols can present. The first thing, always check a 

new program for the actual port name no matter what the manual says! 

Look Up the Word in ET 
The next thing, we set the current host address to ETHES_1. Then we 
make sure that the WB screen and the ET window come to the front 
using two ET commands SCRTOFRONT and WINTOFRONT. Now we 
are ready for the program to look up our word imported from TurboText. 
The ET command LOOKUPND looks up the word in the current window. 
Soon all its definitions and synonyms are displayed. Clicking the mouse 
pointer on one of the words in the window writes it to the string gadget. 
Clicking on the Find gadget pulls up that word's definitions and 
synonyms, and so on. Move around in ET until you get a word you'd 
rather have into the string gadget, or else get the old word back into the 
string gadget. 

7-18 Controlling Host Applications 



Seven 
r 

REQUESTBOOL 
TurboText command 
T A-41 

evaluate the address string docaddress. We move the screen to the 
front again. Now we store the entire replacement string newword in a 
variable replacement for later use, and put some double quotes around 
the variable newword for use by TurboText. Why? In some cases, a 
synonym is two or more words instead of just one; for example the word 
"selected" has a synonym "singled out". In order to use the TurboText 
command REPLACEWORD correctly, we can use only one subkeyword 
or else if there is more than one word, they must be a "string contained 
in double quotes" ('single quotes' won't do!). 

The OK/Cancel Requester 
TurboText has the capability of opening a boolean requester to ask if it 
is OK or not to do something. We use a REQUESTBOOL command to 
accomplish this. The REQUESTBOOL command takes two 
subkeywords only: a title string and an insert string. In our case, we 
want to put the value of an expression into this requester, so we build up 
the insertstring from its component parts, making sure that in its final 
form it is a "string surrounded by double quotes". Again, note that 
TurboText likes "double quotes" and won't work with 'single' quotes, 
which are used by ARexx, however. This is not covered in the 
TurboText Manual. 

Building Up the Insert String 
The insertstring expression is built up a piece at a time and it contains 
word and replacement as values of variables. The rest of the 
expression is taken as string literals surrounded by the ARexx 

single quotes. Quoting is one of the areas that produces frustration until you 
get a handle on how the ARexx interpreter works as well as what kind of 
strings a host application like TurboText is looking for. The compact and 
simultaneous combination of ARexx with an internal command set is 
powerful, but it can be a little confusing at times. When you try the 
program, it will become clear how these strings are implemented. Also 
you may experiment with the TurboText command console which is 
handy for trying out one command at a time. It displays the RESULT 
variable. Much of this example program was developed using the 
TurboText command console to test ideas and command string syntax. 

SCREEN2FRONT 
TurboText command 
T A-46 

REPLACEWORD 
TurboText command 
T A-41 

Expressions 
H 16 
C 10 - 35 

Symbol Resolution 
H 16 
C 10 -36 

Command Console in 
TurboText 
T 10-2 

7-20 Controlling Host Applications 



The ARexx Cookbook 

Quotes: Powerful but Tricky 
The next command is the REQUESTBOOL command; note the way we 
use quotes. This is the example we mentioned before in which you 
must use quotes around your command. The ARexx interpreter, 
rexxmast, reads the entire line as a command and sends it, including 
the double quotes (") to the TurboText window port. If we did not put 
single quotes around the first part of this command, then rexxmast 
would send the wrong number of subkeywords to TurboText and not 
include those essential double quotes as literals. Once again, the single 
quotes serve to tell rexxmast how to build up the expression into a literal 
string (to send as a command) by delimiting when to start and when to 
stop treating character symbols as literals. 

Tokens 
H 11 ff  
C  10-27  ff 

When a character is not part of a literal it is of course part of some 
symbol token, so you may think of the single quotes as toggles which 
turn on string when they turn off symbol and vice versa. The double 
quotes are necessary within TurboText so they are part of the literal 
strings. Without single quotes around the first part of the command, 
TurboText would think that Thesaurus: was the first subkeyword and 
Replace... was the second; and the presence of insertstring, too, 
would not work in TurboText, causing an "unknown command" error! 
The reason for this is that ARexx recognizes and honors both single and 
double quotes. Whichever kind is outermost, will determine their 
treatment as a delimiter or part of a literal. 

INTERMEDIATES 
option of TRACE 
instruction 
H 40 
C 10-135 if  

If you are in doubt about whether a command works with or without 
quotes, use the quotes carefully. An interactive trace of the 
intermediate results is an especially good way to check to see if 
something is getting interpreted correctly or not, if the host application 
does not have a command console. In this case, if word='specified' 
and newword='pointed out', then the exact string sent to TurboText by 
REQUESTBOOL is 

REQUESTBOOL "Thesaurus: Replace..." "<specified> with <pointed out>?" 

Thus, there are only two "subkeywords" to the command, each 
surrounded by double quotes. Notice how the single quotes disappear 

7-21 Controlling Host Applications 



Seven 

REPLACEWORD 
TurboText command 
T A-41 

once the string is constructed. We chose the < and > characters to 
delimit our choices. The boolean requester returns a 'YES' if we click on 
the OK gadget and a 'NO' if we click on the Cancel gadget. If we get 
a 'YES', we replace the original word with the "quoted evaluated string" of 
the synonym newword using the REPLACEWORD command. Finally, 
the program EXITS and we are finished! 

Your editor, TurboText is all ready, thanks to the Electric Thesaurus for 
you to write the great American novel, and you are also solidly at the 
intermediate stage of ARexx expertise. You may even have entered the 
relatively advanced stage if none of your relatives understand what you 
are talking about now. 

A More Complex Interprocess ARexx Program 

TurboText Controlling Proper Grammar 
We have stated before that one of the hardest challenges to the ARexx 
programmer is to work with and around the idiosyncracies of a host 
application ARexx interface, but what do you do when there are too few 
commands to work with? In the case of Proper Grammar, also by 
SoftWood, Inc., we must overcome severe limitations in order to do 
anything at all with it and ARexx. If Proper Grammar had any fewer 
ARexx commands in its internal set, then it would be absolutely useless 
with respect to controlling it via ARexx. Nevertheless, the challenge of 
making a useful ARexx controller for Proper Grammar (PG) is an 
excellent learning experience, and we will end up with a viable and 
automatic ARexx routine to add the power of PG's grammar and spell 
checking to the already awesome flexibility of TurboText. 

We will need to make use of two ARexx libraries (sometimes called 
function hosts in ARexx jargon): rexxsupport.library and 
rexxutil.library, both mentioned earlier. This example is rather 
complex, as it makes use of two ARexx host application interfaces and 
two function hosts, and needs to call an exterior ARexx program as well. 
What we want to do is simple, but the implementation is difficult, or at 
least tricky. Here is the pseudo code. 

Proper Grammar (PG) 
by 
SoftWood, Inc. 
P.O. Box 50178 
Phoenix, AZ 85076 
(602) 431-9151 

Manual References 
marked by 
P and page. 

rexxsupport.library 
H 127 ff, disk 
C 10-129 ff 

rexxutil.library 
by David Junod 
from BIX bbs 

7-22 Controlling Host Applications 



The ARexx Cookbook 

Pseudo Code for PG from a TurboText Document 
1. Assumptions: A TurboText document window is open and a text 
document is loaded. The program, called PG.ttx is launched from the 
host address of the TurboText document window. Proper Grammar is 
not running, but has certain specified LOAD and SAVE preferences 
preset. In case PG happens to be running, the program will replace the 
text in PG's first open window: with address PGRAM_1 (As in the case 
of ET above, the PG ports are also mis-named in the PG manual). 

2. If a block is selected in the TurboText window at the time of 
launching PG.ttx, then the selected block is cut and loaded into PG for 
analysis and editing. When the user quits PG, the program control 
returns to TurboText where a requester gives the option to replace the 
old text with the new, or to cancel and put back the old text. In PG, we 
may answer NO to the "Save Changes made to document?" requester 
and safely return to TurboText with the new text, or we can save the 
new text into another file and then exit. PG.ttx should allow use of all 
edit functions in PG including the clipboard cut and paste without 
affecting the final results. 

3. If a block is not selected when the program is launched, then the 
entire document is cut and loaded into PG for analysis and editing, and 
passed back with exactly the options mentioned above in step 2. 

4. The original format of the document in TurboText will be preserved 
as much as possible, by use of TurboText commands, PG startup 
preferences (for ASCII loading and saving formats); and a TurboText 
routine to reformat all paragraphs after the text is returned in the format 
of one long line per paragraph. The text inside PG, although readable, 
will by necessity not be identical to the format in TurboText, and the user 
should not reformat line lengths inside PG, but only edit and analyze the 
text. The program will restore the original line lengths to the TurboText 
document. New paragraphs may be added successfully inside PG, 
however. 

5. The clipboard device is used to communicate to and from PG. Since 

7-23 Controlling Host Applications 



Seven 

the PG ARexx command set is devoid of commands to cut or paste from 
the clipboard, or to save or load files by name, then we must use the 

rexxutil.library function host to read and write from/to the clipboard. 
PG's only ARexx commands that are useful to us are those that replace 
the entire text of an open window with some other text, and another 
command to get the entire text from a PG document window in the 
preset ASCII format, and that exhausts about half of the usable PG 
ARexx command set! 

We have made our pseudo code very general this time, almost as 
though it were a software specification instead of pseudo code. This is 
because we want to keep our goals in sight, but we are not yet sure just 
how we will code the program. At this point we know only that we will 
use the clipboard as the holding device for text passed from one 
program to the other, and that we want to preserve the original format of 
the document. 

A useful programming technique is to construct the steps that you are 
sure you know how to do and go from there. This is the actual way that 
this program was developed, and to illustrate the technique, we will 
follow the original thinking, and build up the code a piece at a time to 
end up with the final listing, rather than first list the code and then 
explain it. This will replicate the programmer's reality better. Let's first 
get an open document in TurboText over to Proper Grammar, and then 
we will worry about other things. 

/* PG.ttx Text block to Proper Grammar * / 
SIGNAL ON ERROR 

Note: Library names 
are case sensitive! 

/* note: you must have rexxsupport.library loaded! * / 
Lib='rexxsupport.library' 
IF ~SHOW('L',Lib) THEN CALL ADDLIB(Lib,0,-30,0) 

/* note: you must have rexxutil.library loaded! * / 
Lib='rexxutil.library' 
IF ~SHOW('L',Lib) THEN CALL ADDLIB(Lib,0,-30,0) 

OPTIONS RESULTS 

/* the following commands were added later for format 
purposes to return the cursor to its former position, 
convert tabs to spaces, and set wordwrap on. */ 

7-24 Controlling Host Applications 



The ARexx Cookbook 

GETCURSORPOS 
TurboText command 
T A-19 

CONV2SPACES 
 TurboText command 

T A-8 

SETPREFS 
WORDWRAP ON 
TurboText command 
T A-51 

GETPORT TurboText 
command 
T A-22 

GETBLKINFO 
TurboText command 
T A-17 f 

MOVESOF TurboText 
command 
T A-35 

MARKBLK TurboText 
command 
T A-30 

MOVEEOF  TurboText 
command 
T A-32 

CUTBLK  TurboText 
command 
T A-10 

READCLIP() 
rexxutil.library function 
See which docs. 

EXECTOOL NAME 
 TurboText command 

T A-14 

REPLACETEXT  Proper 
Grammar command 
P 8-1 

GETCURSORPOS 
pos=RESULT 
PARSE VAR pos line column . 
CONV2SPACES 
SETPREFS WORDWRAP ON 

GETPORT 
portname=RESULT 

GETBLKINFO 
info=RESULT 

PARSE VAR info blk . 
IF blk='OFF' THEN DO 

MOVESOF 
MARKBLK 
MOVEEOF 
END 

CUTBLK 
clip=READCLIP(,VAR,,0) 

/* STOP!!!! NOTE!!!! */ 
/* Modify the following instruction to reflect your 
actual Proper Grammar path! */ 
EXECTOOL NAME "Run Work:Grammar/Proper_Grammar" 
ADDRESS COMMAND "WAITFORPORT PGRAM_1" 
ADDRESS 'PGRAM_1' 
REPLACETEXT clip 

If we run this code, we will successfully open PG with the selected block 
or the entire document loaded into PG depending upon whether a block 
was selected or not in the original TurboText window. We model much 
of this starting code upon the last example for ET. We check for two 
libraries and load them if they are not already loaded, after turning on 
the SIGNAL ON ERROR interrupt which we will need in the same way 
as in the Th.ttx program. We of course want to get results so we 
specify that OPTION. The next commands were added later for format 
purposes and will be discussed later. 

Next we get the port name of our open window and assign it to the 
variable portname. The next instruction, GETBLKINFO is the way we 
use the TurboText ARexx command set to determine whether there is a 
block selected or not. The RESULT variable carries a string which may 
be parsed. The first word of the RESULT string (which we have 
assigned to the variable info), is either ON or OFF to indicate whether a 
block is selected or not, so we simple parse (by forced tokenization) that 
string variable and assign the first word to blk. Then a simple IF block 

7-25 Controlling Host Applications 



Seven 

selects the entire document if there was not a block already selected. 
Inside the IF block, the TurboText commands move to the start of the 
document (MOVESOF), mark the block (MARKBLK), and move to the 
end (MOVEEOF), effectively selecting the entire document. The next 
command (CUTBLK) cuts the block and places it into the clipboard. 

A Support Library Function Reads the Clipboard 
Then we use one of the rexxutil.library functions: READCLIP().  Notice 
the use of the commas. Each argument for READCLIP() has its place 
and since we do not use all of the arguments, we let the commas serve 
as their place holders. The argument options we do use are VAR to 
specify that we wish to read the entire clipboard into a simple symbol 
token (a variable); and the other, 0, specifies the clipboard unit w
e wish to read (unit 0, the primary clipboard unit which TurboText uses). The 
clipboard unit was found out by experimentation with an example 
program that illustrates the use of rexxutil.library, and comes with this 
library file (downloaded from BIX). Refer to the documentation for 
rexxutil.library for more information about how to use its many other 
features. 

Launch Proper Grammar 
Now we are ready to open Proper Grammar. Make sure you change the 
EXECTOOL instruction to specify your Proper Grammar path name! 
We use the TurboText EXECTOOL command, but you could also use 
an ADDRESS COMMAND instruction. We RUN the PG program to 
allow detach PG to run separately. Otherwise the ARexx program will 
not continue to execute. Then, exactly as in the ET example, we use 
WAITFORPORT to wait until the port name is available before we 
continue, and we then pass program control to the address of the first 
window of PG. We use one of the precious few PG ARexx commands 
REPLACETEXT to replace any text that might be in the PG window with 
the text we read from the clipboard and assigned to the variable clip. 
Note that we have freed up the clipboard for use by PG. The old text 
from TurboText is safely stored in the variable clip, and later we can use 
a rexxutil.library function to copy clip back to the clipboard for pasting 
into the TurboText window if we decide to cancel the replacement. 

rexxutil.library 
by David Junod 
from BIX bbs. 

The rexxutil.library 
and documentation is 
included free on the 
Companion Disk to The 
ARexx Cookbook. See 
the copyright page to 
order. 

EXECTOOL TurboText 
command 
T A-14 

COMMAND special 
address for ADDRESS 
instruction 
H 44 
C 10-76 

WAITFORPORT 
command utility 
H disk 
C 10-157 

REPLACETEXT Proper 
Grammar command 
P 8-1 

7-26 Controlling Host Applications 



The ARexx Cookbook 

DELAY() support 
library function 
H disk 
C no reference 

Inside Proper Grammar: Set the Preferences 
Once we are in PG with our block or document loaded, we begin to 
notice problems if we have not pre-set the PG preferences a certain 
way. There is no discussion in the PG manual about what the ASCII 
input/output preferences actually do, so experimentation was necessary 
to find the best settings. There are two settings in input and two settings 
in output. Only the second setting in each should be selected. This 
makes a paragraph at each blank line for input, and inserts a blank line 
at each paragraph in the output. The first settings (which should be 
"off") have to do with line feeds. If they are selected, the text will look 
better in PG, but you will find serious problems with the grammar 
checker, as it will think that each line is in a separate paragraph, and will 
incorrectly find all sorts of non-sentence fragments and capitalization 
"errors". 

With the settings specified as above, the text will look different in PG 
from its appearance in TurboText, but we will find a way to reformat it 
correctly when it returns. In the meantime, we don't worry about line 
feeds; we merely analyze and edit the text. PG has too many 
shortcomings to overcome this little annoyance, but it

wlll

better to have 
analysis capability than (temporarily) formatted text. We will now code a 
loop similar to the one we used for ET to insure that we capture any 
changes we make to the text during our time inside PG. Here is the 
loop which we append to the above code. 

/* wait for user to close PG window or quit */ 
DO FOREVER 

/* IF user quits, then the port name goes away. */ 
IF ~SHOWLIST('P','PGRAM_1') THEN LEAVE 
/* IF user doesn't quit, port name is there... * 
IF SHOWLIST('P','PGRAM 1') THEN DO 

GE ETTEXTPARA 
text=RESULT 
/* Delay so program doesn't hog CPU cycles * 
CALL DELAY(30) 
END 

END 

ERROR:  

Proper Grammar I/O 
preferences 
P 5-7 

Click on the second box 
in Input and Output 
Options. 

LEAVE instruction 
H 31 
C 10-60 f 

SHOWLIST() support 
library function 
H 129 
C 10-133 

GETTEXTPARA 
Proper Grammar 
command 
P 8-1 

7-27 Controlling Host Applications 



Seven WRITECLIP

WRITECLIP() 

rexxutil.library function 

Search Order for 
functions 
H  47 f 
C 10-85 f 

This loop has much more than a slight chance of an error during its 
execution. Should you exit during the time it is executing the 
GETTEXTPARA command, which takes some time if a large document 
is loaded, then an error will occur, and we need to branch to the 
ERROR: label to retain control. The poor PG command set prevents us 
from making a better way to get the text from the window, as there is no 
facility for a requester or for saving or loading or writing automatically to 
the clipboard, yet our specifications were for an automatic program. 
This solution works, however inelegantly, and if you make sure to wait a 
second or two before you exit once your text is complete, the error 
interrupt in ARexx will prevent any hang ups of the program, and you will 
be sure that the program has grabbed your latest changes. All this loop 
does is grab the latest text from the PG window (every 3/5ths of a 
second), and store it into a variable text.  

Return Text Formatting 
This text is formatted by the PG pre-set preferences so that we return 
each paragraph of text as one long line; and paragraphs are separated 
by a blank line. We plan to reformat in TurboText which has a complete 
command set. Now we want to write text to the clipboard using a 
rexxutil.library function, WRITECLIP(). This is done by 

CALL WRITEVLIP(text,VAR,,0,,) 

which again uses commas to place-hold for arguments we don't need. 
The arguments specify that we are writing the variable text to the 
primary clipboard unit 0. Note that we can call a function from a third 
party function host exactly like we call ARexx official built in functions. If 
the relevant library is loaded, then the operation is transparent and we 
have effectively added some new functions to our function set. This 
demonstrates the modularity of ARexx. Now our old text is in the 
variable clip and our new text is in text as well as in the clipboard. We 
are ready to return to TurboText, and our last bit of code. 

7-28 Controlling Host Applications 



The ARexx Cookbook 

/* back to TurboText */ ADDRESS VALUE portname SCREEN2FRONT /* Ask if OK to insert word(s) */ 'REQUESTBOOL "Proper Grammar:" "Replace old text with new?"' answer=RESULT /* substitute word in text */ IF answer = 'YES' THEN DO PASTECLIP CALL ForPar.ttx END IF answer = 'NO' THEN DO CALL WRITECLIP(clip,VAR„0„) /* restore the cursor portion from the original document */ MOVESOF line=line-1 column=column-1 MOVEDOWN line MOVERIGHT column EXIT 0  

PASTECLIP  TurboText 
command 
T A-39 

MOVERIGHT 
TurboText command 
T A-35 

MOVERlGHT 

 
TurboText command 
T A-32 

SCREEN2FRONT 
 TurboText command 

T A-46 

Back in TurboText 
Now we change the address back to the TurboText window we left, and 
bring its screen to the front and open a requester to ask should the 
program replace our old text or not. If the answer is YES, then we paste 
the clipboard and reformat using an ARexx exterior function: ForPar.ttx. 
Speaking of reformatting, on several occasions, depending on the 
document, I found that the format was not preserved correctly when tabs 
were involved. The CONV2SPACES command fixed this. The other 
command in the first section that was added later was the SETPREFS 
WORDWRAP ON command which is necessary if we want the 
paragraphs brought back from PG as one long line to wrap properly 
when we reformat. You may of course, put in a command to turn off 
word wrap again at the end if you desire. 

If the answer to the requester is NO, then we use the WRITECLIP() 
function from the rexxutil.library to write clip (the old text) to the 
clipboard and then paste to the TurboText window from the clipboard. 

7-29 Controlling Host Applications 



Seven 

Documentize.ttx 
See T 10-5 

MOVESOF TurboText 
command 
T  A-35 

FORMATPARAGRAPH 
TurboText command 
T  A-17 

MOVEDOWN 
TurboText command 
T  A-32 

Since this was the original text, we need not reformat it. The final group 
of commands returns the cursor to its original position in the document 
before we called PG. 

The Exterior ARexx Function to Reformat the TurboText 

Document 
We want to use the ARexx interrupt SIGNAL ON ERROR to detect the 
end of the TurboText document in order to reformat it, and since we 
have already determined a use for the ERROR label already, we just 
make a new section as a separate ARexx program (and therefore a 
separate task) which will not interfere with the main program's use of the 
ERROR: label. Isn't multi-tasking great? Here is the short program 
which will reformat a TurboText document paragraph-by-paragraph. It, 
by the way, may be used by itself as a TurboText macro, and is the 
inverse of the ARexx macro Documentize.ttx that comes standard in 
the TurboText package. That's the main reason we made it a stand 
alone program. We call it ForPar.ttx: 

/* ForPar.ttx Format paragraphs in TT from PG */ 
OPTIONS RESULTS 
SIGNAL ON ERROR 
MOVESOF 
DO FOREVER 

FORMATPARAGRAPH 
MOVEDOWN 
END 

ERROR: 
EXIT 0 

This is a simple program which first moves to the start of the document, 
and then enters an endless loop terminated when we get an error by 
trying to move past the end of the document. This time, we could have 
used a DO WHILE RC=0 loop instead of the DO FOREVER with the 
SIGNAL ON ERROR instruction, and kept the routine inside the main 
program, but since this program is useful by itself, we code it consistent 
with the main program for clarity, and keep it as an exterior function. 

Inside the loop a FORMATPARAGRAPH TurboText command formats 

7-30 Controlling Host Applications 



The ARexx Cookbook 

Note: In the 
TurboText commands 

 and replies are in bold. 
and Proper Grammar 
commands and replies 
are in italics. 

the paragraph so that the line feeds are correct for the 
margins of the window. it doesn't matter whether the paragraph is one long line or not: 

the command will reformat it. Since there is a blank line between 
paragraphs, the MOVEDOWN command moves the cursor (left at the 
end of the last paragraph) down one line to the 

next paragraph. 

The Complete Listing 
When the program hits the document boundary, it generates an error 
and exits. Our document back from PG is now reformatted just as it 
was. Here is the complete list

ln

g for the program which adds the power 
of a grammar/spell checker to TurboText. 

