
i----oA Dabhand Guide ~~---......-

PAUL FELLOWS

,~

AmigaBASIC
A Dabhand Guide

by
Paul Fellows

AmigaBASIC: A Dabhand Guide

Written by Paul Fellows
© Solent Computer Products 1992
ISBN 1-870336-87-9

First Edition, first printing February, 1992
Editor: Syd Day

Typesetting: David Atherton, Bruce Smith
Production: Andrew Wygladala
Cover Artwork: Clare Atherton

All Trademarks and Registered Trademarks used in this book are
hereby acknowledged.

All rights reserved. No part of this publication may be reproduced or
translated in any form, by any means, mechanical, electronic or
otherwise, without the prior consent of the copyright holder.

Disclaimer: While every effort has been made to ensure that the
information in this publication is correct and accurate, the Publisher
can accept no liability for any consequential loss or damage, however
caused, arising as a result of using information printed in this book.

This book was produced using an Apple Macintosh desktop
publishing system.

Typeset in 10/12pt Palatino.

Published by Dabs Press, PO Box 48, Prestwich, Manchester M25 7HF.
Telephone 061-773 8632. Fax 061-773 8290.

Printed and bound in the UK by BPCC Wheaton, Exeter EX2 BRP.

2

Contents
1 : Introduction

The Basics
What Is a Program?
Entering AmigaBASIC
Writing and Running a Program
Making Simple Edits
Menus and Amiga Key Commands
Creating Another Program
Errors
BASIC Lines
Loading and Saving
Leaving BASIC

2 : Starting Out
Points, Lines and Circles
Introduction to Variables
Loops
Using Colour
The Palette
Rectangles
Loops within Loops
Arcs and Ellipses
Making Sounds

3: Interacting with the User
Handling Text
Asking for Input
Acting on Information Received
Looking for Input
Conditional Loops

4 : Writing Large Programs
Coping with Variables
Arrays
Dimensioning and Assigning to an Array
Multi-dimensional Arrays
Rules About Subscripts

15
16
16
17
18
19
20
21
22
24
25
27

29
29
31
34
36
38
39
41
43
46

53
53
55
58
61
62

65
65
65
66
67
69

3

AmigaBASIC : A Dabhand Guide

Making Editing Easier
Scrolling
Line Numbers and Labels
Keeping It Structured
Subroutines
Subprograms
Passing Parameters
Updating Parameters
Local and Shared Variables
Subprograms: Other Points to Note
Functions
Merging Programs Together
What To Do With Data
Reading and Defining Data
Re-using Data Statements
Error Handling
Debugging
Stepping Through a Program
Examining and Resetting Variables
Applying These Techniques

5: Manipulating Text
String Expressions
Comparing Strings
Joining Strings Together
Converting Between Numbers and Strings
Finding the Length of a String
Finding Strings within Strings
Splitting Strings
Replacing Part of a String
Altering the Width of a Line
Character Positions
Tabulating Output
Positioning Text
A Final Example

6 : More On Graphics
Painting In Areas
Polygons and Patterns

4

70
70
71
72
73
75
76
77
78
79
80
81
82
82
85
86
88
88
89
90

93
94
94
96
97
99
99

101
103
104
105
106
108
109

137
137
139

Contents

Line Patterns 147
Creating Screens and Windows 148
Memory Usage 152
Using Multiple Windows 153
Menus 155
Mice 159
Storing Graphic Images 161

7 : Number Crunching 165
Types of Numeric Variables 165
Converting Between Different Numeric Types 168
Numeric Expressions 169

Arithmetic Operators 169
Relational Operators 170
Logical Operators 171

Operator Priority 173
Mathematical Functions 175
Advanced Use of Arrays 175
Array Space 179
Formatting Numbers on Output 180

8 : Sounds and. Voices 183
Synchronisation 183
Waves 188
Speech 195
Phonemes 196
Punctuation 197
Altering the Voice 198

0- Pitch 198
1 - Inflection 198
2-Rate 198
3- Voice 198
4 - Tuning 199
5 - Volume 199
6 - Channel 199
7-Mode 199
8 - Control 200

5

AmigaBASIC : A Dabhand Guide

9 : Animation
Bobs and Sprites
The Object Editor

Pen
Line
Oval
Rectangle
Eraser
Paint

Positioning Objects
Setting Things in Motion
The Area of Action
Handling Collisions

10 : File Handling
Sequential Files
Creating and Opening Files
Outputting and Inputting Data
Buffers
Random Access Files
Writing to Random Access Files
Reading from Random Access Files
Putting Theory into Practice

11 : Managing Resources
Linking Programs Together
Sharing Variables Between Programs
Overlays
Memory Management
The Stack
BASIC Data Area
The Heap
The FRE Function
Background Tasks

12 : Machine Code From Basic
Calling Machine Code Routines
Machine Code
The Central Processing Unit

6

207
207
208
209
209
209
209
209
209
210
212
214
216

225
225
225
226
231
232
233
236
237

253
253
255
256
259
259
260
261
262
262

267
267
267
268

Contents

Machine Code or Assembly Language 268
A Very Brief Overview 270
Accessing Machine Code From AmigaBASIC 272
Operating System Access 275

13 : Devices 277
Using Discs 277
Formatting a Disc 277
Naming a Disc 279
Copying BASIC Across 279
Creating Drawers 279
The Current Directory 280
Providing Pathnames 282
Acting on Files 282
Making Backups 283
Printers 283
Sending Output to a Printer 284
Using the Printers Features 285
Printed Listings 286
Joysticks 287
Input and Output Devices 288

Appendices

A : Command Reference 295
Introduction 295
ABS 296
AREA 297
AREAFILL 298
A~ 2~

ATN 300
BEEP 301
BREAK ON/OFF /STOP 302
CALL 303
CBDL 305
CHAIN 306
CHOIR 308
CHR$ 309
CINT 310

7

AmigaBASIC : A Dabhand Guide

CIRCLE 311
CLEAR 313
CLNG 314
CLOSE 315
CLS 316
COLLISION 317
COLLISION ON /OFF /STOP 318
COLOR 319
COMMON 320
CONT 321
COS 322
CSNG 323
CSRLIN 324
CVD 325
CVI 326
CVL 327
CVS 328
DATA 329
DATE$ 330
DECLARE FUNCTION 331
DEFFN 332
DEFDBL 333
DEFINT 334
DEFLNG 335
DEFSNG 336
DEFSTR 337
DELETE 338
DIM 339
END 341
EOF 342
ERASE 343
ERR 344
ERL 345
ERROR 346
EXP 347
FIELD 348
FILES 349
FIX 350

8

Contents

FOR. .. NEXT 351
FRE 353
GET 354
GOSUB ... RETURN 356
GOTO 357
HEX$ 358
IF ... GOTO 359
IF ... THEN ELSE 360
IF ... THEN ... ELSE Block 361
INKEY$ 363
INPUT 364
INPUT$ 366
INPUT# 367
INSTR 368
INT 369
KILL 370
LBOUND 371
LEFT$ 372
LEN 373
LET 374
LIBRARY 375
LINE 376
LINE INPUT 377
LINEINPUT# 378
LIST 379
LLIST 381
LOAD 382
LOC 383
LOCATE 384
LOF 385
LOG 386
LPOS 387
LPRINT 388
LPRINT USING 389
LSET 390
MENU 391
MENU (0/1) 392
MENU RESET 393

9

AmigaBASIC : A Dabhand Guide

MENU ON /OFF /STOP 394
MERGE 395
MID$ 396
MKD$ 397
MKI$ 398
MKL$ 399
MKS$ 400
MOUSE 401
MOUSE (0) 402
MOUSE ON/OFF /STOP 404
MOUSE ON 405
NAME 406
NEW 407
NEXT 408
OBJECT.AX 409
OBJECT.AY 410
OBJECT.CLIP 411
OBJECT.CLOSE 412
OBJECT. HIT 413
OBJECT.OFF 414
OBJECT.ON 415
OBJECT. PLANES 416
OBJECT. PRIORITY 417
OBJECT.SHAPE 418
OBJECT.ST ART 419
OBJECT.5TOP 420
OBJECT.VX 421
OBJECT.VY 422
OBJECT.x 423
OBJECT.Y 424
OCT$ 425
ON BREAK 426
ON COLLISION 427
ON ERROR GOTO 428
ON ... GOTO 429
ON ... GOSUB 430
ON MENU 431
ON MOUSE 432

10

Contents

ON TIMER 433
OPEN 434
OPTION BASE 436
PAINT 437
PALETIE 438
PATIERN 439
PEEK 441
PEEKL 442
PEEKW 443
POINT 444
POKE 445
POKEL 446
POKEW 447
POS 448
PRESET 449
PRINT 450
PRINT USING 451
PRINT# 452
PRINT# USING 454
PSET 455
PTAB 456
PUT 457
RANDOMIZE 459
READ 460
REM 461
RESTORE 462
RESUME 463
RETURN 464
RIGHT$ 465
RND 466
RSET 467
RUN 468
SADD 469
SAVE 470
SAY 471
SCREEN 474
SCROLL 476
SGN 477

11

AmigaBASIC : A Dabhand Guide

SHARED 478
SIN 479
SLEEP 480
SOUND 481
SOUND RESUME/WAIT 483
SPACE$ 484
SPC 485
SQR 486
STICK 487
STOP 488
STRIG 489
STR$ 490
STRING$ 491
SUB ... STATIC 492
SWAP 494
SYSTEM 495
TAB 496
TAN 497
TIME$ 498
TIMER 499
TIMER ON/OFF/STOP 500
TRANSLATE$ 501
TRON 502
TROFF 503
UBOUND 504
UCASE$ 505
VAL 506
VARPTR 507
WAVE 508
WEND 509
WHILE ... WEND 510
WIDTH 511
WINDOW 512
WINDOW CLOSE/OUTPUT 515
WRITE 516
WRITE# 517

12

1B : JErroll' Messages

Glossany

Othell' Dabs Pll'ess }Books

nIDldex

Contents

519
52'7

541

551

13

AmigaBASIC : A Dabhand Guide

14

1 : Introduction
When you've got your new Amiga computer sitting proudly on the
desk, raring to go, you will no doubt want to put it through its paces
to see what it can do. Using the Workbench, you can do things such as
perform calculations, write letters and even make the computer speak
to you. But the capabilities of the Workbench are limited, so what do
you do when you feel that you've exhausted them and want to move
on to something else?

There are two possible routes. The first is to go out and buy some
different software packages. There are hundreds available which will
turn your machine into anything from a desktop publishing system to
a games console for zapping alien spacecraft.

The second option is to write your own software. This is not as
difficult as you might think. The advent of home computers has meant
that programming is now a pastime which anyone can participate in
and enjoy.

This book is aimed at all those people who want to take this second
route and learn how to control their computer. For those of you who
have never programmed a computer before, it starts at the beginning.
It explains what a program is and takes you, step by step, through the
stages involved in writing one. For readers who have programmed
other computers, the later chapters examine the features of
AmigaBASIC in greater detail. They cover topics such as animation,
file handling, synchronised sound production and the use of
subprograms.

Extensive use is made of example programs. Short examples are used
to illustrate each new point as it is made. In addition, larger programs
are built up to show how different features can be combined to create
real applications.

15

AmigaBASIC : A Dabhand Guide

The Basics
This chapter covers the groundwork for the rest of the book. It
introduces the AmigaBASIC system and demonstrates all the
fundamental concepts which are going to be needed at later stages.
These include how to use the editor to write and alter programs and
how to give commands to load, save and execute these programs.
Common problems which you may encounter are examined and some
standard terminology is explained.

What Is a Program ?
A person trying to direct a driver to a particular destination has two
ways he can go about it. He can travel with the driver and give the
instructions, one at a time, at the appropriate stage in the journey.
Alternatively, he can give the driver all the instructions before the
journey starts, so the driver can execute them in sequence as he goes.

This second approach is similar to programming a computer. A
program is just a series of instructions which you enter into the
computer and then tell the computer to carry out. It will step through
each of these instructions in turn, execute it, and move on
automatically to the next one.

Both the driver and the computer can only understand instructions
which are in a language that they know. For the driver this may mean
English, French, Italian etc. For the Amiga it means BASIC. BASIC is
an acronym for 'Beginners' All-purpose Symbolic Instruction Code'.
As the name implies it is ideal as an introductory language for
beginners. In addition, it is so versatile and powerful that many
commercially available software packages are written in it. These
properties have led it to become, by far, the most popular language for
home computers.

Returning to our driver analogy, there is another point to note at this
time. If you give either the driver or the computer the wrong
instructions then they won't do as you expected.

For example, if you tell the driver to turn right rather than left, he will
almost certainly end up in the wrong place! Similarly, if you tell the

16

1 : Introduction

computer to multiply two numbers together, when you really wanted
to add them, then the result it produces will be wrong.

Alternatively, you might give them an instruction which doesn't make
sense or is ambiguous. In this case, the driver may well curse, return
home, ask you to correct his list of instructions, and then try again.
Likewise, the computer will print a message to tell you all is not well
and stop. You will then have to correct the mistake and try executing
the program again.

However, the computer does have an advantage over the driver - it
has an endless supply of patience. Don't be afraid of trying things out.
The computer won't get annoyed if you keep making mistakes!

Enterin.g AmigaBASKC
To write a program in BASIC, you first have to start up the
AmigaBASIC language which lives on the Amiga Extras Disk. To do
this:

e Turn on your Amiga.
e When the prompt appears, place the Workbench Disk into the

disc drive.
e When the disc drive light goes out, replace the Workbench Disk

by your copy of the Amiga Extras Disk.
e Double-click with the left-hand mouse button on the Extras Disk

icon.
e Double-click with the left-hand mouse button on the

AmigaBASIC icon.

The AmigaBASIC screen should appear. This consists of two windows
the main AmigaBASIC window which contains a few lines of text and
a smaller empty window whose title is 'LIST'. These will be referred to
as the 'Output window' and the 'List window' respectively.

The two windows have different functions. The List window is used to
hold BASIC programs. You will see later in this chapter that all
programs are typed or loaded into this window and any editing you
do takes place in it.

The Output window lets you type commands into the computer: to
tell it to execute a program you have written, for example. In addition,

17

AmigaBASIC : A Dabhand Guide

your program can print its results or display its graphics in the Output
window. Therefore, this window can be used for all the
communication which occurs between you and the computer - your
commands to it and its replies to you.

Writing and Running a Program
When you enter AmigaBASIC, you will see that the title bar of the List
window is more distinctive than that of the Output window. This is
because the List window is selected. Therefore, any text you type at
this stage will be entered into the List window rather than the Output
window. Try typing the following:

CIRCLE (320,100),50

This is a BASIC program! It consists of just one 'statement' or
instruction. As you may well have guessed, this statement instructs
the computer to draw a circle.

'CIRCLE' is an example of a BASIC 'keyword'. This is a word which
BASIC recognises and treats in a special way. The rest of the statement
provides the other information which BASIC needs in order to be able
to draw the circle. The '(320,100)' gives the position of the centre of the
circle and the '50' determines its radius.

To run this program select the Output window by clicking in it. Its
title bar will change to being the more distinctive of the two and the
prompt:

Ok

will be displayed. Then type:

RUN

The List window will disappear, leaving the Output window
occupying the full width of your monitor. Then the circle you
instructed the computer to draw will appear in the centre of this
window.

18

1: Introduction

Makin.g Simple Edits
Having just run your first program, the next thing to do is to return to
the List window and modify it. The List window is currently hidden
behind the Output window, because the Output window was moved
to the front when the circle was drawn. To bring the List window to
the front type:

LIST

and the List window will appear again, covering up most of the circle
you produced. Select this window by clicking in it. You will notice, if
you look closely, that there is a thin orange line or 'cursor' in this
window. This marks the position at which any text that you type will
appear. You can move this cursor around by pressing the arrow keys,
which are clustered to the right of the main keyboard or by
positioning the mouse pointer at the spot you want to move to and
clicking the left-hand button. Try this now. Don't worry if the
computer beeps at you and flashes the screen. It does this whenever
you try to move the cursor anywhere that isn't occupied by your
program.

What we are aiming to do is to edit the program so that it reads:

CIRCLE (420,100),150

The first stage is add a 'I' in front of the '50'. To do this, move the
cursor so that it lies between the ',' and the '5' and press the number
'1'. This number will appear to the right of the cursor and the rest of
the text will be moved along to make room for it.

Now we want to change the '320' into '420'. Move the cursor between
the '(' and the '3' and press the 'Del' key. This will delete the character
to the right of the cursor, ie the '3'. Now type the number '4' and the
program should look like the one above.

Run the new program, as before, by selecting the Output window and
typing:

RUN

19

AmigaBASIC : A Dabhand Guide

The contents of the window will be cleared and a new, larger circle
will be drawn towards the right-hand side of the screen.

Menus and Amiga Key Commands
So far we have met two commands, one to execute a program and
another to bring the List window to the front of the screen. We issued
these commands by typing RUN and LIST respectively in the Output
window. However, there are alternative methods we could have used.

One is to use the BASIC menu bar. Hold down the menu button (this
is the right-hand mouse button) and the menu bar will appear at the
top of the screen. This has four entries: 'Project', 'Edit', 'Run' and
'Windows'. Pointing at one of these entries displays the contents of
that particular menu. To select an item from a menu, point at the item
you want and release the menu button.

The LIST command is the same as selecting Show List from the
Windows menu, and the RUN command is equivalent to selecting
Start from the Run menu. Note that whichever window is selected at
the time you give the command to run a program will still be selected
after the program has ended, and hence will be brought to the front.
Try this now. Select the List window by clicking in it and select Start
from the Run menu. When the circle has been drawn, the List window
will be brought to the front of the screen and will partially obscure the
circle.

If you look through the items on the menus, you see that some of them
are followed by the Amiga key symbol and a letter. For example, Start
is followed by the Amiga symbol and an 'R'. This describes the third
method of running a program - pressing the letter 'R' whilst holding
down the right Amiga key. (This key combination will be referred to
as 'Amiga-R' in the remainder of this book.) Similarly, you can bring
the List window to the front by pressing' Amiga-L'.

Some commands, which we will come across later, are only available
via one of these methods, but with most you have a choice. There is no
'correct' method which you should use. It's up to you to select the one
which you prefer.

20

1: Introduction

Creating Another Program
We are now going to start afresh on a new, larger program. To do this
either select the Output window and type:

NEW

or select the New entry from the Project Menu. In either case a
requester will be displayed which contains the following message:

Current program is not saved
Do you want to save it before proceeding?

This is because creating a new program will destroy the one you
currently have in the List window. Unless you save your current
program onto a disc first, it will be lost forever. In our case this isn't a
problem. Our current program is so short that, if we wanted it back,
we could type it in again very easily. However, later in this book, we
are going to be developing some fairly large example programs which
will take a significant length of time to type in. At that stage, the
message will act as a very useful reminder that you will lose the
program if you go ahead and start a new one without saving the
current one first.

You are given three options:

YES

NO

which asks you to give a filename, saves the current
program to disc with this name and then clears out the
list window ready to start on a new program
which throws away the current program and prepares to
start on a new one

CANCEL which forgets that you ever asked to create a new
program and leaves the current one alone

In this case you should select the NO option. The List window should
now be empty again. Select it and enter the following:

CIRCLE(320,lOO),lOO
CIRCLE(160,SO),SO
CIRCLE(480,SO),SO
CIRCLE(160,lSO),SO
CIRCLE(480,lSO),SO

21

ArnigaBASIC : A Dabhand Guide

Instead of typing each line in turn, you may find it easier to type in the
first line only and then copy it four times and make the necessary
alterations to the copied lines. Try this as follows:

iii Type in the first line and press the RETURN key.
e Move the cursor to the start of the line and press the left-hand

mouse button.
Ii> With the mouse button still pressed, move the cursor down a line

- the top line will change to being black text on an orange
background to illustrate that it has been selected.

• Release the mouse button.
• Select Copy from the Edit menu or press 'Amiga-C' - this copies

the text which you have selected into the Clipboard.
• Move the cursor to the start of the next line to mark the position

that you want to copy the text to.
e Select Paste from the Edit menu or press 'Amiga-P' - this inserts a

copy of the contents of the Clipboard into your program at the
current position.

• Repeat the last step three more times to give you the five circle
statements.

• Edit the last four lines of the program by positioning the cursor at
the appropriate places in the text and either deleting or inserting
characters.

Then try running it.

Errors
Errors in programs are commonly referred to as 'bugs'. They come in
all sorts of shapes and guises. In this section we are going to look at
errors caused by mistyping a program. Alter the current program so
that the second 'CIRCLE' is misspelt as 'CRICLE':

22

CIRCLE(320,100),100
CRICLE(160,50),50
CIRCLE(480,50),50
CIRCLE(160,150),50
CIRCLE (480, 150) ,50

1 : Introduction

Now try running this program. Everything will be normal until the
computer reaches the 'CRICLE'. Then, since this word is not a valid
keyword, it fails to recognise it and reacts by beeping and flashing the
screen to tell you all is not well. More helpfully, it displays an error
requester describing what it thinks is wrong and brings the List
window back to the front with the offending statement enclosed in an
orange rectangle.

In this example, the error message it should have given is:

Undefined subprogram

Don't worry about what this really means. At present, it can be
interpreted as 'misspelt keyword'.

To continue from this situation, click on the OK gadget in the error
requester. Then select the List window so you can make the
appropriate correction to the program. Correct the program and then
add another mistake to the program by changing the last comma, on
that line, into a full stop:

CIRCLE(320,100),100
CIRCLE (160,50) .50
CIRCLE(480,50) ,50
CIRCLE(160,150),50
CIRCLE(480,150),50

Now try running it. The result should be the same except that the error
message this time will be:

Syntax error

This means that BASIC has recognised the keyword, but the rest of the
statement isn't in the correct format.

The above examples cover the two most common situations you are
likely to encounter when typing in and running the programs later in
this book. Don't worry if this happens, just correct the mistake and try
again.

23

AmigaBASIC : A Dabhand Guide

BASIC Lines
When we talk about a BASIC line, we are referring to a program line.
This can contain either a single BASIC statement, as in the above
examples, or several statements separated by colons:

CIRCLE(320,100),100
CIRCLE(160,50) ,50 CIRCLE(480,50),50
CIRCLE(160,150),50 : CIRCLE(480,150),50

To convert your program to look like this, move the cursor to the start
of the third line before the 'C' of 'CIRCLE'. Then press the 'backspace'
key: this is represented on the main part of the keyboard as an arrow.

Normally, this deletes the character to the left of the cursor. However,
when the cursor is at the start of the line, there isn't a character to be
deleted so the preceding carriage return is deleted instead. This results
in the contents of the two lines being merged together. Now type in
the colon to separate the two statements: and then repeat this process
for the last two circle commands.

If you want to split the BASIC line so that the two statements are on
separate lines again, all you need to do is to place the cursor at the
point you wish to split the line and press the RETURN key. Then
delete the colon since it is no longer necessary.

A program line can be up to 255 characters long. It can contain any
number of statements, provided that the maximum length is not
exceeded. Note that a statement must lie entirely on one line - it
cannot be split over two adjacent ones.

One program line is ended, and the next started, by pressing the
RETURN key. This inserts a carriage return into the program which
will be treated as part of the line but is invisible.

Normally, spaces between items in a statement are ignored. For
example:

24

CIRCLE 320, 100
CIRCLE 160 50
CIRCLE 160 150

, 100
50 CIRCLE 480 50
50 CIRCLE 480 150

50
50

1 : Introduction

is perfectly acceptable. Using spaces usually makes the code more
readable. In the above program, the spaces have been used in two
ways. The first is to separate the different arguments, so that within
each statement the different values are clearly identifiable. The second
is to allow corresponding arguments in different statements to be
printed in columns. This makes it easier to compare the statements,
and see how one differs from the others.

Note, however, that spaces cannot be placed within the keywords
themselves. For example typing:

CIR CLE (320,100),100

produces an error.

However, spaces between the digits of numbers are automatically
removed:

CIRCLE (3 20,100),100

is converted by BASIC to:

CIRCLE (320,100),100

If a line begins with a REM statement then the line is not executed.
This provides a method of adding comments to your programs to
explain what is happening. For example:

REM Centre circle
CIRCLE (320 , 100) , 100

REM Corner circles
CIRCLE 160 50
CIRCLE (160 , 150

Loading and Saving

50 CIRCLE 480
50 CIRCLE 480

To save your current program, either type:

SAVE

50
150

50
50

in the Output window or select the Save As option from the Project
menu. A requester will appear asking:

25

AmigaBASIC : A Dabhand Guide

Save program as:

Click on the box provided and type the name which you wish to give
to your program, for example:

circles

Then click on the OK gadget. You should then hear the disc drive
spring into life as your program is stored safely away on the disc.

Now if you type:

NEW

or select the New entry from the Project menu, the computer will carry
out this instruction straight away without giving you a warning. This
is because it knows that the current program has already been saved
so that there is no risk of you losing it.

To load your program again type:

LOAD

into the Output window or select Open from the Project menu. Again
a requester will be displayed asking:

Name of program to load:

Click on the box, type:

circles

and click on the OK gadget. The disc drive will spin briefly and you
will be presented with the OK prompt. If you bring the List window to
the front, you will see your program displayed inside it, ready to be
edited or run etc.

You can type the whole of a SAVE or LOAD command in the Output
window without using the requester, if you wish. For example:

SAVE "circles"

26

1 : Introduction

or:

LOAD "circles"

Note that the name of the program must be enclosed between double
quotes.

Leaving BASIC
We will finish this chapter by exiting from BASIC, returning to the
Workbench and tidying up. To do this either type:

SYSTEM

in the Output window or select the Quit option from the Project menu.
You will then be back in the Workbench. Before you go on to other
things, it is worthwhile, at this stage, tidying up after yourself. Close
the window of the Extras Disk by clicking on the close gadget and
then open it again by double clicking on the Extras Disk icon. This
updates the display so that the new contents of the disc are shown. lf
you study the contents you should notice that the circles program has
appeared. Rather than storing this program where it is, a better
method is to create a drawer to keep all your programs in and to move
it there. To do this:

It Open the workbench by double clicking on Workbench icon and
replacing the disc in the disc drive if necessary.

It Copy the drawer labelled 'Empty' to the Extras by clicking on it,
dragging it over to the Extras window and then releasing the
mouse button. Again, you will have to swap discs if you have a
single drive system.

s Activate the drawer by clicking on it and then rename it by
selecting the Rename item from the Workbench menu and
replacing the 'Empty' string by the name you want to use, for
example 'Myprogs', followed by RETURN.

s Finally, move the circles program to this drawer by dropping the
circles icon onto the drawer icon.

When you next enter BASIC, you can load the program by using the
name of the drawer as follows:

LOAD "Myprogs/circles"

27

AmigaBASIC : A Dabhand Guide

Similarly you can save further programs directly into this drawer in
the same manner, for example:

SAVE "Myprogs/newprog"

Note that the' /' character is used to separate the drawer name from
the file name in both cases.

In addition, you can obtain a list of all the contents of the drawer by
typing:

FILES "Myprogs"

in the Output window. If you do this you should find two entries for
each program, for example:

circles

and:

circles. info

The 'circles' file contains the actual BASIC program. The 'circles.info'
file contains the definition of the icon used to illustrate this file.

28

2 : Starting Out
When trying to learn about a new topic, there are three very important
words: 'Why', 'How' and 'What'. The introduction in this book aimed
to answer the question 'Why should I bother learning how to program
my Amiga?'. If you've read this far, you will hopefully be convinced
that it's a good thing to do. The first chapter went on to deal with the
question 'How do I use the AmigaBASIC system?'. Using the
knowledge gained there, we can now move forward and start on the
final question which is, 'What can I do with AmigaBASIC?'

BASIC is a very big topic, covering many areas. In this chapter we are
going to look at two of the most rewarding ones graphics and sound.
Making the computer draw a picture or playa tune is very satisfying
and can be achieved by writing a straightforward program, just a few
lines long. However, life is not all play! We will also be looking at
some of the features of BASIC which will help you write well­
structured, easy to read, code.

Points, Lines and Circles
The graphics from a single command has to be placed entirely within
a single window. It is possible to create lots of windows and jump
between them, with some commands sending their graphics to one
and some to another. However, in this chapter we are going to be
dealing with the default case in which all graphics output is sent to the
BASIC Output window.

To perform any graphics command you need to provide coordinates
to tell the computer where it is to place the pOint, end of line, centre of
circle etc. Each output window is made up of 'pixels', which are
rectangular dots. The pixel in the top left-hand comer of the Output
window is defined to be at position (0,0). Increasing the x-coordinate
by one moves a point across by one pixel, and increasing the y­
coordinate by one moves it down by one pixel. The limits on the x and
y-coordinates depend on the size of the Output window. The
maximum theoretical value is 640 pixels horizontally by 256 pixels

29

AmigaBASIC : A Dabhand Guide

vertically (200 on an American monitor) - this is the number of pixels
which make up the whole screen. However, the BASIC Output
window doesn't occupy the whole screen, so the maximum coordinate
is about (617,185), even when the window is fully expanded.

To see how to produce points, lines and circles, type in and run the
following program which draws a stick man:

CIRCLE (320, 50), 20
LINE (320, 60) - (320,100)
LINE (320,100) - (260,140)
LINE (320,100) - (380,140)
LINE (260, 70) - (380, 70)
PSET (315, 50)
PSET (325, 50)

Whenever a position is required, it must be given enclosed in brackets,
with the x- and y-coordinates separated by a comma. The PSET
command which plots a point, requires just a single position. The
CIRCLE command takes one position which determines the centre of
the circle, and another value which is used as the radius. The LINE
command requires two positions, separated by a hyphen ('-'), which
specify the ends of the line.

Instead of giving a position as an absolute location, you can instead
supply it as an offset relative to the last graphics position used. To do
this, place the keyword 'STEP' before the position. For example, the
program above is equivalent to the following:

CIRCLE (320, 50) , 20
LINE STEP (0, 10) - STEP (0, 40)
LINE STEP (0, 0) - STEP (- 60, 40)
LINE STEP (60,-40) - STEP (60, 40)
LINE STEP (-120, -70) - STEP (120, 0)
PSET STEP (- 65, -20)
PSET STEP (10, 0)

The values can be interpreted as follows: The first line starts ten pixels
below the centre of the circle and ends a further forty pixels below
that.

The next line starts where the previous one finished and ends sixty
pixels to the left and forty pixels down. The next line starts at an offset

30

2 : Starting Out

of 60 pixels to the right and 40 pixels up from the end of the previous
line. This coincides with where the previous line started, etc.

Using relative positions makes the program longer and, in some ways,
more difficult to write, so why should we bother doing it? To answer
this question, consider how you would have to alter each program if
you decided to draw the man in a different position within the
window, say 100 pixels to the left. In the first example, you would
have to alter every x-coordinate by subtracting 100 from it. In the
second example all you have to do is subtract 100 from the first
position. The rest, since they are all relative, don't require changing.

Introduction to Variables
The version of the CIRCLE command which we have encountered so
far has been fairly simple. However, this keyword can also be used to
produce arcs and ellipses, in which case you have to supply a lot more
information. In its fullest form it can end up looking like this:

CIRCLE (320,100),50,3,1,2,4

If you met this instruction in a program, it wouldn't be surprising if
you had difficulty remembering what all the numbers represented.
Without thumbing through a manual to look up its syntax you could
very well mix up the parameters, and end up drawing a different
shape to the one you were expecting.

It would be far easier to know what was going on if the statement
looked more like this:

CIRCLE (xpos,ypos),radius,col,startang,endang,aspect

where 'xpos', 'ypos', etc represented the appropriate values.

You can make your program look like this by using 'variables'. A
variable is something which has a name and a value associated with it.
The name, for example: 'xpos' or 'radius' allows it to be identified and
its value to be either set or read. This value can be changed and read
as many times as you like.

31

AmigaBASIC : A Dabhand Guide

Variable names can contain characters, digits or full stops. The rules
for naming variables are as follows:

• The name may contain up to 40 characters.
• The name must start with a letter.
• The name may contain only numbers, letters and decimal points.
f!I The name must not be a BASIC reserved word, eg SIN or

COLOR.

Therefore all the following names are allowed:

Y
ypos
YPOS
Ypos
Y.position
YPOSI

But these are not acceptable:

Iposy
Y-pos
POS

Doesn't begin with a letter
Contains a minus sign
BASIC reserved word

Upper-case characters are treated as being equivalent to lower-case
ones. For example 'xpos' refers to the same variable as 'Xpos' or
'XPOS'. If you enter a line of BASIC containing keywords in lower­
case into the List window, when you press the RETURN key, these
keywords are automatically converted into upper-case. Therefore all
program listings will contain upper-case keywords. Hence it is a good
idea to use lower-case letters for variable names, since this
distinguishes them from the keywords and helps to make the program
more readable.

The variables we require here all have numeric values associated with
them, and so they are known as 'numeric variables'. The other type of
variable is the 'string variable' which represents a string of characters
- this we will deal with in later chapters. You can assign a value to a
numeric variable as follows:

32

2 : Starting Out

LET xpos = 320

or, since the use of the LET keyword is optional, just by typing:

xpos = 320

The value assigned to a numeric variable can be spedfied as a single
number, as above, or the current value of another variable, or an
'expression'. For example:

xpos = 100
ypos = xpos
radius = (xpos + ypos) / 4

'(xpos + ypos)/4' is an example of an expression; it is a sequence of
numbers and variables together with 'operators' which act on them.
The common operators are:

+

'"
/

Add
Subtract
Multiply
Divide

Try the following program:

RANDOMIZE TIMER
xpos = 320
ypos = 100
radius = RND*60
CIRCLE (xpos,ypos),radius

This assigns values to the variables 'xpos', 'ypos' and 'radius', and
then uses those values to draw a drcle. The value assigned to radius is
determined by the expression 'RND"'60'. RND is a BASIC keyword
which returns a random number in the range 0 to 1. Therefore the
value assigned to radius will be somewhere in the range 0 to 60. The
RANDOMIZE TIMER command causes the random number generator
to be 'reseeded' with the number of seconds which have passed since

33

AmigaBASIC : A Dabhand Guide

random numbers each time the program is run, thus giving you a
different size circle each time.

Loops
So far, all the programs we have looked at have been executed in a
linear fashion. That is to say, the computer started at the top of the
program, executed each instruction in turn until it reached the end
and then stopped. This is not always the most convenient way to write
a program. Consider, for example, how to write a program to draw
two random circles on the screen. One obvious way is as follows:

REM First circle
xpos = RND*620
ypos = RND*180
radius = RND*60
CIRCLE (xpos,ypos),radius
REM Second circle
xpos = RND*620
ypos = RND*180
radius = RND*60
CIRCLE (xpos,ypos),radius

This is fine for drawing two circles, but what would you do if you
wanted to draw two hundred? It would be very inconvenient to have
to repeat the circle drawing code two hundred times. BASIC has a
solution to this problem. It supplies FOR and NEXT statements which
may be used to execute a block of the program a specified number of
times. These statements are placed so that they surround the block to
be repeated. Try the following example:

FOR count = 1 TO 200
xpos = RND*620
ypos = RND*180
radius = RND*60
CIRCLE (xpos,ypos),radius

NEXT count

Note that the lines between the FOR and NEXT statements are
indented by two characters. This makes it clear to anyone reading the
program which lines are being repeated. It is not necessary to do this,
but it is a good habit to get into. It is also very easy to do, since

34

2 : Starting Out

pressing the TAB key inside the list window will move the cursor two
characters to the right. Then, when you press the RETURN key, the
cursor will move down a line and across so that it is positioned
underneath the first character of the previous line. This means that all
subsequent lines are indented by the same amount until you actively
start a line at a different position.

The variable 'count' is called the 'control variable'. It is used to control
the number of times the block is executed. In this case, count is set
initially to one. When the NEXT statement is reached, count is
increased by one and the block of code is repeated. This continues
until count becomes greater than 200, in which case the computer will
move on to the statement after the NEXT.

In the example given above, the control variable is used only to record
the number of times the circle drawing code is executed. It is not
referred to in this block. Therefore the actual values it takes are
irrelevant. All that matters is the number of steps required to reach the
upper limit. For example the statement:

FOR count = 1 TO 200

could be replaced by:

FOR count = 0 TO 199

or even:

FOR count = -100 TO 99

and the result would be the same.

You are allowed to refer to the control variable inside the block. For
example, alter the program above to read as follows:

FOR count = 1 TO 200
xpos = RND*620
ypos = RND*180
radius = count
CIRCLE (xpos,ypos),radius

NEXT count

35

AmigaBASIC : A Dabhand Guide

This example produces two hundred circles at random positions on
the screen. The radius of the first is one, that of the second is two, and
soon.

The amount by which the control variable changes each time round
the loop is called the 'step size'. In the above example no step size was
stated explicitly, so the default value of one was used. Other values
can be used as follows:

FOR count = 1 TO 200 STEP 5
xpos = RND*620
ypos = RND*lBO
radius = count
CIRCLE (xpos,ypos),radius

NEXT count

This produces 40 circles at random positions. The radius of the first
will be one, that of the second six, and so on. Note that, in this case,
count will never take the value 200. The final value used will be 196.

The step size can be negative so that the control variable is decreased
each time. For example:

FOR count = 200 TO 1 STEP -5
x = RND*620
Y = RND*lBO
radius = count
CIRCLE (xpos,ypos),radius

NEXT count

Again this produces 40 circles, but in this case they gradually become
smaller.

Using Colour
So far, our graphics have all been drawn in white. We are now going
to look at how we can use some of the other colours which are
available to us on the Amiga.

One method is to specify the colour to use by giving an extra
argument to the PSET, LINE and CIRCLE commands. For example, try
the following:

36

2 : Starting Out

FOR count = 1 TO 20
xpos = RND*620
ypos = RND*1BO
radius = RND*60
rd4 = radius/4
CIRCLE (xpos,ypos),radius,3
PSET (xpos-rd4,ypos),1
PSET (xpos+rd4,ypos),1
LINE (xpos-rd4,ypos+rd4) - (xpos+rd4,ypos+rd4),2

NEXT count

This draws the circles in colour three, the points in colour one and the
lines in colour two. These numbers correspond to the following
colours:

Colour 1
Colour 2
Colour 3

White
Black
Orange

The other colour number we could have used is colour 0:

Colour 0 Blue

However, this is the same as the background so any graphics we drew
in it would not have been visible!

If you don't specify a colour, then the current 'foreground colour' will
be used. By default this is colour one, which is why all the lines, circles
and points we drew previously were drawn in white. You can set a
different foreground colour using the COLOR command. For example,
if you type:

COLOR 3

then all subsequent PSET and LINE commands etc, which don't
specify a colour to use, will be drawn in red.

In addition to setting a different current foreground colour, you can
also set a different current background colour by giving a second
value to the COLOR command. For example:

COLOR 3,1

37

AmigaBASIC : A Dabhand Guide

sets the current foreground colour to colour three (orange), and the
current background colour to colour one (white).

Altering the current background colour has no immediate effect. The
results of this action will only be seen when subsequent commands are
given which use the background colour. For example:

COLOR 3,1
CLS

The COLOR command (note American spelling) sets the current
background to colour one. The CLS command then clears the contents
of the Output window, leaving it displayed in the current background
colour.

The Palette
The bad news I have to give you at this point is that, under default
conditions, the Output window can only display four different colours
at once. This is why only four colour numbers, zero to three, have
been used. Trying to use any other value would have produced an
error. We will see, in a later chapter, how you can arrange to display
more colours together in a window.

However, this doesn't mean that you are limited to producing pictures
in white, black, blue and orange. You can use any four colours you
like from the range which the Amiga provides.

The way in which other colours are obtained is by making the colour
numbers represent different colours. For example, colour 0 doesn't
have to remain as blue, you can define it to be green or grey or pink
etc. To do this, you use the PALETTE command.

PALETTE takes four parameters. The first is the colour number, which
is a whole number, currently limited to being in the range 0-3. The
other three are fractional values in the range 0 to 1.00, which specify
the amounts of red, green and blue you want the colour to contain. For
example:

PALETTE 2, 0.1, 0.5, 0.9

38

2 : Starting Out

defines colour two to contain a small amount of red, a moderate
amount of green and a large amount of blue, the result being a shade
of purple.

The general rule is: the higher the number, the brighter the colour.
Keeping the amounts of each of the three colours equal produces a
grey scale between black (all three set to zero) and white (all three set
to one). By altering the ratios between the amounts of red, green and
blue, all the other colours can be obtained. Table 2.1 below attempts to
describe the colours produced by certain combinations of red, green
and blue.

Red Green Blue
Black 0.00 0.00 0.00
Dark grey 0.30 0.30 0.30
Light grey 0.70 0.70 0.70
White 1.00 1.00 1.00
Red 1.00 0.00 0.00
Green 0.00 1.00 0.00
Blue 0.00 0.00 1.00
Yellow 1.00 1.00 0.00
Cyan 0.00 1.00 1.00
Magenta 1.00 0.00 1.00
Pink 1.00 0.40 0.40

Table 2.1. Colour Combinations.

Note that, re-defining the colour assigned to a colour number, affects
all the graphics currently displayed which are drawn using that colour
number, as well as any subsequent graphics produced using it.

Rectangles
The LINE command isn't limited to producing lines, it can also be
used to draw rectangles. To draw a rectangle instead of a line, add an
extra parameter, 'b', to the end of the statement. Then the pairs of
coordinates will be taken as being the opposite corners of the box. For
example:

LINE (100,80) - (200,145), l,b

39

AmigaBASIC : A Dabhand Guide

Alternatively you can add a 'hf' instead and this will produce a 'solid'
rectangle, ie the interior of it will be filled in:

LINE (100,80) - (200,145),1, bf

Plotting solid rectangles enables you to see the different colours which
are available more dearly. Try typing in and running the following
program:

COLOR 1,0
PALETTE 0,0,0,0
CLS
RANDOMIZE TIMER
LINE (80,20) - (560,160),1,bf
LINE (180,40) - (460,140),2,bf
LINE (280,60) - (360,120), 3,bf
FOR count = 1 TO 20

red = RND
green = RND
blue = RND
PALETTE 3, red, green, blue
PALETTE 2, red*.8, green*.8, blue*.8
PALETTE 1, red*.4, green*.4, blue*.4
FOR delay = 1 TO 5000 : NEXT delay

NEXT count

The first three commands ensure that the background is displayed in
black. Then the program reseeds the random number generator and
draws three solid rectangles, gradually decreasing in size, inside each
other. Each of these is drawn in a different colour number: one, two or
three. Finally, the program enters a loop which it repeats twenty times.

Inside the loop, the program chooses random values for the amount of
red, green and blue to be used for a particular colour. Colour number
three is assigned this colour. Colour number two is assigned a slightly
darker shade by reducing all the values to 80% of their original size.
Similarly colour number one is assigned a darker shade still at 40% of
the original. The innermost FOR. .. NEXT loop is used as a 'delay loop'.
Making the computer count from 1 to 5000, before changing the
palette again, ensures that each set of colours is displayed for a
reasonable length of time.

40

2 : Starting Out

At the end of this sequence, you could find yourself with an
unreadable colour for the text. The screen should revert back to the
default palette settings when the program has finished running.
However, you may need to remind it to do so. To do this:

Q Select the List window.
s Edit the program, for example by typing a space.
Q Select the Output window.

You should then be returned to white text on a blue background.

Loops within Loops
Using two loops at once, one within the other, is quite often a very
useful thing to be able to do. Consider the problem of drawing circles,
centred at regular intervals, on the screen. This requires one loop to
step through the x-coordinates. Then for each x value, another loop is
needed to step through the y-coordinates. For example:

FOR xpos = 20 TO 600 STEP 20
FOR ypos = 20 TO 160 STEP 20

CIRCLE (xpos,ypos), 5
NEXT ypos

NEXT xpos

This produces circles of radius five placed 20 units apart. The same
result could be obtained in a slightly different way:

FOR ypos = 20 TO 160 STEP 20
FOR xpos = 20 TO 600 STEP 20

CIRCLE (xpos,ypos), 5
NEXT xpos

NEXT ypos

The only difference between these two programs is the order in which
the circles are drawn. In the first one they are drawn a column at a
time, starting from the left-hand side of the screen. In the second they
are drawn a row at a time, starting from the top of the screen.

In both cases, one of the loops is contained wholly within the other.
This loop is said to be 'nested'. Overlapping loops are not allowed. For
example:

41

AmigaBASIC : A Dabhand Guide

FOR xpos = 20 TO 600 STEP 20
FOR ypos = 20 TO 160 STEP 20

CIRCLE (xpos,ypos), 5
NEXT xpos

NEXT ypos

would produce the error message:

NEXT without FOR

At first sight, this message may seem to be confusing since there
appears to be the correct number of FOR and NEXT statements. The
way BASIC comes to its conclusion about what is wrong is as follows:

1) The xpos loop was started first.

2) The ypos loop was started second.

3) Since one loop must be totally within another, the ypos loop must
be completed before the xpos loop can step on to its next value.

4) The NEXT xpos statement is found before the ypos loop has
ended.

5) Therefore the NEXT ypos statement is missing.

Since BASIC insists that each NEXT must apply to the most recent
FOR, it is not necessary to state the control variable after a NEXT.
There is only one loop which it can correctly refer to. For example:

FOR xposXT

is taken as being equivalent to:

42

FOR xpos = 20 TO 600 STEP 20
FOR ypos = 20 TO 160 STEP 20

CIRCLE (xpos,ypos), 5
NEXT ypos

NEXT xpos

2 : Starting Out

Arcs and EHipses
We mentioned above that the CIRCLE command can be used for
producing arcs and ellipses as well as circles. The parameters which it
can take are as follows:

CIRCLE (xpos,ypos},radius,col,startang,endang,aspect

The starting and ending parameters are the start and end angles of the
arc. These must be supplied in radians not degrees. Figure 2.1. (below)
shows the values of the different positions around the perimeter:

n/2

n o

3n/2

Figure 2.1. The starting and ending parameters are the start and end
angles of the arc. These must be supplied in radians not degrees.

Note that the arc will be drawn in an anti-clockwise direction.
Therefore, if you give a start angle of 0 and an end angle of 1t then the
top half of the circle will be drawn. Conversely, if you give a start
angle of 1t and an end angle of 0 the bottom half of the circle will
appear.

If either of the angles is negative, then it will be treated as though it
was positive for calculating the relevant position, but a line will be
drawn connecting that particular end of the arc to the centre.

43

AmigaBASIC : A Dabhand Guide

The following program demonstrates some of the different
combinations you can use:

pi = 3.14159
end1 = pi/4
end2 = 3*pi/4
CIRCLE (110, 50),60,1, end1, end2
CIRCLE (250, 50),60,1,-end1, end2
CIRCLE (390, 50),60,1, end1,-end2
CIRCLE (530, 50),60,1,-end1,-end2
CIRCLE (110,130),60,1, end2, end1
CIRCLE (250,130),60,1, end2,-end1
CIRCLE (390,130),60,1,-end2, end1
CIRCLE (530,130),60,1, -end2, -end1

The aspect determines the shape of the circle/ellipse. If you specify an
aspect ratio of one, then the shape will measure the same number of
pixels horizontally as it does vertically. However, since the pixels are
not square, an ellipse will be produced. In fact, the pixels are roughly
twice as high as they are wide, so the height of the ellipse will appear
to be approximately twice that of the width.

Increasing the aspect ratio to two produces a shape which is the same
height as the previous ellipse but half the width. Hence it will appear
about four times as high as it is wide. Decreasing it to 0.5 produces a
shape which is the same width as the original ellipse but is half the
height. This makes it roughly circular.

Therefore, for a 'circle' whose radius is 'rad', the following applies:

If aspect = 1
If aspect> 1
If aspect < 1

no.pixels vertically
rad
rad

rad*aspect

no.pixels horizontally
rad

rad/aspect
rad

If you don't specify an aspect, the default value of 0.44 is used. On
standard American monitors this produces circles. Unfortunately,
British monitors are different and the default value actually produces
ellipses which are wider than they are high. A more accurate value to
use in Britain is 0.56.

44

2 : Starting Out

The following program produces a display of ellipses enclosed within
a circle:

cirval .56
xpos 320
ypos 90
rad1 120
rad2 120*cirval
CIRCLE(xpos,ypos),rad1,1",cirval
FOR ratio = 2 TO 10

asp1 = cirval/ratio
asp2 = cirval*ratio
CIRCLE(xpos,ypos),rad1,1",aspl
CIRCLE(xpos,ypos),rad2,1",asp2

NEXT ratio

All the ellipses are centred at the same position. The first one has a
radius of 120 and an aspect of 0.56. Using the table above, this means
that its dimensions, in pixels, are as follows:

height radius*aspect 120*0.56
width = radius = 120

Thus it appears to be circular.

The program then loops through different values, between two and
10, for the ratios of the width to the height. For each value it draws
two ellipses. The first has a radius of 120 and an aspect of 0.56jratio
(which is always less than one). Therefore its dimensions are:

height radius*aspect 120*0.56/ratio
width = radius = 120

This means that they always touch the circle at the left and right-hand
sides but the heights of successive ones decrease.

The second has a radius of 120*0.56 and an aspect of O.56*ratio (which
is always greater than one). Its dimensions are:

height radius
width = radius/aspect

120*0.56
120*0.56/(0.56*ratio)
120/ratio

45

AmigaBASIC : A Dabhand Guide

This means that they always touch the circle at the top and bottom but
the widths of successive ones decrease.

Making Sounds
Sound is another area which gives 'visible' results. The Amiga comes
equipped with four sound channels and, using BASIC, you can
produce sounds on any or all of these. In this chapter we are going to
concentrate on producing a single sound at a time. Later in this book
we'll look at how the channels can be synchronised and different types
of sound created.

To produce a note, you have to supply two pieces of information: its
frequency and its duration. These characteristics of a note are
examined below.

Frequency
The sounds we hear from musical instruments, people's voices,
machinery etc are all composed of mixtures of waves. A pure, musical
sound contains just one wave, whereas discordant noise from
machinery contains many different waves, all jumbled together. Each
wave oscillates at a different frequency and, the higher the frequency,
the higher the pitch of the sound. For example Figure 2.2 shows the
difference between high and low:

46

high nnnnnnnnnnnnnn
V V'V'V'V V V V V V V-V V-V

law

Figure 2.2. The difference between high and low frequencies.

2 : Starting Out

The frequency is measured in 'Hertz' or 'cycles per second'. Table 2.2.
shows the frequencies of the notes in the octave, starting at middle C.

Note Frequency
C 523.25

C# 554.37
o 587.33
0# 622.25
E 659.26
F 701.00

F# 740.00
G 783.99

G# 830.61
A 880.00

A# 932.33
B 993.00
C 1046.50

Table 2.2. Note Frequency.

If you double the frequency of a note, you produce the note which is
exactly one octave higher. Consequently, halving the frequency gives
a note one octave lower. Using this rule and the table above, you
should be able to calculate the frequency of any note. To speed up this
process, the Figure 2.3 below gives the frequencies of the notes
covered by the treble and bass staves.

47

AmigaBASIC : A Dabhand Guide

o ~o 0#0
0°

140.00 B30.61 932.33 1046.50 1114.66 131B.52

554.31 622.25 101.00 1B3.99 BBO.OO 993.00 110B.14 1244.501402.00

B-

°fFO °

523.25 466.11 415.31 310.00 329.63 293.61 261.63 233.09 201.65

469.50 440.00 392.00 350.50 311.13 211.1B 24B.25 220.00 196.00

Figure 2.3. Frequencies of the notes covered by the treble and bass
staves.

The computer is capable of producing sounds which range from 20
Hertz to 15000 Hertz. This gives you a range of more than nine
octaves. Any values you give will be rounded so that they lie in this
range. This means that specifying a frequency which is less than 20
Hertz will produce a 20-Hertz sound, ie the lowest note possible.
Similarly specifying a note greater than 15000 Hertz produces the
highest note possible.

Duration
The duration of a note is the length of time the note lasts. A duration
of 18.2 will produce a note which lasts for one second. There is a
simple, linear relationship between the value of the duration and the
number of seconds the note sounds for. Therefore doubling this value
will give a note lasting two seconds, trebling it will give one lasting
three seconds etc. The values which are allowed are those in the range
o (no time at all) to 77 (just under four and a quarter seconds). The
following table lists the standard ranges for the most common tempos.
For each it gives the number of beats a minute and, calculated from
this, the duration value of each beat.

48

2 : Starting Out

Presto 168 - 208 S.3 - 6.5
Allegro 120 -168 6.5 - 9.1
Moderato 108 -120 9.1-10.1
Andante 76 -108 10.1-14.4
Adagio 66-76 14.4 -16.5
Larghetto 60-66 16.5 -18.2
Largo 40-60 18.2 -27.3

Producing a sound
The keyword used for producing a sound is, appropriately enough,
SOUND.

In its Simplest form, the syntax it takes is as follows:

SOUND frequency, duration

For example:

SOUND 523.25, 18.2

produces a middle C lasting for one second.

You can also specify how loud the note is to be. This should be a value
in the range 0 (silent) to 2SS (loudest). If you don't provide a value, the
default of 127 which is the middle of the range is used. Try the
following program:

SOUND 523.25, 9.1, 31
SOUND 587.25, 9.1, 63
SOUND 659.26, 9.1, 95
SOUND 701.00, 9.1, 127
SOUND 783.99, 9.1, 159
SOUND 880.00, 9.1, 191
SOUND 993.00, 9.1, 223
SOUND 1046.50, 9.1, 255

Note that, when you type this into the list window, the '.00' string will
be replaced by a'!'. The zeros after the decimal point are irrelevant so
BASIC has removed them but has left the '!' to remind you that the
number is a floating point number not an integer.

49

AmigaBASIC : A Dabhand Guide

When you run this program, the computer will play the scale of C
major with each of the notes being louder than the previous one.

An example tune
Sound is another area where variables and expressions are a great
help. Instead of numbers like '523.25' which are meaningless to most
people, you can use letters to represent the notes. For example, you
might start the variable name with the letter of the note, 'a' - 'g'. Then
the second letter could be a 'n', 's' or 'f' to specify if a natural, sharp or
flat is wanted. Finally the last character could be a digit to indicate
which octave it is.

It is a good idea to use expressions for the durations of the notes. For
example you could specify the duration of the different types of notes
as follows:

quaver 0.5 * dur
crotchet 1.0 * dur
minim 2.0 * dur
semibreve 4.0 * dur

Then you can alter the tempo of the tune just by assigning a different
value to the variable 'dur'.

The following program shows these tips in action:

so

REM Set up variables

g3n 783.99
a4n 880.00
b4n 993.00
c4n 1046.50
d4n 1174.70
e4n 1318.50
f4s 1480.00
g4n 1568.00

dur 8.0

REM Produce the sounds

SOUND g3n,2.0*dur
SOUND a4n,0.5*dur
SOUND c4n,0.5*dur
SOUND b4n,0.5*dur

2 : Starting Out

SOUND a4n,O.5*dur
SOUND d4n,l.O*dur
SOUND d4n,l.O*dur
SOUND d4n,O.5*dur
SOUND e4n,O.5*dur
SOUND b4n,O.5*dur
SOUND c4n,O.5*dur
SOUND a4n,l.O*dur
SOUND a4n,l.O*dur
SOUND a4n,O.5*dur
SOUND c4n,O.5*dur
SOUND b4n,O.5*dur
SOUND a4n,O.5*dur
SOUND g3n,O.5*dur
SOUND g4n,O.5*dur
SOUND f4s,O.5*dur
SOUND e4n,O.5*dur
SOUND d4n,O.5*dur
SOUND c4n,O.5*dur
SOUND b4n,O.5*dur
SOUND a4n,O.5*dur
SOUND g3n,2.0*dur
SOUND a4n,O.5*dur
SOUND c4n,O.5*dur
SOUND b4n,O.5*dur
SOUND a4n,O.5*dur
SOUND d4n,l.O*dur
SOUND d4n,l.O*dur
SOUND d4n,O.5*dur
SOUND e4n,O.5*dur
SOUND b4n,O.5*dur
SOUND c4n,O.5*dur
SOUND a4n,l.O*dur
SOUND a4n,l.O*dur
SOUND a4n,O.5*dur
SOUND c4n,O.5*dur
SOUND b4n,O.5*dur
SOUND a4n,O.5*dur
SOUND g3n,O.5*dur
SOUND d4n,O.5*dur
SOUND a4n,O.5*dur
SOUND b4n,O.5*dur
SOUND g3n,l.O*dur

51

AmigaBASIC : A Dabhand Guide

52

3 : Interacting with the User
Virtually all commercially available programs 'interact' with the user.
That is, they ask the user to supply information or instructions and
then respond in different ways, depending on the particular piece of
data they are given.

An obvious example is provided by the type of program aimed at
testing a child's maths ability. These write a simple sum on the screen
and wait for the child to type in an answer. Then they typically
respond by printing 'right - well done' or 'wrong - try again',
depending on whether the answer was correct or not.

Arcade games, such as Space Invaders, display a different form of
behaviour. These don't stop and wait for you to type something.
Instead they enter a particular mode of behaviour and carry on in the
same manner until you interrupt them by pressing a key or button.
Then they temporarily stop what they were doing and react to your
input.

The chapter looks at these methods of interaction in more detail and
shows how a program can act in different ways, depending on the
input it gets.

Handling Text
Before we can contemplate having a question and answer session with
the computer, we have to know how to handle text. We saw in the
previous chapter how numeric variables can be used to hold numbers.
In a similar manner, BASIC provides string variables, which may be
used to store strings of characters, ie words and phrases. Each string
can be up to 255 characters long and can contain upper- and lower­
case letters, spaces, punctuation characters etc. The following shows a
few examples of strings being assigned to string variables.

namel$ = "Winston"
questionS = "How old are you?"
ageS = "21"
address$ = "10, Downing Street; London."

53

AmigaBASIC : A Dabhand Guide

Note that, in each case, the variable name ends in a '$'. This identifies
it as being a string variable rather than a numeric variable. Numbers
and strings have to be kept separate from each other. You cannot
assign a number to a string variable or vice versa. In the example
above, age$ was assigned a string containing the two characters '2'
and 'I', and not the number 2l.

The simplest way to write a message in the Output window is to use
PRINT. For example:

namel$ = "Tom"
PRINT "Hello ";namel$,"How are you?"

outputs the following:

Hello Tom How are you?

A question mark can be used instead of the word PRINT in a PRINT
statement in order to save time. Therefore you could enter the above
program as:

namel$ = "Tom"
? "Hello ";namel$,"How are you?"

Note that, when you press RETURN at the end of the line, the
question mark will be converted into the word PRINT.

The PRINT statement can be followed by a list of items to be printed,
separated either by commas, semi-colons or spaces. The effect of a
semi-colon or space is to make the next item start immediately after
the previous one. The effect of a comma is to print the next item at the
start of the 'next zone'. By default, a zone is 14 characters wide.
Therefore a comma will cause the item to be printed starting at
character position one or 15 or 29 or 43 etc, depending on how far
across it is currently.

A particular number of spaces can be output in different ways. For
example, two predefined strings 'strI$' and 'str2$' can be separated by
10 spaces either by typing:

54

3 : Interacting with the User

PRINT strl$ " " str2$

or more simply:

PRINT strl$ SPC(IO) str2$

SPC is a keyword which can only be used as part of a PRINT
statement. Its argument specifies the number of spaces to be output
and can be any number in the range 0 to 255.

The characters ',' and ';' can also be used to determine where
subsequent PRINT statements start printing. If the list of items is
followed by a semi-colon or comma, then the next PRINT statement
will start printing on the same line. Otherwise, a carriage return will
be printed, and so the next PRINT statement will start at the beginning
of the next line down. For example:

PRINT "Hello ";
PRINT "there"
PRINT "John"

produces:

Hello there
John

Asking for Input
We often want a program to stop and wait for the user to type
something. This is very straightforward with BASIC. The following
program shows how it can be done:

PRINT "What is your name";
INPUT namel$
PRINT "Pleased to meet you ";namel$

When you RUN this program, the INPUT command prints a question
mark on the screen and waits for you to type in a string and press the
Return key. For example, you might type:

Fred

55

AmigaBASIC : A Dabhand Guide

The string you type is assigned to the variable 'namel$', and the
computer will respond by printing:

Pleased to meet you Fred

In the above program, the first PRINT statement was used to print a
message on the screen indicating the type of response ,which was
required. Without it, you would be presented with just a question
mark. Since you have seen the program, you know what it expects you
to type. However, anyone not knowing what the program was trying
to do would have no idea what sort of information to enter. Therefore
giving a message is very important. This message can be incorporated
into the INPUT instruction as follows:

INPUT "What is your name ";namel$
PRINT "Pleased to meet you ";namel$

Note that a question mark is automatically given after the INPUT
string. In some cases, you may wish to print out a message which is
not a question. If this is so, you can suppress the question mark by
replacing the semi-colon by a comma:

INPUT "Enter your name :",namel$
PRINT "Pleased to meet you ";namel$

Try running this program and typing:

Fred

You should find that the message printed is just the same as before,
because the spaces you typed before the first character have been
ignored. Now run it one more time and type:

Smith, Fred

This will produce the message:

?Redo from start

56

3 : Interacting with the User

This is because the comma is treated as a separator between two items
of data. Therefore the computer was expecting you to type in one
string and you have actually given it two: "Smith" and "Fred". The
message means that the computer wants you to re-enter your
response.

