
Includes

Companion

Diskette

m ia /4/tejan

m file

Includes

ready-to-use

companion diskette

Guide to using the ARexx

programming language

by Zamara and Sullivan

Abacus

UsingARexx

on theAmiga
by Chris Zamara and Nick Sullivan

Published by

Copyright © 1991,1992 Abacus

5370 52nd Street SE

Grand Rapids, MI 49512

Copyright © 1991,1992 Chris Zamara and Nick Sullivan

Editors: Jim D'Haem, Scott Slaughter, Robbin Markley

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise without the prior written permission of Abacus

Software.

Every effort has been made to ensure complete and accurate information concerning the

material presented in this book. However, Abacus Software can neither guarantee nor

be held legally responsible for any mistakes in printing or faulty instructions

contained in this book. The authors always appreciate receiving notice of any errors or

misprints.

AmigaBASIC and MS-DOS are trademarks or registered trademarks of Microsoft

Corporation. Amiga 500, Amiga 1000, Amiga 2000 and Amiga are trademarks or

registered trademarks of Commodore-Amiga Inc. IBM is a registered trademark of

International Business Machines Corporation.

This book contains trade names and trademarks of many companies and products. Any

mention of these names or trademarks in this book are not intended to either convey

endorsement or other associations with this book.

Zamara Chris, 1963-

Arexx programming on the Amiga / Chris Zamara, Nick Sullivan,

p. cm.

Includes index.

ISBN 1-55755-114-6 : $34.95

1. Amiga (Computer)—Programming. 2. ARexx (Computer program

language) I. Sullivan, Nick. 1951- . II. Title.

QA76.8A177Z36 1991

005.265--dc20 91-30049

CIP

Printed in U.S.A.

10 98765432

IV

Preface

Although this book may seem to be a specialized text about a single

programming language, it is for all Amiga users who want to get more

from their computer. This is because ARexx is more than just a

programming language - it's now a standard part of the Amiga's

operating system, and is used by a large number of software packages

to add powerful user-programmability. ARexx is not just for

programmers: it's for 'power users' and anyone with serious

applications for their Amiga: graphics, animation, word processing,
multimedia, spreadsheets, 3D modeling, and more.

You don't have to be an Amiga expert to use this book: it starts off

assuming very little about how much background you may have with

programming, using computers, and using the Amiga in particular.

You will find it helpful, however, to have some acquaintance with the

Amiga's basic operations. If you're a beginner and aren't familiar with

the basics of the Workbench, copying files, and typing in simple Shell

commands, we recommend that you look through the documentation

supplied with your Amiga. You'll need to know these basics before

using most programs or doing any serious work with the computer.

You can use ARexx and this book even if you don't intend to learn

about writing your own ARexx programs. You will get the most out of

ARexx and many of your software applications, however, if you give

ARexx programming a try - ARexx is much easier to use than other

languages. If you are completely new to programming, you can still

learn ARexx programming from this book, although it will take some

determination. If you've never encountered programming in any

language before, we would recommend that you read a 'learning
programming' textbook as support material.

This book is very much a 'hands on' text. Although you can learn the

concepts of ARexx just by reading it, the ideas will be much more

firmly cemented in place if you actually try the given examples and

perform your own experiments. For this reason, it is best if you are

sitting near your computer when reading the book to learn about

ARexx for the first time. Once you understand the basics and start

writing your own ARexx programs, you'll want to keep the book

nearby for the complete easy-to-access reference at the end.

The terminology used throughout the book is consistent with that

used in the official ARexx manual by William S. Hawes. In some

cases, this differs from the terminology used in the The REXX

Language: A Practical Approach to Programming by M. F. Cowlishaw,

which defines the REXX language on which ARexx is based. The most

notable difference is in the use of the term instruction, which

Cowlishaw defines as any clause other than null clauses and label

clauses (including assignments and external host commands), while

Hawes (and this book) uses "instruction" to mean what Cowlishaw

calls a keyword instruction.

We hope that learning and using ARexx is an enjoyable experience.

We have tried to use interesting examples wherever possible, and

have included real-world programs that you'll actually find useful. If

you have fun while you're discovering and learning about ARexx

along with this book, you'll learn a lot more, and learn it faster. It is

our hope that this book accomplishes that goal.

Acknowledgements

Though this book, like all others ever written, is in some sense a

conspiracy of thousands with the authors merely the ringleaders, we

would like to single out for thanks the special contributions of some

of our chief accomplices.

We begin with Bill Hawes, to whom, as the author of ARexx, this

book owes the very possibility of its existence. Bill's creative

adaptation of the IBM script language REXX to the multitasking

Amiga environment was one of the decisive actions that shaped

Amiga history. On a more immediate level, Bill's generous and

patient assistance with technical questions was invaluable to us

throughout the writing of this book.

Of the several people whose ideas influenced the final form of both

the book and the accompanying disk, we would like to mention

particularly Mark R. Brown of INFO magazine and long-time Amiga

activist Larry Phillips. Will Murphy, Brad DuTemple and the rest of

the staff at Moebius Computers in Victoria were unfailingly helpful in

answering questions and helping us locate needed materials.

In the preparation and proof-reading of the manuscript, we would like

to acknowledge the help of Corwin Sullivan for his careful

verification of the programming examples, and of our editors at

Abacus, led by Jim D'Haem, for imposing typographical order on the

sometimes chaotic text files we thrust upon them.

VI

Jim Oldfield at Abacus deserves special mention both for helping to

initiate the project (in what now seems the distant past) and for his

superb efficiency in the role of liaison with the software

manufacturers whose products are discussed in Section III of the book.

We would also like to express our gratitude to the manufacturers

themselves for their co-operation in providing source materials for

Section III. Though they are too numerous to name individually here,

we direct the reader's attention to Appendix D (Vendors and Products)

for a listing with complete address information.

Finally, we would like to thank the community of Amiga users for

their growing acceptance and support of ARexx as a standard script

and macro language, and Commodore-Amiga Inc. both for

recognizing the importance of ARexx and for the Amiga computer

itself.

Nick Sullivan - Chris Zamara

September 1991, Victoria, BC

vii

Contents

SECTION I - GETTING ACQUAINTED 1

Chapter 1. Introduction. 3

What is ARexx? 3

History of ARexx - 4
ARexx and the Amiga 6

What is a Programming Language? 8

What Can ARexx Be Used For? 10

Built-in Instructions and External Commands 11

A Few Examples 12
How This Book Is Organized 14

Section I - Getting Acquainted 14

Section II - ARexx Programming 14

Section III - Controlling Applications 15

Section IV - Reference 15

Chapter 2, The ARexx System . . 17

Fundamentals of the ARexx System 17

RexxMast: The resident process 17

rexxsyslib.library: The ARexx systems library 17

The RX program 17

ARexx scripts and macros 18

Installing ARexx 18

The Install-ARexx' script 20

Using ARexx without installing the files 21

Starting ARexx after rebooting 22

Permanent installation 22

Adding RexxMast to the Startup-Sequence 23

The REXX assign 24

Hard disks and the Startup-Sequence 25

The Entire System 25

Programs 25

Libraries 26

Optional libraries 27

Using optional libraries 27

How ARexx Is Accessed 28

The resident process 28

Creating an ARexx script 29

Executing a script using the Shell 29

ix

Executing a script using the Workbench 30

Everyday use of scripts 31

Using ARexx from within an application 31

Chapter 3. Simple Software Control 33

Simple ARexx Commands 33

The ADDRESS instruction 34

Controlling a Sample Host 35

The ARexxPaint host application 36

ARexx at Work 39

ARexx Support 42

What to look for 42

SECTION II - AREXX PROGRAMMING 45

Chapter 4. Simple Programming 47

Creating a Simple Script 47

Entering the script 48

Running ARexx Scripts 49

Script names 50

Expressions and the SAY instruction 50

Experimenting with SAY 52

More on expressions 56

Simple Variables 57

Assignment Clauses 58

Script argument 61

Variable names 62

User Input 63

Chapter 5. Numbers, Strings and Operators 65

Experimenting with Expressions 65

Numbers and Strings 67

Operators 71

Concatenation operators 74

Arithmetic operators 75

Relational (comparison) operators 77

Logical operators 80

Other String Forms 83

Chapter 6. Compound Variables and Built-in Functions 85

Simple Variables 85

Compound Variables 86

Arrays 86

Records 87

Other data structures 87

Data structures in ARexx 88

Functions 92

Function arguments 94

Where do functions come from? 96

How ARexx locates functions 97

Loading a function library 99

Chapter 7. Compound Statements and Loops ... 103

IF, ELSE and Compound Statements 103

Loops 107

Using Loops with Compound Variables 113

Chapter 8. User-Written Functions.. 117

The Anatomy of a Function 117

Function Arguments 119

Local Variables - PROCEDURE and EXPOSE 126

Obtaining multiple results from a function 128

Accessing a global information base 129

Accessing named constants 129

Exposing variables in nested functions 131

Simulating constants with functions 131

A Last Look at CHARLINE 132

Chapter 9. File Input and Output 133

The Nature of Disk Files 133

Output - Writing to a File 136

Dealing with I/O errors 137

Input - Reading from a File. 139

Determining End-Of-File 140

SEEK - Positioning within a File 143

Modifying existing files 144

Interactive Input and Output 145

Chapter 10. Parsing and String Handling 147

Introduction to Parsing 147
Parsing with string functions 147

The PARSE Instruction 148
Format of a PARSE instruction 148

Parsing user input 149
Parsing arguments 150

PARSE Templates 150
Parsing by tokenization. 150

Pattern markers 152
Parsing fixed-length fields 153
Extracting words from a string 155

xi

PARSE String Sources 157

PARSE ARG 157

PARSE PULL 157

PARSE VALUE 158

Chapter 11. Debugging, Tracing and Error Trapping...l59

Debugging 159

Learning to debug 159

Program diagnostics 162

Using TRACE 164

Basic tracing 164

The Global Tracing console 166

Interactive Tracing167

The TRACEO function 169

Command inhibition 170

The Global Trace flag 170

Error Trapping 171

Section III - Controlling Applications 175

Chapter 12. External Control 177

ARexx Communication 177

Multitasking 177

Inter-process communication 178

Using ARexx Commands 179

Addressing the host 179

Host commands 180

Results from commands 184

ARexx in Applications 190

Terminology 190

External scripts vs. built-in macros 190

Macro names 191

Executing macros 192

Where do macros go? 193

Output from macros 193

What ARexx controls 194

Controlling one application from another 195

Chapter 13. Specific Applications .' 197
Word Processing 197

ProWrite 3.1 "ZIZZZ!!!l98
Electric Thesaurus 201

Telecommunications 203

ATik!!!!!!!!!!!

xii

!!!!!!!!.2O4
Baud Bandit 205

Graphics 206
Art Department Professional 206

Digi-Paint3 208
Intro CAD Plus 212

Multimedia/Hypermedia 215
HyperBook 217
AmigaVision 220
ShowMaker 222
IllumiLink 224

Music 227
Database/Scheduling 228

SuperBase Professional 4 228

FreD Speed-Dialer 232
Business/Financial 235

SuperPlan 235
Home Office Advantage • 237

Program Development 238
CARE. 68k Version 2.5 239

Other products 240

SECTION IV - REFERENCE 241

Chapter 14. Reference 243

Preface 243
The Reference Guide 244

The Reference Guide Format 245

Flow of control 24^
Functions and arguments 246

Strings (editing) 246
Strings (pattern matching) 247
Strings (formatting) 247
Strings (word-oriented) 248

Strings (miscellaneous) 248

Numbers 249
Bit manipulation 249
Data conversion 250
Values and variables 250
Console input/output

File input/output

Files....

Script environment

ARexx environment

Operating system

xiii

Instruction and Function Reference 256

ABBREV 256

ABS 257

ADDLIB 258

ADDRESS 259

ADDRESS 262

ALLOCMEM 263

ARG 265

ARG 266

B2C 267

BADDR 268

BITAND 269

BITCHG 270

BITCLR 270

BITCOMP 271

BITOR 271

BITSET 272

BITTST 273

BITXOR 274

BREAK 275

C2B 277

C2D 277

C2X 278

CALL 279

CENTER or CENTRE 1 280
CLOSE 280

CLOSEPORT 281

COMPARE 282

COMPRESS 282

COPIES. 283

D2C 283

D2X 284

DATATYPE 285

DATE 286

DELAY 288

DELETE 288

DELSTR 289

DELWORD 289

DIGITS 290

DO 291

DROP 293

ECHO 294

ELSE 294

END 296

EOF 297

xiv

ERRORTEXT 297

EXISTS 298
EXIT 299
EXPORT 300
FIND 301
FORBID ; 302

FORM 303
FREEMEM 304
FREESPACE 304

FUZZ 305
GETARG 306
GETCLIP 307
GETPKT 308

GETSPACE 309

HASH 309

IF 310

IMPORT 311

INDEX 312

INSERT 313

INTERPRET 314

ITERATE 316

LASTPOS 316

LEAVE 317

LEFT 319
LENGTH 319

LINES 320
MAKEDIR 321

MAX 322

MIN 322
NEXT 323

NOP 325
NULL 326
NUMERIC 326
OFFSET 329
OPEN 329
OPENPORT 331
OPTIONS 332
OTHERWISE 335
OVERLAY 336
PARSE 337
PERMIT 343
POS 344
PRAGMA 344
PROCEDURE 348
PULL S49

xv

PUSH 350

QUEUE 352

RANDOM 353

RANDU 354

READCH 354

READLN 355

REMLIB 357

RENAME 357

REPLY 358

RETURN 359

REVERSE 360

RIGHT 360

SAY 361

SEEK 361

SELECT 363

SETCLIP 364

SHELL 365

SHOW .365

SHOWDIR 366

SHOWUST 367

SIGN 370

SIGNAL 370

SOURCELINE 375

SPACE 376

STATEF 377

STORAGE 378

STRIP 379

SUBSTR 380

SUBWORD 380

SYMBOL 381

THEN IIZ"382
TIME 382

TRACE 384

TRACE 389

TRANSLATE 391
trim ZZZZZsa
TRUNC 392

TYPEPKT 393

UPPER 395

UPPER 396
VALUE ZZZZZZZZ.396
VERIFY 398

WAITPKT '390
WHEN 399

word zzzzzzza*

xvi

WORDINDEX 40°
WORDLENGTH 400
WORDS 401
WRITECH 401
WRITELN 402
X2C 402
X2D 403
XRANGE 404

Appendix A—Using a Text Editor 405
Amiga text editors 405

Appendix B—ARexx Support Software 407

RXC - Terminate ARexx 407

HI - Halt ARexx scripts 407
TS - Start interactive tracing 408
TE - Stop interactive tracing 408

TCO - Open global tracing console 409

TCC - Close global tracing console 409

RXSET - Set value for an ARexx 'clip' 409

WaitForPort - Wait/Check for message port 410

RXLIB: add a name to the Library List 411

rexxsupportlibrary - support functions 411

Appendix C—ASCII Chart 413

Appendix D—Vendors and Products...................—.........—............................... 415

jtnciex**...........................*...........................*...........*.............•............•......•.•••••••........••••...

xvii

SECTION I

GETTING

ACQUAINTED

What is ARexx?

Chapter 1

Introduction

What is ARexx?

ARexx (pronounced "AY-REX") is a simple programming language

for the Amiga that anyone can learn. ARexx lets you write simple

"scripts'' (programs) that define a task for the computer to perform.

A script is just a text file containing a list of instructions that ARexx

understands. These scripts, which you can either write yourself or

obtain from other sources, can let you accomplish many everyday

tasks automatically that could involve hours of laborious manual

operation of software applications.

Because of the way ARexx can communicate with other programs

running at the same time in the computer (thanks to the Amiga's

multitasking operating system), you can use macros written in ARexx

that will work with specific software applications.

Learning about ARexx will not only give you the ability to create

programs to solve specific problems, but can make your

wordprocessor, paint program, spreadsheet, 3D modelling software

and many other applications much more powerful and automatic.

You can even use ARexx programs to link the operations of several

programs to perform tasks that no one program can accomplish by

itself.

ARexx itself is a program, but unlike other programs that may display

windows, menus and gadgets on the screen, ARexx is "invisible".

When you run the ARexx "master" program, ARexx sits in the

background, ready to run any scripts that may come its way. You may

tell ARexx to run scripts directly or you may run them as macros from

software applications that support ARexx.

In this book, you'll learn how to write programs in ARexx and how to

use ARexx with some of the more popular software applications that
support it.

1. Introduction

You'll also be provided with some useful ready-to-use macros that can
add extra features to software you may already own —even if you
don't do any ARexx programming at all.

History of ARexx

REXX ARexx is so named because it is an implementation of the REXX
language for the Amiga. REXX is a language definition developed
over a number of years by Mike Cowlishaw at IBM.

Cowlishaw began in 1979 with the idea to create a language that was
easy to program in and was "designed for people, not machines". The

language evolved as the newest versions were distributed over IBM's
massive VNET network consisting of over 1,000 mainframe
installations.

VNET users tested and used the latest versions of the language,
sending suggestions and comments to Cowlishaw by electronic mail.
The amount of testing and refinement that went on was staggering.

In Cowlishaw's book, The REXX Language, he reports that at peak
periods he received over 350 pieces of electronic mail per day! An
informal language committee spontaneously appeared,
communicating over the network and discussing the language's
evolution.

It was largely this kind of large-scale cooperation and user input that

shaped the language, guided along all the while by the author's
fundamental concepts.

Fundamental From the start, REXX was to be easy to program in, highly readable,
REXX concepts use natural data typing and be effective in manipulating the kinds of

symbols people use most often, like words, names and numbers.

The language also had to be good at reporting errors accurately and,

perhaps most of all, had to try to fulfill the users' expectations as

much as possible: any behavior that might be surprising to the

programmer was carefully weeded out.

On the system level, the language was designed to be

system-independent, working on a variety of platforms and to be

easily adaptable to future expansion. It was also designed with support

for communicating with external "host environments", so that REXX

History Of ARexx

could be used as a standard macro language for operating systems,

editors and other applications.

Cowlishaw calls this important feature "a primary concept of the

language". (You'll see why when you begin working with ARexx

macros!)

REXX As the language developed and gained many users, it became more

implemen- and more officially recognized. In 1983, the IBM System/370

tations implementation became part of CMS (Conversational Monitor

System), a user interface for IBM mainframes.

In 1985, a version of REXX was released for MS-DOS/PC-DOS personal

computers. In 1987, REXX became the standard Procedures Language

for all IBM Systems Application Architecture (SAA) operating

systems, which encompasses a large number of systems.

The language is still evolving, but more slowly than before: the

standard is too firmly entrenched for major changes to be made at this

point. Discussions are underway, however, for exciting new versions

like an object-oriented REXX.

The official REXX language definition is completely documented in

the book by M. F. Cowlishaw, The REXX Language: A Practical

Approach to Programming (Prentice-Hall, 1985; 2nd edition, 1990).

This book is also the source for the above historical information about
REXX.

REXX for the When the Amiga came out in 1985, it was and remained for many

Amiga years the most advanced personal computer available. Not only did it

have incredible graphics and sound capabilities, but it had true

multitasking, allowing applications to effortlessly share the machine

without any special consideration by the programmer.

With a true multitasking computer, the REXX language clearly

defined and the recent release of REXX on other personal computers,
the stage was set for an Amiga version of REXX.

ARexx was created by William Hawes and released in 1987. ARexx

followed the official REXX language definition very closely, but added

a new dimension to ARexx's external 'host environment commands.

Since the Amiga supported true multitasking, any other program

running in the system could theoretically be used as a 'hosf for these

external commands. This made ARexx the ideal macro language, since

it could control any program that had ARexx support built in. This

1. Introduction

might include text editors, spreadsheets or any other application that

might have its own specialized language.

William Hawes developed the entire ARexx system, wrote the
manual and distributed and supported the product. The official ARexx

package has always been available from William Hawes himself as

well as the usual retail outlets.

Like REXX before it, ARexx steadily built a loyal following of users,

becoming the standard macro language on the Amiga.

ARexx and As it became evident that ARexx was not only the de facto standard on

AmigaDOS the Amiga, but also a very good standard indeed, Commodore made

release 2 the wise decision of adopting ARexx as an official part of the operating

system with the release of the 2.0 version.

ARexx is not an integral part of the system - it's not in the computer's

ROM (Read-Only Memory) and the standard Shell does not recognize

ARexx scripts especially - but the ARexx software is included on the

standard system Workbench disk.

When you boot an Amiga under Workbench 2.0, ARexx is ready to

use. Now that ARexx is officially part of the system and software

developers can be assured that most users will have it, we can expect

to see more and more applications with built-in ARexx support.

ARexx and the Amiga

In retrospect, it is easy to see that ARexx is the ideal macro language

for the Amiga and the inclusion of ARexx with the latest release of the

operating system makes perfect sense. But how did this wide

acceptance come about?

The adoption of any standard—especially one involving a third-party

commercial product—is extremely difficult. Unless a lot of software

supports ARexx, the language won't be very popular; if not many

people buy the language, there isn't much incentive for software

developers to add ARexx support to their products.

Looking at the Catch-22 situation, it seems almost miraculous that

ARexx has succeeded and become the widely accepted and supported

standard that it has. It was not just luck that brought this about,

however.

ARexx and the Amiga

TheREXX

language

standard

Small demands

on memory

Shared library

for

multitasking

Good behavior

for high

reliability

ARexx didn't have a big advertising budget or hype behind it. It was

introduced quietly, at first being known to software developers rather

than the general user community. The design and implementation of

ARexx, not its promotion, is what contributed most to its success.

Some of these factors were:

The REXX language standard is powerful yet easy to program in. This

makes it ideal for the kind of 'quick and dirt/ scripts that are put

together to solve specific problems.

ARexx was implemented using very efficient code, making the

language quite small. The entire system, once loaded into the Amiga,

takes up less than 40 kilobytes of RAM.

For comparison, consider that Commodore's AmigaVision program,

shipped with the Amiga 3000 computer, is over 600k! ARexx's small

size helped greatly in making the language accepted, since the system

has to be available at all times and every extra kilobyte of memory that

it uses is one kilobyte less available for other programs to run in.

Perhaps the fact that the original ARexx release was developed on a

non-expanded (512k) Amiga had something to do with this

preoccupation with small code size!

The implementation of ARexx as a "shared library'' means that more

than one ARexx program can run at the same time without loading

more than one copy of the ARexx system into memory. Again, this

keeps memory demands on the system very low.

ARexx has always been very "well-behaved", making it trusted by

those that use it. The most important aspect of this good behavior is

that the program doesn't 'crash' the computer (cause a software error

and subsequent reboot) under any circumstances.

This is a very important quality for any software to have and is

something that isn't reflected in written specifications. When people

have confidence in running a certain piece of software and never

worry about the system crashing as a result of it, they tend to use it

more often.

Other aspects of ARexx's good behavior are its friendliness towards

multitasking (it doesn't slow down other programs when it's not

being used) and its careful return of all the system memory that it

uses.

1. Introduction

Expandability

The future

vision

The missing

link:

introductory

documentation

ARexx itself is small, but is designed in a flexible way so that its

functionality can be easily increased. Through its support of junction
libraries and function hosts, the ARexx language can be extended to
any degree. This makes the basic language system a good platform for
more powerful language versions in the future.

Perhaps the greatest factor of all in ARexx's success was the inspiration

that many software developers found by thinking "What if... ?". What
if all software supported the ARexx standard fully? What if all users
had ARexx and knew how to use it?

If people could fully automate the control of any software and link the
functionality of different programs into one, wouldn't that put the
Amiga far ahead of any other personal computer? Isn't this what the

Amiga—and the world—really needs? This is the kind of exciting talk
that went on as the developers contemplated the future of ARexx and
the Amiga, and many of them decided to make it happen.

Although not many users owned ARexx in the beginning, many

developers supported it in their products as an investment in this
future. Partly because of their faith and vision—and now
Commodore's—this future is coming true.

What has been holding ARexx back? Why isn't it even more generally
used and accepted? Probably the lack of information and good
introductory documentation had a lot to do with it.

As good as the ARexx software was, the documentation, however
complete, was never very easy to understand or learn from for the

average user. Fortunately, this problem is being corrected, partly due

to books such as the one you're reading now.

What is a Programming Language?

A programming language lets you define a task for the computer to
perform—a program—in a way that makes sense and is easy to
understand from a human's point of view.

Using a programming language to create a computer program is much

simpler than if you had to use the the primitive 'machine'
instructions that the computer's hardware understands. There are
several programming languages that can be used on the Amiga:

AmigaBASIC, other versions of BASIC and AmigaCOMAL for simple
programming and languages like C, Modula-2 and Assembler (which

ARexx's

specialty:

external control

What is a Programming Language?

is very close to 'machine' language) for more complicated or
high-performance applications.

With any programming language that you use, the list of commands

and instructions that you create (called source code) must be converted
by an interpreter or a compiler program into the more basic machine
instructions (the object code) before the computer can run your
program.

The wordprocessor or paint program that you use, for example, may
have been originally written in C or assembly language. The source

code for the program was converted into machine instructions by a
compiler (or assembler, in the case of assembly language), which
results in the program that resides on your disk drive.

ARexx is a true programming language, but it differs from other
programming languages like BASIC in a number of important ways.

Languages like BASIC are self-contained: The program that you write

must do everything by itself. If you want your program to allow the

user to edit text, for example, you have to write the code for a

text-editing facility. ARexx, on the other hand, has the unique ability

to communicate directly with other programs running at the same
time.

In ARexx, the same problem might be handled by using special

instructions that are understood by the wordprocessor program that is
currently being used.

Interpreter vs. We mentioned the interpreter and compiler above. Although it may

compiler seem like a rather technical detail, it is useful to know that ARexx is

an interpreter. This means that each line of source code in a program

is interpreted by ARexx one at a time as the program is executed.

A compiler, on the other hand, translates the entire program all at

once and the translated version of the program is used thereafter.

Interpreters are generally easier to use than compilers and make it

easier to find and correct errors in your program. Interpreters also

have language features not available in compilers (like ARexx's

powerful INTERPRET instruction).

1. Introduction

The drawback is mostly in performance: programs written in

interpreted languages like ARexx cannot execute their instructions as

quickly as compiled programs. ARexx can be used to solve any

programming problem, but real-time applications like video games or

high-speed data sampling are not good candidates for ARexx

programs.

What Can ARexx Be Used For?

Stand-alone

scripts

Program

macros

ARexx programs can be used in a number of ways:

An ARexx program or script, can be used in many everyday

applications just as a BASIC program or an AmigaDOS script (such as

the "Startup-Sequence") might be used. ARexx scripts, however, are

often shorter and simpler to write than programs written in these

other languages.

ARexx has powerful features for dealing with textual information,

making it ideal for applications that involve reading and processing

data from text files. Once you become familiar with ARexx

programming, you'll often be able to type in a small script to suit your

needs exactly instead of adapting your problem to a spreadsheet,

database or other pre-existing software.

Since ARexx can control many software applications, ARexx scripts

can be used as "macros" to perform specific operations within an

application. The ability to control the functions of an application in

this way using a general purpose language like ARexx allows you to

add powerful, custom made features to a program.

Using ARexx to create macros also has the advantage of

standardization: you use the same language to write macros in a
number of different programs.

Programs that allow ARexx macros can also be easily extended even if

you don't write the macros yourself. By obtaining macros from other

sources, you can increase the power of your existing software

applications without purchasing an upgraded version.

10

What Can ARexx Be Used For?

Controlling Some complicated processes may involve the use of several programs:

multiple You might render images with a 3D modelling program, then put

programs together many such images into an animation using an animation

package, for example.

A procedure like this may involve a number of separate steps with

both software packages that would have to be repeated for each frame

of the animation. ARexx's ability to control external programs allows

you to write a program that would coordinate operations between the

modelling and animation programs (both of which would be running

at the same time).

Theoretically, any number of programs could participate in an

operation like this (providing your computer has enough memory to

run them all), all controlled by a single ARexx script.

Built-in Instructions and External Commands

Because ARexx is a self-contained programming language and has the

ability to control external programs, ARexx programs can contain two
kinds of instructions:

ARexx

instructions

and functions

External

software

commands

Built-in instructions and functions can be used in any ARexx script,

since they are part of the basic ARexx language. ARexx programs using

only these built-in instructions and functions can be run regardless of

what software is operating; no external programs are affected.

External commands are understood by the current "command host",

which is the external program ARexx is currently communicating
with (it might be a spreadsheet program, for example). These
commands are interpreted not by ARexx itself, but by the external
program.

It is these commands that let you control the functions of a software
application using an ARexx program instead of manually selecting

menus, entering data, etc. These commands are often unique to a

particular software package, so ARexx scripts that use them are not

generic: such scripts are generally designed to work with a specific
software application.

11

2. Introduction

Scripts and

macros

Stand-alone scripts can be created using only the built-in instructions

and functions. Scripts that are used as program macros or for

controlling multiple programs will combine the use of built-in

instructions and functions with software-specific commands.

Macros are often supplied with software applications that support

ARexx; additional macros can often be purchased as an add-on

product. In many cases, macros are available for free from the public

domain. Once you learn to program in ARexx, however, you'll

probably be happiest using the macros that suit your needs exactly:

those that you've written yourself.

A Few Examples

The idea of 'adding power' to your software might sound tantalizing,

but is admittedly vague. This book—and the accompanying disk—

provide you with some samples of ARexx scripts and macros that can

be used with popular software products. Here are a few examples of

how ARexx can be used with some commercially available products:

Database

Spreadsheet

The Microfiche Filer Plus (Software Visions) database program can be

fully controlled via ARexx macros. Your database can be fully

automated by writing ARexx programs, just as you would write a

program for a language-driven database like Ashton Tate's DBase III.

This gives you the ability to generate special reports from the

information in the database, to create a large number of records with

data from a text file or generated by the program, to perform selective

search and replace operations on a large number of records, etc.

Unlike databases with their own control programs, using ARexx in

this way means you don't have to learn a new language to use the

program: once you know ARexx, you just have to learn the

commands specific to the database and you're ready to write database

programs.

The Advantage spreadsheet (Gold Disk) program provides ARexx

macros to search and replace formulas, automatically lay out large

tables, swap any two spreadsheet columns and automatically fill in a

range of cells with the names of months.

Because Advantage has full ARexx support, many other operations on

a spreadsheet that might be tedious can be automated by writing

simple scripts and using them as macros.

12

Hypermedia

Paint program

A Few Examples

In the hypermedia program HyperBook (Gold Disk), you can lay out

pages containing text or graphical objects. If you were creating a

hyperbook with dozens or hundreds of pages, each using different text
and formatting (colors, position, etc.), it could take quite a while to do
by hand.

Since HyperBook has full ARexx support, a simple ARexx macro

could read text from a file and create each page with the text formatted
accordingly. Once the script was written (a few minutes' work), the
entire process would all take place automatically.

An example of a hyperbook created in this way, along with the
HyperBook 'reader' program to let you look at it, is included on the
companion disk.

ARexx scripts can be used to control the paint program DigiPaint 3
(NewTek). Any common graphical effect that you can accomplish by a
series of steps can be programmed in a script.

You might have a script to scale the current 'brush' to a specific size
and overlay it onto the picture using a specific density and shading
style. Rather than select all of these operations each time, you could let
a script do the work.

This is especially useful for repetitive operations: your work of art
might involve stamping down a hundred such brushes in a grid

pattern across the picture. Very tedious and inaccurate by hand, the

same procedure is easy, quick and accurate using an ARexx script.

Baud Bandit (Progressive Peripherals and Software) and A-TALK III

(Oxxi) are examples of telecommunications programs that are
completely controllable with ARexx macros. Using macros with these

programs can allow you to automate a procedure like logging into an

online service, downloading your mail and logging off.

On a larger scale, an ARexx script can be used to create a customized

bulletin board system so that remote users can log onto your system
and exchange information and files.

CAD Programs With an ARexx-controllable CAD (Computer-Aided Design) program

like IntroCAD Plus from Progressive Peripherals and Software, you

can use ARexx macros to define complex figures mathematically that

would take hours of painstaking work to create manually.

Telecom

munications

13

1. Introduction

How This Book Is Organized

This book is designed as your complete guide to using ARexx on the

Amiga. You will be introduced to setting up and using ARexx, generic

ARexx programming and specific ARexx applications with popular

software products.

The book is divided into four main sections:

Section I - Getting Acquainted

This contains all introductory material, including how to install and

set up the ARexx system. It also dives in with some simple examples

of ARexx programs just to give you a feel for the language and "get

your feet wet".

More experienced users or those that know a bit about ARexx can

skim over this section, but most users should find it extremely

beneficial for getting acquainted.

Section II - ARexx Programming

This is where you learn how to program in ARexx. No previous

programming experience is assumed and all examples use purely

generic ARexx programming: no other software is required.

Basic rules of syntax and program construction are given in the early

chapters, with more specific uses of ARexx instructions and functions
given in the later ones.

If you're not interested in writing ARexx programs, but merely wish

to learn about what the language is and how you can use the provided

macros and scripts with your software, you can skip this entire section.

We would recommend you at least give ARexx programming

however: it may not be as difficult as you think!
a try,

14

How This Book Is Organized

Section III - Controlling Applications

While Section II covered the basic ARexx instructions and functions,

in this section we cover ARexx as it is used in a number of popular

software products. You'll see examples of scripts and macros and learn

how to use them in each of the programs.

You can type the macros in from the book to really 'get your hands

dirty/ or simply load them from the supplied disk. Command

summaries of the main software packages are also listed for easy

reference.

This section is useful to owners of the software products mentioned,

as well as to owners of similar products or those considering

purchasing an ARexx-compatible product

Section IV - Reference

Section IV is the reference section, which you'll probably find to be the

most useful part of the book after you've read the first three sections.

If you do any ARexx programming, you'll continually find yourself

reaching to this section to look up the various built-in instructions

and functions, what they do and how to use them.

The instruction/function reference portion of the section is organized

in two parts, so that you can browse through similar functions by

category or quickly look up any instruction or function alphabetically.

The section is placed at the end of the book so that you can easily
thumb through it.

15

Fundamentals of the ARexx System

Chapter 2

The ARexx System

Fundamentals of the ARexx System

Although it is a powerful, general-purpose programming language,

the ARexx system actually consists of just a few relatively small

programs. Here is a brief overview of the disk files that are absolutely

vital to using ARexx:

RexxMast: The resident process

This program must be run before ARexx can be used. Once RexxMast

is running in the system, ARexx scripts can be run using the 'RX'

program and ARexx macros can be used from within software

applications.

rexxsyslib.library: The ARexx systems library

This file contains most of the software required by ARexx and must be

present in the system libs:' directory at the time RexxMast is run.

The RX program

The small IOC' program is used as an AmigaDOS Shell command to

run ARexx scripts (your ARexx programs), which are stored as text

files. For example, the command 'rx hello' would execute the ARexx

script on disk called

Alternatively, you can create a Workbench icon for a script that uses

RX to run the script when the icon is double-clicked. RX simply passes

your ARexx script to the ARexx resident process, which you started by

running RexxMast.

RX can also be used to directly execute short ARexx programs that can

fit on a single line. You'll learn more about using this command from

a Shell or CLI window in this section of the book.

17

2. The ARexx System

ARexx scripts and macros

RexxMast, RX and rexxsyslib.library are part of the ARexx system itself.

Since ARexx is a programming language, it needs programs to do

anything useful; these ARexx programs (called scripts and macros) are

provided by you.

You can write your own ARexx scripts and macros to perform specific

tasks—after reading this book, you should have a good idea how to do

this.

You can also use prewritten scripts and macros written by someone

else to help with common operations.

Installing ARexx

ARexx itself is a software program that remains resident in your

system, springing into action when needed. While some programs

consist of just a single disk file that you can double-click from the

Workbench or run from an AmigaDOS Shell window, the ARexx

system consists of a few files that work together.

These files must be on your standard boot disk (the Workbench disk

ybu start off with, also referred to as the 'system' or 'SYS:' disk) if you

want the ARexx system to be available every time you reboot.

If you have purchased the ARexx package and haven't 'installed' these

files yet, this section will guide you through the simple process. Even

if you have ARexx already set up in your system, the guide below may

answer some of your questions about exactly what the installation

process consists of.

AmigaDOS 2.0 If you have the major Amiga operating system upgrade, V2.0, running

on your Amiga, then ARexx is already a part of your system.

The RX program and other ARexx programs are included on the

standard Workbench disk under V2.0 (in the 'Rexxc' directory) and the

itexxMasf program in the 'System' drawer is automatically run by the

Startup-Sequence when the system boots up. Additional ARexx

support files are in the 'libs' directory.

18

Installing ARexx

The remainder of this Installation section assumes that you have
purchased the ARexx package separately and you have the standard
ARexx release disk.

ARexx versions The original ARexx release was called 'Version 1.0'—the version

number should be printed right on the disk label. Since then, version

1.1 has been released, which contains a number of improvements,

including better performance and some new functions.

Although for the most part there is little difference, this book assumes
the version 1.1 release. If you purchased ARexx version 1.0, you

should be able to bring the original disk to your dealer for an upgrade
to 1.1.

Installing using The easiest way to run programs and copy files is by using the
the AmigaDOS Workbench GUI (Graphical User Interface) familiar to most Amiga
Shell users.

If you prefer the command-driven 'Shell' window (or the old-style

'CLI' Command-Line Interface), you can use the Copy command to

transfer the basic set of required files (commands and libraries) from
the ARexx disk to your system disk:

Shell> copy ARexx_Disk:c c:

Shell> copy ARexx_Disk:libs libs:

You can now start the ARexx resident process to make the ARexx
language available:

Shell> RexxMast

There are also some additional library files in the 'libraries7 directory

that can be installed optionally (copied to 'libs:'). These are explained
in the discussion of the Tnstall-ARexx' script below.

Installing from If you have looked at the ARexx release disk from Workbench (by
Workbench double-clicking the disk icon), you have probably already found that

running the system and installing it on your boot disk is simply a

matter of double-clicking the 'Install-ARexx' icon.

This icon first executes an AmigaDOS script (a file called 'Start-ARexx'

consisting of a list of AmigaDOS commands) that runs ARexx from

the release disk, making the ARexx language available in the system.

It then executes an ARexx script (called install-ARexx') using the TIX'

program, since ARexx is now operating. 'Installation' in this case

simply means copying a few files from the ARexx disk to various

directories on your standard 'SYS:' disk (the Workbench disk or hard

19

2. The ARexx System

drive partition that you boot from). The basic ARexx system requires

about 40k of free space on your boot disk.

The 'Install-ARexx' script

As stated above, the ARexx installation script simply copies a few files.

However, it's not quite that simple: you'll have to answer a few

questions to control the level of installation that is performed. Here's

a breakdown of exactly what the script does and how to answer the

questions:

• Copies the commands in the 'C directory on the ARexx disk to

the 'C:' system directory, where commands are normally kept. A

complete list of these commands can be found in Chapter 2 - The

Entire System, below.

• Copies the library files in the ARexx disk libs' directory to the

system 'libs:7 directory. These are the basic files for the ARexx

system, consisting of rexxsyslib.library and rexxsupport.library.

• Displays a message in the console window asking, "Install

optional libraries in LIBS:? (Y/N)". You must respond with *Y'

(followed by RETURN) if you want the files copied or /N/

otherwise.

These optional libraries add extra functions to ARexx, allowing

you to write advanced programs more easily. They provide

graphics, math and other capabilities not built into the ARexx

core language.

If you can spare an additional 60k or so on your boot disk and you

think you might want to write complex scripts using advanced

math functions or Intuition operating system calls, then respond

with'Y'.

You may also come across scripts that require these libraries;

some of the ARexx scripts supplied with IntroCAD Plus, for

example, require the math library. If you don't have the space on

your boot disk, don't worry about it. None of the examples in this

book will require these libraries and you can write many

? powerful ARexx programs without them.

20

Installing ARexx

Displays another message asking, "Install icons in SYS:? (Y/N)'\

If you respond with *Y', the programs /RexxMast/ (for starting

ARexx) and 'RXC (for removing ARexx) will be copied to the

'roof of your boot disk, along with their '.info7 icon files.

This will allow you to start ARexx—and remove it, if desired—by

double-clicking these icons from Workbench. If you want this

convenience, respond with iY\ It is not required, however, since

you can start (or remove) ARexx with a simple 'RexxMasf Shell

command or have RexxMast run automatically at boot time.

Using ARexx without installing the files

If your Workbench disk is so full that there's not enough room even

for the basic 40k ARexx installation or you want to use ARexx

occasionally but don't want to commit valuable Workbench disk space

to its files, you can use the system without doing the installation.

Simply running the 'RexxMast' program won't work, since it will

expect to find the ARexx system library in the SYS disk's 'libs' directory

(or wherever 'libs:' is assigned). Fortunately, you can preload the

system library so that RexxMast will work. This can be done from the

Workbench or through a Shell command:

From Workbench: Preloading the library and running RexxMast can

be done from the Workbench like this:

• Double-click the T-oadLib' icon on the ARexx disk

• Double-click the 'RexxMasf icon on the ARexx disk.

The minimal ARexx system will now be available for use. Any scripts

using functions in the extra 'support' library will not work, however.

This won't be a problem for most scripts and for most of the examples

found in this book.

From the Shell: Executing the 'Start-ARexx' AmigaDOS script on the

ARexx disk will give you access to the full ARexx system, including

the support library, without copying any files to your system disk.

From a shell prompt, just type the following command:

Shell> execute ARexx_Disk:Start-ARexx

21

2. The ARexx System

Starting ARexx after rebooting

The installation process described above—using either the

Workbench or Shell method—needs only to be done once for a given

boot disk.

The installation as described also makes certain that ARexx is set up

and running, ready to use. The next time you reboot, however, ARexx

will not be running although the necessary files are available on the

system disk. That is because RexxMast, the resident process, has not

been started.

To start ARexx, just run the RexxMast program, either by typing

'RexxMast' at a Shell console window or by double-clicking the

'RexxMast' icon. If you chose the optional 'Install icons' procedure

from the installation script, the icon will be in the root of your system

boot disk.

Permanent installation

If you want ARexx to run automatically for you whenever you reboot,

you can execute the 'RexxMast' command in the system 'Startup-

Sequence'. The Startup-Sequence is an AmigaDOS script file that

contains a list of AmigaDOS commands executed when the system is

initialized (after a reboot).

Running the RexxMast command in the startup-sequence is not a

necessary step, but is a good idea. It will save you the trouble of always

remembering to run RexxMast before you use an ARexx-driven

program or execute an ARexx script.

Don't worry that running RexxMast every time will make

unnecessary demands on your system's memory or other resources.

ARexx is very economical and unless you are running very close to

the upper limit of your system's available memory, having ARexx

running will not have any noticeable effect on system performance or

capacity.

22

Installing ARexx

Adding RexxMast to the Startup-Sequence

To modify your Startup-Sequence, you will need to load it into a text

editor, add the RexxMast command, then save the file. When you do

this, make sure you are not working with the only copy of your

system's Workbench disk!

You should always work from backup copies of this disk and have the

original stored away safely in unmodified form.

Information about using text editors in general can be found in

Appendix A. To describe this procedure, we will assume the use of Ed,

the simple editor provided in the 'C directory of the standard

Workbench disk. This editor is not the best, but for this simple task it

will do well enough.

You've probably used some sort of text editor before, perhaps in the

form of a wordprocessor. In any case, following the instructions below

should result in a successfully modified Startup-Sequence:

• You will need to use the AmigaDOS Shell (or the CLI, if you have

a version of the operating system earlier than 1.3). If no Shell

window is running, double-click the 'Shell' icon on the

Workbench disk.

• At the Shell prompt (when the Shell window is active), run Ed

and load the Startup-Sequence with the following command:

Shell> ed s:Startup-Sequence

After a bit of disk activity, Ed's window will open and the text

from the Startup-Sequence file will be displayed.

• A good place to put in the RexxMast command is right near the

end of the file, so that this command will be executed as one of

the last items in the system initialization procedure. Move to the

end of the file by using the Ed 'bottom' command 'ESC b': press

the 'Esc' key (at the top left of the keyboard), then press V and hit

RETURN. The cursor will move to the end of the file.

• The last line in the Startup-Sequence is normally 'endcli >nil:\

This final command removes the initial Shell window, exposing

the Workbench.

23

2. The ARexx System

If you've already modified your Startup-Sequence and removed

this command, just put the 'RexxMasf on the very last line. If the

'endcli' command is still there, we'll put the RexxMast command

on the line just before it, as follows:

• Hold down the SHIFT key and press cursor-left; the cursor will

move to the start of the 'endcli' line. Now press RETURN to

create a blank line for the new command and move the cursor up

into the blank line. Type 'rexxmast >nil:/ without pressing

RETURN after it. The last two lines in the file should now look

similar to this:

rexxmast >nil:

endcli >nil:

(The '>nil:' after the command tells the Amiga to 'throw away' all

output from these commands, so that the display is not cluttered

by unnecessary text.)

• Save the file and close down Ed with the 'exit' command 'ESC x':

press the 'Esc' key, then press 'x' and RETURN. The file will be

saved back to the system disk and Ed will exit, closing its window.

You will be returned to the Shell window.

The REXX: assign

One other step that can be performed for a complete ARexx

installation is to assign the logical device 'REXX:' to the directory

containing your ARexx scripts.

When you execute an ARexx script using the RX program, it first

looks in your current directory for the script, then looks in 'REXX:', if

the assignment has been made. If this doesn't make much sense to

you right now, don't worry. Ifs not vital to using ARexx and will be

covered in more detail in upcoming chapters.

If you understand the AmigaDOS Shell and the Assign command,

however, you may want to make the REXX assignment in your

Startup-Sequence right after the RexxMast command. Assuming you

will be putting ARexx scripts in the 'S:' directory (which is supposed to

be for scripts, after all), you could add the command 'assign rexx: s:' to
the Startup-Sequence.

24

Installing ARexx

Hard disks and the Startup-Sequence

If you are using a hard disk and your Startup-Sequence is similar to

'Startup-Sequence.hd' from an old Workbench version 1.2 disk, you

should edit the Startup-Sequence on the floppy disk instead of

's:Startup-Sequence'.

The 'Startup-Sequence.hd' file on these early Workbench versions did

not execute the Startup-Sequence on the hard drive. If there is no

Startup-Sequence in 's:' (Ed shows a blank window and says 'creating

new file') or adding the RexxMast command has no effect, you are

probably in this situation. With the Workbench boot disk in drive

DFO:, use the command 'ed dfO:s/Startup-Sequence' instead of 'ed

s:Startup-Sequence' as shown above.

The Entire System

You don't have to know all the details about the various ARexx files

to use the language, but it is good to have a general idea of the various

components involved in the whole system.

If you are making a customized boot disk for your system, for example,

you might want to know the minimum number of files that you

require for your specific needs.

Programs

The RexxMast and RX programs are the most important ones in the

ARexx system, but they are not the only ones. Here are the other

programs that are part of the ARexx system. You may never need to

use many of these. These commands are explained in detail in

Appendix B of this book, but here's a brief overview:

RexxMast The ARexx resident process; makes ARexx

available.

RX Run a script or give an ARexx command.

HI Halt all active scripts immediately.

RXC Shut down and remove ARexx from the

system.

25

2. The ARexx System

Libraries

RXLIB Add an ARexx function library or show
library list.

RXSET Set a global 'clip' variable.

TS Start trace mode.

TE End trace mode.

TCO Open 'global tracing console'.

TCC Close global tracing console.

WaitForPort Wait for message at given host address.

LoadLib Preloads Amiga libraries for ARexx (ARexx
disk only).

The above programs are found in the 'C directory on the ARexx
release disk.

On the Workbench 2.0 disk, all the above commands except for
RexxMast and LoadLib are in the 'Rexxc' directory. RexxMast is in the
'System7 drawer, where it can be run from Workbench by

double-clicking its icon. This is usually unnecessary with V2.0, since

the 'RexxMasf command is executed automatically in the Startup-
Sequence. LoadLib is not included in the 2.0 release.

There are two 'library7 files use by ARexx, which are found in the libs'
directory of the ARexx release disk or the Workbench 2.0 disk:

libs/rexxsyslib.library The main ARexx system

libs/rexxsupportlibrary Some extra ARexx functions

The rexxsyslib.library file is required before ARexx can be used. It
contains most of the basic ARexx software that is responsible for
running basic scripts.

The rexxsupport library is used by some scripts, but is not vital to
simply get ARexx started. It is recommended that you have both of
these libraries available in the system's 'libs:' directory; the installation
process will put them there.

26

The Entire System

Another library that ARexx uses is mathieeedoubbas.library. This

library is part of the Amiga operating system and is in the 'libs'

directory of the standard Workbench release disk.

This file must be in your system libs:' directory in order for ARexx to

work. If you've removed this file from your Workbench disk because

you thought you didn't need it, you'll have to put it back again before

you can use ARexx.

Optional libraries

Other libraries may be used to extend ARexx's available functions.

Such libraries will often be loaded by the scripts that use them and you

will usually know if a script needs a special ARexx library.

A few of these optional libraries are supplied on the ARexx release

disk in the 'libraries' directory. The rexxarplib provides a number of

useful functions to ARexx scripts, including a file requester and access

to the Amiga's Intuition operating system routines.

The rexxmathlib provides a number of common math functions,

including trigonometric and exponential functions, which are not

available in the basic ARexx package. The installation script on the

ARexx disk will ask whether you want these optional libraries copied

to the 'libs:' directory of your boot disk.

If you have enough room and you think you might want to use these

features in future ARexx scripts, say *Y' to copy them (see the above

Installation section).

Read the documentation files provided with these libraries to learn

how to use the functions. (These libraries are not part of the ARexx

language but extensions written by an ARexx user; they are not

documented in this book.)

Using optional libraries

Some ARexx programs may make use of the optional math or ARP

libraries and will expect them to be available in the system 'libs:'

directory. Before a library can be used, it must be added to ARexx's list

of libraries.

In many cases, an ARexx program that needs an optional library will

add the library itself (assuming it is in the 'libs:' directory). In some

27

2. The ARexx System

cases, however, an ARexx program might assume that a library like
'rexxmathlib.library' has already been added.

This will usually be noted in the documentation for the ARexx
program or the application that uses it, such as the ARexx macros
provided with IntroCAD from Progressive Peripherals and Software.

If you are using a program that assumes the presence of the math
library, you must first add the library using ARexx's RXLIB program.

This can be done with the following Shell command, assuming the
optional 'rexxmathlib.library' has been installed in your 'libs:'
directory.

Shell> rxlib rexxmathlib.library 0 -30

Similarly, if an ARexx program assumes the presence of the
'rexxsupportlibrary,' you can add the library like this:

Shell> rxlib rexxsupport.library 0 -30

The RXLIB program is covered in detail, along with the other ARexx
programs, in Appendix B of this book.

How ARexx Is Accessed

Now you know what ARexx consists of and how to make it ready to
go every time you turn on your computer. You might be wondering at

this point how you actually use the ARexx system in sessions at your
computer.

In a way, thafs what this entire book is about. However, this section
talks about the fundamental three-way interaction among ARexx, the
system and you.

The resident process

All ARexx programs are executed by the resident process, the ARexx
program that is always running in the computer. When you run the

RexxMast program (or it is automatically run by the Startup-
Sequence), the resident process is started.

28

How ARexx Is Accessed

Unless the resident process is explicitly removed (using the RXC
program), it will remain resident and ready to go until the computer is

turned off or rebooted.

Creating an ARexx script

An ARexx script is a text file containing ARexx instructions; you'll
learn all about writing ARexx scripts in Section II of the book.

You can create a script using a text editor such as Ed (supplied in the C
directory of the standard Workbench disk) or MEmacs (supplied on
the system 'Extras' disk). There are many other text editors that can be
used to do the job; see Appendix A for more information about text

editors.

The text file is saved to disk (or RAM:), where it can be read by the RX
program and passed on to the ARexx resident process to be executed.

Executing a script using the Shell

An easy way to execute an ARexx script is to use the RX program to

run the program from an AmigaDOS Shell. If you don't have a Shell
window up, you must first double-click the 'Shell' icon on the

Workbench disk. (If you have a version of AmigaDOS earlier than 1.3,

use the 'CLI' icon instead. CLI stands for 'Command Line Interface'

and is a simpler precursor to the more convenient Shell supplied with

versions 1.3 and later.)

The Shell window that comes up can be used for running any ARexx

scripts, and also for using AmigaDOS commands and any other

programs. You can keep a Shell window open while running other

software; there is usually no need to close the window.

You can also open another Shell window to type commands into if

the first one is 'busy' waiting for a program to complete.

An ARexx script can be executed with a simple Shell command.

Unlike ordinary programs which can be executed by simply typing the

program's name, ARexx scripts must be executed using ARexx's 'RX'

program. For example, if your ARexx program was saved as a file

called 'myscript/ (in the Shell's current directory) you would run the

program like this:

Shell> rx myscript

29

2. The ARexx System

Scripts can be written so that they use additional information supplied
on the command line. A command using such a script might look like
IITIS.

Shell> rx myscript 10 Charlie -12.4

In the above example, the 'myscript' script was run and was supplied
with the information '10', 'Charlie' and '-12.4'. What this information
is used for depends on the script.

Since you don't know how to write an ARexx script yet, the above
example doesn't do you much good! This is just an introduction. In
Chapter 4, the process of running a script from the Shell is explained
m detail, using real examples.

Executing a script using the Workbench

The RX program can also be used to run an ARexx script from the
Workbench, so that the script will appear as an icon and can be run by
double-clicking, just like the icon of a regular program. This is done by
simply saving a 'Project' icon along with the script and changing the
icon's 'default tool' to rRX\

To do this, you will need to use a text editor that will save an icon
along with the text file. In most text editors, this feature can be turned
on as an option. Once the file is saved, the icon's imagery can be

modified using the Icon Editor tool from the system 'Extras' disk.

Before you can use the icon to run the script, you must change the
icon's 'default tool' to run the 'RX' program. Changing an icon's
default tool is a standard Workbench procedure, explained in the
Workbench section of your Amiga manual. The basic steps to change
the default tool to 'RX' are as follows:

• Select the script's icon by clicking on it once.

• Select Info from the Workbench menu (with Workbench

Version 2.0, it is Information in the Icons menu). The icon

information window appears.

• Click on the 'default tool' box and type 'C:RX', assuming you've

installed RX in your 'C:' directory as in the normal installation

procedure. If you are using Workbench 2.0, just type TRX'.

• Click 'Save' on the bottom left of the requester to make the

change to the icon.

30

How ARexx Is Accessed

From now on, double-clicking on the icon will automatically run the

associated script as an ARexx program.

Everyday use of scripts

So running ARexx scripts is straightforward, but when and why are

they normally used? Once you learn ARexx, you'll probably write

quick scripts to solve a number of problems that come up all the time.
You might have solved these problems in the past by doing a lot of
manual work or trying to use a program that wasn't quite suitable for

the task. Or you may have not done the job at all, perhaps doing the

work manually or getting someone else to do it.

This book is filled with examples of useful ARexx scripts, but a sneak

peek at a single example might be useful at this point:

If you use a modem and telecommunications software, you have

probably made use of Bulletin Boards or other online information

services and have seen the large amount of software available to

download. Suppose you've just completed an exceptionally long

online session and you've downloaded dozens of files. Most of these

files are 'archives/ containing a number of files compressed and
unified using an archiving program like ARC, ZOO, LHARC or

others. For each of the files you've downloaded, you have to create a

directory and extract the files in the archive using the appropriate

utility. This could take a long time, especially since the extraction

process itself can be very slow. The more files you've downloaded and

the bigger they are, the longer it will take.

The alternative is to write an ARexx script that will do all the work

automatically, creating the directories and calling up the appropriate

archive utilities accordingly. Not only is the automated process less

work for you, it can go on in the background while you do something

else, so that even if it takes hours, they won't be hours of your time.

This is a random example, simply chosen because the problem was a

real one that happened to come up as the author was preparing this

section of the book; the script to do the job is included on the

companion disk.

Using ARexx from within an application

You can make full use of ARexx even if you never use the Shell or

Workbench. A software application like a spreadsheet, database or

wordprocessor can use ARexx programs called macros to define useful

31

2. The ARexx System

operations made up of a number of basic operations available in the
program. Applications that support ARexx communicate directly with
the ARexx resident process in the same way as the RX program does
and usually provide specialized commands to the ARexx language. '

With most programs that support ARexx, you are able to load macros
from disk and execute macros from within the application itself. You
may even be able to create new macros and edit existing ones This
means you never have to type a Shell command or use icons on the
Workbench to use ARexx. Many applications will even try to run the
RexxMast program if it hasn't been run yet, freeing you from one
more concern.

With sophisticated ARexx-supporting software applications it is
possible for you to make heavy use of ARexx without even knowing
that you're doing so. Using pre-written macros means ARexx is just
functioning as an 'engine' beneath the user interface of the software
application. If you do know about the application's use of ARexx
however and you know a bit about ARexx programming, you will be
able to control the application in new and powerful ways.

32

Simple ARexx Commands

Chapter 3

Simple Software Control

Simple ARexx Commands

In the previous chapter, you saw how to run an ARexx script using

the RX program in a Shell window. You can also use RX to give a

single line of ARexx instructions directly, without running a separate

script.

For example, type the following command at the Shell prompt (open a

Shell window if necessary). When typing it in, note the use of the

double-quote character around the entire command and the single-

quote character around the text inside:

Shell> rx "say 'Hello, this is ARexx speaking.1"

The text "Hello, this is ARexx speaking'' should be printed out in the

console window. You have just used ARexx's SAY instruction to print

some text.

Talking to Now try the following ARexx command:

AmigaDOS
Shell> rx "address command 'Dir111

You should see the list of files in your current directory, as if you had

just typed the AmigaDOS 'Dir' command by itself. What has just

happened is that you have given an AmigaDOS command from

within an ARexx program.

Not only can ARexx programs communicate with software that has

ARexx support built-in, they can also be used to run AmigaDOS

commands or any other program that might be available on the

currently mounted disk volumes.

The 'address command' instruction as it is used above tells ARexx to

pass the following text on the line—in this case 'Dir'—to the

AmigaDOS environment, to be executed as if it were a command

typed by the user at a Shell window.

ARexx didn't do anything with the 'Dir' command itself; it just 'passed

the buck'. The ability to pass the buck like this is what gives ARexx its

usefulness as a macro language for controlling external software. The

33

3. Simple Software Control

special case of controlling AmigaDOS is useful in that it lets you use
ARexx scripts as a substitute for AmigaDOS scripts.

If the 'Dir' command was used without first giving the instruction
'ADDRESS COMMAND', ARexx would have looked for an ARexx
script called 'Dir/ or 'Dir.rexx' and executed that script as an ARexx

program. The ADDRESS COMMAND instruction diverted the
command from ARexx to AmigaDOS.

The ADDRESS instruction

Using the ADDRESS instruction tells ARexx the name of a host

program to send commands to. When a host has been specified, any

time you use a command in an ARexx script (a symbol that isn't part
of the built-in set of ARexx instructions), the command is sent to the
current liost' application for interpretation.

A host can be any program with an ARexx 'command interface/ and
each host is identified by its own unique name (called the host
address). Using the ADDRESS instruction with a particular host
address will set that host as the destination for all future commands.

The COMMAND host name used above—as in 'ADDRESS
COMMAND'—is a special case used for AmigaDOS commands. To
send commands from ARexx to an external host application, you
must know its host name.

For example, NewTek's DigiPaint 3 has an ARexx command interface

and its host name happens to be the same as the name of the program.

(The host name for an application will be given in the application's
documentation, usually in the section on the ARexx interface.)

To send commands to DigiPaint 3 from ARexx, you would need to

first use the following ARexx instruction:

address •DigiPaint'

Any future commands not recognized as valid ARexx instructions

would be sent to DigiPaint 3 for interpretation.

Like many applications that support ARexx, DigiPaint 3 has

commands that allow control of all the same features of the program

that can be controlled manually through the menus and control

panels. All the commands are documented in the DigiPaint 3 manual.

34

Simple ARexx Commands

Command Hosts
What happens to commands that

aren't ARexx instructions?

ADDRESS REXX
Default host

• Commands are used to run ARexx scripts

ADDRESS COMMAND
AmigaDOS interface

• Commands are used to run programs

ADDRESS <host address>
Host applications

• Any host applications can receive commands

Figure 3-2: Command Hosts

Controlling a Sample Host

The best way to get a feel for how you can control a host application

using ARexx is to try a few simple examples. On the companion disk,

we've provided a simplified paint program with an ARexx command

interface.

This program, called "ARexxPaint," is not meant as a serious

application program for real work. However, it makes a good example

of an ARexx host.

35

3. Simple Software Control

The ARexxPaint host application

Commanding

the host

Run the paint program from the disk by double-clicking its icon from

Workbench or by typing the following command from the Shell:

Shell> run UsingARexx:ARexxPaint

ARexxPaint opens its window on the Workbench screen instead of

using a custom screen; this makes it easier for you to type Shell

commands and see the program's display at the same time.

Notice the simple capabilities of the program: using the menus you

can draw lines, squares, circles, filled shapes and change colors.

Experiment with the program a bit to see its limited set of capabilities.
Using the program in this way is not really important, however, since

you'll soon be controlling it with commands from ARexx.

Arrange the Shell Window so that it fits below the ARexxPaint

window. Activate the Shell window and type the following
command:

Shell> rx "address •ARexxPaint1 'BOX1 30 20 200 70"

Figure 3-2; ARexxPaint window and Shell on Workbench screen

36

Controlling a Sample Host

After you press RETURN on this command, a box should appear on

the ARexxPaint display window. The BOX command was sent to

ARexxPaint, where it was interpreted and resulted in a box of the

given position and size being drawn.

You could have achieved the same end result by selecting the box tool

and drawing with the program by hand, but the ARexx interface is like

a 'back door' that lets you access the program's capabilities using

commands.

Notice the ADDRESS instruction: the host address is 'ARexxPaint',

which happens to be the same as the program's name on disk. This is

not the case with all programs: the authors of the program could have

chosen Taint program ARexx host port' or 'Limburger' as host

addresses just as easily.

As long as you know the host address for an application, it doesn't

really matter what it actually is. The only time a problem might arise

is if two hosts use the same address, which is an unlikely occurrence.

Try experimenting with a few more commands at this point. Here is a

list of the commands understood by ARexxPaint, along with the

information (the arguments) that each command requires:

BOX left top width height

CIRCLE x y radius

LINE xl yl x2 y2

COLOR n (0 to 3)

CLEAR

Using a script The above example shows how ARexx can send commands to an

external host, but it doesn't really give you an idea of why this concept

is useful: after all, you could have just drawn the box yourself! Well,

suppose you want to draw something like the following drawing

instead:

37

3. Simple Software Control

Figure 3-3

This might be time-consuming to do by hand and almost impossible
to do mathematically accurately. Mathematical accuracy is, of course,

what computers are good for, so why not let your computer do the
work?

This would be tricky to accomplish with a paint program that only

allows manual control. Even with the primitive ARexxPaint,

however, it's a cinch, simply because of the program's ARexx

command interface. The following simple ARexx script does the trick:

/* ARexxPaint fancy line drawing */

address 'ARexxPaint'

do position=0 to 175 by 5

'line' 20 position 20+position*2 175
end

If you like, you can test this by typing the script into a text editor,

saving it and executing it using the RX program. Or, you can just take

our word for it for now, since you'll learn all about writing scripts in

the next section of the book.

For now, the important thing to note is the difference between the

ARexx instructions in the script and the command understood by

ARexxPaint. The line' command makes no sense to ARexx and is just

passed on to the current command host.

38

Controlling a Sample Host

The ARexx ADDRESS instruction has set the command host address

to 'ARexxPainf, so that program gets the 'line' command and tries to

interpret it. As it happens, line' is a valid ARexxPaint command and

is followed by valid information that defines the start and end points

of the line to be drawn.

The ARexx script uses variables to control the values of these start and

end points and arranges to choose values that result in the pattern of

lines that you see. The combination of ARexx instructions and

ARexxPaint commands in a script lets you use ARexxPaint in a

powerful, script-driven manner.

The above script along with several other examples are provided on

the companion disk in the 'ARexxPainf drawer. You can run these

using the RX program or double-click on their icons from Workbench.

It is easy to see from these examples that ARexx scripts can provide

capabilities for controlling a program that are not possible or practical

otherwise.

ARexx at Work

Once you learn a bit of ARexx programming, you'll probably find

yourself writing ARexx scripts to handle a large number of everyday

general programming problems.

Some examples of these might be:

• Go through a text file containing a list of expenses and sum those

in each of several categories (telephone, auto, home repair, etc.).

• Search through all the text files in a specified directory and find

all the occurrences of a few selected keywords.

• Transfer all the files on a certain disk that are older than a
specified date to another disk.

• Read through a free-format text file containing names and

addresses and print mailing labels for all your friends that live

out of town. In other words, read a database file of any format and

generate a report containing important information from

selected records in any desired format.

39

3. Simple Software Control

Using macros

Word

processing

Telecom

munications

The above examples, and others like them, are applications that any

programming language could be applied to, although ARexx is highly

suitable because of its adept text-handling, easy syntax and special

features. Perhaps most of your ARexx use, however, will be in the

form of macros within applications, since this is ARexx's unique

ability not available in other languages.

Here are a few ways that you might use ARexx macros in different

applications that provide an ARexx command interface:

• In your wordprocessor, you could define a macro to format text or

a list of information in a standard way.

For example, you might type the basic text for a standard business

letter and let your macro put in the date, the letterhead and set the text

formatting codes to make the letter appear printed in your preferred
format.

Another macro might add a column of figures or compute the result

of mathematical expressions in the text. If you are running a spelling

checker or thesaurus with ARexx support, you could link these

programs directly to your wordprocessor.

ProWrite from New Horizons is an example of a wordprocessor with

extensive ARexx support. You can define ProWrite macros to perform

many operations on the text in a document.

• If you access a number of online services and bulletin boards

using a telecommunications program that has ARexx support,

you can use macros to automate any predictable sequence of

events.

For example, you may have a macro to dial a particular BBS (and keep

trying if the line is busy), download any new mail that may have been

sent to you, then log off.

You could extend this with a 'master macro' that does this to all the

BBS's on a list, perhaps while you sleep at night. If you subscribe to an

online financial service, another macro might get the latest quote on a

particular stock or list of stocks.

Macros could also be used to send standard sequences of text like your

name or a special 'symbol' made up of an arrangement of standard text

characters.

Examples of telecommunications programs with ARexx support are

Baud Bandit and A-TALK III

40

ARexx at Work

Home control

Database

Spelling

checker or

thesaurus

• The software for the BSR home control system has an ARexx

interface.

The BSR hardware lets you turn lamps or appliances on and off under

computer control; the ARexx interface in the software means that can

be done under the control of an ARexx program. You might use a

'night' macro to turn off unnecessary lights and turn on the burglar

alarm.

• Using ARexx as a database command language is generally easier

and more powerful than a specialized language built into the

database application.

ARexx database macros could be used to generate reports or could be

complex enough to create an entire specialized database application.

SuperBase 4 and MicroFiche Filer Plus are examples of databases that

provide full ARexx support.

• If you are using a text editor or wordprocessor with support for

ARexx macros and are also running a spelling checker or

thesaurus program with ARexx support, you can easily check a

word even if the program you're using does not have built-in

features for spelling checking or thesaurus look-ups.

Even if your wordprocessor has these features, you may wish to use

the services of a program with a more extensive library of words or

perhaps use a dictionary in a different language.

ASDG's Cygnus Ed Professional is a text editor with ARexx support

and Meridian Software's ZinglSpell is a spelling checker with an

ARexx command interface.

The Electric Thesaurus by Softwood is a thesaurus program with an

ARexx interface. ProWrite is a wordprocessor with full ARexx support

and although it already has its own built-in spelling checker and

thesaurus, you can use macros to access The Electric Thesaurus in case

you wish to use its word list, based on Roget II's thesaurus.

41

3. Simple Software Control

ARexx Support

What to look for

To be able to get the full benefit of your ARexx skills, you should have
as much software as possible with built-in ARexx support.

"ARexx support77 is not a specific term, and can mean very different
things with different applications. When purchasing software with an
eye towards its ARexx support, there are a few factors to keep in mind.

At the very least, you should look for some mention of ARexx in a

product's advertisement or on the package. The words "Full ARexx
support" are often used to indicate a fairly extensive ARexx command
interface.

Some applications (notably user-programmable authoring systems
such as Inovatronics7 CanDo) allow you to send and receive ARexx
commands, but don't actually add any of their own commands.

In these applications, you can use ARexx in your current project, but
you can't use ARexx macros to control the application itself. Look for

some mention of "additional ARexx commands" if you want some

control of the application itself. In general, the more ARexx

commands that an application supports, the more control you'll have
over it.

Some applications provide ARexx commands to select menu options
and perform other user-interface operations. This is often all you
need: a paint program with such capabilities would be fully ARexx-
programmable (a specific example is NewTek's DigiPaint 3).

Other programs that deal with textual data, like wordprocessors, text
editors, databases and appointment calendars, should also provide
ARexx access to that data. This is more important in data intensive
applications like a database.

However, even a wordprocessor should allow you to actually read the

text in the document from an ARexx program, allowing you to

perform sorts or other operations that deal with the text itself. An
example of this capability is ProWrite's EXTRACT command.

42

AKexx support

See if you can find out this information about a product before you

make your purchase decision, by asking a knowledgeable salesperson

or by contacting the manufacturer directly.

Going one step further, some applications provide capabilities

available in ARexx commands that aren't part of the regular user

interface. This will mostly be found on products that use ARexx

heavily as a scripting or macro language.

A look at the ARexx command reference portion of a product's

documentation should give you an idea of the extent of the ARexx

support in this area. Examples of such ARexx extensions might be

putting up a file or font requester, getting user input or importing data

from text files.

Where to get Most applications with ARexx macro support will come with a few

macros sample macros on the release disk. In some cases, these may be useful

macros designed to meet a specific need or add features that the

program itself lacks. Other products may simply include these macros

as demonstrations of some of the possibilities with the available

ARexx commands in the program.

Additional macros are available for some products as separate

products. The macro packages may be general-purpose macros to add

features to the program or they may make up an extension of the

application that tailors it to a specific need.

Another plentiful source of ARexx macros are the various

public-domain distribution sources: The data libraries of online

services and bulletin boards and PD disk collections like the "Fish

Disks" from Fred Fish. Many users who have created macros to fill a

specific need have decided to share them with others—some of these

may be quite specialized, but may serve as a useful basis for similar

applications.

When you begin programming in ARexx, you will no doubt write

macros to handle a variety of tasks. You'll probably find that nothing

suits your needs as well as a self-written program, since you have

complete control over what it does. Even so, there's no reason you

can't share your creations with others! A good pool of freely

distributable macros will benefit all ARexx users and will provide lots

of ideas for future innovations.

To write your own macros, you'll have to learn the basics of the

ARexx programming language. The next section of the book will teach

you ARexx programming without controlling any external software.

43

3. Simple Software Control

Section III then moves on to applying ARexx to specific software

applications.

44

SECTION II

AREXX

PROGRAMMING

4. Simple Programming

Chapter 4

Simple Programming

In this chapter you are going to begin to learn how to write ARexx

scripts. Scripts are programs, so writing scripts is a form of

programming. A very friendly form, however: if you are new to

programming it will prove easier than you probably expect.

To give you some idea of what's coming up, here is an objective for

the chapter: To learn enough about ARexx to let you write a script

that:

• Asks the user to enter his or her name.

• Reads in the name when the user types it.

• Outputs a sentence including the name the user supplied.

Here is a sample session with this script:

Please type your name

Nick

Coincidentally, my name is Nick also.

This will be the culmination of the chapter, a target to keep in mind as

we develop the more elementary scripts that lead up to it. Even so, it

will not be an earth-shaking script by most standards and may not in

itself establish your reputation as a programming guru. But in

learning enough about ARexx to write this script, you will master

many of the fundamentals of the language.

Creating a Simple Script

In Chapter 2 we learned how to run an ARexx script using the rx

program. We saw that a script is just an ordinary text file containing

ARexx instructions.

In this section we will actually create, test and modify a very simple

ARexx program, using methods that can be applied later on in more

ambitious projects.

47

4. Simple Programming

Entering the script

The first step is to run your text editor as described in Appendix A.

Since you're creating a new file rather than modifying an old one,

when you bring up the editor with a command like:

run memacs rexx:first.rexx

the editor's text area should be empty. Ready? Start by entering this:

/* First ARexx script */

This line is a comment. In general, comments are for your benefit

only and will be ignored by ARexx. The comment on the first line of a

script, however, is special—the sole exception to the rule.

ARexx insists that every script file begins with a comment) in its

absence, ARexx will rather misleadingly report 'Program not found'

when you try to run the script. Try to school yourself to think of

checking for a missing comment if you see the 'Program not found'

message, rather than waste your time in search of exotic reasons for

ARexx's failure to find the script file.

The symbols '/*' and '*/' are like special brackets that mark the

beginning and end of the comment. The comment may start and end

on the same line or may extend over several lines: once ARexx has

encountered the opening '/*', it will ignore all subsequent text up to

the '*/'. (This is true in the first-line comment: only the existence of

the comment is demanded; the text it contains, if any, is immaterial.)

Comments may occur anywhere in a script. Their main purpose is to

document the program's usage, logic and flow, so that the

programmer will understand the code as readily in six months' or a

year's time as when it was written. Abundant, helpful, commentary is

one of the hallmarks of good programming.

Now enter the second line of your new script:

say "Hello world!"

That line completes this very short script. Save the file and (assuming

you named the script rexxifirst.rexx as we suggested) test it by typing

this in your CLI window:

rx first

48

Creating a Simple Script

Running ARexx Scripts

Remember that the rx program automatically tries the .rexx extension

on the script name you give it and checks the rexx: logical directory as

well as the current directory.

Given the full pathname rexxifirst.rexx, therefore, these alternate

forms would have worked just as well as the one above:

rx rexx:first

rx first.rexx

rx rexx:first.rexx

If everything went well, running your script looked like this. (We use

'Shells to indicate your AmigaDOS shell or CLI prompt):

Shell> rx first

Hello world!

Is that what happened? If not, the problem is probably one of these:

• ARexx is not properly installed. If you followed the instructions

in Chapter 2 on installing ARexx, this shouldn't be a problem, but

if you're not sure, go back and redo the procedure given there for

verifying the correctness of the installation.

• Your script is improperly named. To verify that the name is

correct, try this:

Shell> type rexx:first.rexx

/* First ARexx script */

say "Hello world!"

• You entered the script incorrectly. Typing the file as just described

will tell you if this is the problem.

• Out of memory or a disk/hardware error (although either is quite

unlikely). However, if you're really stuck, try rebooting and then

rerun the script.

• If that doesn't do it, we suggest you seek the advice of some

knowledgeable friend, your dealer or a member of your user

group.

When you have the script working properly, we can move on to try

some more scripts knowing that the first step has been taken: You're

now programming in ARexx!

49

4. Simple Programming

Script names

You should make it a rule to end your ARexx script file names with

the suffix .rexx. Since ARexx itself does not otherwise care what your

scripts are called, you could say that the choice of name is entirely

arbitrary.

Nevertheless, care in choosing script names is amply repaid later

when you scan a directory listing of rexx: and actually remember what

each script does from its title alone, without having to examine a

listing of its contents.

Avoid names like myscript, program! and even foo, a favorite name

among programmers since the dawn of time. Do not be tempted by

temp or seduced by stuff.

Try to make the file name do something useful. We called the script

above first—an adequate if not inspired name. Perhaps hellojivorld

would have been a better choice (notice that an underscore is generally

used instead of a space in script names) or simply hello.

To facilitate referring to this book, a good system might be to name the

scripts given here something like bklO4, that is, the script discussed on

page 104 of the book.

Such a system would also have the advantage of making the book's

scripts readily identifiable later on when you want to purge or archive
them.

Expressions and the SAY instruction

The line:

say "Hello world!"

in our first script is an example of an instruction, one of the several

types of clause in the ARexx language. By the way, the comment line:

/* First ARexx script */

is an example of a null clause, which merely means that ARexx

ignores it. An entirely blank line is also considered to be a null clause.

50

Expressions and the SAY instruction

We will show you the remaining clause types over the course of this

and the next few chapters. For now, however, let us look more closely

at instruction clauses, specifically those that begin with 'say7.

ARexx regards any clause beginning with any of a rather small set of

keywords and not followed by either a colon or an equals sign, to be an

instruction clause or, more simply, an instruction.

Instructions are classified by their keywords. For instance, the

instruction:

say "Hello world!"

begins with the keyword SAY and is an example of a 'SAY

instruction'.

All the keywords recognized by ARexx are documented in the

Reference Section at the end of the book. Just in case you're curious

and to give you a more general idea of the language, here's a complete

list:

ADDRESS

CALL

ECHO

EXIT

ITERATE

NUMERIC

PARSE

PUSH

SAY

SIGNAL

ARG

DO

ELSE

IF

LEAVE

OPTIONS

PROCEDURE

QUEUE

SELECT

WHEN

BREAK

DROP

END

INTERPRET

NOP

OTHERWISE

PULL

RETURN

SHELL

Letter case It doesn't matter whether or not you use upper case (capital letters)

when spelling an ARexx instruction keyword, since ARexx

automatically converts all text to upper case before acting upon it,

except for text within single or double quotation marks.

51

4. Simple Programming

Whether you capitalize the keywords in a script is therefore just a

matter of personal taste. In this book, we use lower case for keywords

in listings, but we use upper case for clarity when talking about

keywords (such as SAY) in ordinary text.

And speaking of SAY, lefs now put theory to one side again and get

the feel of ARexx by trying a few more examples with this very useful

instruction.

Experimenting with SAY

Here is a short script that uses the SAY instruction to test various

properties of ARexx. After you've had a chance to enter and run this

script we'll discuss each line in detail First, however, try to form your

own theories about what makes each SAY instruction behave the way

it does.