/* PG.ttx Text block to Proper Grammar */ SIGNAL ON ERROR /* note: you must have rexxsupport.library loaded! */ Lib='rexxsupport.library' IF ~SHOW('L',Lib) THEN CALL ADDLIB(Lib,0,-30,0) /* note: you must have rexxutil.library loaded! */ IF ~SHOW('L',Lib) THEN CALL ADDLIB(Lib,0,-30,0) OPTIONS RESULTS GETCURSORPOS pos=RESULT PARSE VAR pos line column . CONV2SPACES GETPORT portname=RESULT SETPREFS WORDWRAP ON GETBLKINFO info=RESULT PARSE VAR info blk . IF blk='OFF' THEN DO MOVESOF MARKBLK MOVEEOF END CUTBLK clip=READCLIP(,VAR„0) /* rexxutil.library function */ EXECTOOL NAME "Run Work:Grammar/Proper_Grammar" ADDRESS COMMAND "WAITFORPORT PGRAM_1 " ADDRESS 'PGRAM_1 ' REPLACETEXT clip  

7-31 Controlling Host Applications 



Seven 

/* wait for user to close PG window or quit */ DO FOREVER IF ~SHOWLIST('P',' PGRAM_1') THEN LEAVE /* user quits */ IF SHOWLIST( 'P',' PGRAM_1 ') THEN DO GETTEXTPARA text=RESULT /* delay so program doesn't hog CPU cycles */ CALL DELAY(30) /* rexxsupport.library function */ END END ERROR: CALL WRITECLIP(text,VAR,,0,,) /* rexxutil.library function */ /* back to TurboText */ ADDRESS VALUE portname SCREEN2FRONT /* Ask if OK to insert word(s) */ 'REQUESTBOOL "Proper Grammar:" "Replace old text with new?"' answer=RESULT /* substitute word in text */ IF answer = 'YES' THEN DO PASTECLIP CALL ForPar.ttx END IF answer = 'NO' THEN DO CALL WRITECLIP(clip,VAR,,0,,) /* rexxutil.library function */ PASTECLIP END MOVESOF line=line-1 column=column-1 MOVEDOWN line MOVERIGHT column EXIT 0  

TurboText Keyboard 
Commands 
T 9-5 ff 

EXECAREXXMACRO 
TurboText command 
T A-13 

Now you can call your TurboText SuperCharged! If you wish, you may 
assign the ET program and the PG program to suitable keys in your 
TurboText definintion file. I assigned Th.rexx to Alt-T and PG.ttx to the 
Alt-G key . Open your startup.dfn file and change the keyboard 
command equivalents to:  

ALT-T EXECAREXXMACRO Th.ttx ALT-G EXECAREXXMACRO PG.ttx 

7-32 Controlling Host Applications 



The ARexx Cookbook 

Chapter 8: 
Using ARexx and PostScript 
Together 

Use ARexx to Make a PostScript Driver for a Text Editor 
An increasing number of Amiga users are discovering the benefits of 
using a PostScript capable printer, particularly since the price of such a 
printer is now below $2000. With PostScript at your disposal, you can 
print anything imaginable, except, that is, a simple text file from your 
favorite text editor! When you try to do this, you immediately realize that 
in one of their more inscrutable decisions, Commodore failed to include 
any sort of PostScript printer driver in the Preferences printer choices. 
To use a Preferences printer (your only choice on most text editors), you 
must select a Hewlett Packard LaserJet printer driver, and change the 
settings on your printer to LaserJet II emulation, a much less than 
satisfactory solution. It is easy to forget in which mode your printer is 
set. Attempt to print a file and blank pages start to spew out, or, worse, 
the printer writes garbage on your expensive laser paper. I soon tired of 
trying to keep track of two settings, and started thinking of a 
workaround. I wanted to print out program listings and documentation 
files from my editor without resorting to switch flipping and other such 
kludges. "There ought to be a simpler way", I thought to myself. 

One of the reasons to buy a PostScript printer is that they print using 
software instead of hardware to make the type faces and fonts. This 
means you can export your files to other platforms for printing. One day 
someone demonstrated to me that PostScript is, after all, an interpreted 
script language. This means that programs that control every aspect of 
the printer originate in a text file made in an editor as ASCII text files; in 
other words, you can read them, just like ARexx programs. The printer 
may be controlled simply by copying a suitable PostScript text file to the 
Parallel (PAR:) device of your Amiga. Since ARexx is an interpreted, 
script language as well, I thought that perhaps PostScript would be as 
much fun. 

8-1 ARexx and PostScript 



Eight 

The Evolution of a Good Idea 
Sometimes the history of a programming idea provides creative insight. 
Here is the story about one such idea, at the end of which you will have 
some very useful print utilities if you use a PostScript printer. While 
playing around with PostScript programs in my TurboText editor, I soon 
came across the above mentioned problem. Here I was, making 
PostScript programs and having to print their listings, for Pete's sake, in 
LaserJet II mode! Most editors have the most rudimentary means of 
printing: they just send the file to the PRT: device, which contains your 
preferences printer choice. On the other hand, DTP programs and word 
processors usually have a PostScript driver on board, but you generally 
can't access them from an editor, and their drivers don't work if you 
simply load them into Preferences. If your word processor has ARexx 
and so does your editor, then you can send the file to the word 
processor, and print it, but that can be time consuming, to wait to start 
your word processor package up and then close it down each time you 
print. I also rejected the idea of giving up the handy programmer-
oriented features of my editor to use my word processor and save in 
ASCII text format. I use WordPerfect (WordPerfect Corporation) 
which doesn't support ARexx, but I started my experiment making a 
startup macro within WordPerfect and used ARexx to start WP from 
within my TurboText editor. 

A Flash of Insight 
The WP macro loaded and printed a file in RAM with a certain name. In 
TurboText, I made the ARexx macro so that it saved its current 
document to that specific file name in RAM before it started 
WordPerfect. It worked, but the system overhead was not to my liking 
and I had to exit WordPerfect manually since it wouldn't allow a macro 
that shuts it down. WP macros are irksome in the extreme as they are 
only a clumsily implemented record of keystrokes. While I was finishing 
this test, the answer suddenly flashed to me: Make an ARexx macro 
to write PostScript commands directly to the PAR: device! Yes! 
Then I could use the considerable string handling power of ARexx to 
parse the lines of my document file and also make the PostScript 

8-2 ARexx and PostScript 



The ARexx Cookbook 

commands. ARexx could put together a PostScript program to send to 
the PostScript laser printer connected to my parallel port. PostScript is 
clumsy when it comes to file and system manipulations but ARexx is 
not. ARexx isn't so hot at formatting and page layout, but PostScript is, 
so together the two are dynamite! The following program and tutorial 
will guide you through the makings of a PostScript line printer for your 
text editor. 

How Does PostScript Work? 
We will be juggling and combining, not just apples and oranges, but 
apples, oranges and bowling balls. I'll leave it to the reader to figure out 
which represents which in the following. Before we get into the nitty 
gritty of a program listing, it would be good to explain a little about how 
PostScript works. PostScript uses an interpreter, a program that takes 
instructions one at a time and executes them. This program isn't in your 
C directory or anywhere else in your Amiga. It resides inside your 
printer aboard a hardware chip called a ROM (Read Only Memory), 
usually in the form of an EPROM (Erasable Programmable ROM) so 
that the latest version of the PostScript language may be installed at the 
factory, or so that certain printer-specific parameters may be changed 
(by experts only!). It waits for an instruction it recognizes and then 
executes it. 

The LIFO Stack or Postfix Notation 
PostScript executes instructions on a stack which is a series of registers 
which may contain data objects arranged in vertical order. One easy 
way to visualize how PostScript executes an instruction is to think of 
operating an RPN (Reverse Polish Notation) calculator such as the 
popular Hewlett Packard series. PostScript functions the same way: on 
a stack. This operation mode is sometimes called postfix notation 
using a LIFO (last in first out) stack. This apparently is how the Post 
part of the PostScript name came about, and we've already shown how 
the Script part of the name came about. 

In postfix computing, the operand (the data) is specified (pushed on to 
the stack) before the operator. The operator then takes the data off 

8-3 ARexx and PostScript 



Eight 

the stack, operates on it, and returns the result of the operation to the 
top of the stack. Confused? OK, think of your local cafeteria and the 
stacks of trays at the head of the line. They are on a spring-loaded 
device so that the uppermost tray is at a constant level and accessible 
to the customers. The last tray put on the stack by the dishwasher is the 
first one to go out and get used by a customer. That's exactly how to 
look at a postfix stack. The dishwasher represents the program putting 
objects (data) on the stack, and the customers are the operators taking 
trays off the stack and doing things with them. Sometimes a family of 
four comes in and needs four trays to eat on. Sometimes a single 
person comes in and needs only one tray. 

PostScript Operators 
Operators in PostScript are the same way: Some of them need several 
data objects pushed on to the stack in a certain order, and some 
operators need only one object. In PostScript the things on the stack 
are called objects and they don't have to be numbers; they can be 
entire dictionaries of fonts, definitions of functions, just about anything, 
even (roast beef). This is how you would put a literal text string object 
(roast beef) on the stack: Enclose it in parentheses. Parentheses are 
special characters to the PostScript language. All PostScript language 
objects may be represented by ordinary ASCII text and numbers; in 
other words all printable characters. Therefore they are prime 
candidates for string manipulation leading to PostScript program 
construction in ARexx! 

Mixing PostScript Objects, ARexx Instructions, and ARexx 

Commands 
Our apples, oranges, and bowling balls therefore correspond to 
PostScript language objects, ARexx statements, and ARexx commands. 
The only one of these three that is not universal or standard, is the 
internal command set of your editor. In the following, we look at a 
specific program to control the PostScript printer from TurboText, but 
from the context, you can easily change the code to match your favorite 
editor's ARexx command set. If your editor doesn't have ARexx 

8-4 ARexx and PostScript 



The ARexx Cookbook 

support, then you can still do the printing, but you will need to modify the 
program to leave out the TurboText-specific formatting commands and 
launch the ARexx program from a shell after formatting and saving your 
file manually. The program here could be done entirely in TurboText 
commands without resorting to saving the entire file to RAM: first, but to 
make this application more universal, we will minimized the use of the 
TurboText command set. Using ARexx directly also proves easier to 
implement than using only the internal TurboText commands. 

Load the Necessary Library 
Make sure you have the library rexxsupport.library loaded before you 
run the program! You may want to borrow some code from a previous 
example to make sure its loaded at runtime. Name the following listing 
PStextprint.ttx or something mnemonic (I forget what the definition of 
mnemonic is, but I'll think of it in a minute): 

/* PStextprint.ttx */ OPTIONS RESULTS /* Rexxsupport.library must be loaded!!!! */ /* postscript commands and parameters */ font='/Courier findfont 10 scalefont setfont' /* 10=pt. size of font */ coordx=68                                     /* left margin         */ coordy=720                                    /* top margin          */ pscommand='moveto show' pshow='showpage' /* TurboText-specific commands */ /* SAVEFILE*/ /* uncomment if you wish to save before printing */ GETFILEPATH             /* keep our file open */ doc=RESULT              /* remember the path  */ CONV2SPACES             /* make tabs into spaces to keep format     */ MOVESOF FINDCHANGE ALL FIND '\' CHANGE '\\'     /* unbalanced parentheses   */ MOVESOF                                 /* and backslashes are      */ FINDCHANGE ALL FIND ')' CHANGE '\)'     /* specials characters in Ps*/ MOVESOF                                 /* these commands change    */ FINDCHANGE ALL FIND '(' CHANGE '\('     /* the text to print them OK*/ MOVESOF                                 /* literal strings in Ps:   */ GETCHAR ch=RESULT IF ch='('^ch=')'^ch='\'THEN INSERT '\'  

8-5 ARexx and PostScript 



Eight 

SAVEFILEAS 'ram:text' 
OPENFILE doc          /* put back the old file before formatting */ /* Main program */ IF OPEN('output','PAR:','w') THEN DO CALL WRITELN('output',font) IF OPEN('input','ram:text','read') THEN DO DO WHILE ~EOF('input') DO count=1 TO 66               /* line count=66 */ line='('READLN('input')')' CALL WRITELN('output',line) CALL WRITELN('output',coordx coordy pscommand) coordy=coordy-10            /* line spacing in pts. */ END CALL WRITELN('output',pshow) coordy=720 END /* DO */ END /* input */ END /* output */ CLOSE('input') CALL DELETE('ram:text') EXIT 0  

That's the whole thing! All you have to do is launch this ARexx program 
from TurboText and it will print the file you are in to the PostScript printer 
attached to the parallel port. 

POSTSCRIPT 
commands, see 
POSTSCRlPT 

 Language 
Reference Manual, 
Second Edition 
by 
Adobe Systems, Inc. 

Published by 
Addison Wesley, 1990 

How the Program Works 
If you study the way ARexx puts the program together and keep in mind 
we are using a postfix stack, you will see the simplicity of the way it 
works. First ARexx constructs a prologue string to later send to the 
PostScript interpreter, telling it to put /Courier font on the stack (a '/' 
backslash means a literal string and not an operator to PS). Then the 
operator findfont finds the Courier font in the dictionary inside the 
printer's memory of resident fonts. Next, a number 10 is pushed on the 
stack, and a scalefont operator takes the two operands, the font and 
the scale number and scales the entire font. Remember, the result of 
findfont was shoved on the stack and is underneath the number 10. 

8-6 ARexx and PostScript 



The ARexx Cookbook 

Finally, the operator setfont sets up the font dictionary using the 
information from the stack (the scaled font) for our program to use. In 

the case of font dictionaries, the actual PostScript object on the stack is 
simply an address pointer, which names the address in memory of 
what is called an encoding vector. The encoding vector is a table of 
codes and corresponding printable characters much like you find at the 
end of programming books. By means of this lookup table, PostScript 
automatically builds each character you need, internally in software, 
when you set the font. 

Constructing Other Stack Objects 
The other assigned variables are ARexx constructs of things we need in 
PostScript such as the starting coordinates on the page and two other 
commands we'll look at later. 

Formatting the Document for PostScript 
Meanwhile, ARexx uses TurboText commands to format the file and 
then save it to a temporary file called RAM:text. The TurboText 
commands in this section escape the special PostScript characters to 
insure that they are sent along as literals and not as PostScript 
commands. PostScript uses a backslash (\) as an escape character. If 
a occurs in front of any special character, then it is treated as a literal. 
There are three special characters to PostScript: \, (, and ). Actually, A) 
PostScript doesn't mind balanced parentheses ()  and will treat them as 
literals, but B) since we never know whether we will have balanced 
parentheses or not, we escape them all to be safe. (The above 
sentence would need the parentheses escaped, but not this one). The 
last IF instruction block in the re-format section is necessary in cases 
where there is a special character as the very first character of the 
document. In that case, TurboText cannot find this character with a 
FINDCHANGE command, so we have to escape it specifically after 
testing to see if it's there, using the GETCHAR command. 

GETCHAR TurboText 
command 
T A-18 

FINDCHANGE 
TurboText command 
T A-15 

GETFILEPATH 
TurboText command 
T A-21 

SAVEFILEAS 
TurboText command 
T A-44 

OPENFlLE TurboText 
command 	 Notice that TurboText commands also get the file path and re-open the 
T A-38 	 document afterwards, to retain the exact document you were working 

on. If you wish to print documents in progress, you may want to 

8-7 ARexx and PostScript 



Eight 

SAVEFILE TurboText 
command 
T A-44 

OPEN() function 
H 60 f 
C 10-109 

WRITELN() function 
H 69 
C 10-124 

uncomment the SAVEFILE instruction to insure that the latest version is 
saved before you print. 

The Main Program 
Now in the main program, ARexx opens the PAR: port for output. 
ARexx writes the PS prologue string assigned to the ARexx variable 
font and then grabs a line, puts Q's around it, so that PostScript will 
know its a literal string, and pushes it on to the stack (with the font 
dictionary of 10pt Courier underneath). Note that "pushing onto the 
stack" is equivalent to writing a string to the Parallel port, since the 
PostScript interpreter is waiting at the other end. 

X and Y Coordinates 
On top of the above strings, ARexx puts (writes) first the X coordinate in 
1/72nds of an inch: 68, followed by the Y coordinate: 720, measured 
from the lower left corner of the paper. The coordinates represent the 
upper left hand of a letter size paper with a top margin of one inch and a 
left margin of almost one inch. This is where the first line will print. Feel 
free to change these to your satisfaction. 

Moveto and Show Set the Text Line 
Finally the string 'moveto show' is appended to our PostScript program 
line, and these two commands are pushed in their order on to the stack. 
Moveto moves to the current point on the page determined by the two 
underlying x,y coordinates on the stack. Show commits to print the text 
underneath it on the stack at the current point on the page. Notice how 
each operator in turn uses up the stack entries much like the cafeteria 
customers use up their trays, or a Hewlett Packard calculator uses up 
the numbers you enter when you press the operator keys. The objects 
underneath keep on popping up, each in their turn. 

Emulating a Line Feed/Carriage Return and Pagination 
Next, we let ARexx handle the assignment of the Y coordinate to a point 
10pts less than before to simulate what we refer to as a line 

8-8 ARexx and PostScript 



The ARexx Cookbook 

DELETE() support 
library function 
H disk 
C no reference 

EXECAREXXMACRO 
TurboText command 
T A-13 

feed/carriage return, with X held constant because it is the left margin, 
essentially. Then our program loops back and does it again until we've 
printed 66 lines. Then we let ARexx write the command showpage to 
PAR: which when it arrives at your printer, actually makes the printer 
print the page in real life. We reset all the variables to their new page 
settings and do it all again, until we hit the end of file. Then we clean up 
by closing the temporary file and deleting it with a call to the 
rexxsupport.library function DELETE(). 

The Simplified Structure 
Without all the housekeeping handled by ARexx, a PostScript program 
to print the string (roast beast) would look like this: 

Courier findfont 10 scalefont setfont 
roast beast) 
68 720 moveto show 
showpage 

We could copy this file to the PAR: device and it would print. We've just 
done the housekeeping and loop counting and editor file controlling in 
ARexx because its easier. The structure of the PostScript part of our 
ARexx program is just like that of the above program, however, 
performed over and over. 

Installing the Program in TurboText 
You may choose to open the Startup.dfn file from the TurboText 
support drawer and assign the normal menu/key sequence to 
EXECAREXXMACRO PStextprint.ttx (instead of the TurboText print 
function) so that you may always print a file with this macro. You can 
change your definition file in TurboText to the following line in the 
definitions wired to the menu and keys under the MENU section: 

ITEM "Print" "P" ExecARexxMacro sys:rexxc/PStextprint.ttx 

Now every time you select the menu or press right-Amiga-[P], your file is 
printed, because the former command to PrintFile has been replaced 
by an ExecARexxMacro command referencing the program file. See 

8-9 ARexx and PostScript 



Eight 

what I mean about the power of TurboText? I can hot wire an ARexx 
macro to any key to do all sorts of things (even sorts)! 

Adapting a Different Editor 
If you use another editor with ARexx support, you will want to change 
the above program to use the commands peculiar to your brand of 
editor. All else will remain the same. You will want to do the following in 
your editor, either within the ARexx macro or manually: 

1. Remember the path to your file and store it in ARexx variable "doc". 

2. Convert all tab characters to spaces. Otherwise, format can suffer. 

3. Take care of the special characters in PostScript: (, ), and \ to make 
them print as literals. Put the PostScript escape character\ in front of all 
parentheses and backslashes to make them into literals. The fastest 
way to do this is in your editor with a find and replace operator, although 
it is possible in ARexx to find and replace any string. Order is important. 
Escape (precede with a \) the escape character first; then the 
parentheses. Balanced parentheses are not a problem, but you may not 
know beforehand whether they are balanced or not, so it is safest to 
change all parentheses to a parenthesis preceded by a backslash. 
Don't forget to move to the start of file (SOF) before each find and 
replace operation. 

4. Save current file as 'RAM:text' 

5. Re-open the file by its original file name. 

Gotchas to Consider 
There are a couple of Gotchas: If you haven't saved the file you were 
working on lately, it may be that you print your latest version and then an 
older one appears after printing. You may put in a command in the 
editor command section of the ARexx program to save the file before 
printing. In the case of TurboText, you would uncomment the 
command: 
SAVEFILE 

8-10 ARexx and PostScript 



The ARexx Cookbook 

before the other commands. You may also find a Gotcha here. If you 
were working on a new version of a file and weren't sure of it, and you 
wanted to study a printout before you saved it...well you see what I 
mean. You may also use as a backup any automatic backups you may 
have programmed into your editor. The RAM:text file will have had its 
tabs converted to spaces; and any parentheses and backslashes 
preceded by a backslash. It is up to you to keep tabs on which file you 
want. in a manner of speaking. 

Other Ideas 
You may have gathered that this little program is only the beginning. 
You can of course make custom logos or drawings appear as a 
background to your text without resorting to a DTP program or your 
word processor. You may also choose to put dates, filenames or page 
numbers as headers or footers using ARexx to write the PostScript 
strings directly. For more complex things such as logos, it is simply a 
matter of writing the PostScript commands and saving them to a file 
filename. Then in your ARexx routine, you just put in the following: 

ADDRESS COMMAND 'copy [filename] to PAR:' 

Then your ARexx program will copy the program to the printer through 
the parallel port. The page will not print until you send a showpage 
command to PostScript, so you can build up complex pages easily. In 
this way you can unlock many creative possibilities. 

References for PostScript 
For further reading, I recommend the Addison Wesley series which 
includes PostScript Language Reference Manual and the PostScript 
Language Tutorial and Cookbook. Remember that PostScript is a 
universal language that allows you to take your files to any platform that 
supports PostScript. So next time you are in your bookstore, browse the 
section for other computers besides the Amiga and feel right at home, 
knowing that everything in these PostScript manuals applies to your 
Amiga. Enjoy the possibllities that the PostScript language coupled with 
ARexx offers. Remember, the other guys don't have ARexx! 

8-11 ARexx and PostScript 



Eight 

Printing Envelopes with ARexx and PostScript 
Here's another such ARexx/PostScript example. Let's take care of the 
annoying absence of any good way to print envelopes with the 
addresses filled in properly. It's not very satisfactory to have to use a 
DTP program just to print an envelope when you've written a letter in 
your word processor. Not only is it time consuming to fire up your DTP 
program to print a single envelope, but you may not even own a DTP 
program. We will use ARexx and PostScript to make a dandy envelope 
print utility that runs from the shell, and allows you to save a data base 
of addresses, as well as print envelopes. 

Some Useful Utilities 
If you have a word processor such as WordPerfect, you can open a 
WShell over your WP window and input the address from the letter 
directly, using a freely distributable program called snap v1.62 by 
Mikael Karlsson (available as shareware from BIX, or included with 
WShell). This is an extremely handy little utility that allows you to copy 
(snap) text from anywhere and then paste it anywhere, even from 
custom screens. When running in the background, snap allows you to 
copy text to the clipboard by holding down the left Amiga key while you 
click the left mouse button. Snap allows you to copy a whole block of 
text, such as an address, by clicking and dragging out a box around the 
text. Snap pastes the copied text again at your cursor position in any 
active screen or window when you again hold down the left Amiga key 
and click the right mouse button. 

Another handy utility included with WShell (freely distributable on BIX) is 
popcli, by The Software Distillery, a hot key program to open a shell 
window at any time when you press the Esc key and the left Amiga key 
together. It includes a screen blanker, too. Since WordPerfect does not 
cut or copy to the clipboard, snap proves invaluable for using the 
clipboard in spite of this drawback, and popcli allows you to open a 
shell window quickly, using hot-keys. Even if you do not have these two 
utilities the PostScript envelope printer will be usable, but until you make 
a data base of addresses, you will have to manually type in each new 
address. 

