

Amiga Assembler
Insider Guide

Amiga Assembler
Insider Guide

An Introduction to 68000
Assembly Language Programming

on the Amiga

Paul Overaa

Bruce Smith Books

© Paul Overaa 1993
ISBN: 1-873308-27-2
First Edition: October 1993

Editor: Peter Fitzpatrick
Typesetting: Bruce Smith Books Ltd

Amiga Insider Guide

Workbench, Amiga and AmigaDOS are trademarks of Commodore
Amiga, Inc. UNIX is a trademark of AT&T. MS-DOS is a trademark of
Microsoft Corporation. All other Trademarks and Registered Trademarks
used are hereby acknowledged.

All rights reserved. No part of this publication may be reproduced or
translated in any form, by any means, mechanical, electronic or
otherwise, without the prior written consent of the copyright holder(s).

Disclaimer: While every effort has been made to ensure that the
information in this publication (and any programs and software) is
correct and accurate, the Publisher can accept no liability for any
consequential loss or damage, however caused, arising as a result
of using the information printed in this book.

E&OE

The right of Paul Overaa to be identified as the Author of the Work has
been asserted by him in accordance with the Copyright, Designs and
Patents Act, 1988.

Bruce Smith Books is an imprint of Bruce Smith Books Limited.

Published by: Bruce Smith Books Limited. PO Box 382, St. Albans, Herts,
AL2 3JD. Telephone: (0923) 894355 - Fax: (0923) 894366.

Registered in England No. 2695164.
Registered Office: 51 Quarry Street, Guildford, Surrey, GU 1 3UA.

Printed and bound in the UK by Ashford Colour Press, Gosport.

Amiga Insider Guide

The Author
Paul Overaa initially qualified as an analytical chemist al!Jll
spent two decades working in a field of physical chemistry
known as gas-liquid chromatography. It was during this time
that he became heavily involved with computerised data reduc
tion techniques and computer programming. Nowadays he
considers himself a programmer first and an analytical chemist
second.

Paul has previously written books on low-level 6502 and Z80
assembly language programming, on Amiga programming in C
and ARexx, on Amiga systems programming and on both
Commodore Amiga and Atari ST program design. He is a profi
cient ARexx, C and 68000 assembly language programmer, and
a very experienced Amiga programmer whose technical exper
tise is frequently used by a great many computer magazines
including Amiga Shopper, Amiga Format; Amiga User
International, Amiga Computing, Program Now, Computing, the
Amiga Buyer's Guide and Atari ST User. In addition to this he
provides expertise on MIDI programming for magazines such
as Sound on Sound and International Musician. In the past he
has written for many other publications including ST World,
Personal Computer World, Practical Computing, Laboratory
Practice, and the one time highly influential Transactor Amiga
magazine.

Outside interests include Yoga, mathematics and badminton
but his main passion nowadays is computer programming with
his research interests having a strong bias towards the practical
use of the Warnier diagram and other language-independent
program design techniques.

---------·---------

Amiga Insider Guide

Preface ... 13

1 Setting the Scene 15
Chips, Chips And More Chips 16

2 Creating a Program 19

3 A Model of the 68000 chip 25
Micro Processor Registers .. 27
The Program Counter .. 28
The 68000's Status Register 28

4 Addressing Modes & lnstructions ... 33
68000 Instruction Classes ... 34
Data Movement. ... 34
Arithmetic and Logic Instructions 35
Flow Control .. 35
Other Instructions ... 36

5 Assemblers 39
Comments40
Labels ... 40
Label conventions41
Assembler Directives .. .42
The EQU Equate Directive42
Storage Allocation Directives42
Operands and Addresses .. .43
Macro Assembly .. .44
Conditional Assembly44
If You're Having Trouble44

6 Safety In Numbers 47
Practising Safe Hex .. .48

Amiga Insider Guide

7 Making a Start 53
Data Transfer54
Data Transfer Using Address Registers 60
Complementing a Value 61
Addition 62
Putting Some Pieces Together 63
Quick Instructions 65

8 Amiga Libraries 67
Run-Time Libraries 68
Opening a Library 68
A Sneaky Exec Trick 71
Making a Library Call 72
Library Vector Offset (LVO) Values 73
Closing a Library 74
Putting It All Together 74

9 Using A68k and Blink 79
Step One - Opening a Shell Window 81
Step Two - Creating the Source File 82
Step Three - Assembling the Example Code 83
Step Four - Linking 84
Step Five - Preparing for the Worst 84
Step Six - Go Go Go 84
If Things Have Gone Wrong 85
End statement is missing Error 85
Undefined Symbol Errors 86
Error In Operand Format 86
Linking Errors 86
Program Fails To Run As Expected 86

I 0 Devpac 89
An Integrated Environment 89
Step One - Starting Devpac 91
Step Two - Creating the Source File 91
Step Three -Assembling & Linking the Example Code ... 93
Step Four - Preparing for the Worst 94
Step Five - Go Go Go 94
If Things Have Gone Wrong 95

----------·---------

Amiga Insider Guide

11 Macro Magic 97
Macro Definitions 98
The LINKLIB Macro 98
Macros Within Macros 101
The Inderlying Magic101
Header Files 103
Asking the Assembler to Include Another File103

12 DOS and the Shell 105
Writing Text 108
A First Coding Stage109
Write()-ing The Message110
Variety Is The Spice Of Life112

13 System Include Files 11 7
The Snag For A68k Users 119
Why This Book has Avoided the System Includes120

14 More on Intuition 123
Ringing the Changes 123
When New Windows Are Not!124
Window Opening 125
TagLists 126
Open Sesame 128
Completing the Plan of Action 130
Adding the Screen Locking/Unlocking Code 131
Adding Some Tag Data 137

15 Amiga Graphics: A Start 143
Getting Graphics into Code145
A Runable Example 146
If You Haven't Got the Official Includes 148
The Official Approach 153

16 More Coding Practice 15 7
Subroutines 158
Subroutine Parameters 159
An Example Subroutine 159

----------·---------

Amiga Insider Guide

Drawing a Row of Images 162
Building a Test Framework 167
The Official Alternative 17 3
Reaping the Benefits 178

17 Where To Go From Here 185

Appendices

A The 68000 Instruction Set.. 189
Effective Address 190
Op-Codes 190
Sign Extension 190
Notes on An/Dn Name Conventions190
60000 Addressing Modes ... 190
Data Movement Instructions194
Flow Control Instructions 199
Logical Operations 203
Shift and Rotate Operations 207
Bit Manipulation Instructions 209
Arithmetic Instructions 210
To Get the Complete Story .. 216

B Library Function Tables 21 7
Usage notes 219

C Glossary Of Terms 221

D Bibliography 231

E Books for the Amiga 235

Index 249

----------·----------

Amiga Insider Guide

Insider. Guides
#1: Wordprocessor ASCII Files 21
#2: Program Crashes 22
#3: Assemblers 23
#4: Assemblers ... 24
#5: Flags and Flag Bits 29
#6: How a Computer Works ... 30
#7: The 68000 Chip Itself... ... 31
#8: Branches and Jumps 36
#9: Subroutines .. .37

#10: ASCII CODES43
#11: Program Layout45
12: Truth Tables51
#13: Additional Info56
#14: Word Storage 57
#15: Long Word Storage 58
#16: Where have all the functions gone? 69
#17: Failed Open Library Calls 70
#18: An Important Exec Function 70
19: Another Exec Masterpiece 71
#20: The Importance of Being a6 72
#21: A Below Average Score? 73
#22: A Beeping Good Routine 74
#23: Collecting The Standard Input Handle 106
#24: Collecting The Standard Output Handle106
#25: Another Useful DOS Function107
#26: More Macro Help113
#27: ProgressReport 115
#28: System File Updates .. 119
#29: Keeping Up To Date? 121
#30: Window Opening-The Bottom Line126
#31: Lock Em Up! 131
#32: Free At Last!132
#33: Open Up! 132
#34: Closing Windows When You're Finished 133
#35: A DOS Time Waster 133
#36: If You Have The Official Amiga Include Files 138
#37: Graphics The Easy Way144
#38: BitPlane Graphics Theory 145
#39: Devpac to A68k Assembler Section Conventions 147

----------·----------

Amiga Insider Guide

.................................

The Amiga is an incredible computer already hut,
by learning how to program it using 680x0
Assembly Language, you can unleash some

amazing additional power ...

Y ou've either bought this book already, or are giving it
the once over in order to see whether it's likely to be

___ useful to you or not. If you fall into the first category
then thanks, I'm sure you won't be disappointed. For those of
you in the second category I'll try and explain the general plan
of the book in order that you can decide whether this particu
lar offering is suitable for you or not.

Firstly let me reassure you about one thing - learning 680x0
assembly language is not that difficult a task. There are in fact
a great many books available that provide very good introduc
tions to this subject. So why did I bother to write another? It's
because many books, although perfectly well written, are about
680x0 coding in general rather than 680x0 coding on the
Amiga. The difference is important because the 680x0 chips
used in the Amiga do not work in isolation - they're just a
small part of a system which involves a fairly complex sur
rounding shell of operating system software. If you are intent
on programming the Amiga using assembly language then a lit-

Amiga Insider Guide

tle knowledge about this operating system is needed early on. It is
often the lack of this sort of Amiga specific material that provides a
major stumbling block for potential 68k coders. It is just this sort of
Amiga-specific info that I've made a point of providing in this Insider
Guide.

The material in this book is up-to-date and this again is important
because the Amiga's operating system has undergone quite a few
changes in recent years as Workbenches 2 and 3 have arrived. Where
relevant I've made a point of dealing with the changes in detail and
you will for instance find explanations on the use of Intuition and the
new Tag-List based function calls towards the end of the book.

I've attempted to introduce 680x0 assembly language specifically from
an Amiga oriented viewpoint and my main aim has been to provide
you with the necessary footholds to get into low-level Amiga program
ming as quickly as possible. I believe that I can show you a simple
pathway to achieve this objective and even make the subject enjoyable.
That, believe me, is over half of the battle. This book will not, by any
stretch of the imagination, make you a 68k expert but it will get you
started and prepare you for the things you'll read about when you feel
ready to tackle more advanced Amiga books.

----------·----------

Many serious Amiga owners, including lots of
new Workbench 2 and Workbench 3 based
A600, Al200, and A4000/030 owners, are
clamouring to learn the computer language

that expert coders use. It's called 68000
Assembly Language and to start learning
about it all you have to do is read on ...

he heart of the Amiga is a silicon chip called the central
processing unit or CPU. Although various Amiga models
use different processors from the Motorola 680x0 family

the basic device from this family is the unit known as the
68000 microprocessor. Later chips, such as the 68030 and
68040, are more powerful but since the 68000 provides a
similar set of core facilities to those found in other members it
is this chip that I'll refer to in this book.

To program the 68000 you use something called assembly lan
guage and these early chapters provide an overview of what
assembly language programming is all about. I've made a point
of trying to avoid all of the difficult stuff you usually find in
assembly language books but there is bound to be the odd

Amiga Insider Guide

topic that just doesn't appear to make sense at first. Don't get disheart
ened if you suddenly find you don't understand something, and don't
for a moment think that you are expected to memorise everything in
one sitting!

Certainly try to grasp things as you encounter them but when you do
hit a topic that seems impossibly difficult to grasp then skip over it
and make a note to return to it later on. You may actually find that
areas, such as the 68000's addressing modes discussed in Chapter
Four, make more sense once you've tackled a few of the small pro
grams given in later chapters.

As you get more comfortable with the general ideas, refer back to the
early chapters, as you'll get a little more from them each time you do.
Work at your own pace and remember that no-one, and I really mean
no-one, has ever learnt 68000 assembly language in a day. Take your
time, enjoy the journey and, by the end of the book, you should be
ready to tackle the more advanced texts that are available.

It's the Motorola
Chips, Chips And More Chips 68000 chip itself

that is our main
concern. Like other microprocessors the 68000 has various hardware
lines for communicating with the outside world along with a set of
internal registers for storing data. These communications links are
used to connect the 68000 to other components and very important
they are too - before it can do any useful work the 68000 has to be
connected to additional memory in order to provide additional data
and program storage space. Two basic types of memory chips, called
RAM and ROM chips, are in common use: RAM (Random Access
Memory) chips can both be written to and read from by the micro
processor but have the disadvantage of losing their contents when the
power is turned off. ROM (Read Only Memory) chips can keep their
contents indefinitely, whether powered up or not, but they have to be
pre-programmed with data and their contents cannot be changed.

Because of the way it's been designed the 68000 microprocessor is
able to perform various logical and arithmetic tasks and these are
identified by numbers that represent particular microprocessor
instructions. Computer programs are simply collections of these
instructions put together in a meaningful way. One of the things that
both RAM and ROM chips are used for is storing these programs
whilst they are being executed, ie run, by the 68000 chip.

Amiga Insider Guide

The instruction sets (the collection of available instructions) of most
processors, including the 68000, are quite large but there is nothing
inherently complex about the operations they perform. Each instruc
tion carries out some elementary task, adding two values together per
haps or copying the contents of one memory location to another, but
there is a minor snag - the language that the microprocessor under
stands is based on binary numbers. Given suitable hardware (a proces
sor chip, memory, some input/output facilities, and all the associated
electronic support) such a system could be programmed by entering
suitable numbers directly into system memory and then getting the
processor to execute the instructions. Trying to program a 68000 chip
using the raw numbers in this way turns out to be a nightmare so,
instead, Motorola give the instructions standardised and meaningful
names such as ADD and MOVE. This makes it easier for programmers
to remember the purpose of these instructions whose names are
known as mnemonics. The process of converting mnemonics back into
those numbers which represent real processor instructions is some
thing that the computer itself can do quite easily and programs which
do this are known as assemblers. The mnemonic form of the 68000
instructions are known as the 68000 Assembly Language and it is pre
cisely these instructions that you'll be learning about in this book.

Since the Amiga is a 680x0 based machine, it's pretty obvious that all
Amiga languages end up generating 680x0 code. They have to because
otherwise the final programs simply wouldn't be able to run on the
Amiga's microprocessor. You may be wondering what it is then that
makes code written by assembler programmers run faster than the
equivalent 68000 code generated by other high-level languages. The
answer is simply that assembler programmer's can fine tune their code
to make sure that it is super-efficient and, for a number of reasons,
high-level languages are unable to do this to the same degree.

Note: I've used the term 680x0 above quite a lot and if the meaning
isn't clear it is simply a global way of referring to the family of 68000
chips, namely the 68020, 68030 and 68040.

----------·---------

Amiga Insider G1dde

________ _______ __

Writing in 68000 Assembler requires a number
of different preliminary stages before a runahle

program can he produced. You can't just type in
a program and then select "Run" ...

• E)CfYnple 018-1.s ·

• this progon uses the irliJtion libroy lo beep' the display

NU.L EOU 0

_L VOQ>o11Ubrcny EOU -552

_L voc1o:set.1bra-y eau .414

J. VOOi.,,loySeop EOU ~95

slcni mow I ..JU»E_xec:Bose, a6

'""' 11;u~rt_1u11e,a1

mo-. 00.dO

openl•b lsr J. VOCip0nUboory(o6)

mo\19.ldO, _lnh..1itio1"6ose

i-, exit

open_ol< lsr J. voo1.,,1c>yeeei>Co6J

get base cddress ol Exoc I

load pokier to libro1y none

Cl'lY vei·.sion willdcil

make .sub1QUtino ccil

so,,-e 1etumed pointer

dd libto1y open OK?

n'ICl'ke st.btoi.Alne ccrll

he first step in writing an assembly language program is
to use an editor to prepare something known as a source
code file. It sounds good, but all it really means is that

you have to produce a plain text file (commonly called an
ASCII text file) which contains the required program instruc
tions. You can list and print the contents of such a file just as
you would a letter or any other piece of stored text. ·

The Amiga provides one editor, called ED, as part of the
Workbench system software but most commercial assemblers
come with their own rather better editor programs. If preferred
you can use an alternative editor or even your favourite word
processor program. The only proviso with the latter option is
that it must be possible to stop the wordprocessor from insert
ing additional control characters because these are meaning
less to an assembler and would cause it to come to a grinding
halt if it tried to interpret them.

Amiga Insider Guide

Once a source file is available the next step is to get the assembler pro
gram to convert it to the appropriate 680x0 instructions. In many
cases the assembler has to be used first to create a standardised inter
mediate form known as an object code file. This is not a runable pro
gram as such. Although the object file includes the translated 680x0
instruction-related material the code is not of the right format to be
loaded by AmigaDOS. The program doesn't contain a sometimes
important piece of Amiga specific front-end code known as the start
up module which is needed if the program is to be run from the
Workbench. Finally, the file may still contain references to unresolved
(unknown) items, such as library routines or variables that have been
specified as being present in other object code modules. The third
stage in producing an assembly language is known as linking, and it
attempts to fill in the gaps created by these unresolved references. The
Amiga linker (usually called Blink) is able to combine the code you
have written, the start-up code, and any other modules or library code
required, to produce a real Amiga program - ie a file that may be
loaded and run!

On occasion things may not go well and you may find that, as the
assembler attempts to translate your source file, it reports any number
of errors. Whatever the cause (syntax errors, illegal instructions etc)
these faults have to be corrected and this can mean that, in the early
days, you have to pass through the edit-assemble cycle quite a few
times before you succeed in creating a program that even assembles
successfully. Once through that stage you may then find that the linker
reports additional errors such as misspelling a library routine name or
not specifying the correct location of library files. These errors must
also be found and eliminated before a runable version of the program
can be created.

As you might guess, there is no guarantee, even once a program is up
and running, that it is free from errors. Assembly language program
mers are, unless they are very careful, likely to spend far more time
looking for hidden errors - commonly called bugs - than their high
level language counterparts. Many programmers frequently use a
piece of software called a debugger - a system tool that is able to exe
cute a program on a step-by-step basis - in order to help them to trace
program execution and identify faults. It's worth mentioning that
debugging tools are by no means essential because there are plenty of
other ways of locating program bugs.

----------···----------

Amiga Insider Guide

Insider Guide # 1 - Wordprocessor ASCII Files

Almost all wordprocessors nowadays provide options for
writing plain ASCII text files but, since this will not be the

default text file format, it's up to you to explicitly select this
type of file output. With Final Copy II, for instance, you have

to use the Project Menu's 'Save As' Option and select ASCII
using the file requester's Export gadget.

..

Amiga Insider Guide

Insider Guide #2 - Program Crashes

When you execute an assembly language program that con·
ta ins one or more bugs it may, if you are lucky, just fail to

work as expected but otherwise be relatively harmless as far as
your Amiga's operating system (0/S) is concerned. More often
however, seemingly small errors can cause your Amiga to dis·
play a Guru message or even seize up completely so that you
have to re-boot. The danger here is that, if you were not pre·

pared for such an eventuality, you may have unsaved files pre·
sent in your Ram Disk (most program editing and assembly

operations are done in Ram because it is quicker).

... y.. lfl•9J

POA•I" oOUt'Wn

COPY \'~:~r .. :!:t:r:~!i: ·;~
::::1: :::t.rt!:rt

'l'arr~ 1~flll~l"'1!~ ultlonl• .. '<'am y'aY·-"• •••
~llf• Y :.:zs,.::a:..~_•ntult , wln4ew to ~lo••

Sometimes the Amiga's 0/S can stop the faulty program from
running and let you recover Ram Disk files by switching to a

working Shell window and saving any important files. At other
times the faulty code might have overwritten important por

tions of the Amiga's 0/S causing your Amiga to re-boot without
warning. Because of this you should get into the habit of saving

your source files frequently just in case something does go
wrong when you run a newly created, or recently modified,

program for the first time.

----------··-----------

Amiga Insider Guide

Insider Guide #3 - Assemblers
Two of the most popular Amiga assemblers are Hisoft's Devpac and

Charlie Gibb's A68k. Devpac is a commercial offering which has been
around for a long time and there is no doubt at all that it's a very well
supported program. It comes with an easy-to-use Intuition styled front
end, lots of extra utilities, and all of the necessary Amiga system files .
Devpac 3, the latest version, is very highly thought of and used by a

great many professional programmers.

ti•• lntultlOA lU•r•rY te •••• .,. th4P di•••••
nu •

u ..
mu -:1112
uu -4t4

Da -M

J6r _LftOp..a..U•r ... y(e6>

" • "•· t ••·- • ntutt ••••••

.... ,., •. , _ant••t•••••• ...
Jar _LH•t•Pl•"9•••<••>
,...,_. I ••Exec •aao__,_a6

naolc• tli•• lMtrect,. •• , l••
• ..,. r•tur1Md pel•t• r
dld, -

f I••• el l •creena
111•M It.Wery la ...
R•lc• t•• lMlrect •..,._•tl••
et •••• a .. reaa et bee l l bf'

Lt at "•era EKP•• • •-•
Llat Condlt l•••l• eftl 'll'
rtrat P'••• llatlft9

One of the most popular Amiga assemblers is the HiSoft
Devpac package

Amiga Insider Guide

Insider Guide #4 - Assemblers

A68k is a freely distributable public domain assembler
available from most PD libraries. It is an extremely well
programmed piece of software although not having an

Intuition style front end - it requires Shell based commands
instead - and it's not as easy to use as Devpac .

.. or•u•nc:n l»C:r••n . _,.,,.,
"'"

R~k
~I

or
- - I

• OrJ11u•ncn

1'! ..
••lft • "ii~ilir ·= 1:p-: •i"!f;6l_ · t .J•nu•rY 11 • 199e >
ll::~;~ol c:!nY•r~Yon"' c:::" ... t,erdf;&l"b" Chert\• otbba.
,. bt ln9 C>e9ftpleCN8-1.a.

mt n ~~~ .~AB!, .• "•• ,.
~2 "' Oto •t•t ... •nt l• 1tl••tn9,

~=d•o~ :;•~b!:2Ml l'ror w•• tound. f 1~ iY:E:: u••: ~ cod•. • Cl•t •· • ass
. - •• :)> • ,- -, ~- ·~ . ,. -

Charlie Gibb's A68k public domain assembler
is also perfectly adequate.

For convenience, A68k has been included, along with the Blink
linker, on the accompanying Insider Guide disk that is

obtainable free from the publishers of this book - see Appendix
E. The disk therefore contains everything you need to

assemble and run all of the examples in this book. You'll find
more details about actually using assemblers and linkers later.

Learning about the microprocessor hardware
and electronics is a nightmare for the
newcomer hut this chapter provides
an easy way around the problems ...

T o write assembly language programs all you need is a
'simple conceptual model of the processor so, initially,
there's no need to appreciate either the hardware or the

associated electronics. However, it is important to get an
understanding of the general characteristics of the 68000 -
such as what sort of bits of information (data) it can store
internally - and of some restrictions imposed by the overall
design of the chip.

Figure 3.1 shows a schematic diagram of a 68000 processor.
What I'll be doing for the rest of this chapter is building a con
ceptual model of the 68000 chip, a simplified picture of the
chip and its facilitie~, and this will allow me to discuss the fea
tures which are relevant to the writing of assembly language
programs without having to get involved with the rather awk
ward hardware issues.

Amiga Insider Guide

bits 31 16 15 7 0

dO

dl

d2

DATA REGISTERS d3

d4

d5

d6

d7

bits 31 16 15 7 0

aO

al

a2

ADDRESS REGISTERS a3

a4

a5

a6

STACK POINTER REGISTER a7

(functions as two separate registers so that user and
supervisor modes can maintain individual stack areas)

PROGRAM COUNTER REGISTER I PC

FLAGS XNZVC

bits 15 4 3 2 1 0

ST ATVS REGISTER

Figure 3.1. A schematic model of the Motorola 68000 microprocessor.

----------·--------~

Amiga Insider Guide

MicroProcessor Registers
The 68000's internal
registers are split into
two groups known as

address registers and data registers respectively. Registers of each
group are numbered from 0 to 7 with data registers being labelled as
dO, dl, d2 ... d7 (or Dl , 02 ... etc.), and address registers as aO (or AO)
and so forth. Each 68000 register can hold a four byte (32 bit) number
and amongst its other facilities the processor is able to move such
numbers between its internal registers or between a register and a
memory location (and vice versa). The 68000 can also move external
data held in memory from one location to another.

Address register a 7 has a special purpose in that it serves as the micro
processor's stack register. This holds the address of, or points to, an
area of memory used to store and retrieve information on a last-in
first-out basis. The 68000 uses this area to store things like subroutine
addresses which we'll discuss later.

There are in fact two different 68000 stack pointers and this stems
from the fact that the processor can operate in two modes known as
user mode and supervisor mode. In some situations it is convenient for
each mode to have its own stack and so the 68000 was designed so
that register a7 behaved like two separate registers. We're not going to
be involved with these mode related issues at all and, for the purposes
of this book, just regard register a 7 as a single register holding a single
stack pointer.

One of the nicest features of the 68000 is the flexibility of its registers.
Although they can hold 32 bit (long word) values the chip can for
many operations use the address registers to work with 16 bit values
(words) and the data registers can in fact work with 32 bit, 16 bit or 8
bit values. Similarly there are few restrictions on what you can, or
cannot, use the contents of such registers for. If, for instance, you wish
to copy the contents of a data register into an address register the
68000 lets you do it although having said that it is usually better to use
address registers for storing and working with memory addresses and
data registers for data oriented operations because each group is best
suited to its design-chosen purpose.

When working with instructions that may involve byte, word or long
word values it is often necessary for the assembly language program
mer to identify the size that should be assigned to a given value. As
you'll see later the 68000 conventions are based on placing .b, .w or .I
after the instructions. The 68000, because of its design does however

Amiga Insider Guide

have a limitation in that when accessing word or long word addresses
the address must be even. These even addresses are conventionally
said to be word aligned but the good news here is that assemblers take
care of much of the word-alignment problems automatically.

The 68000 also contains a
The Program Counter 32 bit program counter

which is a register used by
the microprocessor to determine the address of the next instruction to
be executed. Under normal conditions the program counter is auto
matically incremented as instructions are read and acted upon, hence
instructions contained in memory are executed in sequence, ie one
after another. An important part of microprocessor programming,
however, involves the use of a number of instructions which can alter
the contents of the program counter and the result of doing this has
far reaching implications. By changing the address held in the pro
gram counter it is possible to cause the microprocessor to get its next
instruction from anywhere in memory, as opposed to getting the
instruction sequentially next in memory. The result is that the execu
tion of the program can jump, or branch, from one part of the pro
gram to another.

The fact that these jumps can be made conditional on the state of vari
ous processor flags means of course that the processor can make intel
ligent flow control decisions based on the data with which it is work
ing. A program might for instance compare two numbers and, on the
basis of the result, execute (or perhaps not execute) a particular group
of instructions.

Another impor
The 68000's Status Register tant 68000 regis-

ter is the status
register which is actually divided into two eight bit registers known as
the system byte and the user byte. We won't be concerned with the sys
tem byte as it is only accessible in supervisor mode. The user byte, on
the other hand, is going to be important because it contains flag bits
whose values are set and cleared according to the results of particular
instructions.

Five flags - out of a possible total of eight - have been implemented in
the 68000's user byte and these provide single bit true/false type detec
tion of the processor conditions known as carry (C), overflow (V), zero
(Z), negative (N), and extend (X). The carry bit holds the carry from

Amiga Insider Guide

Insider Guide #5 - Flags and Flag Bits

Jn the computing world, f1ags are simply those bits present in a
variable, or hardware register, which have been assigned some

specific meaning. The term is normally reserved for yes/no
(true/false) type indicators which only require a single bit of
storage space. A byte-sized hardware register, since it is a

register containing 8 bits, can therefore act as a store for up to
eight different f1ag values. By convention if a f1ag bit has the
value 1, then it is said to be set (or true), and if the bit has the

value 0 it is said to be clear (or false).

the most significant bit produced by bit shifting or arithmetic opera
tions. The zero flag is set high (ie set to 1) when an operation produces
a zero result. If, for example, the result of adding two numbers togeth
er produced a zero then the 68000's zero flag would be set to 1. The
negative bit (sometimes called the sign bit) always takes the value of
the most significant bit of the result and, along with the overflow and
extend flags, is primarily used for arithmetic applications. Not all
instructions affect all flags as you'll see when ·we look at typical
instructions.

Amiga Insider Guide

Insider Guide #6 -How a Computer works

MEMORY

,- -- --- -- -- --- __ J __ -- -- -- -- --------,
INPUT ,. i • CONTROL ,. 1 • OUTPUT

1 !~
i The

·---~~-!~-~-~!.!~--~~-~~-~!~--~~-~!. __ J Microprocessor

Above: Block diagram of a computer

A computer consists essentially of a microprocessor (containing a
control unit and an arithmetic/logic unit) coupled to 'memory

chips and various input/output devices such as a keyboard, VDU
screen, disk drives, and printer. The chip is built in such a way so

that it can understand a particular set of simple instructions
known as the instruction set. It is able to be programmed to

perform different tasks by providing it with different instructions.
Computer programs consist of a list of such instructions arranged

in a suitable order for the task being carried out. Programs are
stored in memory and are executed by the microprocessor using a

loop consisting of four basic steps:

I Fetch the next instruction from memory and place it in the
control unit.

Z Decode the instruction (ie figure out what must be done).
3 Obey the instruction.
4 Go to step I

The first two steps are called the fetch cycle, the second two are
known as the execution cycle.

? -

Amiga Insider Guide

Insider Guide # 7 - The 68000 Chip Itself
The Motorola 68000 is one of a family of '68' processors ranging
from an eight bit oriented 68008 to a fairly recently announced
super chip called the 68060. All the processors are essentially

object code compatible, which means that they execute the same
base level instructions, although chips higher up the family- like

the 68020, 68030, 68 040 and so on - all have more powerful
instruction sets than the basic 68000. As far as the physical

details of the 68000 chip itself is concerned the logical layout of
the pins looks like this:

Clock

Reset
Halt
Processor
Status

Interrupt Inputs

Bus

arbitration
control
Bus error

CLK

RESET
HALT
FCO
FC1
FC2

IPLO
IPL1
IPL2

BR

BG
BGACK
BERR

a1-a23 Address Bus
d0-d15 Data bus

AS Asynchronous
data bus

UDS control
LOS
R/W
DTACK

VMA Synchronous
E data bus
VPA control

Above: The Motorola 68000 processor

An external clock signal causes the 68000 microprocessor to step
through its fetch/execute cycle at a specified rate. The processor

collects data from memory, and stores data in memory using pins
dO-d 15 which are connected to a common electronic pathway

called a bus (pins al-a23 are used to provide address information
for the 68000 chip). The remainder of the pins are power and

control signals - the R/W line for instance informs the memory
chip_ whether the processor is doing a read or a write operation.

For more details of the electronics involved you'll need to consult a
68000 hardware reference book.

---------·---------

Amiga Insider Guide

------·------

The 68000 instruction set is powerful and a
variety of addressing modes are available for

many commands. There's a lo t of new jargon to
he learnt hut this chapter should put you straight

as far as the basic ideas are concerned ...

ost processor instructions work on a piece of data
called the operand and this data has to be stored

...._ _ __. somewhere. Many instructions use some real or
implied source address, do something, and then transfer the
result to its destination address. It is the processor's addressing
modes which enable these source and destination addresses to
be specified. With the 68000 there are eleven basic addressing
schemes and for completeness here are the names ... Inherent,
Register, Immediate, Absolute, Address Register Indirect,
Address Register Indirect with Displacement, Address Register
Indirect with Postincrement, Address Register Indirect with
Predecrement, Address Register Indirect with Index and
Displacement, Program Counter Relative with Displacement,
and Program Counter Relative with Index and Displacement.
Now, I'm not going to explain all of these addressing modes in

Amiga Insider Guide

detail because you are unlikely to need more than a few of them dur
ing your early coding days. For the moment, then, here are just a few
brief descriptions to set the scene.

Inherent addressing means that the instruction itself implies the loca
tion of the data it is going to work with. Register addressing implies
that the operand resides in one of the 68000's internal registers.
Absolute addressing means that the address of the operand is stored
just after the instruction in memory whereas Immediate addressing
implies that the operand value itself (not its address) is located just
after the instruction in memory.

Indirect addressing is a very powerful concept and on the 68000 a
variant called register indirect addressing is used. In short an address
register is used to specify the address of the operand. In addition to
these straightforw~rd addressing modes it is possible to specify dis
placements, to auto-increment or auto-decrement an address by 1,2,
or 4 bytes and write something called program counter relative code.
Later on, when I do need to provide more details about certain
addressing modes, I'll do it within the context of some example code.
because this makes the ideas easier to absorb.

The 68000 instruc-
68000 Instruction Classes tion set, as we've

mentioned, is rea
sonably large and because almost all sensible addressing modes can be
used with any instruction the full number of variations available is
actually quite substantial. As was the case with the 68000's addressing
modes it is not a useful exercise, either now or later, to list or discuss
each instruction as the basic details alone would fill a complete book
by themselves. Luckily all we need to start with is a general under
standing of the types of things the 68000 can do. So, before we start
looking at actual programs, the following sections provide suitably
brief overviews of the type of instructions available.

The 68000 has a large number of
Data Movement instructions which allow the transfer of

data to and from memory and/or the
68000 microprocessor's internal registers. For example, the instruction

11ove. b dO , d4

transfers the lower eight bits of data from register dO to register d4.
This is an example of register addressing. On the other hand

Amiga Insider Guide

move. l #O, d1

places a zero value in register d I. The hash # sign indicates an
operand source addressing mode known as Immediate addressing - in
terms of the final 68000 instruction this means that the operand (in
this case a long word, ie 32 bit, zero value) is stored immediately after
the move.I instruction code.

Data can also be moved to memory locations so, to move the full 32
bit contents of register dO to a memory location which has been given
the symbolic name _DOSBase you would use this instruction

move . l dO ,_DOSBase

Arithmetic and Logic Instructions
T h e
6 8 0 0 0
supports

a standard set of logic and arithmetic operations which allow it to per
form addition, subtraction, multiplication and division. In addition to
this it also supports all of the common logic operations (such as AND
and OR etc.) As an example, the instruction

add . l dO , d1

adds the full (32 bit) contents of data register dO to those of data regis
ter dl.

Without flow control instructions a proces
Flow Control sor would only be able to execute program

instructions sequentially. The ability to exe
cute different parts of a program under different input/data conditions
is fundamental to the nature of computing so the 68000, like all other
processors, provides a number of useful mechanisms.

The 68000 provides a number of conditional branch type instructions
for transferring control from one part of a program to another. One
such instruction is called beq (Branch on EQual to zero) and this is a
flow control branch which is only taken if the 68000's zero flag is set.
To use this instruction to branch conditionally to a symbolic address
called EXIT one would write

beq EXIT

Unconditional branch/jump and subroutine oriented branch/jump
instructions are also available on the 68000. The main differences
between ordinary branches or jumps and the subroutine oriented vari
ety are that the subroutine forms automatically store a return address

Amiga Insider Guide

on the stack. After a subroutine call has been executed, this return
address can be retrieved and used to transfer control back to the main
part of the program.

Insider Guide #8 - Branches and Jumps
The terms branch and jump tend to get used interchangeably and

this is understandable because both types of instructions have
similar end results - the program counter register gets loaded
with a new value which causes the 68000 chip to get the next
instruction from somewhere other than the next sequential

instruction in memory. Branches and jumps, however, do work in
slightly different ways because whereas jump instructions use real

addresses branch instructions use displacements. Thus a jump
instruction effectively tells the processor to go to location XYZ for

its next instruction while a branch instruction supplies offset
values from the current value of the program counter register.

? It's a bit like someone asking
you where Mr Jones (a

neighbour) lives. You may live
at number 30 and Mr Jones 3

doors down at number 36. You
could say Mr Jones lives at

number 36 - giving his absolute address - or you could say "Oh,
he lives three doors away", pointing the caller either up or down

the road as appropriate. In the latter case you've provided a
relative address - a positive or negative displacement from a

known anchor point.

Instructions are provided which
Other Instructions allow the 68000 to test, set, and

clear individual bits and to rotate
and shift operands. There are powerful address calculation instruc
tions, automated loop instructions, and even instructions which allow
data areas to be allocated within stack space as subroutine calls are
made. A variety of instructions are also available for comparing partic
ular operand values - these set the appropriate status register flags.