/* SAY experiments */

say "Hello world!"

say 'Hello world!■

say "Hello" 'world!'

say "•Hello'" •"world!"'

say "Hello" I I "world!"

say Hello World

say "12345"

say "12345 + 22222"

say 12345 + 22222

say "12345" + "22222"

Single and When you are typing this script into your text editor, be particularly

double-quotes careful with the two kinds of quotation mark: the single and the

double. Both of these are on the key between the semicolon and the
return keys.

The vertical bars (known as 'or-bars') in the sixth line of the script are

located on the shifted backslash' key, which is immediately to the left
of the back-space key.

The results Save the script as rexxisaytest.rexx or an appropriate name of your own

choosing. Run it, then examine the results that each SAY instruction

produced. Here's what should happen (apart from the line

numbering, added to aid our discussion):

Shell> rx saytest

1. Hello world!

2. Hello world!

3. Hello world!

4. 'Hello' "world!"

5. Helloworld!

52

Expressions and the SAY instruction

6.

7.

8.

9.

10.

HELLO

12345

12345

34567

34567

WORLD

+ 22222

Line 1 The output on line 1 is exactly the same as the output for our first.rexx

program—not surprising, since the SAY instruction that produced it is

also identical. Notice the following:

• All the text between the double quotes was displayed in your

Shell window

• The quotes themselves were not displayed

• A line feed character was output after the text. In other words,

subsequent output does not begin in the next available character

position, but from the beginning of the next screen line.

Line 2 Line 2 of the output is the same as line 1. The SAY instruction differs

only in that single quotes are used instead of double quotes.

As you see, ARexx treats both types in exactly the same way. Text

between quotes (single or double) is an example of a string, which

essentially just means a bunch of characters to be treated as text.

Line 3 Line 3 of the output is again the same as lines 1 and 2, but this time

the SAY instruction is different in an important way: instead of one

string in quotes, this time we have two strings side by side, separated

by a space.

Joining strings together like this is often called string concatenation

and in ARexx it's no more difficult than putting the strings next to

each other the way you'd like them to appear in the final result.

As simple and natural as this kind of string concatenation is, it is

actually a form of ARexx expression: a collection of terms and

operators that ARexx will analyze and process to determine a result.

In this case, the terms are the strings "Hello" and 'world!7 and the

operator is the blank space between them. When ARexx encounters

this operator, it joins, or concatenates, the terms on either side of it,
inserting a blank space between them.

We'll be delving much more deeply into expressions, and describing

many more operators in the next chapter.

53

4. Simple Programming

Line 4 Line 4 is a duplicate of line 3, except that it demonstrates one vital
point: Single quotes have no special meaning within a string

delimited with double quotes and vice versa.

This lets you use either type of quote as part of a string, simply by

surrounding the string with the quote of the other type. Another way

to use a quote character as part of a string is to use two quotes in a row,

as in 'canT to produce the string can't.

Lil*e 5 Line 5 is almost a duplicate of line 3. The difference is that this time,
instead of the space operator, we use another concatenation operator,
formed by two or-bars. The effect, as you see, is to concatenate the two
strings with no intervening space.

Line 6 Did you figure out why the output in line 6 appeared in upper case?

The answer goes back to something we mentioned earlier in

discussing keywords: your entire ARexx program, except for strings, is

converted to upper case as it is read in. And here, since there are no

quotes this time around the text, 'Hello world!' appears in capital
letters.

Line 7 The instruction that creates the output of line 7 is only superficially
different from most of its predecessors. Instead of 'Hello world!,' the

quoted string now reads '12345'. Nothing else has changed.

Line 8 The same is true in line 8. Here the string is '12345 + 22222', which

resembles an arithmetic problem but is in reality just another text

string, thanks to the quotes around it. What would happen if we took

them away?

Line 9 That question is answered in line 9. Then suddenly, instead of a string

we have another expression, consisting of two terms (12345 and 22222)

and one operator (the plus sign). As before, ARexx processes the

expression first and returns the result. You might expect the result to

be the arithmetic sum of the two numbers, and so it is.

Line 10 Although we hope that this test program has been informative, so far

there has been nothing about the results that would greatly surprise

someone who was initially ignorant of ARexx but was familiar with

another computer language, such as C or BASIC. Line 10 of the output,

however, would almost certainly be unexpected. Take another look at

the SAY instruction that generated line 10:

say "12345" + "22222"

54

Expressions and the SAY instruction

This instruction combines two string terms with an arithmetic

operator; for that reason, our C programmer might well expect ARexx

to regard it as erroneous.

The BASIC programmer might recall that in BASIC the plus sign

doubles as a string concatenation operator and so would predict the

output '1234522222'. As we see, both are mistaken.

The real result:

10. 34567

Typelessness illustrates a very important characteristic of ARexx, known as

typelessness.

What does this mean? Simply that ARexx treats any particular piece of

data as either a number or a string, depending on the context in which

it is used.

In the present example, the presence of the plus sign means that the

expression makes sense only if the two terms are treated as numbers,

although they are not numbers to begin with.

Therefore ARexx quietly converts them before evaluating the

expression. Of course, not all strings can be converted to numbers.

Given an instruction such as:

say "12345" + "helicopter"

for instance, even ARexx will report an Arithmetic conversion error

and stop executing the script.

Breaking long By the way, you may wonder whether it would be possible to enter a

program lines program line that is too wide for your text editor window. This may

happen when you want to use a very long string, for example.

Most text editors can handle this situation with horizontal scrolling,

but yours may not or you may prefer to keep the whole width of your

script visible at all times. You can continue an ARexx instruction over

multiple screen lines by using a comma as the last character of each

line (except the last line).

The comma causes ARexx to regard the next line as an unbroken

continuation of the current line.

55

4. Simple Programming

Multiple The opposite capability—putting multiple instructions on one line-
instructions on is also available: just separate each pair of neighboring instructions
a single line with a semicolon. Usually this is warranted only when invoking rx

with a 'string file' from the CLI, like this:

Shell>rx Mr=4.8; pi=3.14159; say pi * r * r"
72.382236

You have to do it this way with string files since the variables you set
in one use of rx are not remembered for subsequent uses.

In scripts, you're better off to stick with one instruction per line in
most instances. In some cases however, using multiple instructions
may bring out the script logic a little more clearly, as is arguably the
case in this fragment:

a = 3; say a

b = 4; say b

More on expressions

Numeric

conversions
We have just seen that ARexx treats strings as numbers when it is
necessary (and possible) to do so. The invisible conversions that
underpin typelessness work both ways, however. Numbers are very
often treated as strings. The only difference is that this kind of
conversion is always possible. Try running this little script:

/* More experiments with SAY */

say 1+1 "wrongs don't make a right."

say 1+1 "plus" 0+2 "equals" 7-3"."

say "Quote marks like "" can be embedded in strings."
say "One way to con" || "cat" II "enate."

say "Another way to con"'cat'"enate."

You might call this one rexxisaytestl.rexx. Here's what you'll see when
you run it:

Shell> rx saytest2

1. 2 wrongs don't make a right.
2. 2 plus 2 equals 4.

3. Quote marks like " can be embedded in strings.
4. One way to concatenate.
5. Another way to concatenate.

56

Expressions and the SAY instruction

Line ! The '2' in line 1 is clearly the result of the numerical operation '1+1'
and so must have itself have been a number when ARexx first
computed it. But the output '2 wrongs don't make a right/ is just as

clearly a string, the result of applying the space concatenation operator

to the two terms, one of which must have been the string '2'. This
demonstrates that an implicit conversion from a number to a string

has taken place.

Line 2 Line 2 uses the same effect, but introduces two new wrinkles:

• Instead of two string terms connected by one space operator, we

have here several (6) string terms and several (5) operators. You

can extend expressions in this way with no practical limit.

• When two strings adjoin with no intervening spaces, the result is

the same as if the ' I T concatenation operator had been applied.

This effect was used to make the period follow directly after the

'4' with no space.

Line 3 Line 3 shows a special feature of quotes that overrides the 'null
concatenation operator' just described: quote characters can be
included in a quoted string by using two of them in a row. This applies

to single quotes as well as double.

Line 4 Line 4 gives another instance of the use of the now-familiar or-bar

concatenation operator.

Line 5 Line 5 uses the null concatenation operator, avoiding the 'quotes

within quotes' feature of line 3 by using double quotes for the first and

last strings and single quotes for the one in the middle.

Simple Variables

Think back now to the task we set at the beginning of the chapter,

namely to write an ARexx script that would allow the user to enter his

or her name, then produce some output incorporating the name.

You can probably guess that the output is going to use SAY in some

fashion. At the same time, you might wonder how we can SAY

something—the user's name—that was unknown at the time of

writing the script. Certainly there is nothing in what we have covered

so far that would make this possible. Some ingredient must be

missing.

57

4. Simple Programming

That secret ingredient is the ability to use variables. You might
remember variables from high school algebra, but even if that's a
painful memory, don't be alarmed: there'll be no algebra here.

In computer languages, a variable is really a little piece of the
computer's memory where a value (such as a number or a string) can
be stored and the variable name is used to symbolize whatever value
might currently be stored at the variable's location.

More concretely, lefs suppose there's a variable with the classic name
X and that its current value is 5. Then:

say X

should output the number 5. If we changed the value of X to another
number, such as 10 or to a string, such as 'John', the same SAY
instruction would produce correspondingly changed output. And the
instruction:

say "The value of X is" X

would produce one of the following:

• The value of X is 5.

• The value of X is 10.

• The value of X is John.

Variables can also be used in expressions in just the same way as the
constants we have been using up to now. Some examples:

say X+2

say "My name is" X

say "They call me '" I I x I I "■"

Assignment Clauses

We now have some idea of how to use the values stored in variables.
If this knowledge is to be useful, however, we're clearly going to need
some way of setting those values beforehand.

Giving a value to a variable is most often accomplished with an
assignment clause. In the next little script, we have used comments to

show which lines produce output (numbered 1 to 7) and which lines
are assignment clauses.

58

Simple Variables

Remember that comments have no effect on the operation of the

script: ARexx ignores them altogether.

/* Assignment */

say X /* 1 */

say x /* 2 */

X = 5 /* assignment */

say X /* 3 */

say x /* 4 */

say X + X /* 5 */

X = X + 1 /* assignment */

say X /* 6 */

X = "John" /* assignment */

say "They call me '" II X II /* 7 */

Running this script, which you might call rexxiassign.rexx, should

look like this:

Shell> rx assign

1. X

2. X

3. 5

4. 5

5. 10

6. 6

7. They call me 'John1

Line 1 In line 1, we output the value of X even before we have assigned any

value to it. Other computer languages handle this differently:

• Some would regard it as an error and would halt execution of the

script.

• The value of X would be undefined—essentially random.

• A standard default value, such as zero, would be given to the

variable as soon as it came into existence.

ARexx's method of setting an initial value for—of initializing—a

variable is different again. The default value for all ARexx variables is

the name of the variable itself. This explains line 1 of the output from

our test script.

Line 2 You may recall from earlier in this chapter that ARexx converts all

text in a script that is not inside quotes to upper case. Variable names

are no exception.

From ARexx's point of view, therefore, the second line of our test

script is exactly the same as the first and produces on line 2 the same

output as on line 1.

59

4. Simple Programming

Line 3 Line 3 shows that the assignment clause 'X = 5' has had the desired
effect of giving X a new value.

As you see, the structure of an assignment clause is very simple. It
consists of a variable name followed by an equals sign followed by a
value of some kind. Here the value is the numerical constant 5, but
string-valued constants and expressions yielding either type of value
are also valid, as shown in subsequent lines.

Line 4 Line 4 simply underscores the earlier demonstration that X is X even
if we refer to it in lower case: X and x are one and the same variable.

Line 5 In line 5 we use our variable in a simple expression. Every time the
variable name occurs in the expression, the corresponding value is
substituted for it.

The instruction that produced line 5 therefore reduces to:

say 5+5

On another occasion, however, when X has a different value, the
same script line might have a totally different meaning, such as:

say 101.3 + 101.3

or:

say -4 + -4

or even the erroneous, script-halting:

say "wrong" + "wrong"

It all depends on the value of X.

There is no finality about assigning a value to a variable. You can
make new assignments to the same variable as often as you like,
whether of the same or a different type of value.

The new value simply overwrites the previous one, which is lost
forever. Line 6 of our output reveals the new value of X after the
assignment:

x = x + l

This line both uses X in an expression (at which point it still has its
old value of 5) and as the recipient of an assignment, giving it its new
value of 6. °

60

Simple Variables

Line 7 shows that X can be given a string value ("John") and can be
used as such in an expression, just like a string constant.

Script arguments

A more specialized method for setting the value of a variable uses

PARSE ARG, one of several varieties of the PARSE instruction, which

you are shortly going to meet in a somewhat different context.

The effect of PARSE ARG is to copy the text given to the script as

command-line arguments; into one or more variables. Although we

will not be discussing PARSE in full detail until Chapter 10, this use is

so important that we'll show you briefly how to use it right now.

Here's a very simple script for you to try. You could call it

rexx:args.rexx:

/* parse arg #1 */

parse arg x

say • (' x ') '

This script reads whatever you type in at the command line into the

variable X, then displays what it read. Here are some trial runs:

Shell> rx args Hello

(Hello)

Shell> rx args rexx:args.rexx

(rexx:args.rexx)

Shell> rx args

()
Shell> rx args one two three

(one two three)

As you see, everything on the command line after the script name is

transferred to the variable. In the final example, it would be more

convenient to read each word into a variable of its own.

This is very simple to accomplish:

/* parse arg #2 */

parse arg x y z .

say ' (' x ') '

say ■ (■ y ') '

say ' (' z •) •

Notice the period at the end of the line containing the PARSE

instruction. It plays a somewhat subtle but important role that will be

explained in Chapter 10.

61

4. Simple Programming

For now, you should use it whenever you want to use PARSE with
multiple variables. And now to test:

Shell> rx args Hello

(Hello)

()

Shell> rx args one two three
(one)

(two)

(three)

Variable names

Choosing a The names of the variables in the examples so far have been single
name letters like X. Variable names in real life, however, should generally

be longer and more descriptive.

X would be a good choice of name in relatively few programming
situations: it might be useful in a script involving an X/Y coordinate
system provided there could be no doubt as to what X was the X-

coordinate of. If there were possible ambiguity, a more precise name,
such as Cursor_X, should be preferred.

In general, variable names should be chosen to promote the
readability of the script. Of these two possible versions of the same
instruction, for example, there can be no doubt which makes its point
more clearly:

1) total = principal + interest
2) t = p + i

One can carry this to extremes, of course. Although the intent of the
next line is very plain and perfectly legal in ARexx (and many other
languages, for that matter), most programmers would prefer to be
more concise than:

Total_cow_weight = Weight_of_cow_l + Weight_of_cow_2

The issue in naming variables, as we pointed out earlier with regard
to comments, is communication, whether with some other person

who may one day be trying to understand the script you have written
or with yourself, months or years from now when you are trying to
locate a fault (a Isug') in the script or adapt it to some new purpose.

62

Simple Variables

Allowable In contrast to the foregoing guidelines, the technical rules governing

names ARexx variable names are very simple. They resemble those for most

computer languages.

Variable names are formed from any of the characters in the ranges a-

z, A-Z and 0-9, plus any of: $?!_ (dollar sign, question mark,

exclamation mark and underscore). A digit is not allowed as the first

character of the name.

As a general practice, we recommend that you avoid punctuation

characters other than the underscore (normally used as a stand-in for

the space character), since few other languages allow them. Another

sign, the period, has a special significance in ARexx variable names: it

is used in compound variables, a subject we take up in Chapter 6.

User Input

If you remember, we proposed at the start of this chapter a

specification for a simple script. We now know most of what we need

to write that script, but we're still missing one item: A method of

getting a line of input from the user.

PARSE PULL And this is where we come back to PARSE. Again, we'll postpone the

detailed discussion and theory until Chapter 10. Here we'll just

describe the one aspect of this many-faceted instruction that our

design requires.

To read a line of input from the user, use an instruction of this form:

parse pull <variable>

where '<variable>' represents a variable name, as in:

parse pull name

User interaction ARexx will suspend execution of the script when it comes to this line

and wait for the user to enter one line of text. As soon as the user hits

RETURN, the text he or she has typed will be stored as a string in the

named variable, just as though it had been placed there explicitly by

assignment, and the program will continue.

As a rule, the script should indicate to the user what sort of input is

required, using SAY (as we will do here) or the OPTIONS PROMPT

instruction (covered in Chapter 10).

63

4. Simple Programming

PULL

All but the most casual, disposable sorts of scripts should do some
checking to make sure that the input line is valid. That kind of
checking, however, requires language features we haven't yet covered
and so is omitted for now.

Instead of PARSE PULL, you can optionally use PULL all by itself. The

only difference is that the input will be translated to upper case. This

makes no difference when the input is a number and may in fact
simplify matters when the input is a string to be used in a comparison

(we'll be discussing comparisons next chapter). When the string is to

be redisplayed, however, you usually want the original case to be
preserved, requiring PARSE PULL. (Incidentally, the same

considerations apply to PARSE ARG, for which you can substitute just
ARG if you don't mind getting the arguments in upper case.)

The final script The following script, which you might call rexxmame.rexx, is the
culmination of this chapter, the realization of our design objective.

We hope you find its simplicity reassuring; indeed, many useful
scripts are not much longer or more intricate than this.

/* First look at PARSE */

say "Please enter your name:11

parse pull name

say "Coincidentally, my name is" name "also."

64

Experimenting with Expressions

Chapter 5

Numbers, Strings and Operators

Experimenting with Expressions

In Chapter 4 we briefly discussed expressions, including terms,

operators and variables. These concepts are common to all computer

languages, though the details of how they work vary markedly from

one language to another, often in interesting and characteristic ways.

In this chapter we are going to examine expressions much more

thoroughly, beginning with a closer look at how ARexx handles

numeric values and some peculiarities you may encounter when

working with numbers.

Values

The Dialog.rexx

script

Every expression has a value. In fact, the whole point of most

expressions is to arrive at that value so it can be used in some way:

assigning it to a variable, perhaps, or displaying it to the user, or using

it as an input to some other expression. In this chapter, therefore, we

will primarily be concerned with values of various kinds and with

performing various experiments in expression evaluation. As you

know from the previous chapter, it's very easy to see the result of an

ARexx expression: you simply plug it into a SAY instruction, like this:

say <expression>

For experimenting with expressions, however, even this is too much

work: you must either create a little program to test the expression, as

we often did in the last chapter, or use the rx program from the Shell

and deal with a sometimes inconvenient initial quote:

rx "say <expression>

Both these methods require just enough fussy typing to discourage

unfettered experimentation. To get around this, we recommend you

use the Dialog.rexx script given in the box on page 67. Here's what will

happen when you run this script:

Shell> rx dialog

65

5. Numbers, Strings and Operators

The '->' symbol is a prompt. Type in any valid ARexx expression at the
prompt and the result of the expression will be displayed on the next

line. There is no need to preface it with SAY—that's taken care of by
the Dialog script.

To enter an instruction or an assignment clause, rather than an

expression, just begin the line with a period. AmigaDOS commands

can be executed this way with .address command '<command>'.

A dialogue with If you enter something erroneous, Dialog will tell you the nature of
Dialog the error. To quit Dialog and return to the AmigaDOS Shell, enter bye

or .Exit. Here is a brief sample session to illustrate these points:

Shell> rx dialog

->3+3

6

->.x=3

->.y=5

->x+y

8

->.say x+y

8

->x+"atom"

*** Error: Arithmetic conversion error

.address command 'echo "Is there an echo in here?"1
Is there an echo in here?

->bye

Shell>

Throughout this chapter, examples will presented in the form of
snippets from a Dialog session. You can recognize them by the '->'
prompt in lines like these:

->47//3

2

We encourage you to type into Dialog not just the given examples, but
as many others of your own as you can think of. Becoming conversant
with expressions is one of the most important steps in learning to
program in any language, ARexx included.

66

Experimenting with Expressions

Dialog.rexx

/* Interactive ARexx expression processor */
re = 0 /* set error var to 'no error1 */

options prompt "->" /* prompt used by parse pull */
error: signal on error

/* jump here on command errors */

if re ~= 0 then do

say "Command error: RC="rc

re = 0

end

syntax: signal on syntax

/* jump here on syntax errors */

if re ~= 0 then do

say "*** Error:" errortext(re)

re = 0

end

do forever

parse pull line /* collect input */

select

when upper(line) = "BYE" then exit

/* Other commands may be added as

WHEN clauses here */

otherwise

if left(line,1) = "." then

interpret substr(line,2)/* instruction */

else

interpret say line /* expression */

end

end

Numbers and Strings

In Chapter 4 we learned that ARexx knows how to deal with both

numeric and string values and that in contrast to most languages it

even allows these two data types to be used interchangeably in many

contexts. Now the time has come to look more closely at certain

matters we have dealt with only briefly so far.

ARexx's typelessness is achieved by storing all values, both numbers

and text, in string form. Thus the number '29' would be stored by

ARexx as the pair of characters '2' and '9'. That may sound natural

enough, but in fact it is not the approach taken by languages whose

primary goal is computing efficiency. ARexx's bias is towards making

things easier for the programmer rather than optimizing the

performance of calculations, so the string method of storage is for it

the logical choice. It is a choice that carries with it some interesting

and perhaps unexpected consequences.

67

5. Numbers, Strings and Operators

Comparing

numbers

String storage

and precision

Allowable

range for

numbers

The first arises when you try to answer the innocent-sounding
question: 'When are two numbers equal?' Checking the equality of

two numbers is a very common operation in computer programs,
ARexx scripts included. However, because ARexx numbers are stored
as strings, there are several possible views. For instance, which of the
following numeric strings is equal to the string '37

a) "3"

b) ' 3 "

c) "+3.0"

String a is clearly equal; in fact, it is identical and you can't get much

more equal than that. What about string b? As a character sequence it
is clearly not identical to '3', however the difference is only that it
contains some extra spaces. We might decide it would be logical for

ARexx to regard those spaces as irrelevant and consider the two strings
equal all the same. String c looks quite different from '3', so different
that no reasonable character-by-character comparison could conclude
that they are equal. If they were compared as numbers, however, after
first converting them from the string to the internal numeric form,
they should be regarded as equal after all.

As we shall see in our discussion of relational operators later on in
this chapter, ARexx provides two ways of comparing values. One
method would allow only the first of the three strings above as a
match for the test string; the other method would also admit both of
the other strings as a match.

There is another interesting and unexpected distinction between the

two ways of representing numbers. Whereas the precision of the

numeric representation is restricted (by default, at least) to nine digits

and the range of values that may be represented is limited (though

large), the string representation is capable of essentially unlimited

precision. This is because the numeric representation uses a fixed

small amount of memory to store each number, but strings can consist

of as many characters as may be needed.

The range of values allowed by the numeric representation is more

than 300 orders of magnitude (equivalent to 1 followed by 300 zeroes)

above and below zero. Given a precision of only nine digits, however,

it is clear that even within that range some numbers cannot be exactly

represented. (Repeating decimals and irrational numbers, of course,

cannot be represented exactly using any finite precision.)

68

Numbers and Strings

Limits of

precision

String/number

conversions

These limitations on numeric calculations don't affect most ARexx

programming. Most often, the numbers you'll be using will be small

integers. But they can produce unexpected effects, which a couple of

examples may help you spot when they happen to you. Consider this

example (remember that the '->' prompts show this to be a Dialog

session):

->.a = 100 / 23

->.a = a * 2

->.b = 200 / 23

->a

8.69565218

->b

8.69565217

By the laws of arithmetic, A and B should be exactly equal, but in

practice they are not. They're nearly equal, all right, but a round-off

error arising from the limited precision of numeric calculations causes

them to differ in the last digit. That slight difference would be enough

for ARexx to report them unequal in a comparison unless special

precautions were taken. Interestingly, because some 'spare7 precision is

maintained while a calculation is actually in progress, the expressions

in this variant session do produce equal values:

->.a = (100 / 23) * 2

->.b = 200 / 23

->a

8.69565217

->b

8.69565217

As we saw earlier, ARexx is willing to be fairly loose about accepting a

string as a number, ignoring such irrelevancies as spaces at the

beginning and end. When ARexx itself represents a number as a

string, however, it uses very specific formatting rules. Converting a

string to a number, then back to a string, is thus not necessarily a

symmetrical operation. Try this little example, which demonstrates

that adding zero is not always without effects, whatever you learned

in school:

->■(■ II '
(1000)

->'(' II ■
(1000)

1000

1000

II •)'

+ 0 II ') '

69

5. Numbers, Strings and Operators

Scientific ARexx uses a different format for numbers that can't be represented
notation within the nine-digit limit of precision. This format, called scientific

notation, is written as a value, called the mantissa, followed by the

letter 'E', followed by another value called the exponent The value of
the number as a whole is obtained by multiplying the mantissa by ten
raised to the power of the exponent The mantissa is always adjusted
to be at least one and less than ten. Here are some examples of
numbers in both ordinary notation and ARexx-style scientific
notation:

1

2.5

10000

17333

.00034

123456123456

1E+0

2.5E+0

1E+4

1.7333E+4

3.4E-4

1.23456124E+11

Notice that in the final example precision has been lost and the value
rounded up according to the normal rules.

Most computer languages offer scientific notation in this or a very

similar form. The main reason we're telling you about scientific
notation at this point, however, is so you won't be at a loss if you

chance to come across it (Read the Reference Section entry on the
NUMERIC instruction to learn about a variant form, called
engineering notation, that ARexx will use if requested and about
modifying the precision of numeric operations and the 'fuzz factor' for
numeric comparisons.) And as one final example of how inter-

conversion between strings and numbers can cause some strings to

take on values you may not have expected, try this Dialog expression:

->+1122334455 'contains five pairs of digits.1

70

Operators

Operators

Symbol

+

-

* *

*

/
%

//
+

ii

(blank)

==

~==

=

>

<

&

1

A,&&

Pri

8

8

8

7

6

6

6

6

5

5

4

4

3

3

3

3

3

3

3

3

2

1

1

Type

L

A

A

A

A

A

A

A

A

A

C

C

R

R

R

R

R

R

R

R

L

L

L

B/U

U

u

u

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

The 23 ARexx operators in

Operation

Logical NOT

Prefix conversion

Prefix negation

Exponentiation

Multiplication

Division

Integer division

Remainder

Addition

Subtraction

Concatenation

Blank concatenation

Exact equality

Exact inequality

Equality

Inequality

Greater than

Greater than or equal to

Less than

Less than or equal to

Logical AND

Logical inclusive OR

Logical exclusive OR

descending order of priority

(Pri). The types are Logical (L), Arithmetic (A),

Concatenation (C) and Relational (R). The relational

operators an

B/U column

Binary <

i also called comparison operators. The

in the chart shows whether the operator is

>r Unary.

We know from the previous chapter that an expression consists of a

number of terms related to one another by operators. We encountered

a few of the standard arithmetic operators and two operators that

perform string concatenation. In the next few pages, we're going to

meet all twenty-three ARexx operators.

71

5. Numbers, Strings and Operators

Operator Operators have a number of properties, as you can see from the chart
symbols on the previous page. The most visible property is the symbol for the

operator. Except for the four basic arithmetic operators and a few

others, there is regrettably little standardization among computer
languages about which symbols stand for which operations. For
instance, the ARexx string concatenation operator symbol I I signifies
the 'logical OR' operation in the C language. Logical OR is represented
by a single or-bar in ARexx. C uses that symbol to signify a 'bit-wise
OR', an operator ARexx lacks, just as C does not have an operator for
string concatenation. If you're coming to ARexx from another

language, be wary of making blithe assumptions about operator
symbols.

Unary and A very fundamental property of operators is the number of operands
binary operators they take. Operators that take one operand are called unary operators.

The most familiar example of a unary operator is the prefix negation,
or unary minus operator in a number like -10. If you've guessed that

operators taking two operands are called binary operators,

congratulations. Most operators, such as those for addition and

multiplication, are binary. As you can see from the chart, ARexx has
three unary and twenty binary operators.

Types of Another property, which we touched on in the previous chapter, is
operators type. We are already familiar with the arithmetic operators, which

expect number-valued operands and return a numeric result, and

with the concatenation operators, which create a new string by

combining string-valued operands. The other two operator types,

logical and relational (or comparison), both involve a kind of value
that is neither numeric nor string: a boolean value.

Boolean The word boolean has a rather technical sound, especially if one has

operators heard it used a few times without quite knowing what it means.

Nevertheless, it is very simple: there are only two boolean values and

those are true and false. For instance, supposing we make the

assertion 'two is greater than one'. We can do this in ARexx with a

relational operator, as in this expression:

2 > 1

If you were reading this expression aloud you would use the same

words as we did above: 'two is greater than one'. Obviously the

assertion Is true and true is indeed the value of the expression. If we

had said:

2 = 1

72

Using boolean

expressions

Logical

operators

Operator

priority

Operators

which would be read 'two equals one7, the expression result would

obviously be false.

And that's all there is to boolean values as such. We know, however,

that ARexx likes to store all values as strings and this is the case with

booleans too. But the strings to which booleans equate might surprise

you. They are, for false and true respectively: '0' and 'V. Try this:

->2 > 1

1

->1 > 2

0

Understand? In that case, you won't be surprised by this odd-looking

example:

->3 + (2 > 1)

4

From the examples, you can see that the relational operators compare

either two numbers or two strings and return a boolean value from

the result of the comparison. The logical operators, the last type, work

on boolean values and return a boolean result.

In English we might express one phase of a reasoning process thus: "If

lions eat people and that animal over there is a lion then ..." and go

on to draw some conclusion. The word and in this example is a

boolean operator that takes as operands two boolean values. If both are

true, then the value of the whole and-expression is also true. If either

is false (if lions do not eat people, for instance), the value of the whole

expression is also false. Our observation about lions is an example of

human-style verbal reasoning—there is no direct way in ARexx to

express the idea 'lions eat people'! There is, however, an operator with

the same meaning as the and and an IF...THEN instruction to use it

with. We'll look at IF...THEN later on in this chapter and at a number

of other logical operators.

The final property of operators is called priority. It specifies which

operations in a complex expression will be performed first. The

priority rules for the arithmetic operators are well known. Consider
this expression:

12 + 3 * 2

In the absence of priority rules, one could interpret this expression in
two distinct ways. If the addition were performed first, the result of the

expression would be 30; if the multiplication were performed first, the

73

5. Numbers, Strings and Operators

result would be 18. Mathematical convention dictates that the latter is
the correct result.

As you see from the table, all operators have an assigned priority.

There is no need to remember the priority numbers, but these
observations will help you keep them straight:

• All the unary operators have equal priority, higher than the
binary operators.

• The binary operator priorities cluster by type: A,C,R,L
(descending).

• AND has higher priority than the other binary logical operators.

Grouping The priorities assigned to operators are such that an expression
operations written out in the natural way will often be grouped as you intend, but

exceptions are frequent. Neither ARexx nor any other language can

tell, for example, that in the following expression, which converts
Fahrenheit to Celsius, the subtraction should be performed before
either of the other operations:

F - 32 * 5 / 9

To force a certain required grouping of operations, you must use

parentheses ('round brackets'). Parts of an expression inside

parentheses are always evaluated before the parts outside, overriding
normal operator priorities. For example:

(F - 32) * 5 / 9

would give the desired result in the Fahrenheit to Celsius conversion.

Concatenation operators

We met the concatenation operators in Chapter 4. Here we'll just re-

emphasize a fact that we took advantage of in chapter 4 without

explicitly taking note of it: that these operators have lower priority

than the arithmetic operators. As a reminder, here are some examples

of the concatenation operators in action.

->.name = 'Felix'

->name 'the Cat1

Felix the Cat

->'They call him •" II name II

They call him "Felix".

->'They call him " 'name'"! '

They call him "Felix"!

74

Operators

Arithmetic operators

Nearly everyone is familiar with the four fundamental operations of

arithmetic: addition, subtraction, multiplication and division. ARexx

has an operator for each of these. In common with most computer

languages, ARexx uses the following symbols for these operators:

+ addition

- subtraction

* multiplication

/ division

Try a few examples in Dialog:

24

->1024-764.331

259.669

->-3*12

-36

90.9090909

Integer division A variant of the division operation is integer division, which uses the

percent symbol %. Integer division is like regular division but throws

away the fractional part of the result, if any. It is often useful in real-

world calculations, in which fractional quantities must often be

discarded. How many 75-cent apples can you buy with the $4.29 in

your pocket? Conventional division gives the answer 5.72, but the

shopkeeper may not approve of your attempt to leave 0.28 of the sixth

apple on the shelf. Integer division gives a more practical answer:

->4.29/0.75

5.72

->4.29%0.75

5

75

5. Numbers, Strings and Operators

Remainder Another division variant is the remainder operation (symbolized by a

pair of slashes: //) which answers the question, 'If this number were

divided into that number to produce an integer result, how many

would be left over?1 As we just saw in our apple example, dividing

0.75 into 4.29 using integer division gives 5; the remainder operation

would give the difference between 4.29 and 5 times 0.75, which is 0.54.

And that, of course, means that you'll have 54 cents left after buying

the 5 apples.

->4.29//0.75

0.54

Modulo The remainder operator is often used with integer operands in what is

arithmetic called 'modulo arithmetic' or, from its most familiar illustration in

everyday life, 'clock arithmetic'. What is the sum of ten and seven?

Seventeen? Not on a twelve-hour clock: the answer is five. You could

say that adding twelve on a clock is equivalent to adding zero, since it

leaves the hands in the same position. Similarly, any value of twelve

or more can be simplified by 'discarding all the twelves in if, just as

discarding a twelve from seventeen leaves the result of five displayed

on the clock. It is easy to imagine clocks with other than twelve

divisions and in the same way we can have 'modulo 5' or 'modulo 19'

arithmetic as easily as the 'modulo 12' arithmetic implemented by the

clock. Let's use the remainder operator to determine the time seven

hours after ten o'clock:

Exponentiation ARexx provides one more binary arithmetic operator: the

exponentiation operator, whose symbol is a pair of asterisks: **. You

can translate this symbol as 'raised to the power of. The expression:

side ** 3

thus returns the value of the variable side raised to the third power

(giving the volume of a cube based on the length of one of its sides). It

is equivalent to:

side * side * side

In ARexx's exponentiation operation, the exponent (the right hand

term) must be an integer. This means you can't use it to extract roots,

for example.

Exponentiation has the highest priority of the binary arithmetic

operators. The first of the following expressions is equivalent to the

second, but not to the third:

76

Operators

Prefix

conversion and

negation

Converting a

string to a

number

1. a + b ** 3 * 4
2. a + ((b ** 3) * 4)

3. (a + b) ** (3 * 4)

Next in priority come the multiplication and all three division-related

operators; the addition and subtraction operators follow in last place.

Remember, however, that the arithmetic operators as a group have

higher priority than all the other binary operators.

The two unary arithmetic operators are formally known in ARexx as

prefix conversion and prefix negation, though programmers coming

from other languages would probably tend to call them unary plus

and unary minus. The prefix negation operator has in ARexx its

expected role of negating (that is, making negative) its single operand.

For example:

-7

If you're new to programming, it probably wouldn't have occurred to

you that the minus sign in this example is an operator at all: you'd be

more likely to think of it as just part of the number. In fact, because

the high priority of the unary operators binds them very tightly to

their operands, you can in most instances go on thinking of the minus

sign as part of the number without ill effect.

You might guess that the prefix conversion, or unary plus, operator

would be purely cosmetic. After all, 7 and +7 are exactly the same

value. Not so, however. The trick is that the plus sign forces its

operand to be treated as a number, so the standard string-to-numeric

conversion is applied. Try this:

->" 0012"

0012

->+" 0012"

12

The effect is the same as an addition of zero to the operand (an

experiment we tried earlier in this chapter, you may recall), but is

more efficient and less obtrusive.

Relational (comparison) operators

As we saw earlier in this chapter, the relational operators compare two

values and return a boolean result: true or false. We found that the

boolean values can also be treated as numbers: one and zero

respectively.

77

5. Numbers, Strings and Operators

Conditional

instructions

Exact equality

We also saw that ARexx has two modes, or standards, for deciding if a

given pair of strings is equal. One mode calls for the strings to be

strictly identical on a character-by-character basis. This is the mode

used by the exact equality and exact inequality operators. The other

mode ignores unmatched space characters at the beginnings and ends

of the strings, and if the strings are numeric considers them equal

provided they are equal in numeric quantity (recall that '3' and ' +3.0 '

are equal according to this standard). All the other relational operators

use the second mode.

Relational operators are normally used in conditional instructions, of

which there are several. The simplest, mentioned earlier in this

chapter, is the IF instruction. This has the form:

if <boolean expression> then

<do something>

<further instructions>

ARexx handles this by evaluating the boolean-valued expression,

which might be a test for the equality of two numeric values, or some

other relation. If the value arrived at is true, the instruction

represented here by do something is executed. If the value of the

expression is false, on the other hand, do something is skipped over

and execution resumes at further instructions. The IF instruction will

be explained in greater detail next chapter, but this quick introduction

should be enough to get you through the examples in both this section

and the next, which covers the logical operators.

The symbol for the exact equality operator is a pair of equals signs (==).

Here is an example of its use:

/* Exact equality */

if text == ■ ■ then

count = count + 1

Here we are testing the string variable text to find out if it contains

exactly one space character, no more or less; if it does, a count of spaces

is incremented. The exact equality operator is necessary in this

example because it is not allowable for spaces to be ignored. With the

regular equality operator, the comparison would succeed no matter

how many spaces were stored in text, or even if text contained no
characters at all.

78

Operators

Normal

equality

Exact inequality If we were counting non-space characters, we could use exactly the

same snippet of code, but use the exact inequality operator. This is

formed by preceding the exact equality operator with the tilde

character (~). In ARexx operators, the tilde can always be read as 'nof.

Our example becomes:

/* Exact inequality */

if text ~== ■ • then

count = count + 1

These examples are not unrealistic or even exotic, but they are rather

specialized. In fact, the 'exact' operators are used much less often in

most ARexx programming than their less particular brethren.

In most cases, one really doesn't care about, or even want to know,

such irrelevant facts as whether a string has spaces in front or behind,

so the regular equality operators are to be preferred. When input is

obtained from the user, for example, leading and trailing spaces
should virtually always be ignored:

/* Normal equality */

parse pull input

if input = 'quit' then exit

In a case like this, even if the user actually happened to type ' quif, or

'quit ', or something similar, we can be reasonably assured that the

spaces were not intended to be significant. The normal, unfussy,

equality operator is therefore chosen.

After the discussion so far, the normal inequality operator should
need no special explanation. For completeness, here's an example:

/* Normal inequality */

if menuchoice ~= 3 then

say "Sorry, your choice is not valid at this time."

The remaining relational operators test for specific inequalities: less
than, greater than, less than or equal to, greater than or equal to. All

these operators use the normal comparison mode, rather than the

exact mode. The symbols used for these operators are standard,

however ARexx is unusual in providing synonyms for the less than
or equal and greater than or equal operators. As you see from the

chart, the synonym for the former is a combination of symbols that
would be read 'not greater than', while for the latter the reading is 'not
less than'. A moment's reflection will tell you that the synonyms

make sense. Whether you use them is up to you; they may

occasionally better express the underlying sense of a particular
relation.

Normal

inequality

Other

inequalities

79

5. Numbers, Strings and Operators

Comparing

strings

Lexical order

Further examples of the relational operators can be found in the next
section, on the logical operators. Our final example in this section uses

the less than or equal to operator in a comparison of two strings:

if wordl <= word2 then

say 'The words are in alphabetical order.1

The purpose of this contrived example is to show you how concepts

like less than and greater than are applied to comparisons between

strings. As you might expect, less than for strings means 'earlier in

alphabetical order' and greater than means the opposite. But because

strings can contain many characters besides the alphabetic ones, the

ordering is actually more comprehensive: the term lexical order' is

often used for this extension of the concept of alphabetical order to a

complete character set. On the Amiga, a complete character set is laid

out like this, starting with the characters that come earliest in the

lexical ordering:

32 control characters (backspace, tab, line feed, escape, etc.)

16 punctuation characters, starting with space

10 digits (ordered 0 to 9)

6 punctuation characters

26 uppercase letters, A-Z

6 punctuation characters

26 lowercase letters, a-z

5 punctuation characters

The delete character

That accounts for the first 128 out of 256 characters. These 128

characters are the standard ASCII set that most computers use. The

second 128 are much less standardized. On the Amiga only they go

like this:

32 control characters, not often used

32 miscellaneous punctuation characters and symbols

32 characters, mostly uppercase letters from foreign alphabets

32 characters, mostly the corresponding lowercase letters

A complete chart giving the Amiga's extended ASCII character set is

included in Appendix C of this book. Refer to it if you need to know

hpw various punctuation characters, for example, will behave under

lexical ordering.

80

Operators

Logical operators

As we have seen, arithmetic operators require numeric operands and

produce a numeric result; concatenation operators require string

operands and produce a string result; and relational operators require

operands of the same type, either string or numeric, and return a

boolean result We are now going to look at the logical operators,

which all act upon boolean operands and return a boolean result. But

what exactly is a boolean operand? The possibilities include:

• A comparison using one of the relational operators (remember

the value of the comparison is boolean).

• A logical operation using one of the operators discussed in this

section.

• A numeric value, such as a variable or a number, of either 0 or 1.

Since there are only two boolean values in the entire universe, the

work done by the logical operators is stunningly simple. For instance,

the sole unary logical operator is the not operator. Its job is merely to

invert the boolean value of its operand. Consider the relational

expression involving less than in this fragment:

if birthyear < 1951 then

say "Howdi, old-timer!"

The NOT The not operator, whose symbol is a tilde, gives us one way to invert

operator (~) the sense of the expression:

if -(birthyear < 1951) then

say ■■ G' morning, young' un!"

The high priority of the not operator makes the parentheses necessary.

If they were left out, the not would be taken to apply to the variable

birthyear, which is not only incorrect logic but would also cause the

program to halt unless birthyear was either zero or one—rather

unlikely!

81

5. Numbers, Strings and Operators

The AND

operator (&)
The binary logical operators are just as straightforward. For instance,
the and operator, represented by the 'ampersand' character (shift-7 on
the keyboard), combines the values of its two boolean operands into
one result value in this way: if both values are true, make the result

true; otherwise, make the result false. Here's a fragment from a (non

existent) medical self-help program. It checks to see if the patient's
temperature is within one degree of the normal value:

if temp ~< 97.6 & temp ~> 99.6 then
say 'Temperature is normal.1

As you can see from this example, testing that a value lies within a
specified range requires that two tests be satisfied. Here the tests are
embodied in relational expressions and the and operator ensures that
both are true. No parentheses are needed in this instance, because and
has a lower priority than any relational operator.

Inclusive OR (I) Another binary logical operator is called inclusive or (often just or); it

is symbolized by a single or-bar (shift-backslash on the keyboard). The
or operator is much more liberal than and: it gives a true result if

either of its operands is true, returning false only if both operands are

false. This next fragment is from a computer-assisted screening
procedure to identify alien life forms:

if color = 'green' | heads > 1 then

say 'Further tests recommended.1

As in this example, or is used when either of two conditions would

lead to the same action. The screening procedure is set up so that

either green skin or multiple heads is considered significant—the

presence of both characteristics simultaneously is not required for the
test to succeed.

Here is another example using or. This time we extend the expression

to include more than two terms:

if month=4 I month=6 I month=9 I month=ll then

say 'This month hath 30 days.'

Exclusive OR The final binary logical operator is called exclusive or, whose symbol

(A) is the caret character (shift-6 on the keyboard). It is somewhat less

commonly used than the previous two. It returns true if exactly one of

its operands is true. If both operands are false, or both are true, the

exclusive or operator returns false. Here is a fragment that depends on

the fact that the product of two numbers is negative only if one of the

numbers is negative and the other is positive:

ifa<0Ab<0 then

82

Operators

say "The product of" a "and" b "is negative.1

By the way, can you think of a simpler way to program this fragment

and achieve the same effect?

Other String Forms

Although humans like to think of the values manipulated by

computers in forms that make sense to us—numbers, strings, pictures

and so on—we know that at the hardware level these different types

of data are represented in a uniform way and that we depend on

software to translate it appropriately. Most computer users learn at

some point that data of every type can be viewed as a collection of

'bytes', each of which can assume any value between 0 and 255

inclusive. A corollary of this fact is that the numbers in a given set of

bytes may mean many different things, depending on the context in

which they are used.

ASCII storage of In ARexx strings, for instance, every byte is normally taken to

strings

Control

characters

represent one character according to the standard ASCII mapping

mentioned earlier in the chapter. For instance, if the character 'R'

occurs in a string, the corresponding byte contains the number 82; the

character T>' is represented by 68; the character '2' by 50. Accordingly,

the string TX2D2' would be stored as four successive bytes with the

values 82,50, 68 and 50.

In most cases, the ARexx programmer doesn't need to think about the

method of representing strings: it is much easier to deal with the

characters themselves than with the numbers that encode them.

Some characters, however, cannot be represented in string form.

These are the ASCII 'control' characters, such as the 'linefeed' character

that is produced by the RETURN key on the keyboard. Others include

backspace', 'delete', 'formfeed' (which ejects the page if sent to a

printer, but clears the screen if given to the console) and the 'escape'

character used to introduce special console and printer sequences. In

fact, of the 256 possible values a byte can take, more than 60 cannot be
entered as characters at the keyboard.

To include control characters in a string, ARexx allows two alternative

representations of strings using the hexadecimal and binary

numbering systems respectively. If you have programmed computers

before, you may be familiar with hexadecimal and binary; for you,
here are examples of both kinds of string:

83

5. Numbers, Strings and Operators

"03 2c"x /* $032c (decimal 812) */

■00011101'B /* %11101 (decimal 29) */

The V (or 'X'), of course, signifies hexadecimal and the /B/ (or V)

binary. Either single or double quotes may be used and blanks may be

added at byte boundaries if desired. Zeroes are added by ARexx to the

left of the string to round it out to a byte boundary; the following two
binary strings are equivalent, for instance:

•lllOl'b

'00011101'b

Linefeed All readers, even if those not familiar with hexadecimal, can still use
character the special hexadecimal strings to specify control characters. The one

you're likely to need most is the linefeed character. From the ASCII

table at the back of this book, you can find out that the hexadecimal

equivalent of this character is '0A'. To convert this into a string, just
add the V, yielding usages like this:

LF = 'Oa'x

ThreeLFs = 'OaOaOa'x

say "Down" II 'OaOaOa'x II "here!"

Any other character or sequence of characters in the ASCII table,

which is to say any combination of bytes at all, can be specified in this
way.

More information on binary and hexadecimal strings may be found in

the Reference Section. The entries for the C2X, X2C, D2X and X2D

functions may be of particular interest; also those entries whose name

begins with 'BIT' and a number of the functions belonging to the

ARexx support library rexxsupport,library.

84

6. Compound Variables and Built-in Functions

Chapter 6

Compound Variables and Built-in

Functions

In the previous chapter we studied the elementary components of

expressions—numbers, strings, variables and operators—in what may

have seemed pedantic detail. In this chapter we turn to the more

dramatic aspects of ARexx expressions: compound variables and

functions.

Simple Variables

Before we get into the first main topic of this chapter—compound

variables—let's take time for a quick review of the simple variables we

have encountered in the past. We'll also learn a new instruction,

DROP.

Variables provide a means of associating a name with a stored value,

such as a string or a number. Legal variable names conform to two

simple rules:

Variable names • The only characters allowed in the name are the letters, the digits

and a few punctuation symbols: $?!_ (dollar sign, question mark,

exclamation mark and underscore).

• The name may not begin with a digit.

It doesn't matter whether you use all lower case, all upper case, or

mixed case in a variable name, since ARexx always translates

unquoted text to upper case before applying any other processing. This

frees you to use case for readability. For instance, of these three

equivalent variable names, the first is much the easiest to read:

CostPerAnnum

costperannum

COSTPERANNUM

Until it is assigned a value, the default value for any variable is its

own name, translated to upper case. This very short program:

/* Default variable values */

85

6. Compound Variables and Built-in Functions

say CostPerAnnum n my_name

produces the following output:

COSTPERANNUM N MY_NAME

'Forgetting' a It is possible to make a variable forget that it has ever been assigned a

variable value and revert to the uninitialized condition of the three variables
in the last example. This is accomplished with the DROP instruction,
as demonstrated in this brief script:

/* DROP demo */

Cost PerAnnum = 150

n = 13.9

my_name = 'Atheistan'

say Cost PerAnnum n my_name

drop Cost PerAnnum n my_name

say Cost PerAnnum n my_name

The output from this script would be:

150 13.9 Athelstan

COSTPERANNUM N MY_NAME

Compound Variables

The variables we have used so far associate a single name with a

single value. Nearly all languages also provide one or more composite

variable types, in which a single name may be associated with

multiple values. This facility in ARexx is called compound variables.

Before we look at them, let us try to get a sense of what composite

variables are and how they are used.

Arrays

The type of composite known as an array or a table is provided in

nearly every language. The most straightforward, a one-dimensional

array, is like a lot of simple variables of the same type (all numbers or

all strings, for example) piled one on top of the other. The variable

name is applied to the whole pile rather than any one of its cells or

elements-, an individual element is referenced by means of a numeric

subscript along with the group name. In many languages (though not

ARexx) an array reference looks like this:

name(sub)

86

Records

Compound Variables

Here name is the name of the array as a whole and sub is a numeric

expression specifying which cell within the array is wanted. The

concept of arrays is usually extended to include higher dimensions. A

two-dimensional array might be used to locate a point on a plane, say

or to organize health data by two variables such as age and weight. A

reference to such an array uses two subscripts instead of one, such as:

heartrate(age, weight)

Arrays of three and more dimensions work analogously. A central

feature of all arrays, however, is their homogeneity: no matter how

many dimensions they may have, all the elements they contain are of

the same type.

A record, or structure, is a form of composite data in which the

constituent elements are not normally all the same type. Records are

used to create new data types that combine related pieces of

information in one handy package. In most languages that support

records, the programmer creates a template that names the data type

and names the fields (individual elements) each record will contain.

For instance, a template called book might contain a numeric field

entitled publjLate, a string field entitled title and other fields of

various types. The template is not data in itself; it merely specifies a

pattern in which data may be stored.

An actual record of type book would have its own name, such as

currentJbook, with its own values for the various fields designated in

the template. In many languages (including ARexx, as it happens),

references to data within the structure could look like this:

current__book.publ_date

current_book.title

Other data structures

Some languages provide built-in support for other data structures

such as lists (in which each element contains information that may be

used to locate the next, and sometimes the previous, element) and

many besides—stacks, trees and sets to name a few. More often, the

more exotic constructs and the operations to support them are not

built into a language but are emulated using simpler resources. Amiga

programming in C, Modula-2 or assembly language, for instance, often

87

6. Compound Variables and Built-in Functions

makes heavy use of a data organization called a doubly-linked list,
which is not a native facility in any of those languages but can readily
be emulated.

Data structures in ARexx

An array using

compound

variables

Stems and

nodes

Substitution of

node names

The compound variables of ARexx do not directly correspond to any
of the typical data structures we have been discussing. They do,
however, provide a very flexible means in which all these structures'
and more can easily be emulated, just as C and Modula-2 use records
to emulate doubly-linked lists.

In fact, a use of compound variables that is easy to understand at first
sight is the one that emulates an array. Let's write an ARexx script to
make a somewhat abbreviated periodic table of the elements:

/* Create table of elements */
elements.1 = 'Hydrogen'
elements. 2 = 'Helium'
elements. 3 = 'Lithium'
elements. 4 = 'Beryllium'
elements.6 = 'Carbon'

This script creates six compound variables sharing a common stem
symbol, the name elements. In many respects, compound variables
are very similar to the simple variables we've seen before. For

instance, the uninitialized variable elements.7 will return the value
'ELEMENTS.?' if you try to use it. Compound variables have a very
important special property, however: when a compound variable is
used in a program, ARexx replaces each segment—or node—of the
name after the stem with its current value and only then returns a

value for the name as a whole. To see what this means, suppose we
continue the above script with these lines:

i = 3

say elements.i

ARexx recognizes elements.i as a reference to a compound variable
(because of the period in the name). Before it can determine a value

for the compound symbol as a whole, ARexx must—according to the
rule we stated above—replace each segment after the stem elements

with its current value. In this case there is only one segment, the

symbol i, whose current value is '3'. ARexx makes the substitution

and arrives at a final version of the compound symbol: elements.3.

This symbol has a value—'Lithium'—and that is what eventually
reaches the user via SAY.

88

Compound Variables

Initializing a The stem portion of a compound variable has a particularly handy
stem special feature that lets us preset the value of the variables created

using that stem. For example:

/* Pre-initialize an array */

elements. = '???'

elements.1 = 'Hydrogen'

elements.2 = 'Helium'

say elements.1 elements.2 elements.3
say elements.999 elements.heating elements.euclid

As you will observe if you run this script, the two initialized variables
have their expected values, while the other four all have the value
'???'. Because we assigned that value to the stem, it is automatically
conferred on all possible variables created from that stem. In fact, this
is in general the significance of the period at the end of the variable
name: it specifies all the variables whose names begin with that stem

not just in assignments but also in the DROP instruction and in other

contexts we haven't yet encountered.

The advantages of arrays are most apparent in connection with loops,
which provide a concise and powerful way of processing all the
compound variables formed from a particular stem. Loops are

discussed in the next chapter.

Creating records Records are easy to emulate using compound variables. Let's revert to
an earlier example and create a stem called books. Thanks to the
flexibility of compound variables, we don't have to submit a template
that defines our record type to ARexx, but we should have such a
template in mind. Recalling that a record has named elements, called
fields, we might choose to construct each of our book records like this:

field

title

author

date

pages

description

Full title of the book

Author's name

Publication date of the book

Number of pages

Initializing the

records

The details of the data structure in real life would naturally depend on

the need at hand. In some particular application dealing with books

the number of pages might not be important but some other field or

fields—library call number, list of topic keywords, etc.—would be

required.

Now let's initialize a record for the book Desolation Island. We'll call

the record itself island and set it up like this:

89

6. Compound Variables and Built-in Functions

books.island.title = "Desolation Island"
books.island.author = "Patrick O1Brian"
books.island.date = 1978
books.island.pages = 325

And here's another, this time for the book Mankind and Mother
Earth:

books.mankind.title = "Mankind and Mother Earth"
books.mankind.author = "Arnold J. Toynbee"
books.mankind.date =1976
books, mankind,pages =641

Accessing the We now have a database of literary information—admittedly a very
database small one. To 'query' the database, we need only one piece of

information: the keyword, such as 'island', for the book we're
interested in. Let's make the improbable assumption that the user of
our database has these keywords committed to memory. Now we can
let him or her access it with code like this (we assume that the books
database has been initialized using the assignments given above):

say "Enter the keyword for the book you're interested in"
pull keyword

The keyword variable now presumably contains either 'ISLAND' or
MANKIND'. If it does not, the user will learn something about the
default values of ARexx compound variables. We now provide
information about the book of interest:

say "Title :" books.keyword.title
say "Author:" books.keyword.author

say "Date :" books.keyword.date

say "Pages :" books.keyword.pages

To understand what is happening here, recall that ARexx processes
the symbol in each node of the compound variable after the stem,
substituting in its current value. From the first of the four lines above,
let's consider the compound variable reference:

books. keyword, title

The first symbol ARexx encounters after the stem is keyword, whose
value is the input the user supplied to the PULL instruction. Let's
suppose the user's input was ISLAND', so ARexx substitutes that in:

BOOKS.ISLAND.title

There is no variable called title in this program, so the value of the
symbol 'title' is TITLE'. This gives us:

BOOKS.ISLAND.TITLE

90

Example 1

Example 2

Compound Variables

This is the name of the compound variable to which we have given

the value 'Desolation Island', so that is the ultimate value of the

reference:

Desolation Island

You may wonder what would have happened if there had been a

variable called island whose value was, say, the number 5. Would
ARexx, having evaluated keyword to 'ISLAND', go one step further

and produce:

BOOKS.5.TITLE

as the final name of the compound variable? The answer is no—only

one level of substitution is performed for each segment of the name. If

there had been a variable called title, of course, its value would have

been substituted as well. To see how well you understand the

mechanism, try to predict the output from this somewhat tricky

fragment:

1 title = 3

say books.island.title

2 title = "DATE"

say books.island.title

3 field = "TITLE"

say books.island.field

To understand what this code does, just put yourself in ARexx's shoes

(so to speak). In each of the three SAY instructions here, the symbol

books is translated to 'BOOKS' and island to 'ISLAND'.

In the first instance, the final segment is title, whose value was set to

the number '3' in the previous line. The final variable name,

therefore, is:

BOOKS.ISLAND.3

Since no variable of that name has been created, the value of the

compound symbol is itself and that is what the SAY instruction will

output.

In the second of the three instances, the final segment is again title,

but this time its value is 'DATE'. Substitution yields the name:

BOOKS.ISLAND.DATE

The SAY instruction will accordingly output '1978', the value we

assigned to this compound variable when we set up our database.

91

6. Compound Variables and Built-in Functions

Example 3 In the third instance above, the final segment of the name is field to
which we've just assigned the value TITLE'. The name ARexx ends
up with is:

BOOKS.ISLAND.TITLE

This variable has the value 'Desolation Island'. Notice that this result
depends on the fact that the substitution process is only carried to one
level, as pointed out earlier.

The number of nodes a compound variable may have is practically
speaking unlimited. No matter how many there are, however, every
reference to such a variable results in the substitution process we have
been describing. Compound variables remain a murky area even to
some quite experienced ARexx programmers, but if you have followed
this section closely, you should have little difficulty in taking
advantage of the unique capabilities these variables offer.

Functions

Calling

functions

ARexx's operators, which we met last chapter, provide an efficient but
deliberately elementary set of 'hard-wired' tools for manipulating
values in expressions. Functions are similar in that they too provide a
way of processing values during expression evaluation. Functions,
however, trade off performance for flexibility: they do not have the
same hard-wired efficiency as the operators, but they allow an
unlimited range of operations to be performed.

Functions are known by their names, which are formed by the same
rules as variable names. Each function is essentially a subordinate
script, or subprogram, which can be called (or invoked) when
required. Some functions need raw material to work on: they require
that values be passed to them by the calling script; the number and
type of these function arguments is a characteristic of the individual
function and must be known to the programmer. Functions may also
return values to the caller (though not all do). A value returned by a

function may be used in a script just like any other value—as an
argument to another function, for instance. Often, too, a function is

called not because (or not only because) of the value it will return but
for some other desirable behavior, such as obtaining data from or
storing data to a disk. Because behavior like this is incidental to the

original conception of a function, which focused strictly on the ability

to obtain a returned value, it is sometimes termed a side effect. This is

92

Functions

not meant at all to convey irrelevancy, however: some functions are

of interest only for their side effects.

Examples of To give you some idea of what functions are used for and to give you

functions something concrete to help focus the abstractions of the last paragraph,

here are very brief descriptions of a few representative functions

among those that are available to all ARexx scripts:

The Abs function takes one argument, which must be a numeric

value. It returns the 'absolute value' of the number; that is, with the

sign changed to positive if it is not positive already.

The Length function also takes one argument, in this case a string

value, and returns the number of characters in the string.

The Word function takes two arguments. The first is a string and the

second is the number of a word in that string. The returned value,

another string, is the specified word. For instance, if the first argument

is The quick brown fox' and the second argument is 3, the returned

value will be the string 'brown'.

Let's now write a short script that simply demonstrates each of these

functions. Notice that the arguments to the function appear in

parentheses after the function name and that multiple arguments are

separated by commas. It is also worth emphasizing that the function

call is equivalent to any other kind of value as far as the expression in

which it appears is concerned.

/* First function calls */

say "The absolute value of -3 is" abs (-3)"."

txt = "The Hunchback of Notre Dame"

say "There are" length(txt) "characters in '"txt"1."

say "The fourth word in the string is

1"word(txt,4)

Here are brief descriptions of a few more of the more than eighty

functions from the set—the built-in functions—that contains the

three discussed above:

The Sign function takes a single argument, a number. It returns one if

the argument is greater than zero; zero if the argument is exactly equal

to zero; and minus one if the argument is less than zero.

The Reverse function takes a single string argument and returns the

same string, but with its characters in reverse order.

The Upper function also takes a single string. It returns the same

string, but with all lower case characters converted to the equivalent

upper case.

93

6. Compound Variables and Built-in Functions

See if you can write a script, like the previous one, to try out these
three functions.

Optional

arguments

Mode

arguments

Function arguments

STRIP is one of many string manipulation functions in the built-in
library. Its purpose is to remove unwanted spaces (and occasionally
other characters) from either the beginning of a string, the end of a
string, or both. In reference-style documentation like that at the back
of this book, you might see it summarized thus:

STRIP(string, [mode] , [pad])

The square brackets around the second and third arguments indicate
that the mode and pad arguments are optional. Usually this means
that if you do not supply these arguments, default values will be used
to supply the lack, and that is the case here. Some functions, however,
such as SHOW, may behave quite differently depending on the
presence or absence of certain arguments in the function call.

If you look further into the documentation for STRIP, you'll find that
the mode argument, if given at all, must be one of the three letters B,
L or T, which stand for 'Both', 'Leading7 and Trailing' respectively. If
you omit this argument, the default value (which happens to be B) is
used. If you prefer, you can use the full word rather than just the
initial. You can put it in quotes or not, as you like, and use either
upper case, lower case or both. Giving any value other than the ones

allowed for this argument will cause the script to halt with an error
message, however.

Single letter option or mode arguments like this are very common in
the ARexx function libraries. For a few of the many other examples,
consult the reference documentation on DATE, TIME and SHOW.

The pad argument is typical of many of the ARexx string functions. If
you omit the argument, it defaults to the space (blank) character.

By the way, it's important to remember when reading function

descriptions that the arguments don't have to be literal strings or

numbers. Variables and expressions, even including other function

results, may be used instead: it's the final value of the argument after

expression evaluation has been applied to it that is passed to the
function.

94

Functions

Using the Now let's use the Dialog tool introduced in the last chapter to find out

STRIP function how the STRIP function handles a variety of argument combinations.

First, a dry run that doesn't call STRIP:

Place-holding

commas

< text

text

Now let's see what happens when STRIP is applied with default

arguments:

<text>

II stripC text ") II ">'

We see that both leading and trailing spaces have been removed from

the string. Next we experiment with the three modes:

stripC text ", B) II ">"

<text>

->"<" || stripC text ", L) II ">"

<text >

->"<" II strip(" text Mf T) II ">"

< text>

As expected, the first of these three lines duplicates the default, while

in the others the leading and trailing spaces are stripped respectively.

What if we now specify values for the pad argument?

->"<" II stripC text

<text >

->"<" II stripC text

< text >

->•'<" II strip(M**text**tt, L, "*") II ">

<text**>

L, " ") II ">"

L, "*") II ">"

Again, the first test simply makes the default value of the final

argument explicit. In the second, we are asking the function to

remove leading asterisks, rather than spaces. Of course, there aren't

any, so the call has no effect. But in the third line there are asterisks to

remove and the result is as expected.

Suppose we wish to give the pad argument, but stay with the default

for the mode. This is perfectly all right, but somehow we have to show

that our custom pad character is still the third argument, not the

second. We do this with a 'place-holding comma', as in this example:

->"<■■ II strip ("### text###

< text### >

"#") II ">■'

As these examples show, ARexx is very flexible in its use of function

arguments. We encourage you to use Dialog and test scripts in further

95

6. Compound Variables and Built-in Functions

experiments of your own with the built-in functions, based on the
documentation in the Reference Section.

Where do functions come from?

Function

libraries

Function hosts

External

functions

We have just looked at some of ARexx's built-in functions. Every
ARexx script has access to this set of functions, which gives it special
importance. The functions themselves are contained, along with the
other built-in facilities of the language—instructions, expression
evaluator and so on—in the library rexxsyslib.library, which as you
know must normally be in your libs: directory to use ARexx (the
exception is if you use the script 'Start-ARexx' on the ARexx release
disk).

Another avenue by which functions are made available is through
function libraries, which may come from several sources. One,
rexxsupport.library, comes as part of the ARexx system; most of the'
functions it provides, unlike the built-in ones, are of interest mainly
to experienced ARexx programmers. Some function libraries have
been created by ARexx users and made available for others to use,
usually on a freely redistributable basis through no charge or low
charge channels like the 'Fish disks'. An example is
rexxmathlib.library, which provides advanced mathematical functions
(trigonometric and logarithmic functions, for example) that aren't part
of the core ARexx language.

Because a function library is stored as a separate file on disk, ARexx

must be informed of its existence before the functions it contains are
accessible to scripts. Either the rxlib program or the ADDLIB built-in

function can be used to do this. We will demonstrate both methods
later in this chapter.

Functions may also be provided by function hosts, which differ from

function libraries in a somewhat abstruse way: they run as separate

tasks from the function-calling script. With function libraries, the

linkage with a script is more direct: no task-switching is involved
when a function is called. A function host may be in the form of a

program that you run or it may be provided as part of an application

program. Gold Disk's HyperBook is an example of an application that

contains a built-in ARexx function host.

A function written in ARexx may be stored as a separate file (like a

script) and accessed through its file name. Try this tiny example,

which you can save as rexx:SimpleFunc.rexx:

96

Functions

/* Simple function */

return 'Functions can return results!1

That's it. Now from the Shell, give this command:

Shell> rx "say SimpleFunc()

Internal It makes sense to devote a separate file to a function only if that

functions function is going to be called by a number of separate scripts (and not

even then if efficiency is a critical concern, since the file must be

loaded into memory each time the function is called). User-written

functions most often are created to answer the needs of one particular

script. ARexx, which is nothing if not versatile, also lets you include

functions within the same file as the script that calls them. These are

known as internal functions. Apart from the built-in functions, in

fact, this is the most common form in which ARexx functions appear.

How ARexx locates functions

As we have seen, there are five sources of functions:

• Built-in functions are part of the ARexx kernel, rexxsyslib.library

in the system libs: directory.

• Function libraries, such as the vendor-supplied rexxsup-

port.library and such freely-redistributable libraries as

rexxmathlib.library, provide sets of functions that are accessible to

ARexx scripts via a direct link mechanism.

• Function hosts, such as the host built into Gold Disk Inc.'s

hypermedia HyperBook program, are somewhat similar to

function libraries but use a less direct link mechanism and are

normally distributed as stand-alone programs rather than as

modules in the libs: directory.

• External programs, like our very simple example

SimpleFunc.rexx, are ordinary scripts that are invoked as

functions using the file name as the function name.

• Internal functions are part of the same source file as the currently

executing script.

97

6. Compound Variables and Built-in Functions

The Library List Despite some fundamental differences, function libraries and function
hosts are enough alike that ARexx keeps track of them as a single

group, on what is known as the Library List An important feature of

the Library List is that the ordering of the list determines the order in

which the currently open libraries and hosts are scanned when ARexx

is trying to match a particular function name. (How to specify the

ordering, or priority, of a function library or host, is something we'll

cover later on.) If more than one library/host has functions of the

same name, the one that will be executed is the one belonging to the

library/host with the higher priority.

Library search

order

Skipping

internal

functions

Of course, there are other possibilities for 'name collisions7 as well.
With so many different places it can look to locate functions, ARexx

needs a well-defined general mechanism for adjudicating between

like-named functions. The core of this mechanism is the search order.
Every time ARexx encounters a function call in a script, it tries to

match the name by looking at each of the possible locations in this
order:

1) Internal functions (within the script)

2) Built-in functions

3) Function libraries and hosts (ordered by priority on the Library
List)

4) External programs

As soon as a match for the function name is found the search is called

off. This means that a function named REVERSE in your script takes

precedence over the built-in REVERSE function, which in turn takes

precedence over a function of that name from any other source.

Even this is not quite the whole story. If you call the REVERSE

function, but put the function name in quotes—that is, make it a

string rather than an ordinary symbol—the internal functions will be

dropped from the search order. The REVERSE function in your script
will be ignored and the one in the built-in library used instead. In

Chapter 9 we'll see one way of exploiting this initially curious-
sounding feature.

98

Functions

Search order for For completeness, we should point out that there is also an ordering

external within the last search location—the external programs. Let's suppose

functions you call a function by the name of FITZROY and that ARexx has been

unable to locate a function of that name in your script, among the

built-in functions or in any active function library or function host.

Before it abandons the search, it will look for a script it can execute,

trying each of these file names in turn:

1) fitzroy.rexx

2) fitzroy

3) rexx:fitzroy.rexx

4) rexx:fitzroy

If at this point the FITZROY function has still not been located, ARexx

at last gives up and reports Function not found.

Loading a function library

When a script needs access to the functions contained within a

particular library, other than the built-in library, it must load the

library from disk if it is not already in the Library List. In this section

we'll load in the ARexx support library, rexxsupport.library, and call

the SHOWDIR function it contains. We can do it all from Dialog.

Checking if a

library is in the

List

To begin, we should find out if the library is already in the Library List.

For this we use the SHOW function:

->show(L,

0

rexxsupport.library')

SHOW is a multifaceted function whose purpose is to provide

information about various resources, including the Library List. We

are here using but one of its many capabilities, which are fully

described under its entry in the Reference Section. The first argument,

'L', announces that the Library List is the resource we wish to inquire

about; the second argument specifies the library of interest. In this

case, because the library hasn't yet been loaded, the function returns

false or zero. If the call to SHOW had returned true we could skip the

next step, which is:

99

6. Compound Variables and Built-in Functions

Adding a library

withADDLIB

->addlib(•rexxsupport.library■, 0, -30, 0)

If you watch closely for disk activity when this function executes... you
won't see any. All ADDLIB does is make an entry in the Library List.

The library will actually be loaded later on, the first time a function is
called that ARexx can't locate by the time the new Library List entry is
encountered during the function name search.

Of the three numeric arguments to ADDLIB, the first is of the most
practical interest, since it sets the priority of the Library List entry and

hence the position of the library in the function search order
compared to other libraries and function hosts. The larger this
number is within its allowed range of -100 through 100, the higher is
the library's priority. The other two arguments are always the same for
any given library and should be specified in the library

documentation. For an explanation of what they mean and for more
details about ADDLIB, consult the Reference Section at the back of the
book.

Adding a library Another way to get a library's name onto the Library List is to use the
with rxlib rxlib program from the AmigaDOS Shell. You have to supply exactly

the satne information as you would when calling ADDLIB from a
script, however the format is naturally a little different. For example:

Shell>rxlib rexxsupport.library 0 -30 0

The rxlib program is handy in some circumstances, but normally it is
best to add function libraries explicitly in the scripts that you write.

Using

SHOWDIR
We're now ready to use SHOWDIR, one of the functions in the
support library. SHOWDIR takes three arguments:

SHOWDIR(directory, [mode], [pad])

As you see, the argument list is very similar to that for the STRIP
built-in function discussed earlier. The action of SHOWDIR is to
gather the names of all the files (mode F), or the directories (mode D),
or both (mode A, for 'all', which is the default mode) in the given
directory and return a string consisting of these names separated by
the pad character, for which the default is a space. Try it on your sys:
directory:

->showdir("sys:")

What that should do is display a long list of file and directory names,
the contents of sys:, separated by spaces. The information, though not
the formatting, would be the same if you gave the Shell command:

100

Functions

list sys: quick nohead

If anything went wrong, it was likely to be either this:

->showdir (" sys:")

*** Error: Function not found

or this:

->showdir (" sys:")

*** Error: Requested library not found

The first case may mean that you have neglected to call ADDLIB for

rexxsupport.library since the last time you rebooted. The other

possibility is that you have removed it from the Library List, or that

some script has done so, like this:

->remlib (' rexxsupport. library •)

1

Either way, the remedy is simply to invoke ADDLIB now, as described

above, then retry SHOWDIR.

Locating the To understand the second case (Requested library not found), let's

function reconstruct what ARexx did to process your SHOWDIR call. To begin

with, following the search order, it looked (in the Dialog.rexx script)

for a function called SHOWDIR; not finding one, it then looked in the

built-in library, again without success. Now it turns to the function

libraries and function hosts named on the Library List, coming

eventually to the name you supplied via ADDLIB. Seeing that the

library for that entry has not yet been loaded, ARexx goes looking for it

in your libs: directory, where it must find a matching file name. But

even that is not enough. Within the library itself the name is given

again and that too must match; unlike the file name match, this one

must also match in case—REXXsupport.library will not match

rexxsupport.library (the correct name), for instance.

To cope with the error, then, we should first call REMLIB, as shown

above, to remove the incorrect entry from the Library List, then call

ADDLIB again, this time using the correct name for the library.

Assuming now that everything is working, let's try SHOWDIR again.

This time we'll just ask for directories (using the D mode instead of

the default A) and separate the names not with a space but with a

linefeed character. As you saw at the end of Chapter 5, we ask for a

linefeed with the special string 'Oa'x:

->showdir('sys:','Dir','Oa'x)

101

6. Compound Variables and Built-in Functions

Summary We've now looked at the basic components of expressions and met a
few of the many functions in the built-in library. In the remaining
chapters of this section well encounter more of the built-in functions.
Well also, starting in Chapter 8, begin writing functions of our own.

Meanwhile, continue to experiment. Although we will not be using

the Dialog tool in future chapters, it can continue to be useful when

you want to check out some ideas about expressions, or see for

yourself exactly how a function described in the Reference Section
behaves before trying it out in a script.

102

7. Compound Statements and Loops

Chapter 7

Compound Statements and Loops

So far we have looked at only a few ARexx instructions: the SAY

instruction for output to the screen, PULL for input from the

keyboard, the assignment instruction for giving a value to a variable

and the DROP instruction for 'uninitializing' a variable. We have also

briefly covered the more complex IF instruction, which permits the

result of a boolean expression to govern whether some subordinate

instruction will be executed. We begin this chapter by examining IF

more closely.

IF, ELSE and Compound Statements

IF Here is an example of the simplest form of IF:

if partners ~= 0 then

say "Each person's share is $" II income/partners

This much we have already seen. A first complexity arises when we

want to take some special action when the value of the partners

variable is zero. Here's an approach that works:

if partners ~= 0 then

say "Each person's share is $" II income/partners

if partners = 0 then

say "Invalid value for 'partners'."

ELSE This is unnecessarily inefficient, however. Although it looks as

though two different tests are being applied to partners, really there is

only one, but a different action is being taken according to whether

that test evaluates to true or false. We can avoid duplicating the test if

we use the else keyword, like this:

if partners ~= 0 then

say "Each person's share is $" II income/partners

else

say "Invalid value for 'partners'."

Now let's consider a similar complication. This time, we want to

perform not just one action when partners is non-zero, but two (or

maybe more). A first approach again is to use multiple IFs:

103

7. Compound Statements and Loops

if partners ~= 0 then

say "Each person's share is $" || income/partners

if partners -= 0 then

say "This is l/"partners "of the total $» || income

Grouping with Here the redundancy of the second test is even more obvious than in
DO and END the previous example. The solution lies in the concept of a compound

instruction: a sequence of instructions that are somehow bound

together to appear from the 'outside7 as a single instruction. You can

tell ARexx that a group of consecutive instructions is to be regarded as

a single unit by bracketing them with the special keywords DO and
END. They are as easy to use as bookends:

if partners ~= 0 then do

say "Each person's share is $" I |. income/partners
say "This is l/"partners "of the total $" I | income
end

Naturally, DO and END can be used to extend the range of ELSE as
well:

if partners -= 0 then

say "Each person's share is $" I I income/partners
else do

say "Invalid value for 'partners'."

say "The number you supply MUST be non-zero!"
end

Nested IF By the way, the instruction that depends on an IF or ELSE can be of

statements any type: even another conditional like IF/THEN itself. One

important result of this is that you can chain IF/THEN/ELSE

instructions together to deal with several different alternatives:

if input = 604 then

say "British Columbia"

else

if input = 208 then

say "Idaho"

else

if input = 601 then

say "Mississippi"

else do

say "Sorry, I don't recognize that area code."

say "Frankly, I'm skeptical that it is valid."
end

104

ELSEIF

SELECT,.

WHEN

IF, ELSE and Compound Statements

A sequence of instructions like this illustrates that IF/THEN/ELSE

forms a single unit: everything after the first ELSE is subsidiary to it

and can be regarded as a single instruction. The indentation reflects

this in the standard way. However, this kind of construction is

common enough to have evolved its own convention for

indentation, one that reflects the logic from the point of view of the

human programmer rather than the language:

if input = 604 then

say "British Columbia"

else if input = 208 then

say "Idaho"

else if input = 601 then

say "Mississippi"

else do

say "Sorry, I don't recognize that area code."

say "Frankly, I'm skeptical that it is valid."

end

Code fragments like this are so common, in fact, that a special

compound instruction called SELECT is provided to accommodate it.

The following example of its use is essentially equivalent to the

previous example using IF/ELSE. The only real difference is that the

SELECT construction makes the purpose of the code even more

explicit, especially when a large number of alternative cases is being

considered.

select

when input =604 then say "British Columbia"

when input = 208 then say "Idaho"

when input = 601 then say "Mississippi"

otherwise

say "Sorry, I don't recognize that area code."

say "Frankly, I'm skeptical that it is valid."

end

As with the IF/ELSE chain, SELECT considers a number of candidate

expressions, executing the associated instruction when one evaluates

as true. The expressions are introduced with WHEN rather than IF,

but the instruction is introduced with THEN as before. As usual, the

dependent instruction can be compound, using DO and END, if

desired. The place of the final ELSE, whose associated code is executed

when all tests have failed, is taken by OTHERWISE. Observe that

OTHERWISE may have multiple dependent instructions, even

without an explicit DO/END.