If you require more than one piece of information, you can use several
INPUT statements, as in the following program:

INPUT "Enter your surname :",surname$
INPUT "Enter your first name :",namel$
PRINT "Pleased to meet you ";namel$;" ";surname$

In this case you will be expected to enter two strings separately, for
example:

Smith
Fred

and you will be rewarded with the message:

Pleased to meet you Fred Smith

An alternative method is to ask for several pieces of information to be
given at once by placing several variable names, separated by
commas, after the INPUT string. The above program can be modified
to demonstrate this as follows:

INPUT "Enter your surname and first
name:",surname$,namel$
PRINT "Pleased to meet you ";namel$;" ";surname$

This program expects two strings, separated by commas, to be given
on the same line. In this case the input:

Smith, Fred

is correct, whereas if you type just:

Fred

57

AmigaBASIC : A Dabhand Guide

the '?Redo from start' message will be generated because you have
entered too few strings.

Acting on Information Received
Once you, as the programmer, have been given some information by
the user, you will no doubt want to do something with it. The above
examples used the strings given to personalise a message. This is a
very nice touch, often used to make the computer appear more
'human' and approachable. However, you might find that you want to
do different things depending on what the user typed. BASIC
provides the answer to this in the form of an IF statement, which
enables the computer to make a choice about whether or not to
execute a statement or group of statements. In its Simplest form this
can be used as follows:

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN PRINT "Right - well done"

The IF is followed by a 'conditional expression'. This is an expression
which gives the value true or false. If the result of the conditional
expression is true the computer executes the statement after the
THEN. In the example shown, the conditional expression is true when
ans% is equal to four, and is false otherwise. If the user types four then
the message 'Right - well done' will be printed.

Note that, in this example, the variable name is terminated by a '%'.
This acts like the '$' symbol to denote that the variable is of a
particular type. But whereas the '$' indicates that a variable is a string
variable, '%' indicates that it is an 'integer variable'. Integer variables
are a subclass of numeric variables which can hold only whole
numbers.

By default, a variable name without a special character on the end is
treated as a 'real variable', which can hold both whole and fractional
numbers. One disadvantage of real variables is that they don't hold
numbers totally accurately. If the result of a calculation means that a
real variable should contain the value seven, then it might well
actually contain 6.999999 or 7.000001. Therefore, you should never test

58

3 : Interacting with the User

two real numbers for eqt:ality, since you cannot rely on them being
exactly the same.

Many of BASIC's statements act on integers. For example, the graphics
commands use integer coordinates. However, in most cases, these
statements will happily accept real numbers and use the nearest
integer value. Strictly speaking though, the programs we have written
such as:

FOR count = 1 TO 200
xpos = RND*620
ypos = RND*lBO
radius = RND*60
CIRCLE (xpos,ypos),radius

NEXT count

should really be written as:

FOR count% = 1 TO 200
xpos% = INT(RND*620)
ypos% = INT(RND*lBO)
radius% = INT(RND*60)
CIRCLE (xpos%,ypos%),radius%

NEXT count%

where INT is a function which takes a real number as an argument
and returns the largest integer less than or equal to it.

Returning now to the main issue of:

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN PRINT "Right - well done"

If the user types any number other than four, then nothing will
happen. This isn't very informative for the poor old user. What we
really ought to do is to give a different message if the answer is wrong.
To do this we can add an ElSE clause onto the end of the line:

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN PRINT "Right - well done" ELSE PRINT
"Wrong"

59

AmigaBASIC : A Dabhand Guide

Now, if the answer is correct, the message of congratulations will be
given as before. But if the answer is wrong, the rather terse message
'Wrong' will be printed on the screen.

The THEN and ELSE keywords can be followed by more than one
statement:

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN PRINT "Right - well done" ELSE PRINT
"Wrong":BEEP

This time, giving the wrong answer will print the message 'Wrong',
produce a short sound and flash the screen.

You can have as many statements as you like following the THEN and
ELSE keywords, provided that they will all fit on one BASIC line. (A
line can contain a maximum of 255 characters.) However, you will
probably find that the program becomes difficult to understand well
before this limit is reached. Unless the actions, to be performed
following the THEN and ELSE, are short and simple it is better to use
the second version of the IF statement:

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN

PRINT "Right - well done"
ELSE

PRINT "Wrong"
BEEP

END IF

This version is distinguished from the first by the fact that the THEN
has nothing following it on the same line. In this version, the
statements which are executed conditionally are split over several
lines of the program. Depending on the result of the conditional
expression, either the block of statements occurring between the
THEN and the ELSE, or between the ELSE and the END IF, are
executed. Note that the END IF is vital. Without it, BASIC cannot tell
which statements are under the influence of the IF, and so gives an
error message.

This version of the IF statement can be taken one step further by
introducing 'ELSEIF' blocks. For example:

60

3 : Interacting with the User

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN

PRINT "Right - well done"
ELSE IF ans% = 5 THEN

PRINT "Your answer is one too many"
ELSEIF ans% = 3 THEN

PRINT "Your answer is one too few"
ELSE

PRINT "Wrong"
BEEP

END IF

Now, if ans% is not equal to four, a further test is made to see if ans%
has the value five. If so, the message 'Your answer is one too many' is
printed. If not, then yet another test is made, this time to see if ans% is
three. If so the message 'Your answer is one too few' is printed. It is
only if all the tests produce the result false (ie the answer was not
three, four or five) that the statements after the ELSE are executed.

Looking for Input
INPUT is fine if you want your program to stop and ask for a piece of
information. But what do you do if you don't want the program to
stop and give a prompt, you just want to see if the user has pressed a
key. The answer is to use INKEY$. This returns either the null string,
JJJJ, if nothing has been pressed, or a string containing the first
character read from the keyboard buffer otherwise. For example, type
in the following (leaving out the comments if you wish) :

PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,1,0
COLOR 1,0
CLS
xpos = 320
ypos = 100
col = 1

REM Colour 0 black
REM Colour 1 red
REM Colour 2 green
REM Select colour 0 for background
REM and clear the screen
REM Start off roughly in the
REM centre of the window
REM and in red

FOR loop = 1 TO
a$ = INKEY$

5000

IF a$ <> 1111 THEN
col = 3 - col
IF a$ "x" THEN xpos xpos + 10: col 2
IF a$ "z" THEN xpos xpos - 10: col 3

61

AmigaBASIC : A Dabhand Guide

END IF
CIRCLE (xpos,ypos),20,col", .56
NEXT

Now run this program. It will start by drawing a red circle on a black
background. If you press any key then the circle will switch to being
green, press another and it will change back to red again. Now try
pressing the 'x' key. (Note that only a lower-case x will be responded
to - an upper-case one will be ignored.) When you do, INKEY$ will
return the string "x" to a$ and xpos will be increased, so that the circle
will be drawn to the right of the previous one. Similarly, pressing 'z'
will cause the circle to move to the left, '#' to move up and' I' to move
down.

Note that, if you hold one of the keys down for a while, when you let
go the circles will carry on moving in the direction you selected. This
is because the computer frequently checks the keyboard and, if there is
a key held down it places this character in the keyboard buffer. These
characters are removed one at a time by INKEY$. Since characters can
be put in the keyboard buffer more frequently than INKEY$ is called
to remove them, then the buffer gradually builds up a backlog of
characters. When you eventually let go, it takes a while for the
program to clear this backlog. If you hold a key down for too long
then the buffer becomes full and characters are lost.

Conditional Loops
Often, you don't want to use INKEY$ just once or for a fixed length of
time. Instead you want to keep on using it until it finds a character.
For example, a game must continually check to see if the user has
pressed a key. While the keyboard buffer is empty the game can get on
with dealing with its side of the action. However, as soon as it finds a
character it must respond appropriately.

To carry out this kind of action you need to construct a
WHILE ... WEND loop. As long as a particular condition is true, the
statements inside the loop will be executed. But soon as the condition
becomes false, the program moves on to execute the statements after
the end of the loop. A simple example illustrating this is given below:

WHILE INKEY$ = ""

62

3 : Interacting with the User

xpos = RND*620
ypos = RND*180
radius = RND*60
CIRCLE(xpos,ypos),radius

WEND

This program continues plotting random circles on the screen until
you press a key.

This concept can be used to amend the circle moving program we had
above. Change it to the following:

REM Colour 0 black
REM Colour 1 red
REM Colour 2 green

PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,1,0
COLOR 1,0
CLS

REM Select colour 0 for background
REM and clear the screen

xpos = 320
ypos = 100
col = 1

REM Start off roughly in the
REM centre of the window
REM and in red

xoff = 0 REM No movement wanted
yoff = 0 REM initially
WHILE xpos > 0 AND xpos < 620 AND ypos > 0 AND ypos <
180

a$ = INKEY$
IF a$ <> 1111 THEN

col = 3 - col
IF a$ "x" THEN
IF a$ liZ" THEN
IF a$ "#" THEN
IF a$ II/" THEN

END IF
xpos = xpos + 10*xoff
ypos = ypos + 5*yoff

xoff 1
xoff -1
xoff 0
xoff 0

CIRCLE (xpos,ypos),20,col",.56
\vEND
END

yoff 0
yoff 0
yoff -1
yoff 1

Every time round the WHILE ... WEND loop, the position of the centre
of the CIRCLE is updated by adding on an x-offset and y-offset.
Initially, these offsets are zero, so the circle stays in the centre of the
screen. Pressing one of the direction keys assigns a non-zero number
to either xoff or yoff, so the circle starts moving in a particular
direction. It will continue moving in that direction until a different

63

AmigaBASIC : A Dabhand Guide

window, which causes the WHILE loop to terminate and so ends the
'game'.

This program is better than the previous version in that it only
requires you to press a direction key once to make the circle move,
rather than having to press it continuously. This means that characters
will not build up in the buffer and so the response to a key press is
immediate, rather than delayed.

64

4 : Writing large Programs
The larger the the programs you produce, the more disciplined you
must be as you write them. To prevent too many bugs creeping in, you
have to keep the program comprehensible. This means that variable
names must be meaningful, comments must be used when necessary,
and the program must be well structured so that the flow of control is
easy to follow.

This chapter looks at some of the techniques which can be used to help
achieve these ideals. And, since some programs will inevitably contain
bugs, the ways in which you can track bugs down and eliminate them.

Coping with Variables
Consider the case of wanting to read in the surnames of thirty
different children. You could do this as follows:

INPUT "Please give me a name: ",surnamel$
INPUT "Please give me a name: ",surname2$
INPUT "Please give me a name: ",surname3$

INPUT "Please give me a name: ",surname30$

However, this is a very long winded way of going about things. The
way it should be done is with a FOR loop. What currently prevents a
loop being used is the fact that the variable name is different in each
case.

Arrays
There is a way around this problem though, and that is to use an
'array'. Arrays are groups of variables which share the same name. For
example, you can define an array called 'sumame$' which holds thirty
different strings.

The individual members of an array are called 'elements'. They are
identified by a 'subscript'. This is an integer indicating the element's
position within the array. The lowest value which a subscript may

65

AmigaBASIC : A Dabhand Guide

have is called the 'lower bound' and the highest value is called the
'upper bound'.

Nonnally, the first element in an array has a subscript of 0, the second
a subscript of one etc. For example, for our array 'surname$':

surname$(O) is the first element
surname$(l) is the second element

surname$(n) is the (n+l)th element

Often it is more convenient for the first element of an array to have the
subscript one. You can specify that this is to be the case by using the
statement:

OPTION BASE 1

This would mean that the elements of 'surname$' become:

surname$(l) is the first element
surname$(2) is the second element

surname$(n) is the nth element

OPTION BASE can only take the values zero or one. Therefore the first
element has to have a subscript of zero or one.

Dimensioning and Assigning to an Array
If an array is to contain more than ten elements, you need to tell
BASIC how big it is to be. You do this by using a DIM statement. For
example:

OPTION BASE 1
DIM surname$(30)

allocates space in the computer's memory for thirty string elements,
each called 'surname$', but each having a different subscript, one to
30.

Arrays may hold values of any type, ie floating point numbers,
integers or strings. For example:

66

4 : Writing Large Programs

OPTION BASE 1
DIM temperature (21)

allocates space for 21 floating point numbers.

The DIM statement initialises each of the elements of an array. If it is a
numerical array the elements are set to zero. If it is a string array the
elements are set to the null string. The elements may then be
individually assigned values, just like any other variables. For
example:

temperature (1)
temperature (3)

20.5
(temperature (1) + temperature(2))/2

The subscript need not be specified as a number. Instead, a variable
can be used. For example, we can go back to our original problem and
solve it as follows:

OPTION BASE 1
DIM surnameS (30)
FOR person% = 1 TO 30

INPUT "Please give me a name: ",surname$(person%)
NEXT

Any arithmetic expression may be used as a subscript. Since the
subscripts can only be integers, any expression which gives a floating
point result has the number rounded to the nearest integer value.

Multi-dimensional Arrays
The examples shown above are of 'one-dimensional' arrays, ie they
may be thought of as a line of variables. More dimensions may be
used by providing more subscripts to identify an individual variable.
For example, with two-dimensional arrays individual variables are
identified by two subscripts.

A two-dimensional array may be defined as follows:

OPTION BASE 1
DIM co1our%(80,40)

This allocates space for 3200 elements, each called colour% and each
identified by two subscripts:

67

AmigaBASIC : A Dabhand Guide

colour%(1,1) colour%(1,2) colour%(1,3) .. colour%(1,40)
colour%(2,1) colour%(2,2) colour%(2,3) .. colour%(2,40)

colour% (80, 1) colour% (80,2) colour% (80, 3) .. colour% (80, 40)

Arrays may have as many dimensions as you like up to a maximum of
255. However, one-, two- and three-dimensional arrays are the most
useful.

The elements of a two-dimensional array can be thought of as the
positions on a piece of paper or the screen. Each position is at a certain
distance from one of the sides (given by the first subscript), and a
certain distance from either the top or bottom (given by the second
subscript). The array could be used to hold an item of information
about such positions. For example, the array 'colour%' above could
hold the colour of every pixel within a rectangle, 80 pixels across and
40 pixels high:

68

REM Choose the colours to use:
PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,1,0
PALETTE 3,0,0,1
PBM Draw 50 random circles in each colour; 1, 2 and 3
FOR col% = 1 TO 3

FOR count% = 1 TO 50

NEXT
NEXT

pos% = INT(RND*620)
ypos% = INT(RND*180)
radius% = INT(RND*60)
CIRCLE(xpos%,ypos%),radius%,col%

REM Draw a thick rectangle which contains 80x40 pixels
left.x% = 280
top.y% 80
LINE (left.x%,top.y%) - STEP(81,41),0,b
LINE (left.x%-l,top.y%-l) - STEP(83,43),O,b
REM Define an array to hold the colours of each pixel of
the REM rectangle
OPTION BASE 1
DIM colour%(80,40)
REM Read the colour of each point
FOR xpos% = 1 TO 80

FOR ypos% = 1 TO 40

4 : Writing Large Programs

colour%(xpos%, ypos%) =
POINT (left.x%+xpos%,top.y%+ypos%)

NEXT
NEXT
REM Now reproduce the rectangle
CLS
FOR xpos% = 1 TO 80

FOR ypos% = 1 TO 40
PSET(left.x% + xpos%,top.y% +

ypos%),colour%(xpos%,ypos%)
NEXT

NEXT

This program introduces a BASIC 'function' called POINT. A function
can be thought of as a statement which returns a value. We met
another example of a function in a earlier chapter which was RND.
The value returned by RND is a random number in the range 0-1. In
the case of POINT, the value returned is an integer in the range 0-3,
giving the colour of the pixel whose x- and y- coordinates are passed
as arguments. The other possible value which POINT can return is -1,
this occurs if the coordinates given lie outside the current Output
window.

Using three-dimensional arrays the model can be taken one stage
further. The third dimension can be used to specify the height of a
position relative to the plane of the piece of paper or screen. This
allows information about a three-dimensional volume to be held.

The physicists among you may see the potential for treating the fourth
dimension as representing time. However, beyond that, the
dimensions fail to have any meaning in the real world.

Rules About Subscripts
When using arrays, remember that if you DIM an array using a
particular number of subscripts, each element of the array must be
referenced with the same number of subscripts:

OPTION BASE 1
DIM colour%(80,40)
colour% (1, 1, 1) = 1

69

AmigaBASIC : A Dabhand Guide

produces the error 'Subscript out of range'. A correct version would
be:

OPTION BASE 1
DIM colour%(BO,40)
colour%(l,l) = 1

In addition the numbers used as subscripts must be within the correct
range, ie between the lower and upper bound:

OPTION BASE 1
DIM colour%(BO,40)
colour%(lOO,20) = 1

gives the error message because the first subscript must be between
one and 80. Similarly:

OPTION BASE 1
DIM colour%(BO,40)
colour%(l,SO) = 1

gives an error because the second subscript lies outside the range one
to 40.

Making Editing Easier
As programs get bigger, using just the arrow keys to move around
them in the editor becomes a slow process. Fortunately, there are
faster ways of moving through programs.

Scrolling
As we have already seen, the four arrow keys normally act as follows;

Move up by one line
Move down by one line
Move right by one character
Move left by one character

However, if the cursor is already at the edge of the display in the
direction being moved, the following actions also occur:

70

4 : Writing Large Programs

Scroll right by three-quarters of a display
Scroll left by three-quarters of a display

To move faster in a particular direction, the arrow keys can be used in
combination with the SHIFT key or ALT keys. These move the cursor
to the following positions, scrolling as necessary:

SHIFT-i
SHIFT-J,
SHIFT--+
SHIFT-+­
ALT -i
ALT -J,

ALT --+
ALT -+-

Move backwards by one windowful
Move forwards by one windowful
Move right by three-quarters of a display
Move left by three-quarters of a display
Move to the beginning of the program
Move to the end of the program
Move to the far right of the current line
Move to the far left of the current line

Line Numbers and Labels
Any of you who have used BASIC on other machines will probably
have been surprised by the absence of line numbers in the programs
we have written so far. You can use line numbers, if you wish, in
AmigaBASIC. However you don't have to. For example, a program
such as:

CIRCLE(320,100),100
CIRCLE(160,50),50
CIRCLE(480,50),50
CIRCLE(160,150),50
CIRCLE(480,150),50

can equally well be written as:

10 CIRCLE(320,100),100
20 CIRCLE(160,50),50
30 CIRCLE(480,50),50
40 CIRCLE(160,150),50
50 CIRCLE(480,150),50

You can use any whole number between 0 and 65529 for a line
number. However, it is important to note that AmigaBASIC executes

71

ArnigaBASIC : A Dabhand Guide

each line of a program sequentially, regardless of any line number it
has. It does not execute them in numerical order of the line numbers.
The numbers are there purely as markers so you can refer to particular
positions in a program.

Instead of starting a line with a line number, you can start it with a
'label'. This must begin with a letter, end with a colon and contain a
maximum of 39 letters, numbers or full stops in between. For example:

large.cir: CIRCLE(320,100),100
small.cirs:
CIRCLE (160, 50) .50
CIRCLE(480,50),50
CIRCLE(160,150),50
CIRCLE(480,150),50

It is better to use labels rather than line numbers since they can be
made more descriptive and so help to document your code. The real
use of line numbers or labels is to mark positions of the code which
you want to 'jump' to in some way.

When listing a program, you can open the List window so that a
particular line is at the top of the window. To do this, you have to
select the Output window and type LIST, followed by the line number
or label of the line required. For example:

LIST small. cirs

Hence it is a good idea to start sections of a program with a label, so
that you can find them easily in the editor.

Keeping It Strudured
We have already seen some features of AmigaBASIC which help to
structure a program. FOR and WHILE loops are two examples. These
allow a block of statements to be repeated several times, without the
need of having multiple copies of the statements within the code.
Another is the IF construct. This allows alternative pieces of code to be
executed, depending on certain conditions, the code being in a very
readable form. However, there are other structures which we have not
yet encountered.

72

4 : Writing Large Programs

Subroutines
Quite often you may find that a program contains the same block of
code several times at different places. This is obviously wasteful, but
what can be done about it? One solution is to use a 'subroutine'. This
is a block of code which starts with a line number or label, and ends
with the keyword 'RETURN'. To execute this block of statements, the
main body of the program just needs to issue the command 'GOSUB'
followed by the relevant line number or label. Then all the statements
in the subroutine will be executed until the 'RETURN' is reached, at
which point BASIC will return to the statement in the main body of
the program immediately after the 'GOSUB', and continue executing
from there. The following diagram (Figure 4.1) should help to
illustrate the process:

I
I

I
I I i----~---------} ... +

r----J-----l---------I I

:--:-----:----r---------Jl

: I I ~---------t I I r

t r l ______________ _
I I

l __ :::::::::::::::::::::t

Body of
program

call of sub 1

call of sub 2

END

Body of
Subroutine I

RETURN

Body of
Subroutine 2

RETURN

Figure 4.1. Program flow at GOSUBs.

The above demonstrates the typical structure of a program containing
subroutines. The main body of the program occurs first, followed by
the keyword 'END', followed by the body of the subroutines. Note
that the 'END' statement is necessary to tell BASIC to stop executing

73

AmigaBASIC : A Dabhand Guide

the code once the bottom of the main body of the program has been
reached. Without it, BASIC would continue executing the code until it
reached the end of the text. This means that it would 'fall through' into
the first subroutine, and execute it as though it were part of the main
program. However, when it reached the 'RETURN' statement at the
end, the error message 'RETURN WITHOUT GOSUB' would be given.
This is because the subroutine wasn't entered properly via a GOSUB
call so BASIC doesn't know where it is to return to.

'END' may be printed at the end of all programs. However, normally
the end of the main body of the program coincides with the end of the
text, so the keyword is not necessary.

The following illustrates how a subroutine may be used:

74

REM Initialise the colours
PALETTE 0,0,0,0
PALETTE I, .2,0,0
PALETTE 2, .2, .2,0
PALETTE 3,0, .2,0
REM Draw 3 solid circles vertically
xpos% = 320
FOR ypos% = 40 TO 120 STEP 40

col% = ypos%!40
FOR radius% = 1 TO 20

CIRCLE (xpos%,ypos%),radius%,col%
NEXT

NEXT
REM Now loop round the traffic light sequence
REM five times
FOR count% = 1 TO 5

PALETTE 2, .2, .2,0 PALETTE 1,1,0,0
GOSUB delay
PALETTE 2,1,1,0
GOSUB delay
PALETTE 1, .2,0,0 PALETTE 2, .2, .2,0 PALETTE 3,0,1,0
GOSUB delay
PALETTE 3,0, .2,0 PALETTE 2,1,1,0
GOSUB delay

NEXT
REM finish by displaying all three lights
PALETTE 1,1,0,0
PALETTE 2,1,1,0
PALETTE 3,0,1,0
END
REM Subroutine to pause for a while
delay:

4 : Writing Large Programs

FOR c%
NEXT

RETURN

1 TO 5000

Subprograms
A better method of keeping code well structured is to make use of
'subprograms'. In some respects a subprogram is similar to a
subroutine. Both are groups of BASIC statements which perform a
particular task and which have a name or label assigned to them.
However the syntax used to define and call them is slightly different.
The following shows how the above program can be altered to use a
subprogram for the delay code, rather than a subroutine:

REM Initialise the colours
PALETTE 0,0,0,0
PALETTE 1, .2,0,0
PALETTE 2, .2, .2,0
PALETTE 3,0, .2,0
REM Draw 3 solid circles vertically
xpos% = 320
FOR ypos% = 40 TO 120 STEP 40

col% = ypos%/40
FOR radius% = 1 TO 20

CIRCLE (xpos%,ypos%),radius%,col%
NEXT

NEXT
REM Now loop round the traffic light sequence
REM five times
FOR count% = 1 TO 5

PALETTE 2,.2,.2,0
CALL delay
PALETTE 2,1,1,0

PALETTE 1,1,0,0

CALL delay
PALETTE I, .2,0,0
CALL delay
PALETTE 3,0, .2,0
CALL delay

PALETTE 2, .2, .2,0 PALETTE 3,0,1,0

PALETTE 2,1,1,0

NEXT
REM Finish by displaying all three lights
PALETTE 1,1,0,0
PALETTE 2,1,1,0
PALETTE 3,0,1,0
REM Subprogram to pause for a while
SUB delay STATIC

FOR count% = 1 TO 5000
NEXT

END SUB

75

AmigaBASIC : A Dabhand Guide

The body of the subprogram is started by the statement 'SUB' and
ended by the statement 'END SUB'. 'SUB' must be followed by the
name of the subprogram which may be up to 40 characters long and
then the keyword 'STATIC'. The code of the subprogram can be called
from anywhere in the main body of the program by using the
keyword 'CALL', followed by the name of the subprogram.

The program illustrates two interesting facts about subprograms
which do not apply to subroutines. The first is that the code of the
subprogram is only executed when it is CALLed. At the end of the
traffic light loop, the program will execute the final three PALETTE
statements and then stop. The flow of control will not fall through into
the body of the subprogram. Therefore an 'END' statement is not
necessary.

The second is that by default, the variables used in the subprogram are
entirely independent from those of the main program. Assigning a
value to a variable within the subprogram does not affect the value of
any variable in the main program which has the same name. Therefore
the variable 'count%' can be used within the subprogram without it
affecting the loop variable, also called 'count%', of the loop from
which the subprogram is called.

Passing Parameters
What makes subprograms so useful is that fact that they can take
'parameters'. These are variables which are passed values from the
main program. In the example above, the length of time each sequence
is displayed for is equal. In real life, the red and green stages would
last far longer than the intermediate, amber, stages. One way of
achieving this would be to have two different subprograms: one
which counted to 5000, and the other which counted to, say, 20000. A
better way is to alter the current subprogram as follows:

76

SUB delay(limit%) STATIC
FOR count% = 1 TO limit%
NEXT

END SUB

4 : Writing Large Programs

This now has one parameter which determines the value counted to
and hence the length of the delay. The main program also has to be
altered so that each time delay is called, a value is passed to it. For
example calls to delay have to take the following kind of format:

CALL delay(5000)

or alternatively:

period% = 20000 : CALL delay(period%)

This means that the main program can influence the action of the
subprogram. , in this example only one subprogram need be used,
even though different length delays are required.

Updating Parameters
By passing a constant value, such as 5000, the main program is
sending information to the subprogram. However, when the main
program passes a variable, the subprogram has the opportunity to
send information back. For example, what would you expect the
following to print?

a% = 1
b% = 1
CALL double (a%)
PRINT a%
PRINT b%
SUB double (num%) STATIC

num% num% * 2
a% = 3
b% = 3

END SUB

The values actually printed are:

2
1

The subprogram has its own local copies of the variables a% and b%,
so the assignments to them do not alter the a % and b% in the main
program. However, it is being passed a % as a parameter. The value of

77

AmigaBASIC : A Dabhand Guide

the parameter is doubled by the subprogram, and hence the value of
a% is doubled. If you don't want the values of the main program's
variables to be altered by calling a subprogram, then you can enclose
them in brackets. For example:

a% = 1
b% = 1
CALL double ((a%))
PRINT a%
PRINT b%
SUB double(num%) STATIC

num% num% * 2
a% = 3
b% = 3

END SUB

will print:

1
1

The situation is summarised in the table below:

Argument passed
variable
(variable)

Effect on variable
updated
unaltered

It is a very important point to remember. Forgetting to use brackets,
when you meant to, can lead to all sorts of problems and it is very
difficult to spot this type of mistake when reading through a program.

Local and Shared Variables
An alternative way of referring to and/or updating the main
program's variables inside a subprogram, is to use the SHARED
statement. For example:

78

a% = 1
b% = 1
CALL treble
PRINT a%
PRINT b%
SUB treble STATIC
SHARED a%,b%

a% = 3
b% = 3

END SUB

gives the results:

3
3

4 : Writing Large Programs

The shared statement makes the variables inside the subprogram refer
to the same variables as the main program.

Any variables which are not parameters and are not SHARED are
local to the subprogram. The values of local variables are preserved
between calls to a subprogram. For example:

FOR loop% = 1 TO 5
CALL count

NEXT
SUB count STATIC
a% = a% + 1
PRINT a%
END SUB

will print:

1
2
3
4
5

When the subprogram is first entered, its local variable a% will be
initialised to zero. The body of the subprogram increases a% by one
and prints its value. The next time count is entered, a% still has the
same value, so this time adding one gives the result two, etc.

Subprograms: Other Points to Note
There are a few more points which need to be made here about
subprograms. The first is that you cannot nest them, ie one
subprogram cannot contain the definition of second subprogram.
However a subprogram can call other subprograms.

79

AmigaBASIC : A Dabhand Guide

The second is that a program cannot contain two subprograms with
the same name. An error message will be given if this occurs.

Finally, you can return control, before the end of the subprogram is
reached, by using the 'EXIT SUB' command. For example, the
subprogram, used earlier to generate a pause, could be improved as
follows:

REM Subprogram to pause for a while
SUB delay (limit%) STATIC

IF limit% < 1 THEN EXIT SUB
FOR count% = 1 TO limit%
NEXT

END SUB

This then checks that a valid length of time has been passed as a
parameter and, if not, it does nothing. Otherwise it pauses as before.

Functions
The last structure which we will look at here, very briefly, is the
'function'. We've already met some BASIC functions; RND and
POINT. However, BASIC also allows you to create your own. The
following illustrates their syntax:

DEF FNadd(vall,vaI2) = vall + val2

The definition starts with 'DEF FN' followed by the name to be
assigned to the function. This must be adjacent to the DEF FN, with no
spaces in between. Then any parameters to be passed are given,
enclosed in round brackets and separated by commas. Finally the
definition contains an equals sign and an expression which specifies
the value which the function is to return.

User defined functions can be used in expressions. For example:

PRINT FNadd(a,b)

or alternatively:

sum = FNadd(a,b) + FNadd(c,d)

80

4 : Writing Large Programs

or:

sum = FNadd(FNadd(a,b),FNadd(c,d»

etc.

There are a few rules about the use of functions which are listed
below:

e The function definition must be executed before the function can
be called. Otherwise a 'Undefined user function' error will be
generated.

a A program can contain more than one definition of a function, in
which case the most recently executed definition will be used.

e Functions can return either numeric or string values. However, if
the result of the expression in the function definition does not
match the type of variable being assigned to when the function is
called, a 'Type mismatch' error will occur.

s Function definitions cannot occur within subprograms.

Because their definitions can only contain a single, one-line
expression, functions are of limited use. They have been included here
mainly for reference should you encounter any in other programs.

Merging Programs Together
At some stage, as you write more and more programs, you will
probably find that you would like to include the whole or part of one
program within a second. An easy way of combining two programs is
provided by the MERGE command which takes one program and
adds it to the end of the current program. The only complication is
that the program being merged has to be stored in a particular format.

Normally, when a BASIC program is saved, it is stored on disc in a
special, compact form. Each of the keywords is represented as a single
'token' or number, rather than being held as the characters making up
its name. For example, PRINT is stored as the single number 172
rather than the five numbers which represent the letters 'P', 'R', 'I', 'N'
and'T'.

81

AmigaBASIC : A Dabhand Guide

However, in order to be merged a program must look like ordinary
untokenised text. In order to store a program in this format, the 'a'
option must be used when saving it. For example:

SAVE "prog2",a

Thus the sequence to merge one program 'prog2' onto the end of
another program 'progl' is as follows:

1) Create 'progl'
2) Save it as a BASIC program (SAVE "progl")
3) Create 'prog2'
4) Save it as a text file (SAVE "prog2" ,a)
5) Load the first program into memory (LOAD "progl")
6) Merge the second program onto the end (MERGE "prog2")

What To Do With Data
All programs require data. Even the first program we wrote, which
drew a single circle on the screen, required three pieces of information:
the x- and y-coordinates of the centre of the circle and its radius. So
far, all the data we have used has been mixed in with the code. For
example, if we've wanted to draw five circles at specific positions,
we've written the following type of program:

CIRCLE 320,100,50
CIRCLE 160,50,25
CIRCLE 480,150,25
CIRCLE 160,150,25
CIRCLE 480,50,25

However, it is better, for programs which are going to handle large
amounts of data, to keep the program and the data separate.

Reading and Defining Data
BASIC provides a pair of very useful keywords for dealing with data.
These are OAT A and READ. The OAT A statement is used to store
items of data within a program. The READ statement is used to access
these items. For example, if you wish to draw a series of circles at fixed
points on the screen, you can do so as follows:

82

FOR count% = 1 TO 5
READ xpos%,ypos%,radius%
CIRCLE (xpos%,ypos%),radius%

NEXT count%
DATA 320,100,50
DATA 160,50,25
DATA 480,150,25
DATA 160,150,25
DATA 480,50,25

4 : Writing Large Programs

This program produces exactly the same result as the previous
program.

When the program is run, the READ statement looks through the
program until it finds the first DATA statement. It then takes the first
item of data (the number 320) and assigns this to the variable xpos%.
Similarly it assigns the second item of data to ypos% and the third to
radius%. The next time round the loop the READ statement carries on
reading data from where it left off. This time it reads the numbers 160,
50 and 25 into xpos%,ypos% and radius%. This happens five times,
once each time round the loop. Therefore each set of three numbers is
read in turn.

The DATA statements can be followed by one or more items of data
separated by commas. In the above example the data was split, so that
the three items of data, which were assigned by each READ, were
together on one line. This was only to make it clear what each value
was to be used for, either the x-coordinate, y-coordinate or radius. The
following would work just as well:

FOR count% = 1 TO 5
READ xpos%,ypos%,radius%
CIRCLE (xpos%,ypos%),radius%

NEXT count%
DATA 320,100,50,160,50
DATA 25,480,150,25,160,150,25,480,50,25

DATA statements can contain a mixture of numbers and strings. You
must make sure, though, that the type of each item of data matches the
type of the variable it is being read into. For example:

FOR count% = 1 TO 5
READ name1$, age%

83

AmigaBASIC : A Dabhand Guide

PRINT "My name is ";namel$;" and I am ";age%;" years
old"
NEXT
DATA "Tom", 4,"Dick",5,"Harry",6
DATA "Jack",3,"Jill",3

Normally you can leave out the quotation marks around strings. In the
above program, for example, they are not necessary. However, they
are needed if you want to include commas in the string or if you want
the string to start or end with spaces:

READ A$,B$
PRINT A$
PRINT B$
DATA How are you?
DATA Well, I hope.

produces:

How are you?
Well

This is because the second READ reads characters until it comes across
the comma after the 'Well' and concludes that this ends the item of
data.

To obtain both sentences in full, change the program to be as follows:

READ A$, B$
PRINT A$,B$
DATA How are you?
DATA "Well, I hope"

The DATA statements may occur anywhere in the program but it is
best to keep them on a line of their own. If BASIC reaches a DATA
statement when it is executing a program, it ignores it and goes on to
the next line. It only uses the DATA statements when it encounters a
READ.

When it attempts to READ the first item of data, it scans through the
lines of the program from the top until it finds the first DATA
statement and uses the first item of data on this line. The next READ

84

4 : Writing Large Programs

uses the second item, and so on until the DATA statement has no
more items of data left, in which case the next DATA statement is
searched for and used.

If there is too much data then the extra items are just left unread.
However, if there is insufficient data, BASIC produces the error
message:

Out of data

This indicates that it has tried to READ an item of data but found that
there was none left unread.

Re-using Data Statements
The keyword, RESTORE, may be used to set the data-pointer to the
start of a DATA statement, or any line above it. This allows the data
statements to be used in a different order from how they occur in the
program. They can even be used more than once, for example:

FOR count% = 1 TO 5
RESTORE
number% = INT(RND*3.99) + 1
FOR count2% = 1 TO number%

READ numberS
NEXT count2%
PRINT numberS

NEXT count%

DATA one,two,three,four

Each time round the main loop the RESTORE statement sets the data­
pointer to point to the first item of data. A number in the range one to
four is generated at random, and this number of items of data are
read. The final item read is printed. So if the random number was
three, three items of data would be read and the final one, the string
'three', would be printed.

You can restore to a specific line of data by using a label or line
number. For example, the following produces the same results as the
one above, but in a different manner:

85

AmigaBASIC : A Dabhand Guide

FOR count% = 1 TO 5
number% = INT(RND*3.99) + 1
IF number% = 1 THEN

RESTORE 1
ELSEIF number% 2 THEN

RESTORE 2
ELSE IF number% 3 THEN

RESTORE 3
ELSE

RESTORE 4
END IF
READ numberS
PRINT numberS

NEXT count%
1 DATA one
2 DATA two
3 DATA three
4 DATA four

This time, the RESTORE is followed by a number. The data-pointer is
set to the first DATA statement on or after the line of this number.
Then the next item of data is read and printed. So if the random
number was three, the data-pointer would be set to point at the DATA
statement on line three and the data on this line, the string 'three',
would be printed.

Error Handling
In this section we are going to distinguish between two different types
of errors which cause the program to stop. The first type are syntax
errors in the program itself. For example, mistyped keywords and
labels, forgotten END statements, unmatched FOR and NEXT
statements etc. These are easy to find since they will be reported the
first time the code, in which they occur, is executed.

The second type are errors due to interactions between the program
and the data it is acting on. In this case the program may work
perfectly well in some cases, but fail in others. For example, consider
the following program:

INPUT "Please give me a nurnber";nurn
PRINT "The reciprocal of ";nurn;" is ";l/nurn

86

4 : Writing Large Programs

This program works fine for most numbers, but cannot cope with the
value zero. This causes the error message 'DIVISION BY ZERO' to be
reported.

This error is not due to the program being wrong, it is caused by the
program being given data that it cannot handle. Therefore it could be
classed as being a 'user fault' rather than a mistake by the
programmer. However, it is up to the programmer to anticipate all the
different responses that the user can give and prepare the program to
handle them.

One method of coping with errors is to set up 'error handlers'. These
are routines which are called whenever an error occurs. For example:

ON ERROR GOTO errorhand
FOR loop% = 1 TO 5

INPUT "Please give me a number :",num
PRINT "The reciprocal of ";num;" is ";l/num

NEXT
END
errorhand:
IF ERR = 11 THEN

PRINT "infinite"
ELSE

ON ERROR GO TO 0
END IF
RESUME NEXT

The first statement of the program sets up an error handler which
starts at the label'errorhand:'. Unless an error occurs, the code starting
at this point is not executed. However, if an error does occur, BASIC
will immediately jump to this label and execute the code in the error
handler.

In this example, the error handler uses ERR to find out which
particular error has occurred. This function returns the number
associated with the last error, so allowing the particular error to be
identified. A full list of errors and error numbers are given in
appendix B.

The error, which the program is interested in trapping, is 'Division by
zero' whose error number is 11. If this is the value returned, then the
error handler prints out the string 'infinite' and then executes the

87

AmigaBASIC : A Dabhand Guide

'RESUME NEXT' statement, which instructs BASIC to continue
executing the program at the statement following the one on which
the error occurred. If any other error has been generated, then it
executes an 'ON ERROR GOTO a'. This turns error trapping off and so
allows BASIC to print out the error in the usual way.

The 'RESUME' statement is used to signify the end of the error
handler, and to instruct BASIC to continue executing the program. It
can take one of four forms:

Statement Execution resumes at

RESUME The statement which caused the error
RESUME a The statement which caused the error
RESUME NEXT The statement after the one which caused

the error
RESUME <line> The statement at the line number or label

given

Note that RESUME statements can only be used within error handlers.

Different error handlers can be used at different points in the code.
Whenever an error occurs, the most recently executed ON ERROR
GOTO statement is used to determine the address of the error handler
to use.

Debugging
Sooner or later, everybody writes a program which is syntactically
correct but which doesn't do what they intended it to when it is run.
AmigaBASIC provides some good facilities to help track down the
mistakes when this occurs.

Stepping Through a Program
Instead of running a program as normal, you can 'step' through it. To
do this, start executing the program by selecting Step from the Run
menu or pressing 'Amiga-T'. This will execute the first statement and
then wait. Selecting Step, or pressing 'Amiga-T' again, executes the
next one and so on.

88

4 : Writing Large Programs

If you bring the List window to the front at any stage, this will contain
your program with an orange rectangle surrounding the statement
which has just been executed. This allows you see the path taken
through the code.

Stepping through a program is a never ending activity. When the end
of your program is reached, the next step takes you back to the
beginning and the whole process starts again. To break out of this
vicious circle, select the Continue option from the Run Menu. This will
execute the rest of the program as normal and stop when it reaches the
end.

If you have a large program which is causing problems, you will often
have a good idea roughly where the error is occurring. Unless the
error is thought to be close to the beginning, stepping through right
from the start of the program is a time-wasting activity. To avoid
doing this, you can place a STOP statement in the program just before
the area of code suspected of being wrong. This will stop BASIC
executing your program at that position. You can then use the Step
option to move through the subsequent statements one at a time.

Examining and Resetting Variables
While a program is temporarily suspended, you can find out the value
of a variable, for example col%, by selecting the Output window and
typing:

PRINT col%

This helps to isolate any positions in a program where a variable is
being assigned the wrong value.

In addition, you can alter a value using the LET statement, for
example:

LET col% = 1

This is particularly useful if you think you have found out where a
program is going wrong. It lets you set the variables to what you think
are the correct values and continue execution to see if that fixes the
problem.

89

AmigaBASIC : A Dabhand Guide

Applying These Techniques
To practise these techniques, see if you can find the two mistakes in
the following program, by stepping through it and examining the
values of its variables at various stages:

90

.palette
PALETTE 0,0,0,0
PALETTE 1, .4, .4,.4
PALETTE 2, .7, .7,.7
PALETTE 3,1,1,1
CLS

.start
OPTION BASE 1
DIM sales%(12)

input_figures
max% = °
FOR month% = 1 TO 12

INPUT,"Monthly sales figure :";sales%(month%)
IF sales%(month%) > max% THEN max% = sales%(month%)

NEXT

.axes
xoffset% 20
yoffset% 160
width% 600
height% 100
LINE (xoffset%,yoffset%) - STEP(width%,O),l
LINE (xoffset%,yoffset%) - STEP (O,-height%),1

. max_height
pixels.per.unit
.bar chart
co1% = 1

max% / height%

FOR month% = 1 TO 12
CALL bar(month%)
NEXT

.bar
SUB bar(month%) STATIC
SHARED xoffset%, yoffset%, width%, height%, sales%, col%
month% = month% - 1

4 : Writing Large Programs

xl% = month%*xoffset%
x2% = month%*xoffset% + width%
yl% = yoffset%
y2% = yoffset% - INT(pixels.per.unit*sales%(height%»
col% = 3 - col%
LINE (xl%,yl%) - (x2%,y2%),col%,bf
END SUB

Currently, the program goes into a loop. To stop it, select Stop from
the Run Menu or press' Amiga-.' (Amiga and the full stop key).

What the program is meant to do is to input 12 values, representing
the sales figures for 12 months, and to display a bar chart of the
results. When correct, its description is as follows:

The program loops round reading in the values. These are assumed to
be positive integers, but no check is made to ensure this. As each value
is entered, it is placed in the array sales% and the maximum value so
far is updated. When all twelve have been entered, it draws axes on
the screen, 600 pixels wide and 100 pixels high, and calculates the
number of pixels which represent each unit of sales to ensure that the
highest bar reaches the top of the axes.

Then it loops round again and for each month calls a subprogram to
draw the appropriate bar. The height of each bar is given by the sales
for the month multiplied by the number of pixels per unit, calculated
as described above. The bottom corner for each bar is a distance
(month% -l)*width% away from the corner of the axes. Hence month
one starts 0 pixels from the left, month two width% pixels away,
month three 2*width% pixels away and so on.

The bars are plotted in alternating shades of grey, the colour numbers
used being two for the first, one for the second, two for the next etc.

The mistakes are given below.

'pixels.per.unit' should be SHARED in the subprogram - currently it is
assumed to be local and so is initialised to zero.

'month%' should be enclosed in brackets when it is passed to the
subprogram, so that assignments to the parameter within the
subprogram do not affect the variable in the main program. Currently
the parameter is being decreased by one in the subprogram and so

91

AmigaBASIC : A Dabhand Guide

month% is decreased from one to 0 inside the loop. The NEXT
statement increases it back to one again which means that the first bar
is plotted repeatedly and the loop never terminates.

92

5: Manipulating Text
We have seen that BASIC can handle strings of characters but so far
we have made very little use of them. Strings input by the user have
been treated as 'indivisible' items - no attempt has been made to
analyse the words and letters which they contain. In addition, any text
printed on the screen has been printed where BASIC decided to put it
- we have not put much effort into controlling its position.

One of the hardest parts of writing a program is designing the
interface between the computer and the user. This problem is in two
parts. Firstly, we have to try to act intelligently with the text which the
user provides. Then we have to output our responses in an attractive
manner. Little things like printing titles off-centre, losing parts of
sentences off the edge of the screen, or splitting words between two
lines can ruin the image of a program.

Good demonstrations of both of these are provided by 'adventure
games'. These are games which allow the player to explore a fantasy
world. This world usually consists of lots of different rooms and
locations containing treasures to collect, puzzles to solve and monsters
to defeat. The player moves about by giving instructions such as 'Go
north' and 'Enter hut', and the computer acts as the player's eyes and
ears, describing the location he is in and any interesting objects which
there are nearby. These objects can be collected and used by giving
commands such as 'Get diamonds' and 'Light lamp'. More
sophisticated programs can understand a more complicated syntax
such as Throw the axe at the giant'. These programs have to be able to
extract the individual words of interest from a given string. These are
then checked against lists of known verbs and nouns and acted on if
understood.

A more serious example is a database. Its function is to allow
information to be stored and retrieved quickly and easily. To retrieve
information the user has to give it a 'pattern' to use and it will then
search through all the records it has and list the ones which match this
pattern. For example, if names and addresses are being stored, a

93

AmigaBASIC : A Dabhand Guide

simple pattern would be the name 'Joe Brown'. It will then give the
addresses of all the people it knows with that name. To be of any real
use, the database will have to allow 'wildcarded patterns'. These
contain symbols which can match certain classes of letters. One
commonly used one is '*' which matches any number of any letters.
For example '* Brown' will give you the address of anyone whose
surname is Brown, whatever their first name. Thus a database must be
capable of searching strings to see if they contain a particular
sequence.

String Expressions
Some operators, such as the logical operators, obviously only make
sense when acting on integer operands. However, others can be used
on string variables as well.

Comparing Strings
All the comparison operators can be used on string variables. The '='
and '<>' operators test whether two strings are identical or not. The
other operators need to be looked at more closely to see how they
work.

Every character is represented within the computer by a number in the
range zero to 255. The system used to determine the value associated
with a particular character is known as ASCII. This stands for
'American Standard Code for Information Interchange'. Virtually all
computers use this system, which means that information can be
exchanged between them easily.

BASIC provides a pair of functions for converting characters to their
ASCII number-codes and back again. These are ASC and CHR$. For
example:

94

FOR character% = ASC("A") TO ASC("Z")
PRINT CHR$(character%);
PRINT character%

NEXT
FOR character% = ASC("a") TO ASC("z")

PRINT CHR$(character%);
PRINT character%

NEXT

5 : Manipulating Text

This program loops through all the letter A to Z and then a to z and
for each prints out its ASCII value.

It is these ASCII values which are used when comparing strings. For
example:

"SILL" < "FRED"

gives the result 'true' since the letter 'B' has an ASCII value which is
less than that for the letter T. Similarly

"SILL" < "SOS"

is also 'true'. In this case the first letters are the same so the next two
are compared and the ASCII value for 'I' is less that the ASCII value
for '0'. In addition

"SILL" < "SILLY"

is 'true'. No character at all is less than 'Y'. Finally

"SILL" < "bill"

is 'true'. All upper-case characters have ASCII values which are less
than the lower-case characters. The previous program illustrates this.

You need to be aware that upper- and lower-case characters are
represented differently, particularly when you are dealing with input
from a user. For example, the simple request:

INPUT "Do you wish to continue (YIN)"; ans$

would probably be complained about if it only accepted 'Y' or 'N' and
ignored 'y' and 'n'.

The problem of recognising what the user has typed becomes harder if
longer strings are permitted. For example there are four different
variations of NO : 'NO', 'No', 'no' and 'nO' and eight of YES: 'YES',
'Yes', 'yes', 'YEs', 'yeS', 'yES', 'yEs' and 'YeS'.

Rather than testing a string which has been input against all the
possible permutations of upper- and lower-case letters, it is easier to

95

AmigaBASIC : A Dabhand Guide

convert it to upper-case and then just do one test. To do this, the
function UCASE$ can be used. This takes a string as an argument and
returns it with all the characters converted into upper-case. For
example:

answerS - 1111

WHILE answerS <> "YES"
INPUT "Do you wish to continue (YES/NO)"; ans$
answerS = UCASE$(ans$)
IF answerS = "NO" THEN END

WEND
REM rest of program

This extract from a program starts by asking the user to enter either
'YES' or 'NO'. The string typed is converted to upper-case. Then, if it
matches the string 'NO', the program ends. If it matches the string
'YES' then the program will move onto the statement after the WEND.
Otherwise, the loop will be repeated and the question asked again.

Joining Strings Together
The '+' operator is used to 'join together', or more correctly speaking
'concatenate', two strings. For example:

namel$ = "Winston"
surnameS = "Churchill"
PRINT namel$ + " " + surnameS

Running this program produces:

Winston Churchill

Note, however, that the other arithmetic operators are meaningless
when applied to strings and produce an error message.

To obtain a string containing multiple copies of a character, the
STRING$ function can be used. This takes two arguments. The first is
an integer specifying the length of the string to be returned. The
second is either the ASCII code of the character wanted, or a string
starting with the character wanted. For example, the following three
programs produce the same output:

96

REM Prog1
FOR loop% = 1 TO 10

PRINT STRING$(loop%,ASC("*"»
NEXT

REM Prog2
FOR loop% = 1 TO 10

PRINT STRING$(loop%,"*")
NEXT

REM Prog3
FOR loop% = 1 TO 10

PRINT STRING$(loop%,"*/+-")
NEXT

5 : Manipulating Text

If the character to be repeated is a space, then an alternative method is
to use SP ACE$. This takes just one argument, which is the number of
spaces required.

Converting Between Numbers and Strings
It has been emphasised, throughout this book, that strings and
numbers are fundamentally different. You cannot assign a number to
a string variable and vice versa. However, at times this may cause a
problem. For example you may have a string and want to treat its
characters as a number. AmigaBASIC provides routines to handle this
kind of situation.

The function VAL takes a string of digits and converts it into a
number. For example:

string1$ = "42"
string2$ = "37"
num1% = VAL(string1$)
num2% = VAL(string2$)
PRINT num1% + num2%

will output the value 79.

97

AmigaBASIC : A Dabhand Guide

VAL ignores any space or tab characters at the start of the string and
returns the value of string, up to the first character which cannot be
treated as part of a number. For example:

PRINT VAL (" 12 High Street")

prints the value 12. Remember that it is not only digits which can be
treated as valid components of a number. For example:

PRINT VAL ("lE2")

prints the value 100. Although the 'E' is a not a digit, 1E2 is a valid
way of representing a number using exponential format.

The string may begin with a '+' or '-', for example:

number% = VAL ("-8")

assigns the value -8 to 'number%'.

If, however, the characters of the string (ignoring spaces) do not start
with a digit or a plus or minus sign, then VAL returns O.

There are three functions for converting a number into a string. The
most commonly used is STR$. This takes a decimal number as its
argument and returns the string containing the digits of the number.
For example:

num1% = 42
num2% = 37
string1$ = STR$(num1%)
string2$ = STR$(num2%)
PRINT string1$ + string2$

produces the string' 42 37'.

Note that the strings start with a space. All positive numbers are
converted to strings with a leading space whereas negative ones have
a leading minus sign.

The other two functions are HEX$ and OCT$. These also take a
decimal number as their argument. However, the strings they produce

98

5 : Manipulating Text

represent the hexadecimal (base 16), and octal (base eight), values of
this number respectively.

Octal numbers contain eight digits zero to seven. A one in a particular
column represents a power of eight, ie:

... 64 8 1

With hexadecimal numbers there is a slight problem. They require 16
digits to represent the decimal values 0 to 15. We can use the digits 0
to 9 as usual, but have to use the letters I A' to 'F' to represent the
values ten to fifteen. Therefore 4AC is a valid hexadecimal number. Its
decimal equivalent is 4*256 + 10*16 + 12, ie 1196. Therefore:

PRINT HEX$ (1196)

will print the string '4AC'.

Finding the Length of a String
Given a string, the first thing you may wish to know about it is its
length. This can be determined as follows:

INPUT "Please give me a string :",A$
PRINT LEN (A$)

LEN returns the number of characters in a string including spaces, tab
characters etc. This will be an integer value between 0 (for the null
string) and 255 (which is the maximum number of characters allowed
in a string).

Finding Strings within Strings
AmigaBASIC provides a function, INSTR, to check if one string occurs
within another. This function returns a number giving the position,
within the longer string, at which it found the start of the shorter one.
If the longer string does not contain the shorter one at all, then INSTR
returns O. For example:

INPUT "Please type an upper-case letter :",letter$
IF LEN (letter$) < 1 THEN

PRINT "You gave me a null string"
ELSEIF LEN(letter$) > 1 THEN

PRINT "You typed too many characters"

99

AmigaBASIC : A Dabhand Guide

ELSE
pos.in.string%

INSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZ",letter$)
IF pos.in.string% <> 0 THEN

PRINT letter$ " is at position "
pos.in.string%,PRINT" in the alphabet."

ELSE
PRINT "The character was not an upper-case letter"

END IF
END IF

This program inputs a string from the user and checks that it contains
a single character. If so, it uses INSTR to find if this string occurs
within the sequence 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. If it
does then INSTR returns the position at which it found the string, ie
'A' gives the result one, 'B' gives two and so on. If the string was not
found, for example if the user typed a lower-case letter or a digit, then
INSTR returns 0 and the program tells the user that they didn't type
an upper-case letter.

You can also tell INSTR the position in the longer string at which you
wish it to start looking for the shorter one. For example:

PRINT INSTR(l,"The cat sat on the mat.","at")

will start the search for 'at' at position one, ie the start of the sentence.
It will therefore give the result six since it will find the 'at' of the word
'cat'. This is the same as:

PRINT INSTR("The cat sat on the mat.","at")

since the position defaults to one if it is not given explicitly.

In contrast:

PRINT INSTR(ll,"The cat sat on the mat.","at")

will start the search at the the 11th letter of the sentence, ie the 't' of
'sat'. This will give the result 21 since it will find the 'at' of the word
'mat'.

Using this feature, you can find all occurrences of one string inside
another, for example:

100

5 : Manipulating Text

res% = -1
WHILE res% <> 0

res% = INSTR(res%+2,"The cat sat on the mat.",natn)
IF res% <> 0 THEN PRINT res%

WEND
PRINT "All found"

This program starts searching at position one in the sentence. Each
time it finds an occurrence of 'at', it prints out the position and starts
searching again, starting at the next character of the sentence. The
following illustrates what is happening. The '*' symbol denotes the
position at which each search starts, and the '%' symbol shows the
positions of the 'at' strings which are found.

The cat sat on the mat.
* % * % * % *

Splitting Strings
BASIC provides three functions for taking a large string and extracting
a smaller one from within it. The simplest are LEFf$ and RIGHT$.
These return a string made up of a particular number of characters
from the left-hand or right-hand end of another string~ For example:

PRINT LEFT $ ("HELLO" , 2)

will print:

HE

ie the first two characters of the string 'HELLO'. Similarly

PRINT RIGHT$ ("HELLO", 2)

will print:

LO

which are the last two characters of the string.

The third function is MID$. This returns a number of characters
starting from a given position within the string. For example:

101

AmigaBASIC : A Dabhand Guide

PRINT MID$("HELLO",2,3)

will print:

ELL

That is three characters from the string 'HELLO' starting from the
second character.

You can use MID$ to extract each character in turn from a string as
follows:

INPUT "Enter a string :",stringl$
FOR start% = 1 TO LEN(stringl$)

PRINT MID$(stringl$,start%,l)
NEXT start%

MID$ is being used to find a single character at a time. The position of
this character within the string is determined by 'start%', which starts
at the value one and increases by one each time round the loop. The
number of characters printed is dictated by the length of the string.

MID$ is particularly useful when used in conjunction with INSTR,
which we met above. For example:

INPUT "Enter a sentence",stringl$
start% = 1
space% = INSTR(stringl$," ")
WHILE space% <> 0

num% = space% - start%
PRINT MID$(stringl$,start%,num%)
start% = space%+l
space% = INSTR(start%,stringl$," ")

WEND
PRINT MID$(stringl$,start%,LEN(stringl$)+l)

Try running this program and typing in the sentence:

The quick brown fox jumps over the lazy dog

You should find that each word is printed out on a separate line as
follows:

102

The
quick
brown
fox
jumps
over
the
lazy
dog

5 : Manipulating Text

What the program is doing is extracting each word of the sentence in
tum and printing it out. It begins by initialising the value of 'start%' to
one, ie the position of the first character of the sentence. Next, INSTR
is used to find the position of the first space in the sentence, and this
value is assigned to 'space%'.

Then the loop starts. The first line within the loop sets 'num %' to be
the difference between 'space%' and 'start%'. This gives the number of
characters in the first word. Using MID$, this number of characters is
extracted from the sentence starting at position 'start%', and is printed
out. Then the program prepares to find the next word. 'start%' is
updated to the value 'space% + 1'. Since 'space%' contains the position
of the first space, 'space% + l' will give the position of the start of the
second word. (This is making the assumption that words are
separated by just a single space - the program won't work properly if
this is not the case.) INSTR is used again to find the position of a space
within the sentence. This time the sentence is searched from the start
of the second word, rather than from the beginning, so that the second
space is found. Then the process is repeated.

This continues until no more spaces are found. At this stage, start%
holds the position of the start of the final word which has not yet been
printed. Therefore the final PRINT is needed to complete the process
and print the remaining characters of the string.

Replacing Part of a String
MID$ can also be used to replace part of a string. For example:

a $ = 11 AAAMAAA II

MID$(a$,3,2) = "BCCE"
PRINT a$

103

AmigaBASIC : A Dabhand Guide

This program takes the variable 'a$' which contains the string
'AAAAAAAA' and replaces two of the characters in it, starting at
position three, with the first two characters of the string 'BCDE'. The
result is the string' AABCAAAA'.

If the final argument is omitted, then the whole of the replacing string
is used:

a $ = "AAAAAAAA"
MID$(a$,3) = "BCDE"
PRINT a$

This gives the result 'AABCDEAA'.

Note that the length of the string being replaced is never altered:

a$ = "AAAAAAAA"
MID$(a$,3) = "BCDEFGHI"
PRINT a$

This gives the result 'AABCDEFG'. MID$ starts at position three and
carries on replacing the characters in 'a$' with those in the right-hand
string, until it runs out of characters in 'a$' to replace.

Altering the Width of a Line
What does BASIC do when it is asked to print a line which is wider
than the width of the screen? To find out, try running the following
program:

testS = "The quick brown fox jumps over the lazy dog"
PRINT "The phrase '" testS "' contains all the letters
of the alphabet."

You should find that the last few words of the sentence disappear off
the right-hand side of the screen. AmigaBASIC has the concept of a
'line width'. This is a limit on the number of characters which can be
printed on a line. If this number is reached, then BASIC inserts a
carriage return and continues printing on the next screen line. The
default line width is infinite, ie BASIC will never insert a carriage

104

5: Manipulating Text

return for you however many characters you try to print. To change
this, use the WIDTH statement, for example:

WIDTH 62

sets the line width to 62 characters. This is a good number to choose
when using the default font, since it is the maximum number of
characters which can be fitted onto one line. Giving WIDTH an
argument between one and 254 sets the line width to a particular
number of characters, the value 255 is the default, which is taken as
meaning infinite.

To see the effect of WIDTH try the following program:

a$ = "aaaaaaaaaa"
b$ = "bbbbbbbbbb"
FOR chars% = 20 TO 80 STEP 20

WIDTH chars%
PRINT a$;b$;a$;b$;a$;b$;a$;b$
PRINT

NEXT

Character Positions
Whenever you print a character, it appears at the current 'pen
position'. Just like a graphics coordinate, this has a position which is
measured relative to the left-hand side and top of the screen.
However, instead of being measured in pixels, it is measured in tenns
of lines and columns. A character which is in the top left-hand corner
is in column one on line one. Moving down a row increases the line
number and moving right by one character increases the column
number.