8-12 ARexx and PostScript 



The ARexx Cookbook 

The Envelope Print Program 
The program is called simply E.rexx and is designed to work with any 
PostScript printer capable of feeding standard business sized envelopes 
of 9 1/2 x 4 1/8 inches. Use envelopes with a squared off flap to prevent 
jamming, and select a paper with no tooth to it (as smooth as possible). 
Here is the listing: 

/* E.Rexx Envelope PS Printer */ 
start: print='no' savefile='' SAY 'Start: Enter filename. [Rtn]=Enter address. Q=Quit. L=List Addresses.' PARSE UPPER PULL input IF input == 'Q' THEN EXIT 0 IF input == 'L' THEN DO ADDRESS COMMAND 'DIR data:wp/addresses' SIGNAL start END k=1 IF input == '' THEN DO SAY 'Enter address: line 1 [Rtn], line 2 [Rtn], etc. @ = finished.' DO FOREVER PARSE PULL line.k IF line.k='@' THEN DO;line.k='';SIGNAL Decide;END k=k+1 END /* FOREVER */ k=k-1 END /* input==''*/ IF input ~= '' THEN DO IF OPEN('file','data:wp/addresses/'input,'R') THEN DO l=1 DO WHILE ~EOF('file') line.l=READLN('file') SAY line.l l=l+1 END /* DO WHILE */ k=l-1 CALL CLOSE('file') END /* IF OPEN */ ELSE DO SAY 'Could not open your address file. Try again.' SIGNAL start END /* ELSE */ END /* input ~='' */  

8-13 ARexx and PostScript 



Eight 

Decide: SAY '[P]=print; [S]=save to file; [B]=do both. [Q]=quit.' PARSE UPPER PULL answer IF answer == 'Q' THEN EXIT 0 IF answer == 'S' | answer == 'B' THEN DO SAY 'Enter filename. Default path is Data:WP/addresses/' PARSE PULL savefile savefile = 'Data:WP/addresses/'savefile IF OPEN('outfile',savefile,'W') THEN SAY 'Saving 'savefile DO n=1 TO k-1 CALL WRITELN('outfile',1ine.n) END /* DO */ END /* S | B */ IF answer == 'P' | answer == 'B' THEN print='yes' IF print= 'yes' THEN CALL printaddress(k,line.) CALL CLOSE('outfile') SIGNAL start EXIT 0 printaddress: PROCEDURE EXPOSE k line. /* postscript commands and parameters */ font='/NewCenturySchlbk-Roman findfont 12 scalefont setfont' coordx=410                                    /* left margin  */ coordy=300                                    /* top margin   */ pscommand='moveto show' pshow='showpage' tran='0 -612 translate' rotate='90 rotate' IF OPEN('output','PAR:','W') THEN DO SAY 'PRINTING...' CALL WRITELN('output',font rotate tran) DO i=1 TO k CALL WRITELN('output','('line.i')') CALL WRITELN('output',coordx coordy pscommand) coordy=coordy-12 END coordx=135 coordy=418 /* Change the following to YOUR RETURN ADDRESS */ CALL WRITELN('output','(Merrill Callaway)') CALL WRITELN('output', coordx coordy pscommand) coordy=coordy-12 CALL WRITELN('output','(511-A Girard Blvd. SE)') CALL WRITELN('output', coordx coordy pscommand) coordy=coordy-12 CALL WRITELN('output','(Albuquerque, NM 87106)') CALL WRITELN('output', coordx coordy pscommand) coordy=coordy-12 CALL WRITELN('output','W)     /* For foreign letters put USA here */ CALL WRITELN('output', coordx coordy pscommand) coordy=coordy-12 CALL WRITELN('output',pshow) END  

 

8-14 ARexx and PostScript 



The ARexx Cookbook 

CALL CLOSE('output') 
RETURN 

SIGNAL instruction 
H 38 f 
C 10-71 ff 

PROCEDURE 
instruction 
H 35 
C 10-68 f 

PARSE instruction 
H 33 ff 
C 10-64 thru 10-68 

COMMAND special 
address for ADDRESS 
instruction 
H 44 
C 10-76 

FOREVER iteration 
specifier for DO 
instruction 
H 27 f 
C 10-53 ff 

Arrays see Stems and 
Compound symbols 
H 21 f 
C 10-44 ff 

Program Design 
The program is divided into three sections. The first section takes care 
of our address data base and entering new addresses. It is labeled 
start: and we use a SIGNAL start instruction (a GO TO) to jump to the 
start when required. The second section is labeled decide: and this is 
where the program lets you decide whether to save the address file, 
merely print it, or save and print the address. The final section is a 
PROCEDURE labeled printaddress: which the program calls when it 
needs to print the file on an envelope. 

Getting the Data 
First E.rexx asks for the file name, a Q to quit, an L to list the files in our 
data base of addresses, or simply a [Rtn] if we want to enter a new 
address. Then it parses our answer into input and acts accordingly. If 
we answer Q then it exits. If we answer L then it uses an ADDRESS 
COMMAND to perform an AmigaDOS DIR instruction on our chosen 
path to our address files, in case we need to jog our memory. It jumps 
back to the start after this choice by means of the SIGNAL start 
instruction. It initializes a node k for an address line array, and if we 
have entered a [Rtn] to signify that we want to enter a new address, it 
enters a now familiar DO FOREVER block to allow us to input all the 
lines we need for the address. We escape from the loop by entering a 
blank line with only a [Rtn]. Since you may need to use blank llnes in 
your addresses, the escape to test is for some character you will never 
use in someone's address such as @. We build an array line. with 
nodes k to contain all the address information. 

Using the Address Data Base 
If the initial input is not the string @, then the program attempts to 

8-15 ARexx and PostScript 



Eight 

OPEN() the file for us using the path hard coded into the program. 
Make sure to change this part to match your system directories! The 
program opens the file and reads it into the line. array using I as nodes 
for use by the printing section. While we are at it we let the program 
SAY each line so we can see if we have the right address from our data 
base

Iine.

close 'file' our logical name for the read file, so that if we 
access it again, we can open it successfully. If it is already open, we 
cannot open it again! The ELSE clause takes care of the situation in 
case we make a mistake and enter a non-existent file name. 

Print, Save, or Both? 
The second section, at the decide: label, asks us about our choice to 
quit, save, print, or print and save the address. If we want to print and/or 
save, the program OPENs a file name 'outfile' as a write file and a loop 
writes the array to the file. It also sets a "flag" variable print to 'yes' if 
we choose to print at all. Note that we could have accomplished this 
test and print procedure call in only one step, but the extra code is there 
to remind you that you can make your own flags this way. In many 
programs, the function call will not be adjacent to the set flag test, 
warranting the use of this technique. Variables which serve as flags 
may be passed to a function by the call itself and then control decisions 
within the function. If you like more compact code substitute 

OPEN() function 
H 60 f 
C 10-109 

SAY instruction 
H 38 
C 10-70 

ELSE instruction 
H 28 f 
C 10-56 f 

WRITE argument to 
OPEN() function 
H 60 f 
C 10-109 

CLOSE() function 
H  55 
C 10-98 

IF answer == 'P' | answer == 'B' THEN CALL printaddress(k,line.) 

for the two lines. The rest of the main program cleans up by closing the 
write file and SIGNALing start to allow us to print multiple envelopes. 

How to Pass an Entire Array to an Internal Function 

EXPOSE subkeyword 
for PROCEDURE 
instruction 
H  35 
C 10-68 f 

Procedure 
Meanwhile, if we wanted to print, the program passes the largest node k 
and an entire array line. to the PROCEDURE printaddress. Notice how 
we EXPOSE k and line. to the PROCEDURE. This way we don't worry 
about parsing arguments or any other chores, and most important, this 
is the correct way to pass an entire array with all its elements to a 
function: We expose the array by name in the procedure label line. 

8-16 ARexx and PostScript 



The ARexx Cookbook 

Note carefully the syntax of passing an entire array. The order in which 
we pass the arguments: k, and then line. makes a difference. Also note 
the comma in the call, and that there is no comma in the EXPOSE list of 
variables. Also note that the period, but no nodes are attached to line. 
(the array stem). The syntax is critical here and it is easy to overlook 
typos and mistakes. See also: Hawes, page 35; and Commodore, page 
10-68 f. 

The PostScript/ARexx Print Function 

Transforming the Page Coordinates for Envelopes 
There are many similarities between this internal function and the 
program to print files from TurboText, discussed earlier. The only real 
difference is that we need to rotate the axes of the printing 90 degrees 
and then translate along the Y axis, as envelopes feed into the printer 
lengthwise. 

The PostScript Coordinate System 
PostScript describes any page with an X and Y coordinate system with 
ordered pairs (X,Y) in units of points or 1/72nds of an inch. The default 
origin (0,0) is at the lower left corner of the page, but we may 

transform the coordinates, if we desire, by rotating around the 
origin or translating the origin. 

You may think of a piece of paper on your desk upon which you 
place your right hand with your index finger along the left long 
side (the Y axis) and your thumb along the lower short side (the X 
axis). Your hand represents the default coordinate system, called 
a right hand coordinate system. 

Rotate 
The PostScript operator rotate rotates the entire coordinate system 
(your hand with the thumb and index finger at 90 degrees to each other) 
around the present origin (the lower left corner of the paper) 
counterclockwise the number of degrees specified by the number placed 
on the stack just beneath the operator (remember this is a LIFO stack!). 

8-17 ARexx and PostScript 



Eight 

90 Rotate 
Note that all the positive X and Y values rotate off the page if 
we do only a 90 rotate operation. We therefore need to 
complete a coordinate translation before our paper is lined 
up correctly for landscape printing (print is rotated 90 
degrees). 

0 -612 Translate 
PostScript accomplishes shifts of the coordinate system 
using the translate operator which uses the values of X and 
Y on the stack underneath the operator. The sequence of 
PostScript objects: 0-612 translate moves minus 612 points 
(8.5 inches) along the Y axis and none along the X axis. 
Note that the shift is negative along the newly rotated Y axis. 
The PostScript measurements are still along the index finger 
for the Y coordinates and along the thumb for X coordinates, 
the positive direction being toward the finger tips. 

Landscape Printing 
The landscape transformation (PostScript: 90 rotate 
followed by 0-610 translate) effectively prints everything at 
90 degrees to the original orientation of the paper. Order 
matters; the correct sequence being rotate, then translate. 
Refer to the illustrations. 

The Output 
The ARexx program builds the strings it needs to send to PostScript, 
and then opens the logical name 'output' for writing to the parallel port. 
It then writes the prologue which shoves the font, rotate, and tran 
strings on the stack. By means of a loop it puts parentheses around the 
lines of address information to make them literals, and puts them on the 
stack. The coordinates for the text position were determined by 
measuring a regular sheet of paper with a business envelope centered 
on it lengthwise. 

8-18 ARexx and PostScript 



The ARexx Cookbook 

Measurements: 
72 Points = One Inch. 

Note: 
Change the code to 
your return address! 

The Companion Disk to 
The ARexx Cookbook 
includes a second 
version of E.rexx that 
will print special 
accented characters 
used in international 
correspondence. It 
also prints an "Air Mail" 
message on the 
envelope. See 
copyright page to order. 

Determining the (X,Y) Coordinates in the Transformed System 
The coordinate system measurements are for a standard sheet of 
paper, so allowances have to be made for the smaller envelope 
centered on a standard page (see illustration). In other words, any 
margins around the envelope centered on a standard piece of paper 
must be added to the coordinates. Even though we are sending through 
only an envelope, the printer still thinks it's printing on a standard sized 
page, so we must make sure to print in the area covered by the 
envelope! It is always a good idea to test print using a full sheet of 
paper, or you can damage your print drum! After testing on a full 
sheet of paper, hold up an envelope centered lengthwise on the page to 
see if the printing lines up in the correct position. 

After the measurements for the text placement were made in inches 
they were converted to points (multiplied by 72) and became the 
coordinates. The moveto and show PostScript operators accomplish 
the setting of the text position as in the previous example. 

The Return Address 
The final section of the print function is to print the return address in the 
upper left corner of the envelope. Be careful not to print too close to the 
edge of the envelope. Since this is fixed information, it was hard coded 
into the program. Note the way that the program moves down one line 
by subtracting 12 points from the Y coordinate for each line. The final 
command is the PostScript showpage command which does the actual 
printing. 

This little program is very useful and handier than using anything else to 
print envelopes quickly, and it stores a data base of addresses for you. 
PostScript and ARexx together are unbeatable! 

Conclusion of the ARexx Tutorials 
We have now toured a lot of ground. If you have followed the exercises, 
you have an adequate knowledge of ARexx to start making it work for 
you in all your applications whether they be in text, graphics, video or 
music. Commands are commands, and any program may be controlled 

8-19 ARexx and PostScript 



Eight 

using identical text manipulation and interprocess control techniques 
covered in the previous sections. Commands, being simply strings, are 
best manipulated when you are good at programming text tools. Text 
processing is the most universal task on any computer, and that is why 
we studied it in such depth. Remember, you are now literate in ARexx. 
You can read, understand and modify any ARexx code you may find in 
specialist publications. Your imagination is the only limit! 

The remainder of this book is devoted to listings of useful or interesting 
ARexx programs with only a few remarks about them. Use them 
directly, or modify them, or simply study them and you will learn more 
about ARexx. 

8-20 ARexx and PostScript 



The ARexx Cookbook 

ARexx and Art Department 
Professional (ADPro) 
Aspects of Pixels and Images 
Four situations recur frequently in Amiga graphics: 
1. How do you deal with images imported from a device that uses 
square pixels once they are inside your Amiga? Suppose you have a 
picture to scan on the Epson ECS300C with 1:1 pixel aspect, and you 
want to fill a 640 x 400 screen. If you scan it according to that pixel 
count in the ADPro driver window, it will fill your screen ut it 
will appear too "tall and skinny" compared to the way the original looked, 
even though the number of pixels remains at 640x400. This is because 
the Amiga screen pixels are not square. We need to scale the height 
down a bit to get the proportions back, but now the image is too short 
and no longer fills the screen. We need both to scan a taller height in 
pixels and also scale the height down afterwards to fill the screen with 
an image of the proper aspect. How do we do this? We need to do 
what is called "scale to pixel aspect" while simultaneously scaling to fit 
the screen. Pixel aspect is the ratio of the pixel width dx to its height dy 
(dx:dy). Aspects generally may refer to pixels, images, or the screen 
format itself. We will use different variables to distinguish which one we 
mean. Some commonly accepted pixel aspects for popular programs 
are 10:11 for DeluxePaint; 69:80 for DCTV (in overscan); and 11:13 for 
ADPro. The Epson ECS300C scanner uses 1:1 pixels. 

2. Assuming we have a correct pixel aspect, the second problem is 
more common: How do you scale the data so that if you render it in 
another screen format, it will look right? Screen format pixels 
have an aspect of width w to height h (w:h). In an image with a constant 
aspect W:H rendered in different Amiga screen formats, notice that it 
takes different numbers of pixels in the W and H directions to render the 
"same" image in different screen formats. The "pixel aspect" to do with 
screen formats is not always identical in meaning to the "pixel aspect" in 
1. above. This is why people sometimes get confused. "Screen format" 
pixel aspects are determined by doubling, dividing in half, or leaving 
alone the width or height "image pixel counts". ADPro distinguishes 

A-1 Appendix A More Programs 

Art Department 
Professional (ADPro) 
by 
ASDG. Inc. 
925 Stewart St. 
Madison. WI 53713 
(608) 273-6585 

ADPro ARexx 
Interface described 
starting on page 277 of 
ADPro Manual. 



these screen formats accordingly: 

1) High Res Interlace = 22:26 
2) Low Res Non-Interlace = 44:52 
3) High Res Non-Interlace = 22:52 
4) Low Res Interlace = 44:26 

These four values represent the 
basic four Amiga screen formats, 
even though 1) and 2) reduce to the 
same "pixel aspect" of 11:13 as 
defined in 1. above. 

Appendix A More Programs 

3. A related problem is how do you 
scale the data so that you will get as 
near a full screen as possible, and 
still keep the image aspect correct? 
Fig 1 shows the relationship 
between an IMAGE with an arbitrary 
aspect W:H and the Amiga SCREEN 
aspect (X:Y). Solving the two 
equations for the two unknowns, X0 
and Y0, we then compare X0 to X 
and Y0 to Y. We use these 
inequalities to decide whether to use 
(X and Y0); or (X0 and Y) as our new 

dimensions. Only one of the inequalities can hold true for a given image 
aspect. In the case of an exact fit, then neither inequality is true. 

4. A further complication comes when you consider using Overscan. 
The Amiga Overscan increases the W pixel count by 15% and the H 
count by 20%. There are 128 possible transformations: 4 screen

e same four in Overscan, transformed both to and from 
each other in both the X and Y directions: 128=(4+4)*(4+4)*2. 

All the resolutions, colors, and screen modes on the stock Amiga 3000 
add up to 208 possible combinations. Finally, there is the vertical 

A-2 Appendix A More Programs 



The ARexx Cookbook 

adjustment on your monitor to consider. 

ARexx to the Rescue 
With these programs, you can scale from any screen resolution with or 
without overscan, to any other with ease, and you can make the pixel 
aspects just right for your application. 

Monitor Image Aspect Adjustment 
The first thing to make sure of is the correct image aspect adjustment of 
your monitor. In some monitors this is a small screw inside a hole in the 

back; in a 1950 it's a knob behind a 
door in the side. I like to use 

DeluxePaint IV in "Be Square" mode, 
and draw a light colored solid square 
(hold down the shift key), and a 
smaller square inside the first. 
Then, with a clear plastic ruler (not 
metal--it will mess up the magnetic 
field of your screen), measure the 
squares for accuracy. If they are off, 
then adjust the monitor's vertical 
height to make them truly square. 
Now we are ready. 

Scaling to Pixel Aspect 
Fig 2 illustrates the arithmetic to do 
with pixel aspects and scaling 
between them. 

Building a GUI 
The rexxarplib.library is handy for 
our purposes. ADPro has an ARexx 
macro capability, but its requesters 
are limited to just a few characters, 

A-3 Appendix A More Programs 



Appendix A More Programs 

Environment 
Variables 
are set with 
rexxarplib.library 
functions. 
Refer to library docs. 

and we have many interconnected decisions to make. A window with 
logically interlocked gadgets is ultimately the best solution. 

Press Function Key F2 while in ADPro. The F2.adpro program loads 
libraries if necessary, checks for a large enough Workbench screen and 
opens a custom screen if necessary. Then it creates a host application 
complete with I/O port names, opens a window, and builds some 
gadgets. It also calls guiPostMsg.rexx to put up our image information 
in its own window. All rexxarplib.library gadgets do is send a 
command string to a host application port name of your choice. That's 
why we program our system as several smaller ARexx programs which 
some gadget "calls" when clicked on. The F2.adpro program does its 
thing and exits, leaving behind a window wired to send particular strings 
whenever gadgets are clicked. Notice how we can send arguments 
along with the string; for instance the position of the mouse pointer in 
the %x %y arguments. Also notice the finicky way in which we must 
quote long strings to insure that the ARexx command parser interprets 
things like line continuation commas or string tokens correctly. The rat's 
nest of quotation marks is one small price we must pay for using 
typeless tokens (ARexx variables). 

Environment Variables 
The programs use environment variables rather than passing arguments 
all over the place. The program guiTerm.rexx terminates all processes 
and gets rid of these environment variables. The main screen calls 
either guiSPO.rexx (from the top gadget) or guiSPD.rexx (lower 
gadget) to set up and interlock other gadgets for further operations. The 
program guiAddons.rexx makes the gadgets that set the environment 
variables of our target screen format and the Y Overscan, etc. It also 
makes the "EXECUTE" gadget that calls the program that does the 
scaling work in ADPro: guiEX.rexx. The upper bank of four gadgets are 
created by guiSPO.rexx. These all pass their arguments to 
guiStartScOnly.rexx which takes care of more interlocks, launching 
guiScalePixAsp.rexx with appropriate arguments to scale to pixel 
aspect in ADPro. In guiEX.rexx, we use two, two-dimensional 
transformation matrices WX . and HY. and absolute scaling instead of 

A-4 Appendix A More Programs 



The ARexx Cookbook 

Note : The companion 
disk contains an 
advanced version of 
the ADPro Scale Utility 
which has functions 
that support the 
Firecracker24 display 
board formats. as well 
as other refinements. 
See the copyright 
page to order this disk. 

percent scaling to insure exact pixel counts.  

Gadgets that are not used are "removed" and/or turned off by the 
programs' "interlocks". The environment variables G, H, and gad are 
used to tell the programs if the top, the middle or the bottom gadgets 
have yet been drawn. The interlocks at each level use these to make 
choices. 

Operation 
In ADPro, press function key F2 to launch the programs. If you already 
have another F2.adpro program, then you may safely rename this one. 
If you use System1.3, and a non-interlaced Workbench, then a custom 
screen will open with the window. If you use System2.0, then you'll get 
a full sized Workbench window. Select the top gadget to scale to pixel 
aspect only, and click on the lower gadget to scale to screen size and 
optionally change pixel aspects, too. Each of the original gadgets opens 
another group of gadgets from which to select. 

The lower gadgets look for rendered data. If you forgot to render, a 
requester asks if you want to "Smart Render" and will attempt to guess a 
screen format based on current pixel aspect of your data. To render 
manually, exit. The gadgets change their highlights indicating which 
data is in the environment variables. They also lock out gadgets not to 
be used by their interlocks. The "Y Overscan" gadget lets you choose 
+15% or +20% Y overscan. To keep image aspect, the default, 15% is 
the best choice. To fill the screen with a 640x400 image in overscan at 
736x480, choose "Fill Screen" 20% Y Overscan. The image stretches 
5% in the Y direction, filling the screen. In video, the stretch will not be 
noticeable, but a bottom border would be. 

The "Help" gadget calls up some useful image information for Amiga 
screens. The logo code is commented out, but you may include an IFF 
file (from a brush) in this way. 

The Change Pixel Aspect button allows you to reset the pixel aspect 
without scaling the data. Use it if you've previously scaled data 

A-5 Appendix A More Programs 



Appendix A More Programs 

manually and need to reset the pixel aspect to a meaningful value 
before you scale to another screen format. 

The Listings 
To aid in readability, the listings show rexxarplib.library functions in 
italics, and ADPro commands in bold. ARexx commands and 
instructions are in normal type face.  