105

7. Compound Statements and Loops

OTHERWISE One difference between the OTHERWISE in SELECT and the final

errors ELSE of an IF/ELSE chain is that the latter is entirely optional: ARexx

does not care if you put in code to cover this clean-up contingency or

not. It is a potential error, however, to omit the OTHERWISE case in a

SELECT instruction. The error becomes actual when, during a

program run, all the WHEN tests fail. ARexx then insists on the

presence of an OTHERWISE and will halt the program if it doesn't

find one.

A note on the formatting of conditionals and compound instructions

Different programmers have different ideas about the best way to format ARexx

scripts. All experienced programmers agree, however, that some sort of orderly

formatting is necessary if scripts are to be easily readable. The primary means of

formatting is indentation. The underlying idea of all formatting schemes is that the

indentation of each line of code should reflect its place within the logical structure of

the script. A block of lines whose execution hinges on a conditional instruction, for

instance, should be indented with respect to that instruction. Schematically:

if <conditionl> then do

<block of lines dependent on conditionl>

end

else if <condition2> then do

<block of lines dependent on condition2>

end

else do

<block of lines for default case>

end

There are other ways of formatting an IF-ELSE in ARexx; this common method

happens to be the one we have adopted. Other kinds of constructs such as functions,

DO-loops and SELECT conditionals present similar opportunities for bringing out the

meaning of a script in this graphic way. Observe the formatting in this book and use it

as a basis for a standard approach of your own, even if it doesn't happen to be quite

the same as we prefer. The important thing is to be logical and above all consistent.

106

Loops

Loops

DO loops The conditional instructions, IF and SELECT, give ARexx one kind of

power, that of making decisions based on inputs that are unknown at

the time the program is written. Another kind of power involves

computing brawn rather than brain: it is the power to perform the

same operation over and over again in exactly the same way. If

computers could get bored we would be in serious trouble, so heavily

do we depend on their capacity for tireless repetition. In ARexx, we tap

that capacity with DO, an instruction we met in the previous section.

For a first look at the several variations on this theme, try this little

script:

/* First DO-loop - print 2**1 through 2**5 */

n = 1

do 5

n = n * 2

say n

end

As you can see by running the script, the two instructions:

n = n * 2

say n

are executed not once but five times, exactly as though we had

executed this simple-minded script:

/* Emulating a loop */

n = 1

n = n * 2

say n

n = n * 2

say n

n = n * 2

say n

n = n * 2

say n

n = n * 2

say n

This script is conceptually simpler than the previous one and in a way

more obvious, but few would argue that it is easier to read. The

limitations of this 'in-line' approach become even clearer when you

think about the in-line script that would equate to:

107

7. Compound Statements and Loops

DO FOREVER

/* A loop with more repetitions */
n = 1

do 100

n = n * 2

say n

end

And just in case you're not yet convinced that there's no future in in

line coding, think about how you'd handle this without loops:

/* A loop with variable repetitions */

say "Enter number of repetitions

parse pull reps

n = 1

do reps

n = n * 2

say n

end

Now let's try another script that is an obvious candidate for a loop.

This one prints a table of the squares and cubes of the numbers 1

through 10 (recall from Chapter 5 that ** is the ARexx exponentiation

operator, so the n**3 in this script means 'n cubed'):

/* Table of squares and cubes */

n = 1

do 10

say n n*n n**3

n = n + 1

end

If you try this script you'll find that the output is rather ragged, since

we have made no attempt to make the three numbers output on each

line appear in columns. This problem is easily solved, as you'll find

when we look at string functions in a later chapter, but we'll just put

up with it for the present (though feel free to experiment with

solutions of your own). Now let's consider some interesting

variations on the theme of loops. For starters, following DO with the

special word FOREVER has the result you would expect: the loop will

execute an unlimited number of times, terminating only when it is

interrupted for some other reason. Such as? There are a number of

possibilities, but in normal cases the loop will terminate when one of

these instructions is executed:

leave

break

exit

return

signal

108

LEAVE

Loop indexes

Limit and

increment for

index variables

Loops

For now well go with LEAVE, which does exactly what we want and

no more: breaks out of the loop and continues with any subsequent

instructions. Of course, if we simply add LEAVE to our existing loop, it

will terminate on the very first repetition, which would be rather

pointless. We must make the LEAVE depend on some condition that

will evaluate as true only when it suits our purposes. For instance:

/* Table of squares and cubes */

n = 1

do forever

say n n*n n**3

n = n + 1

if n > 10 then leave /* escape the loop */

end

This script behaves exactly like the last one, but it has one important

difference: in the present script, the variable n has a special role, that

of an index or loop counter variable. It has a starting value (1) and an

amount by which it is augmented (also 1) in each loop repetition. Its

value is used within the loop, but—apart from the systematic

increment—never modified. This kind of usage is so common that

ARexx provides a special DO variant to take care of the bookkeeping

automatically. The result is much more compact code:

/* Table of squares and cubes */

do n=l to 10 by 1

say n n*n n**3

end

The DO line in this script has four parts:

do instruction keyword

n=l initializer

to 10 limit

by 1 increment

Neither the limit nor the increment is compulsory. If limit is missing,

the loop variable will be incremented indefinitely and one would

normally expect other arrangements (like LEAVE) to have been made

to escape the loop. If increment is missing, it is taken to be 1, the value

given explicitly in the example.

The index variable, here n, is special in that ARexx automatically

updates it on each pass through the loop and tests it against the value

computed from the limit expression if one has been provided. In

other respects it is an ordinary variable, not segregated or protected in

109

7. Compound Statements and Loops

any way from the common herd. In particular, you can modify the

index variable yourself within the loop if you wish, thereby possibly

affecting the number of loop repetitions:

/* Modifying the index variable */

do counter=l to counter+9 by counter+counter
say counter

if counter = 3 then counter = 6
end

Though ARexx allows you to interfere with the normal operation of a

loop index variable in this way, the practice is universally discouraged:

it is untidy and makes your code more difficult to understand;
moreover, it is hardly ever necessary.

Another observation we can make about this last script is that the

limit and increment expressions are evaluated only once, before the
loop is first entered, and the values obtained are used from then on (a

good thing in this case, since the script would otherwise not
terminate).

We have now seen three ways of controlling the repetition count of a

DO loop; we can represent them with these examples:

• do 5

• do forever

• do i=l to 20 by 2

We have also seen that in the third of these types, the TO and BY parts

of the instruction are optional. Besides these forms of DO—the

iterative forms—we recall from the beginning of the chapter that DO

used all by itself introduces an ordinary compound instruction with
no looping.

Conditional Now let's turn to the two conditional forms of DO loop, forms that

loops: WHILE resemble IF/THEN in that the decision to execute the instructions in

the loop depends on the value of a boolean expression. The use of the

conditional forms is just about self-explanatory, as you'll see from this

example using the commoner of the two, WHILE:

/* List the powers of two less than 1000 */
i = 0

n = 1

do while n < 1000

say "2 to the" i •• = " n

n = n * 2

i = i + 1

end

110

Loops

Before the DO-loop is entered for the first time, the variable n is

compared to 1000. Since its initial value is less than 1000, the boolean

expression returns true—the condition is satisfied—and we enter the

loop. If the initial value of n were 1000 or more, the instructions in

the loop would never be executed at all. At the end of the first pass

through the loop, n has been doubled, but its value still satisfies the

WHILE condition, so the loop is entered again. And so on after the

second pass and the third and right up to the tenth. At the end of the

tenth pass, however, n has a value of 1024, the controlling expression

returns false at last and ARexx skips over the loop to resume

execution at whatever instruction follows the END, if any.

UNTIL In a WHILE loop, the controlling condition must be true at the

beginning of each iteration of the loop (including the first) if the loop

is to continue executing. An UNTIL loop differs in a very symmetrical

way: it requires the controlling condition to be false at the end of each

iteration if the loop is to continue. A consequence of this is that an

UNTIL loop always executes at least once. Here is an example of an

UNTIL loop:

/* Wait for palindromic input */
do until in = reverse(in)

say "Please enter a palindrome:"

parse pull in

end

Now that we have the simple form of DO, three iterative forms and

two conditional forms, you may wonder if any further variations are

possible. The answer is yes. First, any of these forms may take an extra

phrase consisting of the word FOR followed by a numeric expression.

Applied to the simple form of DO, this merely creates the same kind

of loop that would result if the FOR were absent. That is:

do for 12

is effectively identical to:

do 12

You may wonder what happens in this case:

do m for n

The answer is that the FOR takes precedence and the loop will execute
n times. In all other cases, the effect of FOR is to set a limit on the

number of iterations that will be performed, regardless of other means
of controlling the loop. All the following loops will run for exactly six
iterations:

111

7. Compound Statements and Loops

/* A batch of 6-iteration loops */

do for 6

say "#1"

end

do 3 for 6

say "#2"

end

do 12 for 6

say "#3"

end

do forever for 6

say "#4"

end

do i=l to 1000 by 3 for 6

say "#5 ("i") "

end

low = 1

hi = 1000

do for 6 while low < hi

say "#6 ("low"/"hi")

low = low + 3

end

low = 1

hi = 1000

do for 6 until low >= hi

say "#7 ("low"/"hi")"

low = low * 2.3

end

DO And now, if you're ready for DO's grand finale, we have just one

combinations more major point to cover: any of the iterative formats of DO can be

combined with either of the conditional formats and/or with FOR, to

produce loops with multiple restrictions. Take a look at this:

/* The guessing game */

answer = random(l,1000,time('s1))

say "I am thinking of a number between 1 and 1000..."

do turn = 1 to 10 until guess = answer

say "Your guess?"

parse pull guess

if answer > guess then

say "Too low."

else if answer < guess then

say "Too high."

end

if guess ~= answer then

say "You ran out of guesses! The answer was" answer

else

say "You got it in" turn "turns!"

In this guessing game an iterative loop is used for the turn counter,

with the maximum set for ten turns (which is the most turns you

should require if you play perfectly). But that maximum is only one of

Hie conditions for exiting the loop; the other is if the player makes a

correct guess, which we check with the UNTIL conditional. This

112

Loops

particular script requires a turn variable so that it can report how

many turns the user needed to win (see the last line). If we decide to

discard this feature, changing the last line to:

say "You got it!"

the DO instruction could be simplified to:

do 10 until guess = answer

Restrictions on The only restrictions on combining loop types in this way are:

combinations

• No more than one iterative type or one conditional type may be

used together in the same loop. That is, you can't say something

like:

do while nl < 100 until si = 'quit1 /* illegal */

• When an iterative and a conditional type are used together, the

iterative type must be given first. FOR is counted as a component

of the iterative type for this purpose. This loop will not work:

do while i < 5 for 10 /* won't work! */

Using Loops with Compound Variables

The examples of looping that we have already seen hint at a few of the

possible uses of this fundamental programming concept. Loops really

shine, however, when used with a composite data type—which in

ARexx means compound variables.

Suppose we have a compound variable called scores, with instances

from scores! through scores.100. Let's find the total of all these scores:

/* Total scores - version 1 */

total = 0

total = total + scores. 1

total = total + scores. 2

total = total + scores. 3

total = total + scores. 99

total = total + scores.100

Well, space doesn't permit the printing of the whole script, but you

can probably get the idea from this excerpt. You may also have

visualized a much more concise and elegant way of tackling the

problem, something like this:

113

7. Compound Statements and Loops

/* Total scores - version 2 */

total = 0

do i=l to 100

total = total + scores, i

end

Apart from the fact that this is a very much smaller script, which is a

good thing in itself, it is obviously also much more flexible. If we

suddenly had to deal with two hundred scores rather than one

hundred, the change would involve editing a single number—the

loop count—rather than typing in another hundred lines of code. In

fact, it would be a simple matter to change the loop count from a hard-

coded number to a variable, which would be initialized somewhere

else in a larger script containing this loop. The same code would then

work no matter how big a table of scores was involved.

Converting With a little extra work, you can use a loop to step through the

characters to elements of a compound variable in which the element names are

numbers letters rather than numbers. The secret lies in the functions C2D and

D2C, which inter-convert between letters and the numbers that are

used to represent them in the ASCII character set. For instance, the

letter 'A' is represented by the number 65,13' by 66 and so on up to 'Z',

which is 90. The lower case letters are similarly represented by the

numbers from 97 to 122. The non-alphabetic characters, including

'control7 characters like TAB and RETURN, also have equivalents.

This little script demonstrates how to convert characters to their

numeric codes:

/* Convert first letter of input string to ASCII */
do until c==''

say "Enter a character (RETURN to quit)11

parse pull c

if c ~== •• then

say "The numeric code is" c2d(left(c,1)) ". "

end

The LEFT function, one of the many string-handling functions in the

built-in library, is the only new feature of this script apart from C2D

itself. We are using it here to isolate the leftmost character of the input

string c.

Some of the library string functions are used so commonly that you

will see them again and again. Another example is SUBSTR, which

we use in the next script to extract all the letters of a string one at a

time:

114

Using Loops with Compound Variables

Example:

counting letter

frequencies

/* Count letter frequencies in input string */

say "Enter a line of text."

pull line

counts. =0 /* Set all counts to 0 */

/* First loop builds table of counts */
do i=l to length (line)

c=substr(line,i,1)

if c >= 'A1 & c <= 'Z' then

counts.c = counts.c + 1

end

/* Second loop reports counts */

do i=c2d('A') to c2d('Z')

c=d2c(i)

say c' : • counts.c

end

This script counts the occurrences of each letter in an input string and

reports the frequencies to the user in the form of a table. The program

has two loops. In the first, which iterates from 1 through to the

number of characters in the string (as determined by the LENGTH

function), we add one to element c of the compound variable counts
for each alphabetic character c in the input string. The second loop

iterates from 'A' to 'Z', or rather from the ASCII equivalent of 'A', 65,

to the equivalent of '21 f 90. The equivalents are determined in the

program using C2D. The index variable is then changed back to a

character, with D2C, and used to access the stored count for that

character. The point of this second loop would be more neatly

expressed if we could code this:

do c='A' to 'Z1

say c1 : ' counts.c

end

Reasonably enough, however, ARexx insists that the loop index

should be numeric, so the extra conversions with C2D and D2C are
necessary.

115

8. User-Written Functions

Chapter 8

User-Written Functions

We learned in a previous chapter that ARexx includes an extensive

library of built-in functions and that other function libraries are

available for programs that need their more specialized services. No

matter how many existing functions you may have at your disposal,

however, if you do much programming you will often require

functions that are not in any library. Some may be functions that meet

the unique requirements of a particular script and will be needed only

once. Others may answer some more general need in several or many

of the scripts you write and you may—perhaps with minor variations

for particular purposes—use them again and again.

The Anatomy of a Function

Defining a Here is a script that defines and uses an internal function named PI.

simple function Although we haven't formally covered the syntax of internal

functions, you should have no difficulty understanding what is going

on:

/* A PI function */

say pi()

exit

pi:

return 3.141592654

The essential ingredients of any ARexx function are a label clause and

a RETURN instruction. We have both here. A label clause is defined

simply as a valid ARexx name (formed by the same rules as variable

names) followed by a colon. Its purpose is to mark a position within a

script. The label determines both the name and the starting line of an

internal function.

Calling any function, whether internal or external, involves a

temporary transfer of control. For the most part, ARexx processes each

clause of a script in sequence, from beginning to end, just as someone

filling out a form might methodically process each line from top to

bottom. When a function is invoked, however, this sequential

processing is disrupted. ARexx must look for its next instruction not

in the next clause of the script, but in some other location, either

Transfer of

control

117

8. User-Written Functions

elsewhere in the same script or external to it. In the analogy of filling

out a form, this would correspond to carrying out an intermediate

calculation elsewhere on the same form, or on a different form, then

bringing the value of that calculation back to complete the current
line.

The RETURN One duty of the RETURN instruction is to restore control to the

instruction instruction from which a function was called. RETURN'S other duty,

which is not always required, is to bring back a value for use by the

calling instruction. In the example above, the calling instruction is say

piO; in this case, a return value from the function is needed.

EXIT versus

RETURN

Function side

effects

The EXIT instruction in our example causes a different kind of

transfer of control. Whereas RETURN always causes a transfer of

control back to the immediate caller of the presently executing

function, EXIT always terminates the presently executing script. You

may recall from Chapter 6 that an external script can actually be

executed as a function. In that case, RETURN and EXIT mean exactly

the same thing and either can be used to return a value. For example:

exit 100

and:

return 100

are exactly equivalent ways of terminating an external function.

A script that is executed as a command—with rx, for instance—also

returns a value. With rx, any returned value must be an integer and it
is passed back as the return code from the command.

Without the EXIT instruction in the PI script, the lines below EXIT

would be executed in their due sequence. Since the PI function was

not written to be part of the mainline of the script, this would be

undesirable and in this particular case would actually constitute an
error. The error would not come with the execution of the label pi:—

executing a label in this way has no effect at all—but with the attempt

by the RETURN instruction to return a non-integer value to rx.

As mentioned in Chapter 6, functions may be called for their so-called
side effects as much as for the value they return. Some functions may

return no value whatsoever—side effects are the only effects they

have! Here is a script containing such a function:

118

The Anatomy of a Function

Functions

without

values—using

CALL

/* Starline.rexx */

call starlineO

exit

starline:
say "********************"

return

There are three points to be noted here. The first is the CALL

instruction, which provides a means of calling a function that does

not return a value. If you tried to use such a function in an expression

in the usual way, ARexx would report an error, since it requires a

value to substitute for the function call when the expression is

evaluated. You can also use CALL when only the function's side

effects, and not any result it may return, are of interest. Another

interesting point about using CALL to invoke a function is that the

parentheses are not required around the function arguments when

you do so. There's no special reason to leave the parentheses out—we

recommend you use them for consistency—but it's worth

remembering this fact in case you encounter the syntax in a script

written by someone else.

The second point about the STARLINE script is that though the

RETURN instruction appears all by itself, with no associated value, it

is still needed to pass control back to the caller.

Function Arguments

Trying for And the third point is that STARLINE is a pretty feeble function.

generality Though it does its job efficiently and reliably—it almost certainly does

not contain a 'bug'!—it's far from versatile. Such a function is said to

lack 'generality*, meaning that it is useless except for whatever special

purpose prompted its creation. There are a number of obvious ways to

make it more general:

• Let the caller specify the number of asterisks to be printed.

• Let the caller specify the character to be printed.

• Return the string of characters to the caller as the function value,

rather than printing them as a side effect. That way the caller can

do further processing on the string, if desired, before outputting

it.

119

8. User-Written Functions

From These all sound like good ideas, so let's implement them. We want to
STARLINEto end up with a function (we'll call it CHARLINE now instead of
CHARLINE STARLINE) that we can use like this:

say charlineC'-i-11, 25)

It's pretty clear that the CHARLINE function is going to be based on a

loop and that the number of loop iterations will be controlled by a
variable. In fact, if we just wanted to write a piece of code to create a

string consisting of length repetitions of the character char, we should

be able to do so quite simply based on what we already know of loops:

line = ■ ' /* Initialize the result */
do length

line = line I I char
end

And since we'll want to pass the result back to the caller, we should
add:

return line

There's just one snag: we don't really have any variables called length
and char. What we have instead are the function arguments "+" and
25. But how can we refer to them inside the function? They don't
have names!

Reading There are two ways to get at the arguments. The more convenient
arguments with uses the PARSE ARG instruction we have already met. As you recall
PARSE ARG a line like:

parse arg height

will cause the command line argument to an ARexx script to be stored
in the height variable. Unlike scripts invoked as commands with rx,
functions can take multiple arguments. Using PARSE ARG, we can

read them into a series of comma-separated variables like this:

parse arg height, width, depth

For the CHARLINE example, we could read the arguments into the
char and length variables like this:

parse arg char, length

PARSE ARG is very convenient and often the best way to go.

Sometimes, however, it is preferable to use a more powerful tool: the

built-in function ARG. We'll be using ARG's special capabilities in

some of the examples in this chapter, so we'll defer further

120

Function Arguments

exploration of PARSE until Chapter 10, but you should become

familiar with both.

Reading To start, here's a script whose sole purpose is to demonstrate ARG's

arguments with powers:

theARG

function /* A demonstration of arg() */
call test_func(1,,"banana")

exit
Output */

Arg()

Incorporating

ARG into

CHARLINE

test_fline:

say "ArgO

say HArg(l)

say "Arg(2)

say "Arg(3)

say HArg(4)

say "Arg(l,

say "Arg(2,

say "Arg(l,

say "Arg(2,

return

arg()

arg(l)

arg(2)

arg(3)

arg(4)

arg(l,

arg(2,

arg(l,

arg(2,

/*
/*
/* Arg(l)

/* Arg(2)

/* Arg(3)

/* Arg(4)

/* Arg(l,

/* Arg(2,

/* Arg(l,

/* Arg(2,

banana

*/
*/

*/
*/

*/
*/

*/
*/
*/

As you have probably surmised, ARG can give you a variety of

information about the arguments supplied to the currently executing

function. ARG with no arguments, as in the first SAY instruction

above, returns the number of arguments available—the length of the

argument list—here three. If a number is given, as in the succeeding

four instructions, ARG returns the value of the corresponding

argument. If the argument was not supplied, as is the case for

arguments 2 and 4, a null string is returned. Finally, if a number is

given along with either 'e' (for 'exists') or 'o' (for 'omitted'), a boolean

value is returned according to whether a value was given for the

corresponding argument.

Taken together, the capabilities of ARG let you create functions that

can handle any number of arguments and optionally provide default

values for arguments that aren't supplied by the caller.

Now we can finish coding the CHARLINE fvinction. Try this yourself:

/* The charline function */

say charline("_", 25)

say charlineC'l", 25)
say charline("+", 25)

exit

charline:

char = arg(l)

length = arg(2)

line = "" /* Initialize the result */

do length

line = line I I char

end

return line

121

8. User-Written Functions

This produces a stunning graphic effect... well, a graphic effect:

I I

A happy consequence of changing over to variables from the hard-

coded string of asterisks is that we are no longer restricted to repeating

only a single character. Try changing the 'mainline' of the above script
to something like this:

/* The charline function */

say charline(" A", 12)
say charline("\/M, 12)

exit

This generates:

AAAAAAAAAAAA

NAAAAAAAAAAA/

Rectangles with The CHARLINE function has now acquired the prized trait of

CHARLINE? generality that we had in mind. Or has it? Suppose we found that in a

particular script we frequently required multiple lines formed from

the same repeating sequence of characters. This might be used in
creating rectangular patterns like:

Obviously this could be achieved by calling CHARLINE as many times

as necessary in succession, probably in a loop and concatenating the

results (adding a line feed character so that the next string will appear
on a different line), as in this fragment:

rectangle = ''

width = 14

height = 3

CR = 'Oa'x /* Linefeed */

do height

rectangle = rectangle II charline(':•, width) || CR
end

Or we could add another argument to the CHARLINE function
specifying the number of lines we want it to generate. The argument

could even be optional, defaulting to one. In the default case we'd
omit the linefeed, producing the same behavior as the original

function. That way, we could be sure that any programs we'd written

122

Variable

margins with

CHARLINE?

Function Arguments

incorporating the original function would continue to work. The new

CHARLINE would look like this:

charline:

char = arg(l)

length = arg(2)

line = ■■ /* Initialize the result */

do length

line = line I I char

end

if arg(3,'e') then do

rectangle = ''

CR = 'Oa'x

height = arg(3)

do height

rectangle = rectangle I I line I I CR

end

end

else

rectangle = line

return rectangle

Our function is obviously getting quite a bit more complicated. This is

partly because it now handles two rather different cases, a fact which

ought perhaps to start a small warning bell ringing away somewhere

in the back of our minds. But let's carry on gamely, because after using

this new, more powerful version of CHARLINE, we quickly discover

that it has a very serious shortcoming: it is not possible to create a

rectangle anywhere except at the very left edge of the output device,

which for us at present is the console window. We can create, for

example, this:

*•**

***•

but not this:

• ***

Well, in some situations that might be a serious limitation. To get

around it we could write a new, even more powerful version of

CHARLINE that takes a fourth argument specifying the number of

spaces to put on each line as a left margin. This argument will have a

default value of 0 and again it will only apply at all if the number of

lines (the third argument) is given. The new version of the function

will look like...

123

8. User-Written Functions

The limits of

generality

But wait a minute. If we just stop and think where this is leading, that

warning bell we heard a minute ago is going to get deafening loud.

Because it's becoming obvious that this process of adding arguments

and adding features to the once-elegant CHARLINE function could be

carried on virtually without limit.

How about if we add an argument to specify a character to use as an

outline for the rectangle? With a single function call we could then

get effects like this:

•*••*

**•**

Nesting

function calls

Yet another argument might be an optional character string to be

overlaid on the center of the rectangle, for a 'framed title' effect:

$$$$$$$$$$$$$$$$$$$$$$$

$$$$ MONEY MATTERS $$$$

$$$$$$$$$$$$$$$$$$$$$$$

And so on and so on and so on. But we've come a long way down the

garden path and now it's time to retrace our steps, all the way back to
this:

do height

rectangle = rectangle I I charline(•:•,width) I| CR
end

This fragment, on which we based the first major elaboration of the

CHARLINE function, works by calling the original, elegant
CHARLINE as often as needed to produce a rectangle. That's well and

good. But instead of expanding CHARLINE to incorporate this code,
we would have done much better to create a new function,

DRAWRECT, that calls the existing CHARLINE without trying to

improve on it. This is a simple instance of a 'nested' function call. In

fact, CHARLINE itself contains a nested call to the built-in ARG
function. It is not uncommon for the execution of an ARexx script to
entail many layers of nested functions. It is even possible for a

function to call itself, either directly or indirectly via some other

function; this technique, known as recursion, is almost indispensable
for some kinds of programming tasks.

drawrect:

parse arg char, width, height

CR = 'Oa'x

rectangle = '■

do height

rectangle = rectangle II charline(char, width) I I CR

124

Function Arguments

Modularity:

divide and

conquer

When variable

names collide

end

return rectangle

Observe that this function no longer attempts to handle the original

task of generating a single line of characters with no terminating line

feed. And although it is thereby less powerful to some degree, we have

really lost nothing, for the CHARLINE function is still available to any

caller. We retain generality and have gained a new degree of

modularity, which is the desirable characteristic of breaking up large

complex jobs into small simple ones. The simpler organization is also

reflected in the fact that we can now dispense with the special abilities

of the ARG function and can return to the simplicity of PARSE ARG

in both DRAWRECT and CHARLINE.

Deciding how to subdivide large tasks into smaller functions is not

always easy, nor is there always a single best approach. It is one of the

many aspects of programming in which art complements science, in

which judgement and taste must work alongside rational analysis.

Now let's turn back to the CHARLINE function itself to consider an

entirely different type of problem. See if you can find the serious flaw

in this script:

/* Display input line between two double lines */

say "Enter a line of text:

parse pull line

say charlineC's11,

say line

say charline(" =",

exit

charline:

parse arg str,

line = " /*

do reps

line = line

end

return line

/* get line from user */

40) /* display first double line */

/* display input text */

40) /* display second double line*/

reps

Initialize the result

I I str

The problem, of course, is that both the CHARLINE function and its

caller are using the variable named line—but for entirely different

purposes. The mainline's plan is simple: read the user input into line,

display a row of equals signs, display line and finally display another

row of equals signs. CHARLINE's use of the variable is also

straightforward: set line to an empty string, then add as many

characters to it as necessary to fulfil the caller's requirement and

finally return the value of line to the caller. Unfortunately, in the

process, CHARLINE will destroy the user input value that the

mainline was carefully saving.

125

8. User-Written Functions

This is a classic difficulty in computer programming, one that crops up
time and time again in various forms. On this occasion the fault in
the program was easy to spot and hence easy to correct—one obvious
way would be to change the name of the line variable in either part of
the program. In a larger program, duplicate variable names can cause
problems that are much harder to trace. The fact that some variable
names are very common, such as i for a loop index variable,

aggravates the problem. In very large programs, with many functions

that may be invoked directly or by calls nested within other functions,
the probability of variable name 'collisions' increases exponentially.
The chaos that can result may be all but unmanageable.

Local Variables: PROCEDURE and EXPOSE

Protecting

variables with

PROCEDURE

Fortunately, there is a solution, which like many good solutions is

pretty obvious—especially when you know what it is—though
different languages may implement it in very different ways. The
solution is to limit the scope—the amount of a script or program—in
which a variable may be known. In ARexx, it is possible to make any
function completely ignorant of all variables declared outside its own
borders. This is done with the special instruction PROCEDURE:

/* PROCEDURE demo */
say "1." val

val = 1

call setval()

say "4." val

exit

setval: procedure
say "2." val

val = 3

say "3." val

return

Thanks to PROCEDURE, the variable val used in the SETVAL
function here is not the same as the val used by the mainline, as the
output demonstrates:

1. VAL

2. VAL

3. 3

4. 1

PROCEDURE insulates SETVAL from the rest of the script. Variables
used outside of SETVAL are not known within it, as line 2 of the
output demonstrates. Variables used within SETVAL have no effect

126

Overriding

PROCEDURE

Some uses of

EXPOSE

Local Variables: PROCEDURE and EXPOSE

outside it, as line 4 demonstrates. The two sets of variables are

completely segregated, so name collisions cannot occur.

The ability to create local variables using PROCEDURE gives us the

answer, as we have seen, to a serious problem. Unfortunately, it

creates a new problem of its own. Sometimes we want to have our

cake and eat it too: we want some of the variables used in a function to

be private, but we also want to share certain variables with the caller.

Fortunately, this too is possible. We follow PROCEDURE with the

subkeyword EXPOSE and a list of the caller's variables that we need to

access:

/* EXPOSE demo */

dish = "duck"

sauce = "orange"

say "We recommend the" dish "with" sauce "sauce."

call changemenuO

say "You might also try the" dish "with" sauce "sauce."

exit

changemenu: procedure expose sauce

dish = "ice cream"

sauce = "chocolate"

say "And for dessert, the" dish "with" sauce "sauce."

return

The purpose of the CHANGEMENU function is to revise the menu

entirely—both the dish and the sauce. There is a bug, however—only

one of the two relevant variables is exposed. As a result, the output

from the program is clearly defective:

We recommend the duck with orange sauce.

And for dessert, the ice cream with chocolate sauce.

You might also try the duck with chocolate sauce.

In general, it is a good idea to use EXPOSE rather sparingly. Sound

modular programming demands that data should not be shared

unnecessarily by a program's subunits—the functions of an ARexx

script. EXPOSE is appropriate in some situations, however, for

example:

• To obtain multiple results from a function.

• To allow access to a global information base.

• To allow access to named constants.

Let's look at each of these in a bit more detail. In the process we'll

have a chance to cover not only the uses of EXPOSE but some practical

aspects of programming functions in general.

127

8. User-Written Functions

Obtaining multiple results from a function

In the 'dish and sauce' example above, the point of the

CHANGEMENU function is to provide new values for two variables:

dish and sauce. Because only sauce was exposed, dish remained

unmodified, but that could easily be corrected by modifying the

PROCEDURE instruction:

changemenu: procedure expose dish sauce

Returning It often happens that one would like to obtain two values (such as a

multiple results co-ordinate pair) or even more from a single function call. Though a

function is limited to returning a single value, the additional

information can be transferred through a variable the function

exposes. In the following example, the INTERSECTION function

computes the intersection point of two lines in Cartesian coordinate

space. The two lines are in the form y = mx + b, and the arguments to

the function are ml, hi, ml and bl. The function returns the y-

coordinate of the intersection as the function result, and the x-

coordinate in the exposed variable x_coord. Notice that this variable

had no explicit existence for the caller before the function initialized it:

/* Compute line intersection */

y_coord = intersection(2,3,3,-1)

say "The lines meet at ("x_coord", "y__coord") ."
exit

intersection: procedure expose x_coord
parse arg ml, bl, m2, b2

x_coord = (b2 - bl) / (ml - m2)

return ml * x_coord + bl

Extracting

results with

WORD

This is not the only way to obtain multiple results from a function.
Another way is for the function to return all the results concatenated

into a single string, from with they can be extracted in various ways.

Using the WORD function from the built-in library, for example, the
previous example could be rewritten like this:

-"word(coords,2)").M

/* Compute line intersection */

coords = intersection(2,3,3,-1)
say "The lines meet at ("word(coords,1)

exit

intersection: procedure
parse arg ml, bl, m2, b2

x_coord = (b2 - bl) / (ml - m2)

return x_coord ml * x_coord + bl

This approach requires a little more work on the part of the caller, but

reduces or eliminates undesirable data sharing between the caller and
the function.

128

Local Variables: PROCEDURE and EXPOSE

Accessing a global information base

We have seen how compound variables may be used to set up an

information base, like the database of books in the examples of the
previous chapter. A script written to work with such a database would
normally have a variety of functions for tasks like adding an

information record, and deleting, updating, displaying, sorting and

storing records. Most of these functions will need access to the
database as a whole. Rather than forcing all the functions to share all

their variables, it is better to expose the stem of a compound variable
in each function that needs it. Notice in the following example that

exposing the stem has the effect of exposing every compound variable

created from that stem:

/* Exposing global information */

planets.mercury.diameter = 4876

planets.mercury, velocity = 47.88

planets.venus. diameter = 12102

planets.venus.velocity = 35.02

call planet_stats (mercury)

call planet_stats (venus)

exit
planet_stats: procedure expose planets.

parse arg p

say "Planet :" p

say "Diameter:" planets.p.diameter "km"

say "Velocity:" planets.p.velocity "km/sec"

return

Accessing named constants

Some constant values are so important or fundamental that they have

commonplace names of their own, the classic example being pi. Script

readability may often be enhanced by using the name rather than the

numeric value in such cases: it surely makes for easier reading and

clearer logic if a script refers to pi rather than 3.141592654. This is

readily possible, as you know, by creating and initializing a variable of

that name:

pi = 3.141592654

129

8. User-Written Functions

Using variables Some languages provide a special facility for named constants, but
as 'constants1 interpreted languages like ARexx generally do not. In ARexx, a named

constant is just a variable that you don't modify. Constants must

therefore follow the usual rules of scope for variables, and will not be
available inside functions that use the PROCEDURE instruction
unless they are specifically exposed.

Provided you take care to use distinctive names for constants, thus
minimizing the risk of collision, the gain in readability from exposing
them freely throughout a script is usually worth the cost in
modularity.

Constants need not be so literally a 'constanf value as pi. Some other
examples:

System-

dependent

constants

CR

WHITE

= 'Oa'x /* a linefeed character (0a=10) */

= "lb'x"[32mM /* console sequence for color 2

DATAFILE = "s:phonedata" /* file for a phonebook program */

One thing the above constants all have in common is that they are not
constant now and for all time like pi, but only in a particular frame of

reference. The CR constant defined above is the line-ending character
used on the Amiga. It is the ASCII character called linefeed', and has
the value 10. On some computer systems, the 'carriage return'
character, whose value is 13, is used instead. In a script that might
have to be converted to run on such a system, one source of
incompatibility could be eliminated at a stroke by changing the
definition of CR. This is much easier and less error-prone than
changing many references to 'Oa'x. Taken together with the fact that a

script using the name CR is much more self-explanatory than one that
uses the literal numeric string, the case for the named constant is
compelling.

The WHITE constant is similar: it too defines a value that is constant
within the script but will have to change if the script is used on
another system. In this case, however, the system could be another

Amiga—one running version 1.3 instead of version 2.0 of the
operating system. In the default palette of the Workbench screen

under 1.3, the white pen is color 1. Again, it is much easier and safer to

change a single variable definition when a script moves to a new
environment than it is to change a scattered set of literal values.

130

Local Variables: PROCEDURE and EXPOSE

Context- The third example, DATAFILE, is a constant only within the context

dependent of the script in which it is defined. Even if that script were used only

constants by one person on one machine, there could be many reasons for

changing the definition—to move the file out of an increasingly

crowded s: directory, for example. The use of a named constant lets the

programmer make the change by editing a single line of the script.

Exposing variables in nested functions

EXPOSE, as we learned above, gives a PROCEDURE-isolated function

access to specific variables known to the function's caller. It cannot

make variables accessible that are known to the caller's caller, but not

the caller itself. The caller must expose any variables belonging to its

own caller that the function in question (or any function that it in

turn may call) needs to use. For example:

/* EXPOSE, two levels deep */

red = "anger"

green = "jealousy"

say "Red means" red "and green means" green"."

call funcM)

exit

fund: procedure expose red

say "Red is" red "and green is" green"."

call func2()

return

func2: procedure expose green

say "Red =" red "and green =" green"."

return

The output is:

Red means anger and green means jealousy.

Red is anger and green is GREEN.

Red = RED and green = GREEN.

Simulating constants with functions

Since ARexx does not provide global variables that can override the

insulating effect of the PROCEDURE instruction, some variables—

those that define an information base, for example—might need to be

exposed in virtually every function of a script. With named constants,

it is possible to get around this by using, instead of a variable, a tiny

function that does nothing more than return the constant value. An

example is the PI function with which we began this chapter. This

method works because function names are globally known within a

script. It is not an efficient approach, but it may be worth considering

in some cases. With most variables, however, this isn't even an

131

8. User-Written Functions

option. You must either specifically expose the variable in whatever

functions it is needed, or allow the function and its caller to share all
variables, not just the ones in which they have a common interest.

It is easy to sometimes forget to expose a variable or two in the course

of developing a large ARexx script, and the resulting bugs can be
annoyingly hard to locate. Just remember that this is one of the

common problems to look for when things start to go mysteriously
wrong.

A Last Look at CHARLINE

Having come to the end of our long excursion into the realm of local

variables, we are at last ready to return to the CHARLINE function

that occupied so much of our attention earlier in the chapter. Here,

incorporating all we so far know—including local variables with
PROCEDURE—is the final version of CHARLINE:

/* charline(str, reps)

returns reps concatenated copies of the str.*/
charline: procedure

parse arg str, reps

line = ■■ /* Initialize the result */
do reps

line = line I I str
end

return line

CHARLINE's Nearly all of this chapter has consisted of creating new versions of
fatal flaw CHARLINE, then finding something wrong with the latest version

that required further refinement. It is appropriate, then, to end this
chapter by pointing out CHARLINE's most fundamental flaw: it is a
duplicate of a function that already exists in the built-in library. The
library function, called COPIES, does exactly the same thing and takes

exactly the same arguments. The only difference is that, being a library
function, it is more efficient.

The final lesson of this chapter is something like this: The ability to
create your own functions in ARexx is so vital that you will use it

over and over again when writing scripts. But many functions are

already available, in the built-in library, the support library, or some
other library you may have access to. Become familiar with the

contents of those libraries, and you may save yourself unnecessary

work. Practise writing your own functions, and you won't be at a loss
when the libraries can't help you.

132

9. File Input and Output

Chapter 9

File Input and Output

Very few programs or scripts are sufficient unto themselves. Almost

all expect information at run time that did not exist, or was not

known, when the programming was done. Sometimes the

supplementary information is supplied interactively by a user at the

keyboard; sometimes it comes from a file of data stored on disk. Either

way, from the script's point of view, the information is input.

Similarly, most programs generate new information—output. This

may be in the form of words and numbers displayed on the screen or a

printer, or as text or 'binary' data written to a disk file.

As two faces of the same coin, input and output are usually considered

together as I/O. In this chapter we will tour ARexx's facilities for both

interactive and file-oriented I/O.

We have been leaning heavily for several chapters on the familiar I/O

operations of reading a line from the keyboard and displayihg a line

on the screen. Now we turn again to the same basic operations, but

this time using disk files.

The Nature of Disk Files

The pre-eminent form of data storage for microcomputers is magnetic

disks, or devices like the Amiga's 'RAM:' that emulate magnetic disks.

The exact methods by which information is magnetically encoded on

the disk surface, and the ways in which it is organized, are critical to

fast, accurate retrieval, and very interesting in themselves. However,

operating systems like AmigaDOS are carefully designed to shield

ordinary programmers from having to deal directly with the crude

physical realities of sectors, cylinders and surfaces of which disks are

constructed. They allow us to view the information on suitably

formatted disks as being organized into higher-level entities such as

files and directories.

Although in reality the information in a file may be stored in many

widely-scattered locations on a particular disk, in normal

programming the file may be regarded as a mass of data whose

133

9. File Input and Output

Opening and

dosing files

Identifying

open files

Old and new

files

internal organization—into lines, database records, executable

program segments, or what have you—is entirely abstract. It need not,

and does not, conform to the physical organization in any way.

Because we are not required to know the physical locations on disk at

which the information in a file of interest is stored, we need another

means of referring to the file. That means is the file name, and it is

AmigaDOS's business, not ours, to locate on disk the information to

which the file name refers.

Compared with transferring the information once it has been located,

however, tracking down its location based on the file name is rather

slow. If the process had to be repeated every time a program (or script)

wanted to exchange information between the computer and a file, the

overall pace of I/O operations would slow down dramatically. For this

reason/among others, operating systems provide a way of establishing

communications with a file, known as opening the file. Subsequent

I/O is expedited because the operating system, having determined and

noted the file's physical location, can now access it directly with no

time-consuming search. The opened file must also be closed when the

program has finished with it, allowing the operating system a chance

to sever the communication in an orderly fashion.

As far as AmigaDOS is concerned, a file after it has been opened by a

program is identified by a number. (The number 'happens' to

correspond to the memory address of an information structure

describing the file, but from the program's point of view its only

purpose is to identify the file uniquely while the file is open.) High-

level languages usually provide some means of allowing programs to

give a more meaningful name to the open file. In ARexx, the script

provides a character string for this purpose at the time of opening the
file.

Creating a new file and opening an existing one are in some ways very

different operations. For instance, creating a new file deletes the

existing file of the same name, if one exists. However, the method of

opening the file is virtually the same in either case, the only difference

being the 'mode' specified as an argument to the OPEN function in the
built-in library. The normal reason for creating a file is that one
wishes to write data into it, whereas an existing file is most often

opened to read the data it already contains. The mode arguments 'w'

and Y (or 'write' and 'read', if you prefer) determine whether the file
name you provide will be treated as a new file to be created or an

existing file to be located.

134

The Nature of Disk Files

Creating a file Here is a script to create a file in the 'RAM:' device:

/* Create a file */

if open('myfile1, 'ram:testfile1, 'w') then

call close('myfile1)

else

say 'Unable to open file. '

ARexx's OPEN Observe that the OPEN function takes three arguments. The first is the

function name by which the file will be referred to in the script; the second is

the actual file name; and the third is the mode. The last is optional,

defaulting to 'read' mode. Of course, you can use string variables or

expressions as required instead of the literal strings in the example

above.

As you can see from its use in the IF instruction, OPEN returns a

boolean result. OPEN can fail for a variety of reasons—invalid file

name, disk volume not available, disk write protected, and so on. The

result should therefore always be checked and an appropriate action—

such as exiting the script—taken to deal with failure.

The CLOSE CLOSE can also fail, and so also returns a boolean result. About the

function only reason for CLOSE to fail, however, is that the file was not open. If

this happens it may indicate a logic flaw in your script, but otherwise

won't do any harm: after all, you did want the file closed, and it is. In

some circumstances, one would expect CLOSE to fail but it actually

does not. This will happen, for instance, if you try to close a file on a

floppy disk that the user has removed from the drive. AmigaDOS will

normally put up a requester asking for the disk to be replaced, but if

the user cancels the requester, CLOSE returns True even though the

file remains open. This is AmigaDOS's fault, not ARexx's, and in fact

it is rarely a problem in practice. Many programmers never even

consider the result from CLOSE.

An important duty of high-level languages is protecting programmers

from themselves. One way ARexx protects you is by automatically

trying to close any files that may still be open when a script exits. This

is a handy back-up feature, but most programmers feel that it's sloppy

to use it routinely; remembering to close the files you open is one of

the sound practices that contribute to reliable, well-structured scripts.

135

9. File Input and Output

Output: Writing to a File

Example using

WRITELN

Standard input

and output files

Now that we know how to create an empty file, it's time to try creating

one that actually contains some data. The following script creates a

small portion of the information base for a simple telephone area code
utility:

/* Initialize area code file */

datafile = 'datafile1

filename = ■ram:AreaCode.dat'

if open(datafile, filename, 'w1) then
call

call

call

call

end

else

say

do

writeln(datafile, '205 Alabama1)

writeln(datafile, *907 Alaska1)

writeln(datafile, *602 Arizona1)
close(datafile)

Unable to open "'filename1

Like the SAY instruction we have used so often, the WRITELN

function outputs a character string, and tacks on a linefeed character.

SAY always sends text to the 'standard outpuf file, however, which in

most cases is a CLI window. WRITELN is versatile enough to write to

any open file.

Incidentally, although the standard output file is special in that it is

normally already open when your script starts to run, it is in most

respects a file like any other. It has its own name, 'STDOUT, which

you can use if you wish in instructions like:

call writeln('STDOUT', 'Hello world!')

The corresponding 'standard input' file, named 'STDIN', is also

available for your use. Calling READLN on 'STDIN' is very much like

using PARSE PULL, but without the special capabilities of the PARSE

instruction (which we'll be covering in full next chapter).

Since the file we just created is an ordinary text file, we can check its

contents with the AmigaDOS type command from the CLI:

Shell> type ramiAreaCode.dat

205 Alabama

907 Alaska

602 Arizona

Everything has gone exactly as planned. Yet someone with a skeptical

turn of mind might still be troubled by such questions as:

136

Output: Writing to a File

• What if something goes wrong? What if, for instance, available

RAM was exhausted by a call to WRITELN? Or, if we decided to

use a file on floppy disk, what if it filled up, or was write

protected, or had a 'read-write error7? Should the script be able to

handle these eventualities? Can it be made to do so?

• In any case, what point can there be in writing a script merely to

generate a file whose contents are already known? Is that not

clumsily indirect, when the same data file could easily be created

in an ordinary text editor with less typing?

In answer to the second question, it has to be admitted that the script

as it stands is not the most efficient means of creating the data file.

Rather than immediately abandoning the idea of using a script in

favor of an ordinary text editor, however, we might consider a third

alternative: writing a script that serves as a specialized, bullet-proof

text editor that not only lets us enter the text for the data file, but also

verifies that it is in the correct format. We'll investigate the

practicability of writing such a script towards the end of this chapter.

Dealing with I/O errors

Dealing with disk full errors and the like is a thornier issue, as we

have already seen in discussing CLOSE. The WRITELN function does

return a value: the length of the string actually written to the file. If

(and only if) this value is one greater than the length of the string we

intended to write (the extra character being the appended linefeed), no

error occurred. In a 'quick and dirt/ script, we may be so confident that

WRITELN will not fail that we neglect to check its return value. The

script above, which is meant to be run only, once, is a case in point.

In the general case, however, this attitude is too cavalier. An error that

is not properly handled, or at least reported to the user, is an error

whose undetected consequences may involve loss of data—a cardinal

sin that all programs should strive to avoid. As a rule, AmigaDOS will

itself notify the user through a requester when something has gone

wrong with writing to a file, but it's unwise to depend on it doing so.

A script designed for future use should report and gracefully deal with

any errors that may arise. With WRITELN, one method of doing so is

to provide a customized version of the function—a version that deals

with errors in a way appropriate for your script. Here's a simple

example of how this could be done:

137

9. File Input and Output

/* Customized WRITELN */
writeln: procedure

len = 'writeln' (arg(l) , arg(2))

if len ~= length(arg(2)) + 1 then do

say "Error on write to file. Aborting script
call close(argd))

exit

end

return len

Replacing built- This version of WRITELN takes advantage of a somewhat obscure
in functions

WRITECH

J J — — — — ^— — ■»■ » w « www w ^^ ^K- w^ ^» W«* ^^

feature of ARexx mentioned in the discussion of the search order for
matching function names back in Chapter 6: a function name in
quotes is never taken to be the name of an internal function (a

function defined in the script). When your script calls WRITELN
(with no quotes around the name), the first place ARexx looks for a
function of that name is within the script itself. Normally there won't
be one, so it will have to go on to search in the built-in library, where
it will find a match. But in the present case, we do have a function

called WRITELN in the script, and it's this customized version that
will be called. And now comes the trick... The customized WRITELN
is only an error-handling shell for the 'real' WRITELN, which it must

somehow call—without accidentally invoking itself! It does so by
calling 'WRITELN' (in quotes), forcing ARexx to bypass the script and
move straight on to the built-in library.

As you can see, the error handling done by our version of WRITELN

is anything but fancy: it does no more than exit the script with an error

message at the first sign of trouble. Often that's enough, since it at least

prevents the error being compounded by further processing of what is

probably corrupt data. More sophisticated versions could be written to
fill particular needs. An advantage of this approach is that it can be
added 'transparently' to an existing program. Simply add the error-

checking version of WRITELN to our original script for writing the

area-code file, and it will be automatically assimilated, without
changing a single line of that script.

A very similar built-in library function is WRITECH, whose only

difference from WRITELN is that it does not added a linefeed to the

output string. This is useful when you are building a line piece by

piece, or dealing with non-textual data in the form of hexadecimal

strings, for example. This little demo of WRITECH sends text to the
standard output file:

/* WRITECH demo */

line = "hope is merely disappointment deferred"
do w=l to words (line)

call writech('STDOUT1, reverse(word(line,w))
end

■)

138

Output: Writing to a File

call writechCSTDOUT1, 'Oa'x)

which produces the output (in your CLI window):

epoh si ylerem tnemtnioppasid derrefed

Input: Reading from a File

Perhaps you have noticed that our work with files has so far been

notably straightforward, despite the excursions into error checking and

function name matching. We have covered opening and closing files,

with OPEN and CLOSE, and output to files with WRITELN and

WRTTECH. We are about to discover that input is just as easy-

Simple parsing The area-code file consists of a number of lines in the format:
of input

nnn <place>

Here nnn represents a number with exactly three digits, and <place>

indicates a string giving the state or province using the area code of

that number. After reading such a text line from a file into the

variable LINE, we could parse the information in it with:

area = word(line, 1)

place = subworddine, 2)

One useful form in which to store the information in the area-code

file would be a set of compound variables. One plan would be to use

the numeric code as a way of accessing the place information:

areacode.205 = "Alabama"

or generally:

Reading from a

file with

READLN

areacode.area = place

Almost the only obstacle to implementing this system immediately is

that we don't yet know how to read lines from a file. As you might

expect, the relevant function is called READLN:

/* Reading from area code file */

datafile = 'datafile1

filename = 'ram: AreaCode.dat1

areacode. = ■Unknown'

if open(datafile, filename, 'r') then do

do 3

line = readln(datafile)

area = word(line, 1)

139

9. File Input and Output

place = subworddine, 2)

areacode.area = place

end

call close(datafile)

else

say 'Unable to open " 'filename1"'

In most respects, this script is a close analogue of the one used to create

the data file in first place. The most important difference is the mode

Y (for 'read', as we learned earlier) used to open the file. We read the

three lines in the file with READLN, which returns the next line of

the file, minus its terminal linefeed, as an ordinary string value. We

split the string into an area code and a place name, and use these to

initialize a compound variable as planned. We have already set up the

compound variable with the value 'Unknown' so that area codes not

in the database will be handled in a reasonable way if the script is

called upon to try and access them.

Determining End-Of-File

The script is, however, somewhat feeble-minded in its rigid

expectation that the area code file will contain exactly three lines. That

expectation will be true if the file was created with the script given

earlier in this chapter, but it would be very inflexible to insist on that.

Our present script would be much improved if it could read exactly as

many lines as were available in the input file, then stop without

making a fuss. If there were three lines, that would be fine. If there

were thirty, or three hundred, or zero lines, it should also be fine. To

program in the extra intelligence for this feature, we need a function

for determining if we have yet read to the end of the input file.

The EOF The function exists in the built-in library; its name is EOF (for 'end of

function file'). Given the name of an open file, EOF returns true if the end of

the file has been reached, and false if it has not. The end-of-file

condition is detected the first time an attempt to read (with READLN,

for example) fails because not enough data, or no data at all, is

available.

Suppose we have a file called datafile, that contains exactly two lines

of text, each terminated as usual with a linefeed character. The first

call to READLN on this file will read in the first line, and set the

'current position' for the file to just after the linefeed that marks the

end of that line. The second call to READLN will bring the second line

in, and again set the current position to just after the linefeed

character. There are no characters left to read, but because both reads to

date have been successful, the end-of-file condition has not been

140

Input: Reading from a File

detected: if we call EOF now it will return false. We call READLN one

last time, and fail—the length of the returned string will be zero. A

call to EOF will at last return true.

Reading an To show EOF in action, here is one version of a script that displays the

entire file text contained in a given file, like the AmigaDOS type command:

/* type.rexx */

tfile = •typefile1

if open(tfile,arg(l),'r') then do

do while ~eof(tfile)

say readln(tfile)

end

call close(tfile)

end

else

say "Unable to open file" arg(l)"."

If you experiment with this script, you'll discover that it has a small

bug: most files are displayed with an extra blank line at the end. We

already know the reason for this: the end of file is not detected until

after READLN fails, but we are displaying the results of calling

READLN regardless of its possible failure. How can we fix this? The

standard approach, used with I/O operations in many programming

languages, is to perform the read once before the while, and again just

before the end of the while:

/* type.rexx */

tfile = 'typefile1

if open(tfile,arg(l),'r1) then do

line = readln(tfile) /* get first line of file */

do while ~eof(tfile) /* read all lines in file */

say line

line = readln(tfile) /* read next line */

end

call close(tfile)

end

else

say "Unable to open file" arg(l)"."

This handles the case where the file is empty (contains no lines of

text), and stops properly at the last line of the file.

Logic errors in even a simple file-reading program are easy to commit

if you're not watching for them. Line-by-line processing of text files is

a common application for ARexx scripts, so it's a good idea to

understand the potential problems from the start.

141

9. File Input and Output

Example:

checking an IFF

file

READCH Just as READLN corresponds to WRITELN, there is a READCH

function that corresponds to WRITECH. It is most useful for reading

portions of 'binary7 rather than ASCII files—files that may include any

kind of non-textual data rather than being organized into lines of text
characters.

For instance, simple IFF files containing sounds, pictures, animations,

and so on, begin with the four characters 'FORM', followed by four

non-text bytes giving a byte count (generally the file size less the eight

we have read), followed by yet four more giving the type of IFF 'form',

such as '8SVX' for sounds or 'ILBM' for pictures.

The following little script reads in these three fields from a given IFF

file in turn, and displays information about the file to the user:

/* Check IFF file with READCH */

iff_file = 'iff_file'

if open(iff_file, arg(l), 'r') then do
type = readch(iff__f ile, 4)

if type ~= 'FORM' then

say ""arg(l)'" is not a simple IFF file.'
else do

size = readch(iff_file, 4)
form = readch(iff__file, 4)

if length(form)=4 then

say 'File "'arg(l)"1: size1 c2d(size)+8', type "'form'".'
else

say 'Unable to read 12 bytes from " 'arg(l) ' ". ■
end

call close(iff_file)
end

else

say 'Unable to open "'arg(l)'".'

Checking for To test for error conditions after a call to READCH, you can check that

read errors the length of the returned string contains the requested number of

bytes. If it does not, the cause is either that the end of file has been

reached or there was a read error. The script above makes this test

twice: once implicitly, when it compares the type variable with the

literal string 'FORM1; and later explicitly by determining the length of

the form string. If the second test succeeds, we may feel assured that
the size variable was also read successfully.

142

SEEK: Positioning within a File

SEEK: Positioning within a File

We have referred to the concept of a 'current position' within an open

file—the position from which the next data will be read or to which

the next data will be written. This position, which normally is zero

when a file is opened, and increases as the file is subsequently

accessed, is tracked by AmigaDOS. Sometimes it is useful to be able to

change the file position directly, without actually reading or writing

data. This is called 'seeking' within the file, and ARexx provides for
the purpose a built-in function called SEEK.

To demonstrate SEEK we will look at another type of binary file. It is

called system-configuration, and it is found in your devs: directory.

The file contains your system settings, as set in Preferences. One of
these, your choice of printers, is stored as a name beginning 128 bytes

from the start of the file and occupying up to 30 bytes (the end of the

name is signified by a byte whose value is zero; bytes beyond that
should be ignored).

SEEK lets you specify a desired file position relative to any of three

'anchor positions': the beginning of the file, the current position, or

the end of the file. These are represented by the modes V, 'd and 'e'

respectively, the default being 'c'. You give as an offset from the

anchor position a number that may be either positive or negative. A

positive offset will move towards the end of the file from the anchor

position; a negative number will move towards the beginning. For

example, if you wished to seek backwards 100 bytes from your current
position, the appropriate call would be:

newpos = seek(file, -100, 'c')

The return value from SEEK is the new position relative to the

beginning of the file. In this next script we use the anchor V for the
call to SEEK, positioning relative to the start of the file:

/* What printer is chosen in Preferences?

(Works with AmigaDOS 1.3 and earlier only)
The "5* character indicates that a line

should be entered as a single line

*/
cfg_file = "cfg_fileM

if open(cfg_file, "devs:system-configuration", "r") &
then do

if seek(cfg_file, 128, 'b1) = 128 then do

printer = readch(cfg_file, 30)
if length(printer) =30 then

143

9. File Input and Output

say "Current printer:" left(printer, *&

index(printer,'00*x) - 1)

else

say "Error on read"

end

else

say "Error on seek"

call close(cfg_file)

end

else

say "Error on open"

One risk you run by poking around in binary files like this is that file

formats are not always written in stone. Unless you are quite sure that

files of the type you are examining will always adhere exactly to their

present format, you must be prepared for the possibility that the

format will at some time change, invalidating your script The above

script, for example, will not work with Version 2 of AmigaDOS, since

the Preferences printer name is no longer stored in system-

configuration. You can still read those bytes as we did above, and in all

likelihood you will even find a printer name there, but it probably

won't be the one you have set in Preferences. The moral is: try not to

meddle with binary files whose formats you can't control; but if you

must, proceed with full knowledge of the risk that the format will

change.

Modifying existing files

In our discussion of OPEN, near the beginning of this section on file

operations, we stated that the mode arguments 'r' (for 'read') and 'w'

(for 'write') control whether or not a new file is created by the OPEN

call. The mode does not, therefore, necessarily declare your intentions

about the opened file in quite the way that the words 'read' and 'write'

would imply. Though reading from an old file and writing to a new

one are certainly typical operations, there is actually no restriction.

You can open an existing file with Y and write into it with WRITELN

or—perhaps more usually—WRITECH. The data you write will

replace the same number of characters from the current file position,

or be appended to the file if you are positioned at the end. Similarly,

you can read data from a file that you have opened (and hence created)

with 'w', though of course you will have to write something into it

before there is anything to read, then call SEEK to move the file

position back over what you have written.

There is a third mode for OPEN: 'a' for 'append'. It is really a variant of

'r'. An existing file is opened as usual, but the file position is

immediately set to the end of the file in preparation for adding new

144

SEEK: Positioning within a File

material. It is equivalent to opening the file with Y then immediately

seeking to the end.

That completes our grand tour of ARexx's built-in file functions.

Working with files is usually quite straightforward if you have a clear-

cut plan. Certainly, the behavior of files is comfortably predictable

compared to what may be expected in dealing interactively with a

human. Which is an important aspect of the next topic...

Interactive Input and Output

To end this chapter, we return to the idea of creating a special-purpose

'text editor' that will input and validate records for the area-code

database. To begin, let's open the database file in append mode, in
preparation for adding new records:

/* Area-code database 'text editor1 */

db_file = 'datafile1

db_name = 'ram:AreaCode.dat'

if open(db_file, dbjname, 'a') then do

/* Code to input and append records goes here */
call close (dbjiile)

end

else

say "Unable to open database file."

The file must already exist for an open in append mode to work. If it

does not, you can initialize it from the Shell with:

Shell> echo >ramrAreaCode.dat noline

Alternatively, you could have the script check for the existence of the

file (using the EXISTS function from the built-in library) and create it
if necessary.

The input phase of this script will be a loop. Each iteration of the loop

will get one line of input from the user, validate it, then append it to

the file. (Instead of using READLN from STDIN, user input is

performed with the PARSE PULL instruction. The PARSE instruction

is discussed in detail in the next chapter.) Well break out of the loop

when we see an empty line:

/* Code to input and append records */

/* The «a* character indicates that a line
should be entered as a single line */

options prompt ">"
do forever

parse pull area place

145

9. File Input and Output

if area = '' then

break

else if -datatype(area, 'n1) then

say ••*** Area code must be numeric."

else if length(area) ~= 3 then

say ■■*** Area code must be three digits."
else do

record = area place

if writeln(db_file, record) ~= length(record)
us*

+ 1 then

say "*** Warning: write failed! ***"
end

end

Putting its two parts together, this script is slightly longer than most of

our other examples, but for a real-world program with error-checking,

albeit a crude one, it's no heavyweight.

Once you've had a little bit of practice with ARexx programming,

you'll be able to whip together scripts like this in no time flat, and in

the process you'll find that doing so is not only useful but fun.

146

Introduction to Parsing

Chapter 10

Parsing and String Handling

Introduction to Parsing

In the study of grammar, to parse a sentence is to analyze its

grammatical structure in terms of parts of speech (nouns, verbs and so

on), phrases and clauses. Programming-language compilers and

interpreters (including ARexx) parse instructions in a similar sense,

except that the grammars of computer languages are much simpler

than those of natural languages, and much more rigorously defined.

Parsing in everyday programming is humbler still. Usually, the strings

to be analyzed have only one allowed 'grammatical' structure, or at

most a few. The main goal of parsing is to split up a string into

meaningful subunits based on its structure.

Parsing with string functions

We encountered a simple example of string parsing in Chapter 9

when we used the WORD and SUBWORD functions to split lines

read from the area code file into their two parts:

WORD and area = word (1ine, 1)

SUBWORD place = subworddine, 2)

The structure of the area code lines is simple enough that we can parse

by looking at the first word boundary only. The first word is the area

code; the balance of the line, which may have more than one word, is

the corresponding state or province. If it had turned out that both

fields could contain a variable number of words, we would have

needed another method of locating the boundary between the two

fields. A special punctuation character, such as the comma, might be

used for this. Suppose the input lines each contained a name and

address:

Ryan Ginger,1120 Black Forest Lane

Viola da Gamba,Apt. 4, 211 Chancery Street

147

30. Parsing and String Handling

INDEX, LEFT In these lines, the first comma marks the end of the first field and the

and SUBSTR beginning of the second. Extracting the two fields is simple using the
INDEX function:

com_pos = index(line, ",")

if com_pos = 0 then

say "Comma missing in input line."
else do

name = left(line, com_pos - 1)

addr = substr(line, com_pos + 1)
end

Parsing with the built-in string functions offers the ultimate in

flexibility and power: there is essentially no limit to the complexity of

the parsing operations you can program in this way. Part of ARexx's

guiding philosophy, though, is that the commonest operations should

be as simple as possible to program, so a second method of parsing is
provided—the PARSE instruction.

Other string ARexx contains about 30 string functions altogether. The reference
functions section (section IV) explains each function in detail with examples;

these detailed descriptions are in alphabetical order. To browse

through the available string functions and find the one you need for a

particular task, see the Reference Guide at the beginning of the section.

The PARSE Instruction

The capabilities of PARSE are not as general as those of parsing 'by

hand' with the string functions. In the many situations PARSE can

handle, however, it provides a simpler alternative approach. For

instance, here's one way we can parse out the area code and state

name from the line variable:

parse var line area " " place

Format of a PARSE instruction

A PARSE instruction consists of three parts, the first being the

instruction keyword, PARSE, itself. Next comes the parse string, or

source, which tells PARSE where to find the string it is to analyze. The

source for this particular instruction, specified by var line, is the line

variable. The third part, called the template, tells PARSE how to split

up the source string. In our example, the template causes the contents

of the string to be split into the two variables area and place, using the

first space in the string as the split point. The space itself is

148

The PARSE Instruction

consumed—it does not appear in either of the two output strings. As

for line, it is unchanged. The parsing operation does not affect the

original source string, only the variables that appear in the template,

and sometimes the working copy of the source string used by PARSE.

In exactly the same way, PARSE can easily handle the name and

address parsing example in which we used INDEX to locate a comma

dividing the name and address fields, then other string functions to

extract the fields themselves. With PARSE, it's much simpler:

parse var line name "," addr

Parsing user input

PARSE (as we have seen in earlier chapters) can work from sources

other than variables, giving the instruction special capabilities. Giving

the source pull, for example, causes a string to be read from the

keyboard (or more precisely, the 'standard input7). The template for

this source is quite often a single variable name, meaning that the

entire input string is transferred to the variable, but this need not be

so. For example:

/* using parse pull */

say "Enter name,age, e.g.: Fred Foremost,44"

parse pull name "," age

say "You claim to be" name",11 age "years old."

One would often prefer the cursor displayed for keyboard input to

appear on the same line as the prompt itself. This can arrange with a

variant of the OPTIONS instruction, OPTIONS PROMPT. Here's

another version of the previous script:

/* using parse pull */

options prompt "Enter name,age, e.g.: Fred Foremost,44: "
parse pull name "," age

say "You claim to be" name"," age "years old."

Initially the prompt is set to the null string, which is why we have not

encountered it in examples up till now. With OPTIONS PROMPT,

though, you can change it as often as you like.

149

10. Parsing and String Handling

Parsing arguments

Another source we have already encountered is arg, in which the

source consists of the argument string (or strings) to the current script

or function. When parsing with arg, we often use multiple templates
in the same PARSE instruction, one template for each argument we

expect to be available. The comma-separated templates are applied in

turn to each available argument string. The following instruction, for

instance, might be used to initialize local variables in a function that
expects three arguments:

parse arg name, age, weight

We will have more to say later on about the types of source PARSE

can use. First, though, let us explore the construction of templates in
more detail.

PARSE Templates

The purpose of parsing is to extract meaningful substrings from the

source string and store them in variables. Those variables are called

the targets of a PARSE operation. In this PARSE instruction, the
targets are area and place:

parse var line area " " place

How does PARSE determine which parts of the parse string are

assigned to which target variables? The answer is in the other

component of templates: markers. There are several types of marker;

each specifies in its own way a position in the parse string. In the
example just above, the quoted space character is a marker specifying

the position of the first space in the parse string. The first target, area,
is assigned everything in the parse string up to that position; the
second target, place, is assigned everything after that position.

Parsing by tokenization

In very much the same way as blanks within a string expression serve
as an implied concatenation operator, so blanks separating two targets
within a template serve as an implied marker that will result in the
word to the left of the blanks being assigned to the left-hand target. An

150

PARSE Templates

example will make this feature, called parsing by tokenization, easy to

grasp:

Parsing words /* Parsing by tokenization */
line = "The Pied Piper of Hamelin"

parse var line first second third rest

say "<"first">"

say "<"second1^"

say "<"third">"

say "<"rest">"

Notice in the output that it is only the left-hand target of each pair that

is assigned its substring through tokenization. The result is that the

final target, rest, is assigned the remainder of the string including the

space character:

<The>

<Pied>

<Piper>

< of Hamelin>

In general, if the last item in the template is a target, it is assigned

whatever is left over in the parse string. This is the same as saying that

there is an implied marker at the end of the template specifying the

position end of string.

What happens if the parse string is exhausted before all the targets

have been assigned? For instance, suppose we modify the third line of

the previous example to read:

parse var line first second third fourth fifth rest

and add lines to output the new variables fourth and fifth. Since there

are only five words in the parse string, what will happen to the

variable rest? As you might logically expect, it is assigned the empty

string. The output from the modified example is:

<The>

<Pied>

<Piper>

<of>

<Hamelin>

<>

Observe that rest, unimportant in itself, has nonetheless performed a

useful service in forcing fifth to be parsed by tokenization.

151

10. Parsing and String Handling

Placeholders There is one special target that is not a variable. It is called the

placeholder, and is represented by a period in the template. The

placeholder behaves exactly like any other target in that it 'consumes'

a portion of the parse string. However, the substring matched by the

placeholder is thrown away; it is designed specifically for the job

performed by rest in our last examples. We could (and should) modify

the PARSE instruction of those examples once more to use the

placeholder rather than a dummy variable, giving simply:

parse var line first second third fourth fifth .

Pattern markers

Parsing with the implied markers of tokenization is very easy and

intuitive. Often it's all you need. Another easy method that you can

use either alone or in combination with tokenization involves

pattern markers—literal strings that specify a position in the parse

string containing the matching characters. We have seen a pattern

marker in one of our earlier examples. It is the quoted space character
in:

parse var line area " " place

For another example, suppose we need to extract the day, month and

year from a date formatted by AmigaDOS, such as '27-Jun-9r. This
could be done with simply:

date = "27-Jun-91"

parse var date day "-" month "-" year

The dashes matched by the pattern markers are not assigned to any

target, implying that the markers do more than merely indicate a

position in the parse string—they actually remove the matched text

from the parse string in the course of matching it. (This doesn't affect
the original string, only the working copy used by PARSE.) Pattern

markers are the only type that does modify the parse string. Normally

this passes unnoticed, but it does produce some side effects when

pattern markers appear in the same template with the various types of
numeric marker covered below.

Multi-character Pattern markers can contain multiple characters. Suppose you need to
markers extract a list of players from a file containing a list of tournament

match-ups in the form of two names separated by 'vs.', like this:

John O'Reilly vs. Melissa Jane Freeman

152

PARSE Templates

The names can be extracted using exactly the same technique as in

other examples:

parse var line namel " vs. M name2

The list for a doubles tournament would be more complicated:

John O'Reilly and Tina Smith vs. Melissa Jane •*

Freeman and Bob Yuen

Using the string functions to parse this kind of line would be

significantly more difficult than with the simpler lines we've tried

before. With PARSE, and pattern markers, the difference is trivial:

parse var line namela " and " namelb

11 name2a " and " name2b

vs.

Using variables By the way, although pattern markers are most often given as literal

as pattern strings, the name of a variable containing the pattern string can be

markers used instead. In order that the variable won't be taken as a target in

the template, it is enclosed in parentheses:

/* Variable pattern markers */

vocab_JLine = "/my houseAchez moi\"

delim::1 /•

parse var vocab_line (delim) text (delim)

say text

delim='V

parse var vocab_line (delim) text (delim)

say text

As expected, this produces the output:

my house

chez moi

Parsing fixed-length fields

Database records are often stored as a set of fixed-length fields. Parsing

records of this kind depends purely on quantitative information: the

position of each field, expressed as a count of characters from the left

of the field, must be known in advance. Let's say you're using your

Amiga to keep track of the exploits of your favorite baseball team. Each

record in your database of game results is constructed on this pattern:

Name of opposing team

Runs scored by your team

Runs scored by opponents

20 characters

(padded on right with spaces)

2 digits

2 digits

153

10. Parsing and String Handling

Your team's runs by inning

Opponent's runs by inning
2 digits by 9 innings - 18 characters

2 digits by 9 innings - 18 characters

Absolute

markers

Relative

markers

Here is an example of how a record might look:

Montreal Expos

0703 010102 00000003 0000000000010001000100

From the pattern you can determine that the fields within a record
begin at characters 1, 21, 23, 25 and 43, and that the width of a whole
record is 60 characters. Records can be read from the database with an
instruction like:

record = readch('baseball__f ile1 , 60)

To parse the record, we use absolute markers, which numerically
specify a position in the parse string (the following should be entered
on one line):

parse var record opp_name 21 our_runs 23 opp_runs <•*
25 our_inn 43 opp_inn

As usual, the starting position in the parse string is 1, and the ending
position is the end of the string. The other positions, given as literal
numbers, show the positions at which the string should be split.
Unlike pattern markers, absolute markers do not consume any
characters in the parse string: the split point is between the specified
character and the preceding one.

Another type of numeric marker is the relative marker, which
specifies a position relative to the position determined from the
previous marker, whatever it may have been. Both areal and area! in
this example have the same value:

/* Relative markers with + and - */
rec = "Bill Smith, (604) 555-9378"

parse var rec ' (' areal +3

parse var rec ') • -3 area2 +3

The number -3 in the second PARSE line in the example depends on
the fact that the text matching a pattern marker is removed from the

parse string, as mentioned above. If this were not so, the value would

have to be -4 for the instruction to work correctly.

Like pattern markers, numeric markers can be variables as well as
literal values. But if that's the case, you may wonder, how can ARexx

distinguish between the variables used for markers and those used for
targets? In the case of relative markers, there is no difficulty: the

minus or plus sign eliminates any possible ambiguity. With absolute

154

PARSE Templates

markers, the problem is solved by preceding the variable name with

an equals sign:

/* Numeric markers using variables */

nml = 3

nm2 = 6

nm3 = 9

digits = '1234567890'

parse var digits left =nm2 -nml mid +nml right =nm3

say left '-' mid '-' right

This produces the output:

12345 - 345 - 678

Extracting words from a string

Since strings in ARexx can be of any length, they provide a convenient

way to store single-word data elements such as lists of names. The

individual words can then be extracted from the string by a number of

means, including the SUBWORD and WORD string functions. When

each word in the string needs to be processed within a loop, however,

a convenient technique is to use PARSE to "pull out" one word at a

time from the string. This is done by using the same variable as the

source of the PARSE template, and as the final target.

Consider this use of the PARSE instruction:

shoplist = "milk eggs bread cheese disks coffee"

parse var shoplist item shoplist

Clearly, after the PARSE instruction item will contain the first word in

the shoplist variable, 'milk'. Since shoplist is also the last target in the

PARSE template, it will now contain everything else in the list; in

other words, the first word has been stripped from the string.

Using this technique in a loop makes it easy to work with each item in

the list, one by one, regardless of how many there are. The loop

terminates when the string is empty, meaning there are no more

words to parse. The following script is a simple example, using the

shopping list string again:

/* Parsing in a loop */

shoplist = "milk eggs bread cheese disks coffee"

do while shoplist ~= ""

parse var shoplist item shoplist

say "<"item">"

end

155

10. Parsing and String Handling

The output from this script will be:

<eggs>

<bread>

<cheese>

<disks>

<coffee>

The same technique can be used to parse command-line arguments to
a script. This is especially well-suited to a script that accepts several

command-line arguments, each to be processed in the same way. For

example, a script that counts the words in a file would best serve the
user if it could accept several file names, count the words in each of

the files, and report a total word count as well as the individual counts
in each of the files. As you saw back in Chapter 4, scripts get the entire

command-line—all the file names, in this case—as a single argument.

Using PARSE ARG with a list of variable names works well when the

number of arguments is known, but the word-counting script should

be able to accept an arbitrary number of file names. Applying the
extraction technique used above, you could set up the script like this:

/* count words in any number of files */
parse arg files

/* put all file names in "files" string */
total=0

do while files ~= ""

parse var files name files

word_count=words_in_file (name)

total=total+word_count

say "FILE: " name "WORDS:" word_count
end

say "TOTAL WORDS:11 total

The wordsJnjile function is not listed here, but writing it would

make an excellent exercise at this point, combining file I/O operations
(Chapter 9) with string operations.

In the above script, the single argument is initially placed into the files

variable by a simple PARSE instruction. Another method that would
work equally well would be to use the ARG function, as in:

files=arg(l)

156

PARSE String Sources

PARSE String Sources

PARSEARG

PARSE PULL

Throughout this chapter, we have been dealing with a single source

for parse strings: var, which means that the string is the value of the

named variable. There are several other commonly-used sources for

the parse string, along with a few others that are used less frequently.

Well discuss only the commoner ones here; you'll find the rest

covered under PARSE in the Reference Section at the end of the book.

We encountered this source informally in an earlier chapter. The

parse string it produces is the argument string to the current

command, or the first argument to the current function, depending

on where it is used. Commands have only one argument, but external

functions can have up to fifteen and other types can have any

number. In order to process multiple arguments, you can supply the

PARSE instruction with multiple templates, separated by commas, to

which successive arguments will be applied in turn. Most often, each

argument will consist of a single value, and the template for it will

simply be a variable name:

parse arg height, width, breadth

/* Three templates */

We've met this source before as well. It reads the parse string from the

'standard input' device (normally the keyboard). If you provide

multiple templates with PARSE PULL, multiple lines will be input.

Again, it's common with this source for the template to consist of just

a variable name:

parse pull line

157

10. Parsing and String Handling

PARSE VALUE

The value source lets you use any ARexx expression to generate the
parse string. The keyword WITH marks the end of the source

expression; the template comes immediately thereafter. This
instruction:

parse value substr(line,10) with name ", " address

is identical in effect to:

str = substr(line,10)

parse var str name ", " address

158

Debugging

Chapter 11

Debugging, Tracing and Error Trapping

Debugging

Up to now we have learned new ARexx programming concepts piece

by piece, working with short scripts to test each concept as it was

introduced. If you have been experimenting along the way by writing

your own scripts, you have probably come up with unexpected results

(a kind way of saying 'bugs') from time to time because of a logic or

programming error in your ARexx code.

With programs just a few lines long, any problems can usually be

discovered and corrected by 'thinking through' each line of code,

perhaps trying out some experiments, and then modifying and re-

testing the program.

In 'real life/ however, even the smallest scripts are often refined until

they grow far beyond their humble origins. When you are working

with complicated scripts of hundreds or even thousands of lines of

code, fixing the problems can be quite a bit more troublesome.

Learning to debug

Whenever a program you're testing doesn't do what it's supposed to,

you've found a bug. A blatant example of a bug—and one of the

easiest to fix—is a syntactical error that results in ARexx halting the

script and reporting an error message. Subtler bugs are those that

simply result in incorrect output from your programs. Even harder to

locate are problems that only seem to happen once in a while.

No matter what the case, you'll have to find the cause of the bug

before you can fix it, and this can be the most difficult and time-

consuming part of programming. The process of correcting bugs in a

program is called debugging, and it's unfortunately something you'll

end up doing with just about every program you write. While your

goal should always be to 'get it right the first time/ it is rare to

complete a program without discovering any bugs along the way.

159

11. Debugging, Tracing and Error Trapping

The pervasiveness of bugs can cause great problems for the beginning
programmer, or even an experienced programmer using a new

language for the first time. While it is reasonably straightforward to
teach programming concepts in a book, there is no obvious step-by-
step way to teach debugging. Most programmers think of debugging as

more of an art than a science, and debugging proficiency seems to
benefit more from experience than from any amount of reference
material or written examples.