With the default font, all the characters are equal. Therefore if you
start at the left-hand side of a line and print 50 characters, they will
appear in columns 1-50 exactly. However, this is not always the case.
Some fonts are 'proportionally spaced', which means that different
characters have different widths. For example 'm' and 'w' are wider
than 'i' and 'I'. In this case, what do we mean by the width of a
character? It is actually determined by the character 'a' of the font
being used. So if you print the number 'a' fifty times, the last one is

105

AmigaBASIC : A Dabhand Guide

defined to be in column 50. Whereas the fiftieth letter 'm' will
probably be in a higher numbered column and the fiftieth letter 'i' in a
lower numbered one.

For the sake of clarity, the examples in this chapter assume that the
default font is being used.

Tabulating Output
Another use of WIDTH is to alter the 'zone widths'. For example:

WIDTH 62,10

sets the line width to 62 and the zone width to 10 columns. Therefore,
if you use a comma to separate items to be printed, these will appear
either in column 1, 11, 21, 31, 41, 51 or 61. For example, try the
following:

max.string$ = "1234567890"
FOR loop% = 1 TO 10

min.str$ = LEFT$(max.string$,loop%)
WIDTH 62, loop%

PRINT
min.str$;min.str$;min.str$;min.str$;min.str$;min.str$:

PRINT "_","_","_","_11,"_11,1'_'1
NEXT

Each time round the loop, the loop variable is used to determine the
zone width and the number of characters of the sequence '1234567890'
which are placed in 'max.string$'. Then six copies of 'max.string$ are
printed consecutively, followed on the line beneath by six '-'
characters, each at the start of a zone. Since the zone width is equal to
the number of characters in 'max.string$', this has the effect of
underlining the start of each copy of 'max.string$'. Therefore the '-'
always lies beneath the number 1 as shown below:

111111

121212121212

123123123123123123

123412341234123412341234

123451234512345123451234512345

106

5 : Manipulating Text

123456123456123456123456123456123456

123456712345671234567123456712345671234567

123456781234567812345678123456781234567812345678

123456789123456789123456789123456789123456789123456789

123456789012345678901234567890123456789012345678901234567890

A more flexible way of outputting text in columns is provided by the
TAB statement. This is used as part of the PRINT statement, as
follows:

INPUT "Please input three strings :",a$,b$,c$
PRINT a$;TAB(10);b$;TAB(15);c$

The argument which TAB takes determines the column at which the
following string will be printed. If the current pen position lies beyond
this column, then the string will be printed in the correct column of the
line below. For example, entering the strings:

Fred, Jonathon, Steve

produces:

Fred Jonathon
Steve

This means that you can determine exactly the columns in which items
will be printed.

Outputting text more precisely can be achieved in a similar manner
using PT AB. This is the exception to the rule which says that text is
positioned in terms of rows and columns. It allows you to move to a
particular pixel along a line and print at that position. This means that,
even with the default font, characters can be 'out of line' with each
other. For example:

FOR loop% = 1 TO 16
start.pos% = 315 - 5* (loop%-l)

107

AmigaBASIC : A Dabhand Guide

PRINT PTAB(start.pos%);ST
RING$(loop%,"*")
NEXT

This uses the fact that the width of each character in the default font is
ten pixels to build a symmetrical tree of stars.

Note that the semi-colon following the TAB and PT AB statements is
optional, ie:

PRINT TAB(10);a$

is equivalent to:

PRINT TAB(10)a$

Positioning Text
The next step on from positioning text at a particular column is
locating it by giving both the column and line. You can do this using
the statement LOCATE, for example:

LOCATE 10,20

moves the pen position to line 10, column 20. Subsequent PRINT
statements will then start at that position. If you wish to change only
the line or only the column, then you can give it just one value and it
takes the other from the current position. For example:

LOCATE ,15

moves the pen to column 15 of the current line and:

LOCATE 5

moves the pen to line five but keeps it in the same column.

To read the current position yourself, use the following functions:

108

CSRLIN
POS

Returns the line number
Returns the column number

For example:

curlin% CSRLIN
curcol% POS(O)

5 : Manipulating Text

Note that you must supply an argument to POS, however; this can be
any value since it is ignored.

Note also that, if proportional fonts are being used or the pen has been
aligned to pixel positions, then these values are only approximate.

These statements for positioning text and the other string handling
routines introduced in this chapter are demonstrated in the following
program. It is a small adventure game, as described in the
introduction. The aim is to find the treasure. To do this you have to
explore the different locations, looking for items to help you find it
and avoid getting killed by the monsters which are out to get you.

A Final Example
The following program demonstrates the use of strings in an
adventure game. It is only a small implementation, containing 20
rooms and recognising just a few one or two word instructions.
However, it does show the principles involved. In addition, it
provides the full framework on which you could create a full size
game, should you wish to do so.

Try playing it. The object of the game is to find the treasure. To do so
you will have to overcome a few obstacles on the way. You can move
around using instructions such as 'GO NORTH' (this can actually be
abbreviated to 'NORTH' or simply 'N'). 'INY' will give you an
inventory of what you are carrying and 'LOOK' will repeat the
description of your current location. Read the descriptions carefully:
some of them contain clues as to what you should do. You'll have to
work out the rest of the instructions for yourself. If you have problems
solving it, then take a look at how the program works.

MapInit:
10C5% = 20 : verbs% = 15

nouns% = 21 : items% = 9

OPTION BASE 1
DIM SHARED des$(locs%)

109

AmigaBASIC : A Dabhand Guide

DIM SHARED N%(locs%),S%(locs%),E%(locs%),W%(locs%), U%(locs%),D%(locs%)
RESTORE roorndata

FOR room% = 1 TO locs%
READ des$(room%),N%(room%),S%(room%),E%(room%),W%(room%), U%(room%)

,D%(room%) NEXT
DIM SHARED itemloc%(items%) ,iterndes$(items%) ,itemadj$(items%)
RESTORE iterndata:
FOR item% = 1 TO items%

READ itemadj$(item%) ,iterndes$ (item%) ,itemloc% (item%)
NEXT

MainBody:
dead% 0
torchon% 0
bought% 0
awake% 0
CALL look(nn)
WHILE dead% = 0

PRINT

curloc%
baton%
lock%

LINE INPUT n:";sen$
sen$ = UCASE$(sen$)

1

o
o

CALL parse(sen$,words%,wordl$, word2$)
IF words% > 2 THEN

CALL pp("Sorry, the sentence is too complex.")
CALL pp("Please enter just one or two words.")

ELSE
CALL ident(wordl$,word2$,words%,noun$,verb$,state%)
IF state% = 1 THEN
CALL act(noun$,verb$)
END IF

END IF
WEND
IF dead% = 1 THEN

CALL pp("Sorry, you didn't make it!")
ELSE

CALL pp("Well done. n)
END IF
END

parse:
SUB parse(sen$,words%,wordl$,word2$) STATIC

CALL tspcrem(sen$)
CALL lspcrem(sen$)
spacepos% = INSTR(sen$," ")
IF spacepos% = 0 THEN

110

wordl$ = sen$
word2$

5 : Manipulating Text

words% 1
ELSE

wordl$ = MID$(sen$,l,spacepos%-l)
sen$ = MID$(sen$,spacepos%+l)
CALL lspcrem(sen$)
spacepos% = INSTR(sen$," ")
IF spacepos% = 0 THEN

word2$
words'll

ELSE

sen$
2

words'll = 3
END IF

END IF
END SUB

ident:
SUB ident(wordl$,word2$,words%,noun$,verb$,state', STATIC
SHARED nouns', verbs%

nounl' = 0 : noun2% = 0
state' = 0 : nounS = ""

RESTORE nounlist:
FOR loop' = 1 TO nouns%

verbl% = 0 : verb2% = 0
verbS = Itil

READ wordS : wordS = UCASE$(word$'
IF wordS wordl$ THEN nounl% = 1
IF wordS = word2$ THEN noun2% = 1

NEXT
RESTORE verblist:
FOR loop'll = 1 TO verbs%

READ wordS : wordS = UCASE$(word$,
IF wordS = wordl$ THEN verbl% 1
IF wordS = word2$ THEN verb2% = 1

NEXT
IF nounl% = 1 AND noun2% = 1 THEN

CALL pp("I can't cope with more than 1 noun'"
ELSEIF verbl% = lAND verb2% = 1 THEN

CALL pp("I can't cope with more than 1 verb",
ELSEIF nounl% = 0 AND noun2% 0 AND verbl% = 0 AND verb2' = 0 THEN

IF words'll = 1 THEN
CALL pp("I don't know that word")

ELSE
CALL pp("I don't know those words",

END IF
ELSEIF nounl% = 0 AND noun2% = 0 AND words'll = 2 THEN

IF verbl% = 1 THEN
CALL pp("I don't know the noun I "+word2$+It. It)

ELSE
CALL pp("I don't know the noun I n+wordl$+" I It)

END IF
ELSEIF verbl% = 0 AND verb2% = 0 AND words'll = 2 THEN

111

AmigaBASIC : A Dabhand Guide

IF nounl% = 1 THEN

CALL pp("I don't know

ELSE

CALL pp("I don't know

END IF

ELSE

IF nounl% 1 THEN nounS

IF noun2% 1 THEN nounS

IF verbl% 1 THEN verbS

IF verb2% 1 THEN verbS

state% = 1

END IF

END SUB

act:

SUB act(noun$,verb$) STATIC

IF verbS = "" THEN

the verb

the verb

wordl$

word2$

wordl$

word2$

CALL direction(noun$,status%)

IF status% = 1 THEN

verbS = "GO"

ELSE

CALL iown(noun$,status%)

IF status% = 1 THEN

verbS

ELSE

verbS

END IF

END IF

END IF

"DROP"

"GET"

IF verbS = "INV" THEN

CALL inv(noun$)

ELSEIF verbS = "LOOK" THEN

CALL look (noun$)

'''+word2$+I1I'')

I l1+wordl$+"1 tt)

ELSEIF verbS = "IN" OR verbS "ENTERII THEN

CALL enter (noun$)

ELSEIF verbS = "OUT" OR verbS IIEXIT II THEN

CALL leave (noun$)

ELSE IF verbS = "GO" THEN

CALL go (noun$)

ELSEIF verbS = "GET" OR verbS "TAKE" THEN
CALL take (noun$)

ELSEIF verbS = "DROP" THEN

CALL drop (noun$)

ELSE IF verbS = "BUY" THEN

CALL buy (noun$)

ELSEIF verbS = "EAT" THEN

CALL eat (noun$)

ELSEIF verbS = "UNLOCK" THEN

112

CALL unlock (noun$)

ELSEIF verbS ; "ON" THEN

CALL onv (noun$)

ELSEIF verbS ; "OFF" THEN

CALL offv(noun$)

END IF

END SUB

direction:

SUB direction(noun$,status%) STATIC

status% ; 0

RESTORE dirlist

FOR loop% ; 1 TO 12

READ dir$

IF UCASE$(dir$)

NEXT

END SUB

iown:

nounS THEN status%

SUB iown(noun$,status%)STATIC

status% ; 0

CALL itemid(noun$,item%)

IF item% <> 0 THEN

IF itemloc%(item%) ; 0 THEN status% = 1

END IF

END SUB

inv:

SUB inv(noun$) STATIC

SHARED items%

IF nounS ; THEN

count% ; 0 : c% ; 0

FOR loop% = 1 TO items%

IF itemloc%(loop%) = 0 THEN count%

NEXT

IF count% > 0 THEN

CALL pp ("You are holding")

FOR loop% = 1 TO items%

IF itemloc%(loop%) 0 THEN

5 : Manipulating Text

1

count% + 1

IF c% = count% - 1 AND count% <> 1 THEN

CALL pp ("and")

END IF

CALL pp(itemadj$(loop%))

IF c% = count% - 1 THEN
CALL pp (itemdes$ (loop%) +)

ELSEIF c% = count% - 2 THEN

CALL pp(itemdes$(loop%))

ELSE

CALL pp(itemdes$(loop%)+",")

113

AmigaBASIC : A Dabhand Guide

END IF
c% ~ c% + 1

END IF

NEXT

ELSE
CALL pp("You are not holding anything.")

END IF

ELSE

CALL pp("I don't understand that instruction")

END IF

END SUB

look:

SUB look(noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%

IF nounS ~ "" THEN
CALL pp("You are "+des$(curloc%))

IF curloc% = 20 THEN

dead% = -1

ELSE

IF torchon% = 1 AND baton% > 10 THEN

CALL pp("Your torch has faded.")
torchon% = 0
IF (curloc%>=8 AND curloc%<=16) OR cur1oc%>=19 THEN

CALL pp("It's dark in here.")

CALL pp("If you move, you may fall into a pit.")

END IF

ELSEIF torchon% = 0 AND (curloc% = 8 OR curloc% = 16 OR curloc% =
19) THEN

CALL pp("It's dark in here.")

CALL pp("If you move, you may fall into a pit.")

END IF

CALL exits (curloc%)

CALL contents(curloc%)

END IF

ELSE

CALL pp("I don't understand that instruction")

END IF

END SUB

go:

SUB go(noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%
CALL direction(noun$,status%)

IF status% = 1 THEN

114

oldloc% ~ curloc%

CALL iown("TORCH",status%)
IF torchon% ~ 0 THEN

5 : Manipulating Text

IF (curloc% >= 8 AND curloc% <= 16) OR curloc% = 19 OR curloc% = 20
THEN

CALL pp("Oops, you've fallen into a pit and broken your neck.")
dead% = 1

END IF
END IF

IF dead% o THEN
moved% 1
IF nounS "NORTH" OR noun$= "N" THEN

CALL checkgo(N%(),moved%)
ELSEIF nounS = "SOUTH" OR noun$= "S" THEN

CALL checkgo(S%(),moved%)
ELSEIF nounS = "EAST" OR noun$= "E" THEN

CALL checkgo(E%(),moved%)
ELSEIF nounS = "WEST" OR noun$= "W" THEN

CALL checkgo(W%(),moved%)
ELSE IF nounS = "UP" OR noun$= "U" THEN

CALL checkgo(U%(),moved%)
ELSEIF nounS = "DOWN" OR noun$= "0" THEN

IF lock% = 0 AND curloc% = 18 THEN
CALL pp("You can't - the trapdoor is locked.")
moved% = 0

ELSE
CALL checkgo(D%(),moved%)

END IF
END IF
IF moved% = 1 THEN

IF torchon% = 1 THEN baton% = baton% + 1
CALL look("")
CALL giant (oldloc%)

END IF
END IF

ELSE
CALL pp("I don't understand that instruction")

END IF
END SUB
SUB checkgo(dir%(),moved%) STATIC
SHARED curloc%

IF dir%(curloc%) = 0 THEN
CALL pp ("There is no way to go in that direction.")
moved% = 0

ELSE
curloc% = dir%(curloc%)

END IF
END SUB
SUB giant(oldloc%) STATIC
SHARED curloc%, awake%, dead%

CALL itemid("GIANT",gi%)

115

AmigaBASIC : A Dabhand Guide

IF itemloc%(gi%) = curloc% THEN

IF awake% = 1 THEN

CALL pp("The giant sees you, licks his lips and eats you.")

dead% = 1

ELSE

CALL itemid("FOOD",fo%)

IF itemloc%(fo%) = 0 THEN

CALL pp("The giant's nose starts twitching.")

CALL pp("Suddenly he wakes up, sees you and the food and eats you

both ...)

dead% = 1

ELSE

CALL pp("Although you tiptoe about very quietly, the giant starts

to wake up.")

awake% = 1

END IF

END IF

ELSE

IF awake% = 1 THEN

itemloc%(gi%) = oldloc%

CALL itemid ("FOOD", fo%)

IF itemloc%(gi%) = itemloc%(fo%) THEN

awake% = 0

itemloc%(fo%) = -1

SAY (TRANSLATE$ ("Yummy, yummy"»

END IF

END IF

END IF

END SUB

take:

SUB take (noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%

CALL itemid(noun$,item%)

IF item% <> 0 THEN

116

IF itemloc%(item%) = curloc% THEN

IF noun$ = "GIANT" THEN

CALL pp("The giant wakes up as you struggle to lift him.")

CALL pp("He is not amused and kills you with a single blow")

dead% = 1

ELSEIF noun$ = "BATTERY" AND bought% = 0 THEN

CALL pp("The shop keeper isn't happy about you taking the battery

without paying for it.")

CALL pp("He calls the police to escort you away.")

dead% = 1

ELSE

CALL pp("You get the .. +itemdes$(item%)+)

itemloc%(item%) = 0

END IF

5 : Manipulating Text

ELSE
CALL pp("I see no "+itemdes$(item%)+" here.")

END IF
ELSE
CALL pp(nI don't understand that instruction")
END IF

END SUB

drop:
SUB drop(noun$) STATIC
SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%

CALL itemid(noun$,item%)
IF item% <> 0 THEN

IF itemloc%(item%) = 0 THEN
CALL pp("You drop the "+itemdes$(item%)+".")
itemloc%(item%) = curloc%
IF (noun$ = "BATTERY" OR nounS = "TORCH") THEN

IF nounS = "BATTERY" AND torchon% = 1 THEN
CALL pp("Your torch has now gone out.")
torchon% = 0
IF (curloc%>=8 AND curloc%<=16) OR curloc%>=19 THEN

CALL pp("It's dark in here.")
CALL pp("If you move you may fall into a pit.")

END IF
ELSEIF nounS = "TORCH" THEN

CALL itemid("BATTERY",ba%)
IF itemloc%(ba%) = 0 THEN

itemloc%(ba%) = curloc%
IF torchon% = 1 THEN

CALL pp("The battery falls out of it and the light goes
out.")
torchon% = 0
IF curloc%>=8 OR curloc%<=16 OR curloc%>=19 THEN

CALL pp("It's dark in here.")
CALL pp("If you move you may fall into a pit.")

END IF
ELSE

CALL pp("The battery falls out of it.")
END IF

END IF
END IF

END IF
ELSE

CALL pp("You are not holding the "+itemdes$(item%)+".")
END IF

ELSE
CALL pp("I don't understand that instruction")

END IF
END SUB

117

AmigaBASIC : A Dabhand Guide

enter:
SUB enter(noun$) STATIC
SHARED curloc%,torchon%,baton%,bought%,loek%,dead%,awake%

IF noun$"" THEN
IF curloc% = 2 THEN

curloc%= 3
CALL look("")

ELSE IF curloc% = 4 THEN
curloe% = 5
CALL look ("")

ELSE
CALL pp ("There is nothing here I ean enter.")

END IF
ELSEIF nounS = "HUT" THEN

IF curloe% = 2 THEN
curloc% = 3
CALL look("")

ELSE
CALL pp("There isn't a hut here to enter.")

END IF
ELSEIF nounS = "SHOP" THEN

IF curloe% = 4 THEN
curloc% = 5
CALL look("")

ELSE
CALL pp("There isn't a shop here to enter.")

END IF
ELSE

CALL pp("I don't understand that instruction")
END IF

END SUB

leave:
SUB leave(noun$) STATIC
SHARED curloc%,torchon%,baton%,bought%,loek%,dead%,awake%

IF noun$"" THEN
IF eurloe% = 3 THEN

curloe%= 2
CALL look ("")

ELSEIF curloc% = 5 THEN
curloc% = 4
CALL look("")

ELSE
CALL pp("There is nothing here I can exit.")

END IF
ELSE IF nounS = "HUT" THEN

IF curloc% = 3 THEN
curloc% = 2

118

5 : Manipulating Text

CALL look(....)

ELSE

CALL pp("You're not inside a hut.")

END IF

ELSEIF nounS ; "SHOP" THEN

IF curloc% ; 5 THEN

curloc% ; 4

CALL lookeR")

ELSE

CALL pp("You're not inside a shop.")

END IF

ELSE

CALL pp("I don't understand that instruction")

END IF

END SUB

buy:

SUB buy(noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%

CALL itemid(noun$,item%)

IF item% <> 0 THEN

IF itemloc%(item%) = curloc% THEN

IF nounS = "BATTERY" THEN

IF bought% = 0 THEN

CALL itemid ("SOVEREIGN" , sov%)

IF itemloc%(sov%) = 0 THEN

CALL pp("The shopkeeper takes your sovereign in exchange for

the battery.")

itemloc%(item%) = 0

itemloc%(sov%) ; -1

bought% = 1

ELSE

CALL pp("You have nothing to pay for it with.")

END IF

ELSE

CALL pp("You've already paid for it.")

END IF

ELSE

CALL pp("It appears not to belong to anyone.")

CALL pp("I should just take it if I were you.")

END IF

ELSE

CALL pp("I see no "+itemdes$(item%)+" here.")

END IF

ELSE

CALL pp("I can't apply that without a noun")

END IF

END SUB

119

AmigaBASIC : A Dabhand Guide

eat:

SUB eat (noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%

IF nounS <> THEN

IF nounS = "FOOD" THEN

CALL itemid("FOOD",fo%)

IF itemloc%(fo%) = 0 THEN

CALL pp("You eat the food and inunediately fall asleep.")

CALL pp("Some time later you wake up again, feeling very sick.")

itemloc%(fo%) -1

IF torchon% = 1 THEN baton% = baton% + 5

ELSE

CALL pp("You haven't got any food.")

END IF

ELSE

CALL pp("Don't be silly!")

END IF

ELSE

CALL pp("I can't apply that without a noun.")

END IF

END SUB

unlock:

SUB unlock(noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%

IF nounS <> "" THEN

IF nounS = "DOOR" THEN

IF curloc% = 18 THEN

CALL itemid("KEY",ke%)

IF itemloc%(ke%) = 0 THEN

IF lock% = 0 THEN

CALL pp("You unlock the door with your key.")

lock% = 1

ELSE

CALL pp("The door is already unlocked.")

END IF

ELSE

CALL pp ("You haven't got the key.")

END IF

ELSE

CALL pp ("There isn't a door here.")
END IF

ELSE

CALL pp("I don't understand that instruction.")

END IF

ELSE

CALL pp("I can't apply that without a noun.")

END IF

END SUB

120

5 : Manipulating Text

onv:
SUB onv(noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%
IF nounS <> THEN

IF nounS = "TORCH" THEN

CALL itemid("TORCH",tor%)

IF itemloc%(tor%) = 0 THEN

CALL itemid("BATTERY",bat%)

IF itemloc%(bat%) = 0 THEN

IF torchon% <> 1 THEN

IF baton% <= 10 THEN

CALL pp("Your torch is now on.")

torchon% = 1

ELSE

CALL pp("Sorry, the battery is dead.")

END IF

ELSE

CALL pp("The torch is already on.")

END IF

ELSE

CALL pp("You don't have a battery for it.")

END IF

ELSE

CALL pp("You aren't carrying a torch.")

END IF

ELSE

CALL pp("I don't understand that instruction.")

END IF

ELSE

CALL pp("I can't apply that without a noun.")

END IF

END SUB

offv:

SUB offv(noun$) STATIC

SHARED curloc%,torchon%,baton%,bought%,lock%,dead%,awake%

IF nounS <> THEN

IF nounS = "TORCH" THEN

CALL itemid("TORCH",tor%)

IF itemloc%(tor%) = 0 THEN

IF torchon% = 1 THEN

CALL pp("Your torch is now off.")

torchon% = 0

IF (curloc%>=8 AND curloc%<=16) OR curloc%>=19 THEN

CALL pp("It's dark in here.")

CALL pp("If you move you may fall into a pit.n)

END IF

ELSE

121

AmigaBASIC : A Dabhand Guide

CALL pp("The torch is already off.")

END IF

ELSE

CALL pp ("You aren't carrying a torch.")

END IF

ELSE

CALL pp("I don't understand that instruction.")

END IF

ELSE

CALL pp("I can't apply that without a noun.")

END IF

END SUB

exits:

SUB exits(room%) STATIC

count% = a : c% a
IF N% (room%) <> a THEN count%

IF S%(room%) <> a THEN count%

IF E%(room%) <> a THEN count%

IF W% (room%) <> a THEN count%

IF U%(room%) <> a THEN count%

IF D% (room%) <> a THEN count%

IF count% = 1 THEN

CALL pp ("There is an exit")

ELSEIF count% > 1 THEN

CALL pp("There are exits")

END IF

count% +

count% +

count% +

count% +

count% +

count% +

IF N% (room%) <> a THEN CALL eachexit("north",c%,cQunt%)
IF S% (room%) <> a THEN CALL eachexit("southT',c%,count%)

IF E%(room%) <> a THEN CALL eachexit("east",c%,cQunt%)

IF W% (room%) <> a THEN CALL eachexit("west",c%,cQunt%)

IF U% (room%) <> a THEN CALL eachexit("up",c%,count%)
IF D% (room%) <> a THEN CALL eachexit("down",c%,count%)

END SUB

eachexit:

SUB eachexit(dir$,c%,count%) STATIC

IF count% = 1 THEN

CALL pp(dir$+)

ELSEIF c% = count% - 1 THEN
CALL pp("and .. +dir$+)

ELSEIF c% = count% - 2 THEN

CALL pp(dir$)

ELSE

CALL pp(dir$+",")

END IF

c% = c% + 1

END SUB

122

contents:

SUB contents(room%) STATIC

SHARED curloc%,items%,awake%

count% = 0 : c% = 0

FOR loop% = 1 TO items%

IF itemloc%(loop%) = curloc% THEN count%

NEXT

IF count% = I THEN

CALL pp ("There is")

ELSEIF count% > 1 THEN

CALL pp("There are")

END IF

IF count% > 0 THEN

FOR loop% = 1 TO items%

IF itemloc%(loop%) curloc% THEN

IF c% = count% - 1 AND count% <> I THEN

CALL pp("and")

END IF

IF itemdes$(loop%) "giant" AND awake%

CALL pp(" an angry looking")

ELSE

CALL pp(itemadj$(loop%»

END IF

IF c% = count% - 1 THEN

CALL pp(itemdes$(loop%)+" here.")

ELSEIF c% = count% - 2 THEN

CALL pp(itemdes$(loop%»

ELSE

CALL pp(itemdes$(loop%)+",")

END IF

c% = c% + 1

END IF

NEXT

END IF

END SUB

lspcrem:

SUB lspcrem(sen$) STATIC

ch$ =

WHILE ch$ = " "

ch$ = LEFT$(sen$,l)

IF ch$ = " " THEN sen$ = MID$(sen$,2)

WEND

END SUB

tspcrem:

SUB tspcrem(sen$) STATIC
ch$ =

WHILE ch$ = " "

5 : Manipulating Text

count% + 1

1 THEN

123

AmigaBASIC : A Dabhand Guide

ch$ = RIGHT$(sen$,l)
IF ch$ = n n THEN sen$

WEND

MID$(sen$,l,LEN(sen$)-l)

END SUB

pp:

o : chars%

SUB pp(sen$) STATIC

spos% = 0 : done%

WHILE done% = 0

oldspos% = spos% + 1

60

spos% = INSTR(oldspos%,sen$," ")

IF spos% > 0 THEN

wordS = MID$(sen$,oldspos%,spos%-oldspos%)

IF POS(O) > chars% - (LEN (word$) + 1) THEN PRINT
PRINT n ";word$i

ELSE

done%

END IF

WEND

wordS = MID$(sen$,oldspos%)
IF POS(O) > chars% - (LEN(word$) + 1) THEN PRINT

PRINT " n ;word$;

END SUB

itemid:

SUB itemid(noun$,item%) STATIC

SHARED items%

item% = 0

FOR loop% = 1 TO items%

IF UCASE$(itemdes$(loop%»= UCASE$(noun$) THEN

item% = loop%

END IF

NEXT

END SUB

itemdata:

DATA "a shiny gold", "sDvereign",O
DATA "a sturdy grey", "torch", 3

DATA "a torch", "battery", 5
DATA "a tasty morsel of", "food", 11
DATA "a loudly snoring","giant n ,16
DATA "a large metal", "key", 13
DATA tllI,"hut",-l
DATA n"," s hop",-l

DATA "","door",-l

nounlist:

dirlist:

DATA north, n, south, s, east, e, west, W, up, u, down, d

124

5 : Manipulating Text

DATA sovereign, torch, battery, food, giant, key
DATA hut, shop, door
verblist:
DATA look, inv, go, in, out, enter, exit
DATA get, take, drop, buy, on, off, eat, unlock roomdata:
DATA "in clearing in the forest.",0,2,0,0,0,0
DATA "at a junction between well-worn paths. A small hut stands at the
roadside.",1,6,4,0,0,0
DATA "inside the hut.",O,O,O,O,O,O
DATA "at the end of the path in front of a strange looking shop.",O,O,
0,2,0,0
DATA "inside the shop. All kinds of strange objects stock the shelves.

In the centre is a table containing this week's special offers."
,0,0,0,0,0,0
DATA "at the edge of a small lake.",2,7,0,0,0,0
DATA "following a small, stream which abruptly disappears into the ground
.",6,0,0,0,0,8
DATA "in a musty smelling corridor 0,0,9,0,7,0
DATA "in a windy passage way.",0,10,0,8,0,0
DATA "inside a giant ha11.",9,16,ll,0,0,0
DATA "in a huge kitchen. Cooking implements are littered around the place

and the aroma of baking fills the air.",0,12,0,10,0,0
DATA "in a dining hall. The room is dominated by a massive table in the
centre with a single chair at its head.",11,14,13,0,0,0
DATA "in a study. Row upon row of leather bound volumes deck the walls."
,0,0,0,12,0,0
DATA "in a bedroom. A huge single bed is placed against one wall and an
equally huge wardrobe against another.",12,0,0,lS,0,0
DATA "in a corridor.",16,0,14,0,0,0
DATA "in the sitting room. There is an armchair in one corner but very
little other furniture.",10,1S,0,17,O,O
DATA "outside in a fantastic garden. Beautiful flowers are growing
everywhere and gently singing to each other. The air is heavy with their
scent.",0,18,16,0,0,O
DATA "at the edge of the garden. There is a trap door in the ground."
,17,0,0,0,0,19
DATA "in a small, damp corridor.",O,20,0,0,18,0
DATA "in the treasure room. You've reached your destination.",O,O,O,O,O,O

The program works as follows:

MapInit:
It starts by setting up the following variables:

= number of rooms
= number of verbs it knows

locs%
verbs %
nouns% = number of nouns it knows (items% + the 12 directions)

125

AmigaBASIC : A Dabhand Guide

items % = number of items it knows

Then it sets up various arrays, reading the data for them from the data
statements at the bottom of the program:

des$ holds the descriptions of the rooms
N% holds the number of the location to the north of each

room
S%

E%
W%

U%
0%
itemloc%
itemdes$
itemadj$

holds the number of the location to the south of each
room
holds the number of the location to the east of each room
holds the number of the location to the west of each
room
holds the number of the location up from each room
holds the number of the location down from each room
holds the number of the location of each item
holds the definition of each item
holds the adjective describing each item

Note that, if an item has a location number of 0, then it is being carried
by the player. If the number is -1, then the object no longer exists or is
being treated as a special object.

Note also that the arrays are all SHARED, so that the contents of them
can be accessed by the subprograms as well as the main program.

Main Body:
This starts by setting up various flags:

126

curloc%
dead%

torchon%
baton%
bought %

lock%
awake%

= number of the current room
= 0 if the player is still alive
= 1 if the player is dead
= -1 if the player has successfully completed the

game
= 0 if the torch is off and 1 otherwise
= number of moves the battery has been on for
= 0 if the battery has not yet been bought
= 1 otherwise
= 0 if the trapdoor is locked and 1 otherwise
= 0 if the giant is asleep and 1 otherwise

5 : Manipulating Text

These flags are SHARED by the subprograms which occur later on in
the program to do the work. This means that they get updated
automatically as the state of one of the items changes.

Then the program calls the subprogram 'look' to print the description
for the current room.

The main loop continues while the player is still alive but has not yet
completed the game. This loop reads in an instruction from the user
(LINE INPUT assigns the whole line to the variable, including
characters which INPUT on its own treats as separators). This is then
parsed to obtain the individual words in it by the subprogram 'parse'.
Provided that just one or two words were given, these are then
analysed to see if the program recognises them by the subprogram
'ident'. This subprogram prints out messages if the individual words
don't make sense and returns 'state%' as O. Otherwise, it assigns the
appropriate words to:

verb$ = verb input or the null string if no verb was given
noun$ = noun input or the null string if no noun was given

and returns 'state%' as one. Finally, the subprogram 'act' is called to
act upon the instruction.

parse:
The parser starts by calling other subprograms to remove the leading
and trailing spaces from the instruction. Then it searches for a space. If
one is not found, the instruction must consist of just a single word.
This is assigned to 'word1$' and a null string is placed in 'word2$'.

If a space is found, then the letters up to the space are placed in
'word1$' and 'sen$' is altered by these letters and the space being
removed from the start of it. Note that, since 'sen$' is being passed
from 'act' without being enclosed in round brackets, then the contents
of the variable being passed are being altered by this action. This
doesn't matter since it is not going to be used again. If you wished,
you could use the brackets to ensure that it is not changed.

Then any leading spaces are removed again. This is so that two words
which are typed in with more than one space separating them are
dealt with correctly. Again a space is looked for. If one is found then
the sentence must have contained at least three words and so

127

AmigaBASIC : A Dabhand Guide

'words%' is set to three and the main body rejects it. Otherwise, the
remaining word is placed in 'word2$'.

ident:
This subprogram tries to identify the words entered. It loops round all
the nouns and verbs which is knows. For each one, if it matches one of
the words, a flag is set:

noun 1 % = 0 if word1$ is not a noun and 1 otherwise
noun2% = 0 if word2$ is not a noun and 1 otherwise
verb1 % = 0 if word1$ is not a verb and 1 otherwise
verb2% = 0 if word2$ is not a verb and 1 otherwise

It then checks for the combinations which are disallowed. Two verbs
or two nouns are rejected. Similarly, if it doesn't recognise any of
them, it complains. The other checks ensure that, if two words were
typed and only one is recognised, then the program states that it
doesn't know about the other one. Finally, 'noun$' and 'verb$' are
assigned the values of 'wordl$' and 'word2$' according to the results
of the search.

act:
This is the subprogram which deals with individual verbs. It starts by
trying to guess which verb was meant when only a noun was given. If
the noun is a direction, then the verb is assumed to be 'GO'. Otherwise
it is assumed to be either 'DROP' or 'GET', depending on whether or
not the player is currently holding the noun.

Having now ensured that it has a verb, it calls the appropriate
subprogram to deal with it.

direction:
This is used by 'act' to determine whether the noun is a direction. It
loops round, reading all the directions and checking to see if they
match the noun which is passed as its first parameter. If the noun is a
direction, the second parameter, 'status%', is returned as one;
otherwise, it is returned as zero.

iown:
This again is used by 'act'. It checks to see if the noun given is the
name of an item which the player is currently holding. 'itemid%' gives
the number of a particular item. The location of this is then checked to

128

5 : Manipulating Text

see if it is zero (ie belongs to the player). Again the second parameter
is returned as one if the routine successfully found that the item was
owned and zero otherwise.

inv:
This is the first of the subprograms for handling a verb. It checks that
the 'INV' instruction has not been followed by a noun and, if not, it
counts the number of items which the player is holding. If the number
is zero then a message is printed saying that nothing is being held.
Otherwise the beginning of the sentence 'You are holding' is printed,
and a list of the items is output.

Note the way in which the list is given. If the current item is the last
one (ie the count of items already printed is one less than the total
number of items) then a full-stop is placed after it. If, in addition, there
have been others in the list, then its description is preceded by the
word 'and'. If it is the second to last (the count is two less than the
total) then it is printed on its own. Finally, any other item is printed
followed by a comma to separate it from the ones which are still to
come. This allows you to obtain the following types of lists (the items
are not ones which actually occur in the game):

You are holding a red ball.

The red ball is the last item so it is printed with a full stop after it.
Since there were no others, nothing is printed before it.

You are holding a blue bag and a red ball.

The blue bag is the second to last item so it is printed normally. This
time, the red ball is not the only item so it is preceded by the word
'and'.

You are holding a green lollipop, a blue bag and a red
ball.

The green lollipop is not the last nor the second to last item, so it is
printed followed by a comma. The others are given as above.

129

AmigaBASIC : A Dabhand Guide

look:
Provided that the instruction was given on its own, this subprogram
prints out the description of the current room. If this room is the last
one then it sets 'dead' to -1 to indicate that the player has succeeded.

It then goes on to deal with the state of the torch. If the battery has run
out then 'torchon%' is set to 0 and a message is printed. If, in addition,
the player is currently in an underground room, a warning message is
given.

If 'torchon%' was already 0, and the player is in a room which is one
move away from the outside world, then the same warning is issued.
This ensures that when he goes indoors, he is warned about the
pOSSibility of falling into a pit and given the opportunity of preventing
it from happening.

Finally, subprograms are called to list the exits available and any items
which there may be in the current location.

go:
This subprogram deals with moving the player about. It checks to
make sure that the noun is a valid location and, if so, starts by saving
the number of the current location.

It then checks to see if the torch is on. If it isn't and the current location
is one of the underground rooms, then this means that the player is
moving about in the dark. It therefore tells him that he has fallen into a
pit and sets 'dead%' to one.

The next block deals with each direction in turn. It starts by assuming
that the move will take place and sets the local variable 'moved%' to
one. Then it calls a subprogram to check if there is any way to go in
that direction. If there is, then 'curloc%' is updated. If not, the
subprogram prints a message and sets 'moved %' to O. The only special
case is when the player is trying to go down through the trap door in
location 18. He is prevented from doing this if the door is locked.

Provided that the move succeeded, the number of moves that the
battery has been on for is updated if the torch is on. Then the
description of the new location is printed. Finally, a separate
subprogram is called to handle the special cases involving the giant.

130

5 : Manipulating Text

checkgo:
This is a subprogram used by 'go'. It is passed an array which contains
the locations lying in a particular direction from each room. Then for
the current location, it checks to see if there is any way to go in that
direction and acts as described above.

giant:
Again this is used only by 'go'. It starts by finding where the giant is
and, if he is in the current location, then it makes further checks. If he
is awake then he eats the player. If he is asleep but the player is
carrying the food he wakes up in a hurry and eats the player and the
food. If he is asleep and the player hasn't got the food with him then
he wakes up but takes no immediate aggressive action.

While the giant is awake, he is moved to the location which the player
has just left. This means that, if the player backtracks, he will meet a
hungry, wide awake giant and will be killed. The final twist is that if
the giant comes across a room containing the food, he eats it and falls
asleep again. The player is given a clue about this happening by the
words 'Yummy, yummy' being spoken. (Speech will be dealt with
properly in a later chapter.) This means that the player, on returning to
this location, will find him slumbering peacefully.

take:
This deals with the verbs 'GET' and 'TAKE'. The first check is that
these have been followed by a noun to indicate what is to be taken.
Next a check is made to ensure that the item wanted is actually in the
current location. Then normally a message is given saying that the
item has been obtained and the location of the item is altered to
indicate that it now is being carried. One exception to this is when the
player tries to get the giant. In this case the giant kills him. The other is
when he tries to get the battery for the first time. This is classed as
shop lifting and the player is removed from the game.

drop:
This is the opposite to 'take'. It checks to make sure that the item
specified is currently being carried and, if so, transfers its location to
the current room. The special cases are when dropping the torch or
battery. If the battery is dropped whilst the torch is on, then the torch
automatically goes out. If the torch is dropped whilst the player is also

131

AmigaBASIC : A Dabhand Guide

holding the battery, then the battery falls with it. Again the torch, if it
was on, is extinguished. In either case, if the torch goes out whilst the
player is underground, the warning about falling into a pit is given.

enter:
This deals with 'ENTER' and 'IN'. It can be used on its own or with
the nouns 'SHOP' or 'HUT'. If it is used on its own, it enters
whichever of these two the player is next to. All it does is to alter the
current location to be inside either of these and to call 'look' to print
out the description of this room. However, it does check beforehand
that the player is actually standing next to the building he wants to
enter.

leave:
This deals with 'EXIT' and 'OUT' in a similar manner to 'enter' above.

buy:
This is provided to allow the battery to be obtained. Trying to buy any
other object in the room just produces a message telling the player to
take it. The battery can only be bought if: it is in the current location, it
hasn't been bought already and the player is holding the sovereign to
pay for it with.

eat:
Trying to eat anything other than the food gives an appropriate
message! Eating the food effectively puts the player to sleep for five
game moves. If the torch is on, the number of moves the battery has
been on for is increased by this number. The only other effect is to
destroy the food - its location is set to -l.

unlock:
The only item which can be unlocked is the door. The checks made are
that: the door is in the current location, it is currently locked and that
the player has the key. If so, 'lock%' is set to one so that it is possible to
move down through it later.

onv:
This deals with turning the torch on. For this to be possible, the player
must be carrying both the torch and the battery, and the battery must
not have already been on for more than 10 game moves. If this is the

132

5 : Manipulating Text

case, then 'torchon%' is set to one. Trying to turn the torch on when it
is already on has no effect other than producing a message.

offv:
This turns the torch off again provided it is being carried and that it is
currently on. Turning it off sets 'torchon%' back to O. In addition, if the
player is currently underground, the warning about pits is given.

exits:
This is the subprogram which prints out all the exits available from the
current location. It starts by counting them and then goes through
them again, printing those available. The method used to do this is the
same as that used by 'inv' to deal with items.

eachexit:
This subprogram is called from 'exits' above. It handles one direction
at a time.

contents:
This is similar to 'inv', except that it lists the items in a particular
location, rather than those being carried by the player. It starts by
counting the number of items and then printing 'There is' or 'There
are' depending on whether or not more than one has been found. Then
the items and their adjectives are printed. The method of deciding
when to print commas or the word 'and' is the same as in 'inv'. The
list is terminated by the word 'here.'

There is one special case which this subprogram deals with. If the
giant is awake, then the description stored in the array, 'a loudly
snoring', is replaced by 'an angry looking'.

Ispcrem:
This removes leading spaces from a string. If checks whether or not
the left-hand character is a space. If so, it converts the string into itself
minus the first character and repeats the check.

tspcrem:
This removes trailing spaces by repeatedly checking the right-hand
character and removing it when necessary.

133

ArnigaBASIC : A Dabhand Guide

pp:
This subprogram is the 'pretty printer'. All printing performed by the
program is carried out by passing the string to be printed to this
routine. It acts by locating the individual words in the sentence and
then printing them out, preceded by a space. If the word won't fit on
the current line, then a new one is started.

The individual words are extracted by finding the successive spaces in
the string and then taking the letters between the previous space and
the current one. Note that it is assumed that the string does not start or
end with spaces and that words are separated by just a single string.
Since this routine is dealing only with text contained in the program
and not with text which the player inputs, this is a legitimate
simplification. Note also that, when no further space is found, the last
word still needs to be printed. The number of words is always one
greater than the number of spaces.

The width of the screen has been set to 60 characters. To determine
whether or not a word will fit on the current line, POS(O) is called to
return the column that the text cursor is in. The maximum width of the
window is set to be 60 (it is held in chars%). If the maximum width is
less than the current position plus the length of the word plus one (for
the space in front of it), then a PRINT command is given to move to
the next line. A space and the word is then printed and the text cursor
is left at the end of the word.

Note that a space is printed even when a new line is being used. This
means that all text starts in column two. Hence the prompts for user
input which are printed in the first column are more distinctive.

itemid:
This is passed a noun and it returns a number stating which element it
is in the item arrays. If the noun is not an item, then the number
returned is O.

itemdata:
These data statements contain the adjectives, names and initial
locations of all the items which are read into arrays at the start of the
program. Note that, since the hut, shop and door aren't to be included
in the list of items which can be picked up and dropped, their location

134

5 : Manipulating Text

is set to -1. This means that they are never found and consequently
that no adjective is required for them.

noundata:
This marks the start of the data statements containing the list of nouns
which the program knows about.

dirlist:
Similarly, this marks the start of the list of directions.

verb list:
And this, the list of verbs.

roomdata:
Finally comes the data for each of the rooms in the form of its
description and then six integers. Each integer gives the number of the
location which is north, south, east, west, up or down respectively
from the room described.

135

AmigaBASIC : ADabhand Guide

136

6: More On Graphics
'A picture is worth a thousand words' is how the saying goes. To help
you to cut down the number of words you need, this chapter returns
to the subject of graphics. It completes the list of commands which
BASIC provides for creating different outlines and solid shapes. Then,
by moving on to show you how to create your own screens and
windows, it makes available to you up to 32 colours to experiment
with.

The use of mouse and menus is heavily involved in all screen
activities. Therefore, these two topics are also dealt with fully. Finally,
to prevent you from losing your masterpiece once you have created it,
the secrets of how to save a copy of all or part of a window to disc will
be revealed.

Painting In Areas
Most of the graphics commands we have met so far have only drawn
the outline of shapes, the exception being the LINE command which
can be used to create solid rectangles. However, without solid shapes,
graphics look very drab. We have already 'improvised' in order to
create solid shapes in the traffic lights example in Chapter Four, which
required solid circles to be plotted. We created these by drawing a
series of circles, centred at the same position, each with a radius one
greater than the previous one. This achieved the effect we wanted but
not very efficiently.

So why doesn't AmigaBASIC provide commands to create solid
circles, sectors, ellipses etc? The answer lies in the PAINT command.
This command is a general purpose one which can be used to fill any
enclosed area with a given colour. Therefore to obtain a solid circle, all
you have to do is draw its outline and then PAINT it.

In its simplest form, PAINT takes the follow format:

137

AmigaBASIC : A Dabhand Guide

PAINT (50,50)

The co-ordinates of any position within the region to be filled can be
used. PAINT will start at the point given and fill in all directions until
it meets the border of the shape. As with all the other graphics
commands, the position can be given relative to the previous location
by using the STEP option:

PAINT STEP (0,0)

There are two further arguments which it can be given. The first is the
colour with which the region is to be filled. For example:

PAINT (50,50), 2

will fill a region with colour two. If no value is specified, the current
foreground colour is used.

The second is the colour of the border. PAINT can only recognise
borders of a single colour. Consider the example of a small circle of
colour one inside a larger circle of colour two. If you start filling from
the centre using a border colour of one, just the small circle will be
coloured. However, if you use a border colour of two, the whole of the
large one will be painted. In the second case, PAINT doesn't recognise
the line in colour one as anything special, so doesn't stop when it
reaches it - only lines of colour two limit its action. These examples are
given below for you to try out:

138

PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,1,0
PALETTE 3,0,0,1
CLS
CIRCLE (320,100),40,1
CIRCLE (320,100),80,2
PAINT (320,100),3,1
PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,1,0
PALETTE 3,0,0,1
CLS
CIRCLE (320,100),40,1
CIRCLE (320,100),80,2

6 : More On Graphics

PAINT (320,100),3,2

By default, the border colour is the same as the paint colour. Try
altering the example above yet again to give:

PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,1,0
PALETTE 3,0,0,1
CLS
CIRCLE (320,100),40,1
CIRCLE (320,100),80,2
PAINT (320,100),3

Now PAINT uses the paint colour, ie colour three, as the border
colour. Since there are no lines drawn in colour three to limit the area
being filled, the whole screen is painted.

Further examples of PAINT will be given later on in this chapter.

Polygons and Patterns
We can now produce both the outline and solid versions of the
standard shapes; rectangles, circles and ellipses. But there are many
other shapes which we might want to draw, such as triangles,
hexagons, etc. We could produce these with the LINE command, for
example:

LINE (100, 80) - (500, 80)
LINE (500, 80) - (250,150)
LINE (250,150) - (loa, 80)

draws a triangle which we could then fill in using PAINT:

PAINT (250,120)

However, we have had to supply a lot of redundant infonnation using
this method. The co-ordinates for each comer had to be given twice:
once as the end of one line and once as the start of the next line. Since
polygons are such common things to want to create, AmigaBASIC
provides us with a simpler method of making them, in the fonn of
AREA and AREAFILL:

139

AmigaBASIC : A Dabhand Guide

AREA (100, 80)
AREA (500, 80)
AREA (250,150)
AREAFILL

Each AREA statement defines a point of the polygon to be drawn, and
the AREAFILL statement creates this polygon. Like the other graphics
statements, AREA can take co-ordinates which are given relative to
the previous one by using STEP. Having seen how the other
statements work, you might also expect AREA FILL to take an
argument which specifies a colour to use. However, this is not the
case. It is actually much more versatile than that. Instead of just letting
you fill the area with a single colour, AREAFILL allows you to fill it
with a 'colour pattern'. The pattern to use has to be defined, prior to
the AREAFILL statement, using the PATTERN command. To see this
in action, try the following:

COLOR 1,3
DIM pat% (7)

pat%(O) &HFFFF REM The &H means that
pat%(l) &H8080 REM the numbers are
pat%(2) &H8080 REM being given in
pat%(3) &H8080 REM hexadecimal format
pat%(4) &HFFFF
pat%(5) &H808
pat%(6) &H808
pat% (7) &H808
PATTERN,pat%
AREA (100, 80)
AREA (500, 80)
AREA (250,150)
AREAFILL

This fills the triangle with a brickwork pattern. PATTERN is quite a
complicated command to use. It can take up to two arguments. The
first (which has been omitted in the example above) sets up a pattern
to be used for drawing lines - we will move onto this a little later. The
second argument is the one we are interested in at the moment, since
this specifies a pattern for filling polygons. This argument must be an
integer array containing at least two elements. Each element of the
array defines a block which is 16 pixels across, the individual elements

140

6 : More On Graphics

define subsequent rows of the block. This is illustrated below in Figure
6.1.

Element 1

Element 2

Element 3

Element 4

ElementS

Element 6

Element 7

Element 8

Figure 6.1. Each element of the array defines a block which is 16 pixels
across, the individual elements define subsequent rows of the block.

The individual elements are best thought of as bit patterns. Each bit of
the number corresponds to one pixel. For example, the hexadecimal
numbers we used above have the following bit patterns:

&HFFFF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
&HBOBO 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
&HBOBO 1 0 0 o 0 0 0 0 1 0 0 0 0 0 0 0
&HBOBO 1 0 o 0 o 0 0 o 1 0 0 0 0 0 0 0
&HFFFF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
&HOBOB 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
&HOBOB 000 o 1 0 0 0 0 0 0 0 1 0 0 0
&H0808 00001 000 o 0 001 0 o 0

If you study the bit patterns above, you can see how the brick pattern
was formed. The AREAFILL command coloured all the pixels
corresponding to bits which were set in the current foreground colour,
and all the pixels corresponding to bits which were unset in the
current background colour. Therefore the Is created the white 'mortar'
and the Os the red 'bricks'.

The block defined using PATTERN is repeated throughout the whole
area to be filled. The width of the pattern is limited to 16 pixels,

141

AmigaBASIC : A Dabhand Guide

therefore patterns will always repeat every 16 pixels. However, the
number of rows defined can be altered by using larger arrays. The one
limitation is that the number used must be a power of two, ie, 2, 4, 8,
16 etc.

The pattern defined will be used by all AREAFILL commands until
the P A TIERN command is used again to create a new one. Altering
the pattern will not affect any existing areas already coloured in. The
following program draws different regular polygons randomly
positioned on the screen and fills each in an appropriate fill pattern:

142

REM Set up three different patterns
patterns:
DIM tri% (7)
DIM squ%(7)
DIM hex%(7)
FOR loop% = 0 TO 7
READ tri% (loop%)
NEXT
FOR loop% = 0 TO 7
READ squ% (loop%)
NEXT

FOR loop% = 0 TO 7
READ hex% (loop%)
NEXT
RANDOMIZE TIMER

REM Choose shape at random
mainloop:
FOR loop% = 1 TO 50
IF RND < .33 THEN

CALL shape(3,1,tri%(»
ELSEIF RND < .66 THEN

CALL shape(4,2,squ%(»
ELSE

CALL shape(6,3,hex%(»
END IF
NEXT loop%

shape:
SUB shape(edges%, col%, pat%(1» STATIC

xsize% = 60
ysize% = 30
xcen% = xsize% + INT(RND*(600-2*xsize%»
ycen% = ysize% + INT(RND*(180-2*ysize%»
pi = 3.14159

6 : More On Graphics

FOR side% = 1 TO edges%
ang = (2*pi/edges%)*side% - pi/2
AREA (xcen%+xsize%*COS(ang),ycen%+ysize%*SIN(ang»

NEXT
COLOR co1%, co1% MOD 3 + 1
PATTERN ,pat%
AREAFILL

END SUB

tri:
DATA &H0180, &H03CO, &H07EO.
DATA &H1FF8, &H3FFC, &HOOOO,
square:
DATA &H0180, &H07EO, &H1FF8,
DATA &H1FF8, &H07EO, &H0180,
hex:
DATA &H0180, &H07EO, &H1FF8,
DATA &H1FF8, &H07EO, &H0180,

&HOFFO
&HOOOO

&H7FFE
&HOOOO

&H1FF8
&HOOOO

The program starts by setting up three patterns, each eight rows deep.
The values used are read from the data statements at the end of the
programs; their bit patterns are shown below:

tri% squ% hex%
000000011 000 0000 000000011 000 00 00 0000000110000000
0000001111000000 00000111111 0 0000 0000011111100000
0000011111100000 0001111111111000 0001111111111000
0000111111110000 0111111111111110 0001111111111000
0001111111111000 0001111111111000 0001111111111000
0011111111111100 0000011111100000 0000011111100000
0000000000000000 000000011 00 00 00 0 0000000110000000
00000000000000Q.9 0000000000000000 0000000000000000

Then it chooses at random whether to draw a triangle, square or
hexagon. All the shapes are drawn by the general purpose
subprogram 'shape'. It takes three arguments: the number of sides
which the polygon has and the colour and definition for the pattern
used to fill it.

Shape starts by assigning values to the variables 'xsize%' and 'ysize%'.
These determine the maximum dimensions of the polygon. Note that
ysize% is double xsize%. This is to help counteract the fact that the
pixels are roughly twice as high as they are wide. Then the
subprogram selects the centre of the polygon at random, ensuring that

143

AmigaBASIC : A Dabhand Guide

it is at least xsize% from the sides of the screen and ysize% from the
top and bottom. This means that all the corners of the polygon will lie
totally within the window, provided that the window is the full size of
the screen. It is important to do this since AREA will produce an
'Illegal function call' error message if the co-ordinates it is given do
not lie within the window.

The loop inside shape goes from one to the number of edges, and
hence comers, that the polygon has. For each comer, shape calculates
the position the point is at. The diagrams below in Figure 6.2 show the
maths used to do this.

y coordinate

ang

(X%, y%) x coordinate (X%, y%)

Figure 6.2.

Then the subprogram sets the current foreground and background
colours. The foreground colour is determined by the value passed to
shape as a parameter. The background colour is set according to the
foreground colour as follows:

Foreground

1
2
3

Background

2
3
1

Finally, 'shape' sets up the pattern to be used, and fills in the polygon.

There is an alternative way of filling in an area using AREAFILL. In
each case so far, AREAFILL has coloured the pixels corresponding to
bits which are set in the foreground colour, and those corresponding
to bits which are unset in the background colour. However, instead,
we can choose to have it act in a different manner by giving it the
argument one. In this mode, AREAFILL ignores the current

144

6 : More On Graphics

foreground and background colours. Instead, it 'inverts' the colour
numbers of the pixels corresponding to the set bits, and leaves
unchanged those corresponding to unset bits. Inverting the colour
number means that it changes as follows:

colour number = colour number EOR maximum colour number

Under default conditions, in which the maximum colour number is
three, the colours change as follows:

Colour Inverted Colour

0 OEOR3 = 3
1 1EOR3=2
2 2EOR3=1
3 3EOR3 = 0

When using AREAFILL in the default mode to fill in a polygon, all the
pixels inside the polygon are altered. Some change to the foreground
colour, the rest to the background colour. Therefore, filling in a
polygon with a pattern totally removes all trace of the original
polygon contents. However, when using the invert mode, the pixels
corresponding to unset bits of the pattern remain unchanged. This
means that some of the original contents of the polygon remain visible.
The following program shows how this feature can be used to create a
multi-coloured pattern.

PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,0,0
PALETTE 3,0,1,0
CLS
COLOR 1,3

DIM pat% (15)

mainloop:
FOR mode% = ° TO 1

AREA (40, 23)
AREA (40,159)
AREA (600,159)
AREA (600, 23)
FOR loop% = ° TO 15

145

AmigaBASIC : A Dabhand Guide

READ pat% (loop%)
NEXT
PATTERN ,pat%
AREAFILL mode%

NEXT

RedCards:
DATA &HOOO8, &HOOIC, &HOO3E, &HOO7F
DATA &HOO3E, &HOOIC, &HOOO8, &HOOOO
DATA &H3600, &H7FOO, &H7FOO, &H3EOO
DATA &H3EOO, &HICOO, &H0800, &HOOOO

BlackCards:
DATA &H0800, &HICOO, &H2AOO, &H7FOO
DATA &H2AOO, &H0800, &H0800, &HOOOO
DATA &HOOO8, &HOOIC, &HOO3E, &HOO7F
DATA &HOO2A, &HOOO8, &HOOO8, &HOOOO

The program starts by setting up the palette, clearing the screen to
change the background to black, and setting up new foreground and
background colours which are one (red) and three (green)
respectively. It then dimensions a 16 element integer array which will
be used for holding the patterns. The main loop is performed twice.
Both times round, a rectangular polygon is defined and a second loop
is used to read in a pattern from the data statements at the bottom.
This pattern is then made current by calling PATTERN. The bit
patterns of the numbers used are displayed below to show the two
different patterns which are used:

146

0000000000001000 0000100000000000
0000000000011100 0001110000000000
0000000000111110 0010101000000000
0000000001111111 0111111100000000
0000000000111110 0010101000000000
0000000000011100 0000100000000000
0000000000001000 0000100000000000
0000000000000000 0000000000000000
0011011000000000 0000000000001000
0111111100000000 0000000000011100
0111111100000000 0000000000111110
0011111000000000 0000000001111111
0011111000000000 0000000000101010
0001110000000000 0000000000001000
0000100000000000 0000000000001000
0000000000000000 0000000000000000

6 : More On Graphics

These represent the different suits on playing cards. The first pattern
contains a diamond in the top right and a heart in the bottom left. The
second has a club in the top left and spade in the bottom right. Note
that care has been taken to make sure that the different symbols do not
overlap.

Finally, AREAFILL is called to apply the pattern to the polygon. The
first time it is called with an argument of 0 which is the default value.
This means that current foreground and background colours are used.
At this stage the window will contain a green rectangle with red
hearts and diamonds in it. The second time, the argument is one so the
invert mode is used. Therefore the only change made to the contents
of the rectangle is to invert the pixels which correspond to the bits in
the second pattern which are set. These pixels are all currently drawn
in colour three. Therefore inverting them changes them to colour 0
which is black. Therefore the green rectangle ends up displaying the
bits set in the first pattern (the hearts and diamonds) in red, and those
in the second pattern (the clubs and spades) in black.

Line Patterns
We've seen that the second argument of PATTERN affects how
polygons are coloured in when using AREAFILL. The first argument
doesn't affect solid shapes: instead it alters the way in which lines and
rectangles are drawn using the LINE command.

147

ArnigaBASIC : A Dabhand Guide

The first argument to pattern is a single 16 bit number. Each of the bits
represents a pixel in the line. A few examples are given below:

Value

&HCCCC
&Hllll
&HEAEA

Line

The following gives a brief demonstration:

RANDOMIZE TIMER

FOR y% = 20 TO 180 STEP 10
PATTERN INT(RND*&H7FFF)
LINE (40,y%) - (600,y%)

NEXT

Creating Screens and Windows
The display area of the Amiga can contain a number of 'windows'
which appear within 'screens'. For example when you enter BASIC
there are two windows, the Output window and Edit window which
are contained within the Workbench screen.

A screen has different attributes associated with it which control its
appearance. The first of these is the number of pixels it has per line.
The higher the number of pixels, the smaller each pixel is and hence
the higher the resolution. A screen can either contain 320 or 640 pixels
on every line. Screens which contain 320 pixels horizontally are
referred to as 'low resolution' and those which contain 640 pixels as
'high resolution'.

In addition, a screen can contain a maximum of either 256 or 512 lines
(200 and 400 respectively on American machines). A 512 line display is
obtained by a technique called 'interlacing'. The display on a TV or
monitor screen is refreshed 50 times a second. When the screen is
interlaced, two different images are held: one containing the odd rows
and the other containing the even ones, and these are refreshed
alternately. This has the effect of doubling the vertical resolution but it
also makes the screen flicker. Many applications avoid using interlace
because of this.