/* F2.adpro GUI for guiEX.rexx */ 
/* see note in guiEX.rexx      */ 

OPTIONS RESULTS 

/* flag for message window */ 
flag=0 

/* if our window is there, post the latest info */ 
IF SHOW('P','SCALEHOST') THEN DO 

CALL guiPostMsg.rexx 
flag=1 
END 

/* setup Loads libraries */ 

libs.1='rexxsupport.library' 
/* extended functions (DOS,etc.) */ 

libs.2='rexxarplib.library' 
/* intuition, windows, gadgets */ 

DO i=1 TO 2 
IF ~SHOW('L',libs.i) THEN CALL ADDLIB(libs.i,0,-30,0) 
IF ~SHOW('L',libs.i) THEN EXIT 20 
END 

/* set a default env variable */ 
CALL SETENV(YOSET,1.15) 

/* put ADPro to back */ 
ADDRESS "ADPro" ADPRO_TO_BACK  

/* 
** Check for big enough screen; 
** if screen too small (i.e. WB1.3) then 

** we will open a custom public screen "APS" 
** Otherwise we'll use the interlaced WB 

** for our SCALEHOST (the port name) window. 
*/  

A-6 Appendix A More Programs 



The ARexx Cookbook  

row=SCREENROWS('Werkbench') 

col=SCREENCOLS('Workbench') 
lace=SCREENLACE('Workbench') IF (row<400|col<640|lace=0) THEN DO RESULT=OPENSCREEN(,,"HIRES" "LACE",, "ADPro Scale Utility V1.0","APS",,640,,) END /* ** Create our very own host application. ** We should use the asynchronous "AREXX" port. ** This window GETS its messages thru "SCALEHOST" ** This window SENDS its messages to "REXX". ** This window tries to open on public screen "APS". ** If it cannot, it opens on the "Workbench" screen. */ ADDRESS AREXX "'CALL CreateHost("SCALEHOST","REXX",APS)' " /* wait for our new port to come on line */ WAITFORPORT "SCALEHOST" /* Amiga Intuition parameters for the window and gads */ /* for gads */ idemp="CLOSEWINDOW GADGETUP MENUPICK" /* for window */ flags="NOCAREREFRESH WINDOWCLOSE WINDOWDRAG", " WINDOWDEPTH WINDOWSIZING SIZEBOTTOM ACTIVATE" /* open the window with the parameters we want */ CALL OPENWINDOW("SCALEHOST",0,11,640,389,idcmp,flags,, "F2.ADPro: Select a Scaling Operation...") /* what to do if we click on the closewindow gad */ CALL MODIFYHOST(SCALEHOST,CLOSEWINDOW,"'CALL guiTerm.rexx'") /* ** Add the primary gadgets to the window. ** If the gad is clicked, the last string is sent to "REXX". ** Here, they are calls to the other programs. */ CALL ADDGADGET("SCALEHOST",10,370,"EXIT",, " EXIT ","'CALL guiTerm.rexx'") CALL ADDGADGET("SCALEHOST",275,125,"REN",, " IMAGE INFO ","'CALL guiPostMsg.rexx'") CALL ADDGADGET("SCALEHOST",400,125,"HELP",, "    HELP    ","'CALL guiHELP.rexx'")  

 

A-7 Appendix A More Programs 



Appendix A More Programs 

CALL ADDGADGET("SCALEHOST",275,105,"CPA",, 
" SET PixAsp ","'CALL guiCPA.rexx %x %y'") 
/* post the image info on the window */ IF flag=0 THEN CALL guiPostMsg.rexx CALL ADDGADGET("SCALEHOST",10,20,"SPIX",, " SCALE: To Pixel Aspect Only ",, "'CALL guiSPO.rexx'") CALL ADDGADGET("SCALEHOST",10,125,"SPAD",, " SCALE: Raw & Rendered Data ",, "'CALL guiSPD.rexx'") /* set the defaults for the environment vars */ CALL SETENV(gad,0) CALL SETENV(G,0) CALL SETENV(H,0) EXIT 0 

/* guiSPO.rexx scale pixels only GUI F2.adpro */ /* makes the four scale gads for the top screen gad */ OPTIONS RESULTS /* interlock */ CALL SETGADGET (SCALEHOST, SPIX, ON) /* make gad and pass args in the pgm call */ CALL ADDGADGET("SCALEHOST",10,40,"SDOC",, " SCALE: Pixel aspect only     (pick)  X:Y ",, "'CALL guiStartScOnly.rexx ,%x %y'") CALL ADDGADGET("SCALEHOST",10,55,"SDOP",, " SCALE: Pixel aspect only (DPaintIV) 10:11 ",, "'CALL guiStartScOnly.rexx 10 11,%x %y'") CALL ADDGADGET("SCALEHOST",10,70,"SDOA",, " SCALE: Pixel aspect only    (ADPro) 22:26 ",, "'CALL guiStartScOnly.rexx 22 26, %x %y'") CALL ADDGADGET("SCALEHOST",10,85,"SDOD",, " SCALE: Pixel aspect only     (DCTV) 69:80 ",, "'CALL guiStartScOnly.rexx 69 80, %x %y'") /* tell the environment we have made these gads */ CALL SETENV(G,1) CALL SETENV(gad,0) /* interlock & disable gads we should not use */ IF GETENV(H)=1 THEN DO CALL SETGADGET(SCALEHOST,SPAD,OFF)  

 

A-8 Appendix A More Programs 



The ARexx Cookbook 

 

/* Interlocks for gadgets */ CALL SETGADGET(SCALEHOST,PC,OFF) CALL SETGADGET(SCALEHOST,PP,OFF) CALL SETGADGET(SCALEHOST,PA,OFF) CALL SETGADGET(SCALEHOST,PD,OFF) CALL SETGADGET(SCALEHOST,PO,OFF) CALL REMOVEGADGET(SCALEHOST,"PC") CALL REMOVEGADGET(SCALEHOST,"PP") CALL REMOVEGADGET(SCALEHOST,"PA") CALL REMOVEGADGET(SCALEHOST,"PD") CALL REMOVEGADGET(SCALEHOST,"PO") CALL SETGADGET(SCALEHOST,HR,OFF) CALL SETGADGET(SCALEHOST,LR,OFF) CALL SETGADGET(SCALEHOST,IL,OFF) CALL SETGADGET(SCALEHOST,NL,OFF) CALL SETGADGET(SCALEHOST,OS,OFF) CALL SETGADGET(SCALEHOST,ST,OFF) CALL REMOVEGADGET(SCALEHOST,"HR") CALL REMOVEGADGET(SCALEHOST,"LR") CALL REMOVEGADGET(SCALEHOST,"IL") CALL REMOVEGADGET(SCALEHOST,"NL") CALL REMOVEGADGET(SCALEHOST,"OS") CALL REMOVEGADGET(SCALEHOST,"ST") CALL REMOVEGADGET(SCALEHOST,"EX") CALL REMOVEGADGET(SCALEHOST,"YOSET") END EXIT 0  

/* guiSPD.rexx scale pixels and display gui for F2.adpro */ 
OPTIONS RESULTS 
* interlock to turn gads on and off */ CALL SETGADGET(SCALEHOST,SPAD,ON) CALL SETGADGET(SCALEHOST,SPIX,OFF) /* MAKE H GADGETS */ /* note the way we pass arguments to the */ /* pgm that makes the variables          */ CALL ADDGADGET("SCALEHOST",10,145,"PC",, " SCALE:    (pick)  X:Y  ",, "'CALL guiMakeVar.rexx "C",%x %y'") CALL ADDGADGET("SCALEHOST",10,160,"PP",, " SCALE:(DPaintIV) 10:11 ",, "'CALL guiMakeVar.rexx "P" 10 11'") CALL ADDGADGET("SCALEHOST",10,175,"PA",, " SCALE:   (ADPro) 22:26 ",,  

A-9 Appendix A More Programs 



Appendix A More Programs 

"'CALL guiMakeVar.rexx "A" 22 26'") 
CALL ADDGADGET("SCALEHOST",10,190,"PD",, " SCALE:  (DCTV) 69:80 ",, "'CALL guiMakeVar.rexx "D" 69 80'") CALL ADDGADGET("SCALEHOST",10,205,"PO",, " SCALE:  Display Only   ",, "'CALL guiMakeVar.rexx "O" GETENV(xaspect) GETENV(yaspect)'") CALL ADDGADGET("SCALEHOST",120,370,"EX",, " EXECUTE ",, "'CALL guiEX.rexx %x %y'") "'CALL guiMakeVar.rexx "O" GETENV(xaspect) GETENV(yaspect) '" /* tell the environment we have made these gads */ CALL SETENV(H,1) /* interlock */ /* removing a gad makes it inoperative */ IF GETENV(G)=1 THEN DO CALL SETGADGET(SCALEHOST,SDOC,OFF) CALL SETGADGET(SCALEHOST,SDOP,OFF) CALL SETGADGET(SCALEHOST,SDOA,OFF) CALL SETGADGET(SCALEHOST,SDOD,OFF) CALL REMOVEGADGET(SCALEHOST,"SDOC") CALL REMOVEGADGET(SCALEHOST,"SDOP") CALL REMOVEGADGET(SCALEHOST,"SDOA") CALL REMOVEGADGET(SCALEHOST,"SDOD") END /* make the rest of the gads */ CALL guiAddons.rexx EXIT 0  

/* guiPostMsg.rexx posts adpro image info */ /* in its own window on SCALEHOST window  */ OPTIONS RESULTS /* to add a logo, make one as a brush and then uncomment the next */ /* command and put the path name in here where Rexx:guiPIC.iff is */ /* CALL IFFImage("SCALEHOST",, "Rexx:guiPIC.iff",400,20,,,) */ CALL POSTMSG() CALL SETGADGET(SCALEHOST,REN,ON)  

A-10 Appendix A More Programs 



The ARexx Cookbook 

CALL SETGADGET(SCALEHOST,HELP,OFF) 
IF ~SHOW('P','ADPro') THEN, CALL POSTMSG(275,155,"ADPro is not running",APS) ADDRESS "ADPro" /* find out what kind of image we have...*/ IMAGE_TYPE itype=ADPRO_RESULT IF (ADPRO_RESULT = "NONE") | (ADPRO_RESULT = "BITPLANE") THEN DO RESULT=REQUEST(10,50,"No Image Data to Scale!",,"Resume",,APS) CALL guiTerm.rexx EXIT 0 END /* FIND() is in the rexxsupport.library */ IF FIND(itype,BITPLANE)=0 THEN rend=0 LAST_LOADED_IMAGE IF RC=0 THEN lli=ADPRO_RESULT;ELSE lli='none' IF LENGTH(lli)>34 THEN lli=LEFT(lli,34) LAST_SAVED_IMAGE IF RC=0 THEN lsi=ADPRO_RESULT;ELSE lsi='none' IF LENGTH(lsi)>34 THEN lsi=LEFT(lsi,34) SCREEN_TYPE IF RC=0 & rend~=0 THEN styp= ADPRO_RESULT;ELSE styp='no rendered data' /* make string to display in message window */ SELECT WHEN styp=0 THEN stext='LoRes, Non-Interlace ' WHEN styp=1 THEN stext='HiRes, Non-Interlace ' WHEN styp=2 THEN stext='LoRes, Interlace ' WHEN styp=3 THEN stext='HiRes, Interlace ' WHEN styp=24 THEN stext='Ovrscan X&Y, LoRes, Non-Interlace' WHEN styp=25 THEN stext='Ovrscan X&Y, HiRes, Non-Interlace' WHEN styp=26 THEN stext='Ovrscan X&Y, LoRes, Interlace' WHEN styp=27 THEN stext='Ovrscan X&Y, HiRes, Interlace' OTHERWISE stext='(see page 369)' END RENDER_TYPE IF RC=0 & rend~=0 THEN ren=ADPRO_RESULT;ELSE ren='no rendered data' OPERATOR "DEFINE_PXL_ASPECT" IF RC=0 THEN dpaline=ADPRO_RESULT;ELSE dpaline='none' PARSE VAR dpaline Xasp Yasp Xres Yres width height ADDRESS "SCALEHOST" /* set environment variables for use by other pgms */ RESULT=SETENV(Xaspect,Xasp) RESULT=SETENV(Yaspect,Yasp) RESULT=SETENV(xwide,width) RESULT=SETENV(yhigh,height)  

 

A-11 Appendix A More Programs 



Appendix A More Programs 

 

RESULT=SETENV(stype,styp) YOSET=GETENV(YOSET) IF YOSET=1.15 THEN t='15% Y Overscan: Keep Image Aspect' IF YOSET=l.2 THEN t='20% Y Overscan: Fill Screen' /* post the message in the window */ /* get the quotes exactly right!  */ CALL POSTMSG(275,155,"Last Loaded Image:                \"lli, "\ \Last Saved Image:\"lsi, "\ \Image Type:\"itype, "\ \Screen Type:\"styp": "stext, "\ \Render Type:\"ren"-color", "\ \Pixel Aspect X:Y  = "Xasp":"Yasp, "\Resolution (X by Y): "Xres" by "Yres, "\Width = "width" Height ="height, "\ \"t,APS) EXIT 0  

/* guiHELP.rexx posts adpro image info gui F2.adpro */ OPTIONS RESULTS /* to add a logo, make one as a brush and then uncomment instruction */ /* and put the path name in here where Rexx:guiPIC.iff is */ /* CALL IFFImage("SCALEHOST",, "Rexx:guiPIC.iff",400,20,,,) */ CALL POSTMSG() /* set the gadgets ON and OFF */ CALL SETGADGET(SCALEHOST,REN,OFF) CALL SETGADGET(SCALEHOST,HELP,ON) /* put the message in our window */ CALL POSTMSG(275,155,, "SCREEN FORMAT (pixels) wide high val", "\---------------------  ---- ---- ---", "\ \Low Resolution:     X = 320        0", "\Overscan:       X+15% = 368        8", "\ \High Resolution:    X = 640        1", "\Overscan:       X+15% = 736        8", "\ \Non-Interlace:      Y =     200    0", "\Full Overscan:  Y+20% =     240   16", "\Keep Asp Oscan: Y+15% =     230   16", "\ \Interlace:          Y =     400    2", "\Full Overscan:  Y+20% =     480   16", "\Keep Asp Oscan: Y+15% =     460   16", "\------------------------------------", "\Top gadget: scale to pix asp only.  ",  

A-12 Appendix A More Programs 



The ARexx Cookbook 

"\Mid gadget: pix asp AND/OR screen.   ", "\-------------------------------------", "\EXECUTE button scales according to   ", "\lower highlighted gads. Sum of vals  ", "\equals screen type.                  ",APS) EXIT 0 

 

/* guiMakeVar.rexx make up variables for gui F2.adpro */ OPTIONS RESULTS PARSE ARG N X Y, mx my SELECT WHEN N = 'C' str= 'C P A D O' WHEN N = 'P' str= 'P C A D O' WHEN N = 'A' str= 'A P C D O' WHEN N = 'D' str= 'D C P A O' OTHERWISE str= 'O D C A P' END PARSE VAR str C A D O . IF C='C' THEN X= REQUEST(mx,my,"Enter X-Aspect " , 1,OKAY,CANCEL,APS) IF C='C' & X~=''THEN Y= REQUEST(mx,my,, "Enter Y-Aspect",1,OKAY,CANCEL,APS) IF X=''|Y='' THEN DO CALL SETGADGET(SCALEHOST,PC,OFF) EXIT 0 END "'CALL SETGADGET(SCALEHOST,P"C",ON)'" "'CALL SETGADGET(SCALEHOST,P"P",OFF)'" "'CALL SETGADGET(SCALEHOST,P"A",OFF)'" "'CALL SETGADGET(SCALEHOST,P"D",OFF)'" "'CALL SETGADGET(SCALEHOST,P"O",OFF)'" CALL SETENV(dx,X) CALL SETENV(dy,Y) IF N='O' THEN R=SETENV(SCO,1);ELSE R=SETENV(SCO,0) EXIT 0  

 

/* StartScOnly.rexx an external function for GUI to ADPro scaling */ 
/* called from SPO.rexx to turn on and off gadgets */ 
OPTIONS RESULTS /* get the info in two arguments: X & Y, mouse coords */ PARSE ARG X Y, mx my 

 

A-13 Appendix A More Programs 



Appendix A More Programs 

/* logic to figure out what to turn on or off */ 

SELECT WHEN X = '' THEN str= 'C P A D' WHEN X = 10 THEN str= 'P C A D' WHEN X = 22 THEN str= 'A P C D' WHEN X = 69 THEN str= 'D C P A' OTHERWISE NOP END PARSE VAR str C P A D . IF C='C' THEN X= REQUEST(mx,my,"Enter X-Aspect",1,0KAY,CANCEL,APS) IF C='C' & X~-''THEN Y= REQUEST(mx,my,, "Enter Y-Aspect",1,0KAY,CANCEL,APS) IF X='' | Y='' THEN DO CALL SETGADGET(SCALEHOST,SDOC,OFF) EXIT 0 END /* interlock based on above logic */ "'CALL SETGADGET(SCALEHOST,SDO"C",ON )'" "'CALL SETGADGET(SCALEHOST,SDO"P",OFF )'" "'CALL SETGADGET(SCALEHOST,SDO"A",OFF )'" "'CALL SETGADGET(SCALEHOST,SDO"D",OFF )'" /* watch it work in ADPro */ ADDRESS 'ADPro' ADPRO_TO_FRONT /* call the pgm to do the scaling in ADPro */ CALL guiScalePixAsp.rexx mx my X Y /* post the results */ /* clear the old */ CALL POSTMSG() /* post the new */ CALL guiPostMsg.rexx /* back to our window */ CALL SCREENTOFRONT(APS) EXIT 0  

A-14 Appendix A More Programs 



The ARexx Cookbook 

 

/* 
guiScalePixAsp.rexx This ARexx program scales according to the pixel 

aspect entered by the user in the gui F2.adpro. Its main purpose is to properly scale images scanned by an Epson ES-300C which uses square (1:1) pixels. This program allows you to re-scale at a pixel aspect suitable for the final destination of the image: DPaintIV, DCTV, etc.  The 1:1 images are too tall and skinny if not rescaled. *** WARNING: THIS PROGRAM ALTERS YOUR IMAGE DATA! *** */ OPTIONS RESULTS ADDRESS "ADPro" /* get mouse coords, the new aspect X and Y */ PARSE ARG mx my dx dy . /* get the rest from the environment */ xaspect=GETENV(Xaspect) yaspect=GETENV(Yaspect) W=GETENV(xwide) H=GETENV(yhigh) /* if no need to act...*/ IF (dx=xaspect & dy=yaspect) THEN DO ADPRO_TO_BACK answer=REQUEST(mx,my,, "Requested Pixel-Aspect same as Data!",," Resume "," Exit ",APS) IF answer='' THEN DO CALL guiTerm.rexx EXIT 0 END IF answer='OKAY' THEN EXIT 0 END /* scaling math */ Xm=(yaspect/xaspect) Ym=1 IF dx > dy THEN DO Xm=(dx/dy)*(yaspect/xaspect) END ELSE DO Xm=(xaspect/yaspect)*(dy/dx) END IF Xm<1 THEN DO Ym=1/Xm Xm=1 END X=Xm*W Y=Ym*H N=0  

A-15 Appendix A More Programs 



Appendix A More Programs 

SCALE: /* label clause for go to */ ABS_SCALE X Y /* if not enough memory, then scale down */ /* try three times and then exit w/ error */ IF RC ~= 0 THEN DO IF N>3 THEN DO ADPRO_TO_BACK r=REQUEST(mx,my,, "Scale Failed!!",," Resume "," Exit ",APS) IF r='' THEN DO CALL guiTerm.rexx EXIT 0 END IF r='OKAY' THEN EXIT 0 END X=TRUNC((.75*X)+0.5) Y=TRUNC((.75*Y)+0.5) N=N+1 SIGNAL SCALE /* go to SCALE: */ END /* if scaling went OK clean up and redefine the Pix asp */ IF RC = 0 THEN DO OPERATOR DEFINE_PXL ASPECT dx dy END ADPRO_TO_BACK EXIT 0  

/* guiAddons.rexx add gadgets for gui F2.adpro */ 

OPTIONS RESULTS 
/* have we made these before? */ IF GETENV(gad) THEN EXIT 0 CALL ADDGADGET("SCALEHOST",10,250,"HR",, " High Res ",, "'RESULT=SETENV(xpix,640);", "CALL SETGADGET(SCALEHOST,LR,OFF);", "CALL SETGADGET(SCALEHOST,HR,ON)'") CALL ADDGADGET("SCALEHOST",120,250,"LR",, " Low Res ",, "'RESULT=SETENV(xpix,320);", "CALL SETGADGET(SCALEHOST,LR,ON);", "CALL SETGADGET(SCALEHOST,HR,OFF)'") CALL ADDGADGET("SCALEHOST",10,270,"IL",, " Interlace ",, "'RESULT=SETENV(L,2);", "CALL SETGADGET(SCALEHOST,IL,ON);", "CALL SETGADGET(SCALEHOST,NL,OFF)'")  

A-16 Appendix A More Programs 



The ARexx Cookbook 

CALL ADDGADGET("SCALEHOST",120,270,"NL",, " Non IntL ",, "'RESULT=SETENV(L,1);", "CALL SETGADGET(SCALEHOST,IL,OFF);", "CALL SETGADGET(SCALEHOST,NL,ON)'") CALL ADDGADGET("SCALEHOST",10,290,"ST",, " Standard ",, "'RESULT=SETENV(OS,0);", "CALL SETGADGET(SCALEHOST,ST,ON);", "CALL SETGADGET(SCALEHOST,OS,OFF)'") CALL ADDGADGET("SCALEHOST",120,290,"OS",, " Overscan ",, "'RESULT=SETENV(OS,1);", "CALL SETGADGET(SCALEHOST,ST,OFF);", "CALL SETGADGET(SCALEHOST,OS,ON)'") /* note how to pass mouse coodinates %x and %y */ CALL ADDGADGET("SCALEHOST",120,310,"YOSET",, " Y Ovrscan ",, "'CALL guiSetYOSET.rexx %x %y'") /* set our environment variables */ "'CALL SETENV(YOSET,1.15)'" "'CALL SETENV(gad,1)'" "'CALL SETENV(xpix,640)'" "'CALL SETENV(L,2)'" "'CALL SETENV(OS,0)'" /* interlock to set gads on and off */ "'CALL SETGADGET(SCALEHOST,HR,ON)'" "'CALL SETGADGET(SCALEHOST,IL,ON)'" "'CALL SETGADGET(SCALEHOST,ST,ON)'" EXIT 0 

 

/* guiSetY0SET.rexx requester for setting YOSET */ 

OPTIONS RESULTS /* find mouse coords */ PARSE ARG mx my . /* put up requester */ X=REQUEST(mx,my,"Set %Y-Overscan",,, " 15% Keep Aspect "," 20% Fill Screen ",APS) /* deal with result string */ IF X="OKAY" THEN CALL SETENV(YOSET,1.15) ELSE CALL SETENV(YOSET,1.2)  

A-17 Appendix A More Programs 



Appendix A More Programs 

Y=GETENV(YOSET) 
IF Y=1.15 THEN t='15% Y Overscan: Keep Image Aspect' 
IF Y=1.2 THEN t='20% Y Overscan: Fill Screen' 

/* put the changes in the message window */ 
/* notice the syntax \ for skipping lines */ 

CALL POSMSG(,,"\\\\\\\\\\\\\\\\\\"t,APS) 

EXIT 0  

/* guiEX.rexx This ARexx program scales according to the pixel aspect entered by the user in the gui F2.adpro. Its main purpose is to properly scale images scanned by an Epson ES-300C which uses square (1:1) pixels. This program allows you to re-scale at a pixel aspect suitable for the final destination of the image: DPaintIV, DCTV, etc. The 1:1 images are too tall and skinny if not rescaled. If an Amiga screen format is chosen, then the program scales to fit the screen using the pixel aspects and Amiga Screen formats. You may scale between screen size as well without distortion to convert between screen formats and/or overscan. *** WARNING: THIS PROGRAM ALTERS YOUR IMAGE DATA! *** */ OPTIONS RESULTS /* get the mouse coordinates */ PARSE ARG mx my . ADDRESS "ADPro" /* retrieve our environment variables */ stype= GETENV(stype) /* screen type */ xpix= GETENV(xpix) /* Hi res or Low res? */ L= GETENV(L) /* Interlace? */ OS= GETENV(OS) /* Overscan? */ dx= GETENV(dx) /* new X Pixel Aspect */ dy= GETENV(dy) /* new Y Pixel Aspect */ xaspect= GETENV(xaspect) /* old pixel aspects...*/ yaspect= GETENV(yaspect) W= GETENV(xwide) /* image width and height */ H=GETENV(yhigh) sco= GETENV(SCO) /* scale display only? */ YOSET= GETENV(YOSET) /* Y Overscan percent factor */ /* look for rendered data and act accordingly */ IF DATATYPE(stype)~='NUM' THEN DO  

 

A-18 Appendix A More Programs 



The ARexx Cookbook 

 

answer=REQUEST(mx-15,my-45,, "NO RENDERED data to scale!",," Smart Render/Scale "," Exit ",APS) IF answer='' THEN DO CALL guiTerm.rexx EXIT 0 END SELECT WHEN (xaspect/yaspect) > 1.1 THEN DO xpix=320 L=2 CALL SETENV(xpix,320) CALL SETENV(L,2) CALL SETGADGET(SCALEHOST,LR,ON) CALL SETGADGET(SCALEHOST,HR,OFF) CALL SETGADGET(SCALEHOST,IL,ON) CALL SETGADGET(SCALEHOST,NL,OFF) END WHEN (xaspect/yaspect) < 0.5 THEN DO xpix=640 L=1 CALL SETENV(xpix,640) CALL SETENV(L,1) CALL SETGADGET(SCALEHOST,LR,OFF) CALL SETGADGET(SCALEHOST,HR,ON) CALL SETGADGET(SCALEHOST,IL,OFF) CALL SETGADGET(SCALEHOST,NL,ON) END OTHERWISE DO xpix=640 L=2 CALL SETENV(xpix,320) CALL SETENV(L,2) CALL SETGADGET(SCALEHOST,LR,OFF) CALL SETGADGET(SCALEHOST,HR,ON) CALL SETGADGET(SCALEHOST,IL,ON) CALL SETGADGET(SCALEHOST,NL,OFF) END END /* SELECT */ END /* use in test later */ Xwid=W Yhi=H /* dealing with overscan */ OX=1 OY=1 Y=200*L IF OS=1 THEN DO OX=1.15 OY=YOSET Y=Y*1.2 