On the other hand, there are a number of techniques you can adopt
that will help you in your attempts at tracking down difficult bugs.
Before getting into these, it's worth reviewing some of the bugs you
may have encountered so far.

Common errors Even in the short ARexx scripts that you might have created while
taking your first steps at learning the language, it is likely that you
have had to fix your programs after committing one or more of the
following errors:

• Typing mistakes resulting in the script being halted and an error
message of some kind being printed out.

• Leaving off a DO or END instruction for an IF..THEN clause,
resulting in the program doing something other than expected
before the script was halted with an error.

• Using the wrong name for an instruction, resulting in the
instruction seemingly being ignored by ARexx.

• Failing to initialize a variable before using it in a numeric
expression, resulting in an 'Arithmetic conversion error'.

• Passing a function the wrong arguments or passing arguments in
the wrong order.

• Logic errors: the program is doing exactly what you told it to, but

there's something wrong with your algorithm—the method
you've devised for solving the problem.

The above examples encompass a large number of specific errors, but
don't come close to covering all of the categories of errors that can be

made. They do illustrate a progression, however, from the kinds of

bugs that are relatively easy to locate and fix to ones that can be
trickier.

160

Debugging

Syntactical

'fatal' errors

Invalid

instructions

Uninitialized

variables

The first category of bugs is generally the most trivial to discover and

fix. If you make an error that causes ARexx to stop the program and

report an error of some kind, consider yourself lucky: you know

where the problem is, and the error message will give you some clue

where to look. It doesn't tell the whole story, however: hitting a

wrong key or two in typing a clause or expression could result in

"Extraneous characters/' "Invalid keyword/' "Unbalanced

parentheses/' "Function not found," or a number of other messages.

Fortunately, if the mistake was due to carelessness and not because of

a misunderstanding you have about the way an expression or clause

should be constructed, you'll usually be able to identify the problem as

soon as you see the offending line of code.

The second type of error—leaving off a DO or END around a THEN

block—can sometimes produce unexpected results, but ARexx will

usually catch these errors (sometimes only at the end of a script) by

reporting "Missing or unexpected THEN." Still pretty simple.

The third type of error—using the wrong name for an instruction—

can be a bit more difficult to trace, since something you expect your

program to do just doesn't happen. If you're a BASIC programmer

and accidentally use PRINT instead of SAY for example, you won't get

an error message; the instruction will simply be ignored.

This is due to the way external commands are handled: anything that

isn't a valid ARexx clause or instruction is passed as a command to

the current host. The default host is 'REXX', which will run a script by

the given name ('print.rexx' in this case) if it is present. If no such

script exists, nothing happens at all.

If you're not using a command host in your program, you can catch

these errors by specifying a nonexistent host address at the start of the

program, for example ADDRESS XXX. All non-ARexx instructions

will then result in the script halting with a "Host environment not

found" error.

The fourth type of error, not initializing a variable before using it, can

sometimes have confusing consequences in ARexx since a variable

takes on its own name as a value by default. This is why using an

unitialized variable in a numeric expression yields an "Arithmetic

conversion error." In most cases, however, these bugs can still be fairly

quick to locate.

161

11. Debugging, Tracing and Error Trapping

Errors in Errorsresulting from using functions incorrectly can be difficult to
function diagnose if you don't know what you're doing wrong. If you think
parameters you understand the way a function is supposed to work but you have

made a false assumption, it will be very hard to see the problem in
your program no matter how carefully you look.

Logic errors Logic errors, probably the most common cause of bugs, can also be the
most difficult to uncover. It is impossible to find a problem with the
program itself because there isn't one: you just told it to do the wrong

thing. You won't be able to find a missing variable initialization or an
incorrect value in the program, and if you don't realize that the
method itself is at fault, you could spend hours looking for program
errors that aren't there.

Program diagnostics

When you find yourself trying to pinpoint one of the trickier bugs,
effective debugging methods can save a great deal of time by pointing
you to the heart of the problem. Knowing that "Everything is working
fine up to this point" can save a lot of floundering around looking at
irrelevant parts of a program.

One of the simplest and most effective bug-killing tools at your
disposal is the simple SAY instruction. By using SAY to display the
contents of relevant variables at strategic points in the execution of a
program, you can get an 'inside look' at the program as it runs. There

are a few different ways this can help you:

Tracing When you look at your program in the general area of the bug, it is
program flow useful to know what branches are being taken, what DO loops are

being executed, if a specific function is being called, etc. This can often
immediately point you to a specific IF or DO WHILE statement that is
branching unexpectedly.

For this simple form of tracing, consider the following kinds of
messages in your debugging SAY instructions:

say 'Reached function "GetData111

/* just after function label */
say 'Exiting function "GetData"'

/* just before function RETURN */
say 'Inside of name-comparison IF1
say 'Taking OTHERWISE in SELECT1

say 'Inside record-count DO loop1

162

Debugging

Conditional Instructions like the last one that occur inside a DO loop can result in

debug lots of messages being printed to the console window. For loops with a

instructions great many repetitions, you might want to display the message only

every tenth loop iteration or so:

LoopCnt = 0

DO ...

/* body of DO loop */

if LoopCnt // 10 == 0 then

say 'Inside DO loop, iteration #■ LoopCnt

LoopCnt = LoopCnt + 1

END

The expression 'LoopCnt // 10 == 0' will only be TRUE every tenth

time through the loop, due to the nature of modulo arithmetic.

It is also a good idea to put a condition on all your debugging SAY

instructions:

if debug then say ...

By putting the assignment 'debug=l' at the start of your program, all of

the debugging code will be activated. When your program works

properly, you don't have to remove all of the debugging instructions,

just change the debug assignment to 'debug=0'. You can then

reactivate your debugging code at any time when new bugs appear.

Preventive You needn't limit your use of diagnostic SAY instructions to after a

diagnostics bug has been discovered. By using such checks right from the

beginning as your program is being developed, you can find potential

problems before they develop into hard-to-trace bugs.

Taking a little extra time to put in diagnostic code and extra checks for

bad data while developing your program almost always repays itself in

time saved in debugging. Debugging a program can often take longer

than writing it in the first place, so spending programming time to

save possible debugging time is usually a good trade-off.

163

11. Debugging, Tracing and Error Trapping

Using TRACE

The tracing techniques just discussed are so commonly used by
programmers and so useful to the debugging process that ARexx has
extensive tracing facilities built right in.

Basic tracing

The TRACE instruction can be put in your program to activate one of
several trace modes. In its simplest form, the TRACE instruction is
used like this:

A Sample

TRACE ALL

trace <mode>

Where 'mode' is one of the following symbols (in either upper case or
lower case): ALL, COMMANDS, ERRORS, INTERMEDIATES
LABELS, RESULTS, SCAN. Any of these may be abbreviated to the
first character only, such as TRACE I for TRACE INTERMEDIATES.

Any trace option can be selected at any point in a script. The trace
mode selects which clauses in the script are traced and what
information is displayed. TRACE ALL, for example, traces all clauses
and displays each one as it is executed.

No matter which trace option is being used, one vital piece of
information appears to the left of each clause: the line number in the
script. This lets you locate the exact position of any traced clause in the

script by going to that line in your text editor. The line number is your
index to the code in your program.

Try running this simple (and quite useless) script:

/* TRACE ALL example */

trace all

count=0

do i=l to 3

count=count+l

end

say 'Counted to:1 count

The output to your Shell console window should look like this:

3 *-* count=0;

4 *-* do i=l to 3;

5 *-* count=count+l;

6 *-* end;

164

Using TRACE

Other TRACE

options

Default TRACE

mode

4 *-* do i=l to 3;

5 *-* count=count+l;

6 *-* end;

4 *-* do i=l to 3;

5 *-* count=count+l;

6 *-* end;

4 *-* do i=l to 3;

8 *-* say 'Counted to:

Counted to: 3

count;

Every time ARexx encounters a new clause, it is displayed along with

its line number. If multiple clauses are found on the same line, each is

shown separately. The 'nesting7 level of each clause is also indicated by

indentation. This has nothing to do with how the listing is formatted

in your text editor, but shows how many control structures deep a

clause is: in the example above, the clauses within the DO loop are

shown indented one level deeper than the DO instruction itself.

TRACE ALL is used when you wish to see what statements in your

program are being executed. It is analogous to the SAY program

diagnostics shown earlier that merely report where they are.

Depending on the kind of bug you're trying to find, other TRACE

options may be more appropriate. RESULTS, for example, will show

you the result of every expression that is evaluated as well as the

TRACE ALL information. This can help you track the values of

variables and possibly see where things are going wrong.

INTERMEDIATES gives so much detailed information about the

execution of every clause that even the simple script above generates

over forty lines of debugging information.

Details about all of the TRACE instruction's options can be found in

the entry for TRACE in the Reference Section.

You might not have been aware of it, but if you've run any ARexx

scripts at all you have already been using a TRACE mode: the default

TRACE NORMAL. In this mode, whenever an external command

returns a value greater than or equal to the current FAILAT option

(default 10), the offending statement is displayed along with its line

number in the script. (Command return codes and FAILAT are

covered in the next chapter.)

This is a form of trace because the program line itself is actually

displayed, not just an error message. If you disable tracing altogether

with the TRACE OFF instruction, these line numbers will no longer

be shown when such an error occurs.

165

11. Debugging, Tracing and Error Trapping

Controlling The fact that TRACE can be used as an instruction from within an

tracing from ARexx script can cut out a lot of unwanted output. You can insert the
your program appropriate trace instruction in your program just before a section of

code you wish to check out, then disable it with TRACE OFF or
TRACE NORMAL again at the end.

This will let your program operate normally while executing the parts
of code you're not interested in analyzing, and let you see the

debugging information only for the suspicious program lines. After
seeing the output and determining that parts are operating properly,

you can home in on the bug by tracing smaller and smaller sections of
code.

The Global Tracing console

In our simple example above, the only output from the program was

displayed by the final SAY instruction, coming after all of the tracing

was over. If you are debugging a program that is printing information

and maybe even getting user input from the console, a trace can be

very confusing. With the program's output intermixed with the trace
information, it can be hard to tell what's what.

For this reason, ARexx provides a "Global tracing console/' which is a

separate console window that displays the output from the trace of any

ARexx program. (Even this can get confusing if you decide to trace

more than one ARexx program at the same time, but that should be
easy to avoid.)

The Global tracing console is opened by using the TCO ('Tracing
Console Open") program supplied on the ARexx disk or in the /Rexxc/

directory under AmigaDOS 2.0. If you've installed ARexx properly,

this program should be available and in your current command path.
Simply type 'tco' at a Shell or CLI prompt to open the console window:

Shell> tco

You can move and resize the tracing console window as usual to get it
out of the way or display as much data as you need.

You can take down the tracing console again using the TCC ('Tracing

Console Close") program. The tracing console can be opened or closed

in the middle of a trace, and it will respond almost immediately.

Shell> tec

166

Using TRACE

Keep in mind that the tracing console is just a facility that can be used

by any trace modes that may be in effect. Opening the tracing console

does not itself begin trace mode, and closing it does not stop the

trace—it merely diverts the trace output back to the Shell window.

Interactive Tracing

For thorough analysis of a program's execution, you need to step

through each clause one at a time, investigating variables and the

results of expressions at will. This form of tracing, often called single

stepping, is available in ARexx as interactive tracing mode^

Interactive tracing mode is activated with a question mark, and can be

used in conjunction with any of the trace options. For example:

trace ?a /* interactive trace mode, ALL option */

trace ? /* interactive trace mode, same option */
trace Presults

/* interactive trace mode, RESULTS option */

Once interactive trace mode has been entered, TRACE instructions in
the program will no longer have any effect, but you can still control
the trace options interactively as explained below.

Interactive tracing is generally best used in conjunction with the

global tracing console. All of your debugging is done in the console

window, while the output from the program is displayed in the
original Shell console window.

Using ^ Whenever a traced clause is displayed in interactive trace mode, the
interactive program stops and waits for your input before continuing. If you
tracing simply press RETURN, the program continues to the next traced

clause and stops again. All of the standard debugging information is

displayed in interactive mode, and what you see will depend as usual
on the trace option currently in effect.

If you enter '=' before pressing RETURN, the currently displayed

clause is executed again. Not all instructions can be executed twice,
and interactive mode will not wait for input after a CALL, DO, ELSE,

IF, THEN or OTHERWISE. These instructions are traced as usual, but

ARexx wonft stop and wait for your input until something else is
executed.

The greatest benefit of interactive tracing mode is that you can enter

any valid ARexx statements before continuing with program

execution. This lets you examine the contents of any variables using

167

11. Debugging, Tracing and Error Trapping

Changing trace

modes

Skipping over

multiple

clauses

SAY, try out various expressions, call functions, and even perform DO

loops and other compound statements using semicolons to separate

the clauses.

When you encounter a TRACE instruction in your program while in

interactive trace mode, it will be ignored by ARexx. This lets you

continue interactive tracing without losing control. You can,

however, change trace options by typing in the TRACE directly as an

interactive-mode statement.

When entering a TRACE instruction in this way, it is important to

understand the way the '?' option is handled. The question mark

option toggles interactive mode, meaning that if you use it while in

that mode already, the mode will be turned off. After the next

statement is executed, the program will revert back to automatic

tracing, and you'll lose control. To change a trace option while in

interactive mode and stay in interactive mode, change the option

without using the question-mark again.

When tracing DO loops or other repetitious program segments

interactively, you can find yourself pressing RETURN over and over

again, waiting for the loop to near its completion point. To help out in

this respect, special TRACE instruction options allow you to skip over

an arbitrary number of clauses. In other words, you can temporarily

override interactive mode, but regain control again before the

program goes too far and bypasses the code you're interested in

tracing.

The number of clauses to skip is controlled using numeric arguments

to the TRACE instruction. Remember, you can type the TRACE

instruction—or any other statement—while in interactive mode.

Passing TRACE a positive number is like pressing RETURN that

many times during an interactive trace. For example:

trace 5

will skip over the next five 'break-points/ places where ARexx would

normally wait for your input in interactive trace mode. The output

generated by the current trace option is displayed as usual, resulting in

more debugging lines being displayed as higher numbers are used.

Using a negative number instead skips a specified number of clauses

while suppressing any trace output along the way. When the final

break-point is reached, the trace information for that clause (and other

non-interactive clauses like DO, etc.) is shown as usual. For example:

168

Using TRACE

trace -20

will skip over 20 clauses (usually 20 lines, unless you've used

multiple statements on a line) without showing trace output until the

last clause.

The TRACE function

A close cousin of the TRACE instruction is the TRACEO built-in

function. This function takes as an argument a string containing the

same option symbols as the TRACE instruction, and it returns a string

representing the options in effect at the time the function was

invoked. This lets you store the current trace options before setting a

new one, then restore the original options again later:

trace_ppt = trace('?A11■)

/* interactive TRACE ALL in effect */

call trace(trace_opt)

/* restore original trace mode */

There are other important differences between the trace function and

the trace instruction besides the return value. For one, the trace

instruction will change the trace options even during interactive

tracing, where TRACE instructions are ignored. This is why the

second call to the trace function works in the above script: if the

TRACE instruction had been used instead, it would have no effect,

since the program would be in interactive mode at that point.

Another difference is that the trace function takes a string or string

expression as an argument, while the TRACE instruction takes a fixed

symbol. The above example uses the contents of a string variable as

trace options when restoring the trace mode to its original state. To do

this using the TRACE instruction would require the use of the

VALUE keyword.

When using the '?' option with the trace function, keep in mind that

interactive mode will be toggled: if interactive mode is already on and

you specify the question mark in another call to TRACEO, interactive

mode will be turned off. The same behavior is not exhibited by the

TRACE instruction because it is ignored in interactive mode.

169

11. Debugging, Tracing and Error Trapping

Command inhibition

In the same way as the question mark turns interactive trace mode on
or off, the exclamation point can be used in a trace mode option to
turn 'command inhibition' mode on or off.

Command inhibition mode prevents the execution of external host
commands. Normally any statement not understood by ARexx is sent

as a command to the current host. It is up to the host what to do with

the command, but while you're debugging a program, you may want
to avoid sending any commands that are potentially dangerous.

For example, if you are testing a script that deletes files using the
special COMMAND host to access AmigaDOS's Delete command, a
bug in the script could result in incorrect files being deleted.

By turning on command inhibition mode, you can confirm that the
logic of the program is correct, all variables are set properly, and the
host commands will have their intended effect. Only once you're
satisfied that the correct data will be sent to the command host do you
turn off command inhibition mode and allow the ARexx script to
access the host.

The Global Trace flag

With the various trace options, interactive trace mode, command
suppression and the tracing console at your disposal, you might think

that there are no secrets left for an errant program to hide. You would
be wrong.

Even the best tracing facilities can't do you any good if you're not

using them at the time a program exhibits a bug. When a program

that isn't being traced gets caught in a loop, you need a way to 'break

into' it and start an interactive trace. As you might expect, ARexx
provides a way to do this.

Global trace: TS The TS ('Trace Start") program sets a global trace flag that all ARexx

programs obey. Any ARexx program that is running when the TS

program is executed will immediately break into interactive trace

mode. RESULTS mode will be used (?R) unless the program is already

in INTERMEDIATE or SCAN trace mode, in which case the mode will
remain unchanged.

TS is used in a straightforward manner:

170

Using TRACE

Shell> ts

Once in interactive trace mode, you can debug the program in the

usual way. The global tracing console will be used if it is open. You can

change trace modes or turn trace off while in interactive mode by
using the TRACE instruction as usual.

End global trace: The global trace flag remains set after running the TS program, which

TE means that all future ARexx programs will break into interactive

mode when they are run. To clear the global trace flag, use the TE

("Trace End") program. This will turn trace to OFF for any programs

that switched to interactive tracing due to the trace flag being set. It

will also restore the default trace mode to NORMAL rather than

7RESULTS for any programs run in the future.

Halting scripts: Another way to get a program out of loop is to halt it using the HI

HI ("Halt Immediate") program. This will immediately halt all currently
executing ARexx scripts without entering trace mode, and can be

useful to get out of a script that's 'stuck' or caught up in a long
operation.

Error Trapping

A topic related to debugging and tracing is error handling: what

control do you have over errors that cause a script to fail? ARexx's

SIGNAL instruction provides an elegant way to trap errors and other

conditions such as an external halt or Ctrl-C. The ARexx manual calls

these traps Interrupts, but they have nothing to do with the interrupts

used by the Amiga's hardware and operating system. To avoid

confusion, we will simply call them error traps because of they way

they catch an error condition in mid-program.

The SIGNAL instruction is used to specify what error conditions are to

be trapped. When a specified condition occurs, control is transferred to

a specially-named label in the program. This lets your script perform

any 'clean-up' operations that might be required before exiting, like

taking down windows or other resources that may have been obtained

through external libraries or hosts.

171

11. Debugging, Tracing and Error Trapping

SYNTAX error- As an example, the SYNTAX condition occurs whenever there is an

trapping execution error that would normally halt a script. If you would like

the script to take some action before it halts (instead of displaying

ARexx's error message), you can take care of that in your error

handler. To trap syntax errors in this way, you would use the

following statement near the beginning of the script:

signal on syntax

With the syntax signal enabled, the script's syntax error handling code

will be executed whenever an error occurs anywhere in the script. The

error handling code could be as simple as this:

syntax:

say 'Trapped Error:' errortext(re)

exit 20

All this does is display a customized error message before exiting with

a return code of 20. Try using the above code in a script that contains

the line '=3' or something similar, which is total nonsense as an

ARexx statement. The script will report 'Trapped Error: Invalid

expression."

The error message comes from invoking the ERRORTEXT0 function

with RC as an argument. After a syntax error, the variable RC contains

the error number. The message corresponding to the error can be

determined with ERRORTEXTO. (RC in this case has a different

meaning than it does after a host command is executed, in which case

RC is the error severity code from the command.)

Other conditions that can be trapped with the SIGNAL instruction:

SIGNAL ON ERROR: Host command return codes (RC) greater than

zero cause this condition, usually indicating an error or warning of

some kind.

SIGNAL ON FAILURE: Host command return codes (RC) greater than

the current FAILAT level (default 10) cause this condition. Unless

trapped, this produces a "Command returned..." error message in
normal (default) trace mode.

SIGNAL ON HALT: External halt via the HI program, normally
resulting in "Execution halted" message.

SIGNAL ON IOERR: Errors that are detected by ARexx's input/output
routines such as READCHO and WRITECHO.

SIGNAL

Conditions

172

Error Trapping

Trapping

multiple

conditions

Special

variables

Turning

signals off

Program-

generated error

traps

SIGNAL ON NOVALUE: Uninitialized variables can normally be
used as strings containing the name of the variable itself in upper c^se.

With the NOVALUE signal turned on, such usages cause an error
trap.

BREAK_C, BREAK_D, BREAK_E, BREAK_F: Breaks from
AmigaDOS

See the SIGNAL entry in the reference section for detailed
information.

Several different conditions can be trapped simply by specifying more

than one SIGNAL instruction. A script might very well wish to trap
SYNTAX, ERROR, and HALT conditions to ensure that the script does
not exit without special clean-up code being invoked.

The labels for each condition could indicate separate clean-up
routines, or all point to the same code like this:

syntax:

errorr

halt:

call cleanup()

exit 10

You've already seen the use of the RC variable in SYNTAX error
traps. RC can also be used in an ERROR or FAILURE trap to see the

value returned by the command that caused the error.

Another useful variable that works in all types of error trap is SIGL.
SIGL contains the line number of the statement in the script that

caused the error, and can be used in error messages. A complete

SYNTAX error report might look like this:

syntax:

say 'ERROR TRAP:1 errortext(re) 'in line1 sigl

This would result in a message of the form:

ERROR TRAP: Invalid expression in line 8

Individual error traps can be disabled using the OFF keyword:

signal off syntax

signal off error

SIGNAL can be used in an alternate form which causes a 'jump/ or

transfer of control, to any label in the script. To perform the current

FAILURE trap, for example, you could use the statement:

173

11. Debugging, Tracing and Error Trapping

signal failure

This can be used to transfer control from inside a loop or function to

any point in a script. An application for this is general error handling:

you could create a label called 'BOMBOUT:' and then perform a

'SIGNAL BOMBOUT' if the program detected some disastrous error

that couldn't be handled by normal means.

This use of SIGNAL is similar to a GOTO in BASIC and other

languages. In ARexx, other structures like IR..THEN and DO...WHILE

are provided to handle ordinary flow control requirements. Using

SIGNAL as a GOTO can be appropriate in some circumstances, but it

should only be applied when necessary, since it it can make your

program's logic hard to follow.

Another variant of this is the 'computed goto', using an expression to

form the label name in the SIGNAL instruction. This is done using

the VALUE keyword, as in:

signal value 'label'i

The above statement could cause an immediate transfer of control to

labell:', labete:', or 'labelXYZ:', depending on the value of the variable

I. The use of SIGNAL in this way should be applied carefully and

documented clearly inside the script, since it can make a script difficult

to debug.

Uses for error We have already mentioned 'cleaning up' chores as a good use for

traps error traps. Another common technique is to use a FAILURE trap to

exit with the current value of RC:

signal on failure

failure:

exit re

This is useful when scripts are being called as commands from other

scripts (possible when using the default host address REXX). If any

script fails by exiting with a return code greater than the current

FAILAT level (normally 10), the script calling that script will fail as

well. If all the scripts in use have the failure trap in place, the error

will eventually get back to the original caller, and no additional code
will be executed after the error has taken place.

This is particularly useful in systems that use scripts to add new

commands and whose host commands return error codes to indicate a
user-abort. An example is IntroCAD Plus (Progressive Peripherals and
Software), discussed further in Chapter 13.

174

SECTION III

CONTROLLING
APPLICATIONS

ARexx Communication

Chapter 12

External Control

ARexx Communication

Multitasking

In Chapter 3, you saw how ARexx can be used to send commands to

host programs that are currently running in the system. It is the

Amiga's multitasking operating system that allows this process to take
place.

You are probably familiar with multitasking on the Amiga;

multitasking allows you to use the Workbench while your Word

Processor is running, type Shell commands while downloading a file

with a telecommunications program, or edit text while a 3D solid

model is being ray-traced, just to name a few possibilities. Besides the
applications that you've run yourself, there are also a number of

'handlers7 and 'devices' working quietly in the background, also

multitasking. All this is possible because a part of the Amiga's

operating system called Exec keeps track of all tasks and switches

control of the computer from one to another many times a second.

This makes it appear that all the tasks are running 'at the same time'.

When a program is just awaiting user input and not doing anything—

like the time a word processor spends waiting for you to press a new

key—it doesn't use up any computing time at all. This means that

running several programs at once will often result in very little

slowdown in the general operation of the computer. Remember, the

delay between two typing keystrokes may seem like a short period of

time to you, but a lot of computing can be accomplished in that

fraction of a second.

Multitasking is what enables ARexx to blend in so seamlessly with

other programs as they work, even allowing an ARexx script to work

as part of an application program. The ARexx task simply runs at the

same time as the other tasks, only using CPU time when instructions

are actually being executed. But multitasking alone isn't enough:

ARexx has to communicate with the host application somehow.

177

12. External Control

Inter-process communication

Communication between programs in the system—called inter-task or

inter-process communication—is made possible by another Exec

software mechanism called Messages and Ports. A Message is a

specially organized group of data, and a Port is a collection area for

messages. Ports can have names, which is how an ARexx host is

addressed: the ARexx ADDRESS instruction specifies the name of the

message port for ARexx command messages to be sent to. Chapter 3

contains some simple experiments that illustrate the use of this

command; it is covered in more detail later in this chapter.

Communication between ARexx and a host application goes back and

forth in a number of ways. When you run a script using the RX

program from the Shell, special commands are sent to the current

host (specified by ADDRESS), and results from those commands are

sent back from the host to ARex*. (Programs that accept ARexx

commands externally like this are sometimes called ARexx 'servers'.)

When you run an ARexx program as a macro from within an

application, the application sends the macro to ARexx to be executed,

where it behaves in the same way as if it were run using RX.

Running a macro from an application

Host
Application

/x kill lines x/

do i=l to 10

•remline1

end

if rc>5 then

i

do

Host Command

Command results

Figure 12-1

178

ARexx Communication

Running a script using 'RX'

/x kill lines x/

do i=l to 10

•remline' i

end

if rc>5 then do

Host Command

Command results

Host

Application

Figure 12-2

Using ARexx Commands

In Section II of this book, you learned about ARexx programming. The

language that you learned was the core of ARexx, but ARexx can be

extended by using commands supported by a host application. These

commands are specific to each host and are explained in the relevant
documentation for the application, but there are some general rules
about how host commands are used in your program.

Addressing the host

You have already sent simple commands to host applications in
Chapter 3, where you were introduced to the ADDRESS instruction
for establishing the current host address. The host address (the ARexx
message port name) for an application must be known before you can

control that application with an ARexx program. The ADDRESS

instruction is used to tell ARexx the host address to send host

commands to. A host address is just a simple name unique to each

host application; the application's documentation will tell you its host

address. The host address, or name, is case-sensitive, so you must use

the name in the ADDRESS instruction exactly as indicated in the

documentation.

179

12. External Control

The ADDRESS

instruction

The ADDRESS instruction can be used in a number of ways. The

simplest form is the one already explained: giving the name of the

host to which all future host commands are to be sent. For example, to

address Art Department Professional, whose host address is 'ADPro',

you would use the following ARexx instruction (note the use of

quotes around the host name in order to preserve the case of the

letters):

address 'ADPro1

This sets the name of the current host, but ARexx also remembers the

previous host address. You can switch back to the previous host

simply by giving the ADDRESS instruction with no host name. This

feature can be used when a script is communicating with one host, but

needs to send a few commands to an alternate host. The ARexx script

would go like this:

/* commands to current host */

• • •

address 'Host 2'

/* commands to 'Host 2' */

address

/* communicating with original host again */

If you wish to send a single command to an alternate host, you don't

even need to switch back and forth using two ADDRESS instructions.

Another form of the instruction lets you send a command to any host

without changing the current host address. The host command is

given immediately after the ADDRESS instruction, like this:

/* commands to current host */

address 'Host 2' 'QUIT' /* send QUIT to 'Host 2' */

/* commands to original host */

Host commands

The simplest form of host command is just a string that appears

where an ARexx instruction or assignment clause would normally go.

So, the following line in an ARexx program:

'quit'

...would result in the string 'quit' being sent as a command to the

current command host.

180

Using ARexx Commands

If the string was not in quotes, ARexx would first attempt to interpret

it as an internal instruction. If it was not a valid ARexx instruction,

the symbol would be taken as the name of an ARexx variable, and the

contents of the variable substituted for the command. If no variable

with that name was defined, the instruction would simply be

translated to upper case; this may or may not make a difference,

depending on the host. In the case of using 'quit7 without quotes, the

command 'QUIT' (in upper case) would be sent to the current host

providing there is no variable called 'QUIT' currently defined.

Although host commands will usually work properly when used in a

script without quotes and many ARexx scripts use commands in that

way, it is good practice to use quotes around all host commands to

avoid possible ambiguities.

Most hosts ignore the case of the letters used in commands, but some

are fussy about the capitalization. You'll have to consult the host

software documentation—or experiment—to find out.

Using variables We have recommended putting host commands in quotes to ensure

as commands that there is no confusion with ARexx instructions or variables. In

some rare cases, however, you may wish to perform variable

substitution in giving a host command. Consider the following script:

/* extract an archived file */

address command /* use AmigaDOS commands */

say 'extract file using ARC or ZOO?1

pull arcprg

say 'name of file to extract?1

pull filename

arcprg 'x' filename /* ARCPRG defines the command */

In this script, we use the contents of the variable 'arcprg' as a host

command; the host in this case is AmigaDOS, so we execute the

program name provided by the user of the script. The user can type

ARC or ZOO to extract an archived file (whose name must also be

provided) using the appropriate utility. (In this simple example, there

is nothing to stop the user from typing something like 'DPainf and

running that program instead!)

This example is mainly to show how ARexx handles command

names that are used without surrounding quotes. In reality, the above

technique is of limited usefulness, and can make scripts harder to

understand.

Forcing When using variable names as commands, you can distinguish the

command command from an internal ARexx instruction by putting an empty

recognition string at the beginning of the command, like this:

181

12. External Control

'arcprg 'x1 filename

This would have the effect of forcing the line to be interpreted as a
command to an external host rather than as an ARexx instruction.
You can use this technique whenever you are putting together a string
to form a host command that may be confused as an ARexx
instruction, label, or assignment.

Command Some host commands like the QUIT example used above will achieve
arguments their desired effect by simply issuing the command alone. Other

simple host commands might select a menu option or other function
for a specific application. The paint program DigiPaint 3, for example,
uses simple commands (called action codes in the DigiPaint 3 manual)
like TJndo', 'Sds', and 'Clrs' to emulate buttons that can be clicked on
the program's control panels.

Many host commands, however, will require arguments that provide
additional data to the command. The 'extract archive' script above, for
example, provided arguments to the command (the string 'x' and a file
name). Similarly, the DigiPaint 3 'Move' command requires X and Y
coordinates as arguments.

Arguments are simply specified as a single string after the command,
which is passed on to the host. The host then extracts the individual
arguments from the string, which are usually separated by one or
more spaces. Since you are simply giving a regular ARexx string in the

command, you can use a string expression in the usual way,
combining constants, variables, functions, and any other elements of
an expression. In most cases, you'll simply put each argument side by

side, separated by a space—ARexx will take care of putting these
together to form a string.

For example, the following ARexx script could be used to send a valid
Move command to DigiPaint 3:

/* center mouse pointer in DigiPaint 3 */
address •DigiPaint'
x = 160

•Move1 x 100

The above code selects DigiPaint as the host, and sends a Move

command that results in the mouse pointer being placed in the center

of the screen. You will notice that the X coordinate was given using

the variable 'x', while the Y coordinate was specified as a constant.

ARexx turns the 'x 100' part of the command into '160 100', following

the usual rules for expression evaluation. Along with the 'Move'

182

Using ARexx Commands

command, DigiPaint 3 is sent the argument string '160 100', from

which it extracts the two values X and Y.

Each of the following commands would result in exactly the same

argument string being sent to the host:

'Move1 160 100

•Move 160 100'

x=50; 'Move1 x*2+60 left(x*20,3)

The particular arguments required for each host command, and

whether the arguments are numbers or strings, is documented in the

ARexx command reference portion of the application software's

manual. We will cover several popular applications in the next

chapter.

Other forms of The form that a command takes is totally determined by the host

commands application; not all hosts will necessarily use the standard format of a

command name followed by arguments. IntroCAD Plus from

Progressive Peripherals and Software, for example, uses concise

symbols for some commands. A menu is selected by the menu name

preceded by a slash, for example:

'/draw/box1

Less conventional is IntroCAD Plus's command to place the mouse

pointer (point and click) at a specific screen coordinate. The '!' symbol

is used, but it is placed after the X and Y coordinates. Such a command

might look like this:

xcoord ycoord1!'

Since the variable names are not ARexx commands and the variables

contain numbers, ARexx does not recognize the line and sends it off as

a host command. To be sure of avoiding errors when using such

unusual command formats, you may wish to use the empty-string

technique to force host command recognition. The above command

would become:

1■xcoord ycoord'!'

183

12. External Control

Using scripts as Using generic ARexx programming and using scripts without the

commands ADDRESS instruction, you were able to execute an ARexx script just

by giving the name of the script as if it were an instruction; any

instruction not understood by ARexx was taken as the name of a script

in the current directory or 'REXX:' directory. When you switch the

host address with the ADDRESS instruction, commands are sent to

the new current host instead of to ARexx's internal message port, so

you lose this ability.

In order to execute scripts as commands while communicating with

an external host, you can send the commands directly to ARexx's port

like this:

' address 'REXX' mycoramand

This will execute a script called 'mycommand' or 'mycommand.rexx'

in the current directory or 'REXX:' directory, and pass along any

arguments that may be provided. This allows you to add your own

commands by writing scripts, while still using the commands

provided by the current function host.

To switch back to the ARexx port permanently and stop sending

commands to the current host, just use ADDRESS in its alternate
form:

address 'REXX1

Results from commands

After giving a command to a host, you often need to determine what

happened as a result. In some cases, your ARexx program simply

needs to determine whether an operation was successful. In other

cases, the command may have been given solely to determine some

information from the host, like the contents of a database field or the
current colors used in the display. Getting information from a host

can be done in a number of ways, which will depend on the particular
host's implementation.

Return codes Return codes are a built-in feature of the ARexx language. When

trapping syntax errors with the SIGNAL ON SYNTAX instruction, the

variable calledHO can be used to find the specific error that occurred.
The same variable can also be used to determine the error status from
host commands.

Most hosts will use this as an indication of the success or failure of a

command, but any value at all can be returned. When used as an error

indicator, RC will contain zero if the command worked without a

184

Using ARexx Commands

problem, or a nonzero value indicating the severity of the error if
there was a problem. When using commands that invoke major

operations like loading files or creating new data, your ARexx scripts

should check the RC variable before assuming that the operation was

performed; disk errors or low memory conditions could have

prevented the command from working. The actual error codes

returned from specific commands will depend on the host application,

and will be documented in the ARexx section of the user's manual.

Generally, lower values (usually less than ten) are just warnings, and

higher values mean failures or errors of some kind.

As an example of using error return codes, consider the following

script, used to load a given picture name into Art Department

Professional:

/* load given IFF file into

Art Department Professional */

parse arg picname

/* get picture name from command line */

address 'ADPro1

/* talk to art department professional*/

'lformat IFF1 /* set load format to iff */
•load1 picname 'NOPAD1 /* load picture into adpro */
if rc>0 then do /* can't continue if load failed */

say 'Sorry, couldn't load picture!'

exit

end

This script can be used from a Shell command, using the RX program

to load a file into Art Department Professional (ADPro) if it is

currently running. Additional instructions could perform various

image processing operations on the loaded picture, but only if the

picture loaded successfully. If the script were saved in your IXEXX:'

directory and called "LoadPic.adpro," you could load a picture called

"SamplePic.IFF" into ADPro as follows:

Shell> rx loadpic.adpro samplepic.iff

You can see in the script listing that two commands are given to the

host: 'LFORMAT IFF7 sets the load format to an IFF picture file, and

TOAD' loads the specified picture file, using the TMOPAD' option, also

given as an argument. After the LOAD command, the TiC variable is

examined for a non-zero value to see if the load was successful; if not

(re > 0), the script displays a message to the user and exits before

continuing with any further operations.

Whether return codes are set, and how they are set for individual

commands, depends on the host. Some host programs may use RC for

purposes other than error codes: the Baud Bandit telecommunications

program from Progressive Peripherals and Software, for example,

185

12. External Control

Failure levels

The RESULT

variable

returns information like baud rate, screen depth, etc. from some

commands in RC. Generally, such usage seems to be the exception
rather than the rule, as RC is intended as an error indicator.

If you have Art Department Professional and you tried the above
script to load in a picture, you may have noticed what happened if you

gave it the name of a file that does not exist. You get the following
messages displayed in the Shell window:

5 *-* 'LOAD1 picname 'NOPAD1;

+++ Command returned 10

Sorry, couldn't load picture!

The first two lines of this message are an error report from ARexx:
since the host command returned a nonzero 'RC value, ARexx took
this to be an error. The script is not halted as it would be with a syntax
error, but a message is displayed showing the command that caused
the error along with the return code—10 in this case. In an ARexx

script like this that checks the error code and deals with it itself, you

may not want ARexx interfering by displaying error messages. You can

control the level at which ARexx considers a return value an error
using the OPTIONS FAILAT instruction. For example:

options failat 20

If you put this instruction near the beginning of a script, only return
values from host commands of 20 or greater would be considered an
error by ARexx. If you put this instruction into the ADPro script
above, only the script's "Couldn't load picture!" message would be
displayed, without the extra ARexx messages; a return code of 10
would no longer be severe enough for ARexx to be concerned.

You can also trap host command error returns in the same way as

other interrupts, using the SIGNAL ON ERROR instruction. See the
the Reference Section on the SIGNAL instruction for details.

Some hosts may need to supply more information than simply

whether a command succeeded or failed. The standard way for results
to be returned is in the special RESULT ARexx variable. In order to be
able to read this variable after giving a host command, you must use

the OPTIONS RESULTS instruction in the ARexx program before the
host command is given. The following line should be placed near the

beginning of any ARexx programs that communicate with hosts
returning results:

options results

This instruction causes ARexx to request results (if any) whenever a

host command is sent. After giving a host command, any desired

186

Using ARexx Commands

result would be in the RESULT variable; what results you can expect

to find there will depend on the command itself. RESULT might

contain the text for an error message if a command failed, or it might

contain information that you requested with a previous command.

Therefore, it is important to check the value of RC before interpreting

the results of a command that may fail.

As an example of using the RESULT variable, consider the following

simple script for use with Bars & Pipes Professional:

/* simple bars and pipes example */

address 'Bars&Pipes ARexx1

/* talk to Bars&Pipes program */

options results /* use result variable */
•frame1 /* ask b&p for current frame type */

say result /* show result from frame command */
'tempo' /* ask b&p for current tempo */
say result /* show result from tempo command */

The FRAME and TEMPO commands as they are used here have no

other function than to return a result. The only way you can use this

result is by first using the OPTIONS RESULTS instruction, then

examining the RESULT variable after giving the command. If you

were to remove the OPTIONS RESULTS instruction in the above

script, ARexx would not ask Bars&Pipes for results from the

commands, so none would be returned—the output from both SAY

instructions would simply be 'RESULT', since the variable is not

initialized. With the script as listed, the values '24' and '120' are

displayed, the default values for frame type and tempo, respectively.

Multiple results Some host commands may need to return more than one number or
string. This can be done by simply putting all of the values together in

a string, separated by spaces; the string is read from the RESULT

variable as usual. Your ARexx program can easily read these

individual values from the RESULT variable by using ARexx string

functions or by using the PARSE instruction.

As an example, the TurboText text editor by Oxxi Inc. provides over

140 ARexx commands to control many aspects of the text editor. Some

of these commands are used to get information, and they return

results in the RESULT variable as usual. The 'GetCursorPos'

command, for example, returns three values in RESULT: the current

cursor line, cursor column, and an ON or OFF value indicating

whether the cursor is on a "fold" or not. We could put this

information into separate variables as follows:

/* ARexx macro for TurboText */

address 'TurboText0'

•GetCursorPos1

187

12. External Control

variables

parse var result line column fold .

After the PARSE instruction, the LINE and COLUMN variables will

contain the cursor's line and column position respectively, and the

FOLD variable will contain the string 'ON' or 'OFF'. The script can

continue using these variables, and forget about the RESULT variable

until it's needed for another command.

Results in other Some host applications return results in other variables, which will be

documented in the ARexx section of the application's manual. Like

the special RESULT variable, these variables can be set to any string,

giving any information required. As an example, Art Department

Professional uses a variable called ADPROJRESULT to return

information after many commands. The use of this variable is also

dependent on the presence of the OPTIONS RESULTS instruction.

The information supplied in ADPRO_RESULT depends on the

command, but it is often used to give an explicit error message

explaining why a command failed (whether the command failed or
not is indicated by the RC variable).

An even better example of using variables to get information from a
host can be found in Software Visions' Microfiche Filer Plus (MFFP)
database program. Some ARexx commands in MFFP accept the stem
name of a compound variable, and set the value of nodes in the
compound variable. For example, using MFFP's 'gef command, you

can examine fields in a record like this (this will only work from
within MFFP, not as an external RX script):

/* show first field of selected record */
'first' /* move to first selected record */
'get' rec

/* put contents in 'rec' compound variable */
'display' rec.Lvalue

/* display value first field in rec */

This method of returning (and sending) information is a special
feature of MFFP, and does not require the RESULTS option.

Function hosts are different from command hosts in that they work by
adding new functions to ARexx rather than by receiving host
commands as messages. Function hosts do not need to be addressed
with the ADDRESS instruction; whenever a function host is running,
its extra functions are available to any ARexx program. Results can be
obtained by calling functions provided by the host. Functions, rather
than commands, are used to perform any operation that might be
required.

An example of an application that operates as a function host is Gold
Disk's HyperBook hypermedia program. Some of its functions, like

188

Function Hosts

Using ARexx Commands

NEXTPAGEO and PREVPAGEO, are simply used as commands (with

the ARexx CALL instruction) and require no arguments. Others, like

GETWIDTHO and SEARCHTEXTO are used for the results that they

return. The advantage of a function host over a command host is that

the functions can be used like ordinary ARexx functions in

expressions, making it easier to use information from the host in your

ARexx programs. The only possible problem with the use of a

function host arises when more than one host uses the same name for

a function; function hosts can get around this problem by using a

special prefix in the function names when the functions are used by

external scripts.

The use of functions instead of commands can make your scripts

more concise. For example, a script to increase the value of a page

color by one might look like this using a conventional command host:

/* change page color - command host */

address 'host address1

options results

1getpagecolor•

•setpagecolor' result + 1

Whereas using a function host, the script would be simplified:

/* change page color - function host */

call FH_setpagecolor(FH_getpagecolor() + 1)

189

22. External Control

ARexx in Applications

How ARexx is supported can vary considerably from one application
to another. This is because ARexx can be useful in different ways with
different programs, or perhaps the vision of the software designers
may have just been different. Whatever the cause, it is helpful to be
aware of the number of general ways ARexx can be used.

Terminology

When we talk about macros and scripts, we are talking about ARexx
programs. Some applications may use the same terms differently in
their documentation and user interface, however. A program that has
its own script language that can be used independently of ARexx (e.g.
telecommunications software) will often refer to these programs as
'scripts'. Similarly, a program that has the capability to record a
sequence of operations and play them back (e.g. text editors) may refer
to these as 'macros'. When ARexx is supported as well, ARexx scripts
and macros will usually be referred to explicitly, as in a menu item
that says 'Execute ARexx' or something similar. You should be aware
that the mention of 'script' or 'macro' in a program does not
necessarily indicate ARexx-compatible features.

External scripts vs. built-in macros

Some applications provide an ARexx communications port, but do
not have the facility to run ARexx macros from within the application
itself. With these applications, you must save your macros as separate
scripts, and execute them using the RX command from the Shell. This
involves switching from the application to the Workbench screen and
typing a command every time you want to use a macro. An example
of a program that supports ARexx in this way is NewTek's DigiPaint 3.
This approach makes more sense in applications that use ARexx as a
means of being controlled from other programs, rather than as a
macro language. An example of such an application is Bars & Pipes
Professional by The Blue Ribbon Soundworks Ltd. Bars&Pipes
Professional has ARexx commands to control the playing of songs so
that you can coordinate your MIDI instruments with a multimedia
presentation; ARexx is not used as a macro language in controlling the
user interface of the program itself.

190

Macro names

ARexx in Applications

A more common approach is for an application to let you run ARexx

programs as macros, but the programs themselves are stored

externally to your project, usually in the 'REXX:' directory. This makes

accessing macros from within the application more convenient, and is

a good solution for applications where the macros used are not

expected to vary from project to project. It can result in a great many

macros to look through in your IXEXX:' directory, however.

A more all-encompassing approach is for an application to have built-

in macro storage capabilities, and let you run these macros from a

menu, control panel, or the keyboard. A complete implementation

also allows the creation and editing of macros, either with a special

text editor built into the application, or by invoking your standard

system text editor (Ed or the editor of your choice). Any macros you

create will be automatically saved with your current project. This is

good for applications like authoring and presentation systems that

often use macros specific to a project.

Many host applications do not require the use of the ADDRESS

instruction in macros; the application launching the script is the

current host by default. You may wish to put the ADDRESS

instructions in your macros anyway, in case you wish to launch the

script from the Shell or from another application.

When macros for a specific application are stored externally, it is

useful to be able to distinguish these macros from those intended for

another application. Since host commands are unique to each

application, looking at the file names in your TiEXX:' directory could

be confusing if there were macros for a number of different

applications: you wouldn't know which macros were intended for use

with which program.

Fortunately, ARexx has a way of dealing with this problem: it is done

through file name extensions that are unique to an application. You

have already learned that generic ARexx scripts (those without host-

specific commands) often use the '.rexx' extension in the file name to

distinguish the file as an ARexx program. Other extensions can be

used for macros for a specific host: ARexx scripts designed for Art

Department Professional, for example, can use the extension '.adpro'.

When the scripts are used as macros from within the application for

which they are intended, the special extension is used as an

alternative to the standard '.rexx': the scripts can be called by their basic

191

12. External Control

names, without adding the extension. Applications that support this

feature will give the extension to use in their documentation.

Even if this extension feature is not explicitly supported by an

application (meaning you'll have to use the extension as part of the

macro name), it is a good idea to use extensions in the file names of

ARexx scripts in your TREXX:' directory that are designed for a specific

application. This will prevent confusion when looking through your

'REXX:' directory, and let you distinguish application-specific macros

from generic ARexx programs that don't require a host.

Executing macros

The ARexx macros that you use from an application can be selected

and executed in a number of different ways, depending on the

application. Some programs, like ASDG's Art Department

Professional, let you run ARexx programs by pressing function keys;

the ARexx programs must be saved as specially-named scripts in the
TIEXX:7 directory. Other programs let you select a macro by typing its

name or selecting the macro from a file requester. For greater

convenience, some applications allow a combination of methods;

ASDG's CygnusEd Professional text editor, for example, allows file-
requester selection of ARexx scripts, but also allows you to 'install7 a

number of macros or ARexx commands that can be selected from a
menu or by function keys.

Another approach is the provision of an ARexx 'console window7 for
executing macros. The console window is like a Shell window, but
you can execute macros for the host application just by typing their

names, as you would with AmigaDOS commands in a Shell. The

advantage of an ARexx console window over function-key or menu
selected macros is that you can supply arguments to the scripts on the
command line. Examples of applications that provide an ARexx
console are IntroCAD Plus and TurboText.

Other programs let you blend ARexx macros into your current project
more seamlessly: Nag Plus, the appointment schedule program from
Gramma Software, will execute an ARexx script when you click the
right mouse button over an appointment cell, passing it appointment
information. Gold Disk's Home Office Advantage spreadsheet
program lets you assign an ARexx macro to cells in a spreadsheet and
run the macro by double-clicking the cell. Hypermedia programs like
AmigaVision,CanDo,HyPerBook and others let you execute specific
macros by clicking on preset 'hot spots' on the screen. Presentation

192

ARexx in Applications

programs like Gold Disk's ShowMaker can execute ARexx macros at

any point in a presentation.

Since there is no hard rule about how ARexx macros are used, you

should consult the ARexx section of the application's documentation

to learn the specific implementation.

Where do macros go?

Many applications simply assume that macros will be stored as

separate script files in the 'REXX:' directory, along with all other

ARexx scripts. The script file is loaded from disk every time the macro

is invoked. Other applications may let you 'install' commonly-used

macros in memory so that they can be executed instantly. This can

sometimes also be done by defining short macros as 'string files',

which are just miniature ARexx programs stored in memory.

When programs are stored as external files, you may want to put

macros for some applications in separate directories (or disks) and re

assign 'REXX:' when using that application; this prevents your

standard HEXX:' directory from becoming cluttered and filling your

main storage device with macros from different applications.

Even if the macro files you wish to access are not stored in the 'REXX:'

directory, you can usually use them by giving the entire path name of

the macro from within an application. For example, if you keep all of

your Microfiche Filer Plus macros in a special /MFF/ directory on your

T)H0:' hard drive, you could call up a macro called 'reorder.mffm' (for

example) by using the name 'dhO:mff/reorder/ from the application

('mffm' is the standard extension for Microfiche Filer macros).

Output from macros

When developing macros, it is often convenient to use the ARexx

SAY command to display values that show you what's going on in the

program. When you launch a macro from an application, where does

this information go? As with most of these issues, this too depends on

the particular host being used.

In most cases, if the host was launched from the Shell (by typing its

name or using the RUN command), any standard output from ARexx

macros will go to the original Shell window. If the application was

launched from the Workbench, there may be a special output window

on the Workbench screen where the ARexx output (and all other

193

22. External Control

stdout output from the application) will be displayed. If not, you may
not be able to see your ARexx macro output at all. At least one
application recommends launching it from the Shell specifically for

the purpose of getting ARexx macro output for debugging purposes;
after the macros are developed and the output is no longer required,
you can run the program from the Workbench.

Another approach is for a program to have a built-in facility for
displaying the output from ARexx macros. HyperBook shows ARexx
output in a requester after the macro has finished; output too large to

fit in a requester is displayed using a text-reader utility. Similar
facilities for displaying messages to the user are provided in a number
of other applications.

In many cases, you won't ever need ARexx output in macros. If you
do, and your application does not show it to you, try launching the
application from the Shell and look at the Shell window for the
output. You should also be able to use the Shell window for ARexx

console input (using the PULL instruction in the macro).

What ARexx controls

Whether you control an application through external scripts or
internal macros, what really counts is what you can actually do with

the application's supported ARexx commands. Different applications
let you control their functions with ARexx in different ways:

• User interface access: programs that are extremely interactive like
graphics software often provide ARexx commands to perform the

equivalent of menu and mouse controls that the user could do
directly. This often includes pushing the application's screen behind
or in front of all other screens to 'pop up' and 'put away' the
application from an ARexx program.

• Specialized commands: some applications like spreadsheets and
database programs add ARexx commands that let you work directly
with the data, rather than simply mimicking the user interface. This is
often more convenient when writing ARexx programs than thinking
through the manual operations that would be necessary to achieve a
particular operation. Some programs may take this one step further

and add capabilities that are only accessible through ARexx

commands; an example is user input facilities in a hypermedia
program that allow it to be used as an 'authoring' system.

194

ARexx in Applications

• Script control: programs with their own script language, like some

telecommunications software, may provide all or some of the script-

language commands as ARexx commands, giving you the choice of

implementing a script in ARexx instead of using only the native script

language facilities. This kind of ARexx support is ideal, since you get

the benefit of a wide range of application-specific commands coupled

with the flexibility of the ARexx language.

Controlling one application from another

Besides its use as a standardized macro language, ARexx is important

on the Amiga because it gives you the ability to make two or more

separate programs work together. For example, you might create a

multimedia production using a presentation tool like Gold Disk's

ShowMaker or Commodore's AmigaVision. Using ARexx scripts that

address other host applications, you could control external MIDI

musical instruments by communicating with Bars&Pipes, or even

control NewTek's Video Toaster running on another Amiga for

spectacular video effects.

195

13. Specific Applications

Chapter 13.

Specific Applications

You've seen how ARexx is more than just an ordinary computer

language because of the way it can control other programs. What this

means to you as a computer user is that ARexx programming is

something you do all the time, not just when you are creating your

own programs from scratch.

Because ARexx is so well supported by major software applications,

you can use it to make just about everything you do with your

computer more automatic, faster, easier, and—not least of all factors—

enjoyable. Whether you are word processing, telecommunicating,

animating, composing, using a database or a spreadsheet, there are

ARexx-compatible programs that let you tap their power directly by

using custom-written macros.

Since each application uses its own set of ARexx commands and uses

ARexx in a slightly different way, it's worth taking a look at each

application individually.

This chapter examines a few ARexx-compatible programs in each of

several application categories. This sample of available software titles

makes no claim as to completeness, but is a good representation of

what is available. Our hope is that by collecting information about

many Arexx-supporting products in one place, readers will begin

dreaming up possibilities for Arexx-orchestrated multi-program

applications. This is one area where the Amiga platform beats all

others, and is especially important for the kinds of multimedia

productions that are being developed today at an accelerated pace.

Word Processing

In word processors, ARexx is usually applied as a macro language for

defining common operations. By combining the program's basic text

editing and formatting operations in ARexx scripts, you can design

macros to automate common sequences of operations.

Another way that ARexx can be useful in a word processor is to

connect the program with another text application using inter-process

197

13. Specific Applications

communication. An example is "hooking up" a thesaurus or

grammar checker.

ProWrite 3.1

New Horizons

Host Address:

Added commands:

Macro support:

ARexx applications:

"ProWrite"

111

Rim macros by file name or by function keys

text editing macros; hook-up to external

programs

ProWrite uses ARexx as its standard macro language, and includes

ARexx commands to control just about every feature of the program.

ARexx commands for menu selections, cursor movement, and text

extraction and insertion are all provided. Macros are stored in separate

ARexx scripts in the same directory as the ProWrite program. Note

that this differs from the usual practice of putting scripts in the REXX:

directory. The macros are run by selecting Other from ProWrite's

Macro menu (right-Amiga M) and typing the script's file name. Also,

up to ten macros can be run just by pressing SHIFT and a function key:

these macros must be named 'Macro_l', 'Macro_2', etc. in the

ProWrite directory.

When running macros from within ProWrite, it is not necessary to

address the 'ProWrite' host. Scripts being run externally (using RX)

must, of course, use the ADDRESS "ProWrite" instruction before

issuing any ProWrite ARexx commands.

The easiest way to create macros in ProWrite is to open a new

document window, type the ARexx script in as a regular document,

and save it (to the ProWrite directory/drawer) using the 'text only*
option.

There are ARexx commands to access most of ProWrite's features and

to control cursor movement. Slightly different are the EXTRACT and

TYPE commands, which deal with the actual text in the document.

The EXTRACT command will put selected text from the document

into an ARexx string, where you can parse and process it, then re

insert it into the document with the TYPE command. Unfortunately

EXTRACT stops at the end of a paragraph, limiting the amount of text

you can get from a document. EXTRACT can still be useful for

working with small amounts of text, however. An example is the

sample script included in the ProWrite package called Math.

198

Using a macro

in ProWrite

Shortcut

macros

How Math

works

Word Processing

The Math macro is a script found on the ProWrite release disk. Make

sure this script is in the same directory as the ProWrite program, then

try the following example. This macro evaluates the selected text as a

mathematical expression, and inserts the result of the expression in

the document. Since the highlighted text cannot span multiple

paragraphs, the Math macro can't be used to add columns of numbers.

It is useful, however, as a quick calculator. Try the following in

ProWrite:

• Enter an expression into a document window, for example

'15692.27/12'.

• Select the entire expression by clicking and dragging with the

mouse.

• Execute the Math macro: select 'Other../ from the 'Macro' menu

(or press right-Amiga M), then type 'Math' and press return.

• The text in your document will be modified to read:

'15692.27/12=1307.68917'

If you found the Math macro to be useful enough that you used it all

the time in your work, you might want to use a function key to

instantly run it instead of selecting a menu option and typing 'Math'

every time. To do this, simply rename the 'Math' file in the ProWrite

drawer as 'Macrojl' (this can be done from Workbench if you haven't

deleted the macro's '.info' icon file). Now, pressing the Fl key while

holding down SHIFT will invoke the math macro.

Adding mathematical calculation abilities to a program would

normally be a fairly major job for the programmer, and might not be

worth the effort if the feature wasn't demanded by a large number of

users. By using ARexx macros, ProWrite users can take advantage of

ARexx's mathematical prowess even though ProWrite itself doesn't

do math. If you look at the Math script, you'll find a surprisingly short

program:

/* Evaluate math expression and paste */

Address 'ProWrite■

Options Results

Extract

If RC ~= 0 Then Exit RC

result=Insert('a=',result)

Interpret result

CursorRight

Type '='a

199

13. Specific Applications

This script simply extracts the selected text using ProWrite's

EXTRACT command, then evaluates it as an expression using

ARexx's powerful INTERPRET instruction. The result of the

calculation, stored in the A variable, is then re-inserted into the

document with ProWrite's TYPE command.

Italicize a word Here's another example: this macro will italicize a word if the cursor

is positioned within the word or at the end of the word; if the cursor is

at the beginning of the word, the previous word will be italicized.

Save this macro as /Macro_2/ in the same directory as the ProWrite

program, and you will then be able to change a word in your

document by simply clicking on it and pressing Shift-F2.

/* ProWrite: Italicize word */

/* select the word */

'CtrlUp1

'ShiftDown'

•CursorLeft1

■CtrlDown1

1CursorRight'

'Styleltalic1 /* italicize */

/* move cursor past word */

1CtrlUp1

•ShiftUp1

1CursorRight'

You will notice the use of ProWrite's key commands for holding

down the SHIFT and CTRL keys while moving the cursor. This lets us

select the word without using the mouse. You could easily adapt the

above script to perform other operations on the selected word by

changing 'Styleltalic' to 'StyleBold', 'StyleUnderline', 'ColorYellow',

etc. All of these commands are listed in the ProWrite manual under

"Macros and ARexx" in the reference section.

Note in the above script that we did not include the ADDRESS

"ProWrite" instruction, since this macro will always be invoked from

within ProWrite, which provides the appropriate default host address.

This may not be true for older versions of ProWrite. If the script does

not work, try adding the ADDRESS "ProWrite" instruction to the

macro, right after the comment in the first line.

200

Word Processing

Project Edit Search Fornat Docunent View

oj Untltled 81

, . 11 . , . I2 . , . 13 . , . 14 . . . 15 .

D t t t EII] i=i i^i i=i ISD i=l l=i O i^i i—i

I

Macro_1

Macro 2

Macro 3

Macro 4

Macro_5

Macro_6

Macro_7

Macro_8

Macro_9

Macro_18

Other. . . CJM

inlrb

<

Figure 13-l:ProWrite's Macro menu

Electric Thesaurus

Softwood, Inc.

Using ET from

ProWrite

Host address:

Added commands:

Macro support:

ARexx applications:

wEThes_l" for first window, then "EThes_2",

etc.

17

Run macros from menus (macros are of

limited use)

As a host for external programs requiring

Thesaurus capabilities

Electric Thesaurus (ET) supports a small set of ARexx commands, just

enough to look up a word, get information about it, and pop ETs

screen to the front or back. As for macro capability, ET supports

running named macros (stored as script files) from a menu, but this

capability has little application due to the limited ARexx support. It is

much better to use EPs ARexx port by running scripts from the CLI

using the RX program, or—better still—using ET from another

ARexx-compatible program. This lets you add an on-line thesaurus to

any text-oriented program that doesn't have one: text editors, terminal

programs, word processors, etc.

As an example, take a look at this short ProWrite macro that looks up

the currently selected word and pops ET's display to the front to show

the definitions and synonyms for the word. For this to work, both ET

and ProWrite must be running, and this script must be saved in your

ProWrite directory. From ProWrite, double-click the word in your

document to look up, then run this macro:

201

13. Specific Applications

/* ProWrite—>Electric Thesaurus */

options results

•Extract1

address 'ETHES_1' 'LOOKUPND' result

if RC=0 then address 'ETHES_1' 'SCRTOFRONT'

Once you've found the definition you're looking for, you'll have to

switch back to the ProWrite screen yourself (use the screen gadgets or

left-Amiga M).

A more flexible way to use ET from ARexx is by getting the

information for the word you're looking up directly. There are several

commands that will put information into the ARexx RESULT

variable for the script to use. You can then display information with

the ARexx script, instead of just showing the ET display.

Using ET in a Here's a simple script that you can run from a CLI or Shell window,

script and see all the definitions and synonyms for a given word right on

your console window. It adds the refinement of running the ET

program if it's not already running (provided the program "ET" is

somewhere in your command path).

/* EThes.rexx: look up word in Electric Thesaurus */
parse arg word .

options results

/* check for valid argument */

if word='• then do

say "Usage: rx thes <word>"

exit

end

/* check for ET's ARexx port and run the program
if it's not there.

*/
if -show('p1, ' ETHES_1 •) then do

address command 'run h:apps/et_drawer/ET WB1
address command 'WaitForPort ETHES_JL'
end

address 'ETHES_1' /* host address of first window */

'LOOKUP' word

if RC=0 then

say result

else

say "Couldn't find word!"

Save the above script as "rexxrEThes.rexx", and pass it the word to look
up when you run it with RX. For example, to see all of the different

definitions and synonyms for the word "amazing," you could use the
following command:

202

Word Processing

Shell> rx thes amazing

In the above script, note the use of the WaitForPort program. This is

used after running the ET program, and halts the script until the

program is in place and its port has been opened.

Other ways to Rather than obtain all the information at once using LOOKUP, you

look up words can get information for one definition at a time using the following

commands:

i

GETNUMDEFS Get the number of definitions for a word

GETDEF <n> Get the definition for definition #n

GETPOS <n> Get the Part-of-Speech (Noun, etc.) for definition #n

GETSYN <n> Get the synonyms for definition #n *

(*In version 2.05 of ET, GETSYN does not work properly. Use

LOOKUP and extract the information using ARexx string functions.)

Telecommunications

In many ways, a terminal program is an excellent example of how

much ARexx support can add to the functionality of a program. Both

terminal programs discussed here provide complete control of

incoming and outgoing text through ARexx. In everyday use, this lets

you write simple scripts to automate routine operations like logging

on, reading mail, downloading files, etc. On a larger scale, control of a

terminal program through ARexx means you can write a complete

BBS (Bulletin-Board system) in ARexx, customizing it to your exact

requirements. Even the simplest 'personal BBS' will let you dial up

your Amiga from a remote location and download files.

The terminal programs discussed here, A-Talk III and Baud Bandit,

use a different set of commands, but in most respects implement

ARexx in similar ways. Both programs have their own 'script

language' that can be used without ARexx, but most of the commands

in the language can be used as ARexx commands as well. This gives

your ARexx scripts access to the program's capabilities, as well as the

ARexx language's features (which are superior to those of the

program's built-in script language).

203

13. Specific Applications

A-Talk HI

Oxxi

Host address:

Added commands:

Macro support:

ARetfx applications:

"ATK"

47

Runs scripts selected from file requester

ARexx scripts can provide automated control

of logging on to online services,

downloading, logging on and downloading

messages at off-hours, access to AmigaDOS

from a remote location, etc.

A-Talk HI (ATalk) has a powerful script language that doesn't require

ARexx, but its commands can be used from ARexx scripts. ARexx

scripts can be run by selecting a menu option and choosing the script

from a file requester, or from an ATalk script using the special 'RX'

command (not to be confused with the RX program). Since script files

can be run automatically when a number is selected from A-Talk's

'phone book7, ARexx scripts can be launched automatically as well.

A lot of operations can be performed using just a few powerful

commands. For example: dialing a remote host computer, waiting for

a prompt from the remote host, and giving a reply can be

accomplished with this simple script:

/* A-Talk III - dial host and give password */
address 'ATK1

'REPLY "ATDTxxxxxxx1" /* dial host number */

'WAIT "Password:"'

•REPLY "password"' /* give password */

The WAIT command waits until the given string arrives from the

modem, and the REPLY command sends the given string out to the

modem. These simple commands alone, coupled with the power of

ARexx, are often enough to create useful telecommunications scripts.

Note the use of single quotes around the entire commands, and

double-quotes to delimit the strings inside the commands. This is

necessary with A-Talk, since it expects to see the double-quotes around

the strings.

As with most ARexx-compatible programs, A-Talk does not require

the explicit setting of the host address as in the above example, if the

script is executed from within the A-Talk program. You may wish to

204

Telecommunications

put it in, however, in case you want to run the script from a CLI

window using the ARexx RX program.

Examples The ATalk manual lists some simple scripts, but the installation disk

contains some real ARexx treasures. A complete small-scale BBS

(Bulletin-Board System) is included, in the form of an easy-to-read,

well formatted and documented ARexx script. This is an excellent

starting point for creating your own custom BBS. Another script,

called "A-Talk-Remote", lets you call up your Amiga from a remottf
terminal and access it using standard AmigaDOS CLI commands.

There are also a few scripts for more specific applications.

Baud Bandit

Progressive Peripherals and Software

Running

ARexx macros

Host Address:

Added commands:

Macro support:

ARexx applications:

"BAUD"

30 regular commands plus 43 embedded text

codes

Runs scripts selected from file requester, or by

special 'backslash' codes in character strings

ARexx scripts can provide automated control

of logging in to online services, downloading,

logging on and downloading messages at off-

hours, access to AmigaDOS from a remote

location, etc.

Baud Bandit takes a slightly different approach to ARexx support than

A-Talk III. The relatively small number of its ARexx commands is

deceptive, since most of the program's features can be accessed

through special 'backslash' commands that can be embedded in any

text string. Also, the single command STATUS allows 18 different

options, compacting diverse functions into one command. Like

ATalk, Baud Bandit has its own simple script language that can be

used without ARexx. The program is flexible and complete enough in

its ARexx support that an entire BBS has been written for it in ARexx.

ARexx scripts can be run by selecting "Start ARexx" from the HELP

window, or pressing right Amiga-A. A file requester then lets you

select the ARexx script to be run. Scripts invoked from within the

program don't need to explicitly address the host, but (as usual) if they

do—with ADDRESS "BAUD"—they can be called externally via RX.

205

13. Specific Applications

A more seamless way of using ARexx macros in your
telecommunication sessions is to embed the special "\m" character
sequence into one of your 'script pairs'. A script pair in Baud Bandit is

similar to WAIT and REPLY in ATalk III: they specify what response

to give for a stream of characters received from the modem (i.e. from

the remote host). One or more script pairs may be assigned to each

entry in your phone book, and will be used when calling that number.
An example of a simple script pair might be:

{Password:=Aardvark\r}

This tells Baud Bandit to wait for the string "Password:", and reply

with "Aardvark" plus a carriage return when it arrives. The "\r" is
just one of many special codes allowed, and the one of concern to us

here is "\m" to run an ARexx macro. By specifying
"\mrexx:Login.rexx" as the reply string in the script pair, you could
execute your Togin' macro when the "Password:" prompt arrives.

Graphics

Art Department Professional

ASDG Incorporated

Host address:

Added commands:

Macro support:

ARexx applications:

"ADPro"

55 (plus Operator, Saver and Loader

commands)

Runs up to 50 specially-named scripts via

function keys

Convert graphic file formats and process

images from another ARexx application;

internal macros to automate graphics

processing

Art Department Professional (ADPro) is a graphic conversion-

processing system that is designed to function as the liub' through

which other graphics programs can work. Because ADPro is

specifically designed to work with other programs as much as possible,

it implements an extensive ARexx interface to control every aspect of

the program. In addition, ARexx commands are provided that go

beyond the program's regular user interface. For example, user input

of numbers, text or file names (using a file requester) can be done from
an ARexx script.

206

Macro support

Idiosyncrasies

Extensible

commands

Graphics

Support for internal macros is by function key, running specially-

named scripts that must be in the TIEXX:' directory. The macros called

"Fl.ADPRO" through "FO.ADPRO" are invoked by pressing Fl

through F10 respectively. Similar names using the prefixes SF, LF, AF,

and CF work with the function keys in combination with the SHIFT,

ALT, AMIGA, or CTRL keys, respectively. In addition, a special F10

macro is provided ("FO.ADPRO") that lets you execute any ARexx

script by file name.

The host address must be explicitly addressed (ADDRESS "ADPro")

even for scripts executed as macros from within the program. ADPro

uses the RC variable in the usual way—to return error results from

commands—but other results are returned in the special

ADPRO_RESULT variable instead of the usual RESULT. OPTIONS

RESULTS must be specified in order to get the results in this variable.

ADPro is somewhat different from most software in that it is designed

to continually expand as new graphics formats and display hardware

emerges. It supports add-on files known as 'Loaders' and 'Savers' for

reading and writing graphics files in any format, as well as 'Operators'

for processing the graphics in memory. These add-on files are actually

separate programs that function within ADPro itself. Because of this,

the use of many ARexx commands depends on the specific Loader,

Saver or Operator being used. For example, the "FC24" Saver, which

displays its output to a special graphics board, has 16 ARexx

commands of its own. As you add new Loaders, Savers and Operators

to your basic ADPro system, you'll have to look up the new ARexx

commands in the documentation provided.

ADPro Example Here is a simple example of an ADPro macro to scale the current

picture in memory to half size, recompute the new picture CExecute'),

and then display the resulting graphic. This script could be saved as
"REXX:F1.ADPRO" and run from ADPro by pressing Fl.

/* ADPro: scale to half size and redisplay */
address "ADPro"

options results

•PCT_SCALE' 50 50

if RC~=0 then do

•OKAY11 'Scaling operation failed!1
exit

end

'EXECUTE'

'ADPROJDISPLAY'

207

13. Specific Applications

Note the use of the RC variable to check whether the scaling operation

succeeded or not—this and other commands in ADpro can fail due to

lack of memory. The OKAY1 command puts up a small requester with

the given message, ideal for reporting errors in this way. EXECUTE

recomputes the new graphic after the scaling operation, and

ADPROJDISPLAY shows the picture on the screen.

Digi-Paint 3

NewTek

Commands

Host address:

Added commands:

Macro support:

ARexx applications:

"DigiPaint" (or name used to run program)

161 (Mostly direct user-interface equivalents)
None

Image processing from an external host;

program-controlled drawing; program-

controlled titling

Digi-Paint 3 (DigiPaint) has a rather unusual ARexx interface: all of

the commands are oriented to operating the user interface controls,
but there is no support for executing macros from within the

program! This doesn't prevent you from defining scripts to perform

common operations within the program, but it does make using them

less convenient. You'll have to switch to the Workbench screen and

type an 'RX' command into a CLI window every time you wish to

execute a script.

All ARexx commands are four-character codes (referred to as "action

codes" in the DigiPaint manual) that are case-sensitive, with an upper

case character followed by three in lower case. The case-sensitivity

forces the use of quotes around the commands in your scripts, a

practice which is generally recommended anyway. The codes can also

be used without ARexx at all, using the "Hey" program provided on

the DigiPaint disk. A demonstration on the DigiPaint disk provided is

in the form of an AmigaDOS script, and consists of a call to the Hey

program for each command. Converting 'Hey7 scripts to ARexx scripts

involves putting quotes around the commands, removing excess text,

and changing the format of comments.

208

Graphics

Interface The ARexx interface is quite straightforward, with each of the

discussion commands directly mimicking a control that could be operated

manually. Changes to the drawing are done by controlling the mouse

using the Move, Pend (Pen Down), and Penu (Pen up) commands.

You can think of DigiPaint ARexx scripts as automatic hands, pushing

the right buttons and moving and clicking the mouse to achieve the

desired effects. This can simplify thinking through your programs,

since you just have to translate your manual operations to

commands. On the other hand, more operations are often involved

than would be the case with a more conventional command interface;

loading a picture file, for example, is a five-step procedure.

Host address Another slight idiosyncrasy is the host address of the program, which

is not fixed, but is always the same as the name used to run the

program. This can cause a problem if you've copied the DigiPaint

program with the CLI Copy command, since file names are not case-

sensitive, but host addresses are. A more probable cause of trouble is

running DigiPaint from the CLI by typing its name all in lower case,

then trying to access it as 'DigiPaint' when the host address is really

'digipainf. The actual host address is shown in the bottom left corner

of the DigiPaint menu area. It is normally TDigiPainf, the name of the

program on the release disk.

One way to avoid having to worry about this problem is to use the

following lines to replace the usual ADDRESS "DigiPaint11 instruction:

dgp = find (upper (show Cp1)),1 DIGIPAINT ■)

address value subword(show('p'), dgp, 1)

Since there is no convenient way to execute macros directly from the

DigiPaint user interface, you will probably not create many short

ARexx macros as shortcuts for common operations. Probably the best

use for the rather extensive ARexx interface in the program (other

than demonstrations to show off DigiPaint itself!) is using DigiPaint as

an external image processor. This usage, similar to the way ADPro can

be used (see previous section), is ideal when using an ARexx macro-

supporting graphics program that lacks some of the image processing

capabilities that DigiPaint has.

Example: As an example, the following script uses DigiPaint to blend two
picture pictures together, then saves the result as a third picture file. It can be
blending used as a stand-alone program with the following CLI command:

Shell> rx DGPblend Filel File2 Outfile

'Filer and 'File2' must be the file names of two HAM-mode IFF
picture files, and 'Outfile' will be used as the name of the resulting

Using ARexx

and

Digi-Paint3

209

13. Specific Applications

picture. This picture will appear as a sort of 'multiple exposure' of the

two input pictures, overlaying one on the other as if it were a

translucent overlay. (The palette is taken from the first picture.) The

script could easily be called from another graphics program that lacked

blending capabilities, and added as a macro called 'blend'. DigiPaint

would have to be running for it to work, of course, and the computer

will need enough memory available to support this. The script could

be made to run DigiPaint if it was not already up at the time, in the

same way "EThes.rexx" runs the ET program (see Electric Thesaurus).

/* DGPBlend.rexx: blend two HAM pictures and save */

parse arg fnamel fname2 outfile .

address "DigiPaint"

say "Blending pictures with Digi-Paint 3..."

■Aoff' /* all modes off */

/* 'Frbx' */ /* show DigiPaint screen */

/* load first picture

V
say ' Loading' fnamel

'Fnam'fnamel /* load name */

•Load1 /* load requester */

'Okls' /* okay to load */

■Pfil1 /* palette from file */

•Oklo1 /* continue load */

/* load second picture as brush

*/
say 'Loading' fname2

'Fnam'fname2 /* load name */

'Lobr' /* load brush */

'Okls' /* okay to load */

say 'Blending pictures...'

/* set blend controls

*/
•Hvof' /* 2-way blend off */

•Midc1 /* center blend, middle (50%) position */

'Mide' /* edge blend, middle (50%) position */

/* stamp down brush on page

*/
'Pend' 160 100 /* Pen down at center */

'Dotb' /* back to single-dot brush */

/* save resulting picture

*/
say 'Saving' outfile

1 Fnam'outfile /* picture name */

'Save' /* save requester */

'Okls' /* okay to save */

210

Graphics

■Babx1 /* push DigiPaint screen to back */

say 'Completed. Display "'outfile111 to see result.'

Test the above script using the images provided on the DigiPaint disk

("PaintBench"). With the DigiPaint program running (push its screen

to the back), type the following command at a CLI/Shell window (on

one line):

Shell> rx DGPblend PaintBench:Images/Fashion

PaintBench:Images/Lady ram:blend.pic

You should be forewarned that this procedure will require a lot of

memory to complete, and may not work on systems with less than

one megabyte. You can reduce memory requirements somewhat by

saving the final image on a device other than /RAM:/.

The script will report its progress to the CLI, and create the blended

picture for you (saved as "ramrblend.pic") without showing the

process in action. If you wish to see the DigiPaint screen as it happens,

change the script by removing the comment characters around the

Trbx' command in line 9.

To use this script as a macro from another program, you'll have to be

able to supply the filename arguments; not all programs allow this.

Another approach would be to use fixed file names, and always save

and use those specific names for the conversion process.

Other DigiPainfs advanced graphics capabilities coupled with its text

applications features make it an excellent tool for creating title screens for

presentations or output to video. Creating these screens from

externally-loaded text using ARexx scripts could allow you to make

many more screens than would be practical by hand. This is an

excellent approach for displaying credits, information, interactive
storybooks, etc.

211

13. Specific Applications

IntroCAD Plus

Progressive Peripherals and Software

Added

commands

Host address:

Added commands:

Macro support:

ARexx applications:

"ICAD"

50 menu commands; 35 option settings;

mouse control

Command console; access through native

scripts; execute native scripts by cursor and

function keys or by name.

Program-generated drawings; numerical

interface to drawing creation; some use as

key-driven macros.

IntroCAD Plus (IntroCAD) uses ARexx as a fundamental component

of the package, and integrates macros as a kind of command language

that can be typed at a special console window. This provides a

powerful programmable, numeric command-driven interface that can

work in parallel with the mouse and menu graphical user interface. In

addition, IntroCAD supports its own scripts that do not require ARexx;

these can call ARexx scripts, however, adding another level of ARexx

integration. Since separate scripts are invoked every time you press a

cursor key or function key, you can customize each of these actions

with your own ARexx macros.

The ARexx commands in IntroCAD work slightly differently than in

most other programs. Most features of the program are accessed by

simply specifying a menu selection, using a somewhat unusual

command syntax. For example, to place text in your drawing, you

would begin by selecting the Text item in the Draw menu as follows:

address 'ICAD1

1/draw/text'

Text is entered (when in text mode) using the '$' command, like this:

string = 'Text to be entered in drawing1

1 $'string

Putting the command in quotes ensures that ARexx does not try to

interpret it, but simply passes it on to the ICAD host address. (The host

address must be specified, even for macros executed from within

IntroCAD.)