148

6 : More On Graphics

These two attributes combine to produce four different screen modes:

Mode Description

1
2
3
4

320 pixels across and 256 lines high
640 pixels across and 256 lines high
320 pixels across and 512 lines high
640 pixels across and 512 lines high

Another important attribute which screens have is the maximum
number of colours which can be displayed in them at anyone time.
This is determined by the 'depth' of the screen or number of 'bits per
pixel'. There are five different values:

Depth I Bits per pixel Number of colours

1
2
3
4
5

2
4
8
16
32

You can think of the bits associa ted with each pixel as switches. For
example, if you have only one switch there are just two different states
it can be in: either on or off. On represents one colour and off a second
one. Therefore there is a choice of just two colours for each pixel. If
you double the number of switches to two, then there are four states:
on & on, on & off, off & on and off & off. This means that the number
of different colours which can be represented increases to four.
Similarly three switches doubles the number of states and hence
colours to eight etc.

A screen can contain several windows. Each of these windows shares
the attributes of the screen it is in, and so they all have the same
resolution and can display the same number of colours. Therefore, to
enable us to use more than the four colours that we have been limited
to so far, we are going to have to create our own screen. Try the
following program:

SCREEN 1,640,256,4,2
WINDOW 2,"My own output window",,31,1

149

AmigaBASIC : A Dabhand Guide

xpos1% 0
ypos1% 0
xpos2% 639
ypos2% 249
FOR loop% = 1 TO 15

xpos1% xpos1% + 20
ypos1% = ypos1% + 8
xpos2% = xpos2% - 20
ypos2% = ypos2% - 8
LINE (xpos1%,ypos1%) - (xpos2%,ypos2%),loop%,bf

NEXT

The SCREEN statement creates a new screen. The first argument is the
identity number which is associated with the screen. AmigaBASIC can
handle up to four different screens at once, each of which has a
different identity number: one, two, three, or four. This number is
used by other commands to tell them which screen is being acted on.

We'll leave the second and third arguments for now and move onto
the fourth one. This is the depth of the screen. It takes a number in the
range 1-5 as listed in the table above. Our example uses the number
four, which allows a maximum of 16 colours to be used.

The last argument is the mode. This is a number 1-4 which specifies
the resolution and whether the screen is interlaced or not. The
definitions of the different modes are given above. The value two
means high resolution and non-interlaced. This is the mode we have
been using previously.

Finally, we'll return to the second and third arguments. These are
respectively the width and height of the screen in pixels. However,
these values do not affect the screen resolution - this is determined
purely by the last argument. Instead, they limit the area of the screen
which can contain windows and hence text and graphics. In our
example, the size of the screen has been set up to the maximum values
allowed for the mode we have selected. Therefore we will be able to
use the whole area of the display. If we had chosen smaller numbers
instead, the screen would still have appeared to occupy the whole
display but part of the area would have been inaccessible, so would
always have remained empty.

150

6 : More On Graphics

The WINDOW statement creates an output window. The first
argument is the identity number of the window. This can be any
positive integer value. The AmigaBASIC Output window has the
number one, therefore the program has chosen to use the number two
so that it creates an additional window, rather than re-defining the
existing one.

All the other arguments are optional. The second is a string which will
be used as the title of the window. The third (which has been omitted
in our example) defines the rectangular area of the window in the
form:

(xl,yl) - (x2,y2)

Since we have omitted this argument, our window will be created at
the default size for the screen, which is the full screen size.

The fourth argument determines the features which the window will
contain. Each feature has a different value:

Value Description

1 Sizing gadget provided to allow mouse control of
window size.

2 Window can be moved about using Title Bar.
4 Back gadget provided to allow window to be moved to

front/back.
8 Close gadget provided to allow window to be closed

using mouse.
16 Window is redrawn if a window in front of it is moved.

The number used is the sum of all the values of the features required.
In our case we have been greedy and asked for all of them (31=1+2+4+
8+16).

The final argument is the identity number of the screen which is to
contain the window. We have used the value 1 to add it to the screen
which we have just defined. We could alternatively have used the
value -1, which is the default, to add it to the Workbench screen. If we
had done this, the window would have picked up the attributes of the
Workbench screen and acted just like the default BASIC Output

151

AmigaBASIC : A Dabhand Guide

window, giving us just four colours. Adding the window to our own
screen, which has four bits per pixel, means that we are now ready to
create the 16 colour display we were aiming at.

When the window is created, it is automatically selected as the current
output window. Therefore the remainder of the program sends all its
graphics output to this new window. This output consists of a number
of rectangles, which show the default colours assigned to colour
numbers 0 to 15.

Memory Usage
Creating windows is one of the easiest ways of using up the memory
available in your machine. Compared to the earliest microcomputers,
which came with just lKbyte of memory (lk for short), you may think
that the 256, 512 or 1024k that you have is a vast amount. However,
each window can potentially use up to 160k of that memory.

The actual amount depends on several things. One of these is whether
or not you select feature 16 to specify that the contents of a window
are to be redrawn if another window, which was in front of it, is
moved. Doing so means that BASIC has to reserve enough space to
keep a copy of the contents of the window. If you also specify that you
want feature one as well, which allows the window size to be
changed, then it has to reserve enough memory to allow a copy of the
whole screen to be stored, since your window can potentially become
that large.

The space required to hold the contents of a window of the maximum
size depends on the screen resolution, interlace mode and depth. The
least amount of space is used by windows in a low-resolution, non­
interlace screen which can display just two colours. In this case, the
whole screen display requires just 10k. Changing the resolution or
turning on interlace or increasing the number of colours alters the
memory needed, as shown in the table below:

152

6 : More On Graphics

Resolution Colours Memory required

320 x 256 2 10 Kbytes
320x512 2 20 Kbytes
640 x 256 2 20 Kbytes
640 x512 2 40 Kbytes
320 x 256 4 20 Kbytes
320 x512 4 40 Kbytes
640 x 256 4 40 Kbytes
640 x 512 4 80 Kbytes
320 x 256 8 30 Kbytes
320 x 512 8 60 Kbytes
640 x 256 8 60 Kbytes
640 x512 8 120 Kbytes
320 x 256 16 40 Kbytes
320x512 16 80 Kbytes
640 x 256 16 80 Kbytes
640 x512 16 160 Kbytes
320 x 256 32 50 Kbytes
320 x512 32 100 Kbytes

Note that the full 32 colours are only available in the low resolution
modes.

Using Multiple Windows
We mentioned above that, when an output window is created, it is
automatically selected as the current output window. However, you
can change the output window when you like. The only restriction is
that you can have just one window selected at once. Therefore to make
the same line of text appear in two windows you must PRINT it twice,
swapping the output window in between the two PRINT commands.
The following program demonstrates how a number of windows can
be created and used apparently 'simultaneously'.

SCREEN 1,320,256,5,1
WINDOW 2,"Rectangles", (20, 20) - (140,120),22,1
WINDOW 3, "Circles", (180, 20) - (300,120) ,22,1
WINDOW 4, "Ellipses", (20,140) - (140,240),22,1
WINDOW 5, "Triangles", (180,140) - (300,240) ,22,1

153

AmigaBASIC : A Dabhand Guide

154

DIM pat% (1)
pat%(O) = &HFFFF
pat%(l) = &HFFFF
PATTERN,pat%

RANDOMIZE TIMER
FOR col% = 31 TO 1 STEP -1

rectangles:
WINDOW OUTPUT 2
xpos1% INT(RND*120)
ypos1% INT(RND*100)
xpos2% INT(RND*120)
ypos2% INT(RND*100)
LINE (xpos1%,ypos1%) - (xpos2%,ypos2%),col%,bf

circles:
WINDOW OUTPUT 3
xpos1%
ypos1%
rad%
CIRCLE
PAINT

INT (RND*120)
= INT (RND*100)
= INT(RND*30)
(xpos1%,ypos1%),rad%,col%",1.12
(xpos1%,ypos1%),col%

ellipses:
WINDOW OUTPUT 4
xpos1%
ypos1%
rad%

INT(RND*120)
INT (RND*60)
INT (RND*30)

asp 1.12*RND*2
CIRCLE (xpos1%,ypos1%),rad%,col%",asp
PAINT (xpos1%,ypos1%),col%

triangles:
WINDOW OUTPUT 5
COLOR col%
xpos1% INT(RND*120)
ypos1% INT(RND*100)
xpos2% INT(RND*120)
ypos2% INT(RND*100)
xpos3% INT(RND*120)
ypos3% INT(RND*100)
AREA (xpos1%,ypos1%)
AREA (xpos2%,ypos2%)
AREA (xpos3%,ypos3%)
AREAFILL

NEXT

6 : More On Graphics

The program starts by creating a new screen of the maximum size in
mode five. This is a low resolution screen and so allows us to use the
full 32 colours (depth five). Four windows are created in this screen,
each being 120 pixels by 100 pixels. They are placed initially in the
four comers of the screen. Their feature value is 22 (16 + 4 + 2). This
means that they will be redrawn when any window in front of them is
moved; they can be moved to the front or back using the Back gadget
or moved about the screen using the Title Bar. However, they cannot
be closed and so do not have a Close gadget. In addition, the size of
them cannot be changed, thus saving memory.

Next, the preparation is completed by defining a simple, solid pattern
ready for use by the AREAFILL command and re-seeding the random
number generator.

Then the main body of the program starts. This consists of a loop
repeated 31 times. Within the loop, each of the windows is selected in
tum and a different solid shape is drawn in it. The colour of the shape
is determined by the loop variable. The loop variable starts at the
highest colour number and decreases by one each time, in order to get
the lowest numbered colours used last. These are the brightest, so they
make the final picture more colourful.

The shapes drawn correspond with the titles of the windows:
rectangles, circles, ellipses and triangles. Rectangles are produced
using the LINE command with the 'bf' option. Solid circles and
ellipses are created by using the CIRCLE command and then
PAINTing the outline drawn. Note that, because the resolution of the
screen is 320x200 pixels, the aspect ratio needed to obtain circles is
double the value required when we were creating them on a 640x200
pixel screen. Finally, the triangles are plotted using AREA to mark the
three comers, and then AREAFILL to create the shape defined.

Menus
Mice and menus are the 'in thing' in computing at the moment. Their
introduction, just a few years ago, revolutionised user interfaces. Gone
are the days when you had no option but to press magic combinations
of keys and type mystic runes to get the computer to do something for

155

AmigaBASIC : A Dabhand Guide

you. Now, you can just pull down a menu or point at the screen to
select what you want to do.

You should by now have used the mouse and menus fairly extensively
while using both AmigaBASIC and the Workbench. No doubt many of
you will have found them to be invaluable. Now we are going to look
at how you can create menus and handle the mouse in your own
program, and so make life easier for the people running them.

The MENU command is used to create menus, add items to them and
to enable/disable either the whole menu or individual items. This
takes four arguments which are described below:

The first argument is the identity number of the menu. This can be any
number between one and 10. AmigaBASIC uses one to four for its
menus. You can replace these if you wish or add extra ones.

The second argument is the identity number of the menu item. A
menu can contain 19 items: therefore each item must have a number in
the range 1 - 19. The alternative value this can take is 0, which means
that the command refers to the whole menu.

The third argument defines the state of the item selected (or whole
menu if 0 was used). This can take any of the following values:

o Disable the menu item
1 Enable the menu item
2 Enable the menu item and place a check mark by it

The final argument, which is optional, is the title string of the item or
menu.

For example, run the following program:

MENU 5,0,1,"My menu"
MENU 5,1,1, " Item I"
MENU 5,2,2, " Item 2"
MENU 5,3,0, " Item 3"
WHILE 1 = 1
WEND

While the program is running, press the right mouse button and you
should see an extra item on the menu bar called 'My menu'. Now

156

6 : More On Graphics

point at this and its list of contents will be displayed. There should be
three: Item 1, Item 2 and Item 3. Item 3 is disabled so that it cannot be
selected. Its title will be 'ghosted out' to indicate this. Items 1 and 2 are
both enabled, in addition, Item 2 has had a check mark placed by it
which should be visible as a tick. This check mark takes up two
character positions, which is why you had to leave two spaces before
the titles of the items.

Stop this program by selecting the Stop item from the Run menu or by
pressing Amiga-fullstop. Normally, if you run a program which
creates menus, these menus will disappear when the program ends.
Because the program above did not finish, the new menu will still be
there. However, you can return to the default AmigaBASIC Menu Bar
by typing:

MENU RESET

in the Output window.

Now that you have a program to create a menu, you need to know
how to make it respond when a menu item has been selected.
Occurrences such as menu items being selected or mouse buttons
being pressed are called 'events'. One of the best features of the Amiga
is that it can watch out for these events happening (ie 'trap' them) as a
background activity whilst getting on with its main task of running
your program. All you have to do is tell BASIC that you are interested
in knowing about a particular event and set up a subroutine to handle
it, should it occur. You never have to call this subroutine yourself:
BASIC will do it for you whenever it is necessary.

You can turn menu event trapping on by using MENU ON. This
should follow the command ON MENU GOSUB, which tells BASIC
how to deal with menu items being selected. ON MENU GOSUB takes
the name of the subroutine you have written to handle menu events.
Then, if a menu item is selected whilst your program is running,
BASIC will execute the named subroutine.

In order to be able to act appropriately, the subroutine will need to
find out which item the user selected. You can find this out by using

157

AmigaBASIC : A Dabhand Guide

the MENU functions. MENU(O) returns the number of the last menu
selected and MENU(1) the number of the last item selected.

The following program should help to illustrate this:

158

init:
PALETTE 0,0,0,0
PALETTE 1,1,1,1
PALETTE 2,1,0,0
PALETTE 3,0,0,1
col% = 1
CLS

menuinit:
MENU 5,0,1,"My menu"
MENU 5,1,2," White"
MENU 5,2,1," Red"
MENU 5,3,1," Blue"
MENU 5,4,1," Clear screen"
ON MENU GOSUB menuhandler
MENU ON

mainloop:
WHILE INKEY$

xpos1% RND*620
ypos1% RND*180
xpos2% RND*620
ypos2% RND*180
LINE (xpos1%,ypos1%) - (xpos2%,ypos2%),col%,b

WEND
END

menuhandler:
REM Check correct menu
IF MENU(O) = 5 THEN

REM If
IF

col%
MENU
MENU
MENU

ELSEIF
col%
MENU
MENU
MENU

ELSE IF
col%
MENU

so then
MENU (1)
= 1
5,1,2
5,2,1
5,3,1
MENU (1)
= 2
5,2,2
5,1,1
5,3,1
MENU (1)
= 3
5,3,2

act according to item selected
= 1 THEN

2 THEN

3 THEN

MENU 5,1,1
MENU 5,2,1

ELSE IF MENU (1)

CLS
END IF

END IF
RETURN

6 : More On Graphics

4 THEN

This starts by setting up the palette, clearing the screen and initialising
the value of 'col%' to one. Then it creates a new menu with four items,
sets up the subroutine to deal with menu events and turns menu
trapping on. The main loop of program draws rectangles, in the colour
determined by col%, until a key is pressed.

The final part of the program is the subroutine for handling menu
selections. This checks initially to see that it is menu number five
which has been selected. If so, then it goes on to check which item was
chosen. For the first three items, it assigns an appropriate value to
col%, thus selecting the colour subsequent rectangles will be plotted
in. Then it places a checkmark by the item in the menu and clears any
checkmarks from the other two. For the fourth item it clears the screen.

You can tum the trapping of menu events off for part of a program by
using the MENU OFF and MENU STOP commands. MENU OFF turns
the trapping off completely, so that any information about menu items
selected, whilst it is off, is lost. MENU STOP still traps menu events
but does not react to them. When menu trapping is turned on again,
information about these events will be given in response to MENU(O)
and MENU(1) function calls. To turn menu event trapping on again,
use MENU ON.

Mice
Dealing with mouse input is very similar to handling menu selections.
The subroutine for dealing with a mouse event (ie the left mouse
button being pressed) is specified using ON MOUSE GOSUB.
Information about what has happened can be obtained using calls of
the function MOUSE with the appropriate arguments. Finally, mouse
event trapping can be disabled using MOUSE OFF or MOUSE STOP,
and re-enabled again using MOUSE ON.

159

AmigaBASIC : A Dabhand Guide

The MOUSE function returns various different pieces of information,
depending on the argument it is given. These are summarised in the
table below:

Argument

o
1
2
3
4
5
6

Return

Left button position
Current x co-ordinate
Current yeo-ordinate
Start x co-ordina te
Start yeo-ordinate
End x co-ordinate
End y co-ordina te

MOUSE(O) gives the status of the left mouse button as follows:

o Button is not pressed, and has not been pressed since MOUSE(O)
was last called

n Button is not pressed, but has been pressed n times since
MOUSE(O) was last called. MOUSE(3) - MOUSE(7) can be used to
give the positions of the mouse at the time the button was pressed
and released.

-n Mouse button is currently pressed after being clicked n times.

Calling this function sets up the information necessary for MOUSE(1) -
MOUSE(6).

MOUSE(1) and MOUSE(2) give the position of the mouse at the time
that MOUSE(O) was called.

MOUSE(3) and MOUSE(4) give the position of the mouse at the time
the button was last pressed before MOUSE(O) was called.

If the mouse button was pressed when MOUSE(O) was last called,
MOUSE(S) and MOUSE(6) give the position of the mouse at that time,
thus acting like MOUSE(1) and MOUSE(2). If the mouse button wasn't
pressed, MOUSE(S) and MOUSE(6) give the position of the cursor at
the time the mouse button was released.

For example:

mouseinit:

160

6 : More On Graphics

ON MOUSE GOSUB mousehandler
MOUSE ON

mainloop:
WHILE 1 = 1
SOUND 523.25,18.2
SOUND 659.26,18.2
SOUND 783.99,18.2
SOUND 1046.50,18.2
WEND
END

mousehand1er:
WHILE MOUSE(O) < 0
WEND
LINE (MOUSE(3),MOUSE(4)) - (MOUSE(5),MOUSE(6))

RETURN

This program starts by initialising the mouse event handler and
activating mouse event trapping. The body of the program repeatedly
plays four notes. This is just to show you that the program is still being
executed while any mouse events are dealt with.

When the mouse button is pressed, the mousehandler subroutine is
called. This waits until the mouse button has been released and then
draws a line from the position of the mouse when the button was
pressed, to its position at the time the button was released.

Storing Graphic Images
You have now encountered all of the commands for creating graphics
which AmigaBASIC provides. However, before you rush off to start
creating masterpieces, there is one last thing you need to know - how
to save a picture once you have created it. The first stage of this is
done using GET. For example:

DIM rect% (626)
GET (120,90) - (200,140), rect%

This saves in the array rect%, the details of a rectangular area of the
screen defined by the corners (120,90) and (200,140).

You can then place a copy of the image stored in the array onto the
screen at any position using PUT, for example:

161

AmigaBASIC : A Dabhand Guide

PUT (220,90),rect%

The amount of space, needed in the array, depends on three things:
the width and height of the rectangle and the number of bits per pixel
of the screen. These are combined to give the number of bytes of
storage space, as follows:

bytes needed = height"2 ... INT((width+ 15) /16) ... bits per pixel + 6

Since an integer is two bytes long, the number of array elements
required is half the number of bytes.

The extra six bytes, which appear at the end of the formula above, are
placed in the array as the first three elements. These contain the values
of the width, height and number of bits per pixel. These pieces of
information are vital for PUT.

In our example the height is 51 (140- 90+ 1) and the width is 81 (200-
120+1). Therefore applying the formula gives:

bytes needed = 51*2'" INT«81+15)/16)'" 2 + 6
= 104'" 6'" 2 + 6
= 1254

Therefore we needed 627 integer elements.

Having turned the picture on the screen into elements of an array, we
are now ready to store the picture onto disc. The following program
shows how to do this:

162

DIM rect%(626)
DIM brick%(7)
DIM tile% (1)
DIM glass%(l)
DIM solid% (1)

patterns:
brick%(O) &HFFFF
brick%(2) &H8080
brick%(4) &HFFFF
brick% (6) &H0808
tile% (0) &HFFFF
glass%(O) &H5555
solid% (0) &HFFFF

brick%(l)
brick%(3)
brick%(5)
brick% (7)
tile%(l)
glass%(l)
solid% (1)

&H8080
&H8080
&H0808
&H0808
&H5555
&HAAAA
&HFFFF

6 : More On Graphics

house:
AREA(120,100) : AREA (120, 140)
AREA(200,140) : AREA(200,100)
COLOR 1,3 : PATTERN ,brick% : AREAFILL

roof:
AREA(120,100) : AREA(130, 90)
AREA(190,90) : AREA(200,100)
COLOR 2,3 : PATTERN ,tile% : AREAFILL

door:
AREA (152,140) : AREA (152,124)
AREA (168, 124) : AREA(168,140)
COLOR 1 : PATTERN,solid% : AREAFILL

windows:
COLOR 1,2 : PATTERN,glass%
AREA(130,132) AREA (130, 124)
AREA(145,124) AREA(145,132)
AREAFILL
AREA(175,132)
AREA(190,124)
AREAFILL
AREA(130,116)
AREA(145,108)
AREAFILL
AREA (175,116)
AREA (190, 108)
AREAFILL

store:

AREA (175,124)
AREA(190,132)

AREA(130,108)
AREA(145,116)

AREA (175,108)
AREA(190,116)

GET (120,90) - (200,140), rect%

save.to.disc:
OPEN "house" FOR OUTPUT AS 1
FOR loop% = 0 TO 626
PRINT #l,MKI$(rect%(loop%»;
NEXT
CLOSE 1

The program starts by dimensioning some arrays. The first will be
used to hold details of part of the screen. The others are for patterns to
be used to colour the picture. The next stage is to set up these patterns.
Then a simple house is drawn in stages: first the brickwork, then the
roof, then the door and finally four windows.

163

AmigaBASIC : A Dabhand Guide

Then, the rectangular area which encloses the house is stored in the
array 'rect%'. A file called 'house' is opened and each element of the
array is converted into a 2-byte string and output to this file. When the
complete contents of the array have been sent to the file, the file is
closed. (More details about file handling can be found in Chapter 10.)

Now try the following program, which reads the contents of the file
into an array and places four copies of the house on the screen:

DIM rect% (626)

load.from.disc:
OPEN "house" FOR INPUT AS 1
FOR loop% = 0 TO 626
rect%(loop%) = CVI(INPUT$(2,l»
NEXT
CLOSE 1

draw:
PUT(120,90),rect%
PUT(220,90),rect%
PUT(320,90),rect%
PUT(420,90),rect%

This program dimensions an array to hold a screen image and then
performs the opposite sequence of events to the previous program. It
starts by opening a file to read the data from. Then it reads each pair of
bytes in turn, converts them into an integer and places this integer into
the array. When all the array elements have been assigned to, it closes
the file and places four copies of the contents of the array on the
screen.

164

7: Number Crunching
Number crunching is what computers are good at. They are orders of
magnitude better at performing additions, multiplications etc than us
mere humans. This has been exploited in many different ways, from
finding prime numbers to analysing the stresses on different parts of a
bridge.

This chapter looks at all aspects of numbers. It starts by examining the
different types of numbers which AmigaBASIC supports and the
operators which are available to act on them. Then it moves to
demonstrate the use of arrays for solving geometrical problems and
finally it deals with how to format numbers when outputting them.

Types of Numeric Variables
Numeric variables can be subdivided into four categories:

Short integers
Long integers
Single precision floating point numbers
Double precision floating point numbers

Integer variables can represent only whole numbers, for example I,
107, -99 etc. The difference between short integer variables and long
integer variables is the size of number they can hold. Short integer
variables are restricted to values between -32768 and +32767. Long
integer ones can hold values between -2147483648 and 2147483647.
Because long integer variables have to be capable of holding larger
values, they require more storage space and operations on them are
slower.

Floating point variables are sometimes referred to as 'reals'. They can
represent both whole numbers and decimal fractions, for example 1.5,
0.4589, etc. The difference between single precision variables and
double precision variables is the size of number they can hold and the
accuracy with which they hold the fractional part of the number.
Single precision variables can hold values that lie between

165

ArnigaBASIC : A Dabhand Guide

approximately 2x1o-38 and 3x1038 with up to seven digits of precision.
Double precision variables are capable of holding numbers between
3x10_308 and 1x10308 with up to 16 digits of precision.

There are two ways of identifying a variable as being of a particular
type. The first is to use a 'trailing declaration character'. This is a
particular punctuation character which is placed at the end of the
variable name. The characters allowed and the types they declare are
as follows:

$
%
&

For example:

ypos%
ypos#

String
Short integer
Long integer
Single precision real
Double precision real

is a short integer
is a double precision real

The second method is to use definition statements. These declare all
variables beginning with a particular letter or group of letters to be of
a certain type. The definition statements available are as follows:

DEFSTR
DEFINT
DEFLNG
DEFSNG
DEFDBL

For example:

DEFINT n

String
Short integer
Long integer
Single precision
Double precision

means that any variable beginning with the letter 'n' will be treated as
a short integer. Similarly:

DEFDBL a-d, x-z

166

7: Number Crunching

means that any variable beginning with a letter in one of the given
ranges ie 'a', 'b', 'c', 'd', 'x', 'y' or 'z' will be treated as a double
precision floating point number.

There are two situations which have not yet been dealt with. The first
is how to interpret variable names which begin with a letter not
covered by a definition statement and have no trailing declaration
character. These take the default type which is single precision. For
example:

ypos is a single precision real

The second is how to interpret variable names whose first letter is
covered by a definition statement declaring them to have one
particular type and which have a trailing declaration character
declaring them to be of a different type. In this case the trailing
declaration character takes precedence. For example after a:

DEFINT Y

statement, variable names will be interpreted as follows:

is a short integer due to the definition statement ypos

ypos# is a double precision real, the definition statement being
overruled by the trailing #

Both methods have their advantages. The definition statements allow
the types of a group of variables to be refined very easily. For example
you may start out using single precision arithmetic for all calculations
and find later that this is not accurate enough. If you are using only
the definition statements, then you need only add a statement such as:

DEFDBL a - h , q - z

at the beginning of the program and the precision is changed
throughout.

However, the trailing declaration characters make it clear which type
each variable is. You can be certain that any variable ending with a '$'
is going to be a string variable. There is no need to keep checking with
the definition statements to find out the type. In addition they give

167

AmigaBASIC : A Dabhand Guide

more flexibility for naming variables. Variables beginning with the
same letter are not restricted to being of the same type.

Converting Between Different Numeric Types
There are several functions available which take a number and convert
it to a particular type. These are:

CSNG
CDBL
CLNG
CINT
INT
FIX

Converts to single precision
Converts to double precision
Converts to long integer
Converts to short integer
Converts to short integer
Converts to short integer

The problem with converting a floating point number to an integer is
how to deal with the fractional part of the number. The three routines,
CINT, INT and FIX are provided to give a choice of how to treat it.

CINT rounds to the closest integer. Therefore if, the fractional part
is greater than 0.5, the number is rounded up. If the fractional
part is less than 0.5, the number is rounded down. If the
fractional part is 0.5 exactly, then CINT rounds to the nearest
even integer.

INT always rounds the number down
FIX removes the fractional part

The following table shows the difference between the three methods:

Number Results from
CINT INT FIX

1.3 1 1 1
1.7 2 1 1

-1.3 -1 -2 -1
-1.7 -2 -2 -1

Conversion between types is performed for you automatically in most
cases. When assigning a constant to a variable, the constant is stored
as the type dictated by the variable name.

For example the assignments:

168

7 : Number Crunching

LET number! 4/3
LET number% 4/3

leave the variables with the following values:

number! is 1.333333
number% is 1

Hence the fractional part has been lost in the case of the integer
variable.

When evaluating an expression, BASIC converts all the numbers so
they are of the same type as the most precise operand. Any operations
are performed to this precision. Then the result is converted to the
type of the variable being assigned to. For example:

answer% = x! * y#

The expression contains a single precision real 'x!' and a double
precision real'y#'. When evaluating this, the following happens:

1) The value of 'x!' is converted so the operands are both double
precision.

2) The multiplication is performed giving a result which has double
precision accuracy.

3) This result is converted to a short integer so that it can be assigned
to the variable answer%. This conversion is performed in the same
manner as CINT, ie the number is rounded to the closest integer.

Numeric Expressions
Numeric expressions consist of a series of constants or variables which
are acted upon by 'operators'. These operators fall into different
categories as given below:

Arithmetic Operators

The most cornmon kind of operators are 'arithmetic operators'. These
produce a numerical result. For example:

(1.5 + 2) * (x%-130)

contains three arithmetic opera tors, '+', ,*, and '-'.

The full list of arithmetic operators is given below:

169

AmigaBASIC : A Oabhand Guide

Operator Operation Example

+ Unary plus +x
Unary minus -x

+ Addition x+y
Subtraction x-y

* Multiplication x*y
1\ Raise to the power xl\y
MOD Integer remainder xMODy
\ Integer division x\y

'MO~' and '\' are integer arithmetic operators. They act only on
integer operands. Any floating point operands are rounded to the
nearest integer before the operation is carried out. 'V returns the
integer part of a division. MOD returns the integer remainder of a
division. For example

13 \ 5 produces the result 2
13 MOD 5 produces the result 3

Relational Operators

Another type of operator that we have already met is called a
'relational operator'. This takes two operands and returns one of two
alternate results: either true or false. For example:

b>2

Relational operators tend to be used mainly as tests in IF or WHILE
statements. The full list is given below:

• Operator Relation Example

= Equal to x=y
<> Not equal to x<>y
< Less than x<y
> Greater than x>y
<= Less than or equal to x<=y
>= Greater than or equal to x>=y

17'0

7 : Number Crunching

Logical Operators

The final type of operator we are going to look at is the 10gical' or
'boolean' operator. This can be looked at in two ways. The simplest is
to regard it as acting on operands which have the value true or false. It
then produces true or false as its result. For example:

(a < 2) OR (a > 5)

is true if 'a' is less than two or greater than five and false otherwise.

The six logical operators are:

Operator

NOT
EQV
AND
OR

Returns true if

operand is false
operands are the same
operands are both true
either of the operands is true
either (but not both) of the operands is true XOR

IMP the first operand is false or both operands are true

The second way of looking at how these operators work is to regard
the operands as a series of 'bits' or 'BInary digiTS'.

Normally, we deal in decimal numbers, ie numbers in base ten.
Decimal numbers contain ten separate digits: zero to nine. These digits
can be treated as being in columns, with a one in a column
representing a power of ten, ie:

... 10000 1000 100 10 1

For example 123 represents 1*100 + 2*10 + 3*1.

Binary numbers are numbers in base two. They consist entirely of the
digits '0' and '1'. A one in a particular column represents a power of
two, ie:

... 128 64 32 16 8 4 2 1

For example the binary number 100101 = 1*32+0*16+0*8+1*4+0*2+1*1

This is equivalent to the decimal number 37.

The logical operators act on each of the bits of the operands and
produce results as follows:

171

AmigaBASIC : A Dabhand Guide

NOT If a bit of the operand is zero, a one is placed in the
corresponding bit of the result.

EQV If the bits of the operands are both zero or both one, then a
one is placed in the corresponding bit of the result.

AND If the bits of the operands are both one, then a one is placed in
the corresponding bit of the result.

OR If either or both of the bits in the operands is one, then a one
is placed in the corresponding bit of the result.

XOR If either but not both of the bits in the operands is one, then a
one is placed in the corresponding bit of the result.

IMP If the bit in the first operand is zero, or the bit of the second
operand is one, then a one is placed in the corresponding bit
of the result.

For example, consider the two integers:

a% which has the value 53 (0000000000110101 in binary notation)
b% which has the value 12 (0000000000001100 in binary notation)

Applying the logical operators to these values give the following
results:

Function Decimal Binary Representation

NOTa% is-54 (1111111111001010)
NOTb% is-13 (1111111111110011)
a% EQVb% is-58 (1111111111000110)
a%ANDb% is 4 (0000000000000100)
a%ORb% is 61 (0000000000111101)
a%XORb% is 57 (0000000000111001)
a%IMPb% is-50 (1111111111001110)
b%IMPa% is-9 (1111111111110111)

Note that the action of the operators provide the binary notation of the
answer. However, the relationship between the binary notation of a
number and its decimal value may not be immediately clear in the
case of negative numbers. Negative numbers are those whose top bit
contains a one. The way to find the size of the number is to invert all

172

7 : Number Crunching

the bits in the answer and to add one. For example, the first operation,
NOT a % returned the bit pattern:

1111111111001010

When inverted this becomes:

0000000000110101

and when one is added it changes to:

0000000000110110

whose decimal equivalent is 54. Therefore NOT a % gives the result 54.

The logical operators actually always work by acting on the individual
bits of the numbers. 'True' and 'false' are just two special 'numbers'
which take the values -1 and 0 respectively. In binary notation -1 has
all the bits set to one and 0 has all the bits cleared to zero. It just so
happens that the operators, when acting on a combination of 0 and -1,
will always give a result which is either 0 or -1. The following
illustrates this:

a% has the value true (1111111111111111)
b% has the value false (0000000000000000)

NOTa% is false (0000000000000000)
NOTb% is true (1111111111111111)
a%EQVb% is false (0000000000000000)
a%ANDb% is false (0000000000000000)
a%ORb% is true (1111111111111111)
a%XORb% is true (1111111111111111)
a%IMPb% is false (0000000000000000)
b%IMPa% is true (1111111111111111)

Operator Priority
Each operator is assigned a 'priority' and, when an expression is being
evaluated this priority determines the order in which the operators are
executed. Priority one operators are those acted upon first, and
priority twelve last.

173

AmigaBASIC : A Dabhand Guide

Priority

1
2

3

4
5
6

7

8

9

10

11

12

Operator

"
+
*
/
\
MOD
+

=
<>
<
>
<=
>=
NOT

AND

OR

XOR

EQV

IMP

Action

Raise to the power
Unary minus
Unary plus
Multiplication
Division
Integer division
Integer remainder
Addition
Subtraction
Equal to
Not equal to
Less than
Greater than
Less than or equal to
Greater than or equal to
Logical and bitwise
complement
Logical and bitwise
conjunction
Logical and bitwise
disjunction
Logical and bitwise
exclusive or
Logical and bitwise
equivalence
Logical and bitwise
implication

For example, '12+3*4"2' is evaluated as '12+(3*(4"2»' and so produces
the result 60.

Operators with the same priority are executed left to right, as they
appear in the expression. For example, '24/4/2' is evaluated as
'(24/4)/2'.

174

7 : Number Crunching

Mathematical Fundions
AmigaBASIC supports all the standard mathematical functions, which
are grouped below:

Function Result Argument Result range

SIN (x) sine ofx angle in radians -1 to +1
COS (x) cosine of x angle in radians -lto +1
TAN(x) tangent ofx angle in radians any real
ATN(x) arc-tangent of x any real -1t/2 to +1t/2
LOG (x) log to base e of x any +ve real -38 to +38
EXP(x) exponentialofx any real < 89 for any +ve real single

precision, or < 710 for double
precision numbers

SQR(x) square root of x any +ve real any +vereal
ABS(x) absolute value of x any real any +ve real

Advanced Use of Arrays
In a simple program which handles arrays, it is usual for subprograms
to make direct access to the arrays by use of the SHARED command.
However, this means that the subprogram cannot readily be extracted
and used as part of a new, and perhaps more complicated, program.
Fortunately, a more general mechanism is available which allows
libraries of subprograms to be constructed in such a way that they can
act upon arrays of any shape and size.

To achieve this, AmigaBASIC allows an entire array to be passed as a
single parameter to a subprogram. In addition, BASIC provides two
functions: LBOUND and UBOUND which return the lower and upper
bounds, respectively, of the various subscripts of an array. These allow
a subprogram to handle arrays of different sizes. For example:

OPTION BASE 1
DIM arr%(lO,20)
PRINT LBOUND(arr%)
PRINT UBOUND(arr%)
PRINT LBOUND(arr%,2)
PRINT UBOUND(arr%,2)

will produce:

175

AmigaBASIC : A Dabhand Guide

1
10
1
20

If LBOUND and UBOUND are passed only the name of the array,
then they return the lower and upper bounds of the first subscript. To
investigate other subscripts, these functions can take a second
argument which is the number of the subscript in question.

Note that the lower bound will always be zero or one, since these are
the only values which can be given to OPTION BASE.

The following subprograms give methods of performing 'matrix'
arithmetic. Matrices are two dimensional arrays, where the first
dimension gives the number of rows in the matrix and the second
gives the number of columns. They are drawn in the following form:

(ll) or: (III 1 1)

(3x2) (Ix5)

The diagrams above show a 3x2 matrix and a Ix5 matrix respectively.

Matrices can be added, subtracted and multiplied together according
to certain rules.

Only matrices with the same number of rows and columns can be
added or subtracted. The resulting matrix is also the same size. For
each element in the resulting matrix, its value is given by adding or
subtracting the pair of elements in the corresponding place in the
matrices being acted upon. For example:

(ii) -63 + (1-2) -23
40

(3-6) -18
-23

(al) (a2) (a3)

176

7 : Number Crunching

Therefore matrices can be added using the subprogram in the
following program. Although the program deals with the example
above, the subprogram will work with matrices of any size:

OPTION BASE 1

DIM a1%(3,2)

DIM a2%(3,2)
DIM a3%(3,2)

a1%(1,1) 2 a1%(1,2) -4
a1%(2,1) 1 a1%(2,2) 5
a1% (3, 1) -6 a1%(3,2) 3
a2%(1,1) 1 a2%(1,2) -2

a2%(2,1) -2 a2%(2,2) 3

a2%(3,1) 4 a2%(3,2) 0

CALL add.array(a1%(),a2%(),a3%(»
PRINT a3%(1,1) a3%(1,2)
PRINT a3%(2,1) a3%(2,2)
PRINT a3%(3,1) a3%(3,2)

add. array:
SUB add.array(a1%(),a2%(),a3%(» STATIC

Ib% LBOUND(a1%)
rows.ub% UBOUND(a1%)

cols.ub% UBOUND(a2%,2)

FOR row% Ib% TO rows.ub%

FOR col% = Ib% TO cols.ub%
a3%(row%,col%) = a1%(row%,col%) + a2%(row%,col%)

NEXT

NEXT
END SUB

Note that this subprogram assumes that the lower bounds of all three
matrices are the same. In addition, it does not check that the three
matrices are the same size, ie that the upper bounds are equivalent for
both dimensions.

Matrix multiplication is more complex. A matrix with 'n' rows and 'm'
columns can only be multiplied by a matrix with 'm' rows and 'p'

177

AmigaBASIC : A Dabhand Guide

columns. The result is a matrix with 'n' rows and 'p' columns. The
element in the ith row and jth column of the resulting matrix is given
by:

ail.b1j + ai2.b2j + ... + aim.bmj

For example:

(1 2 3) x mJ = (lxD+2x-l+3x2 1x1+2xO+3x1)

= (4 4)

Therefore a subprogram to perform matrix multiplication is as
follows:

178

OPTION BASE 1
DIM a1%(l,3)
DIM a2%(3,2)
DIM a3%(1,2)

a1%(1,1)
a2%(1,1)
a2%(2,1)
a2%(3,1)

1

o
-1

2

al%(1,2)
a2%(1,2)
a2%(2,2)
a2%(3,2)

2

1

o
1

al%(1,3)

CALL mult.array(al%(),a2%(),a3%(»
PRINT a3%(1,1) a3%(1,2)

SUB mult.array(al%(),a2%(),a3%(» STATIC
Ib% LBOUND (al%)
rows1.ub% UBOUND(al%)
cols1.ub% UBOUND(al%,2)
cols2.ub% UBOUND(a2%,2)

FOR row% = Ib% TO rows1.ub%
FOR col% = Ib% TO cols2.ub%

a3%(row%,col%) = 0
FOR n% = Ib% TO colsl.ub%

a3%(row%,co1%) = a3%(row%,col%)+

a1% (row%,n%) *a2%(n%,co1%)

3

NEXT
NEXT

NEXT
END SUB

7 : Number Crunching

Again the subprogram assumes that the lower bounds of all three
arrays are the same and that their dimensions are valid. These have
been set up to be so in the main program.

Array Space
When you DIM an array, BASIC reserves the maximum amount of
space the elements in the array may require. For example, an innocent
looking array such as :

OPTION BASE 1

DIM col%(620,180)

tries to claim enough space for 116000 integers, each of which is two
bytes long. Therefore this single array requires over lOOk of your
computer's memory! Therefore you should be careful to keep arrays to
the minimum size. In addition, you should release the memory used
by an array as soon as you have finished with it. If you are only
intending to use an array within one particular subprogram, you
should DIM the array at the start of the subprogram and then ERASE
it again before the end. For example:

SUB xxx STATIC

OPTION BASE 1
DIM temp%(lO,lO)

ERASE temp%
END SUB

Note that the ERASE statement in the above example is vital if the
subprogram is to be called more than once. Without it, the second time
the subprogram was called, BASIC would try to DIM the array
temp%, find that it already existed and so give the error 'Duplicate
definition' .

179

AmigaBASIC : A Dabhand Guide

Formatting Numbers on Output
If you wish to output a series of numbers, the statement to use is
PRINT USING. This allows you to dictate the format that you wish
numbers to appear in, by using special characters. The most useful of
these are '#' which is used to indicate the position of a digit, '.' which
inserts a decimal point and '+' which prefixes numbers with a plus or
minus sign. For example:

FOR loop% = 1 TO 10
READ n
PRINT USING "+##.#";n

NEXT
DATA 28,13.5,-27.99,-16,89
DATA 25.4,0,23.34,3.14,191.4

produces:

+28.0
+13.5
-28.0
-16.0
+89.0
+25.4

+0.0
+23.3

+3.1
%+191.4

Note the last number printed. This was too large to be fitted into the
format supplied since it requires three digits in front of the decimal
point. Therefore it has been preceded by a '%' character to indicate
that it overflowed the field width. If you need to print numbers whose
size you don't know, then it is safer to use exponential format. For
example try the following:

180

FOR loop% = 1 TO 5
INPUT "Please give me a number :",n(loop%)

NEXT
FOR loop% = 1 TO 5

PRINT USING "+#.##AAAA";n(loop%)

7 : Number Crunching

NEXT

The IAAAN is used to indicate exponential format. This is replaced by
an 'E', a plus or minus and one or two digits of exponent.

181

AmigaBASIC : A Dabhand Guide

182

8 : Sounds and Voices
We've already seen how to use BASIC to make the Amiga playa one­
part tune. The next stage is to build on this to produce multi-part
tunes. Then we will investigate how to make each of the parts produce
a different type of sound, from soft melodious notes to harsh buzzing
noises. In addition, we'll be taking a look at speech to investigate the
many different personalities the Amiga can adopt.

Synchronisation
The Amiga supports four sound channels numbered '0', '1', '2' and '3'.
When you playa note using the SOUND statement, this note is played
on just one channel. By default this is channel O. However you can
choose one of the others by adding a fourth argument to SOUND. For
example:

SOUND 523.25, 18.2, 127, 1

plays a middle C lasting for one second at the default volume on
channel one. Sounds created on channels 0 and three are sent to the
left speaker and sounds on channel one and two to the right speaker.
You will only be able to tell the difference, though, if you link your
Amiga up to a stereo system. Therefore when producing notes on the
native machine all channels are equal.

If you use several SOUND commands, each is queued up until the
previous one on its channel has finished. The obvious way to try to
play two notes at once is to use two different channels. For example:

SOUND 523.25, 9.1, 127, °
SOUND 1046.50, 9.1, 127, 1

There is a potential problem with this, in that the second note will be
slightly behind the first because of the time it takes AmigaBASIC to
analyse the second statement and act upon it. This delay will be

183

AmigaBASIC : A Dabhand Guide

unnoticeable in the example given but, if BASIC had to do more work
between the SOUND statements, it could become unacceptable.

Proper synchronisation of the channels is possible by using two
statements: SOUND WAIT and SOUND RESUME. After a SOUND
WAIT, all SOUND commands are stored rather than being played.
The notes are only played after a SOUND RESUME command is
given. Then, any notes on the same channel are played in order and
notes on different channels are played simultaneously. For example:

SOUND WAIT

SOUND 523.25, 9.1, 127, 0
SOUND 659.26, 9.1, 127, 0
SOUND 783.99, 9.1, 127, 0
SOUND 1046.50, 9.1, 127, 0
SOUND RESUME

produces the four notes middle C, E, G and top C played one after the
other producing an 'arpeggio' or 'broken chord'. This is because all of
the notes are being played on channel 0, so they are played in
sequence. Whereas:

SOUND WAIT

SOUND 523.25, 9.1, 127, 0
SOUND 659.26, 9.1, 127, 1
SOUND 783.99, 9.1, 127, 2
SOUND 1046.50, 9.1, 127, 3
SOUND RESUME

plays the same notes, but this time they all sound together producing
a proper 'chord'. This is because they are on different channels so
sound simultaneously in response to the SOUND RESUME.

We can use these statements to playa multi-part tune. The following
program plays the same extract of the Can-can from Orpheus in the
Underworld by Offenbach as the program we wrote in Chapter Two.
However, this version plays three parts rather than just one.

REM Set up variables

dur 8.0

184

8 : Sounds and Voices

duration 0
ending% 1

REM Produce the sounds
mainloop:
SOUND WAIT
WHILE channel% <> -4

READ note$,duration,channel%
IF channe1% >= 0 THEN

CALL note.value(note$,freq)
SOUND freq,duration*dur,127,channel%

ELSE IF channel% = -1 THEN
SOUND RESUME
SOUND WAIT

ELSEIF channel%
SOUND RESUME
SOUND WAIT

-2 THEN

IF ending% = 1 THEN
RESTORE end1

ELSE
RESTORE end2

END IF
ending% = ending% + 1

ELSEIF channel% = -3 THEN
SOUND RESUME
SOUND WAIT
RESTORE main

ELSE IF channel%
SOUND RESUME

END IF
WEND

noteval:

-4 THEN

SUB note.value(note$,freq) STATIC
IF noteS = "a2n" THEN

freq 220.00
ELSEIF noteS = "b2n" THEN

freq 246.94
ELSE IF noteS = "c2n" THEN

freq 261.64
ELSEIF noteS = "d2n" THEN

freq 293.66
ELSEIF noteS = tle2n" THEN

185

AmigaBASIC : A Dabhand Guide

186

freq 329.63
ELSE IF noteS = "f2s"

freq 370.00
ELSE IF noteS = "g2n"

freq 392.00
ELSE IF noteS = "a3n "

freq 440.00

ELSE IF noteS = "b3n"
freq 493.88

ELSE IF noteS = "c3n"
freq 523.25

ELSE IF noteS = "d3n"
freq 587.33

ELSEIF noteS = lIe3n"

freq 659.26
ELSE IF noteS = "f3s"

freq 740.00
ELSEIF noteS = "g3n"

freq 783.99
ELSEIF noteS = "a4n"

freq 880.00
ELSE IF noteS = "b4n"

freq 993.00
ELSEIF noteS = "c4n u

freq = 1046.50
ELSE IF noteS = "d4n"

freq = 1174.70
ELSE IF noteS = "e4n"

freq = 1318.50
ELSE IF noteS = "f4s"

freq = 1480.00
ELSEIF noteS = "g4n"

freq = 1568.00
ELSE

BEEP: STOP
END IF
END SUB

REM The Data

main:

DATA g3n,2.0,0

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

DATA g3n,0.5,1,d3n,0.5,1,g3n,0.5,1,d3n,0.5,1
DATA g2n,0.5,2,b3n,0.5,2,d3n,0.5,2,b3n,0.5,2

8 : Sounds and Voices

DATA ,0.0,-1

DATA a4n,0.5,0,c4n,0.5,0,b4n,0.5,0,a4n,0.5,0
DATA a3n,0.5,1,c3n,0.5,1,b4n,0.5,1,c3n,0.5,1

DATA f2s,0.5,2,a3n,0.5,2,d2n,0.5,2,f2s,0.5,2
DATA ,0.0,-1

DATA d4n,1.0,0,d4n,1.0,0

DATA d4n,0.5,1,d3n,0.5,1,d4n,0.5,1,d3n,0.5,1

DATA g2n,0.5,2,b3n,0.5,2,d2n,0.5,2,b3n,0.5,2
DATA ,0.0,-1

DATA d4n,0.5,0,e4n,0.5,0,b4n,0.5,0,c4n,0.5,0
DATA d4n,0.5,1,b3n,0.5,1,b4n,0.5,1,b3n,0.5,1
DATA g2n,0.5,2,g2n,0.5,2,d2n,0.5,2,g2n,0.5,2
DATA ,o.0,-1

DATA a4n,1.0,0,a4n,1.0,0

DATA a4n,0.5,1,c3n,0.5,1,a4n,0.5,1,c3n,0.5,1

DATA f2s,0.5,2,a3n,0.5,2,d2n,0.5,2,f2s,0.5,2
DATA ,0.0,-1

DATA a4n,0.5,0,c4n,0.5,0,b4n,0.5,0,a4n,0.5,0
DATA a4n,0.5,1,c3n,0.5,1,b4n,0.5,1,c3n,0.5,1
DATA f2s,0.5,2,a3n,0.5,2,d2n,0.5,2,f2s,0.5,2
DATA ,o.o,-2

end1:

DATA g3n,0.5,0,g4n,0.5,0,f4s,0.5,0,e4n,0.5,0

DATA g3n,0.5,1,d3n,0.5,1,f4s,0.5,1,d3n,0.5,1
DATA g2n,0.5,2,b3n,0.5,2,d2n,0.5,2,b3n,0.5,2
DATA ,0.0,-1

DATA d4n,0.5,0,c4n,0.5,0,b4n,0.5,0,a4n,0.5,0

DATA d4n,0.5,1,c3n,0.5,1,b4n,0.5,1,c3n,0.5,1

DATA d3n,0.5,2,f3s,0.5,2,d3n,0.5,2,f3s,0.5,2
DATA ,0.0,-3

end2:

DATA g3n,0.5,0,d4n,0.5,0,a4n,0.5,0,b4n,0.5,0
DATA g3n,0.5,1,d3n,0.5,1,a4n,0.5,1,c3n,0.5,1
DATA g2n,O.5,2,b3n,O.5,2,d2n,0.5,2,f2s,0.5,2
DATA ,0.0,-1

DATA g3n,1.0,O,g4n,1.0,0

DATA b3n,1.0,1,b2n,1.0,1
DATA g2n,1.0,2,d2n,1.0,2
DATA ,0.0,-4

187

AmigaBASIC : A Dabhand Guide

This program stores the details about the notes to be played in data
statements. There are three statements for each bar, one for each of the
different parts being played. The statements are divided up like this to
help you keep track of what is happening. Each group of three
statements is followed by a set of special data to mark the end of the
bar. The program starts by issuing a SOUND WAIT statement. It then
loops round, reading in the details of notes and queueing up SOUND
statements for each of them, until it comes across the special data. This
data causes the program to execute a SOUND RESUME statement to
play the previous bar, followed by a SOUND WAIT to start the
process off again for the next bar. Only one bar's worth of notes are
queued at a time because the sound buffer is limited in size and if it
gets full an error is generated.

The piece we are playing is made up of 16 bars of music. However, the
first six bars are repeated twice. To avoid having to repeat the data
statements for these, the special data has different channel values so
that it can give instructions to the main program about which bars to
perform next. These are interpreted as follows:

-1 end of an ordinary bar, do nothing special
-2 end of the main section, start either endl or end2
-3 end of the first half, repeat main section
-4 end of the second half so stop

DATA statements can only hold constant numbers or strings; they
cannot contain variables or expressions. This prevents us from using
variables like 'b4n' to hold the values of the notes. Since having a
descriptive form for each note, rather than just a number, is so useful,
the program has found a solution to the problem. It represents each
note as a constant string such as Ib4n". When the string is read, it is
passed to a subprogram 'note.value'. This subprogram uses a large IF
statement to match it against each of the notes it knows, and places the
frequency for it in a second parameter whose value is returned to the
main program.

188

8 : Sounds and Voices

Waves
All sounds are made up of waves. A pure sound would consist of a
perfect sine wave like the one shown in Figure 8.1:

Figure 8.1. A pure sound wave.

The frequency of the wave dictates its pitch and the 'amplitude' or
height dictates its volume. Unfortunately no instruments are capable
of producing pure sounds. Instead they produce a mixture of waves
which combine to form complicated waveforms.

The waveform is important in determining the characteristics of the
sound produced. Each instrument has a different waveform associated
with it, so to imitate an instrument we have to try to replicate its
waveform. Normally, AmigaBASIC uses the sine wave, but you can
override this using the WAVE statement. This requires two
arguments. The first is simply the channel which you want to assign
the waveform to. The second is either the word 'SIN' to select the
default wave form, or an array containing at least 256 integer
elements. Each of these represents a point of the waveform. The
maximum value of an element is 127, which means that the waveform
is at the maximum height above the middle line. The minimum value
is -128, which means that the waveform is at the greatest distance
below the line.

189

AmigaBASIC : A Dabhand Guide

Obtaining the right waveform is a process of trial and error. The
following program attempts to let you see and hear different
waveforms in action. It allows you to select one of 10 available
waveforms by pressing a key one to zero. This waveform will be
illustrated graphically to show its shape. Then if you press certain
keys on the keyboard the program will playa note using the current
waveform. These keys are as follows:

You can continue this process over and over again. The program only
ends when a non-special key is pressed.

190

array. initialisation:
OPTION BASE 0
DIM wf%(255)

variables:
pi 3.14159
con 2*pi/256
dur 9.1

screen. colours:

PALETTE 0,0,0,0
PALETTE 1,1,1,1
PALETTE 2,0,1,0
CLS

main:
WHILE 1 = 1

key$ = INKEY$

REM converts 0 - 256 into 0 - 2*PI
REM Duration of each note

REM Black background
REM White axes
REM Green graph
REM Clear the screen

IF key$ <> "" THEN
key$ = UCASE$(key$)

numbers:
IF key$ = "1" THEN

CALL wave1 : WAVE O,wf% CALL draw
ELSEIF key$ = "2" THEN

CALL wave2 : WAVE O,wf% CALL draw

ELSEIF keyS = "3 11 THEN

CALL wave3 : WAVE 0, wf%
ELSE IF keyS = "4" THEN

CALL wave4 : WAVE O,wf%

ELSEIF keyS = "5" THEN

CALL wave5 : WAVE O,wf%

ELSEIF keyS = 116" THEN

CALL wave6 : WAVE O,wf%

ELSEIF keyS = "7" THEN

CALL wave7 : WAVE O,wf%

ELSEIF keyS = 118 11 THEN
CALL wave8 : WAVE O,wf%

ELSEIF keyS = "9" THEN

CALL wave9 : WAVE O,wf%

ELSEIF keyS = 110" THEN

CALL waveO : WAVE O,wf%

letters:

ELSE IF keyS = "A" THEN

SOUND 523.25,dur,127,0

ELSEIF keyS = "S" THEN

SOUND 587.33,dur,127,O

ELSE IF keyS = "0" THEN

SOUND 659.26,dur,127,0

ELSEIF keyS = "F" THEN

SOUND 701.00,dur,127,O

ELSEIF keyS = "G" THEN

SOUND 783.99,dur,127,0

ELSEIF keyS = "H" THEN

SOUND 880.00,dur,127,0

ELSE IF keyS = "J" THEN

SOUND 993.00,dur,127,O

ELSE IF keyS = "K" THEN

SOUND 1046.50,dur,127,O

illegal.key:

ELSE

END

END IF

END IF

WEND

draw:

8 : Sounds and Voices

CALL draw

CALL draw

CALL draw

CALL draw

CALL draw

CALL draw

CALL draw

CALL draw

191

AmigaBASIC : A Dabhand Guide

192

SUBdraw STATIC
SHARED wf% ()

CLS
LINE (50,100) - STEP(255*2, 0)

LINE (50,100) - STEP (0 , 128/2)
LINE (50,100) - STEP(O
PSET (50,wf%(0)/2),2

FOR loop% = 1 TO 255

, -128/2)

LINE STEP(O,O) - (50+loop%*2,100-wf%(loop%)/2),2
NEXT
END SUB

wave1:

SUB wave1 STATIC

SHARED wf%(), con
FOR loop% = 0 TO 255

wf%(loop%) = 127*SIN(loop%*con)
NEXT
END SUB

wave2:

SUB wave2 STATIC

SHARED wf%(), con
FOR loop% = 0 TO 255

wf%(loop%) = 63*(SIN(loop%*con) + COS(loop%*con*2»
NEXT
END SUB

wave3:

SUB wave3 STATIC

SHARED wf%(), con
FOR loop% = 0 TO 255

wf%(loop%) = 40* (2*SIN(loop%*con) *COS(loop%*con*6»
NEXT
END SUB

wave4:
SUB wave4 STATIC
SHARED wf%(), con
FOR loop% = 0 TO 255

IF loop% < 128 THEN
wf%(loop%) 127

ELSE

8 : Sounds and Voices

wf%(loop%) -127
END IF

NEXT
END SUB

wave5:
SUB wave5 STATIC
SHARED wf%(), con
FOR loop% = 0 TO 255

IF loop% < 12S THEN

wf%(loop%) 127 - 2*loop%
ELSE

wf%(loop%)

END IF
NEXT
END SUB

wave6:

2* (loop%-12S) - 127

SUB wave6 STATIC
SHARED wf%(), con
FOR loop% = 0 TO 255

wf%(loop%) = 127*SIN(loop%*con*5)*EXP(-loop%/SO)
NEXT
END SUB

wave7:
SUB wave7 STATIC
SHARED wf%(), con

FOR loop% = 0 TO 255
wf%(loop%) = 127*EXP(-loop%/40)

NEXT
END SUB

waveS:
SUB waveS STATIC
SHARED wf%(), con
FOR loop% = 0 TO 255

wf%(loop%) =
40* (SIN(loop%*con)+SIN(loop%*con*2)+SIN(loop%*con*4)
NEXT
END SUB

wave9:

193

AmigaBASIC : A Dabhand Guide

SUB wave9 STATIC
SHARED wf%(), con
FOR loop% = D TO 255

wf%(loop%) = 63* (SIN(loop%*con)+SIN(loop%*con*l2)
NEXT

END SUB

waveD:

SUB waveD STATIC
SHARED wf%(), con

FOR loop% = 0 TO 255
wf%(loop%) = RND*255 - 127

NEXT

END SUB

The main loop is a WHILE loop whose conditional expression is '1 =
1'. This always gives the result TRUE so the loop never ends. Inside
this loop is a call of INKEY$ to test the keyboard to see if a key has
been pressed. If so, the string returned is converted to upper-case by
UCASE$. This means, for example, that we don't have to test the
string against both "A" and "a": just one test is sufficient. Then the
string is compared with all the keys we are interested in. If it is a
number, then the program calls a subprogram to set up the values for
the waveform in the array wf%, assigns this waveform to channel 0
and calls the subprogram 'draw' to display the shape of the waveform
on the screen. If it is a letter corresponding to a note, the program
plays the relevant note for half a second using the current waveform.
Otherwise the key is invalid and the program terminates.

The subprogram 'draw' clears the screen, draws the axes and plots the
point corresponding to the first element of wf%. It then loops round
the rest of the points, linking each to the previous one with a straight
line.

Subprograms 'wavel' to 'waveO' perform the task of assigning values
to the array wf% which is shared with the main program. To alter a
waveform all you have to do is to change the action of one of these
subprograms. Note that you must make sure that the each value in the
array is in the range -128 to 127, otherwise an:

Illegal function call

194

8 : Sounds and Voices

error message is generated by the WAVE statement.

Speech
All that you need to make the computer speak are the two keywords
TRANSLATE$ and SAY. For example:

FOR loop% = 1 TO 5

PRINT

PRINT "Please give me a sentence "
INPUT ";",sen$

sen$ = TRANSLATE$(sen$)
SAY sen$

NEXT

Note that, when you run this program, you will be prompted to place
the Workbench disc in a disc drive if it is not in one currently. This is
because the software BASIC requires to perform TRANSLA TE$ and
SAY is supplied as part of the Workbench. Since these routines are
fairly large, BASIC doesn't keep them in memory. If they are present
when a program is run, then BASIC deletes them before starting to
execute the program. This means that, if you run this program several
times, the routines will be reloaded into memory each time.

TRANS LA TE$ converts a text string into 'phonemes' or 'units of
significant sound'. Roughly speaking, (no pun intended),
TRANS LA TE$ takes a string of characters and converts them into a
string of sounds. SAY then takes this string of sounds and 'speaks' it.

Unfortunately TRANSLATE$ is not perfect. English is an extremely
difficult language to handle in this way. Consider the following
words: cough, bough, through; in each the string 'ough' is pronounced
in a different way. TRANS LA TE$ has a set of rules to work to about
how different combinations of letters should be spoken. Unless a
computer has vast amounts of memory to spare, teaching it all the
special cases is not possible. Even if it were, having a phonetic version
of every word would not be enough. For example 'I am going to read
that book' and 'I have read that book' both contain the word 'read' but
the context it is in affects its pronunciation.