END  

A-19 Appendix A More Programs 



Appendix A More Programs 

/* scaling math & tests */ 
X=xpix*OX 
A=(yaspect/xaspect)*(dx/dy) 
IF dx/dy=xaspect/yaspect THEN A=1 
IF SCO=1 THEN A=1 

/* screen size goal */ 
SELECT 

WHEN X=320 & Y=200 THEN DO 
sto=0 
rentype=32 
END 

WHEN X=640 & Y=200 THEN DO 
sto=1 
rentype=16 
END 

WHEN X=320 & Y=400 THEN DO 
sto=2 
rentype=32 
END 

WHEN X=640 & Y=400 THEN DO 
sto=3 
rentype=16 
END 

WHEN X=368 & Y=240 THEN DO 
sto=24 
rentype=32 
END 

WHEN X=736 & Y=240 THEN DO 
sto=25 
rentype=16 
END 

WHEN X=368 & Y=480 THEN DO 
sto=26 
rentype=32 
END 

WHEN X=736 & Y=480 THEN DO 
sto=27 
rentype=16 
END 

OTHERWISE DO 
EXIT 20 
END 

END 

/* how to render if there wasn't any screen type */ 
IF DATATYPE(stype)~='NUM' THEN stype=sto 

/* transformation matrices */  
/* initialize */ 
WX.=1 
HY.=1 

A-20 Appendix A More Programs 



The ARexx Cookbook 

WX.0.0 =1               WX.3.0 =0.5             WX.25.0 =F HY.0.0 =A               HY.3.0 =0.5*A           HY.25.0 =D*A WX.0.1 =2               WX.3.1 =1               WX.25.1 =B HY.0.1 =A               HY.3.1 =0.5*A           HY.25.1 =D*A WX.0.2 =1               WX.3.2 =0.5             WX.25.2 =F HY.0.2 =2*A             HY.3.2 =A               HY.25.2 =E*A WX.0.3 =2               WX.3.3 =1               WX.25.3 =B HY.0.3 =2*A             HY.3.3 =A               HY.25.3 =E*A WX.0.24=1.15            WX.3.24=0.575           WX.25.24=0.5 HY.0.24=OY*A            HY.3.24=0.6*A           HY.25.24=A WX.0.25=2.3             WX.3.25=1.15            WX.25.25=1 HY.0.25=OY*A            HY.3.25=0.6*A           HY.25.25=A WX.0.26=1.15            WX.3.26=0.575           WX.25.26=0.5 HY.0.26=2.4*A           HY.3.26=OY*A            HY.25.26=2*A WX.0.27=2.3             WX.3.27=1.15            WX.25.27=1 HY.0.27=2.4*A           HY.3.27=OY*A            HY.25.27=2*A WX.1.0 =0.5                                     WX.26.0 =B HY.1.0 =A                                       HY.26.0 =G*A WX.1.1 =1               /*                      WX.26.1 =C HY.1.1 =A               make some variables     HY.26.1 =G*A WX.1.2 =0.5             to use...               WX.26.2 =B HY.1.2 =2*A             */                      HY.26.2 =D*A WX.1.3 =1                                       WX.26.3 =C HY.1.3 =2*A             B=1/1.15                HY.26.3 =D*A WX.1.24=0.575           C=1/.575                WX.26.24=1 HY.1.24=OY*A            D=1/OY                  HY.26.24=0.5*A WX.1.25=1.15            E=1/.6                  WX.26.25=2 HY.1.25=OY*A            F=1/2.3                 HY.26.25=0.5*A WX.1.26=0.575           G=1/2.4                 WX.26.26=1 HY.1.26=2.4*A                                   HY.26.26=A WX.1.27=1.15                                    WX.26.27=2 HY.1.27=2.4*A                                   HY.26.27=A WX.2.0 =1               WX.24.0 =B              WX.27.0 =F HY.2.0 =0.5*A           HY.24.0 =D*A            HY.27.0 =G*A WX.2.1 =2               WX.24.1 =C              WX.27.1 =B HY.2.1 =0.5*A           HY.24.1 =D*A            HY.27.1 =G*A WX.2.2 =1               WX.24.2 =B              WX.27.2 =F HY.2.2 =A               HY.24.2 =E*A            HY.27.2 =B*A WX.2.3 =2               WX.24.3 =B              WX.27.3 =B HY.2.3 =A               HY.24.3 =E*A            HY.27.3 =D*A WX.2.24=1.15            WX.24.24=1              WX.27.24=0.5 HY.2.24=0.6*A           HY.24.24=A              HY.27.24=0.5*A WX.2.25=2.3             WX.24.25=2              WX.27.25=1 HY.2.25=0.6*A           HY.24.25=A              HY.27.25=0.5*A WX.2.26=1.15            WX.24.26=1              WX.27.26=0.5 HY.2.26=OY*A            HY.24.26=2*A            HY.27.26=A WX.2.27=2.3             WX.24.27=2              WX.27.27=1 HY.2.27=1.15*A          HY.24.27=2*A            HY.27.27=A /* NEXT COLUMN >>>*/    /* NEXT COLUMN >>>*/    /* NEXT PAGE >>>*/ 

 

A-21 Appendix A More Programs 



Appendix A More Programs 

/* transform */ 
H=H*HY.stype.sto 
W=W*WX.stype.sto /* scale to screen (see Fig 2) */ Y0=(X/W)*H X0=(W/H)*Y IF X0 > X THEN Y=Y0 IF Y0 > Y THEN X=X0 /* see if we really need to act */ IF dx=xaspect & dy=yaspect & X=Xwid & Y=Yhi THEN DO CALL REQUEST(120,320,, "No differences to scale/aspect!",," Resume ",,APS) EXIT 0 END /* do it in ADPro */ ADPRO_TO_FRONT ABS_SCALE X Y IF SCO~=1 THEN OPERATOR "DEFINE_PXL_ASPECT" dx dy ELSE OPERATOR "DEFINE_PXL_ASPECT" xaspect yaspect SCREEN_TYPE sto RENDER_TYPE rentype EXECUTE ADPRO_DISPLAY ADPRO_UNDISPLAY ADPRO_TO_BACK ADDRESS SCALEHOST WINDOWTOFRONT CALL guiPostMsg.rexx EXIT 0  

/* guiCPA.rexx change Pixel Aspect gui for F2.adpro */ OPTIONS RESULTS PARSE ARG mx my . start: X=REQUEST(mx,my,"Enter New Pixel Aspect X:Y",, "10:11"," OKAY "," CANCEL ",APS) PARSE VAR X xa ':' ya . IF X='' THEN EXIT 0 IF ~DATATYPE(xa,'N') THEN SIGNAL start IF ~DATATYPE(ya,'N') THEN SIGNAL start CALL SETENV(Xaspect,xa) CALL SETENV(Yaspect,ya) ADDRESS "ADPro" OPERATOR DEFINE_PXL_ASPECT xa ya text='Pixel Aspect X:Y   = 'xa':'ya CALL POSTMSG(,,"\\\\\\\\\\\\\\\"text"\\\\\",APS) EXIT 0 

A-22 Appendix A More Programs 



The ARexx Cookbook 

/* guitTerm.rexx terminate PGM for F2.adpro */ 
OPTIONS RESULTS /* get ADPro to front */ IF SHOW('P','ADPro') THEN DO ADDRESS 'ADPro' ADPro_To_FRONT END /* address our host */ ADDRESS SCALEHOST /* get rid of all those env vars */ CALL SETENV(G) CALL SETENV(H) CALL SETENV(gad) CALL SETENV(OS) CALL SETENV(xpix) CALL SETENV(ypix) CALL SETENV(L) CALL SETENV(xaspect) CALL SETENV(yaspect) CALL SETENV(xwide) CALL SETENV(yhigh) CALL SETENV(dx) CALL SETENV(dy) CALL SETENV(stype) CALL SETENV(SCO) CALL SETENV(YOSET) /* get rid of message window */ CALL POSTMSG() /* get rid of window and quit host */ CALL QUIT(SCALEHOST) /* get rid of screen (if any) */ CALL CLOSESCREEN(APS) EXIT 0 /* END OF ADPRO GUI AND SCALE UTILITY PROGRAM LISTINGS */ 

A-23 Appendix A More Programs 



Appendix A More Programs 

UNIarray.rexx 
Solution to Exercise on Page 5-29 

 

/* ** UNIarray.rexx Uniword.rexx re-written to use multi-dimensional arrays */ SAY 'Input filename and path.' PULL infile rcode=20 IF OPEN('textfile',infile,'READ') THEN DO rcode=0 listed.=0 m=1 i=1 DO WHILE ~EOF('textfile') line.i=READLN('textfile') IF line.i ~= '' THEN DO j=1 DO WHILE line.i~='' PARSE VAR line.i word.i.j line.i /* 2-Dimensional array */ word=word.i.j /* NOTE! You cannot use an array as a NODE! */ IF listed.word THEN ITERATE /* Get rid of punctuation at end and beginning of words. */ DO FOREVER IF ~DATATYPE(RIGHT(word,1),MIXED) THEN, word=LEFT(word,LENGTH(word)-1) IF ~DATATYPE(LEFT(word,1),MIXED) THEN, word=RIGHT(word,LENGTH(word)-1) IF DATATYPE(LEFT(word,1),MIXED), &DATATYPE(RIGHT(word,1),MIXED), THEN LEAVE IF LENGTH(word)=0 THEN LEAVE END IF word='' THEN ITERATE listed.word=1 list.m=word m=m+1 j=j+1 END END i=i+1 END /* DO WHILE ~EOF */ i=i-1 IF line.i = '' THEN i=i-1 END /* IF OPEN */ ELSE SAY 'Could not open your file!'  

A-24 Appendix A More Programs 



The ARexx Cookbook 

 

/* The Shell Sort Feed the array to Shell Sort directly! */ listlength = m-1 span = 1 DO WHILE (span < listlength); span = span * 2; END DO WHILE (span > 1) span = span % 2 numpairs = listlength - span DO node = 1 TO numpairs nextnode = node span IF list.node > list.nextnode THEN DO store = list.nextnode list.nextnode = list.node DO bubpos = node-span TO 1 BY -span WHILE (store < list.bubpos) nextnode = bubpos + span list.nextnode = list.bubpos END bubpos bubpos = bubpos + span    list.bubpos = store END END node END /* the end of the shell sort of the words */ DO m=1 TO listlength SAY list.m END 

EXIT rcode 

A-25 Appendix A More Programs 



Appendix A More Programs 

Searching Large Text Files 

The Disk Bible used 
here is from 
BibleReader! 
by 
EasyScript! Software 
10006 Covington Dr. 
Huntsville, AL 35803 

SEEK() function 
H 63 
C 10-114 

Extracting Bible Verses 
This suite of programs demonstrates a method for searching a group of 
very large text files to extract specified paragraphs. Since everyone is 
familiar with the divisions of a Bible into books, chapters, and verses, it 
makes a good model. The code may be used as is if you have an ASCII 
Bible on disk with the format indicated, or you may easily change the 
code to reflect a different indexing format, and apply the program to any 
large sequentially indexed data base. The files are found in the bv.rexx 
listing. The filename is (with a few exceptions) composed of the first 
three letters of the book, a period (.) and the order found in the Bible: 
GEN.1 through REV.66. Each verse is labeled with the book 
abbreviation, and a colon (:) between chapter and verse. Thus GEN 1:1 
precedes the first verse in the first book. 

There are some interesting problems to consider in performing a search. 
Since it would be very slow to read each line in turn to get to the last 
verse in Genesis, we use a modified binary search. The ARexx SEEK() 
function allows us to find the end of the book, and then we back up a 
few characters to insure that the program position is before the next 
chapter reference. Then read forward and find out how many chapters 
are in the book, and use that number to make a ratio with which to do 
another SEEK(). The program reads forward again, and finds and tests 
the next chapter reference, and either continues to read forward, or 
backs up again depending upon the outcome. Eventually it finds the 
first verse of our desired extraction, or tells us we have requested a 
bogus reference. Several interesting error handling routines are 
embedded in these programs, to insure that valid references are 
requested, since the length of books, chapters and verses varies widely, 
and obeys no particular pattern. The program uses logic exclusively, 
instead of any sort of prepared index. This logic and the extensive 
string handling present some good exercises in ARexx. 

The four programs comprise two different "front end" programs, one to 
run from a shell (bv.rexx) and the other to launch from a hypertext 

A-26 Appendix A More Programs 



The ARexx Cookbook 

Thinker 
by 
Poor Person Software 
3721 Starr King Circle 
Palo Alto, CA 94306 
(415) 493-7234 

program called Thinker (bv.thnkr). The program called bv2.rexx 
actually does the searching. The program bft.thnkr formats the 
extract verses into a suitable hypertext format for use inside Thinker. 
If you do not have Thinker, just copy bv.rexx and bv2.rexx. The use of 
front end programs to suit your different applications is an economical 
way to code your programs. Notice the way we pass several arguments 
to the exterior program. One of these, typ, is used to signal the way in 
which messages are returned, one way to display a message in the 
Thinker window, and another way to SAY the error message in the 
WShell console window. It is quite easy to use this type of flag to take 
care of small differences between applications using the same core 
program. 

Bible Verse Extraction Program Listings 

/* bv.rexx Input Bible Verses Output to ram:bcut temporary file */ 
/* Clear the temporary file in case it's been used */ 
RC=OPEN('bvout','RAM:bcut','WRITE') 
RC=CLOSE('bvout') 
answer = Y 
flag=0 
book='' 
entry: 
DO WHILE answer ~= N 

SAY 'Enter book aaaa or aa# (e g. john, judg(es), jo2 = II JOHN)(X=EXIT)' 
PARSE UPPER PULL inbook range1 range2 
CALL TIME('r') 
PARSE VAR inbook inbook 4 inrest 
IF inbook='X' THEN LEAVE 
range=rangel range2 
IF (inbook='' & inrest='' & book~='' & range='') THEN 

DO 
inbook=book 
inrest=rest 
SAY 'Still in book of' book 

END 
book=inbook;rest=inrest 
IF inbook='' THEN  

DO 
SAY 'No book input...' 
SIGNAL entry 

END 
IF range='' THEN DO 
SAY 'Input <> first(f) and last(1) chapter(c) and verse(v)' 

A-27 Appendix A More Programs 



Appendix A More Programs 

SAY 'in the format <fc:fv> [<lc:lv>] | <fc:> whole chapter | <X> to exit' 
PARSE UPPER PULL range 
END 
IF range='X' THEN LEAVE 

type='wsh' 
CALL bv2.rexx book, rest, range, typ 
IF result=12 THEN EXIT 

flag=1 
SAY TIME('e') 'secs.' 
SAY 'Add (append) some more verses to file? Y/N' 
PARSE UPPER PULL answer 2 . 
IF ANSWER~=N THEN answ='YES, add verses. Type [Rtn] to keep same book.' 
IF answer=N THEN answ='NO, no more verses.' 
SAY answ 

END 
IF flag=0 THEN SAY 'Aborting program...no results written to file.' 
IF flag=1 THEN SAY 'Exiting program...results will be in file ''RAM:bcut''.'  
EXIT 0 

 

/* bv2.rexx Extract Bible Verses Output to ram:bcut temporary file */ PARSE UPPER ARG book, rest, range, typ PARSE VAR RANGE fc fv ' lc ':' lv chap=0 IF fv='' THEN DO /*whole chapter*/ fv=1 chap=1 END /*whole chapter*/ IF lc='' THEN lc=fc IF lv='' THEN DO lv=fv range = fc':'fv' 'lc':'lv END ok=0 realrange = range endnum = LASTPOS(':',range)+1 versend = SUBSTR(range,endnum)+1 range = LEFT(range,endnum -1)|| versend IF book = GEN THEN; book = GEN.1 IF book = EXO THEN; book = EXO.2 IF book = LEV THEN; book = LEV.3 IF book = NUM THEN; book = NUM.4 IF book = DEU THEN; book = DEU.5 IF book = JOE THEN; book = J0S.6 IF book = JDG THEN; book - JDG.7 IF (book = JUD)&(left(rest,1) = G) THEN; book = JDG.7  

A-28 Appendix A More Programs 



The ARexx Cookbook 

IF book = RUT THEN; book = RTH.8 

IF book = SA1 THEN; book = SAl.9 

IF book = SA2 THEN; book = SA2.10 
IF book = KI1 THEN; book = KI1.11 
IF book = KI2 THEN; book = KI2.12 IF book = CH1 THEN; book = CH1.13 IF book = CH2 THEN; book = CH2.14 IF book = EZR THEN; book = EZR.15 IF book = NEH THEN; book = NEH.16 IF book = EST THEN; book = EST.17 IF book = JOE THEN; book = JOB.18 IF book = PSA THEN; book = PSA.19 IF book = PRO THEN; book = PRO.20 IF book = ECC THEN; book = ECC.21 IF book = SON THEN; book = SON.22 IF book = ISA THEN; book = ISA.23 IF book = JER THEN; book = JER.24 IF book = LAM THEN; book = LAM.25 IF book = EZE THEN; book = EZE.26 IF book = DAN THEN; book = DAN.27 IF book = HOS THEN; book = HOS.28 IF book = JOE THEN; book = JOE.29 IF book = AMO THEN; book = AMO.30 IF book = OBA THEN; book = OBA.31 IF book = JON THEN; book = JON.32 IF book = MIC THEN; book = MIC.33 IF book = NAH THEN; book = NAH.34 IF book = HAB THEN; book = HAB.35 IF book = ZEP THEN; book = ZEP.36 IF book = HAG THEN; book = HAG.37 IF book = ZEC THEN; book = ZEC.38 IF book = MAL THEN; book = MAL.39 IF book = MAT THEN; book = MAT.40 IF book = MAR THEN; book = MAR.41 IF book = LUK THEN; book = LUK.42 IF book = JOH THEN; book = JOH.43 IF book = ACT THEN; book = ACT.44 IF book = ROM THEN; book = ROM.45 IF book = CO1 THEN; book = CO1.46 IF book = CO2 THEN; book = CO2.47 IF book = GAL THEN; book = GAL.48 IF book = EPH THEN; book = EPH.49 IF (book = PHI)&(left(rest,2) = LI) THEN book = PHI.50 IF book = COL THEN; book = COL.51 IF book = TH1 THEN; book = TH1.52 IF book = TH2 THEN; book = TH2.53 IF book = TIl THEN; book = TI1.54 IF book = TI2 THEN; book = TI2.55 

A-29 Appendix A More Programs 



Appendix A More Programs 

IF book = TIT THEN; book = TIT.56 
IF book = PHM THEN; book = PHM.57 
IF (book = PHI)&(left(rest,2) = LE) THEN book = PHM.57 IF book = HEB THEN; book = HEB.58 IF book = JAM THEN; book = JAM.59 IF book = PE1 THEN; book = PE1.60 IF book = PE2 THEN; book = PE2.61 IF book = JO1 THEN; book = JO1.62 IF book = J02 THEN; book = JO2.63 IF book = JO3 THEN; book = J03.64 IF book = JUD THEN; book = JUD.65 IF book = REV THEN; book = REV.66 SAY 'File is ' book 

/* Make this into Y0UR path name */ 
RC=OPEN('bvin','work:kjbible/'book,'READ') 
IF RC ~=1 THEN SELECT WHEN typ='THINK' THEN DO 'input No such book! Any key .exits.' EXIT 12 END WHEN typ='WSH' THEN D0 SAY 'No such book!' EXIT 12 END OTHERWISE N0P END RC=0PEN('bvout','RAM:bcut','APPEND') IF RC = 1 THEN DO /*output file sucessfully opened*/ totv = SEEK('bvin',-250,E) teststring = READLN('bvin') DO WHILE ~eof('bvin') teststring = READLN('bvin') PARSE VALUE WORD(teststring,l) WITH bk . IF bk=LEFT(book,3) THEN DO PARSE VALUE WORD(teststring,2) WITH tc':'tv SAY LEFT(book,3) 'has a total of tc 'chapters.' IF fc>tc THEN D0 IF type='THINK' THEN 'input No such chapter! Any key will exit.' SAY 'No such chapter! Exiting...' EXIT 12 END  

A-30 Appendix A More Programs 



The ARexx Cookbook 

 

LEAVE END END DO i=1 to 30 BY 3 /* find neighbourhood*/ est=((totv+250)%tc)*(fc-i) if est<0 THEN est = 0 if fc = 1 THEN DO newpos = SEEK('bvin',0,B) LEAVE END newpos = SEEK('bvin',est,B) DO WHILE ~EOF('bvin') teststring = READLN('bvin') PARSE VALUE WORD(teststring,l) WITH bk . IF bk=LEFT(book,3) THEN DO PARSE VALUE WORD(teststring,2) WITH xtc':'xtv IF fc < xtc THEN LEAVE IF (fc = xtc & fv < xtv) THEN LEAVE IF fc = xtc THEN LEAVE END END IF (Fc >= xtc & fv >= xtv) THEN LEAVE END /*find neighborhood*/ newpos= SEEK('bvin',est,B) outstring = '' blankline = ' ' DO UNTIL EOF('bvin') /*do until EOF input file*/ instring = READLN('bvin') IF WORD(instring,2) = word(range,l) THEN DO /*do if 1st verse found*/ outstring = outstring||instring DO UNTIL (WORD(instring,2) = WORD(range,2)&ok=1) /*do until 2nd verse found*/ instring = READLN('bvin') IF EOF('bvin')THEN DO /*EOF input*/  

A-31 Appendix A More Programs 



Appendix A More Programs 

 

IF (liv < lv|lic < lc)|(tc=lc & fv~=lv) THEN DO /*EOF before verse*/ RC=CLOSE('bvout') RC=OPEN('bvout','RAM:bcut','WRITE') IF typ='THINK' THEN 'input EOF reached before verse. Any key exits.' SAY 'EOF reached before verse. Exiting...' EXIT 12 END /*EOF before verse*/ outstring = outstring||instring RC=WRITELN('bvout',outstring) RC=WRITELN('bvout',blankline) LEAVE END /*EOF input*/ IF WORD(instring,1) = left(book,3) THEN DO /*first line of verse*/ PARSE VALUE WORD(instring,2) WITH lic':'liv IF (liv=lv & lic = lc)THEN ok=1 /*prevent last verse doesn't exst*/ IF (lic>lc & lv~=fv & ok=0) THEN DO /*last verse ~exist*/ RC=CLOSE('bvout') RC=OPEN('bvout','ram:bcut','write') IF typ='THINK' THEN 'input Last verse non-existant! Any key exits.' SAY 'Last verse non-existant. Exiting...' EXIT 12 END /*last verse ~exist*/ IF (lic=lc+1&liv=1&ok=1) THEN DO /*write last verse before new chapter*/ RC=WRITELN('bvout',outstring) RC=WRITELN('bvout',blankline) outstring = '' LEAVE END /*write last verse before new chapter*/ IF ((lic>lc|liv>lv) & fc=lc & lv=fv & chap=0) THEN DO /*write single verse incl end of chap*/ RC=WRITELN('bvout',outstring) RC=WRITELN('bvout',blankline) outstring = '' LEAVE END /*write single verse incl end of chap*/ IF (lic>lc & fc=lc & lv=fv & chap=l) THEN DO /*write chapter*/ RC=WRITELN('bvout',outstring) 

A-32 Appendix A More Programs 



The ARexx Cookbook 

 

RC=WRITELN('bvout',blankline) outstring = '' LEAVE END /*write chapter*/ RC=WRITELN('bvout',outstring) RC=WRITELN('bvout',blankline) outstring = '' END /*first line of verse*/ outstring = outstring||instring END /*do until 2nd verse found*/ IF word(realrange,1)~=word(realrange,2) THEN, insert='through' WORD(realrange,2)||' ' IF (WORD(realrange,1)=WORD(realrange,2)&chap=0) THEN insert='' IF (WORD(realrange,1)=WORD(realrange,2)&chap=1) THEN, insert='through end of chapter' SAY LEFT(book,3) WORD(realrange,1) insert, 'written to RAM:bcut w/o [Hrt] except between verses.' EXIT 0 END /*do if 1st verse found*/ END /*do until EOF input file*/ IF typ='THINK' THEN 'input First verse not found. Any key exits.' SAY 'First verse not found. Exiting...' EXIT 12 END /*output file sucessfully opened*/ ELSE DO SAY 'Output file not there!' IF typ='THINK' THEN 'input Output file not there! Any key exits.' EXIT 12 