212

Graphics

Calling ARexx

scripts

Key-driven

macros

Since many features can be accessed using menu commands, there are

not a lot of new commands to learn; simply select the same menu

items you would if you were using the program manually.

To move the mouse and click the left mouse button at a specific point

on the screen, you simply use a pair of coordinates followed by an
exclamation-point character, like this:

1.0 0.51!'

Another category of commands are the 'sef commands used to control

a number of options. These begin with an asterisk, but use more

conventional keywords to choose the settings. There are about 35 of

these commands, some of them having a number of sub-options, also
specified by keywords.

ARexx scripts are expected to be in the REXX: directory, and end with

the prefix '.irx'. Some conventions regarding comments and error
handling are specified in the IntroCAD manual; if your scripts adhere

to these conventions, they will work better as commands tailored for
the IntroCAD environment.

IntroCAD provides a command console that is similar to a CLI or

Shell in AmigaDOS, but provides direct access to IntroCAD's
command language. Anything you type at the console is interpreted as

a script-style command, and typing the name of an ARexx script causes

that script to be executed. For example, typing the following into the
IntroCAD console:

box 1 2 3 4

Will execute the ARexx script 'rexx:box.irx' and pass it the parameters
given. This script simply draws a box of a given size and position, but

many more complex scripts are provided. Accessing your own

custom-written scripts is done in the same way.

Every cursor key and function key, along with the ALT, SHIFT, and

CTRL key qualifiers, are bound to an IntroCAD script file. IntroCAD
scripts do not themselves use ARexx commands, but can invoke
ARexx scripts by name. IntroCAD scripts are in a separate directory

from the ARexx scripts, and end in the suffix '.is'. They are bound to

the appropriate key by their names, e.g. "Fl.is", //Shift-up_arrow.is//,
etc. Invoking an ARexx macro with a special key involves creating the

ARexx script (e.g. 'rexx:script.irx'), and calling that script from the
IntroCAD macro (e.g. 'is_dir/Fl.is'). The directory that IntroCAD
searches for its scgpt files can be set by the '*is_dir/ command, from
the console or within a script.

213

13. Specific Applications

Interface Because of the way ARexx and IntroCAD script commands are applied

discussion to the drawing, ARexx macros are of limited value for editing—as

opposed to creating—a drawing. For example, there is no way to

program something like "double the size of selected object", since

there is no such thing as a "selected object"; moreover, such

operations are normally done via the edit menu, which cannot be

accessed from script commands.

The real benefit of using scripts—and it is a significant one—is in

program-generated drawings. Complicated shapes can often be created

with relatively simple scripts, but could not be easily or accurately

done by hand. The IntroCAD disk provides examples of such ARexx

scripts, such as a 'spirograph' toy simulation. In real applications,

complex grid networks or repetitive patterns would be ideal

candidates for scripts.

Another good use of scripts is numerical creation and placement of

objects using commands typed at the console window. The simple

'box' example shown above illustrates this: if you need to create a box

at precisely defined numeric coordinates (like 4 3/16 in.), you can

simply type the value '4+3/16' as an argument to the BOX command.

Contrast this with the manual method of calculating the value in

inches, zooming in tightly, and trying to accurately position the

mouse by hand while watching the coordinate display.

Things to watch IntroCAD's ARexx support seems geared to 'power users', and not all

out for of its intricacies are immediately apparent. Here are a few pointers:

• The console window (select Script/Console from the Project

menu) uses the ConMan console handler by ARexx author

William Hawes. Unless you have ConMan installed, the console

window will not open. (ConMan is provided on the IntroCAD

disk.)

• You'll have to copy the '.irx' scripts from IntroCAD's 'rexx'

directory to your system REXX: directory, or reassign REXX: to

IntroCAD's 'rexx' directory. You can then access these by typing

their name at the console (type 'help <scriptname>' for usage

information).

• Many of the provided scripts assume that the ARexx libraries

'rexxmathlib' and 'rexxsupporf are available. You can provide

these by using the RXLIB program:

Shell> RXLIB rexxmathlib.library 0 -30

Shell> RXLIB rexxsupport.library 0 -30

• Use quotes around the IntroCAD commands in ARexx scripts,

but not in the '.is' scripts.

214

Multimedia/Hypermedia

Multimedia/Hypermedia

CanDo

While the first three products in this category are concerned with the

interactive display of a variety of different formats of visual data, the

similarity ends there. There may be a small amount of overlap for

some applications, but each program has its specialty, and takes

advantage of ARexx in a different way. Just to clarify the differences:

CanDo (Inovatronics) is ideal for creating applications yourself,

without learning a lot of programming. HyperBook (Gold Disk) is

optimized for direct use, keeping track of notes, pictures and everyday

information. And Commodore's AmigaVision is well-suited to

producing the kind of interactive multimedia presentations you

might find at an information kiosk.

Before continuing, a final prefatory remark is in order. HyperBook

was designed and created by the authors of this book. Despite this, we

hope that you will find no evidence of bias in the discussion that

follows. On the other hand, it should come as no surprise if the ARexx

support in HyperBook seems extensive, given the authors'

preoccupation with the language.

Inovatronics, Inc.

Host address: User-definable

Added commands: User-definable

Macro support: None

ARexx applications: ARexx support in CanDo-based applications;

user interfaces to control other ARexx

command hosts

CanDo is an applications generator, and functions as a graphical

interface to a programming language. You are essentially writing a

program—in an easy, graphical way—when you use CanDo. CanDo

uses its own script language, and ARexx scripts cannot be used instead.

CanDo doesn't support ARexx as a macro language: it does not run

ARexx macros, and it adds no ARexx commands of its own. Instead,

CanDo allows you to put your own ARexx support in the applications

you create.

215

33. Specific Applications

Sending

commands

Receiving To allow your CanDo application to receive commands, you must first

commands establish the port name (host address) to use. This is done with the

'ListenTo' CanDo script-language command. This is usually done

initially in a card's attachment script. Once this has been done, ARexx

commands are added to your application by creating ARexx objects.

Each of these objects specifies the command they will respond to, and

the script to be executed when that command arrives at the current

TistenTo' port. The script for an ARexx object can perform any action

required, and can find any parameters passed along with the

command through the special system variable 'TheMessage'. By

adding as many ARexx objects as are required, you can create a full-

featured ARexx host as a CanDo application. The host's commands

could be sent from RX at a CLI, or from an ARexx macro being

executed by any other program.

CanDo automatically replies to messages with a return code of 0,

indicating no error. CanDo version 1.5 adds a new command,

'ReplyARexxWith'. This lets you specify the error code and/or the

result to return for any given command.

When you use any ARexx command provided by a host program, you

are sending a message to the host's ARexx port. Before sending

messages from a CanDo script, the port name must be established with

the 'SpeakTo' CanDo command. This is analogous to using ADDRESS

in an ARexx script. After that, commands are sent to that host address

with the 'SendMessage' command. You can find the error return code

(what would be RC in an ARexx script) using the system variable

'MessageErrorCode'. You can find the result from the command

(usually RESULT in an ARexx script) from the variable
'MessageReturned'.

Version 1.5 of CanDo adds the capability to send a message without

waiting for results, using the ASYNC option to SendMessage. Another

option, NORESULTS, will send the message without requesting

results from the host (like running an ARexx script with no OPTIONS
RESULTS instruction).

Summary CanDo commands for ARexx support:

ListenTo Establish port (host address) for receiving commands
SendMessage Send command to host address

SpeakTo Establish port for sending commands (like ARexx

ADDRESS)

Commands are handled by ARexx objects, and optionally replied
using the ReplyARexx command.

216

Multimedia/Hypermedia

HyperBook

Gold Disk

Host address:

Added commands:

Macro support:

ARexx applications:

"HBJREXX" (not used in most macros; works

as function host)

137 (implemented as added ARexx functions)

Built-in storage and editing of macros; macros

executed by selecting from list, by object

'actions', or by function keys

Macros for defining common operations;

creating applications; user interface for

controlling other hosts

HyperBook is a hypermedia program for organizing graphical and

other information in everyday use. It uses ARexx as its internal script

language, and with ARexx macros HyperBook can be used as a simple

applications generator. ARexx can also be used to help create very

large or complex documents (hyperbooks) that would be time-

consuming to produce otherwise.

HyperBook's ARexx interface is different from most others in one

important respect: Most ARexx-supporting software functions as a

command host, adding commands to ARexx when its port is

ADDRESSed. HyperBook is instead a function host, adding functions

to the ARexx language that are available to any ARexx script while the

HyperBook program is operating. Rather than give a command and

then use the RESULT variable in an expression, a function call can be

used in an expression directly. The functions provided allow the

manipulation of objects, control over most program facilities, and

additional user input and output mechanisms that are not available

from the regular user interface.

HyperBook's special functions and the way they work together form a

language called /HML/ (Hyperbook Macro Language). Programming in

HML is largely programming in ARexx, but there are quite a number

of functions to learn and a few new concepts to grasp. One of these is

'ObjNums', the codes by which objects are uniquely identified.

HyperBook macros do not need to be stored as separate scripts, but are

created with a built-in text editor and accessed from a list by name. The

macros are stored in memory, and are saved along with the project

they apply to. Macros can be run as 'actions' by clicking on objects, or

by selecting a macro directly from the list. There are also optional

specially-named macros (starting with T1J, 'F2_', etc.) that can be run

217

13. Specific Applications

by pressing right-Amiga and a function key. Any macro can be called
as a function (with arguments) by other macros. Single ARexx

commands—which may invoke other macros as function calls—may

be typed into a special text gadget, or may be executed as the result of
an object's action.

Macros as HyperBook macros can be useful as an aid to the creation and layout of

design tools pages. Using the HyperBook functions to position and size objects,
macros can accomplish many layout tasks numerically that might be

tedious or inaccurate to do by moving and clicking with the mouse.

An example of such a utility is 'SetObjSize' in the Macros directory. It

lets you match the size of one object on the page to the size of any

other object, by clicking on each of the two objects in turn. When

executed, the macro prompts the user with messages displayed in the

title bar.

/* SetObjSize - Set size of one object to match size

of another. The «®"character indicates that a

line should be entered as a single line

V
row = getclickrow('Click on the object whose size you *»"

want t o change•)

col = getcolumnO

obi = getobjectat(col, row)

if length(obi) > 0 then do

row = getclickrow('Click on the object whose «■

size you want to match')
col = getcolumnO

ob2 = getobjectat(col, row)

if length(ob2) > 0 then

call scaletosize(obl, getwidth(ob2),*&

getheight(ob2))

end

You can see the use of HyperBook functions 'getclickrow', 'getcolumn',

'getobjectat', 'scaletosize', 'getwidth', and 'getheight7. The call to

'scaletosize' near the end of the macro shows how the result of a

function may be used as part of an expression passed to another

function.

Other utility-type macros are designed to be used as functions that are

called from other macros and passed parameters. Some of these, such

as TileToLisf and 'SaveListText', provide functions that are not

available through other means. In this way, ARexx macros can be used

to add custom features that HyperBook lacks.

Macros are also good for repetitive tasks like applying a change to a

large number of objects or pages. If you just created a 200-page

hyperbook, for example, and decide that you wish to change the

218

Multimedia/Hypermedia

background color of every page, it would be quite a job to change each

one manually. On the other hand, a macro to do the job would be as

simple as this:

/* change background of all pages to blue (pen 3) */

do page=l to nurapagesO

call setbackground(page':', 3)

end

Macros as An entirely different use for ARexx macros in HyperBook is as a way

'smarts' to program your hyperbooks to be 'smarter' than simple object actions

alone would allow. Since clicking on an object can execute any macro,

objects can be made to perform any complex action required. A few

applications, like an appointment calendar, daily diary, address book,

and a calculator have been created in HyperBook using macros in this

way. HyperBook is not an applications generator like CanDo, but with

the use of ARexx scripts, it can be used to implement some

applications.

Learning HML The HyperBook Macro Language is quite extensive, and the best way

to learn how to use it is by seeing examples. The 'ARexx.hb' hyperbook

included on the HyperBook Samples disk shows an example of a short

script for each function, and lets you run the example script by clicking

on the note containing the text. This is done by using the following

very short macro as the action of a Note or Button:

/* ExecuteText - Run text of initiating note as a

macro. */

interpret readnotetext(initiator(),0,-1)

The ExecuteText macro is useful for experimenting with the language,

since you can just modify a program directly on a Note on the page,

then simply click on it to see the results.

Things to watch

out for

ARexx is normally used by macros from within HyperBook, not

externally using HyperBook as a host program. If you do wish to

use HyperBook's functions using RX or from another program,

use the prefix 'HML_' before every function name. This is to

avoid possible name collisions with non-HyperBook functions.

ARexx only works in HyperBook when the program is in its full

screen state. In 'tiny7 mode, ARexx commands are not processed,

and any attempt to use a function in this mode will liold off the

caller until HyperBook is made full-size again. (Version 1.0 of

HyperBook also has the undesirable behavior of causing this to

happen with any unknown function. When experimenting with

functions externally, make sure that HyperBook is in full-screen

state.)

219

13. Specific Applications

r

Project

V

Page Connands Preferences

Run nacro

Run connand

Create nacro

Delete nacro

Ed i t nacro

Load nacro
Save nacro

Bfppf

H

J

Figure 13-2: HyperBook's ARexx menu

AmigaVision

Adding ARexx

scripts

Commodore

Host address:

Added commands:

Macro support:

ARexx applications:

"AV.REXX"

3 (exchange data with AmigaVision variables)

Execute ARexx scripts or commands within a
'flow7

Control of external host from an

AmigaVision flow

AmigaVision is in some ways similar to CanDo, since it lets you create
programs (called 'flows') by using a graphical user interface. Like
CanDo, AmigaVision does not support ARexx as a macro language to
control the user interface, but allows ARexx support to be added to the
user's application. While CanDo applications can be made to receive

or send commands, AmigaVision only allows you to run macros. For
the most part, this means just standard ARexx programming and
sending commands to other hosts. ARexx support in AmigaVision is
intended as a way to extend the abilities of your presentation by
linking with other ARexx host programs.

ARexx is handled through the Execute icon, which appears as a disk in
the main icons menu. When you select 'ARexx Appl/ in an Execute
icon's editor window, you can enter the name of a script to be

executed, or type an ARexx command directly as a string file (in
quotes). The default extension for script names is '.av', but of course
any file name for a script may be used. You can also specify the
AmigaVision variable names used for error returns from commands
(RC in ARexx), and for results from commands (RESULT in ARexx).

220

Multimedia/Hypermedia

Example: device A good example of using ARexx in AmigaVision is controlling some

remote control audio-visual device like a VCR or Laser Disc player through infrared

remote control. The ARexx-controlled IllumiLink from GeoDesic

publications (see the IllumiLink entry in this section) will take care of

the infrared magic for us, so all we need to do is send ARexx

commands to its 'AIR' host program. By creating an Execute icon that

sends a command to AIR, you can send remote control commands

from an AmigaVision flow (providing the IllumiLink hardware is

connected and the AIR program is running). If your current 'AIR

window' responds to the PLAY command, for example, you could

send this command with the following string file in an AmigaVision

Execute window:

11 address 'AIR' ' output ir<PLAY> ■ "

The surrounding quotes are important to distinguish the command as

direct ARexx code and not a call to a script file. This works in exactly

the same way as the arguments to the RX program.

Using a Wait Mouse icon and objects to define various buttons on the

screen, you could easily create an AmigaVision on-screen remote

control panel for an IllumiLink-controlled device. Simply use a

number of If-Else icons in a loop under the Wait Mouse, each

checking for a particular response and performing the appropriate

Execute icon when it is received. (See picture.)

RnigaVision Huthoning Systen <English>

Figure 13-3: AmigaVision Execute window showing an ARexx

command to operate a VCR by remote using the IllumiLink 'AIR'
program. The flow shown in the left window creates an on-screen

remote control and responds to each button press with an Execute icon

111

13. Specific Applications

Exchanging data If you want to do more with your AmigaVision flow than simply send

commands, you can use the SETVAR and GETVAR ARexx

commands to modify or read AmigaVision variables from an ARexx

script. This gives you direct communication between an ARexx script

and an AmigaVision flow. ARexx can read data from an AmigaVision

database, look up or process information based on that data, and

return results in other variables that the AmigaVision flow can read.

ShowMaker

Gold Disk Inc.

Controlling

ShowMaker

with ARexx

Host Address:

Added commands:

Macro support:

ARexx applications:

"ShowMakerArexx.port"
7

Execute ARexx script or command at any

point in a presentation

Starting ShowMaker presentations under

external control; Controlling external hosts in

synchronization with a presentation

ShowMaker is a presentation program that uses ARexx in two distinct
ways: it can receive commands to control the display of a presentation,
and it can send commands to other hosts at specific times while a
presentation is playing.

ShowMaker makes use of a small set of commands to load, start, stop
and pause a presentation. This is essential when using ShowMaker as
a 'player' to add its presentation capabilities to other programs.

Using these commands, a simple ARexx macro could be attached to a
'button' on a HyperBook page, for example. Clicking on the button
would then display animation and music—capabilities that
HyperBook lacks—via ShowMaker. This would simply involve
running ShowMaker in the background while HyperBook had its
screen up front. The same technique could be used with AmigaVision
or CanDo applications, or with any such program that can send ARexx
commands under user control.

Like Bars & Pipes, ShowMaker supports a 'preload' command to
prepare a presentation for immediate playback at the required time.

This lets you load the presentation while the user is reading text or
viewing a still graphic, then jump into an animation or song without
any perceptible delay.

222

Multimedia/Hypermedia

Sending ARexx ShowMaker's other form of ARexx support is analogous to that in

commands AmigaVision. By using an ARexx 'event type', ShowMaker allows the

from execution of an ARexx command or script at a precise point in the

ShowMaker 'timeline' of a presentation.

The application for this is to further extend ShowMaker's display

abilities by linking to another host that can perform any display or

sound tasks that may be required. Examples might be playing music

through an ARexx-controlled MIDI player like Bars & Pipes, using

advanced display hardware such as 24-bit color graphics boards

through Art Department Professional, or sending a remote control

command to a CD player using IllumiLink (covered next).

Both uses of ARexx may be linked together to create a multi-level

presentation, starting with an interactive program like CanDo,

HyperBook or AmigaVision, then calling ShowMaker to display the

presentation, which in turn calls other hosts to provide additional

audio/visual control.

This is the kind of multitasking control that ARexx proponents

envisaged from the outset, and with currently available software

applications, it is now a practical reality.

CanDo

AmigaVision

HyperBook

Custom applications

User Interface

ARexx

ShowMaker Presentation

ARexx

IllumiLink (infrared)

Bars & Pipes (MIDI)

Art Dept. Pro (graphics)

BSR X10 (AC power control)
Custom device controllers

Device Control

Figure 13-4: Control Hierarchy

223

13. Specific Applications

niumilink

Geodesic Publications

Host Address:

Added commands:

Macro support:

ARexx applications:

"AIR"

28 plus user-defined commands

Link ARexx commands and scripts to any key

or input event

Controlling remote-controlled devices via

ARexx; computer control from cordless

telephone

The IllumiLink is a small hardware device that sends and receives

infrared signals from a remote control unit. The IllumiLink software

provided allows sampling and controlled playback of these signals.

Playback may be controlled directly through custom-designed user
interfaces or by ARexx commands.

Another user of the IllumiLink is in decoding touchtone signals from

a cordless telephone. By plugging the telephone base unit into the

IllumiLink, you can control the computer and send ARexx commands

by pressing keys on the remote telephone handset.

Infrared remote Once you've sampled a remote control's infrared signals with the

control sampler program and set up an on-screen remote control using the

'AIR' program, you can send ARexx commands to control the device.

All of the setup information is saved in special IFF files, so the device

interface can be set up in the future by double-clicking an icon or

giving a CLI command. If you are using AIR from ARexx only and

don't require on-screen controls, it can shrink and hide its window to
get it out of the way.

The names you choose for each of the buttons on the remote—

common choices might be 'PLAY', 'STOP', 'PAUSE', etc.—are the

names you send along with the ARexx commands to activate the

controls.

Any buttons available on the remote unit can be programmed, and

any names might be used: 'Back_One_Song' and 'ForwardJScan' are

CD player examples suggested in the IllumiLink manual, for example.

224

Database/Scheduling

SuperBase Professional 4 (SBpro) is a 'high-end' database application

and incorporates DML, a Database Management Language that allows

complete control of data and the user interface to a database.

ARexx communication can work both ways in SBPro: you can access

the data through DML commands in external scripts run via RX or

another host, or you can call ARexx scripts from within a DML

program. In other words, SBpro can be controlled by other programs

or can control other programs through ARexx commands.

External control SBPro's language, DML, provides access to all database functions and

of SBpro is also a complete programming language with most or all of the

features found in ARexx. For that reason, ARexx scripts are not

required so much as macros to be used from within the program, since

most operations can be just as easily programmed using the native

DML.

Instead, ARexx can be used from another host program to extract data

from the currently opened SBpro database. Since complete access to all

DML commands and functions is available to ARexx, opening new

files, sorting on new indexes and modifying records are all examples

of operations that can be performed.

Using DML commands from ARexx is not as convenient as

programming in pure ARexx or pure DML. Giving DML commands is

straightforward: they are simply given as host commands in the usual

way. The difficulty comes in obtaining results from DML: the contents

of fields in a database record, results of expressions and special

variables. This is done by specifying OPTIONS RESULTS in ARexx,

then simply giving the expression on its own. Before using another

DML command, results have to be turned off again.

The following script illustrates the above concepts. It assumes that the

'Clients' database from the SBPro examples disk is currently opened,

using its Form file called 'stkc'. The script will read and display the

name (first and last) for each client record in the database, along with

the 'Net Due' amount for each one.

/* SuperBase Professional 4 ARexx example

List data from currently opened "CLIENTS" database

*/
address lSBpro4l

'SELECT FIRST1

options results

1RECCOUNT("CLIENTS")■

numrecs=result

do numrecs

options results

229

13. Specific Applications

1Firstname.CLIENTS'

first=result

1Lastname.CLIENTS•

last=result

'STR$(Net_Due.CLIENTS, "-9,999,999.00")•
due=result

say left(first last, 40) due

options no results

•SELECT NEXT1

end

As you can see, issuing the DML command 'SELECT FIRST' was done

as a simple host command in the usual way, after the 'SBpro' port had

been addressed.

The next step—reading the number of records in the current file—was

accomplished by setting OPTIONS RESULTS and sending a DML

expression as a command. The expression was simply a call to DML's

RECCOUNT function. Since results were requested, DML interpreted

the host command as an expression rather than a DML command.

The result from the expression is returned in the ARexx RESULT
variable.

Once in the loop, reading the contents of database fields is a simple

matter of referring to the special DML variable names. The call to

'STR$' is a DML string function and is used in the above script to

format a numeric value. ARexx functions and variables can be

combined with the use of DML functions and variables in this way,

creating a 'super-language' consisting of the combination of

capabilities of both languages.

Before sending the DML 'SELECT NEXT' command to select the next

record in the database, the script must turn off the RESULT option.

The ARexx command OPTIONS NO RESULTS turns off the result

option without affecting any of the other options. The OPTIONS

instruction by itself would also turn off results, but would turn off or

reset all other options as well. The NO keyword was added in ARexx

version 1.10 to allow individual control of options.

Using ARexx The above example showed you how to use DML in an ARexx script;

from SBpro it is also possible to use ARexx in a DML program.

Using DML's CALL command, you can send an ARexx command to

any host address; As an example, if you wanted to dial the telephone

number of a selected record in the currently open 'clients' database,

you could pass the number to an ARexx-controlled speed dialer

(Gramma Software's FreD) using a DML command like this:

CALL Mrexx_fredM EXECUTE "DIAL " + Telephone.CLIENTS

230

Database/Scheduling

The first part of the CALL is equivalent to an ADDRESS instruction in

an ARexx script, and the part after the EXECUTE keyword is the actual

host command sent to the specified host address. In this case, we send

a T>IAL' command to FreD (the host) using a DML string expression

containing the telephone number from the selected record.

By using the RETURN and TO keywords with the CALL command,

you can obtain results from a host and put them into any DML

variable or database field. This is equivalent to specifying OPTIONS

RESULTS in an ARexx script, sending a command to a specified host,

then examining the RESULT variable.

As an example, let's access the 'FreD' host again, but this time we'll

look up a name to see if it's in the currently loaded telephone list.

This might be used in a database application to see if a client's

telephone number is already on file in the speed dialer, and add it

automatically to the database if it is.

CALL "rexx_fredM EXECUTE "CLEAR"

name$=Firstname.CLIENTS + " " + Lastname.CLIENTS

CALL "rexx_fred" EXECUTE "MATCH" name$

CALL "rexx_fred" RETURN "GET" TO fred$

This sends a CLEAR and MATCH command to the TreD' host in the

usual way, then sends a GET command and requests results. Note the

alternate CALL syntax required to do this. The result—consisting of

the person's name, number and a note separated by linefeed

characters—is placed in the DML string variable 'fred$', where the

telephone number can be parsed out. If the entry was not found, the

string will contain three newlines alone. All of this information is

specific to the FreD program, which is discussed later in this chapter.

The above example shows how ARexx can be used as the 'glue' that

binds together different applications running at the same time. Even

though no ARexx programming was involved at all—the above script

is an SBPro DML program executing FreD commands—ARexx was

used for its standardized inter-process communications facilities.

Executing Short ARexx scripts can be performed by a number of separate CALL

ARexx scripts in commands as in the above example. To run a script file, you simply

SBPro use the CALL command with the TIEXX' host address: recall that a
command sent to ARexx's own REXX port is taken as the name of a

script to be executed. This script will usually be in the TIEXX:' directory

and have a /.rexx/ filename extension, but the complete pathname of
any file may be specified. For example:

CALL "REXX" EXECUTE "myscript"

231

23. Specific Applications

This is equivalent to typing 'rx myscript/ in a Shell window, and will

run the ARexx script called 'rexx:myscript.rexx' if one exists, according
to the usual rules.

FreD Speed-Dialer

Gramma Software

Host address

Host Address:

Added commands:

Macro support:

ARexx applications:

"rexx_????" (based on data file used)

13

Clicking right mouse button over data runs

standard script with arguments

Accessing telephone database from other

applications; Dialing any number from

another application; slight support for

extending program's features with a macro

FreD is a relatively small utility program that uses ARexx to allow

external programs to control its list of names, telephone numbers and

short notes. It has a small number of ARexx commands to allow

looking up and selecting entries in the list, dialing numbers, and a few

other functions.

FreD's host address is not fixed, but depends on the current data file in

use. The host address is always nine characters long and begins with

'rexxj. The remaining four characters are the first characters of the

data file name. Scripts run externally via RX or from another

application must be made to work with a specific data file. In the

examples given here, we will assume the data file name begins with

'fred' (all in lower case).

If you use several different data files with FreD, it is a good idea to

adopt this naming convention to allow universal ARexx access: FreD

data files all begin with 'fredj as in 'fred_personal', 'fred_business',

etc. This way, you can always assume /rexx_fred/ as the host address

for any scripts you write.

Using another name prefix for a data file can then be used as a sort of

security measure, since the scripts using the standard host name won't

be able to communicate with FreD when it is using that data file.

232

Database/Scheduling

Macro feature

Database

locking

Full macro capabilities are not provided, but FreD will execute the

script called 'fred.rexx' (in the REXX: directory) whenever the user

clicks the right mouse button over an entry in the telephone list. FreD

passes information about the selected entry as well as other data to the

script as an argument.

Unlike many applications, FreD does not set up the host address

automatically when invoking the script. It does, however, pass the

current port name as one of the pieces of information in the argument

to the script, so an ADDRESS instruction along with the VALUE

keyword can be used to set the host address from the data parsed from

the argument.

The ARexx script could then go on to send commands to FreD, or—

more likely—simply use the name and telephone data to send to

another host or use it for some other purpose. The 'fred.rexx' example

included on the FreD program disk runs a text editor and loads a file

specified by the first name of the clicked-upon entry.

In order to extract the pertinent information passed by FreD into

variables, your 'fred.rexx' script should parse the passed argument as

follows (on one line):

parse arg name 'Oa'x phone 'Oa'x note 'Oa'x port editor notedir

After this parse operation, the variables NAME, PHONE and NOTE

contain the data from the clicked-upon entry, PORT contains FreD's

current host address, and EDITOR and NOTEDIR are user-configured

options specifying text editor preferences and a directory to hold files

containing additional information pertaining to the current data file.

If the script needed to send commands to FreD, the following

ADDRESS instruction could be used:

address value port

Since FreD provides ARexx commands to modify as well as read the

telephone list data, it provides a method of locking' the data so that it

can only be accessed by one ARexx script at a time. When the LOCK

command is given, FreD returns a new host address to be used for

exclusive access to the data. Before completing, the script must give an

UNLOCK command to relinquish control to other scripts that may

want access to the data.

233

13. Specific Applications

Example: list

FreD entries

Compatible

programs

The following script 'listfred.rexx' shows the use of database locking

and a few of FreD's commands. It is designed to be used from a Shell

window with the RX program, and will display a formatted list of all

the entries in the currently loaded FreD data file, one per line.

The script assumes 'fred_rexx' as the host address, using the data file
naming convention proposed above.

/* list FreD entries */
options results

address 'rexx_fred'

'LOCK'

port=result

address value port

•CLEAR'

•REVERSE1 /* select all entries */

•GET1

do while result ~= 'OaOaOa'x

parse var result name 'Oa'x number 'Oa'x comment 'Oa'x

say left(name,30) left(number,15) left(comment,30)
•GET1

end

'CLEAR'

•UNLOCK1

Save the script as 'rexxrlistfred.rexx'. To use it, FreD must be running

either in its full-size or 'shrink' mode and contain some names and

phone numbers. From a Shell window, type the command:

Shell> rx listfred

You should see all the names, numbers and notes displayed on your

Shell console window.

FreD is one of a series of utilities from Gramma Software that support

ARexx. Other programs are Nag Plus, an appointment calendar-

schedule assistant, and Cal, a calendar program. Nag supports ARexx

in a similar way to FreD, using record locking and automatic running

of a script with arguments. Cal contains only four ARexx commands

used to load, save and print a calendar. (The fourth is QUIT.)

Since the programs make low demands on memory and can 'shrink'

their displays when not in use, they can all be run at the same time

and communicate with each other using ARexx commands. For

example, clicking on a Nag reminder to call Henry Smith could send

FreD commands to look him up and dial the number.

234

Business/Financial

Business/Financial

SuperPlan

Precision Software

SpreadSheet/Time Management/Business Graphics

Host Address:

Added commands:

Macro support:

ARexx applications:

"SpRexx"

Complete access to user interface: 65 'slash'

commands, 45 auto/macro commands, 60

graph commands, text/expression entry.

None

Stand-alone spreadsheet applications written

in ARexx; Use SuperPlan as a calculating

'engine' from another application;

Complicated spreadsheet manipulations

SuperPlan contains a vast number of features and capabilities, all of

which can be controlled through ARexx. As useful as ARexx control

in this program would be for programming common macros to help

while creating or editing a spreadsheet, the current version of the

program (1.06) does not provide a facility to run ARexx macros from

within the program. Because of this and the fact that SuperPlan's

native macro facilities are so convenient, ARexx scripts are not

suitable for quick operations to aid in spreadsheet development.

The lack of macro capabilities in SuperPlan means you'll have to run

ARexx scripts using RX or from another application that can run

ARexx scripts. Once you get the script going, however, SuperPlan's
ARexx support itself is extensive.

There are several ways to control SuperPlan from ARexx:

1) Since the program can be operated completely from the keyboard,
the user interface can be largely controlled by simply sending
keystrokes to SuperPlan as commands. This includes the entire
group of basic 'slash' commands, graph commands (entered with

a comma), '+' to enter an expression into a cell, '=' to go to a
specific cell, and others.

235

23. Specific Applications

Custom

spreadsheet

applications

2) SuperPlan has its own programming language using three-letter

commands beginning with a V. These commands are used when

defining 'autos' (sequences of commands assigned to any control-

key) and SuperPlan 'macros', which are entered into cells in the

spreadsheet and executed by cell reference. There are over forty of

these commands. Along with commands to control the user

interface and create a spreadsheet application, there are also

keyboard equivalents like cursor movements and the RETURN

key.

3) When ARexx is in OPTIONS RESULTS mode, commands sent to

SuperPlan are interpreted as spreadsheet cell references, and the

contents of the requested cell is returned in the ARexx RESULT

variable.

The first two methods above can be combined in a command string. In

fact, the '>ENT' command is used at the end of many direct keyboard

commands to simulate pressing the RETURN key. For example, to

move the cursor to a specified cell, you could use the cell goto

command. Within SuperPlan, this can be done by pressing '=' (goto),

typing a cell name and pressing RETURN. From ARexx, the following

command could be used to go to cell C3:

address •SpRexx' ■=C3 >ENT'

The '>ENT' is a macro-language command that simulates the ENTER

or RETURN key. The cursor keys, escape key and others can also be

simulated with '>' commands.

When using the key-equivalent commands only, operating SuperPlan

from ARexx is simply a matter of 'pressing the right keys,' a

simulation of using SuperPlan directly. This means you don't have to

learn any new commands to program SuperPlan in ARexx if you can

already use it from the keyboard.

Using some of SuperPlan's more advanced 'macro' commands can be

a bit more complicated. Some of these, however, are designed to give

SuperPlan's macro language basic capabilities like conditional

branching, subroutines, and other constructs that would be much

more convenient if programmed in ARexx. For this reason, there are

several macro commands like '>IFT' and '>SUB' that you would

probably never use in an ARexx script.

Other SuperPlan macro commands are designed for creating a custom

spreadsheet application, and let you redefine menus and key

operations, inhibit access to certain parts of the spreadsheet, and

completely take control over the entire user interface.

236

Business/Financial

By running SuperPlan from an ARexx macro (using ADDRESS

COMMAND) and using these commands, ARexx scripts can be used to

write stand-alone programs that use SuperPlan beneath the surface/

but present a bulletproof interface that automates standard operations

for a specific application.

Home Office Advantage

Gold Disk Inc.

Spreadsheet/Hat-file Database/Business Graphics

Host Address:

Added commands:

Macro support:

ARexx applications:

"Advantage"

13 basic commands including access to

predefined 'macros' which can access all

menu commands and keystrokes.

Execute ARexx script by name; double-dick

spreadsheet cell to execute attached script

Macros to automate spreadsheet editing

operations; access spreadsheet functions from

another program

Home Office Advantage (Advantage) has less direct ARexx support for

its commands than SuperPlan, but it has the macro support that

SuperPlan lacks. Not only can macros be run by filename, but a macro

can be 'attached' to any cell in the spreadsheet. An attached cell is

executed simply by double-clicking on the cell.

The small number of ARexx commands are for reading the contents

of the current cell, moving the cursor to a cell, and selecting cell

ranges. There is also a command to execute any named 'macro'—these

are not ARexx macros, but stored multiple key sequences and menu

selections. Since there are no ARexx commands to access most

operations, the 'Macro' command is the ARexx interface to complex

operations. The macro must be defined in Advantage by performing

the sequence of operations manually, then the macro can be executed

from an ARexx script. This is not as powerful as having direct ARexx

control of all features of the program, but it is a way to work around

the lack of ARexx commands in some situations.

237

13. Specific Applications

Idiosyncrasies On the subject of ARexx commands, Advantage has a unique syntax

for passing arguments. Commands that take arguments don't accept

them after the command as usual (which results in the message and

the arguments being passed along in the same message), but as

separate commands. For example, the 'SelectCell' commands takes the

name of a cell as an argument. To select cell Cl, for example, you

would use the following ARexx script:

/* select cell Al in Advantage */

address "Advantage"

"SelectCell"

"Al"

The reasons behind this unorthodox method of specifying arguments

are unclear, but the syntax can be made less visually confusing by

putting the arguments on the same line as the command separated by

a semicolon, i.e. "SelectCell11; "Al11. (The commands are shown in

mixed case for clarity, but they are not case-sensitive.)

Another thing to watch out for is that Advantage will not respond to

any ARexx commands until its ARexx port is activated with the

"ARexx ON" option in Advantage's preferences requester. Until this

has been done, all commands will return with an error code of 100.

Program Development

A number of program development tools are adopting ARexx 'hooks'

to provide an integrated programming environment. A common

approach is to link a text editor with a compiler or assembler in some

way, the goal being to allow editing, compiling, and error reporting

and correction to all take place within the text editor environment.

There are several excellent ARexx-supporting text editors, and some

integrated development environments with ARexx support. In this

section, we look at a representative example of such an environment,

C.A.P.E. for assembler programming.

For C programmers, Manx Aztec C 5.0 and SAS/Lattice C 5.10 are

covered only briefly—Manx because of its minimal ARexx support,

and SAS/C because the materials were received at the very last

moment before press time and too late for a detailed analysis. Future

editions of this book will no doubt provide coverage of these and

many new ARexx-supporting products in detail

238

Program Development

C.A.P.E. 68k Version 2.5

Inovatronics Inc.

Stand-alone

assembler

Assembler programming environment

Host address:

Added commands:

Macro support:

ARexx applications:

"CAPE"

All editor commands (over 60) and keystrokes

Execute macro by name, with arguments

Macros to automate editing sequences; macro

control of assembly/linking process

C.A.P.E. is an assembly-language programming system featuring an

integrated text editor/assembler. All features of the editor can be

controlled by keystrokes, menu items or ARexx macros. ARexx macros

simply feed keystrokes to the editor, which are then interpreted as if

they were typed from the keyboard. Since all input is done in this way

(there are no requesters or control panels required to access most

features), the editor can be completely controlled by macros. Assembly

of the current code in memory is one of these options, so assembly can

be controlled through ARexx macros as well.

ARexx macros are executed by specifying the script name with one

menu item or key sequence, and specifying arguments to the macro

with another. The macro is only invoked when the arguments are

specified, so invoking a different macro is a two-step operation.

Since all functions are accessed by keystrokes, many of them

involving control characters, CAPE macros are not filled with

commands in the usual style, but are filled with hexadecimal character

specifiers. To alleviate this confusion, a macro is supplied to store the

key sequences as aptly named 'clips' using SETCLIP; the commands

can then be invoked with the appropriate calls to GETCUP. This is still

a bit confusing, but better than using key codes alone.

If you prefer to use your own editor, you can use the CASM assembler,

which works from a CLI without bringing up a text editor. CASM has

an ARexx 'resident mode, where it will accept assembly commands

sent to its port (also called 'CAPE'). In this way, you can assemble files

using CASM directly from within any ARexx-supporting text editor.

When used in its regular 'master' mode, the CASM assembler can also

issue its own ARexx commands. There are assembler directives to get

values, data or source code from an ARexx script. This could be used

to assign various constants from environment variables or user input,

import data dynamically at assembly time, attach different code

239

13. Specific Applications

segments based on decisions made by an ARexx script, etc. Any of this

data could also be imported from an external host, allowing for

interesting possibilities such as importing graphics data directly from a

graphics program host at assembly time.

Other products

Manx Aztec C

5.0

SAS/C

Lattice C 5.10

The Aztec C compiler does not provide ARexx support per se, but can

provides a kind of simple liook' with an editor for error correction

that could use ARexx scripts as an interface.

Use of the compiler's 'qf or 'QuikFix' option will send error messages

to a file in a special format, then execute a specified command if errors

were encountered during compilation. This command is by default

used to run the 'Z' editor with a special option to read the compile

errors and allow cursor positioning to errors in the C source file.

Instead of running the Z editor, the RX program could be used to

execute an ARexx script. The script could control any ARexx-

supporting text editor, which could then read the error file and use the

information within it to provide direct access to the errors in the

source file. No such ARexx scripts are provided with this release of the

compiler, but there are probably quite a few developers working on

their own integrated systems using this feature right now.

SAS/C features a non-ARexx integrated environment between the

LSE text editor and the compiler. You can compile a source file directly

from memory, and errors will be displayed directly in the editor. You

can then correct errors to the source file, recompile, and continue the

cycle without leaving the text editor.

Where ARexx fits in is through the ARexx interface to the text editor.

Since the text editor is the master controller of the entire edit, compile,

and correct cycle, ARexx control of the editor allows script control of

the entire cycle as well. LSE's ARexx support was only added in the

latest SAS/C release, and is not documented in the manual. All editor

operations can be controlled with ARexx commands, including text

entry. LSE also allows ALT-function key sequences to run specially-

named ARexx scripts from disk, or can run any script by name.

240

SECTION IV

REFERENCE

14. Reference

Chapter 14

Reference

Preface

With 30 or so instructions, nearly 90 built-in functions, and 20-odd

more functions in the support library ('rexxsupport.library'), the

newcomer to ARexx is faced with an apparently unending supply of

new names to be learned, syntax to be mastered, concepts to be

absorbed. Even old hands may find they do not always remember

every function argument or mode name, and every subtlety of

behavior. We hope this Reference Section is of value to both groups,

and we have tried to make it useful in a number of ways.

The bulk of the section consists of an alphabetic listing of every

instruction, built-in function and support function, with a syntax

summary and brief description that should be enough to jog your

memory if you've met the keyword or function name before. Most of

the entries include example code, sometimes quite extensive, in one
of several forms:

• Complete scripts, that you can execute on your own system.

When space permits and the need arises, the output for these is

listed along with the script. Even in these cases, we feel that if

you're new to the language it's worth running the script yourself

to verify the output (though with some scripts you may get

different results on your own system). For your convenience, all

the scripts are included on the disk that accompanies the book.

• Sessions with the Dialog program listed in Chapter 5. These

sessions are interactive: the intention is that you will type in the

lines with the '->' prompt, and verify that the output is as

shown—and that you will explain to yourself the reason why
each expression you enter does what it does.

• Code examples, consisting of fragments of ARexx code to
demonstrate a particular point or technique. These won't work
on their own, but are meant to provide a foundation for applying
similar techniques in your own scripts.

243

14. Reference

• Complete functions, not runnable as scripts in themselves, but

capable of being included in your own scripts, and used as-is or

perhaps modified to suit your own purposes.

Many of the examples in the section assume the availability of

rexxsupport.library, and will not execute correctly unless you have

added it beforehand, for instance with:

Shell> rxlib rexxsupport.library 0 -30 0

All the entries have in addition a 'Discussion', sometimes quite

lengthy, that gives further syntax details, provides background

material on technical points, and in other ways enlarges the scope of

the treatment beyond what you might ordinarily expect in a

'Reference Section': where possible, we try to show not merely how,

but also why, and in what ways, a particular function or instruction is

used. In fact, some readers may find the section prosier than they

would like. To them, we say: The first time around, skim or browse,

and absorb what you need. After that, use the Reference Guide...

The Reference Guide

On the next several pages, every entry in the main body of the

Reference Section is given in abbreviated form. Discussion and

examples are omitted, leaving only the essentials of syntax and a

capsule description. Unlike the full entries, these are organized in

functional groups rather than alphabetically. If you are looking for a

particular string function for a particular need, you are likely to be able

to find it quickly under 'Strings—pattern-matching', or 'Strings—

formatting', or a similar brief listing in the Guide. If you want to get a

quick idea of what facilities are available in ARexx as a whole, a short

study of the Guide will give you the big picture. And if you just want

to remind yourself of the order of arguments to a function, or the

syntax of an instruction, either the Guide entry or the main reference

entry will serve.

244

The Reference Guide

The Reference Guide Format

A listing of all ARexx instructions, built-in library functions, and

support library functions, by functional group. Each keyword or

fimction name in the Guide is preceded by one of the letters I, F or S in

square brackets. The meanings of these are:

I Instruction

F Built-in function

S Support library function (requiring 'rexxsupportlibraryO

Flow of control

[I] BREAK

[I] DO

[I] ELSE

[I] END

[I] EXIT

[I] IP

: BREAK

Exit from innermost DO-END block or INTERPRET instruction

: DO

DO FOREVER

DO [FOR] count

DO WHILE/UNTIL test

DO var=start [TO limit] [BY step]

DO [FOR] count WHILE/UNTIL test

DO var=start [TO limit] [BY step] FOR count

DO var=start [TO limit] [BY step] WHILE/UNTIL test

DO var=start [TO limit] [BY step] FOR count WHILE/UNTIL test

Begin a block of instructions or a loop

: ELSE [;] instruction

Introduce code to be executed when an IF test fails

: END [var]

Terminate a block of instructions beginning with DO or SELECT

: EXIT [expr]

Terminate a script

: IF test [;] THEN [;] instruction [ELSE [;] instruction]

Introduce code to be executed if test expression is True

[I] INTERPRET : INTERPRET [expr]

Execute ARexx instructions contained in a string

[I] ITERATE : ITERATE [var]

Skip to the end of the current iterative loop

[I] LEAVE : LEAVE [var]

Break out of current iterative loop

245

14, Reference

[I] NOP : NOP

Do nothing—a dummy instruction

[I] OTHERWISE : OTHERWISE [;] [instruction(s)]

Introduce default case for SELECT control structure

[I] SELECT : SELECT; WHEN ... [OTHERWISE [;] [instructions]] END

Branch to first case whose controlling condition is met

[I] SIGNAL : SIGNAL ON type

SIGNAL OFF type

SIGNAL [VALUE] label-expression

Turn interrupt type on/off; transfer control to label

[I] THEN : THEN [;] instruction

Execute dependent instruction if preceding expression was True

[I] WHEN : WHEN test [;] THEN [;] instruction

In SELECT, introduce code to be executed if test is True

Functions and arguments

[I] ARG : ARG [template] [,template ...]

Shorthand form of PARSE UPPER ARG

[F] ARG : numargs = ARG()

argn = ARG(num)

bool = ARG(num, mode)

Return information about script or function arguments

Modes: E - Exists O - Omitted

[I] CALL : CALL function(arg, arg, arg)

CALL function arg, arg, arg

Invoke a function but ignore the result

[I] PROCEDURE : PROCEDURE [EXPOSE var [var ...]]

Protect function caller's variables from name collisions

[I] RETURN : RETURN [expr]

Return control (and optionally a value) to caller

Strings (editing)

[F] COMPRESS : s = COMPRESS (str, [list])

Remove the characters in list (default=space) from str

[F] DELSTR : s = DELSTR(str, start, [len])

Delete len (default=rest of str) characters from str, from start

[F] INSERT : s = insert(istr,str,[start],[len],[pad])

Insert len characters of istr into str at start

246

The Reference Guide

[F] OVERLAY : s = OVERLAY (new, old, [start], [len] , [pad])

Overlay len characters of new on old, from start

[F] STRIP : s = STRIP(str, [mode], [list])

Strip leading and/or trailing characters in list from str

Modes: B - Both (default) L - Leading T - Trailing

[F] SUBSTR : s = SUBSTR(str, start, [len],[pad])

Extract len (default=rest of str) characters of str, from start

[F] TRANSLATE : s = TRANSLATE (str)

s = TRANSLATE(str,[output],[input],[pad])

Translate str using input and output character tables

[F] TRIM : s = TRIM(str)

Remove trailing blanks from str

[I] UPPER : UPPER var [var ...]

Convert contents of variables to upper case

[F] UPPER : s = UPPER (str)

Convert str to upper case

Strings (pattern matching)

[F] ABBREV : bool = ABBREV(str, abbr, [len])

Test if abbr is an abbreviation of str with at least len characters

[F] COMPARE : n = COMPARE(strl, str2, [pad])

Determine position at which strings differ (0 if identical)

[F] INDEX : n = INDEX (str, pat, [start])

Return position of pat in str , from 1 or start (0 if not found)

[F] LASTPOS : n = LASTPOS(pat,str,[start])

Return position of pat in str , searching backwards from end or

start

[F] POS : n = POS (pat, str, [start])

Return position of pat in str , from 1 or start (0 if found)

[F] VERIFY : n = VERIFY (str, list, [match] , [start])

Search str from 1 or start for characters in list; return index or 0

Modes (match): M - Return index of first list character of str

Other/default - Return index of first non-list character

Strings (formatting)

[F] CENTER : s = CENTER(str, width, [pad])

Center str in a field of given width

[F] LEPT : s = LEFT (str, count, [pad])

Extract leftmost count characters of str, pad on right if needed

247

14. Reference

[F] REVERSE : s = REVERSE (str)

Reverse str

[F] RIGHT : s = RIGHT (str, width, [pad])

Extract rightmost width characters of str pad on left if needed

[F] SPACE : s = SPACE(str, [len], [pad])

Set word-breaks in str to len spaces (or pad)

Strings (word-oriented)

[F] DELWORD : s = DELWORD(str, start, [len])

Delete len words from str beginning at start word

[F] FIND : n = FIND (str, phrase)

Return position of word-string phrase in str

[F] SUBWORD : s = SUBWORD(str, start, [count])

Extract count words (default=rest of str) from str from start word

[F] WORD : s = WORD (str, n)

Extract word n from str

[F] WORDINDEX : n = WORDINDEX (str, n)

Determine character position in str of start of word n

[F] WORDLENGTH: n = WORDLENGTH(str,n)

Determine length of word n in str

[F] WORDS : n = WORDS (str)

Return number of words in str

Strings (miscellaneous)

[F] COPIES : s = COPIES (str, n)

Concatenate n copies of str

[F] HASH : n = HASH (str)

Calculate a hash value for str

[F] LENGTH : n = LENGTH (str)

Return length of str in characters

[I] PARSE : PARSE [UPPER] source [template] [,template]

Source name Source string contents

ARG Arguments to script or function

EXTERNAL Input via STDERR file

NUMERIC NUMERIC options: digits fuzz form

PULL Input via STDIN file

SOURCE type result called resolved ext host

VALUE expr WITH Result of expression

VAR varname Contents of varname

VERSION version cpu mpu video freq

Split input string(s) into substrings

248

The Reference Guide

[F] XRANGB : s = XRANGE([cl] , [c2]) #
Build character string from cl to cl with consecutive ASCII values

Numbers

[F] ABS

[F] DIGITS

[F] FORM

[F] FUZZ

[F] MAX

[F] MIN

[I] NUMERIC

[F] RANDOM

[F] RANDU

[F] SIGN

[F] TRUNC

: absval = ABS(num)

Return absolute value of numeric expression

: n = DIGITS()

Return current NUMERIC DIGITS setting

: f = FORMO

Return current NUMERIC FORM setting

: f = FUZZO

Return current NUMERIC FUZZ setting

: n = MAX(nl, n2 [, n3 ...])

Find the largest of a set of numbers

: n = MIN(nl, n2 [, n3 ...])

Find the smallest of a set of numbers

: NUMERIC DIGITS num

NUMERIC FUZZ num

NUMERIC FORM SCIENTIFIC

NUMERIC FORM ENGINEERING

Set numeric calculation and display options

: n = RANDOM([low],[high],[seed])

Return pseudo-random integer between low and high inclusive

: n = RANDU([seed])

Return pseudo-random number between 0 and 1

: n = SIGN(num)

Determine the sign of a number, return -1, 0, or 1

: n = TRUNC(number,[places])

Truncate number to places decimal places (default 0)

Bit manipulation

[F] BITAND : s = BITAND(strl, [str2] , [pad])

Return bit-wise AND of two strings, padded to equal length

[F] BITCHG : s = BITCHG(str, n)

Invert bit n, counting from right, in str

[F] BITCLR : s = BITCLR(str, n)

Clear bit n, counting from right, in str

249

14. Reference

[F]

[F]

[F]

[F]

[F]

BITCOMP

BITOR

BITSET

BITTST

BZTXOR

Data conversion

[F]

[F]

[F]

[F]

[F]

[F]

[F]

[F]

B2C

C2B

C2D

C2X

D2C

D2X

X2C

X2D

: n = BITCOMP(strl, str2, [pad])

Return first bit, counting from right, at which strl ~= strl (-1 if
equal)

: s = BITOR(strl, [str2], [pad])

Return bit-wise OR of two strings, padded to equal length

: s = BITSET(str, n)

Set bit n, counting from right in str

: bool s BITTST(str, n)

Test bit n, counting from right, in str

: s = BITXOR(strl, [str2], [pad])

Return bit-wise exdusive-OR of two strings, padded to equal length

: s = B2C(binstr)

Return character equivalent of binary string

: b = C2B(str)

Return binary digit string equivalent to character string

: n = C2D(str, [len])

Return integer number corresponding to string (of len bytes)

: h = C2X(str)

Return hexadecimal number corresponding to string

: s = D2C(num,[count])

Return string equivalent, count bytes long, of num

: h = D2X(num,[count])

Return hexadecimal string, count bytes long, equivalent to num

: s = X2C(hex)

Return character equivalent of hex string

: n = X2D(hex, [n])

Convert n rightmost digits (or all) of hex string to decimal

Values and variables

[F] DATATYPE : type = DATATYPE(str)

bool = DATATYPE(str,mode)

Test attributes of string (type = 'NUM' or 'CHAR')

Modes: A - Alphanumeric B - Binary L - Lower case

M - Mixed case N - Numeric S - Symbol

U - Upper case W - Whole number X - Hexadecimal

[I] DROP : DROP var [var ...]

Restore a variable to its uninitialized state

250

The Reference Guide

[F] SYMBOL : s = SUBWORD(str)

Determine if a string is a valid ARexx symbol

[F] VALUE : val = VALUE(str)

Treating str as an ARexx symbol, return its value

Console input/output

[I] ECHO : ECHO expr

Send the expression result to the standard output

[F] LINES : n = LINES ([file])

Return number of lines queued for interactive stream

[I] PULL : PULL [template] [,template ...]

Shorthand form of PARSE UPPER PULL

[I] PUSH : PUSH expr

Pre-load the standard input in 'last-in, first-out' order

[I] QUEUE : QUEUE expr

Pre-load the standard input in 'first-in, first-ouf order

[I] SAY : SAY [expr]

Send expression result to standard output (usually console)

File input/output

[F] CLOSE : bool = CLOSE(file)

Close the file with the given identifier

[F] EOF : bool = EOF (file)

Return 1 if end of file has been detected; else 0

[F] OPEN : bool = OPEN(file, name, [mode])

Open a file called name in given mode

Modes: R - Read (default) W - Write (create) A - Append

[F] READCH : s = READCH(file, [count])

Return count characters from file

[F] READLN : s = READLN(file)

Return a line from file as a string

[F] SEEK : n = SEEK(file,offset,[mode])

Move file position to offset according to mode

Modes: C - Current (default) B - Beginning E - End

[F] WRITECH : n = WRITECH(file, str)

Write str to file, return count written

[F] WRITELN : n = WRITELN(file, str)

Write str plus linefeed to file, return count written

251

14. Reference

Files

[S] DELETE : bool = DELETE (name)

Delete a file or directory

[F] EXISTS : bool = EXISTS (name)

Return True if given file or directory exists

[S] MAKEDIR : bool = MAKEDIR(dirname)

Create a directory of the given name

[S] RENAME : bool = RENAME(oldname, newname)

Rename a file or directory

[S] SHOWDIR : filelist = SHOWDIR(dir, [mode], [pad])

List the file and/or directory names in a directory
Modes: A - All (default) F - Files only D - Directories only

[S] STATEP : filestring = STATEF(pathname)

Obtain information about a file or directory
Format: type size blk bits day min tick com

Script environment

[F] DATE : d = DATE([outmode],[indate],[inmode])

Find today's date, or info about a specified date

Modes: B - Base (days since 01/01/0000)

C - Century (days this century)

D - Days (days since start of year, counting today)

E - European (dd/mm/yy - e.g. 19/11/76)

I - Internal (days since 01/01/1978)

J - Julian (yyddd - 2-digit year, 3-digit days this year)
M - Month name in English mixed case (e.g. 'November')

N - Normal, the default (dd mmm yyyy, e.g. 01 Jun 1986)
0 - Ordered (yy/mm/dd, e.g. 84/05/24)

S - Standard (yyyymmdd, e.g. 19921005)

U - USA (mm/dd/yy, 12/21/88)

W - Weekday name in English mixed case (e.g. 'Thursday')

[F] ERRORTEXT : text = ERRORTEXT(n)

Return a description of syntax error number n

[I] OPTIONS : OPTIONS

OPTIONS [NO] RESULTS

OPTIONS [NO] CACHE

OPTIONS PROMPT [expr]

OPTIONS FAILAT expr

Set script options

252

The Reference Guide

[F] SOURCELINB: n = SOURCELINEO
s = SOURCELINE(num)

Read coimt of source lines, or line num from current script

[F] TIME : t = TIME ([mode])

Find current or elapsed time

Modes: C - Civil (h:iranAM or h:mmPM, e.g. 3:07AM)
E - Elapsed (s.cc, seconds and hundredths, in interval)

H - Completed hours since midnight (e.g. 4)

M - Completed minutes since midnight (e.g. 243)

N - Normal, the default (hh:mm:ss, e.g. 17:04:41)

R - Same as elapsed, but resets timer to 0.00

S - Completed seconds since midnight (e.g. 17353)

[I] TRACE : TRACE mode

TRACE [VALUE] expr

TRACE num

Set tracing mode

Modes: A - All clauses B - Background C - Commands
E - Errors I - Intermediates L - Labels

N - Normal O - Off R - Results

S - Scan

Special features:

? - Interactive +num - skip interactive pauses

I - Command inhibition -num - trace suppression count

[F] TRACE : t = TRACE([mode])

Get/set tracing mode (see modes under TRACE instruction)

ARexx environment

[F] ADDLIB : ADDLIB(name, pri, [offset, version])

Add function library/host name to library list

[I] ADDRESS : ADDRESS

ADDRESS name

ADDRESS VALUE name-expression

ADDRESS name command-expression

Modify host address; send command to a host

[F] ADDRESS : host = ADDRESS ()

Return host address string

[F] FREESPACE : n = FREESPACE()

n = FREESPACE(addr, size)

Return size bytes of memory at addr to ARexx's internal memory

pool

[F] OETCLIP : s = GETCLIP (clip)

Return value string associated with clip name

[F] OETSPACE : addr = GETSPACE(size)

Allocate size bytes of memory in ARexx's internal memory pool

253

14. Reference

[F] REMLIB : bool = REMLIB(name)

Remove an entry from the Library List

[F] SETCLIP : bool = SETCLIP(name, [value])

Set string value for clip name (remove name if value omitted)

[I] SHELL : SHELL

SHELL name

SHELL VALUE name-expression

SHELL name command-expression

Modify host address; send command to a host

[F] SHOW : s = SHOW(mode, , [pad])

bool = SHOW(mode,name)

Return information about a resource

Modes: C - Clips F - Files I - Internal ports
L - Function Libraries P - Public ports

Messages, packets and ports

[S] CLOSEPORT : bool = CLOSEPORT(portname)

Close a message port opened with OPENPORT

[S] GETARO

[S] 6ETPKT

: arg = GETARG(packet, [whicharg])

Obtain an argument string from a message packet

: pkt = GETPKT(portname)

Pick up a message packet from a message port

[S] OPENPORT : bool = OPENPORT (portname)

Open a public message port with the given name

[S] REPLY : 1 = REPLY(pkt, [result], [result2])

Return a message packet to its sender, default results = 0, 0

[S] TYPEPKT : cmd = TYPEPKT(pkt)

count = TYPEPKT(pkt, ' a')

bool = TYPEPKT(pkt,mode)

Extract information from a message packet
Modes: F - Function C - Command

[S] WAITPKT : bool = WAITPKT(portname)

Wait for a message packet to arrive at a port

Operating system

[S] ALLOCMEM : mem = ALLOCMEM(size, [type])

Allocate size bytes of system memory, with type attributes

[S] BADDR : addr = BADDR(bptr)

Convert BPTR to address

254

The Reference Guide

[S] DELAY

[F] EXPORT

[S] FORBID

[S] FREEMEM

[F] IMPORT

[S] NEXT

[S] NULL

[S] OFFSET

[S] PERMIT

[F] PRAGMA

: 0 = DELAY(n)

Pause for n 50ths of a second

: count = EXPORT(addr,[str],[len],[pad])

Copy len bytes of str to memory at addr

: count = FORBID()

Turn off multitasking

: 1 = FREEMEM(addr, size)

Free size bytes of memory at addr allocated by ALLOCMEM

: s = IMPORT(addr,[len])

Return contents of len bytes (or O-terminated) memory at addr

: value = NEXT(addr,[offset])

Return the 4-byte value stored at addr + offset

: 'OOOOOOOO'x = NULL()

Return a 4-byte string corresponding to a null address

: addr = OFFSET(addr,amount)

Return the address addr + amount

: count = PERMIT()

Re-enable multitasking after FORBID

: oldcd :

oldpri

oldsize

1

id

bool

PRAGMA('d' ,

PRAGMACp1,

PRAGMA(

PRAGMA(

PRAGMA (

PRAGMAC*1

s\

w\

i1)

[newcd])

newpri)

size)

[mode])

[file])

/* Current directory

/* Task priority

/* Stack size

/* DOS requesters

/* Task ID (address)

/* Console handler

*/

*/

*/

*/

*/

*/

A grouping of system-specific facilities as one function

[S] SHOWLIST : list = SHOWLIST(mode,,[pad])

bool = SHOWLIST(mode, name)

addr = SHOWLIST(mode, name,, 'a')

Return information about a shared system list

Modes: A - Assigns D - Devices H - Handlers

I - Interrupts L - Libraries M - Memory

P - Ports R - Resources S - Semaphore

T - Ready tasks V - Volumes W - Waiting tasks

[F] STORAGE : n = STORAGE ()

s = STORAGE(addr,[str],[len],[pad])

Copy len bytes of str to memory at addr

255

14. Reference

Instruction and Function Reference

Name: ABBREV

Type: built-in function

Format: bool = ABBREV(str, abbr, [len])

Description: test if abbr is an abbreviation of str

Dialog

examples:

Discussion:

->abbrev(

1

->abbrev(

0

->abbrev(

1

->abbrev(

1

->abbrev(

0

->abbrev(

1

ABBREVfs

-Delete",

"Delete-,

"Delete",

"Delete-,

"Delete-,

-Delete",

bonipan

"D")

-0")

-Del")

-Del-,3)

"Del",4)

-",0)

rpfiirn

abbreviation of str. The optional third argument, len, which must be
numeric, specifies a minimum length for abbr if it is to be considered a
valid abbreviation; the default is the length of abbr itself.

One typical use for ABBREV is in scripts that allow the user to enter
special commands or keywords in incomplete form. Having obtained
the input with, say:

pull cmd

the script can go on to test the input and take appropriate actions with
SELECT or an IF/ELSE chain (see Chapter 7):

select

when abbrev("LIST-,cmd) then call ListThings()

when abbrev(-DELETE",cmd) then call DeleteThings()

when abbrev("DECIDE", cmd) then call DecideThings()
otherwise

say -Invalid command!"

end

256

Instruction and Function Reference

In this example, there is an ambiguity between the 'DELETE' and

'DECIDE7 commands: if the user typed either 'D' or T>E', 'DELETE'

would be understood even though T>ECIDE' may have been intended.

Moreover, a null input would actually be taken as an abbreviation for

'LIST'! The remedy is to provide len explicitly. Using 3 for the third

argument in each call to ABBREV would be sufficient to distinguish

all the commands in this small set. If preferred, the minimum length

for the first call (testing the input against 1AST) could be set to 1, since

a single 1/ could have no other valid meaning.

Name:

Type:

Format:

Description:

ABS

built-in

absval =

function

= ABS(num)

return absolute value of numeric expression

Dialog

examples:

Discussion:

->abs(-3)

3

See also:

11

->abs(-24.75e-12)

2.475E-11

ABS is often used in expressions that check whether a value deviates

by more than a given amount, above or below, from another value. If

you were writing a military simulation, you might want to test

whether a dropped bomb fell close enough to a particular target to

destroy it. You could use ABS in a CheckBlast function, like this:

/* hit = CheckBlast(bombx, tgtx, blast)

bombx: Bomb position

tgtx : Target position

blast: Radius of bomb blast

hit : Function returns* 1 if blast destroys target

*/

CheckBlast: procedure

parse arg bombx, tgtx, blast

return abs(tgtx-bombx) <= blast

sign

257

14. Reference

Name:

Type:

Format:

Description:

Dialog

examples:

Discussion:

ADDLIB

built-in function

ADDLIB(name, pri, [offset, version])

add function library/host name to librai list

->addlib('rexxsupport.library',0,-30,0)

->addlib(•rexxsupport.library',0,-30,0)
0

->addlib('MyFunctionHost•,20)
1

The search order for ARexx functions has several phases, beginning
(typically) with internal functions, then proceeding to the built-in
functions, then to the function libraries and hosts on the Library List
These are searched in priority order, from a maximum priority of 100
to a minimum of -100. New library and host names are added to the
Library List with ADDLIB, although no other action takes place
(loading the library, or establishing communications with the host)
until ARexx actually encounters the newly-added name during a
function name search. This means that the name is not tested for
validity by ADDLIB; it is quite possible to add an invalid name to the
Library List. If you do so, the first you will likely hear about is when
you get one of the following error messages during an attempt by
ARexx to match a function name:

Error 13: Host environment not found

Error 14: Requested library not found

The first two arguments to ADDLIB are the name of the library or host
to be added, and the priority the library or host should have in the list.
In the case of a function library, the name given must match the
library's file name in the libs:7 directory, and the name stored within
the library itself. Only the latter must match for case; as usual, file

names are case-insensitive. The name given for a function host is that

of the host's public message port. The correct name for a host or
library should be provided as part of its documentation. The priority
argument, from -100 to 100, is up to the caller. Values close to 0 are

fine in most situations. Priority values of -60 or lower should rarely be
used, since -60 is the priority of the ARexx Resident Process, which is

responsible for the more time-consuming search for external
functions.

ADDLIB's offset and version arguments apply only for function

libraries, and may be omitted for function hosts. Offset is invariant for

258

Instruction and Function Reference

See also:

a particular library, and will be given in the library's documentation. It

is essential that this argument be given correctly, as an erroneous

value will probably result in a system crash. Version, which specifies

the minimum version number of the library acceptable to the caller,

can usually be given as 0 (or omitted). The library's documentation

will give information about the version argument if it is important.

The return value from ADDLIB tells you whether the name you

supplied was in fact added to the list. The normal reason for a False (0)

return is that the name was on the list already, as in the second

example above. (The first example, incidentally, assumes the support

library is not already loaded. If it was, of course, the first ADDLIB call

would also return 0.)

In practice, it is much more usual to use ADDLIB on function libraries

than on function hosts, since the latter are usually embedded in

programs that add the host for you when run.

remlib, show

For further discussion of the Library List and function name searches,

see Chapter 6.

Name:

Type:

Format:

Description:

ADDRESS

instruction

ADDRESS

ADDRESS name

ADDRESS VALUE name-expression

ADDRESS name command-expression

modify host address; send command to a host

Script example: /* Script: Features of the ADDRESS instruction

*/
/* With rx, initial host is REXX

/* toggle addresses

/* output: COMMAND

say address()

address

say address()

*/

*/

*/

newhost = 'GRACIOUS HOST1 /* set up a variable */

address newhost /* ...but newhost is taken literally */

say address() /* output: NEWHOST

address 'newhost1 /* ...again literally

say address() /* output: newhost

address value newhost 'INDEED' /* but with VALUE keyword */

say address() /* output: GRACIOUS HOST INDEED */

address rexx 'hello' /* executes 'hello.rexx' */

*/

*/

*/

259

14. Reference

Discussion: Every ARexx script has a 'command hosf at its service from the time
it begins to execute. The command host is identified by its name,
which may be retrieved at any time with the ADDRESS function (not

the ADDRESS instruction, the subject of this entry). The job of the

command host is to process any lines in the script that are not

recognized as valid instructions by ARexx itself. In actuality, the line

may be an error—a mistyped instruction, perhaps—rather than a
command. It is up to the command host to make that determination.

When a script is launched by the RX program, the initial command

host has the name REXX. So what does the REXX host (which is built
right into the ARexx system) do when it receives a potential

command? Something quite interesting: It tries to match the first part

of the name with that of an existing ARexx script file. If it is successful,
it executes this secondary script (which may in turn launch other

scripts before it terminates), then gives control back to the original

script, which has been been waiting patiently all the while to resume
operations.

When a script is launched by an application program, rather than by

RX, the initial command host will normally be built into that

program, and named accordingly. A-Talk III, a terminal program, uses

ATK for its host name. Electric Thesaurus uses ETHES_1. And so

on—the host name used by a particular application is really quite
arbitrary.

Now consider—as a thought experiment—running an ARexx script

first from RX, and subsequently from an imaginary application whose
host name we'll (arbitrarily, of course) decide is 1MAG_APP'. The first
line in the script is a comment, as usual, but the second line is:

•hello world1

Since 'hello' is not an ARexx instruction keyword, the ARexx

interpreter will decide that this line must be a command intended for

the current command host. If the script was run from RX, the

command host is REXX, so 'hello world' will be sent to REXX for

further processing. As we have seen, REXX will try to locate a script
file to execute. It will try several different variants on the name liello'

before either finding one and executing it or giving up and returning
an error.

But what if we ran the script from our imaginary application? In that

case, the 'hello world' line would be sent to the /EMAG_APP/ host, and

then... well, anything might happen. Although we expect that

'IMAG_APP' will do something logical and gratifying with the

260

Instruction and Function Reference

command in accordance with whatever type of application it may be,

the nature of ARexx itself does not restrict it in any way.

Every script also has an 'alternate' command host, and may toggle back

and forth between the principal and alternate hosts at will. Initially,

the alternate host has the name COMMAND. Its behavior is

somewhat similar to that of REXX, but instead of trying to execute the

command as an ARexx script, it searches the current AmigaDOS path

for an ordinary AmigaDOS command of that name, and executes it if

the search is successful.

To switch between the main and the alternate command hosts, use

the first form of the ADDRESS instruction, with no arguments.

The second form of ADDRESS specifies a new host address, which

replaces the current principal address (leaving the alternate address

undisturbed). The name given may be in quotes or not as you choose:

the only difference is that if it is not the name will be taken as being in

upper case no matter how you actually type it. In particular, even if

the name is a variable, the name itself rather than the variable's value

is taken as the new host name.

Since that may not be what you want, a third form of ADDRESS uses

the sub-keyword VALUE to announce that the expression following

should be evaluated to determine the new host name. Even if the

'expression' is just a variable name, this time it is the contents of the

variable rather than the name that will be used.

All three forms of ADDRESS so far discussed change the current host

address for the script until further notice, and that is all they do. The

fourth and final form instead sends out one command to a particular

specified host, but has no effect on subsequent commands. This form

is like the second in that the host name is taken literally, even though

it may also be the name of an existing variable. The command itself is

evaluated as an ARexx expression before being sent to the temporarily

selected host.

And what happens if you try to address a non-existent host?

Nothing—until you try to use a command (meaning, as you recall, an

instruction ARexx doesn't recognize.) Then you will get the error

message 'Host environment not found', as ARexx suddenly realizes

your so-called host is only a figment.

See also: address (built-in function), shell

261

14. Reference

Discussions of the ADDRESS instruction and command hosts in a

real-world context may be found in Chapter 3 and Chapter 12.

Name:

Type:

Format:

Description:

ADDRESS

built-in function

host = ADDRESSO

return host address string

Script example:

Example

output:

Discussion:

/* ADDRESS example */

say address()

address command

say address()

address 'Ebenezer'

say address()

REXX

COMMAND

Ebenezer

When ARexx encounters an instruction it does not recognize, the

instruction is evaluated as an ARexx expression and the result passed

off to the current 'host address'. By default, for scripts launched with

the RX program, the host address is REXX; this default host will search

the usual places for an ARexx script whose name matches the first

word in the instruction. Other hosts, which can be selected with the

ADDRESS instruction, will treat the command in ways appropriate to
their purposes.

One use for the ADDRESS function is to determine the current and
alternate host addresses before switching to a new host, so that the old
ones can be restored afterwards. For instance:

HA_main = address()

address

HA^alt address()

address HA_newmain

address HA^newalt

/* switch to alternate */

/* change host address */

/* ... completely */

/* Now do things involving new hosts ... then restore */

address HA_alt

address HA_main

262

Instruction and Function Reference

Name: ALLOCMEM

Type: support function

Format: mem = ALLOCMEM(size, [type])

Description: allocate memory from operating system

Script example:

Discussion:

/* ALLOCMEM demo - get then free 10000 bytes PUBLIC CHIP memory
The «• character indicates that a line
should be entered as a single line

*/

signal on syntax /* Do this to trap allocation failures */
size = 10000

say "The system currently has" storage() "bytes of memory «•
available."

mem = allocmem(size, •00000003'x) /*CHIP = 2, PUBLIC = 1 */

say "After allocating" size "bytes, there are" storage() **
-bytes."

say "The address of our allocation is $"c2x(mem)"."
call freemem(mem, size)

drop mem

say "After freeing our memory, there are now" storage() er
"bytes."

exit

syntax:

if rc=3 then

say "A memory allocation has failed!"
else

say "Syntax error #"rc"."

if symbol('mem')='VAR* then do

call freemem(mem, size)

say "Allocated memory has been freed."
end

The occasions on which an ARexx programmer has to allocate
memory are few. ARexx itself, along with most well-written function
libraries, insulates the programmer from the operating system so
completely that such a low-level operation is hardly ever needed. And

even on those rare occasions, the STORAGE function in the built-in
library is generally a better choice than ALLOCMEM, since the

memory it allocates is a controlled resource that ARexx will free

automatically when your script ends, even if the ending is premature
due to a syntax or other error.

There are two reasons why ALLOCMEM would be required in some
instances, however:

263

14. Reference

1) Since, as just mentioned, allocations made with STORAGE are

freed when the script ends, ALLOCMEM is needed if the

allocation must outlive the script.

2) Only ALLOCMEM lets you use the special attribute flags, such as

the CHIP memory flag (see below).

The first argument to AllocMem is the size of the allocation needed,

in bytes. The second argument, which is optional, is a 4-byte string

specifying special attributes, as follows:

Attribute

PUBLIC

CHIP

FAST

CLEAR

Value

1

2

4

65536

Meaning

Memory is sharable between tasks

Memory can be used by custom chips

Memory cannot be used by custom chips

Memory will be zeroed on allocation

These attributes can be combined (except that CHIP and FAST are

obviously incompatible and will cause the allocation to fail no matter

what its size). The default attribute is PUBLIC, and this should always

be used by ARexx scripts, along with such other attributes as may be

required. To convert the attributes to a 4-byte string as required by the

function, add the values together and convert with D2C:

attr = d2c(1+2+65536,4)

say c2x(attr)

/* PUBLIC CHIP memory, pre-cleared*/

/* output: 00010003 */

See also:

The return value from ALLOCMEM is the address of the allocated

memory, in the form of a 4-byte string.

A final consideration in using ALLOCMEM is ensuring that any

allocations made are properly freed. This can get especially

complicated if multiple allocations are made, but even in simple cases

a syntax trap should be set to ensure that the memory is freed under

all possible terminations of the script. See the example script above for
one method of handling the problem in the elementary case.

freemem, export, import, getspace, freespace, storage

264

Instruction and Function Reference

Name:

Type:

Format:

Description:

ARG

instruction

ARG [template]

shorthand form

[,template...]

of PARSE UPPER ARG

Script example:

Example

session:

Discussion:

See also:

/* ARGTEST.rexx

arg line

do i=l to words(line)

say word(line,i)

end

Usage: rx argtest <any text> */

Shell> rx argtest Where Alph the sacred river ran

WHERE

ALPH

THE

SACRED

RIVER

RAN

Since ARG means exactly the same thing as PARSE UPPER ARG, you

will find a detailed treatment of it in the entry for PARSE. The

advantage of ARG is simply its conciseness.

The fact that ARG implies the UPPER subkeyword of PARSE is a

drawback or a bonus depending on the context. If the arguments

you're extracting are numbers, the conversion obviously doesn't

matter; if they are to be checked against stored string patterns in a case-

insensitive match, it cuts out the step of using the UPPER instruction

separately. If the argument string(s) will be echoed back to the user in

some form, though, it is probably best to use PARSE ARG.

parse, pull, arg (built-in function)

Chapter 10 discusses PARSE extensively, and should be read by those

who are not yet familiar with its many features.

265

14. Reference

Name:

Type:

Format:

Description:

ARG

built-in function

numargs = ARG()

argn = ARG(num)

bool = ARG(num, mode)

return information about script or function arguments

Code examples: if arg() ~= 2 then
say "Incorrect number of arguments"

if arg(2,'e') then

width = arg(2)

else

width = 1

Discussion: ARG has several forms.

1) If no arguments are given, ARG returns the number of

arguments available to the present script or function. In the case

of a script called as a command with the RX program, the number

of arguments will be 0 or 1, depending on whether command-

line arguments were given. Functions (including scripts called as

external functions) may have multiple arguments.

num_args = arg()

2) If a single numeric argument is given, ARG returns the

corresponding argument to the present script or function. If there

is no such argument, a null string is returned. The argument

number given must be an integer greater than 0.

width = arg(2)

3) A mode, either 'e' for 'Exists' or 'o' for 'Omitted', may be used

along with the numeric first argument to test whether the

corresponding argument to the present script or function was

supplied or omitted. ARG's boolean return reflects whether the

given condition is satisfied.

if arg(2, 'Omitted1) then width = 100 /* default */

Extracting the arguments given to a function or script is most simply

done with the PARSE instruction in ordinary situations. Some

functions, though, are designed to behave differently given different

numbers of arguments, or to supply default values if specific

266

Instruction and Function Reference

See also:

arguments are not given. Other functions, especially those designed to

be used over and over in different programs, may need to validate

their arguments in some way (see the first code example above). In

both these cases, the ARG function should be used as either an adjunct
to or a substitute for PARSE.

parse

Name:

Type:

Format:

Description:

For further discussion of ARG, see Chapter

B2C

built-in function

s = B2C(binstr)

return character equivalent of binary string

8 (Internal Functions).