195

AmigaBASIC : A Dabhand Guide

Phonemes
If words aren't spoken as you would like them to be, then the easiest
way to solve the problem is to cheat. For example, if you want the
word 'data' to be pronounced the English way rather than the
American, then spell it 'dayter'. A much harder, but more precise, way
is to construct the phonemes yourself rather than letting
TRANS LA TE$ do it for you. This is a very complex area of
AmigaBAsIC which could take up a whole book in itself. The
following provides only a brief introduction, which should allow you
to experiment for yourself if you wish.

Each phoneme is represented by one or two upper-case characters.
These are listed in categories below, together with words which give
examples of their sound.

Vowels
AA cot
AE cat
AH fun
AO walk
AX about
EH let
ER bird
IH fit
IX solid
IY feet

OH cord
UH book

The vowels are the continuous sounds which connect the shorter
consonants together.

At first sight, AE seems similar to AX and IH similar to IX. The
difference is that AX and IX are used for vowels which tend to get
buried in the surrounding sounds due to the lazy way in which we
speak. If we pronounced all words clearly and correctly there would
hardly be any use for these phonemes.

196

8 : Sounds and Voices

Any of the vowels other than AX and IX can be followed by a digit one
to nine. The existence of a digit causes the syllable to be lengthened to
place stress on it. The value of the digit indicates the intonation to be
used: a higher value creates a greater rise in pitch at that point.

Diphthongs:

AW cow
AY tide
EY fade
OW row
OY foil
UW flew

Diphthongs are like vowels except that they change their sound as
they are spoken. They too can be emphasised.

Consonants:
B bat K cot T tap
IC block L lot TH this
CH chat M mat V very
D day N next W wide

DH the NX king Y yacht
F fat P pat Z zoo
G get R rat ZH leisure
IH hot S sat
J jam SH show

Pu.nctuation
Punctuation marks can be used to help the intonation of sentences.
Sentences should be ended with either a '.' or a '?' to determine the
final rise or fall of the voice. In addition a '-' or ',' can be used in the
middle of a sentence to cause a short pause; using the ',' also causes a
slight rise in the voice to indicate that the sentence has not yet
finished. The final punctuation characters are '(' and ')'. These can be
put round phrases to group the words together for intonation
purposes.

To try out all this theory, adapt the program above to read as follows:

FOR loop% = 1 TO 5

197

AmigaBASIC : A Dabhand Guide

PRINT
PRINT "Please give me a phonetic sentence "

INPUT;":",sen$

SAY sen$

NEXT

Now you have to input the phonetic string which is fed directly into
SAY. Try the following for starters:

AY LAYK UW3ZIXNX AEMIYSGAE BEY3SIXK.

If you need help at any stage, have a look at what TRANSLATE$
produces and try editing its output.

Altering the Voice
Besides deciding what the Amiga says to you, you can also choose
how it says it. The SAY statement takes a second argument which is an
integer array containing at least nine elements. The first nine elements
in it are used to control various characteristics of the voice which the
computer uses:

0- Pitch
This is the base pitch or frequency of the voice. The value should be in
the range 65 to 320, which allows voices ranging from very deep to
high and squeaky to be used. The default value is 110, which is a
typical male voice, for a female the value should be higher.

1 - Inflection
You can either have inflections in the speech or not. Zero, the default
value, causes the voice to have modulations in it like normal speech.
The value one produces a monotonic, artificial sounding voice.

2-Rate
The speaking rate is specified in words per minute. Permitted values
are between 40 and 400, with the default value being 150. For anyone
wanting to check how good their shorthand is, this is the ideal tool!

3 - Voice
Either a male or female voice can be used by providing the value zero
(which is the default) or one.

198

8 : Sounds and Voices

4-Tuning
This determines the quality of the sound produced by altering the
'sampling frequency'. The permitted values are in the range 5000 to
28000, and these generate voices which are low and vibrant to high
and squeaky. The default value is 22200. Again, this should be raised
for a female voice.

S-Volume
Values between 0 (silent) and 64 (loud) are allowed. The default is 64.

6-Channel
Selecting a channel is not quite as simple as with the SOUND
command. This is because voices can be sent to more than one channel
at once. Therefore, if you connect your Amiga to a stereo system, you
can have the voice coming from either the left or right speaker or both.
The combinations which are possible are:

0 Channel 0
1 Channell
2 Channel 2
3 Channel 3
4 Channels 0 and 1
5 Channels 0 and 2
6 Channels 1 and 3
7 Channels 2 and 3
8 Any available left channel (0 and/ or 3)
9 Any available right channel (1 and/or 2)
10 Either available pair of channels (0 & 3 or 1 & 2)
11 Any available single channel

A channel is 'available' when there is no sound currently being
produced on it. Therefore, if your program is using channels zero and
one to playa tune, it has channels two and three available for speech.

The default value is 10, which selects any available pair of channels.

7-Mode
The mode determines how BASIC handles the other commands in the
program following the SA Y command. A value of zero makes it wait
until SAY has finished outputting the entire phonetic message it was
given, before starting on the next command. This is the default mode.

199

AmigaBASIC : A Dabhand Guide

The other value allowed is one, which causes it to continue executing
the other commands while the speech is being produced.

8- Control
If a value of one is given to the mode option, then the control option is
used to determine how multiple SAY statements are dealt with:

o Start the second when the first has finished
1 Stop all speech processing
2 Terminate the first and start the

second immediately

The following program lets you tryout the various voice options:

200

init:
PALETTE 0,0,0,0
PALETTE 1,1,1,1
CLS

menuinit:
MENU 5,0,1, "Speech"
MENU 5,1,1, "Speak"
MENU 5,2,l,"Quit"
MENU 5,3,2," Male"
MENU 5,4,1," Female"
MENU 5,5,2," Inflections"
MENU 5,6,1," Monotone"
ON MENU GOSUB menuhandler
MENU ON

mouseinit:
ON MOUSE GOSUB mousehand1er
MOUSE ON

speechinit:
DIM mode%(8)
mode%(O) 110 mode%(l)
mode%(3) = 0 mode%(4)
mode%(6) = 10 mode%(7)

o
22200

o
DIM min%(8), max%(8), row%(8)
min%(O) 65 max%(O) 320
min% (2)
min% (4)

40 max%(2)
5000 max% (4)

400
28000

mode%(2)
mode%(5)
mode%(8)

row%(O)
row%(2)
row%(4)

2

8

5

150
64
o

8 : Sounds and Voices

min%(5) = ° : max%(5) = 64 : row%(5) = 11
sentenceS "The quick brown fox jumps over the lazy
dog"
sen$ = TRANSLATE$(sentence$)

screeninit:
LOCATE 3,1 PRINT "Pitch"
LOCATE 6,1 PRINT "Tuning"
LOCATE 9,1 PRINT "Rate"
LOCATE 12,1 PRINT "Volume"
LOCATE 15,1 PRINT "Settings"

cy% = 9 : minb% = 100 : maxb% = 600
LINE (minb%-l, 2*cy%-1) - (maxb%+1, 3*cy%+1),1,b
LINE (minb%-1, 5*cy%-1) - (maxb%+l, 6*cy%+1),1,b
LINE (minb%-1, 8*cy%-1) - (maxb%+1, 9*cy%+1),1,b
LINE (minb%-1,11*cy%-1) - (maxb%+1,12*cy%+1),1,b

FOR loop% = ° TO 8
CALL update(loop%)

NEXT
mainloop:
WHILE 1 = 1
WEND

update:
SUB update(entry%) STATIC

SHARED min%(),max%(),mode%(),row%(),cy%,minb%.maxb%

IF row%(entry%) <> ° THEN
ypos1% = row%(entry%)*cy%

ypos2% = (row%(entry%)+1)*cy%
range% max%(entry%) - min%(entry%)
fract = (mode%(entry%) - min%(entry%»/range%
xpos2% = minb% + fract*500
LINE (minb%,ypos1%) - (maxb%, ypos2%),0,bf
LINE (minb%,ypos1%) - (xpos2%,ypos2%),1,bf

END IF
PRINT TAB(10+6*entry%);SPC(6) LOCATE 15,10

LOCATE 15,10 PRINT TAB(10+6*entry%);mode%(entry%)
END SUB

menuhandler:
IF MENU (0) = 5 THEN

IF MENU(l) = 1 THEN
SAY sen$, mode%

201

AmigaBASIC : A Dabhand Guide

202

ELSE IF MENU (1)

END

ELSEIF MENU (1)

mode%(3) = 0
MENU 5,3,2

MENU 5,4,1

CALL update (3)

ELSEIF MENU (1)

mode% (3) = 1

MENU 5,4,2

MENU 5,3,1

CALL update (3)

ELSEIF MENU (1)

mode%(I) = 0
MENU 5,5,2

MENU 5,6,1

CALL update (1)

ELSE IF MENU (1)

mode%(I) = 1
MENU 5,6,2

MENU 5,5,1

CALL update (1)

END IF

END IF

RETURN

mousehandler:

check% = MOUSE(O)

2 THEN

3 THEN

4 THEN

5 THEN

6 THEN

xpos% = MOUSE(3) : ypos% = MOUSE(4)

entry% = -1

IF xpos% >= minb% AND xpos% <= maxb% THEN

IF ypos% > 2*cy% AND ypos% < 3*cy% THEN

entry% = 0

ELSE IF ypos% > 5*cy% AND ypos% < 6*cy% THEN

entry% = 4

ELSEIF ypos% > 8*cy% AND ypos% < 9*cy% THEN
entry% = 2

ELSE IF ypos% > 11 *cy% AND ypos% < 12*cy% THEN
entry% = 5

END IF

IF entry% <> -1 THEN

8 : Sounds and Voices

range% = max%(entry%) - min%(entry%)
fract = (xpos% - minb%)/(maxb% - minb%)
mode%(entry%) = min%(entry%) + fract*range%
CALL update(entry%)

END IF

END IF

RETURN

The program allows you to try altering the first six of the voice
characteristics. The screen displays four bars representing the current
level of pitch, rate, tuning and volume. A zero length bar represents
the minimum value for the characteristic. One occupying the full
length represents the maximum possible value. To change any of
these, simply press the mouse button, at the appropriate distance
along, within the bar limits. The bar will be redrawn at its new length
and the corresponding value of the argument to be given to the SAY
command will be updated at the bottom of the screen.

The voice and inflection options are provided by means of a menu. To
alter one of these, press the menu button and select an item from the
'Speech' menu in the usual manner. The currently selected values are
marked.

The menu also provides two other items. Selecting the first of these
will allow you to hear your current voice settings in action saying 'The
quick brown fox jumps over the lazy dog'. The second ends the
program.

The program works as follows:

init:
The program starts by setting up the palette and clearing the screen.

menuinit:
Next, it sets up an extra menu containing six items. Items three and
four form a pair of options, as do items five and six. The first of each
pair is initially selected and has a checkmark placed by it. Note that
the titles of these items are indented to allow room for the checkmark.
Then a menu event handler is set up and menu events are enabled.

203

AmigaBASIC : A Dabhand Guide

mouseinit:
Similarly, a mouse event handler is set up and mouse events are
enabled.

speechinit:
This block initialises many of the details describing the arguments for
the SAY command:

mode%O

min%O

max%O

row % 0

holds the current setting of the nine different voice
characteristics which will be passed to SAY.
holds the minimum values allowed for those
characteristics which can take a range of values
holds the maximum values allowed for those
characteristics which can take a range of values
holds the values of the text rows on which the bars
representing the elements in row%() are to be placed

Each of the elements of mode% is initialised to its default value. Only
the elements of min%, max% and row% which correspond to the
characteristics taking a range of possible values are assigned to. This is
because these are the only ones represented by bars and so details of
the other elements are not required. The other elements will be left as
zero (which the DIM statement initialised them to). This value
indicates that they don't correspond to a bar.

Finally, the sentence to be spoken is defined and translated into
phonemes:

say$ = list of phonemes to be spoken

screeninit:
The next action is to initialise the screen display. It sets up the
following variables:

cy% = height of a character in pixels
minb% = left-hand edge of the bars in pixels
maxb% = maximum right-hand edge of the bars in pixels

The titles of the options are printed starting in the left-hand column, at
the appropriate distances down the screen. Then the limits of the bars
are outlined to the right of them. The horizontal limits of the bar are

204

8 : Sounds and Voices

given in pixels by minb% and maxb%. The bottom of each bar is given
by the number of text rows it is to be placed at down the screen,
multiplied by cy%. Each bar is one row high. Note that the outline is
drawn so that it lies one pixel outside the bar limits in each direction,
so that the bar fits inside it.

The bars themselves are then drawn and the current settings printed
by calling the subprogram 'update' for each characteristic in turn.

mainloop:
The main body of the program consists of a loop which continues
forever.

update:
The subprogram 'update' has one parameter 'entry%' which is the
entry in the array 'mode%' of the item to be updated.

If the row number of the entry is non-zero, then this means that it has
a bar associated with it which needs updating. The bottom and top of
the bar are initialised in yposl % and ypos2% using the row number
multiplied by cy%. Then the next few lines calculate the right-hand
end of the bar. The current setting is converted into a fractional value
of the possible range using:

. current value - minimum value
fraction = maximum value - minimum value

Then the length of the bar is obtained by multiplying this fraction by
the maximum possible length of the bar. Finally, the position of the
right-hand end of the bar is calculated by adding the length onto the
left-hand position (which is always minb%).

Two solid rectangles are then drawn. The first is one of the maximum
possible length which is drawn in the background colour to erase the
previous bar. Then one of the length calculated is drawn to display the
new bar.

The subprogram ends by updating the display of the value of the
array entry shown at the bottom of the screen. It positions the text
cursor on column 10 of row 15 and then moves along by the
appropriate number of characters until it reaches the start of the slot

205

AmigaBASIC : A Dabhand Guide

containing the value. The first time it does this, it then prints six spaces
to erase the current text. The second time, it prints the current value of
the entry held in mode%.

menuhandler:
The menu handler starts by checking that the correct menu has been
selected. H so, it checks which item of the menu has been chosen. For
item one, 'Speak', it executes the SAY command using the current
values in mode% to define the voice characteristics. For item two,
'Quit', it simply ends the execution of the program. Items three to six
are similar to each other. These represent options for the voice. In each
case, the appropriate element of mode% is assigned a value, the option
selected is checkmarked, and the opposite option is redrawn without a
checkmark to show that it is no longer selected. Finally, the
subprogram 'update' is called to update the screen display of the
current settings.

mousehandler:
The mouse handler starts by calling MOUSE(O) to set up the values for
the other MOUSE calls. Then MOUSE(3) and MOUSE(4) are used to
find the x- and y- co-ordinates of the mouse when the button was
pressed. This subroutine then checks to make sure that the x position
was between the minimum and maximum extents of the bars. Next it
checks to see if the y position lies between the top and bottom of a bar.
H so, entry% is set to be the number of the element in the array mode%
which corresponds to the bar hit. Provided that entry% has been
assigned to, a fraction is calculated giving the proportion of the
distance along the bar at which the hit was made:

. _ pos of hit - pos of left-hand end of bar
fraction- pos of right-hand end of bar - pos of left hand end of bar

Then the value of the entry is calculated by multiplying this fraction
by the range of values allowed and adding on the minimum value it
can take:

setting = min value + fraction * (max value - min value)

This result is placed in mode%(entry%), and the subprogram 'update'
is called to update both the graphical and textual screen display.

206

9 : Animation
AmigaBASIC provides commands for controlling things called
'objects'. These are graphic shapes which can be placed on the screen
and told which direction to move in. They will then continue going in
that direction until they hit something, or you instruct them to do
something different. One of the best features about them is that they
do not affect the background. Many other computers do not have this
capability and, without it, tasks which are very simple on the Amiga
become very difficult.

For example, on older computers, a shape could only be moved by
rubbing out its image at the old position and plotting it again at the
new one. The problem was that rubbing out the old image left a blank
space on the screen, instead of the scenery which should have been
there in the background. To get around this, pieces of the background
had to be saved before the shape was placed on top of them, and then
reinstated again later. All this took time and meant that smooth
animation was not possible in BASIC. Instead, programs had to be
written in the machine's native machine code language which is very
primitive and difficult to understand.

Bobs and Sprites
There are two different types of objects: bobs and sprites. They are
handled using the same commands; however they are different in
some respects. Bobs have far fewer restrictions placed on them than
sprites. Firstly their size is unlimited, whereas sprites are only 16
pixels wide. In addition, they can contain up to 32 colours, depending
on the screen mode in operation, whereas sprites are always limited to
just three. Finally, any number of bobs can be displayed at once (they
are restricted only by the amount of memory available), whereas the
number of different sprites is limited to eight.

However, the disadvantage of bobs is that they move slower than
sprites and have a tendency to flicker. Therefore where the limitations
of sprites are no problem, they should be used in preference to bobs.

207

AmigaBASIC : A Dabhand Guide

The Object Editor
Both kinds of objects can be be created using the Object Editor, which
is supplied on the Extras Disk. To use this program, load your copy of
the Extras Disk and open the BasicDemos drawer by double-clicking
on it. This contains several different BASIC programs. The one we are
interested in is called 'ObjEdit'. Start up this program, again by
double-dicking on it. The Amiga will automatically load BASIC into
the computer so that the program can run; hence it may take a few
seconds before anything appears on the screen.

When the program starts, the screen will contain the following text:

Enter '1' if you want to edit sprites
Enter '0' if you want to edit bobs

Respond to this by entering '0' and the screen will change. The shape
in the top left-hand corner is the 'canvas' on which you will be
creating your object. You can change the size of this as though it were
an ordinary window by pointing at the bottom right-hand corner and
pressing the left mouse button. Then, as you move the mouse with the
button held down, an orange outline of the window will move with it.
At the same time, the two numbers at the bottom of the screen will
change. These give the horizontal and vertical dimensions of the
canvas in pixels.

To start creating an object, move the pointer to a position within the
canvas and then press and hold down the left mouse button. As you
move the mouse, the pointer will act as a pen and will leave a white
trail behind it from its tip.

You can make the pointer create other shapes by selecting different
tools to use. The tool currently selected is stated at the bottom of the
screen. By default this is the pen. To see the others available, press the
Menu button and select the Tools menu. Try selecting and
experimenting with each of these in turn. Their actions are described
briefly below:

208

9 : Animation

Pen
The pen allows you to sketch lines and curves freehand. The outline
created is determined by the path taken by the tip of the mouse
pointer whilst the mouse button is held down.

Line
Line is for creating straight lines. A line is created from the position of
the tip of the pointer when the mouse button is pressed to the position
it is at when the button is released

Oval
This tool enables you to create circles and ellipses. Pressing the mouse
button fixes one comer of a rectangle, which is displayed in orange as
the mouse is moved around. Releasing the mouse button fixes the
other comer and an ellipse is drawn so that it touches the centre of all
four sides.

Rectangle
This is similar to the oval tool. However, instead of an ellipse being
drawn when the button is released, the rectangle outline itself is
created.

Eraser
The eraser allows the pointer to be used to wipe out parts of the
canvas. As you move the mouse around with the button held down,
the graphics underneath the tip of the pointer will disappear.

Paint
Paint allows you to fill outlines with a colour. To use it, point at the
centre of an outline you would like to colour in and click the mouse
button. If you think back to BASIC's PAINT command, you should
recall that this paints an area which is delimited by lines drawn in the
'border colour'. The paint tool acts in a similar way. It fills in any area
which is outlined in the colour you are using to do the painting.

There are four colours which can be used displayed in boxes at the
bottom of the screen. To select one of these simply click on it and the
word 'Color:', drawn to the left, will change to the colour selected.

It's now time for you to create a proper object which you will use in
later sections of this chapter. This first thing to do is to throwaway the
results of your experimentation with the different tools and start

209

AmigaBASIC : A Dabhand Guide

afresh with a clean canvas. To do this, select the New item from the
File menu. This acts like BASIC and reminds you that you haven't
saved your current file. Press N, to say that you don't want to save it,
and you will be returned to the initial screen and asked if you want to
edit a bob or a sprite. Again the answer is a bob.

The object you need to create is a rocket. This wants to be roughly 40
pixels wide by 50 pixels high. It can be as complicated or as simple as
you like. When you have finished, select the Save as item from the File
menu and in response to the prompt: 'Enter Filename >' type
':Myprogs/Rocket'. This will save the details of the object you have
just created on the disc in the directory you created earlier (see
Chapter One).

To leave the Object Editor, click the Close gadget in the top left-hand
corner of the window. This will return you to BasicDemos drawer.
Close this as well, and then enter BASIC in the normal way by double
clicking on the AmigaBASIC icon.

Positioning Objects
In the next few sections we will be stepping through the process of
making an object move around in a window. AmigaBASIC has a
whole host of commands for dealing with objects. At each stage, one
or two of these will be introduced and an example showing their
syntax will be given. These examples have been chosen so that you can
use them to build up a short demonstration program. Therefore,
before you read any further, create a new program which contains the
following two lines:

WHILE INKEY$ =

WEND

Then each time a section of BASIC is given, add it to the program.
Unless the text states otherwise, it should be placed immediately
above the WHILE statement. Then try running the whole program
again to see what effect the latest command(s) have had. The WHILE
loop is needed because any sprites set in motion during a program
stop as soon as the program ends. This loop allows the program to run

210

9 : Animation

as long as you want it to so you can see how the sprites behave. To
stop it, press any key.

The first stage is to assign the shape you created in the previous
section to a particular object. This involves three separate commands:
one to open the file containing the shape definition, one to read the
shape definition and assign it to an object, and another to close the file
again. These commands will be glossed over here and discussed
properly in Chapter 10 which is dedicated to file handling. The only
one which requires any comment at this time is OBJECT.SHAPE. This
is the first object handling command which we have met. It takes two
arguments, an object number and the definition of the shape as
produced by the Object Editor. For example:

OPEN "Myprogs/Rocket" FOR INPUT AS 1
OBJECT.SHAPE 1, INPUT$(LOF(l),l)

CLOSE 1

Each shape definition that you use requires a certain amount of
memory the larger the shape the greater the amount of space needed.
Therefore, BASIC provides an alternative version of OBJECT. SHAPE
which allows you to create a new object by copying the shape of an
existing one. This allows the objects to share the same memory for
holding the description of the shape. However you can still control
them independently. For example:

OBJECT.SHAPE 2, 1

OBJECT.SHAPE 3, 1

This creates two further objects, both with the same shape as object
number one.

Having defined what an object is to look like, the next step is to place
it at its starting position. There are two commands for this: OBJECT.X
and OBJECT.Y. Each takes the number of the object and a value giving
either the X or Y co-ordinate. The co-ordinate refers to the top left­
hand corner of the rectangle which encloses the object, and its value
can be any number in the range -32768 to 32767. However, if you want
the object to start within the window area, a number in the range from
zero to the maximum window size should be used. For example:

211

AmigaBASIC : A Dabhand Guide

OBJECT.X 1,220
OBJECT.Y 1,140
OBJECT.X 2,320
OBJECT.Y 2,140
OBJECT.X 3,420
OBJECT.Y 3,140

Even though the commands above positioned the objects within the
window extent, nothing will appear when you run the program you
have created so far. There is still one more step needed. This is to give
the command OBJECT ON to 'tum on' the objects and so make them
visible. You can make particular objects visible by following this
command by a list of object numbers separated by commas. However,
if you don't provide an argument, all the objects within the current
output window will be affected. For example:

OBJECT.ON

The inverse of this command is OBJECT.OFF, which makes makes one
or all of the objects invisible again.

At this stage your program should display the three rockets near the
bottom of the screen. If you have made them so large that they don't
all appear on the screen, decrease the initial Y co-ordinates in the
OBJECT.Y commands above to move them higher up the screen. It is
important, for the purposes of this program, that they don't start off
overlapping the edge of the window.

Setting Things in Motion
To set an object in motion, you first have to decide what 'velocity' or
speed you want it to move at. You can then assign this velocity to the
object using the two commands OBJECT.VX and OBJECT VY. These
allow the horizontal velocity and the vertical velocity to be controlled
separately. As you might expect, they each take two arguments. The
first is the object number and the second is the size of the velocity. For
example:

212

OBJECT.VY 1, -1
OBJECT.VY 2, -2

9 : Animation

OBJECT.VY 3, -3

These give the objects vertical velocities of -1, -2 and -3 respectively.
The horizontal velocities have not been defined therefore they will be
zero, since this is the default value assigned when the objects were
created. These velocities will move them in the direction of the top of
the screen. A positive value for one component of the velocity will
move an object so that the value of the corresponding co-ordinate
increases. Conversely, a negative value will move it so that the co­
ordinate decreases. This is shown in Figure 9.1.

vx negative

VY negative

VY negative

vx positive

VY negative

vx negative+-------+--------Il>

vx negative

VY positive

VY positive

vx positive
VY Positive

Figure 9.1. The 'quadrant' coordinates.

vx positive

VelOcity is measured in units of pixels per second. Remember that in
the high-resolution modes, the pixels are almost twice as high as they
are wide. Therefore a velocity of one in both directions will move an
object almost twice as fast vertically as it does horizontally.

When you placed the objects on the screen, you found that they
weren't visible straight away. An additional command was required
to turn them on. Similarly, when you assign the velocities to the
objects they will remain stationary until you give the command
OBJECT.START to make them start moving:

OBJECT.START 1,2,3

213

AmigaBASIC : A Dabhand Guide

Again, this command can take a list of objects as shown above.
Alternatively we could have omitted the argument, as we did with
OBJECT.ON to affect all the objects within the window, and this
would have produced the same result.

The problem with the example now is that the rockets don't act in a
very realistic manner. Rockets don't move with a constant velocity as
soon as they leave the ground instead they accelerate at an impressive
rate. Fortunately AmigaBASIC provides us with commands to assign
accelerations to objects as well as velocities. These are OBJECT.AX and
OBJECT.AY and they take the same syntax as their velocity
counterparts:

OBJECT.AY 1,-1

OBJECT.AY 2,-2

OBJECT.AY 3,-3

Giving an object an acceleration of n means that each second its
velocity will increase by 'n' pixels per second. A negative value
decreases the velocity.

The Area of Action
The first of Isaac Newton's laws of motion says that a body moving
with a constant velocity will continue moving in a straight line and at
the same speed unless it is acted on by a force. This law, with slight
modifications, describes how objects act. An object will continue
moving in a straight line (and if it is moving at a constant velocity at
the same speed) unless it collides with something or a command is
given to stop or alter it.

You should have found that, when you ran the program created so far,
the rockets all stopped when they reached the top of the window. The
animation system actually has its own rectangular area, outside of
which objects cannot be drawn. The default value happens to coincide
with the border of the current output window. However, you can alter
it by using the OBJECT.CLIP command. Add the following line to the
start of your program:

214

9 : Animation

OBJECT .CLIP (0,40) - (620,200)

Now when you run the program, the objects should stop well below
the top of the screen.

Note that if you change the size of the window, the object boundary
will not automatically change with it. You will have to use
OBJECT.CLIP to change it explicitly.

To stop an object yourself, use the command OBJECT.STOP. For
example place the following inside the WHILE loop.

IF OBJECT.Y(3) <= 20 THEN
OBJECT. STOP 1

END IF

There are four object functions, which each require an object number
as an argument, and return information about the object as follows:

Function

OBJECT. X

OBJECT.Y

OBJECT.VX
OBJECT.VY

Returns

X co-ordinate of upper left-hand comer of
its rectangle
Y co-ordinate of upper left-hand comer of
its rectangle
Velocity in the X direction
Velocity in the Y direction

The lines above test to see if object three has reached the top object
boundary and, if so, they stop object one from moving any further.
Therefore both object three and object one will stop at the same time.

We have seen that, by default, objects always stop when they hit the
boundary. The same thing also happens if they hit each other.
However, you can choose not to have that happen by using
OBJECT. HIT. This is quite a complicated command which takes up to
three arguments. The first is the number of the object being dealt with.
The other two provide information about what happens if the object
collides with another object or another object collides with it.

The least significant bit of the final argument specifies if the object is to
collide with the boundary or not. If the bit is set (ie the number is odd)

215

AmigaBASIC : A Dabhand Guide

then it will collide. However, if the bit is clear (ie the number is even)
then it will not collide and will fly out of the visible area.

To find out about the other bits, consider three objects as follows:

Shape1
Shape2
Shape3

0000000000000010 0000000000000111
0000000000000100 0000000000000111
0000000000001000 0000000000000000

The first number provides the bit pattern for the shape itself. The
second number gives the bit pattern representing the objects which it
can collide with. When one object hits another, the first bit pattern of
the first object is ANDed with the second bit pattern for the second
object. If the result is zero then no collision takes place.

So, using the above illustration, Shape 1 can collide with Shape 2 and
vice versa. However, Shape 3 cannot collide with anything since none
of the objects has the fourth bit set. Similarly, nothing can collide with
it since its last number is zero.

In the case of our example, the only items which the rockets can
collide with are the borders therefore only the last bit of the second
value is of significance. Adding the following line to the program will
mean that the second rocket does not collide with the border. Instead
it flies out of the window, leaving you with only two objects visible:

OBJECT.HIT 2,,0

This marks the end of the example program.

Handling Collisions
Using a function to test to see if an object has collided with a boundary
is fine for our simple example above. However, a better way of
handling collisions exists. Collisions are another type of 'event' which
the Amiga can trap. Collision trapping can be enabled using
COLLISION ON, nd a subroutine established for handling any
collisions which occur using ON COLLISION GOSUB.

The COLLISION function can be used to obtain information about a
collision which has occurred. If it is called with an argument of zero,
then it returns the identification number of an object which has been

216

9 : Animation

involved in a collision. A subsequent call with an argument of -1
returns the identification number of the window in which the collision
occurred. However, if the argument is greater than zero, then the
function will treat it as an object number and return the number of the
object with which it collided or one of the values below to indicate a
collision with a boundary:

-1 Top
-2 Left
-3 Bottom
-4 Right

AmigaBASIC is capable of storing the information about 16 collisions.
Each time COLLISION is called to get information about a particular
collision, this information is removed from the queue. However, if the
queue is full and another collision occurs, then the information about
this new collision will be thrown away and lost.

We will now finish this chapter by demonstrating collision handling
along with further uses of the OBJECT commands in a brief animated
scene:

Init:

SCREEN 1,640,256,2,2

WINDOW 2,"Traffic",,16,1
OBJECT.CLIP (0,0) - (639,255)

i% = COLLISION(O)

WHILE i% <> 0
i2% = COLLISION(i%)
i% = COLLISION(O)

WEND

ScreenInit:

PALETTE 3, .2,1,.2
LINE (0,255) - (639,40),3, bf

LINE (0,80) - (639,140),2, bf
LINE (0,109) - (639,111), 1,bf
FOR dash% = 0 TO 620 STEP 8

LINE (dash%,124) - (dash%+4,126),1,bf

LINE (dash%, 94) - (dash%+4, 96), 1,bf
NEXT

217

AmigaBASIC : A Dabhand Guide

218

ReadShapes:
OPEN "dfO:carl" FOR INPUT AS 1
OBJECT.SHAPE 1, INPUT$(LOF(l),l)
CLOSE 1
OPEN "dfO:carr" FOR INPUT AS 1
OBJECT.SHAPE 11, INPUT$(LOF(l),l)
CLOSE 1

Collision.Init:
ON COLLISION GOSUB co11ision.handler
COLLISION ON

CarInit:
lanes% = 2 : cars.in.lane% 2
space% = 640/cars.in.lane%
RANDOMIZE TIMER

CarLeft:
FOR car% = 2 TO lanes%*cars.in.lane%

OBJECT.SHAPE car%,l
NEXT
FOR lane% = 1 TO lanes%

FOR car% = 1 TO cars.in.lane%
carno% = (lane%-1)*cars.in.1ane% + car%
OBJECT.X carno%, INT(RND*(space%-32» +

space%*(car%-l)
OBJECT.Y carno%,104+1ane%*16
OBJECT.VX carno%,-40*(lanes%-lane%+1)

NEXT
NEXT

CarRight:
FOR car% = 12 TO 10 + lanes%*cars.in.lane%

OBJECT.SHAPE car%,ll
NEXT
FOR lane% = 1 TO lanes%

FOR car% = 11 TO 10 + cars.in.lane%
carno% = (lane%-l)*cars.in.lane% + car%
OBJECT.X carno%, INT(RND*(space%-32» +

space%*(car%-ll)
OBJECT.Y carno%,120-1ane%*16

OBJECT.VX carno%,40*(lanes%-lane%+1)
NEXT

NEXT

MainBody:
OBJECT.ON

OBJECT. START
FOR loop% = 1 TO 10000 + RND*10000
NEXT

OBJECT.VY 1,-36
OBJECT.AX 1,2
OBJECT.AY 1,2

WHILE OBJECT.VY(l) < 0
WEND

OBJECT.STOP 1
WHILE 1 = 1
WEND
END

collision.handler:
obj1% = COLLISION(O)

WHILE obj1% <> 0

obj2% = COLLISION(obj1%)
IF obj2% < 0 THEN

IF obj1% > 10 THEN
OBJECT.X obj1%, 0

ELSE

OBJECT.X obj1%, 600

END IF
OBJECT.START obj1%

ELSE

PRINT SPC (28) "CRASH!"
END IF

obj1% = COLLISION (0)

WEND
RETURN

9 : Animation

The program requires two sprites to be pre-defined and saved as
"carll" and "carr" on the current disc. These should be roughly 16
pixels high and should represent cars facing left and right
respectively. Note that when defining sprites, the menu option for
enlarging the canvas to four times its normal size is very useful. The
disadvantage of this is that only pen mode can be used. However, it

219

AmigaBASIC : A Dabhand Guide

does provide a far more accurate means of drawing the shape you
want.

The program works as follows:

Init:
Firstly, a new screen is created at the maximum size, allowing four
colours to be used. Then a window is drawn occupying the whole of
the screen and the object area is set up to be the same size as the
screen.

Then a loop is executed repeatedly until COLLISION(O) no longer
returns the value zero. If a different value is returned then
COLLISION is called with this number as a parameter. This removes it
from the collision list. Hence the effect of this loop is to clear any
collisions from the stack which may be there from previous programs.

ScreenInit:
This sets up colour three to be a shade of green and then draws the
background for the scene.

ReadShapes:
This opens the two sprite files, reads the sprite definitions and assigns
these shapes to objects one and II.

CollisionInit:
This sets up the collision handler and turns collision event trapping
on.

Carinit:
The following variables are set up at this stage:

lanes%
cars.in.lane%
space%

Number of lanes on each side of the road
Number of cars per lane
Amount of road per car in pixels

Then the random number generator is re-seeded.

CarLeft:
This sets up the details for the cars in the left-hand lanes. One car
pointing in this direction already exists as object one. The others
required are copied from this one. The number needed is given by the
number of cars per lane multiplied by the number of left-hand lanes.

220

9 : Animation

Then all these cars are given an initial starting position and horizontal
velocity.

The vertical position is such that the car lies in the correct lane. The
velocity is also determined by the lane, so that the cars in the outer
lanes travel faster. Within each lane, every car is pOSitioned randomly
within the space available for it. For example, if there are two cars per
lane, one car is placed at random within the left-hand half and the
other at random within the right-hand half. Note that a small amount
(32 pixels) is deducted from the right-hand edge of the space for each.
This is so the cars are never started on top of each other. Otherwise, if
one car was at the far right of its area and the next at the far left of its
space then they would overlap.

CarRight:
This performs the same action for the cars travelling in the opposite
direction.

MainBody:
Within the main body, the objects are made visible and are set in
motion. For a random length of time, they move along as they were
initialised to do. Then object number one is assigned a vertical velocity
so that it swerves across the other carriageway. It is also given an
acceleration which serves to decrease the absolute size of both the
vertical and horizontal velocity. Therefore it starts slowing down.

The first empty WHILE loop repeats while object one is still moving
up the screen (ie its horizontal velocity is negative). Although the
acceleration acts originally to slow the car down, once the velocity in a
particular direction has reached 0, then the acceleration would
increase the velocity again but in the opposite direction. This would
make the car appear to be travelling backwards at an ever increasing
rate. To prevent this happening the object is stopped as soon its
vertical movement has changed direction (ie when the sign of the
velocity has changed from negative to positive).

Then the program just continues running until the Stop item is
selected from the Run Menu, or Amiga-Fullstop is pressed.

221

AmigaBASIC : A Dabhand Guide

collision.handler:
This perfonns most of the work of the program. It starts by reading
the number of one of the objects which has collided. Then it reads the
number of the object or edge which it has collided with. If the collision
was with one of the edges of the screen (which have negative values)
then the car is repositioned at the other side of the screen and
restarted. This gives the appearance of one car driving into the picture
when another has just driven out of it. Otherwise, it must have
collided with another car in which case the word 'CRASH!' is printed.
Note that the collision automatically stops the cars so they will be left
stationary in the road.

Note that the collision handling is performed in a loop. The routine is
entered only when a collision occurs. Therefore, there will always be a
collision pending on entry to this code. This means that the loop will
always be perfonned once. The last statement in the loop checks to see
if there is another collision in the buffer. If so, the collision handling
code is automatically repeated.

This loop is necessary because of the way in which event trapping
works. On entry to the collision handling routine, an ON COLLISION
STOP is automatically performed. This means that BASIC buffers any
further collisions but does not act on them. On exit from the routine,
the event trapping is automatically turned on again. In theory, when
event trapping is turned ON, any events which occurred whilst it was
STOPped will immediately be registered and acted upon.
Unfortunately, in practice this doesn't always occur. Therefore,
without the loop, after one collision had been dealt with there could be
another waiting in the buffer which didn't cause the collision handler
to be called. This would mean that the collision handling would get
out of step. The next collision would cause the handler to be entered,
but the details of the previous collision would be read and acted upon.

To see the effect of this, comment out the WHILE and WEND
statements using REMs. Then try running the program a few times.
You should soon notice a very strange effect - cars sometimes appear
to pause when they hit the edge of the screen. If you examine what is
happening more closely you will see that they only start moving again
when another collision occurs. This is because one of the collisions has

222

9 : Animation

occurred whilst the previous collision was being dealt with and the
trap for it has failed to occur. Therefore, its details are read when the
next collision takes place. Since collisions automatically cause the
objects to stop, the object pauses until the next collision occurs and its
own collision details are handled.

223

AmigaBASIC :A Dabhand Guide

224

10 : File Handling
So far we have saved and loaded both BASIC programs and graphic
screen images. This chapter goes on to describe a new kind of file - the
'data file'. Data files can contain many different sorts of information.
For example, documents created on a word processor, names and
addresses held in a card index system and exam results typed into a
school statistics package are all examples of information which can be
stored on disc as data files. Without data files most types of software
would not be viable. Can you imagine using a wordprocessor which
didn't allow you to save the letters you wrote?

Sequenitial Files
There are two different types of data files: sequential files and random
access files. We are going to start off looking at the sequential files,
since they are the easier of the two to create and use.

Sequential files get their name from the fact that the items of data
written to them are stored sequentially in the order that they were
written. In addition, information is read from them sequentially in the
same order.

Creating and Opening Files
In order to be able to write data to a sequential file or read data from
it, the file has to be open. You can open a file using the command
OPEN. For example:

OPEN "Datal" FOR OUTPUT AS 1

This creates a file called 'Datal' in the current directory and opens it so
that we can output information to it. The number '1' is the value
which is to be associated with the file while it is open. Since it is
possible to have several files open at once, the other filing system
routines have to be told which file they are to act upon. This is done by
giving them the number of the file. Therefore each file you open has to

225

AmigaBASIC : A Dabhand Guide

have a unique file number. This can be any integer in the range one to
255.

If you already have a file called 'Datal', then the command above will
delete the existing file and create a new, empty one. Therefore this
command is no use for adding extra data onto the end of a file you
have created previously. To do this you have to open the file for
APPEND:

OPEN "Data2" FOR APPEND AS 2

This opens a data file called 'Data2' so that data can be added to the
end of it. If a file of that name doesn't already exist then the command
acts exactly as though the OUTPUT mode had been used and the file
is created.

The third option is:

OPEN "Data3" FOR INPUT AS 3

This opens an existing file so that data can be 'input' or read from it.
Note that in this case the file must already exist. If it doesn't an error
message is generated.

At any given time, a file can only be open once. Therefore you cannot
be writing to and reading from a sequential file at the same time.

Once you have finished accessing a file you should close it as follows:

CLOSE 1

This command closes the file whose file number is one. This file
number can then be allocated to a different file.

Outputting and Inputting Data
Outputting data to a sequential file is similar to outputting it to the
screen. For example:

PRINT "Smith"

writes:

226

10: File Handling

Smith

to the screen, whereas:

PRINT' l,"Smith"

writes:

Smith

to file number one.

Similarly, inputting data from a file is like inputting it from the
keyboard:

INPUT surnameS

reads a string from the keyboard and assigns it to the variable
surname$. Whereas:

INPUT' l,surname$

reads a string from file number one and assigns it to surname$.

The first of the following programs shows how data can be read in
from the user and output to a file. The second then reads the data from
the file and prints it on the screen.

REM Program to output data to a file
OPEN "Datal" FOR OUTPUT AS 1
ans$ = "Y"
WHILE ans$ = "Y"

REM read in data for a student from the keyboard
INPUT "Surname
INPUT "First name
INPUT "Maths result

: ",surname$
:",namel$
: ",maths%

INPUT "English result :",eng%
REM output this data to the file
PRINT' l,surname$
PRINT I l,namel$
PRINT I l,maths%
PRINT I l,eng%

227

AmigaBASIC : A Dabhand Guide

REM ask if there are any students left
INPUT "Do you wish to continue (YIN) :",ans$
ans$ = UCASE$(ans$)

WEND

REM All done so close file
CLOSE 1
REM Program to read data from a file
OPEN "Datal" FOR INPUT AS 1
WHILE NOT EOF (l)

REM read data for a student from the file
INPUT# l,surname$

INPUT# l,namel$
INPUT# l,maths%
INPUT# l,eng%

REM Print this data on the screen
PRINT "Surname :";surname$
PRINT "First name :";namel$
PRINT "Maths result :";maths%
PRINT "English result :";eng%

WEND
REM All done so close file
CLOSE I

Note that the second program uses the function EOF to test to see if
there is any more data left to read. This function returns TRUE if the
end of the file has been reached, and FALSE otherwise.

These two programs show just how simple file handling can be.
However, there are some points which you should look out for. In the
first example above, each item of data was written to the file
separately. This meant that a carriage return character was placed
after every item of data. This acted as a 'delimiter', ie it marked where
one item ended and the next began. Therefore, when the second
program came to read the items, it knew exactly what to read. It is far
more convenient to be able to write several items of data together, but
you must be careful when doing this. For example:

PRINT# l,"Smith";"Fred"

228

10 : File Handling

writes:

SmithFred

to file number one. This means that the two strings are merged so that
they look like one long one. When we come to read data back in from
the file, they are read together as "SmithFred" and assigned to the first
string variable, and there is then nothing left to assign to the second
string variable. Even separating them by spaces using:

PRINT' 1,"Smith","Fred"

which outputs:

Smith Fred

has a similar result because the INPUT# routine treats the spaces as
part of the string and so reads it as "Smith Fred".

What we need to do is to separate them ourselves using some marker
which the input routine will recognise as a delimiter. We can do this as
follows:

PRINT' 1,"Smith";",";"Fred"

This outputs:

Smith, Fred

Now, the two strings are separated from each other by a comma which
the input routine recognises as a marker between individual items.
Having to separate strings by a comma poses another problem: what
happens if the string we want to output contains a comma? This is the
opposite situation from the one we had above. For example:

PRINT' 1,"Smith,Fred"

outputs:

Smith, Fred

229

AmigaBASIC : A Dabhand Guide

This time something which was output as a single item looks like two
separate ones and so only part of the string will be read back in. The
solution to this problem is to enclose the string in double quotes as
follows:

PRINT'1,CHR$(34);"Smith,Fred";CHR$(34)

This outputs:

"Smith, Fred"

The double quotes now override the comma. Anything between the
first double quote and the second one will be read in in one go. This
process is now getting rather complicated. To output the contents of
two string variables A$ and B$ the following would be required:

PRINT' 1,CHR$(34);A$;CHR$(34);",";CHR$(34);B$;CHR$(34)

which is far too verbose. A better method of outputting strings is to
use WRlTE#, for example:

WRITE' 1, A$,B$

This automatically outputs commas between the individual items in
the list and encloses strings in quotes, and so does the work for us.
WRITE# can be used for outputting numbers as well. In fact it can take
any list of expressions provided that they are separated by commas,
for example:

WRITE' 1,"Fred",A$,B$+C$,123,26.4,5+6

However, when outputting numbers, you may wish to use PRINT#
USING since this allows you to format the numbers as you write them
to the file. For example:

PRINT' 1, USING "##.##,";27.4;89.123;45

outputs:

230

10 : File Handling

27.40,89.12,45.00

Note that the comma at the end of the format string causes the items to
be separated by commas.

Buffers
You may have noticed, when you ran the program to output data to a
file, that the disc drive was only activated intermittently. This is
because AmigaBASIC doesn't write each item of data to the disc
immediately. Instead it buffers them up and only writes them out
when its buffer is full, or when you tell it to close the file. It does this
to save time, since accessing the disc is a very slow process. Therefore,
if you have a lot of data to send to a file, you can speed up the
operation by increasing the size of the buffer. To specify a buffer size,
add an extra argument when you open the file, for example:

OPEN "Datal" FOR OUTPUT AS 1 LEN = 1000

This defines the length of the buffer to be 1000 bytes, which is almost
1k. The default size is 128 bytes, and the maximum size you can ask
for is 32767 bytes.

The statement above shows us the full syntax of the OPEN statement.
However, an alternative version exists:

OPEN "0", 1, "Datal", 1000

The first argument specifies the mode, the first letter of the string
determines it as follows:

o Output
A Append
I Input

The second is the filenumber, the third the name of the file and the
fourth, optional, argument is the buffer size.

231

ArnigaBASIC : A Dabhand Guide

Random Access Files
Sequential files are ideal for storing information which you want to
access in the same order every time. However, if you want to be able
to 'jump about' within the file accessing the data in a different order
then you'll find that they can be very slow. For example, if you type in
and use the pair of programs above for storing exam results then you
will find that these programs are fine if you want to read all the data
in to produce statistics. However, what happens if you want to find
the results of individual children? The only way to do it is to start at
the beginning of the file and read every item of data in tum until you
come to the set about the child you are interested in. Some of the time
you will be lucky and find the information you want close to the front
of the file. Other times you will have a lot of reading to do before you
come to the data you want.

If this is how you want to use the data in a file, then you should use
'random access' files instead of sequential ones. These allow you to
access the information in any order very quickly.

Random access files are composed of 'records'. If you compare a
random access file with a card indexing system then each record
corresponds to a card. The records themselves are split into 'fields',
which correspond to the different sections that the card is divided up
into.

As another example, consider the data we stored for the children's
exam results. A random access file containing this information would
contain one record per child. This record would have four fields: the
surname, the first name, the maths result and the English result.

When creating a random access file, you have to decide in advance
what size, measured in bytes, the fields are going to be. If a field is to
hold characters, then the size is equivalent to the maximum number of
characters it can contain. Numbers have to be converted into strings
before they can be saved in a random access file. For each type of
number, functions exist which will convert the number into an
appropriate string and the size of the string depends on the type of
number as follows:

232

Short integer
Long integer
Single precision real
Double precision real

2 bytes
4 bytes
4 bytes
8 bytes

10 : File Handling

For certain string fields, deciding the length is easy. For example, if
you want to store dates, then you know that each can be written in the
format: DD/MM/YY, which means that the field is always going to be
eight characters long. However, for other things such as names, you
just have to make an educated guess at the longest name that you are
likely to come across and be prepared to miss out a few letters if you
have to type in one that is longer than you anticipated.

Writing to Random Access Files
We are going to see how to create a random access file by considering
the example of a simple address book containing:

Surname 20 characters = 20 bytes eg: Jones
First name 20 characters = 20 bytes eg: Fred
Address 20 characters = 20 bytes eg: 10 HighSt
Town 20 characters = 20 bytes eg: Townthorpe
County 10 characters = 10 bytes eg: Cambs
Postcode 8 characters = 8 bytes eg: CB418QX
Phone 10 characters = 10 bytes eg: 0123456789
Birthday 6 characters = 6 bytes eg: 02 Mar
Age 1 short int = 2 bytes eg: 6

This gives a total record length of 116 bytes

To open a file for holding data in this format use the following:

OPEN "RanData1" AS 1 LEN = 116

This opens the random access file as file number one for both input
and output. Note that the length stated for the buffer size has to be the
same as the length of each record.

The alternative version of this is:

OPEN "R",1,"RanData1",l16

233

AmigaBASIC : A Dabhand Guide

The next step is to allocate separate areas in the buffer for the different
fields. For example:

FIELD #1, 20 AS snam$, 20 AS fnam$, 20 AS addr$, 20 AS twn$,
10 AS cnty$, 8 AS postS, 10 AS phon$, 6 AS brth$, 2 AS ageS

For each field, you have to supply the size in bytes/characters and a
variable name. These variables are different to other string variables.
The position in memory which they point to and hence where strings
placed in them are stored, is part of the random file buffer. It is
important not to assign strings to them using statements such as LET
or INKEY$, since this converts them into being 'normal' string
variables pointing into the normal string space. Special routines,
which we will find about shortly, are supplied to place strings in field
variables.

Note that the whole record description must all be given on one line.
Each FIELD statement starts assigning the variables to space in the
random file buffer, starting at the beginning. Therefore giving two
FIELD statements such as:

FIELD #2, 20 AS a$
FIELD #2, 20 AS b$

would just provide alternative variable names pointing to the same
area of the buffer.

Now we are ready to place data in the random access buffer by
assigning strings to the field variables. Numbers must first be turned
into strings using the following functions:

MKI$
MKL$
MKS$
MKD$

To convert a short integer into a string
To convert a long integer into a string
To convert a single-precision real into a string
To convert a double-precision real into a string

To place strings into the buffer there are two different statements
provided, LSET and RSET. If the string is shorter than the maximum
length of the field then LSET places it in the field so that it is left­
justified, whereas RSET enters it so it is right-justified. In both cases
the extra character positions are padded with spaces. With either

234

10 : File Handling

statement, if the string is too long, then any excess characters are lost
from the right-hand side.

For our example, this process would look something like the
following:

LSET snam$ surnameS
LSET fnam$ firstname$
LSET addr$ address$
LSET twn$ townS
LSET cnty$ county$
LSET postS post codeS
LSET phon$ phoneS
LSET brth$ birthdayS
LSET ageS MKI$ (age%)

The variables on the left-hand side are all field variables and those on
the right are normal variables which could have been assigned to
using INKEY$ or READ etc. You can use constant strings or
expressions but normally these won't be appropriate.

Now all that remains to be done is to write out the contents of the
random file buffer to the random access file. The command to do this
is PUT, for example:

PUT #1, 5

This will write the contents of the buffer to file number one, as record
number five. If you omit the record number, for example:

PUT #1

then the next record number will be used (ie one greater than that of
the previous PUT). The lowest record number you can use is one, the
highest depends on the amount of space there is available on your disc
and how large your records are. For example, since our records are 116
bytes long, you can fit just over 3800 of them onto one side of an
empty disc. This means that our largest record number would be
about 3800. BASIC imposes a maximum value of 16777215 which is

235

AmigaBASIC : A Dabhand Guide

unlikely to limit anyone, even if they used very small records and had
a hard disc drive attached to their Amiga.

The number of the last record used can be found using the function
LOC. For example:

rec% = LOC (1)

where the argument is again the file number.

Similarly the total length of the file in bytes can be obtained using
LOF. For example:

fi1e.size% = LOF(l)

Reading from Random Access Files
The first two stages involved in accessing data from a random access
file are identical to those for writing data to one. Firstly you must
OPEN the file in random mode, remembering to specify the random
file buffer size. Then you have to use FIELD to allocate blocks of space
in this buffer for the variables to be read and assign field variables to
them.

The next step is to read the contents of the record required into the
buffer. The command for this is GET. GET does the reverse operation
to PUT and has the same syntax as it, for example:

GET ill, 5

Once you have the strings in the buffer, they can be assigned to
normal variables in the usual way. To convert any which were
originally numbers back from their string format into the appropriate
type of number, four functions are provided:

CVI To convert a string into a short integer
CVL To convert a string into a long integer
CVS To convert a string into a single-precision
CVD To convert a string into a double-precision

236

10: File Handling

Therefore the relevant part of our program would look something like
this:

surname$ = snam$
firstname$ = fnam$
address$ = addr$
town$ = twn$
county$ = cnty$
postcode$ = post$
phone$ = phon$
birthday$ = brth$
age% = CVI(age$)

Putting Theory into Practice
This section has introduced several new keywords and a lot of new
concepts. It's now time to apply these to a real example program. The
following implements the Address Book whose format we have been
using above. It allows you to enter, edit or delete records and save
them to disc. In addition, it provides searching facilities so you can
select particular ones that you are interested in. For example this
allows you to find the record of your friend called Fred Smith to look
up his address, or to look for everyone you know who has a birthday
in a particular month.

ArrayInit:
OPTION BASE 1
DIM SHARED row%(ll), col%(ll), box%(ll)
FOR loop% = 1 TO 9

row%(loop%) 1 + 2*loop%
col% (loop%) 1
box%(loop%) = 12

NEXT
row%(lO) = 7 : row%(ll) = 12
col%(lO) = 41 : col%(ll) = 41
box%(lO) = 41 : box%(ll) = 41
DIM SHARED title$(ll), max%(ll)
FOR loop% = 1 TO 11

READ title$(loop%),max%(loop%)
NEXT
DIM SHARED strg$(9), strgt$(9) , search$(9), sbuf$(9)

ScreenInit:
charhgt% = 9 : search% = 0
FOR loop% = 1 TO 11

LOCATE row%(loop%), col%(loop%)
PRINT title$(loop%)

'237

AmigaBASIC : A Dabhand Guide

CALL rect(loop%,l)
NEXT

FileInit:
OPEN "dfO : Address " AS 1 LEN = 116
FIELD #1, 20 AS sbuf$(l), 20 AS sbuf$(2), 20 AS sbuf$(3), 20 AS

sbuf$(4), 10 AS sbuf$(5), 8 AS sbuf$(6), 10 AS sbuf$(7), 6 AS
sbuf$(8), 2 AS sbuf$(9)

CALL loadrec(l,l)

MouseInit:
ON MOUSE GOSUB mousehandler
MOUSE ON

MenuInit:
MENU 5,0,1,"Address"
MENU 5,1,1,"Set search"
MENU 5,2,1,"Clear search"
MENU 5,3,1,"Quit"
ON MENU GOSUB menuhandler
MENU ON

MainBody:
WHILE 1 1

ch$ =
WHILE ch$ =

ch$ INKEY$
WEND
IF fld% <> 0 THEN

238

IF ASC(ch$) = 13 THEN
IF fld% < 9 THEN

strg$(fld%) = cur$
CALL rect(fld%,l)
fld% = fld% + 1
CALL rect(fld%,2)
curS = 1111

CALL clearbox(fld%)
ELSE

BEEP
END IF

ELSE IF ASC(ch$) = 8 OR ASC(ch$) = 127 THEN
IF LEN(cur$) > 0 THEN

cur$ = MID$(cur$,l,LEN(cur$)-l)
LOCATE ,POS(O)-l
PRINT II ";

LOCATE ,POS(O)-l
ELSE

BEEP
END IF

ELSE
IF LEN(cur$) < max%(fld%) THEN

PRINT ch$;
cur$ = cur$ + ch$

ELSE
BEEP

END IF
END IF

10 : File Handling

ELSE
BEEP

END IF
WEND

rect:
SUB rect(item%,col%) STATIC

SHARED charhgt%
x1% (box% (item%) - 1) *10
x2% x1% + max% (item%) *10
y1% (row%(item%) - l)*charhgt%
y2% y1% + charhgt%
LINE (x1%-2,y1%-2) - (x2%+2,y2%+2),col%,b

END SUB

trailrem:
SUB trailrem(array$(» STATIC

FOR loop% = 1 TO 9
charS = " ..
WHILE charS =

charS = RIGHT$(array$(loop%),l)
IF charS = THEN

array$(loop%) = MID$(array$(loop%),l,LEN(array$(loop%»-l)
END IF

WEND
NEXT

END SUB

clearbox:
SUB clearbox(item%) STATIC

LOCATE row%(item%),box%(item%)
PRINT SPACE$(max%(item%»
LOCATE row%(item%),box%(item%)

END SUB

saverec:
SUB saverec(recno%) STATIC

IF recno% > 0 THEN
FOR loop% = 1 TO 8

trails$ = SPACE$(max%(loop%)-LEN(strg$(loop%»)
LSET sbuf$(loop%) = strg$(loop%) + trails$

NEXT
IF strg$(9) = THEN

LSET sbuf$ (9)
ELSE

LSET sbuf$(9)
END IF
PUT jl1,recno%

END IF
END SUB

loadrec:

MKI$(VAL(strg$(9»)

SUB loadrec(recno%,dir%) STATIC
SHARED fld%,cur$,rec%,search%
IF recno% > 0 THEN

IF dir% 1 THEN limit% = 51 ELSE limit% 0
ok% = 0 endf% = 0

239

AmigaBASIC : A Dabhand Guide

reccur% = recno%
WHILE reccur% <> limit% AND ok%

GET 4!1,reccur%
IF NOT EOF(I) THEN

FOR loop% = 1 TO 8
strgt$(loop%) = sbuf$(loop%)

NEXT
IF sbuf$(9) " THEN

strgt$ (9)
ELSE

o AND endf%

strgt$ (9) STR$(CVI(sbuf$(9»)
END IF
CALL trailrem(strgt$(»

ELSE
FOR loop% = 1 TO 9

strgt$ (loop%)
NEXT
endf% = 1

END IF
CALL check (ok%)
IF ok% 0 THEN reccur%
WEND
IF ok% 1 THEN

LOCATE 1,1

reccur% + di r%

PRINT "RECORD" reccur% n n

FOR loop% = 1 TO 9
strg$(loop%) = strgt$(loop%)
CALL clearbox(loop%)
PRINT strg$(loop%)

NEXT
rec% = reccur%

ELSE
BEEP

END IF
ELSE

LOCATE 1,1
PRINT "SEARCH
FOR loop% = 1 TO 9

search$(loop%) =
CALL clearbox(loop%)

NEXT
rec% = 0

END IF
IF fld% <> 0 THEN CALL rect(fld%,I)
fld% = 0 : cur$=""

END SUB

check:
SUB check (ok%) STATIC

SHARED search%
CALL trailrem(search$(»
ok% = 1
IF search%

FOR box%
IF ok%

1 THEN
1 TO 8
1 THEN

lens% = LEN(search$(box%»
IF lens% <> 0 THEN

240

o

10: File Handling

posstar% = INSTR(search$(box%),"*")
IF posstar% = 0 THEN

lenr% = LEN(strgt$(box%»
IF lenr% <> lens% THEN

ok% = 0
ELSE

FOR chart = 1 TO lenr%
chars$ = MID$(search$(box%),char%,l)
charr$ = MID$(strgt$(box%),char%,l)
IF UCASE$(chars$) <> UCASE$(charr$) THEN ok%=O

NEXT
END IF

ELSE
lenlef% = posstar% - 1
IF lenlef% > 0 THEN

lefts$ = LEFT$(search$(box%),lenlef%)
leftrS = LEFT$(strgt$(box%),lenlef%)
IF UCASE$(lefts$) <> UCASE$(leftr$) THEN ok% = 0

END IF
lenrig% - LEN (search$ (box%» - posstar%
IF lenrig% > 0 THEN

rights$ - RIGHT$(search$(box%),lenrig%)rightr$ =
RIGHT$(strgt$(box%),lenrig%)

IF UCASE$(rights$) <> UCASE$(rightr$) THEN ok% = 0
END IF

END IF
END IF

END IF
NEXT
IF LEN(search$(9» <> 0 THEN

chars$ = LEFT$(search$(9),l)
nums% - VAL(MID$(search$(9),2»
numr% - VAL(strgt$(9»
IF charsS - "-" THEN

IF numr% <> nums% THEN ok% 0
ELSEIF chars$ - ">" THEN

IF numr% <- nums% THEN ok% 0
ELSEIF charsS - "<" THEN

IF numr% >- nums% THEN ok% 0
ELSE

ok% - 0
END IF

END IF
END IF

END SUB

menuhandler:
IF MENU(O) = 5 THEN

IF fld% <> 0 AND rec% <> 0 THEN
strgS(fld%) - curS
CALL saverec(rec%)

END IF
IF MENU(l) - 1 THEN

CALL loadrec(O,O)
search% = 1

ELSEIF MENU(l) - 2 THEN
search% = 0

241

AmigaBASIC : A Dabhand Guide

ELSEIF MENU(I)
CLOSE 1
END

END IF

3 THEN

END IF
RETURN
mousehandler:

IF fld% <> 0 THEN
IF rec% > 0 THEN

strg$(fld%) = cur$
ELSE

search$(fld%) = cur$
END IF

END IF
dum% = MOUSE (0)
xpos% = MOUSE(3) : ypos% MOUSE (4)
box% = 0
FOR loop% = 1 TO 11

xl% (box%(loop%) - 1)*10
x2% xl% + max% (loop%) *10
yl% (row%(loop%) - 1)*charhgt%
y2% yl% + charhgt%
IF xpos% > xl%-2 THEN

IF xpos% < x2%+2 THEN
IF ypos% > yl%-2 THEN

IF ypos% < y2%+2 THEN
box% loop%

END IF
END IF

END IF
END IF

NEXT
IF box% = 10 THEN

IF rec% = 50 THEN
BEEP

ELSE
IF fld% <> 0 THEN CALL saverec(rec%)
CALL loadrec(rec%+I,I)

END IF
ELSEIF box% = 11 THEN

IF rec% <= 1 THEN
BEEP

ELSE
IF fld% <> 0 THEN CALL saverec(rec%)
CALL loadrec(rec%-I,-I)
END IF

ELSEIF box% > 0 THEN
IF fld% <> 0 THEN CALL rect(fld%,I)
fld% = box%
CALL rect(fld%,2)
CALL clearbox(fld%)
cur$

END IF
RETURN

DataInit:
DATA "Surnarne",20

242

DATA "First name",20
DATA "Address",20
DATA "Town",20
DATA "County$",lO
DATA "Postcode$",8
DATA "Phone no",lO
DATA "Birthday",6
DATA "Age",3
DATA "Next",4
DATA "Prev",4

10 : File Handling

The program starts by displaying the first record in the data file called
'address'. H it is unable to find the file on the current disc, it will create
a new empty one and display a blank record. To enter data into any of
the fields of the record displayed, click the mouse in the appropriate
box. This box will then be highlighted in black to show that it has been
selected and any existing text it contained will be deleted. You can
then type text into it. Pressing either of the delete keys '/' or Del,
whilst you are adding data, will delete the character to the left of the
cursor. You can move around the fields randomly by clicking in the
next one you want to edit. Alternatively, you can move down to the
next box by pressing RETURN.