END 

/* bv.thnkr Thinker Host:Input Bible Verses Output to ram:bcut temporary file */ 
OPTIONS RESULTS PARSE UPPER ARG inline verses answ insrt . RC=OPEN('bvout','RAM:bout','WRITE') RC=CLOSE('bvout') answer = Y fIag=0 book='' entry: DO WHILE answer = Y 

A-33 Appendix A More Programs 



Appendix A More Programs 

 

'input Enter book aaaa or aa# (ex:john,judg(es),jo2 = II JOHN)(X=exit)' inline = RESULT PARSE UPPER VAR inline 1 inbook 4 inrest IF inbook='X' THEN LEAVE IF (inbook='' & inrest='' & book~='') THEN DO inbook=book inrest=rest END book=inbook;rest=inrest IF inbook='' THEN DO SIGNAL entry END 'Input Input (f)irst/(l)ast (c)hapter:(v)erse <fc:fv lc:lv> X=Exit' verses = RESULT PARSE UPPER VAR verses 1 range 12 IF range='X' THEN LEAVE typ='think' CALL bv2.rexx book, rest, range, typ IF result=12 THEN EXIT flag=1 'input Add (append) some more verses to file? Y/N' answ = RESULT PARSE UPPER VAR answ 1 answer 2 . END IF flag = 1 THEN call bft.thnkr EXIT 0 

 

/* bft.thnkr Format Bible */ OPTIONS RESULTS t=OPEN('bbk','RAM:bcut','READ') 'GET CURSOR' /*need this to initialize current statement*/ prevline = '' firstline = '' flg = 0 flag = 0 'input Add verses after cursor: S=Same, D=Down, U=Up level;X=Exit.' letter = RESULT PARSE UPPER VAR letter 1 level 2 IF level = 'X' THEN EXIT DO UNTIL EOF('bbk') nowline = READLN('bbk') /* If verse is at beginning, then... */ IF datatype(left(word(nowline,2),1))=num THEN DO /* put on labels */ pos = LASTPOS('  ',nowline,20) 

A-34 Appendix A More Programs 



The ARexx Cookbook 

front = LEFT(nowline,pos-1) 
front ='('WORD(front,1)','WORD(front,2)','front')' 
nowline = front||nowline 

/* nowline is first line of verse with labels */ 
IF flg = 1 THEN DO 

firstline = nowline 
nowline = '' /* don't want firstline in next statement! */ 
END 

END /* put on labels */ 
/* combine nowline and previous lines */ 

prevline = prevline||nowline 
flg = 1 

/* should we write the verse to thinker? */ 
IF (firstline ~= '')|EOF('bbk') THEN DO 

/* add a statement after current one in Thinker */ 
IF level = 'S' THEN 'add after same' prevline 
IF level = 'U' THEN DO 

'add after up' prevline 
level = 'S' 
END 

IF level = 'D' THEN DO 
'add after down' prevline 

level = 'S' 
END 

prevline = '' /* clear line for new input */ 
prevline = firstline /* the start of new statmnt */ 
firstline = '' /* clear firstline */ 
END /* add a statement after current one in Thinker */ 

END /*go back and read another line */ 
'SAVE' 
EXIT 0 

A-35 Appendix A More Programs 



Official ARexx Nomenclature Similar Terms (not rigorous) 

Tokens 

Comment Tokens 

Symbol Tokens 

Fixed Symbol Tokens 

Simple Symbol Tokens 

Stem Symbol Tokens 

Compound Symbol Tokens 

Symbol Values 

String Tokens 

Operator Tokens 

Special Character Tokens 

Clauses 

Null Clause 

Label Clause 

Assignment Clause 

Instruction Clause 

Command Clause 

Expressions 

Combinations of: 

String Tokens 
Symbol Tokens 
Operator Tokens 
Parentheses 

Internal Function Call 

Words, entities 

Comments 

Variables 

Numeric Constants 

Variable names 

Array names 

Array elements 

Variable values 

String literal, String, Name 

Operators 

Special Characters 

Statements 

Blank line 

Label statement 

Assignment statement 

Instruction statement 

Command statement 

Expressions 

Compound expressions 
Functions, function calls 

Subroutine 

Appendix A 

Table of Equivalent Terminology 

A-36 Appendix A 



Index 	 The ARexx Cookbook 

Note: References to other manuals occur first, 
and are in italics: 
C=Commodore ARexx manual 

H=Hawes ARexx manual 

E=Electric Thesaurus manual 

P=Proper Grammar manual 

T=TurboText manual 

! character in TRACE ARexx instruction 6-2 
'REXX' public message port 1-1 
.rexx extension 1-9 
90  rotate PostScript operator 8-18 
? character in TRACE ARexx instruction 6-2 

A  
ABBREV() built-in ARexx function H 51, 

C 10-91 f 

ABS() built-in ARexx function H 51, C 10-92 

absolute scaling in ADPro A-4 
ACTIVATE window flag A-7 
ADDGADGET() rexxarplib.library function A-7, A-8, 

A-9. A-10, A-16, A-17 
ADDLIB() built-in ARexx function H 51, 

C 10-92f, 6-14, 6-15 
address 1-7, 1-13, 2-8, 2-9, 7-1, 7-2, 7-4 thru 7-11, 

7-13, 7-15, 7-17 thru 7-20, 7-23, 7-26, 7-29, 8-7, 
8-12, 8-13, 8-15, 8-16, 8-18, 8-19, A-23 

ADDRESS ARexx instruction H25, C 10-50 f, 7-3 
ADDRESS COMMAND special address 7-2, 

7-6, 7-15, 7-17, 7-18, 7-25, 7-26, 7-31, 8-11, 
8-13, 8-15 

ADDRESS VALUE 7-6, 7-9, 7-13, 7-19, 7-29, 7-32 
ADDRESS() built-in ARexx function H 52, 

C 10-93, 7-3 
addresses and programs 7-1 ff 
addresses as expressions 7-7 
ADPRO_TO_BACK ADPro command A-6, 

A-15, A-16, A-22 
algorithms 4-13 

ALL option of TRACE ARexx instruction H 40, 

C 10-135 ff, 6-2 
alphabetic options to the TRACE ARexx instruction 

6-2 
alphabetizing a list of words from a document 7-8 
Amiga graphics A-1 
Amiga Intuition 1-9, 6-15, A-7 
Amiga operating system 1-6,  1-7 
Amiga screen formats A-1, A-2 
AmigaDOS commands 1-8 
AmigaDOS System2.0 A-5 
APPEND argument to OPEN() built-in ARexx 

function H 60 f, C 10-109 

application program 1-6, 1-10, 1-11, 1-13, 6-5, 7-1, 
7-13, 7-18 

ARexx and Art Department Professional (ADPro) 
A-1 ff 

ARexx and PostScript 8-1 ff, 8-12 
ARexx Clip List 6-6 
ARexx Command Utilities 6-5 
ARexx Commands (references) H 43 thru 46, 

C 10-74 thru 10-82 

ARexx error messages (references) H 103 thru 

107, C 10-157 thru 10-165 

ARexx Interrupts H 74 ff, C 10-143 ff, 6-1, 6-8 
ARexx macro 1-11, 7-7, 7-8, 7-13, 7-30, 8-2, 8-10, 

A-3 
ARexx manual 1-1, 1-2, 2-6, 2-9, 3-1, 4-27 
ARexx message packet 1-10 
ARexx port 1-10, 1-11, 7-10 
ARexx programs 

A. rexx 7-5 
Bubblesort.rexx 5-6 
bv.rexx A-26 ff 
bv.thnkr A-27, A-33 
bv2.rexx A-27, A-28, A-34 
E.Rexx 8-13 
F2.adpro A-4 thru A-6, A-8, A-9, A-12, A-13, 

A-15, A-16, A-18, A-22, A-23 
ForPar.ttx 7-29, 7-30, 7-32 
guiAddons.rexx A-4, A-10, A-16 

more 

I-1 Index 



Index 

ARexx programs (continued) 
guiCPA.rexx A-8, A-22 
guiEX.rexx A-4, A-6, A-10, A-18 
guiHELP.rexx A-7, A-12 
guiMakeVar.rexx A-9, A-10, A-13 
guiPostMsg.rexx A-4, A-6 thru A-8, A-10, A-14, 

A-22 
guiScalePixAsp.rexx A-4, A-14, A-15 
guiScalePixAsp.rexx A-4, A-14, A-15 
guiSetYOSET.rexx A-17 
guiSPD.rexx A-4, A-8, A-9 
guiSPO.rexx A-4, A-8 
guiTerm.rexx A-4, A-7, A-11, A-15, A-16, A-19, 

A-23 
Hex.rexx 4-20, 4-23, 4-27, 6-4, 6-7 
LAL.rexx 6-14, 6-15 
ParseTest.rexx 3-1, 3-3, 3-6 thru 3-8, 3-13, 3-17, 

3-18, 4-13 
PG.ttx 7-23, 7-24, 7-31, 7-32 
PStextprint.ttx 8-5, 8-9 
PU.rexx 3-1 thru 3-4 
ShellSort.rexx 5-10 
sortword.rexx 5-22, 5-23, 
5-24, 5-28 
StartScOnly.rexx A-13 
Th.ttx 7-15, 7-25, 7-32 UNIarray.rexx

 5-30, A-24 
Uniword.rexx 5-22, 7-7, 7-12, A-24 
uniword.ttx 7-8 

ARexx resident process 1-5, 2-7 
ARexx support 1-6, 1-10, 1-11, 1-12, 5-30, 6-13, 

8-10 
ARexx Support Library H 127 thru 130, disk, 

C 10-129 thru 134, 6-15 f 
ARG ARexx instruction H26, C 10-52, 4-16 
ARG subkeyword to PARSE ARexx instruction 

(see PARSE) 
ARG() built-in ARexx function H 52, C 10-93 

Arguments 1-5, 2-7, 2-8, 2-18, 2-21, 2-22, 2-24, 
3-12, 3-20, 4-6, 4-9, 4-10, 5-6, 5-7, 5-10, 5-15, 
5-18, 6-15, 7-4, 7-26, 7-28, 8-16, 8-17, A-4, A-9, 

I-2 Index 

A-13, A-27 
ARITHMETIC operators H 18 ff, C 10-39 ff, 4-1 
arrays, (Stems and Compound Symbol Tokens) 

H21 f, C 10-44 ff, 1-11, 2-15 thru 2-18, 2-27, 3-6, 
4-3, 4-5 thru 4-7, 4-9, 4-25, 4-26, 5-1, 5-2, 5-7, 
5-8, 5-11, 5-12, 5-14 thru 5-17, 5-20, 5-21, 5-24, 
5-26 thru 5-30, 7-8, 7-9, 7-11 thru 7-13, 8-15 thru 
8-17, A-24 f 

arrays, building up from a string 5-15 
arrays, elements of 2-15, 4-9, 4-26, 5-16, 5-21, 

5-27, 7-12, 7-13 
arrays, initializing 1-11, 2-16, 2-26, 4-3, 4-5, 4-6, 

5-20, 5-24, 7-8, A-20, A-34 
arrays, multi-dimensional 5-29 
arrays, node(s) 2-15 thru 2-17, 2-22, 2-26, 4-3, 4-6, 

4-9, 5-1 thru 5-3, 5-6, 5-8 thru 5-16, 5-21, 5-24, 
5-26, 5-27, 5-29, 7-8, 7-9, 8-15 thru 8-17, A-25 

arrays, non numeric nodes for 5-27 
arrays, passing to an internal function 8-16 
Art Department Professional (ADPro) by ASDG 

application program A-1, A-3 thru A-9, A-11, 
A-13 thru A-15, A-18, A-22 f 

ASCII 1-4, 1-9, 1-10, 2-2, 2-3, 4-17, 7-23, 7-24, 
7-27, 8-1, 8-2, 8-4, A-26 

asking for RESULT 7-2 
assigning variables 5-1 
ASSIGNMENT clauses H 14 f, C 10-32 f, 2-5 

B 
B2C() built-in ARexx function H 52, C 10-94, 4-19, 

4-20, 4-21 
BACKGROUND option of TRACE ARexx instruction 

H disk, C 10-135 ff, 6-2, 6-7 
BEGIN argument to SEEK() built-in ARexx function 

H 63, C 10-114 

binary Number System 4-17, 4-20, 4-25, 4-26 
BITAND() built-in ARexx function H 52, C 10-94 

BITCHG() built-in ARexx function H 53, C 10-94 

BITCLR() built-in ARexx function H 53, C 10-95 

BITCOMP() built-in ARexx function H 53, C 10-95 

BITOR() built-in ARexx function H 53, C 10-95 



The ARexx Cookbook 

BITSET() built - in ARexx function H 53, C 10-96 

BITTST() built- in ARexx function H 53, C 10-96 

BITXOR()  built- in ARexx function H 54, C 10-96 

BlX bulletin board 1-9, 6-16, 7-26, 8-12 
blanks (lines or spaces; see also Null) 2-4, 2-5, 

2-12, 2-14, 2-18, 2-28, 3-7 thru 3-9, 3-11, 3-15, 
3-17, 5-17, 5-23, 7-27, 7-28, 7-31, 8-1, 8-15 

boolean array 5-26, 7-11 
boolean operands 4-1 
boolean operators H 13, 21, C 10-30, 10-43 f, 4-8 
boolean values H 17, C 10-38 

BOTH argument to STRIP() built-in ARexx function 
H65, C 10-117f 

BREAK ARexx instruction H 26, C 10-52 

BREAK_C subkeyword of SIGNAL ARexx 
instruction H 38 f, C 10-71 ff, 6-9, 6-10, 6-11 

BREAK_D subkeyword of SIGNAL ARexx 
instruction H 38 f, C 10-71 ff, 6-9, 6-10, 6-12 

BREAK_E subkeyword of SIGNAL ARexx 
instruction H 38 f, C 10-71 ff, 6-9, 6-11, 6-12 

BREAK_F subkeyword of SIGNAL ARexx 
instruction H 38 f, C 10-71 ff, 6-9, 6-11, 6-12 

brute force proof 5 -8 
brute force sorts 4-14, 4-15 
bubble sort 5-1, 5-3, 5-4, 5-7, 5-8, 5-9, 5-13 
bubble sort pseudo trace 5-4, 5-5 
BY iteration specifier for DO ARexx instruction 

H27 f, C 10-53 ff, 4-23, 5-2, 5-3, 5-6, 5-10, 5-13, 
5-29, 7-9,  A-25, A-31 

C C2B()
 built- in ARexx function H 54, C 10-97, 4-19, 

4-25, 4-27 
C2D() built -in ARexx function H 54, C 10-97, 4-19 C2X()

 built- in ARexx function H 54, C 10-97, 4-19 
CALL ARexx instruction H 26, C 10-53, 2-9, 2-10, 

2- 18, 2-21, 2-22, 3-1, 3-3, 3-4, 4-16, 5-6, 5-7, 
5- 11, 5-22, 6-14, 7-15, 7-16, 7-24, 7-27 thru 7-29, 
7-31, 7-32, 8 -6, 8- 13 thru 8 - 15, A-6 thru A - 19, 
A-22, A-23, A-27, A-28, A-34 

caller, calling program 2-15, 2-19, 2-22 thru 2-24, 

3-18, 4-25 f, 5-17, 5-20 f, 5-24, 5-27 ff, 6-9 
case sensitivity 2-1 
carriage return emulation in PostScript 8-8 
CENTER() or CENTRE() built-in ARexx function 

H 55, C 10-98 

CHAR option to DATATYPE() built-in ARexx 
function H 56, C 10-101 f, 4-23, 5-25 

character codes 4-17, 4-18 
clause 2-5, 2-6, 2-10, 2-11, 2-21, 2-23, 2-28, 3-3, 

4-8, 4-24 thru 4-26, 5-17, 5-23, 8-16, A-16 
CLI 1-5, 1-8, 1-9, 2-1, 2-3, 2-12, 2-19 
CLIP argument to SHOW() built-in ARexx function 

H 64, C 10-115 

Clip List (ARexx name, value list) H 86, C 10-89 f 

Clipboard (Amiga device) 6-6, 6-15, 7-23, 7-24, 
7-26, 7-28, 7-29, 8-12 

CLOSE() built-in ARexx function H 55, C 10-98, 

8-6, 8-13, 8-14, A-27, A-32, A-33 
column position 3-4, 3-5, 3-11 
comma (special character) 2-6, 2-7, 2-22, 2-25, 

3-9, 3-12, 3-16, 3-17, 3-19, 4-9, 4-23, 5-6, 5-10, 
5-17, 5-21, 5-23, 5-27, 8-17, A-4 

command inhibition 6-2 
Command Interface (ARexx) 1-6, 1-8 
COMMAND special address for ADDRESS ARexx 

instruction H 44, C 10-76, 7-2, 7-6, 7-15, 7-17, 
7-18, 7-25, 7-26, 7-31, 8-11, 8-13, 8-15 

command statement 1-7 
command utilities H 83 f, C 155 f, 6-5 ff 
command(s) 1-2, 1-4 thru 1-8, 1-10, 1-11, 1-13, 

2-1, 2-4, 2-6, 2-8, 2-9, 2-11, 2-21, 2-25, 3-18, 
3-20, 5-7, 5-25, 6-2, 6-3, 6-5, 6-6, 6-7, 6-11, 7-2, 
7-3, 7-5, 7-6, 7-7, 7-8, 7-10 thru 7-14, 7-17 thru 
7-26, 7-28 thru 7-32, 8-2 thru 8-11, 8-14, 8-19, 
A-4, A-6, A-10 

COMMANDS option of TRACE ARexx instruction 
H 40, C 10-135 ff, 6-2 

commenting program code 5-20 
Commodore ARexx documentaion 1-1, 1-2, 1-9, 

1-11, 1-12, 1-13, 2-6, 2-9, 2-15, 2-21, 2-22, 2-25, 
3-1, 3-6, 3-18, 3-19, 4-1, 4-8, 4-9, 4-13, 4-16, 

more 

I-3 Index 



Index 

Commodore ARexx documentaion (continued) 
4-19, 5-7, 5-17, 5-18, 5-24, 5-28, 6-2, 6-7, 6-9, 
6-15, 6-16, 7-4, 8-1, 8-17 

COMPARE() built-in ARexx function H 55, C 10-99 

COMPARISON Operators H21, C 10-43, 4-1 
compiled language 1-4, 1-5 
compound symbol tokens (see also arrays, array 

element) 5-14 
COMPRESS() built-in ARexx function H 55, 

C 10-98 

computer proofs 4-14 
CONCATENATION operators H 20, C 10-42, 4-1 
console input 3-20 
console window 1-8, 1-12, 2-2, 2-8, 6-4, 6-5, A-27 
continuation character (see comma) 
control by ARexx, model for 7-1 ff 
control ranges 6-9 
controlling host applications with ARexx 7-1 
CONV2SPACES TurboText command TA-8, 7-25, 

7-29, 7-31 
coordinate system in PostScript 8-17 
COPIES() built-in ARexx function H 55 f, C 10-99 

CreateHost() rexxarplib.library function A-7 
CURRENT argument to SEEK() built-in ARexx 

function H 63, C 10-114 

current host address 1-7, 2-8, 2-9, 7-4, 7-5, 7-6, 
7-10, 7-18 

CUTBLK TurboText command T A-10, 7-25, 7-26, 
7-31 

D D2C()
 built-in ARexx function H 56, C 10-99, 4-19, 

4-20, 4-22, 4-25, 4-27 
D2X() built-in ARexx function H disk, C 10-100, 

4-19, 4-20 
data objects in PostScript 8-3, 8-4 DATATYPE()

 built-in ARexx function H 56, 

C 10-101 f, 4-16, 4-17, 4-19, 4-24, 5-24, 5-25, 
7-12 

DATE() built-in ARexx function H disk, C 10-100 

debugging an ARexx program 6-1 ff 

I-4 Index 

debugging an ARexx program 6-1, 6-4, 6-8 
declare variables 1-11 
default host address 'REXX' 1-7 
DELAY() support library function H disk, 

C no reference, 7-19 
DELETE() support library function H disk, 

C no reference, 8-6, 8-9 
delimiter 2-3, 7-21 
DELSTR() built-in ARexx function H 56, C 10-102 

DELWORD() built-in ARexx functn H 57, C 10-102 

DIGITS subkeyword of NUMERIC ARexx instruction 
H 31 f, C 10-61 f 

DIGITS() built-in ARexx function H disk, C 10-102 

DIRECTORY argument of PRAGMA() built-in 
ARexx function H 61, C 10-110 f 

DO ARexx instruction H 27 f, C 10-53 ff, 2-3, 2-7, 
2-10 thru 2-12, 2-14, 2-16, 2-18 thru 2-21, 2-23, 
2-26 thru 2-28, 3-3, 3-4, 3-6, 4-5 thru 4-7, 4-9, 
4-16, 4-20 thru 4-25, 5-6 thru 5-11, 5-13, 5-16, 
5-17, 5-22 thru 5-26, 5-28, 5-29, 6-9 thru 6-11, 
6-14, 7-8 thru 7-11, 7-15, 7-19, 7-25, 7-27, 7-29 
thru 7-32, 8-13 thru 8-15, A-6 thru A-8, A-10, 
A-11, A-13 thru A-16, A-18 thru A-20, A-22 thru 
A-25, A-27, A-28, A-30 thru A-35 

DO WHILE 2-3, 2-10, 2-11, 2-14, 2-16, 2-18, 2-19, 
2-23, 2-26, 2-28, 3-3, 4-22 thru 4-24, 5-6, 5-9 
thru 5-11, 5-16, 5-22, 5-24, 5-28, 5-29, 6-10, 7-9, 
7-10, 7-30, 8-13, A-24, A-25, A-27, A-30, A-31, 
A-33 

documentation 1-1, 1-2, 1-12, 2-6, 2-9, 2-25, 3-1, 
6-12, 6-15, 6-16, 7-4, 7-26, 8-1 

DOS Commands 7-2 
double quotes 2-5, 2-6, 7-20, 7-21 
DROP ARexx instruction H 28, C 10-56 
DTP programs 8-2 

E 
ECHO ARexx instruction H 28, C 10-56 

editor for text 1-4 thru 1-6, 1-9, 1-12, 2-3, 2-12, 
2-14, 2-18, 5-21, 6-4, 7-6, 7-13, 7-14, 7-22, 8-1 
thru 8-4, 8-9 thru 8-11 



The ARexx Cookbook 

ELAPSED option keyword to TIME() built-in ARexx 
function H 66, C 10-119 f, 5-6, 5-7, 5-11 

Electric Thesaurus (ET) by Softwood application 
program 7-13 thru 7-19, 7-22, 7-23, 7-25, 7-26, 
7-27, 7-32 

Electric Thesaurus ARexx commands E 2-8 
ELSE ARexx instruction H 28 f, C 10-56 f, A-33 
END ARexx instruction H 29, C 10-57, 2-3, 2-10 

thru 2-14, 2-18, 2-19, 2-21, 2-23, 2-26, 2-28, 3-3, 
3-4, 3-6, 4-5, 4-6, 4-16, 4-20 thru 4-24, 5-6, 5-7, 
5-10, 5-11, 5-16, 5-17, 5-22, 5-23, 5-26, 5-28, 
5-29, 6-11, 6-14, 7-9, 7-12, 7-15, 7-16, 7-25, 
7-27, 7-29, 7-30 thru 7-32, 8-13 thru 8-15, A-6, 
A-7, A-9 thru A-11, A-13 thru A-16, A-19, A-20, 
A-22 thru A-25, A-27, A-28, A-30 thru A-35 