Amiga Insider Guide

Insider Guide #9 - Subroutines
There are frequent cases in programming where the same

sequence of instructions is needed in more than one place in a
program. Instead of duplicating those instructions (which is

wasteful of memory) microprocessors are provided with special
instructions that allow a section of code to be re-used. These code
sections are themselves mini-programs written to do well-defined
jobs. Since they represent routines which may be called by other

parts of a program, they are called subroutines.

The 68000 provides two basic
methods for transferring

control to a subroutine. The
jump-to-subroutine instruction,
whose mnemonic is jsr, causes

an unconditional jump to a
specified memory address. This instruction behaves just like the

unconditional jump (jmp) instruction but, in addition to placing the
specified jump address into the program counter, it also saves a
return address on the stack. By placing a return-from -subroutine

instruction (rts) at the end of a subroutine this address can be
retrieved and placed into the program counter so the net result is

that the processor having jumped to, and executed, a piece of
suitably written subroutine code, returns to the instruction

immediately following the original subroutine call.

A further instruction, called branch-to-subroutine (bsr), provides a
relative addressing form of the subroutine call mechanism and in

this case either an 8 or 16 bit displacement can be provided.

Amiga Insider Guide

---------·---------

Assemblers, with the help of a linker, can
translate your source code files into programs

which can be run on the Amiga. Such assemblers
have certain rules and conventions ...

n assembly language program consists of a number of
statements. Some statements correspond directly to
68000 instructions, others are assembler-oriented direc

tives known as pseudo-operations or pseudo-ops.

Program lines may contain as many as four fields - a label, a
mnemonic, an operand or address field, and a comment. The
mnemonic represents an instruction op-code while the
operand, if present, is the data that the instruction acts on.

Here are some typical assembly code lines to illustrate the for
mat. Don't worry about what the instructions are doing, it's the
general layout of the program lines that is important not the
details.

5

Amiga Insider Guide

* ---
an example asse1bly language code fragment

* ---
Open Lib move.l library_name,a1 get library name

move.l _IntuitionBase,a6 get library base value

rts

t t t t
Labels Mnemonics Operands Comments field

Not like BASIC is it? But don't worry too much because I'll let you into
a secret - each line of assembly language is actually far simpler than a
typical line of BASIC because it only involves the one operation.
Assembly language instructions perform far simpler tasks than high
level languages commands and this will become apparent as we look
at the various fields present in the above example code.

Comments
Comments are optional, ie they do not need to
be present. They are added for the same rea
sons that REM statements are added to BASIC

programs - to provide in-line documentation, lines to separate rou
tines etc.

Assemblers vary in how they delimit comments but usually those lines
which begin with an asterisk are treated as a whole line comment, any
characters after a semicolon are similarly ignored, and any text after
the operands field is usually also be treated as a comment providing it
is separated by one or more spaces.

Labels
Labels do not have to be used but if they are, they nor
mally have to be placed at the start of the line - some
assemblers are quite fussy about field placement.

Many 68000 assemblers adopt a convention which allows white space
to signify the end of the label - as in the above example - but also
allow the label to start at a position other than the first character of
the line providing it is terminated with a colon(:).

Each byte of each instruction or data item in an assembler program
has, by virtue of its position in the program, an address by which it
can be identified. Internally the assembler keeps track of this numeri
cal position information by using a location counter. Referring to
places within a program using such numbers is awkward as it means

Amiga Insider Guide

the programmer has to remember the lengths of each instruction so
labels can make life a lot easier. It also leads to far more readable code
- in the above fragment the programmer can use 'OpenLib' rather than
having to work with some relatively meaningless numeric value.

Labels can also appear in the operand fields and this, as the exit label
in the following fragment illustrates, is commonly used to specify a

·location to jump or branch to.

~ove.l _IntuitionBase ,a6 get library base value

beq exit test result for success

CALLSYS CloseLibrary,_AbsExecBase

exit rts logical end of program

Programmers use labels to identify space set aside for variables and
static program data, the starts of both the program and particular rou
tines, entry and exit points, jump/branch positions etc. Given the pur
pose of labels in an assembly language program it should be obvious
that it is best to use labels that are meaningful as OpenLib, exit, and
library_name in the above example should show. Labels like HOWZAT
or ICUR2Y4ME are less than useful.

Label conventions
The conventions which assemblers
expect vary and sometimes vary
considerably. Many assemblers, for

instance, place restrictions on the lengths of labels and on the charac
ters which may be used within them. For example, the leading charac
ter often has to be a letter and usually only a few non-alphanumeric
characters are allowed. Some assemblers allow long labels, others may
not or may truncate them without warning.

An assembler, since it has to equate each label to a specific address,
cannot allow the same label to be defined twice within a program.
With older assemblers it was the programmer's responsibility to
ensure that duplicate label names were avoided. If, for instance, you
had three routines similar to our last example fragment within the
same program it was necessary to use, say, exit!, exit2, exit3 to avoid
causing duplicate label errors. Modern day assemblers now provide
something known as local label support. Here the assembler builds up
the internally unique identifier by adding the local name to some pre
viously supplied base name. Devpac, for instance, adopts a convention
whereby a label beginning with a period (or optionally an underline) is
attached to the last non-local label.

Amiga Insider Guide

Assembler Directives are the
Assembler Directives pseudo-ops mentioned earlier

and are used to define sym
bols, designate areas of memory for data storage, place fixed values in
memory and so on. Directives also exist for more mundane operations
such as controlling the listing and error reporting facilities of the
assembler. Once again, conventions are going to vary from assembler
to assembler but the detailed specifics are fully documented in your
assembler manuals. Having said that, a few pseudo-ops do need to be
dealt with because they are used extensively within this book.

This allows the pro
The EQU Equate Directive grammer to define a

label with a specific
numerical value. For instance:

NULL

TRUE

FALSE

SPACE

EQU

EQU

EQU

EQU

0

1

0

32

Most assemblers even allow you to define one label in terms of anoth
er, or in terms of a numeric expression:

BASE EQU

STRUCT EQU

10

4+BASE

None of these EQU type definitions cause the assembler to create any
code. All that happens is that the definition supplied gets noted inter
nally and from that point on the programmer is free to use the label
wherever they would otherwise have needed to use the appropriate
numerical value. Other advantages, in terms of program maintenance,
also exist because if you alter a label at the front of a program that
new definition is theri automatically updated wherever the label has
been used.

Storage Allocation Directives
All assem biers
recognise a set of
directives which

allow you to reserve specified amounts of memory and initialise loca
tions, or sets of locations, to particular values. It is usually possible to
specify bytes, words or long word allocations by appending the appro
priate.b, .w, or .I suffix to a directive. A ds (define storage) directive,
when written as <ls.I, allocates space for a number of four-byte (long

Amiga Insider GNide .

word) values. To reserve four bytes of uninitialised space for a variable
called _IntuitionBase we could use:

_IntuitionBase ds .l 1

Directives are also available for placing constant values in memory.
The following statement uses dc.b, the byte form of a define constants
directive, to store the numerical equivalents of the characters "intu
ition.library" plus a terminal NULL (zero) character in a set of memory
locations whose start address has been labelled as "intuition_name".

intuition_name dc .b ' intuition.library', NULL

Insider Guide # 10 - ASCII CODES
All microprocessor data is represented by numbers and

so, to develop text-oriented programs, it has been necessary
to devise codes whereby each character is represented by a
number. Several schemes have been developed but the one
used more than any other is called the American Standard
Code for Information Interchange (ASCII). ASCII text files
are so called because they use the ASCII code values to

represent text characters.

41 hex • 181 8181 bin • •ff•
42 hex • 181 8111 bin = ·e·
43 hex • 181 1111 bin = ·c·

Most assemblers assume
Operands and Addresses that all numbers are dec-

imal numbers unless
otherwise stated but can accept binary, octal, and hexadecimal num
bers if suitably identified. The $ sign, for instance, is frequently used
to specify hexadecimal numbers. Modem assemblers offer great flexi
bility in terms of the complexity of the numeric expressions they
accept and many provide multiplication, division, addit ion, subtrac
tion, logical operations, use of parentheses etc. Assemblers which sup
port the generation of floating point co-processor code also provide for
the use of floating point constants.

ASCII character constants, as illustrated in the previous section's dc.b
directive example, are also allowed with quotes or double quotes being
used to delimit the start and the end of the set of characters.

--------··---------

Amiga Insider Guide

You frequently find that particular
Macro Assembly sequences of instructions crop up again

and again. Macro 68000 assemblers,
such as Charlie Gibb's A68k and HiSoft's Devpac, allow you to assign
names to such instructions sequences so that when the name is
encountered the assembler automatically expands it to produce the
original set of instructions. Nowadays this facility is not restricted to
predefined, absolutely fixed, instruction sequences - macros can be
used which contain parameter placeholder markers. When the macro
is used the parameters provided for that particular use instance are
inserted into the code that is generated. Macros allow assembly lan
guage programming to be done at a significantly higher level than was
previously possible and they are in fact an essential part of Amiga
assembly language programming. A great many pre-defined macros
have been made available to the programmer in the Amiga system
header files and you'll find a number of examples of how such macros
are used later in the book.

Don't, incidentally, make the mistake of thinking that macros are the
same as subroutines because they aren't. The big difference is that
each time a macro is used the corresponding code is inserted at that
point in the source file . A subroutine, on the other hand, only physical
ly exists in the one place within the source file but the code itself may
be called many times.

Most assemblers provide
Conditional Assembly directives which allow speci-

fied parts of a program to be
assembled, or not assembled, depending on specified conditions. For
instance the single standard start-up code source file provided by
Commodore includes changeable constant declarations which allow
the automatic generation of a number of different start-up module
versions. Programmers often include debugging code in their pro
grams but conditionally remove the relevant sections of code in the
released versions of their programs.

I've tried to protect you
If You're Having Trouble from as many of the

technical nasties as
possible but in case you are finding things hard going let me stress
that you do not need to either remember, nor understand, everything
that has been dealt with. Indeed some of the topics will only really
begin to make sense once you have some practical experience under

Amiga Insider GNide

Insider Guide # 11 - Program Layout
Assemblers only really need single spaces to be able to

distinguish between the various fields present in an assembly
language program line and so it is quite permissible to type

in code lines in this format:

OpenLib move.l library_name,a1 get library name

Most programmers do however use either tabs or extra spaces in
order to make the listings look tidy and you should do the same.

If the listings look neat they'll be easier to examine, and you'll
make fewer mistakes. This is how program lines are displayed

in this book:

OpenLib move.I library_name ,a1
move.I _IntuitionBase,a6

+
tab to here

get library name
get library base value

+ tab to here

By default the assembler expects the label to occur at the
start of the line and if the above lines were laid out in the

following fashion:

<space>OpenLib 1ove . l library_name,a1 get library name

<space>move.l _IntuitionBase ,a6 get library base value

the assembler would think that OpenLib was meant to represent a
68000 instruction and report an error. Similarly if a program line
which does not use a label is written so that the instruction itself

starts at the beginning of a line like this:

OpenLib move.I library_name,a1

move.I _IntuitionBase,a6

get library name

get library base value

the assembler thinks that move.I represents a label and again
generates an error message. Shifting the second line of the

above example to the right either by one or more spaces or by
a tab so that the move.I instruction no longer starts at the

beginning of the line eliminates the error.

Amiga Insider Guide

your belt. So, just carry on with the subsequent chapters and refer
back to these early chapters, to consolidate or add to the things you've
already picked up, as and when necessary.

--------··---------

Amiga Insider Guide

the letters A-F. Each column in a base 16 number therefore represents
some power of the base. For example the decimal number 16 itself is
written as 10 hex, because:

10 hex = 1x161 + Ox 160

16 + 0 = 16 decimal

Similarly 1 F hex would be:

1F hex = 1x161 + 15x160

16 + 15 = 31 decimal

The fact that the bases of the binary and hexadecimal numbering sys
tems are power related (2 to the power of 4 equals 16) allows one
hexadecimal digit to represent four binary digits. Best of all, the bina
ry-to-hex conversion process is very easy to understand once you've
learnt the following table:

binary hex

0000 0
0001 1

0010 2

0011 3

0100 4

0101 5

0110 6
0111 7

1000 8

1001 9

1010 A

1011 B

1100 c
1101 D

1110 E

1111 F

To convert a hexadecimal number into binary form you just replace
each hexadedmal digit with its group of four binary digits. To convert
a binary number to its hex form you peel off (from right to left) groups
of four bits and replace them with the corresponding hex digit!

-----·-----

Amiga Insider Guide

So, to convert CF hex to the binary equivalent you'd replace each of
the two hexadecimal symbols with the binary equivalents:

CF hex = c F

1100 1111 = 11001111 binary

To go the other way you take groups of four bits from the binary num
ber and replace then with the corresponding hex digits. The binary
number 1111000010101010, for example, could be translated to hexa
decimal form as follows:

1111000010101010 = 1111 0000 1010 1010

F 0 A A = FOAA hex

Using (and converting between) binary, hex and decimal number sys
tems is not that difficult but it does take practice. Familiarity with hex
and binary number forms is also essential for understanding how the
bitwise logical operations provided by both microprocessor instruc
tions and high-level languages work. For instance, logical AND and
OR instructions for instance, which I'll assume you know about from
languages such as BASIC, perform operations based on these two
truth tables:

x
0

1

0

x
0

0

1

y

0

0
1

1

y

0
0
1

1

X AND Y
0
0 Logical AND Operation
0
1

X OR Y
0
1 Logical OR Operation
1

1

Being able to picture in your mind what these tables mean is a big
advantage. If you AND two operands together then only those bit posi
tions where both operands have a bit set to 1 will produce a 1 in the
result. With the OR operation you'll get a 1 in the result when either
(or both) of the bits in that position in the corresponding operands are
set to 1.

----------···----------

Amiga Insider Guide

The bit pattern for FO hex for, instance, is 11110000 so ANDing any
value with FO hex forces the lower four bits of the result to zero. The
value FO hex is called a mask because it masks out certain bit posi
tions. The OR operation is equally useful because it can force bit posi
tions to take particular values.

Insider Guide #12 - Truth Tables
You don't need to panic because a truth table is just the possible

input and output values of some, usually simple, logical operation,
laid out in an easy-to-use table form. Let's take an example - the
logical AND operation as applied to the bits of binary numbers.
As you know, each digit of a binary number, since it is a base 2
number system, can only take one of two values: 0 or 1. ANDing

is a fu nction that effectively says: 'Take any combination of these
possible input values (which we'll label as X and Y) and if both are

true (1) then my output value is true (1), otherwise my output value
is false (0)."

How many different possibilities present themselves for applying
this AND operation and what results do you get with each case?

If you experiment you will find that there are just these four

INPUTS
x y
0 0

0

1

1

1

0

1

Input Y

possible combinations:

OUTPUT
X and Y

0

0

0

1

Input X
: 0 1

----~----------

These values represent the AND
operation's truth table.
By convention, however, truth
tables are usually provided in a
rather different form known as a
matrix representation. In this case
the inputs are shown as row and
column headings with the results
forming the entries in the main
body of the table like this:

0 : 0 0
: ... ~--- Results of Logical ANDing

1 : 0 1
I

I I~ I (I

Amiga Insider Guide

---------·---------

One of the easiest ways to comes to terms with
68000 assembly language programming is to look

at some programs and so this is exactly what we
shall he doing in this chapter.

T he good news, as far as this chapter is concerned, is that
it brings us to the point where we can actually start
looking at some assembly language programs. Before

we do this however I'd better give you a few words of warning,
just in case you are expecting to dive straight into the world of
Amiga graphics and multitasking.

The plain truth of the matter is that to explain the purposes of
a lot of the 68000 instructions we are going to need to start
with very simple examples containing only a few instructions.
Unfortunately such simple programs, by definition, tend not to
do very much. In fact the programs that we'll be dealing with in
this chapter don't even have any visible output when they are
run.

On the face of it, the prospect of spending time examining pro
grams that add two numbers together, or copy a few bytes
from one set of memory locations to another is hardly likely to

Amiga Insider Guide

instill a burning desire to learn about the 68000. Nevertheless this
chapter useful because it illustrates a number of important 68000
instructions. Granted they may not seem important within the context
of the programs in this chapter but be patient - these examples have
been chosen so as to illustrate the operations that you'll be expected to
know about once we get into proper Amiga 68000 programming.

Since the examples provided have no output there is, to be honest, lit
tle point in assembling and running the programs. Because of this I've
left discussions of the practical issues of assembly until Chapter Nine
where we do create a program that does something. The best idea for
the moment is to work through the material provided, and just think
about the examples in relation to the things you've picked up so far.
You may also find it useful to refer to Appendix A because this lists a
selection of commonly used instructions, along with additional details
of the 68000 processor's addressing modes etc.

Despite the simplicity of the examples it is however quite possible to
run the programs in this chapter from a Shell window. Users who
have access to an Amiga 68000 monitor/debugger program such as
Devpac's MonAm and, more to the point, are familiar with using it,
might find it useful to enter and run the odd example in single-step
mode. The program may have no visible output, but it is still possible
to see how the various instructions affect the state of the processor's
registers and flags.

I wouldn't recommend anyone to start struggling with a debugger pro
gram just for the sake of it. Debuggers are invariably most unfriendly
beasts, and you really need some coding experience under your belt
before you try using one. With that warning is out of the way, let's
look at some 68k code:

Data Transfer

is:

Data movement on the 68000 can be
achieved with move instructions. A num
ber of variants exist but the basic format

move.<size> source destination

Size values can be b (byte), w (word) or 1 (long word) but if the object
size is not specified then a word size (16 bit) is assumed by default.

You may remember from Chapter Five that I said that labels can be
used to identify memory locations and that this saves having to deal
with meaningless numeric addresses. Suppose then that we have

................................

Amiga Insider Guide

asked the assembler to set aside one byte of RAM and label it as loca
tion X. To move the contents of this location to the lowest 8 bits of
register dO we write:

move.b X,dO copy byte X to lowest 8 bits of dO

Similarly, to move the lowest 8 bits of register dO to a location which
has been labelled Y we could write:

move . b dO,Y copy lowest 8 bits of dO to Y

One way of initialising and/or allocating the above X and Y variables
would be to use the byte forms of the assembler's "define constant"
and "define storage" pseudo-ops, dc.b and ds.b like this:

X dc.b 10 allocate one byte and initialise it to 10

Y ds . b 1 allocate one byte but do not initialise it

If we put these fragments together we can build a program which
copies the pre-inititialised 1 byte value held in location X to location
Y. Notice the overall layout of the program - it starts with some
instructions which are followed by assembler pseudo-ops telling the
assembler that some storage space for variables is needed:

* Example CH7-1.s

START move.b X,dO copy byte X to lowest 8 bits of dO

11ove.b dO,Y copy lowest 8 bits of dO to Y

rts end of progr11

x dc .b 10 allocate one byte and initialise it to 10

Y ds.b 1 allocate one byte but do not initialise it

The program starts with X holding the value 10 and Y being unde
fined. After it has been run byte X still contains the value 10 but byte Y
also contains 10.

There was no particular reason why register dO was chosen - any of
the 68000's data registers (d0-d7) could have been used instead.

There is in fact a much easier way to achieve the above copy operation
because the 68000 allows you to transfer data directly from one mem
ory location to another like this:

move .b X,Y copy byte X to byte Y

This means that it's possible to eliminate the use of dO as a temporary
storage register in the above program and write this simpler version:

--------··---------

Amiga Insider Guide

Insider Guide # 13 - Additional Info
Nowadays most assemblers initialise ds.x statements to zeros

but, for consistent documentation, it is best to assume that such
initialisation is not done. If you really want to initialise byte Y

to zero choose the dc.b 0 pseudo-op.

clr. l dB
rt• •nd of progr•"
" yOat• dc.b 18#2.4.3,S.6.24,79,8
HvT•xt dc.b 'Juat so" • •M•"Pl• text',NULL
HySp•c• ds.b ~
HvZ•roSPac• dc.b B,8~8

The rts (return from subroutine) instruction at the end of the
code is used in these examples to return control back to the

Amiga's operating system. Don't worry at the moment about
understanding what is does, as we'll deal with those issues later.
Strictly speaking even these simple programs should terminate

with register dO set to zero (achieved by using a move.I #0, dO or
a cir.I dO instruction just before the rts). But, for simplicity's sake,

this Amiga-orientated operation has not been included in these,
otherwise general, discussions.

* Example CH7- 2.s

START move.b X,Y copy byte X to byte Y

x
y

rts

dc.b 10

ds.b 1

allocate one byte and initialise to 10

allocate one byte but don't initialise

When move is used to copy a piece of data the instruction, providing
the destination is not an address register, generally affects the flags in
the user-byte 68000 status register. These flags are variously called the
user-byte flags, condition codes, or the status byte flags. In this book I've
used the term status byte flags. With move instructions the Zero (Z)
and Negative (N) flags are set to an appropriate state whilst the
Overflow (V) and Carry (C) flags are cleared.

Now that you've seen how to move 8 bit values you'll be pleased to
know that you can move word (16 bit) and long word (32 bit) values
just as easily. The following version performs a word (two byte) copy.

* Example CH7-3.s

START move.w

rts

x
y

dc.w 10

ds .w

X,Y copy word X to word Y

allocate word and initialise to 10

allocate word but don't initialise

Amiga Insider Guide

Since instructions assume a word size by default it is not necessary to
include the '.w' size indicator on the move instruction. Example CH7-
3.s could therefore just as easily have been written as:

* Example CH7-4.s

START 11ove

rts

x,v copy word X to word Y

x
y

dc.w 10

ds.w 1

allocate word and initialise to 10

allocate word but do NOT initialise

Insider Guide #14 - Word Storage
Since two bytes are needed to store a word value, and since each

byte has an individual address, you might be wonder ing what
address the assembler assigns to the word variables. On the 68000

Amiga system words are stored in memory as shown below.

$nnnnnnnn+1

X = $nnnnnnnn

TOP OF MEMORY

t
low byte

high byte ~this must be an
EVEN address

t
LOW MEMORY

Above: 68000 storage of words in memory

'

I

I I~ I (I

Amiga Insider Guide

Insider Guide #15 -Long Word Storage
Four bytes are needed to store a long word value and, on the

68000. these items are again stored in a particular order. just as a
word can be expressed in terms of an upper and lower byte so we
can consider a long word as containing an upper and lower word:

32 bits = 16 bits 16 bits
<long word value> = <upper word> <lower word>
The 68000 stores the word components of long words in the same
way as it stores the byte components of ordinary (16 bit) words, ie
it stores the bytes of the most significant word first. The net result

is that long words are stored in memory as shown below.

$nnnnnnnn+3
$nnnnnnnn+2
$nnnnnnnn+1

X = $nnnnnnnn

TOP OF MEMORY

t
low byte
high byte
low byte
high byte

1---------4

LOW MEMORY

lower word

upper word
~must be an

EVEN address

Above: 68000 storage of long words in memory

BEFORE YOU LOOK at the following solution, try to change program
Example CH7-4.s to produce a long word version. Here's the result you
should obtain:

* Exa~ple CH7-5.s

START move.l X,Y copy long word X to long word Y

rts

----------·----------

Amiga Insider Guide

x
y

dc.l 10

ds.l 1

allocate one long word and initialise

allocate uninitialised long word

In transferring data from one set of locations to another, Example
CH7-5.s used absolute addressing- remember the X and Y labels used
in the move.I X, Y instruction represent numerical addresses. Another
way of writing the programs that we've just been looking at is to
reserve uninitialised memory space for both the X and Y variables and
then explicitly initialise the X variable when the program is run. The
following example uses an additional immediate addressing move
instruction to load variable X with the value decimal 10. By conven
tion immediate addressing on the 68000 is signified by placing a hash
(#)sign in front of the operand:

* Example CH7-6.s

START move.! #10, X initialise long word X to 10

x
y

move.! X,Y copy long word X to long word Y

rts

ds.l 1

ds.l 1

allocate uninitialised long word

allocate uninitialised long word

You can see from the instruction code summaries provided in
Appendix A that the move instruction is unable to transfer data to an
address register. In actual fact a specialised form of the move instruc
tion - called movea (move address) - is available for this purpose and
there are a number of differences between move and movea.

Firstly, like most direct address register instructions, movea can only
operate on word or long word values. Secondly, movea does not affect
any of the processor's flags - for address-orientated operations, this is
a convenience not a limitation. Lastly, movea sign-extends any word
values it is working with. This means that the uppermost bit (bit 15 of
the word) is propagated throughout the upper 16 bits of the address
register. Sign extension was introduced on the 680x0 series to allow a
form of absolute addressing based on word addressing to be used (as
opposed to a full long word address) and you can find additional
details in Appendix A.

Although it is not a good idea to use address registers for such purpos
es we can write a word (16 bit) version of our original Example CH7-
l.s data copying program like this:

----------·----------

* Exa•ple CH7-7.s

START •ovea.w X,ao

x
y

• ove.w

rts

dc.w 10

ds.w 1

ao ,v

Amiga Insider Guide

copy X to lowest 16 bits of ao

copy lowest 16 bits of ao to Y

allocate one word and initialise

allocate one word

Data Transfer Using Address Registers

As it happens most 68000 assemblers do allow you to use the move
mnemonic when specifying an address register. Program Example
CH7-7.s actually can be re-written as:

* Example CH7-8.s

START move .w

x
y

11ove .w

rts

dc.w

ds .w

x,ao
aO,Y

10

copy x to lowest 16 bits of ao

copy lowest 16 bits of ao to Y

allocate one word and initialise

allocate one word

In this last example the assembler automatically inserts a movea
instruction for loading register aO and this means that, unlike data
register loading operations, the address register loading operation
does not affect the processor's status flags. More subtle differences can
also occur as this example shows:

~ Example CH7-9.s

START •ove .w

x
y

raove.w

rts

dc.w

ds.w

x,ao
ao,v

$FFFF

copy X to lowest 16 bits of ao

copy lowest 16 bits of ao to Y

allocate one word set to FFFF hex

allocate uninitialised word

Here we are using a word data value which includes a I in the upper
most position (FFFF hex = 1111 1111 1111 1111). Because the first
instruction is really a movea, and because the sign bit (bit IS) of the
word $FFFF is set high then the value that movea transfers to register
aO is FFFFFFFF hex, and not FFFF hex.

Amiga Insider G"ide

Since the program only copies the lower 16 bits of the register back to
location Y this doesn't affect the result in this case. But the instruction
has, of course, affected the upper 16 bits of the aO register in a way
that the related data register version of the program would not do.

Most 68000 coders soon get used to the flag and sign extension impli
cations of address register usage, use the move mnemonic for both
data and address orientated instructions, and let their assemblers
decide on the correct object code instruction.

Complementing a number
Complementing a Value means turning all the 1 s

present in the number, to
Os and turning all the Os to ls. If, for example register dO contained the
value:

dO = 0000 0000 0000 0000 0000 0000 0000 0000 binary

= O 0 o o o o o 0 hex

then the complemented value is:

dO = 1111 1111 1111 1111 1111 1111 1111 1111 binary

= F F F F F F F F hex

Try and confirm for yourself that, if dO = 1FO1 hex, then after a long
word (32 bit) complement operation dO contains EOFE hex. Write 'out
each hex digit in the binary form as above, invert all the bits, and then
translate the answer back to hexadecimal form.

The 68000 instruction which performs this operation is called NOT
and, like many other instructions, it exists in byte, word and long word
forms. Here's a short program which uses immediate addressing to
load dO with the byte value OF hex, inverts it, and then stores the result
in a location whose symbolic name (ie its label) is RESULT

* Example CH7·10.s

START 11ove . b #$F ' dO initialise low 8 bits of dO to F hex

not.b dO invert lower 8 bits

move.b dO,RESULT copy inverted dO to RESULT

rts

RESULT ds. b 1 allocate one byte

As was the case with the earlier examples the 68000 allows us to elimi
nate the use of a temporary storage register by using the not.b instruc
tion directly on a memory location:

Amiga Insider Guide

* Example CH7-11 .s

START move.b #$F, RESULT store value directly in RESULT

not.b

rts

RESULT ds .b 1

RESULT invert value

allocate one byte

In the above example the not.b instruction is using absolute address
ing. In the previous example the register addressing form was used.

The 68000's basic addition instruction uses the syn

Addition tax:

add<.size> source , destination

where the result of the "source plus destination" addition gets placed
in the destination register. This feature is common to a great many
68000 instructions that work with two operands.

So far the instructions we have looked at have allowed source and des
tination operands to be either in registers or memory. Not all 68000
instructions are that flexible and in fact the 'add' instruction only
allows one of its operands to be in memory. You may add the contents
of a register to a memory location, or do the reverse - add the contents
of a memory location to a register. What you cannot do, however, is
add the contents of one memory location directly to the contents of
another.

This limitation means that for this instruction we need to use a tempo
rary register much as we did with our early data copying examples.
The following example loads register dO with a number contained in
NUMBER! and then adds it to the contents of the memory locations
represented by the label NUMBER2. After the program has been run
the variable NUMBER2 contains the value 7.

* Example CH7-12.s

START move.I

add . l

rts

NUMBER1 dc.1 3

NUMBER2 de. 1 4

NUMBER1 ,d0 load 1st number into dO

d0,NUMBER2 add contents of dO to NUMBER2

set init ial value to 3

set initial value to 4

Amiga Insider GNide

Until now I've mentioned the byte, word and long word forms of vari
ables but have not said anything about when the various forms should
be used. As far as data items are concerned the unwritten rule for the
assembler programmer is the same as for the programmer working in
any other language, namely to conserve as much memory as possible
and not to waste it by allocating unnecessary space.

Have a look at the internal contents of the two four byte numbers used
in the previous example:

byte 3 byt e 2 byte 1 byte O

NUMBER1 00000000 00000000 00000000 00000011 deci111l 3

NUMBER2 00000000 00000000 00000000 00000100 decimal 4
(before)

NUMBER2 00000000 00000000 00000000 000001 11 deci11al 7
(af ter)

Both NUMBERs and the final result fit comfortably into an eight bit
byte so, in all honesty, we did not need to use long word size variables,
bytes would have done. Here then is an improved version:

* Example CH7-13. s

START move.b NUMBER1,d0 load 1st number i nto dO

add.b d0 , NUMBER2 add contents of dO t o NUMBER2

rts

NUMBERf dc .b 3

NUMBER2 dc.b 4

set i nitial value to 3

set i nitial value to 4

Only two bytes of variable storage space are needed instead of the
eight used previously and the byte-orientated forms of the instructions
execute more quickly as well. Programmers would therefore say that
this new version of the program was "more memory efficient", or just
"more efficient" than the previous one.

Now let's try
Putting Some Pieces Together something a lit-

tle more com
plicated. We'll set up some space for a long word variable called NUM
BER!, initialise it using immediate addressing to some arbitrary value
(I've used lFFFFF hex), increment it by 1, complement the result, and
then store it in a variable called RESULT. Here's one program that
does the job:

Amiga Insider Guide

* Example CH7-14.s

START move.I #$1FFFFF , NUMBER1 initialise number

NUMBER1

RESULT

move . I

add.I

not.I

move.I

rts

ds.l 1

ds.l 1

#1,dO load dO with value 1

NUMBER1 ,d0 increment dO copy of NUMBER1

dO complement result

dO, RESULT

space for number

space for result

Depending on what was actually required there are many ways that a
program similar to the above could have been written. It might, for
instance, have been appropriate to place the original value directly in
the locations assigned for the result, and do the addition and comple
ment operations on the result locations like this:

* Example CH7-15.s

START move.I #$1FFFFF,RESULT initialise number

RESULT

addi.l #1,RESULT

not . 1 RESULT

rts

ds . l 1

increment value

complement result

space for result

In the above example a special form of the add instruction, addi, is
being used. This allows an immediately addressed source operand (in
this case 1) to be added directly to the destination operand. If you take
a sneak preview of the add addressing mode details in Appendix A
you'll find that the normal add instruction couldn't have been used in
Example CH7-15.s because, to use immediate addressing, the destina
tion needs to be a data register.

However, as is the case with a number of instructions, most 68000
assemblers do let you write statements such as:

add.I #1,RESULT increment value

and then automatically translate the instruction to

addi . l #1,RESULT increment value

so program Example CH7-15.s can be re-written as:

------·------

Amiga Insider Guide

* Example CH7-16 .s

START move.I #$1FFFFF,RESULT initialise number

add.I

not.I

rts

#1,RESULT

RESULT

increment value

complement result

RESULT ds.l 1 space for result

For immediate operands within
Quick Instructions limited ranges the 68000 offers a

number of quick instructions.
Instead of using real immediate addressing - where the operand is
placed immediately after the op-code in memory - these instructions
have a data value buried in the instruction op-code itself.

The moveq instruction, for example, uses a data register as the desti
nation and allows 16 bit operands to be specified. It does, however,
sign extend the data to long word size.

To load register d2 with the value 23 for instance we can write:

moveq #23,d2 load d2 with value 23

Add and subtract quick instructions also exist although these only
allow immediate data in the range 1-8 to be specified. To increment by
4 the contents of a memory location whose address has the symbolic
name RESULT we might, using absolute addressing, write:

addq #4,RESULT

If we choose to load the address of RESULT into register al we can
use the 68000's indirect addressing scheme instead to specify the desti
nation address:

11ove. l

addq

#RESULT ,a1

#4, (a1)

load a1 with address of RESULT

add 4 to contents of the byte
"pointed to" by register a1

where the destination operands (An) notation is the 68000 assembly
language form for specifying an indirect address.

Another method of loading register a l with the address of the
RESULT variable is to use the more specialised Load Effective
Address (lea) instruction. If this is done with the above fragment the
code ends up looking like this:

lea

addq

RESULT , a1

#4 , (a1)

Amig11 Insider Guide

load a1 with address of RESULT

add 4 to contents of the byte
"pointed to" by register a1

The earlier loading of the address of the RESULT operand into al
using an immediate addressing move instruction served us well
enough but, in general, the lea instruction is a far more flexible alter
native and much more use is made of it later on in the book.

----------··---------

In this chapter you will, believe it or not, be
writing your first assembly language Intuition
program. In order to do this it is essential to
learn a little about the Amiga libraries first.

4 other ,..,.

T
his chapter contains another subject that can be diffi
cult on first encounter but though previously I've sug
gested you skip any issues that seem awkward and

return to them later - with this chapter you must persevere.
Read it, think about it, sleep on it, read it again, but whatever
you do ... don't give up! The material in this chapter is, at least
as far as the Amiga assembly language newcomer is concerned,
absolutely vital.

A library, in the conventional programming sense, is just a col
lection of pre-written routines. The idea is that by supplying a
set of ready-made routines for all commonly needed tasks the
programmer is saved time and effort because he or she doesn't
need to re-invent those routines.

I

Amiga Insider Guide

It sounds straightforward but, for the Amiga programmer, libraries
can be the source of much confusion simply because the term is used
in a number of different contexts. Your assembler, for instance, may
have its own libraries of standard functions which are used at the link
ing stage of program assembly. These linker libraries are just disk files
of useful functions arranged in a special, easily linker-accessible, for
mat. When a reference to one of these functions is used within a pro
gram it causes the construction of an equivalent unresolved reference
in the intermediate object code file. At link time the linker must, with
some guidance from the programmer, find the library file that con
tains the function and physically copy it into the program being creat
ed. One example of a linker library which you may have already heard
of, is the amiga.lib library.

The Amiga also uses another type
Run-Time Libraries of library based on a dynamic

Exec library system. Exec inci
dentally is the part of the Amiga operating system that handles a lot of
the housekeeping jobs such as multi-tasking. We won't be looking
inside Exec at all in this book - it is an extremely complicated piece of
software - but we will be using its library facilities. Exec style libraries
do have one thing in common with linker libraries in that they exist
quite separately from the applications programs which use them.

That is where the similarities end because whereas linker library code
gets added onto the assembled program at the linking stage, ie before
the program is turned into runable form, these Exec-style run-time
libraries exist separately and never form part of the real program code
at all. The libraries are written in a way which allows any number of
different programs to use them simultaneously (or at least appear to
do so within Exec's multi-tasking framework) and this obviously
makes them much more flexible and efficient. It is the use of these
"run-time libraries" that forms the subject matter for this chapter.