Clicking on the 'Next' and 'Prev' boxes will take you to the next or
previous record in the file. If you have edited the record currently
displayed, then you should notice the disc being accessed when you
move between records. This is because the file is updated to contain
the new version of the record which you have just finished altering.
The program, as it stands, can hold 50 records. However, this is an
arbitrary limit and can be changed very simply.

To set up a search pattern, press the menu button and select the 'Set
search' item in the Address menu. An empty record entitled
'SEARCH' will be displayed. Enter the text you wish to match against
in the usual way and then click on the 'Next' box. This will move you
to the next record which matches the current search pattern or will
beep if none are found which match. From then on, using the 'Next'
and 'Prev' boxes will move you only between records which match the
search pattern. To clear this pattern, select the 'Clear search' item from
the Address Menu.

243

AmigaBASIC : A Dabhand Guide

There are a few points to note about how the searching works: Any
boxes you leave empty in the search pattern will match anything. For
example, typing 'Fred' in the 'First name' box will match against any
record for a person called 'Fred', regardless of their surname, address
etc.

The case of the text is irrelevant; 'Fred' will match 'Fred', 'fred',
'FRED' etc.

Any spaces typed at the end of the text will be ignored. For example,
entering 'Fred ' in the 'First name' box will match against 'Fred'.
However, spaces before the text or between words are significant.
'FredSteven' will not match 'Fred Steven'.

A ,*, character can be used to match against any number of any
characters. For example, specifying a 'First name' of 'P' will match
against anyone whose name begins with the letter 'F'. Similarly typing
'F*D' will find people whose name starts with the letter 'F' and ends
with the letter 'D'. Note that only one ,*, may be used per field. Any
subsequent ones will be treated as actual text.

The 'Age' box is treated differently from the other boxes. The search
algorithm allows you to find people whose age is less than, equal to,
or greater than a given number. The search string you give should
start with either a '<', '=' or '>' character respectively, followed by the
number. For example '<21' will find all records where the age given is
less than 2l.

Finally, to end the program, select the 'Quit' option from the Address
Menu. This updates the current record, if necessary, and closes down
the file.

The program works as follows:

ArrayInit:
The program starts by initialising all the arrays to be used throughout
the program. The first few hold information about the screen display
for the field boxes and the 'Next' and 'Prev' boxes:

244

row%
col%
box%

holds the rows on which the items are drawn
holds the columns at which the titles will start
holds the columns at which the boxes will start

10 : File Handling

title$ holds the title texts for the items
max% holds the maximum lengths allowed for the contents of

the items

The last four apply only to the fields:

strg$ holds the current field entries in the current record
strgt$ holds a temporary copy of strg$ used when loading
search$ holds the current search patterns
sbuf$ holds the pointers to the buffer for each field

Note that all these arrays are SHARED, so they may be accessed by the
subprograms later in the program.

ScreenInit:
This starts by initialising two variables:

charhgt%
search%

= height of each text character in pixels
= 0 if a search pattern in operation
= 1 if not

Then it loops round each of the items on the screen, prints its title in
the correct place and calls a subprogram 'rect' to draw its box.

FileInit:
This block opens the file 'Address' on the disc in the disc drive 0 for
random access. This creates the file if it doesn't already exist. The
buffer length for this file is 116 bytes, as calculated above. The FIELD
statement is used to point the elements of 'sbuf$' into the buffer. Note
that this statement cannot be split between lines. Finally, this block
calls the subprogram 'loadrec' to load the first record and display it on
the screen.

MouseInit:
Next, the mouse event handler is set up and mouse event trapping is
turned on.

245

AmigaBASIC : A Dabhand Guide

MenuInit:
A menu is then created containing three entries, all of which are
activated. Menu events are activated in the same way as the mouse
events above.

MainBody:
The main part of the program consists of a never ending loop, within
which the keyboard is scanned for input. Provided that a field has
been selected, the character is acted upon as follows:

RETURN (ASCII 13)

1) Checks that the bottom field has not been reached and if not:
2) Updates the current record by placing the contents of the current

field buffer into the current field entry.
3) Calls 'rect' to draw the box of the current field in white.
4) Increases the field number by one.
5) Calls 'rect' to draw the box of the new field in black.
6) Initialises the current field buffer to the null string.
7) Calls 'clearbox' to delete the contents of the box and move the text

position to the start of it.

Del or ASCII 8 and 127

1) Checks that the start of the box has not been reached and if not:
2) Sets the current field buffer to be itself minus its last character
3) Moves the text cursor back one space, overtypes the next

character by a space, and then moves the text cursor back again so
that it is in the correct place.

Anything else

1) Checks that the maximum length of the current field has not been
exceeded, and if not:

2) Prints the character, without a line return.
3) Adds the character to the end of the current field buffer.

reet:
This subprogram draws a box around the item whose number is
passed as an argument. The colour to draw it is also passed, so that
boxes can be selected or deselected using this routine.

246

10 : File Handling

trailrem:
This is another utility subprogram. It takes a string array as a
parameter which it assumes to contain nine elements. For each of
these elements it removes any trailing spaces. It does this by looking at
the right-hand character and, if this character is a space, sets the
element of the array to be itself minus the last character. This process
is repeated until the last character is found not to be a space.

dearbox:
This subprogram has one parameter which is the number of an item. It
moves to the character position at the start of the box for this item,
prints the maximum number of spaces, which the item can contain, to
clear the box, and then moves back to the start again so that any text
entered will be printed in the correct place.

saverec:
This is the subprogram which deals with saving a record to the file.
The record number to save is passed as a parameter. If the record
number is zero (which is the search record) then nothing is done.
Otherwise, it takes the contents of the current record, held in 'strg$',
and uses LSET to place them in the buffer. Note that each string is
extended to its maximum length by adding spaces onto the end.

The final field is treated differently. Although it is being held as a
string for the sake of convenience, it is really a number. To show how
numbers are dealt with, the string is first converted to a number using
VAL and then this is converted back to a string suitable for outputting
to the file. Note that this process does save memory. Instead of three
bytes being used, one for each possible digit, MKI$ converts the
integer into a two byte string, so each record is one byte shorter than it
would otherwise be.

The exception to the conversion process is when the string is empty.
Performing the above would result in the value 0 being stored to the
disc, despite the fact that no number has been given. In this case, the
code outputs a string containing two spaces so that the field will be
empty, as expected, next time the record is viewed.

Once the buffer has been set up, the contents of it are written to the
disc using PUT.

247

AmigaBASIC : A Dabhand Guide

loadrec:
This performs the reverse process of loading a record. However, it is
somewhat more complicated because it takes into account the search
pattern set up when necessary. Its first parameter is the record number
asked for. The next gives the direction in which the user is moving
through the files:

dir% = 1 when moving forwards ('Next')
= 0 when moving backwards ('Prev')

The routine can be used to load a normal record or a search pattern.
For the former it starts by initialising the end points for the search.
Searching stops when it reaches the 51st record when moving
forwards and Oth record when moving back. It then sets up two
important flags:

ok% = 1 when current record matches the current search
pattern

= 0 when it doesn't
endf% = 1 when the end of the file has been reached

= 0 when it hasn't

It then starts a loop which begins by trying to load a record into the
buffer. If the record exists and so can be read, then the contents of it
are assigned to the temporary record array 'strgt$'. Note that the
reverse process to that in 'saverec' is applied. Trailing spaces are
removed by calling 'trailrem' and the final field is converted from the
stored string into a number and then into a normal string, provided
that it doesn't just contain spaces.

If EOF returns the value TRUE, indicating that the record doesn't exist,
then 'strgt$' is assigned null strings and 'endf%' is set to one.

The subprogram 'check' is then called. This checks to see if the
contents of 'strgt$' match the current search pattern. 'ok%' is returned
accordingly. Provided that the record matches, the loop will not be
repeated. If the record is found not to match, the 'next' record (taking
into account the direction) is subjected to the same treatment until
either the end of the file is reached or the record limits are hit.

248

10 : File Handling

If a record is found to match, the heading 'RECORD' followed by the
record number is printed, the contents of the fields are copied into
'strg$' and then entered into the field boxes. Note that, when the
record number is printed, it is followed by an extra space. This ensures
that the previous number is totally deleted. Otherwise, when moving
from record 10 to record nine, the '0' would be left on the screen.
Finally, another variable is assigned to:

rec% = current record number

The next block of code deals with loading a search record. This prints
the heading 'SEARCH' (again following it with spaces to delete any
record number), sets the search fields to contain the null string and
clears out the contents of the field boxes. The record number in this
case is set to O.

Then in all cases the following are initialised:

fld% = current field number (0 if uninitialised)
cur$ = current field buffer - holds the text of the field being

edited

check:
This performs the check of the temporary record contents against the
current search record, provided that 'search%' is set to one to that the
search record is to be applied. The temporary record contents had any
trailing spaces removed when they were assigned, so this subprogram
starts by doing the same to the search record. It then sets 'ok%' to one,
on the assumption that the record will match. Any non-matching
fields set it back to O.

For each of the first eight fields, it checks to see if the search string is
empty. If not, then it looks to see if it contains a star. The simple case is
when it doesn't. In this case, it checks the length of the search string
against that of the actual record. If they are different, then the match
automatically fails and 'ok%' is set to O. If they are the same then it
works through, comparing them one character at a time. Any
difference again results in 'ok%' being set to O. Note that the characters

249

AmigaBASIC : A Dabhand Guide

are converted to upper-case before being compared. This ensures that
the case of the text is irrelevant.

If the search string contains a star, then the position of it is noted.
Provided that it is not at the left-hand end of the string, the characters
to the left of it are obtained and a similar number of characters are
read from the record entry. Then these are converted to upper-case
and compared. Similarly, any text to the right of it is dealt with.

The final section of text deals with the last, numeric, field. For this
field, the left-hand character of the search string is read. This must be a
'<', '=' or '>'. Then the remainder of the string is converted into a
number. The whole of the record entry is also converted into a number
and these two numbers are compared.

menuhandler:
If an item from menu five, the Address menu, is selected, then any
field which was being edited is updated in the current record and this
record is then saved to disc by calling 'saverec'. Then the behaviour
depends on the item selected:

Setsearch
1 Loads a search menu
2 Sets search % to 1

Clearsearch
1 Sets search % to 0

Quit
1 Closes the file
2 Terminates the program

mousehandler:
Like the above subroutine, this starts by updating the current record if
a field is being edited. However, this routine also performs the same
action if it is the search record which is being set up. This is not
necessary in the menuhandler since, whichever item is selected, the
current search menu is not going to be needed. It is either going to be
replaced, ignored or be made completely irrelevant.

250

10 : File Handling

Then the position of the mouse, at the time the button was pressed, is
read and this is compared against all the boxes in turn to see which
one is being selected.

In the case of the 'Next' or 'Prev' boxes, the first check made is to see if
the maximum allowed record number (in either direction) has been
reached. If not, the current record is saved if it has been altered and
the next record (which matches the current search pattern if
applicable) is loaded. Note that the check for whether or not a record
has been altered is whether 'fld%' has the value O. Whenever a record
is read, fld% is set to o. It then keeps this value until one of the field
boxes is selected.

If it is one of the field boxes which has been selected, then any current
field has its box redrawn in white, the value of 'fld%' is assigned the
number of the field selected, then this box is highlighted and its
contents cleared. Finally, the current field buffer is reset to the null
string.

Datalnit:
This contains the data statements holding the title and maximum
length of each of the screen items.

251

AmigaBASIC : A Dabhand Guide

252

11 : Managing Resources
This chapter looks at some of the more advanced features of
AmigaBASIC which the authors of larger programs may find useful. It
examines the way in which the memory of the computer is divided up
and how this allocation can be altered. In addition, it suggests ways of
reducing the amount of memory required by a program, in case you
ever find yourself having problems squeezing one into the space
available. Finally, it takes a look at how a single program can run
'background tasks' as well as its main activity, without having to think
about it!

Linking Programs Together
It appears to be feature of programming that, however much memory
a computer has, it is never enough. Sooner or later, you will write an
application which will run out of space. Trying to reduce the size of an
existing program is a time consuming activity. Therefore, if you are
planning on writing a large application, it is worth thinking about
designing it before you start, so that it makes the best use of the
memory available.

For programs which are linear, this can be done by splitting them into
separate smaller programs. Each of these smaller programs then needs
to end by instructing BASIC to delete it, load the next program into
memory and to start executing this new program. This technique is
commonly used to create continuous demonstrations. These are made
up of separate programs which show off a particular feature of the
machine. When one has finished it starts the next one up, and so on in
an endless loop. It could also be used for programs such as a bridge
playing game. A game of bridge is split into four phases which occur
sequentially: dealing the hand, bidding, playing and scoring. These
phases are independent, apart from requiring certain pieces of
information from the previous ones, such as the cards each hand
contains.

253

AmigaBASIC : A Dabhand Guide

Unfortunately, most programs cannot be split up in this way, since
they usually contain a core which needs to be present at all times.
However, a similar technique which involves using 'overlays' is very
often possible. Overlays are sections of a program which are stored on
disc and only loaded into memory when they are needed. This
technique is most suited to programs which perform several separate
actions. For example, with a database program the user can either be
entering new information, searching through existing information,
sorting records into order etc. Since these are separate activities which
have little in common with each other, the code for them could be
stored as overlays, so that only the one currently being used is in
memory at a given time.

There are two keywords provided by AmigaBASIC which allow the
processes described above to be carried out. These are CHAIN and
COMMON.

In its simplest form CHAIN takes the syntax:

CHAIN "prog2"

where 'prog2' is the name of the program to be loaded and executed.
In this example, prog2 will completely replace the current program.
By using the MERGE option, a second program (which must have
been stored as an ASCII file) can be added onto the end of the first. For
example:

CHAIN MERGE "prog2"

In either case, you can specify the position at which BASIC is to start
executing the program in memory after the CHAIN. The default is to
start at the top. However, a numeric expression can be given and the
result of this expression is used as the line number of the starting
point:

CHAIN MERGE "prog2",start%

Note that alphanumeric labels cannot be used to determine the start
position.

254

11: Managing Resources

Sharing Variables Between Programs
It is possible to pass variables from the original program to the called
one. However, the default is for the called program to behave as
though it were a totally separate program and to not inherit the
current values of any of the variables in the calling program. There are
two methods of sharing variables between programs. The first is to
use the ALL option in the CHAIN command:

CHAIN "prog2""ALL

This causes all variables, other than those which are local to
subprograms, to be passed to the program being called. If only a few
variables are to be shared between the two, then the ALL option
should be omitted, and instead, the calling program should use a
COMMON statement to list the variables which are to be passed:

COMMON xpos%, ypos%, col%()

CHAIN "prog2"

Note that if variable types have been defined using DEFINT, DEFLNG
etc in the calling program, then these definitions will need to be
repeated in the called program, since variable types are not preserved.
In addition, CHAIN without the MERGE option does not preserve the
OPTION BASE setting.

For example:

REM Prog1
PALETTE 0,0,0,0

PALETTE 1,1,0,0
PALETTE 2,0,1,0
PALETTE 3,0,0,1
CLS
RANDOMIZE TIMER

col1% = INT(RND*2.99) + 1

FOR loop% = 1 TO 20
xpos% = INT(RND*500) + 50

ypos% = INT(RND*125) + 25
LINE (xpos%,ypos%) - STEP(50,25),col1%,b

NEXT

255

AmigaBASIC : A Dabhand Guide

COMMON coll%
CHAIN "Prog2"

REM Prog2
FOR loop% = 1 TO 20

xpos% = INT(RND*500) + 50

ypos% = INT(RND*125) + 25

CIRCLE (xpos%,ypos%),50,coll%
NEXT

Enter and save each of these programs in turn. Then load 'Progl' and
run it. This draws 20 random squares in a random colour and then
calls 'Prog2' and passes to it the number of the colour it has been
using: 'coll %'. After a slight delay whilst 'Prog2' is being loaded from
the disc, 'Prog2' is executed and produces 20 random circles in the
same colour.

Overlays
Normally, when using MERGE, the second program will be an
overlay. Therefore it needs to replace the current overlay. To do this a
DELETE option can be added:

CHAIN MERGE "prog2",start%,ALL,DELETE start.overlay -
end. overlay

where start.overlay and end. overlay are the labels of the start and end
of the section to be deleted. Therefore, it is necessary to ensure that all
overlays begin and end with the same labels (or line numbers).

The following short program demonstrates how overlays may be
used:

256

REM ProgMain

count% = 0

mainloop:

INPUT "Please enter two numbers :",numl,num2
op$ =
WHILE op$<>"+" AND op$<>"-" AND op$ <> "*" AND op$ <>
"/11

INPUT "Enter operator (+ - * or /) :",op$

11: Managing Resources

WEND
IF op$ = "+" THEN

ov$ = "ovl"
ELSEIF Op$ = "-" THEN

ov$ = "ov2"
ELSE IF op$ = "*" THEN

ov$ = "ov3"
ELSEIF op$ = "/" THEN

ov$ = "ov4"
END IF

CHAIN MERGE ov$,I,ALL,DELETE start.overlay - end.overlay

REM Start here after the CHAIN
1: CALL operate PRINT numl n " op$ " " num2 "

REM Jump to start of main body if the process
REM has been repeated fewer than 5 times
count% = count% + 1
IF count% < 5 THEN GO TO start
END

" res

REM Dummy overlay to be replaced by relevant subprogram
start.overlay:
end. overlay:

start.overlay:
REM ovl
SUB operate STATIC

SHARED numl, num2, res
res = numl + num2

END SUB
end. overlay:

start.overlay:
REM ov2
SUB operate STATIC

SHARED numl, num2, res
res = numl - num2

END SUB

end. overlay:
start.overlay:
REM ov3

257

AmigaBASIC : A Dabhand Guide

SUB operate STATIC

SHARED numl, num2, res
res = numl * num2

END SUB
end. overlay:

start.overlay:
REM ov4

SUB operate STATIC

SHARED numl, num2, res

res = numl / num2
END SUB
end.overlay:

To tryout the example, create each of the four overlays 'ovl' to 'ov4'
in tum and save each as an ASCII file. Then create, save and run the
main program.

What this suite of programs is aiming to achieve is to be able to
repeatedly read in two numbers and an operator and to print out the
result of applying this operator to the numbers. The act of applying
the operator to the numbers is carried out by calling a subprogram.
Instead of the main program containing four different subprograms:
one each for addition, subtraction, multiplication and division, it loads
in whichever one it needs as an overlay and calls that one.

Ideally, we would like to think of the process as though the main
program were resident continually and just the subprogram was being
changed. Unfortunately, CHAIN does not act like that. After the
CHAIN command, the program formed is treated as being a new
program. However, we can go a long way towards making the process
act as we would like. The 'ALL' option ensures that all the variables
set up before the CHAIN takes place are preserved. In addition, by
using the option to start executing the resulting program at a
particular line number, we can make BASIC continue by executing the
statement immediately after the CHAIN as though nothing had
happened.

The only problem is that we cannot loop round the main body of code
a certain number of times by using a FOR ... NEXT loop. This is

258

11: Managing Resources

because the FOR statement would be executed before the CHAIN and
the NEXT statement after it. The CHAIN statement causes BASIC to
forget all about any structures it may be in at the time. Therefore,
when BASIC encountered the NEXT, it would have forgotten all about
the start of the loop and give an error. The way the program has got
around this problem is to use a label at the start of the main body of
code to which it jumps if the counter of the number of times the code
has been executed is less than five.

Memory Management
When running a BASIC program, the amount of memory you have
available is divided into three distinct areas. These contain the 'stack',
the 'heap' and the 'BASIC data'. These terms are explained below. The
amount of memory assigned to each can be changed using the CLEAR
command.

CLEAR used on its own erases all variables and arrays and closes any
open files. In addition, it can be given one or two arguments which
allocate space for the BASIC data and stack respectively. For example:

CLEAR, 50000, 1024

This allocates 50000 bytes for the BASIC data area and 1024 bytes for
the stack. All the remaining memory is made available to the heap.
The smallest value which can be assigned using CLEAR is 1024 bytes
Ok). The default values are 25000 bytes and 4789 bytes respectively.

The Stack
The stack is used internally by BASIC to hold information about the
flow of control of a program. For example, whenever BASIC
encounters a GOSUB, function call or subprogram call, it has to
remember its current position in the program so that it can return to
the correct place after executing the appropriate body of code. This
information is stored on the stack. Similar situations arise in the case
of loops. The address of the start of each loop has to be stored so that
when the end of the loop is reached, BASIC knows where to jump
back to.

259

AmigaBASIC : A Dabhand Guide

If a second subroutine call is made from within the body of another
then a second address is placed on the stack. Then if the body of the
second subroutine call contains a loop structure, the stack has a third
address added to it. The stack continues to grow in this way until the
innermost level is reached. However, when a subroutine etc ends, its
return address is removed from the stack so the amount of stack space
used decreases again.

This means that the amount of stack space required depends on how
deeply you nest structures. It is independent of the size of the program
or the number of independent structures the program contains.

BASIC Data Area
This area holds the text of the current program, all the variables which
the program uses and the buffers for all the files it opens. Since the
default size is only 25000 bytes, many programs will need to increase
the size of this area using CLEAR. Even if a program is significantly
less than 25000 bytes in length, it can soon use up the remaining
memory by making heavy use of arrays, string variables or files. When
this happens, an 'Out of memory' error will be generated.

If the actual programs themselves are greater than 25000 bytes in size
then this poses a problem. There is no point in placing the CLEAR
command inside the program because there isn't enough memory to
load and run the program in order to execute the CLEAR command!
The way to solve this is to use a small initialisation program as
follows:

CLEAR 50000

CHAIN "MainProg"

If lack of memory starts to become a problem there are several things
you can do to ease the situation:

If your program contains a block of code which is replicated, turn this
into a subprogram and replace the occurrences of it by subprogram
calls.

260

11: Managing Resources

Consider splitting the program into segments which CHAIN each
other, rather than having it all in memory together as one large
program.

Reduce the buffer size for sequential files when opening them. Note
that this may make your program run slower.

Keep array sizes down to a minimum and use the ERASE command to
free the space they used as soon as you have finished using them.

Check that any numeric variables your program contains are of the
minimum size. Remember that the default type is single precision
which takes up four bytes. Often these are accidentally used as
counters etc in loops when a two-byte short integer would do the job
faster, as well as taking up less space.

Finally, as a last resort, cut down the comments in your code, remove
blank lines and make variable names shorter. However, don't try to
save memory by removing the indentation of structures. Indenting
lines costs no extra memory, so 'un-indenting' them will have no effect
other than making the program less readable.

The Heap
The heap is used for the screen display and sound buffers. Therefore, a
program which creates new screens and windows requires plenty of
heap space. Often, more memory is used for the screen display than
for anything else, so the following points are worth noting:

Doubling the screen resolution, in either direction, doubles the
amount of memory used by every window in it. Therefore don't
automatically declare a screen to be in mode four - think carefully
whether you actually need the extra resolution or not.

Similarly, the depth of a screen affects the memory significantly, so
don't be too extravagant with colour.

Creating windows which will be redrawn automatically, when
necessary, and which can change in size requires a buffer large
enough to hold the whole screen to be made available. Therefore this
should be avoided whenever possible.

261

AmigaBASIC : A Dabhand Guide

BASIC doesn't have a heap of its own: it shares the system heap with
other tasks. Therefore, you can make more heap space available for
your programs by closing down any other applications which are
running at the same time.

The FRE Function
This function returns information about the amount of memory being
used. Its argument determines the particular area of memory as
follows:

-1 Number of bytes free in the heap
-2 Number of bytes never used by the stack

any other number Number of bytes free in the BASIC data area

Background Tasks
There is one final type of event which has not been mentioned so far in
this book. This is the event which occurs after a certain length of time
has passed.

You can turn time event trapping on or off by using TIMER ON,
TIMER OFF or TIMER STOP. These act in the standard way. TIMER
ON activates time event trapping. TIMER OFF turns the trapping off
completely so that any events which occur are ignored. TIMER STOP
still traps time events but does not react to them until a TIMER OFF
statement is executed.

When time event trapping is turned on, you can instruct BASIC to call
a particular subroutine whenever a set period of time has passed. For
example:

262

ON TIMER(60) GOSUB minute
TIMER ON
WHILE INKEY$

WEND
END

minute:
BEEP

RETURN

11: Managing Resources

The argument to the ON TIMER statement specifies the time interval
you want in seconds. This can be any number between one and 86400
which is the number of seconds in 24 hours. The above program uses
the value 60 to cause the subroutine 'minute' to be executed every 60
seconds. This subroutine simply beeps and flashes the screen. Press
any key to stop the program running.

Timer events are principally used to enable secondary activities to be
carried out at regular intervals. For example, the main activity of the
following program is to draw a pattern. However, it also maintains a
display of the time in a second window.

Init:
SCREEN 1,640,256,4,2
WINDOW 1, "Pattern", (20, 20) - (500,220),16,1

WINDOW 2, "Time", (520, 20) - (600, 40),16,1

Pa1etteInit:

PALETTE 0,0,0,0
FOR loop% = 1 TO 15

shade = (15-1oop%)/15
PALETTE loop%, shade, shade, shade

NEXT

WindowSelect:

WINDOW OUTPUT 1

TimerInit:

ON TIMER(l) GOSUB clock
TIMER ON

DrawPattern:

col% = 1 : ang = 0.0

cenx% = 240 : ceny% = 100
FOR size% = 100 TO 10 STEP -1

col% = (col% + 1) MOD 15 + 1
ang = ang + .1

xoff% = COS(ang)*size%
yoff% = SIN(ang)*size%
xpos1%
ypos1%
xpos2%

ypos2%

cenx% + xoff%*2
ceny% + yoff%
cenx% - yoff%*2

ceny% + xoff%

263

AmigaBASIC : A Dabhand Guide

xpos2%
ypos2%

cenx% - xoff%*2
ceny% - yoff%

xpos2% cenx% + yoff%*2
ypos2% ceny% - xoff%
LINE (xposl%,yposl% - (xpos2%,ypos2%),col%
LINE (xpos2%,ypos2% - (xpos3%,ypos3%),col%
LINE (xpos3%,ypos3% - (xpos4%,ypos4%),col%
LINE (xpos4%,ypos4% - (xposl%,yposl%),col%

NEXT
END

clock:
WINDOW OUTPUT 2
CLS
PRINT TIME$
WINDOW OUTPUT 1
RETURN

The program works as follows:

Init:
The program starts by creating a new screen which has a depth of four
(which allows 16 colours) containing two windows. The only user
option they have is that their contents will be refreshed after being
covered. They cannot be resized, moved or closed.

PaletteInit:
Then the palette is set up. Colour 0 is defined as black. The other
colours are set up so that they give a grey scale with colour one as
white and colour 15 as the darkest shade of grey. The palette is set up
like this, rather than using the more obvious method of having 0 as
black and 15 as white with one to 14 giving intermediate values, so
that the title bars will remain visible. These are displayed in colour
one.

WindowS elect:
This selects the pattern window as the current window.

TimerInit:
This sets up a routine for handling timer events which are to occur
every second and turns timer event trapping on.

264

11: Managing Resources

DrawPattern:
Next comes the main block of the program which draws a pattern. It
starts by selecting the next colour in the order 0, 1, ... 15, O ..• and
increases the rotation angle. For the current value of the rotation angle
it calculates the x and y offsets using COS and SIN. Using these offsets
it calculates the four corners of the box. Note that the x-coordinates are
doubled to compensate for the pixels being roughly twice as high as
they are wide. Finally, the box described by these four corners is
drawn.

clock:
This subroutine is the timer event handler. It changes the window to
the one containing the time, clears it to rub out the existing text, prints
the current value obtained from TIME$, reselects the other window
and returns. Note that WINDOW OUTPUT n is used to select the
windows rather than WINDOW n. This is because WINDOW brings a
window to the front as well as making it current. Doing so causes its
contents to be cleared and refreshed which flashes the screen. The
program is relying on the fact that both windows are visible at all
times, so that all we need to do is make them current. This means that
the pattern drawing continues happening as normal apart from a brief
pause.

265

AmigaBASIC : A'Dabhand Guide

266

12 : Machine Code
From Basic

Caning Machine Code Routines
This chapter is for those people who really want to get the ultimate in
performance from their Amiga. It shows how 'machine code' routines
can be used from BASIC. Machine code is the computer's own
language - it consists entirely of numbers which are passed to the
computer's central processing unit (CPU). Each of these numbers is
treated by the CPU as either an instruction or data for an instruction.

There are two type of machine code routines which you can 'call',
those you write yourself and those provided by the Operating System.
This chapter deals with both. It starts by explaining what machine
code is and how you can write it. Then it goes on to describe the
procedures for accessing your own machine code routines from
BASIC. Finally, it takes a brief look at what the OS provides and how
you can access it.

Please note that what follows is only a very brief overview of machine
code. The subject is enormous and you are referred to specific books
on the subject. However, what follows should give you an insight into
the topic and whet your appetite.

Machine Code
Machine code is the natural language of the computer. All the BASIC
statements which you write have to be analysed by AmigaBASIC
before your Amiga can understand them and execute them. The
advantage of using BASIC is that the statements are easy to write and
understand. The disadvantage is that the processing which
AmigaBASIC has to perform as it runs your program takes a
considerable time. This process of identifying and executing is called
'interpretation' and is undertaken by the part of AmigaBASIC called
the 'interpreter'. Therefore, if you replace part or all of your program

267

AmigaBASIC : A Dabhand Guide

with the equivalent machine code instructions, it runs many times
faster.

The disadvantage with doing this is that machine code is definitely not
easy to read and write!

The Central Processing Unit
The type of machine code which a computer can understand depends
on what type of central processing unit (CPU) it contains. The CPU is
the brain of the computer and has a significant effect on what the final
performance of the computer will be like. Early home computers used
relatively simple processors such as the Z80 and 6502. Today's micros
are based on more powerful processors which means that they can
carry out operations many times faster. You may think that speed isn't
everything. However, it has consequences which you may not expect.
For example, the higher the screen resolution you want to use, the
more work the computer has to do to display your pictures for you.
Unless the CPU is powerful enough, it just cannot cope with high­
resolution graphics.

The processor which your Amiga contains is the Motorola MC68000,
which is normally referred to as just 'the 68000'. It has become the
most widely used processor in the home computer market.

Machine Code or Assembly l.anguage
The CPU's function is to read a sequence of instructions from memory
and carry them out. These instructions are simply a series of values
stored in memory locations. The CPU will read the first 16-bit number
of this series and interpret it as an operation identifier. In some cases
this will be all the information it needs to enable it to act. It will then
perform the operation as instructed and go on to fetch the next
number and repeat the process.

In other cases it will need data as well: for example, if the instruction is
telling it to jump to a different location (the machine code equivalent
of a GOTO), it needs to know the address of the location. The CPU
decides how many items of data it requires purely by looking at what
operation identifier it has been given. It then goes and fetches the next
one or more 16-bit numbers and interprets these as the data it needs.

268

12 : Machine Code From BASIC

Having executed the instruction, the CPU moves on to the next
number which once again is treated as an instruction.

These values in memory are known as 'machine code'. A machine
code instruction always starts with a number which is known as the
operation code or 'opcode' since it defines the operation to be carried
out. Then this may be followed by other numbers which are the data
to be operated on called the 'operand'.

It is possible for you to program in machine code by simply building
the required list of numbers in memory. However, this is an extremely
difficult process. Unless you could remember the opcodes for all the
different instructions you wanted to use, you would have to thumb
through reference books and work out what they were. This process is
further complicated by the fact that the description given above is an
over simplification of the actual truth. Of the 16 bits in the opcode only
four bits are used to determine the kind of operation to be performed.
The others provide more information about it, such as the 'size
specifier' and the 'register' it is affecting etc (more about these later).
Therefore you have to work out all the separate pieces which reflect
each item of information held and combine them together in a
particular order to generate the actual opcode value.

Writing such a program would be bad enough, but debugging it
would be a nightmare. At first sight it would be virtually impOSSible to
distinguish the opcodes from the data.

To ease the task, several companies have produced 'assemblers' for
the Amiga. These allow you to produce statements in a more readable
form known as 'assembly language statements' using mnemonics to
represent the different instructions etc. The assembler program can
then be 'run' which makes it convert the mnemonics into the
corresponding machine code. When people talk about a routine being
'written in machine code', what they normally mean is that it was
written in assembly language and then converted into machine code
using as assembler. Other terminology you may come across is 'source
code' which is the assembly language routine the assembler takes as
its input and 'object code' which is the machine code produced by it.

269

AmigaBASIC : A Oabhand Guide

Although assemblers from different sources are not identical in all
respects, the mnemonics they use will be the same since they are part
of the definition of the 68000 instruction set. Hence, the examples that
follow in this chapter should apply, whichever system you buy.

A Very Brief Overview
One of the fundamental differences between BASIC and assembly
language is that BASIC instructions act on variables, whereas
assembly language ones act on data in memory or on internal memory
locations called 'registers'.

You can include as many variables as you like within a BASIC
program. These can be used to handle different types of data: strings,
integers and floating point numbers. When producing machine code,
however, you are limited to just 16 registers. Eight of these are data
registers called 00, 01, 02, 03, 04, OS, 06 and 07, which each hold a
32-bit value. The other eight are address registers called AO, AI, A2,
A3, A4, AS, A6 and A7 for holding the addresses of memory locations.

The way in which you have to get around the problem of having a
limited number of registers to work on is to store all the values you are
using in blocks of memory and load them temporarily into registers to
work on them. For example, to add two numbers together, you would
load the first number from an address in memory into one data
register, load the second into another data register and then use the
assembly language instruction ADD to add one to another.

The other problem is that you don't have different types of registers
for storing different types of data. Fundamentally, everything you act
upon in assembly language is an integer. This is fine for characters,
since they can be manipulated in their ASCII format. However, what
about floating point numbers? The practical answer is don't use
assembly language if you want to deal with floating point numbers.
Although it is ideal for handling integers, it provides no facilities for
floating point values.

You normally get a choice about what size of integer you are working
on; these can contain either 8-bits (a byte), 16-bits (a word) or 32-bits (a
long word). The standard 32-bit register is used for holding all types.

270

12 : Machine Code From BASIC

However, the mnemonic for the instruction is followed by a letter
indicating what size of operand it is to act upon:

B Byte
W Word
L Long Word

The omission of a size specifier normally indicates that words are
being used. For example:

ADD.W DO, D1

and:
ADD DO, D1

both add the bottom word of the value in register DO to the value
stored in register 01.

It is possible in certain cases to use constant values in assembly
language statements. For example:

ADD.W *500, DO

adds the value 500 to the contents of register DO. The '#' is used to
indicate that what follows is a constant. You can specify the values in
hexadecimal notation by adding an '&H' as follows:

ADD.W *&H100, DO

This adds the hexadecimal constant 100 (256 in decimal notation) to
the contents of register DO.

When values are being read from or written to memory, the actual
location being used is determined by an 'address'. This is a 32-bit
number which uniquely identifies a particular location. The address to
be used can be calculated by combining registers and numbers in
different ways, each method being known as an 'addressing mode'.
This is easier to explain by means of examples using the MOVE
instruction. As its name implies, this instruction moves values

271

AmigaBASIC : A Dabhand Guide

between registers and/or memory addresses. It is one of the most
widely used 68000 instructions.

Instruction

MOVE Dl,DO
MOVE (AO),DO

MOVE Dl(AO),DO

Description of value moved into DO

Contents of register Dl
Contents stored at the address held in AO
Contents stored at the memory location
whose address is given by the value held
in AO plus an offset of the contents of Dl

The above should be enough to indicate roughly what producing
machine code entails. If you feel you want to try it out for yourself
then the next step is to equip yourself with a book describing the
68000 instruction set and a good assembler. These together should
teach you about the full list of instructions provided and allow you to
experiment with them.

Accessing Machine Code From AmigaBASIC
The first stage in the process of accessing machine code from
AmigaBASIC is to develop the machine code program itself. The
following is a short assembly language program which will be used
for this demonstration:

MOVEM.L

MOVE.L

MOVEA.L

BRA
EORI.B
DBRA
MOVEM.L

RTS

DO/AO, - (A7)

12(A7),DO

16 (A7) ,AO

test loop
#&H20,O(AO,DO.W)test
DO,loop

(A7) +, DO/AO

This program, when converted into machine code, can be executed
from BASIC using the CALL statement. The first instruction stores the
contents of the 68000's registers DO and AO onto the stack, which is
indicated by A7. The stack pointer is decremented so that it again
points to the next free position (this is specified by the '-' sign which
precedes it).

272

12 : Machine Code From BASIC

The next instruction again references the stack using an offset of 12
bytes to load a word into register DO. This offset of 12 is used since
there are now three long words (ie 12 bytes) of data which have been
pushed onto the stack since the call was made. Two of these are the
registers DO and AO pushed by the first instruction and the other is the
return address. Thus the offset of 12 skips over all of these and loads
what was the first stacked word immediately before the call was
made. This will be the first argument to the CALL statement.
Similarly, the third instruction fetches the second argument to the
CALL statement from the next highest stack position using an offset of
16. This value is placed in register AO.

Thus, DO contains the first parameter and AO contains the second.
These should be the length and the address of the string to be
processed.

The program now enters the processing loop by branching to the end
test of the loop using the BRA (branch always) instruction to move to
the instruction following the label 'test'.

The main body of the loop consists of a single instruction. This
operates on the data in the string one byte at a time. Each byte is
loaded from the address held in AO plus the position count in DO and
is Exclusive-ORed with the value 32 (&H20). This will convert upper­
case letters into lower-case letters and vice-versa. In fact, the last
character of the string is the first to be processed since DO initially
holds the length of the string.

We now come to the DoRA instruction. This decrements register DO
by one and if the result is not -1 branches back to the label 100p', thus
causing the next byte to be processed. Once the count in DO has
reached zero, there is nothing more to be done and so this instruction
will not cause a branch back and so the program goes on to the next
instruction. This is the reverse of the original store onto the stack. It
retrieves the original values of AO and DO and resets the stack pointer
in the process.

Finally, the program returns to the caller via an RTS instruction.

When this program is assembled, it produces the following machine
code:

273

AmigaBASIC : A Dabhand Guide

48E7 8080
202F OOOC
206F 0010
6000 0008
OA30 0020 0000
SlC8 FFF8
4CDF 0101
4E7S

This needs to be inserted into a BASIC shell program from which it
can be called. For example:

DIM code %(16)
FOR I% = 0 TO 15
READ code% (I%)

NEXT
A$ "Hello"
B$ = "World"
C$ = A$+B$
length = LEN (C$)
address& = SADD(C$)
start = VARPTR(code%(O»

CALL start (length&,address&)
PRINT C$
END
DATA &H48E7,&H8080
DATA &H202F,&HOOOC
DATA &H206F,&H0010
DATA &H6000,&HOO08

DATA &HOA30,&H0020,&HOOOO
DATA &HS1C8,&HFFF8
DATA &H4CDF,&H0101
DATA &H4E7S

This program starts by setting up an array 'code%' which is large
enough to hold the 32 bytes of machine code. The program then
extracts the machine code from DATA statements using READ

code % (I %) inside a FOR loop. The first machine code instruction
must be placed in code% (0) .

274

12 : Machine Code From BASIC

The program then sets up a string 'C$' and two numeric variables
'length&' and 'address&' which, as their names suggest, hold the
length of C$ and the address in memory at which it is stored. Also a
variable 'start' is created using the function V ARPTR to find the
address in memory of the very first element of the array which
contains the machine code.

Next, the machine code program is called by using CALL with this
address and passing the length and address of the string. When the
final RTS instruction of the machine code is executed, control passes
back to BASIC and the program ends by printing out the converted
string which should appear as follows:

hELLOwORLD

Operating System Access
Besides calling your own machine code, you can also access the
machine code contained in the Operating System. The AmigaOOS
Operating System consists of a number of separate libraries, each of
which can be accessed using a special keyword 'LIBRARY' which is
provided by AmigaBASIC. This 'opens', ie makes available all the
routines contained by, a library. Up to five libraries can be opened at
any time.

The LIBRARY CLOSE statement is provided to close down libraries
once they are no longer needed.

Before a library can be accessed in this way, a special file has to be
produced which contains a list of the routines inside the library, what
arguments they require and where in the library they live. A utility
program, 'ConvertFD', is provided in the BASIC Demos directory of
the Extras disk to produce such a file for you.

For example, one of the libraries is called 'Intuition'. This contains all
the commands for operating the Amiga's user interface. To create the
appropriate file for this, run the ConvertFD utility program giving the
file name:

Extras:FD1.2/Intuition lib.fd

275

AmigaBASIC : A Dabhand Guide

for the existing library file and:

Extras:BasicDemos/Intuition.bmap

for the file to be created. This produces a .BMAP file whose name can be
used in conjunction with the LIBRARY statement, for example:

LIBRARY "Extras:BasicDemos/Intuition.library"

Once a library has been opened in this way, the various routines
within it can be called using the CALL statement, for example:

CALL DisplayBeep&(O)

This calls the routine inside the Intuition library which makes the
screen flash.

To make full use of the LIBRARY statement, you need access to details
of the various libraries which exist and the routines within them. This
is beyond the scope of this book. However, many other books are
available which provide this information.

276

13: Devices
This chapter covers a mixture of subjects. The first, how to deal with
discs, should be of use to all users. It brings together all the
information you require to format discs, create directories, move
around the directory structure, etc. The others are relevant to those
with extra hardware attached to their Amiga, eg joysticks and printers.
These sections explain the commands which BASIC provides to
support these extra items of hardware. In addition, they show how
different devices can be used for general purpose input and output.

Using Discs
On the Amiga, if you wish to keep any programs, data files, pictures,
etc, for later use, you do so by saving them onto a disc. As you
accumulate more and more information, it becomes very important to
organise it correctly. Otherwise, finding a specific file again later
becomes a tedious process. This organisation has two stages. The first
is deciding what to keep on each disc. The second is how to arrange
the information on an individual disc.

This section goes through the stages involved in preparing a new disc
so that it is ready for storing your files and setting up the different
drawers within it so you can organise the information neatly.

Formatting a Disc
When you save a file onto disc, it writes out all the individual bits of
information onto 'tracks' or magnetic grooves on the surface of the
disc. However, when you buy a blank disc, these tracks aren't present.
This is because different makes of computers expect different numbers
of tracks and different spacings between the tracks etc. Therefore disc
manufactures have chosen to make general purpose products which
can be 'formatted' to work with any machine. The process of
formatting a disc lays down the tracks in the way in which a particular
machine is going to expect to find them.

277

AmigaBASIC : A Dabhand Guide

You have to format discs while you are running the Workbench; you
cannot format them while you are 'inside' the BASIC system. It is best
to do so before you enter BASIC so you have a spare disc ready should
you choose to use it.

Once you are in the Workbench, eject the current disc from the built in
disc drive and replace it by the blank one which you wish to format.
Because it is blank, the Workbench won't be able to read information
from it and so will give it the name 'DFO:BAD'. Then, click on the disc
icon and select Initialize from the Disk Menu.

You will be prompted to insert the Workbench Disk. Then, a few
moments later you will be asked for the blank disc back again. At this
stage the requester:

OK to Initialize disk in

drive DFO:
(all data will be erased) ?

will appear. This is giving you a final chance to change your mind. In
this example, you have no reason to do so; therefore you should click
on the Continue gadget.

The requester is really provided for a different situation: that is when
you are trying to re-format a disc which already contains data. This
process totally destroys all the files which you have on the disc so you
should be very careful when carrying it out. ACcidentally deleting one
file is bad enough but losing a whole disc full can be disastrous!

When the initialisation process has started, the window shows which
track is currently being formatted or 'verified' and how many are left
to go. The total number of tracks placed on the disc is 80: these are
numbered 0 to 79. After it has formatted each track, the Amiga goes
through the process of 'verifying' or checking it. Normally, this will
just be a routine process. However, you may occasionally find that
you get an error message displayed. If this happens you should try
repeating the formatting process. Often, the problem will then go
away. It it doesn't, then your disc is probably faulty and you should
throw it away and start again with a different one.

278

13: Devices

When the disc has been verified, the final phase is for some control
information to be written out to it. While this is happening you will be
warned not to remove the disc. After this has finished, your disc will
finally ready to use.

Naming a Disc
The first thing you should do when you have formatted a disc is to
give it a name. The default one which the Amiga gives it after
formatting it is 'Empty'. To change this, click on the disc icon and
select Rename from the Workbench Menu. This will display an input
line on the screen. Point at this, delete the existing name using the DEL
key and then type the name you want to use, for example
'BASICProgs1', and press RETURN. The name of the disc will then
change.

The file name you choose can contain up to 30 characters. These
characters can be a mixture of upper and lower case letters, numbers
and the underline character '_' which is useful for separating words.

Copying BASIC Across
It is a good idea to have a copy of AmigaBASIC on each of the discs
which you want to use to store programs. This means that if you only
have a single disc drive then you won't need to keep swapping discs
in the middle of a BASIC session. To do this, double-click on the
'BASICProgs1' disc icon to display the window for this disc. Then,
eject the disc from the disc drive and replace it with the Extras Disk
and click on the Extras icon. When the Extras window is displayed,
move the mouse pointer to the AmigaBASIC icon, press and hold
down the left mouse button, drag the icon to the BASICProgs1 disc
window and release the mouse button. This will commence the
copying and you will be asked to swap discs several times while the
process is being carried out.

Creating Drawers
Now is the time to create 'directories' or 'drawers' so that you can
organise the information on the disc in a sensible fashion. An example
of the sort of structure you should aim to create is shown in the
diagram shown in figure 13.1

279

ArnigaBASIC : A Dabhand Guide

AmigaBASIC I Programs I I Utilities I

I

I Sound I I Graphicsl

I
IFile Handling I I Misc I

Road I I Rocket I

I
Space

Figure 13.1. Part of a directory structure

Note that you can create directories within other directories.

The easiest way to create a directory is to copy the Empty drawer from
the Workbench menu to where you want it and then rename it.

The Current Directory
If you try to load a file from within the AmigaBASIC system by giving
just its file name, then the 'current directory' will be searched for the
file. Normally the current directory is the top level directory which in
our example above contained just AmigaBASIC itself. However, you
can change it by using the command CHDIR. For example:

CHDIR "Programs"

will set the current directory to 'Programs'. You can then use the
command a second time, to set the current directory to one of the
directories contained in 'Programs', ie 'Sound', 'Graphics',
'FileHandling' or 'Misc', for example:

CHDIR "Graphics"

Then you could use it again to choose between 'Road' or 'Rocket':

CHDIR "Rockets"

Alternatively, you can give the whole path in one go, separating the
directory names using a' /', for example:

CHDIR "Programs/Graphics/Rocket"

280

13: Devices

The above demonstrates how to use CHOIR to move down the
directory structure, to a directory which is below the current one. We
also need to be able to move up again. To do this, type:

CHOIR "/"

This will take you back up to the previous level. For example:

CHOIR "Programs/Graphics/Rocket"

CHOIR "/"

will set the current directory to 'Graphics'.

A shortcut is to type:

CHOIR ":"

this will take you directly to the top level directory again. One further
point to note about CHOIR is that you can set the current directory to
be on a different disc by providing the disc name:

CHOIR "BASICProgs2:Programs/Speech"

Then, whenever you give a file name, it will look for it on the disc
which is named 'BASICProgs2' and ask you to insert this disc into the
drive if necessary. Note that the disc name is separated from the
directories by a ':'.

Finally, if you cannot remember where in the directory structure you
are or what files you have in the current directory then type:

FILES

This will start by giving the current directory name and will then list
the entire contents of that directory, including the names of any other
directories which it contains.

281

ArnigaBASIC : A Dabhand Guide

Providing Pathnames
As an alternative to loading a file from the current directory, you can
provide the whole 'pathname' when you give the LOAD command. A
'pathname' is the full name of a file. It includes the file name, the
directory containing the file and the list of directories between this
directory and the top-level directory. These are given in the order you
would have to move through them on the way down to find the file,
for example:

LOAD "Programs/Graphics/Rocket/Space"

This will ignore the current directory setting and search down the
directory structure given to load the file 'Space'. Similarly, this applies
when you are saving files using SAVE and listing files using FILES.

If you wish, you can specify the disc to use here as well, for example:

FILES "BASICProgs2:"

This will list all the files in the top level directory of the disc whose
name is 'BASICProgs2'. Alternatively, you can state that you wish to
use the disc which is currently in a particular disc drive, for example:

SAVE "DFO:Programs"

will save a file onto the disc currently in drive DFO (the internal disc
drive) in the directory 'Programs' which will be found at the top level.

Acting on Files
There are a couple of other BASIC commands which are important for
managing files. The first of these is NAME which can be used to
change the name of an existing file. For example:

NAME "Space" AS "Space_old"

This changes the name of the file 'Space' in the current directory to
'Space_old'. This is the sort of thing you may want to do as you are
developing a program. It allows you to keep the current version,

282

13: Devices

'Space_old', as a backup. After you have made further edits to the
program currently in memory, you then save it as 'Space' as normal.
However, if you make a mistake, you still have the previous version to
return to.

The other, very important command is KILL. As it names suggests it
gets rid of files. For example:

KILL "Space_old"

will delete the file 'Space_old'.

Making Backups
When you received your Amiga, you were advised to take copies of
the original Workbench and Extras discs. This means that if anything
happens to the versions you are working with, you still have the
originals available and can make new copies to work with.

The same applies to your own program discs. You should regularly
make duplicates of the discs which you are working on. If you have an
important piece of software which you are developing, then it isn't
sufficient to keep a couple of versions of it on the same disc. Discs can
and do develop faults and if this happens you could well end up not
being able to access any of the information on the disc.

The following is provided to remind you how to copy a disc. First,
enter the Workbench and select Duplicate from the Workbench Menu.
A requester will appear asking you to place the disc you want to copy
into drive DFO. When you have done this, select Continue. Next, you
will be asked to replace the disc to be copied with the disc you want to
copy the files to. This should either be a new, freshly formatted disc or
one which contains files which aren't important and which you don't
mind losing. Finally, continue swapping these two discs as requested
until the process is complete.

Printers
One of the commonest and most useful 'extras' which can be added to
an Amiga system is a printer. If you want to use your computer for

283

AmigaBASIC : A Dabhand Guide

word processing then obviously it is vital - what is the use of letters
which can only be stored on disc and which cannot be printed out and
sent? But even if you aren't interested in using your Amiga for word
processing then a printer is still handy to have around.

Within AmigaBASIC there are two ways in which you can profit from
one. The first of these is that it allows you to print the results of your
programs onto paper. The other is that it allows you to obtain a
printed listing of your programs. How these can be achieved is
demonstrated below.

Sending Output to a Printer
Previous chapters have shown how to send output to the current
output window using the commands PRINT and PRINT USING. To
send output to a printer, two corresponding commands exist: LPRINT
and LPRINT USING. These take the same syntax as their screen
counterparts.

LPRINT is the simpler of the two to use and is often all that you will
require. It takes a list of string or numeric expressions which are to be
printed separated by punctuation characters. These characters
determine how the expressions will be positioned. For example, if two
expressions are separated by a semi-colon ';' they will be printed
immediately adjacent to each other. Conversely, if they are separated
by a comma ',' the second will be printed starting at the next zone as
determined by the current setting of WIDTH.

In the case of numeric expressions, the resulting number will always
be followed by a space. In addition, positive numbers will be preceded
by a space whereas negative ones will be preceded by a minus sign.
They will be output in decimal format if they can be represented
accurately with seven or fewer digits (16 or fewer for double precision
values) and in exponential format otherwise. LPRINT on its own will
print a blank line.

LPRINT USING is more complicated but it provides you with greater
control over how things are formatted. It is particularly useful for
tables of numbers since it allows you to state exactly the number of
digits before and/or after the decimal point, whether plus or minus

284

13: Devices

signs are to be printed etc. The reference section at the end of this book
covers all the options in detail.

Using the Printe:r's Featu:res
Besides supplying the text which you want to appear on the paper and
formatting information, you can also send the printer instructions on
how to output it. The sort of thing you can do is to tell the printer to
change to italic or bold scripts, to use a different character set or to set
the margin or tab positions etc. These instructions are known as
'printer escape codes'. This is because they all start with the Escape
character (ASCII value 27).

The Amiga provides a set of standard printer escape codes which you
can use, whatever type of printer you have attached. These will then
be translated into the particular sequences required for your printer.
(You should have already told the Amiga which type of printer you
have attached by using the Preferences tool in the Workbench. If you
have not done so, follow the instructions outlined in the Introduction
to the Amiga manual supplied with the machine.)

By supplying a standard set of printer escape codes, Commodore have
ensured that you can send a printer instructions without having to
know what type it is. If the printer connected supports the operation
you asked for, then it will be passed the sequence of commands it
recognises to perform the operation. Otherwise, your instruction will
be ignored and have no effect. Therefore you cannot do any harm by
asking a printer to do something which it is not capable of.

The full list of standard printer escape codes are listed in Appendix A.
The following short example illustrates their use:

REM Select bold
LPRINT CHR$(27);"[lm";
REM Send line of text you want in bold type
LPRINT "bold text";

REM Convert back to ordinary type
LPRINT CHR$(27);"[22m";

REM Now print ordinary text
LPRINT " followed by ordinary text"

285

AmigaBASIC : A Dabhand Guide

Note that you can use combinations of the features together. For
example:

REM bold on
LPRINT CHR$(27);"[lm";"bold only"

REM underline on
LPRINT CHR$(27);"[4m";"bold and underline"

REM bold off
LPRINT CHR$(27);"[22m";"underline only"
REM underline off

LPRINT CHR$(27);"[24m";"back to normal"

Printed Listings
The simplest way of listing part or all of a program to a printer is to
use the LLIST command. Its syntax is similar to that of LIST which you
have been using to display a program in the list window. For example:

LLIST

will take the program which is currently in memory and send the
whole thing to the printer, whereas:

LLIST 11

will print out the program starting from the label or line number 11.
Finally:

LLIST 11-12

will print out just the part of the program between label or line
number 11 and label or line number 12.

A printed listing of a program is commonly referred to as a 'hard
copy'. If you are having problems making a program work correctly,
producing a hard copy of it can often help. One advantage is that it
allows you to see the whole program in one go, rather than just a
screen full. Hence, you can easily compare lines from the top of the
program with lines at the bottom. In addition, some people find it
easier to concentrate on a printed listing than on a screen display.
Whether this is the case or not, the two are definitely different. So the

286

13: Devices

bug which you have been searching for and not noticing on the screen
can often 'jump out at you' from the printed page.

Joysticks
Joysticks are particularly useful for game play. They can be used to
control the movement of a particular object either up, down, left or
right and normally provide a 'fire' button for additional action. The
Amiga can accept input from either one or two joysticks which plug
into the sockets labelled 1 Joystick and 2 Joystick at the back of the
computer. Note that one of these is normally occupied by the mouse,
so to use two joysticks at once you will have to unplug the mouse for a
while.

BASIC provides two functions which return information from the
joysticks. These are STICK which returns information about the
direction of movement of the joystick and STRIG which returns
information about whether or not the button has been pressed.

STICK takes one argument which determines which joystick you want
to investigate and whether you are interested in movement in the X or
Y direction:

ArgumentN
o
1
2
3

Meaning
Investigate X movement of joystick 1
Investigate Y movement of joystick 1
Investigate X movement of joystick 2
Investigate Y movement of joystick 2

The value returned is either -1, 0 or +1 which have the following
meanings:

Return Value
-1
o
1

Meaning
Movement upwards or to the right
No movement
Movement downwards or to the left

STRIG takes one argument whose meaning is as follows:

287

AmigaBASIC : A Dabhand Guide

ArgumentN
o
1
2
3

Meaning
Investigate if button 1 was pressed since last call.
Investigate if button 1 is currently pressed.
Investigate if button 2 was pressed since last call.
Investigate if button 2 is currently pressed.

Hence the values 1 and 3 investigate the current status of the button
on one of the joysticks whereas the values 0 and 2 investigate whether
a button press has occurred since the previous time STRIG(O) or
STRIG(2) was used. The values 0 and 2 therefore prevent button
presses being lost due to them occurring when the program is not
checking for them.

The value returned by STRIG is as follows:

Return Value
o
1

Meaning
Button is not / has not been pressed
Button is / has been pressed

Input and Output Devices
When dealing with files, the Amiga needs to know where these files
are kept. By default, it assumes that they are on disc in the current
directory. However, you can direct the the Amiga to output
information to or input it from other places by using a 'device name'.

We have come across one device name already. That is 'DFO:', the
internal disc drive. Preceding a file name by this device allows you to
save files etc to the disc in a particular drive rather than to the current
disc.

The others work in a similar manner. For example 'PTR:' and 'LPTl'
are both similar and can be used to select the printer device for output.
Giving the command:

LIST ,"PTR:"

lists the program in memory to the attached printer and is therefore
equivalent to:

LLIST

288

13: Devices

Another device which can be selected for output is '5CRN:'. Any data
sent to this device will appear in the current Output window. For
example:

LIST ,"SCRN:"

lists the program in the Output window rather than the List window.

A common device to choose for input is the keyboard, which has the
device name 'KYBD:'. For example, if you give the instruction:

OPEN "KYBD:" FOR INPUT AS 1

then any subsequent INPUT$ statement using filenumber 1 will take
its input from the keyboard. This is demonstrated by the following
simple filehandling program:

OPEN "KYBD:" FOR INPUT AS 1

OPEN "SCRN:" FOR OUTPUT AS 2
char$ = INPUT$(l,l)
PRINT#2,char$

CLOSE 1,2

This selects the keyboard for input and the screen or more specifically
the Output window for output. It then attempts to read a single
character from the input device and therefore waits for you to press a
key. The character input is not automatically reflected to the screen by
the INPUT$ command. However the PRINT# statement reflects it for
you by sending the character input to output purpose 2, ie the screen.
Finally, the program tidies up by closing the output purposes.

One final device which is worth mentioning is 'COM1:' which can be
used to send information to or read it from the 'serial port' or more
strictly speaking the 'RS232 interface'. This is a standard interface
which is supplied on most computers and thus allows different
machines to be linked together by a single cable. They can then
communicate with each other by sending information backwards and
forwards between them. The obvious use for this is to transfer data
files or even programs from one machine to another when other

289

AmigaBASIC : A Dabhand Guide

methods won't work, for example when they have incompatible disc
formats.

The following program provides an example program for receiving
data on an Amiga from a different computer. The sending program
should start by transmitting a series of 'X' characters. As soon as the
Amiga notices one of these it will reply by sending back the characters
'HELLO' followed by a carriage return. This tells the sending program
that the Amiga end is ready to receive the real data so it can start to
send it.

The data is expected to consist of sets of four ASCII values, each value
representing a character '0' - '9' or 'A' - 'F'. Therefore, each set of four
values provides information about a word (ie a 16-bit number). For
example the hexadecimal number &H1234 should be represented by
the four values: ASC("l"), ASC("2"), ASC("3") and ASC("4") which
should be sent in reverse order ie low-byte first. Therefore the data
transmitted to send this word should be:

52
51
50
49

Once they have been received, they will be converted back again to
form the original word.