END argument to SEEK() built-in ARexx function 
H63,, C 10-114, A-30 

endless loop 4-16, 6-6, 6-11, 7-10, 7-12, 7-19, 7-30 
ENGlNEERING subkeyword of NUMERIC ARexx 

instruction H 31 f, C 10-61 f 
envelope printing with PostScript 8-12, 8-17 
environment variables A-4 
EOF marker 2-2, 2-10, 2-11, 2-14, 2-17, 2-28 
EOF() built-in ARexx function H 57, C 10-103, 2-3, 

2-10. 2-12 thru 2-14, 2-18, 5-6, 5-10, 5-22, 8-13, 
A-24, A-31, A-34, A-35 

error handling routine A-26 
ERROR interrupt 6-9, 7-10, 7-12, 7-16, 7-19, 7-25 
ERROR messages H 103 thru 107, C 10-157 thru 

165 
error or syntax code 6-3 
ERROR subkeyword for SIGNAL ARexx instruction 

H38 f, C 10-71 ff, 6-9 ff, 7-8, 7-15f, 7-19, 7-24f, 
7-28,7-30 

error traps 6-1, 6-10 
error(s) 2-9, 2-13, 2-15, 3-15, 4-27, 5-18, 6-1, 6-3, 

6-8 thru 6-12, 7-8 thru 7-10, 7-12, 7-13, 7-15, 
7-16, 7-19, 7-21, 7-24, 7-25, 7-27, 7-28, 7-30, 
7-31, 7-32, A-16, A-26, A-27 

ERRORS option of TRACE ARexx instruction H 40, 
C 10-135 ff, 6-2 

ERRORTEXT() built-in ARexx function H 57, C 10-
103 

escaping special PostScript characters 8-7, 8-10, 
8-15 

EXECAREXXMACRO TurboText command 
T A-13, 7-32, 8-9 

EXECTOOL NAME TurboText command TA-14, 
7-25, 7-26, 7-31 

exercises 5-29, 6-7 
EXISTS() built-in ARexx function H 57, C 10-103 
EXIT ARexx instruction H 29, C 10-57 f, 2-3, 2-10 

thru 2-15, 2-19, 3-2, 3-4, 3-15, 4-6, 4-16, 4-20, 
5-6, 5-7, 5-10, 5-11, 5-14, 5-15, 5-22, 5-23, 5-28, 
5-29, 6-11, 6-14, 7-5, 7-9, 7-16, 7-29, 7-30, 7-32, 
8-13, 8-14, A-6 thru A-20, A-22, A-23, A-25, 
A-27, A-28, A-30, A-32, A-33 thru A-35 

expanding numbers 4-17 
EXPORT() built-in ARexx functn H 57 f, C 10-103 f 
EXPOSE subkeyword for PROCEDURE ARexx 

instructn H 35, C 10-68 f, 2-22, 5-15, 5-24, 8-16 
expression result 5-14 
expressions H 16, C 10-35, 1-8, 2-1, 2-5 thru 

2-7, 2-9 thru 2-11, 2-15, 2-16, 2-21, 3-1 thru 3-3, 
3-5, 3-6, 3-16, 3-17, 3-20, 4-1, 4-8, 4-9, 4-14, 
4-15, 4-17, 5-14, 5-15, 5-18, 5-26, 5-28, 6-10, 7-5 
thru 7-7, 7-16, 7-20, 7-21 

external functions 5-14, 5-15, 5-19, 5-22, 6-6, 6-13, 
A-13 

EXTERNAL subkeyword to PARSE ARexx 
instruction H 33 ff, C 10-64 ff 

F 
FAILAT subkeyword of OPTIONS ARexx instruction 

H 32, C 10-62 f 
FILES argument to SHOW() built-in ARexx function 

H 64, C 10-115 
FIND() built-in ARexx function H disk, C 10-104, 

A-11 
FINDCHANGE TurboText command TA-15, 8-7 
findfont PostScript operator 8-5, 8-6, 8-9, 8-14 

I-5 Index 



Index 

FOR iteration specifier for DO ARexx instruction 
H 27 f, C 10-53 ff 

FOREVER iteration specifier for DO ARexx 
instruction H 27 f, C 10-53 ff, 4-16, 4-20, 4-23, 
4-24, 5-23, 5-25, 5-26, 6-11, 7-8, 7-11, 7-15, 
7-19, 7-27, 7-30, 7-32, 8-13, 8-15, A-24 

FORM subkeyword of NUMERIC ARexx instruction 
H31 f, C 10-61 f 

FORM() built-in ARexx function H disk, C 10-104 
format of a document 7-23, 7-24 
FORMATPARAGRAPH TurboText command 

T A-17, 7-30 
formatting document 7-29 FREESPACE()

 built-in ARexx function H 58, 
C 10-104 f 

function 1-1, 1-3, 1-11, 2-5, 2-7 thru 2-11, 2-13, 
2-15, 2-18 thru 2-24, 2-27 thru 2-29, 3-1, 3-2, 
3-6, 3-12, 3-18, 3-20, 4-6, 4-7, 4-13, 4-16, 4-17, 
4-19, 4-24 thru 4-27, 5-7, 5-11, 5-14, 5-15, 5-16, 
5-18, 5-19, 5-22 thru 5-25, 5-27 thru 5-29, 6-3, 
6-7, 6-9, 6-14, 6-15, 7-3, 7-4, 7-6, 7-11, 7-19, 
7-22, 7-24, 7-26, 7-28 thru 7-30, 8-9, 8-16, 8-17, 
8-19, A-5, A-13, A-26 

FUZZ subkeyword of NUMERIC ARexx instruction 
H31 f, C 10-61 f 

FUZZ() built-in ARexx function H disk, C 10-105 

G 
game show puzzle 4-2, 4-5, 4-7, 4-11 
GETBLKINFO TurboText command TA-17 f, 7-25, 

7-31 
GETCHAR TurboText command TA-18, 8-7 
GETCLIP() built-in ARexx function H 58, C 10-105, 

6-7 
GETCURSORPOS TurboText command TA-19, 

7-25, 7-31 
GETPORT TurboText command TA-22, 7-17, 

7-19, 7-25, 7-31 
GETSPACE() built-in ARexx function H 58, 

C 10-106 
GETTEXTPARA Proper Grammar command P 8-1, 

I-6 Index 

7-27, 7-28, 7-32 
GETWORD Electric Thesaurus command E 2-8, 

7-15, 7-19 
GETWORD TurboText command TA-26, 7-8, 7-11, 

7-15, 7-17, 7-19 
global Halt Interrupt (HI) Flag 6-6 
global tracing console H 72 f, C 10-137 f, 6-5 
GO TO statement 6-10 
graphical user interface (GUI) 1-9, 6-15, A-3, A-6, 

A-8, A-13, A-23 

H 
HALT subkeyword for the SIGNAL ARexx 

instruction H 38 f, C 10-71 ff, 6-9, 6-11, 6-12 
HASH() built-in ARexx function H 58 f, C 10-106 
Hawes documentation 1-1, 1-2, 1-4, 1-9, 1-12, 

1-13, 2-6, 2-9, 2-15, 2-21, 2-22, 2-25, 3-1, 3-6, 
3-18, 3-19, 4-1, 4-8, 4-9, 4-13, 4-16, 4-19, 5-7, 
5-17, 5-24, 5-28, 6-1, 6-2, 6-7, 6-9, 6-15, 6-16, 
7-4, 8-17 

hexadecimal numbers 4-18 4-20, 4-23, 4-27, 6-4, 
6-7 

HI command utility H83, C 10-155, 4-16, 5-25, 

6-6, 6-11 
high res interlace A-2 
high res non-interlace A-2 
HIT DOCUMENT BOUNDARY TurboText error #7 

T B-1 
host address H 25, 43 f, C 10-50, C 10-75 thru 

10-78, 7-1 
host application H 43 f, C 10-75 thru 10-78, 1-6, 

1-7, 1-8, 1-10, 1-13, 2-8, 2-9, 3-18, 5-15, 6-2, 
6-5, 7-1 thru 7-3, 7-6, 7-7, 7-13, 7-18, 7-20 thru 
7-22, A-4, A-7 

HOURS option keyword to TIME() built-in ARexx 
function H 66, C 10-119 f 

ICONIFYWINDOW TurboText command 
T A-27, 7-8, 7-11 



The ARexx Cookbook 

ID argument of PRAGMA() built-in ARexx function 
H 61, disk, C 10-110 f 

IF ARexx instruction H29 f, C 10-58 f, 2-3, 2-7, 
2-10, 2-12 thru 2-18, 2-20, 2-28, 3-3, 3-4, 4-5 
thru 4-9, 4-16, 4-20, 4-22 thru 4-24, 5-6, 5-7, 
5-10, 5-11, 5-17, 5-21 thru 5-23, 5-26, 5-29, 6-9, 
6-10, 6-14, 7-8, 7-9, 7-12, 7-15, 7-16, 7-19, 7-24 
thru 7-27, 7-29, 7-31, 7-32, 8-5, 8-7, 8-13, 8-14, 
A-6, A-7, A-8, A-10 thru A-20, A-22 thru A-25, 
A-27 thru A-35 

image aspect adjustment for monitor A-3 
image aspect in graphics A-2, A-3, A-5 
IMPORT() built-in ARexx function H 59, C 10-106 
independent trial (in probability) 4-7, 4-10, 4-12 
INDEX() built-in ARexx function H 59, C 10-107 
initializer expression in DO ARexx instruction 

H 27 f, C 10-53 ff 
inner loop 4-26, 5-3, 5-9 
input and output (I/O) 1-8, 5-7 
INSERT TurboText command TA-28, 7-9, 7-13 
INSERT() built-in ARexx function H 59, C 10-107 
INSERTLINE TurboText command TA-28, 7-9, 

7-13 
instruction(s) 1-4, 1-11, 2-5 thru 2-13, 2-15 thru 

2-17, 2-21 thru 2-28, 3-1, 3-2, 3-6, 3-8 thru 3-10, 
3-12, 3-13, 3-15 thru 3-18, 4-6, 4-8 thru 4-10, 
4-13, 4-19, 4-24, 5-12, 5-14, 5-15, 5-17, 5-20, 
5-21, 5-24 thru 5-27, 6-1 thru 6-5, 6-7 thru 6-10, 
6-14, 7-3 thru 7-6, 7-10 thru 7-13, 7-17 thru 7-19, 
7-25, 7-26, 7-30, 8-3, 8-7, 8-8, 8-15, A-12 

integer division 5-9, 5-11, 5-12 
integers 1-11, 4-6, 4-15, 5-16 
interactive TRACE mode 6-1 thru 6-3, 6-6 thru 6-8 
INTERMEDIATES option of TRACE ARexx 

instruction H 40, C 10-135 ff, 6-2, 6-4 
internal command set of host program 7-3, 7-7, 

7-10, 7-20, 8-4 
internal functions 2-18 thru 2-23, 2-27 thru 2-29, 

3-12, 4-17, 4-24, 5-14, 5-19, 5-23, 5-27, 6-9, 7-6, 
7-11, 8-17 

INTERPRET ARexx instruction H 30, C 10-59, 3-4, 

3-6, 6-7, 6-9 
interpreted language 1-4, 1-5, 1-9 
interprocess control 1-11, 3-18, 7-3, 7-7, 7-13, 

7-14, 8-20 
interrupting an ARexx program 6-1 ff 
INTERRUPTS (ARexx) H 74 ff, C 10-143 ff, 6-10 
IOERR subkeyword of SIGNAL ARexx instruction 

H 38 f, C 10-71 ff, 6-9, 6-10, 6-11, 6-12 
ITERATE ARexx instruction H 30, C 10-60, 3-3, 

4-13, 4-20, 5-20, 5-21, 5-23, 5-25, 5-26, 7-9, 
7-12, A-24 

iteration 2-13, 2-16, 2-22, 2-27, 4-6, 4-13, 4-14, 
4-16, 4-26, 5-2, 5-3, 5-8, 5-9, 5-12, 5-21, 5-25 

J 
Junod, David (rexxutil.library) 6-15, 6-16 

L 
label as place marker 2-21 
LABELS 6-11 
LABELS option of TRACE ARexx instruction H 40, 

C 10-135 ff, 6-2, 6-9 
landscape printing with PostScript 8-18 
Langeveld, Willy 1-9, 6-15, 6-16 
LASTPOS() built-in ARexx function H 59 f, 

C 10-107f, A-28, A-34 
LAST LOADED _IMAGE ADPro command A-11 
LEADING argument to STRIP() built-in ARexx 

function H 65, C 10-117 f 
LEAVE ARexx instruction H 31, C 10-60 f, 4-23, 

5-20, 5-21, 5-23, 5-25, 5-26, 7-15, 7-27, 7-32, 
A-24, A-27, A-28, A-31 thru A-34 

LEFT() built-in ARexx function H 60, C 10-108, 
5-17, 5-18 

LENGTH() built-in ARexx function H 60, C 10-108, 
3-3, 5-17, 5-18, 5-23, A-24 

LIBRARIES argument to SHOW() built-in ARexx 
function H 64, C 10-115 

libraries, shared 1-9, 6-13, 6-14 thru 6-16, 7-7, 
7-22, 7-25, A-4, A-6 

Libs: directory 6-13 

i-7 Index 



Index 

LIFO stack in PostScript 8-3 
line feed emulation in PostScript 8-8 
LINES() built-in ARexx function H disk, C 10-108 
literal string 2-16, 7-4, 7-13, 7-21, 8-6, 8-8 
loading ARexx libraries 6-14 
logic 4-1 
logical operators H 21, C 10-44, 4-1 
logical stream 6-5 
LOOKUPND Electric Thesaurus command E2-8, 

7-15, 7-18 
low res interlace A-2 
low res non-interlace A-2 

M 
macro 1-4, 1-11, 7-7, 7-8, 7-10, 7-12, 7-13, 7-30, 

8-2, 8-9, 8-10, A-3 
MARKBLK TurboText command TA-30, 7-25, 

7-26, 7-31 
MATCH argument to VERIFY() built-in ARexx 

function H 68, C 10-122 
mathemetical operators 4-1 
MAX() built-in ARexx function H 60, C 10-109 
message packets H 89 ff, C no reference, 7-1 
message port 1-1, 1-6, 1-7, 1-10, 1-13, 6-13, 7-1, 

7-2, 7-5, 7-17, 7-18 
MIN() built-in ARexx function H 60, C 10-109 
MINUTES option keyword to TIME() built-in ARexx 

function H 66, C 10-119 f 
MIXED option to DATATYPE() built-in ARexx 

function H 56, C 10-101 f, 3-3, 5-23, 5-26, A-24 
MODIFYHOST() rexxarplib.library function A-7 
modular programming 5-18, 5-19 
mouse pointer 7-18 A-4 
MOVEDOWN TurboText command TA-32, 7-29 

thru 7-32 
MOVEEOF TurboText command TA-32, 7-25, 

7-26, 7-31 
MOVENEXTWORD TurboText command TA-34, 

7-8 thru 7-10, 7-12 
MOVERIGHT TurboText command TA-35, 7-29, 

7-32 

I-8 Index 

MOVESOF TurboText command TA-35, 7-5, 7-8, 
7-9, 7-11, 7-13, 7-25, 7-26, 7-29 thru 7-32 

moveto PostScript operator 8-5, 8-8, 8-9, 8-14, 
8-19 

N 
NO subkeyword of OPTIONS ARexx instruction 

H 32, disk, C 10-62 f 
NOCAREREFRESH window flag A-7 
node (see arrays) 
NOP ARexx instruction H 31, C 10-61, 4-24, 6-11, 

A-14, A-30 
NORMAL option keyword to TIME() built-in ARexx 

function H 66, disk, C 10-119 f 
NORMAL option of TRACE ARexx instruction H 40, 

C 10-135 ff, 6-2 
NOVALUE subkeyword of SIGNAL ARexx 

instruction H 38 f, C 10-71 ff, 6-9, 6-11, 6-12 
null (see also blanks) 2-5, 2-13 thru 2-16, 2-18, 

2-27, 2-28, 3-7, 4-23 thru 4-25, 5-17, 5-20, 5-24, 
5-26, 5-27, 8-15 

null string 2-13, 2-27, 2-28, 3-7, 4-23, 4-24, 5-17, 
5-20, 5-24, 5-27, 8-15 

NUM option to DATATYPE() built-in ARexx function 
H56, C 10-101 f, 4-20, 5-25, A-18, A-20, A-28 

number bases 4-17 
numbers 4-1, 4-17, 4-18 
NUMERIC ARexx instruction H 31 f, C 10-61 f 
NUMERIC subkeyword to PARSE ARexx instruction 

(see PARSE) 

0 
octal numbers 4-18, 4-20, 4-25, 4-26 
OFF option of TRACE ARexx instruction H 40, disk 

notes, C 10-135 ff, 6-2 thru 6-4, 6-9 
OFF option to rexxarplib.library function 

SETGADGET() A-8 thru A-14, A-16, A-17, A-19 
OFF return from TurboText command 

GETBLKINFO 7-25, 7-31 
ON option to rexxarplib.libraryfunction 

SETGADGET() A-8 thru A-10, A-12 thru A-14, 



The ARexx Cookbook 

A-16. A-17, A-19 
ON return from TurboText command GETBLKINFO 

7-8, 7-10, 7-12, 7-15, 7-16, 7-19, 7-24, 7-25, 7-29 
thru 7-31 

ON subkeyword for SIGNAL ARexx instruction 
H 38 f, C 10-71 ff, 6-9, 6-10. 6-11 

OPEN() built-in ARexx function H 60 f, C 10-109, 
2-3. 2-7 thru 2-14, 2-17, 2-18. 5-6, 5-7, 5-10, 
5-11, 5-22, 8-6, 8-13. 8-14, 8-16, A-24, A-27, 
A-30, A-32 thru A-34 

OPENDOC TurboText command TA-37, 7-9, 7-13 
OPENSCREEN() rexxarplib.library function A-7 
OPENWINDOWO rexxarplib.library function A-7 
operand 8-3 
OPERATOR DEFINE_PXL_ASPECT ADPro 

command A-16, A-22 
operators H 12, 13, 18 thru 21, C 10-29 thru 10-31, 

C 10-39 thru 10-44, 1-13, 2-6, 4-1, 4-5, 4-9, 4-12, 
8-4, 8-19 

operators 8-4 
OPTIONS ARexx instruction H 32, C 10-62 f, 3-2, 

3-16, 3-20, 5-22, 7-8, 7-15, 7-24, 7-30, 7-31, 8-5, 
A-6. A-8 thru A-10, A-12, A-13, A-15 thru A-18, 
A-22. A-23, A-33, A-34 

OTHERWISE ARexx instruction H 32, 
C 10-63, 3-3, 3-4, 4-22, 4-24, A-11, A-13, A-14, 
A-19, A-20, A-30 

output streams 1-8 
OVERLAY() built-in ARexx function H 61, C 10-110 
overscan A-2, A-4, A-5, A-12, A-17, A-18 
Oxxi. Inc. 1-12 

P 
pagination in PostScript 8-8 
PAR: Amiga device 8-1, 8-2, 8-6, 8-8, 8-9, 8-11, 

8-14 

PARSE ARexx instruction H 33 ff, C 10-64 thru 
10-68. 1-11, 2-3, 2-6 thru 2-8, 2-12, 2-13, 2-19, 
2-23 thru 2-28, 3-1 thru 3-13, 3-15 thru 3-20, 4-5, 
4-20. 4-22, 4-23, 5-6, 5-7, 5-10, 5-11, 5-16, 5-20 

thru 5-22, 5-24, 5-25, 5-28, 6-11 thru 6-13, 7-25, 
7-31, 8-13, 8-14, A-11, A-13 thru A-15, A-17, 
A-18, A-22, A-24, A-27, A-28, A-30, A-31 thru 
A-34 

PARSE (detailed breakdown) 
absolute and relative markers 3-10, 3-11, 3-14, 

3-18, 3-19 
ARG subkeyword H 33 ff, C 10-64 ff, 2-12, 2-13, 

2-19, 2-23 thru 2-25, 3-1, 3-2, 3-5, 3-12, 3-20, 
4-22, 4-23, 5-6, 5-10, 5-22, 5-28, A-13, A-15, 
A-17, A-18, A-22, A-28, A-33 

current scan position 3-8, 3-9, 3-10, 3-18, 3-19 
in-line variable patterns 3-13 
marker object 3-18 
multiple templates 3-2, 3-5, 3-12, 3-15, 3-16, 

4-23 
NUMERIC subkeyword H 33 ff, C 10-64 ff, 3-1, 

3-3, 3-16, 3-18, 3-20 
pattern marker 3-8, 3-9, 3-10, 3-12, 3-13, 3-17, 

3-18, 3-19 
pattern match 3-5, 3-9, 3-11, 3-12 
period (.) as a placeholder 3-13 
point of reference for position markers 3-11 
PULL subkeyword H 33 ff, C 10-64 ff, 2-3, 2-6, 

2-7, 2-12 thru 2-14, 2-18, 3-1 thru 3-5, 3-15, 
3-16, 3-20, 4-5, 4-20, 5-6, 5-7, 5-10, 5-11, 
5-22, 6-11 thru 6-13, 8-13, 8-14, A-24, A-27 f 

relative position markers 3-5, 3-8, 3-10, 3-11, 
3-14, 3-18, 3-19 

scan 3-1, 3-5, 3-8 thru 3-12, 3-14, 3-17 thru 
3-19, 5-29, 6-6, A-1 

SOURCE subkeyword H 33 ff, C 10-64 ff, 3-1, 
3-3, 3-16, 3-18, 3-20 

source string 3-1, 3-2, 3-3, 3-9, 3-12, 3-14, 3-19 
special relative marker (+0) 3-14 
string 3-8, 3-9, 3-10 
target symbols 3-1 thru 3-5, 3-7, 3-8, 3-12 thru 

3-15, 3-17 thru 3-20 
template 2-24 thru 2-27, 3-1 thru 3-14, 3-16 thru 

3-20, 4-23 
tokenization, forced 3-7, 3-14 

more 

I-9 Index 



Index 

PARSE (detailed breakdown continued) 
VALUE expression WITH subkeywords H 33 ff, 

C 10-64 ff, 3-1, 3-5, 3-16, 3-17, 3-20, A-30 
thru A-32 

VAR subkeyword H 33 ff, C 10-64 ff, 2-19, 2-23, 
2-26 thru 2-28, 3-1, 3-3, 3-5, 3-7, 3-8, 3-12 
thru 3-14, 3-16 thru 3-18, 3-20, 4-22, 4-23, 
5-16, 5-20, 5-22, 5-24, 5-28, 7-25, 7-26, 7-28, 
7-29, 7-31, 7-32, A-11, A-13, A-14, A-22, 
A-24, A-27, A-28, A-34 

variable position markers 3-5, 3-13, 3-19 
VERSION subkeyword H 33 ff, C 10-64 ff, 3-1, 

3-3, 3-18, 3-19, 3-20 
WITH subkeyword H 33 ff, C 10-64 ff, 3-1, 3-5, 

3-16, 3-17, 3-20, A-30, A-31, A-32 
parsing and templates 3-1 
parsing by tokenization 3-7, 3-20, 5-16 
parsing multiple input lines from the screen 3-15 
PASTECLIP TurboText command TA-39, 7-29, 

7-32 
pixel aspect A-1, A-2, A-4 thru A-6, A-15, A-18 
PopCLI, program by The Software Distillery 8-12 
PORTS argument to SHOW() built-in ARexx 

function H 64, C 10-115, 7-5, 7-15, 7-27, 7-32, 
8-14, A-6, A-11, A-13, A-23 

POS() built-in ARexx function H 61, C 10-110 
position of the mouse pointer A-4 
postfix notation, stack in PostScript 8-3 ff 
POSTMSG() rexxarplib.library function A-10, A-12, 

A-14, A-18, A-22, A-23 
PostScript page description language by Adobe 

Systems 8-1 ff PRAGMA()
 built-in ARexx function H 61 f and disk, 

C 10-110 ff 
preferences printer 8-1 
previous host address 7-4 thru 7-6 
printer driver 8-1 
printing envelopes with PostScript 8-12 
PRIORITY argument of PRAGMA() built-in ARexx 

function H 61 f, C 10-110 f 
probability 4-1 thru 4-4, 4-8, 4-10 thru 4-12 

I-10 Index 

PROCEDURE ARexx instruction H 35, C 10-68 f, 
2-19, 2-22, 2-23, 2-28, 4-16, 4-22 thru 4-25, 4-27, 
5-14 thru 5-16, 5-22, 5-24, 6-4, 8-14, 8-15, 8-16 