At the risk of causing temporary confusion I now have to tell you that
Exec itself is also effectively organised as a run-time library. Naturally
it offers a set of library functions which programmers can use. In fact
some of these Exec routines are actually used to open and close other
run-time libraries.

Programs tell Exec that a library is
Opening a Library needed by attempting to open that

library using an OpenLibrary()
function. When such a call is made Exec does several things. It search-

Amiga Insider Guide

es its lists of libraries which are already open and available. If the
library is found then Exec simply returns the address of the library
and makes an internal note that another program is now using it.

l nsUler Guide #16 - Where have all the functions gone?
On less sophisticated computers, especially early eight bit

machines, the location of various system functions was fixed
because the routines were pre-programmed into a ROM chip and
their addresses were therefore static. On the Amiga things have

changed and to all intents and purposes you won't know, until the
time you come to use a library, whereabouts its functions are. Some

libraries are currently positioned in read only memory (ROM),
others may be available in RAM because they've been loaded during

system start-up, but many actually remain on disk until the first
applications program indicates that it needs a particular library.

1 wor1tri.e n c " 'li> C r e •n

• .M!. i' ··~·"rrtt~:.: b. = --1•f11:'41•. Ultr•ry i~ 11=· lt'=i~ l lbr•ry C~ 1• ~f~~.H
Mork

I
a'fli:~c 11 t.br•rY ?JjSf.Al. Tt! .. ~~··• - ~ fXP I illbr•ry "·iEt~==• u f=~~" t • ":Ip• bvi£~ons. ubror• 1· ••• ,,,. "'Tf. · ~~, Mor--rte• I! ::ES='•· ·~71!~:::"" : =~~:..: : . l ':~::,,

•. ,mm!Z~flb•••• ~=~T:l:~f'l[.:.!J.~rary

If the library is not already open, Exec passes on the request to
AmigaDOS asking it to look for, and then load, the specified library.
AmigaDOS looks in the LIBS: logical device - if you boot from the
Workbench disk, for instance, then this logical device will have been
assigned to SYS:LIBS, ie the LIBS directory of theWorkBench disk. If
AmigaDOS finds that library it loads it and tells Exec where it has
been placed.

Exec then records the fact that the library is now available by adding it
to its list of available libraries. Exec never attempts to remove these
library modules whilst they are in use. Should the last user of a partic
u1ar active library indicate that they no longer need access to the rou
tines - which they do by executing a CloseLibrary() function - Exec's
library manager may then remove the memory copy of library and
release the associated memory so that it is free for other use.

As all this happens a lot of complex operations get carried out but the
good news is that you don't need to worry about this at all. As far as an
applications program is concerned, most of these operations are trans
parent and this is so even at the assembly language programming
level. All a program has to do to use a given library is open it using the

Amiga Insider Guide

Insider Guide #17 - Failed Open Library Calls
Why does a library fail to open? The system might not have been

able to find it on disk, the specified version might not be available,
the programmer might simply have spelt its name wrong within the
program, or the system might even be running out of memory and

have insufficient space to load a new library.

The important point is that you
must not make any library func
tion calls unless you have got a
valid base pointer or you will
doubtless get a visit from the

Amiga guru!

Insider Guide #18 -An Important Exec Function
Function Name: OpenLibrary()

Description: Open a run-time library

Call Format : base_address =
OpenLibrary(library_name, version);

Registers:

Arguments:

DO A1 DO

library_name - the address of a null
terminated string

version - a library version number

Return Value: base_address - the address of the base of
the library . If the library could not be
opened a NULL value is returned.

Notes : User must not attempt to use any library
functions if this function did not succeed.

?

Exec OpenLibrary() function , and then use the library routines in
much the same way that the OpenLibrary() function was itself used.

Amiga Insider G•itle

Insider Guide # 19 - Another Exec Masterpiece
Function Na•e:CloseLibrary()

Description: Close a previously successfully opened
library

Call Format: Closelibrary(base_address);

Registers: A1

Argu•ents: base_address - the library base address

Return Value: None

Notes: User •ust not make library calls to a
library after it has been closed .

The only thing which the applications program must do is ensure that
the OpenLibrary() call was successful and it does this by checking that
the address returned is non-NULL - ie not zero. If the address
returned has a zero value then the system has failed to open the
library.

If an applications program follows this protocol it never needs to con
cern itself with where the routines are in memory, npr with the fact
that other programs may also be using the same routines. This makes
for an extremely powerful and flexible library system and there's no
doubt that much of the Amiga's power has stemmed directly from its
run-time library arrangements.

I've already mentioned that
A Sneaky Exec Trick the first stage in using a

library is to open it by using
the Exec OpenLibrary() function. You may now be wondering how it
is possible to open the Exec library in the first place. The simple
answer is that you do not need to because the Exec library never has
to be opened. Exec's base address, known conventionally as SysBase,
is permanently available because it is stored in the long-word memory
location whose first byte is at location 4. The four bytes which make
up this long word location are called AbsExecBase and, because this is
loaded with a pointer to the Exec library during system start-up, the
Exec library is always alive and kicking from the word go.

Amiga Insider G11ide

By convention the base
Making a Library Call address of the library is placed

in register a6. An indirect sub
routine call is made using the appropriate library vector offset (LVO)
value to specify the routine to be executed. Indirect subroutine calls of
this type are very important on the Amiga and they're used because
the arrangement is connected with the way the Amiga library func
tions are accessed internally (the explanations of which involve some
pretty advanced topics including the use of things called jump tables
which are not going to be discussed).

Insider Guide #20 - The Importance Of Being a6
You might be forgiven for thinking that any register can be used to
perform indirect library routine calls. This is most definitely not the
case and there is a strict system convention which says that register

a6 must be used. Why? It's because many library functions call
other library functions in order to carry out their work.

When this is done the function
doing the nested library call
must also follow the system
conventions and provide a

library base address. By conven
tion it expects it to be present in
register a6. Exceptions to the a6

rule do exist but, to be honest, it is safer if you forget about any
special cases and regard the a6 rule as absolute!

What happens, as far as the indirect subroutine call with displacement
is concerned, is that the address in the specified address register gets
added to the specified LVO function call displacement and this pro
duces a destination subroutine address that leads us to the right
library function. Regard it as magic, if you like, but don't go looking
too hard for in-depth explanations until you have a good understand
ing of the material covered in this chapter!

As far as writing library opening code is concerned we are virtually
there. I've already mentioned that in the case of the Exec library the
base address is already available - it can be loaded directly from mem
ory using AbsExecBase. The bare bones code for an OpenLibrary()
Exec call can therefore be written like this:

move.I _AbsExecBase,a6 get base address of Exec library

jsr _LVOOpenlibrary(a6) make the indirect subroutine call

Amiga Insider Guide

Before this sort of code can be executed it is necessary to set up any
parameters which the library function needs. If you look back at the
OpenLibrary() function you'll see that it needs a pointer to a library
name in register al, and a version number in dO. For the moment we'll
be setting the dO to zero because this tells Exec that any library ver
sion will do.

Library Vector Offset (LVO) Values
L V 0
of f set
values

can be acquired in a number of ways but for the moment we'll be
putting LVO definitions at the start of our programs because it is easi
est. You will find an abbreviated set of tables in Appendix B and from
the Exec entries you'll see that the LVO value for the Exec
OpenLibrary() function is -552 or -0228 hex. The assembly language
programmer is therefore quite at liberty to define the displacement in
this fashion:

1ove . l _AbsExecBase, a6 get the base address of Exec library

jsr ·552(a6) 1ake the indirect subroutine call

The trouble with this latter approach is that you lose the inherent doc
umentation that the LVO references provide. Let's face it, the number
-552 will not tell you what library call is being made unless you've
memorised all of the LVO tables. The reference _L VOOpenLibrary is
much more meaningful.

Insider Guide #21 -A Below Average Score?
You may have noticed in the code fragments used that AbsExecBase

and the LVO value have underscore prefixes. This stems from an
internal C language convention and the underscore used in all

assembly language forms has been introduced simply to provide
compatibility between C and assembler header files and code. Not

all programmers use these underscore arrangements but it's a good
habit to cultivate because it'll be useful when you come to more

advanced coding.

Amiga Insider Guide

Closing a Library is just as easy as
Closing a Library opening one. You use the same type

of indirect subroutine call, but speci
fy the CloseLibrary() function instead:

move.I _AbsExecBase, a6 get base address of Exec library

jsr _LVOCloseLibrary(a6) make the indirect subroutine call

The Intuition Library pro-
Putting It All Together vides a function called

DisplayBeep() which,
when supplied with a null (ie zero) address, causes all visible Amiga
screens to be flashed. What we're now going to do is put together all
the things we've learnt over the last few chapters and produce a pro
gram which causes your Amiga to flash its screen. We need to set up
the LVO definitions somewhere near the start of the program and this
means using some EQUate definitions:

_LVOOpenLibrary EQU -552

_LVOCloseLibrary EQU -414

_LVODisplayBeep EQU -96

Insider Guide #22 -A Beeping Good Routine
Function Name : DisplayBeep()

Description : Causes a screen to flash

Call Format: DisplayBeep(screen_address);

Registers: aO

Arguments: screen_address - address of screen to
flash

Return Value : None

Notes: Intuition flashes all screens if a
NULL screen address is supplied

INTUITION LIBRARY FUNCTION

Amiga Insider Guide

We also need to set up a text string representing the name of the intu
ition library. This name string needs to have a NULL (zero) at the end
of the real text characters because the system routines being employed
use that zero value to identify the end of the string (this is a very com
mon convention so you should get used to it). We also need a labelled
long word location to store the base address of the library in once it is
open. Here are the sort of pseudo-ops which do the trick ...

intuition_na•e dc.b 'intuition.library',NULL

_IntuitionBase ds.11

I'll be placing these at the end of my program. The real code - the stuff
that the assembler turns into executable instructions - comes between
these directives and the initial EQUate definitions. Talking of real code
let's identify a suitable plan of action. We've got to load the address of
the Exec library into register a6, set up the intuition library name
pointer and version details, and then make an OpenLibrary() call as
explained earlier. If the value returned in dO is not zero then the intu
ition library is open.

How do we test dO to check whether it contains a zero or not? Simple,
we use a move instruction to copy the contents of dO to the location
that we've set up to hold the intuition library pointer. If the library
does open successfully we need this pointer in order to perform the
CloseLibrary() routine before the program terminates.

It's important to realise that if, for some reason, the library doesn't
open then we can't use the Exec CloseLibrary() function because
there'll be no library to close. Similarly we can't make any intuition
library calls if the library didn't open. As you might guess this calls for
a bit of conditional testing and this is done is as follows: We place a
beq instruction immediately after we stored the OpenLibrary() return
value and branch in such a way that if the OpenLibrary() return value
is zero then we avoid executing both the DisplayBeep() routine and the
CloseLibrary() routine. As with previous examples this program is ter
minated with an rts instruction. Since we are now talking about a
truly runable Amiga with visible output, we'd better start following
another convention - clearing register dO before returning to system
level. The terminal dO state is actually used by system programs to
return an error code but this is another one or those areas which we
shall not be getting too involved with.

Well, you've had the theory and some explanation. All you need now is
the code itself, so here it is:

---------·---------

Amiga Insider Guide

* Example CH8·1.s

* uses the intuition library to ' beep ' the display

NULL

_AbsExecBase

_LVOOpenLibrary

_LVOCloseLibrary

_LVODisplayBeep

start 11ove.l

lea

moveq

open lib jsr

move.l

beq

open_ok move.l

move.l

jsr

move.l

move.l

jsr

exit clr.l

rts

_IntuitionBase

intuition_name

EQU 0

EQU 4

EQU · 552

EQU -414

EQU -96

_AbsExecBase, as get base address of
Exec library

intuition_name,a1 load pointer to
library name

#0,dO any version will do!

_LVOOpenLibrary(a6) make the indirect
subroutine call

dO,_IntuitionBase save returned pointer

exit did library open OK?

#0,aO flash all screens

_IntuitionBase,a6 need library base in
a6

_LVODisplayBeep(a6) make the indirect
subroutine call

_AbsExecBase, a6 get base address of
Exec library

_IntuitionBase,a1 library to close

_LVOCloseLibrary(a6) make the indirect
subroutine call

dO

logical end of program

ds . l 1

dc .b'intuition. library',NULL

This is the smallest example of an Intuition program that can actually
do anything visible. Needless to say, most Intuition programs are
much larger and much more complex than this.

----------·----------

Amiga Insider Guide

Having seen the code in this chapter you might be wanting to reach
for your assembler program, type out the code (or just copy the ready
made file from the book's accompanying disk,), assemble, link and
then run this little masterpiece for yourself. For all I know you might
have tried already with either this offering, or some similar program!

It is almost inevitable, the first time an assembler package is used, that
some snags crop up - call it life! To the newcomer these practical
problems often seem immensely difficult to solve, usually because
there's no one around to ask. This being so, perhaps a little practical
assembling help wouldn't go amiss and have no fears - it's exactly this
sort of advice. that you'll find in the next chapter ...

---------·---------

Amiga Insider Guide

---------·---------

Now is your chance to enter the world
of assembly language programming for just
a couple of quid. This chapter looks at an

assembler system that costs little more than
the price of a disk ...

T o write an assembly language program you need three
things: a text editor to create the source program, an
assembler to convert the 68000 statements such as ADD

and MOVE into the numerical form which the Amiga's proces
sor needs, and a linker which adds the final touches by creating
files that are loadable (runable). The linker can attach the
WorkBench start-up code, add any library routines specified in
the source code and is generally responsible for producing the
final, executable, program.

ED and MEMACS are two text editors which have been provid
ed as part of the Amiga system software for some time so all
Amiga users have access to at least these text editors. On the
assembler front the Amiga community has a program called
A68k and if you've obtained any public domain assembly lan
guage environments, or use NorthC/PDC or other public
domain C compiler offerings, then the chances are that you
already have A68k. With Steve Hawtin's NorthC compiler for

9
c
en -· :s

&a ,.
en m
~

m
:s
a.
m --· :s
~

Amiga Insider Guide

example you'll find A68k and Blink, and their documentation files, in
the bin directory. If you haven't got a copy of A68k and Blink then just
get in touch with your local Amiga PD library.

Now I know what you're thinking. If this assembler environment is
that cheap then there are bound to be problems with it. Right? Wrong
- both A68k and Blink are excellent pieces of software and, what's
more, they've been written by dedicated, professional, coders who
have gone out of their way to provide robust, well-supported, prod
ucts. For this we owe a debt of thanks to a number of people starting
with Brian Anderson and Charlie Gibbs.

The A68k story actually starts way back in the mid 80s when the Dr
Dobbs Journal published the source for a 68000 cross assembler
(called X68000) written in Modula 2 by Brian Anderson. Charlie Gibbs
took the X68000's ideas, translated them into C, and then used them
as the basis for an Amiga assembler. After adding many enhancements
(including macro and include file support and the difficult job of
adding relocation information) the package we now know as A68k was
born!

Nowadays A68k is available from almost all public domain libraries
and you are legally entitled to copy it for free. A68k, as just mentioned,
is found both as a separate package and as a component of many pub
lic domain high-level languages. Blink, the Amiga linker program, is
another brilliant piece of software that stands in the Amiga's freely dis
tributable Hall of Fame. It was written by a group of programmers
known as the Software Distillery whose members include the likes of
John Toebes and other famous names of the Amiga world.

The net result is that if you want to dive into some Amiga assembly
language programming you can do it virtually for free. There is a
minor stumbling block in that many of the code examples that you'll
find in magazines and books will have been created using Devpac but,
without detracting from the fact that Devpac is a superb 680x0 pro
gramming environment for serious users, there's no doubt that you
can make a start in 68000 coding without it.

One good thing about assembly language programming is that you
don't usually have much hassle in getting a published piece of code to
assemble properly. Unlike the environments for languages like C the
good news is that if a program can be assembled without errors on
one assembler the chances are that it can be assembled by other

.........................

Amiga Insider Guide

assemblers with little or no change - providing of course that no
assembler specific statements have been used.

With A68k any changes that are necessary will in fact be minor. A68k,
unlike some other assemblers, requires source files to contain an
explicit END statement at the end of the source code so this may need
to be added to a published listing. This is easily done by reading the
source file into any available ASCII text editor, moving to the end of
the text file and inserting a terminal END statement as the last line of
the source code.

Both A68k and Blink are sophisticated programs and the documenta
tion that comes with them is quite extensive - it is provided via docu
ment files which are always distributed along with these programs.
There are a great many command options available but it is worth
stressing that, on many occasions, only simple assembling and linking
command lines are needed.

To illustrate this I'm now going to work through the steps needed to
produce and run an A68k version of the program we created at the end
of Chapter Eight. Rather than clutter the initial explanations with
details of problems which may, in your particular case, not arise I've
chosen to deal with the potential snags and pitfalls separately. If dur
ing the following assembling and linking stages you do encounter a
problem just skip forward to these later sections for some additional
help.

Step One - Opening a Shell Window

ED, the Amiga text editor that we'll use to create the source file, A68k,
Blink and the final program that is going to be created, are all Shell
based programs so before we can do anything a Shell window must be
opened. Open your Workbench system drawer and double click on the
Shell icon. When the window opens you see this sort of prompt:

Workbench: >

indicating that Workbench is the current directory. For convenience
we want to use the Ram disk for our assembling operations so reset
the current directory by typing:

cd ra111 :

after the prompt. This now changes to:

Rani Disk: >

Amiga Insider Guide

At this stage it is convenient to copy the A68k and Blink programs to
the Ram Disk so that they are ready for use.

Step Two - Creating the Source File

To start ED from the Shell window type ED followed by the name of
the program to be edited or created. Assembler source files, by con
vention, always have a .s filename extension so I'm going to call the
file "ExampleCH9-l .s" and enter this command at the Ram Disk:>
prompt:

Ram Disk :>ED ExampleCH9-1.s

Feel free to call the program "test.s", or something similarly short in
order to save yourself some typing - I've only used ExampleCH9-1.s
for consistency since this is the name of the equivalent program as
stored on the accompanying Insider Guide disk.

With ED up and running all you now need to do is type in the source
code given at the end of Chapter Eight but add an additional END
statement to the listing. Keep to similar field placements but again, to
save typing, you do not need to include the comment lines or end of
line remarks. You should end up with a file looking something like
this:

* Example CH9-1.s

_AbsExecBase EQU 4

NULL EQU 0

_LVOOpenLibrary EQU -552

_LVOCloseLibrary EQU -414

_LVODisplayBeep EQU -96

start move . ! _AbsExecBase,a6

lea intuition_na•e,a1

moveq #0,dO

open lib jsr _LVOOpenLibrary(a6)

move.! dO, _ IntuitionBase

beq exit

open_ok move.! #0 , aO

move.! _IntuitionBase , a6

Amiga Insider Guide

jsr _LVODisplayBeep(a6)

11ove . l _AbsExecBase , a6

11ove.l _IntuitionBase ,a1

jsr. _LVOCloseLibrary(a6)

exit clr.l dO

rts

_Intui tionBase ds . l 1

i ntuition_na11e dc . b ' i ntuition.library', NULL

end

Check that you've entered the instructions correctly, select Save from
the ED Project Menu, and then quit the program (which returns you
to the Shell prompt). It is a good idea at this stage to make a perma
nent copy of the newly created source code file on a floppy or hard
disk just in case something goes wrong when you run the finished pro
gram.

Step Three - Assembling the Example Code

The created source file above is called ExampleCH9- l .s and is present
in the Ram Disk. The Shell command line needed to assemble the pro
gram is

Ram Disk :>A68k ExampleCH9-1. s

The case of the letters is not important and you could just have well
have entered

Ra• Disk: >a68k exa11plech9- 1.s

Either way A68k looks for the source code file, assembles it, and cre
ates an intermediate object code module. By default this has the same
name as the specified source file but it with a '.o' (for object file) exten
sion. If you want to produce an object file with a name different to its
source file - eg test.o - then it is necessary to add an additional com
mand line parameter using a -o prefix like this

Ra11 Disk:>A68k ExampleCH9-1. s -otes t .o

One way or the other then A68k produces an object file on the Ram
disk which can subsequently be linked using Blink.

Amiga Insider Guide

In the simple case where no
Step Four - Linking start-up code or linker libraries

need to be specified on the
Blink command line we just have to type ·

Ram Disk :>blink ExampleCH9-1.o

and this results in a Shell executable program called ExampleCH9- l
being placed on the Ram disk. Blink, by default, creates an executable
program whose name is the same as the supplied object code module
but with the '.o' suffix removed. If you want to specify some alternative
name Blink recognises a TO keyword that can be used in conjunction
with a suitable destination filename. So

Ram Disk:>blink ExampleCH9-1.o to test

produces an executable file called test.

Step Five - Preparing for the Worst

At this stage of the proceedings a runable program is sitting in the
Ram disk. Any number of trivial slips might result in this program
crashing your machine so, before you run it, take these precautions:

1 Check that you have a backup copy of the source code - on floppy
or hard disk.

2 Take out any floppies from your disk drive unless they are write
protected. Writable disks have been known to get corrupted during
a crash and it is better to be safe than sorry.

Step Six - Go Go Go

masterpiece at the Shell window

Ram Disk:>ExampleCH9-1

Well, it's now or never. Having
taken the above mentioned pre
cautions type the name of your

With luck the Workbench screen will flash - nowadays there will also
be an audible noise if this has been selected in the Workbench
Preferences settings. Now I know that, as programs go, this is hardly
what you'd call an earth shattering piece of code. Nonetheless, if you
were able to write, assemble and link this example first time you
should congratulate yourself - you've been far luckier than some!

Amiga Insider Guide

Ignoring the triv
lf Things Have Gone Wrong ial slips which can

-------------------- occur, such as for-
getting to copy A68k and Blink to your Ram Disk it is at the assem
bling stage where error messages are first seen. Always look very care
fully at the first error message because it always indicates a fault in
the code. With the second and subsequent errors this may not always
be the case - rogue error messages are occasionally produced because
an earlier error caused the assembler to misinterpret later, valid,
instructions. When an error is found A68k, (where appropriate) dis
plays the source line along with an error position " indicator and error
message. Most of the time these error messages are self explanatory as
you'll see from the following examples.

This means
END statement is missing Error e x a c t l y

what it
says. A68k, as mentioned earlier, expects to see an explicit END state
ment at the end of a source file and you've forgotten to include one.
Re-edit the source code, move to the end of the file and insert an END
(or end) statement remembering to indent the command- placing it in
the instruction field - otherwise a68k will think you have added anoth
er label to your program!

Amiga Insider Guide

Undefined symbol
Undefined Symbol Errors errors suggest that

----~~~--------------" you've either forgotten
to define a required symbol completely, or have defined but mis-spelt
it. If, in our example program, you typed AbsExecBase instead of
_AbsExecBase, forgetting to include the initial underscore, the A68k
assembler would rightly complain.

This tells you that the
Error In Operand Format instructions operand

format is wrong but as
well as true faults of this kind (which obviously you must examine and
correct) you'll also get this error message if additional blanks have
been included in the operand field. These latter slips are often harder
to find because there is nothing really wrong with the overall code line
format. As an example a line which reads

•ove . l . _AbsExecBase, a6

assembles correctly but a single blank separating the two operands
"_AbsExecBase" and "a6":

• ove . l . _AbsExecBase , a6

causes A68k to complain. As always the remedy is to re-edit the source
code so as to correct the mistake, and then reassemble it.

With only one source code file and no
l..inking Errors include files to worry about the only link

er error likely to be found is "Cannot find
object ExampleCH9-l.o". This is most

likely to occur because you've either got the filename wrong or
because the object file was never created in the first place. This latter
case would occur if A68k found an error but you failed to spot the
error message on the screen.

In get
Program Fails To Run As Expected t i n g

to the
point where a runable program was produced A68k and Blink have
confirmed that the source code file is syntactically correct.
Unfortunately the program can still be a far cry from being bug free.

If, for example the program line that reloads a6 with the Exec library
base address prior to making the final CloseLibrary() function call

Amiga Insider Guide

move.! _AbsExecBase,a6

was inadvertently missed out so that the section that starts with
"open_ok" reads as

open_ok move.! #0,aO

move.! _IntuitionBase,a6

jsr _LVODisplayBeep(a6)

move.! _IntuitionBase,a1

jsr _LVOCloselibrary(a6)

then some very serious problems arise because now, at the time the
CloseLibrary() function is executed, a6 is holding the Intuition library
base rather than the Exec library base. In short the code ends up try
ing to execute some wholly inappropriate Intuition library function
(obviously this is the one which has the same LVO value). In addition
to this the Intuition library never ever gets closed.

The result is that the program performs the required DisplayBeep()
operations and then crashes the machine immediately afterwards,
requiring you to re-boot. Similar errors, such as using the wrong
68000 registers when making library calls, cause other problems. In all
cases the solution is easy - look at the code you've written, compare it
with what you should have written, correct the differences and repeat
the assembly/linking processes again.

Finding errors in this way is something that comes with practice. Not
to worry, all assembler programmers get plenty of practice with this,
especially in their early days.

It's worth mentioning at this stage that two of the most frequently
made slips are firstly failing to set up properly those parameters need
ed by a function call (ie not loading the appropriate 68000 registers
with the data needed by the library routine), and not checking that the
returned values are valid (especially important with things like library
bases).

--------··---------

Amiga Insider Guide

-----------·-----------

HiSoft's 680x0 Devpac Amiga Assembler
package has been around for a long time forming

a large user-base. It is popular because it does
the job that it is supposed to do and it is stable

and well supported.

T he latest version of Devpac - Devpac 3 - has been
designed with Workbench 2/3 users in mind. The pack
age is, however, currently shipped with an additional

1.3 based version as well. Quite simply Devpac 3 is just about
as good an assembler package as you could wish for.

Devpac
comes with
its own edi

tor and this, for most operations, acts as a main controller for
the whole of the Devpac development environment. The editor
offers multiple-file editing with full mouse-controlled cut-&
paste facilities and you can open individually scrollable multi
ple windows on the same file. This means that whilst working
on one program you can open other files and copy pieces of
existing code (such as standard routines, text notes and so on).
There are a host of other useful extras including bookmark set
and locate facilities and macro recording facilities for memo
rising complex key press sequences.

•

Amiga Insider Guide

There are some powerful assembler/debugger options and one of the
big advantages with the Devpac editor is that it not only integrates
these tools into the editor environment but provides facilities for the
automatic location of errors in the source after assembly. Create the
source code using the editor and select "Assemble" from the program
menu. Edit/assemble until the assembly process is error free and you
can then run the code directly from the editor's program menu. In
short it is possible to create, assemble, debug, run and save your code
all from the same environment!

An editor settings menu allows you to set the editor and assembler
controls and define the usual types of global settings for tab size, end
of-line behaviour, auto indenting, automatic back-up creation and so
on. The assembler options themselves are grouped into three separate
requesters which are called up by selecting one of three items on the
assembler settings sub-menu. A control requester provides control
over basic assembler operation, source and destination file paths, list
ing control etc. The Options requester gives access to the large number
of more technical assembler settings - identifying processor, coproces
sor and MMU types, ensuring PC-relative code, producing local label
underscoring and so on. The third requester provides a range of
assembler optimisation settings.

Devpac supports the 68000-68040, 68332, 68881/2 and the 68851
memory management unit (MMU) chips. The assembler has all the
bells & whistles expected of a modern day offering - it's a macro
assembler which provides comprehensive expression handling and
supports *, /, +, -, =, bitwise and/or/xor/not, left and right shifting and
all the usual inequality operators. Like many assemblers it allows deci
mal, hex, octal, binary and character constants but it also offers some
more specialised facilities such as floating point constants for 68881/2
coprocessor applications. Devpac allows the use of local labels and, by
default, all label names are significant to 127 characters.

Devpac's debugger is called MonAm and it's a low-level debugger able
to step through a program displaying code instructions, 68000 register
contents, processor status, and memory contents in hex or ASCII
form. If you have included debug info in your program then MonAm
can use that to display your original program labels. The debugger can
also be used to look at compiler written code and if the package that
produced the code included line number debug data it is even possible
to view the original source code. MonAm is very powerful but, having

----------·----------

Amiga Insider Guide

said that, it does take a bit of time to learn how to use it effectively and
it is not quite as user-friendly as the rest of the Devpac package.

As well as the editor, assembler and debugger the Devpac 3 package
Includes Blink - the Amiga's de facto standard linker - a program
called SRSplit, which is an S-record splitter utility, and a utility called
FD2LVO which converts Commodore FD files into include files con
taining direct library vector offset data (LVO values). You also get those
all-important Commodore assembly language include files which are
covered in Chapter 13, link libraries and some example programs to
get you started.

This book is in no way restricted to Devpac users but it must be said
that, if you have yet to get an assembler package, Devpac 3 is worthy
of serious consideration. As software goes it provides good documen
tation along with some superb facilities so newcomers get an assem
bler environment which will help make learning about, and using,
assembly language just about as easy as it ever could be!

The following sections provide a step-by-step account of assembling
and linking the same ExampleCH8- l .s program dealt with in the last
chapter. This time we're using the Devpac environment rather than
A68k's Shell based methods.

Devpac works per
Step One - Starting Devpac fectly well with

either floppy or hard
disk based systems. Like most packages it comes with an automatic
installation program for hard disk users. Once initially installed all
you have to do is double-click on the Devpac icon to bring up the edi
tor display.

Step Two - Creating the Source File
As in
t h e

------------------------ previ-
ous chapter we've now got to either type in the source code or, if you
prefer, load the pre-written disk form from the Insider Guide disk. If
you choose the latter option then all you now have to do is select Load
from the editor's Project menu. Then, when the standard Amiga
requester appears, identify and load the appropriate source.

If you prefer to type the program in (which helps you to get a feel for
what assembly language coding is all about) do it now and remember
that, as with the Chapter Nine material, you can save some typing by

Amiga Inside~ Guide

leaving out the comments. I've repeated the code here so that you
don't have to refer back to the earlier chapters.

*Example CH10-1.s

NULL EQU

_AbsExecBase EQU

_LVOOpenLibrary EQU

_LVOCloseLibrary EQU

_LVODisplayBeep EQU

start move.I

lea

moveq

open lib jsr

move . I

beq

open_ok move.I

move . I

jsr

move.I

move.I

jsr

exit clr.l

rts

_IntuitionBase ds . l 1

0

4

-552

-414

-96

_AbsExecBase, as

intuition_name,a1

#0,dO

_LVOOpenLibrary(a6)

do,_ IntuitionBase

exit

#0,aO

_IntuitionBase,a6

_LVODisplayBeep(a6)

_AbsExecBase,a6

_IntuitionBase,a1

_LVOCloseLibrary(a6)

dO

intuition_name dc . b ' intuition.library ' , NULL

At this stage you'll want to save the source code and you can do this
first time by selecting "Save As" from the project menu which brings
up a file save requester. Assembler source files, by convention, always
have a ".s" filename extension so call the file something like
ExampleCHl0-1.s. Again, feel free to call the program test.s, or some
thing similarly short in order to save yourself some typing - I've only
used ExampleCHl0-1.s for consistency. It is the name of the equiva
lent program as stored on the accompanying Insider Guide disk. It is a
good idea at this stage to make a back-up copy of the newly created

----------··-----------

Amiga Insider Guide

source code file, just in case something goes wrong when you finally
run the finished program.

Step Three - Assembling and
Linking the Example Code

Go to the editor's
Settings menu
and toggle select
the Assemble To
Disk option.

Then, from the same menu, select the "Assembler Control" option to
open a window showing the current assembler settings. A Format box
should be showing Executable - if it isn't change it so that it does. By
clicking on this field it can be changed between Executable, Linkable
or S-Records.

lntult lon l lbrarv to 'b••P' ti•• dlaptay
EQU e

u 4
EQU -552

EQU -4t4

EQU -96

_LVOGP•nL l brary (a6)

ftOYe. l de,_lntult ton••••
l>•'I 9Mlt

1 pen_ok Rove . l ••, ••
Rove.I _lntultlonB•••.•6
J ar _ LVODlapl•v•••P<•6>
Rove . • baExecB .. • a6

Mo ll•Pnln••
......... RUltlPI• lnclud••
Low .._.orv ••• Iv
Llat 1!911tol THle

1t•k• the lndtrect aaltrout ln•
••v• returned petat.,.
41ltl I lbrery open •
flesh •II acreena
need l lbr..-v b••• ln a6
R•k• the Indirect aubreutln•

lib

Having done that move to the other side of the requester to the near
bottom right field called Headers. This specifies the header files that
Devpac uses during assembly. Move the mouse to within the text box
and then keep hitting the back-space key until the default name is
removed as this header isn't needed for our example.

By selecting Executable you've told Devpac to create an executable
program directly so it is not necessary to link the assembled program
explicitly. All you have to do to produce a runable program is to select
"Assemble" from the editor's Program menu. Do it now!

Amiga Insider Guide

Step Four - Preparing for the Worst

At this stage of the proceedings a runable program is available. As
mentioned before any number of trivial slips might result in this pro
gram crashing your machine so, before you run:

1 Check that you have a backup copy of the source code on floppy or
hard disk.

2 Take out any floppies from your disk drive unless they are write
protected.

It's now or never. Having
Step Five - Go Go Go taken the above mentioned

precautions go to the Editor's
Program menu and select Run. With luck the Workbench screen will
flash.

rts
lntu l tlon_n.,.• d c.b ;lntul t ion .l\b r•rv;; HU~~

lntul t lonB•se ds. t 1

• By default Devpac gives the runable program the same name as your
source code but with the .s extension removed. You can, if you wish,
specify some alternative output file name.

Amiga Insider Guide

If Devpac doesn't
If Things Have Gone Wrong like, or cannot

understand your
spurce file it displays one or more error messages. The key is again to
look very carefully at the first error message because it invariably indi
cates a genuine fault. With the second and subsequent Devpac flagged
errors this may not always be the case. As with other assemblers
Devpac occasionally generates rogue messages produced because
some early error caused the assembler to misinterpret later, valid,
instructions. When an error is found Devpac (where appropriate) dis
plays the source line along with an error message. With this environ
ment when you cancel the Assembly Details display window you are
returned to the editor at the point where the first error occurred. This
can be corrected immediately and using the Program menu's Find
Error, Next Error and Previous Error options, you can quickly identify
(and therefore correct) any errors in the source.

The types of errors that can occur are of course exactly the same as
those mentioned in Chapter Nine so, if you do hit any error message
snags, have a look at that material.

---------·---------

Amiga Insider Guide

---------·--------

To create code that fits the Amiga 6 8 000
programming style it's as well to know a little

about how macros are created and used. Why?
Because they can hide some of the complexity ·

of assembly language programming!

n 68000 assembly language, as with any other computer
language, you frequently find that similar sequences of
instructions crop up again and again. With sequences that

are identical one solution is to write the instructions as a sub
routine rather than waste space by having the same instruc
tions duplicated in various places throughout the program. The
subroutine approach reduces program size and has a number
of benefits as far as program structure is concerned but there
are still times when inserting duplicate sections of code is nec
essary - eg to eliminate the time in calling the subroutine.
Subroutines are often inappropriate simply because the vari
ous sequences of instructions are only similar and not com
pletely identical.

Amiga Insider Guide

Macros provide a solution to this dilemma because they allow the pro
grammer to assign symbolic names to sets of instruction sequences
and, when the name is encountered, the assembler automatically
expands it to produce the original set of instructions. This facility is
not restricted to predefined, absolutely fixed, instruction sequences.
Macros which contain parameter placeholder markers can be created
so that, when the macro is used, parameters provided with each par
ticular use instance are inserted into the code that is generated. This
makes it possible for the macro programmer to generate a variety of
code fragments from each macro definition.

A68k, Devpac and most other Amiga
Macro Definitions assemblers tend, for obvious rea-

sons, to support the standard
Motorola style 68000 macro definitions. These start with a label fol
lowed by the MACRO keyword and end with the ENDM keyword.
Lower case macro and endm are also accepted but, to my mind, the
upper case versions mark the macro segment more clearly. The basic
68000 macro takes this type of form:

my_macro_na• e MACRO

<•ain body of • aero code>

ENDM

Parameters are specified using the backslash(\) character followed by
an any alphanumeric character. The best way of coming to terms with
these, extremely useful, code units is to see a couple of examples. I've
chosen two that are directly related to some of the assembler code
you've seen earlier in the book.