Dialog

examples:

Discussion:

->b2c('01000110■)

F

->b2c(reverse('01000110'))

b

->b2c(translate(•-=—===== •

OK

-=-==-,-01','-=•))

As explained in Chapter 5 (under 'Other String Forms'), character

strings can equivalently be represented as a string of the binary digits 0

and 1. ARexx lets you use such binary strings directly, for example:

See also:

->'01000110'B

F

Note that this bit-string is completely different from this string of

digits:

->'01000110l

01000110

Appending a TJ' to a string to make it binary works only for 'literal'

(quoted) strings. The B2C function lets you build the binary string as

an expression, rather than having to give it literally. Otherwise, the

conversion is exactly the same, and the same rules apply as to the

literal strings: only the digits 0 and 1 are allowed, with optional blanks

at byte boundaries (every 8 digits, counting from the right).

B2C is of interest mainly to advanced programmers who need to build

'bit-masks' for use with ARexx bit-manipulation functions like

BITAND.

c2b, bitand, bitchg, bitclr, bitcomp, bitor, bitset, bittst, bitxor

267

14. Reference

Name:

Type:

Format:

Description:

BADDR

support function

addr = BADDR(bptr)

convert bptr to address

Dialog

examples:

Discussion:

See also:

->c2x(baddr(■01010101 'x))

04040404

->c2x(baddr('01f87de5'x))

07E1F794

->baddr(•UUUU')

UUUT

A consequence of the colorful history of the Amiga's operating system

is that there are two ways of referring to memory addresses: as bytes,

and as long words (4-byte chunks). In general, AmigaDOS uses the

second method, while the rest of the operating system uses the first

method.

Fortunately, there is a simple and exact correspondence between the

two systems: a byte address will be exactly 4 times greater than the

equivalent long-word address. The byte address is known as a C-

pointer (or simply pointer) to the memory in question; the long-word

address is called a B-pointer, customarily abbreviated to BPTR.

Although it is simple enough to translate from pointers to BPTRs by

hand, it is even simpler to call the BADDR function, which takes a

BPTR in the form of a 4-byte string, and returns a CPTR as another 4-

byte string, obtained by multiplying the input string by 4. It doesn't

make sense to apply this treatment to a string of ordinary characters,

but it can be done, as the third example illustrates. If after a minute or

two you don't know why taking the BADDR of 'UUUU' returns the

curious result TJUUT, try putting yourself in the place of BADDR and

figure out what it would mean to multiply TJUUU' by 4.

The script 'asnvol.rexx' on the disk accompanying this book uses

BADDR in context, though like most uses of this function it is rather
esoteric.

268

Instruction and Function Reference

Name: BITAND

Type: built-in function

Format: s = BITANDCstrl, [str2], [pad])

Description: return bit-wise AND of two strings

Dialog

examples:

->c2b(bitand('10110001'b,■11001111'b))

10000001

->bitand('ono\ '1110001'b, 'c1)

abc

->■['bitand('12345')']•

Discussion:

See also:

BITAND takes three arguments. The first two are strings that are

ANDed together bit by bit: the result string will have 1 bits in those

positions where both argument strings have 1 bits, and 0 bits in all

other positions. If one argument string is shorter than the other, it is

padded on the right with spaces or with the pad character given as the

optional third argument. The result string is always the same length

as the longer of the two argument strings.

As the third of the Dialog examples shows, the second argument to

BITAND is also optional; it will be taken as an empty string if not

given, then duly padded with spaces to the length of the first

argument. As it happens, any digit (or any lower-case letter, or almost

any punctuation character) ANDed with a space character yields a

space as the result, hence the output in the example. It is not suggested

that you take advantage of this behavior in real scripts, however.

A typical use of a bit-wise AND operation in languages like C is to

clear individual bit-flags in a set of flags packed into one or a few bytes.

Another use is to test individual flags as a basis for subsequent actions.

In ARexx, clearing individual flags is most efficiently done with

BITCLR, and testing them is best done with BITTST. BITAND is thus

relegated to more specialized duties, such as clearing an entire bit-field

(several related flags within a larger set), or masking out several flags

as a prelude to some operation involving only them.

b2c, c2b, bitchg, bitclr, bitcomp, bitor, bitset, bittst, bitxor

269

24. Reference

Name:

Type:

Format:

Description:

BITCHG

built-in function

s = BITCHGfetrl, n)

invert specified bit in string

Dialog

examples:

Discussion:

->bitchg('A\5)

a

->bitchg('a',5)

A

/* bit-pattern for 'A':

/* bit-pattern for 'a':

01000001 */

01100001 */

See also:

BITCHG takes two arguments: a string, and the number of the bit in

the string that should be inverted (changed to 0 if it is 1, to 1 if it is 0).

Bits are numbered from the right, starting at 0, so the maximum value

for the second argument is 1 less than 8 times the number of

characters in the string (there being 8 bits in a character, or byte).

As with several of the other bit-oriented functions, the applications of

BITCHG in normal scripts are rather limited.

b2c, c2b, bitand, bitdr, bitcomp, bitor, bitset, bittst, bitxor

Name:

Type:

Format:

Description:

BITCLR

built-in function

s = BITCLR(strl, n)

clear specified bit in string

Dialog

examples:

Discussion:

See also:

->bitclrCo',0) /* bit-pattern for 'o': 01101111 */

n /* bit-pattern for #n': 01101110 */

->bitclr(bitclr('o•,0),2)

j /* bit-pattern for 'j': 01101010 */

BITCLR takes two arguments: a string, and the number of the bit in

the string that should be cleared (changed to 0). Bits are numbered

from the right, starting at 0, so the maximum value for the second

argument is 1 less than 8 times the number of characters in the string

(there being 8 bits in a character, or byte).

As with several of the other bit-oriented functions, the applications of
BITCLR in normal scripts are rather limited.

b2c, c2b, bitand, bitchg, bitcomp, bitor, bitset, bittst, bitxor

270

Instruction and Function Reference

Name: BITCOMP

Type: built-in function

Format: n = BITCOMP(strl, str2, [pad])

Description: compare two strings bit by bit

Dialog

examples:

Discussion:

See also:

->bitcomp('10010000«b,'10011000'b)

3

->bitcomp(■Aab',•aab')

21

->bitcomp('Aab', «b', 'a')

21

->bitcomp('10101010'b,•10101010'b)

-1

BITCOMP compares its two argument strings from the rightmost bit

leftward, halting when the bits fail to match. The bit-number of the

non-matching pair of bits, counting from zero as the rightmost bit, is

returned. If the strings are identical, -1 is returned. If one string is

shorter than the other, it is padded on the left with spaces, or with the

pad character supplied as the optional third argument.

As with several of the other bit-oriented functions, the applications of

BITCOMP in normal scripts are rather limited.

b2c, c2b, bitand, bitchg, bitclr, bitor, bitset, bittst, bitxor

Name: BITOR

Type: built-in function

Format: s = BITOR(strl, [str2], [pad])

Description: return bit-wise OR of two strings

Dialog

examples:

->bitorCA\ 'B') /* 'A': 01000001

C /* 'C: 01000011

->c2b(bitor('10101010'b,•01010101'b))

11111111

->bitor('00000000 00000000'b,•','*•)
• •

->bitor('The Quick Brown Fox!1)

the quick brown fox!

01000010 */

*/

271

14. Reference

Discussion: BITOR takes three arguments. The first two are strings that are ORed

together bit by bit: the output string will have 1 bits in those positions

where either or both of the argument strings has a 1 bit, and 0 bits

where both argument strings have 0 bits. If one argument string is

shorter than the other, it is padded on the right with spaces or with

the pad character given as the optional third argument. The result

string is always the same length as the longer of the two argument

strings.

As the third of the above examples shows, the second argument to

BITOR is also optional; it will be taken as an empty string if not given,

then duly padded with spaces to the length of the first argument.

Provided the given string does not contain any 'control characters'

(linefeed, carriage return, formfeed, tab, and the like), nor any of these
punctuation characters:

See also:

you can use BITOR as a LOWER (force to lower case) function, which

is otherwise not included in the built-in library. This is demonstrated

in the fourth example. It is safer, however, even if more cumbersome,

to use the TRANSLATE function for this purpose.

A typical use of a bit-wise OR operation in languages like C is to set

individual bit-flags in a set of flags packed into one or a few bytes. In

ARexx, setting individual flags is most efficiently done with BITSET.

BITOR is thus relegated to more specialized duties, such as setting all

the bits in an entire bit-field (several related flags within a larger set),

or creating a mask for several flags as a prelude to some operation

involving only them.

b2c, c2b, bitand, bitchg, bitclr, bitcomp, bitset, bittst, bitxor

Name: BITSET

Type: built-in function

Format: s = BITSET(strl, n)

Description: set specified bit in string

Dialog

examples:

->bitset('A\5)

a

->bitset('a',1)

c

/* bit-pattern for 'A': 01000001 */

/* bit-pattern for 'a': 01100001 */

/* bit-pattern for •c': 01100011 */

272

Discussion:

See also:

Instruction and Function Reference

BITSET takes two arguments: a string, and the number of the bit in the

string that should be set (changed to 1 if it is not 1 already). Bits are

numbered from the right, starting at 0, so the maximum value for the

second argument is 1 less than 8 times the number of characters in the

string (there being 8 bits in a character, or byte).

As with several of the other bit-oriented functions, the applications of

BITSET in normal scripts are rather limited.

b2c, c2b, bitand, bitchg, bitclr, bitcomp, bitor, bittst, bitxor

Name:

Type:

Format:

Description:

BITTST

built-in function

bool = BITTST(str,

test specified bit in

n)

string

Dialog

examples:

Discussion:

->bittst('A',5) /* bit-pattern for 'A': 01000001 */

0

->bittst(import(•OObfeOOl'x,1),7)

/* check joystick fire button */

1

BITTST takes two arguments: a string, and the number of the bit in

the string that should be tested. Bits are numbered from the right,

starting at 0, so the maximum value for the second argument is 1 less

than 8 times the number of characters in the string (there being 8 bits

in a character, or byte). The result is 1 if the bit was set; 0 if the bit was

clear.

One of the factors limiting the usefulness of the other bit-oriented

functions is that on the Amiga, hardware registers—to which bit

operations are often applied—should not be modified without

observing access rules that are hard to comply with from ARexx.

BITTST is a 'read-only' operation, however, and may be used with

hardware registers more freely. A good example is the use of BITTST

in a routine to read a joystick:

/* ReadJoyStick

This function returns a string of 1 to 3 characters

describing the state of the joystick in port #2. The

first character describes the fire button, either 0 (up)

or 1 (down). The second and third characters give the

direction of the stick, as n, ne, e, se, s, sw, w, nw. If

there is no second character, the stick is centered.

273

14. Reference

See also:

ReadJoyStick: procedure

fb = -bittst(import(•OObfeOOl'x,1),7)

js = import('OOdffOOc'x,2)

if bittst(js,l) then

jd = 'e'

else if bittst(js,9) then

jd = 'w'

else

jd = "

if bittst(js,l) A bittst(js,O) then

jd = 's'jd

else if bittst(js,9) * bittst(js,8) then

jd = 'n'jd

return fb II jd

b2c, c2b, bitand, bitchg, bitclr, bitcomp, bitor, bitset, bitxor

Name: BITXOR

Type: built-in function

Format: s = BITXOR(strl, [str2], [pad])

Description: return bit-wise exclusive-OR of two strings

'7' : 00110111 */

*/

Dialog ->bitxor('Al,'7') /* 'A': 01000001

examples: v /* 'v': 01110110
->bitxor(•TheQuickBrownFox')

tHEqUICKbROWNfOX

->bitxor('the quick brown fox1 ,",'D')

0,!d51-'/d&6+3*dM+<

Discussion: BITXOR takes three arguments. The first two are strings that are

exclusive-ORed together bit by bit: the output string will have 1 bits in

those positions where exactly one of the argument strings has a 1 bit,

and 0 bits elsewhere. If one argument string is shorter than the other,

it is padded on the right with spaces or with the pad character given as

the optional third argument. The result string is always the same

length as the longer of the two argument strings.

As the second of the above examples shows, the second argument to

BITXOR is also optional; it will be taken as an empty string if not

given, then duly padded with spaces to the length of the first

argument. As it happens, any letter XORed with a space character will

be flipped in case, giving the output in the example. It is not suggested

that you take advantage of this behavior in real scripts, however.

274

Instruction and Function Reference

See also:

The third example shows a use for BITXOR in a primitive encryption

scheme, in which every character of the text to be encrypted is

exclusive-ORed with a key-character (here 'D') to produce

impressively garbled output. Repeating the operation will restore the

original text. Although it is very easy to encrypt large amounts of text

or any other data with this simple method, it is obviously also quite

easy to crack.

b2c, c2b, bitand, bitchg, bitclr, bitcomp, bitor, bitset, bittst

Name: BREAK

Type: instruction

Format: BREAK

Description: exit from innermost DO-END block or INTERPRET instruction

Script example:

Discussion:

/* BREAK example: the job interview */

options prompt "Are you here about the job (y/n)? "

pull yn

hire = 0

if left(yn,1)='Y' then do

options prompt "So you want work... How old are you? "

pull age; if age < random(16,60,time('s')) then break

options prompt "That's old enough! Your name? "

pull name; if length(name)>random(4,20) then break

options prompt "That's short enough! Your weight? ■

pull weight; if weight<random(75,200) then break

say "That's heavy enough! You're hired!"

say "Now, we'll be starting you off as a brain surgeon..."

hire = 1

end

else do

say "Well, the door is over that way."; exit

end

if -hire then

say "Sorry, you're not qualified for this position."

It is a generally-held programming ideal that every logical unit of a

program should have a single entry point, and a single exit point.

Efforts to preserve that ideal in the rough and tumble of real-world

programming have led to the development of the 'control structures'

nearly every program (or ARexx script) requires: if-then-else

constructs, 'while' and 'until' loops, counted loops, 'case' structures

(like ARexx's SELECT), functions and procedures. With all these tools

275

14. Reference

available, the use of instructions that contravene the single-entry,
single-exit rule is seldom desirable.

Nonetheless, most languages provide at least a couple of types of these
abuse-prone instructions; it is up to the programmer to apply them
properly. In ARexx, the BREAK, LEAVE, ITERATE and SIGNAL

instructions are of this "type, along with some usages of EXIT and
RETURN.

BREAK, LEAVE and ITERATE have a family resemblance: they are all

concerned with escaping the confines of a currently active control

structure. Their main benefit is in avoiding the excesses of fussy

indentation: try recoding the example above without using BREAK
and you'll discover that in some cases a small cost in structural purity

is amply repaid by improved readability. And the example could easily
have been made longer...

BREAK'S special property is that it can be applied to any DO-END

block, even a 'non-iterative7 (non-looping) one—a mere compound
statement like the one in the example. LEAVE is legal only in an
iterative DO.

Another special ability of BREAK is that of aborting from an

INTERPRET instruction. It being difficult to devise a clear and

meaningful but short example of this, here is an example that is, well,

at least reasonably short. If you find it opaque, treat it as a puzzle to be
solved... You will notice that the word 'BREAK' does not occur in it
anywhere:

/* BREAK from INTERPRET */

rc=0; options prompt ">"; say "ARexx Command Shell"

s = "pull t 'EXIT1 0 'RETURN1 0 t; interpret f;'s"

syntax: signal on syntax; if rc>0 then say errortext(rc)
interpret s

See also: do, interpret, leave, iterate, signal

276

Instruction and Function Reference

Name:

Type:

Format:

Description:

C2B

built-in function

b = C2B(str)

return binary digit string equivalent to character string

Dialog

examples:

Discussion:

->c2b('Fl)

0100010

/* Count 1 bits in 'Rumpelstiltskin1 */

->length(compress(c2b('Rumpelstiltskin1),

64

'0'))

See also:

This function is sometimes useful as a binary conversion calculator

(as in the first example), and may be handy in occasional bit-oriented

operations that deal with substrings rather than individual bits. The

bit-counting trick of the second example illustrates the kind of higher-

level operation for which it is more appropriate to process the bits as a

character string than individually with BITAND and its fellows.

b2c, c2d, c2x

Name:

Type:

Format:

Description:

C2D

built-in function

n = C2D(str,[len])

return integer number corresponding to character string

Dialog

examples:

->c2d('a')

97

->c2d('0')

48

->c2dC00'x)

0

->c2d('ff'x)

255

->c2d('03ff'

-1

Discussion: This function takes a character string 1 to 4 bytes in length, and returns

the value obtained by treating the string as a 4-byte binary number. For

instance, the string 'frog' consists of 4 characters, which appear in

memory as follows (represented in hexadecimal):

66 72 6f 67

277

14. Reference

See also:

Taken together, these bytes could also be viewed as the hexadecimal
number $66726f67, which is equivalent to the decimal number
1718775655. This is the number that would be returned by:

c2dCfrog')

More typical are the first two examples above, which apply C2D to a

single character in order to determine its ASCII equivalent. The
second example shows that the character '0' and the number 0 are

quite different things: the character is represented by 48 in the ASCII
system. On the other hand, the hexadecimal string W of the third
example really is zero.

C2D always works with a 4-byte string, padding the given string on the

left with null bytes as necessary. But if the optional second argument
is given, as in the last example, the string is padded or truncated as

required to the given number of characters, then sign-extended to 4
characters. In the example, the '03ff, which is 2 characters long, is
truncated to the single character 'ff', which is then sign extended to 4

characters giving 'ffffffff, which has the decimal equivalent -1.

c2x, c2b, d2c

Name: C2X

Type: built-in function

Format: h = C2X(str)

Description: return hexadecimal number corresponding to character string

Dialog

examples:

Discussion:

See also:

->c2x('a')

61

->c2x('Cc')

4363

->c2xd23456'x)

123456

->c2x(import(•00000004'x, 4))

07e007d8 /* ExecBase address (value is system-dependent) */

This function takes a character string of arbitrary length, and returns
the hexadecimal equivalent of the string. The final example above

shows this function being used to display the contents of memory in
hexadecimal (as preferred by many programmers).

c2b,c2d,x2c

278

Instruction and Function Reference

Name:

Type:

Format:

Description:

CALL

instruction

CALL function(arg, arg, arg)

CALL function arg, arg, arg

invoke a function but ignore the result

Script example:

Discussion:

/* CALL example */

call left('scores1,5)

call right result, 4

say result /* output: core */

The original purpose of calling functions in any language was to

obtain a value, either for its own sake or as a component of a larger

expression. Though it is still useful to think of this as the primary use

of functions, in many functions the computation of a value is only

one part of their behavior, while for others it has become a mere

vestige—for form's sake only—or has been abandoned altogether. In

all of these cases, the generation of 'side effects', such as opening a file

or allocating memory, is the main point, and any computation as such

is secondary.

The CALL instruction provides a way of explicitly invoking a function

that does not return a value, or whose return value is not of interest.

If there is a return value, however, it is not simply thrown away, but

is stored in the RESULT variable, regardless of whether OPTIONS

RESULTS has been used. If the function does not return a value, the

RESULT variable is 'dropped'.

Another special quirk of CALL is that the parentheses normally

required around the function argument list are optional, as the second

line of the example demonstrates. ARexx's parent language REXX

actually disallows parentheses in this context, so the examples of

CALL in this book are in a sense non-standard. Since nothing is

gained by having two forms of function argument lists, however, and

consistency is lost, we recommend you follow our practice and use the

parentheses.

Function calls made with CALL are in all other respects the same as

function calls made within expressions. The function name is

matched by the usual process of searching first internal, then built-in,

then library, then external functions, and the internal functions can as

usual be bypassed by putting the function name in quotes.

279

14. Reference

See also: Chapter 6 (Compound Variables and Built-in Functions) covers the

search order for matching function names in detail, and provides a

general introduction to functions and function libraries.

Name:

Type:

Format:

Description:

CENTER or CENTRE

built-in function

s = CENTER(strl, width,

center a string in a field

[pad])

of given width

Dialog

examples:

Discussion:

See also:

->•['center('How I Spent Last Summer ', 31)']'

[How I Spent Last Summer]

->'['center('How I Spent Last Summer',31,'=')']'

[====How I Spent Last Summer====]

->center('How I Spent Last Summer1,15)

I Spent Last Su

This useful function lets you center a string on a field of either spaces

(the default) or some other character you give as the pad argument.

The result string will have the length given in the width argument,

even when (as in the third example) this is shorter than the string to

be centered.

Though CENTER is particularly handy for centering titles and the like

on the monitor display, or on a printed page, it also lends itself to
slightly more exotic uses as in this little script:

/* Draw diamond pattern */

n = 22

do i=-n to n by 2

say center(copies('/',n-abs(i)),n+2,'\')

end

left, right

Name: CLOSE

Type: built-in function

Format: bool = CLOSE(file)

Description: close the given file

Code example: call close (' datafile')

280

Instruction and Function Reference

Discussion:

See also:

Attempts to close an open file nearly always succeed, and in any case

CLOSE does not seem to be able to distinguish successful closures from

failed ones. In fact, it appears that the only condition that causes

CLOSE to return False is the file not having been open in the first

place. Accordingly, it is normal practice not to test the return from

CLOSE, and the example reflects this. It is nevertheless possible for a

file not to be closed after CLOSE has been called, though it does not

happen very often.

ARexx automatically closes all open files when a script exits, but it is

considered better practice to close them explicitly.

open

Chapter 9 (File Input and Output) goes into some detail on all the

ARexx file functions, and should be read for an introduction to and

overview of file handling in ARexx.

Name: CLOSEPORT

Type: support function

Format: bool = CLOSEPORT(portname)

Description: close a message port opened with OPENPORT

Dialog

examples:

->openport('OldPort')

1

->closeport('OldPort')

1

->closeport('OldPort')

Description:

See also:

CLOSEPORT closes a public message port previously opened with

OPENPORT. The only argument is the name of the port, and the

return value is boolean, confirming that the port did exist and has

been closed. Because ports opened with OPENPORT are a controlled

resource that ARexx will automatically free when a script ends, calling

CLOSEPORT may be considered optional in most scripts. Most

programmers would agree, however, that closing the port explicitly is

a good practice.

One thing you must not do is try to use CLOSEPORT on a message

port created other than by OPENPORT. The failure of the port to dose

properly is by far the best of several bad things that might result from

this error.

openport, getpkt, waitpkt, typepkt, reply

281

14. Reference

Name: COMPARE

Type: built-in function

Format: n = COMPARE(strl, str2, [pad])

Description: return index at which argument strings differ

Dialog

examples:

Discussion:

->compare(•rain■,'snow1)

1

->compare('trials•,■tribulations•)

4

->compare(•endpad ', *endpad')

0

->compare(•employee', •employ•,'e')

0

COMPARE is used when you want to know not just whether but
where two strings differ. The comparison starts with the leftmost
character. The shorter string is padded on the right with spaces (the
default) or with the optional pad character. The return value is the
index of the first character that does not match (numbering the
leftmost character as 1), or 0 if the strings are equal.

This function is of limited application, since most string comparisons
are performed with the equality and exact equality operators (see
Chapter 5).

Name:

Type:

Format:

Description:

COMPRESS

built-in function

s = COMPRESS(str,[list])

remove the characters in list (default = space) from str

Dialog

examples:

Discussion:

->compress("Now here")

Nowhere

->compress("Aloha Oahu

lh h - lh Hw!

->compress("'Oh!' he said, sighing - and vanished!
Oh no he said sighing and vanished

Aloha Hawaii!","AlOUaiou")

• * * i i

like the SPACE function, the default form of COMPRESS (represented
by the first example), simply removes all spaces from the string. If the
second argument is given, however, COMPRESS removes from the
first string every character that is in the second string. This may be
used, for instance, to remove characters that would complicate parsing
(as in the third example). 6

282

Instruction and Function Reference

See also: space, strip, translate, trim

Name: COPIES

Type: built-in function

Format: s = COPIES(str, n)

Description: concatenate n copies of str

Dialog

examples:

Discussion:

->copies("+",16)

->copies("Rah! ",3)

Rah! Rah! Rah!

->copies(" -",length("Chapter Two: Elementary Concepts"))

COPIES forms a new string from the given number of repetitions of

the argument string. This is particularly useful for quickly generating

underlines, borders and separators. COPIES can also be used

algorithmically to create various kinds of simple graphics, as in this

little script that uses it to generate a histogram:

/* Quick histogram */

data = "30 44 11 17 45 30 39 28 26 40"

title = "Hat Sales, 1980-1989 ($Millions)u

say center(title,60)

say center(copies(u=",length(title)),60)

say

do i=0 to 9

say center(1980+i, 10) copies ("$", word (data, i+1))

end

Name: D2C

Type: built-in functions, D2C

Format: s = D2C(num,[count])

Description: return character equivalent of number

Dialog

examples:

->d2c(65)

A

->d2c(65+32)

a

->d2c(1131573111)

Crow

->d2c(1131573111,2)

ow

283

14. Reference

Discussion:

See also:

Any string of 4 characters has an equivalent representation as an
integer; correspondingly, any integer in the range 0 to 2147483647 can
be converted to an equivalent character string with D2C The optional
second argument, from 0 to 4, can be used to control the number of
characters, starting from the end of the string, that will be returned.
The default is to return as many characters as are needed to express the
number (eliminating up to 3 leading zero-bytes).

A common use for D2C is to generate characters, such as the 'control'
and the 'alf characters, which may be impossible or inconvenient to
enter via the keyboard. As an example, this little script outputs a table
of all the alt characters (ASCII codes 160 through 255):

/* Show Alt characters */

say " 0123456789ABCDEF"
say " «

do i=160 to 255 by 16

line = d2x(i%16)

do j=i to i+15

line = line d2c(j)

end

say line

end

c2d

Name:

Type:

Format:

Description:

D2X

built-in function

h = D2X(num,[count])

return hexadecimal string equivalent to number

Dialog

examples:

Discussion:

See also:

->d2x(16)

10

->d2x(1023)

3FF

->d2x(2121212121)

7E6F20D9

->d2x(2121212121,5)
F20D9

The number, which must be a positive integer between 0 and
2147483647, is converted to a hexadecimal string of up to 8 characters.
If the second argument, a number from 0 to 8, is present, zeros are
added to or characters are removed from the left of the output string
to achieve the specified length.

x2d

284

Instruction and Function Reference

Name:

Type:

Format:

Description:

DATATYPE

built-in function

type = DATATYPE(str)

bool = DATATYPE(str,mode)

find out about attributes of string

Dialog

examples:

Discussion:

->datatype(123)

NUM

->datatype(■One-Two-Three')

CHAR

->datatype(■10011001','b')

1

->datatype(3173.89E-2,'n')

1

DATATYPE is useful in determining whether a particular string

conforms to some requirement. In the absence of the optional mode

argument, DATATYPE returns either TMUM' or 'CHAR', according to

whether the string argument is or is not a valid number (including

negative and fractional numbers, and numbers expressed in

exponential notation). If the mode argument is given, the string is

tested to see if it conforms with the requirements of that mode, and

returns 1 if the string passes the test, 0 otherwise. The following

modes are valid (only the first letter is significant in the actual call, as

shown in the third and fourth Dialog examples):

Mode

Alphanumeric

Binary

Lower case

Mixed case

Numeric

Symbol

Upper case

The argument string-

May contain only alphabetic characters

(a-z and A-Z) and digits (0-9).

May contain only the characters 0 and 1.

Spaces are allowed every 8 digits counting

from the right

(e,g. '1010 11001111 01010010').

May contain only the characters a-z.

May contain only the characters a-z and

A-Z.

Must be a valid number.

Must be a valid ARexx symbol (such as could

be used as a variable or function name).

May contain only the characters A-Z.

285

14. Reference

Mode _^

Whole number

X (Hexadecimal)

The argument string...

Must be an integer. This test accounts for the

current NUMERIC DIGITS setting, as shown

in the following fragment:
numeric digits 4

say datatype(1.0001,'w1)

numeric digits 3

say datatype(1.0001,'w•]

/* output: 0 */

putput; 1

May contain only the characters 0-9, a-f and

A-F. Spaces are allowed every 2 characters

counting from the right (e.g. '1 2A 30 E9')

Name: DATE

Type: built-in function

Format: d = DATE([outmode],[indate],[inmode])

Description: find today's date, or info about a specified date

Dialog

examples:

Discussion:

->date()

21 Jul 1991

->date('u')

07/21/91

->date(■e')

21/07/91

->date('W, 19910815,

Thursday

s')

ARexx's DATE function is a little complicated, but very
comprehensive and versatile. Any of 12 different modes can be given
for the first argument. In the absence of the other arguments, these
specify different information to be returned about today's date, along
with the date format. The modes, which may be abbreviated to a single
letter as usual, are:

Mode

Base

Century

Date information returned...

The number of complete days since the base date
01/01/0000. Current values are in the

neighborhood of 727 thousand. DATE('b')//7
returns the day of the week

as a number, with 0 representing Saturday. The

returned string is an unpunctuated number
with no leading zeros

The number of complete days since the

beginning of the 20th century. The value

returned is in the same form as DATE('b'), but is
less by 693,960.

286

Instruction and Function Reference

Mode

Days

European

Internal

Julian

Month name

Normal

Ordered

Standard

USA

Weekday

Date information returned...

The number of days, including today, since the

beginning of the current year. The returned

string is a number between 1 and 366.

The date in the format dd/mm/yy

(e.g. "21/07/91").

The number of days since the conventional

Amiga start date of 01/01/78. The value

returned is in the same form as DATE('b'), but is

less by 722,450.

The date in the format yyddd, where ddd is the

number of days since the beginning of the year

(same as returned by DATECd1)). Both yy and

ddd are padded on the left with zeros if

necessary to make 2 and 3 digits respectively.

The full name of the month in English mixed

case.

This is the default format returned by DATE

with no arguments. It is in the form dd mmm

yyyy. The day, dd, is padded to 2 digits with a

leading zero if necessary. The month, mmm, is

the first 3 letters of the full month name as

returned by DATECm1).

The date in the format yy/mm/dd, suitable for

sorting. All 3 fields are padded to 2 digits if

necessary.

The date in the format yyyymmdd, suitable for

sorting. The mm and dd fields are padded to 2

digits if necessary.

The date in the format mm/dd/yy (e.g.

"07/21/91").

The full name of the weekday in English mixed

case.

The mode given as the first argument is normally applied to the

current date as known to the system, but an alternate date can be given

as the second argument if desired. This date can be given in either the

Internal or the Standard formats. The Internal format is the default; if

the Standard format is used, the 's' mode specifier must be used as the

third argument, as in the final example above. The only other allowed

mode for the third argument is the default, 'i'.

The DATE function has, in common with TIME, the special property

that multiple calls within a single instruction will be mutually

287

14. Reference

See also:

consistent: neither the calendar nor the clock will (be observed to)
advance between the calls.

time

Name: DELAY

Type: support function

Format: 0 = DELAY(n)

Description: pause for n 50ths of a second

Discussion:

Script example:

/* DELAY */

se = "SPECIAL EFFECT!■■Oa'x

do i=l to length(se)

call delay(6)

call writech('STDOUT1,substr(se, i,1))

end

DELAY lets your script do nothing at all for the given number of

fiftieths of a second: it simply waits out the time. An important
subtlety on the multitasking Amiga is that DELAY waits in the correct
way, without hogging system resources. It provides a way of avoiding
such barbarities as 'timing loops' like:

do 1000; end

which use up just as many processor cycles as they would in honest
computation, simply by doing nothing in the wrong way.

The return value from DELAY is not meaningful.

Name:

Type:

Format:

Description:

DELETE

support function

bool = DELETE(name)

delete a file or directory

CLI example: Shell> rx "say deleteCram:nullity)
/* file does not exist */

0

Shell> echo >ram:nullity

Shell> protect rammullity -d

Shell> list ramrnullity NOHEAD

nullity empty rwe- Today

Shell> rx "say delete('ram:nullity■)
14:31:37

288

Instruction and Function Reference

Description:

See also:

/* file delete-protected */

0

Shell> protect ram:nullity +d

Shell> list ramrnullity NOHEAD

nullity empty rwed Today 14:31:37

Shell> rx "say delete('ram:nullity')

/* Should work this time */

1

DELETE can delete either a file or an empty directory. As the example

shows, the function will fail (returning 0) if the named file or

directory does not exist, or is protected from deletion by clearing the 'd'

file attribute with the AmigaDOS Protect command. DELETE will also

fail if the file is currently in use (having been opened by another

script, perhaps), if the disk it is on is write-protected, and so on.

rename, makedir

Name:

Type:

Format:

Description:

DELSTR

built-in function

s = DELSTR(str, start,

delete len characters

[len])

from str

Dialog

examples:

Discussion:

See also:

->delstr('piglet1,4)

pig

->delstr('piglet',2,3)

pet

DELSTR's result string is the argument string with a specified run of

characters removed. The deletion begins at the character whose

position is given as start. Character positions are counted from 1, the

leftmost character. If the start position is greater than the length of the

argument string, no deletion is performed. The default length of the

deletion is from the start position to the end of the argument string;

the length may be specified in a third argument if desired.

insert, overlay

Name: DELWORD

Type: built-in function

Format: s = DELWORD(str, start, [len])

Description: delete len words from str, beginning at start word

289

14. Reference

Dialog

examples:

Discussion:

See also:

->'['delword('Always stand up for your beliefs',4)•]•
[Always stand up]

->'['delword('Never say never again1,2,2)']•
[Never again]

DELWORD's result string is the argument string with a specified run
of words removed. The deletion begins at the word whose position is
given as the second argument. Words are counted from 1, the leftmost
word. If the start word is greater than the number of words in the
argument string, no deletion is performed. The default length of the

deletion is from the start word to the end of the argument string; the
number of words to delete may be specified in a third argument if
desired. Any spaces to the right of a deleted word are also removed.

As usual in ARexx's built-in word functions, only actual space
characters are taken as word boundaries. Other characters often
regarded as 'white space', such as tabs and linefeeds, are treated as
belonging to words, not delimiting them.

find, subword, word, wordindex, wordlength, words

Name: DIGITS

Type: built-in function

Format: n = DIGITSO

Description: return current NUMERIC DIGITS setting

Script example: /* The digits function */
say digits()

say 1/9

numeric digits 14

say digits()

say 1/9

*/

*/

/* (default): 9

/* output: 0.111111111

/* (maximum): 14 */

/* output: 0.11111111111111 */

Discussion:

See also:

DIGITS returns the maximum number of significant digits used for
the display of numeric values. Sometimes it is desirable to save the
current precision setting before modifying it (with the NUMERIC

DIGITS instruction), in order that it can be restored later on. DIGITS

may also be used to validate the argument given to NUMERIC FUZZ,
which must be less than the current DIGITS setting:

numeric fuzz digits()-l /* maximum fuzz */

form, fuzz

290

Instruction and Function Reference

Name:

Type:

Format:

Description:

DO

instruction

DO

DO FOREVER

DO [FOR] count

DO WHILE/UNTIL test

DO var=start [TO limit] [BY step]

DO [FOR] count WHILE/UNTIL

DO var=start [TO limit] [BY step]

DO var=start [TO limit] [BY step]

DO var=start [TO limit] [BY step]

begin a block of instructions or a

test

FOR count

WHILE/UNTIL test

FOR count WHILE/UNTIL test

loop

Script example:

Discussion:

/* DO - Random number test */

trials = 10 /* Adjust # of trials to suit */

target = randomd, 100, time(' s1))

total =B 0

do trials

do i=l while target ~= randomd, 100)

end

total = total + i

end

/* 'Expected' average is close to 100 over many trials */

say "Average of" trials "trials:" trunc(total/trials+.005,2)

Where most languages provide a number of different constructs for

loops, ARexx provides just one, but that one has wide capabilities. The

simplest form of DO simply introduces a block of instructions that

looks 'from the outside' like a single instruction. An instruction block

can be made conditional on a single IF/THEN, ELSE or WHEN, for

instance.

All forms of the DO instruction require a matching END after the last

instruction in the block. This is true even if the block contains no

instructions at all, as shown by the inner loop in the example script

above.

The instruction formats shown above give all the useful forms of DO.

Although the ARexx interpreter allows some variations in the

ordering, and some redundant combinations of forms, such as:

291

14. Reference

do i=3 by 2 to 15 /* by...to = to...by */
do 20 forever /* same as do 20 */

do forever 20 /* same as do forever */

none adds any advantages over the standard forms presented. The
first of these is the simple form discussed above; the remaining 8 are
the 'iterative' or 'looping' forms. Of these, the second 4 are
combinations of the first 4. Here we'll briefly consider the iterative
forms in turn:

DO FOREVER

This loop will never terminate of its own accord, just as advertised.
There are nevertheless several ways to escape the loop (without
rebooting!). The BREAK, LEAVE, RETURN, EXIT and SIGNAL
instructions all provide means of breaking out of the loop, as
documented in their separate entries; BREAK and LEAVE are the
preferred choices as they are the least disruptive of the flow of control.
Of course, the support program HI or interactive tracing can be used to
break out of a runaway loop if need be.

DO [FOR] count

The numeric expression 'counf is evaluated, and the loop is repeated
that many times (barring early exit with LEAVE etc). The FOR
keyword was needed in the original release of ARexx but is now
optional. The outer loop in the example above demonstrates this form
of DO.

DO WHILE/UNTIL test

Either of the keywords WHILE or UNTIL may be used (not both) plus
the logical expression 'tesf. If WHILE is used, 'tesf is evaluated upon
entry to the loop, and after each iteration. The loop continues to
execute as long as the result of the evaluation is 1 (True). If the result

is 0 (False), control is passed to the first instruction immediately
following the loop's END instruction. The inner loop in the example
above demonstrates the WHILE form of DO. If UNTIL is used, the
loop is executed once without first evaluating 'tesf. The expression is
evaluated then, and after each subsequent iteration. The loop
terminates when the expression yields 1.

DO var=start [TO limit] [BY step]

Upon entry to this loop, the numeric expression 'start' is evaluated

and the result is assigned to the variable 'var', which is called the
'index variable' or 'loop counter variable'. If the TO phrase is present,

the numeric expression 'limif is evaluated and the result is stored. If

292

Combinations

See also:

Instruction and Function Reference

the TO phrase is absent, there is no limit value for the loop. If the BY

phrase is present, the numeric expression 'step' is evaluated and the

result is stored. If the BY phrase is absent, the step value defaults to 1.

None of these expressions is re-evaluated while the loop is executing,

so the calculated values cannot be altered by instructions within the

loop. The inner loop of the example above is an example of this form

of DO with both the TO and BY phrases absent. The result is that the

index variable is incremented by 1 on each 'pass' through the loop,

without limit.

Before each iteration of the loop, including the first, the value of the

index variable is compared with the stored limit value, if there is one.

If the step value is positive and the index variable is greater than the

limit, or the step value is negative and the index variable is less than

the limit, the loop terminates. After each iteration of the loop, the

index variable is incremented by the step value. The value of the

index variable can also be modified directly (e.g. by assignment) within

the loop, though this is generally discouraged as poor programming

practice.

In all combinations of the preceding types, the loop will be ended by

whichever terminating condition, of which there may be up to 3, is

first activated.

end, break, leave, iterate

For more examples and discussion of DO in its many forms, see

Chapter 7 (Compound Statements and Loops).

Name:

Type:

Format:

DROP

instruction

DROP var [var...]

Description: restore a variable to its uninitialized state

Script example: /* DROP example script */

say elephant

elephant = "pachyderm11; say elephant

drop elephant

say ouch /* on the elephant's behalf */

say elephant

293

14. Reference

Discussion:

See also:

Every ARexx variable name can be used in an expression wherever a

string is expected, whether or not the variable has ever been assigned a

value (initialized). When an uninitialized variable is used, its value is

taken to be the variable name itself, nearly always in upper case (the

exception being when a compound variable name is derived by
substituting in a lower-case or mixed-case value).

DROP allows you to return one or more variables to their

uninitialized state. If the stem of a compound variable is dropped, as
in:

drop names.

all variables formed on that stem are dropped,

symbol

Name: ECHO

Type: instruction

Format: ECHO expr

Description: send the expression result to the standard output

Shell example:

Discussion:

See also:

Shell> rx "echo 'Thane of Glamis1

Thane of Glamis

Shell> rx >ram:macbeth "echo 'Thane of Cawdor1

Shell> type ram:macbeth

Thane of Cawdor

ECHO is a synonym of the more usual SAY instruction,

say

Name: ELSE

Type: instruction

Format: ELSE [;] instruction

Description: introduce code to be executed when an IF test fails

Script example: /* ELSE example: marry.rexx */

options prompt "Will you marry me (y/n)? "

pull yn

if yn = 'Y1 then

say "Oh joy! Oh bliss! (Am I ready for this?)"

else if yn = 'N' then

say "Oh woe! Oh grief! (And a sense of relief.)1

294

Instruction and Function Reference

else do

say "Hmmm. I thought the question was clear enough."

say "Shall I talce your ambiguous reply for a maybe?"

end

Discussion: ELSE is a valid instruction only when it immediately follows the

instruction succeeding an IF/THEN. ELSE requires a dependent

instruction of its own. The dependent instruction may be simple:

else

a = 3

or it may be a compound instruction:

else do

a = 3

b = 4

end

or it may be a complete IF/THEN/ELSE sequence, as in the example.

The example also illustrates the way in which chained IF/THEN/ELSE

instructions deviate from normal indentation, so that instead of:

if <test> then

<instruction>

else

if <test> then

<instruction>

else

if <test> then

<instruction>

and so on, we use the more natural, informal, compact and

understandable:

if <test> then

<instruction>

else if <test> then

<instruction>

else if <test> then

<instruction>

If a chain of this type goes on much further, however, it is both more

readable and probably a bit more efficient to recode it as a SELECT

instruction.

It is not always obvious to which IF a particular ELSE pertains.
Consider this:

if <testl> then

if <test2> then

instruction

else

instruction

295

14. Reference

See also:

The indentation of the ELSE here suggests that it belongs with the
second IF, not the first, and that is in fact the case: ELSE always attaches

to the most recent unmatched IF available. So how would you force

the ELSE to attach to the first IF instead? Here are two ways,
equivalent in effect:

1) if <testl> then do

if <test2> then

instruction

end

else

instruction

2) if <testl> then

if <test2> then

instruction

else

nop

else

instruction

if, nop, select, do

Name: END

Type: instruction

Format: END [var]

Description: terminate a block of instructions beginning with DO

Script example:

Discussion:

See also:

/* END example - doesn't do a lot, but it's legal */
do

end

END is valid in one context only: as the terminal instruction in a

compound instruction or loop beginning with DO or SELECT. In a DO

loop that uses an 'index variable', the name of the variable may

optionally follow the matching END instruction. Following END with

a non-matching variable name is an error, so this can be used to verify

that an END and its corresponding DO are in the correct relationship.

do, select

296

Instruction and Function Reference

Name:

Type:

Format:

Description:

EOF

built-in function

bool == EOFtfile)

return 1 if end of file has been detected; else 0

Script example:

Discussion:

See also:

/* This script assumes the file "ram:test" was

created with the shell command:

Shell> echo >ram:test "Any string"

*/

if open('testfile','ram:test1,'r') then do

say "File newly opened, eof() returns" eof(•testfile1)

call readlnC testfile')

say "One line read, now eof() returns" eof(•testfile1)

call readlnC testfile1)

say "Another line read, eof() returns" eof('testfile1)

call seek('testfile',O, 'b')

say "At start position, eof() returns" eof('testfile')

call close('testfile■)

end

else

say "Can't open file 'ram:test1."

EOF reports on the end of file condition for a given file. As the

example shows, the condition is not set until an unsuccessful read

attempt has been made. The example also demonstrates that the end

of file condition is cancelled by a call to SEEK. In fact, even a SEEK of

zero bytes relative to the current position (that is, a null SEEK) will

cancel the EOF until another unsuccessful read has been performed.

readch, readln, seek

Chapter 9 (File Input and Output) goes into some detail on all the

ARexx file functions, and should be read for an introduction to and

overview of file handling in ARexx.

Name: ERRORTEXT

Type: built-in function

Format: text = ERRORTEXT(n)

Description: return a description of syntax error number n

Dialog

examples:

->errortext(1)

Program not found

->errortext(29)

Incomplete IF or SELECT

->errortext(36)

Keyword conflict

297

14. Reference

Discussion:

See also:

In some kinds of scripts it is desirable to trap syntax errors, using the

SIGNAL ON SYNTAX instruction. If this is done, ARexx gives you a

numeric code for each error via the RC variable, but does not display a

message describing the error in words. ERRORTEXT can be used to

obtain the text message corresponding to the numeric code.

Only non-negative integers are accepted as arguments to

ERRORTEXT. Integers that are not valid error numbers return the text

"Undiagnosed internal error". In the version of ARexx current at the

time this book was going to press (version 1.15), the valid error

numbers ranged from 1 to 48. A few numbers in that range return an

empty string, presumably because of an evolution in ARexx's error

handling from previous versions.

The Dialog script given in Chapter 5 contains an example of the kind

of use of ERRORTEXT discussed above, and illustrates the difference

between syntax errors and errors returned by commands.

Name:

Type:

Format:

Description:

EXISTS

built-in function

bool = EXISTS(name)

return true if given file or directory exists

Dialog

examples:

Discussion:

->exists('sys:c')

1

->exists('crlist1)

1

->exists('ram:ectoplasm1)

0

->exists('dfO:•)

1

->exists((df2:■)

0

Scripts will sometimes need to take different actions depending on the

presence or absence of a particular file or directory. In the case of a

database file, for example, the script may be required to open the file

with Y (read mode) if it exists, or with 'W, creating it, if it does not.

EXISTS provides a quick way of checking the existence of the file

without bothering the user.

If the path name being checked refers to a device that is not in the

system, a volume that is not mounted, or a logical directory that has

not been assigned, EXISTS (through AmigaDOS) will normally post a

requester asking the user to make the 'volume' available. If this

requester would be inappropriate, the script can suppress requesters

298

Instruction and Function Reference

See also:

before calling EXISTS by calling the PRAGMA function, then

(typically) re-enable them afterwards with another call to PRAGMA:

call pragma('W,'n1)

result = exists('ichabod:crane')

call pragma('W , 'W)

Remember that the mere existence of a filing system object of a given

name doesn't tell you anything about its type, since the naming rules

for files and directories are the same. It is even possible for a file to

masquerade as a device or volume by giving it a logical device name

with the AmigaDOS Assign command. In most situations you may be

able to ignore possibilities like these, but if you do need more

information about the name than merely that it exists, you should use

the STATEF function in the support library.

statef, showdir

Name:

Type:

Format:

Description:

EXIT

instruction

EXIT [expr]

terminate a script

Script examples: /* Script 1 - ExitTest.rexx

Try this with no args, numeric args and string args.

*/
exit arg(l)

/* Script 2 - CallExitTest.rexx

Try this with no args, numeric args and string args.

ExitTest.rexx must be in your current directory or

in rexx: for this to work.

*/
say exittest(arg(l))

/* Script 3 - DoExitTest.rexx

Try this with various args. Try commenting out the

OPTIONS RESULTS line and/or the OPTIONS FAILAT line.

ExitTest.rexx must be in your current directory or

in rexx: for this to work.

*/
options results

options failat 20

'exittest1 arg(l)

say "RESULT = '"result"1, RC =" re

299

14. Reference

Discussion:

See also:

EXIT terminates the current script. If an argument expression is

provided, the expression is evaluated and the result returned to the

caller. If the caller happens to be the RX program, only a numeric

result is acceptable. RX will report an arithmetic conversion error if
you use:

EXIT "Well, that's thatl"

The outcome of passing back an expression result to other callers

depends on the context of the call. If the called script is invoked as a

function (the way the second script in the example invokes the first),

the expression is simply returned as the function value in the usual
way.

If the called script is invoked as a command (the way the third script

in the example invokes the first), the meaning of the expression

depends on whether OPTIONS RESULTS has been used. If it has, the

returned value is stored in the RESULT variable, and the return code

(RC) is 0. If OPTIONS RESULTS is not used, a numeric return is

treated as a return code, and is stored in RC. If the returned value is

greater than the current OPTIONS FAILAT threshold, the error will be

reported. An attempt to return a non-numeric string when OPTIONS

RESULTS is not used is treated as an error with a return code of 10.

return, options

Name: EXPORT

Type: built-in function

Format: count = EXPORT(addr,[str],[maxlen],[pad])

Description: copy a string to a memory area

Script example: /* Demo script using EXPORT with 100-byte buffer */

buf = getspace(lOO)

/* Export string to buffer, then fetch it with IMPORT */

say export(buf, "Good morning!") "bytes copied to buffer.1

say "Buffer contains '"import(buf)"'."

/* Complete form of EXPORT, IMPORT just 40 bytes back */

say export(buf, import(buf) import(buf), 50, " + ");

say "Buffer contains '"import(buf, 40)"■ ."

/* Free buffer (not strictly needed - see FREESPACE) */

call freespace(buf, 100)

300

Instruction and Function Reference

Discussion:

See also:

EXPORT provides a method of storing data into any memory location

from within an ARexx script. In practice, this capability is rarely

needed, though it might be useful in conjunction with some function

libraries, or with specific ARexx-supporting application programs. The

contrived nature of the example above reflects the abstruseness of this

function.

EXPORTS first argument is a 4-byte address, which if given literally

would normally be expressed in hexadecimal (e.g. /0024e098/x). This

address is the destination of the exported data. The other three

arguments are all optional. The second argument is a string to be

copied to the given address; the third argument is the maximum

number of characters to be copied (the default is the length of the

string); the fourth argument is a pad character used to make up the

length if the string is too short. The default pad character is the null

byte (Wx). EXPORT returns the number of bytes transferred to the

buffer.

Because EXPORT writes directly into system memory, its incorrect use

can cause the failure of, or aberrant behavior by, any task or tasks in

the system, or a system crash. ARexx is unable to protect you from

yourself when using this function.

import, getspace, freespace, storage, allocmem, freemem

Name:

Type:

Format:

Description:

FIND

built-in function

n = FIND(str, phr)

return position of word or phrase in string

Dialog

examples:

Discussion:

See also:

->find(ttl 2 3 4 5 6 7\ M3 4 5")

3

->find(M1234567M,w345M)

0

->find(M12 345 67","345M)

2

FIND searches for a multi-word phrase (the second argument) in a

string (the first argument), and returns the word index, counting from

1, of the first occurrence, or 0 if the phrase is not found. To be

matched, the phrase must occur in the string as complete words,

bounded by spaces or the ends of the string.

delword, subword, word, wordindex, wordlength, words, index

301

14. Reference

Name:

Type:

Format:

Description:

FORBID

support function

count = FORBIDO

turn off multitasking

Script example:

Description:

/* FORBID */

parse version . . cpu .

if right(cpu,2)>=20 then limit=20000; else limit=5000

say "Forbid() returns" forbid()

say "I'm going to count to" limit" (it'll take a few seconds)."

say "Until I'm finished you won't be able to use the computer,"

say "because I'm the only task in business, and I won't be"

say "listening to you. Try moving the mouse for instance..."

do limit; end

say "Permit() returns" permit()

Not less often than every 4 video frames, 15 times a second, the

Amiga's operating system takes control of the computer away from

the currently executing task and gives it to the task who is next in turn

to run. Tasks do not know, and generally need not be concerned about,

exactly when their 'time slices' occur—from their point of view they

are executing continuously. That's what multitasking is all about.

In some circumstances, though, switching away from a task at a

particular moment could be dangerous. During a memory allocation,

for instance, the information that all tasks share about system

memory is being updated, and for some tiny fraction of a second is not

internally consistent. If a task switch happened just at that point and

another task tried to use the same information, it would almost

certainly cause, or at least sow the seeds of, a system crash. Because

memory allocations occur so often, this dire situation would surely

happen eventually if measures were not taken to avoid it.

What actually happens in a memory allocation, as with many other

activities involving shared data, is that task-switching is very briefly

locked out so that the data can be modified safely. The lock-out

mechanism can be accessed from ARexx with the functions FORBID

and PERMIT. As you would expect from their names, FORBID

prevents task-switching, and PERMIT re-enables it.

Calls to FORBID and PERMIT must balance: if you call FORBID twice

you must be sure to call PERMIT twice for multitasking to be restored.

The number of times FORBID has been called without a matching

PERMIT is called the 'nesting count'; both functions return the value

302

Instruction and Function Reference

See also:

of this count that results from calling them. When a call to PERMIT

undoes the last level of FORBID, the resulting nesting count is -1.

Another way in which multitasking may temporarily be re-enabled is

if your task enters a waiting state, which happens—to name only one

of many instances—when your script communicates with an ARexx

host. As soon as your script starts running again, though, the FORBID

is renewed. If a section of code requires a FORBID to guarantee the

continuing integrity of some data, you must be careful not to allow

multitasking inadvertently by using some function or instruction that

will put you into a wait. Commands that use external files, or

functions that are handled by a function host, the SAY, (PARSE) PULL

and TRACE instructions, to name only a few, will all have that effect,
so don't use them within a FORBID.

In the example script, the loop in the second last line, which takes

several seconds to complete, executes without ever going into a wait.

Therefore during those seconds it as though no other task was

running in the computer. Even the 'input task', which watches for
keyboard and mouse activity, is paralyzed.

So, armed with all this theory, when should you call FORBID and

PERMIT? Well, probably never. Unless you're going to write scripts

that snoop system data structures, it isn't likely you'll ever need to

block normal multitasking. And it's preferable not to, if you have the

choice: FORBIDding is one of those things that well-behaved
programs do only when necessary, and even then for as short a time

as possible. But the capability is there if you need it.

permit

For an example that actually does require the protection of FORBID

and PERMIT, see the Reference Section entry for NEXT function.

Name: FORM

Type: built-in function

Format: f = FORM()

Description: return current NUMERIC FORM setting

Script example: /* The FORM function */

say form()

say l/9el2

numeric form engineering

say form()

say l/9el2

/* (default): SCIENTIFIC */

/* output: 1.11111111E-13 */

/* output: ENGINEERING */

/* output: 111.111111E-15 */

303

14. Reference

Discussion:

See also:

FORM returns the current exponential format used for displaying

numbers that are too large or small to be expressed in normal numeric

format. The function returns either 'SCIENTIFIC or 'ENGINEERING'.

Sometimes it is desirable to save the current form setting before

modifying it (with the NUMERIC FORM instruction), in order that it

can be restored later on.

digits, fuzz

Name: FREEMEM

Type: support function

Format: 1 = FREEMEM(addr, size)

Description: free memory allocated by allocmem

Script example:

Discussion:

See also:

/* FREEMEM */

mem = allocmem(5000) /* allocate 5000 bytes */

say "Obtained 5000 bytes at address $"c2x(mem)"."

call freemem(mem, 5000) /* ... and free it again */

FREEMEM's first argument is an address previously returned by

ALLOCMEM, and its second argument is the size of the allocation at

that address. FREEMEM always returns 1.

allocmem, export, import, getspace, freespace, storage

The entry for ALLOCMEM contains both a detailed discussion of

issues relating to memory allocation, and a fuller example of using

both ALLOCMEM and FREEMEM.

Name: FREESPACE

Type: built-in function

Format: n = FREESPACE0

n = FREESPACE(addr, size)

Description: return memory to ARexx's internal memory pool

Script example: /* Allocate then free some memory */

say "ARexx memory pool contains" freespace() "bytes."

mem = getspace(1000)

say "Allocated 1000 bytes at address $Mc2x(mem)tt.M

say "Freeing, freespace() returns" freespace(mem, 1000)".'

say "ARexx memory pool now contains" freespace() "bytes.1

304

Instruction and Function Reference

Example

output:

Discussion:

See also:

ARexx memory pool contains 960 bytes.

Allocated 1000 bytes at address $07EADF00.

Freeing memory, freespace() returns 2864.

ARexx memory pool now contains 2912 bytes.

Behind the scenes of an executing script, the ARexx interpreter is

constantly allocating and freeing memory. Rather than allocating

many small amounts of memory from the system directly, ARexx

maintains a sort of 'petty cash fund': it keeps an internal pool of

memory, and extends it with larger allocations from the system

whenever the pool is exhausted.

GETSPACE and FREESPACE allow a script to obtain memory from

and release memory into the internal pool, on those occasions when a

temporary buffer with a known address is needed.

When called with no arguments, FREESPACE returns the current size

of the internal memory pool. This may vary widely in the course of an

executing script, but is not usually of interest unless you are running

near the limit of available memory. To actually free memory, the

address (as returned by GETSPACE) and size (as given to GETSPACE)

of the allocation must be supplied.

In most cases, it is not strictly necessary to call FREESPACE at all, since

any memory allocated by GETSPACE will be freed automatically when

the script finishes running. Nevertheless, it is probably a good idea to

do so, just as it is a good idea to close files explicitly rather than leave it
up to ARexx to do for you.

export, import, getspace, storage, allocmem, freemem

Name: FUZZ

Type: built-in function

Format: f = FUZZ()

Description: return current NUMERIC FUZZ setting

Code example: /* This could fail, depending on the value of FUZZ */

numeric digits 9

/* ...whereas this is guaranteed to work */

numeric digits max(9, fuzz 0+1)

305

14. Reference

Discussion:

See also:

FUZZ returns the current fuzz setting for numeric comparisons, as set

with the NUMERIC FUZZ instruction. The value returned will be an

integer from 0 to one less than the current significant digits setting.

Sometimes it is desirable to save the current fuzz setting before

modifying it in order that it can be restored later on. FUZZ may also be

used, as in the second example, to validate the argument to the

NUMERIC DIGITS instruction.

digits, form

Name:

Type:

Format:

Description:

GETARG

support function

arg = GETARG(packet, [whicharg])

obtain an argument string from a message packet

Script example: /* Ultra-simple command host written in ARexx. Assuming

it is filed as rexx:SimpleHost.rexx, use it like this:

Shell> run rx SimpleHost

Shell> rx "address simple__host quit

*/

hname = 'SIMPLEJOST1

shutdown = 0

if openport(hname) then do

if openCcf', Icon:5p/50/200/20/Simple host1) then do

do until shutdown

call waitpkt(hname)

pkt = getpkt(hname)

rcode = 0

if pkt ~= null() then do

cmd = getarg(pkt)

if upper(cmd)='QUIT* then

shutdown = 1

else do

say 'Unknown command:' cmd

rcode =10

end

call reply(pkt,rcode)

end

end

call close ('cf)

end

call closeport(hname)

end

306

Discussion:

See also:

Instruction and Function Reference

An ARexx script usually gets its arguments (if any) through the ARG

function or the PARSE ARG instruction. When an ARexx script calls a

command host or a function host, however, the host receives its

command (or function) name and arguments in the form of a

'message packet7. Although hosts are normally written in high-

performance languages like C or assembler, functions to manipulate

message packets are provided in the ARexx support library. With their

aid it is possible to write a command host completely in ARexx

(although it does not appear that a well-behaved function host can be

written with the current version of the library).

In the extremely short and simple command host of the example,

message packets are awaited at the message port with the name

'SIMPLE_HOST'. When a packet arrives, its address is assigned to the

pkt variable. After checking that the packet is valid by comparing it

with the null address, we can proceed to examine it with GETARG.

GETARG's first argument is the packet from which we wish to extract

information. The second argument specifies which packet argument,

from 0 to 15, we want to look at. Packets sent to a command host have

only one argument, numbered 0. Since 0 is the default value for the

second argument, we can get the information we want with:

and = getarg(pkt)

As mentioned, you can't currently write a function host in ARexx (not

straightforwardly, at least—you could always code your own support

functions in another language). Since only packets sent via function

invocation can have more than one argument (assuming the packets

originate with a script), it is unlikely that you will ever need to use the

second argument to GETPKT.

getpkt, reply, typepkt, waitpkt, openport, doseport

Name: GETCLIP

Type: built-in function

Format: s = GETCLIP(clip)

Description: return value string associated with clip name

Dialog example: ->' [' getclip (• Charles ') ■] '

->setclip(•charles','dickens■)

1

->• [' getclip (' charles ') ■] •

[dickens]

307

14. Reference

Discussion:

See also:

ARexx maintains a list of strings called 'clips', which is globally

available to all scripts. Each entry on the Clip List is known by a

unique name; the entry associated with a given name may be

retrieved with GETCLIP. If there is no entry on the Clip List with the

specified name, GETCLIP returns an empty string.

The Clip List provides a means of making information available to a

script that is analogous to the environment variables of AmigaDOS.

The ARexx manual suggests using clips in conjunction with the

INTERPRET instruction to create named constants. For instance, if

there were a clip called 'Constants' that contained these initializations:

pi=3.14159265; e=2.71828183; sqrt2=l.41421356

they could be incorporated into a script with:

interpret getclip(■Constants■)

just as though the initializations had been performed by the script

itself.

In another usage, set-up information like data file names and

formatting parameters can be communicated through clips to a single

script or a suite of related scripts without having to provide the

information as command-line or function arguments. A script can

assume a default set-up and go with that if the relevant clip has not

been initialized.

setclip

Name: GETPKT

Type: support function

Format: pkt = GETPKT(portname)

Description: pick up a message packet from a message port

Discussion: GETPKT removes a packet waiting at the message port named in its

one argument, and returns the address of the packet as a 4-byte string.

You use the string—without ever caring about its exact contents—as a

means of referring to the packet when dealing with other functions

like GETARG. You should check the value returned by GETPKT to

make sure it is not the null address '00000000'x.

Packets picked up at a message port with GETPKT must eventually be

returned to their sender with the REPLY function. This should be

308

Instruction and Function Reference

See also:

done without undue delay, as the sender is most likely waiting in

enforced idleness for the reply to arrive.

getarg, reply, typepkt, waitpkt, openport, doseport

For a programming example including GETPKT, and an explanation

of message packets and their role in some ARexx scripts, see the entry

for GETARG.

Name: GETSPACE

Type: built-in function

Format: addr = GETSPACE(size)

Description: allocate memory in ARexx's internal memory pool

Discussion:

See also:

GETSPACE is used to allocate a memory area that will not be required

after the script that calls it has finished running (since ARexx will

then free the memory even if the script has not). GETSPACE cannot

fail as such—it will always return a valid address. Instead, if the

requested memory allocation cannot be satisfied, ARexx generates

error 3, 'No memory available'.

For more information on GETSPACE and FREESPACE, see

FREESPACE.

Name: HASH

Type: built-in function

Format: n = HASH(str)

Description: calculate a hash value for a string

Dialog

examples:

Discussion:

->hash(lAl)

65

->hashCAA')

130

->hashCAAAA')

4

To 'hash' a string means to derive a numeric value from its

component characters. That value can be used subsequently for fast
look-up of the original string. Hash values are not (ordinarily)
expected to be unique for a given string: many strings may hash to the

same value in what is known as a liash collision'. Computer scientists
have, however, put a lot of effort into devising sophisticated hash
functions that minimize collisions as far as it is possible to do so.

309

14. Reference

ARexx's HASH has no such pretensions to sophistication. The value

it returns is the sum, mod 256, of the ASCII values of the characters in

the argument string.

Name: IF

Type: instruction

Format: IF test [;] THEN [;] instruction [ELSE [;] instruction]

(NB: Instruction' here means either a single instruction

ending at the end of a line, or a compound instruction such

as a DO-END block or another IF instruction.)

Description: introduce code to be executed if test expression is True

Script example:

Discussion:

/* IF example */

parse value date(•e') with day '/' month V year

if month=12 & day=25 then

say "Merry Christmas!"

else if year>93 then do

say "Okay, now at last the truth can be revealed:"

say "'Nick Sullivan' is the pseudonym of Navillus Kcin!"

end

else do

hours = time('h')

if hours < 6 then

say "Up all night worrying about insomnia?"

else if hours <= 12 then

say "Good morning!"

else if hours < 18 then

say "Good afternoon!"

else

say "Good evening!"

end

Instructions may come and go, but just about every high-level

computer language ever devised has an instruction called IF. A good

thing too, for IF (supplemented by younger relatives like WHILE and

UNTIL) is what gives computers the power to make decisions based

on present conditions, to cope with special cases, to select the correct

course of action from a number of alternatives.

Structurally, an IF instruction consists of a boolean test expression

sandwiched between the keywords IF and THEN, with a dependent

instruction (simple or compound) coming after. The dependent

instruction is executed only if the test expression returns True. The

instruction may itself be followed by the ELSE keyword and a second

310

Instruction and Function Reference

dependent instruction, to be executed only if the test expression

returns False.

As in the example above, IF/THEN/ELSE clauses are often linked to

form a chain, whose true structure is concealed by the conventional

indentation. For further discussion of this see ELSE.

Sometimes, one member of an IF/THEN/ELSE tests for some case

merely to exclude it from consideration further down; not to perform

an action, in other words, but to avoid one. In ARexx, this means

using the special instruction NOP as the dependent instruction for

that case. NOFs great talent is that it does exactly nothing. Here is a

schematic example to show one sort of logic that calls for NOP:

if a

call handle__a ()

else if b

nop

else if c

call handle__c ()

else

call handle_default()

If it seems odd to use an instruction that has no effect, consider the

alternative:

See also:

if a then

call handle_a()

else if ~b then do

if c

call handle_c()

else

call handle_default

end

The effect is identical, and the oddity of NOP is avoided, but the

second version is hardly clearer.

else, nop, select, do

Name:

Type:

Format:

Description:

IMPORT

built-in function

s = IMPORT(addr,[len])

return contents of memory as a string

Dialog example: ->c2x(import(•00000004'x,4))

00000676

/* Address of ExecBase */

311

34. Reference

Discussion:

See also:

IMPORT reads bytes from system memory and copies them to an

ARexx string. The number of bytes to copy may be given as the second
argument; the default action is for the copy to terminate when a zero
byte is encountered.

export, getspace, freespace, storage, allocmem, freemem

Name: INDEX

Type: built-in function

Format: n = INDEX(str,pat,[start])

Description: return position of pattern in string

Dialog

examples:

Discussion:

->index("rubadubadub","ub")
2

->index("rubadubadub","ub",2)
2

->index("rubadubadub","ub",3)

6

->index("rubadubadub","ub",7)
10

->index("rubadubadub","ub",11)
0

INDEX is used to locate a substring within a string. The number

returned is the start character of the pattern within the string,

counting the leftmost character as 1. Zero is returned if the pattern is

not found. The optional start argument specifies the first character
within the string at which to begin looking for a match. This allows a

string to be scanned iteratively, as in this function to count the

number of times a specified character (or larger substring, for that
matter) occurs in a string:

/* CharCount(s, c): count number of times c

CharCount: procedure

parse arg s, c

count = 0

pos = index(s, c)

occurs in s */

See also:

do while pos > 0

count = count + 1

pos = index(s, c,

end

return count

pos, lastpos, find

pos + 1)

312

Instruction and Function Reference

Name: INSERT

Type: built-in function

Format: s = insert(istr,str,[start],[len],[pad])

Description: INSERT istr into sir at start position

Dialog

examples:

Discussion:

See also:

->insert("tat",■too")

tattoo

->insert("mat","too",2)

tomato

->insert("","Hell, Johnny!",4,20,"o")

Helloooooooooooooooooooo, Johnny!

The first argument string is inserted into the second. By default, the

insertion point is the beginning of the second string, but the point can

be specified as the start argument, the insertion taking place after the

given character position. Giving zero as the position produces the

default behavior; giving a value greater than the length of str as the

insert position causes str to be padded as necessary with spaces (the

default) or with the pad character. The inserted string will be truncated

or padded to the len, the default being the length istr.

INSERT is useful in the kind of string editing work exemplified by

this function, which performs a search and replace operation within a

given string:

/* replace - replace srch text with repl text in text

->replace("astrologer","log","nom")

astronomer

*/

replace: procedure

parse arg text, srch, repl

slen = length(srch)

tlen = length(text)

do until tlen = 0

tlen = lastpos(srch,text,tlen)

if tlen ~= 0 then do

text = insert(repl,delstr(text,tlen,slen),tlen - 1)

tlen = tlen - 1

end

end

return text

delstr, overlay

313

14. Reference

Name: INTERPRET

Type: instruction

Format: INTERPRET [expr]

Description: execute ARexx instructions contained in a string

Script example:

Discussion:

/* INTERPRET example - arg specifies string justification */

jtype = word CLEFT CENTER RIGHT1, max(min(arg(l),3),1))
planets = "Mercury Venus Earth Mars Jupiter Saturn",

"Uranus Neptune Pluto"

do i=l to 9

interpret

end

"say" jtype"(word(planets,i),60)"

INTERPRET is a uniquely flexible command that in effect allows your

script to write scripts of its own. The expression you give to

INTERPRET is evaluated, yielding a string. Then that string is

interpreted as ARexx program code, and executed in the usual way.

In the example above, a numeric argument between 1 and 3 selects

one of the strings 'LEFT', 'CENTER' and TUGHT', each of which is the

name of an ARexx built-in string function taking two arguments: a

string to be placed within a field of blanks, and a number giving the
width of the field.

Let's suppose the argument to the script is 2, so the 'jtype' variable is

set to 'CENTER'. Evaluating the string argument to INTERPRET now
yields:

say CENTER(word(planets,i),60)

INTERPRET executes this dynamically-built line to create the script's

formatted output. Compare this with an obvious alternative:

do i=l to 9

select

when jtype=l then say left(word(planets,i),60)

when jtype=2 then say center(word(planets,i),60)

when jtype=3 then say right(word(planets,i),60)
end

end

A classic use of INTERPRET is the script calc.rexx, which goes
something like this:

/* calc.rexx */

interpret say arg(l)

314

Instruction and Function Reference

Can such a trivial-looking script actually do anything? Look:

Shell> rx calc 307*9

2763

Shell> rx calc "24 bit-planes allow" 2**24 "colors!"

24 bit-planes allow 16777216 colors!

The simple calc.rexx script is the basis for the Dialog script used in this

book, and for the much larger version of Dialog on the accompanying

disk. It is almost meaningless to speak of a few 'typical' uses for

INTERPRET; with a little imagination its uses are too many to

enumerate.

In the examples so far, the string given to INTERPRET has contained

only a single instruction. Multiple instructions can be separated with

semicolons:

interpret "do i=l to 5; say i*i; end"

When the same code is recast the following way, you can see that the

principle could be extended much further if desired:

exec = 'do i=l to 5;1,

'say i*i;•,

•end1

interpret exec

Indeed, it would be perfectly possible—though generally quite

pointless—to read an entire ARexx script file from disk into a string,

and pass that string to INTERPRET to be executed. The ability to read a

specific set of instructions from a disk file, such as a series of

assignments, or a set of formatting expressions, may be very useful in

some situations.

Executing instructions via INTERPRET is not quite the same in all

respects as if the same instructions were simply written into your

script. INTERPRET stands as a kind of 'island' within your script, not

fully connected with it. For instance, you cannot exit a DO loop in

your main script with:

interpret ■leave•

Nor can you use a label defined within the interpreted string, though

you can jump from within the interpreted string to a label outside it

with SIGNAL, or call a function defined outside the interpreted string.

315

34. Reference

The BREAK instruction can be used to exit from the middle of an
interpreted string; again, the BREAK has no impact on a DO-END
block in which the INTERPRET instruction may be contained.

Name: ITERATE

Type: instruction

Format: ITERATE [var]

Description: skip to the end of the current iterative loop

Script example:

Discussion:

See also:

/* ITERATE example - show all unique pairs of 2 numbers 1-5,
without regard for ordering.

*/

do i=l to 5

do j=l to 5

say i',•j

if i=j then

iterate i

end j

end i

Like BREAK and LEAVE, ITERATE changes the normal flow of
control within an 'iterative' DO: any DO loop, in other words.

Whereas BREAK and LEAVE terminate the entire loop to which they
apply, ITERATE terminates only the current iteration, so that control
passes immediately to the END statement, thence back to the DO itself.
If the ITERATE is contained within a loop controlled by an index
variable, and that variable's name is given in the instruction, the
ITERATE applies to the named loop even if it is not the innermost (as
in the example).

do, leave, break

Name: LASTPOS

Type: built-in function

Format: n = LASTPOS(pat,str,[start])

Description: return start position of pat in str, searching backwards

Dialog

examples:

->lastpos("ub", "rubadubadub")

10

->lastpos("ub","rubadubadub",10)

10

->lastpos("ub","rubadubadub",9)

6

->lastpos("ub","rubadubadub",5)

316

Instruction and Function Reference

->lastpos("ubM,"rubadubadub",1)

0

Discussion: LASTPOS is used to locate a substring within a string, but unlike

INDEX and POS, begins its search at the end of the string. The number

returned is the start character of the pattern within the string,

counting the leftmost character as 1. Zero is returned if the pattern is

not found. The optional third argument specifies the first character

within the string (working from right to left) at which to begin

looking for a match. This allows a string to be scanned iteratively (for

an example, see INDEX). One application for the backwards scanning

capability of LASTPOS is parsing an AmigaDOS path name into a

directory and a file. This function finds the file portion of a path name

by scanning backwards first for a slash and then (if that fails) for a

colon:

/* GetFileName(path): return file portion of path name

->GetFileName("sys:utilities/Clock.info")

Clock.info

*/
GetFileName: procedure

path = arg(l)

n = lastpos('7",path)

if n = 0 then

n = lastpos(":",path)

return substr(path, n + 1)

See also: index, pos, find

Name:

Type:

Format:

Description:

LEAVE

instruction

LEAVE [var]

break out of current iterative loop

Script example: /* TextCreate.rexx - a tiny text editor with editing of

current line only. Usage: rx textedit <newfilename>

*/

text. = ''

options prompt ">"

say "Enter text on following lines; end with /X:B

do count=1

do until gotline

parse pull line 1 slash 2 cmd 3 cmdtail

gotline = slash ~= •/'

317

14. Reference

Discussion:

See also:

if -gotline then do

select

when cmd = 'X' then

leave count

otherwise

say "*** Unrecognized command!"
end

end

else

text.count = line

end

end

if open('file\arg(l), 'w1) then do
do i=l to count - 1

call writeln('file1,text.i)
end

call close('file')

end

Situations can arise during the processing of an iterative DO (a loop,
in other words) that require exiting the loop without waiting for one
of the normal exit conditions to be satisfied. The LEAVE instruction
provides the necessary means of emergency escape. When the name
of a loop index variable is given in the instruction (like the name
'count' in the example), LEAVE causes an exit from the loop
controUed by that variable; otherwise only the innermost active loop
is affected.

Some loops—like the outer loop in the example—have no exit
condition, and aren't intended to terminate until some event is
detected (in the example, the event is the user entering a line
beginning with 7X'). Especially if the test for the triggering event is
not at the outermost level, but is nested several control structures
deep within the loop, as in the example, it may be awkward and
verbose to arrange the exit without LEAVE, requiring additional
boolean variables and redundant tests.

Like ITERATE and BREAK, LEAVE should only be used where it will
significantly simplify the code. All else being equal, it is better for
script readability to handle loop exits in the normal way, with
controlling expressions at the top of the loop, than to branch away
from the middle of the loop unexpectedly.

do, iterate, break

318

Instruction and Function Reference

Name: LEFT

Type: built-in function

Format: s = LEFT(str,count,[pad])

Description: extract leftmost 'counf characters of str

Dialog

examples:

Discussion:

See also:

->left("Gorgonzola",6)

Gorgon

->left(-Chapter 4",40)right("Page 23", 8)

Chapter 4 Page 23

->left("Microwave oven",42,".")" $299.95"

Microwave oven $299 .95

->left("Color TV with remote",42,".")" $399.95"

Color TV with remote $399.95

LEFT extracts and returns the given number of characters from the left

q{ the argument string. If necessary to make up the requested count,

the argument string is padded on the right with spaces (the default) or

the pad character. Creating a column of left-justified text to a standard

line length, and with any desired 'fill' character, is easily done, as the

examples above demonstrate.

center, right

Name: LENGTH

Type: built-in function

Format: n = LENGTH(str)

Description: return length of string in characters

Dialog

examples:

->length("")

0

->length("antidisestablishmentarianism")

28

->length(copies("abc",100))

300

->length(l/9) /* 0.111111111 */

11

->length(l01'x)

1

Discussion: LENGTH returns the number of characters in the argument string. A

representative use—among thousands—of this simple but important

function would be to determine the length of an underline for a

document title:

319

14. 'Reference

/* Center and underline a title */

title = "The Goldbach Conjecture - A Proof

say center(title, 60)

say center(copies("-",length(title)),60)

Name:

Type:

Format:

Description:

LINES

built-in function

n = LINES([file])

return number of lines queued for interactive stream

Code examples:

Discussion:

See also:

/* 1: Using LINES */

queue "dir >ram:foo ram:"

queue "type ram:fooM

say lines(stdin) /* output: 2 */

/* The queued lines now execute */

/* 2: Eliminating type-ahead */

do while lines()>0

pull

end

The PUSH and QUEUE instructions provide a means whereby

interactive input can be simulated by entering lines into an interactive

input stream just as though they had been typed. Additionally, input

lines can be typed ahead manually into a console while previously

entered lines are being processed. LINES allows a script to determine

how many lines of input, if any, are queued for a particular interactive
file (by default, STDIN).

However, one important proviso severely limits the general

applicability of LINES: unless the installed console handler provides

the necessary support for the function, it will always return zero

regardless of how many lines may actually be queued. At the present

time, the only console handler that provides this support is ConMan,

written by Bill Hawes (the author of ARexx). The standard AmigaDOS

console handler does not, so LINES will not work on off-the-shelf
Amigas.

push, queue

320

Instruction and Function Reference

Name: MAKEDIR

Type: support function

Format: bool = MAKEDIR(dirname)

Description: create a directory of the given name

Dialog example:

Discussion:

->showdirCram: ','d')

env clipboards t

->makedir('ram:newdir•)

1

->showdir(•ram:•,'d•)

newdir env clipboards t

->makedir('ram:newdir■) /* Under Workbench 1.3, returns 1 */

0

->delete(* ram:newdir')

1

MAKEDIR creates a directory of the given name, if it is possible to do

so, and returns a boolean result reflecting the success of the operation.