PROMPT subkeyword of OPTIONS ARexx 
instruction H 32, C 10-62 f 

proof 4-1, 4-3, 4-10, 4-14 
Proper Grammar (PG) by Softwood application 

program 7-22 thru 7-32 
Proper Grammar controlled from TurboText 7-22 
Proper Grammar I/O preferences P 5-7, 7-27 
pseudo code 3-2, 4-3, 4-19, 5-4, 7-14, 7-23 
pseudo random number 4-6 
pseudo trace 5-4 
public message port 1-1, 1-6, 1-7, 1-10, 6-13, 7-2, 

7-17, 7-18 
PULL ARexx instruction H 36, C 10-69, 2-6 
punctuation, getting rid of 5-24 
PUSH ARexx instruction H 36, C 10-166 
pushing onto the stack in PostScript 8-8 

QUEUE ARexx instruction H 37, C 10-167 
quotes 1-7, 2-5, 2-6, 2-8, 2-11, 2-13, 3-5, 3-19, 7-4, 

7-6, 7-7, 7-11, 7-13, 7-16, 7-18, 7-20, 7-21, A-12 

R 
random number 4-3, 4-6, 4-7 
RANDOM() built-in ARexx function H 62, C 10-112, 

4-6 thru 4-8 
RANDU() built-in ARexx function H 62, C 10-112 f, 

4-5, 4-7, 4-8 
RC special variable H 39, 73, 75, C 10-73, 

C 10-139, C 10-145, 2-15, 5-6, 5-10, 5-22, 6-2, 
6-3, 6-9, 6-11, 6-12, 7-10, 7-30, A-11, A-16, 
A-27, A-30, A-32, A-33 

READ argument to OPEN() built-in ARexx function 
H 60 f, C 10-109, 2-3, 2-8, 2-12, 2-14, 2-18, 5-6, 
5-10, 5-22, 8-13 READCH()

 built-in ARexx function H 62, C 10-113 
READCLIP() rexxutil.library function 7-25, 7-26, 

7-31 



The ARexx Cookbook 

READLN() built-in ARexx function H 63, C 10-113, 
2 -3, 2-11, 2-13, 2-14, 2-18, 5-6, 5-7, 5-10, 5-22, 
8-13, A-24, A-30, A-31, A-34 

recursion 4-1, 4-13, 4-15, 4-16 
recursive function calls 4-13, 4-17, 4-20 
recursive functions H 35, C 10-68, 4-13 
references 6-15, 8-11, A-26 
REMLIB() built-in ARexx function H 63, C 10-113 f 
REMOVEGADGET rexxarplib.library function A-9, 

A-10 
RENDER TYPE ADPro command A-11, A-22 
REPLACETEXT Proper Grammar command P 8-1, 

7-25, 7-26, 7-31 
REPLACEWORD TurboText command TA-41, 

7-16, 7-20, 7-22 
REQUEST rexxarplib.library function A-11, 

A-13 thru A-17, A-19, A-22 
REQUESTBOOL TurboText command TA-41, 

7-16, 7-20, 7-21, 7-29, 7-32 
RESET option keyword to TIME() built-in ARexx 

function H 66, C 10-119 f, 5-10 
resident process 1-5, 1-6, 1-8, 2-7, 2-8 
RESULT special variable, see CALL ARexx 

instruction H26, C 10-53, 2-9, 2-21, 3-18, 5-15, 
5-17, 5-23, 5-24, 6-2, 7-2, 7-3, 7-8, 7-9, 7-11, 
7-13, 7-15 thru 7-17, 7-19, 7-20, 7-25, 7-27, 7-29, 
7-31 f, 8-5, A-7, A-11, A-12, A-16, A-17, A-34 

RESULTS option of TRACE ARexx instruction 
H 40, C 10-135 ff, 6-2, 6-4 

results processing H 29, 37, C 10-58, 10-70 
RESULTS subkeyword of OPTIONS ARexx 

instruction H 32, C 10-62 f, 3-2, 5-22, 7-8, 7-15, 
7-24, 7-30, 7-31, 8-5, A-6, A-8, A-9, A-10, A-12, 
A-13, A-15, A-16 thru A-18, A-22, A-23, A-33 f 

RETURN ARexx instruction H 37, C 10-70, 2-19, 
2-21, 2-23, 2-28, 3-2, 4-16, 4-22, 4-23, 5-14, 
5-15, 5-17, 5-21, 5-23, 5-24, 5-27 thru 5-29, 6-3, 
7-4, 7-11, 8-15 

REVERSE() built-in ARexx function H 63, C 10-114 
Rexx directory 1-9, 2-3, 2-4 
rexxarplib.library by Willy Langeveld 1-9, 1-12, 

6-14, 6-15, A-3, A-4, A-6 
Rexxc directory 2-3 
rexxmast 1-5 thru 1-8, 2-1, 2-3, 2-4, 2-8, 2-9, 2-11, 

2-21, 6-2, 6-3, 6-6, 6-14, 6-15, 7-1, 7-2, 7-4 thru 
7-6, 7-18, 7-21 

rexxmathlib.library by Willy Langeveld 6-14 f 
rexxsupport.library H 127 ff, disk, C 10-129 ff, 6-14 

thru 6-16, 7-15, 7-16, 7-19, 7-22, 7-24, 7-31, 8-5, 
8-9, A-6, A-11 

rexxutil.library by David Junod 6-14, 6-15, 7-22, 
7-24, 7-26, 7-28, 7-29, 7-31 

right hand coordinate system in PostScript 8-17 
RIGHT() built-in ARexx function H 63, C 10-114, 

5-17, 5-18 
rotate the axes in PostScript 8-17 
RX command utility H 84, C 10-155, 1-5, 1-13, 2-4, 

2-13, 2-19, 6-6, 6-15 
RXC command utility H 84, C 10-156, 6-6 
RXLIB command utility H disk, C no ref., 6-6 f, 6-14 
RXSET command utility H 84, C 10-155, 6-6 

S 
SAVEFILE TurboText command TA-44, 8-8, 8-10 
SAVEFILEAS TurboText command TA-44, 8-6 
SAY ARexx instruction H 38, C 10-70, 2-3, 2-5 thru 

2-14, 2-16, 2-18 thru 2-21, 2-23, 2-26, 2-28, 3-2 
thru 3-4, 3-15, 3-16, 4-5, 4-6, 4-9, 4-16, 4-17, 
4-20 thru 4-22, 5-6, 5-7, 5-10 thru 5-12, 5-16, 
5-22, 5-23, 5-28, 6-11, 6-12, 6-14, 7-5, 7-13, 
8-13, 8-14, 8-16, A-24, A-25, A-27, A-28, A-30, 
A-32, A-33 

scale to pixel aspect A-1, A-4, A-5 
scalefont PostScript operator 8-5, 8-6, 8-9, 8-14 
SCAN option of TRACE ARexx instruction H 40, 

C 10-135 ff, 6-2 
SCIENTIFIC subkeyword of NUMERIC ARexx 

instruction H 31 f, C 10-61 f 
screen data input 3-14 
screen, scaling image to fill A-2 
SCREEN2BACK TurboText command TA-45, 

7-15, 7-17 

I-11 Index 



Index 

SCREEN2FRONT TurboText command T A-46, 
7-16, 7-29, 7-32 

SCREENCOLS() rexxarplib.library function A-7 
SCREENLACE() rexxarplib.library function A-7 
SCREENROWS() rexxarplib.library functn A-7 
SCREEN_TYPE ADPro command A-11, A-22 
SCRTOFRONT Electric Thesaurus command 

E2-8, 7-15, 7-18 
search order for ARexx functions H 47 f, C 10-85 f 
searching 4-8, 5-1, A-26, A-27 
SECONDS option keyword to TIME() built-in ARexx 

function H 66, C 10-119 f 
SEEK() built-in ARexx function H 63, C 10-114, 

A-26, A-30, A-31 
SELECT ARexx instruction H 38, C 10-70 f, 3-3, 

3-4, 3-6, 4-19, 4-20, 4-24, 6-9, A-11, A-13, A-14, 
A-19, A-20, A-30 

self reference (see recursion) 1-10, 2-25, 3-6, 3-9, 
4-13, 4-17 

SETCLIP() built-in ARexx function H 64, C 10-115 
SETENV() rexxarplib.library function A-6, A-8, A-10 

thru A-13, A-16, A-17, A-19, A-22 f 
setfont PostScript operator 8-5, 8-7, 8-9, 8-14 
SETGADGET() rexxarplib.library function A-8 thru 

A-14, A-16, A-17, A-19 
SETPREFS TurboText command TA-51, 7-25, 

7-29, 7-31 
setting trace flags 6-6 
shared library 1-9, 6-13, 6-15 
SHELL ARexx instruction H 38, C 10-71 
shell sort 5-1, 5-7 thru 5-13, 5-19, 5-28, 7-9, A-25 
shell, Amiga 1-4, 1-5, 1-8, 1-9, 1-13, 2-1 thru 2-3, 

2-5, 2-6, 2-9, 2-12, 2-15, 2-19, 4-10, 4-16, 4-17, 
5-25, 6-4 thru 6-8, 6-11, 7-9, 8-5, 8-12, A-25 f 

show PostScript operator 8-5, 8-8, 8-9, 8-14, 8-19 
SHOW() built-in ARexx function H 64, disk, 

C 10-115, 6-14, 6-15, 7-4,7-5,7-15,7-24, 7-31, 
A-6, A-11, A-23 

SHOWLIST() rexxsupport.library function H 129, 
C 10-133, 7-15, 7-19, 7-27, 7-32 

showpage PostScript operator 8-5, 8-9, 8-11, 8-14, 

I-12 Index 

8-19 
SIGL special variable H 39, 75, C 10-73, 10-145, 

6-10 thru 6-12 
SIGN() built-in ARexx function H 64, C 10-116 
SIGNAL ARexx instruction H 38 f, C 10-71 ff, 3-3, 

3-4, 3-6, 6-9 thru 6-12, 6-13, 7-8, 7-10, 7-12, 
7-15, 7-16, 7-19, 7-24, 7-25, 7-30, 7-31, 8-13 thru 
8-15, A-16, A-22, A-27, A-34 

SIGNAL ON ERROR 6-9, 6-11, 7-8, 7-10, 7-12, 
7-15, 7-16, 7-19, 7-24, 7-25, 7-30, 7-31 

single quotes 3-5, 7-20, 7-21 
SIZEBOTTOM window flag A-7 
Snap program 8-12 
sorting 5-1, 5-28, 7-12 
source code 1-4, 1-5 
SOURCELINE() built-in ARexx function H disk, 

C 10-116 
SPACE() built-in ARexx function H 64, C 10-116 
special ARexx variables 6-9 
special characters in PostScript 8-6 f 
STACK argument of PRAGMA() built-in ARexx 

function H disk, C 10-110 f 
stand alone program 5-11, 7-30 
startup-sequence 1-5, 6-14 thru 6-16, 7-16, 7-23, 

7-32, 8-2 
startup.dfn definition file (TurboText) 7-32 
statement(s) 1-7, 2-5, 2-7, 2-8, 2-10, 2-13, 2-28, 

3-6, 4-8, 5-3, 5-26, 6-9, 6-10, A-34, A-35 
stderr 6-5 
stdout 6-5 
stems (see arrays, array elements) 
STORAGE() built-in ARexx function H 65, C 10-117 
string manipulation 5-16, 8-4 
string tokens H 12, C 10-28 f, 1-11, 2-2, 2-5 thru 

2-8, 2-10, 2-11, 2-13, 2-16 thru 2-18, 2-24, 2-25, 
2-27, 2-28, 3-1 thru 3-14, 3-17 thru 3-20, 4-1, 4-
18 thru 4-20, 4-22 thru 4-27, 5-14 thru 5-29, 6-7, 
6-10, 7-4 thru 7-7, 7-13 thru 7-16, 7-18 thru 7-22, 
7-25, 8-2, 8-4, 8-6, 8-8 thru 8-10, 8-15, A-4, A-7, 
A-11, A-17, A-26 

STRIP() built-in ARexx function H 65, C 10-117 f 



The ARexx Cookbook 

stripping blanks 5-17 
subkeyword 2-22, 2-23, 2-26, 3-1, 3-16, 3-20, 5-15, 

7-5, 7-6, 7-13, 7-20, 7-21 
sublists in shell sort 5-8, 5-9 
SUBSTR() built-in ARexx function H 65, C 10-118, 

A-28 
substrings 3-1, 3-2, 3-8, 3-19 
SUBWORD() built-in ARexx function H 66, 

C 10-118 

symbol resolution H 16, C 10-36 

symbol tokens 2-2, 2-5 thru 2-8, 2-10, 2-11, 2-13, 
2-15, 2-16, 2-22, 2-23, 2-26, 2-27, 3-7, 4-8, 5-16, 
5-28, 7-4, 7-5, 7-8, 7-18, 7-21, 7-26 

SYMBOL() built-in ARexx function H 66, C 10-118 f 

syntax error 6-3, 6-8, 6-11 
SYNTAX interrupts 6-9 
SYNTAX subkeyword of SIGNAL ARexx instruction 

H 38 f, C 10-71 ff, 6-9, 6-11, 6-12 

T 
TCC command utility H 84, C 10-156, 6-5, 6-6 
TCO command utility H 84, C 10-156, 6-5 thru 6-7 
TE command utility H 84, C 10-156, 6-6, 6-7 
text formatting 7-28 
text processing 8-20 
THEN ARexx instruction/keyword H 39 f, C 10-58 f, 

10-73, 2-3, 2-7, 2-10, 2-12, 2-14, 2-15, 2-18, 
2-20, 2-28, 3-3, 3-4, 4-5 thru 4-7, 4-9, 4-16, 4-20 
thru 4-24, 5-6, 5-7, 5-10, 5-11, 5-17, 5-22, 5-23, 
5-26, 5-29, 6-10, 6-14, 7-8, 7-9, 7-15, 7-16, 7-24, 
7-25, 7-27, 7-29, 7-31, 7-32, 8-5, 8-13, 8-14, A-6 
thru A-8, A-10 thru A-20, A-22 thru A-25, A-27 
thru A-35 

thesaurus for editor 7-13 thru 7-16, 7-21, 7-22 
TIME() built-in ARexx functn H 66, C 10-119 f, 5-6, 

5-7, 5-10, 5-11, A-27, A-28 
TO iteration specifier for DO ARexx instruction 

H 27 f, C 10-53 ff, 3-4, 3-6, 4-22, 4-23, 5-2, 5-6, 
5-7, 5-9, 5-10, 5-11, 5-13, 5-17, 5-29, 6-10 thru 
6-12, 6-14, 7-9, 8-14, 8-15, A-6, A-25, A-31 

token(s) H 11 ff, C 10-27 ff, 2-5 thru 2-8, 2-11, 

2-13, 3-7 thru 3-9, 5-14, 5-16, 7-21, 7-26, A-4 
TRACE ?r ARexx instruction 6-3 
TRACE ARexx instruction H 40, 71, C 10-134 thru 

10-145, 6-1, 6-2, 6-3, 6-4, 6-6, 6-7, 6-8, 6-9, 7-21 
TRACE BACKGROUND 6-7 
trace console 6-5 
trace flag 6-6 
TRACE mode and option combined 6-3 
TRACE mode characters 6-2, 6-6, 6-7 
TRACE modes H 73, C 10-139 f, 6-2 
TRACE OFF 6-3, 6-4 
TRACE RESULTS 6-4 
TRACE() built-in ARexx function H 67, C 10-120 

TRACE, looking at 6-4 
tracing and interrupts H 71 thru 76, 83 thru 87, 

C 10-134 thru 10-145, 10-83 f, 10-89 f, 10-155 

thru 10-157, 6-1 ff 
tracing output H 72 f, C 10-138 f, 6-5 
tracing prefix codes (TRACE display format) 

H 72, C 10-137, 6-4 
TRAILING argument to STRIP() built-in ARexx 

function H 65, C 10-117 f 

transforming the page coordinates in PostScript 
8-17 

translate PostScript operator 8-18 
TRANSLATE() built-in ARexx function H 67, 

C 10-120 f 

trials (in probability theory) 4-3, 4-5, 4-6, 4-8, 4-9, 
4-10, 4-12 

TRIM() built-in ARexx function H 67, C 10-121 

TRUNC() built-in ARexx function H disk, C 10-121, 

A-16 
TS command utility H 84, C 10-156, 6-6 thru 6-8 
TurboText ARexx Macro 7-7 
TurboText by Oxxi application program 1-12, 1-13, 

2-3, 2-14, 7-5, 7-6, 7-7, 7-8, 7-10, 7-11, 7-13 thru 
7-32, 8-2, 8-4 thru 8-7, 8-9, 8-10, 8-17 

TurboText command console T 10-2, 7-20 
TURBOTEXT ports, global and document T 10-1 f 

TURBOTEXT.LASTERROR error variable T 10-4, 

7-16 

I-13 Index 



Index 

typeless data H 12, C 10-16, 5-18 

U 
UNTIL iteration specifier for DO ARexx instruction 

H 27 f, C 10-53 ff, 2-12, 2-13, 6-10, A-31, A-34 
UPPER ARexx instruction H 40 f, C no ref. 
upper case 2-6, 4-24, 5-24 
UPPER subkeyword to PARSE ARexx instruction 

H 33 ff, C 10-64 ff, 2-3, 2-6 thru 2-8, 2-12, 2-13, 
2-24, 2-25, 3-1, 3-4, 3-5, 3-15, 3-20, 4-16, 4-20, 
4-24, 5-6, 5-10, 5-22, 5-24, 7-8, 7-11, 7-12, 8-13, 
8-14, A-27, A-28, A-33, A-34 

UPPER() built-in ARexx function H 67, C 10-121, 
4-20, 7-8 

utilities 1-2, 1-8, 1-12, 1-13, 6-6, 8-2, 8-12 

V  
VALUE option to the SIGNAL ARexx instruction 

H 38 f, C 10-71 ff, 6-10, 6-12 
VALUE subkeyword to ADDRESS ARexx 

instruction H 25, C 10-50 f, 7-5, 7-6, 7-9, 7-13, 
7-19, 7-29, 7-32 

VALUE subkeyword to PARSE ARexx instruction 
(see PARSE) 

VALUE() built-in ARexx function H 68, C 10-122, 
3-4, 3-6 

VAR subkeyword to PARSE ARexx instruction (see 
PARSE) 

variable(s) 1-10, 1-12, 2-2, 2-6 thru 2-11, 2-13, 
2-15, 2-22, 2-24 thru 2-27, 3-2, 3-4 thru 3-14, 
3-17, 3-19, 4-3, 4-4, 4-6, 4-8, 4-23 thru 4-26, 5-2, 
5-3, 5-8, 5-11, 5-14 thru 5-18, 5-20 thru 5-25, 
5-27 thru 5-29, 6-2, 6-3, 6-10, 6-11, 7-3 thru 7-7, 
7-9 thru 7-13, 7-16, 7-17, 7-19, 7-20, 7-25, 7-26, 
7-28, 8-8, 8-10, 8-16, A-6 

VERIFY() built-in ARexx function H 68, C 10-122 
VERSION subkeyword to PARSE ARexx instruction 

(see PARSE) W  

WAITFORPORT command utility H disk, C 10-157, 
7-4, 7-15, 7-17, 7-25, 7-26, 7-31, A-7 

I-14 Index 

WHEN ARexx instruction H 41, C 10-73, 3-3, 3-4, 
4-20, 4-21, 4-24 thru 4-26, A-11, A-13, A-14, 
A-19, A-20, A-30 

WHILE iteration specifier for DO ARexx instruction 
H 27 f, C 10-53 ff, 2-3, 2-10, 2-11, 2-13, 2-14, 
2-16, 2-18, 2-19, 2-23, 2-26, 2-28, 3-3, 4-22 thru 
4-24, 5-2, 5-3, 5-6 thru 5-11, 5-13, 5-16, 5-22, 
5-24, 5-28, 5-29, 6-10, 7-9, 7-10, 7-30, 8-13, 
A-24, A-25, A-27, A-30, A-31, A-33 

WINDOWCLOSE window flag A-7 
WINDOWDEPTH window flag A-7 
WINDOWDRAG window flag A-7 
WINDOWSIZING window flag A-7 
WINTOFRONT Electric Thesaurus command E 2-8, 

7-15, 7-18 
WITH subkeyword to PARSE ARexx instruction 

(see PARSE) 
word processors 8-2 
WORD() built-in ARexx function H 68, C 10-122, 

A-30 thru A-35 WORKINDEX
() built-in ARexx function H 68, 

C 10-123 
WORDLENGTH() built-in ARexx function H 68, 

C 10-123 
WORDS() built-in ARexx function H 69, C 10-123 
WORDWRAP ON option for SETPREFS TurboText 

command T A-51, 7-25, 7-29, 7-31 
WRITE argument to OPEN() built-in ARexx function 

H 60 f, C 10-109, 2-8, 5-7, 5-11, A-27, A-32, A-
33 

WRITECH() built-in ARexx function H 69, C 10-123 
WRITECLIP() rexxutil.library function 7-28, 7-29 
WRITELN() built-in ARexx function H 69, C 10-124, 

5-7, 5-11, 8-6, 8-14, 8-15, A-32, A-33 
writing a string to the parallel port (PAR:) 8-8 
WShell by William S. Hawes 1-13 

X  
X2C() built-in ARexx function H 69, C 10-124, 4-19 
X2D() built-in ARexx functn H disk, C 10-124, 4-19 
XRANGE() built-in ARexx function H 69, C 10-124 f 



About the Author 
Merrill Callaway is the author of the monthly ARexx Column in Amazing Computing magazine. He 
holds degrees in Applied Mathematics and Fine Art from Brown University. A former aerospace 
Logistics Engineer with extensive technical writing and programming experience, he has devoted 
his full time to the Amiga since 1990. He lives in Albuquerque, NM where he is currently 
developing a tutorial work on Art Department Professional and pursuing techniques for making 
original art on the Amiga. 



WHITESTONE 
511-A Girard Blvd. SE 
Albuquerque, NM 87106 
(505) 268-0678 

ISBN 0-9632773-0-8 

52495 

780963 277305 9 

* The ARexx Cookbook 
by Merrill Callaway 
A Tutorial Guide to the ARexx Language on the Commodore Amiga Personal Computer 

* Features 

• Tutorial Approach Not another reference manual, The ARexx Cookbook is a step by step 

approach to learning ARexx, in graduated lessons from simple stand alone programs to 

complex interprocess control programs. Along with presenting good programming techniques, 

a thorough treatment of parsing, string handling and arrays insures that the readers will have 

the equipment to write any ARexx programs they need. This book makes ARexx easy! 

• Useful Projects Real programs that do useful tasks make up all the examples. You will 

keep the programs you learn on! Beginners, intermediates, and advanced users of ARexx will 

find useful programs as well as inspiration and ideas here. There are programs to sort your 

data, pick out a list of words without duplicates, turn your text editor into a full blown word 

processor with Thesaurus and Grammar checker, scale IFF images to fit your screen, search 

large text files, and more. Along the way, you'll learn many powerful programming techniques 

so that you can write any program you need for your own custom environment. 

• ARexx and PostScript There are no other books dealing with ARexx controlling 

PostScript, but this extremely powerful combination is presented clearly by The ARexx 

Cookbook. The projects include a slick utility to print envelopes right from the Shell or CLI. 

• Multiple Reference Index Page numbers for the Hawes and the Commodore ARexx 

Manuals, as well as for the manuals of the application software mentioned in the text occur 

both in the index and in the margins of the text. Every ARexx instruction and function and 

every application program command is referenced thoroughly. 

• Companion Disk All programs in the book, as well as several more are available on disk. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252