The first set should represent the total number of words to be
transmitted, ie the number of sets of four ASCII values. This should be
followed by the data itself. Finally, one last set should be sent which
represents the 'checksum' for the data. A checksum is a value which
somehow represents all the pieces of information sent and allows a
check to made that the data received is correct. In this case, the check
sum is obtained by XORing all the words together.

Provided that the check sum sent is identical to the check sum
calculated from the data received, the Amiga will create the file
"object" in the current directory and output all the words of data
received to that file.

290

CLS

PRINT "Listening

OPEN "COM1:19200,N,8,2" FOR INPUT AS it1
OPEN "COM1:19200,N,8,2" FOR OUTPUT AS it2

a$ =

WHILE a$<>"X"

a$ = INPUT$(1,#1)

WEND

REM asS is the first "X" seen

PRINT "HELLO"

PRINT #2,"HELLO"
PRINT #2,CHR$(13)

REM Strip any "X" chars which overran

b$ = INPUT$(1,#1)
WHILE b$="X"

b$ = INPUT$(1,#1)
WEND

c$ INPUT$(1,#1)

d$ INPUT$(1,#1)

e$ INPUT$(l,#l)
nurn% = VAL ("&H"+e$+d$+c$+b$)

PRINT "Expecting ";nurn%;" words."

DIM code% (nurn%)

check&=O

FOR I = 1 TO nurn%
b$ INPUT$(l,itl)
c$ INPUT$(1,#1)

d$ INPUT$(1,#1)
e$ INPUT$(1,#1)

code%(I) = VAL("&H"+e$+d$+c$+b$)

13: Devices

291

AmigaBASIC : A Dabhand Guide

PRINT ;" •. ";
check& = (check& XOR code%(I)) AND &HFFFF
NEXT

b$ INPUT$(l,#l)
c$ INPUT$(l,#l)
d$ INPUT$(l,#l)

e$ INPUT$(l,#l)
crack& = VAL("&H"+e$+d$+c$+b$)

PRINT
PRINT "My check ="HEX$(check&)
PRINT "Yr check ="HEX$(crack&)

IF crack& = check& THEN
PRINT "Data checks OK"

PRINT "Sending to object file"
OPEN "object" FOR OUTPUT AS #3

FOR I = 1 TO num%

NEXT
ELSE

END
END IF

CLOSE

word$ = RIGHT$("OOOO"+HEX$(code%(I)),4)
lowbyte$ = CHR$ (VAL ("&H"+RIGHT$ (word$,2)))
hibyte$ = CHR$ (VAL ("&H"+LEFT$ (word$,2)))
PRINT #3,hibyte$;lowbyte$;

The main thing to note about this program is that the 'COM1:' device
can take up to four parameters. The first of these is the 'baud rate'.
This is the rate at which characters are received. The value of 19200
used is the highest possible rate. The other possible ones are 9600,
7200,4800,3600,2400, 1800, 1200, 600, 300, 150 and 110. The next is
either an '0', 'E' or 'N'. This determines the 'parity' which is the mode
for checking data as it is received. The values stand for 'odd', 'even'
and 'none'. In this case no parity check is being made. The third value
is the number of bits in each byte which contains information. The
possible values are 5, 6, 7 or 8. In this example the full eight bits are
being used each time. The final value is the number of 'stop bits'.

292

13: Devices

Essentially this is the size of the gap left between the individual bytes
of information. The possible values are 1 and 2. The program reads the
bytes of data sent in sets of four and converts them back into the word
which they represent. As each word is obtained, it is stored in an
integer array and its value is combined with the current check sum.

After all the data has been received, the check sums are compared.
Then if everything is OK, the values are removed from the array and
output to the file as two separate bytes: the high byte first (top eight
bits) followed by the low byte (bottom eight bits).

293

AmigaBASIC : A Dabhand Guide

294

Appendix A:
Command Reference

Introduction
This section provides a thorough and comprehensive index of all
AmigaBASIC's keywords, and should prove invaluable when you are
programming. The commands are arranged alphabetically and each
description follows an identical format, again for ease of reference.

After the command name the command syntax is given and this is
followed by an example of the command use. Where necessary a short
program is included to provide you with a better understanding of the
command's operation. This is in turn followed by a brief one sentence
description of the command under one heading 'Brief' and is then
followed by a more detailed description, which will invariably explain
the full syntax of the command. Finally, and where appropriate, a list
of associated keywords is given.

The following conventions are used in the syntax description:

< > Angle brackets are used to hold compulsory parameters.

[] Square brackets are used to hold optional parameters.

These dots indicate that more parameters of the same format
may be included as required.

295

AmigaBASIC : A Dabhand Guide

ABS
Syntax: ABS <expression>

Example:

Brief

LET A=-123

PRINT ABS(A)

B=ABS (A)

Returns the absolute value of the expression supplied.

Description

The expression following the command is evaluated and any negative
sign is stripped to provide a positive or absolute value. The expression
may be a formula, a variable or a number.

Associated: SGN

296

AREA
Syntax: AREA [STEP] (X,Y)

Example:

Brief

COLOR 3,0
AREA (100,150)
AREA (400,150)

AREA (120*RND, 150*RND)

Command Reference

Defines one of a series of points describing a polygon to be drawn
with AREAFILL.

Description

The AREA statement in effect defines a comer of a multi-sided shape.
Up to 20 such comers can be defined. The space which lies within the
series of comers can then be filled-in with the AREAFILL command.

The STEP argument is optional. If STEP is included then X and Y will
be taken as offsets from the current position of the graphics cursor (ie
relative to it). X and Y may be expressions for evaluation.

Associated: AREAFILL

297

AmigaBASIC : A Dabhand Guide

AREAFILL
Syntax: AREAFILL [0/1]

Example:

Brief

COLOR 3,1
DIM pat%(l)=$HFFFF
PATTERN, pat%

AREA (20,20)
AREA STEP (0,50)
AREA STEP (50,0)
AREAFILL 0

'Draws' the multi-sided shape as defined by previous AREA
commands.

Description

This command displays, by drawing and in-filling, the shape defined
by the previous two or more (up to a maximum of 20) AREA
statements. The command may be followed by either 0 or 1 which
defines how AREAFILL acts:

o Pixels corresponding to bits in the pattern which are set are
coloured in the foreground colour. Pixels corresponding to bits
which are cleared are coloured in the current background colour.
Fills the area with a pattern defined by the PATTERN statement.

1 Pixels corresponding to bits in the pattern which are set are
inverted. Pixels corresponding to bits which are cleared are left
unaltered. Inverts the area being filled according to the pattern
defined by the PATTERN statement.

Mode 0 is the default mode of operation.

Associated: AREA, PATTERN, COLOR

298

Command Reference

ASC
Syntax: ASC«string$»

Examples:

Brief

LET namel$=ISharron"
LET surname$=IFellows"
PRINT Ase (namel$)
v=Ase (surname$)
PRINT v

Returns the ASCII number of the first character in a string.

Description

Returns the ASCII code number for the first character held in the
named string. In the above example the ASCII code for '5' would be
returned from name1$, ie, 83.

Amiga characters represented above the normal range of ASCII
characters, ie those with code numbers in the range 128-255, also
would be given to this function and the appropriate value returned.

Associated: CHR$

299

AmigaBASIC : A Dabhand Guide

ATN
Syntax: A 1N(X)

Example:

Brief

A=O.S
PRINT ATN(A)

PRINT ATN(-1.2)

Returns the arctangent of value X in radians.

Description

The arctangent of the argument supplied is returned in radians and is
in the range -n12 to n/2 radians. The evaluation is performed in either
single or double precision as indicated by the argument supplied to
the function.

300

BEEP
Syntax: BEEP

Example:

Brief

PRINT "Wake up there!"

BEEP

Sounds a beep and flashes the screen.

Description

Command Reference

This command makes the Amiga emit a short and simple beep. In
addition the screen display is flashed once. BEEP is the equivalent of
printing CHR$(7).

301

AmigaBASIC : A Dabhand Guide

BREAK ON/OFF/STOP
Syntax: BREAK ON/OFF/STOP

Example:

Brief

BREAK ON
ON BREAK GOSUB handleit
INPUT ANSWER$
BREAK OFF

handleit:
PRINT "You tried to exit"
RETURN

Enables, disables or halts BREAK event trapping.

Description

If BREAK ON is executed then programs may be halted by the user
Amiga-period, CTRL-C or selecting Stop on the Run Menu. This is
called break event trapping. BREAK OFF disables BREAK ON and
therefore the event trapping.

BREAK STOP suspends the event trapping. Events are noted, but
execution of an ON ... BREAK GOSUB sequence (see example above)
does not occur until after a BREAK ON statement has been executed.

Associated: ON BREAK

302

CALL
Syntax: CALL <name> [<argument list>]

Example:

Brief

CALL calculate (x,y, (z))
CALL code(VARPRT(x))
CALL string(SADD(a$))

Command Reference

Calls either an AmigaBASIC subprogram or a machine code
routine/library routine.

Description

1) BASIC: control is passed to the subprogram defined by SUB and
named by name. Any arguments given are assigned to the
variables contained in the subprograms parameter list. Simple
variables and array elements are passed by reference unless they
are enclosed in brackets in which case they are passed by value.

When used to call a BASIC subprogram the CALL statement itself
is optional and the subprogram may be called by name alone. in
which case the brackets around the arguments must also be
omitted.

SUB TWONUMS (a%,b%)STATIC

c%=a%+b%
PRINT c%

END SUB

CALL TWONUMS (3,4)

TWONUMS 4,5

2) MACHINE CODE: Control is passed to a machine code program
located at the address held in the named variable. An argument
list may be given to pass information to the machine code routine.
Both string and numeric data may be supplied but it is the address
of the string or number that is passed and not the data itself.

303

ArnigaBASIC : A Dabhand Guide

String addresses are passed using the SADD function and variable
addresses using the V ARPTR function:

CALL code (VARPTR(a»
CALL code (SADD(a$»

3) LIBRARY: Control is passed to machine code routines that have
been attached to AmigaBASIC. See LIBRARY for details and
example.

Associated SUB, V ARPTR, SADD

304

Command Reference

CDBL
Syntax: CDBL <NVM>

Example:

PRINT CDBL (X!+Y!)

Brief

Converts a numeric argument into a double precision number.

Description

The function takes the argument which may be any type of integer or
floating point number and returns the corresponding double precision
number.

For instance:

X!=1234
Y!=100000
PRINT (X! *y!)

PRINT CDBL(X!*Y!)

would respond:

1. 234E+08

123400000

the first result being single precision, the second being double
precision.

Associated: CINT, CLNG, CSNG

305

AmigaBASIC : A Dabhand Guide

CHAIN
Syntax:

CHAIN [MERGE],<file> [,[expression],[,[ALL],[,DELETE<range>]

Example:

CHAIN "PROG2"

Brief

Loads and runs another program with or without passing current
variables to it.

Description

The program specified by <file> is loaded over the current one and
run. By using the MERGE option a subroutine may be loaded and
'overlaid', ie merged with the current program to become part of it
rather than replacing it. The program to be MERGEd must be an
ASCII file.

The <expression> option allows a line number (but not a label) to be
nominated as the starting position in the called program. By default,
the execution starts at the first line.

The ALL option ensures that every variable, other than local variables,
are passed to the named program. If ALL is omitted then only those
variables listed in a COMMON statement will be passed to the
incoming program.

The DELETE option allows a <range> of lines to be deleted from the
calling program to make way for it. This may be to delete a previous
overlay. <range> may be given in line numbers or labels separated by
a hyphen.

Note:

I> A comma must be used if ALL is used but the <expression> is not.
I> CHAIN leaves files open.
• CHAIN turns event trapping off. If it is required it should be re­

enabled by the incoming program.
" The current OPTION BASE is not altered if MERGE is used.

306

Command Reference

o Variable types are not preserved unless MERGE is used.

Associated: COMMON, MERGE, SAVE

307

AmigaBASIC : A Dabhand Guide

CHDIR
Syntax: CHDIR <string>

Example:

CHDIR "dfl:c"

Brief

Changes the current directory, ie CHange DIRectory.

Description

The <string> is taken to be the new device and/or directory path that
is to become the current directory.

CHDIR II I" moves to the top level directory.

308

Command Reference

CHR$
Syntax: CHR$<num>

Example:

Brief

PRINT CHR$(12)
FOR L=65 TO 127
PRINT CHR$(L)
NEXT L
PRINT CHR$(7)

Returns the character whose ASCII code is supplied.

Description

CHR$ evaluates <num> and returns the ASCII character it represents.
It performs the opposite task to ASC.

Its main use, in conjunction with PRINT, is for sending control
characters to the screen.

In the above example, the Output Window is cleared with CHR$(12)
and the ASCII character set from 65 to 127 is printed. A BEEP is then
issued through CHR$(7).

Associated: ASC

309

ArnigaBASIC : A Dabhand Guide

CINT
Syntax: CINT(<num»

Example:

PRINT eINT (5.23)

Brief

Converts <num> into an (16-bit) integer by rounding any decimal
portion.

Description

CINT expects a number in the range -32768 to 32767 and will round it
to the nearest whole integer value. If the number is not within the
specified range an "Overflow" error will occur.

Note that numbers with a .5 decimal value will be rounded towards
zero if <num> is even and rounded away from zero if <num> is odd.
Thus:

PRINT eINT (-35.5)
PRINT eINT (42.5)
PRINT eINT (345.21)

will return:

-36

42

345

Associated: CLNG, CDBL, CSNG, FIX, INT

310

Command Reference

CIRCLE
Syntax: CIRCLE [STEP] (x,y),radius [,color [,start,end [,aspect]]]

Example:

CIRCLE (50,50),500
CIRCLE (220,100),100,3,-1.57,4.71

Brief

Draws a circle, arc or ellipse.

Description

As a minimum CIRCLE expects three values. The first pair, within
parentheses, give the x and y coordinates of the centre of the circle to
be drawn. These are followed by the radius of the circle. x, y and
radius are specified in pixels.

The inclusion of STEP prior to the x and y co-ordinates will identify
that x and yare to be taken as positions relative to that of the current
position of the graphics cursor.

<color> defines the colour to be used for drawing the circle and
corresponds to the color number as defined by P ALEITE. If no value
is given then the default foreground colour is used.

Arcs may be drawn by specifying the <start> and <end> angles in
radians. The range is -2*1t to 2*1t, and the table below gives values in
terms of degrees which should help when constructing arcs.

Angle in degrees Angle in radians
o 0
45 0.79
90 1.57

135 2.36
180 3.14
225 3.93
270 4.71
315 5.50
360 6.28

311

AmigaBASIC : A Dabhand Guide

If either <start> or <end> are given as negative values, the circle or
ellipse is connected to the centre point, so that a segment rather than
an arc is displayed and the absolute value is used to determine the
angle.

<aspect> provides the display aspect ratio, which is the ratio of the
width to the height of a single pixel. This is effectively a calibration
figure which allows true circles to be drawn. The aspect ratio of
monitors varies and so CIRCLE will draw a true circle if <aspect> is
set to the aspect ratio of the monitor in use.

312

Command Reference

CLEAR
Syntax: CLEAR [,<basicdata>] [,<stack>]

Example:

CLEAR , 30000

Brief

Erases all variables, strings and arrays, shuts any open files and
optionally re-allocates memory.

Description

In its basic form this command will erase the contents of all variables
and arrays by setting them to zero and will erase all strings setting
them to a null string, "". In addition CLEAR closes all files and resets
any DEF statements.

In addition, two optional parameters may be passed to CLEAR.
<basicdata> is a numeric expression, 1024 or greater, which defines
the amount of memory in bytes to be allocated to AmigaBASIC for
holding the program text, variables and file blocks. In the above
example 30000 bytes were allocated.

<stack> is a numeric expression, 1024 or greater, which defines the
amount of memory in bytes to be allocated to AmigaBASIC the system
stack.

The remaining memory is made available to the heap.

Associated: FRE

313

AmigaBASIC : A Dabhand Guide

CLNG
Syntax: CLNG <num>

Example:

PRINT CLNG (5.23)

Brief

Converts <num> into an (32-bit) integer by rounding any decimal
portion.

Description

CLNG expects an a number in the range -2147483648 to 2147483647
and will round it to the nearest whole integer value. If the number is
not within the specified range an "Overflow" error will occur.

Note that numbers with a .5 decimal value will be rounded towards
zero if <num> is even and rounded away from zero if <num> is odd.

Associated: CINT, CDBL, CSNG, FIX, INT

314

Command Reference

CLOSE
Syntax: CLOSE [[#]<filenumber>[,[#]<filenumber]]

Example:

CLOSE #2

Brief

Closes one or more files.

Description

CLOSE acts in opposition to OPEN. It closes any number of open files,
as defined by specifying their <filenumber> handle. A file may be
closed for any of the following reasons:

Gl To write the contents of the buffer to a sequential the file after the
final PRINT# etc.

.. To update file information with regards to length etc.
Gl Free the file number for use by another file.
s To enable the file to be opened again, eg for read access after it has

had write access.
CLOSE on its own closes all open files.

Associated: CLEAR, END, NEW, OPEN, STOP, SYSTEM

315

AmigaBASIC : A Dabhand Guide

CLS
Syntax: CIS

Example:

CLS
PRINT "Screen ready for action"

Brief

Clears current Output Window.

Description

The command erases the contents of the current Output Window and
places the text cursor in the top left hand corner of the window. The
CIS command only affects the current Output Window.

316

COLLISION
Syntax: COLLISION «object id»

Example:

test=COLLISION (0)

Brief

Tests for object collision.

Description

Command Reference

COLLISION is a function which returns information about object
collisions. If the parameter <object id> is a number greater than zero
then it is taken as an OBJECT.SHAPE object identifier. The value
returned is a number indicating either the id of a second object which
it collided with, or a negative value indicating that the object collided
with a window border. The four borders are represented as follows:

-1 Top border
-2 Left border
-3 Bottom border
-4 Right border

The values a and -1 may be passed as the <object id> and these have
specific functions:

a Returns the id number of the object that has collided with a
second object. The information is not removed from the collision
queue (see below). This value can then be passed as a parameter
to a second call to find what it collided with.

-1 Returns the window number in which the collision occurred.
Collisions are added to the collision queue as they occur. The
queue is limited to 16 collisions and, once full, all subsequent
collisions are ignored and not added to the queue.

Associated:

OBJECT.SHAPE, COLLISION ON/OFF/STOP, ON COLLISION

317

AmigaBASIC : A Dabhand Guide

COLLISION ON/OFF/STOP
Syntax: COLLISION ON/OFF/STOP

Example:

COLLISION ON
ON COLLISION GOSUB x

Brief

Enables, disables or suspends collision event trapping.

Description

COLLISION ON sets BASIC into detective mode and it actively looks
to see when a collision occurs.

COLLISION OFF has the opposite effect to ON and stops the
computer from looking for collisions.

COLLISION STOP will still detect collisions but will not act on them,
ie execute a ON COLLISION ... GOSUB statement until such stage that
COLLISION ON is re-issued.

Associated: COLLISION, ON COLLISION, OBJECT. SHAPE etc.

318

COLOR
Syntax: COLOR [foreground] [,background]

Example:

COLOR 1,0

Brief

Sets foreground and background colours.

Description

Command Reference

The COLOR (use of 'colour' is not permissible) command allows the
foreground and background colour numbers to be set. The foreground
colour determines the colour in which text and graphics are drawn,
while the background colour determines the screen colour.

If no COLOR statement is issued, AmigaBASIC uses color 0 for the
background and colour 1 for the foreground.

The PALETIE command (and the settings in Preferences) defines the
colours allocated to each colour number. The default values are:

o Blue
1 White
2 Black
3 Orange

319

AmigaBASIC : A Dabhand Guide

COMMON
Syntax: COMMON <variable list>

Example:

Brief

COMMON coords, axis, apex, facts(), namel$
CHAIN "Prog2"

Passes the named variable(s) to a chained program.

Description

COMMON is used in tandem with a CHAIN statement, though they
may appear anywhere within a program and do not have to be tied
together. A list of named variables, in any order, is given after the
command, each separated by a comma.

The variables appearing in the list will be passed to the incoming
chained program.

Points to note:

., The same variable must not appear in more than one COMMON
statement.

e Array variables are identified by the use of parentheses at the end,
ie arrayO.

It is good practice to place all COMMON statements at the start of
your program to ensure against mistakes and to allow ease of
checking.

Associated: CHAIN

320

Command Reference

CONT
Syntax: CONT

Brief

Restarts program execution following a forced interruption.

Description

The command continues program execution after one of the following
has occurred:

CTRL and C keys pressed
Amiga and full stop keys pressed
STOP statement in program

The program continues from the point where it was interrupted.

Note that CONT may not be used if the program has been edited since
the interrupt.

321

AmigaBASIC : A Dabhand Guide

COS
Syntax: COS«num»

Example:

Brief

cosval=COS(O.524)

PRINT COS (x+y)

Returns the cosine of <num>.

Description

The cosine of <num> is evaluated in the precision of the value
supplied, ie a single precision value is evaluated as a single precision
number and a double precision value is evaluated as a double
precision number. The value of <num> is expected in radians.

322

Command Reference

CSNG
Syntax: CSNG«num»

Example:

X%=1234
PRINT CSNG (X%)/3

Brief

Converts a numeric argument into a single precision number.

Description

The function takes the argument, which may be any type of integer or
floating point number and returns the corresponding single precision
number.

Associated: COBL, CINT

323

AmigaBASIC : A Dabhand Guide

CSRLIN
Syntax: CSRLIN

Example:

line=CSRLIN

Brief

Reads the current text line number.

Description

This function returns the approximate line number of the text cursor.

The lines start at 1 for the top line of the current output window and
increases by one for each line down. The value is only approximate if a
non-standard font is being used, in which case the number returned is
based on the height of the character 'a' in this font

Associated: pas, LOCATE

324

CVD
Syntax: CVD(<8-byte string»

Example:

Brief

OPEN "ex4" AS 1 LEN=8

FIELD #1, 8 AS sbuf$

GET#1,1
PRINT CVD (sbuf$)

Command Reference

Converts a eight-byte random access file string into a double precision
number.

Description

This function returns a double precision number from a string created
using NKI$. This pair of functions is normally used for converting
short integers to strings to be saved in random access files and then
converting them back to numeric values when they are read from the
file.

Associated: MKD$, VAL

325

AmigaBASIC : A Dabhand Guide

CVI
Syntax: CVI(<2-byte string»

Example:

Brief

OPEN "ex1" AS 1 LEN=2
FIELD #1, 2 AS sbufS

GETU,l

PRINT CVI (sbufS)

Converts a two-byte random access file string into a short integer.

Description

This function returns a short integer from a string created using MKI$.
This pair of functions is normally used for converting short integers to
strings to be saved in random access files and then converting them
back to numeric values when they are read from the file.

Associated: MKI$, VAL

326

Command Reference

CVL
Syntax: CVL(<4-byte string»

Example:

Brief

OPEN "ex2" AS 1 LEN=4
FIELD *1, 4 AS sbuf$
GET*l,l
PRINT CVL (sbuf$)

Converts a four-byte random access file string into a short integer.

Description

This function returns a long integer from a string created using MKL$.
This pair of functions is normally used for converting long integers to
strings to be saved in random access files and then converting them
back to numeric values when they are read from the file.

Associated: MKL$, VAL

327

AmigaBASIC : A Dabhand Guide

CVS
Syntax: CVS(<4-byte string»

Example:

Brief

OPEN "ex3" AS 1 LEN=4
FIELD #1, 4 AS sbufS

GET#1,l
PRINT CVs (sbufS)

Converts a four-byte random access file string into a single precision
number.

Description

This function returns a single precision from a string created using
MKS$. This pair of functions is normally used for converting single
precisions to strings to be saved in random access files and then
converting them back to numeric values when they are read from the
file.

Associated: MKS$, VAL

328

Command Reference

DATA
Syntax: DATA <constant list>

Example:

DATA 1,2,3,4,5
DATA "Mercury", "Venus", "Earth"

Brief

Stores constants which can be assigned to variables using READ
statements.

Description

DATA are non-executable statements that are used to hold constant
information for use by the READ statement. DATA statements may be
used anywhere in a program and may contain as many constants as
will fit on the line. String constants must be enclosed with quotes if the
string contains commas, colons or significant spaces at either end.

DATA statements are read in order and a special read pointer is used
by AmigaBASIC to keep the position of the next item to be read. This
may be reset using RESTORE. The <constant list> may contain any
mixture of numeric constants. See READ for an example of DATA.

Associated: READ, RESTORE

329

AmigaBASIC : A Dabhand Guide

DATE$
Syntax: DATE$

Example:

PRINT DATE$

Brief

Returns the current date.

Description

The DA TE$ function reads the system clock and returns a ten
character string in the American form: mm-dd-yyyy

A typical response on New Year's Eve 1999 would be:12-31-1999

Associated: TIME$

330

Command Reference

DECLARE FUNCTION
Syntax: DECLARE FUNCTION <id> [(parameter list)] liBRARY

Example:

Brief

DECLARE FUNCTION Cube%() LIBRARY
CB%=Cube% ()

Causes AmigaBASIC to search all open libraries for the function <id>
whenever it is subsequently used.

Description

This statement allows you to call (later on) a machine code routine
residing in a library that returns a value (ie the machine code routine
is itself a function). The machine code function must be contained
within a library that is already opened. The '<id>' itself is any valid
identifier signified by the appropriate trailing declaration characters,
namely, %, &, ! and #. Obviously the appropriate identifier must be
chosen to match the incoming value. In the example given above the
function Cube%O is identified and then called with the 16-bit integer
value returned placed into CB%.

Note that <parameter list> is a list of the parameters for the function.
However, this list is, in fact, ignored by AmigaBASIC but can be given
for documentation purposes.

Associated: LIBRARY, CALL

331

AmigaBASIC : A Dabhand Guide

DEFFN
Syntax: DEF FN <name> «parameter list»=<Func deb

Example:

Brief

DEF FNaddtwo(T)=T+2
DEF FNhi$(d$)="HI "+UCASE$(d$)
newval=FNaddtwo(4)

L$=FNhi$("Sharron")
PRINT newval, L$

Defines a user function.

Description

Allows user-definable functions to be constructed in AmigaBASIC.
<name> must be a legal variable name and the function is called when
FN<name> is used within the program.

<parameter list> is optional and contains a list of variables and/or
constants to be passed to the function. Values passed must be of the
same type as the parameters they are being passed to, ie strings cannot
be passed to integer variables. Variables must be separated by
commas.

<Func deb is an expression which is limited to one line. It defines the
action of the function.

In the above example 'newval' is assigned the value '6' ('4' is passed to
FNtwoadd where it has '2' added to it), and L$ is assigned the string
'HI SHARRON' ('Sharron is passed to FNhi$ where it is converted to
upper case and preceded by "HI".

Note:

e Functions cannot be called until the appropriate DEF FN has been
executed, ie so that AmigaBASIC knows it is there!

.. If a DEF FN <name> is specified twice then the latest definition is
used.

.. DEF FN only applies to the program in which it is defined.

332

Command Reference

DEFDBL
Syntax: DEFDBL <letter range>

Example:

DEFDBL a-c,z

Brief

Defines that variables starting with the given letters be treated as
double precision.

Description

When issued AmigaBASIC assumes that all variables beginning with
the letters in the specified range are to be treated as double precision.
However if a type designator such as $ is used then this takes priority.

In the above example all variables (and arrays) beginning with the
letters a-c and z (ie, a,b,c and z) which don't have a type designator are
treated as double precision variables.

333

AmigaBASIC : A Dabhand Guide

DEFINT
Syntax: DEFINT <letter range>

Example:

DEFINT a-c,z

Brief

Defines that variables starting with the given letters be treated as short
integers.

Description

When issued AmigaBASIC assumes that all variables beginning with
the letters in the specified range are to be treated as short integers.
However if a type designator such as $ is used then this takes priority.

In the above example all variables (and arrays) beginning with the
letters a-c and z (ie a,b,c and z) which don't have a type designator are
treated as short integer variables.

334

Command Reference

DEFLNG
Syntax: DEFLNG <letter range>

Example:

DEFLNG a-c,z

Brief

Defines that variables starting with the given letters be treated as long
integers.

Description

When issued AmigaBASIC assumes that all variables beginning with
the letters in the specified range are to be treated as long integers.
However if a type designator such as $ is used then this takes priority.

In the above example all variables (and arrays) beginning with the
letters a-c and z (ie a,b,c and z) which don't have a type designator are
treated as long integer variables.

335

AmigaBASIC : A Dabhand Guide

DEFSNG
Syntax: DEFSNG <letter range>

Example:

DEFSNG a-c,z

Brief

Defines that variables starting with the given letters be treated as
single precision variables.

Description

When issued AmigaBASIC assumes that all variables beginning with
the letters in the specified range are to be trea ted as single precision
variables. However if a type designator such as $ is used then this
takes priority.

In the above example all variables (and arrays) beginning with the
letters a-c and z (ie a,b,c and z) which don't have a type designator are
treated as single precision variables.

Note that, by default, variables are treated as single precision values
anyway.

336

Command Reference

DEFSTR
Syntax: DEFSTR <letter range>

Example:

DEFSTR a-c,z

Brief

Defines that variables starting with the given letters be treated as
string variables.

Description

When issued AmigaBASIC assumes that all variables beginning with
the letters in the specified range are to be treated as string variables.
However if a type designator such as % is used then this takes
priority.

In the above example all variables (and arrays) beginning with the
letters a-c and z (ie a,b,c and z)which don't have a type designator are
treated as string variables.

337

AmigaBASIC : A Dabhand Guide

DELETE
Syntax: DELETE [line no/label] [- [line no/label]]

Examples:

Brief

DELETE 200-300
DELETE start
DELETE info­
DELETE -endofdata

Deletes program lines in the specified range.

Description

Allows one or more lines to be deleted from a program. DELETE on its
own deletes the whole program. If just a single line no/label is given
on its own (with no hyphen) then just that line is deleted. A range of
lines can be deleted by specifying the start and end line numbers or
labels separated by a hyphen. If either option is omitted then lines are
DELETEd either from the start of the program to the specified
line/label or from the specified line/label to the end of the program.

338

DIM
Syntax: DIM [SHARED] <variable list>

Examples:

DIM AB (93)
DIM SHARED dates%(12,2)

Brief

Dimensions named arrays.

Description

Command Reference

Named arrays are created and storage space allocated for them as
specified in the array subscript variable. Arrays may be multi­
dimensional to a maximum of 255 dimensions, subject to enough
memory being available.

In the first example above, a one-dimensional array called AB is
defined as having 94 elements (0-93). In the second example a two
dimensional array called dates% is declared as having 13*3 elements.

Note that the OPTION BASE command can be used to specify a
minimum array subscript value of 1 rather than o. If this had been
issued previously AB and dates% would then contain 93 (1-93) and
12*2 elements respectively.

If SHARED is included in the definition then the variables are made
globally accessible to the entire program; as such the DIM SHARED
statement must be used within the main program (and not within a
subprogram). When an array is dimensioned, the following actions
take place:

Ii> Space is allocated according to subscripts.
e All elements are set to zero or the null string.
Ii> If the array has already been dimensioned a liRe-dimensioned

array" error is issued.

By default, AmigaBASIC will automatically set the array size to 10
elements if the array is not declared before use.

339

AmigaBASIC : A Dabhand Guide

DIM TEST (10) REM this statement is optional
FOR N=O TO 10
TEST (N)=N
NEXT N
FOR N=O TO 10
PRINT TEST(N)
NEXT N

Associated: SHARED, LBOUND, UBOUND, OPTION BASE

340

END
Syntax: END

Brief

Terminates execution of a program.

Description

Command Reference

END statements may be placed anywhere within a program. When
AmigaBASIC encounters one the programs, operation is terminated
and all open files are closed.

If the END statement is omitted, termination occurs when the bottom
of the program is reached.

Associated: STOP

341

AmigaBASIC : A Dabhand Guide

EOF
Syntax: EOF <file number>

Example:

Brief

REM assume file #1 open for input
WHILE NOT EOF (1)

INPUT#l, surname$

PRINT surname$
WEND

CLOSE #1

Tests for the end of an open file.

Description

When data is being read from a file of unknown length EOF can be
used to see if the end of file has been reached.

For a sequential file, EOF returns -1 (true) after the last item has been
read. For a random access file, EOF returns true if the last GET failed
to read a whole record. Otherwise EOF returns 0 (false) indicating that
there is still information left unread in the file.

342

Command Reference

ERASE
Syntax: ERASE <array> [,<array>]

Example:

ERASE DataArray, NumArray

Brief

Erases the named array from AmigaBASIC memory.

Description

The contents of the named array(s) are destroyed and the memory
allocated to the array(s) by AmigaBASIC is freed. The array(s) may be
re-dimensioned after they have been ERASEd.

Associated: DIM, CLEAR

343

AmigaBASIC : A Dabhand Guide

ERR
Syntax: ERR

Example:

Brief

ON ERROR GOTO traperror

traperror:
IF ERR=52 THEN PRINT "Bad File Number"
RESUME NEXT

Returns error number of most recent error.

Description

ERR will reh.irn the code number of the previous error and this can be
used to identify the error so that appropriate action can be taken.

Associated: ON ERROR, ERL, ERROR

344

ERL
Syntax: ERL

Example:

Brief

ON ERROR GO TO traperror:

traperror:

PRINT "Error at line :"ERL
RESUME NEXT

Returns line number at which an error occurred.

Description

Command Reference

The line number at which an error has occurred will normally be
returned by ERL. If there is no line number, then ERL will return the
number of the first numbered line that precedes the error. If no
numbered line precedes the line containing the error then 0 is
returned.

Associated: ON ERROR, ERR

345

AmigaBASIC : A Dabhand Guide

ERROR
Syntax: ERROR <integer>

Example:

Brief

ON ERROR GO TO errortrap

IF A$<>"Y" THEN ERROR 200

errortrap:
IF ERR=200 THEN PRINT "Press 'Y' to continue!"

RESUME NEXT

Generates an error with a particular number.

Description

ERROR allows you to simulate the occurrence of an existing error
condition (by giving an error number already defined) or to create
your own error (by giving an error number not used by AmigaBASIC).
The number must be in the range 1- 255. Note that if you define your
own error number but do not trap the error with a suitable error
handler then AmigaBASIC will issue an appropriate error message
and stop execution.

Associated: ON ERROR, ERL, ERR

346

EXP
Syntax: EXP <num>

Example:

PRINT EXP(n*2) :epn=EXP(l)

Brief

Returns e to the power of <num>.

Description

Command Reference

The natural logarithm of e (2.718282) to the power of <num> is
calculated and returned.

An 'overflow' error message will be generated if <num> is greater
than 88 or 709 for single or double precision numbers respectively but
execution will continue and the highest number representable in the
given precision will be returned.

Associated: LOG

347

ArnigaBASIC : A Dabhand Guide

FIELD
Syntax: FIELD [#] <file No.>,<field length> AS <string>

Example:

FIELD #1, 15 AS prenom$, 25 AS surnameS

Brief

Makes space for variables in random file buffer.

Description

FIELD allows you to make space in a data record buffer for incoming
data strings. <file No.> defines the file number where the information
is to be written (as defined when the file was OPENed); <field length>
defines the length of the field (in characters) which then has the string
name, <string>, assigned to it.

In the above example 15 spaces are allocated to the first field
(prenom$) and 25 spaces to the second field (surname$).

The total number of spaces used in a FIELD statement must not exceed
the record length specified when the file was originally opened - the
default length of which is 128 characters.

Note that a field variable name should not be assigned to, other than
by using LSET or RSET to place strings in the buffer. Assigning it a
normal string value using LET etc will mean that it no longer 'points'
into the buffer.

Note also that each FIELD statement in a program starts assigning the
string variables to space in the random file buffer starting at the
beginning. Therefore giving two FIELD statements such as:

FIELD #1, 20 AS a$
FIELD #1, 20 AS b$

would just provide alternative string variable names pointing to the
same area of the buffer. Therefore the whole record description must
be given on one line.

Associated: GET, lSET, OPEN, PUT, RSET

348

FILES
Syntax: FILES [<string>]

Example:

Brief

FILES "e"
FILES "dfD:"

Catalogues all the files in the specified directory.

Description

Command Reference

<string> is evaluated and may contain a drive number and/or
directory path. The contents of the specified directory are then listed -
it is assumed that a disc is in the drive specified. If no <string> is
provided then the current directory is catalogued.

349

AmigaBASIC : A Dabhand Guide

FIX
Syntax: FIX <num>

Example:

PRINT FIX (-12.34)

Brief

Returns the integer portion of a number.

Description

FIX truncates the number supplied and returns the integer portion
only. It does not round numbers up or down in the manner of INT.

For example:

PRINT FIX(-12.34)
PRINT FIX (23.45)

returns:

-12

23

Associated: elNT, INT

350

Command Reference

FOR ... NEXT
Syntax: FOR<control variable>=<exprl> TO <expr2> [STEP <expr>]

NEXT[<control variable>] [,<control variable2>] ...

Examples:

Brief

FOR L=O TO 10 STEP 2

PRINT L
NEXT

A=3
B=5
FOR N=A TO (B*2) STEP 0.5
PRINT N
NEXT N

FOR X=10 TO 2 STEP -1
PRINT X
NEXT X

FOR A=1 TO 10
FOR B=1 TO 5

FOR C= 2 TO 4
PRINT A,B,C
NEXT C,B,A

Executes a loop a set number of times.

Description

FOR and NEXT mark the boundaries of a loop in which everything is
executed a given number of times. The number of repetitions is
defined by the first line. The <control variable> is initially assigned the
value of <exprl>. Provided that it is less than <expr2> the loop is
executed. When the NEXT is executed, the value of <control variable>
is incremented and the test is performed again. When the value of
<control variable> finally equals or exceeds that of <expr2> the
statement after the NEXT is jumped to. <exprl> and <expr2> may be
numbers, variables or expressions to be evaluated. The use of STEP is

351

AmigaBASIC : A Dabhand Guide

optional and this can alter the rate at which the <control variable> is
adjusted. If STEP is omitted then a STEP rate of one (+1) is assumed.
Note that the stop size may be negative in which case the loop is
repeated until <control variable> <= <expr2>

FOR. .. NEXT loops may be nested within other FOR. .. NEXT loops
provided the NEXT statement for the inner loop concludes the loop
before the NEXT of the outer loop, and that all loops have unique
control variable names.

Associated: WHILE ... WEND

352

FRE
Syntax: FRE <-1>/<-2>/<0>

Examples:

Brief

PRINT FRE (-1)

PRINT FRE (-2)

PRINT FRE (0)

Returns number of free bytes.

Description

Command Reference

FRE returns information concerning the amount of free space, in bytes,
in specified areas of memory. The argument supplied identifies the
area thus:

-1

-2

other

Bytes free in system.

Bytes not used on stack.

Bytes free in AmigaBASIC memory.

Associated: CLEAR

353

AmigaBASIC : A Dabhand Guide

GET
Syntax: GET [#]<file no.>[,<record no.>]

GET (x1,y1)-(x2,y2), <name> [,(index[,(index ...])]

Examples:

Brief

OPEN "example" AS 1 LEN 10

FIELD *1, 10 AS sbut$

GET U, 1
PRINT sbuf$

CLOSE

DIM rect% (626)

GET (120,90) - (200,140), rect%

Reads a record from a random access file or reads an array of bits from
the screen.

Description

GET has two quite separate functions and these are examined
separately below.

Random Access File GET
Here the command reads the record whose number is given by
<record no.> from the specified file, defined by <file no.>. If no
<record no.> is given then the next record in the sequence is taken.
The largest possible <record No.> is 16777215.

After the command has been executed the contents of the buffer may
be read, using the transfer variables defined by FIELD and, if
necessary, the string to numeric converter CVO, CVI and CVS.

Screen GET
Here the command allows a section of screen image to be read into a
data array, thus making it a useful way in which to transfer graphic
images.

The area to be read by GET is defined by specifying the upper left
hand corner and lower right hand corner of an imaginary rectangle

354

Command Reference

around the area of screen to be read. This is (xl,yl}-(x2-y2) in the
syntax above. <name> is the name of the array that is to be used to
hold the image, which may be of any type except string.

The size of the array (in bytes) required to hold the image can be
calculated as follows:

height*2 INT ((width+15)/16)*D+6

where height=y2-yl+1, width=x2-x1+1, and 'D' is the depth of the
screen, for which 2 is the default value.

The bytes per array element are:

2 bytes for a short integer array
4 bytes for a long integer or single precision array
8 bytes for a double precision array

The first six bytes of the array will be used to hold the following
information about the saved image:

1st pair: width
2nd pair: height
3rd pair: depth

If a multi-dimensioned array is used then several segments or views of
the screen can be saved, thus allowing them to be PUT back to screen
quickly in succession.

Associated: PUT

355

AmigaBASIC : A Dabhand Guide

GOSUB ... RETURN
Syntax: GOSUB <line no"> / <label>

RETURN <line no> / <label>

Example:

Brief

GOSUB addvals

addvals:
a=a+b
b=b+c
RETURN

Temporarily hands program flow to a subroutine, before returning.

Description

On encountering a GOSUB command AmigaBASIC notes the position
of the command immediately following the GOSUB. It then locates the
position of the subroutine given by <line no> / <label> and starts
executing the commands located at this point. On encountering a
RETURN, AmigaBASIC returns control to the point after calling the
GOSUB as originally recorded.

An optional <line> may be specified after RETURN in which case
control is returned to the first execute statement following this. This is
essentially the same as finishing the subroutine with GOTO statement
and so should be avoided in order to keep programs well structured
and readable.

The use of subroutine allows a commonly used piece of code to be
executed at various times within the program without the code having
to be repeated. However subprograms provide a better method of
achieving this.

356

GOTO
Syntax: GOTO <line no> I <label>

Example:

GOTO newline

Brief

Transfers program control to the line specified.

Description

Command Reference

On encountering the GOTO command, AmigaBASIC identifies the
line given by <line no> Ilabel and transfers program control to this
point. The program continues from this point and any intervening
statements are totally ignored. Use GOTO with care and sparingly
since they make codes less readable. GOTOs should not normally be
used to jump into and out of any form of loop structure.

357

AmigaBASIC : A Dabhand Guide

HEX$
Syntax: HEX$ <decimal argument>

Example:

H=255
PRINT HEX$(H)

Brief

Returns a string containing the hexadecimal representation of the
decimal value passed.

Description

The decimal value passed to the function is converted into
hexadecimal format and then converted to a string. In the above
example "FF" will be returned.

358

Command Reference

IF ... GOTO
Syntax: IF <expression> GOTO <line> / <label> [ELSE <else clause>]

Example:

IF A=l GOTO single ELSE GO TO notsingle

Brief

Branches to another part of a program if a condition is met.

Description

IF ... GOTO can be thought of as a conditional GOTO command. The
<expression> after the IF command is evaluated and if met the GOTO
is executed and program control is recommenced at <line> / <label>.

An optional ELSE may be included. In such cases if the expression is
false the statements after the ELSE are executed.

Use GOTO with care and sparingly. GOTOs should not normally be
used to jump into and out of any form of loop structure.

359

AmigaBASIC : A Dabhand Guide

IF ... THEN ELSE
Syntax: IF <expression> lliEN <then clause> [ELSE <else clause>]

Example:

INPUT A$
IF A$=+ THEN X=X+Y ELSE X=X-Y

Brief

Executes a statement depending on whether a certain condition is met.

Description

The <expression> after the IF command is evaluated and if true the
commands following THEN are executed. An optional ELSE may be
included. In such cases if the expression is false the statements after
the ELSE are executed. The statements attached to the <then clause>
and <else clause> may not extend beyond a single line (see
IF .. lliEN .. ElSE Block for multi-line structure details).

360

IF ... THEN ... ELSE Block
Syntax: IF <expression> THEN

<statement block>
ELSEIF <expression> THEN

<statement block>
ELSE

<statement block>
END IF

Example:

Brief

INPUT A

IF A=1 THEN

PRINT "You Pressed 1"

ELSE IF A=2 THEN

PRINT "You Pressed 2"

ELSE

PRINT "You didn't press 1 or 2"

END IF

Command Reference

Executes a block of statements depending on whether certain
conditions are met.

Description

The <expression> after the IF command is evaluated and, if true, the
commands following THEN are executed. Once these have been
executed, then the program execution resumes at the first statement
after the END IF. If the <expression> is not true then the first ELSEIF
<expression> is evaluated and, if this is true, then the statements
following this are executed. Once these have been executed, then the
program execution resumes at the first statement after the END IF.
This is repeated for all ELSEIFs which are specified. If none of the
expressions are true, then the statements following ELSE are executed
if the ELSE part is present; otherwise nothing is executed. The block
structure is terminated by an END IF statement.

361

AmigaBASIC : A Dabhand Guide

The <statement block> may itself contain nested IF ... THEN ... ELSE
blocks. The appropriate ELSEIF, ELSE and ENDIF statements act as
terminating markers for the <statement block> preceding THEN.

The ELSEIF and ELSE blocks, as always, are optional and either or
both may be omitted as required.

(If anything other than a REM follows THEN, AmigaBASIC will treat
the structure as a single line IF ... THEN ... ELSE structure.)

362

Command Reference

INKEY$
Syntax: INKEY$

Example:

Brief

A=O

WHILE A=O
k$=INKEY$
IF k$="Y" THEN A=l
IF k$="N" THEN A=2

WEND
PRINT A

Returns a one-character string from a keyboard keypress.

Description

INKEY$ does not give a prompt or wait for something to be input. It
checks to see if any characters are waiting in the keyb.oard buffer (ie if
any keys have been pressed) and returns the first of these as a string;
otherwise it returns the nullstring.

Associated: INPUT, INPUT$

363

AmigaBASIC : A Dabhand Guide

INPUT
Syntax: INPUT [;][<prompt>;/,]<variable list>

Example:

Brief

INPUT "What is your name ", name$
INPUT "What is your age ", age

Reads the keyboard for input during a program.

Description

INPUT allows string or numeric data to be read in from the keyboard
during the operation of a program. INPUT may be followed by a
<prompt>, this is a string enclosed in quotes which is printed on­
screen. The command then waits for information to be entered and the
end of this is signified by pressing the RETURN key. The information
is then assigned to the appropriate variables.

In the above example a comma has been used to delimit the <prompt>
from the first variable. This may be replaced with a semi-colon, ';' in
which case a question mark will be printed by AmigaBASIC after the
<prompt> has been displayed. Thus:

INPUT "What is your name ", namel$
INPUT "What is your name "; namel$

will be displayed as follows:

What is your name FRED
What is your name ? JIM

If a semi-colon is given after the INPUT keyword, the RETURN given
to end the input is not reflected to the screen and so the next PRINT
statement will output text on the same line. If the semi-colon is
omitted, a linefeed is issued.

Note that the number of items of data input must be the same as the
number of variables in the list. These must all be input in one go,

364

Command Reference

separated by commas. In addition, the type of data input must match
the type of variable it is being assigned to. If either of these conditions
is not met, the user will be prompted to try again.

Associated: INKEY$, INPUT%

365

AmigaBASIC : A Dabhand Guide

INPUT$
Syntax: INPUT$ (X[,[#]<file No.>])

Example:

Brief

PRINT "2 characters please"

a$=INPUT$ (2)
PRINT a$

Returns <X> characters from a file or the keyboard.

Description

If <file no.> is specified then a string of <X> characters is read from
this file and returned. Otherwise, the function waits for the characters
to be entered at the keyboard. Note that no RETURN is required to
end the input and that the characters are not reflected on the screen as
they are typed.

Associated: INKEY$, INPUT

366

Command Reference

INPUT#
Syntax: INPUT# <file no.>,<Variable list>

Example:

INPUT #1, A$,A

Brief

Reads data from a sequential file and assigns it to named variables.

Description

INPUT# is similar to INPUT$. However, here the information is read
from a disc file rather than the keyboard. <file no.> identifies the file
(already OPENed) which is the source of the information to be read.
<Variable List> identifies the variables into which the information is to
be placed and the variable types must match the incoming
information.

AmigaBASIC ignores leading spaces, linefeeds and returns. For
numbers, the end digit is identified when BASIC sees either a comma,
space, return or linefeed.

String data can be identified by a starting quote,", and terminated by a
second quote, in which cases spaces, commas etc within the string are
preserved. Otherwise, the end of a string is identified by a comma,
return, linefeed or the 255th character having been reached.

367

AmigaBASIC : A Dabhand Guide

INSTR
Syntax: INSTR([<start>,]first$,second$)

Example:

Brief

A$="Epypidimovasostomy": B$="as"

foundone=INSTR(A$,B$)
foundtwo=INSTR(14,A$,B$)

Locates the position of a substring within a string.

Description

The string <first$> is searched for the first occurrence of the string
<second$> and its start position in the string is returned. If <start> is
specified then the search for <second$> starts from <start> characters
into the string, ie <start> acts as an offset from the beginning of the
string from which the search begins. If <second$> is not found within
<first$> then 0 is returned

368

INT
Syntax: INT «numeric expression»

Example:

nuval=INT(X)

Brief

Command Reference

Returns the largest integer that is less than or equal to <numeric
expression>.

Description

INT evaluates <numeric expression> and rounds it down to the
nearest whole number less than or equal to it . In the above example
the following values would be assigned to nuval:

value of X nuval
9.23 9
3.01 3
4.00 4
88.99 8
-45.4 -46

Associated: CINT, FIX

369

AmigaBASIC : A Dabhand Guide

KILL
Syntax: KILL I/<filename>"

Example:

KILL "mugger"

Brief

Deletes named file from disc.

Description

KILL is used to delete a file from disc. <filename> may be any legal
Amiga filename. If the named file is open, then a message to that effect
will be issued and the file will not be erased.

370

Command Reference

LBOUND
Syntax: LBOUND «array name> L Dim])

Example:

Brief

DIM array (1,2,3,4)

FOR loop=LBOUND (array,4) TO UNBOUND (array, 4)
PRINT array(O,O,O,loop)

NEXT loop

Returns the lower bound of an array dimension.

Description

This function returns the Lower BOUNDary of the named array,
<array name>. Used in conjunction with UBOUND it allows the
values used within a DIM and OPTION BASE statement to be found.

LBOUND returns the value allocated by OPTION BASE and will
therefore return either 0 or 1.

The use of <DIM> is optional and is used to indicate which dimension
in a multidimensional array is to be used. The default value is I,
meaning the first dimension. Note that the result for all dimensions in
a particular array will yield the same result.

Associated: UBOUND

371

AmigaBASIC : A Dabhand Guide

LEFT$
Syntax: LEFf$«string>,<N»

Example:

Brief

B$="AmigaBASIC"
A$=LEFT$ (B$, 5)
PRINT A$

Returns <N> characters from the left-hand side of <string>.

Description

LEFf$ returns<N> characters from the left-hand side of <string>. If
the number of characters asked for is greater than the number of
characters in the string, then the entire string is returned. If the
number is zero, then the null string is returned. In the example, A$ is
assigned the string II Amiga" .

Associated: MID$, RIGHT$

372

LEN
Syntax: LEN<string$>

Example:

Brief

A$="AmigaBASIC"

B=LEN (A$)

PRINT B

Returns the length of the named string.

Description

Command Reference

LEN counts the number of characters in the named string. The count
includes non-printable characters and spaces if they form part of the
string.

373

AmigaBASIC : A Dabhand Guide

LET
Syntax: [LET]<variable>=<expression>

Example:

Brief

LET value=100
nextvalue=3200

Assigns a value to a variable.

Description

This keyword is entirely optional and may be used to make a program
more 'readable'. The named variable has the expression to the right of
the equals sign assigned to it. LET may be used to assign a value to
any type of variable.

374

Command Reference

LIBRARY
Syntax: LIBRARY "<filename>" /CLOSE

Example:

Brief

LIBRARY "screen.library;"
LIBRARY CLOSE

Opens or closes a library of machine code subroutines and functions.

Description

AmigaBASIC allows up to five library files to be "attached" to a
BASIC program at anyone time. <filename> specifies where
AmigaBASIC can locate the file (any legal Amiga file specification).
These libraries remain active until a NEW, RUN or LIBRARY CLOSE
statement is issued.

Note that before LIBRARY can be used, a library of routines must
have a '.BMAP' file created for it. This lists their routines, their
positions within the library and any parameters they have. The
program 'Convert Fd.bas' supplied on the Extras disk may be used to
produce a file of this type.

LIBRARY CLOSE closes all libraries that have been opened.

Associated: CALL, DECLARE FUNCTION

375

AmigaBASIC : A Dabhand Guide

LINE
Syntax: LINE [[STEP](xl,yl)]-[STEP] (x2,y2) [,«color»[,B/BFll

Example:

LINE (10,10)-(100,100)"BF

Brief

Draws a line or box in current Output Window.

Description

This command will draw a line, a rectangle or a filled-in box. A
straight line is drawn by giving a start and end point using the
standard co-ordinate syntax. The following command will draw a line
across the screen:

LINE (10,10) - (100, 100)

If the first set of co-ordinates are omitted, then the co-ordinates
supplied are treated as the destination set and a line is drawn there
from the current graphics cursor position, ie:

LINE (10,10) - (100, 100)

LINE -(150,175)

If STEP is introduced into the command, then the co-ordinates
supplied are treated as relative to the current graphics cursor position.

If a B is postfixed to the command line, then a box is drawn using the
co-ordinates at the opposing corners, ie:

LINE (10,10) - (100, 100), B

If BF is appended, then the box is filled in when drawn.

The colour of the line may be determined by specifying the colour id
in <color>. If no colour id is supplied, then the current foreground
colour is used.

Associated: PALETTE, COLOR, CIRCLE, AREA

376

Command Reference

LINE INPUT
Syntax: LINE INPUT [;][<prompt string>;]<string variable>

Example:

LINE INPUT "Your details :";det$

Brief

Reads an full line from the keyboard and assigns it to the <string
variable> specified.

Description

LINE INPUT is similar in function to INPUT. <prompt> is an optional
string that may be included and may contain any text. If included this
is displayed on the screen at which point AmigaBASIC waits for the
user to respond. The keyboard is read until RETURN is pressed, at
which point the text entered is assigned to the <string variable>.

A semi-colon immediately following LINE INPUT is optional. If
included, the RETURN typed by the user to terminate the string is not
echoed to the screen. In other words, the next output to the screen will
appear immediately to the right after the user typed input.

Note that, unlike INPUT, LINE INPUT will not issue a '?' prompt after
the <prompt string>.

Associated: INPUT

377

AmigaBASIC : A Dabhand Guide

LINEINPUT#
Syntax: LINE INPUT# <file no.>;<string variable>

Example:

Brief

LINE INPUT# 1; details
OPEN "exdat" FOR OUTPUT AS
LINE INPUT" Your :";det$
PRINT#l,det$
CLOSE#1
OPEN "exdat" FOR INPUT AS 1
LINE INPUT#l, det$
PRINT det$
CLOSE

Reads an entire line from a sequential file.

Description

This command is identical in fashion to LINE INPUT. It differs in that
the incoming data comes from disc and not the keyboard. The file
from which the data is to be read is specified by <file no.>. The
RETURN character identifies the end of the incoming data.

Associated: INPUT#

378

Command Reference

LIST
Syntax: LIST [<line>]

LIST [<start line>] [-[<end line>]], <filename>

Examples:

LIST
LIST graphics

LIST startgraf-endgraf, "DFO:Filel"

Brief

Lists the current program.

Description

LIST displays the program currently held in memory. LIST on its own
lists the program in its entirety whereas LIST graphics lists all lines
from the graphics label.

A listing may be sent to a file for later inspection by specifying the full
file path in <filename>. For example:

LIST graphics, "DFO:Start"

will send a listing of the lines, from the beginning of the program up
to the line labelled 'graphics', to a file called 'Start' in drive DFO:.

Using this form of the syntax, other options are available:

LIST - midway, "DFO::start"

will list lines, from the beginning of the program up to the line
labelled "midway:", to the file;

LIST startgraf - endgraf, endgraf, "DFO:start"

will list lines, between and including the "startgraf:" and "endgraf:"
labels, to the file.

379

AmigaBASIC : A Dabhand Guide

A listing can be directed to an attached printer by using "PRT:" as the
<filename>. The printer must be connected and ready to receive the
listing.

Associated: LLIST

380

Command Reference

LLIST
Syntax: LLIST [<line>][-<line>]]

Example:

LLIST start

LLIST dothis-dothat

Brief

Sends a program listing, or part thereof, to the printer.

Description

LLIST sends a listing of the program currently held in memory to an
attached printer. LLIST on its own lists the program in its entirety.
There are a number of options:

LLIST graphics List all lines from the graphics label.

LUST -midway List all lines from beginning of the
program up to the line label 'midway:'

LUST startgraf-endgraf List all lines between, and including, the
'startgraf:' and 'endgraf:' labels.

LUST is identical in operation to LIST when directing the listing to the
device PRT:.

Associated: LIST

381

AmigaBASIC : A Dabhand Guide

LOAD
Syntax: LOAD [<filename>[,R]]

Example:

LOAD "DFl:money.maker",R

Brief

Loads named file into memory.

Description

The file named in <filename>, which may be any legal Amiga
filename specification, is loaded into memory. If the optional R postfix
is used, the program will be loaded and automatically run. If
<filename> is omitted, a requester box will appear and ask for the
filename.

Note:

•
•
•

LOAD closes all OPEN files, unless the R option is used.
LOAD deletes all variables.
The incoming program will erase any other program in
memory.

Associated: CHAIN, MERGE, SAVE

382

Command Reference

LOC
Syntax: LOC (<file no.»

Example:

file=LOC (1)

Brief

Returns the last record read/written (random access files) or the
increment (for sequential disc files).

Description

When dealing with random access files, LOC returns the number of
the last record that was written to or read from disc (floppy, hard or
RAM). The file is specified by <file no.>.

When dealing with sequential disc files LOC returns what is called the
'increment'. This is the number of bytes that have been written to or
read from the sequential file, divided by the default record size for the
file (128 bytes by default, though this may have been changed when
the file was OPENed). The file is specified by <file no.>.

383

AmigaBASIC : A Dabhand Guide

LOCATE
Syntax: LOCATE [<line no>] [,<column no>]

Example:

Brief

LOCATE 10,2
PRINT "a";

Moves the text cursor to the position specified.

Description

The pen is relocated to the line and column specified in the current
Output Window. If either <line no> or <column no> is omitted then
the current setting is used. Thus:

LOCATE 2,10
LOCATE 3

Here the cursor will be located at 2,10 and in the second instance at
3,10.

The upper left hand corner of the screen is 1,1.

The maximum figures for the default screen mode, and therefore the
figures which cause the cursor to move to the bottom right hand
corner, are line 21, column 62 (LOCATE 21,62)

384

LOF
Syntax: LOF «fileno»

Example:

Brief

OPEN "ex" AS 1
length~LOF(l)

Returns the length of a file.

Description

Command Reference

The file specified by <fileno> is examined and its length is returned in
bytes. Files that are opened to SCRN:, KYBD: or LPT1: return o.

385

AmigaBASIC : A Dabhand Guide

LOG
Syntax: LOG «value»

Example:

Brief

num=l
lrthm=LOG(num)
PRINT LOG(2), lrthm

Returns the naturallogarithrn of the the number supplied.

Description

This function calculates the natural logarithm (base e) of the value
supplied, where the <value> must be greater than O. The calculation is
carried out in either single or double precision as defined by the
precision of the value supplied.

386

Command Reference

LPOS
Syntax: LPaS (X)

Example

IF LPOS (0) >30 AND LPOS(0)<40 PRINT
......... LPOS (0) >30 LPOS (0),40

Brief

Returns current position of the printer's print head.

Description

LPOS is similar to pas in action, but it gives the theoretical position of
the printer head. However this is not necessarily the actual physical
position of the printer head, as the value is calculated by counting the
number of characters in the current line that have been output to the
printer.

The value of "X" is consequential and is, in effect, a dummy argument.

387

AmigaBASIC : A Dabhand Guide

LPRINT
Syntax: LPRINT [<expression list>]

Example:

LPRINT "Hello printer"

Brief

Sends items to printer.

Description

LPRINT works identically to PRINT except that the output is sent to
the printer. The information is placed in the print buffer and
transferred to the printer when a return code is encountered.

See PRINT for more information.

Associated: LPRINT USING, PRINT

388

Command Reference

LPRINT USING
Syntax: LPRINT USING <format string>;<expression string>

Example:

LPRINT USING "11.111";10.5, 10.6123

Brief

Sends items to printer in specified format.

Description

LPRINT USING works identically to PRINT USING except that the
output is sent to the printer. The information is placed in the printer
buffer and transferred to the printer for printing when a return code is
encountered.