The LINKLIB Macro
Let's start by giving you a
macro definition to look a:

LINKLIB MACRO

move. ! a6,- (sp)

move.! \2, a6

js r \1(a6)

move . ! (sp)+, a6

ENDM

Amiga Insider Guide

The first and last real code instructions are exactly that, just perfectly
ordinary 68000 move statements which copy a 32 bit long word value
from, and to, register a6. The "sp" term means stack pointer and most ·
assemblers allow this to be used as another way of specifying register
a7. Thus the above macro could equally have been written as

LINKLIB MACRO

move . I

move.I

jsr

move.I

ENDM

a6,-(a7)

\2, a6

\ 1(a6)

(a7)+,a6

The first and last move instructions are doing something which I've
talked about in general terms but have yet to provide an example of -
pushing and retrieving a data item from the 68000's user stack. Very
often you will· want to protect a microprocessor register from being
inadvertently altered whilst you execute some other series of opera
tions. One easy way to do this is to copy temporarily the item in ques
tion to the 68000's stack, and retrieve it when it is safe to do so. It is
common practice for a subroutine to save the original contents of any
registers it intends to use and re-instate them just before it returns to
the main program (ie just before the terminal rts instruction).

The 68000's stack pointer register always points to the last item stored
in the stack area. These stacks grow downwards in memory and so
each time a number of bytes are copied to the area of memory being
used for the stack, the stack pointer has to be updated. The important
thing here is to recognise that the pointer must be decreased before
any new data is stored on the stack otherwise the existing last item
would be overwritten with the new data. When getting data from the
stack the reverse convention has to be followed - data is retrieved after
the stack pointer has been updated.

The 68000 actually has special addressing modes, called indirect pre
decrement and postincrement addressing, which allow these adjust
ments to be done automatically. Don't worry if the ideas seem a bit
strange at first - just mimic the way the instructions are used in your
own code and the understanding will doubtless come in due course.

The predecrement mode, which is always used when storing values on
the stack, uses an initial minus (-) sign

---------·--------

Amiga Insider Guide

move.l a6 , -(a7)

The postincrement form uses a trailing plus (+) sign

move . l (a7)+ ,a6

These types of preserve/restore operations must always be done in
pairs otherwise both you, and the 68000 processor will lose track of
the data that is coming onto, or being taken off, the stack.

If you take a look at the two innermost macro instructions you will see
that they are almost like real 68000 instructions but, in both cases,
there is an operand missing. Instead there is a backslash followed by a
number

move.l

jsr

\2 , a6

\ 1(a6)

These represent parameter placeholders and what happens is that
these operands get filled in at assembly time using values that you've
supplied. If, for instance this macro was to be used in conjunction
with the following program line

LINKLIB _LVODisplayBeep,_IntuitionBase

the assembler would automatically generate this sequence of instruc
tions:

move.l

move.l

jsr

move.l

a6,-(sp)

_IntuitionBase , a6

_LVODisplayBeep(a6

(sp)+,a6

The net effect is that register a6 is preserved on the 68000's stack
whilst the register is re-loaded with some specified value - which is in
practice a library base. Then the specified library call is made using
the now familiar indirect subroutine technique. Lastly register a6 gets
re-instated with its original value. Note that the macro protects the
user by preventing a6 from being inadvertently changed!

This particular macro, with some additional error checking code, is
actually already present in one of the Amiga system's include files and
it is used to generate library access code.

---------·---------

Amiga Insider Guide

Macros Within Macros
Macro definitions can even
be nested - ie a macro defin-
ition can include other

macro definitions. Here's an example which tags on the extra _LVO
characters to the function name.

CALLSYS MACRO

LINKLIB

ENDM

_LVO\ 1, \2

You can see from the above definition that CALLSYS adds an _LVO
. Prefix onto the first of the two required parameters. Instead of using
LINKLIB like this

LINKLIB _LVOOpenlibrary , _AbsExecBase

you can write

CALLSYS OpenLibrary , _AbsExecBase

and most programmers regard this latter form as being easier to read.

If you include the above
LINKLIB and CALLSYS The Underlying Magic
macros in your code you'll

be able to create the appropriate library opening code using these
types of simplified statements:

CALLSYS Openli brary,_AbsExecBase

To appreciate the benefits of macros you need to see exactly what
results these macros can produce relative to a piece of code that
doesn't use them. I should apologise for re-using the" Chapter Eight
Intuition Beeping example again but by now you should be familiar
with it so the changes made in this chapter should be both easy to fol
low and easy to understand

*Example CH11-1 . s

* a macro style version

LINKLIB MACRO

11ove. l

move.l

jsr

move . l

a6 ,- (a7)

\ 2,a6

\ 1(a6)

(a7) +,a6

---------·--------

Amiga Insider Guide

CALLSYS

ENDM

MACRO

LINKLIB _LV0\1,\2

ENDM

NULL EQU 0

_AbsExecBase EQU 4

_LVOOpenLibrary EQU -552

_LVOCloseLibrary EQU -414

_LVODisplayBeep EQU -96

start lea intuition_name,a1

moveq #0,dO

load pointer to
library name

any version will

open lib CALLSYS OpenLibrary,_AbsExecBase

do!

move.I dO ,_IntuitionBase save returned pointer

beq exit did library open OK?

open_ok move.I #0 , aO flash all

CALLSYS DisplayBeep ,_IntuitionBase

move.I _IntuitionBase,a1 library to

CALLSYS CloseLibrary,_AbsExecBase

exit clr.l dO

rts

_IntuitionBase ds.l

intuition_name dc.b "intuition.library",NULL

screens

close

The result is simpler, cleaner, source code and this is exactly the type
of benefit which macros provide along with a certain amount of stan-.
dardisation. Since macro code tends to get re-used and, since code
that is frequently re-used quickly becomes bug free, programmers who
make maximum use of macro facilities tend to make fewer coding
errors.

Macros resemble subroutines in the sense that they provide a short
hand reference to a frequently used set of instructions. However, it

---------·---------

Amiga Insider G•ilk

should be clear from the above discussion that macros are not subrou
tines. The code for a subroutine only occurs once within a program,
and program execution branches to the subroutine. On the other
hand, each time a macro is used the assembler inserts a copy of the
appropriate instructions with any parameter-specified alterations.

There's nothing wrong with putting your
Header Files macros in the same file as your source code

but most macros, by their very nature, are
used over and over again. Because of this it's actually convenient to
put these units in their own separate file, called a 'header file' or
'include file', and usually given a .i filename extension - i for include.
You can then ask the assembler to include this file when it assembles
the main program code.

* Exa•ple CH11·2

* Macros .i - a typical •aero definitions file

LINKLIB

CALLSYS

MACRO

• ove . l a6,- (a7)

• ove . l \2, a6

jsr \ 1 (a6)

11ove . l (a7) +, a6

ENDM

MACRO

LINKLIB _ LV0\ 1,\2

ENDM

Asking the Assembler to
Include Another File

The assembler can be
instructed to include
some other file, such as
the macro definition file

mentioned above, by adding an INCLUDE directive statement to your
main program:

INCLUDE macros . !

Both A68k and Devpac support this type of statement and both pro
vide additional facilities for defining the directories to be searched
when looking for such files. With A68k there is a -i<include directory
list> option. With Devpac several options are provided including the

Amiga Insider Guide

addition of directory names via the Editor menu's Assembly requester.
I'll be talking more about include files later (in Chapter 13) but the
benefits of having standard, and often used, definitions kept separate
in this way should already be reasonably obvious.

To finish this chapter here is our, now somewhat overworked, exam
ple program with a newly added INCLUDE statement

* Example CH11-3.s

NULL

_AbsExecBase

INCLUDE macros.i

EQU 0

EQU 4

_LVOOpenLibrary EQU -552

_LVOCloseLibrary EQU -414

_LVODisplayBeep EQU -96

start lea intuition_name,a1 load pointer to
library name

moveq #0 , dO any version will do!

openlib CALLSYS OpenLibrary,_AbsExecBase

move.l dO,_IntuitionBase save returned pointer

beq exit did library open OK?

open_ok move.l #0 , aO flash all screens

exit

CALLSYS DisplayBeep,_IntuitionBase

move . l _IntuitionBase,a1 library to close

CALLSYS CloseLibrary,_AbsExecBase

clr.l dO

rts

_IntuitionBase ds . l 1

intuition_name dc .b "intuition . library", NULL

.............................

Writing programs which interact with a Shell
window can provide an easy way into the world of
larger assembly language programs. Best of all, a
lot can he achieved with a few ready made DOS

library function calls.

n order to read data from, or write data to, a Shell window
a program obviously needs to know something about the
DOS I/O environment. More specifically it needs to obtain

the two I/O handles which C programmers conventionally call
stdin and stdout. When used within assembly language pro
grams these handles are more usually defined as _stdin and
_std out.

Regard what happens at the DOS level as magic for the
moment and just accept that, in order to collect these I/O han
dles, the Shell program just has to open the DOS library, and
then make calls to two DOS functions known as Input() and
Output(). Opening, and using, the DOS library is no different to
opening any other run-time library and so the code required
will follow the same pattern as we've used already.

AMiga lnsi4u G•ide

Insider Guide # 2 3 -
Collecting The Standard Input HatuDe
Function Na•e: Input()

Description: Identify a progra•'s initial input
file handle

Call For•at: file_handle = Input()

Registers: dO

Argu•ents: None

Return Value: file_handle - the progra•'s initial
input file handle

DOS LIBRARY FUNCTION

Insider Guide #24 -
Collecting The Standard Output Handle
Function Name : Output()

Description: Identify a program's initial
file handle

Call Format: file_handle = Output()

Registers: dO

Arguments: None

Return Value: file_handle - the program's
output file handle

?

output

initial

Amiga Insider Guide

Insider Guide #25 -Another Useful DOS Function
Function Name: Write()

Description:

Call Format:

Registers:

ArguR1ents:

Write data to a file

length_written =
Write(file, buffer_p, data_length)

dO
d1

file

buffer_p

data_ length

d2 d3

- file handle

- pointer to buffer
holding the data

- length of the
data

Return Value: length_written - number of bytes
actually written

Notes: A length_written value of -1
indicates an error

The standard name for the DOS library base is _DOSBase, and so the
required library opening code takes this form:

lea

moveq

CALLSYS

•ove.l

dos_na11e,a1

#0,dO

library name start in a1

any version will do

OpenLibrary,_AbsExecBase

dO,_DOSBase store returned value

In the final runable example program, we need to check that the
returned library base is valid. As with previous library code examples
this is done by checking the zero flag after the library base (which
comes back in register dO) has been copied to a suitably defined stor
age location.

Amiga Insider G11ide

If OpenLibrary() was successful then the DOS Input() and Output()
functions can be used to identify the program's input and output han
dles. For the purposes of the example developed in this chapter I'm
going to deal only with the task of outputting messages, so only the
output handle needs to be obtained. This is achieved using this sort of
code:

CALLSYS Output ,_DOSBase get default output handle

move.I dO, _stdout store output handle

Again we need, in the final program, to check that the returned dO
value is valid (ie is non zero).

Writing Shell text messages is an easy task
W riling Text because there is a general DOS function,

called Write(), which can do the job. You can
see from the description of the routine that we need to know how long
each text string is. There is a sneaky way of getting this without having
to count the characters manually!

Static program text is, as we've seen in earlier chapters, usually set up
using define byte (dc.b) assembler directives:

message dc . b "Just an example message"

All 680x0 assemblers, and most others come to that, allow the pro
grammer to use an asterisk (*) to represent the current value of the
assembler's location counter - remember that this is how the assem
bler keeps track of its current position whilst assembling a source file.
By placing an additional label at the end of the text, and using another
EQUate directive to set it to a value based on the current assembler
location counter value we can get the assembler to work out the length
of the text string:

message dc . b "Just an example message "

message_SIZEOF EQU •-message

The result is that the assembler automatically sets the second label to
the size of the preceding string. I adopt a convention whereby the sizes
of all message strings are represented by a label formed by taking the
original string label and adding _SIZEOF to it. Why? Because it is
then possible to create a macro that, given the string label, can form
the size label automatically. I won't be doing this because, at the
moment, it is probably more instructive to see the new function call
being explicitly set up and used.

Amiga Insider Guide

The following example deals
A First Coding Stage with issues which should, in

the main, either be familiar to
you or relatively straightforward to understand given the previous dis
cussions. The DOS library is opened and _stdout is set up then the
DOS library is closed. For simplicity I've placed the LINKLIB and
CALLSYS macros in the same file as the main source code. If however
you are now happy about using a separate macro include file then by
all means rearrange the source accordingly.

* Example CH12·1.s

LINKLIB MACRO

move.l

move.l

jsr

move.l

ENDM

CALLSYS MACRO

LINKLIB

ENDM

NULL

_AbsExecBase

_LVOOpenLibrary

_LVOCloseLibrary

_LVOOutput

LVOWrite -
start lea

moveq

openlib CALLSYS

11ove.l

beq

dos_open CALLSYS

a6,·(a7)

\2,a6

\1(a6)

(a7)+,a6

_LVO\ 1, \2

EQU 0

EQU 4

EQU ·552

EQU ·414

EQU ·60

EQU ·48

dos_na11e,a1 load pointer to library
name

#0,dO any version will do!

OpenLibrary,_AbsExecBase

dO, _DOSBase save returned pointer

exit did library open OK?

Output,_DOSBase get _ stdout handle

Amiga Insider Guide

move.l dO, _stdout store it

beq close_dos check _stdout is valid

* HERE 'S WHERE THE MESSAGE

* WRITING CODE WILL FINALLY GO

close_dos move.l _DOSBase,a1 library to close

CALLSYS CloseLibrary,_AbsExecBase

exit clr . l dO

rts

_DOSBase ds . l 1

_stdout ds.l 1

dos_name dc .b 'dos.library ' ,NULL

The DOS Write() func-
W rite()-ing The Message tion needs quite a lot of

parameters. Namely an
output handle in register dl, the address of the start of the message in
register d2, and the size of the message in register d3. These aren't dif
ficult to set up and simple move.I instructions can do the job

move.I _stdout , d1 standard output handle

move.I

move.I

#message,d2 start of message

#message_SIZEOF,d3 message length

Having set up all the necessary function parameters we make the
library call in the usual fashion:

move.I

jsr

_DOSBase,a6

_LVOWrite(a6)

set a6 to DOS library base

make DOS Write() call

All that remains to be done is to put these new ideas into the frame
work we've already established. Here's the final result:

* Example CH12-2.s

LINKLIB MACRO

111ove . l a6,-(a7)

111ove.l \2,a6

jsr \ 1(a6)

move . l (a7)+,a6

Amiga lnsi"er Gfll4e

CALLSYS

ENDM

IACRO

LINKLIB _LV0\1,\2

ENDfl1

NULL EQU 0

LF EQU 10

_AbsExecBase EQU 4

_LVOOpenlibrary EQU ·552

_LVOCloselibrary EQU ·414

_LVOOutput EQU ·60

LVOWrite - EQU ·48

start lea dos_nHe,a1

111oveq #0,dO

load pointer to library
n111e

any version will do!

open lib CALLSYS Openlibrary,_AbsExecBase

111ove.l dO,_DOSBase

beq exit

save returned pointer

did library open OK?

dos_open CALLSYS Output ,_DOSBase get _stdout handle

111ove.1 dO ,_stdout

beq close_dos

write_ text 11ove .1 _stdout, d1

11ove.l #11essage,d2

store it

check _stdout is valid

standard output handle

start of message

move.l #message_SIZEOF,d3 message length

CALLSYS Write,_DOSBase

close_dos 11ove .1 _DOSBase, a1 library to close

CALLSYS Closelibrary,_AbsExecBase

exit clr .1 dO

rts

_DOSBase ds .1

_stdout ds.l

dos_name dc.b 'dos.library' , NULL

----------·----------

~essage dc.b 'Just an example message',LF

message_SIZEOF EQU *-message

Variety Is The Spice Of Life

Amiga Insider Guide

You've had the
details. Now it's
your turn - so try

and sketch out a program which will print these three lines of text:

2YUR2YUBICUR2Y 4ME

or in other words ...

Too wise you are, too wise you be, I see you are too wise for me!

You need to set up three text messages (call them message!, message2
and message 3) and make three DOS Write() calls. Place a Linefeed
(use a LF EQU 10 expression) at the end of each text string so that
each piece of text is printed on a separate line.

On the Amiga registers aO, al, dO and dl are designated as scratch reg
isters and library functions can, and often do, overwrite these without
warning. Because of this you need to reload register dl with the_std
out output handle every time you perform a Write(). However, the
DOS library base pointer can be safely re-used as register a6 is not
altered by any library calls.

Here's the sort of result you should have obtained:

* Example CH12-3.s

LINKLIB MACRO

move.!

move.!

jsr

move.!

ENDM

CALLSYS MACRO

LINKLIB

ENDM

NULL

LF

_AbsExecBase

EQU

EQU

EQU

a6,-(a7)

\2, a6

\1(a6)

(a7)+,a6

_LV0\ 1, \2

0

10

4

Amiga Insider Guide

Insider Guide #26 - More Macro Help
Macro names are labels and, just like any other labels, they must

be placed in such a way that the assembler recognises the name as
a label. MACRO and ENDM on the other hand are assembler direc

tives and these must be placed in the source code's instruction
fields. Problems arise if you're not careful with these type of field

placements. For example, the definition:

LINKLIB MACRO

move.l a6,-(a7)

move . l \2, a6

jsr \ 1(a6)

move . l (a7)+,a6

ENDM
will be thrown out by the assembler because ENDM is not indented.

Similarly:

LINKLIB MACRO

move.l a6,-(a7)

move . l \ 2,a6

jsr \ 1(a6)

move . l (a7) +, a6

ENDM
will also be thrown out because the indented LINKLIB text is not

recognised as representing a label.

I I~ I (1

_LVOOpenLibrary EQU -552

~LVOCloseLibrary EQU -414

_LVOOutput EQU -60

LVOWrite EQU -48 -
start lea dos_na11e , a1 load pointer to library

name

openlib

dos_open

1oveq

CALLSYS

1ove.l

beq

CALLSYS

Amiga Insider GNide

10,dO any version will do!

OpenLibrary,_AbsExecBase

dO ,_DOSBase save returned pointer

exit did library open OK?

Output,_DOSBase get _stdout handle

move.I dO ,_stdout store it

beq close_dos check _stdout is valid

standard output handle write_textmove.l _stdout,d1

move.I

move . I

CALLSYS

111ove.l

move . I

move.I

CALLSYS

111ove.l

11ove.l

11ove.l

CALLSYS

close_dos move.I

CALLSYS

exit clr.l

rts

_DOSBase ds .1

_ stdout ds .1

#message1,d2 start of message

#1essage1_SIZEOF,d3 message length

Write,_DOSBase

_stdout,d1 standard output handle

#message2,d2 start of message

#message2_SIZEOF,d3 message length

Write,_DOSBase

_stdout,d1 standard output handle

#message3,d2 start of message

#message3_SIZEOF,d3 message length

Write,_DOSBase

_DOSBase,a1 library to close

CloseLibrary ,_AbsExecBase

dO

dos_name dc.b 'dos.library', NULL

message1 dc.b ' 2YUR2YUBICUR2Y4ME' ,LF

message1_SIZEOF EQU *-message1

message2 dc.b ' or in other words . . . ' , LF

message2_SIZEOF EQU *-message2

..............................

Amiga Insider G"ide

message3 dc.b 'Too wise you are , too wise you be , I see you
are too wise for me !', LF

message3_SIZEOF EQU *-•essage3

There are more efficient ways of writing the above code using a pro
gram similar to BASIC's FOR/NEXT arrangements. These are impor
tant when dealing with a lot of text but, if you were able to get any
where near the above arrangement, then give yourself a pat on the
back because you're doing fine!

l nsUler GuUle #27 - P rogress Report
You have come quite a way down the Amiga 68000 programming

road by now. As well as learning what assemblers and linkers
are, and about the 68000 chip itself. you will have picked up tips

on bits and bytes, hex and binary, macros and addressing
modes and so on.

.~·· "
' ·' . ·.i'

, ·lt

I I • I C .• .,~~ ' ... -.;.-...

Most importantly, you have seen
how with just a few simple
instructions, those important
Amiga libraries can be opened
and used and this is the magic key
which will eventually take you
into more advanced Amiga
programming!

Amiga Insider Guide

----------·----------

The Amiga has a large collection of system
include (or header) files. This chapter explains
what they are, where to get them, and a little

about how they are used .. .

s programs get larger it becomes useful to split the
source code into any number of smaller units. The dis
tinction between definition type items, such as macros

and EQUates, and real code provides one useful dividing line.
As we saw in Chapter 11, separate ASCII type text files contain
ing such definitions are called include files. These files have
usually been written as separate entities in order to make it
easier for any number of programs to use the data they con
tain.

Include files do not usually contain real 68000 code and it isn't
normal practice to include such things as subroutine defini
tions. The normal approach for including standard routines of
this nature is either to assemble the subroutine separately and
then attach this pre-assembled code unit (the object code mod
ule) to the assembled program at link time or, more commonly,

Amiga Insider Guide

actually place the routine in a linker library along with all of your
other frequently used standard routines. Similarly the code present in
larger programs can often be spread over several different files. Again
the normal approach for putting the various segments together is to
assemble the files individually and then get the linker to combine
them. The linker-based approach is used for practical reasons.
Suppose you have a program that has many files and you wish to edit
one of them in order to modify the program. It makes sense to be able
to edit that single file, re-assemble it in isolation, and then just create
the new version of the program by relinking the new module with the
existing unchanged modules.

If the source files are arranged so all of the various code sections are
brought in via separate include files - and there's no reason in theory
why this can't be done - then, after any editing any of those files, the
complete file set has to be re-assembled to produce a new working pro
gram.

To ease the burden on Amiga programmers, Commodore have made a
variety of system files available containing not just hundreds, but
thousands, of EQUate definitions, macros definitions, system struc
ture templates and so forth that have been found useful for the Amiga
software developer. Commercial assembler packages, such as Devpac,
always come with a set of these include files but public domain assem
blers, a la A68k etc, do not. In this latter case the files (if needed) must
be purchased separately from Commodore. These official system files
relate to things like the serial and other devices, DOS, Exec, graphics
and Intuition libraries etc, and always come grouped in directories
whose names provide the broad general use category. Exec headers,
for instance, are found in the exec directory.

There are in fact two distinct sets of system files available. C program
mers use a set of header files containing, as expected, C-style system
definitions. These files can be easily recognised not only by their con
tents but by their .h filename extensions. Assembler programmers
have a similarly arranged set of system definitions written in ways
usable to the 680x0 coder. These include files are again always instant
ly recognisable because they have .i filename extensions.

These Amiga system files provide C and assembly language program
mer with broadly parallel universes. A C programmer might, for
instance, use definitions taken from the devices/serial.h header file.
Someone coding a similar application using 68000 assembler would
use the devices/serial.i include file.

----------·----------

Amiga l1tsitler G11itle

The existence of these files helps in two ways. Firstly, it eliminates the
need for programmers to create their own definitions - a job which is
both time consuming and error prone. Secondly, it promotes stan
dardisation. All or most Amiga programmers soon get into the habit of
using the ready made definitions provided in the Commodore supplied
includes.

Insider GuUle #28 - System File Updates
As each new version of the Amiga's operating system has appeared
so updated header/include files are released in a package officially
known as the Amiga Native Developer Update disks. At the time of

going to press these cost £25 a set.

If you are one of the thousands of users who have now moved to
Workbench 2 based machines (actually version 2.04 or later) then
you may already be aware that a lot of new facilities have been

added with this release: ARexx, the Gadtools library (which provides
a whole range of new style, and easy to use, intuition gadget/menu
building blocks), the ASL file/font requester library and many other
goodies. The version 2.04 update disks provided the header/include
file support for all of these new operating system additions and the
more recent Workbench 3 headers/includes will be available by the

time this book goes to print. For details of the Native Developer
Update Disks write to:

The Developer Support Liaison Manager
Commodore Business Machines UK Ltd

Commodore House
The Switchback
Gardner Road
Maidenhead

Berks, SL6 7XA

! :::-;;:;M1:4::·::
; ----··-··············-·············-···································· i ttOI£..i....\T ~·• t~• nf: fe•tures of V36. you ,..y n••d to u•• th•
• stllt.~fOltnA::Wf n~~. ¥'"• • be

1 °"' ·
• ··1 .. ·· a1·~- i'"···1··· ; ~:111:1 ::1::: t::::: :::
; lntil• ndoY '"•"• ona

Urf!!-•. •fivp 'Y"" <nt"3w.fT.-
IB:t!!lii;,:j~i·;t ud••· .
Jnterf•c:• defi.nlti.ona tor Jntuttton •PPli.c•ttona

<<> ~Tt"''t:t:.1z:~;~~?l c ... o4or•-~'••~ Inc. 1:_. I
lS{uW:~.!~~Sfy~ ••. , ..

If, by following the
The Snag For A68k Users A68k/Blink pathway,

you've been thankful
for being able to build yourself an assembler environment for next to

Amiga Insider Guide

nothing then getting the official include files may present something
of a dilemma. Relative to the cost of A68k/Blink they'll seem expensive.
Although these files are worth their weight in gold for the serious pro
grammer, not everyone wants to, or can afford to, invest in these offi
cial includes when they first start experimenting with Amiga assembly
language.

In the early days, your programs are unlikely to need more than a few
system definitions so it is easily possible to add these items to your
own source code explicitly. Some coders even create their own mini
system headers containing just those items which are regularly needed.

Why this Book has Avoided
the Syste1n Includes

In the main I've
chosen to create
normal Amiga
flavoured code by

adding suitable explicit macro and EQUate definitions to the code
examples rather than use the official Commodore include files. There
are several reasons for this. Firstly, it would have been grossly unfair
on those A68k users without the official files. Secondly, much of the
material present in the official files is not particularly relevant for the
newcomer to assembly language. Thirdly it is probably more instruc
tive in the early stages to see the various EQUate and macro defini
tions being used rather than have those definitions buried away in a
large, and relatively complex, hierarchy of system files. Lastly, it turns
out to be very easy for those programmers who do have access to the
official includes to modify their programs if they wish to do so.

Let me give you an example: a macro called LINKLIB (similar to the
Insider Guide LINKLIB macro discussed and used in earlier chapters)
is present in the Amiga exec/libraries.i system file. In any of the
Insider Guide examples which use this macro it would be possible to
eliminate the explicit definition that we've used in this book:

LINKLIB MACRO

move.I a6 , -(a7)

move.I \2, a6

jsr \ 1(a6)

move.I (a7)+,a6

ENDM

and instead just add the following line near the top of the source code

Amiga Insider Guide

INCLUDE exec/ libraries .i

This causes the assembler to bring in the libraries.i include file which,
amongst other items, contains the equivalent, Commodore defined
LINKLIB macro.

In the next chapter I'll be taking a look at some more Intuition library
functions. The example programs require access to quite a number of
system include file based items and this provides another opportunity
to illustrate the difference between the home cooked definitions and
the official system file coding approaches.

l nsUler GuUle #29 - Keeping Up To Date?
System file updates are usually done in such a way that any

changes involving existing structures and library routines are back
wards compatible. This means, for example, that a 1.3 based pro
grammer could use more up-to-date system files providing they

stuck to using only those library routines which were in fact avail
able with the 1.3 operating system release.

However, don't forget that you only really need up-to-date files if
you have an up-to-date, or upgraded, Amiga. Many programmers,
having originally purchased the (now dated) Workbench 1.3 head
er/include file set have quite sensibly continued to use them simply

because they are still using 1.3 based machines.

• T•l• fll• c-t•lnsl

• ··d l~i-:t=.\-'m' 't:a'tffA!•.t: ~t .. "·~ ~1::s•r.·,=·'"'•· : il:i'Mti..-ilrlii:P.h.n.~-rt:.h.m:-?1,,:-t~••RTl'n:
: 2. •- , .. ._. ... c-••••t.• tllae•• tM•l• .,... ,.., .. eft

: .. M#•tt t ... 2

!! .. , "'l•l-~lar:'-Y t• -·1- ,,.. tradltl-.l •••tlf•- -: '"• -•t-v»5" "ii .,t ,

Amiga '"sider Guide

---------·--------

Intuition programming is a massive subject and
it's impossible to do it justice in an intoductory

book of this nature. This chapter should,
however, place you in good stead for tackling

some of the more advanced Amiga programming
books later on ...

n Chapter 13 I mentioned that in recent releases of the
Amiga's operating system quite a few things have changed.
Let's make one thing clear at the outset - the new system

facilities make life easier for the Amiga coder, rather than
harder. There are however those changes to contend with and
unfortunately some of the most visible ones affect even the
most elementary operations that an enthusiastic new Amiga
coder might experiment with. New methods for opening
screens and windows are a typical case in point because these
operations, like many others, are now done using things called
tag lists.

Before we get stuck
Binging the Changes into the main tag list

discussions it is
worthwh ile looking at the types of problems that the

l ·····.·.·· .. ·~ .
•

-/.vi"'
~"'

!:
0 ..
CD
0 :s -:s ..
c -· .. -· 0 :s

Amiga Insider Guide

Commodore system programmers have had to contend with as they
upgraded the Amiga environment. This will help put a number of oth
erwise confusing alternative Amiga library function issues into context.

First and foremost comes the need for backward compatibility.
Software companies who must maintain products to run on all O/S
versions in current use can be badly hit by poorly thought out operat
ing system enhancements. To their credit Commodore have gone to
great lengths to minimise these types of difficulties. Even so, modify
ing an existing Amiga product so that it runs say under both Release 2
and 1.3 is hard work and still little short of a nightmare for most pro
grammers. The reason I'm mentioning all this is simple - you will find
that with Release 2 onwards some operations can be performed in a
variety of seemingly different ways and it is important to understand
why this is so. Much of the flexibility has been provided primarily for
those developers who, in terms of compatibility, were in the unfortu
nate position of being stuck between a rock (the 1.3 O/S) and a hard
place (Release 2 and later).

Given that the 1.3 user base is likely to diminish as users upgrade
existing machines, and new models like the brilliant Al200 and
A4000/030 make their mark, many developers chose to provide (and
maintain) separate versions of their products. This latter approach is
also the one that most Amiga users will want to adopt with their own
programs because experience shows that once they're working with
the new environment their interest in 1.3 coding will dwindle rapidly!
In order to appreciate some of the new system function options (avail
able from Release 2 onwards) it is necessary to understand how tag
lists fit into the compatibility scenario.

I've already
When New Windows Are Not! mentioned that

the official
include files contain, amongst other things, templates (definitions) for
system structures used to define various entities used by the system.
With operating system releases up to and including 1.3, one of these
templates, called a NewWindow structure, provided standard names
and internal structure position data for the various attribute fields:
size, position and so on. To open a window you would create a
NewWindow structure, fill in the appropriate details, and then call an
Intuition library function named Open Window().

Amiga Insider Guide

In order to provide the Release 2 system enhancements, however,
some established operations, like window opening, required additional
parameters to be specified and Commodore's problem was to find a
way to do this that would minimise any code compatibility
upsets.What they wanted was a solution that would eliminate altogeth
er any need to extend existing system structures in future O/S releases.
The approach they adopted is based on the use of arrays, or lists of
arrays, that contain self-identifying parameter values each consisting
of an identifying label and a corresponding real parameter value. Since
these lists provide a way of tagging additional parameters onto exist
ing O/S structures, they were called tag lists. Where appropriate, new
library functions look for such items and use them either in addition
to, or as a replacement for, any existing structure data they might have
used in the past.

Tag lists solve the problem of providing additional parameters but
they do not, on their own, provide any help as far as backward com
patibility goes. One of the things that Commodore did from Release 2
was to create an extended NewWindow definition which included an
additional extension field at the end of the new structure. A special
include file flag value was defined which, when set, told the
OpenWindow() system routine that tag item values were present.
When running under Release 1.3 or earlier this extension field was
obviously ignored but, by using these types of transparent extensions
coupled with conditional code that looks for Release 2 libraries or
later, developers were (and, in theory, still are) able to write code that
worked under all O/S versions.

So far I've tried to paint a general pic
Window Opening ture about how and why tag lists

came into existence and why you are
going to find a variety of seemingly similar window ·opening functions
in newer versions of the intuition library. Before tackling some 68000
code issues there are a few more points about the opening of Intuition
windows that need to be made.

Since Release 2 there have actually been five different ways to write
window opening code. For a start, a programmer can set up an
ExtNewScreen structure containing a pointer to a tag list holding any
additional parameters required.

Alternatively, an OpenWindowTagList() function can be used in one of
two different ways. The originally required parameters can be speci
fied, a la 1.3, in a NewWindow structure with additional (Release 2

---------·---------

Amiga Insider Guide

onward) arguments being provided in a separate tag list. Or, a NULL
NewWindow pointer can be used coupled with a tag list that contains
all of the required window parameters. This latter approach often
turns out to be the easiest because only the non-default window
attribute values need be supplied.

That covers three of the approaches available for making a window
opening call. Unfortunately (or fortunately depending on your view
point) two more variations exist based on the use of the amiga.lib link
er library's OpenWindowTags() function. Rather than passing a single
tag list pointer, this function expects to get its tag parameters from the
stack along with a NewWindow pointer. Again the NewWindow point
er can be NULL so tag based parameters can be used exclusively if
required.

Insider Guide #30 -
Window Opening - The Bottom Line

Whilst the 1. 3 operating system offered just one basic routine for
opening a window, from Release 2 onward there are five! Despite
how it may seem, this hasn't been done to cause budding Amiga

programmers grief- it is just that it has been necessary to provide
both a backward compatibility pathway for those who need it, and
to ensure increased flexibility as far as future enhancements are

concerned.

Forget about the stack-oriented
OpenWindowTags() approaches
because they've been provided
primarily for C programmers.

Forget also about the use of
the NewWindow structures

(extended or otherwise) because
these structures now only remain in the include files for

developers who needed compatibility with Workbench 1.3 and
earlier. Concentrate instead on understanding how the

OpenWindowTagList() function is used when window attributes
are specified completely by tag list data!

Tag lists are based on an Amiga system structure
Tag Lists known as a Tagltem and if you look in the

Utility/tagitem.i header you'll find that Tagltems are
defined in this sort of fashion:

STRUCTURE

ULONG

Tagitem,O

ti_ Tag

Amiga Insider Guide

ULONG

LABEL

ti_Data

ti_SIZEOF

The STRUCTURE, ULONG and LABEL items are some rather inge
nious macros designed to allow the assembly language include files to
be written using C style structure units. Don't worry about the way
they work just accept the fact that each tag item consists of a pair of
long word (four byte) values. The first long word provides a 32 bit
Tagltem identity, the second a corresponding 32 bit data value.

Most tag identity values are context specific. The intuition.i header file
contains definitions of all manner of Intuition-related tag identities.
WA_Left, WA_Top, WA_ Width and WA_Height, for instance, are used
to specify window position and size information.

A number of general tag item values have also been defined and can be
found, along with the Tagltem structure, in the utility/tagitem.i file.
Here are a few examples:

TAG_IGNORE Indicates that the associated data ite• should
be ignored.

TAG_ SKIP

TAG_MORE

TAG_END

Skip this and the next ti_Data Tagltems.

Marks the end of one array and indicates that at
least one other Taglte• array exists. The
ti_Data field points to the next Taglte• array
to be used.

Signals the end of an array (in this case
ti_Data would be unused).

It's important to understand that tag lists have been adopted to solve
the problem of adding additional parameters to function calls once
and for all. In short, from Release 2 onwards, they have become an
integral part of the Amiga's programming environment. If you are
interested in getting into up-to-date Amiga programming you must
understand how they work. The rest of this chapter is concerned with
making sure you do!

The program we're going to develop opens a window on the
Workbench screen. This, rather simple, coding task is actually very
useful because it draws a lot of earlier ideas together thus providing
another essential step forward. Having said that, there is still much to
explain and this is best done in stages. Our starting point, which
should by now be familiar, are those all important library opening
operations.

---------·--------

Amiga Insider Guide

For reasons that should soon become
Open Sesame apparent we have got to open both the DOS

and the Intuition libraries. These opera
tions, as indicated in Figure 14.1, form the outer framework for our
program:

OPEN DOS LIBRARY

OPEN INTUITION LIBRARY

Open a Window?