There are several reasons MAKEDIR might fail:

• The directory already exists (Workbench 2.0 only)

• The pathname is invalid

• The volume is write-protected

If you are reasonably sure when you call MAKEDIR that the only

possible cause of failure is that the directory exists, you need not worry

about the returned value—either way you'll get what you want. If you

aren't sure—because you don't know whether the volume is write-

protected perhaps—you could use the substitute version of MAKEDIR

below instead of calling the support library routine directly. It returns

1 either if the directory already exists or could be created:

/* MakeDir - If a directory under the name already exists, or

can be created, return 1, otherwise return 0. Though this

function works correctly under Workbench 1.3, it has the

See also:

same effect as the existing MAKEDIR; hence it is useful

under 2.0.

*/
MakeDir: procedure

ds = statef(arg(l))

if ds='• then

result = 'makedir1(arg(l))

else

result = left(ds,3) = 'DIR1

return result

delete, rename

only

321

14. Reference

Name:

Type:

Format:

Description:

MAX

built-in function

n = MAX(nl, n2 [,

find the largest of

n3...])

a set of numbers

Dialog

examples:

->max(1,2)

2

->max(lf2,3,4,5,6f7f8,9,10,llf12f13f14f15)
15

->max(0,-1000)

0

->max(min(15,20), 10)

15

Discussion: MAX takes from 2 to 15 numeric arguments and returns the largest of

them. An idiomatic use of MAX and its counterpart MIN is

demonstrated in the fourth example, which constrains a given value

(here a constant 15 but typically a variable) to an allowed range (here
10 through 20 inclusive).

See also: min

Name:

Type:

Format:

Description:

MIN

built-in function

n = MIN(nl, n2 [,

find the smallest

n3...])

of a set of numbers

Dialog

examples:

Discussion:

See also:

->min(1,2)

1

->min(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

->min(0,-1000)

-1000

MIN takes from 2 to 15 numeric arguments and returns the smallest
of them.

max

322

Instruction and Function Reference

Name: NEXT

Type: support function

Format: value = NEXT(addr,[offset])

Description: return the 4-byte value stored at addr+offset

Script example:

Discussion:

/* List currently-loaded fonts */

call forbid() /* Don't multitask while scanning shared data */

/* Find first node on system font list. The list header starts

140 bytes into the graphics library data structure.

*/

gfxbase = showlist('1','graphics.library',,'a')

font = next(gfxbase,140) . /* First node on font list */

/* Scan list, gathering information into compound variables

name and size. The list scan ends when a node is found

whose successor node address is 0.

do i=l while next(font)~=null()

name.i = import(next(font,10))

size.i = c2d(import(offset(font,20),2))

font = next (font)

end

/* font name */

/* font ysize */

/* next node */

call permit() /* Finished looking at list, ok to multitask */

/* remove ".font" from font names, and display tidily */

do j=l to i-1

say left(left(name.j, length(name.j) - 5),15) right(size.j,2)

end

Essentially everything the Amiga's operating system needs to know

about the current state of the computer is stored in an extensive set of

interlocking 'data structures' that are ultimately anchored in the

/ExecBase/ structure whose address is stored in the 4 bytes beginning at

location 4 in memory. If you needed to, you would find ExecBase's

address on your system with:

->c2x(import('00000004'x,4))

Many information structures are tied together in the form of 'linked

lists'. Many of the more important lists in the system can be perused

in comfort with the aid of the support library's SHOWLIST function.

SHOWLIST only knows about certain standard lists, however: it does

not support linked lists in general. That job falls to NEXT.

The items on a linked list are termed 'nodes'. The usual type of node

is laid out in memory like this, beginning at some address well call A:

323

14. Reference

Address

A

A+4

A+8

A+9

A+10

A+14...

Contents

The address of the next node in the list

The address of the previous node in the list

A number identifying the type of node (not

always used)

A priority number for this node (often unused)

The address where the node name is stored (not

always used)

The actual information content of the node

If the ARexx variable 'A' contains the address of a node in the
standard 4-byte format, then the address of the subsequent node is
given by:

nextnode = next(A)

The default for NEXT's second argument is 0, so this is short for:

nextnode = next(A,0)

The NEXT function adds its second argument (or 0) to the address
given as its first argument, and returns the contents of the 4 bytes

beginning at the resulting address. Compare this with the action of

OFFSET, which merely computes and returns the address itself, rather
than what is stored there. In fact, NEXT is really a mere convenience:
you could easily code it yourself using IMPORT and OFFSET:

next: procedure

return import(offset(arg(l), 0 || arg(2)), 4)

To find the previous item in a list, you look 4 bytes into the node, and
extract the address from there:

prevnode = next(A,4)

Similarly, to find the address where the node name is stored, go in 10
bytes from the start of the node:

say import(next(A, 10))

Unless you're sure that the name field of the node is actually in use, of
course, you should test the value returned by the call to NEXT before

passing it on to IMPORT, making sure that it's non-zero.

How can you tell when chaining along a list, either forwards or
backwards, when you've come to the last node? You might reasonably

324

See also:

Instruction and Function Reference

expect that the last node is the one whose successor's address (or

predecessor's, going backwards) is 0, and it is indeed possible to

organize a list that way. Most Amiga system lists, however, are set up

so that the last node is the one whose successor's successor (or

predecessor's predecessor) is 0. Failing to handle this list organization

properly is a common trap for the unwary Amiga programmer.

The example script above scans and displays the list of currently open

fonts that is maintained by the part of the operating system called the

Graphics Library. Because the font list is information shared by all the

tasks currently active in the system, it is theoretically possible for the

activities of another task to result in it being modified even while our

task is attempting to chain along it. This could be disastrous, so the

example script shuts off multitasking with a call to FORBID before

starting to look at the list, and enables it again afterwards with

PERMIT. This is a standard and necessary precaution when handling

any system list.

import, null, offset, showlist

Name:

Type:

Format:

Description:

NOP

instruction

NOP

do nothing—a dummy instruction

Script example: /* FIXCASEO: s = fixcase(sl, pattern)

Three case structures are recognized: all caps, initial cap

and lower. The case structure of the upper case string si is

set to match that of the pattern string, which is

categorized on the basis of its first two characters. This

could be used in a spelling correction utility.

DIOGENES <- fixcase(■DIOGENES',■DIOJENES•)

Paraguay <- fixcase('PARAGUAY',■Parraguay•)

syzygy <- fixcase('SYZYGY•,'syzygy•)

*/

fixcase: procedure

parse arg s, cl 2 c2

if datatype(cl,'u1) then

if datatype(c2,•1') then

s = left(s,l)lower(substr(s,2))

else

nop

else

s = lower(s)

return s

325

14. Reference

Discussion:

See also:

/* LOWER(): s = lower(si) - convert si to lower case
*/

lower: procedure

return translate(arg(l),xrange('a', •z1),xrange(• A1 ,'Z1))

The NOP (for 'No OPeration') instruction is occasionally needed to
provide a place-holding dependent instruction for IF/THEN, ELSE

and WHEN/THEN. (In fact it is legal anywhere in a script, but is very
rarely useful except in the mentioned contexts.)

if, else, select

Name: NULL

Type: support function

Format: 'OOOOOOOO'x = NULL()

Description: return a 4-byte string corresponding to a null address

Dialog example:

Discussion:

See also:

->c2x(null())

00000000

NULL might seem a strange function to put in a library, especially
since it can always be replaced by the hex string f00000000fx without
affecting any script that uses it. The null address is very often

encountered, however, and it enhances the readability of scripts to
refer to it by name rather than as a literal string.

See NEXT for an instance of the very common use of the null address
(and the NULL function) as an end marker in list chaining.

Name:

Type:

Format:

Description:

NUMERIC

instruction

NUMERIC DIGITS num

NUMERIC FUZZ num

NUMERIC FORM SCIENTIFIC

NUMERIC FORM ENGINEERING

set numeric calculation and display options

Script example: /* NUMERIC example */

pi = 3.141592653589793238462643383279502884197169
say "PI:" pi; say

numeric digits 14; call showsettings()

say "PI:" 0+pi /* 3.1415926535898 */

326

Instruction and Function Reference

numeric digits 9; call showsettings()

say "PI:" 0+pi; say /* 3.14159 */

say "PI = 355/113?" (+pi = 355/113) /* 0 (i.e. False) */

numeric fuzz 3; call showsettings()

say "PI = 355/113?" (+pi = 355/113); say /* 1 (i.e. True) */

numeric digits 6; call showsettings()

say "PI * Ie8:" pi * Ie8 /* 3.14159E+8 */

numeric form engineering; call showsettings()

say "PI * Ie8:" pi * Ie8 /* 314.159E+6 */

exit

showsettings: procedure

cl = 'lb'x-pSm"; c3 = 'Ib'x-^lm" /* colors 1 and 3 */

say cl"[DIGITS="digits()", FUZZ="fuzz()", FORM="form()"]"c3

return

Discussion: The three NUMERIC options govern the characteristics of ARexx

numbers:

• DIGITS: The number of significant figures in numeric results. By

default, 9 significant figures are used. NUMERIC DIGITS can vary

this setting from 1 through 14. Values that are too big or too

small to be expressed with the required number of digits are

displayed in one of the two forms of exponential notation.

Numbers within that range, once they have been converted to

numeric form, are truncated (with rounding) to the specified

precision. Numeric strings can be stored with arbitrary precision,

as PI is stored in the example script. As soon as the value is

involved in a calculation, though, it must be converted to the

internal numeric form, and hence rounded to the current digits

setting.

It is an error to try to set DIGITS to less than or equal the current

FUZZ setting, or greater than 14.

• FUZZ: It is possible to incorporate a 'fuzz factor' into numeric

comparisons such that two numbers will be seen as equal even

though they differ in their less significant digits. The FUZZ value

specifies how many digits of precision should be ignored when

comparisons are performed. In order to force a value into

numeric mode so that numeric comparisons will yield

predictable results, it may be necessary to involve them in a

dummy operation, such as preceding them with a plus sign, or

adding zero. For instance:

/* Numeric comparisons */

pi = 3.141592654

numeric digits 6

say pi = 3.14159 /* output: 0 */

say +pi = 3.14159 /* output: 1 */

327

14. Reference

Under the version of ARexx available at the time this book was

written (1.15), the effect of FUZZ on numeric comparisons is not

always fully consistent; it may be best as a rule to allow an extra

digit of 'fuzziness'. For example, let us continue now with these
lines:

numeric

say +pi

numeric

say +pi

numeric

say +pi

numeric

say +pi

say +pi

fuzz 1

= 3.1416

fuzz 2

= 3.142

fuzz 3

= 3.14

fuzz 4

= 3.14

= 3.1

/*

/*

/*

/*

/*

output:

output:

output:

output:

output:

1

1

0??

1

0??

In view of these unexpected results, due caution should be
exercised in using FUZZ.

It is an error to try to set FUZZ to greater than or equal the

current DIGITS setting, or less than 0.

FORM: There are two variants of the exponential notation used

for numbers that are too large are too small to be written out in

full under the current level of precision. In SCIENTIFIC form,

the mantissa (the first part) of the number has only one digit

before the decimal point. In ENGINEERING form, the exponent
(the second part) of the number is always divisible by three, so the

mantissa may have from 1 to 3 digits to the left of the decimal

point. SCIENTIFIC notation is the default, and will not need to be

changed for most scripts. It is (only just) worth noting that the

ENGINEERING form does not display properly at very low

precision (DIGITS settings of 3 or less) but this is hardly likely to
be a problem in real scripts.

The current values of DIGITS, FUZZ and FORM can be

determined with the functions of those names in the built-in
library.

See also: digits, fuzz, form

328

Instruction and Function Reference

Name: OFFSET

Type: support function

Format: addr = OFFSET(addr,amount)

Description: return the address addr+amount

Dialog

examples:

Discussion:

See also:

->c2x(offset (null 0,4))

00000004

->c2x(offset('01010101*x,c2d('20202020'x)))

21212121

The arguments to OFFSET are a 4-byte address and a numeric value.

The return value is the 4-byte address obtained by adding the

arguments together. The function is equivalent to the expression:

d2c(c2d(addr)+amount)

combined with a check to make sure that the address argument is in

the proper format.

The point of OFFSET is to handle a common requirement when

dealing with Amiga data structures: given the address of a structure,

and the offset of a field within it, calculate the address of the field. For

instance, if we know that an Intuition Window structure is located at

memory address $O7f374eO, and that the offset of the BorderLeft field

within a Window structure is 54 bytes, it follows that the address of

the BorderLeft field is:

offset(I07f374e0Ix,54)

next

Name:

Type:

Format:

Description:

OPEN

built-in function

bool = OPEN(file,

open a file called

name,

'name'

[mode])

in given mode

Dialog

examples:

->open('w_file','ram:testfile1,'w')

1

->open('r_file','ram:testfile1,'r')

0

->writeln('w^file1,'A few well-chosen words1)

24

->open('a_file\ 'ram:testfile1, 'a1)

329

14. Reference

1

->open('r.file1,'ram:testfile1)

1

->writeln('a_file','A terse supplementary phrase1)
29

->readlnCr_file')

A few well-chosen words

A terse supplementary phrase

->close('a_file')

1

->close('r_file')

1

Discussion: The first argument to OPEN is an identification string by which the

file can be referenced in subsequent use (e.g. with READLN,

WRTTELN, CLOSE). The identification string must not be in use for

any other file. OPEN's second argument is a standard AmigaDOS file

name (including the device and directory portions, as needed).

A file may be opened in any of 3 'access modes', as specified by the

optional third argument: Y ('Read', the default), 'a' ('Append'), or 'w*

(Write'). Read and Append modes are essentially identical, except that

in Append mode the initial file position is the end, rather than the

beginning of the file, in preparation for adding new material.

Read/Append mode differs from Write mode in two fundamental
ways:

1) In Write mode, the opened file is created anew, rather than

merely accessed, erasing any existing file of the same name. One

way a call to OPEN in Write mode can fail is if the file's 'delete'

attribute has been cleared with the AmigaDOS Protect command.

Read/Append mode requires an existing file of the given name

to be available, and an OPEN in this mode will fail if it is not.

2) Files opened in Write mode guarantee the caller exclusive access
to the file until the file is closed. Meanwhile, attempts to open

the same file, both from within ARexx and anywhere else, will
fail (see the second call to OPEN in the examples above). In

Read/Append mode, on the other hand, the file may be open to

multiple accessors simultaneously (see the third and fourth
OPEN calls in the examples).

The boolean value returned by OPEN reflects whether the file open
was successful.

See also: close

330

Instruction and Function Reference

Chapter 9 (File Input and Output) goes into some detail on all the

ARexx file functions, and should be read for an introduction to and

overview of file handling in ARexx.

Name: OPENPORT

Type: support function

Format: bool = OPENPORT(portname)

Description: open a public message port with the given name

Dialog

examples:

Discussion:

->openport(•bookport•)

1

->openport('bookport•)

0

->show('i') /* list 'internal' message ports */

bookport

->closeport('bookport')

1

Message ports are the rendezvous points for passing information (in

the form of 'messages') between tasks in the Amiga system. Some

message ports, termed 'public' ports, are named, and may be looked up

in the system message ports list.

Message ports are of pivotal importance to ARexx. Much of what gives

the language its special role on the Amiga is its ability to mediate

communication among tasks. The names of function hosts and

command hosts are actually the names of message ports they have

opened in order to receive messages from ARexx.

OPENPORT tries to create a message port using the given name, and

returns a boolean value reflecting its success. The only common

reason for failure is that the port already exists, as in the second

example above.

Message ports are a managed resource for ARexx scripts. Though it is

preferable that each port opened by a script is also explicitly closed by it,

ARexx will in any case close the port when the script has finished

running. All named message ports in the system, regardless of who

created them or why, are linked into the system message ports list; you

can see the names on the list with:

->show('p1, , 'Oa'x)

(The third argument in this call inserts a linefeed between each entry;

it helps eliminate any confusion arising from port names that contain

embedded spaces.)

331

34. Reference

See also:

Message ports created by a particular ARexx script are known as
Internal' ports. You can see a list of them with:

->show('i',,'Oa'x)

...but unlike the other list, this one is usually empty,

doseport, getarg, getpkt, reply, typepkt, waitpkt

The entry for the GETARG function in this Reference Section contains
a programming example that creates a very simple command host.

Refer to it for further insight as to how and why message ports are
used.

Name:

Type:

Format:

Description:

OPTIONS

instruction

OPTIONS [NO] RESULTS

OPTIONS [NO] CACHE

OPTIONS PROMPT [expr]

OPTIONS FAILAT expr

OPTIONS

set script options

Script example: /* OPTIONS example - uses PARSE SOURCE to find

its own path name, and invokes itself.

*/

parse source src rr call resolved ext host

arg mode

if rr then

return "Here's a result!"

else if mode = 'CHILD' then

return 20

options results

address rexx resolved

say "Result string returned: "result*

options no results

options failat 30

address rexx resolved 'CHILD'

say "RC is" re"; failat is set to 30."

options failat 15

address rexx resolved 'CHILD'

say "RC is" re"; failat is set to 15."

332

Instruction and Function Reference

Example

output:

Discussion:

Result string returned: 'Here's a result!

RC is 20; failat is set to 30.

22 *-* address rexx resolved 'CHILD1;

+++ Command returned 20

RC is 20; failat is set to 15.

The effect of OPTIONS with no sub-keyword is to restore all OPTIONS

settings to their default states. The defaults are:

Option

RESULTS

CACHE

PROMPT

FAILAT

Default value

off

on

"" (empty string)

caller's FAILAT level, generally 10

OPTIONS RESULTS determines whether commands invoked by the

script will be asked by ARexx to return a result string. By default this

option is off, so the line:

OPTIONS RESULTS

must be given before invoking a command host from which

information is required. Command hosts embedded in application

programs are able to return either a result (if requested) or an error

code, in such a way that the ARexx interpreter can distinguish

between them, assigning results to the RESULT variable and errors to

the RC variable.

When an ARexx script is invoked as a command (like the example

script above, which invokes itself), the situation is a bit different: it

cannot specify to ARexx that the value it returns (with RETURN or

EXIT) will be used in one way or the other. That is determined only by

the calling script. A returned value will be placed in its RESULT

variable if OPTIONS RESULTS has been used, but otherwise becomes

the value of RC, and is treated as an error. If OPTIONS RESULTS was

not used, and the called script nonetheless attempts to return a non-

numeric string, that in itself counts as an error with severity level 10.

The invoked script can, however, use PARSE SOURCE to find out

whether a result was requested. If not, the script should not try to

return a result. If a result was requested, the invoked script has no way

to return an error code.

To switch off OPTIONS RESULTS after it has been switched on, the

NO keyword is used:

333

14. Reference

OPTIONS NO RESULTS

OPTIONS CACHE is 'on' by default. Its action is to activate what

ARexx documentation describes as 'an internal statement-caching
scheme'. Although it is possible to turn off this option with:

OPTIONS NO CACHE

we know of no reason for doing so. When the cache is active, loops in
ARexx scripts run considerably faster than when it is not active, and

there are apparently no adverse consequences in other contexts.

OPTIONS PROMPT lets you set the prompt string to be used in the

PULL, PARSE PULL and PARSE EXTERNAL instructions. If you don't

specify a string, the prompt is reset to the empty string, which is the
default.

OPTIONS FAILAT must be followed by an expression specifying a

'failure level' for the reporting of errors returned by commands called
from the script. If the return code (reflected in the RC variable) from a

command is greater than or equal to the current value of the FAILAT
variable, either or both of the following may happen:

1) If the 'normal' mode of error tracing is active (as it is unless you
have specifically turned tracing off), the error will be reported in
the trace output (from RX, this is usually the CLI window) in a
form resembling:

23 *-* 'ram:test'

+++ Command returned 20

2) If you are trapping command failures with the SIGNAL
FAILURE trap, control within your script will be transferred to
the TAILURE:' label.

If you have turned tracing off, and do not have a trap set, you will not
be informed of command errors.

The default failure level for a script originates with the AmigaDOS
failure level set for the parent 'process', which is normally 10. If you
give the AmigaDOS command:

Shell> Failat 20

then invoke a script with RX, that script's default failure level will be
20.

334

Instruction and Function Reference

Name: OTHERWISE

Type: instruction

Format: OTHERWISE [;] [instruction(s)]

Description: introduce default case for SELECT control structure

Script example:

Discussion:

See also:

/* OTHERWISE example - analyze.rexx

Usage: rx analyze <file name>

*/

if open('af',arg(l)) then do

h = readch('af' ,100)

call close('af')

lwO = left(h,4) /* first 'long word1 in file */

Iw2 = substr(h,9,4)/* third 'long word' in file */

/* all 'printable' characters and linefeed */

asc = xrangeC ','-')xrange('aO'x,'ff*x)'Oa'x

select

when lwO = 'FORM' then ft='IFF ('Iw2 ') ■

when lwO = '000003f3'x then ft='Executable program1

when substr(h,3,5)='-lhl-' then ft='LHARC archive1

when length(compress(h,asc))<10 then ft='ASCII text1

otherwise

ft = "Unknown"

end

say "Probable file type:" ft

end

else

say "Unable to open file •"arg(l)"'."

OTHERWISE provides a default case for the SELECT instruction,

when the conditionals in all the WHEN instructions governed by the

SELECT have been evaluated and rejected. It is similar to the final

ELSE at the end of an IF-ELSE chain, the one that handles the
situations not picked up by previous tests.

Sometimes a SELECT will be written such that the WHEN conditions

collectively exhaust all alternatives; in that case, no default is possible.

When a default is wanted, though, it is compulsory: an OTHERWISE

must be provided. The lack will be detected only when and if all the

WHEN cases evaluate to False, which in extreme instances might not

happen till long after a script is written and apparently well-tested. It is

therefore a good idea to get into the habit of automatically writing in
an OTHERWISE for every SELECT you code.

Any number of instructions, including zero, may be put under an

OTHERWISE without a NOP or a DO-END block being required.

select, when

335

14. Reference

Name:

Type:

Format:

Description:

OVERLAY

built-in function

s = OVERLAY(new, old, [start], [len],

overlay new on old, from start

[pad])

Dialog

examples:

Discussion:

->overlay("White ","Real swine")

White wine

->overlay("ad","Sally dressing",4)

Salad dressing

->overlay("","Give me my walking canel",12,4,"*")

Give me my ****ing cane!

The first argument string is overlaid upon the second. By default, the

starting point is the beginning of the second string, but the point can

be specified as the start argument, the overlay beginning at the given

character position. Giving 1 as the position produces the default

behavior; giving a value greater than the length of old as the overlay

position causes old to be padded as necessary with spaces (the default)

or with the given pad character. The new string will be truncated or

padded to the number of characters given as len, the default being the

length of the overlay string itself.

One use for OVERLAY might be to update information in a database

record containing fixed length fields. For example:

rec = "1/4-inch washers (1000) $ 3.95 VK-10372"

say overlay(right("4.15",6), rec, 30)

which changes only the price information in this inventory record,

and leaves the description and part number undisturbed:

See also:

1/4-inch washers (1000)

delstr, insert

$ 4.15 VK-10372

336

Instruction and Function Reference

Name:

Type:

Format:

Description:

PARSE

instruction

PARSE [UPPER] source [template] [,template]

Source name

ARG

EXTERNAL

NUMERIC

PULL

SOURCE

Source string contents

Arguments to script or function

Input via STDERR file

NUMERIC options: digits fuzz form

Input via STDIN file

type result called resolved ext host

VALUE expr WITH Result of expression

VAR varname

VERSION

Contents of varname

version cpu mpu video freq

split input string(s) into substrings

Script example:

Example input

(output is too

lengthy to list):

/* PARSE example - parse.rexx */

arg src

upper = ''

if word(src/l)='UPPER1 then do

upper = 'UPPER1

src = subword(src,2)

end

if word(src,l)='EXTERNAL1 then

open('STDERR','CON:0/10/500/50/STDERR - for PARSE EXTERNAL1)
else if wordfsrcDs'ARG1 then

src = 'ARG1

testvar ="This is a sample variable to examine with PARSE VAR."

options prompt ">"

interpret "parse" upper src text

do i=l to words(text)

say i1:1 word(text,i)

end

Shell> rx parse arg A number of arguments

Shell> rx parse external /* then type something in window */

Shell> rx parse numeric

Shell> rx parse pull /* then type something in console */

Shell> rx parse source

Shell> rx parse value .61803399 * 1.61803399 with

Shell> rx parse var testvar

Shell> rx parse version

337

14. Reference

Also try using 'upper' as the first argument to each of these

commands, as in:

Shell> rx parse upper external

Discussion: The example script lets you test the various 'source' options to PARSE.

Each source option supplies a different type of 'parse string' to be

parsed according to the given template. Because templates are

discussed in detail in Chapter 10 (Parsing and String Handling), we

describe them only briefly here, then discuss each of the available

source options in turn.

Templates A PARSE template is an arbitrary mixture of 'targets' and 'markers'. A

'target7 is normally the name of a variable in which a portion of the

parse string should be stored. A 'marker' is a specification, usually in

the form of a number or string, of where the parse string should be

split

During parsing, an internal value referred to as the 'scan position',

which begins with 1 at the left end of the string, is updated as markers

are encountered. The part of the parse string assigned to a target is that

which is bounded by the scan positions determined by the markers

before and after the target in the template.

A target with another target neighboring on the right and only a space

between is parsed by tokenization', being assigned the next available

word in the parse string. The final target in a template is assigned the

balance of the parse string, including perhaps a leading space if the

previous target was parsed by tokenization. Unused targets in a

template (unused because the parse string was exhausted by earlier

targets) are assigned the null string.

A period may be used anywhere in the template as a special target

called a 'place-holder'. This acts like a normal target in its effect on the

scanning of the parse string, but the portion of the parse string that it

matches is not stored. Using the place-holder as the last target of a

template forces the previous target (if any) to be parsed by

tokenization, which otherwise would not happen because it would

have no other target neighboring on the right.

Apart from the implied markers of tokenization, 3 types of marker are

used in PARSE templates:

338

Instruction and Function Reference

1) A literal string (in quotes), or the value of a variable whose name

is given in parentheses, is a 'pattern marker'. The effect of a

pattern marker is to set the scan position to the position where

the given pattern next occurs in the parse string (or to the end of

the string if it does not occur at all). Other types of markers do not

modify the parse string, but pattern markers remove the text they

match from the parse string, thereby changing its length and

possibly affecting the parsing of the string in the remainder of the

template.

2) A literal number, or the numeric value of a variable whose name

is preceded by an equals sign, directly specifies a new value for the
scan position.

3) A number preceded by a plus sign or a minus sign is a 'relative
marker', which adjusts the scan position to the right (positive) or

the left (negative). Either a literal number or a numeric variable
can be used.

Multiple templates, separated by commas, can be given for the same

parse string. Unless otherwise stated in the discussions of source types

below, the parse string for each template will be the same. In that case,

the only point of using multiple templates would be to restore the

parse string to its original condition after having hacked it about with

pattern markers.

Sources Once extracted from the source, all parse strings are on the same

footing, though their origins are highly various. A supplementary

operation that can be applied to all sources is conversion to upper case

before parsing. This is achieved by using the keyword 1JPPER' before

the keyword specifying the source. We now consider each of the

sources in turn:

ARG The arguments to the present script or internal function are presented

in sequence to the templates provided. In the case of scripts invoked as

commands (the usual method), at most one argument will be

available, so only one template will be required. Instructions like this

are therefore very common at the start of scripts:

parse arg filename

which is exactly equivalent to:

filename = arg(l)

339

14. Reference

Multiple arguments to a function (including scripts invoked as

functions) require multiple templates, but these are often just

variables to which the whole of each argument is assigned, as in:

parse arg mass, temperature, volume

which is exactly equivalent to:

mass = arg(l)

temperature = arg(2)

volume = arg(3)

Although it is very common to assign the whole of each argument to

its own variable, the templates used with PARSE ARG are of course

just the same as with any other source, and more complex parsing can

be used in any or all templates:

parse arg firstname lastname .,street,city,state zip

When conversion of the arguments to upper case is wanted, the

UPPER sub-keyword can be applied. But generally the ARG

instruction, an exact synonym for PARSE UPPER ARG, is used

instead. This is particularly appropriate when the arguments are

numeric:

arg mass, temperature volume

EXTERNAL If a file with the identifier 'STDERR' is currently open, one line is read

from it to be used as the parse string. If 'STDERR' is not open, the

parse string is null. The usual reason for opening a file of this name is

that it provides an alternative channel for input and output during

tracing, thus keeping the trace information separate from the script's

other console i/o (through 'STDOUT'). PARSE EXTERNAL might

well be used in scripts whose standard input and/or output are meant

to be redirected, or which—because they are launched asynchronously

from a CLI with a command like:

run rx <scriptname>

do not have a usable standard input at all. All that is required to open

a console for these situations is:

call open('STDERR1,'con:0/0/640/100/Alternate console1)

and to read a line from that console:

parse external line

340

Instruction and Function Reference

The input prompt is the same as that used for the PULL source, set

with OPTIONS PROMPT.

If PARSE EXTERNAL is used with multiple templates, a new line is

read from 'STDERR' for each template.

NUMERIC The parse string contains the current NUMERIC options, in the order

digits fuzz form. The string obtained is equivalent to the string:

digits() fuzz() form()

By default, its contents will be:

9 0 SCIENTIFIC

PULL A line is read from the file with the identifier 'STDIN' if one is

available. Normally this will be the console from which the script was

launched, unless input has been redirected. In some circumstances,

such as when a script is launched with the AmigaDOS Run command,

no 'STDIN' is available unless special arrangements are made by the

script (see the entry for the PRAGMA function in this Reference

Section). Input via PULL is prompted with the string set with

OPTIONS PROMPT. Initially, the prompt string is null.

If PARSE PULL is used with multiple templates, a new line is read

from 'STDIN' for each template.

When conversion of the input line(s) to upper case is desired, the

UPPER sub-keyword can be applied. But generally the PULL

instruction, an exact synonym for PARSE UPPER PULL, is used

instead.

SOURCE The parse string contains information about the way the current script

was called. The string has the form:

type result called resolved ext host

The meanings of the individual fields are:

type How the script was invoked, either COMMAND or

FUNCTION

result Whether a result was requested (1) or not (0)

called The name under which the script was invoked

resolved The full name, including path and extension, under

which the script was located

ext The current default file extension

host The initial host address

341

14. Reference

VALUE

VAR

VERSION

The following script was saved as "rexx:Test.rexx":

/* PARSE SOURCE */

parse source src

say src

and invoked with:

Shell> rx test

It produced this output:

COMMAND 0 test Work: Scripts/rexx/Test .rexx REXX REXX

An expression (delimited on the right with the sub-keyword WITH) is

evaluated, and the result is used as the parse string. If the variable V

has the value 3, then after this:

parse value v "*■ v "=#H v*v with s "#" v .

its new value would be 9, while that of the string V would be '3 * 3 ='.

The expression is not re-evaluated if multiple templates are used. For

example, suppose we give the template above twice:

parse value v "*" v "=#" v*v with s M#" v ., s "#" v

The final values of V and V are the same as before, whereas if the

expression were re-evaluated between templates we would expect V

to contain 81, and 's' to contain '9*9 ='.

The contents of the named variable are used as the parse string:

parse var coord xl ',' yl

Unlike PARSE VALUE, the parse string can change between templates

if it is used as a target. Consider this parsing of a variable 'f4' that
contains the string 'fe-fi-fo-fum':

parse var f4 fa'-'f4, fb'-'f4, fcl-'f4, fd'-'f4

Try this, and afterwards you'll discover that 'fa' and its fellows each

contain one syllable of the original chant, while 'f4' is now empty.

Which is not to say that the following wouldn't have been better if
you really wanted to achieve that effect-

parse var f4 fa'-'fb'-'fc'-'fd f4

The parse string contains information about the versions of ARexx
and the machine configuration on which it is being run, in the form:

342

Instruction and Function Reference

See also:

ARexx version cpu mpu video freq

The meanings of the individual fields are:

version The release version of ARexx (e.g. VI.15)

cpu The microprocessor (e.g. 68000)

mpu The math coprocessor (e.g. 68881) or TSTONE'.

video The type of video, either TMTSC or TAI/.

freq The line frequency, either '60HZ' or '50HZ'.

The present release of ARexx does not distinguish between the 68881

and 68882 math co-processor chips, reporting both as the 68881.

arg, pull

Chapter 10 (Parsing and String Handling) covers parsing and parse

templates in detail, with numerous examples.

Name: PERMIT

Type: support function

Format: count = PERMITO

Description: re-enable multitasking after FORBID

Dialog example: ->forbid ()

Discussion:

See also:

->forbid()

1

->permit()

0

->permit()

-1

Every call to the FORBID function, which turns off multitasking, must

be balanced by a call to PERMIT. Every FORBID increments a 'nesting

count'; every PERMIT decrements it. Both functions return the new

value of the nesting count to the caller. When the count reaches -1,

multitasking is enabled once again.

A detailed explanation of the usage of FORBID and PERMIT is given

under the entry for FORBID. For an example of a script that requires

the protection of these functions, see the Reference Section entry for

NEXT.

343

14. Reference

Name: POS

Type: built-in function

Format: n = POS(pat,str,[start])

Description: return start position of pattern pat in string str

Dialog

examples:

Discussion:

See also:

->index("rubadubadub",MubM)

2

->pos("ub",-rubadubadub")

2

->index("rubadubadub■,"ubM,3)

6

->pos("ub","rubadubadub",3)

6

POS is identical operation to INDEX except in one detail: the order of

the two string arguments is reversed. POS is actually the standard

form of the function, as implemented in ARexx's parent language

REXX. The ordering of the arguments in INDEX reflects that of the

'index' function provided in some C libraries. Which you use is a
matter of custom and taste.

index, lastpos, find

Name:

Type:

Format:

Description:

PRAGMA

built-in function

oldcd = PRAGMACd1, [newcd])

oldpri = PRAGMACp1, newpri)

oldsize = PRAGMACs', size)

1 = PRAGMACw1, [mode])

id = PRAGMA(T)

bool = PRAGMAO*', [file])

A grouping of system-specific facilities

/* Current directory

/* Task priority */

/♦ Stack size ♦/

/* DOS requesters «

/* Task ID (address)"

/* Console handler

as one function

V

7

7

V

Dialog

examples:

->pragma('d1)

Work:text /* Current directory */

->pragma(■d', 'ram:')

Work:text /* Returns previous CD */

->pragma(■d',•Work:text■)

Ram Disk:

->pragma('p•,1)

0

->pragma('p1,0)

/* Set my priority to 1 */

/* Returns previous priority */

344

Instruction and Function Reference

->pragma('s',15000)

10000

->pragma('w','n')

1

->exists((UFO:')

0

->pragma('w')

1

->pragma(•i')

07EB5380

/* Set stack to 15000 */

/* Old stack size */

/* Turn off DOS requesters */

/* Always returns 1

/* Is there a volume UFO:?

/* No - but no requester

/* Turn on DOS requesters

*/

*/

*/

*/

/* Address of my task */

Discussion: Though it is implemented as a single function, PRAGMA is actually a

grab-bag of necessary house-keeping facilities relating more to the

Amiga system than to the ARexx language itself. There are currently 6

PRAGMA commands. Since they have little in common, we'll take

them one by one.

Get/Set Current Directory: oldcd = pragma(fd',[newcd])

Every AmigaDOS process has a current directory (CD) on start-up. The

CD is the process's home base in the filing system. Path names that do

not begin with device or volume names are taken by AmigaDOS as

being relative to the CD. Every ARexx script inherits the CD of the

process (often a CLI) that created it, but can modify it if desired with

this facility. Any new process launched by the script itself (such as an

AmigaDOS command or another script invoked as a function) will in

turn inherit the modified rather than the original CD. The current CD

can be determined without modifying it by omitting the second

argument.

Modify Task Priority: oldpri = pragma(fp',newpri)

Another property that a script inherits from its parent process is its

task priority, which helps determine its share of CPU time relative to

other tasks. Programs launched from within a script inherit its priority

in turn, and it is for their benefit that this variety of PRAGMA would

ordinarily be used. Supposing your script is launched with a priority of

0 (the usual case), but that it will in turn launch (with ADDRESS

COMMAND) a terminal program, say, which you would prefer to run

at priority 1. You could achieve this with instructions like:

oldpri = pragma(■p■,1)

address command 'run myterm1

call pragmaCp1, oldpri)

/* change priority temporarily */

/* launch terminal at new pri */

/* restore original priority */

345

14. Reference

Set Stack Size: oldsize = pragma(fs',newsize)

The AmigaDOS Stack command allows you to set, for programs
launched thereafter, the size of the special data area known as the
stack. ARexx scripts inherit this stack size, like other properties, from
the process that launched them, and pass it on in turn to other
processes that launch themselves. If some program you wish to

launch from a script (with ADDRESS COMMAND) has an unusually
high stack requirement, you can increase your stack size in
preparation for calling it. The form is very similar to that used for
modifying the task priority:

oldsize = pragmaCs1,15000) /* set stack size temporarily */

address command 'run myprog1 /* launch stack-hungry program */
call pragma('s',oldsize) /* restore original stack size */

Disable/Enable Requesters: 1 = pragma('w',[mode])

When AmigaDOS encounters an error condition that might be
correctable if the user intervenes, its usual action is to post a requester

on the Workbench screen telling the user what action to take. This

most often happens when an attempt is made to access a file on a disk
volume that is not currently mounted. For example, if a script calls

EXISTS or OPEN on a file named 'mydiskrmyfile', and no volume
named 'mydisk:' is currently mounted, the user will ordinarily be
presented with a requester bearing the message: Tlease insert volume

mydisk: in any drive'. Only if the user cancels this requester does
AmigaDOS give up on locating the file, causing the ARexx function
call to fail.

Occasionally it is handy to be able to test for the existence of a file (or
directory) without the danger of requesters popping up to bother the
user. PRAGMA'S 'w' option makes this possible. If the second

argument with this option is the mode 'n', AmigaDOS will no longer

post warning requesters for operations originating with the calling

script's process. If the second argument is 'w', or is not give^i,

requesters will be posted to the Workbench screen as usual. Normally
it is best to leave requesters enabled as much as possible.

The return value from this variety of PRAGMA is always 1 (or True).

Get Task ID: id = pragmaCi1)

Sometimes it is useful to be able to create an identifier string that you
know is unique to one particular invocation of a script. A good source
for such a string is the address of the script's Task information among
the operating system's data structures, which is obviously a value that

346

Instruction and Function Reference

other invocations of the script will not share. This string can be used

to create unique names for objects, like Message Ports, that are visible

throughout the system:

portname = ■Port_'pragma(■i')

Set Default Console Handler: bool = pragmaC*', [file])

The 'console handler' is the interactive file associated with the special

console file name '*'. Normally one interactive file, operating through

the CLI window, is used for both the standard input and the standard

output files (STDIN and STDOUT). Sometimes it is better to operate

interactive I/O through a customized console window (opened as a

file whose name begins with 'con:'). If a script was invoked from the

CLI with the AmigaDOS Run command, keyboard input would not be

possible at all through the CLI window.

The second argument to this variety of PRAGMA is the ARexx file

identifier of the interactive file which is henceforth to be used as the

console handler. If this argument is not given, the original console

handler for the process (if any) is re-installed.

The following function, DIVERT, accepts a console window

specification as its sole argument, and attempts to reroute standard

input and output to that window. If it is unable to do so (owing,

probably, to a faulty specification), it re-installs the default console

handler.

/* divert

Divert standard input and output streams to a

(console) file opened according to the passed-in

spec. If this fails (probably because of a bad

spec), the default i/o streams are reopened, e.g.

con_opened = divert('con:0/0/640/200/My console1)

divert: procedure

call close(nSTDOUT")

call close("STDIN")

success = 0

if open("STDOUT",arg(1), V) then do

call pragma(■*","STDOUT")

if openrSTDIN","*",^11) then

success = 1

else

call close("STDOUT")

347

14. Reference

end

if -success then do

call pragmaC*")

call open("STDOUT","*","w«)

call open("STDIN", «*",-r-)

end

return success

Name: PROCEDURE

Type: instruction

Format: PROCEDURE [EXPOSE var [var...]]

Description: protect function caller's variables from name collisions

Script example:

Discussion:

/* PROCEDURE */

a = 'aardvark1

z = 'zymosis'

call abc()

say "From '"a"1 to '"z1"."

exit

abc: procedure expose z

a = 'aardwolf

z = 'zymotic'

return

After an internal function has used the PROCEDURE instruction, any
variables it references are private, and do not interfere in any way
with the variables used by the function's caller, even though the
variable names may be the same. They are termed 'local' variables.
Local variables cease to exist upon return from the function.

PROCEDURE thus provides useful protection for the caller of a
function. Sometimes, though, the protection is a little too much: the
called function may need to access or modify certain of the caller's
variables even while cutting itself off from the rest. Those exceptions
can be handled with the EXPOSE sub-keyword. Any variables listed
after EXPOSE are shared between the function and its immediate
caller. A stem (a name ending with a period) in the EXPOSE list
exposes all compound variables formed on that stem. The sharing of
variables does not extend back over multiple generations (to the
caller's caller, and so on) automatically: variables must be 're-exposed'
at each new level.

348

See also:

Instruction and Function Reference

A typical place to put the PROCEDURE instruction is on the same line

as the function's label, as in the example. The instruction is legal

anywhere within the function, however (though only once), and

applies to all succeeding variable references. PROCEDURE is not legal

other than in an internal function.

call

Name: PULL

Type: instruction

Format: PULL [template] [,template ...]

Description: shorthand form of PARSE UPPER PULL

Script example:

Discussion:

See also:

/* PULL */

LF = 'Oa'x /* 'linefeed' */

RI = 'lb'x'M" /* 'reverse index1 (cursor up) */

EL = 'lb'xM[lKw /* 'erase in line' (clear to eol) */

options prompt copies(RI,2)"RETURN on empty line to quit: "EL

line = copies('-',70)

say line II copies(LF,3)line || RI

do until line=''

pull line

say line || EL

end

say

Since PULL means exactly the same thing as PARSE UPPER PULL, you

will find a detailed treatment of it in the entry for PARSE. The

advantage of PULL is simply its conciseness.

You may or may not find it desirable in a given situation that PULL

translates the input line to upper case. If it would be better to leave it

in the original case—for instance if the input were to be redisplayed or

saved to a file for possible future reference by the user—use PARSE

PULL instead.

parse, arg

Chapter 10 discusses PARSE extensively, and should be read by those

who are not yet familiar with its many features.

349

14. Reference

Name:

Type:

Format:

Description:

PUSH

instruction

PUSH expr

pre-load the standard input in last-in, first-out' order

Script example:

Discussion:

/* PUSH example - sort files in descending size order
This only works with AmigaDOS 2.0 or ConMan

address command "list >t:aaa.a." arg(l) "nohead files"
address command "sort t:aaa.a. to traaa.b. colstart=25"
count = 0

if openfsf, 'tiaaa.b.') then do
line = readln('sf')

do while -eof('sf')

if ~abbrev(line, ':') then do

/* eliminate filenotes */
push line

count = count + 1

end

line = readln('sf•)

end

call close('sf')

call delete('t:aaa.a. ■) /* kill temp files */
call delete('traaa.b.')

do count

parse pull line

say line

end

end

Normally one reads from the standard input file 'STDIN', and does
not write to it. After all, it's normally the console input file—the
keyboard—so what can writing to it even mean? Actually, the words
'inpuf and 'outpuf can be a bit deceptive. Why does a mirror flip your
image horizontally but not vertically? It's all a matter of viewpoint.
The standard input file provides input to your script, but accepts
output from the keyboard. The standard output file accepts output
from your script, but provides input to the screen.

With PUSH (and its brother QUEUE), you are putting yourself in the
keyboard's shoes (as it were), jumping two links back in the input
chain. Now you can output to your own input file—which in general
is also the input file of your parent CLI.

If you use the Shell much, you know that it lets you 'type ahead' of it
Type:

350

Instruction and Function Reference

Shell> List c:

then before the listing is complete, add:

Shell> List s:

The second command isn't acted upon immediately—the first one is

still executing. But when it's done, we find that the second command

wasn't ignored—it was simply set aside till it could be acted upon.

Thus we learn that there is a waiting list at the standard input... all

PUSH has to do is add new lines to that list.

The lines you type ahead at the console are added to the end of the

waiting list in true democratic style: it's first come, first served, or, as

computerists say, first in, first out, or FIFO. True to its name, however,

PUSH bulls its way in at the head of the line: its idea of lining up is

last in, first out, or LIFO. If we wanted to simulate the type-ahead

command above, for instance, we would use:

Shell> rx "push 'list s:'; push 'list c:•

The RX command would do nothing itself except push the given lines

back onto the standard input. The next time the Shell goes for a line,

however, the first thing it will find is list c:', and that is the command

it will execute. Next it will find list s:', and execute that, and only then

will it start receiving lines from the keyboard again.

With PUSH you can also use 'STDIN' as a scratchpad—a private 'stack'

for string storage. The example script takes advantage of the LIFO

character of PUSH to reverse the strings in a sorted file, and so achieve

a reverse sort. It doesn't really care that PUSH interacts with the

standard input file—any other stacking facility would do just as well.

But PUSH does the job.

There's only one serious drawback to using PUSH: it doesn't work

under AmigaDOS 1.3 unless you're running William Hawes'

shareware 'ConMan' program. Hawes is the author not only of

'ConMan' but also of two commercial products: a replacement

command shell called /WShell/, and ARexx itself. All three products

were designed with each other in mind, so it isn't surprising that an

ARexx facility like PUSH would require a capability that—until

AmigaDOS 2.0—was found only in ConMan. But that's the way it is: if

you want to take advantage of PUSH (and QUEUE), you need either

AmigaDOS 2.0, or ConMan. Otherwise PUSH will have no effect.

See also: queue, lines, pull

351

14. Reference

Name: QUEUE

Type: instruction

Format: QUEUE expr

Description: pre-load the standard input in 'first-in, first-out' order

Script example

(2 scripts):

Discussion:

See also:

/* QUEUE - queuel.rexx */

queue 'rx queue2'

queue •Y'

queue •Y'

/* QUEUE - queue2.rexx */

options prompt "Are you sure you want me to calculate 12**5? "
pull yn

if yn='Y' then do

say -Many have gone mad with this knowledge. I ask again:"
pull yn

if yn='Y' then

say 12**5

end

Like PUSH, the QUEUE instruction sends lines to the standard input
file, from where they will be read in the normal way as though they
had been typed at the keyboard. The only difference between PUSH
and QUEUE is that the latter loads 'STDIN' in first-in, first-out (FIFO)
order. This makes it more natural for pre-entry of command
dialogues, as shown in the example. The second script, 'queue2.rexx',
can be run by itself, but requires two lines of keyboard input before'
delivering its real message. The first script, 'queuel.rexx', has as its
whole purpose subverting yqueue2.rexx' so that manual input to the
latter will no longer be required.

The point is that 'queue2.rexx' represents any program—including
commercial programs written in languages like C and assembler-
requiring input through 'STDIN', while 'queuel.rexx' represents the
script you write to deal with such programs automatically. With
QUEUE you can pre-load the program's input stream with as many
commands as required, and never actually type a single one.

push, lines, pull

352

Instruction and Function Reference

Name: RANDOM

Type: built-in function

Format: n = RANDOM([low],[high],[seed])

Description: return 'random' integer between low and high inclusive

Dialog

examples:

Discussion:

->random() /* same as random(0,999) */

546

->random(0,1)

1

->random(0,1)

0

->random(3000,3149)

3085

Games and simulations typically need random numbers for variability

from one run to the next. On a computer, 'random' nearly always

means 'pseudo-random', which is to say that the numbers are

generated according to a mathematical procedure designed so that the

generated numbers will appear truly random, both subjectively and to

statistical tests. No pseudo-random generator completely succeeds at

emulating true randomness—whatever 'true randomness' may be—

but the departure from the ideal is negligible for most purposes.

RANDOM takes three arguments, all of which are optional. The first

two specify the lower and upper bounds of the range from which the

generated random number will be drawn. The gap between the lower

and upper values must be no greater than 1000. The default values for

these arguments are 0 and 999 respectively. If you wish to generate

random numbers over a wider range, use RANDU and scale the result

as desired.

The random number generator used by ARexx works from a 'seed'

value which is the same at the outset of every script run, resulting in

the same sequence of 'random' numbers on each run. This is

sometimes useful (for controlled testing of the script while it is being

debugged), but in general a different sequence is wanted on each run.

The solution is to supply a truly random seed value for RANDOM to

work from. The seed is the optional third argument to RANDOM (if it

is absent, the random number generator is not reseeded); it must be a

non-negative integer. Perhaps the best readily-available source for a

seed is the 'seconds' value from the TIME function. Just put the

following line near the beginning of any script that uses RANDOM:

call random(,,time(•s'))

or:

353

14. Reference

See also:

call randu(time('s1))

Particular sequences of 'random' numbers can be duplicated by using
the same seed on the first call to RANDOM. The seed given to
RANDOM also affects the RANDU function.

randu

Name: RANDU

Type: built-in function

Format: n = RANDU([seed])

Description: return pseudo-random number between 0 and 1

Dialog

examples:

Discussion:

See also:

->randu()

0.581444375

->randu(100)

0.773375754

->trunc(-500 + randu()*(2000 - -500 + 1))/* -500 <= n <= 200 */
14

RANDU returns a positive number less than 1. The result can be
scaled to any range desired, as in the third example. In general, if you
need a random integer between lo' and 'hi' inclusive, the formula is:

r = trunc(lo + randu() * (hi - lo + 1))

The optional argument to RANDU is a seed value, which must be a
non-negative integer. The seed given to RANDU also affects the
RANDOM function.

random

Name: READCH

Type: built-in function

Format: s = READCH(file, [count])

Description: return count characters from file

Dialog

examples:

->open('w_file', 'ram:testfile', 'w')
1

->writeln('w_file', 'abcdefghijklmnopqrstuvwxyz ')

->seekCw_file' ,0, 'b')

0

->readch(•w.file1)

a

354

Instruction and Function Reference

Discussion:

See also:

->readch('w_file')

b

->readch('w_file1, 6)

cdefgh

->readch('w_£ilea,4)

ijkl

->readln('w_filel)

mnopqrstuvwxyz

->close(lw_file1)

1

READCH reads a given number of characters (the default is 1) from an

open file. The characters need not be printable letters/ numbers and

punctuation, or even recognized ASCII control characters like tab,

backspace and linefeed. They can have any value from 0 through 255.

If fewer than the requested number of characters are available in the

file, READCH will return as many as it can. If the number of

characters returned is less than the requested length, either a read

error has occurred, or—far more usually—the end of file has been

reached. In the latter case, a call to the EOF function will return 1.

The Dialog examples above show the difference between READCH

and READLN. The first three function calls (OPEN, WRITE and SEEK)

create a test file containing the letters of a lower-case alphabet, ending

with a linefeed (added automatically by WRITELN), then seek back to

the start of the file. The first two calls to READCH fetch 1 character

each, making use of the default value for the second argument. Then

6 characters are read, then another 4. Finally, READLN brings in not a

given number of characters but the rest of the line, up to the linefeed.

readln, writech, writeln, eof

Chapter 9 (File Input and Output) goes into some detail on all the

ARexx file functions, and should be read for an introduction to and

overview of file handling in ARexx.

Name:

Type:

Format:

Description:

READLN

built-in function

s = READLN(file)

return a line from the file as a string

Example: /* MLT - given a text file name as a command line

argument, determine and list the byte offsets of

each line in the file.

Usage: rx mlt <filename>

*/ *
nlines = MakeLineTable(arg(l))

355

14. Reference

Discussion:

See also:

if nlines < 0 then

say "Unable to open file '"arg(l)"1"

else do

say "Line Offset"

do i=l to nlines

say right(i,4) right(linetab.i,6)

end

end

exit

/* MakeLineTable(filename)

Build table of line offsets for file, return line
count.

*/

MakeLineTable: procedure expose linetab.

nlines = 0

offset = 0

linetab. = -1

/* Invalid default offset for all lines */

if open(•mlt_filel,arg(l)) then do

line = readlnCmlt_file')

do while -eof('mlt_file1)

nlines = nlines + 1

linetab.nlines = offset

offset = offset + length(line) + 1

line = readlnCmlt^file1)
end

call close(

end

else

nlines = -1

/* Return negative if file won't open */

return nlines

READLN returns as a string all the text between the current file

position and the next linefeed character or the end of the file,

whichever comes first. If there is a linefeed, it is read in (advancing
the file position beyond it), but it is not added to the returned string. If
the end of file is reached before a linefeed is found, the end-of-file
condition is set, and the partial line is returned as usual. Only an
actual linefeed (ASCII 10) counts as a line separator; the carriage return
(ASCn 13) has no special status.

readch, writech, writeln, eof

Chapter 9 (File Input and Output) goes into some detail on all the
ARexx file functions, and should be read for an introduction to and
overview of file handling in ARexx.

356

Instruction and Function Reference

Name:

Type:

Format:

Description:

REMLIB

built-in function

bool = REMLIB(name)

remove an entry from the Library List

Dialog

examples:

Discussion:

See also:

->addlib('ersatz.library1,0)

1

->show('ll)

rexxsupport.library ersatz.library REXX

->remlib('ERSATZ.library')

0

->remlib('ersatz.library')

1

REMLIB searches the Library List (ARexx's list of available function

hosts and function libraries) for an entry whose name matches its

argument, and removes the host or library of that name. The boolean

return value reflects whether the name could be matched (1) or not

(0). As the examples show, the search for a matching name is case-

sensitive.

The two situations in which you may wish to call REMLIB are:

1) when memory is getting tight and you have loaded some

function library that is no longer needed;

2) when you have added a name to the Library List in error,

addlib, show

Name:

Type:

Format:

Description:

RENAME

support function

bool = RENAME(oldname,

rename a file or directory

newname)

Dialog example: Shell> echo >ram: Canaveral "Blast-off!"

She11> rx "say rename(•ram:Canaveral•,'ram:Kennedy•)

1

Shell> makedir ram:Cape

Shel1> rx "say rename(•ram:Kennedy•,'ram:Cape/Kennedy')

1

Shel1> rx "say rename('ram:Cape■,'ram:George)

1

Shell> rx "say rename(•ram:George/Kennedy•,•df0:Canaveral•)

0

357

14. Reference

Discussion:

See also:

Like the AmigaDOS command of the same name, ARexx's RENAME
function lets you change the name of a file ('Canaveral' to TCenned/,
in the example), or of a directory ('ram:Cape' to 'ram:George'), or
move a file or directory into another directory on the same device

CKennedy' to 'Cape/Kennedy'). The boolean return value indicates
whether the rename was successful.

Again like RENAME, you cannot move a file or directory onto a
different device ('ram:' to 'dfO:').

Some of the other conditions that can cause RENAME to fail are:

• The file or directory given as oldname does not exist

• The file or directory given as newname already exists
• Either of the pathnames is invalid

• The volume is write-protected

delete, makedir

Name:

Type:

Format:

Description:

Discussion:

REPLY

support function

1 = REPLY(pkt, [result], [result2])

return a message packet to its sender

Most ARexx scripts execute in an environment where the air is thick
with message packets darting frenetically in all directions around
them, yet remain peacefully oblivious even to the existence of
messages and of the message ports to which messages are posted.
When a script opens a public port with OPENPORT, and starts
receiving message packets of its own from the outside world, it
acquires new responsibilities.

Every packet a script receives belongs to some other task, and that task
is depending on the recipient of its message to reply, generally as soon
as possible. Once its port has been opened, a message-driven script
(such as the tiny command host given with the reference entry for
GETARG) works like this:

Until it is time to quit, do the following loop:
Wait at the message port for a message packet
Get a message packet from the port

Check that the packet is real - is its address null?

If the packet is real, examine it with GETARG and/or TYPEPKT
Do whatever should be done about the packet

REPLY to the packet giving appropriate results
Go back to the top of the loop

358

Instruction and Function Reference

See also:

If we assume that your incoming messages are arriving from other

ARexx scripts who are using your script as a command host, the

replies to the messages will include a return code to signal any errors

and, optionally, a result value. The return code will be copied into the

calling script's RC variable; it should be 0 if no error occurred, a higher

number otherwise. The number chosen should follow the usual

ARexx practice of using small error numbers (5-9, say) for small errors

that the calling script may be able to live with, larger numbers (10-19)

for more serious errors, and yet larger numbers (20 or more) for

panics, tragedies, catastrophes and fiascos. The result value will be

copied into the calling script's RESULT variable in the normal way,

provided that it has requested results by setting OPTIONS RESULTS,

and that the error code you returned was 0.

The pkt argument to REPLY is the address of the message packet to

which you are replying. The result argument is the numeric error

code, and result! is the result value. The error code defaults to 0, and

the result defaults to the null string.

Any messages to which your script has not replied when it exits will

be replied by ARexx automatically. However, you should take care of

replying them yourself, and promptly: if you do not, another task,

depending on the reply, may be paralyzed meanwhile.

closeport, openport, getarg, getpkt, typepkt, waitpkt

For a programming example including REPLY, and a further

explanation of message packets and their role in some ARexx scripts,

see the entry for GETARG.

Name:

Type:

Format:

Description:

RETURN

instruction

RETURN [expr]

return control (and optionally a value) to caller

Example:

Example

session:

/* RETURN - return.rexx */

say getvalue(getvalue(arg(l) arg(l)))

exit

getvalue: procedure

return arg(l) arg(l)

Shell> rx return Ho Ho

Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho

359

14. Reference

Discussion:

See also:

If used within an internal function, RETURN causes control to pass

back to the caller of the function, which may be another function, or

may be the main level of the script. If used from the main level,

RETURN is identical in effect to EXIT, returning control to the

invoker of the script

In either case, RETURN may be accompanied by an expression, whose

value is passed back to the caller as the value of the internal function

or script. Whether the caller actually wanted an expression returned,

or will make use of it, cannot ordinarily be known by the returning

function. In many cases, though, it may be appropriate for a script to

check (with PARSE SOURCE) whether a result was requested, and act

accordingly.

call, exit

Name:

Type:

Format:

Description:

REVERSE

built-in function

s = REVERSE(str)

reverse a string

Dialog

examples:

Discussion:

->reverse(•desserts repaid•)

diaper stressed

->reverse('STOP ====>')

<==== POTS

The argument string is returned with the characters in reverse

sequence.

Name: RIGHT

Type: built-in function

Format: s = RIGHT(str,width,[pad])

Description: extract rightmost width characters of sir

Dialog

examples:

->right("panache",4)

ache

->right(3,8,0)

00000003

->right(4926872,8,0)

04926872

360

Instruction and Function Reference

Discussion:

See also:

RIGHT extracts and returns the given number of characters from the

right of the argument string. If necessary to make up the requested

count, the argument string is padded on the left with spaces (the

default) or the pad character. A common use of RIGHT, as

demonstrated in the examples, is the right-alignment of a column of

numbers, with or without leading zeros.

center, left

Name:

Type:

Format:

Description:

SAY

instruction

SAY [expr]

send expression result to standard output (usually screen)

Discussion:

See also:

SAY, which is undoubtedly the most used ARexx instruction (possibly

excepting the assignment 'instruction', which is in a somewhat

different category), is generally equivalent to calling the WRITELN

function with 'STDOUT as the file identifier:

call writelnCstdout1, <expr>) /* like SAY <expr> */

When you run a script with RX from a CLI, unless you use the shell

output redirection operation, the 'STDOUT identifier is originally

associated with the CLI console window, so that is where your output

will go. But there is nothing magic about 'STDOUT'—you can close it,

and open it on another file—such as the 'SPEAK:' device—if you like.

With the aid of the '" option to the PRAGMA function, you can

attach both 'STDIN' and 'STDOUT to a console window of your own.

writeln, pragma, pull

Name:

Type:

Format:

Description:

SEEK

built-in function

n = SEEK(file,offset,[mode])

move file position to offset according to mode

Dialog

examples:

->open('w_file\ 'ram: testfile1 , 'w1)

1

->writeln('w_file','abcdefghijklmnopqrstuvwxyz')

27

->seek('w_file',0)

•27

->seek('w_file\10, 'b')

361

14. Reference

10

->readch('w_file')

k

->seekCw_file',0)

11

->seek('w_file',-10,'e')

17

->seekCw_file' ,100, 'e')

17

->close('w_file')

1

Discussion: SEEK lets you determine or modify the current file position within an

open file. The first argument to SEEK is the identifier of the file, and

the second is a numeric offset specifying a new desired file position

according to one of three modes, given as the optional third

argument. The return value is the new file position, expressed in bytes

from the beginning of the file.

In 'c' ('Current') mode, the default, the new position is the current

position plus the offset. An offset of 0 can be used to determine the

current file position without modifying it. The offset argument can be

either negative (towards the beginning of the file) or positive (towards

the end of the file).

In V ('Beginning') mode, the new position is at the specified offset

from the start of the file. If all goes well, the offset argument will equal

the return value. The offset must be positive (including 0) for a seek

in this mode to succeed.

In 'e' CEnd') mode, the new position is at the specified offset from the

end of the file. The offset argument must be negative or 0 for a seek in

this mode to succeed.

If the absolute file position calculated from the combination of the

given mode and offset is negative, or past the end of the file, the

attempt to seek fails, and the file position does not change.

See also: readch, writech

Chapter 9 (File Input and Output) goes into some detail on all the

ARexx file functions, and should be read for an introduction to and
overview of file handling in ARexx.

362

Instruction and Function Reference

Name: SELECT

Type: instruction

Format: SELECT; WHEN ... [OTHERWISE [;] [instructions]] END

(WHEN ... in the template stands for one or more instances of:

WHEN expr [;] THEN fcj instruction

The instruction can be a compound instruction such as a

DO-block, an IF-THEN-ELSE, or even a SELECT instruction.)

Description: branch to first case whose controlling condition is met

Script example:

Discussion:

/* SELECT example: cheerup.rexx */

options prompt "Your worst problem in one word: "

pull problem

select

when problem = 'HEALTH' then

say "But while there's life there's hope!"

when problem = 'MONEY' then

say "At least you've got your health!"

when find ('WOMEN MEN GIRLS BOYS LOVE1, problem) > 0 then

say "At least you're financially comfortable!"

when problem = 'JOB' | problem = 'BOSS' then do

say "Well, things are bound to get better..."

say "And lots of people have it worse than you!"

end

otherwise

say "I know what you mean! That's my problem too!"

say "Let's get together and form a support group!"

end

In most respects, SELECT is just a slightiy more formal alternative to a

chain of IF-THEN-ELSE statements. Whereas the indentation of an IF

chain is conventionally fudged so that the alternative cases are at the

same indentation level (logically speaking the whole chain should

slant gradually away to the right), with SELECT the fudged

indentation is institutionalized. That doesn't change the fact that the

earlier cases have priority, however. If more than one of the WHEN

test conditions is satisfied, it is the dependent instruction of the earlier

one that will be executed, while the later one will be ignored.

If none of the WHEN conditions is True, ARexx insists on being able

to default to an OTHERWISE, though—unlike all other keywords that

govern dependent instructions—it is not required that any

instructions actually be placed between the OTHERWISE and the END

instruction that terminates the SELECT. Another special syntax

feature of OTHERWISE is that it can govern multiple instructions

without requiring a DO-END block.

363

14. Reference

As with IF-ELSE, it is sometimes convenient to use the NOP

instruction with a WHEN, as in this model of a partially-

implemented command system. Here, any alphabetic character is

accepted as a command by the system, but only a few are actually

hooked up:

select

when cmd='A' then call archive()

when cmd='E' then call erase()

when cmd='Q' then call quit()

when cmd='V then call verify()

when datatype(cmd, 'u') then nop

otherwise

say "Invalid command!"

end

/* all letters allowed */

See also:

Whether you use IF-ELSE or SELECT-WHEN-OTHERWISE in a

particular programming situation is mostly a matter of taste. Rough

tests indicate that SELECT is usually more efficient, more markedly so

when the number of alternatives is large, but that is usually a

consideration only in 'tighf loops with a large number of repetitions.

when, then, otherwise, if, then, else, do, end

Name: SETCLIP

Type: built-in function

Format: bool = SETCLIP(name, [value])

Description: set string value for clip name

Dialog

examples:

Discussion:

->setclip('herman1,'melville')

1

->•['getclip(•herman1)']■

[melville]

->setclip(•herman')

1

->'['getclip(•herman')•] •

[]

->setclip('herman')

0

ARexx maintains a list of strings called 'clips', which is globally

available to all scripts. Each entry on the Clip List pairs a unique name

with a value string; SETCLIP can either create or delete these entries.
The entries may be retrieved with GETCLIP.

SETCLIP's first argument is the name of the clip, and the optional
second argument is the value to be associated with the name. If a clip

of the given name already exists, the new value string replaces the

364

Instruction and Function Reference

See also:

previous one. If the second argument is not given, the clip of the

given name is deleted.

The boolean return value indicates whether the SETCLIP call

succeeded.

getclip

Name:

Type:

Format:

Description:

SHELL

instruction

SHELL

SHELL name

SHELL VALUE name-expression

SHELL name command-expression

modify host address; send command to a host

Discussion: SHELL is an exact synonym for the ADDRESS instruction; consult the

entry for ADDRESS in this Reference Section for examples and

discussion.

Name: SHOW

Type: built-in function

Format: s = SHOW(mode,,[pad])

bool = SHOW(mode,name)

Description: return information about a resource

Dialog

examples:

Discussion:

->show('L')

rexxsupport.library HB_REXX REXX

->show('L1,,'Oa'x)

rexxsupport.library

HB_REXX

REXX

->show('L■,■rexxsupport.library■)

1

->show('L1,'ersatz.library1)

0

SHOW yields information about various types of named objects that

are organized in lists. Each SHOW mode (as expressed in the first

argument) corresponds to a different type of object:

365

14. Reference

'C ('Clips')

V (Tiles')

T (Internal7)

1! (libraries')

T' (Torts')

Clips, by clip name (see GETCLIP, SETCUP)

Open files, by file identifier (see OPEN)

Internal message ports (see OPENPORT)

Function libraries and hosts (see ADDLIB)

System message ports

See also:

In the first form of SHOW (no second argument), all the names on the

list for the given resource are returned as a string, separated by the pad
character, or by spaces in its absence. In the second example, the use of

a linefeed OOa'x) as the pad character causes the names to appear on
separate lines.

The second form of SHOW returns 1 if the given name occurs on the
list specified by mode, and 0 otherwise.

showlist

Name: SHOWDIR

Type: support function

Format: filelist = SHOWDIR(dir, [mode], [pad])

Description: list the file and/or directory names in a directory

Dialog /* For 'mydir' in these examples substitute the name
examples of an¥ directory in your system with both files

and subdirectories.

*/
->showdir(•mydir')

Railroads Utilities Vacuum.anim Silence.snd Lamprey.pic
->showdir(■mydir•,'f')

Vacuum.anim Silence.snd Lamprey.pic

->showdir('mydir1,'d1)

Railroads Utilities

->showdir('mydir1,,',')

Railroads,Utilities,Vacuum.anim,Silence.snd,Lamprey.pic
->showdir('mydir',•f','Oa'x)

Vacuum.anim

Silence.snd

Lamprey.pic

Discussion: By default, SHOWDIR returns a list containing the names of both the

files and the subdirectories in the directory whose name is given as its

first argument. The second argument is a specifier for one of three
modes:

Instruction and Function Reference

Mode

•A' (All)

'F (Files)

'D1 (Directories)

Lists...

Both files and subdirectories; the default

Files only

Subdirectories only

See also:

The pad argument is the character used to separate entries in the

returned list. As usual, the default pad character is the space. Other

useful possibilities include the comma and the linefeed OOa'x), both

illustrated in the examples.

exists, statef

Name:

Type:

Format:

Description:

SHOWLIST

support function

list = SHOWLIST(mode,,[pad])

bool = SHOWLISTOnode, name)

addr = SHOWLIST(mode, name,, '

return information about a shared

a')

system list

Dialog ->showlist ('V1)

examples: arexx__disk ram disk work system2.o

r ->showlist('V,,'Oa'x)
AREXX_DISK

RD

WORK

SYSTEM2.0

->showlist('V , 'AREXXJDISK')

1

->showlist('V,'DFO1)

0

->showlist('H1,'DFO1)

1

->c2x(showlist((L',■intuition.library1,,'a1))

07E096FC

Discussion: As discussed under other topics in the Reference Section (e.g. NEXT

and FORBID), system information that is shared between tasks is

stored in a variety of linked lists', each one devoted to a particular

type of data structure. (This is technically a slight simplification: on

some lists, such as the one for handlers, volumes and assigns, related

structures share a single list.)

Locating and scanning a list correctly is not only a bit of a chore, as the

programming example for NEXT shows, but also requires a more

367

14. Reference

detailed knowledge of the operating system than most people need or

want. Fortunately, most lists of interest are available very

straightforwardly with the SHOWLIST function, which can furnish

information about 12 kinds of data. The mode argument selects which

list will be scanned, according to this table (as usual, the mode may be

specified in the function call by its first letter only, if preferred):

Mode Description

Assigns A list of logical (assigned) directories, in upper case,

including standards like 'C, UBS' and T>EVS', plus

any assigns you may have made for your own

purposes.

Devices These are software 'devices', with names like

'timer.device' and 'console.device'; their purpose is

to provide a consistent way for programs to deal

with hardware.

Handlers These are AmigaDOS handlers (a higher-level

interface to devices) listed in upper case: 'PIPE',

'CON7, 'DFO'.

Interrupts The names of nodes on the 'IntrList' list of

Interrupts in the Exec Library structure. It is hard to

conceive of an application that would require this

mode.

Libraries The shared libraries in the system, including

'normal' libraries like 'intuition.library7, and ARexx

function libraries like 'rexxsupport.library7.

Memory The names of nodes on the 'MemList' list of

memory blocks in the Exec Library structure, e.g.

'chip memory7.

Ports The names of nodes on the 'PortLisf list of public

message ports in the Exec Library structure. This is

the same list you see with the 'p' mode of the built-

in function SHOW.

Resources Uesources' are pieces of Amiga system software, on

a par with libraries and devices, that have the special

job of governing access to hardware, which by its

nature can't be freely used by multiple tasks

simultaneously. SHOWLISTOr') will return names

like 'battclock.resource', which handles the battery

368

See also:

Instruction and Function Reference

backed-up clock, 'disk.resource', and 'potgo.resource',

which manages the joystick/mouse ports.

Semaphore 'Semaphores' are another mechanism for avoiding

conflicts between tasks trying to access resources

simultaneously, and are used by some programs as a

less drastic alternative to turning off multitasking.

Access to Exec's semaphore list is of dubious benefit

to ARexx scripts.

Task ready Tasks that are not currently active but are prepared

to go to work when the task scheduler gives them a

chance are termed 'read/. By now you will hardly be

surprised to learn that Exec maintains a list of ready

tasks. At most times on most systems the list will be

empty or nearly empty.

Volumes A list of volume (disk) names in your system, in

upper case.

Waiting Most Amiga tasks are idle most of the time, waiting

for one or more pre-arranged wake-up calls: a

keypress, the completion of disk activity, a time-out,

a mouse-click, and many more. Such a task is said to

be waiting. The instruction SHOWLISTOw1) should

return a quite surprisingly long list of tasks in this

state.

If SHOWLIST is called with only the mode argument, the result is a

list of names separated by spaces. To get the same list with the pad

character of your choice, leave the name argument null and supply

the pad character.

The second type of SHOWLIST call specifies both a mode and a name

that is likely to be on the list in question. The boolean return indicates

whether the name is indeed on the list. The third, fourth and fifth

Dialog examples above are all queries of this type.

The third type of SHOWLIST call actually returns the address, as a 4-

byte string, of a member of the given list, or the null address string if

the name is invalid.

next, null, offset

An example of a script that uses SHOWLIST extensively, but is

unfortunately slightly too long to be listed here, may be found on the

accompanying disk as 'asnvoLrexx'.

369

14. Reference

Name: SIGN

Type: built-in function

Format: n = SIGN(num)

Description: determine the sign of a number

Dialog ->sign(ll)

examples: 1
->sign(0)

0

->sign(-33.987ell)

-1

->sign(33.987e-ll)

1

Discussion: SIGN returns -1, 0 or 1 for a negative, zero or positive argument
respectively.

See also: abs

Name:

Type:

Format:

Description:

SIGNAL

instruction

SIGNAL ON type

SIGNAL OFF type

SIGNAL [VALUE] label-expression

Turn interrupt type on/off; transfer control to label

Script example: /* SIGNAL - springing a variety of traps */
signal on syntax

signal on error

signal on failure

signal on halt

signal on ioerr

signal on novalue

syntax_test: test = 'error1

say centerCThis will fail!1) /* Wrong # of args */

error_test: test = 'failure'

'does_not_exist' /* Non-existent command */

failure_test: test = 'novalue'

address command "List •)('" /* Bad List template */

novalue__test: test = ' ioerr'

say trapezium /* Not initialized */

ioerr_test: test = 'halt1

call open('pf',•prt:')

say readln('pf) /* Can't read printer! */

halt_test:

370

Instruction and Function Reference

address command hi /* Halt ourselves? */

shutdown:

say "Exiting gracefully after all the chaos..."
exit

syntax

next

error

failure

novalue

ioerr

halt

call report(sigl, "SYNTAX ("errortext(re)")")/signal

call report(sigl, "ERROR") ; signal next

call report(sigl, "FAILURE"); signal next

call report(sigl, "NOVALUE"); signal next

call report(sigl, "IOERR") ; signal next

call report(sigl, "HALT") ; signal shutdown

next:

signal value test'_test'

report: procedure expose re

parse arg si, text

penl = •lblx"[31m"; pen2 = Ilb'x"[32m"

say pen2 I I text II penl "trap (re =" re", sigl =" si")."

return

Discussion: Although ARexx excels as a casual scripting language for one-time

needs, or for throwing together personalized utilities that don't

require such niceties as protected input or detailed error-checking, it is

also suitable for the large applications in which those 'niceties'
suddenly become 'essentials'.

SIGNAL provides an error-trapping facility that allows a script to

maintain control when something goes wrong. The 'something'

might be an error arising within the script itself, such as a syntax error

or a memory allocation failure; it might be a 'failure' return code from

an external command; or it might be the user hitting CTRL-C in an

attempt to interrupt whatever the script is doing.

These conditions and several others can be trapped individually by

setting the appropriate signal to 'on'. Once a particular signal has been

enabled, if the corresponding condition occurs, the normal execution

of the script is interrupted, and control is transferred to a label named

for that type of signal. For instance, a trap for syntax errors can be set

with:

signal on syntax

The trap is sprung the next time a syntax error occurs. When that

happens, control is transferred to this label, somewhere in the same

script:

syntax:

371

14. Reference

Of course, if there isn't such a label, that in itself is a syntax error! So

what happens? Nothing drastic, actually. To avoid the disastrous kind

of circularity that could arise in such situations, the activation of a trap

simultaneously disables the corresponding signal. Further errors of

that type will not be trapped until the appropriate SIGNAL ON
instruction has been given again.

SIGNAL OFF, of course, is simply a way of disabling the signal

'manuall/. It is much less often used than SIGNAL ON.

The break Among the conditions that can be trapped are the 'break signals'

signals recognized by AmigaDOS. There are four of these, known as

BREAK_C, BREAKJD, BREAK_E and BREAK_F. They are activated

either with the AmigaDOS Break command, or by typing one of the

letters C, D, E or F (either upper or lower case) while holding down the

'Ctrl' key. The most often used, BREAK_C, is recognized by most

AmigaDOS commands as a request to halt, while BREAKJD is used

for interrupting the operation of an AmigaDOS script.

The default behavior of BREAK_C in an ARexx script is to cause a

halt, and return an error code of 10. The other break signals have no

default effect. By setting SIGNAL ON for any of these, however, they

can be trapped individually and used to generate any appropriate

response 'asynchronousl/—that is, regardless of the other activities

the script may be involved in at the time.

There is a caveat with respect to the break signals: they do not work

under AmigaDOS 2.0 for ARexx scripts getting their standard input

and output from a CLI window, though the BREAK__C interrupt does

work for AmigaDOS commands and for other programs that normally
support it. BREAK_C (and the other break signals) also work for

ARexx scripts under AmigaDOS 1.3. But under 2.0, they work only if

you reroute your standard input to a custom console window, either
with something like:

call close('STDIN1)

call openCSTDIN1 , 'con:0/0/600/180/My input1)

or with a routine like Divert, which is listed under the entry for

PRAGMA in this Reference Section. (NB: this information with

respect to AmigaDOS 2.0 was determined using a late pre-release

version of the operating system. It is possible that the problem will
have been corrected in the final version.)

372

Instruction and Function Reference

RC and SIGL When a SYNTAX, ERROR or FAILURE interrupt is received, the

special variable RC can be examined to learn more about the problem.

As the example script demonstrates, text descriptions of syntax errors

are available using the ERRORTEXT function. Return codes from

commands are also stored in RC, but are of an altogether different

type: their significance is conventional only, and is determined

ultimately by the command itself. The interpretation of RC in an

ERROR or FAILURE trap is therefore dependent on the context of the

particular script.

With an IOERR interrupt, the RC variable generally reflects

documented AmigaDOS error number (such as 218 for 'Device not

mounted') for the operation that has failed, and its meaning can

therefore be investigated with the Fault command from the Shell. Not

universally however: the foredoomed attempt to read from TRT:' in

the example script returns error 253, which is not documented.

When an interrupt of any type is received, the special variable SIGL is

automatically assigned the number of the script line that was

executing when the signal was detected. This can be used to tailor the

response taken by the trap routine to the context in which the signal
was trapped.

Here is a complete list of trap types, and the conditions they trap:

Trap Description

BREAK_C A BREAK_C interrupt has been received, usually

because the user has entered CTRL-C at the

keyboard, or given the AmigaDOS Break command.

The interrupt will not be sensed, whether or not the

trap is set, under AmigaDOS 2.0 (see the main

discussion for more on this).