CLOSE INTUITION LIBRARY

CLOSE DOS LIBRARY

Figure 14. J A starting framework for the first Intuition example

The following code, which just opens two libraries instead of one, does
nothing you've not seen before but take note that, since the Intuition
library function which we shall be using has only been available from
library version 36, we've got to specify this version as the earliest
acceptable library. An EQUate statement has been used to define the
library version - this is preferable to placing the number 36 into the
code itself. It provides better program documentation and the defini
tion, since it is near the start of the program, is easier to find and
update should the need arise.

* Example CH14-1 . s

LINKLIB MACRO

move.I a6,-(a7)

move.I \2, a6

jsr \1(a6)

move.I (a7)+,a6

ENDM

CALLSYS MACRO

LINKLIB _LV0 \1,\2

ENDM

NULL

DOS_VERSION

INTUITION_ VERSION

EQU

EQU

EQU

0

0

36

Amiga Insider Guide

_AbsExecBase

_LVOOpenLibrary

_LVOCloseLibrary

start lea
library

moveq

EQU

EQU

EQU

dos_name,a1

4

-552

·414

#DOS_VERSION,dO

load pointer to
name

any version will do!

open_dos CALLSYS OpenLibrary,_AbsExecBase

move.l dO,_DOSBase save returned pointer

beq

open_int lea

exit check open OK?

intuition_na11e,a1 load pointer to
library name

moveq #INTUITION_VERSION,dO specify
mi11imum lib
version

CALLSYS OpenLibrary,_AbsExecBase

move.l dO,_IntuitionBase save returned
pointer

beq close_dos check ·open OK?

* LIBRARIES OPEN OK SO WE COULD DO SOMETHING!

close_int 11ove.l _IntuitionBase,a1 library to close

CALLSYS CloseLibrary,_AbsExecBase

close_dos move.l _DOSBase,a1 library to close

CALLSYS CloseLibrary,_AbsExecBase

exit clr.l dO

rts

_DOSBase ds.l 1

_IntuitionBase ds.l 1

dos_na11e dc.b ' dos.library',NULL

intui tion_name de. b ' intuition . library' , NULL

-------··-------·

Amiga Insider Guide

Completing the Plan of Action
You
think
once

might
that,

the
Intuition library has been opened, we can simply use some Intuition
library function to open a window on the Workbench screen. Under
some circumstances, however, a user (or an applications program) can
close the Workbench and so a method of preventing this happening
whilst a program is in the middle of setting up a window is needed.

Intuition provides something called a locking function which allows an
application to force the Workbench - or other public screen - to stay
open. An unlocking function is also available and this can be used at
any time after the new window has been successfully created. For rea
sons of symmetry I prefer to pair lode/unlock calls in much the same
way as open/close library operations are paired. The overall program
plan can be seen in Figure 14.2.

OPEN DOS LIBRARY

OPEN INTUITION LIBRARY

LOCK INTUITION SCREEN

OPEN WINDOW

WAIT FOR SPECIFIED TIME

CLOSE WINDOW

UNLOCK INTUITION SCREEN

CLOSE INTUITION LIBRARY

CLOSE DOS LIBRARY

Figure 14.2 The final framework for the first Intuition example

Why the time delay? Just to give you a chance to see the window
appear, and this is basically a cop out aimed at keeping things as sim
ple as possible. Fully fledged Intuition programs use gadgets and
menus coupled to an Exec style inter-task message communications
scheme. This type of coding, at the 68000 level, is sufficiently complex
as to be outside the scope of this book. To produce runable Intuition
programs whilst avoiding these message-based techniques it has been
necessary, having opened a window, to use a DOS Delay() function to
enable the window to be seen on the display otherwise it would disap
pear almost immediately. If you want more details of the Exec messag
ing system see the Mastering Amiga Assembler and Mastering Amiga
System references in the bibliography!

Amiga Insider Guide

Adding the Screen Locking/Unlocking Code

These routines are used just like any other library functions. The
required parameters are set up, the library base is placed in register
a6, and the appropriate indirect subroutine call is made. On return the
results - if any - are checked to see that they are valid. One way of
locking the Workbench screen is to set up a static name definition
using a dc.b directive:

workbench_name dc.b 'Workbench',NULL

along with a variable to store the returned Workbench pointer

workbench_p ds.l 1

and then use this now familiar type of library call code arrangement:

lock_screen lea workbench_na•e,ao pointer to screen
n11e

CALLSYS LockPubScreen,_IntuitionBase

move.1 dO,workbench_p save returned
pointer

beq close_int

Insider Guide #3 1 - Lock Em Up !
Function Name: LockPubScreen()

check return value?

Description: Prevents a public screen from closing

Call Format: screen = LockPubScreen(name)

Registers: dO aO

Arguments: name - pointer to text string giving name
of screen

Return Value: screen - pointer to screen (or NULL if
routine fails)

·'

I I~ I (I

INTUITION LIBRARY FUNCTION

Insider Guide #32 - Free At Last!
Function Name: UnlockPubScreen()

Amiga Insider G11ide

Description:

Call Format:

Release a public screen lock

UnlockPubScreen(name,[screen])

Registers:

Arguments: name -

ao a1

can provide pointer to name
of screen.
[Normally supplied as NULL]

screen - pointer to screen

Return Value : None

l
t' : I • J . 'h. .. .
• < I I' 1((I ' . ! ~ \; "' ...,

INTUITION LIBRARY

Insider Guide #33 - Open Up!
Function Name: OpenWindowTagList()

FUNCTION

Description: Opens window using NewWindow and/or tag list
data

Call Format: window=OpenWindowTagList(new_window,tag_items)

Registers: dO ao a1

Arguments: new_window · pointer to a NewWindow structure

tag_items · pointer to a tag list

Return Value: window • address of window (NULL if routine
fails) ir ,, ... ·-,.~\!if"' V· ~~·,,~-.,:f.,'~ ,,.#-,;~{'

""··'· .1,~ ••••• '·!I t/.~~'~.r . ~~~:\-~~ ..
~ I ~c I HU -~ (J o;r·~1'1

• <h:.- ..!li.::.•'(\Jtlll

INTU IT ION L I BRA RY FUNCTION

Amiga Insider Guide

Insider Guide #34 -
Closing Windows When You 're Finished
Function Name: CloseWindow()

Description: Does the obvious!

Call Format: CloseWindow(window)

Registers: aO

Arguments: window - pointer to the window to close

Return Value: None

I I~ I (I

INTUITION LIBRARY FUNCTION

Insider Guide #35 - A DOS Time Waster
Function Name: Delay()

Description: Causes program to be suspended for a
specified time

Call Format: Delay(time)

Registers: d1

Arguments: time - delay specified in ticks
(50 ticks = 1 sec)

Return Value: None

I I~ I (I

Amiga Insider Guide

If by chance the Workbench screen is not open when this call is made
Intuition will open it for you. The WorkBench screen unlocking is
even simpler:

unlk_screen move.! #NULL,aO screen name not needed

move.! workbench_p,a1 screen to unlock

CALLSYS UnlockPubScreen ,_IntuitionBase

There's more good news because the OpenWindowTagList() function
that we're going to use actually works even if you execute it without
supplying either a structure block or a tag list. It sets up some reason
able defaults and even seems to identify the Workbench as the destina
tion screen automatically. This means we can open a trial window
very easily using:

open_window move.! #NULL,aO

move.! #NULL,a1 no tag list

CALLSYS OpenWindowTaglist ,_IntuitionBase

move.! dO,window_p

beq unlk_screen

and close it using the CloseWindow() routine

move . 1 window _p, ao

our window

window to close

CALLSYS CloseWindow,_IntuitionBase

If the DOS Delay() function is used to provide an arbitrary 5 second
(250 tick) delay like this

move . !

CALLSYS

#TIME_DELAY,d1

Delay ,_DOSBase

then - bingo! - we've got all we need to create a runable, observable
Intuition window. Put this new code into our existing framework and
things really start to cook. If you assemble the resulting code
(Example CH14-2.s), in the same way as explained in Chapters 9 and
10, you find that when the program is run, an Intuition window
appears on the Workbench screen for about 5 seconds! (A68k users
must remembering to put a terminal END statement into their
source.)

----------·----------

Amiga Insider Guide

* Example CH14-2.s

LINKLIB MACRO

move.l a6,-(a7)

move.l \2, a6

jsr \1(a6)

move.l (a7)+,a6

ENDM

CALLSYS MACRO

LINKLIB _LV0\1,\2

ENDM

NULL EQU 0

DOS_VERSION EQU 0

INTUITION_ VERSION EQU 36

SECONDS EQU 50

TIME_DELAY EQU 5*SECONDS

_AbsExecBase EQU 4

_LVOOpenLibrary EQU -552

_LVOCloselibrary EQU -414

LVOLockPubScreen EQU -510 -
LVOUnlockPubScreen EQU -516 -

_LVOOpenWindowTaglist EQU -606

LVOCloseWindow EQU -72 -
_LVODelay EQU -198

start lea dos_name,a1 load pointer to
library na11e

11oveq #DOS_VERSION,dO any version will do!

open_dos CALLSYS OpenLibrary,_AbsExecBase

move.l dO ,_DOSBase save returned pointer

beq exit check open OK?

open_int lea intuition_na11e,a1 load pointer to
library name

•

moveq

Amiga Insider G11ide

#INTUITION_VERSION ,dO specify
mimimu11 lib
version

CALLSYS OpenLibrary,_AbsExecBase

move.l dO,_IntuitionBase save returned
pointer

beq close_dos

lock_screen lea workbench_name,ao

check open OK?

pointer to
screen name

CALLSYS LockPubScreen,_IntuitionBase

move.l dO,workbench_p save returned
pointer

beq close_int check return value?

open_window move .1 #NULL, ao

move . l #NULL ,a1 no tag list

CALLSYS OpenWindowTagList,_IntuitionBase

move.l dO,window_p

beq unlk_screen

move.l #TIME_DELAY,d1

CALLSYS Delay,_DOSBase

move.l window_p , aO

pointer to our
window

window to close

CALLSYS CloseWindow,_IntuitionBase

unlk_screen 11ove.l #NULL,aO screen name not
needed

close_int

close_dos

exit

move.l workbench_p,a1 screen to unlock

CALLSYS UnlockPubScreen,_IntuitionBase

move.l _IntuitionBase,a1 library to close

CALLSYS CloseLibrary,_AbsExecBase

move. l _DOSBase,a1 library to close

CALLSYS CloseLibrary ,_AbsExecBase

clr.l

rts

dO

logical end of program

----------·----------

Amiga Insider Guide

DOSBase ds.l 1 -
-IntuitionBase ds.l 1

workbench_p ds.l 1

window_p ds.l 1

dos_na11e dc.b 'dos.library',NULL

intuition_na11e dc .b ' intuition.library',NULL

workbench_n111e dc.b 'Workbench',NULL

It's quite surprising that the
Adding Some Tag Data previous code works

----------------- because, as you may have
noticed, we didn't tell Intuition which screen we wanted our window
to open on. Along with many other possible parameters, this is some
thing that can be specified in a tag list. The numerical values of the tag
identities need to be the same as those defined by Commodore and,
for clarity, the standard tag identity names should also be used.
Without access to the official headers these items need to be set up
within the source code itself. The following EQUates do just that and
produce results identical to those found in the official intuition/intu
ition.i and utility/tagitem.i include files. The official documentation
provides many other tag definitions:

TAG_DONE EQU 0

WA_BASE EQU $80000063

WA_Left EQU WA_BASE+$01

WA_ Top EQU WA_BASE+$02

WA_Width EQU WA_BASE+$03

WA_Height EQU WA_BASE+$04

WA_ Title EQU WA_BASE+$0B

WA_DragBar EQU WA_BASE+$1F

WA_PubScreen EQU WA_BASE+$16

WA_Left, WA_Top, WA_Width, WA_Height and WA_Title are used to
provide details of the size and title of the window provided in the cor
responding data fields . WA_DragBar, as the name suggests, asks
Intuition to place a drag bar on the window if the data item field is set
to TRUE and WA_PubScreen is used to supply the address of the
screen being used.

---------·--------

Amiga Insider Guide

Insider Guide #36 -
If You Have the Official Amiga Include Files . ..

Then you do not need to set up the tag identity values because they
are provided in the intuition/intuition.i and utility/tagitem.i include

files. Nor is it necessary to define the LINKL/8 macro because that
is present in the exec//ibraries.i file . Best of all you only need to

specify one include file, namely intuition/intuition.i, in your source
and this automatically brings in the various files just mentioned
and many more. In practice then, you just need this statement at

the start of your source code:

INCLUDE intuition/intuition.!

Most tag identities and values can be set up as static definitions con
sisting of identity+value pairs. After all we can decide what values are
needed before we assemble the program!

The data part of the WA_PubScreen however, which is a pointer to the
public screen, cannot be set up in this way since this info comes back
from the LockPubScreen() routine. Because of this it is convenient to
give the WA_pubScreen data field a separate label. The Workbench
address has to be stored anyway in order to release the public screen
lock so I've arranged to store it directly in the tag list data rather than
store it separately and move a copy of the address to the tag list. I've
arbitrarily chosen to create a 440x100 pixel window (called 'My Very
First Window!') with a drag bar which opens at the x/y screen location
of (100,50). Here are the tag list storage definitions being used:

tags dc . l WA_PubScreen

workbench_p ds.l 1

de.I WA_Left,100

de.I WA_Top,50

dc.l WA_Width,440

de.I WA_Height,100

dc.l WA_DragBar,TRUE

dc . l WA_Title,window_name

dc . l TAG_DONE , NULL

Amiga Insider Guide

By adding the above mentioned fragments to the existing program,
and changing the OpenWidowTagList() call so that register a l gets
loaded with the start of the tag list like this:

open_ window 1ove .1 #NULL, ao

lea tags,a1 our tag list

CALLSYS OpenWindowTagList,_IntuitionBase

We are now able to pass Intuition the tag list information about the
window. Here, to end this chapter, is the finished source code which
shows you how the above ideas fit together:

* Example CH14-3.s

LINKLIB MACRO

move . l

11ove.l

jsr

11ove . l

ENDM

CALLSYS MACRO

TRUE

NULL

LINKLIB

ENDM

DOS_VERSION

INTUITION_ VERSION

SECONDS

TIME_DELAY

TAG_DONE

WA_BASE

WA_Left

WA_ Top

WA_Width

WA_Height

WA_ Title

a6,-(a7)

\2,a6

\1(a6)

(a7)+,a6

_LV0\1,\2

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

•

0

0

36

50

10*SECONDS

0

$80000063

WA_BASE+$01

WA_BASE+$02

WA_BASE+$03

WA_BASE+$04

WA_BASE+$0B

WA_DragBar

WA_PubScreen

_AbsExecBase

_LVOOpenlibrary

_LVOCloselibrary

_LVOLockPubScreen

_LVOUnlockPubScreen

_LVOOpenWindowTaglist

_LVOCloseWindow

_LVODelay

start lea

moveq

Amiga Insider Guide

EQU WA_BASE+$1F

EQU WA_BASE+$16

EQU 4

EQU -552

EQU -414

EQU ·510

EQU -516

EQU ·606

EQU ·72

EQU · 198

dos_name,a1 load pointer to
library name

#DOS_VERSION,dO any version will do!

open_dos CALLSYS Openlibrary,_AbsExecBase

open_int

move.I dO,_DOSBase

beq exit

save returned pointer

check open OK?

lea intuition_name,a1 load pointer to
library na111e

moveq #INTUITION_VERSION,dO specify
mi11imum lib
version

CALLSYS Openlibrary,_AbsExecBase

move . I dO,_IntuitionBase

beq close_dos

save returned
pointer

lock_screen lea workbench_name,ao

check open OK?

pointer to
screen na111e

CALLSYS LockPubScreen,_IntuitionBase

move.I dO,workbench_p save returned
pointer

beq close_int check return value?

open_window move.I #NULL,aO

lea tags,a1 our tag list

CALLSYS OpenWindowTaglist,_IntuitionBase

---------·----------

Amiga Insider Guide

move.! dO,window_p pointer to our
window

beq

move .!

CALLSYS

unlk_screen

#TIME_DELAY,d1

Delay,_DOSBase

window_p,ao move .! window to close

CALLSYS CloseWindow,_IntuitionBase

unlk_screen move . !

move.!

#NULL,aO screen na11e not
needed

workbench_p ,a1 screen to unlock

CALLSYS UnlockPubScreen ,_IntuitionBase

close_int move.! _IntuitionBase,a1 library to close

CALLSYS CloseLibrary,_AbsExecBase

close_dos move.! _DOSBase,a1 library to close

CALLSYS CloseLibrary,_AbsExecBase

dO exit clr.l

rts

_DOSBase

_IntuitionBase

window_p

tags

workbench_p

dos_name

intuition_name

ds.l

ds.l

ds.l

dc.l

ds . l

dc.l

dc . l

dc.l

dc.l

dc.l

dc.l

dc.l

dc.b

dc.b

logical end of program

1

WA_PubScreen

WA_Left, 100

WA_Top,50

WA_Width ,440

WA_Height,100

WA_DragBar,TRUE

WA_Title,window_name

TAG_DONE,NULL

'dos.library ' ,NULL

' intuition.library',NULL

---------·---------

workbench_n111e

window_name

Amiga Insider Guide

dc.b 'Workbench ',NULL

dc.b ' My Very First Window! ', NULL

I

----------··-----------

Creating Amiga graphics is an exciting and
rewarding job hut, surprisingly, it is not that

difficult even when programming in assembler
language. This chapter unveils some of the
tricks that are needed to get you started ...

THB IHSIDllll oumB'S
OllAPHJCS OANO

T he easiest way to make a start with Amiga graphics is to
use some of the high-level drawing functions available
in the Intuition library. Intuition's arrangements for

drawing graphics into multiple-bitplane screens and windows
are, in terms of the underlying ideas, quite complex but the
existence of pre-written routines means that all the complexity
can be nicely hidden away. Intuition provides routines for dis
playing text, polygon shapes which come under the general
name of Borders, and bitplane images. In this chapter it is the
image-oriented operations that come under the magnifying
glass.

Intuition's image drawing is based on a structure - a standard
ised block of data - known, believe it or not, as an Image struc
ture. The Intuition Image structure tells Intuition things about
the size and location of the image and is used primarily in con
junction with a library routine called Drawlmage().

Amiga Insider Guide

Insider Guide #37 - Graphics The Easy Way
Function Name: Drawimage()

Description: This is Intuition ' s high-level Image
drawing routine

Call Format:
Drawimage(rastport , image, left_offset, top_offset);

Registers: ao a1 dO d1

Arguments: rastport - pointer to a RastPort

image - pointer to an Image structure

left_offset - a general left offset used
with all of the linked Image structures of
a particular Drawimage() call.

top_offset - a general top offset used
with all of the linked Image structures of
a particular Drawimage() call.

Return Value: None

Notes: It is convenient to have displacement
offsets in the Drawimage() call itself
because this allows a global off set to be
applied to a chain of Image structures.
You may have a group of a couple of dozen
separate images on display but, if you so
desire, can reposition the whole group
(keeping their relative positions the
same) by altering the global offsets.

On the face of it this function call arrangement makes the display of
graphics images very easy. In practice there is a big problem looming
because, although using the Image structures and the Drawimage()
function is easy enough, creating the associated Image data is not.
Working out from first principles exactly how to create the Image data
for a particular object (whether it be a cloud, a tree or some fancy
backdrop display) turns out to be nigh-on impossible.

The good news is that, as a programmer, you never have to do this
because nowadays tools are available which make the task of creating
even the most complex graphics a piece of cake. Firstly, the existence
of clear inter-program graphics definition guidelines (part of the now
famous IFF standard) encouraged the creation of programs that can
read and write graphics data using a common data-file format.

---------·---------

Amiga Insider Guide

Secondly, programs such as Electronic Art's DPaint and Cloanto's
Personal Paint have provided an easy means of creating IFF picture
files without the programmer having to be involved with the underly
ing complexities of bitplane data generation. More help has appeared
and tools, such as Inovatronic's Power Windows, are able to convert
IFF brushes into the equivalent assembly source compatible Image
data.

Insider Guide #38 - BitPlane Graphics Theory

I I~ I (I

An example bit-by-bit plan for a
small graphics object is provided

in the Intuition sections of the
Addison Wesley Libraries RKM
manual but you are unlikely to
have to use this approach. The
relationships between displays,

bitplanes, Images etc, are dealt with very thoroughly in the RKM
manuals and, when you get to the point where you start to need

in-depth information, they are without doubt the best place to look.

As already men
Getting Graphics into Code tioned, the task of

creating and using
graphics in your Amiga programs has been considerably eased by
some sophisticated graphics-support tools. Deluxe Paint for instance
can be used to create any required graphics objects which can then be
stored as picture files. This can be done using either complete screen
pictures or small, user definable, graphic sections called brushes. By
switching on Deluxe Paint's XIY co-ordinate display a user can easily
create objects of a given size. If some graphic images 40 pixels by 60
pixels are needed then a suitable background area can be marked out,
the images drawn, and the brush facility then used to save that partic
ular area of the display.

So, how do you get say a Deluxe Paint drawing into your program? It
is possible for a program to read in an IFF file and convert it into a
suitable (Amiga displayable) form directly. The advantages of this par
ticular approach are that you only need to read the picture into memo
ry just prior to displaying it, so it becomes very easy to change the
graphics without re-assembling the program - you just swap one IFF
file for another. The disadvantage is that some rather complicated pro
gramming is needed to handle straight IFF graphics file loading.

Amiga Insider Guide

The other approach is to take the IFF file and convert it to an Intuition
Image structure using a utility such as Power Windows. Having done
that the Image structure and the associated Image data can be read
into the source code of the program and displayed using the Intuition
Drawlmage() function.

87 1988 b ti IUlflCC.S "'IH<.

Tools like PowerWindows are a great help to the serious Amiga coder.

The next program is based on the
A Runable Exa1nple last example of Chapter 14 but in

addition to opening a window on
the Workbench screen, it also draws some bitplane graphics. In this
case DPaint was used to draw the picture, which was subsequently
saved as an IFF Brush. Power Windows was then used to convert the
brush to assembler-style data statements.

The Drawlmage() function requires a pointer to the window's rastport
(drawing area) and this address is stored inside the window structure,
ie the block of data set up by Intuition when a window is opened. I've
not discussed structure creation and structure access in this book
because, although important, it leans heavily towards C language style
concepts and complicated macros that are best left for more advanced
books. To be honest it isn't necessary to understand how C- style struc
tures are created in order to use them and, since tools like Power
Windows can create the structures automatically anyway, all that's
really needed initially is a little help in using them.

By loading an address register with the base of a window structure it
is possible to reach inside and extract, ie copy, the window's rastport
address. It's done using the 68000's indirect addressing with displace
ment addressing mode - the same as that used to execute system
library routines. Where do we get the base from? This is the window
pointer, the window address, that was collected when the window was

Amiga Insider Guide

Insider Gui,de #39 -
Devpac to A68k Assembler Secti.on Conventions

We've already seen that A68k requires source files to contain an
explicit END statement at the end of the source code. This is easily

done by reading the source file into any available ASCII text editor
ED or Memacs will do - moving to the end of the text file and insert

ing a terminal END statement as the last line of the source code.
There is also a minor difference between the A68k and Devpac

assemblers in the syntax used for program section identification.
Most assembler programs contain real code, initialised data areas,

and uninitialised areas. The section directive is used to tell the
assembler about the purpose of particular areas of source code.

The assembler subsequently embeds this information in the object
code so that the linker can use it. For most small programs you

don't need to use, or worry about, section directives unless you are
including graphics data - this must end up in chip memory in order

for the Amiga's custom chips (namely the blitter) to access it.
With Devpac this is done using this sort of statement

SECTION IMAGE,DATA_C
Where IMAGE is just an arbitrary section name and DATA.C

is a keyword indicating chip memory.

Charlie Gibb's A68k assembler requires slightly different section
syntax and so a small change is necessary for coders using this

program. The source code line shown above, which has to appear
just before the graphics data itself, must with A68k, be changed to

SECTION

·-·1· :i ·--·tlie
:: ...

IMAGE , DATA,CHIP

opened. In the example code this pointer comes qack in register dO, so
I just copy it to a convenient address register, a 1:

move.l dO,a1 window address in a1

The offset, ie the displacement which is used to reach into the window
structure, is another one of those many it~ms defined in the official
Amiga include files. It's official name is wd_RPort, so named because

----------·· -----------

Amiga Insider Guide

it refers to a WinDow RastPORT. When this value is available the
Amiga programmer can copy the field:

move.! wd_RPort(a1),aO copy rastport pointer into ao

In the first version of the program I've assumed that the header files
are not available and, since the RKM manuals tell me that the numeri
cal value of the wd_RPort offset is 50 (decimal), I've just added an
additional EQUate to the source code to create my own definition of
this item.

Once the rastport address is available the rest of the Drawlmage()
parameters can be set up and the function executed in the normal
fashion:

lea

moveq

moveq

Image1,a1

#20,dO

#15, d1

pointer to image

example left off set

example top offset

CALLSYS Drawimage,_IntuitionBase

Now all that's needed are some examples which show these drawing
routines in action.

If You Haven't Got the Official Includes

Everyone using Devpac has the official include files so this example is
based on using the A68k assembler. All of the macros, tag identities,
LVO values and field definitions have therefore been, like many previ
ous examples, placed directly into the source and no official include
files are needed to assemble it correctly:

* Example CH15-1.s

LINKLIB MACRO

move.!

move .!

j sr

move.!

ENDM

CALLSYS MACRO

a6 , -(a7)

\2,a6

\1(a6)

(a7)+,a6

LINKLIB _LV0\1, \2

ENDM

Amiga Insider Guide

TRUE

NULL

DOS_VERSION

INTUITION_ VERSION

SECONDS

TIME_DELAY

TAG_ DONE

WA_BASE

WA_Left

WA_ Top

WA_ Width

WA_Height

WA_ Title

WA_DragBar

WA_PubScreen

wd_RPort

_AbsExecBase

_LVOOpenLibrary

_LVOCloseLibrary

LVOLockPubScreen -
-LVOUnlockPubScreen

_LVOOpenWindowTagList

LVOCloseWindow -
_LVODelay

_LVODrawI111ge

start lea

moveq

EQU

EQU 0

EQU 0

EQU 36

EQU 50

EQU 10*SECONDS

EQU 0

EQU $80000063

EQU WA_BASE+$01

EQU WA_BASE+$02

EQU WA_BASE+$03

EQU WA_BASE+$04

EQU WA_BASE+$08

EQU WA_BASE+$1F

EQU WA_BASE+$16

EQU 50

EQU 4

EQU -552

EQU -414

EQU -510

EQU -516

EQU -606

EQU -72

EQU -198

EQU -114

dos_name,a1 load pointer to
library na11e

#DOS_VERSION,dO any version will
do!

open_dos CALLSYS OpenLibrary,_AbsExecBase

move.l dO,_DOSBase save returned
pointer

beq exit check open OK?

---------·--------

open_int lea

moveq

Amiga Insider Guide

intuition_name,a1 load pointer to
library name

#INTUITION_VERSION,dO specify
mimimum lib
version

CALLSYS OpenLibrary,_AbsExecBase

move.I dO,_IntuitionBase save returned
pointer

beq close_dos check open OK?

lock_screen lea workbench_name,ao pointer to
screen name

CALLSYS LockPubScreen,_IntuitionBase

move.I dO,workbench_p save returned
pointer

beq close_int check return
value?

open_window move .1 #NULL, ao

~raw_image

wait

lea tags,a1 our tag list

CALLSYS OpenWindowTagList,_IntuitionBase

move.1 dO,window_p

beq unlk_screen

move.I dO ,a1

move.I wd_RPort(a1),aO

lea Image1 ,a1

moveq #20,dO

moveq #15,d1

pointer to our
window

window address in
a1

copy rastport
pointer into ao

pointer to image

example left
offset

example top
offset

CALLSYS Drawimage,_IntuitionBase

move.I #TIME_DELAY,d1

CALLSYS Delay,_DOSBase

move.I window_p , aO window to close

CALLSYS CloseWindow,_IntuitionBase

----------··-----------

Amiga Insider Guide

unlk_screen move.l #NULL,aO screen name not
needed

move.l

CALLSYS

close_int move.l

CALLSYS
close_dos move.l

CALLSYS

exit clr.l

_DOSBase

_IntuitionBase

window_p

tags

workbench_p

dos_name

intuition_ name

workbench_name

window_na11e

IHge1:

rts

ds.l

ds.l

ds.l

dc.l

ds.l

dc.l

dc.l

dc.l

dc.l

dc . l

dc . l

dc.l

dc .b

dc.b

dc.b

dc.b

workbench_p,a1 screen to unlock

UnlockPubScreen,_IntuitionBase

_IntuitionBase,a1 library to close

Closelibrary,_AbsExecBase

_DOSBase,a1 library to close

Closelibrary,_AbsExecBase

dO
logical end of program

1

WA_PubScreen

WA_Left,50

WA_Top,20

WA_Width,420

WA_Height,250

WA_DragBar,TRUE

WA_Title,window_name

TAG_DONE , NULL

' dos.library',NULL

' intuition . library ' ,NULL

'Workbench',NULL
'My Very First Graphics!',NULL

Generated from IFF brush using Power
Windows ·

dc.w o,o ;xv origin relative to container
Topleft

dc.w 395,215 ;Image width and height in pixels

dc.w 2 ;number of bitplanes in Image

dc . l ImageData1 ;pointer to ImageData

----------·----------

Amiga Insider Guide

dc.b $0003,$0000 ;PlanePick and PlaneOnOff

dc.l NULL ;next Image structure

SECTION Image,DATA,CHIP

ImageData1:

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $001F,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$001F,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$001F,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$001F,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

l\l\l\l\l\l\l\l\l\I\

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$001F,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$001F,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$001F,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$001F

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

END

----------·----------

Amiga Insider Guide

When the official Amiga
The Offieial Approach include files are available

many of the definitions pre
sent in the previous version are unnecessary because they are available
in the includes files themselves. L VO values are available from two
main sources. Firstly, they are defined as part of the amiga.lib linker
library so any program that needs to link with amiga.lib has access to
the necessary values automatically. Secondly both Commodore and
commercial assemblers like Devpac provide utilities for generating
L VO values from the Commodore function description files; these
form part of the official include file disk material. The following
source assumes that a file, called function_offsets.i, is available with
suitable LVO offset information:

* Exa11ple CH15-2.s

INCLUDE intuition/ intuition . i

INCLUDE function_offsets.i

CALLSYS MACRO

TRUE

NULL

DOS_VERSION

LINKLIB _LV0\1, \ 2

ENDM

EQU

EQU 0

EQU 0

INTUITION_ VERSION EQU 36

SECONDS

TIME_DELAY

start lea

moveq

open_dos · CALLSYS

move.!

beq

open_int lea

EQU 50

EQU 10*SECONDS

dos_name,a1

#DOS_VERSION , dO

load pointer to
library na11e

any version will
do!

OpenLibrary,_AbsExecBase

dO,_DOSBase save returned
pointer

exit check open OK?

intuition_na11e,a1 load pointer to
library name

Amiga Insider G11ide

moveq #INTUITION_VERSION,dO specify
11i111imum lib
version

CALLSYS Openlibrary,_AbsExecBase

move.l dO,_IntuitionBase save
returner
pointer

beq close_dos check open OK?

lock_ screen lea workbench_na11e,ao pointer to
screen name

CALLSYS LockPubScreen,_IntuitionBase

move.l dO,workbench_p save returned
pointer

beq close_int check return
value?

open_ window move.l #NULL,aO

lea tags,a1 our tag list

CALLSYS OpenWindowTagList,_IntuitionBase

move.l dO,window_p pointer to our
window

beq unlk_screen
draw_image move.l dO,a1 window address

in a1

move.l wd_RPort(a1),aO copy rastport
pointer into ao

lea Image1,a1 pointer to image

moveq #20,dO example left
off set

moveq #15,d1 example top
offset

CALLSYS Drawlmage,_IntuitionBase

wait move.l #TIME_DELAY,d1

CALLSYS Delay,_DOSBase

move.l window_p,aO window to close

CALLSYS CloseWindow,_IntuitionBase

--------~·----------

Amiga Insider Guide

unlk_screen move.I #NULL , aO screen name not
needed

move . I

CALLSYS
close_int move . I

CALLSYS

close_dos move.I

CALLSYS
exit clr . l

rts

_DOSBase

_IntuitionBase

window_p

ds.l

ds . l

ds.l
tags

workbench_p

dc . l

ds.l

dc.l

dc.l

dc.l

dc. l

dc.l

dc.l

dc.l

dc .b

dc .b

dc .b

dc .b

workbench_p ,a1 screen to unlock

UnlockPubScreen ,_IntuitionBase

_IntuitionBase,a1 library to close

Closelibrary,_AbsExecBase

_DOSBase,a1 library to close

Closelibrary,_AbsExecBase

dO

logical end of progra1

WA_PubScreen

1

WA_Left,50

WA_Top,20

WA_Width ,420

WA_Height ,250

WA_DragBar,TRUE

WA_Title ,window_name

TAG_DONE , NULL

' dos . library ', NULL

' intuition. library',NULL

'Workbench ' ,NULL

' My Very First Graphicsl ', NULL

dos_na11e

intuition_name

workbench_name

wi ndow_name

Image1: Generated f ro• IFF brush using Power
Windows

dc.w O,O

dc.w 395 ,215

dc .w 2

dc.l ImageData1

;XY origin relative to container
Topleft

;Image width and height in pixels

;number of bitplanes in Image

;poi nter to ImageData

--------··--------

Amiga Insider Guide

dc.b $0003,$0000 ;PlanePick and PlaneOnOff

dc.l NULL ;next Image structure

SECTION Image,DATA_C

ImageData1:

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $001F,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$001F,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$001F,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$001F,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000
/\/\/\/\/\/\/\/\/\/\

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$001F,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$001F,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$001F,$0000

dc.w soooo,soooo,soooo,soooo,soooo,soooo,$0000,soooo

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$001F

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000 ________ ________ __

This chapter deals with a number of topics,
all carefully chosen to lead you on to

greater things .. .

T he examples we've dealt with so far have been kept
deliberately straightforward and you'll have doubtless
noticed that the examples have adopted a "do this, then

that, then something else ... " style coupled with some condition
al test branches to ensure that the right things happen at the
right time. This is fine for small pieces of code but as programs
get larger these simple linear arrangements become less and
less attractive. In short, methods need to be found for identify
ing and separating the various logical tasks a program must
perform. Equally important, coding has to progress in a way ·
which makes program development (and code re-use) less trau
matic. One of the ways this is done is to identify those jobs
which are suitable for writing as subroutines.

Amiga Insider Guide

When a particular piece of code is recognised
Subroutines as being generally useful - or perhaps is

repeated many times within just one program
- it is worth writing as a subroutine and on the 68000 the basic
arrangement takes this form:

label

t
code which does

the real work

• rts

start of subroutine

return from subroutine

The subroutine, as likely as not, has to use one or more of the 68000's
registers and this creates a potential problem because the contents of
some of those registers may already contain information important to
the program. The usual way of preventing a subroutine from inadver
tently destroying register data is to preserve the contents of any regis
ters being used (by placing them on the 68000's stack) and, when the
subroutine has finished its work, re-instating them. In general then the
framework adopted by most subroutines actually looks more like this:

l abel start of subroutine

preserve any registers to be used

t
code which does

the real work

• restore contents of registers used

rts return from subroutine

The;e multiple save/restore operations are so common that the 68000
has provided special instructions for the job. They are called multiple
move, or movem, instructions and they allow ranges of registers to be
specified. If, for instance, we want to store data registers d2-d7, and
address registers a2-a5, on the 68000 stack using the stack pointer reg
ister sp (ie a7) it could be done like this:

movem.l d2-d7 / a2-a5,-(sp) preserve registers

and to reinstate the contents of those registers:

Amiga Insider Gulde

11ovem. l (sp)+, d2 -d7/ a2 -a5 restore registers

so 68000 subroutines end up using these type of schemes:

l abel start of subrouti ne

•ovem . l d2-d7 /a2-a5, -(sp)

t
code which does

the real work

• llOVH .l (sp)+,d2 -d7/a2-a5

rts

preserve registers

restore registers

return f rom subrouti ne

Subroutines usually need
Subroutine Parameters some sort of data to act on

and these items are known
as the subroutine's parameters. There are a variety of parameter pass
ing techniques available to the 68000 programmer but the one used in
our examples is that used by the Amiga's run-time library functions -
ie any values the subroutine needs are passed in microprocessor regis
ters.

Very often a supplied parameter needs to be re-used by the subroutine
and one commonly seen Amiga-specific coding slip is arranging to

· supply one of more values in registers dO, dl, aO ,or al, and at some
point making a run-time library call. The registers just mentioned, the
so called scratch registers, are often destroyed by the library call and
the official Amiga documentation specifically states that the values of
those registers should always be regarded as lost!

We're going to develop a
An Example Subroutine nice and easy, but still

quite effective routine,
called DrawGrid() that takes a specified graphics object (defined as an
Intuition image) and creates a tile/wallpaper effect within a window by
drawing multiple copies of the image using the sort of caller-defined
MxN grid, as· seen in Figure 16.1.

Quite a few parameters need to be passed to this DrawGrid() subrou
tine. Knowing from the function description that the Intuition
Drawimage() library routine needs a rastport pointer in aO, an image
pointer in a l , plus left and top offsets in dO and d l the following regis
ter arrangements were chosen:

M

r

0

w

s

Amiga Insider Guide

N columns ----.

Figure 16. l. A MxN caller defined grid.

ao is to hold the window rastport pointer

a1 is to hold the image pointer

dO is to hold the starting left offset value

d1 is to hold the starting top offset value

d2 holds the required horizontal block count, ie column count

d3 is to hold the required vertical block count, ie row count

The subroutine draws each row of the grid by making Drawlmage()
library calls incrementing the function's left offset drawing position by
the width of the image block each time. Once a row is complete the
top offset value is increased by the height of the image and the row
drawing operations repeated.

Rather unfortunately we must assume that the parameters present in
aO, al, dO and dl (the scratch registers) are destroyed by each and
every Drawlmage() Intuition call. So these values need to be copied to
other registers at the start of the routine so that they can be reloaded as
required. Also, a copy has to be kept of the original left offset because
one working value needs to be increased as the images in any given row
are drawn but the original value is still needed to reset the offset at the
start of the second and subsequent row drawing operations. ·

Now all of these values could be placed on the 68000's stack, or stored
in ds.x defined memory locations but, for maximum execution speed it
is actually faster to keep as much data as possible within the 68000
registers themselves. I have therefore, somewhat arbitrarily, chosen to
preserve the rastport pointer in register a2, the image pointer in regis-

---------·---------

Amiga Insider Guide

ter a3, the left offset in d7, the top offset in a4, the column block count
in aS and opted to collect and store the image width and height in d4
and dS respectively. Additionally register d6 is used to store the cur
rent left offset value at any given time. Why were address registers
chosen for some data items? It's simply that almost all (data and
address) registers were needed to store all of the various items!

Parameters supplied:

ao holds the window rastport pointer

a1 holds the image pointer

dO holds the starting left offset value

d1 holds starting top offset value

d2 holds required horizontal block count, ie column count

d3 holds required vertical block count, ie row count

Additional registers used within the routine:

d4 stores image width

d5 stores image height

d6 holds an updated (current) left off set

d7 copy of original left off set

a2 copy of rastport pointer

a3 copy of image pointer

a4 copy of original top off set

as copy of original column count

Although I've not made a point of emphasising this in earlier chapters,
it's worth remembering that instructions which use smaller size
operands do execute more quickly and, of course, memory space is
saved. Graphics routines, such as the one we are developing, should
make all reasonable efforts to take advantage of such things and in
this case a lot of the data, block counts, the Drawimage() offsets etc,
can in fact be specified as word sized (two byte) data items.

The image width and height values, which are also word sized fields
do not need to be explicitly provided as they're stored in the image
structure itself and can be obtained using the word-based form of indi
rect addressing with displacement. In the case of the Intuition Image
structure the displacements required to obtain the image width and
height are given the standard ig_ Width and ig_Height respectively.

---------·--------

Amiga Insider Guide

Predefined values are available in the intuition.i include file but since
they have absolute values of 4 and 6 it is easy enough to define identi
cal EQUate values if necessary and so still write this type of conven
tional Amiga code:

move.w ig_Width(a1) , d4 get image width in d4

move .w ig_Height(a1) , d5 get image height in d5

Coupled to the previously mentioned initial parameter copy opera
tions, the subroutine entry code therefore ends up looking like this:

move.I aO,a2 preserve rastport pointer

move.I a1,a3 preserve image pointer

move .w d0,d6 d6 = current left offset

move.w d0 , d7 preserve left offset for re -use

move.w d1,a4 preserve top o~f set

move.w d2,a5 preserve column count for re-use

move.w ig_Width(a1),d4 get image width in d4

move .w ig_Height(a1) ,d5 get image height in d5

Basically we draw the
Drawing a Row of Images image structure (using

the same function call
arrangement as in the last chapter), decrease the horizontal block
count, and test to see whether the count is zero thus checking all hori
zontal images in a row have been drawn. If the current row is com
plete we move onto the next row; otherwise we reset the top offset
value in register d l (which the library call might have destroyed),
update the left offset value (by adding the image width to it), reset the
dO, aO and a 1 parameters which may also have been destroyed by the
library call, and continue looping back to the Drawlmage() function:

draw_row CALLSYS Drawimage,_IntuitionBase

subq #1 ,d2 decrease count

beq next_row

move.w a4,d1 set top offset

add .w d4 ,d6 form new left off set

draw_row2 move.w d6,d0 needed for library
function call

Amiga Insider Guide

aove . l

move . I

bra

a2,aO

a3,a1

draw_row

restore rastport pointer

restore i mage pointer

keep goi ng

At the start of each new row we decrease the count value and check
whether another row needs to be drawn. If it does the left offset value
is reset to the start of the row, the column count (which represents the
number of horizontal blocks to be drawn) is similarly reset, and the
top offset value is increased by the height of the image. In the follow
ing code notice how branch on equal (beq) and branch always (bra)
instructions are used to create program loops which finally exit when
the count values (which are decreased by one each time a loop is exe
cuted) become zero:

next_ row subq

beq

move.w

move.w

move .w

add.w

move.w

bra

draw_end

#1,d3

draw_end

d7 , d6

a5 , d2

a4 ,d1

d5 ,d1

d1, a4

draw_row2

decrease count

reset start left
off set for row

reset column count

top offset for next
row

These types of program loops with counter exits become increasingly
important in more advanced 68000 programming and in fact the
68000 even provides some rather more specialised automated instruc
tions for creating this type of code.

By collecting all the things discussed so far we can piece together this,
reasonably efficient, DrawGrid() routine. I have incidentally chosen to
preserve and restore all registers used (including scratch registers dO,
d l , aO and al) because this allows the routine to be re-used quickly
without having to reload any unchanged scratch register based para
meter values:

---------·--------

Amiga Insider Guide

DrawGrid:

Requires following parameters on entry ...

ao holds window rastport pointer

a1 holds image pointer

dO holds starting left offset value

d1 holds starting top offset value

d2 holds required horizontal block count, ie column
count

d3 holds required vertical block count , ie row count

movem .1 d0-d7 / aO-aS, - (sp) preserve
registers

draw_row

move.I

move.I

move.w

move.w

move.w

move.w

move.w

11ove.w

CALLSYS

subq

beq

move.w

add.w

draw_row2 move.w

move.I

move . I

bra

aO,a2 preserve rastport pointer

a1 ,a3 preserve image pointer

d0,d6 d6 = current left off set

d0,d7 preserve left off set for
re-use

d1,a4 preserve top offset

d2,a5 preserve column count for
re-use

ig_Width(a1),d4 get image width in
d4

ig_Height(a1),d5 get image height in
dS

Drawlmage,_IntuitionBase

#1,d2 decrease count

next_row

a4,d1

d4,d6

d6,d0

a2,a0

a3,a1

draw_row

set top off set

form new left off set

needed for library
function call

restore rastport pointer

restore image pointer

keep going

----------··-----------

Amiga Insider Guide

next_row subq #1,d3 decrease count

beq draw_end

11ove.w d7,d6 reset start left
off set for row

move.w a5,d2 reset column count

move.w a4,d1

add.w d5,d1

move.w d1,a4 top offset for next row

bra draw_row2

draw_end movem.l (sp)+,d0-d7/a0-a5 restore registers

rts

Are we finished? Not yet, because hidden in this routine is a glaring
inefficiency that is easily eliminated. The CALLSYS macro is pushing
a6 onto the stack and retrieving it after the Drawlmage() routine
returns. In this particular routine these actions are quite pointless
because I've been a little crafty - register a6 has deliberately not been
used except within CALLSYS. There is therefore no reason why, by
just setting up a6 initially, we can't replace the CALLSYS generated
code with the single equivalent indirect subroutine call, thus eliminat
ing all of those a6 push/pull operations. Trust me - the time savings
are significant.

DrawGrid:

Requires following parameters on entry ..•

ao holds window rastport pointer

a1 holds image pointer

dO holds starting left offset value

d1 holds starting top offset value

d2 holds required horizontal block count, ie column
count

d3 holds required vertical block count, ie row count

draw_row2 movem.l numbers bogus row

movem.l d0-d7/a0-a6 , -(sp) preserve registers

move.l _IntuitionBase,a6 set up library base

move.l aO,a2 preserve rastport pointer

---------·---------

draw_row

move.I

move.w

move.w

move.w

move.w

move .w

move.w

jsr

a1,a3

d0,d6

d0,d7

d1,a4

d2,a5

Amiga Insider Guide

preserve image pointer

d6 = current left offset

preserve left offset for
reuse

preserve top off set

preserve column count for
re-use

ig_Width(a1),d4 get image width in
d4

ig_Height(a1),d5 get image height in
dS

_LVODrawimage(a6) a faster
alternative

subq #1,d2 decrease count

beq next_row

move.w a4,d1

add .w d4,d6

set top offset

draw row2 move.w d6,d0

form new left offset

needed for library
function call

next_row

draw_end

move . I

move.I

bra

subq

beq

move.w

move.w

a2,a0

a3,a1

draw_row

#1,d3

draw_end

d7,d6

a5 ,d2

move.w a4 ,d1

add.w d5,d1

move.w d1 ,a4

bra draw_row2

restore rastport pointer

restore image pointer

keep going

decrease count

reset start left offse for
row

reset column count

top offset for next row

movem.l (sp)+,dO-d7 /aO-a6 restore registers

rts

----------·----------

Amiga Insider Guide

All we have to do
Building a Test Framework now is put this sub-

routine into a run
able example to check that it actually works. The next program, suit
able for A68k coders and others without the official includes, is based
on the ideas discussed in Chapter 15. Instead of the previous direct
Drawlmage() function call some example parameters are set up for
our new DrawGrid() routine:

draw_images move.I dO,a1

11ove.l wd_RPort(a1),aO

lea Image1,a1

11oveq #20,dO

11oveq #15,d1

11oveq #20,d2

moveq #10,d3

and the subroutine simply executed like this:

jsr

* Example CH16-1.s

LINKLIB MACRO

CALLSYS

11ove.1

11ove.l

jsr

move.I

ENDM

MACRO

DrawGrid

a6,-(a7)

\2,a6

\1(a6)

(a7)+,a6

LINKLIB _LV0\1,\2

ENDM

TRUE

NULL

DOS_VERSION

INTUITION_VERSION

EQU

EQU

EQU

EQU

0

0

36

window address in a1

copy rastport
pointer into ao

pointer to image

example left off set

example top off set

example colu1ns count

example rows count

our subroutine

------·------

SECONDS

TIME_DELAY

TAG_DONE

WA_BASE

WA_Left

WA_ Top

WA_ Width

WA_ Height

WA_ Title

WA_DragBar

WA_PubScreen

wd_RPort

ig_Width

ig_Height

_AbsExecBase

_LVOOpenLibrary

_LVOCloseLibrary

LVOLockPubScreen -
LVOUnlockPubScreen -

_LVOOpenWindowTagList

LVOCloseWindow -
_LVODelay

_LVODrawimage

start lea

moveq

Amiga Insider Guide

EQU 50

EQU 10*SECONDS

EQU 0

EQU $80000063

EQU WA_BASE+$01

EQU WA_BASE+$02

EQU WA_BASE+$03

EQU WA_BASE+$04

EQU WA_BASE+$0B

EQU WA_BASE+$1F

EQU WA_BASE+$16

EQU 50

EQU 4

EQU 6

EQU 4

EQU -552

EQU -414

EQU -510

EQU -516

EQU -606

EQU -72

EQU -198

EQU • 114

dos_name,a1 lolW pointer to
library name

#DOS_VERSION,dO an~ version wil l
de!

open_dos CALLSYS OpenLibrary,_AbsExecBase

move.l dO ,_DOSBase save returned
pointer

beq exit check open OK?

----------·----------

Amiga Insider Guide

open_int lea intuition_name,a1 load pointer to
library name

moveq #INTUITION_VERSION,dO specify
minimum lib
version

CALLSYS OpenLibrary,_AbsExecBase

11ove.l dO ,_IntuitionBase save returned
pointer

beq close_dos check open OK?

lock_screen lea workbench_name,ao pointer to screen
na11e

CALLSYS LockPubScreen,_IntuitionBase

move.l dO,workbench_p save returned
pointer

beq close_int check return value?

open_window move.l #NULL,aO

lea tags ,a1 our tag list

CALLSYS OpenWindowTagList,_IntuitionBase

move.l dO,window_p pointer to our
window

beq unlk_screen

draw_images move.l dO,a1 window address in
a1

move.l wd_RPort(a1),aO copy rastport
pointer into ao

lea Image1 ,a1 pointer to image

moveq #20,dO exa11ple left offset

moveq #15,d1 example top off set

moveq #20,d2 example columns
count

moveq #10,d3 example rows count

jsr DrawGrid our subroutine

wait 11ove.l #TIME_DELAY,d1

CALLSYS Delay,_DOSBase

•

11ove . l

CALLSYS

unlk_screen move.I

move . I

CALLSYS

close_int 11ove . l

CALLSYS

close_dos move.I

CALLSYS

exit clr . l

rts

DrawGrid :

Amiga Insider Guide

window_p,aO window to close

CloseWindow,_IntuitionBase

#NULL,aO screen name not
needed

workbench_p,a1 screen to unlock

UnlockPubScreen,_IntuitionBase

_IntuitionBase ,a1 library to close

Closelibrary,_AbsExecBase

_DOSBase,a1 library to close

CloseLibrary,_AbsExecBase

dO

logical end of program

Requires following parameters on entry ...

ao holds window rastport pointer

a1 holds i11age pointer

dO holds starting left offset value

d1 holds starting top offset value

d2 holds required horizontal block count, ie column
count

d3 holds required vertical block count, ie row count

movem.l dO-d7 /aO-a6,-(sp) preserve registers

move.I _IntuitionBase,a6 set up library
base

move.I ao,a2 preserve rastport
pointer

move .I a1,a3 preserve image
pointer

move.w d0,d6 d6 = current left
off set

move.w d0,d7 preserve left
offset for re-use

move.w d1 ,a4 preserve top off set

----------·----------

Amiga Insider Guide

111ove.w

move.w

11ove.w

d2,a5 preserve colu•n
count for re-use

ig_Width(a1),d4 get image width in
d4

ig_Height(a1),d5 get i • age height in
d5

draw_row jsr _LVODrawI11age(a6) a faster
alternative

subq

beq

1ove.w

add.w

#1,d2

next_row

a4 ,d1

d4,d6

draw_row2 •ove.w d6,d0

next_row

draw_end

_DOSBase

11ove.l

11ove. l

bra

subq

beq

11ove.w

11ove .w

a2,a0

a3,a1

draw_row

#1,d3

draw_end

d7,d6

a5,d2

11ove.w a4,d1

add .w d5,d1

•ove.w d1 ,a4

bra draw_row2

11ove•.l (sp)+,d0-d7 /a0-a6

rts

ds.l

decrease count

set top offset

for111 new left
offset

needed for library
function call

restore rastport
pointer

restore image
pointer

keep going

decrease count

reset start left
off set for row

reset column count

top offset for next
row

restore
registers

-----··------

Amiga Insider Guide

_IntuitionBase ds.l

window_p ds.l

tags de . I WA_PubScreen

workbench_p ds.l

dos_na11e

intuition_na111e

workbench_naine

window_name

Image1:

dc.w O,O

dc.w 19, 18

dc.w 2

de.I WA_Left,50

de.I WA_Top,20

de.I WA_Width,420

de.I WA_Height,250

de.I WA_DragBar , TRUE

de.I WA_Title,window_name

de.I TAG_DONE,NULL

dc.b

dc.b

dc.b

dc.b

' dos.library',NULL

' intuition.library ' ,NULL

'Workbench ' ,NULL

' My Very First Subroutine! ' ,NULL

;XV origin relative to container
TopLeft

de.I ImageData1

;Image width and height in pixels

;number of bitplanes in Image

;pointer to I111ageData

dc.b $0003,$0000 ;PlanePick and PlaneOnOff

de.I NULL ;next Image structure

SECTION Image , DATA , CHIP

IugeData1:

dc.w $0000,$0000,$0000,$0000,$00C0,$8000,$00C0,$8000

dc.w $08C2,$8000,$0000,$8000,$00C0,$8000,$00C0,$8000

dc.w $1CCE,$8000,$1CCE,$8000,$00C0,$8000,$00C0,$8000

dc.w $0000,$8000,$00C0,$8000,$08C2,$8000,$00C0,$8000

dc.w $3FFF,$8000,$0000,$0000,$0000,$0000,$7FFF,$COOO

dc.w $40C0,$4000,$50C4,$4000,$40C0,$4000,$41E0,$4000

.........................

Amiga Insider G11ide

dc.w $43F0,$4000, $43F0,$4000,$5FFE,$4000,$5FFE,$4000

dc.w $43F0,$4000,$43F0,$4000,$41E0,$4000,$50C4,$4000

dc.w $40C0,$4000,$40C0,$4000,$4000,$4000,$0000,$0000

END

If the official Amiga
includes are available

--~--------------...... many explicit definitions
can be avoided in the program source. Here's the Devpac version that
adopts the same include file arrangements as the Chapter 15 example:

* Example CH16·2.s

CALLSYS

TRUE

NULL

INCLUDE intuition/ intuition.!

INCLUDE function_offsets . i

MACRO

LINKLIB _LV0\1,\2

ENDM

1

0

DOS_VERSION

INTUITION_ VERSION

SECONDS

TIME_DELAY

EQU

EQU

EQU

EQU

EQU

EQU

0

36

50

10*SECONDS

start

open_dos

open_int

lea dos_name,a1

11oveq #DOS_VERSION,dO

load pointer to
library name

any version will
do!

CALLSYS OpenLibrary,_AbsExecBase

move .! dO ,_DOSBase save returned
pointer

beq

lea

exit check open OK?

intuition_na11e,a1 load pointer to
library name

moveq #INTUITION_VERSION , dO specify
minimu11 lib
version

--------··---------

Amiga Insider Guide

CALLSYS Openlibrary,_AbsExecBase

111ove.l dO,_IntuitionBase save returned
pointer

beq

lock_screen lea

close_dos check open OK?

workbench_name,ao pointer to
screen name

CALLSYS LockPubScreen,_IntuitionBase

11ove.l dO ,workbench_p save returned
pointer

beq

open_window 11ove . l

lea

close_int

#NULL,aO

tags,a1

check return value?

our tag list

CALLSYS OpenWindowTaglist ,_IntuitionBase

move.l dO ,window_p

beq unlk_screen

pointer to our
window

draw_images move . l dO ,a1 window address in
a1

count

wait

move.l

lea

moveq

moveq

moveq

moveq

jsr

move.l

wd_RPort(a1) , aO copy rastport
pointer into ao

Image1,a1 pointer to image

#20,dO example left offset

#15,d1 example top offset

#20,d2 example columns

#10 , d3

DrawGrid

#TIME_DELAY, d1

example rows count

our subroutine

CALLSYS Delay ,_DOSBase

move.l window_p,aO window to close

CALLSYS CloseWindow,_IntuitionBase

unlk_screen move.l #NULL,aO screen name not
needed

-----------·-----------

Amiga Insider Guide

11ove . l

CALLSYS

close_int 11ove.l

CALLSYS

close_dos 11ove . l

CALLSYS

exit clr.l

rts

DrawGrid:

workbench_p,a1 screen to unlock

UnlockPubScreen,_IntuitionBase

_IntuitionBase,a1 library to close

Closelibrary,_AbsExecBase

_DOSBase ,a1 library to close

Closelibrary,_AbsExecBase

dO

logical end of program

Requires following parameters on entry ...

ao holds window rastport pointer

a1 holds image pointer

dO holds starting left offset value

d1 holds starting top offset value

d2 holds required horizontal block count, ie column
count

d3 holds required vertical block count , ie row count

11ovem.l d0-d7 /a0-a6,-(sp) preserve registers

11ove . l _IntuitionBase,a6 set up library base

move.I aO,a2 preserve rastport
pointer

move.I a1,a3 preserve image
pointer

move .w d0,d6 d6 = current left
offset

move .w d0 ,d7 preserve left
offset for re-use

move.w d1,a4 preserve top off set

11ove .w d2,a5 preserve column
count for re-use

move.w ig_Width(a1),d4 get image width in
d4

---------·---------

move.w ig_Height(a1),d5

draw_row jsr _LVODrawlmage(a6)

subq #1,d2

beq next_row

move.w a4 ,d1

add.w d4 ,d6

draw_row2 move.w d6 ,d0

move.l a2 ,a0

move.l a3 ,a1

bra draw_row

next_row subq #1,d3

beq draw_end

move.w d7 ,d6

move.w a5,d2

move.w a4,d1

add.w d5 ,d1

move.w d1 ,a4

bra draw_row2

draw_end movem . l (sp)+,dO-d7/aO-a6

rts

DOSBase ds.l -
IntuitionBase ds . l -

window_p ds.l

tags de.I WA_PubScreen

workbench_p ds.l 1

•

Amiga Insider Ggide

get image height in
dS

a faster
alternative

decrease count

set top offset

form new left
off set

needed for library
function call

restore rastport
pointer

restore image
pointer

keep going

decrease count

reset start left
offset for row

reset column count

top offset for next
row

restore registers

Amiga Insider G11ide

dc.l

dc.l

dc.l

dc.l

dc . l

dc . l

dc.l

dos_name dc . b

intuition_name dc.b

workbench_name dc.b

window_na111e dc.b

Image1:

dc.w o,o

dc.w 19, 18

dc.w 2

dc.l ImageData1

dc.b $0003,$0000

dc.l NULL

SECTION Image,DATA_C

I111geData1:

WA_Left , 50

WA_Top,20

WA_Width,420

WA_Height,250

WA_DragBar,TRUE

WA_Title,window_name

TAG_DONE,NULL

' dos.library ' ,NULL

'intuition.library',NULL

'Workbench ' ,NULL

' My Very First Subroutine! ' ,NULL

; XY origin relative to container
Top Left

;Image width and height in pixels

;number of bitplanes in I111age

;pointer to ImageData

;PlanePick and PlaneOnOff

;next Image structure

dc.w $0000,$0000,$0000,$0000,$00C0,$8000,$00C0,$8000

dc .w $08C2,$8000,$0000,$8000,$00C0,$8000,$00C0,$8000

dc.w $1CCE,$8000,$1CCE,$8000,$00C0,$8000,$00C0,$8000

dc.w $0000,$8000,$00C0,$8000,$08C2,$8000,$00C0,$8000

dc.w $3FFF,$8000,$0000,$0000,$0000,$0000,$7FFF,$COOO

dc .w $40C0 ,$4000,$50C4,$4000,$40C0,$4000,$41E0,$4000

dc.w $43F0 ,$4000,$43F0,$4000,$5FFE,$4000,$5FFE,$4000

dc .w $43F0,$4000,$43F0,$4000,$41E0,$4000,$50C4,$4000

dc.w $40C0,$4000,$40C0,$4000,$4000,$4000,$0000,$0000

---------·--------

Amiga Insider Guide

Now that the tried and tested
Reaping the Benefits Draw.Grid() subroutine is

available it can of course be
used to draw tile effects ad infinitum. Just set up the required parame
ters, block counts etc, identify the image to be used ... and then make
the subroutine call. It's also quick and easy to swap images and/or
alter starting positions and block counts because you just reset those
parameters that have changed and then repeat the subroutine call.
Here for example is a code fragment which generates one tile effect in
the top part of a display, and uses a different effect in the lower part:

draw_images move . l dO ,a1 window address in a1

move.l wd_RPort(a1),aO copy rastport
pointer into ao

lea Image1,a1 pointer to image

moveq #20,dO example left off set

moveq #15,d1 example top offset

moveq #20,d2 example columns
count

moveq #5,d3 example rows count

jsr DrawGrid use subroutine

lea Image2,a1 pointer to second
image

moveq #120,d1 second top offset

jsr DrawGrid re-use subroutine

There's plenty of scope for experiment, and experiment you should.
Here, to finish this chapter and get you started, is the above type of
split tile, twin image, modification of the first program of this chapter.
If you are a Devpac or other official include file user just remove the
appropriate preliminary definitions and add the include file references
mentioned earlier:

* Example CH16-3.s

LINKLIB MACRO

move.I a6,-(a7)

move.I \2,a6

jsr \1(a6)

-----------·-----------

Amiga Insider Guide

•ove.l (a7)+,a6

ENDM

CALLSYS MACRO

LINKLIB _LV0\1,\2

ENDM

TRUE EQU 1

NULL EQU 0

DOS_VERSION EQU 0

INTUITION_ VERSION EQU 36

SECONDS EQU 50

TIME_DELAY EQU 10*SECONDS

TAG_DONE EQU 0

WA_BASE EQU $80000063

WA_Left EQU WA_BASE+$01

WA_ Top EQU WA_BASE+$02

WA_Width EQU WA_BASE+$03

WA_Height EQU WA_BASE+$04

WA_ Title EQU WA_BASE+$0B

WA_Draglar EQU WA_BASE+$1F

WA_PubScreen EQU WA_BASE+$16

wd_RPort EQU 50

ig_Width EQU 4

ig_Height EQU 6

_AbsExecBase EQU 4

_LVOOpenLibrary EQU ·552

_LVOCloseLibrary EQU · 414

LVOLockPubScreen EQU ·510 -
LVOUnlockPubScreen EQU ·516 -

_LVOOpenWindowTagList EQU ·606

LVOCloseWindow EQU -72 -
_LVODelay EQU ·198

Ill

_LVODrawI11age

start lea

moveq

EQU -114

dos_name,a1

#DOS_VERSION,dO

Amiga Insider Guide

load pointer to
library name

any version will
do!

open_dos CALLSYS Openlibrary,_AbsExecBase

open_int

move.I

beq

lea

moveq

dO ,_DOSBase

exit

save returned
pointer

check open OK?

intuition_naine,a1 load pointer to
library name

#INTUITION_VERSION,dO specify
minimum lib
version

CALLSYS OpenLibrary,_AbsExecBase

move.I

beq

lock_screen lea

CALLSYS

move.I

beq

open_window 11ove . l

lea

CALLSYS

11ove.l

beq

draw_images move.I

move.I

lea

dO,_IntuitionBase save returned
pointer

close_dos check open OK?

workbench_name,ao pointer to
screen name

LockPubScreen,_IntuitionBase

dO ,workbench_p save returned
pointer

close_int check return value?

#NULL,aO

tags,a1 our tag list

OpenWindowTagList ,_IntuitionBase

dO ,window_p pointer to our
window

unlk_screen

dO,a1 window address in
a1

wd_RPort(a1),aO copy rastport
pointer into ao

Image1 ,a1 pointer to image

Ill

Amiga Insider Guide

wait

moveq

moveq

moveq

11oveq

jsr

lea

moveq

jsr

move. l

CALLSYS

#20 ,dO

#15 ,d1

#20 ,d2

#5 ,d3

DrawGrid

Image2 ,a1

#120,d1

DrawGrid

#TIME_DELAY,d1

Delay,_DOSBase

exuiple left offset

exa111ple top offset

exa11ple columns
count

example rows count

use subroutine

pointer to second
image

second top offset

reuse subroutine

move.l window_p ,aO window to close

CALLSYS CloseWindow,_IntuitionBase

unlk_screen move . l #NULL,aO screen name not
needed

close_int

close_dos

exit

DrawGrid:

move . l workbench_p,a1 screen to unlock

CALLSYS UnlockPubScreen,_IntuitionBase

move . l _IntuitionBase,a1 library to close

CALLSYS Closelibrary,_AbsExecBase

move . l _DOSBase,a1 library to close

CALLSYS Closelibrary,_AbsExecBase

clr.l

rts

dO

logical end of program

Requires following parameters on entry ...

ao holds window rastport pointer

a1 holds image pointer

dO holds starting left offset value

d1 holds starting top off set value

d2 holds required horizontal block count, ie colu• n
count

d3 holds required vertical block count, ie row .count

----------··-----------

Amiga Insider Guide

•ove111 . l dO-d7/aO-a6,-(sp) preserve registers

•ove.l _IntuitionBase,a6 set up library base

•ove.l aO,a2 preserve rastport
pointer

111ove.l a1,a3 preserve image
pointer

11ove.w d0 ,d6 d6 = current left
off set

11ove.w d0 ,d7 preserve left
offset for re-use

•ove.w d1,a4 preserve top off set

•ove.w d2,a5 preserve colu11n
count for re-use

111ove.w ig_Width(a1),d4 get iuge width in
d4

111ove.w ig_Height(a1),d5 get iuge .height in
d5

draw_row jsr _LVODrawimage(a6) a faster
alternative

subq #1,d2 decrease count

beq next_row

111ove.w a4,d1 set top offset

add.w d4,d6 form new left
offset

draw_row2 move.w d6,d0 needed for library
function call

move.l a2,a0 restore rastport
pointer

move.l a3,a1 restore i11age
pointer

bra draw_row keep going

next_row subq #1,d3 decrease count

beq draw_end

111ove.w d7 , d6 reset start left
offset for row

•

Amiga Insider Guide

1ove .w

1ove .w

add.w

1ove .w

a5,d2

a4 ,d1

d5 , d1

d1 ,a4

reset column count

top offset for next
row

bra draw_row2

draw_end movem.l (sp)+,dO·d7/aO-a6

rts

restore registers

_DOSBase

_IntuitionBase

window_p

tags

workbench_p

dos_n11e

intuition_n11e

workbench_na11e

window_naine

ds.l

ds.l

ds . l

dc.l

ds . l

dc . l

dc.l

dc . l

dc . l

dc.l

dc.l

dc . l

dc.b

dc.b

dc .b

dc .b

WA_PubScreen

1

WA_Left ,50

WA_Top,20

WA_Width,420

WA_Height,250

WA_DragBar,TRUE

WA_Title ,window_name

TAG_DONE , NULL

' dos . library ' ,NULL

' intuition.library ' ,NULL

'Workbench ' ,NULL

'Getting Clever Eh! I ,NULL

SECTION Image,DATA,CHIP

Image1:

dc.w o,o ;XV origin relative to container
TopLeft

dc .w 19, 18 ;Image width and height in pixels

dc.w 2 ;number of bitplanes in I1age

dc.l I.ageData1 ;pointer to ImageData

--------··--------

Amiga Insider Guide

dc.b $0003,$0000 ;PlanePick and PlaneOnOff

dc.l NULL ;next Image structure

ImageData1:

dc.w $0000,$0000,$0000,$0000,$00C0,$8000,$00C0,$8000

dc.w $08C2,$8000,$0000,$8000,$00C0,$8000,$00C0,$8000

dc.w $1CCE,$8000,$1CCE,$8000,$00C0,$8000,$00C0,$8000

dc.w $0000,$8000,$00C0,$8000,$08C2,$8000,$00C0,$8000

dc.w $3FFF,$8000,$0000,$0000,$0000,$0000,$7FFF,$COOO

dc.w $40C0,$4000,$50C4,$4000,$40C0,$4000,$41E0,$4000

dc.w $43F0,$4000,$43F0,$4000,$5FFE,$4000,$5FFE,$4000

dc.w $43F0,$4000,$43F0,$4000,$41E0,$4000,$50C4,$4000

dc.w $40C0,$4000,$40C0,$4000,$4000,$4000,$0000,$0000

Image2:

dc.w

dc.w

dc.w

dc.l

dc.b

dc.l

ImageData2:

o,o

19, 18

2

ImageData2

$0003,$0000

NULL

;XV origin relative to container
TopLeft

;Image width and height in pixels

;number of bitplanes in Image

;pointer to ImageData

;PlanePick and PlaneOnOff

;next Image structure

dc.w $0000,$0000,$FFFF,$COOO,$FFFF,$COOO,$F007,$COOO

dc.w $F007,$COOO,$F007,$COOO,$F007,$COOO,$F007,$COOO

dc.w $F007,$COOO,$F007,$COOO,$F007,$COOO,$F007,$COOO

dc.w $F007,$COOO,$F007,$COOO,$F007,$COOO,$FFFF,$COOO

dc.w $FFFF,$C000,$0000,$0000,$0000,$0000,$0000,$0000

dc.w $0FF8,$0000,$0FF8,$0000,$0FF8,$0000,$0FF8,$0000

dc.w $0FF8,$0000,$0FF8,$0000,$0FF8,$0000,$0FF8,$0000

dc.w $0FF8,$0000,$0FF8,$0000,$0FF8,$0000,$0FF8,$0000

dc.w $0000,$0000,$0000,$0000

END

----------·----------

er ... ?

n this book I've attempted to introduce 68000 assembly
language specifically from an Amiga oriented viewpoint
and my main aim was to provide you with the necessary

easy footholds to get into low-level Amiga programming as
quickly as possible. In the past many Amiga programmers have
felt that this simply couldn't be done but I've always been con
vinced that it could and hopefully this book proves it. Needless
to say, many of the more complex Amiga programming areas
have had to be avoided.

By now you should have a good idea of what assembly lan
guage is all about, and know enough about the Amiga's operat
ing system for the words "Amiga system library call" not to pro
duce a cold sweat. In fact, given the details of a function in a
particular library, you should by now be able to sketch out
(and understand) code which opens the library, uses the func
tion, and checks any returned values and so forth. This is an
important achievement because a good 90% of all the code
written by most 68000 coder is based on the use of pre-written
Amiga library routines!

Amiga Insider Guide

There are of course plenty of things I've not mentioned including those
topics that are readily picked up from general, as opposed to Amiga
specific, 680x0 books. The convoluted tricks that many 68000 pro
grammers use to ensure that their code is compact was another topic
placed on the back burner although perhaps Chapter 16 provided a lit
tle food for thought. Such things can and will be picked up from both
the more advanced 68000 books and your own experience!

One of the other areas deliberately avoided, because newcomers find it
a difficult topic to come to terms with is the use of something known
as Amiga start-up code. Perhaps, however, a few words about this sub
ject are appropriate at this stage. Shell based programs are easy to
run. You just type the name of the program at the Shell prompt along
with any required arguments. With Workbench programs you double
click on an associated program icon and herein lies yet another Amiga
story. Programs which are to run from the Workbench have to execute
some rather complicated message-oriented code and both
Commodore, and indeed other developers, offer pre-assembled mod
ules which take care of the awkward code details. These modules,
known as start-up code modules, just need to be linked, as the first
module, with the actual assembled program code.

Unfortunately start-up modules do tend to vary somewhat and so you
need to get details of any modules supplied from your assembler docu
mentation. Depending on their source, start-up modules are likely do
any number of things as well as handling the initial Workbench start
up message operations.

Start-up modules supplied with most C compilers, for instance, open
the DOS library, set up standard 1/0 handles and so on. This means
that if you are linking with such a module you do not have to write
code explicitly to do these things. You do, however, have to conform to
any conventions expected - start-up modules designed for use in C
programs, for instance, expect the first label in a program, ie the start
location of the real program code, to be labelled as _main. It is wisest
at least to make a rough preliminary check of the contents of any
start-up modules you are tempted to use in order to avoid linker errors
due to missing connecting labels and so on.