BREAK_D These work in the same way as BREAK_C The only

BREAK_E difference is that they do not have the default

BREAKJF behavior of halting the script when the break trap is

not set.

ERROR If the FAILURE trap is set, this will trap errors

resulting from external commands up to but not

including the FAILAT threshold. If FAILURE is not

set, this will trap all errors from external commands.

The exact return code is stored in the RC variable as

usual.

373

14. Reference

FAILURE This will trap those errors from external commands

that equal or exceed the FAILAT threshold (as set

with OPTIONS FAILAT). The exact return code is

stored in the RC variable as usual.

HALT When the ARexx process under which the script is

running receives a 'half request, generally meaning

that the HI support program has been executed, it is

normally interrupted on the spot. But if this trap is

set, the halt request instead simply causes a branch

to the corresponding label. The point of this is not to

allow scripts to get around the external halt

mechanism, but to give them a chance to exit

cleanly: releasing resources like memory or message

ports, leaving data files in a fit state for later use, and

so on.

IOERR This traps some input/output failures, though not

all. IOERR does not, for example, catch failed file

open or seek attempts, but it will catch other errors,

such as an attempt to read from a write-only device

(as in the example script), or an attempt to access a

file open on an unmounted volume. Before

depending on IOERR in a particular situation, make

sure it can actually trap the errors you hope it will.

NOVALUE In many languages, it is regarded as an error to use

an uninitialized variable in an expression. ARexx is

more relaxed, and simply takes the variable as

having its own name as its value. If you would

prefer the more stringent approach, though, you can

have it: just put add these two lines to your script,

the first near the beginning, and the second way

down at the bottom below an EXIT so that it won't

be executed in the normal sequence:

1) signal on novalue

2) novalue: "Uninitialized var, line" sigl; exit

SYNTAX The range of errors trapped with SYNTAX is quite

wide, and includes some (such as memory

allocation failures) that aren't really syntax errors at

all. A few, such as unbalanced quotes and

parentheses, that really are syntax errors, are caught

on the initial scan of a script before it begins to

execute, and so before any traps are in place. Those

374

Instruction and Function Reference

simply cause the script to abort. To see a list of all the

'syntax' errors, run this little script:

/* Display all syntax error messages */

do i=l to 48; say i1:1 errortext(i); end

A few error numbers in the given range are not

assigned. These display as TJndiagnosed internal

errors'.

Using SIGNAL Though the primary use of SIGNAL is to interact with the ARexx

'manually' interrupt system, it is also possible to use SIGNAL to transfer control

directly to the label of your choice, using the syntax:

signal <expression>

The expression is evaluated and taken to be the name of a label

somewhere in the current script. Control is immediately transferred to

that label. For instance:

/* SIGNAL <expr> */

options prompt "> "

say "Enter lines to be 'interpreted' (EXIT to quit)."

restart:

signal on syntax

signal on error

do forever

parse pull line

interpret line

end

syntax: say "Syntax error:" errortext(re); signal 'restart'

error : say "Command error" re; signal 'restart'

Although in this example the 'expression' consists of the literal string

'restarf, any expression resulting in a valid label name would have

served.

See also: errortext

Name: SOURCELINE

Type: built-in function

Format: n = SOURCELDMEO

s = SOURCELINE(num)

Description: read source of currently-executing script

375

14. Reference

Script example:

Example

output:

Discussion:

/* SOURCELINE demo */

say "This script has" sourceline() "lines."

say "Line 3 reads thus:"sourceline(3)

This script has 3 lines.

Line 3 reads thus: say "Line 3 reads thus:"sourceline(3)

SOURCELINE with no arguments returns the number of lines in the

current script (i.e. the one containing the call to SOURCELINE). With

a numeric argument, which must lie between 1 and the number of

lines in the script, inclusive, SOURCELINE returns the text of the

indicated line. A typical use of this function is to display help

information embedded—perhaps as comments—within the script.

Such a use might look like this:

if upper(cmd) = 'HELP1 then

do i=3 to 8

say sourceline(i)

end

Name:

Type:

Format:

Description:

SPACE

built-in function

s = SPACE(str, [len],

set length of spaces

[pad])

between words

Dialog

examples:

->"["space("gene a lo gist")"]

[genealogist]

->space("7 year old",l,"-")

7-year-old

->space(•> + + + <',8,'-')

Discussion:

See also:

SPACE always removes any leading or trailing space from its string

argument. Embedded spaces are replaced by a fixed-length run of the
optional pad character, which defaults to a space. The length of the

run is given by the len argument, which defaults to 0 (eliminating all
spaces from the string as in the first example).

compress, strip, translate, trim

376

Instruction and Function Reference

Name: STATEF

Type: support function

Format: filestring = STATEF(pathname)

Description: obtain information about a file or directory

Dialog

examples:

->statef('s: ')

DIR 0 0 RWED 4966 307 2987

->statef('s:startup-sequence')

FILE 1113 3 RWED 4962 98 559

->•['statef('ramiDoesNotExisf)']'

Discussion: The EXISTS function in the built-in library can confirm for you that a

given file or directory exists, but for more detailed information about a

filing system 'object', you need STATEF, which takes an AmigaDOS

pathname as its single argument, and returns a string with this

structure:

type size blk bits day min tick com

The meaning of these names is:

type Type of the object, either 'FILE' or DIR'

size The size of the object in bytes (always 0 for a directory)

blk The size of the object in disk blocks

bits The protection bits for the file or directory

day The creation date, in days since January 1,1988

min The creation time, in minutes from midnight

tick The creation time, in ticks (1/50 seconds) within the minute

com The file note, if any, for the file or directory

Essentially this information is the same as that returned by the

AmigaDOS List command, but without tidy formatting, and with the

date still in the 'raw7 form used internally by AmigaDOS. This may be

fine: if you just want some of the information you can split it up easily

like this:

parse value statef(name) with type size blk bits day min tick com

where 'name' is the file or directory of interest. If you wanted to
transform the STATEF information into a package as tidy as that

returned by List, though, you could continue after the PARSE

instruction like this:

377

14. Reference

See also:

if types'DIR1 then

size = 'Dir'

/* the following line should be entered on one line */

say left(name,30) right(size,7) bitor(bits)

timestamp(day,min,tick)

if com ~= '• then

say ' : ' com

exit

/* timestamp - turn days/minutes/ticks returned by STATEF into

the normal human-readable date format (dd-mmm-yy hh:mm:ss) .

timestamp: procedure

parse arg d, m, t

dt = space(dateCnSd, 'i'hl, '-')

tm = right(m%60,2,0)':'right(m//60,2,0)■:'right(t%50,2,0)
return dt tm

exists, showdir

Name:

Type:

Format:

Description:

STORAGE

built-in function

n = STORAGE0

s = STORAGE(addr,[str],[len],[pad])

copy a string to a memory area

Script example:

Discussion:

/* Demo script using STORAGE */

say "Available memory:" storage() "bytes."

/* Allocate 48-byte buffer */

buf = getspace(48)

/* Copy string to buffer, ignore old contents */
call storage(buf, copies("Repetition! ", 4))

/* Copy string to buffer, echo old contents */

say storage(buf, "Star-padded string", 48, "*");

/* Free buffer (not strictly needed - see FREESPACE) */
call freespace(buf, 100)

Like EXPORT, STORAGE provides a method of writing data into any
memory location from within an ARexx script. STORAGE in fact
behaves identically to EXPORT except for two small points:

1) When called with no arguments, STORAGE returns the amount
of free memory in the system, in bytes (as in the example).
EXPORT does not support this feature.

378

Instruction and Function Reference

See also:

2) Whereas EXPORT returns the number of bytes copied to the

destination address, STORAGE returns the previous contents of

those same bytes as a string.

export, import, getspace, freespace, allocmem, freemem

Name:

Type:

Format:

Description:

STRIP

built-in function

s = STRIP(str, [mode], [list])

strip leading and/or trailing characters from string

Dialog

examples:

->'['strip(' repaper ')']'

[repaper]

->• ['stripC repaper '/I')1]1

[repaper]

->'['strip('+++repaper+++','t','+')']'

[+++repaper]

->'['stripC repaper ',,' r')']1

[epape]

->'['stripC repaper ',,' re')1]'

[pap]

->'['strip(' repaper ',,' rep')']'

[a]

->'['strip(' repaper ',,' repa')']'

Discussion:

See also:

The primary purpose of STRIP is to remove leading and trailing

blanks from a string. This is reflected in the default behavior shown in

the first example, in which only the first argument—the string itself—

is given. The mode argument is one of:

'B' CBoth')

11 ('Leading')

T (Trailing')

default: both leading and trailing spaces

leading spaces only

trailing spaces only

The list argument allows characters other than spaces to be stripped

from the ends of the string. This argument should be regarded as a list

rather than an ordered string: any characters in it, regardless of the

order in which they occur, are stripped from the ends of the main

argument string.

compress, space, translate, trim

379

14. Reference

Name: SUBSTR

Type: built-in function

Format: s = SUBSTR(str, start, [len],[pad])

Description: extract substring from string

Dialog

examples:

Discussion:

->substr (' sparrowhawk', 8)

hawk

->substr (' sparrowhawk ',3,5)

arrow

->substr(•sparrowhawk',9,5,'!•)

awk! !

SUBSTR's first argument is the string from which a substring will be
extracted, and the second is the character position, counting from 1, at
which the substring begins. The optional len argument is the length of
the substring; it defaults to the remainder of the string, as in the first
example. If the argument string is too short to allow a substring of the
requested length, the substring is padded on the right with spaces (the
default) or the pad character.

Name: SUBWORD

Type: built-in function

Format: s = SUBWORD(str, start, [count])

Description: extract words from string

Dialog

examples:

Discussion:

See also:

->subword('Never have I lied to you, my friends!1,3)
I lied to you, my friends!

->subword('Why would I lie when I want your vote?',3,5)
I lie when I want

SUBWORD's first argument is the string from which a substring will

be extracted, and the second is the word, counting from 1, at which the
substring begins. The optional count argument is the number of

words in the substring; the default is the remainder of the string, as in

the first example. The string returned by SUBWORD never has
leading or trailing spaces.

delword, find, word, wordindex, wordlength, words

380

Instruction and Function Reference

Name: SYMBOL

Type: built-in function

Format: s = SUBWORD(str)

Description: determine if a string is a valid ARexx symbol

Script example:

Discussion:

/* The SYMBOL function */

say symbol('HORSE') /* output:

say symbol (• COW) /* output:

say symboK'Z.DOG1) /* output:

say symbol('No-no•) /* output:

horse = 'COW

cow = 12

z.dog = 'Good old rover1

LIT

LIT

LIT

BAD

*/

*/

*/

*/

say symbol('HORSE1) /

say symbol('horse') /

say symbol('HORSE.•)

say symbol ('COW)

say symbol('Z.DOG1)

say symbol('Z.')

output: VAR */

output:

/* output:

/* output:

/* output:

/* output:

VAR

LIT

VAR

*/

7

7

VAR */

LIT */

say symbol(horse) /*

say symbol(cow) f

say symbol(z.dog) /*

output: VAR */

output: LIT */

output: BAD */

See also:

SYMBOL takes a single string argument, and returns one of three

result strings:

'LIT' The given string is either a 'fixed' symbol (a literal number)

or a valid but unused variable name.

'VAR' The string is a variable name to which a value has been

assigned.

'BAD' The string is neither a literal number nor a valid variable

name.

The symbol 'No-no' in the example script could not be a

variable name because the hyphen is not allowed in

identifiers. The compound variable Z.DOG, has the value

'Good old rover'; that cannot be a variable name because of

the embedded spaces.

Notice from the example script that an initialized compound variable

will rank as 'VAR' even though the corresponding stem is a 'LIT'. The

reverse is not true, since if the stem has been initialized, all

compounds from that stem are initialized by inheritance.

value

381

14. Reference

Name: THEN

Type: instruction

Format: THEN [;] instruction

Description: execute dependent instruction if preceding

Discussion:

See also:

THEN is valid in two contexts only:

IF <expression> THEN

and

WHEN <expression> THEN

and the latter can itself only occur within a SELECT instruction. In
either case, the instruction dependent on THEN can be either a simple
instruction consisting of a single line of code, or a compound
instruction such as an IF-THEN-ELSE, a SELECT-WHEN-
OTHERWISE, or a DO-END block or loop.

if, else, select, when, otherwise, do, end

Name: TIME

Type: built-in function

Format: t = TTME([mode])

Description: find current or elapsed time

Dialog example: ->t ime ()
15:16:08

->timeCn')

15:16:08

->time('c')

3:16PM

->timeCh')

15

->time('m()

916

->timeCs')

54968

->timeCe')

0.00

->time('e') /* Almost a minute having passed. */
56.46

->timeCr') timeCe1)

/* About half a minute later... */
87.36 0.00

382

Instruction and Function Reference

Discussion: ARexx's TIME function deals in two kinds of time: the time of day,
and elapsed time. The two mode arguments 'e' and Y concern elapsed

time; the others concern the time of day.

The details of the modes, which may be abbreviated to a single letter as

usual, are:

Mode Time information returned...

Civil The time in the form himmAM or h:mmPM. The

hour part of the time is a number between 1 and 12,

and is not padded with a leading zero.

Elapsed The elapsed time in the form sxc, where s is an

unformatted number giving elapsed seconds, and cc

is hundredths of seconds in two digits. The elapsed

time clock does not start running until the first time

either this mode or the Y mode is used within a

script. On that initial call, it returns '0.00'. The clock

runs continuously thereafter, and may be read with

further 'e' calls, or read and simultaneously reset to

zero with the Y mode.

Hours The number of completed hours since midnight of

the current day as an unformatted numeric string

from 0 through 23.

Minutes The number of completed minutes since midnight

of the current day as an unformatted numeric string

from 0 through 1439.

Normal The current time in 24-hour hh:mm:ss format. All

three fields will always contain 2 digits, padded with

a leading zero if necessary. This is the default format

(see the first example).

Reset The elapsed time in form sxc (see 'Elapsed' mode

above). The elapsed time clock is simultaneously

reset to '0.00'.

Seconds The number of completed seconds since midnight of

the current day as an unformatted numeric string

from 0 through 85399.

The TIME function has, along with DATE, the special property that

multiple calls within a single instruction will be mutually consistent:

neither the calendar nor the clock will (be observed to) advance

between calls.

See also: date

383

14. Reference

Name:

Type:

Format:

Description:

TRACE

instruction

TRACE mode

TRACE [VALUE] expr

TRACE num

set tracing mode

Discussion: The TRACE facility is the most powerful debugging tool available to
the ARexx programmer. It can be accessed in 3 different ways:

1) the TRACE function (covered next in this Reference Section)
2) the TS and TE support programs (covered in an appendix)
3) the TRACE instruction

Tracing means the display of information about the state of a running

program, such as the number of the line currently being executed, the

values of variables and expressions, and the results returned by
external commands. There are three options for the display of trace
information:

1) the standard output (intermixed with other script output)
2) the file identified as 'STDERR' in the script, if any

3) the 'global tracing console' (see the TCO and TCC support
programs)

Sometimes it is sufficient simply to passively view a tracing display as

a script executes. That is one of the two tracing styles supported by

ARexx. The other, more painstaking and more powerful, is

'interactive tracing', in which script execution may be suspended after

(almost) every instruction so that the programmer can not only study
the trace output at leisure, but also execute ARexx instructions entered
from the keyboard. This makes it possible to do things like examine

and even modify variables being used in the script, or to switch trace
options on the fly.

It probably doesn't occur to most ARexx programmers that their

programs are traced by default. But consider this Shell session:

Shell> rx "options failat 5; zot; say 'Okay!1

1 *-* zot;

+++ Command returned 5

Okay!

and now this one:

384

Shell> rx

Okay!

Instruction and Function Reference

•trace 'Off; options failat 5; zot; say 'Okay!1

If you didn't initially recognize the two extra lines in the first session

as trace output, that's understandable: an ARexx programmer sees

lines like that so often that they seem to be coming from the language

core, but really they do not. It is simply that the 'Normal' trace option

is set by default, showing the line number and return code for

commands whose return codes exceed the failure threshold.

From the initial setting of 'Normal', the trace mode may be set to any

of the following (as usual, only the first letter, in upper or lower case,

is needed to select a particular mode):

Mode Meaning

All List all clauses as they execute. Often 'clause' is

synonymous with 'line', but not always. For

instance, the line:

if a=3 then say "Hello"

contains two clauses that will appear separately in

the trace output:

1) if a=3 then

2) say "Hello"

Background This mode, designed for fully tested scripts (or

portions of scripts), is the same as 'Off mode, except

that it cannot be overridden by the TS support

program—which puts every ARexx script into

interactive trace mode.

Commands Any clause that sends a command to either the

primary or alternate host is displayed, as is the

command actually sent, and the return code, if it is

non-zero.

Errors Any clause that sends a command to either the

primary or alternate host, and the corresponding

return code, are displayed if the code is non-zero.

Intermediates

This is the most detailed tracing mode. Every clause

is traced, and the intermediate results of expression

evaluation—variable values, function results and so

on—are also displayed. This mode can generate a lot

of output, so it's best used only over short stretches

385

14. Reference

Labels

Normal

of code where you really have to know what's going
on.

Every time control reaches a label clause, the clause

is displayed, regardless of whether the label was

arrived at by a jump (arising from one of the forms

of the SIGNAL instruction) or in due sequence.

This is the default trace mode, discussed above. It is

identical to the 'Errors' mode, except that the error

must be not just non-zero but equal or exceed the

current FAILAT level as inherited from the invoker

of the script or set in the script with OPTIONS
FAILAT.

In this mode, no tracing takes place. Unlike

'Background' mode, however, 'Off mode can be

overridden by the TS support program.

The result of every expression evaluation is
displayed.

This mode is the same as 'All', but has the

additional property that the instructions in the script

are not actually executed. The intention is that

newly-written scripts—or parts of scripts—can be

tested in safety until it is determined that they are

syntactically correct, and that the flow of control

meets the programmer's design.

Trace options may be set anywhere in a script, with lines like:

Off

Results

Scan

trace r /* trace results */■

The argument is ordinarily taken as a literal value, whether or not it
is enclosed in quotes: the existence of a variable named V is irrelevant
to the above instruction. Use the VALUE sub-keyword if want the
argument evaluated before being given to TRACE:

tracepref = 'Labels1

trace value tracepref

Two special characters may be used in combination with the mode
argument to TRACE, and/or each other, or alone. They are the

question mark, which turns interactive tracing on or off, and the

exclamation mark, which toggles a feature known as 'command
inhibition'.

386

Instruction and Function Reference

Interactive The first time the question mark is used, interactive trace mode is

tracing turned on:

trace ?n /* Normal mode, interactive */

The next time it is used, interactive mode is turned off again (though

for reasons that will shortly be explained, this time either TRACE

must be entered interactively or the TRACE function must be used

instead of the instruction).

Interactive mode gives you a chance to reply from the keyboard to

(almost) every report from the trace facility. If you are in 'Results'

mode, for instance, you will get trace output every time an expression

is evaluated (or is obtained from PARSE, ARG and PULL), which is

pretty often. And on each occasion, the execution of the script will be

paused after the output and you will be prompted for input with '>+>'.

When you see that prompt, you have 3 ways of responding:

1) press Return; the script will continue executing until the next

pause point is reached.

2) press the '=' key and press Return; the clause that has just been

traced will be executed again.

3) enter a line of ARexx instructions, and press Return; the line will

be treated almost exactly as though it were being executed by

INTERPRET at that point in the script. There are three

differences:

* A TRACE instruction encountered in the script during tracing

will be ignored (the TRACE function works as usual); but TRACE

will be respected if issued from the keyboard.

* Errors in lines entered interactively don't cause the script to fail,

as of course they do in the script itself.

* If command inhibition mode is on (see below), commands

given interactively are not inhibited.

There are a few instructions at which a trace will never pause,

regardless of the mode. They are: CALL, DO, ELSE, IF, OTHERWISE

and THEN.

Command The first time the exclamation mark is used in a TRACE instruction

inhibition (or function call), command inhibition mode is turned on:

trace !c /* command mode, inhibition on */

The next time it is used, the mode is turned off. The effect of

command inhibition is to suppress the execution of external

commands. The expression that would be sent out as a command is

evaluated as usual, but is not issued to the external host. A return

387

14. Reference

Numeric

TRACE

arguments

Trace output

code of zero is assumed. Using command inhibition in combination

with the 'Command' trace mode, as in the sample line above, lets the

programmer see exactly what commands the script would generate if

it were given the opportunity. With potentially destructive

commands (such as the AmigaDOS Format and Delete commands),

checking a script in this mode is a wise precaution.

Besides the variations already discussed, TRACE accepts both positive

and negative numeric arguments, both of which apply to interactive

tracing only. A positive number specifies the number of pauses in the

interactive trace to skip. If, during an interactive trace, you enter:

>+> trace 10

the trace will continue as before, but will not pause again until the
10th opportunity.

A negative number as the argument to TRACE is taken as a

'suppression counf. The effect is to turn off tracing for the given

number of clauses (ignoring the minus sign). Thus:

trace -20

suspends the trace until the 20th clause from the present one.

The trace output reflects the logic of the script by applying extra levels
of indentation within control structures and internal functions. The
trace output for a clause first shows the line number and the clause

being traced. The symbol '*-*' identifies it as a traced script line:

5 *-* say center('HAPPY1,57);

Depending on what trace mode is selected, a variety of other
information may then be displayed. Each line of output is preceded by
a special code corresponding to the type of information given on that
line. The possible symbols are:

Code Meaning

+++ Command or syntax error (you'll see this a lot)

>» Expression or parse result

>.> Value assigned to placeholder in parsing

The codes below are encountered only in 'i' mode:

Expanded form of compound name

Result of function

Result of dyadic operation (i.e. with 2 operands)

Result of prefix operation (i.e. with 1 operand)

388

Instruction and Function Reference

See also:

>V> The contents of a variable

>L> A literal (constant) value

By default, trace output is sent to your standard output (the file whose

identifier is 'STDOUT'). This can be messy and confusing if the script

itself generates much output, so ARexx will alternatively use the file

identified as 'STDERR' for trace output, if one has been opened in the

script. For serious tracing, especially interactive tracing, this is often

the best way to go. Put a line like the following into the script to

prevent its output being intermixed with the trace.

call open('STDERR','con:0/0/640/100/Trace console')

Another alternative is to use the 'global tracing console', which can be

opened with the TCO support program, and closed with TCC. When

this console is open, trace output will be displayed in it from any

ARexx scripts that do not have their own 'STDERR'.

trace (function); TS, TE, TCO, TCC

(see Appendix 'Support Programs')

For a discussion of tracing techniques in debugging, refer to Chapter 11

(Tracing and Signals').

Name: TRACE

Type: built-in function

Format: t = TRACE([mode])

Description: get/set tracing mode

Script example:

Example

output:

/* A script with tracing output */

say "(Now turning on trace('i■).)"

oldtrace = trace('i') /* i = Intermediates */

say substr("blithe endearments",2*2,length("conclude")-one())

call trace(oldtrace)

say "(Tracing now turned off.)"

exit

one: procedure

return 1

(Now turning on trace('i').)

>F> "N"

>» "N"

6 *-* ;

7 *-* say substr("blithe endearments",2*2,length("conclude")

389

14. Reference

Discussion:

>L>

>L>

>L>

>O>

>»

>L>

>F>

14 ■*-*

14 *-*

15 *-*

"blithe endearments"

"2"

"2"

"4"

"4"

"conclude"

"8"

one:

procedure;

return 1;

>L> "1"

>F>

>O>

>»

>F>

the end

8 *-* ;

"1"

"7"

"7"

"the end"

9 *-* call trace(oldtrace);

>V>

(Tracing i

TRACE sets

"N"

low turned off.)

i a tracing mode, andg p

can be restored later on). Tracing under the new mode begins

immediately upon evaluation of the TRACE function call. The

TRACE function has the same capabilities as the TRACE instruction,

except in a few details:

1) The previous mode is available only through the function

2) A numeric trace suppression argument is valid only for the

instruction

3) Calls to the TRACE function in the script itself work during

interactive tracing; the TRACE instruction does not.

The modes may be specified by the first character of the keywords in

the following summary. The options are covered in detail under the

TRACE instruction.

Mode Trace action

All Traces all clauses

Background like trace off, but can't be changed from outside

Commands Traces commands and non-zero RC

Errors Traces commands that generate non-zero RC

Intermediates Traces intermediate expression results

Labels Traces label clauses (e.g. function calls)

Normal Trace RC greater than or equal to FAILAT

Off Turn tracing off

Results Trace expression results

Scan Trace all clauses, but don't execute them

390

Instruction and Function Reference

See also:

Question marks preceding a trace option toggle interactive tracing;

exclamation marks toggle command inhibition.

trace (instruction)

Name: TRANSLATE

Type: built-in function

Format: s = TRANSLATE(str)

s = TRANSLATE(str/[output],[input],[pad])

Description: translate str using input and output character tables

Dialog

examples:

Discussion:

See also:

->translate('unicef')

UNICEF

->translate(■SUBTLETY',xrange('a',■z•),xrange(•A1,■Z■))
subtlety

->translate('uniformity1,,xrange(),'*')

->translate('plaintext1,

reverse (xrange (' a ■, • z')), xrange ('a'/z'))

kozrmgvcg

TRANSLATE remaps the input string (the first argument) by looking

up each of its characters in an 'input table' and replacing it with the

corresponding character from an 'output table'. If the output table is

shorter than the input table, it is padded on the right with spaces (the
default) or with the pad character (see third example).

If only the first argument is given, the string is translated using

default tables that simply map all alphabetic characters to upper case

and leave other characters unchanged. If more than one argument is
given, the default tables are not used.

A null input table is allowed, as in:

->translate('hello1,'abc1,••)

hello

but will have no effect. A null output table is also allowed, and will

convert all characters of the input string that also occur in the input

table to the pad character.

compress, space, strip, trim, xrange

391

14. Reference

Name:

Type:

Format:

Description:

TRIM

built-in function

s = TRIM(str)

Remove trailing blanks from string

Dialog example:

Discussion:

See also:

->• ['trimC Trim it!

[Trim it!]

■>'].

TRIM is the tied first-place winner (along with LENGTH, REVERSE

and UPPER) for easiest to grasp and use ARexx string function. Use it

instead of STRIP for a slight gain in efficiency and readability.

compress, space, strip, translate

Name:

Type:

Format:

Description:

TRUNC

built-in function

n = TRUNC(number,[places])

truncate number to places decimal places

Dialog example:

Discussion:

->trunc(3.14159265359)

3

->trunc(3.14159,3)

3.141

->trunc(3.14159+.5e-3,3)

3.142

->trunc(3.14159+.5e-4,4)

3.1416

->trunc(3.14159,7)

3.1415900

->trunc(3.14159+.5e-7,7)

3.1415900

TRUNC removes surplus digits or pads with zeros as needed to give

its first numeric argument the number of decimal places specified in

the second argument. The places argument defaults to 0, which has

the effect of removing the fractional part of the number altogether. If

given, the second argument must be a non-negative integer.

Since TRUNC truncates without rounding, it may be desirable to add

.5 with the appropriate exponent to the number before calling the

function, as in the second, third and fifth examples. This will achieve
proper rounding.

392

Instruction and Function Reference

If your script is making many calls to TRUNC, you should consider

using the NUMERIC DIGITS instruction instead.

Name:

Type:

Format:

Description:

TYPEPKT

support function

and - TYPEPKT(pkt)

count = TYPEPKKpkt/a')

bool - TYPEPKT(pkt,mode)

extract information from a message packet

Code example: /* This example is meant to be inserted into the
simple command host given in the entry for GETARG,

though you may prefer to do that as a thought

experiment only. If you want to give it a try, put

the lines that follow this comment immediately

after these 2 lines from the GETARG example:

if pkt ~= null() then do

cmd = getarg(pkt)

Now when you issue commands to the host, it will

report on the contents of the packets received.

Life is pretty dull for a command host, though, and

the reports will all be the same. To spice up its

life and yours, try adding it as a function host

instead:

->addlib('SIMPLE_HOST■,0)

1

Now make some function calls with bogus names, and

dummy arguments, and let TYPEPKT show you some more

details about how message packets work. Try lines

like these:

->bogus(l,2,3)

->dummy(10,ll,12,,14)

->weird(•Hippopotamus')

...and see what you get. When you're done, remove the

'function host' with:

->remlib('SIMPLE_HOST')

*/

if typepkt(pkt,•f') then

pt = 'Function*

else if typepkt(pkt,'c') then

pt = 'Command'

else

pt = 'Unknown'

say "Packet command field contains: $"c2x(typepkt(pkt))

say "Number of arguments :" typepkt(pkt,'a')

say "Method of invocation :" pt

393

14. Reference

Discussion: An ARexx message packet contains two areas of particular interest to

any program that sets up shop as a command or function host.

One area is the table of arguments within the packet. From 0 to 15

arguments may be present. A packet sent through the command

interface, as with:

address simple_host "evaluate pi"

has zero arguments: the entire string is taken as the command, and

the argument slots 1 to 15 are left empty.

A packet sent through the function interface, as with:

say CompareAndContrast('Charles Dickens','Stephen King')

may have as many comma-separated arguments as are provided up to

the maximum of 15. As it happens, ARexx scripts cannot be operated

as well-behaved function hosts without resort to trickery, so the

function interface is—from that point of view—merely an interesting

irrelevancy.

The other area of a packet that a host must consider is the 'command'

field, which is organized as a 4-byte string in which each byte has an

individual function. Counting the leftmost byte as number 3, and the

rightmost as number 0, here is the meaning of each byte in the
command:

Byte Meaning

3 Specifies the type of packet: 1 for a command, 2 for a function.

Other values are not valid in this context

2 Modifier flags, including the flag specifying that a the originator

of the message has requested a result (perhaps by using

OPTIONS RESULTS). Hosts written in ARexx reply to their

messages using the REPLY function however, which

automatically handles any requirements arising from these flag

settings.

1 This byte is presently unused.

0 This byte contains the number of arguments in the packet.

The command field from a message packet received by a command
host might look like this:

01020000

394

Instruction and Function Reference

See also:

meaning:

01 A command packet

02 Result requested

00 (Unused)

00 No arguments

The purpose of TYPEPKT is to extract all this information in a simple

way. The first argument is always the address of the packet in 4-byte

form, as returned by GETPKT. If no second argument is given, the

returned value is the contents of the command field as a 4-byte string:

just what we've been looking at.

If a second argument is provided, it must be one of three mode

specifiers. As usual, only the first letter of the mode is significant.

Here's what they mean:

Mode Meaning

Arguments Return the number of arguments in the packet

Command Return 1 if the packet was sent as a command, else 0

Function Return 1 if the packet was sent as a function, else 0

getarg, getpkt, waitpkt, reply

Name: UPPER

Type: instruction

Format: UPPER var [var ...]

Description: convert contents of variables to upper case

Discussion:

See also:

Although upper case text is not well-suited for reading, it simplifies

pattern-matching problems considerably. Any 5-letter string in mixed

case, for example, has 32 possible variations; these condense to a single

version when the string is converted to upper case. Before checking

any type of input keyword or password, therefore, or before building a

compound variable name using a string of unknown case, it is normal

to convert it to upper case. There are a number of ways to do this in

ARexx, but the UPPER instruction is very convenient when you

simply want to convert variables 'in place':

upper firstname lastname occupation

upper (function)

395

24. Reference

Name: UPPER

Type: built-in function

Format: s = UPPER(str)

Description: convert string to upper case

Dialog

examples:

Discussion:

->upper("Open this door!")

OPEN THIS DOOR!

->upper("C'est ca, cherie!")

C'EST Qk, CHfeRIE!"

The argument string is converted to upper case. As the second

example indicates, characters from non-English alphabets are correctly

converted.

Name:

Type:

Format:

Description:

VALUE

built-in function

val = VALUE(str)

treating str as an ARexx symbol, return its value

Script example:

Example

output-

Discussion:

/* VALUE */

groucho = 'chico1

chico = 'harpo1

harpo = 'groucho1

say value('groucho1)

say value(groucho)

say value(value('groucho'))

say value(value(groucho))

say value(value(value(reverse('ohcuorg1))))

say value(value(value(groucho)))

chico

harpo

harpo

groucho

groucho

chico

VALUE evaluates its single argument, then treats the resulting string

as an ARexx symbol. Since in ARexx the term 'symbol' is applied to

numeric constants as well as to variable names, this is a valid (though

trivial) use of VALUE:

->value(12+34.5)

46.5

396

Instruction and Function Reference

Usually, though, the argument string evaluates to a variable name,

and it is the value of that variable that is returned. In the first call to

VALUE in the example script, for instance, the argument string

evaluates to 'groucho'. If there were no variable of that name, the

result of treating it as a symbol would be the string 'GROUCHO', but

there is such a variable, so VALUE returns its contents, 'chico'.

In the second call, evaluating the argument string means finding the

contents of the 'groucho' variable, which is 'chico', so it is just as

though we had said:

say value(•chico')

By analogy with the first call, we can see why this results in the value

l\arpo'.

In the third call, the outer VALUE has as its argument the expression:

value('groucho■)

which we have seen evaluates to 'chico'. Therefore it is again as
though we had typed:

say value('chico')

and the result is again 'harpo'.

From this point you should be able to work through the rest of the

example script and account for the output it produces.

For a less frivolous use of VALUE, suppose you were writing a script

whose behavior is controlled by the user's mode selection, the mode

being represented by a single letter, say 'D', H' or T', stored in a string

called 'mode'. Each mode uses a different set of parallel compound

variables, whose stems are called, let us say, T^INFO', HJNFO' and

TJNFO'. One way to handle this would be with SELECT instructions,
or IF-ELSE chains, thus:

if mode='Dl then

info = D_INF0.1.WEST

else if mode='H' then

info = H_INF0.1.WEST

else if mode='T' then

info = T_INF0.1.WEST

With VALUE, the same thing could be done more concisely, and

independently of the number of modes that need to be supported:

info = value(mode H___INF0.1. WEST")

397

14. Reference

See also: symbol

Name: VERIFY

Type: built-in function

Format: n = VERIFY(str,list,[match],[start])

Description: determine where characters in list occur in str

Dialog

examples:

Discussion:

->verify('Mississippi1, 'Mis')

9

->verify('Mississippi', 'p')

1

->verify('Mississippi','Mis', 'm1)

1

->verify('Mississippi','p', 'm')

9

->verify('Two try tic-tac-toe1,' -','m')

4

->verify('Try tic-tac-toe',' -','m',5)

8

VERIFY's first argument is a string whose characters are checked to see

whether any occur in list. If the optional match argument is 'm',

VERIFY returns the position in str of the first (leftmost) character that

occurs also occurs in list. If the match argument is missing, or is not

'm', VERIFY returns the position in str of the first character that does

not occur in list.

The optional start argument specifies a start position in the str,

characters to the left of the start position being ignored. The default
start is 1, the first character in str.

Name: WAITPKT

Type: support function

Format: bool = WAITPKT(portname)

Description: wait for a message packet to arrive at a port

Discussion: When a script has opened a message port (with OPENPORT) and is

waiting for message packets to arrive, it should call WAITPKT with

the portname as its sole argument. The script's task will then go to

sleep until a message arrives, leaving other tasks in the system to run

without interference.

WAITPKT's boolean return can be checked to ensure that a message

really has arrived, but it is probably better to make that determination

398

Instruction and Function Reference

See also:

by looking at the message itself: by checking that the packet returned

by GETPKT is non-null.

Once the message has been examined, acted upon, and replied, the

script will normally loop back to the WATTPKT.

closeport, openport, getarg, getpkt, waitpkt, reply

For an example of a script that uses WAITPKT, see the tiny command

host script listed under GETARG.

Name:

Type:

Format:

Description:

WHEN

instruction

WHEN test [;] THEN Dl instruction

(NB: 'instruction' here means either a single instruction

ending at the end of a line, or a compound instruction such

as a DO-END block or another IF instruction.)

introduce an alternative for SELECT

Discussion:

See also:

The role of WHEN in a SELECT instruction is essentially identical to

that of ELSE IF in an IF-THEN-ELSE. Apart from the keyword itself,

the syntax of WHEN-THEN is the same as that of IF-THEN. See the

entry for SELECT in this Reference Section for further information.

if, then, else, otherwise

Name: WORD

Type: built-in function

Format: s = WORD(str,n)

Description: extract a given word from sir

Dialog

examples:

->'['word("January February March April",3)•]

[March]

->'['word!'January February March April",5)']

Discussion: Word n is extracted from str. The returned string does not contain any

blanks. If the specified word does not exist, as in the second example,

the empty string is returned.

See also: delword, find, subword, wordindex, wordlength, words

399

14. Reference

Name: WORDINDEX

Type: built-in function

Format: n = WORDINDEX(str,n)

Description: determine character position of start of word n

Dialog

examples:

Discussion:

See also:

->wordindex (" January February March April11,1)

2

->wordindex(" January February March April",3)

19

->wordindex(" January February March April",5)

0

WORDINDEX returns the character position of a given word within a

string. The string is the first argument, and the word of interest is

given n, an integer greater than zero. The returned character position

counts from 1 as the leftmost character of str. If the word does not

exist, as in the third example, the empty string is returned.

delword, find, subword, word, wordlength, words

Name: WORDLENGTH

Type: built-in function

Format: n = WORDLENGTH(str,n)

Description: determine length of one word in str

Dialog

examples:

->wordlength("irremediably indecipherable incunabula",2)

14

->wordlength("none too many", 5)

Discussion:

See also:

WORDLENGTH returns the length in characters of the specified word

in the string argument, counting the leftmost word as 1. As usual in

ARexx word functions, a word is defined as any sequence of non-space

characters bounded by space characters or by the ends of the string.

WORDLENGTH returns 0 if the string has fewer than n words*

delword, find, subword, word, wordindex, words

400

Instruction and Function Reference

Name: WORDS

Type: built-in function

Format: n = WORDS(str)

Description: return number of words in str

Dialog

examples:

->words("one two three")

3

->words(" . ■)

Discussion: WORDS returns the number of words in str. As usual in ARexx word

functions, a word is defined as any sequence of non-space characters

bounded by space characters or by the ends of the string.

See also: word, find, subword, word, wordindex, wordlength

Name: WRITECH

Type: built-in function

Format: n = WRITECHtfile, str)

Description: write str to file, return count written

Dialog

examples:

Discussion:

->writech('STDOUT','')

0

->writech('STDOUT',■Count=■)

Count=6

->writech('STDOUT1,'012345678')

0123456789

WRITECH writes a str to the open file. The number of characters

actually written is returned as the result. If this is less than the length

of the str, a write error of some kind has occurred.

Unlike WRITELN, WRITECH does not add a linefeed character to the

string, which is why the example strings written to the standard

output file 'STDOUT'—generally a console window—are followed

immediately on the same line by the function result (0, 6, 9).

An important use of WRITECH is writing 'binary'—that is, non

textual—information to a file. Here is a function that sets the given

pen color (use 1, 2 or 3) for subsequent console output. Since the only

purpose of the write in this case is to give a special instruction to the

console, the addition of a linefeed would certainly be unwanted:

401

14. Reference

See also:

/* ConColor - set console color to 1, 2 or 3

Sends ESC-[3?m to console, where ? is 1, 2 or 3

Usage: call ConColor(2)

*/

ConColor: procedure

if arg(l)>=l & arg(l)<=3 then

call writechCSTDOUT1, 'lb'x' [3'arg(l) 'm')

return

readch, readln, writeln, eof

Chapter 9 (File Input and Output) goes into some detail on all the

ARexx file functions, and should be read for an introduction to and

overview of file handling in ARexx.

Name:

Type:

Format:

Description:

WRITELN

built-in function

n = WRITELNtfile, str)

write str plus linefeed to file, return count written

Script example: /* WRITELN demo - split word into characters */
wd = 'bandolier'

do i=l to length(wd)

call writeln('STDOUT',copies(' ',i-1)substr(wd, i, 1))

end

Discussion: WRITELN writes str, with an appended linefeed, to the open file. The

number of characters actually written, including the linefeed, is

returned as the result. If this is less than the length of the string plus 1,

a write error of some kind has occurred.

See also: readch, writech, readln, eof

Chapter 9 (File Input and Output) goes into some detail on all the

ARexx file functions, and should be read for an introduction to and

overview of file handling in ARexx.

Name:

Type:

Format:

Description:

X2C

built-in function

s = X2C(hex)

return character equivalent of hex string

402

Instruction and Function Reference

Dialog

examples:

Discussion:

See also:

->x2c(41 61 42 62 43 63)

AaBbCc

->x2c(333333)

333

->x2c(random(61,69)random(61,69))

eh

As explained in Chapter 5—Other String Forms, character strings can

equivalently be represented as a string of hexadecimal digits (0-9, and

A-F in either upper or lower case). ARexx lets you use such

hexadecimal strings directly, for example:

->l5a6f74'x

Zot

Note that the hexadecimal string is completely different from this
string of mixed numeric and alphabetic characters:

->'5a6f74'

5a6f74

Appending an 'X' to a string to make it hexadecimal works only for

'literal' (quoted) strings. The X2C function lets you build the

hexadecimal string as an expression, rather than having to give it
literally. Otherwise, the conversion is exactly the same, and the same

rules apply as to the literal strings: only the normal hexadecimal digits

are allowed, with optional blanks at byte boundaries (every 2 digits,
counting from the right).

c2x

Name: X2D

Type: built-in function

Format: n = X2D(hex,[n])

Description: convert hex string to decimal

Dialog

examples:

->x2d(234)

564

->x2d('ffff')

65535

->x2d(fffffffc)

-4

->x2d(976f45,2)

69

403

14. Reference

Discussion:

See also:

The hexadecimal number is converted to a number. If given, n

specifies the number of digits of hex to be used in the conversion. In

the fourth example, for instance, only the two rightmost characters, 45,

from hex are used in arriving at the decimal equivalent, 69.

d2x

Name: XRANGE

Type: built-in function

Format: s = XRANGE([cl],[c2l)

Description: build character string with consecutive ASCII values

Dialog

examples:

Discussion:

See also:

->length(xrange())

256

->xrange('a■,' e')

abcde

->xrange('ant■,■elephant')

abcde

->xrange('0','H')

0123456789:;<=>?@ABCDEFGH

All characters, including those—the control characters—that have no

printable form, correspond to values between 0 and 255 inclusive. The

ordering of the characters between these limits may be found from the

ASCII table at the back of this book. XRANGE returns a string

consisting of all the characters between those given as its arguments,

inclusive. The default value of cl is Wx—zero. This is not the same

as the character zero, whose ASCII code is '30'x. The default value of

c2 is 'ffx—255, the highest value that will fit in a 1-byte character cell.

If the arguments are given in high-low rather than low-high order,

the range 'wraps around' so that the values at the end of the range are

smaller than those at the beginning.

One use of XRANGE is preparing translation tables for TRANSLATE:

/* Translate upper case to lower case */

->translate('ALL UPPER\xrange(•a\ ■z1),xrange('A1,'Z'))

all upper

translate

404

Using a Text Editor

Appendix A

Using a Text Editor

ARexx scripts and macros are usually created with the help of a text

editor, a type of program that in some ways resembles a word

processor but is specialized for entering certain kinds of text, including
computer programs.

Perhaps the biggest difference between a text editor and a word

processor is that the former considers a document to be a collection of

lines, while the latter considers it to be a collection of paragraphs.

Another difference is in the way the text is stored in files on disk: a

text editor stores the document as you see it on the screen, as a

sequence of characters separated by spaces and linefeeds; whereas most

word processors also save non-textual data such as formatting

instructions and printer set-up information along with the actual text

Amiga text editors

If you are familiar with AmigaDos, you may know that two text

editors - called ed and memacs - are supplied with the system software.

(There is actually a third, edit, but it is not suitable for the task at

hand.) Either of these programs is adequate for preparing ARexx

scripts. Ed is easier to learn than memacs, but less powerful: you may

want to try both before deciding which is for you. The full instructions

for these programs are contained in the system documentation that

came with your Amiga. Ed has been substantially improved for

AmigaDOS 2.0, with the addition of menus, an ARexx interface, and

an enhanced command set.

If you write a lot of ARexx scripts (or other programs), you may find it

worthwhile to invest in one of the several outstanding commercial

text editors available for the Amiga, such as Uedit, TurboText and

CygnusEd.

All text editors have certain essential features in common. Whichever

one you choose, learn at the outset from the supplied documentation

how to perform these fundamental operations:

405

Appendix A

File operations

• load a document/script

• create a new document/script

• save a document/script

• save under a new name

Cursor movements

• cursor left and right

• move to start or end line

• move up or down a 'page'

• move to top or bottom of document

Basic editing

enter text

indent text (with TAB key)

mark a range of text

copy or cut a marked range

cut a line

paste copied or cut text

search for given text

406

ARexx Support Software

Appendix B

ARexx Support Software

The ARexx package includes a number of files, some of which - like

rexxmast and rexxsyslib.library - are absolutely needed if you are going

to use ARexx at all. Chapter 2 of this book describes the installation of

these necessary files.

In this appendix we describe the ARexx 'supporf software. Most of

these are programs that are used as CLI commands, and the last -

rexxsupport.library - is an ARexx function library.

You don't need all of these files to use ARexx, but we recommend you

install them anyway: even the less-used ones will come in handy once

in a while, and some - like the four programs relating to tracing - are

practically indispensable during script development.

RXC - Terminate ARexx

This program is the opposite of rexxmast: it removes ARexx from

your system until the next time rexxmast is run. RXC has no effect on

currently executing ARexx scripts, but once it has been issued new

scripts will not be able to launch. Then, when any presently executing

scripts have finished running, ARexx will close down completely. The

only reason for ever using RXC is to maximize your Amiga's free

memory in a low-memory situation: removing ARexx may gain you

something like 45,000 bytes. This is a modest amount considering all

that ARexx does, but may at times be more than you can afford to

spare.

HI - Halt ARexx scripts

Just as RXC negates rexxmast, so in a way does HI negate the RX

program used for launching scripts. Running HI sends a 'halt signal'

to all executing scripts. Unless a script has set a special trap for this

signal, it will immediately stop executing. Even scripts that do trap the

halt signal should generally respect the user's wishes and shut down

as soon as possible after doing any necessary clean-up in their trap

routine. The normal reason for calling HI is to halt a runaway script -

407

Appendix B

one that has got itself into an infinite loop through programming

error. Here is the simplest runaway script:

/* Runaway! */

do forever

end

Most infinite loops are a little harder to spot than this one, though, so

it's a good idea to keep the HI program handy.

TS - Start interactive tracing

The fact that you can shut down a runaway script with the HI program

may be very handy, but TS is even more powerful. When you run TS,

any currently executing ARexx script is immediately forced into

'interactive trace results' mode, as though the instruction:

trace ?r

had been executed in the script/The script will pause after the next

expression evaluation, and begin generating output. Now that you

have control over the script again, you can examine variables, step

through instructions one at a time, and execute instructions

interactively until you have determined what went wrong. You can

read about tracing in detail in Chapter 11 (Debugging, Tracing and

Error Trapping), and in the Reference Section entries for the TRACE

instruction and the TRACE built-in function.

Running TS affects not only presently-executing scripts, but also those

executed subsequently (so you can run it beforehand to start a script

tracing interactively from the outset, if you like). To cancel the global

'flag7 that forces this trace mode, you must run the TE program (see

below). You can, however, turn off interactive tracing during the trace,

and return to normal execution by entering the following instruction

interactively:

trace ?n

TE - Stop interactive tracing

Running this program clears the 'global tracing flag' set by the TS

program, allowing current and future scripts to operate normally.

408

ARexx Support Software

TCO - Open global tracing console

As explained in the Reference Section entry for the TRACE

instruction (to which you can refer for fuller information), the ARexx

trace facility normally directs its output to, and looks for its input

from, the script's default console, but will use a file called 'STDERR'

for these purposes if the script has opened one.

When you run TCO, a special window called the 'global tracing

console' opens on the Workbench screen. While this window is open

(until you close it with the TCC program, in other words), all tracing

input/output for scripts that do not have a 'STDERR' file will be

conducted through it. The advantage of using the global tracing

console is that your script's ordinary I/O and tracing I/O do not get

intermixed.

TCC - Close global tracing console

This program closes the 'global tracing console' opened by TCO.

RXSET - Set value for an ARexx 'clip'

As explained under the Reference Section entries for the built-in

library functions GETCLIP and SETCLIP, ARexx maintains a global list

(that is, a list accessible to all scripts), called the 'clip lisf, of names and

associated values. The clip list is not a single-purpose resource, but a

general one: you can use it however you like, or not use it at all. A

typical use, though, is to set from the outside configuration options

and other data that may change from one run of a script to the next.

The script can use GETCLIP to read the current values, and modify its

behavior accordingly.

RXSET lets you set or modify the value associated with a name on the

clip list. For instance, having given this command from the CLI:

Shell> RXSET DATAFILE workraddresses.dat

you might then run an ARexx script which would open your data file

with:

call openCdf, getclip('DATAFILE1))

409

Appendix B

You can modify a name on the dip list simply by running RXSET with
a new value string:

Shell> RXSET DATAFILE ram:addr.dat

Finally, to remove an entry from the clip list, leave off the value
string altogether:

Shell> RXSET DATAFILE

WaitForPort - Wait/Check for message port

ARexx macros and AmigaDOS scripts can test for the existence of a

function or command host, or of ARexx itself, by running the

WaitForPort program and checking the return code. To interface with

ARexx, every host must open a 'public message port' with a

characteristic name to identify it as belonging to that host. This is the

name you use in the ADDRESS instruction to send commands to a

command host; it is the name by which a function host is known in

the Library List (look under RXLIB below for more on that). And
ARexx, of course, has its own message port named TXEXX'.

Let's say you want to write an ARexx script that will make use of an

application program like Softwood's Electric Thesaurus. A carefully-
written script would probably begin with a check to verify that ET is
actually running:

if ~show('p•,'EThes_l') then do

address command 'run ET'

end

The only difficulty now is that it is going to take a little while for ET to
load and put up its message port even if the script is correct in
assuming that the program is available. We could have the script wait

for some set amount of time - a second or two say - then check again,
and repeat that process until the port has appeared or we finally decide
it never will. Or we could ask the user to press Return or give some
similar indication after ET has loaded. Or we could run WaitForPort.

WaitForPort works in exactly the same way as the little polling loop
we contemplated writing, going to sleep for a short time then checking
for the requested port, repeatedly for up to 10 seconds. If it has not
found the port by then it returns a code of 5. If it finds the port within
the 10 second time-out period, however, it returns at once with a code
of 0.

410

ARexx Support Software

For an example of using WaitForPort, see the sample script for

running Electric Thesaurus in Chapter 13.

RXLIB - add a name to the Library List

The Library List is the list of 'function libraries' and 'function hosts'

currently available to ARexx in its efforts to locate functions that are

neither internal to a script nor contained in the built-in library. The

functions contained in a library (or host) are not accessible until its

special name is added to the list. One way to add an entry to this list is

to use the ADDLIB built-in function, to whose Reference Section entry

you should refer for a fuller explanation of the Library List

mechanism. The RXLIB program gives you an alternative which may

be preferable for libraries you use often.

For instance, if you always use 'rexxsupport.library' and

'rexxmathlib.library', you could ensure that they are always available

by adding these lines to your startup-sequence:

RXLIB rexxsupport.library 0 -30 0

RXLIB rexxmathlib.library 0 -30 0

The significance of the numeric arguments to these commands is also

explained in the Reference Section under ADDLIB.

Simply adding a name to the Library List does not ensure that a

particular library or host is actually available. To be located by ARexx,

libraries must be filed in your system 'libs:' directory, and function

hosts are normally embedded in executable programs that you must

run. If the library or host is not available when ARexx goes looking for

it, you will get the error message 'Host environment not found'.

You can get a list of the function libraries and function hosts presently

on the library list by issuing the RXLIB command with no arguments.

rexxsupport.library - support functions

The file rexxsupport.library is not an executable program like the ones

described above, but is a function library that provides additional

functions to the ARexx language. It must be placed in your system

libs:' directory.

Some of the more than 20 functions will be of value only to advanced

users, but a few - like SHOWDIR and STATEF - are so generally useful

that it is worth having this small library permanently available. Look

411

Appendix B

under RXLIB above for the appropriate line to add to your Startup-

Sequence to achieve this, along with the associated theory.

To find out more about the contents of the library, check out the

Reference Guide (at the start of the Reference Section) for functions

whose name is accompanied by the code '[S]'.

412

ASCII Chart

Appendix C

ASCII Chart

16Q

320

48Q

8oQ
96Q

112Q

0

0

NUL

Q

@

[i
s

i

i

i
•

i

A

Q

a

q

2

2

If

2

B

R

b

r

3

3

#

3

C

S

c

s

4

4

$

4

D

T

d

t

5

5

%

5

E

U

e

u

6

6

&

6

F

V

f

V

7

7

BEL

1

7

G

W

g

w

8

8

BS

(

8

H

X

h

X

9

9

TAB

)

9

I

Y

i

y

10

A

LF

*

•

•

J

Z

•

z

11

B

VT

ESC

+

•

f

K

[

k

{

12

C

FF

/

<

L

\

1

1

13

D

CR

—

=

M

]

m

}

14

E

SI

•

>

N

n

15

fcfl
SO

/

0

—

o

DEL

Special characters:

NUL Null character

BS Backspace

VT Vertical tab

CR Carriage return

BEL Bell

LF Line feed

FF Form feed

SI Shift in

SO Shift out (normal) ESC Escape

To determine the ASCII value, add the number in the left column to

that in the top row. Decimal values appear in normal text and

hexadecimal values appear in reverse text.

413

Appendix C

128|

1441

16ol
1761

1921

2081

2241

240H

0

D
D
\ol

1a
DOM

101]

'0 g

1

1

i

±

A

N

a

n

2

2

2

A

6

a

6

3

3

£

3

A

6

a

6

4

4

IND

n

•

A

6

a

6

5

5

NEL

¥

A

6

0

a

6

6

6

1

1

1

E

0

6

7

7

§

•

Q

X

g

8

8

• •

E

0

e

0

9

9

©

1

E

U

e

u

10

A

a

Q

E

U

e

u

11

B

CSI

«

»

E

U

e

u

12

c

—1

I

a

i

u

13

D

RI

V2

I

Y

i

y

14

E

®

\

I

J>

i

1=)

15

—

I

1

ii

1

y

Special characters:

IND Index (down line) RI Reverse index

NEL Next line CSI Control sequence introducer

To determine the ASCII value, add the number in the left column to
that in the top row. Decimal values appear in normal text and
hexadecimal values appear in reverse text.

Define particular characters in ARexx with d2c(n), where n is the
decimal sum, e.g. "A" = d2c(64+l).

414

Vendors and Products

Appendix D

Vendors and Products

This is a list of the suppliers of products mentioned in the book. It does not cover

all of the many producers of ARexx-supporting software.

ASDG Incorporated

925 Stewart St.

Madison, WI 53713

(608)273-6585

Art Department Professional

Gold Disk Inc.

P.O. Box 789, Streetsville

Mississauga, ON (Canada) L5M 2C2

(416) 602-4000

HyperBook, ShowMaker

Home Office Advantage

INOVAtronics, Inc.

8499 Greenville Avenue Suite 2098

Dallas, TX 75231

(214) 340-4991

CanDo, C.A.P.E 68k

New Horizons Software, Inc.

206 Wild Basin Road, Suite 109

Austin, TX 78746

(512) 328-6650

ProWrite 3.1

Geodesic Publications

P.O. Box 956068

Duluth, GA 30136

(404) 822-0566

IllumiLink

Gramma Software

17730-15th Ave. N.E., Suite 223

Seattle, WA 98155-3804

(206) 363-6417

FreD, Nag, Cal

Manx Software Systems

P.O. Box 55

Shrewsbury, NJ 07702

(201) 542-2121

Aztec C

NewTek Incorporated

115 W. Crane St.

Topeka, KS 66603

1-800-843-8934

Digi-Paint 3

415

Appendix D

Oxxi

P.O. Box 90309

Long Beach, CA 90809-0309

(213)427-1227

A-Talk III, TurboText

Progressive Peripherals and Software

464 Kalamath St.

Denver, CO 80204

(303)825-4144

Baud Bandit, Intro CAD Plus

Software Visions Inc.

P.O. Box 3319

Framingham, MA 01701

(508)875-1238

Microfiche Filer Plus

William S. Hawes

P.O. Box 308

Maynard, MA 01754

(617) 568-8695

ARexx

Precision Software

8404 Sterling Street

Irving, TX 75063

1-800-562-9909

Superplan,

SuperBase Professional 4

SAS Institute Inc.

SAS Campus Drive

Cary,NC 27513-2414

(919) 677-8000

SAS/C Lattice C Development
System

Softwood, Inc.

P.O. Box 50178

Phoenix, AZ 85076

(602)431-9151

Electric Thesaurus,

Proper Grammar

416

Index

Absolute markers 154

AND operator 82

Applications:

Using with ARexx 197-240

ARexx:

As a programming language 8-10

Defined 3-4

External software commands 12

History 4-6

Installation see Installation

Instructions and functions 11

Stand-alone scripts 12

Support for ARexx 42-44

Supported software 415

Uses 10-11

Using macros 12,40-41

Using with Amiga 6-8

Using with commercial software.. 12-13

Using within an application 31

Versions 19

ARexx commands 180-186

See also Built-in functions,

Instructions or Support functions

Command arguments 182-183

Defined 11

Error Return codes 184-185

Function hosts 188

Host commands 180-187

Results 184

Using scripts 184

Using variables 181

ARexx Libraries:

mathieeedoubbas.library 27

Optional libraries 27-28

rexxarplib 27

rexxmathlib 27

rexxsupport 26

rexxsyslib.library 26

ARexx programs:

see ARexx support software

ARexx support software:

HI program 407-408

Loadlib : 26

RexxMast 17,25,28-29

rexxsupportlibrary 411

RX program 25

RXC program 407

RXLIB program 411

RXSET program 409

TCC program 26

TCO program 409

TE program 26

TS program 408

WaitForPort program 410-411

ARexx system:

RexxMast 17,25,28-29

rexxsysliblibrary 17

RX program 17

Arrays 86-87

Using compound variables 88

Arithmetic operators 75-77

Exponentiation 76-77

Integer division 75

Modulo arithmetic 76

Prefix conversion 77

Prefix negation 77

Remainder 76

ASCII chart 413-414

Assign 24

Assignment clause 57-58

Boolean values 72-73

BSR home control system 41

Built-in functions:

See also Functions or Instructions

ABBREV 256-257

ABS 93,257

ADDLIB 258-259

ADDRESS 262

ARG 266-267

417

Built-in functions continued

B2C 267

BITAND 269

BITCHG 270

BITCLR 270

BITCOMP 271

BITOR 271-272

BITSET 272-273

BITTST 273-274

BITXOR 274-275

C2B 277

C2D ;.. 277-278

C2X 278

CENTER or CENTRE 280

CLOSE 135,280-281

COMPARE 282

COMPRESS 282-283

COPIES 283

D2C 283-284

D2X 284

DATATYPE 285-286

DATE 286-288

Defined 11

DELSTR 289

DELWORD 289-290

DIGITS 290

EOF 140,297

ERRORTEXT 297-298

EXISTS 298-299

EXPORT 300-301

FIND 301

FORM 303-304

FREESPACE 304-305

FUZZ 305-306

GETCLIP 307-308

GETSPACE 309

HASH 309-310

IMPORT 311-312

INDEX. 312

INSERT 313

LASTPOS 316-317

LEFT 319

LENGTH .93,319

LINES 320

Listed by functional group 245-255

Located by ARexx 97

MAX 322

MIN 322

OPEN 135,144,329-331

OVERLAY 336

POS 344

PRAGMA 344-348

RANDOM 353-354

RANDU 354

READCH 142,354-355

READLN 139-140,355-356

REMLIB 357

REVERSE 93,360

RIGHT 360-361

SEEK 143-144,361-362

SETCUP 364-365

SHOW 365-366

SIGN 93,370

SOURCELINE 375-376

SPACE 376

STORAGE 378-379

STRIP 95,379

SUBSTR 380

SUBWORD 380

TIME 382-383

TRACE 169,389-391

TRANSLATE 391

TRIM 392

TRUNC 392-393

UPPER 396

VALUE 396-398

VERIFY 398

WORD 399

WORDINDEX 400

WORDLENGTH 400

WORDS 401

WRITECH 138-139,401-402

WRITELN 136,402

X2C 402-403

X2D 403-404

XRANGE 404

Business/Financial programs 235-238

418

Clause 50

Command Hosts 35

Defined 11

Commands 33-43

Addressing the host 179

Using 179-189

Comparison operators

see Relational operators

Composite variable types 86

Compound statements 103-115

Defined 104

ELSE IF 105

IF THEN 104

Otherwise errors 106

SELECT WHEN 105

THEN DO 104

Compound variables 85-102

Creating records 89

Data structures 88

Elements 88

Initializing records 89-90

Stem portion 89

Stem symbols 88

Substituting node names 88

Using loops 113-115

Concatenation operators 72-74

Conditional debug instructions 163

Conditional instructions 107

Constants:

Context dependent constants 131

Simulating with functions 131-132

System dependent constants 130

Using variables 130

Database/Scheduling:

In ARexx 41

Using with ARexx 228-234

Debugging 159-163

Common errors 160

Conditional debug instructions 163

Function parameters 162

Invalid instructions 161

Logic errors 162

Preventive diagnostics 163

Program diagnostics 162

Syntactical 'fatal7 errors 161

Tracing, techniques 164

Unitialized variables 161

Disk files 133-146

See also Files

DO combinations 112

DO FOREVER 108

End-Of-File 140

Error trapping

Defined 171

Multiple conditions 173

Program generated traps 173-174

SIGNAL conditions 172-173,370-375

Special variables 173

Syntax error trapping 172

Trap types 373-375

Uses 174

Errors:

Common errors 160

Debugging common errors 160

Debugging invalid instructions 161

Debugging Unitialized variables 161

Failure levels 186

Function parameters 162

Logic errors 162

Syntactical 'fatal' errors 161

Unitialized variables 161

Exclusive OR (A) 82

EXPOSE subkeyword 127

Expressions. 53-65

Defined 53

Letter case 51

Numeric conversions 56

Typelessness 55

Using SAY 50-57

Values 65

External functions 96-97

Search order 98

External programs97

File input 139-146

File output. 133-137

419

Files 133-146

Closing 134

Creating 134

End-Of-File 140

I/O errors 137

Input 139-146

Old vs new files 134

Open files 134

Open files, identifying 134

Opening 134

Output 136-146

Positioning 143-144

Read errors 142

Reading from a file 139-142

Storage 133-134

Using CLOSE 135

Using EOF 140

Using OPEN 135,144-145

Using READCH 142

Using READLN 139-141

Using SEEK 143-144

Using WRITECH 138-139

Using WRITELN 136-138

Writing to a file 136-138,145

Function arguments 94,119-126

Mode arguments .94

Optional arguments 94

Pad argument 94

Reading arguments 120-121

Function hosts 96,188

Function library 96-101

Adding using ADDLIB 100

Adding using rxlib 100

Loading 99

Using SHOWDIR 100-101

Functions 92-102,117-126

See also Built-in functions or

Instructions

Built-in functions 93

Calling 92-93

Defined 92

Defining 117

Examples 93-94

External functions 97

Function arguments 94,119-126

Function hosts 96

Function libraries 96

Internal functions 97

Located by ARexx 97

Locating 101

Modularity 125

Name collisions 125

Nesting calls 124-125

Nesting function calls 124-125

Replacing built-in functions 138

Side effects 118-119

Sources 96-97

Using ARG 121

Using CALL 119

Using PARSE ARG 120-121

Using STRIP function 95

Variable margins 123-124

Global tracing console 166-167

Graphics, Using with ARexx 206-214

Hard disk, Startup-Sequence 25

HI program 407-408

Host application:

Commanding 36

Controlling 35-39

ARexxPaint 36-39

Scripts 37-38

Host commands 179-188

Command arguments 182-183

Multiple results 187

RESULT variable 186

Using scripts as commands 184

Using variables as commands 181

Host address 179

Host application 35-39

Host, Using ADDRESS 180

I/O errors 137

IF/THEN/ELSE 105

Inclusive OR (I) 82

INDEX function 148

420

Input: Reading from a file 139-146

See also Files

End-of-file 140-141

Interactive input and output 145-146

Parsing 139

Using EOF 140-141

Using READCH 142

Using READLN 139-140

Installation 18

In AmigaDOS 2.0 18

Install-ARexx script 20-21

Permanent installation 22

REXX assign 24

RexxMast in Startup-Sequence 23-24

Starting without installation 21

Using AmigaDOS Shell 19

Workbench 19-20

Instructions. 50-51

See also Built-in functions or

Functions

ADDRESS 34-35,180,259-262

ARG 120,265

BREAK 275-276

CALL 119,279-280

Debugging 161

DO 291-293

DROP 293-294

ECHO 294

ELSE 103,294-296

END 296

EXIT 118,299-300

IF 103-104,310-311

INTERPRET 314-316

ITERATE 316

LEAVE 109,317-318

Listed by functional group 245-255

Multiples on a single line 56

NOP 325-326

NUMERIC 326-328

OPTIONS 332-334

OTHERWISE 335

Over multiple lines 55

PARSE 337-343

PROCEDURE348-349

PULL 349

PUSH 251,350-351

QUEUE 352

RETURN 118,359-360

SAY 50-55,361

SELECT 363-364

SHELL 365

SIGNAL 370-375

THEN 382

TRACE 164,384-389,409

UPPER 395

WHEN , 399

Integer division 75

Inter-Task communication 178

Interactive tracing 167-169

Changing trace modes 168

Multiple clauses 168-169

Internal functions 97-98

Invalid instructions 161

Keywords 51

Length function 93

Library files:

See ARexx Libraries

Library list ; 98

Library search order 98

Local variables 126-132

EXPOSE 127

PROCEDURE 126-127

WORD 128

Logic errors 162

Logical operators 72-73,81-83

AND 82

Exclusive OR 82-83

Inclusive OR 82

NOT 81

Loops 103,107-115

Conditional 110-113

DO combinations 112-113

DO FOREVER loops 108

DO loops 107-108

LEAVE 109

Loop counter variable 109

Loop indexes 109-110

UNTIL 111-112

421

Loops continued

WHILE 110-111

With Compound Variables 113-115

Macros:

ARexx support 43

Availability 43

Executing 192-193

File extensions 192

In ARexx 40-41

Names 191-192

Output 193-194

Storing 193

Writing 43-44

Macros Examples:

Databases 41

Home control 41

Spelling checker 41

Telecommunications ...40

Thesaurus 41

Wordprocessing 40

Multimedia/Hypermedia 215-226

Multiple instructions on a single line 56

Multiple values 86

Multitasking 177-178

Music, Using with ARexx 227-228

Nested IF statements 104

NOT operator 81

Null clause . 50

Numbers in strings .67-71

Allowable range 68

Comparing 68

Precision 69

Scientific notation" 70

String/number conversions 69

Open files:

see Files

Operators .71-83

See also specific operator type

Arithmetic operators 75-77

Boolean operators 72-73

Concatenation operators 72-74

Grouping 74

Lexical order 80

Logical operators 73,81-82

Priority 73-74

Relational operators 77-80

Symbols 71-72

Types 72

Unary operators 72

OTHERWISE errors 106

Output: Writing to a file 136-146

See also Files

I/O errors ...137-138

Interactive input and output 145-146

Replacing built-in functions 138

Standard files.... 136-137

Using WRITECH 138-139

Using WRITELN 136

PARSE ARG 120-121,157

PARSE instruction 148-156

See also Parsing

Format 148-149

Templates 150-156

PARSE PULL instruction 157

PARSE string sources 157-158,339-343

NUMERIC 341

PARSE ARG 157,339-340

PARSE EXTERNAL 340-341

PARSE PULL 157,341

PARSE VALUE 158

SOURCE 341-342

VALUE 342

VAR 342

VERSION 342-343

Parsing 147-158

see also PARSE instruction

Absolute markers 154

Defined 147

Fixed-length fields 153-154

Pattern markers 152-153

Placeholders 152

Relative markers 154

Tokenization 150-151

Using INDEX 148

Using PARSE 148

With string functions 147

Words 151

422

Placeholder 152

Preventive diagnostics 163

PROCEDURE instruction 126-128

Program development tools 238-240

Program diagnostics 162

Conditional debug instructions 163

Preventive diagnostics 163

Tracing program flow 162

Records 87

Relational operators 72,78-80

Conditional instructions 78

Exact equality 78

Exact inequality 79

Normal equality 79

Normal inequality 79

Others : 79

Relative marker 154

Resident process 28

RESULT variable 186-187

RexxMast 17,25,28-29

Adding to startup-sequence 23-24

rexxsupportlibrary 411

rexxsyslib.library 17

RX program 17

RXC program 407

RXLIB program 411

RXSET program 409

Script arguments 61

Script command-line arguments 61

Script symbols:

'V 48
'/" 48

Scripts: 47-50

Comments 48

Creating . 29,47

Defined 29

Entering a simple script 48

Examples when to use 39

Executing using Shell 29-30

Executing using Workbench 30-31

Host application 37-39

Naming 50

Quotation marks 52

Running a simple script 49

Scripts vs. macros 190-191

User input 63-64

Using 31

Using as commands 184

Using PARSE PULL 63

Using PULL 64

Using text editors 405-406

SELECT...WHEN.. 105

Simple variables ..57-61

Assignment clauses .57

Single step tracing:

See Interactive tracing

Standard input file 136

Standard output file 136

Starting ARexx after rebooting 22

Startup-Sequence, Adding RexxMast 23

Support functions:

ALLOCMEM 263-264

BADDR 268

CLOSEPORT 281

DELAY 288

DELETE 288-289

FORBID 302-303

FREEMEM 304

GETARG 306-307

GETPKT 308-309

Listed by functional group 245-255

MAKEDIR321

NEXT 323-325

NULL 326

OFFSET 329

OPENPORT 331-332

PERMIT 343

RENAME 357-358

REPLY 358-359

SHOWDIR 366-367

SHOWLIST 367-369

STATEF 377-378

TYPEPKT 393-395

WAITPKT 398-399

Syntactical 'fatal' errors ...161

System dependent constants ...130

423

TCO program 409

Telecommunications:

In ARexx 40

Using with ARexx 203-206

Text editors:

Commercial text editors 405

Defined 405

Differences from word processors....405

Ed 405

Memacs 405

Operations 406

Writing scripts 405-406

TRACE facility:

see Tracing

Tracing 164-174

Basic tracing 164

Changing modes 168,384-386

Controlling tracing 166

Default TRACE mode 165

Global tracing console 166-167

Interactive tracing 167-168,387

Numeric TRACE arguments 388

TRACE ALL 164-165

TRACE function 169,389-391

TRACE instruction 164,384-389,409

Trace output 388-389

Tracing options 165

TS program 408

Typelessness 55,67

Unary arithmetic operators 77

Unary operator 72

Unitialized variables 161

UNTIL loop Ill

Upper function 93

Variables 57-60

See also Simple variables or

Compound variables

Assignment clause 58-60

Defined 58

In nested functions 131

Name conflicts 125-126

Naming 62-63

Script arguments 61-62

Using as commands 181

Using as constants 130

Using in parsing 153

Variable name 58

WaitForPort program 410

Word function 93,128

Word processors 197-203

424

Abacus
Amiga

OrderToll Free1-800-451-4319

Amiga for Beginners

A perfect introductory book if you're a new or prospective Amiga owner.

Amiga for Beginners

introduces you to Intuition (the

Amiga's graphic interface), the

mouse, windows and the

versatile CLI. This first volume

in our Amiga series explains

every practical aspect of the

Amiga in plain English. Clear,

step-by-step instructions for

common Amiga tasks. Amiga

for Beginners is all the info you

need to get up and running.

Topics include:

• Unpacking and connecting

the Amiga components

• Starting up your Amiga

• Exploring the Extras disk

• Taking your first step in AmigaBASIC programming language

• AmigaDOS functions

• Customizing the Workbench

• Using the CLI to perform "housekeeping" chores

• First Aid, Keyword, Technical appendixes

• Glossary

Item #B021 ISBN 1-55755-021-2. Suggested retail price: $16.95

Companion Diskette not available for this book.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada |

Amiga Machine Language

Amiga Machine Language introduces you to 68000 machine language

programming presented in

clear, easy to understand

terms. If you're a beginner, the

introduction eases you into

programming right away. If

you're an advanced

programmer, you'll discoverthe

hidden powers of your Amiga.

Learn how to access the

hardware registers, use the

Amiga libraries, create

gadgets, workwith Intuition and

more.

• 68000 microprocessor

architecture

• 68000 address modes and

instruction set

• Accessing RAM, operating

system and multitasking capabilities

• Details the powerful Amiga libraries for access to AmigaDOS

• Simple number base conversions

• Menu programming explained

• Speech utility for remarkable human voice synthesis

• Complete Intuition demonstration program including

Proportional, Boolean and String gadgets

Item #B025 ISBN 1-55755-025-5. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing in

program listings. Available only from Abacus. Item #B025. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Using ARexx on the Amiga

Using ARexx on the Amiga is the most authoritative guide to using the

popular ARexx programming

language on the Amiga. It's

filled with tutorials, examples,

programming code and a

complete reference section that

you will use over and over

again. Using ARexx on the

Amiga is written for new users

and advanced programmers

of ARexx by noted Amiga

experts ChrisZamaraand Nick

Sullivan.

Topics include:

• What is Rexx/ARexx -

a short history

• Thorough overview of all

ARexx commands - with examples

• Useful ARexx macros for controlling software and devices

• How to access other Amiga applications with ARexx

• Detailed ARexx programming examples for beginners and
advanced users

• Multi-tasking and inter-program communications

• Companion diskette included

• And much, much more!

Item #B114 ISBN 1-55755-114-6.

Suggested retail price: $34.95

Guide to using the ARexx

programming language

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

TheBestAmiga Tricks& Tips

The Best Amiga Tricks & Tips

is a great collection of Workbench,

CLI and BASIC programming

"quick-hitters", hints and application

programs. You'll be able to make

your programs more user-friendly

with pull-down menus, sliders and

tables. BASIC programmers will

learn all about gadgets, windows,

graphic fades, HAM mode, 3D

graphics and more.

The Best Amiga Tricks & Tips

includes a complete list of BASIC

tokens and multitasking input and

a fast and easy print routine. If

you're an advanced programmer,

you'll discover the hidden powers

of your Amiga.

• Using the new AmigaDOS, Workbench and Preferences 1.3 and Release 20

• Tips on using the new utilities on Extras 1.3

• Customizing Kickstart for Amiga 1000 users

• Enhancing BASIC using ColorCycle and mouse sleeper

• Disabling FastRAM and disk drives

• Using the mount command

• Writing an Amiga virus killer program

• Changing type-styles

• Learn kernal commands

• BASIC benchmarks

• Disk drive operations and disk commands

• Learn machine language calls.

The Best Amiga Tricks & Tips includes companion disk. 410 pp.

Item # B107 ISBN 1-55755-107-3. Suggested retail price $29.95

Authors: Wolf-Gideon Bleek, Tobias Weltner, and Stefan Maelger.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Book/companion diskette packages:
Save hours of typing in the ARexx script files from the book.

Provide complete ARexx script file listings which help avoid printing and typing mistakes.

The companion diskette contains many of the Arexx scripts listed in this book and more ARexx example scripts.

If you bought this book without a diskette, call us today to order an

economical companion diskette and save yourself valuable time.

Abacus
5370 52nd Street SE • Grand Rapids, Ml 49512

Call 1-800-451-4319

mmmi

Companion diskette contents

AREXX LISTINGS FROM THE BOOK to save you typing time and

avoid errors when typing in the ARexx scripts.

SAMPLE AREXX programs to illustrate complex ARexx

programming techniques!

USEFUL MACROS to control a variety of ARexx-compatible

software applications.

AREXX-COMPATIBLE PROGRAMS to show off ARexx in action,

including a simple paint program described in the book.

AREXX UTILITIES to make ARexx even more powerful and useful.

DOCUMENTATION for all utilities and programs included on the

Companion diskette.

This Companion diskette will make you an ARexx expert fast. You

can use all the ARexx examples on this disk immediately.

ARexx required, not included.

Oil I

Includes

Companion

Diskette

Using ARexx on the Amiga is the most

authoritative guide to using the popular ARexx

programming language on the Amiga. It's

filled with tutorials, examples, programming

code and a complete reference section that

you will use over and over again. Using

ARexx on the Amiga is written for new users

and advanced programmers of ARexx by

noted Amiga experts Chris Zamara and

Nick Sullivan.

The text of the book is sprinkled liberally with

tutorials, examples and sample code. The

power of ARexx is presented in a clear

manner. All of the scripts of more than a few

lines are also available on the

accompanying disk.

About the authors

Nick Sullivan and Chris Zamara are freelance

software developers, writers and editors. Their

company, AHA! Software, has been developing for the

Amiga since 1986; AHA's recent titles include

TransWrite and HyperBook published by Gold Disk

Inc. They also contribute to .info magazine as

technical editors, producing a monthly Amiga technical

section.

Chris and Nick have both been involved in Amiga

journalism and software development for over five

years, and were founding editors of the now-defunct

Transactor for the Amiga, a technical magazine for

Amiga programmers.

US $34.95/ CDN $44.95

ISBN 1-55755-114-6

9 781557 551146

Guide to using the ARexx

programming language

Topics include:

• What is Rexx/ARexx - a short history

• Thorough overview of all ARexx

commands - with examples

• Useful ARexx macros for controlling

software and devices

• How to access other Amiga applications

with ARexx

• Detailed ARexx programming examples

for beginners and advanced users

• Multitasking and inter-program

communications

• And much, much more!

Includes

ready-to-use

companion diskette

5370 52nd Street SE • Grand Rapids,