Once the start-up code has been linked to a suitable program it is only
necessary to create an icon file for the program - using the same file
name as the program but with a .info filename extension - to allow the
program to be run from Workbench by double-clicking on its icon.
What do I mean by "suitable program"? It is best if I explain what

----------··-----------

Amiga Insider Guide

unsuitable programs are - they are programs which use DOS-oriented
I/O operations, such as the examples discussed in Chapter 12 that
wrote messages back to a Shell window. Programs started from the
Workbench have no default 1/0 handles available and if you just tag an
icon on to such programs and try to run them from the workbench,
you'll cause the O/S to crash! Depending on the start-up module the
same thing may well happen even when the start-up code is utilised. In
other cases the start-up code thoughtfully opens a default console win
dow which provides a sink for any DOS oriented program output.
You'll find that most assemblers and compilers provide detailed notes
about the start-up facilities they provide and the best idea is to read
them. Like many things Amiga-wise all this takes time but after a
while, and with a little experimentation, things will eventually make
sense. You'll find additional Workbench-oriented examples on the
associated Insider Guide disk.

And talking of complexity. This Insider Guide in dealing with low-level
68000 coding has tackled a subject which is rather more difficult to
get to grips with than most other Amiga areas. Hopefully you've not
found the path so far too difficult but do remember that we have only
travelled a few steps down what may sometimes become a difficult
road. Be in no doubt that the Amiga's operating system is not some
thing you learn about in just a few days, weeks or even months. There
is, however, plenty of good news as well because programming the
Amiga can be both addictive and enjoyable and all serious program
mers will tell you the same thing - the more you learn, the more you'll
want to learn! As you progress you will doubtless follow your own
path in terms of what you choose, Amiga-wise, to take an interest in
but nowadays, with plenty of more advanced books to choose from,
you'll never be far from help.

Regardless of the directions in which you travel you will almost cer
tainly get to a point where more and more reliance has to be placed on
the Amiga's official system documentation. The Addison Wesley
Amiga ROM Kernel Reference Manuals are the ultimate source of
Amiga system information and are worth their weight in gold but I
would be less than honest if I told you that some experience with the C
language would not be an advantage to you at this stage. Why? It's
because, in the main, the official RKM reference manuals use C for
their programming examples! Because of this my experience is that all
programmers, including those whose sole interest was programming
at the 680x0 microprocessor level. eventually need to come to terms
with C just in order to cope with the official Amiga documentation.

-----··------

Amiga Insider Guide

This, from a long term viewpoint, is something which you should
clearly keep in mind.

From the point of view of this current book however you have reached
the end of the road and hopefully you feel ready to move on to more
advanced books. Have fun, enjoy your coding, and make the most of
one of the most accessibly priced and brilliant computer systems the
world has ever seen!

................................

The details provided here cover just some of the main
instructions used in this book plus a few related ones.

Additional notes about their uses, the addressing
mode restrictions, flag effects and so on have

also been given.

T
his appendix covers only the main instructions used in
this book and a few related ones. Additional notes about
their uses, the addressing mode restrictions, flag effects

and so on have also been given but for full details you should
consult the references given in the bibliography.

The range of 68000 instructions can be roughly divided into the
following classes:

• Data Movement instructions

• Flow Control (Jump, branch type) instructions

• Logical, shift and rotate type instructions

• Bit manipulation instructions

• Arithmetic instructions.

Amiga Insider Guide

Many 68000 instructions can work. with byte, word and long word
operands. However, byte size values are not allowed if the destination
or source operand is an address register.

Effective Address
Motorola 68000 literature uses the
term effective address to refer to the
address that the processor ultimately

uses. For instructions which identify an operand, do something, and
then store a result there is an effective source address and an effective
destination address. Usually the context of the instruction makes it
easy to identify these separate entities. When a general effective
address needs to be stated, as opposed to a specific addressing mode
description, it is common practice to use the term <ea>.

Op-Codes
The part of the binary machine code instructions
which holds the real 68000-understandable infor-
mation about which operation the processor

should perform is known as the operation code or op-code part of the
instruction.

Some 68000 instructions sign-extend
Sign Extension byte or word data, ie they propagate the

sign bit (bit 7 in the case of byte data or
bit 15 for word sized operands) to produce a 32 bit value.

Notes on An/On Name Conventions

When talking generally about address· registers and data registers it is
common practice to use the terms An and Dn to indicate any address
register or any data register.

One of the most pow-
60000 Addressing Modes erful features of the

---------------"--- Motorola 68000 device
is the rich variety of addressing modes that are available. Most proces-
sor instructions work on a piece of data called the operand and this
data has to be stored somewhere. Many instructions use some real or
implied source address (the effective source address), do something,
and then transfer the result to some destination address (the effective
destination address). In short the processor's addressing modes enable
these source and destination addresses to be specified. Here's the run
down on the basic 68000 addressing schemes:

Amiga Insider Guide

Inherent Addressing
This is one of the addressing modes which do not involve the specify
ing of memory locations because the processor knows which address
es it should use from the instruction op-code. The 68000's return
from-subroutine, rts, instruction for instance inherently knows that the
stack pointer register is to be used to move data to and from memory -
the details are built into the instruction itself. This is why the pro
grammer does not need to specify an addressing mode for rts, and
why none are listed.

Register Addressing
This is perfectly straightforward: Register addressing simply means
that the operands reside in a processor's register and so no memory
address information is needed. The official documentation splits regis
ter addressing into data and address register addressing but, for most
practical purposes, the distinction is neither here nor there.

Immediate Addressing
Another straightforward mode where the data in question, ie the
operand itself, is placed immediately after the instruction op-code in
memory. In other words the effective address is the value of the pro
gram counter after the op-code part of the instruction has been
fetched. The Motorola 68000 has long word, word and byte oriented
immediate instructions but, in the latter case, the immediate data still
gets stored as a word. The byte data is placed in the low-order part of
the word and the upper byte is set to all zeros.

Absolute Addressing
This mode is also called direct addressing and actually consists of two
schemes. With absolute long addressing the effective address used by
the processor is the address contained in the four bytes (ie the long
word) which follows the op-code and so this scheme can be used to
address any memory location within a 32 bit addressing range.

A word· (two-byte) addressing scheme known as absolute short
addressing is also available and here only the lower 16 bits of an
address need be specified - the upper half of the address is obtained
by sign-extending bit 15 of the specified short address. This mode is
quicker and more memory efficient than absolute long addressing but
only addresses in the lower and upper 32k of address space (0000000
hex to 00007fff hex and ffff8000 hex to ffffffff hex) can be specified in
this way.

---------··---------

Amiga Insider Guide

Address Register Indirect Addressing
Here the address of the operand is held in an address register and so
this scheme is not the same as conventional indirect addressing where
the address of the operand is held in a memory location. Register indi
rect addressing is nevertheless a very powerful addressing mode and is
indicated by placing parentheses around the register name. For exam
ple the instruction move.b (a2), dO will copy the contents of the byte
whose address is in register a2 into register dO.

Address Register Indirect with Displacement
This mode allows a fixed, but programmer defined, constant value to
be added to the indirectly specified address. The displacement itself
gets stored immediately after the op-code in memory and the effective
address used by the processor is the sum of the contents of the address
register and the specified displacement. For example the instruction

move.b 20(a2), dO

copies the contents of the byte whose address is formed by 'adding 20
to the address in register a2' into register dO.

You can find some examples of this addressing mode within this book
for storing and retrieving items from Amiga system defined structures.

Address Register Indirect with Postincrement
This mode provides for the automatic incrementing of a specified
address after it has been used. Byte, word and long word sizes may be
specified and the processor increments the address by 1, 2 or 4 accord
ingly. The mode is specified by placing a plus sign after the normal

indirect addressing scheme. The instruction

move.b (a2)+, dO

copies the contents of the byte whose address is in register a2 into reg
ister dO and, having done, that the contents of address register a2 are
automatically incremented by 1. This mode is convenient for handling
lists of byte, word and long word values.

Address Register Indirect with Predecrement
This mode is similar to the above but it provides for the automatic
decrementing of a specified address before it has been used. Again
byte, word and long word sizes may be specified and the processor
decrements the address by 1, 2 or 4 accordingly. The mode is specified

----------·----------

Amiga Insider GNide

by placing a minus sign before the normal indirect addressing scheme.
For example, the instruction

move.b -(a2), dO

copies the contents of the byte whose address is in register a2 into reg
ister dO and having done that the contents of address register a2 are
automatically decreased by 1. This mode is convenient for handling
lists of byte, word and long word values. Chapter Eleven outlines the
reasons why the addresses are decremented before use and, in the case
of the previous mode, incremented after use.

Address Register Indirect with Index and Displacement
This is another useful, but initially confusing, 68000 addressing mode.
The effective address is the sum of three separate addresses: an
address register specified indirect address, an index value held in an
address or data register (long or word values may be specified), and a
programmer defined constant displacement.

The Motorola assembly language syntax for this addressing mode
requires that the displacement is specified as with the basic register
indirect addressing scheme but that the address register itself, and the
index register, be enclosed within parentheses. The address register
should be specified first, and the two enclosed items must be comma
delimited. This is best illustrated by example and the instruction:

move.I 20(aO,dO.l), d2

forms an effective source address by taking the contents of register aO,
adding the full 32 bit contents of register dO, and then adding 20 to the
resulting address. In the case of the example statement the operand is
retrieved from that address and placed in register d2.

Program Counter Relative with Displacement
Addressing modes that use offsets from the program counter, as
opposed to absolute addresses are known as relative addressing
modes. It's the microprocessor equivalent of you giving someone a
friend's address by saying 'they live six doors further up' rather than
saying 'they live at number 230'. The 68000 branch instructions auto
matically use relative addressing but many instructions allow explicit
use of relative addressing with the option to include a displacement
value. This mode, which we've not used in this book, is equivalent to
the 'address register indirect with displacement' mode except for the
fact that the program counter is used as the base register. It becomes
useful when it is necessary to write position-independent 68000 code.

---------·--------

Amiga Insider Guide

Program Counter Relative with Index and Displacement
Another addressing mode that has not concerned us in this book. In
this case the basic relative addressing scheme is supplemented by both
an address register or data register index value and a programmer
specified constant displacement. This mode is equivalent to the
'address register indirect with index and displacement' mode except
for the fact that the program counter is used as the base register.
Again it becomes useful when it is necessary to write truly position-

independent 68000 code.

D ata Movement Instructions

Mnemonic: LEA - Load Effective Address

Purpose: Loads an address register with a processor
determined effective address.

Addressing Modes: Source Destination

Data register direct

Address register direct x
Address register indirect x
Postincrement register indirect

Predecrement register indirect

Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement x
PC relative with index x
Immediate

Flags affected: x N z v c
- - - - -

Amiga Insider Guide

Notes: This instruction allows you to load an address register with an
effective source address, ie the source address specified by virtue of a
chosen addressing mode.

Example: The effective source address for the instruction:

lea new_window,ao

is the address of the location which has been labelled new_window
(this is an example of absolute addressing).

Mnemonic: MOVE - Move Data from Source to
Destination

Purpose: Copies a source operand to specified destination

Addressing Modes: Source Destination

Data register direct x x
Address register direct X*

Address register indirect x x
Postincrement register indirect x x
Predecrement register indirect x x
Register indirect with displacement x x
Register indirect with index x x
Absolute Short x x
Absolute Long x x
PC relative with displacement

PC relative with index

Immediate x
Flags affected: x N z v c

- y y 0 0

Notes: You can find plenty of examples of move instructions within
this book. See the notes about the movea instruction and also be
aware that address register direct addressing is not allowed if specified
data size is byte!

---------·--------

Amiga Insider Guide

There are a number of specialised move instructions which allow
reading from and writing data to the whole status register or just the
lower byte that holds the condition codes allowing you to forcibly
clear/set the N, Z, V, C and X flags. Some of these instructions are
privileged on one or more members of the 680x0 family and you
should consult the official 680x0 documentation for details.

Mnemonic: MOVEA - Move Address

Purpose: Loads an address register with a value

Addressing Modes: Source Destination

Data register direct x
Address register direct x x
Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement x
PC relative with index x
Immediate x
Flags affected: x N z v c

- - - - -

Notes: Only word or long word operands can be specified and if the
operation is word-sized then the address is sign-extended. Most 68000
assemblers accept

move <ea>,An

as well and the latter convention has been adopted in this book. You
do however need to remember that when move is used to load an

---------·--------

Amiga Insider Guide

address register it is really a movea instruction and the flags are not
affected.

Mnemonic: MOVEM - Move Multiple Registers to
Memory

Purpose: Copies multiple registers to memory

Addressing Modes: Source Destination

Data register direct

Address register direct

Address register indirect x
Postincrement register indirect

Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate

Flags affected: x N z v c
- - - - -

Notes: The main use of this instruction is for storing groups of regis
ters on the stack. For example:

• ovem. l dO -d7/aO·a6 , - (a7) push all registers onto the stack

---------·---------

Amiga Insider Guide

Mnemonic: MOVEM - Move Multiple Registers
From Memory

Purpose: Copies multiple registers from memory

Addressing Modes: Source Destination

Data register direct

Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect

Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate

Flags affected: x N z v c
- - - - -

Notes: The main use of the instruction is for retrieving registers from
stack. For example:

movem.l (a7)+,d0-d7/a0-a6 pull all registers from the stack.

Mnemonic: MOVEQ - Move Quick

Purpose: Copies immediate data to a specified data
register

Flags affected: x N z v c
- y y 0 0

---------·---------

Amiga Insider Guide

Notes: This instruction provides a quick and efficient way to set a data
register to a particular value which can be from -128 to +127 decimal.
Most 68000 assemblers, given an immediate addressing move instruc
tion, generate moveq instructions where possible. For example:

Before After

11oveq#$58,d0 dO=f fff f fff d0=00000058

Flow Control Instructions
These instructions
work by altering
the contents of the

program counter.

Mnemonic: Bee - Branch Conditionally

Purpose: Transfers program control using relative
addressing

Flags affected: x N z v c
- - - - -

Notes: The branch data sizes may be byte or word so these instruc
tions can branch in an area of 32K. When using a branch with a byte
offset you can in fact put a .s (for short) suffix behind the instruction
eg beq.s HERE. Similarly when using a branch with a word offset you
can use a .w suffix - eg beq.w HERE. Most assemblers determine
whether the short or word form is needed automatically and optimise
word-branches to byte-branches whenever it is possible.

These instructions test a combination of the NZVC-flags in the status
register and conditionally perform a branch to another address. If the
testing of the condition codes is true, then the branch is taken, other
wise the instruction immediately following the bee instruction is exe
cuted.

Fourteen variations of this instruction are available and a related bra
(branch always) instruction adds another condition to the testable set:

bee: where cc stands for carry clear. The branch is taken if the carry
(C) bit is 0. This instruction is often used in combination with
shift and rotate operations.

bes: where cs stands for carry set. The branch is taken if the carry
(C) bit is 1.

Amiga Insider Guide

beq: where eq stand for equal. The branch is taken if the zero (Z) bit
is 1. This instruction, as we've seen many times within this
book, is frequently used after tst and crop type instructions.

bne: where ne stands for not equal. The branch is taken if the zero
(Z) bit is 0. This instruction is of course the opposite of beq.

bpl: where pl stands for plus. The branch is taken if the negative (N)
bit is 0.

bmi: where mi stands for minus. The branch is taken if the negative
(N) bit is l.

bvc: where vc stands for overflow clear. The branch is taken if the
overflow (V) bit is 0 (this instruction is often used in conjunc
tion with arithmetic instructions like add, mul and so on.

bvs: where vs stands for overflow set. The branch is taken if the
overflow (V) bit is 1.

bge: where ge stands for greater or equal. The branch is taken when
the negative (N) and overflow (V) bits contain the same value.

bgt: where gt stands for greater than. The branch is taken in cases
where either N= 1, V=l and Z=O or N=V=Z=O.

ble: where le stands for lower or equal. This branch is taken in cases
where Z= 1 or the N and V bits contain different values.

bit: where It stands for less than. This branch is taken if the nega
tive (N) and overflow (V) bits contain different values.

bhi: where hi stands for higher. This branch is taken if the negative
(N) and overflow (V) bits contain the same value.

bis: where ls stands for lower or same. This branch is taken if the
carry (C) and zero (Z) bits contain different values.

bra: branch always. This instruction is commonly seen at the end of
a loop to force control back to the top of the loop.

Mnemonic: Bee - Branch Conditionally

Purpose: Transfers program contro l using relative

addressing

Flags affected: x N z v c
- - - - -

----------·----------

Amiga Insider Guide

Notes: See jsr notes below

Mnemonic: JSR - Jump to Subroutine

Purpose: Transfers program control to a subroutine

Addressing Modes: Source Destination

Data register direct

Address register direct

Address register indirect x
Postincrement register indirect

Predecrement register indirect

Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement x
PC relative with index x
Immediate

Flags affected: x N z v c
- - - - -

Notes: The bsr (branch to subroutine) and jsr (jump to subroutine)
instructions are used for calling subroutines. The bsr form is a relative
branch with a range of 32K. For subroutine calls beyond this range the
jsr instruction should be used but having said that most assemblers
would optimise jsr to bsr when possible (bsr is more efficient). When
executing a bsr/jsr instruction, the 68000 pushes the program counter
on the stack and then re-loads it with the target address.

----------·---------

Amiga Insider Guide

Mnemonic: RTS - Return From Subroutine

Purpose: Transfers control to a stack-retrieved address

Flags affected: x N z v c
- - - - -

Notes: In a sense this is the counterpart of the bsr/jsr instructions
because it reloads the program counter register with the value on top
of the stack (this value will usually have been put there by a bsr or jsr
instruction).

Mnemonic: JMP-Jump

Purpose: Transfers program control to a specified address

Addressing Modes: Source Destination

Data register direct

Address register direct

Address register indirect x
Postincrement register indirect

Predecrement register indirect

Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement x
PC relative with index x
Immediate

Flags affected: x N z v c
- - - - -

---------·---------

Amiga Insider Guide

Notes: This instruction is a variant of the move instruction but in this
case the destination register, namely the program counter, is inherent
ly defined. You could therefore just as easily use move.I (ea>,PC
instead of jmp <ea>.

Logical Operations

Mnemonic: ANDI - AND Immediate

Purpose: Bitwise AND of immediate data source with
destination

Addressing Modes: Source Destination

Data register direct x
Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate x
Status register x
Flags affected: x N z v c

- y y 0 0

Notes: In addition to the more conventional register and memory
usage the destination may be the condition codes or the whole of the

Amiga Insider Guide

68000 status register. In the latter case the instruction is privileged. As
an example:

Instruction

andi. b #7, dO

Before

d0=9999aaaa

After

d0=9999aaao

Mnemonic: EORI - Exclusive OR Immediate

Purpose: Bitwise Exclus ive-OR of immediate data
source with destination

Addressing Modes: Source Destination

Data register direct x
Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate x
Status register x
Flags affected: x N z v c

- y y 0 0

Notes: Destination may be condition codes or the whole of the 68000
status register. In the latter case the instruction is privileged. For
example:

eori. b #$ff, d6

Before

d6=eeeeee30

After

d6=eeeeeecf __ • _______ __

Amiga Insider Guide

Mnemonic: NOT - Logical Complement

Purpose: Performs a bitwise complement of an operand

Addressing Modes: Source Destination

Data register direct x
Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate

Flags affected: x N z v c
- y y 0 0

Notes: The instruction not. w An has the same effect as eori. w
#$ffff,An.

----------·---------

Amiga Insider G11ide

Mnemonic: ORI - Inclusive OR Immediate

Purpose: Performs bitwise OR using immediate data source

Addressing Modes: Source Destination

Data register direct x
Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate x
Status register x
Flags affected: x N z v c

- y y 0 0

Notes: Destination may be condition codes or the whole of the 68000
status register. In the latter case the instruction is privileged.

Example

Before After

ori . b #ff,dO dO=efefefef dO=efefefff

---------·----------

Amiga Insider G"ide

A whole range of
Shift and Rotate Operations left and right shifts

and rotate instruc
tions are available on the 68000 processor. Here are two examples:

Mnemonic: ASL - Arithmetic Shift Left in Data
Register

Purpose: Left shifts the contents of a data register

Flags affected: x N z v c
y y y y y

Notes: This instruction arithmetically left shifts the contents of the
data register and the carry (C) and extend (X) flags receive the last bit
shifted out. The shift count may be specified either by another data
register or by immediate data and, in the latter case, a shift count in
the range 1-8 may be specified. When a data register is used counts in
the range 0-63 are allowed.

ASL instructions can be used as a fast form of multiplying an operand
by a factor of two. The lower bit of the destination is always set to
zero. Example:

Before

asl.1 #4,d1 d1 =0000000f

After

d1=000000f0

Amiga Insider Guide

Mnemonic: ASL - Arithmetic Shift Left in
Memory

Purpose: Left shifts the contents of a memory location

Addressing Modes: Source Destination

Data register direct

Address register direct

Address register indirect x
Postincrement regi ster indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate

Flags affected: x N z v c
y y y y y

Notes: This form of the instruction is restricted to a one-bit shift and
can only be used for word sized operands.

----------·----------

Amiga Insider Guide

Bit Manipulation Instructions

Again many instructions exist. One example is:

Mnemonic: BTST - Test a Bit

Purpose: Tes ts an operand bit and sets zero flag
accordingly

Addressing Modes Source Destination

Data register direct x x
Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement x
PC relative with index x
Immediate x
Flags affected: x N z v c

- - y - -

---------·---------

Amiga Insider Guide

Arithmetic Instructions

Mnemonic: ADD - Add Binary

Purpose: Add source operand to data register destination

Addressing Modes: Source Destination

Data register direct x x
Address register direct X*

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement x
PC relative with index x
Immediate x
Flags affected: x N z v c

y y y y y

Notes: Address register direct addressing is not allowed for byte size
operations. Two forms of the instruction are available.

Example:

add.wd0,d2

Before

d0=00000011

d2=0000FFFA

XNZVC=OOOOO

After

d0=00000011

d2=0000000B

XNZVC=l 1001

Amiga Insider Guide

Mnemonic: ADDI - Add Immediate

Purpose: Add immediate data to specified operand

Flags affected: x N z v c
y y y y y

Notes: This instruction has exactly the same characteristics as the
'ADD using a data register source' instruction, except that immediate
addressing is used to specify the source - ie the source must be a con
stant.

Mnemonic: ADDQ - Add Quick

Purpose: Add data specified in instruction code to
operand

Flags affected: x N z v c
y y y y y

Notes: Similar in effect to ADDI but the value is built into the instruc
tion code itself. The immediate values in the source field are restricted
to the range 1 to 8. This instruction is the fastest way to add a number
between 1 to 8 to a destination operand.

Additional notes on ADD, ADDI, ADDO: Most assemblers optimise
your code automatically and so if, for example, you write add #1,Dn
then the assembler translates it automatically to addq #1,Dn thus
reducing the size of the object code and saving a few clock cycles of
execution time.

----------·---------

Amiga Insider Guide

Mnemonic: CLR - Clear and Operand

Purpose: Sets specified register or memory location to zero

Addressing Modes: Source Destination

Data register direct x
Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate

Flags affected: x N z v c
- 0 1 0 0

Notes: You cannot use clr to clear an address register but most assem
blers allow instructions like clr aO to be written and then substitute a
sub.I instruction which has the same effect (sub.I aO,aO in the case of
clr aO). ·

Example:

clr.w dO

Before

dO=bbbbbbbb

NZVC=1011

After

dO=OOOOOOOO

NZVC=0100

----------··-----------

Amiga Insider Guide

Mnemonic: CMP - Compare

Purpose: Compares operand with a data register and
sets flags

Addressing Modes: Source Destination

Data register direct x x
Address register direct x
Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement x
PC relative with index x
Immediate x
Flags affected: x N z v c

- y y y y

Notes: CMP is a subtraction instruction which affects only the condi
tion codes.

Example:

Before

CMp . l d2,d3 d2=00000001

d3=00000002

NZVC=1111

After

d2=00000001

d3=00000002

NZVC=OOOO

----------··-----------

Amiga Insider Guide

Mnemonic: CMPA - Compare Address

Purpose: As CMP but uses an address register as destination

Flags affected: x N z v c
- y y y y

Notes: This instruction differs only from CMP in that the second
operand is an address register and that the data size cannot be byte.

Mnemonic: CMPI - Compare Immediate

Purpose: As CMP but compares against immediate data

Flags affected: x N z v c
- y y y y

Mnemonic: CMPM - Compare Memory

Purpose: Compares contents of two memory locations

Flags affected: x N z v c
- y y y y

Notes: Similar to CMP, but both the source and destination operands
must use postincrement addressing. This instruction is used to com
pare areas of memory.

Additional note on all CMPx instructions: Most assemblers accept
instructions like cmp.w (aO)+,(al)+ and cmp.l #3,dO

Mnemonic: DIVS - Signed Divide

Purpose: Divides a 32 bit destination by a 16 bit source

Flags affected: x N z v c
- y y y 0

Notes: This instruction performs a division between two signed num
bers. The destination register is always a longword and the source
operand is always a word. After the division the destination operand
contains the result. The quotient is always in the lower word and the
remainder is always in the high order word of the data register!

----------·----------

Amiga Insider Guide

Mnemonic: MULS - Signed Multiply

Purpose: Multiplies two 16 bit operands

Flags affected: x N z v c
- y y 0 0

Notes: This instruction performs a multiplication of the source and
destination operand, putting the result in the destination operand.

Mnemonic: SUBI - Subtract Immediate

Purpose: Subtract immediate data from specified operand

Flags affected: x N z v c
y y y y y

Notes: This instruction, except for the fact that subtraction is involved,
has exactly the same characteristics as the ADDI instruction.

Mnemonic: SUBQ - Subtract Quick

Purpose: Subtract data specified in instruction code

Flags affected: x N z v c
y y y y y

Notes: Similar in effect to SUBI but the value is built into the instruc
tion code itself. The immediate values in the source field are restricted
to the range 1 to 8. This instruction is the fastest way to subtract a
number between 1 to 8 from a destination operand.

Additional notes on SUB, SUBI, SUBQ: Most assemblers optimise
your code automatically and if, for example,you write sub #1,Dn the
assembler automatically translates it to subq #1,Dn thus reducing the
size of the object code and saving a few clock cycles of execution time.

---------·--------

Amiga Insider Guide

Mnemonic: TST - Test an Operand

Purpose: Test an operand and set status flags accordingly

Addressing Modes: Source Destination

Data register direct x
Address register direct

Address register indirect x
Postincrement register indirect x
Predecrement register indirect x
Register indirect with displacement x
Register indirect with index x
Absolute Short x
Absolute Long x
PC relative with displacement

PC relative with index

Immediate

Flags affected: x N z v c
- y y 0 0

Consult the official
To Get the Complete Story 68000 literature for

details . In addition
to the instructions outlined in this appendix the 68000 includes many
other specialist instructions including special commands called link
and unlnk which can produce subroutines that use stack-based para
meter passing, local variables etc. There are binary coded decimal
(BCD) operations, a range of supervisor-mode-only commands (privi
leged instructions), specific 680x0 trap generating and handling
instructions and so forth.

More notes on those important
library functions ...

o · ~~ I

I '°tl net i 01~~~~~!) ~ •J~
T

he tables in this appendix provide library vector offset
values and register usage details for some commonly
used Amiga library functions (some of which have been

used in the programs of this book). The term void in the fol
lowing descriptions indicates that no return value is supplied.
For full details of all libraries and their available functions you
should consult the official Amiga documentation.

DOS functions LVO offset
_LVOOpen -30 file(dO) = Open(name,mode) (dl,d2)

_LVOClose -36 void() = Close(file) (dl)

_LVORead -42 collected(dO) = Read(file,buffer,length)
(dl,d2,d3)

_LVOWrite -48 written(dO) = Write(file,buffer,length)
(dl,d2,d3)

_LVOOutput -60 filehandle(dO) = Output()

_LVODelay -198 void() = Delay(time) (dl)

Amiga Insider Guide

Exec functions

_LVOAllocMem -198 block(dO) = AllocMem(size,type) (dO,dl)

_LVOFreeMem -210 void()= FreeMem(block,size) (al,dO)

_LVOCloseLibrary

_LVOOpenLibrary

Graphics functions

-414
void()= CloseLibrary(library) (al)

-552
base(dO) = OpenLibrary(name, version)
(al,dO)

_LVORectFill -306 void() = RectFill(rastport,xl ,yl ,x2,y2)
(al,d0,dl ,d2,d3)

Intuition functions

_LVOCloseScreen -66
void() = CloseScreen(screen) (aO)

_LVOCloseWindow -72
void()= CloseWindow(window) (aO)

_LVODisplayBeep -96
void() = DisplayBeep(screen) (aO)

_LVODrawlmage-114 void() = Drawlmage(rastport,image,x,y)
(aO,al,dO,dl)

_LVOOpenScreen -198
screen(dO) = OpenScreen(new_screen) (aO)

_LVOOpenWindow -204
window(dO) = OpenWindow(new_window)
(aO)

The following Intuition functions are available only from Release 2
(v36) onwards:

_LVOLockPubScreen -510
screen(dO) = LockPubScreen(name)(dO)

_LVOUnlockPubScreen -516
void() = UnlockPubScreen(name,[screen])
(aO,al)

_LVOOpen WindowTagList -606
Window(dO) = OpenWindowTagList
(nw,tags)(aO,al)

---------·--------~

Amiga Insider Guide

The system macro LINKLIB can be used to
Usage notes generate function call code in an easy-to-read,

and conceptually tidy, fashion. An Intuition
library OpenScreen() call for instance might take this form:

LINKLIB _LVOOpenScreen , _IntuitionBase

and the instructions generated would be:

11ove . I a6,·(sp)

move.I _IntuitionBase , a6

jsr _LVOOpenScreen(a6)

move.I (sp)+,a6

To create an exectuable program the _LVOOpenScreen reference must
at some stage be resolved, ie the real value for it must be found. This
may be done either at link time (via the LVO values present in
amiga.lib), by using an include file which contains the appropriate
LVO value, or by the programmer inserting a suitable EQUate within
their program. Since the numerical L VO values are available from the
system documentation programmers are sometimes tempted to use
the numerical equivalents directly, for instance, knowing that the
_LVOOpenScreen reference is -198 a programmer could decide to
code the above library opening fragment in one of these ways:

1) LINKLIB _LVOOpenScreen, _IntuitionBase

2) 1ove . l a6,- (sp)
1ove . l _IntuitionBase,a6

jsr _LVOOpenScreen

1ove.l (sp)+ ,a6

3) LINKLIB · 198, _IntuitionBase
4) 1ove.l a6,·(sp)

1ove.l _IntuitionBase ,a6

jsr ·198(a6)
1ove . l ·(sp)+,a6

The preferred approach is to use the LINKLIB macro (or an equivalent
macro) but if you do write the code manually you should always use
the LVO name and NOT the numerical value. There are two reasons
for this: Firstly, the LVO name approach provides more reable code.
Secondly, if Commodore-Amiga do ever change the existing function
arrangements in a library then providing you've used the LVO symbol-

Amiga Insider Guide

ic names it would be possible to re-assemble/re-link your program
with the new LVO data and it would work. This would not be possible
if you had used numerical L VO equivalents in your code. In short you
should avoid the style of the last two examples shown above!

----------·--------

Some extra help with the jargon ...

D ~- ~_j~~

Jargon Busting J

active screen

A

v
_ _____, <i>l..::J

On the Amiga this is the screen currently displaying the
active window.

active window
The window currently receiving input from a user. On the
Amiga only one window can be active at any one time.

address
A number which identifies a storage location in
memory.addressing modea term related to the way in
which a microprocessor locates the operand that an
instruction is to work on.

alert
A special red/black Amiga display used for emergency mes
sages.

ALU
Arithmetic Logic Unit

angle brackets
These characters, < and >, are frequently used to identify
command line parameters. For example ... dir <filename>
implies that 'filename' is a parameter which you, the user,
should supply.

Amiga Insider Guide

arithmetic logic unit
Part of a microprocessor which performs arithmetic and logical
operations.

arguments
The values supplied when a function is used. These values are also
often called parameters.

ASCII
American Standard Code for Information Interchange consists of a
set of 96 displayable and 32 non displayed characters based on a
seven bit code.

asynchronous
Some operation which is executed/performed without reference to
an overall timing source. Asynchronous operations can therefore
occur at irregular timing intervals.

background program
A program, task, or process, which is running somewhere in mem
ory but not interacting directly via a terminal.

back-up
To make a duplicate of a program or data disk. Back-up copies are
usually made for either safety or security purposes.

baud rate
A measurement of the rate of data transmission through a serial
port. The baud rate divided by ten is a rough measure of the num
ber of characters being transmitted per second.

BCD
Binary Coded Decimal.

binary
· A number system using base 2 for its operations.

bit
An abbreviation of "binary digit".

bitmap
An array of bits which form a system's display memory. Modifying
the datain the bitmap alters the picture on the display. The Amiga
uses a bitmap display consisting of a number of two dimensional
'bitplanes'.

----------·----------

Amiga Insider GNide

blanking interval
The period of time when a video beam is outside of the screen dis
play area. It's a good time for a program to do things which might
visually jar the display - the idea is to ensure that all of the neces
sary changes have been made before the video beam comes back
into the visual area.

boot
To start up a computer system.

BPS
Bits per second.

branch
A type of processor instruction which causes control to pass from
one section of a program to another. The branch is achieved by
altering the contents of the processor's program control register
which is the register which tells the processor from where it should
get its next instruction. On the 68000 the term is reserved for
instructions which use relative addressing.

buffer
An area of memory used to hold data temporarily whilst being col
lected or transmitted.

bug

c

A fault within a program that has not yet been found. Also see
"Debug".

A high-level programming language: one of the best that has ever
been developed.

call
To activate a program, function or procedure.

character string
A sequence of printable characters.

checksum
A number which is used to ensure that a block of data is correct
and has not been inadvertently changed. Checksums are used to
verify proper transmission and reception of data, to guard against
deliberate alteration of sensitive file records etc.

clear
Change the value of a binary bit from 1 to zero.

---------·---------

Amiga Insider Guide

CLI
Command line interface - precursor of the Shell.

clipping
Preventing the parts of an image which lie outside a specified
drawing area from being displayed.

colour indirection
Powerful pixel colouring technique whereby the binary number
formed by the appropriate image bits determines which colour reg
ister is used.

colour register
The Amiga has 32 hardware colour registers which means it has
the ability to select from a palette of up to 4096 colours. (256 from
16 million - AGA?)

commandftle
An ordinary (usually ASCII) textfile containing executable system
commands.

comment
A remark, social or otherwise, written within a program.

commenting out
In the assembly language world this term implies that part of the
source code of a program has been eliminated not by removing it
but by adding * or ; characters at the beginning of each line of a
code section. This renders it inoperative because those lines are
then treated as comments by the assembler. It is a trick frequently
used by programmers during program development.

complement
"Binary complement", the process of turning all l s to Os and all Os
to ls.

concatenate
Join together. Strings, files etc, may be concatenated!

constant
Any value which does not change.

contiguous
Adjacent, lying next to each other etc. A contiguous block of mem
ory is a block whose addresses are numerically adjacent and con
tain no gaps.

----------···----------

Amiga Insider Guide

control character
A character that signifies the start or finish of some process.

Copper
An abreviation for the Amiga's Co-processor chip.

Co-processor
The brilliant and powerful Amiga chip which handles much of the
display work. This chip has its own instruction set which allows it
to modify display characteristics without requiring 68000 proces~
sor intervention. Advanced Amiga programmers write their own
Copper lists (Co-processor programs) for doing strange and won
derful graphics tricks.

CPU
Central Processing Unit.

crash
A tenn used when a computer program terminates unexpectedly or
when the system hardware or software malfunctions. Usually
reserved for serious problems that have no way of escape other
than restarting the system.

CRT
Cathode Ray Tube

debug
To eliminate errors within a program.

debugger
A program designed to help programmers find errors - bugs - in
theirprograms. Nowadays some highly sophisticated interactive
debuggers are available which can link into the original source
code as a program is executing.

decimal constant
A constant written as a base 10 number.

default value
A value which is supplied automatically if no other is given.

delimiting characters
Characters placed at the beginning or end of a character string.

destination me
A file being written to.

---------·--------

Amiga Insider Guide

DMA
Direct Memory Access

direct memory access
A method of data transfer whereby intelligent hardware devices
can read and write to memory without the main microprocessor
being involved.

disable
To prevent something from being used.

display memory
The RAM area that contains data used to produce the screen
image.

display mod~
A particular type of screen display - low resolution, high resolu
tion, non-interlaced etc.

editor
See text editor.

enable
To make something available for use.

EOF
End Of File

Exec
The Amiga's low level system software which controls tasks, task
switching, interrupt scheduling, message passing, 1/0 and many
other underlying system functions.

FIFO
First In First Out

file
A set of data items held on diskette, tape or other medium.

filename
A name given to a file for identification puroses.

fill
To colour or draw a pattern into an enclosed area.

flag
A single bit within a microprocessor register or memory location
which has been chosen to represent some TRUE/FALSE, YES/NO,
type situation.

----------·----------

Amiga Insider Guide

floating point
A means of representing numbers in the binary equivalent of "sci
entific notation", ie by specifying an exponent and a mantissa.

glitch
A transient, normally unreproduceable, problem usually associated
with sbme hardware malfunction.

hard copy
The printed listing of some computer output as opposed to the out
put displayed on a VDU screen.

header file
Another term for a C include file.

hexadecimal
A base 16 numbering system using the digits 0-9 and the letters
A- F.

hexadecimal constant
A base 16 constant which in assembler is written with the prefix $
followed by the hexadecimal digits themselves.

IDCMP
Intuition Direct Communications Message Port.
Arguably the most important means of two-way, program-to
Intuition, communication.

1/0
input/output.

interrupt
An externally instigated request that, if accepted, causes the
processor to save its current status and perform some required
function. When the function has been completed the status of the
processor is restored and control handed back to the interrupted
program.

IntuiMessage
Messages created for applications programs by Intuition.

Intuition
Users regard Intuition as the Amiga's high level graphics interface,
ie the overall Workbench orientated WIMP arrangement.
Programmers take a much lower level view regarding Intuition as a
mass of system routines and object definitions which can be used
to simplify their programming tasks. The Intuition approach

---------·--------

Amiga Insider Guide

allows programmers to easily create programs which use windows,
gadgets, menus etc.

jump
A processor instruction which causes control to pass from one sec
tion of a program to another. The jump is achieved by altering the
contents of the processor's program control register which is the
register which tells the processor where it should get its next
instruction from.The 68000 implements ordinary jumps, subrou
tine style jumps and branches - the last term is reserved for
instructions which use relative addressing.

label
Rectangular shaped paper, often sticky, used for placing identifi
cation markings on objects.

label
An identification name used within the source code to refer to a
particular section of coding.

longword
On the Amiga this implies a 32 bit binary number.

low-level language
A computer language whose primitive operations are closely relat
ed to the processor on which the language runs. Assembly lan
guages are low-level.

memory map
A diagram showing the allocation of the various parts of memory
chosen for a particular system or program.

message port
A fundamental software structure used by Exec's communication
mechanism.

null-terminated string
A string of bytes which are terminated by a zero value.

octal
A base 8 numbering system.

operand
The value upon which an instruction or statement operates.

operating system
A collection of routines that perform the 1/0 and other hardware
dependent chores that are needed for a computer to function.

---------·---------

Amiga Insider Guide

parallel port
Hardware device which, on the Amiga, is used for transmitting
data eight bits at a time. Mainly used for printer connection.

parameter
Any value which must be explicitly passed to a subroutine, func
tion, procedure or program in order for it to be properly executed.

peripheral
Any external or remote device connected to a computer system, eg
a printer.

pixel
The smallest addressable part of a screen display.

playfield
Another name for a screen background.

pointer
An address, record number or other indicator that specifies the
next item of a data set taken in a specified logical order. With
68000 assembly language pointers are normally taken to mean
addresses.

primitives
Another name for Amiga library functions and system routines.

refresh
To re-draw part (or all) of a graphics display.

render
Draw an image into a display area.

RAM
Random Access Memory.

ROM
Read Only Memory.

set
The act of turning a binary 0 into a binary 1 value.

Shell
An improved CLI interface which offers a number of useful new
facilities including line editing and re-use of previously typed com
mands.

software
Any program or routine for a computer.

---------·---------

Amiga Insider Guide

source code
The text version of a program, ie the program actually writen in the
first place.

source file
A file from which data is being read.

synchronous
Operations which are performed with reference to a controlling
overall timing source.

syntax
The formal grammatical structure of a language.

text editor
A program that enables text to be written, manipulated, stored etc.
Wordprocessor programs are sophisticated text editors.

title bar
An optional strip at the top of a window or screen which may con
tain either a name, some system gadgets or both.

tool
An Amiga Workbench name for an application program.

two's complement
A numerical representation in which positive numbers are repre
sented as ordinary signed binary but negative numbers are repre
sented by complementing the number and adding one.

VDU
Visual display unit

word
In the world of the 68000 programmer, and on the Amiga, a word
is taken to mean a 16 bit binary number.

Workbench
The Amiga's inbuilt high-level interface applications program
which allows users to interact with AmigaDOS, run applications
programs etc, without getting involved with Shell commands.

---------·---------

Some useful sources of
further information ...

T he following books are a selection of those currently
available on assembly language programming and the
Amiga. They've been chosen because they have all, at

some period in time, been found to be particularly useful. See
also the details of the Mastering Amiga System and Mastering
Amiga Assembler books provided immediately after this bibli
ography.

Title:
Author:
Publisher:
ISBN:

Amiga ROM Kernel Reference Manual - Libraries
Commodore-Amiga Inc.
Addison-Wesley
0-201-56774-1

One of the major Amiga reference books.

Title:
Author:
Publisher:
ISBN:

Amiga ROM Kernel Reference Manual - Devices
Commodore-Amiga Inc.
Addison-Wesley
0-201-56775-X

One of the major Amiga reference books.

Amiga Insider Guide

Title:

Author:

Amiga ROM Kernel Reference Manual -
Includes & Autodocs
Commodore-Amiga Inc.

Publisher: Addison-Wesley
ISBN: 0-201-56 773-3
One of the major Amiga reference books.

Title:
Author:
Publisher:
ISBN:

Amiga Hardware Reference Manual
Commodore-Amiga Inc.
Addison-Wesley
0-201-56776-8

One of the major Amiga reference books ..

Title:
Author:
Publisher:
ISBN:

Amiga User Interface Style Guide
Commodore-Amiga Inc.
Addison-Wesley
0-201-57757-7

One of the major Amiga reference books.

Title:
Author:
Publisher:
ISBN:

The AmigaDOS Manual
Commodore-Amiga Inc.
Bantam Books
0-553-35403-5

Now in its third edition this is the most comprehensive guide to the
internal workings of AmigaDOS that exists but parts of it are technically
heavy going.

Title: The Kickstart Guide to the Amiga
Author: Dave Parkinson and Mike Boley.
Publisher: Ariadne Software Ltd.
This book has been about for quite a few years now so it is a little out of
date in places. Nevertheless it contains a lot of useful information and is
still worth reading.

Title:
Author:
Publisher:
ISBN:

Computers - From Logic to Architecture
R. D. Dowsing and F. W. D Woodhams
Van Nostrand Reinhold
0-278-00093-2

Contains good general introductions to hardware issues (processors,
memory chips and so on) including some 68000 material.

----------·----------

Amiga Insider Guide

Title: Dr Dobb's Toolbook of 68000 Programming
Authors: Editors of the Dr Dobbs Journal
Publisher: Prentice Hall
ISBN: 0-13-216557-0
A goldmine for ideas once you are fairly 68000 proficient, but does not
contain any Amiga specific material.

Title: 68000 Assembly Language Programming
Authors: Kane, Hawkins and Leventhal
Publisher: Osborne/McGraw-Hill
ISBN: 0-931988-62-4
A very good general Motorola 68000 book with very detailed accounts of
the instruction set .

..........................

Amiga Insider Guide

-----··------

We've taken you through the door of 68000
programming and, as a result, you'll be getting

an idea of where your interests lie.

Now comes the opportunity to take your
computing a serious step further with the

Bruce Smith Books range of titles.

ruce Smith Books is dedicated to producing quality
Amiga publications which are both comprehensive and

==-_. easy to read. Our Amiga titles are written by some of the
best known names in the marvellous world of Amiga comput-
ing. If you have found that your Insider Guide has proved infor
mative and want to delve deeper into your Amiga then why not
try one of our highly rated Mastering Amiga guides? In other
words - if you enjoyed getting insider your Amiga, now is the
time to master it!

Below you'll find details of all the Mastering Amiga and Insider
Guide range books that are currently available or due for publi
cation soon.

We endeavour to ensure that all
Compatibility Mastering Amiga books are fully

compatible with all Amiga models
and all releases of AmigaDOS and Workbench. The Mastering
AmigaDOS books are constantly updated to reflect
Commodore's evolving Amiga operating system so you can be

I

Amiga Insider Guide

sure that these bibles of Amiga computing will keep up to date with
you and your computer. Please check the list of titles currently and
soon to be available below for full compatibility.

Book A500 A500+ A600 Al 200 A2000 A3000 A4000

Mastering AmigaDOS2 Vol. I y y Y:j: N y Y* N

Mastering AmigaDOS2 Vol. 2 y y Y+ N y Y* N

Mastering AmigaDOS3 Vol. I N N N y N Y# y

Mastering AmigaDOS3 Vol. 2 N N N y N Y# y

Mastering Amiga Workbench2 N y y N y Y* N

Mastering Amiga Beginners Yt y y y Yt y y

Amiga Gamer's Guide y y y y y y y

Mastering Amiga AMOS y y y y y y y

Mastering Amiga C y y y y y y y

Mastering Amiga Printers y y y y y y y

Mastering Amiga System y y y y y y y

Mastering Amiga Assembler y y y y y y y

Mastering Amiga ARex.x N y y y y y y

Amiga A600 Insider Guide N N y N N N N

Amiga Al200 Insider Guide N N N y N N N

Amiga Al200 Insider Guide 2 N N N y N N N

Workbench 3 A-Z Insider Guide N N N y N Y# y

Yt State if you have AmigaDOS 1.3 Y* Earlier versions with AmigaDOS2

Yi 80% compatible with 2.1 version Y# Latest versions with AmigaDOS3

Brief details of these guides along with review segments are given
below. If you would like a free copy of our catalogue and to be placed
on our mailing list then phone or write to the address below.

You can order a book simply by writing or using the simple tear our
form to be found towards the end of this book.

Our mailing list is used exclusively to inform readers of forthcoming
Bruce Smith Books publications along with special introductory offers
which normally take the form of a free software disk when ordering
the publication direct from us .

•

Amiga Insider Guide

Bruce Smith Books, PO Box 382, St. Albans, Herts, AL2 3JD
Telephone: (0923) 894355 - Fax: (0923) 894366

Note that we offer a 24-hour telephone answer system so that you can
place your order direct by 'phone at a time to suit yourself. When
ordering by 'phone please:

• Speak clearly and slowly
• Leave your full name and full address
• Leave a day-time contact phone number
• Give your credit card number and expiry date
• Spell out any unusual names

Note that we do not charge for P&P in the UK and we endeavour to
dispatch all books within 24-hours.

Buying at your Bookshop
All our books can be obtained via your local bookshops - this includes
WH Smiths which will be keeping a stock of some of our titles - just
enquire at their counter. If you wish to order via your local High
Street bookshop you will need to supply the book name, author, pub
lisher, prire and ISBN number - these are all summarised at the very
end of this appendix.

Overseas Orders
Please add £3 per book (Europe) or £6 per book (outside Europe) to
cover postage and packing. Pay by sterling cheque or by Access, Visa
or Mastercard. Post, Fax or Phone your order to us.

Dealer Enquiries
Our distributor is Computer Bookshops Ltd who keep a good stock of
all our titles. Call their Customer Services Department for best terms
on 021-706 1188.

Summary Book Details

A600 Insider Guide by Bruce Smith
ISBN: 1-873308-14-0, Price £14.95, 256 pages.

A perfect companion for all A600 and A600HD users. This book pro
vides you with a unique insight into the use of Workbench and
AmigaDOS on all versions of the Amiga A600.

Amiga Insider Guide

Assuming no prior knowledge it shows you how to get the very best
from your machine in a friendly manner and using its unique Insider
Guide illustrations (see Al200 description below).

A1200 Insider Guide by Bruce Smith
ISBN: 1-873308-lS-9, Price £14.9S, 2S6 pages.

The World's best selling Amiga AI200 book from the world's number
one selling Amiga author! Assuming no prior knowledge, it shows you
how to get the very best from your A1200 in a friendly manner and
using its unique Insider Guide illustrations. Configuring your system
for printer, keyboard, Workbench colours, use of Commodities and
much, much more has made this the best-selling book for the A1200.

As well as easy to read explanations of how to get to grips with the
Amiga, the book features SS of the unique Insider Guides, each of
which displays graphically a set of step by step instructions. Each
Insider Guide concentrates on a especially important or common task
which the user has to carry out on the Amiga. By following an Insider
Guide the user learns how to control the Amiga by example. Beginners
to the A1200 will particularly appreciate this approach to a complex
computer.

The disks which come with the A1200 contain a wealth of utilities and
resources which allow you to configure the computer for your own
way of working. The step by step tutorials take you through using
these point by point, anticipating any problems as they go. There are
also fully fledged programs such as MultiView and ED which can
seem impenetrable for the new user but which become clear when
observed in use over the shoulder of author Bruce Smith.

Great new features such as the colour wheel, Intellifonts, using
MSDOS disks with CrossDos and configuring sound are dealt with in
detail. A useful appendix acts as a file locater so that any of the many
files on the Amiga disks can be quickly found.

Amiga A1200 Next Steps by Peter Fitzpatrick
ISBN: 1-873308-24-8, Price £14.9S, 2S6 pages. Available Nov. 93.

For those who have mastered the very basics of the A1200 this book is
the ideal companion to our Amiga Al 200 Insider Guide. Leaving the
basics of the Workbench and AmigaDOS behind this book takes you
the next step and shows you how to get the very most out of your
A1200, using both the software supplied and other material readily
available.

---------·----------

Amiga Insider Guide

For example, learn how to use MultiView to write your own adventure
game and edit a picture! Create your own fully recoverable Ram disk,
get better results when you print out, recover deleted files. We even
show you how to add your own hard disk and copy software onto it!
This is only the tip of the iceberg. Amiga Al 200 Next Steps is worth its
weight in gold!

Workbench 3 A to Z Insider Guide by Bruce Smith
ISBN: 1-873308-28-0, Price £14.95, pages TBA. Available Dec. 93.

From the world's number 1 selling Amiga book author comes this
indispensable guide which covers every aspect of the Amiga
Workbench version 3. Complete with illustrations, it provides compre
hensive coverage of every Workbench menu option and icon across
every disk - and more.

An indispensable guide and essential reference for every Workbench 3
owner!

Mastering Amiga Beginners by Bruce Smith and Mark Webb
ISBN: 1-873308-17-5, Price £19.95, 320 pages. FREE Games disk.

Mastering Amiga Beginners is the book for the growing number of
novice computer users who tum to the Amiga as the natural computer
for home entertainment and self-education.

The authors have built up a wide experience of beginners' require
ments and the problems they encounter and ·now this vast knowledge
of the subject has been distilled into 320 pages of sensible advice and
exciting ideas for using the Amiga.

Mastering AmigaDOS 2 Volume One - Revised Edition
by Bruce Smith and Mark Smiddy
ISBN: 1-873308-10-8, Price £21.95, 416 pages. FREE Utilities disk.

Volume One of the Mastering AmigaDOS 2 dual volume set is a com
plete tutorial to AmigaDOS, designed to help the beginner become the
expert. From formatting a disk to multi-user operation, over 400 pages
spans every aspect of the Amiga's operation. The book is packed with
DOS one-liners and scripts.

Mastering AmigaDOS 2 Volume Two - Revised Edition
by Bruce Smith and Mark Smiddy
ISBN: 1-873308-09-4, Price £19.95, 368 pages.

Mastering Amiga DOS 2, Volume Two is a complete A to Z reference to
DOS commands and the current version has full details up to version
2.04. The action of each command is explained and examples to try

---------·---------

Amiga Insider Guide

are provided. Chapters on AmigaDOS error codes, viruses, the
Interchange File Format (IFF) and the Mountlist complete this valu
able guide.

Mastering AmigaDOS 3 Volume One -Tutorial
by Brnce Smith and Mark Smiddy-Available Dec. 93 .
ISBN: 1-873308-20-5, Price £21.95, pages TBA. FREE Utilities disk.

Volume One of the Mastering AmigaDOS 3 dual volume set is a com
plete tutorial to AmigaDOS 2.0, 2.04 and 3. Designed to help the begin
ner become the expert it follows the highly successful format of the
Mastering AmigaDOS 2 series. From formatting a disk to multi-user
operation, over 400 pages spans every aspect of the Amiga's operation.
The book is packed with DOS one-liners and scripts.

Mastering AmigaDOS 3 Volume Two - Reference
by Brnce Smith and Mark Smiddy
ISBN: 1-873308-18-3, Price £21.95, 416 pages.

Following on from the best selling Mastering AmigaDOS 2 volumes,
Mastering Amiga DOS 3, Volume Two is a complete A to Z reference to
DOS commands covering versions 2.0, 2.04 and 3. The action of each
command is explained and examples to try are provided. Chapters on
AmigaDOS error codes, viruses, the Interchange File Format (IFF), the
Mountlist and the new hypertext system, AmigaGuide, complete this
valuable guide.

Mastering Amiga System by Paul Overaa
ISBN: 1-873308-06-X, Price £29.95, 398 pages. FREE disk.

Serious Amiga programmers need to use the Amiga's operating system
to write legal, portable and efficient programs. But it's not easy! Paul
Overaa shares his experience in this introduction to system program
ming in the C language. The author keeps it specific and presents
skeleton programs which are fully documented so that they can be fol
lowed by the newcomer to Amiga programming. The larger programs
are fully-fledged examples which can serve as templates for the read
er's own ideas as confidence is gained.

Mastering Amiga Workbench 2 by Brnce Smith
ISBN: 1-873308-08-6, Price £19.95, 320 pages.

Author Bruce Smith explains everything you will want to know about
the Workbench version 2.x using screen illustrations throughout for
ease of reference. Geared towards all types of users, it starts from the
first steps and explains the philosophy of the Workbench and how it

----------·----------

Amiga Insider Guide

ties in with your Amiga. Moving on to describe the best way to per
form basic tasks such as disk copying, file transfer and how to cus
tomise your own Workbench disks, it moves on to work its way
through each of the menu options with full descriptions of their use,
providing many hints, tips and tricks on the way.

Mastering Amiga AMOS by Phil South
ISBN: 1-873308-13-2, Price £19.95, 320 pages.

AMOS has very quickly developed into one of the most exciting and
accessible programming languages on the Amiga. Its easy to use inter
face and familiar BASIC structure are augmented by powerful
libraries for games and graphics programming. Mastering Amiga
AMOS is ideal for anyone investing in AMOS, EasyAMOS or AMOS
Professional. Full of hints, tips and shortcuts to effective and spectacu
lar AMOS programming, this book also contains many useful routines
and program design ideas.

Mastering Amiga Assembler by Paul Overaa
ISBN: 1-873308-11-6, Price £24.95, 416 pages. FREE disk.

The big brother to the Amiga Assembler Insider Guide, this book
explains the use of assembly language to write efficient code within
the unique environment of the Amiga, doing so without duplicating
standard 68000 material in over 400 pages. Instruction is achieved by
short code examples amidst discussion of the issues involved in using
machine code for various purposes. Subjects covered include coopera
tion with the System software, custom chips and the C language. All
the popular Amiga assemblers are supported by the many code exam
ples in this book.

Mastering Amiga C by Paul Overaa
ISBN: 1-873308-04-6, Price £19.95, 320 pages.
FREE Programs Disk and NorthC Public Domain compiler.

C is one of the most powerful programming languages ever created
with much of the Amiga's operating system written using C. The intro
ductory text assumes no prior knowledge of C and covers all of the
major compilers, including the charityware NorthC compiler supplied
with this book when ordered direct from BSB. It is ideal for anyone
using their Amiga to catch up on computer studies!

---------·---------

Amiga Insider Guide

Mastering Amiga ARexx by Paul Overaa
ISBN: 1-873308-13-2, Price £21.95, 336 pages. FREE disk.

Now a standard part of Commodore's software strategy and readily
available to Workbench 2 and 3 users, ARexx has been much admired
by the programming community and is now available to all as a third
party product. This book is an ideal companion to the ARexx docu
mentation, explaining ARexx's main features, how it controls other
programs, its built-in functions and support libraries, methods for cre
ating well structured ARexx programs and much, much more.

Mastering Amiga Printers by Robin Burton
ISBN: 1-873308-05-1, Price £19.95, 336 pages. FREE Programs disk

After reading Mastering Amiga Printers, any Amiga owner will be able
to choose effectively the ideal printer for his or her requirements. The
Amiga's own printer control software is pulled apart and explained
from all points of view, from the Workbench to the operating system
routines. Individual printer drivers are assessed and screen-dumping
techniques explained.

Amiga Gamer's Guide by Dan Slingsby
ISBN: 1-873308-16-7, Price £14.95, 368 pages.

Everyone loves games and Amiga games are growing in sophistication,
always setting new playing challenges whf!e introducing ever more
gasp-producing graphics and sound effects. Even the techies at Bruce
Smith Books are, it seems, not immune to the games phenomenon.
This latest book for the discerning Amiga owner, is a highly illustrated
guide to your favourite Amiga games, including classics like Shadow of
the Beast and. recent top ten hits like Putty, Formula One Grand Prix,
Streetfighter 2 and Indiana Jones.

From sports sims to arcade adventures, Amiga Gamer's Guide gives
you the hints and tips, hidden screens and puzzle solutions which you
are looking for. Completed by a massive A to Z of tips and tricks for
over 300 games, Amiga Gamer's Guide is the most masterful of games
guides yet published.

Written by CU Amiga editor Dan Slingsby, Amiga Gamer's Guide con
tains a wealth of background information to the most popular Amiga
games. The graphically appealing layout with hundreds of pictures
used to illustrate the games and their storylines, makes this one of the
most attractive Amiga books to be found on the bookshelves.

Note: Disks where indicated are supplied free only when ordered
direct from Bruce Smith Books. E&OE.

----------··-----------

Assembler Disk Order Form

Disk Order Form
Please rush me a copy of the Amiga Assembler Insider Guide disk

I enclose a Cheque/Postal Order for £1.SOp made payable to
Bruce Smith Books Ltd.

Name

Address

....................................... Post Code

Contact phone number

Send your order to:

Assembler Insider Guide Disk,
Bruce Smith Books Ltd,
PO Box 382, St. Albans, Herts, AL2 3JD.

Please note that unless otherwise requested we will add you to our
mailing list. This mailing list is currently only used to mail out to our
readers details of new and forthcoming books. This includes our cata
logue Mastering Amiga News.

Please take the time to answer the following questions:

How did you find out about Amiga Assembler Insider Guide?

Where did you purchase your copy?

What other titles would you like to see in the Insider Guide range of
books?

Amiga Insider Guide

Book Order Form

Please rush me the following:

Amiga Al200 Insider Guide@ £14.95

Amiga A600 Insider Guide@ £14.95

Amiga Al200 Next Steps Insider Guide@ £14.95

Amiga Workbench 3 A to Z Insider Guide@ £14.95

Mastering Amiga Beginners@ £19.95 with Games Disk

Mastering AmigaDOS 3 Vol. One Tutorial @ £21.95 with Disk

Mastering AmigaDOS 3 Vol. Two Reference@ £21.95

Mastering AmigaDOS2 Vol. One @ £21.95 with Disk

Mastering AmigaDOS2 Vol. Two Revised Edition@ £19.95

Mastering Amiga C@ £19.95 with Scripts & PD North(Disk

Mastering Amiga Printers@ £19.95 with PD Disk

Mastering Amiga System@ £29.95 with Programs Disk

Mastering Amiga Assembler@ £24.95 with Programs Disk

Mastering Amiga AMOS@ £19.95

Mastering Amiga ARexx@ £21.95 with Programs Disk

Mastering Amiga Workbench 2 @ £19.95

Amiga Gamer's Guide@ £14.95

NEW: Al200 Workbench Tutorial Video@ £14.99 (inc VAT)

£ ·

£ ·

£ ·

£ ·

£ ·

£ ·

£ ·

£ ·

£ ·

£ •........• •

£ ·

£ ·

£ ·

£ ·

£ ·

£ ·

£

£

Postage (International Orders Only): £

Total: £

I enclose a Cheque/Postal Order* for £ p.

I wish to pay by Access/Visa/Mastercard* Expiry Date :

Card number: l.___._---1. _ _,____.__,___._--'--'-----'---'----'----"'----'-----1.--'----'

Name

Address

Post Code Contact Phone No

Signed
E&OE
Please send your cheques payable to Bruce Smith Books Ltd to:

Bruce Smith Books Ltd, FREEPOST 242, PO Box 382, St. Albans, Herts, AL2 3BR
Telephone: (0923) 894355 - Fax: (0923) 894366

Amiga Insider Guide

Amiga Insider G11ide

-· fl) ..
G» c

i :I:
co
oO
·- 0 ..., N
c ...
.! <C
<C

NEW from Bruce Smith Books in association with Wall Street Video -
Australia's leading Amiga training company - the perfect video intro
duction to using your Amiga A1200 and a perfect companion for the
world's top selling A1200 book, Bruce Smith's classic Amiga AJ200
Insider Guide. This one hour video provides a basic tutorial on how to
set up and run your Amiga A1200 by using great animations and split
screens to increase your understanding of the concepts being explained.
Re-examine those triclcy grey areas by instantly rewinding the video!

Applicable to both hard and floppy disk users the Amiga Al 200 Video
may also be used to understand the Amiga A4000 and at £14.99 repre
sents outstanding value. Available from all good stores or direct from
BSB. Simply phone (0923) 894355 to place your credit card order,
today!

Amiga Insider Guide

"The Mastering Amiga series provides top quality
guidance for Amiga users."

... but don't just take our word for it!

"If you're a beginner or a newcomer to Amigas, these two
books provide an excellent way of finding your way around

your new machine"

Richard Baguley, Amiga Format on the
A600 and Al200 Insider Guide series.

AF GOLD A WARD - 90%

"This book has been written with the absolute novice in mind. It
doesn't patronise, yet neither does it baffle with jargon and slang"

Chris Lee, CU Amiga Review on Mastering Amiga C.

"I have to say that the best hands-on tutorial that I've seen is
Mastering AmigaDOS 2 Volume One."

Pat McDonald, Amiga Format on Mastering AmigaDOS Vol. 1.

"The definitive book on the subject, don't leave your
Workbench without it!"

Neil Jackson, Amiga Format on Mastering AmigaDOS Vol. 2.

" ... it's well worth buying a decent book on the subject -
I personally recommend you get Mastering Amiga Printers."

Jason Holborn, Amiga Format on Mastering Amiga Printers.

"The latest in the excellent range of specialist Amiga Books ...
covers every aspect of the complex Amiga system"

Damien Noonan, Amiga Format on Mastering Amiga System.

---------·----------

68000 assembly language 15, 17
68000 processor .. 26, 31

A
A68k pd assembler .. 23, 24, 79
AbsExecBase ... 71
ADD instruction .. 62, 210
ADDI add immediate instruction .. 64, 211
address registers ... 26, 27, 60
addressing- absolute .. 34, 62, 191
addressing - immediate .. 34, 35, 59, 64, 191
addressing - indirect... .. 34, 192
addressing - inherent ... 34, 191
addressing - PC relative with displacement...193
addressing - PC relative with index and displacement194
addressing - register 34, 191
addressing- register indirect... .. 34, 192
addressing - register indirect with displacement146, 192
addressing - register indirect with index and displacement 192, 193
addressing - register indirect with postincrement 99, 192
addressing - register indirect with predecrement 99, 192
addressing modes ... 34, 191
amiga.lib library .. 68
AmigaDOS ... 69, 105
AND : ... 51
ANDI logical AND immediate instruction ... 203
arithmetic instructions ... 35, 62, 214, 210, 215
ASCII ... 19, 21, 43
ASL instruction ... 207, 208
assembler directives (also see pseudo-ops)42
assemblers ... 17, 39

8
Bee conditional branch instructions ... 35, 199
BEQ instruction35, 75, 163
binary numbers .. .43
bit manipulation instructionS' .. 36, 209
Blink .. 20, 24, 80
BRA unconditional branch instruction163, 200
branches and jumps .. 28
BSR branch to subroutine instruction .. 35, 37
BTST instruction .. 209
byte .. 27

Amiga Insider Guide

c
CALLSYS macro 101. 109, 165
call)' flag 28
chip memory 147
CloseLibrary() 69, 71, 74
CloseWindow() 133
CLR clear instruction 212
CMP compare instruction 213
CMPI compare immediate instruction 214
comments 39, 40
complementing 61
conditional assembly44
conditional branching 35, 75, 163
CPU 15
crashes 22, 87

D
data movement instructions 34, 54
data registers 26, 27, 55
DC.x directives 43, 56
debuggers 20, 54, 90
decimal numbers 43
Delay() 130, 133
Deluxe Paint 145
Devpac 23, 80, 89
DisplayBeep() 74
DOS functions 106, 107, 110, 130, 133
DOS library 105, 130
DOSBase 107
DrawGrid() subroutine 159
Drawlmage() 144
DS.x directives43, 56
duplicate label errors41

E
edit<->assemble cycle 20
editors 20, 79, 89
effective address 190
END pseudo-op statement 81, 134, 147
END statement is missing error.. 85
EORI exclusive OR immediate instruction 204
EQU directive42, 108, 128
errors41, 85, 95, 159

----------·---------

Amiga Insider Guide

Exec 68, 71
Exec functions ... 68, 70, 71, 74, 219
Exec library 68
execution cycle 30

F
fetch cycle 30
flags 26, 28, 29, 56
flags - MO VEA effect on ... 59
flow control35, 199
function - CloseLibrary() 69, 71, 74
function - CloseWindow() 133
function - Delay() ... 131, 133
function - DisplayBeep() 74
function - Draw Image() 144
function - Input() .. 106
function - LockPubScreen() 131
function - OpenLibrary() 68, 70
function - OpenWindow() .. 124
function - OpenWindowTagList() 125, 132
function- OpenWindowTags() 126
function - Output() 106
function - UnlockPubScreen() ... 132
function - Write() 107, 110
functions 68, 217
functions-DOS106, 107, 110, 130, 133, 217
functions - Exec 68, 70, 71, 74, 218
functions - Intuition 74, 125, 131, 132, 144, 218
functions - LVO offsets .. 217

G
guru 22

ff
headerfiles : 103, 117
hexadecimal numbers43
high-level languages 17

I
IFF pictures - using in programs 14 5
1/0 handles 105, 187
images 143
immediate addressing 34, 35, 59, 64, 191
INCLUDE directive 103

--------··---------

Amiga Insider Guide

include files 103, 117, 119, 138
indirect addressing 34, 146, 192
inherent addressing 34, 191
Input() 106
input/output handles 105, 187
instruction set 17, 30, 34
instructions -ADD 62, 210
instructions -ADDI 64, 211
instructions - ANDI 203
instructions - arithmetic 35, 62, 210
instructions -ASL. 207, 208
instructions - Bee 35, 199
instructions - BEQ 35, 75, 163
instructions - bit manipulation 36, 209
instructions - BRA 35, 163, 200
instructions - BRNJMP 35, 202
instructions - BSR35, 37
instructions - BTST 209
instructions - CLR 212
instructions - CMP 213
instructions - CMPI 214
instructions - data movement 54, 194
instructions - EORI 204
instructions - JMP 202
instructions -JSR 37, 201
instructions - LEA 65, 194
instructions - MOVE 34, 54, 195
instructions - MOVEA59, 196
instructions - MOVEM 158, 197, 198
instructions - MOVEQ 198
instructions - NOT 61 , 205
instructions - ORl 206
instructions - quick 65, 198, 211
instructions - RTS 37, 75, 202
instructions - TST 216
Intuition 23, 74, 123
Intuition functions 74, 131, 132, 144

J
JMP jump instruction 35, 202
JSR jump to subroutine instruction 35, 201

----------·----------

Amiga Insider Guide

L
label conventions41
labels 39, 40, 90
languages - 68000 assembler16
languages - low-level benefits 17
LEA load effective address instruction .. 65, 194
libraries 67, 72, 185
libraries - amiga.lib 68
libraries - DOS 105
libraries - example use 76, 128
libraries - Exec 68, 71
libraries - linker 20, 68
libraries - run-time 68
library opening 68
library vector offset (LVO) see LVO function offsets
linker libraries 20, 68
linking 20, 79, 86
LINKLIB macro 98, 109, 120, 138
local labels41
location counter40, 108
locking function 130
LockPubScreen() 131
long word 27
long words - storage in memory58
loops 162
LVO function offsets 72, 73, 91, 153, 217

M
macros44, 97, 113, 126
memory conservation : 63
messages 130, 186
microprocessor 15, 25, 30
mnemonics 17
MOVE data movement instructions 34, 195
MOVEA effect on flags 59
MOVEA move to address register instruction196
MOVEMinstruction 158, 197, 198
MOVEQ move quick instruction 198

N
negative flag 28
NOT instruction 61, 205
NULL 71, 75, 126

----------·---------

Amiga Insider Guide

number conversion4 7, 49
number systems43, 47
numbers - binary43, 48
numbers - decimal.43, 48
numbers - hexadecimal43, 48

0
object code 20, 68
op-code39, 190
OpenLibrary() 68, 70
Open Window() 124
OpenWindowTagList() 125, 132
Open WindowTags() 126
operand format errors 86
operands 39, 43
ORI logical OR immediate instruction 206
O/S Release 2 onwards123
Output() 106
overflow flag 28

p
parameters 110, 159
PC (program counter) 26, 28
Power Windows 145
program comments40
program counter (PC) 26, 28
pseudo-ops ; 39, 42

Q
quick instructions 65, 198, 211

R
RAM 16
register adressing 34
register indirect addressing 34, 192

.registers - address 26, 27, 60
registers - data 55
ROM 16
ROM Kernel reference manuals145
RTS return from subroutine instruction 37, 75, 202
run-time libraries 68

s
scratch registers 112, 159, 163

---------·---------

Amiga Insider Guide

section conventions 147
ShelVCLI programs 105
shift/rotate instructions 36, 207
sign extension 59, 190
source code 20, 82
stack operations 27, 158
stack pointer 26, 27, 99
start-up code _. 20, 44, 186
status register 26, 28, 56
stdin handle 105
stdout handle 105
storage allocation directives42
storage in memory - long words58
storage in memory - words 57
strings - null terminated 74
subroutines 37, 158, 159
supervisor mode 27
SysBase 71
system byte 28

T
tag identities 127, 137
Tagltem structure 126
tag lists 123
text messages 108
truth tables 51
TST instruction 216

u
undefined symbol errors 86
underscore conventions 73
UnlockPubScreen() 132
user byte 28, 56
user mode 27

w
word 27
word alignment , 28
words - storage in memory 57
Write() 107, 110

z
zero flag : 28, 29, 107

---------·---------

Amiga Insider Guide

------·------

Amiga assembler
Amiga assembler is the definitive beginners guide to
learning machine code programming on all Amigas,
including the A 1200, A4000, A3000 and A600.

Each program example in the book can be assembled
and run in under one minute, so the novice
programmer can achieve practical results quickly,
learning essential techniques along the way.

The unique graphical Insider Guides take you step by
step through all the important operations so that you
will be able to confidently type in and edit source
code, assemble it, debug it and run it.

Learn how to create Workbench windows and menus,
how to sense mouse actions, to display graphics,
work with coprocessors and much much more.

This book is compatible with all the main assemblers
on the market and no extra libraries are needed to
run the examples. A support disk is available which
contains the A68k assembler and all the examples
from the book. Leaming assembler on the Amiga has
never been easier.

781873 308271

£14.95

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