Associated: LPRINT, PRINT USING

389

AmigaBASIC : A Dabhand Guide

LSET
Syntax: LSET <string$>=<string expression>

Example:

Brief

OPEN "example" AS 1 LEN=20
FIELD #1, QO AS sbuf$, 10 AS sbuf 2$
RSET sbuf1$="FRED"

LSET sbuf2$="JIM"
PUT#1
GET#1
PRINT sbuf1$
PRINT sbuf2$
CLOSE

Transfer data from memory to random access buffer in readiness for
PUT.

Description

LSET is used in combination with PUT for writing data to random
access files. The purpose of LSET is to move the data to the random
file buffer. <string$> (which has been defined as the transfer string in
FIELD) is assigned <string expression> and transferred to the file
buffer.

LSET will left justify the string if it is shorter than the length assigned
by FIELD. Any spaces at the start of the record are padded with
spaces. This is particularly useful for lining up numeric values.

Associated: RSET, PUT, FIELD

390

Command Reference

MENU
Syntax: MENU <menu id>,<item id,<state>[,<title$>]

Example:

MENU 5,0,1, "Neptune"
MENU 5,1,0, "Triton"
MENU 5,2,1, "Nereid"
WHILE 1=1
WEND

Brief

Allows menus to be created.

Description

MENU can be used to construct menus in ArnigaBASIC.

Four items of information can be passed with the command as follows:

<menu id> A number in the range 1 to 10 is the number assigned to
the menu bar selection.

<item id> A number in the range 1 to 19 which identifies the menu
option, ie its position in the list of options. The whole
menu is identified by setting <item id> to O.

<state> This defines the current state of the menu item (or all
items of <item id>=O) and there are three possible
settings:
o Disable menu item(s)
1 Activate menu item(s)
2 Activate menu item(s) and place a check mark

next to it. Note that you should always include
two spaces ahead of your menu item name to
allow for space for check marks.

<title$> If this is included, then the string is written at the
appropriate point on the menu (either as the menu item
name or the menu name)

Associated:

MENU (0/1), MENU RESET, ON MENU, MENU ON/OFF/STOP

391

AmigaBASIC : A Dabhand Guide

MENU (011)
Syntax: MENU «O/l»

Example:

Brief

number=MENU (0)

item=MENU (1)

Provides information about last menu option chosen.

Description

The MENU function can provide two items of information as follows:

MENU (0) Returns the number (from 1 to 10) of the menu from
which the last option was selected.

MENU (1) Returns the number (1 to 19) of the item selected in the
menu.

392

MENU RESET
Syntax: MENU RESET

Brief

Restores AmigaBASIC's default Menu Bar.

Description

Command Reference

Any existing user defined menus are removed and AmigaBASIC's
menu bar is restored.

Associated: MENU ON/OFF /STOP,ON MENU,SLEEP

393

AmigaBASIC : A Dabhand Guide

MENU ON/OFF/STOP
Syntax: MENU <ON/OFF/STOP>

Examples:

Brief

ON MENU GOSUB menuhard
MENU ON

Enables, disables or suspends menu event trapping.

Description

A menu event occurs whenever a menu item, defined by the MENU
statement, is selected from a menu. MENU ON enables this event
trapping while MENU OFF disables event trapping.

MENU STOP disables the ON MENU ... GOSUB command from taking
effect even though menu event trapping is allowed to continue. Any
events noted are only acted upon when MENU ON is issued.

Associated: MENU, ON MENU MENU(O/l)

394

Command Reference

MERGE
Syntax: MERGE <file name>

Example:

MERGE "extras"

Brief

Appends the named file to the program currently resident in memory.

Description

AmigaBASIC looks for <file name> and, once found, appends the file
to the program that is already in memory. <file name> may be any
legal Amiga filename (including device) and the file to be appended
must be in the form of an ASCII file, ie originally saved using the A
option (see SAVE).

Associated: SAVE, CHAIN

395

AmigaBASIC : A Dabhand Guide

MID$
Syntax: MID$(<string$> ,<position> [,<length> D=<newstring>

<section$>=MID$(<string$> ,<position>[,<length>])

Examples:

Brief

A$="AmigaBASIC: A Goodish Guide"

MID$ (A$, 15)="Dabhand"

A$="AmigaBASIC"

B$=MID$(A$,6,5)

Either writes a substring over part of another string or reads a portion
of a string from another string.

Description

MID$ can operate in one of two ways:

As a statement it can be used to write one string over part of another.
In the first example given above, 'Goodish' is replaced by 'Dabhand'.
<string$> defines the main string, <position> the starting point into
the string, and <new string> the string which is to replace the
characters of <string$> at this point. If <length> is stated, then only
the number of characters specified by <length> will be overwritten,
otherwise the whole of <new string> will be used. If <position> is
larger than the number of characters in <string$> then nothing
happens.

As a function MID$ can be used to read a substring from within a
string. In the second example above, B$ is assigned the string
"BASIC". <string$> defines the main string and <position> the point
within the string at which characters are to be taken. <length>
determines the number of characters to be extracted. If this is not
specified, then all characters from the point determined by <position>
to the end of the string are returned. If <position> is larger than the
number of characters in <string$> then a null string is returned.

Note that <position> and <length> must be in the range 1-32767.

Associated: LEFf$,RIGHT$

396

MKD$
Syntax: MKD$(<double precision expression»

Example:

Brief

number#=123456.789
value$=MKD$(number#)

Command Reference

Converts a double precision value into an eight-byte string ready for
insertion into a random access file buffer.

Description

Before numeric variables can be put into a random access file, they
must be converted into string variables. This may also be done for
sequential files to save time and storage space. MKD$ takes any
double precision expression and returns it in string format.

Associated: CVD,LSET,RSET,FIELD,PUT#

397

ArnigaBASIC : A Dabhand Guide

MKI$
Syntax: MKI$«short integer expression»

Example:

Brief

number%=1234
value$=MKI$(number%
OPEN "ex1" AS 1 LEN=2
FIELD #1,2 AS sbuf$
LSET sbuf$=MKI$(4

PUTU,1

Converts a short integer into a two-byte string ready for insertion into
a random access file buffer.

Description

Before numeric variables can be put into a random access file they
must be converted into string variables. This may also be done for
sequential files to save time and storage space. MKI$ takes any short
integer (16-bit) expression and returns it in string format.

Associated: CVI,LSET,RSET,FIELD,PUT#

398

MKL$
Syntax: MKL$«long integer expression»

Example:

Brief

number&=123456
va!ue$=MKI$(number)

Command Reference

Converts a long integer into a four-byte string ready for insertion into
a random access file buffer.

Description

Before numeric variables can be put into a random access file, they
must be converted into string variables. This may also be done for
sequential files to save time and storage space. MKL$ takes any long
integer (32-bit) expression and returns it in string format.

Associated: CVL,LSET,RSET,FIELD,PUT#

399

ArnigaBASIC : A Dabhand Guide

MKS$
Syntax: MKS$«single precision expression»

Example:

Brief

number!=1234.56
value$=MKD$(number!)

Converts a single precision value into a four-byte string ready for
insertion into a random access file buffer.

Description

Before numeric variables can be put into a random access file, they
must be converted into string variables. This may also be done for
sequential files to save time and storage space. MKS$ takes any single
precision expression and returns it in string format.

Associated: CVS,LSET,RSET,FIELD,PUT#

400

Command Reference

MOUSE
Syntax: MOUSE(<num»

Example:

Brief

ON MOUSE GOSUB mousehand

MOUSE ON
WHILE 1=1

WEND

mousehand:
WHILE MOUSE(O)=O
WEND

LINE(MOUSE(3),MOUSE(4))-(MOUSE(5),MOUSE(6))
RETURN

Monitors the left mouse button and the mouse cursor location.

Description

Mouse performs a variety of functions, dependent on the value
assigned to <num>. These are summarised in the table below and
detailed afterwards.

<num> Function

o Returns left button status
1 Returns 'current' X co-ordinate of mouse cursor
2 Returns 'current' Y co-ordinate of mouse cursor
3 Returns 'starting' X co-ordinate of mouse cursor
4 Returns 'starting' Y co-ordinate of mouse cursor
5 Returns 'ending' X co-ordinate of mouse cursor
6 Returns 'ending' Y co-ordinate of mouse cursor

401

AmigaBASIC : A Dabhand Guide

MOUSE(O)
MOUSE(O) returns the status of the left mouse button and also makes
AmigaBASIC remember the start and end positions of the mouse
cursor until the command is issued again. These are used by
MOUSE(3), MOUSE(4), MOUSE(5) and MOUSE(6).

MOUSE(O) will return values as follows:

o The left mouse button has not been pressed since the last
MOUSE(O) command.

1 The left mouse button is not being pressed at the moment but has
been pressed since the last MOUSE(O) command.

2 The left mouse button is not being pressed at the moment but has
been pressed twice since the last MOUSE(O) command. (Note: a
value of three indicates that the left mouse button has been
pressed three times since the command was last issued, etc.)

-1 The user is pressing and holding down the left mouse button after
clicking it once.

-2 The user is pressing and holding down the left mouse button after
clicking it twice since the last MOUSE(O) command. (Note: a value
of -3 indicates that the left mouse button has been clicked three
times since the command was last issued, etc.)

MOUSE(l)
This returns the X co-ordinate of the pointer the last time the
MOUSE(O) command was used.

MOUSE(2)
This returns the Y co-ordinate of the pointer the last time the
MOUSE(O) command was used.

MOUSE(3)
This returns the X co-ordinate of the pointer the last time the left
button was pressed before the last MOUSE(O) command was used.

MOUSE(4)
This returns the Y co-ordinate of the pointer the last time the left
button was pressed before the last MOUSE(O) command was used.

402

Command Reference

MOUSE(5)
If the left button was depressed on the last MOUSE(O) call, then this
returns the X co-ordinate of the pointer when MOUSE(O) was used. If
the left button was not pressed, then it returns the X co-ordinate of the
pointer when the left button was released.

MOUSE(6)
If the left button was depressed on the last MOUSE(O) call, then this
returns the Y co-ordinate of the pointer when MOUSE(O) was used. If
the left button was not pressed, then it returns the Y co-ordinate of the
pointer when the left button was released.

Associated: MOUSE ON /OFF /STOP, ON MOUSE

403

AmigaBASIC : A Dabhand Guide

MOUSE ON/OFF/STOP
Syntax: MOUSE <ON JOFF jSTOP>

Examples:

ON MOUSE GOSUB Mousehand

404

MOUSE ON
Brief

Command Reference

Enables, disables or suspends event trapping based on pressing of the
mouse button.

Description

A mouse click can be used to cause an event and, if mouse event
trapping is enabled with MOUSE ON, then any ON MOUSE ... GOSUB
will be executed. If mouse event trapping is disabled with MOUSE
OFF, any ON MOUSE. .. GOSUBs will be ignored. MOUSE STOP does
not disable mouse event trapping but inhibits the execution of ON
MOUSE ... GOSUB commands until a MOUSE ON command is
executed.

Associated: MOUSE, ON MOUSE

405

AmigaBASIC : A Dabhand Guide

NAME
Syntax: NAME "<old name>" AS "<new name>"

Example:

NAME "Credits" AS "Overdraft"

Brief

Renames the file called <old name> to <new name>.

Description

AmigaBASIC locates the file called <old name> (on floppy, hard or
RAM disc) and renames it to the name given in <new name>. Note
that <new name> must not already exist.

406

Command Reference

NlEW
Syntax: NEW

Brief

Deletes any program in memory and clears the list window and all
variables.

Description

NEW is used to perform a 'soft' BASIC reset. The command is entered
in immediate mode and clears memory of any programs and variables
that may be present. The list window is also erased and closes all files
and turns trace mode off.

NEW may be used from within programs, in which case it stops
current program execution and returns AmigaBASIC to edit mode.

407

AmigaBASIC : A Dabhand Guide

NEXT
Syntax: NEXT [<variable>[,<variable>[, ...]]]

Example:

Brief

FOR a=1 TO 10
FOR b=1 TO 10
NEXT b,a

Loop end marker.

Description

Used in conjunction with FOR. See FOR for more details.

408

Command Reference

OBJECT.AX
Syntax: OBJECT.AX <id>,<rate>

Example:

OBJECT.AX 2,5
Brief

Sets acceleration for object in horizontal direction.

Description

This command sets the rate of acceleration for the object number given
by <id> in a horizontal (X) direction. The <rate> is given in pixels per
second per second. A positive number accelerates the object towards
the right-hand side of the screen left to right. A negative number
accelerates it towards the left.

Associated: OBJECT.AT,OBJECT.START,OBJECT.VS

409

,.'

AmigaBASIC : A Dabhand Guide

OB]ECT.AY
Syntax: OBJECT.AY <id>,<rate>

Example:

OBJECT.AY.2,5

Brief

Sets acceleration for object in vertical direction.

Description

This command sets the rate of acceleration for the object number given
by <id> in a vertical (Y) direction. The <rate> is given in pixels per
second per second. A positive number accelerates the object
downwards. A negative number accelerates it upwards.

Associated: OBJECT.AX,OBJECT.START,OBJECT.VY

410

Command Reference

OBJECT. CLIP
Syntax: OBJECT.CLIP (xl,y1)-(x2,y2)

Example:

OBJECT.CLIP (10,10)-(200,200)

Brief

Inhibits drawing of objects outside of rectangular area.

Description

This command defines a box using the two sets of coordinates. This
marks the limits for normal object movement. A collision will
normally be registered when an object reaches any edge of the box.

The default value of the clip box is the border of the current Output
Window. However, if you alter the size of the window with the sizing
gadget, the boundaries of the box are not automatically updated; you
need to use OBJECT.CLIP to align the clipping window to the new
actual window extent.

Associated: OBJECT.HIT

411

AmigaBASIC : A Dabhand Guide

OBJECT.CLOSE
Syntax: OBJECT. CLOSE [<id>[,. ..]]]

Example:

OBJECT.CLOSE 2,3

Brief

Releases all memory held by specified object(s).

Description

Each object requires an amount of memory to hold its description.
When an object is no longer required, this memory may be freed with
this command. The object's id should be given. This allows the id to be
reused. If no ids are given then all the objects are closed. The
command works on the current Output Window.

412

Command Reference

OBJECT.HIT
Syntax: OBJECT.HIT<id>[,<Object Mask][,<Hit Mask>]

Example:

OBJECT. HIT 2" 0

Brief

Defines which objects may collide with other objects.

Description

By default all objects collide with each other and the borders. Using
this command you may determine which objects may be made
invisible to one another (ie they will not collide) and therefore which
objects will be allowed to collide. Collision is tested for by using
collision event trapping (see ON COLLISION GOSUB).

<id> is the object's id as defined by the OBJECT.SHAPE statement.
<Object Mask> is a short integer which defines a mask for the object
itself and <Hit Mask> is a short integer which describes the objects
that the object <id> is to collide with.

If and when two objects 'hit', the first mask value of one and the
second mask value of the other are logically ANDed together. If the
result is zero then the objects do not collide. If the result is non-zero
then the objects do collide.

Note, bit 0 of <Hit Mask> refers to the borders. Therefore, if this is set
to 0 (ie the value is even), object <id> will not collide with the borders.

Associated: OBJECT,CLIP,ON COLLISION

413

AmigaBASIC : A Dabhand Guide

OBJECT. OFF
Syntax: OBJECT.OFF[<id>[,<id] ...]

Example:

OBJECT.OFF

Brief

Makes specified objects invisible.

Description

The objects defined by the <id> list are made 'invisible'. They
disappear and they cannot collide. The command also stops the objects
from moving. If no <id> is specified then all the objects in the current
output window are made invisible. The <id> is the <id> defined by an
OBJECT.SHAPE statement.

Associated: OBJECT. ON

414

OBJECT.ON
Syntax: OBJECT.ON[<id>[,<id) ...)

Example:

OBJECT. ON

Brief

Makes specified objects visible.

Description

Command Reference

The objects defined by <id> are made 'visible' so that they appear on
the screen and may collide. If no <id> is specified then all the objects
in the current output window are made visible. The <id> is the <id>
defined by an OBJECT.SHAPE statement.

Associated: OBJECT.oFF, OBJECT. SHAPE, OBJECT.START

415

AmigaBASIC : A Dabhand Guide

OBJECT.PLANES
Syntax: OBJECT. PLANE <id> [,<8bit num1>[,<8bit num2>]

Example:

OBJECT.PLANE 2,4

Brief

Defines in which bit planes an object will appear.

Description

<8bit numb is an eight bit number (0-255) which determines which
bitplanes the object, given by <id>, will appear in. <8bit num2> (et al)
determines what happens in other bitplanes.

416

OBJECT.PRIORITY
Syntax: OBJECT.PRIORITY <id>,<value>

Example:

OBJECT.PRIORITY 3,27

Brief

Defines an object's priority.

Description

Command Reference

This command allows you to define a priority number for an object. If
two objects are occupying the same space on the screen then the object
with the higher priority will be displayed in front of the one with the
lower priority. Two objects with the same priority are drawn in a
random order.

<value> may be in the range -32768 to 32767.

Note that this only applies to bobs.

417

AmigaBASIC : A Dabhand Guide

OBJECT. SHAPE
Syntax: OBJECT.SHAPE <id>,<definition$>

OBJECT.SHAPE <id1>,<id2>

Examples:

Brief

OPEN "<file name>" FOR INPUT AS 1
OBJECT. SHAPE, INPUT$(LOF(l),l)
CLOSE U

it
?1111?

OBJECT. SHAPE 3, 2

Defines the shape and colour of an object.

Description

This command has two syntaxes, the first of which allows an object
shape to be defined and the second of which allows an object shape's
definition to be copied to a second object.

Syntax 1

This first syntax allows an object's shape and other attributes to be
defined. The information must be supplied in the form of a definition
string, <definition$>, and is assigned to the object defined by <id>,
this being its id number. The definition string is best read from a
sequential file, created using the Object Editor program which can be
found in the BASICDemos drawer of the Extras Disk.

Syntax 2

This allows you to copy the definition assigned to <id2> to <id1>. As
both objects will share a reasonable amount of memory, the memory
overheads required by a series of objects are reduced using this
method. However, you may specify differing attributes, such as
direction of movement etc, to each using other OBJECT statements; it
is only their appearance which they share.

418

OBJECT. START
Syntax: OBJECT.START[<id>[,<id>[, ...]]]

Example:

OBJECT.START 1,2,3

Brief

Sets one or more objects into motion.

Description

Command Reference

The objects in the current output window whose numbers are
specified in the <id> list are set into motion. If no <id> numbers are
specified then AmigaBASIC starts all objects in the current Output
Window.

When two objects collide, AmigaBASIC performs an OBJECT.STOP on
the objects (or object if collision is with a border).

Associated:OBJECT.SHAPE, OBJECT.5TOP, OBJECT.VX, OBJECT.VY

419

AmigaBASIC : A Dabhand Guide

OBJECT. STOP
Syntax: OBJECT.STOP[<id>[,<id>[, ...]])

Example:

OBJECT.STOP 1,2,3,

Brief

Freezes the motion of one or more objects.

Description

The objects whose numbers are specified in the <id> list are frozen
and not allowed to move. If no <id> numbers are specified then
AmigaBASIC stops all objects.

When two objects collide, AmigaBASIC performs an OBJECT.STOP on
the objects (or object if collision is with a border).

Associated: OBJECT.SHAPE,OBJECT.START

420

Command Reference

OB]ECT.VX
Syntax: OBJECT.VX <id>,<Value>

<var>=OBJECT.VX(<id»

Example:

Brief

OBJECT.VX 2,5
speedX=OBJECT.VX(2)

Defines or returns velocity of an object in a horizontal direction.

Description

The keyword may be used as a statement or as a function.

In statement form, the object specified by <id> is assigned a horizontal
velocity in pixels per second, given by <Value>. If used as a function
then the horizontal speed of the object given by <id> is returned in
pixels per second. A positive value indicates movement to the right, a
negative value to the left.

Associated: OBJECT.VY,OBJECT.START,OBJECT.AX

421

AmigaBASIC : A Dabhand Guide

OBJECT.VY
Syntax: OBJECT.VY <id>,<Value>

<var>=OBJECT .VY(<id»

Example:

Brief

OBJECT.VY 2,5
SpeedY=OBJECT.VY(2)

Defines or returns velocity of an object in a vertical direction.

Description

The keyword may be used as a statement or as a function.

In statement form, the object specified by <id> is assigned a vertical
velocity in pixels per second, given by <Value>. If used as a function,
then the vertical speed of the object given by <id> is returned in pixels
per second. A positive value indicates movement downwards, a
negative value is upwards.

422

OBJECT.X
Syntax: OBJECT.x<id>,<Value>

<Xpos>=OBJECT.x«id»

Examples:

Brief

OBJECT.X 5,100
Xpos=OBJECT.X(5)

Command Reference

Places an object at a coordinate on horizontal axis or returns its
horizontal position.

Description

This keyword may be used as a statement or as a function. As a
statement, the object given by <id> is positioned at a horizontal
location in the current output window, as given by <value>. This
command may be used in conjunction with OBJECT.Y which specifies
the vertical co-ordinate. The co-ordinate may be in the range -32768 to
32767.

As a function, the horizontal co-ordinate of the object given by <id> is
returned.

In both cases, the position is that of the left-hand side of the object
rectangle.

Associated: OBJECT.Y

423

AmigaBASIC : A Dabhand Guide

OBJECT.Y
Syntax: OBJECT.Y <id>,<Value>

<Ypos>=OBJECT.Y(<id»

Examples:

Brief

OBJECT.Y 5,100

Ypos=OBJECT.Y(5)

Places an object at a co-ordinate on the vertical axis or returns its
vertical position.

Description

This keyword may be used as a statement or as a function. As a
statement, the object given by <id> is positioned at a vertical location
in the current output window, as given by <value>. This command
may be used in conjunction with OBJECT. X which specifies the
horizontal co-ordinate. The co-ordinate may be in the range -32768 to
32767.

As a function, the vertical co-ordinate of the object given by <id> is
returned.

In both cases, the position is that of the top of the object rectangle.

Associated: OBJECT.X

424

Command Reference

OCT$
Syntax: OCT$«num/var»

Example:

PRINT OCT$(nurnber%)

Brief

Converts a decimal value into an octal one and returns it in string
format.

Description

This statement converts the decimal number argument into an octal
value (ie base 8). The number supplied is rounded to a whole integer
first. The result is returned as a string.

Associated: HEX$

425

AmigaBASIC : A Dabhand Guide

ON BREAK
Syntax: ON BREAK GOSUB <line/label>

ON BREAK GOSUB 0

Example:

Brief

ON BREAK GOSUB brkhandler

BREAK ON

Executes GOSUB routine on break event.

Description

Should a break event occur, then the last statement of this kind, ie the
active one, is executed. Program control is passed to the subroutine at
<line/label>. GOSUB 0 disables the break event.

The statement has no effect until a BREAK ON statement has been
executed.

A break event occurs when:

e the user presses CTRL-C
fl the user selects Stop from the Run Menu

Associated: BREAK ON/OFF/STOP

426

ON COLLISION
Syntax: ON COLLISION GOSUB <line/label>

ON COLLLISION GOSUB 0

Example:

Brief

ON COLLISION GOSUB collhandler
COLLISION ON

Executes GOSUB routine on collision event.

Description

Command Reference

Should a collision event occur then the last statement of this kind, ie
the active one, is executed. Program control is passed to the subroutine
at <line/label>. COLLISION 0 disables the collision event.

The statement has no effect until a COLLISION ON statement has
been executed.

427

AmigaBASIC : A Dabhand Guide

ON ERROR GOTO
Syntax: ON ERROR GOTO <line/label>

ON ERROR GOTO 0

Example:

ON ERROR GOTO doerror

Brief

Hands program control to specified line when an error occurs.

Description

If an error occurs, then AmigaBASIC will hand control to the most
recently executed ON ERROR GOTO statement. Control is then
passed to the line specified in <line/label>.

Executing ON ERROR GOSUB 0 will disable error handling.

Associated: RESUME

428

Command Reference

ON ... GOTO
Syntax: ON <expression> GOTO <line/label(s}>

Example:

ON number% GOTO addone,addtwo,addthree

Brief

Passes control to line determined by <expression>.

Description

A list of line numbers/labels may be given and the value returned by
<expression> will determine which line control is passed to. For
example, if the value returned by <expression> was two, then the
second line in the line list after the GOTO will be jumped to. If the
result returned by <expression> has a decimal portion, then this is
rounded. However, if the result is 0 or greater, then the number of
entries in the line list then no GOTO is executed and control moves to
the next statement.

Note that values outside of the range 0-255 cause an error.

Associated: ON GOSUB

429

AmigaBASIC : A Dabhand Guide

ON ... GOSUB
Syntax: ON <expression> GOSUB <line/label(s»

Example:

Brief

FOR child%=l TO 10

INPUT "Name:";namel$
INPUT "Grade:";grade%

ON grade% GOSUB 1,2,3

NEXT

END

1 : PRINT "Well done "namel$

RETURN
2 : PRINT "That's OK "namel$
RETURN
3 : PRINT "You must do better "namel$
RETURN

Passes control to subroutine determined by <expression>.

Description

A list of line numbers/labels may be given and the value returned by
<expression> will determine which line control is passed to. For
example, if the value returned by <expression> was two, then the
subroutine starting at the second line in the line list after the GOSUB
will be executed. If the result returned by <expression> has a decimal
portion, then this is rounded. However, if the result is 0 or greater
than the number of entries in the line list, then no subroutine will be
called and control will move to the next statement.

Note that values outside of the range 0-255 cause an error.

Associated: ON GOTO

430

Command Reference

ON MENU
Syntax: ON MENU GOSUB <line/label>

ON MENU GOSUB 0

Example:

Brief

MENU 5,O,1,"Co1our

MENU 5,1,1,"Red"
MENU 5,2, 1, "Green"
MENU 5,3,1,"Blue"

ON MENU GOSUB menuhand
MENU ON

WHILE 1=1 : WEND
col%(1)=O:col%(2)=O:col%(3)=O

col%(MENU(1))=1
PALETTE O,col%(1),col%(2),col%(3)
CLS
RETURN

Executes subroutine after a menu event.

Description

The most recently execute ON MENU command will be invoked and
the appropriate subroutine executed whenever the MENU(O) function
would return a non-zero result, ie when the user selects a menu item
thereby generating a menu event.

Control is passed to the subroutine starting at the line specified in
<line/label>. The ON MENU command will have no effect until a
MENU ON statement has been executed.

ON MENU GOSUB 0 has the effect of disabling menu events.

Associated: MENU ON /OFF /STOP

431

ArnigaBASIC : A Dabhand Guide

ON MOUSE
Syntax: ON MOUSE GOSUB <line/label>

ON MOUSE GOSUB 0

Example:

ON MOUSE GOSUB dornouse

Brief

Executes subroutine after a mouse event.

Description

The most recently executed ON MOUSE command will be invoked
and the appropriate subroutine executed whenever a mouse event
occurs.

Control is passed to the subroutine starting at the line specified in
<line/label>. The ON MOUSE command will have no effect until a
MOUSE ON statement has been executed.

ON MOUSE GOSUB 0 has the effect of disabling mouse events.

Associated: MOUSE, MOUSE ON/OFF/STOP

432

Command Reference

ON TIMER
Syntax: ON TIMER «num» COSUB <line/label>

ON TIMER COSUB 0

Example:

ON TIMER 2 GOSUB timeout:

Brief

Executes subroutine specified after given time interval has elapsed.

Description

After execution of this statement, AmigaBASIC will trap timer events
every <num> seconds, at which point the named subprogram will be
called.

<num> must be greater than 0 and less than 86400 (24 hours).

The events can be disabled by calling COSUB O.

ON TIMER does not come into effect until a TIMER ON statement has
been executed to enable the timer events.

433

AmigaBASIC : A Dabhand Guide

OPEN
Syntax: OPEN <mode>, [#]<file no.>, <file name>[,<size>]

OPEN <file name> [FOR <mode>] AS [#]<file No>
[LEN=<size>]

Examples:

Brief

OPEN "hockey" FOR INPUT AS 1

OPEN FileS AS 2

Allows input and output to a disc.

Description

The OPEN command has two flavours both of which operate much
the same. The end result being that a disc file is opened to allow data
to be written to it or data to be read from it.

<file No.> is a number which is unique and assigned to the file <file
name> for the period that the file is opened. The <file no.> is
sometimes referred to as its file 'handle'.

<file name> is the name of the file and may be any legal Amiga file
name and can include the path (ie directory tree) of the file. SCRN:,
KYBD:, PRT: and SER: may be used to specify I/O to devices other
than disc.

<size> is the size of the file buffer.

By default a <size> of 128 bytes is allocated. The maximum length is
32767 bytes and in the case of random access files the <size> should be
the same as the record length.

As a rule the larger the file buffer, the faster it will run because the
disc will be accessed less often. However, this amount of memory will
be taken from AmigaBASIC's data area and this may affect the
operation of the program.

434

Command Reference

In the first syntax <mode> is a character string whose first character is
o (sequential output), I (sequential input), R (random I/O) or A
(sequential append).

In the second syntax the mode is specified using one of three
keywords: OUTPUT (sequential output), INPUT (sequential input) or
APPEND (sequential output with file pointer set to end of file). The
default, if none of these is given, being to lise random access mode.

Associated: CLOSE, FIELD, GET, PUT, PRINT#, INPUT# ...

435

AmigaBASIC : A Dabhand Guide

OPTIONBASE
Syntax: OPTION BASE<1/0>

Example:

OPTION BASE 1

Brief

Sets minimum value for array subscripts.

Description

Defines whether the first subscript of an array will be 0 or 1. Using any
other number will cause an error. This command must be executed
before arrays are defined or used.

Associated: DIM, LBOUND

436

Command Reference

PAINT
Syntax: PAINT [STEP] «x,y» [,<Paint id>[,<border id>]]

Example:

Brief

CIRCLE (300,100),80,1

PAINT (300,100),3,1

Paints area in selected colour.

Description

The x and y coordinates are used as the base point from which a
region of screen is painted. If STEP is included then the coordinates
are measured relative to the current position of the graphics cursor.
The area is painted until a border is reached. The border may be the
outline of a box or circle etc.

<paint id> defines the colour in which the area will be painted. If this
is not specified, the current foreground colour is used.

<border id> defines the colour used to denote the boundary for
painting. Any pixels met matching this colour prevent the painting
from spreading any further in that direction. Pixels in any other colour
will be overdrawn. If <border id> is not specified, then the <paint id>
colour is used.

437

AmigaBASIC : A Dabhand Guide

PALETTE
Syntax: PALETTE <color>,<red>,<green>,<blue>

Example:

Brief

COLOR 1,0

PALETTE 0,0,0,0
PALETTE 3,0.75,0.50,0.25
CLS

LINE (100,50)-(200,100),3,bf

Assigns an actual colour to a colour number.

Description

This command defines what colour will appear when graphics are
drawn using a particular colour number. The command is followed by
the colour number to be defined. This can be any value between 0 and
the number of colours available in the current screen mode - 1. For
example, using the default screen and output window, four colours
are available so the colour number must be 0, 1,2 or 3. This is followed
by three further numbers each between 0.00 and 1.00 which determine
the amounts of red, green and blue the colour is to contain. The higher
the number, the higher the amount of that particular colour.

Using this command gives you access to the full range of colours
which the Amiga supports. Although you may only have a limited
number of colours available at once, these can be any shade you like.
Note that if you change the colour associated with a particular colour
number then any graphics previously drawn in this colour number
will also change.

Associated: COLOR, CIRCLE, LINE, PAINT, PRESET, PSET

438

Command Reference

PATTERN
Syntax: PATIERN [<line-pattern>] [,<area-pattern>]

Example:

Brief

COLOR 1,3

DIM pat% (3)

pat% (0) &H8888

pat% (1)

pat%(2)

pat%(3)

&H4444

&H2222

&Hl1l1

PATTERN ,pat%

AREA (100, 80)

AREA (500, 80)

AREA (250,150)

AREAFILL

Defines pattern for drawing lines and/or filling polygons.

Description

The [line-pattern], if present, is a 16-bit integer whose bits define the
pattern to be used for drawing lines. This pattern determines how one
segment of the line will appear and the full line is drawn by repeating
this segment several times until the length required is reached. The
segment is 16 pixels long; each pixel can either be drawn or missing
depending on whether the associated bit is 1 or o.
The [area-pattern] is the name of an integer array containing the
pattern to be used for filling polygons when using the AREAFILL
command. The number of elements in the array must be a power of
two, that is: 2,4, 8, 16, 32, 64, etc. Each element defines a strip 16 pixels
wide (one bit of the number defining whether a pixel in the pattern
will be set or clear). The number of elements defines the height of the
pattern block.

When the pattern is used, the way in which it affects the screen is
determined by the argument given to AREAFILL. One option is for
bits set to be drawn in the foreground colour and bits which are clear
in the background colour. The other is for bits which are set to invert

439

AmigaBASIC : A Dabhand Guide

what is already on the screen and bits which are clear to leave it
unchanged.

Associated: AREA, AREAFILL, LINE

440

Command Reference

PEEK
Syntax: PEEK(<address»

Example:

PRINT PEEK(O)

Brief

Returns the 8-bit (one byte) contents of a memory location.

Description

This function requires one argument which is the address of a
particular memory location. The value returned by the function is the
8-bit number stored in that memory location. This function can be
used to examine the contents of any byte in the Amiga's memory. The
maximum address allowed is 16777215; however the maximum
meaningful value depends on the amount of RAM you have fitted in
your machine.

Associated: PEEKL, PEEKW, POKE

441

AmigaBASIC : A Dabhand Guide

PEEKL
Syntax: PEEKL«address»

Example:

Brief

A& = 1
addr& = VARPTR(A&)
PRINT PEEKL(addr&)

Returns the 32-bit (one long word) contents of a memory location.

Description

This function requires one argument which is the address of a
particular memory location. The value returned by the function is the
32-bit number stored in the four bytes starting at that memory
location. Note that the address must be an even number.

A long word can be used to hold a long integer. Therefore, this
function can be used to return the value of a long integer variable,
given its address.

Associated: PEEK, PEEKW, POKEL

442

Command Reference

PEEKW
Syntax: PEEKW«address»

Example:

Brief

A% = 1
addr& = VARPTR(A%)
PRINT PEEKW(addr&)

Returns the 16-bit (1 word) contents of a memory location.

Description

This function requires one argument which is the address of a
particular memory location. The value returned by the function is the
16-bit number stored in the two bytes starting at that memory location.
Note that the address must be an even number.

A word can be used to hold a short integer. Therefore, this function
can be used to return the value of a short integer variable, given its
address.

Associated: PEEK, PEEKL, POKEW

443

AmigaBASIC : A Dabhand Guide

POINT
Syntax: POINT (X,Y)

Example:

PRINT POINT(50,50)

Brief

Returns the colour number of a point in the current output window.

Description

This function requires the x and y-coordinates of a position relative to
the current output window. It then returns the colour number of the
point identified. If the coordinate lies outside of the window, the
number returned is -1.

Associated: PRESET, PSET

444

Command Reference

POKE
Syntax: POKE <address>,<data>

Example:

Brief

OPTION BASE 1

DIM block%(lOO)

addr& = VARPTR(block%(l»

POKE addr&,l

Writes an 8-bit (one byte) value into a memory location.

Description

This command requires two arguments. The first is the address of a
particular memory location. The second is the 8-bit value which is
written to that location.

Note that altering the values stored in memory locations arbitrarily
can be dangerous. If you accidentally overwrite a location which the
Operating System or AmigaBASIC itself is using for something
important, you may produce a fatal error and be forced to reboot the
whole system.

Associated: PEEK, POKEL, POKEW

445

AmigaBASIC : A Dabhand Guide

POKEL
Syntax: POKEL <address>,<data>

Example:

Brief

A& = 1

addr& = VARPTR(A&)
POKEL addr&,2
PRINT A&
PRINT PEEKL(addr&)

Writes a 32-bit (one long word) value into a memory location.

Description

This command requires two arguments. The first is the address of a
particular memory location. The second is the 32-bit (long word) value
which is written to the four bytes starting at that location.

A long word can be used to hold a long integer. Therefore, this
function can be used to alter the value of a long integer variable, given
its address.

Note that altering the values stored in memory location arbitrarily can
be dangerous. If you accidentally overwrite a location which the
operating system or AmigaBASIC itself is using for something
important, you may produce a fatal error and be forced to reboot the
whole system.

Associated: PEEKL, POKE, POKEW

446

Command Reference

POKEW
Syntax: POKEW <address>,<data>

Example:

Brief

A% = 1
addr& = VARPTR(A%)
POKEW addr&,2
PRINT A%
PRINT PEEKW(addr&)

Writes a 16-bit (one word) value into a memory location.

Description

This command requires two arguments. The first is the address of a
particular memory location. The second is the 16-bit (word) value
which is written to the two bytes starting at that location.

A word can be used to hold a short integer. Therefore, this function
can be used to alter the value of a short integer variable, given its
address.

Note that altering the values stored in memory locations arbitrarily
can be dangerous. If you accidentally overwrite a location which the
operating system or AmigaBASIC itself is using for something
important, you may produce a fatal error and be forced to reboot the
whole system.

Associated: PEEK, PEEKL, PEEKW, POKE, POKEL

447

AmigaBASIC : A Dabhand Guide

POS
Syntax: POS(X)

Example:

Brief

PRINT "A";
curlin% = CSRLIN
curcol% = POS(O)

LOCATE 10,10
PRINT "1"
LOCATE curlin%,curcol%
PRINT "B"

Returns the current text column number.

Description

This function returns the approximate column number of the text
cursor. The is the column in which the next character will appear if the
cursor is not explicitly moved beforehand. The columns start at one for
the left-hand column and increase by one for each character position
to the right. The value is only approximate if a proportionally spaced
font is used, in which case the number returned is based on the width
of the character '0' in this font.

The value of 'X' is inconsequential and is, in effect, a dummy
argument.

Associated: CSRLIN, LOCATE

448

PRESET
Syntax: PRESET [STEP] (x,y) [,color]

Example:

Brief

FOR 1% = 100 TO 500 STEP 10
PRESET (1%,50),1

NEXT

Plots a point at a specified position.

Description

Command Reference

This command will draw a single point at the position given using the
standard coordinate syntax. If the position defined lies outside of the
current output window then the command is ignored.

If STEP is introduced into the command, then the coordinates
supplied are treated as relative to the current pen position.

The colour of the point may be determined by specifying the colour
number to use in <color>. The actual colour will then be as defined
with the PALETTE statement. If no colour number is supplied then the
specified point is set to the background colour. Therefore, in the
example, if the ',1' was deleted, nothing would be visible.

Associated: PSET, POINT

449

AmigaBASIC : A Dabhand Guide

PRINT
Syntax: PRINT [<expression list>]

Example:

INPUT "What is your name";yourname$
PRINT "Hello ";yourname$

Brief

Displays data in the current Output window.

Description

PRINT on its own prints a blank line. If it is followed by an expression
list, then the values of these expressions are displayed on the screen in
the current output window.

The individual items may be numeric or string expressions. They can
be separated from each other by different punctuation marks which
have the following meanings:

<space> Next item printed adjacent to end of previous one.
Next item printed adjacent to end of previous one.
Next item printed at start of next zone
(as set by WIDTH)

If the expression is terminated by a ';' or ',' then the following PRINT
statement will start printing on the same line either adjacent to or at
the start of the next zone after the previous item printed. Otherwise,
printing will start at the beginning of the next line.

Numbers are always followed by a space and preceded by either a
space if they are positive or a minus sign if they are negative. They are
printed in scientific notation if they cannot be represented by a
maximum of seven digits (for single precision numbers) or sixteen
digits (for double precision numbers).

Note that a question mark, '?', can be used instead of the word PRINT
in programs to save time.

Associated: PRINT USING, WIDTH, LOCATE

450

Command Reference

PRINT USING
Syntax: PRINT USING <format string>;<expression list>

Example:

PRINT USING "11.11";percentl,percent2,percent3

Brief

Displays formatted data in the current output window.

Description

PRINT USING allows strings or numbers to be output to the screen in
a particular format. The command must be followed by a string
containing special characters which specify how the data is to be
formatted. This, in turn, is followed by a semi-colon and the list of
expressions to be printed in this way.

The following characters have a special meaning in the format string:

Character What is to be output

Only the first character of each string
\n spaces\ 2+n characters of each string
& The entire string

+

**
$$

""""

A digit
A decimal point
A plus or minus sign
A trailing minus sign for negative numbers
Asterisks in the place of leading spaces
A dollar sign before numbers
Commas every three places before the decimal point
Numbers in exponential format
One of the above symbols as a literal character

If a number is too large to fit into the field allocated for it, a '%'
character is printed to indicate that it has overflowed.

Associated: PRINT, LOCATE

451

AmigaBASIC : A Dabhand Guide

PRINT#
Syntax: PRINT# <fileno.>,<expression list>

Example:

Brief

firstname$ = "Paul"
surnameS = "Smith"
OPEN "O",'l,"junk"
PRINT'I,firstname$;",";surname$
CLOSE
OPEN "I",'l,"junk"
INPUTIl,a$,b$
PRINT a$,b$
CLOSE

Sends data to a sequential file.

Description

This command takes the file number of a file opened for output and a
list of expressions. The values of these expressions are sent to this file.

The important point to note about this command is that the data
appears in the file almost exactly as it would appear on the screen if
PRINT was being used to send it. Therefore, sending two strings
separated by a ';' leads to the strings appearing to be contiguous.
Then, when they are read in again later using INPUT# they are read in
as a single item. Similarly, sending two strings separated by a ',' leads
to the two strings being sent with just spaces between them. Again this
appears to be one long string later.

Therefore, if you wish to send more than one piece of information at a
time, you must make sure that you also send characters which enable
them to be identified as separate items. One method of doing this is
shown in the example. In this case, an explicit semi-colon character is
sent between the items.

You must also be careful that the strings themselves do not contain
commas or semi-colons which would lead to the opposite problem -
one string appearing to be two when it is read in. One method of

452

Command Reference

doing this is to send quotation marks (ASCII code 34) before and after
each string. For example:

PRINTI1,CHR$(34);firstname$;CHR$(34);",";CHR$(34);surname$;CHR
$ (34)

These double quotes ensure that anything within them will be treated
as separate strings. The only problem with this method is that it is
rather verbose - WRITE# provides a better method for strings.

Note that this is not a problem with numbers. Numbers are
automatically sent with a trailing space which is sufficient to identify
where one number ends and the next starts when they are read in
again.

Associated: PRINT# USING, WRlTE#, OPEN, INPUT#

453

AmigaBASIC : A Dabhand Guide

PRINT# USING
Syntax: PRINT# <file no.>,USING <format string>;<expression list>

Example:

Brief

n1 = 11.11 : n2 = 22.22 : n3 = 33.33
OPEN "O",#l,"junk"
PRINT#l,USING " +##.##";n1;n2;n3
CLOSE
OPEN "I",#l,"junk"
INPUT#l,a,b,c
PRINT a,b,c
CLOSE

Send formatted data to a sequential file.

Description

This command takes the filenumber of a file opened for output, a
string of special characters showing how the data is to be formatted
and a list of expressions. The values of these expressions are sent to
this file formatted as specified. The points made in PRINT# above
about separating individual items also apply to PRINT# USING. The
formatting characters are as described in PRINT USING.

Associated: PRINT#, PRINT USING, WRITE#, OPEN, INPUT#

454

PSET
Syntax: PSET [STEP] (x,y) [,color]

Example:

PSET (100,100),1
PSET (99,100)
PSET (101,100)
PSET (100, 99)
PSET (100,101)

Brief

Plots a point at a specified position.

Description

Command Reference

This command will draw a single point at the position given using the
standard coordinate syntax. If the position defined lies outside of the
current output window then the command is ignored.

If STEP is introduced into the command, then the coordinates
supplied are treated as relative to the current pen position.

The colour of the point may be determined by specifying the colour
number to use in <color>. The actual colour will then be as defined
with the PALETTE statement. If no colour number is supplied then the
specified point is set to the foreground colour.

Associated: PRESET, POINT

455

AmigaBASIC : A Dabhand Guide

PTAB
Syntax: PTAB(X)

Example:

Brief

FOR loop% = 0 TO 10
PRINT PTAB(300-1oop%);"*";
PRINT PTAB(310+1oop%);"*"

NEXT

Moves the text cursor horizontally to a particular pixel.

Description

PT AB can be used in conjunction with PRINT and LPRINT to move
the text cursor sideways to a given pixel position. This allows text to
be located exactly, rather than being constrained to be in columns.

PRINT PTAB(x)

can be used to position the text cursor ready for the next PRINT
instruction. Note that a semi-colon need not be given explicitly after it
to stop the text cursor moving onto the next line.

Associated PRINT, LPRINT, TAB, SPC

456

Command Reference

PUT
Syntax: PUT[#]<file no.>[,<record no.>]

PUT [STEP] (X,Y),<name>[,(index[,index ...])] [,action]

Examples:

OPEN "example" AS 1 LEN 10
FIELD #1, 10 AS sbuf$
RSET sbuf$ "Hello"
PUT #1
RSET sbuf$
PUT #1,1
CLOSE

"Goodbye" REM overwrite

DIM rect% (626)
PUT(220,90),rect%

(see GET)

Brief

Writes a record to a random access file or sends an array of bits to the
screen.

Description

PUT has two quite separate functions and these are examined
separately below.

Random Access File PUT

Here the command sends the record currently in the random file
buffer to the specified file, defined by <file no.>. If a record number is
given by <record no.> then the data will be written to this position in
the file. Otherwise it will be added to the record number which is one
greater than that used by the last PUT.

Screen PUT

Here the command allows a section of screen image which was
previously stored in an array to be placed on the screen in the current
output window. The bottom left hand corner of this rectangular area is
placed at position (X,Y). See GET for details of the array contents.

457

AmigaBASIC : A Dabhand Guide

If a multi-dimensioned array was used with GET to hold several
screen images, a list of array indices can be given to PUT so that
several images are drawn in succession.

The final optional argument must be one of the following: PSET,
PRESET, AND, OR or XOR. This determines how the stored image is
to interact with the one already on the screen. The default is XOR. The
actions are as follows:

PRESET

PSET
AND

OR
XOR

overwrites existing graphicS with inverse of saved
image.
overwrites existing graphics with saved image.
ANDs each bit of the image with corresponding screen
bit.
ORs each bit of the image with corresponding screen bit.
XORs each bit of the image with corresponding screen
bit.

Associated: GET, FIELD, LSET, RSET, OPEN

458

RANDOMIZE
Syntax: RANOOMIZE [<X> /TIMER]

Example:

Brief

RANDOMIZE TIMER

FOR count = 1 TO 200
CIRCLE (RND*620,RND*lBO),RND*60

NEXT count

Reseeds random number generator.

Description

Command Reference

The sequence of 'random' numbers generated by the RND function
depends on what number was used to 'seed' the random number
generator. If the same seed is used twice in a row, then the same
sequence of numbers will be generated by subsequent RND functions.
This command reseeds the random number generator.

Giving an expression, <X>, allows you to set the seed to a particular
value so that the results will be repeatable. Using the RANDOMIZE
TIMER command uses the number of seconds which have passed
since midnight as the seed and so a different sequence will be obtained
each time the program is run. If no argument is given, then the
program will stop and ask to you to input a number. The value must
be in the range -32768 - +32767.

Associated: RND

459

AmigaBASIC : A Dabhand Guide

READ
Syntax: READ <variable list>

Example:

Brief

FOR loop% = 1 TO 5

READ namel$(loop%),age%(loop%)
NEXT

DATA "Fred",4,"Sam",6,"Jim",4
DATA "Mary",S,"Sue",6

Reads values from DATA statements.

Description

READ can be used to read one or more items at a time from DATA
statements and assign them to the variables whose names follow the
READ keyword. The type of data read must be compatible with the
type of variable it is being assigned to, otherwise an error message will
be generated.

DATA statements are read in order and a special read pointer is used
by AmigaBASIC to keep the position of the next item to be read. When
one DATA line is exhausted, the next is moved to. Trying to read
DATA when there is no more data left to read will generate an error
message. However, the same data can be used more than once by
using the RESTORE statement to reposition the read pointer.

Associated: DATA, RESTORE

460

REM
Syntax: REM <remark>

Example:

Brief

REM This is a remark
REM which will not be executed
, This is also a remark

Allows comments to be placed in programs.

Description

Command Reference

REM statements are not executed; everything on the line following the
REM keyword will be ignored. However, they are very useful for
allowing comments to be added to a program to explain what is
happening. If a REM statement is jumped to using GOTO etc, then the
first non-REM statement after the REM will be the first to be executed.

Note that an apostrophe can be used instead of the word REM in
programs to save time.

461

AmigaBASIC : A Dabhand Guide

RESTORE
Syntax: RESTORE [line no/label]

Example:

Brief

FOR count% = 1 TO 5
RESTORE
number% = FIX(RND*4 + 1)
FOR count2% = 1 TO number%

READ numberS
NEXT
PRINT numberS

NEXT
DATA one, two, three, four

Resets the read pointer.

Description

RESTORE repositions the read pointer so that items can be read from
DATA statements in a non-sequential manner or even read several
times.

If RESTORE is not followed by an argument, then the next READ
statement will access the first item in the first DATA statement in the
program. This sets the read pointer back to the position it was at
before any data had been read.

If RESTORE is followed by a line number or label, then the next READ
statement will access the first item in the first OAT A statement
following the line number/label given .

. Associated: READ, DATA

462

Command Reference

RESUME
Syntax: RESUME [0 /NEXT / <line no> / <label>]

Example:

Brief

ON ERROR GOTO errorhand

INPUT "Input a number :",num
recip = l/num

errorhand:
IF ERR = 11 THEN
PRINT "infinite"

ELSE
ON ERROR GOTO 0

END IF

RESUME NEXT

Continues execution after an error handler has been activated.

Description

If error trapping is turned on, then any errors which occur will be
dealt with by the error handler in force. RESUME should be used at
the end of the error handler in order to continue execution of the main
body of the program.

Option

RESUME
RESUMED

Execution recommences at the statement

Which caused the error
Which caused the error

RESUME NEXT Immediately after the one which caused
the error

RESUME <line> Following the line number specified
RESUME <label> Following the label specified

Associated: ON ERROR GOTO

463

AmigaBASIC : A Dabhand Guide

RETURN
Syntax: RETURN [<line no> / <label>]

Example:

Brief

GOSUB delay

delay:
FOR c% 1 TO 5000
NEXT

RETURN

Returns execution to the body of the program after a subroutine call.

Description

All subroutines must finish with the RETURN statement. This
identifies the end of the subroutine and causes execution to jump back
into the main body of the program.

RETURN on its own returns execution to the statement immediately
after the subroutine call. If a line number or label is given, then
execution will return to the first executable statement following this.
This is essentially the same as finishing the subroutine with a GOTO
statement and so should be avoided in order to keep programs well
structured and readable.

464

Command Reference

RIGHT$
Syntax: RIGHT$«string>,<n»

Example:

PRINT RIGHT$ ("AmigaBASIC", 5)

Brief

Returns <n> characters from the right-hand side of <string>.

Description

RIGHT$ returns <n> characters from the right-hand side of <string>.
If the number of characters asked for is greater than the number of
characters in the string, then the entire string is returned. If the
number is zero, then the null string is returned. In the example the
string ''BASIC'' is printed.

Associated: LEFf$, MID$

465

AmigaBASIC : A Dabhand Guide

RND
Syntax: RND [(X))

Example:

CIRCLE (RND*620,RND*180),RND*60

Brief

Returns a random number between 0 and 1.

Description

RND on its own returns the next 'random' number. These aren't truly
random: the sequence of them depends on the number used to seed
the random number generator. If an argument is given, its value
determines the action as follows:

No. Effect

<0 Restart the same sequence
>0 Generate next number in sequence (same as no argument>
o Repeat the last number generated

Associated: RANDOMIZE

466

RSET
Syntax: RSEf <string$>=<string expression>

Example:

Brief

OPEN "example" AS 1 LEN 20
FIELD #1, 20 AS sbuf$
RSET sbuf$ = "Fellows"
PUT #1
CLOSE

Command Reference

Transfer data from memory to random access buffer in readiness for
PUT.

Description

RSET is used in combination with PUT for writing data to random
access files. The purpose of RSET is to move the data to the random
file buffer. <stringS> (which has been defined as the transfer string in
FIELD) is assigned <string expression> and transferred to the file
buffer.

RSET will right justify the string if it is shorter than the length
assigned by FIELD. Any spaces at the start of the record are padded
with spaces. This is particularly useful for lining up numeric values.

Associated: LSET, PUT, FIELD

467

AmigaBASIC : A Dabhand Guide

RUN
Syntax: RUN [<line no>/label]

RUN <filename>[,R]

Example:

RUN "Myprog"

Brief

Executes a program.

Description

On its own, RUN executes the program currently in memory starting
from the beginning. A line number or label can also be given, in which
case execution starts from that point. In both cases, the Output
window will be moved to the front and cleared and any open files will
be closed before execution starts.

If a filename is specified, then the named program is loaded from disc
into memory and then executed. A requester will appear if a program
was already in memory allowing it to be saved before it is overwritten.
This syntax can also be followed by the letter 'R' which indicates that
any data files which are open before the program is loaded will be left
open so that they may be accessed.

468

Command Reference

SADD
Syntax: SADD «string expression»

Example:

Brief

A$ = "hello"

PRINT SADD (A$)

Returns the address of the first byte of a string expression.

Description

This function takes a string expression and returns the address of the
first byte of data. It is used mainly to pass the address of strings to
machine code routines.

Note that after a further string allocation has occurred, the value
returned cannot be relied upon because the string may have been
moved.

Associated: V ARPTR, CALL

469

AmigaBASIC : A Dabhand Guide

SAVE
Syntax: SAVE [<filename>[,A/P IBn

Example:

SAVE "soundl",A

Brief

Saves a program to disc.

Description

This command saves the program which is current in memory to disc.
If no filename is given, then one will be asked for. Any existing file of
the same name will be overwritten.

The options have the following effects:

Option Effect

A Saves the file in ASCII format so it can be merged,
transferred to other systems etc.

B Saves the file in tokenised form so that it takes up less disc
space (this is the default).

P Protects the file so that it can be executed but not listed or
edited.

Associated: LOAD, MERGE

470

Command Reference

SAY
Syntax: SAY <phoneme$>[,<mode>]

Example:

SAY TRANSLATE$("Have a nice day")

Brief

Speaks a list of phonemes using the voice synthesizer.

Description

SA Y takes a string which contains a series of phoneme codes and
speaks it. The simplest way to create the phonemes is to use
TRANSLA TE$ which will take a string of normal text and return a
string of phonemes. However, TRANSLA TE$ is not perfect so, to
obtain the pronunciation you want, you may need to construct the
series of phonemes yourself. Each phoneme is represented by one or
two upper-case characters. These are listed below, together with
words which give examples of their sound.

Vowels
AA cot AX about IX solid
AE cat EH let IY feet
AH fun ER bird OH cord
AO walk IH fit UH book
Diphthongs
AW cow EY fade OY foil
AY tide OW row UW flew
Consonants
B bat K cot T tap
Ie block L lot TH this
CH chat M mat V very
D day N next W wide
DH the NX king Y yacht
F fat P pat Z zoo
G get R rat ZH leisure
/H hot S sat

J jam SH show

471

AmigaBASIC : A Dabhand Guide

Vowels and diphthongs may be followed by a digit 1-9 which
determines the amount of stress to be placed on the sound. In
addition, the punctuation marks; '.', '?', '-', ',', '(' and')' can be used to
help the intonation of sentences.

The optional <mode> is an integer array containing at least nine
elements. These elements specify the voice to be used:

Element Affects Values Effect
0 Pitch(hertz) 65 deep

320 high and squeaky
1 Inflection 0 use inflections

1 monotone, robot like
2 Rate(words per min)40 slow

400 fast
3 Voice 0 male

1 female
4 Sampling freq 5000 low

(hertz) 28000 high and squeaky
5 Volume 0 silent

64 loud
6 Channel 0-3 channel no

4 channels 0 & 1
5 channels 0 & 2
6 channels 1 and 3
7 channels 2 and 3
8 any available left

channel
9 any available right

channel
10 any available pair of

channels
11 any available single

channel
7 Mode 0 synchronous

1 asynchronous
8 Asynchronous 0 walt for first to finish

speech 1 stop speech
processing

472

control 2

Associated: TRANSLA TE$

Command Reference .

interrupt first and
execute second

473

AmigaBASIC : A Dabhand Guide

SCREEN
Syntax: SCREEN <screen no>,<width>,<height>,<depth>,<mode>

Example:

Brief

SCREEN 1,640,256,4,2
WINDOW 2,"My own output window",,31,1
FOR loop% = 0 TO 15

CIRCLE (320,90), (loop%+1) *5, loop%
NEXT

Creates a new screen.

Description

This command creates a new screen. Any windows created in this
screen will inherit the attributes of it, ie the number of colours which
can be displayed at once etc.

<screen no> is the identity number which is associated with the
screen. AmigaBASIC can handle up to four additional screens at once,
each of which has an different identity number 1, 2, 3, or 4 (the
Workbench screen is number -1). This number is used by other
commands to tell them which screen is being acted on.

<width> and <height> limit the number of pixels in the screen which
can be used.

<depth> determines the number of bits per pixel which can be used. It
takes a number in the range 1-5 as described below:

Depth/Bits per pixel Number of colours

1
2
3
4
5

2
4
8

16
32

<mode> is a number 1-4 which specifies the resolution and whether
the screen is interlaced or not as follows:

474

Command Reference

Mode
1
2
3
4

Description
320 pixels across and 256 lines high
640 pixels across and 256 lines high
320 pixels across and 512 lines high
640 pixels across and 512 lines high

Associated: WINOOW

475

AmigaBASIC : A Dabhand Guide

SCROLL
Syntax: SCROLL (Xl,Y1)-(X2,Y2),<right>,<down>

Example:

Brief

LINE (20,20)-(40,40)"bf
COLOR ,3

FOR i% = 1 TO 10

FOR j% = 1 TO 10000
NEXT
SCROLL (20,20)-(40,40),1,-1

NEXT

Scrolls a rectangular area of the current output window

Description

SCROLL acts on the rectangular area defined. <right> defines the
number of pixels to scroll by sideways: it moves to the right if positive
and to the left if negative. <down> defines the number of pixels to
scroll by vertically: it moves down if positive and up if negative.

The new area will be filled in with the current background colour.

476

SGN
Syntax: SGN«num»

Example:

Brief

INPUT "Number :",x%

sign% = SGN(x%)
PRINT (ABS(x%)-l)*sign%

Command Reference

Returns the sign of a number as 1 (positive),-l (negative) or 0 (zero).

Description

This function returns a value as follows:

Argument
>0
<0
o

Returns
1
-1
o

It can be used in conjunction with ABS which finds the absolute value
of a number. The example above reduces the absolute value of an
integer by 1 whilst still retaining its sign, ie it moves it one closer to
zero.

Associated: ABS

477

AmigaBASIC : A Dabhand Guide

SHARED
Syntax: SHARED <variable list>

Example:

DIM names$ (20)

SUB ex STATIC
SHARED x%,y%,names$()

END SUB

Brief

Makes global variables accessible within subprograms.

Description

This command can only be used within subprograms. It must be
followed by a list of variables which will be shared by the subprogram
and the main program. Any arrays must be indicated as such by
terminating them with brackets as for 'names$' in the example.
(However, arrays can also be shared by using DIM SHARED when
creating them.)

When a variable is shared, only one version of it exists. Assigning a
value to it within the subprogram will alter its value in the main
program and vice versa. If a variable is not shared, then assigning a
value to it in the subprogram will have no effect on the value of the
variable of the same name in the main program (and vice versa).

Associated: DIM SHARED, SUB

478

SIN
Syntax: SIN(X)

Example:

Brief

pi2 = 3.14159*2
FOR angdeg% = 0 TO 360 STEP 10
PRINT SIN (pi2*angdeg%/360)

NEXT

Returns the sine of X.

Description

Command Reference

The sine of X is evaluated in the precision of the value supplied, ie a
single precision value is evaluated as a single precision number and a
double precision value is evaluated as a double precision number. The
value of X is expected in radians.

Associated: COS, A TN

479

AmigaBASIC : A Dabhand Guide

SLEEP
Syntax: SLEEP

Example:

WHILE 1 = 1
SLEEP
PRINT "Awake"
WEND

Brief

Suspends execution of a program until an event occurs.

Description

This command stops the program from executing anything until some
event occurs which it recognises. Note that it isn't necessary for event
trapping to be turned on for the event to have an effect. Events which
end this temporary suspension are:

480

II> A key being pressed.
e The left-mouse button being pressed.
II> A menu entry being selected.
II> A timer event occurring.
II> A collision between two objects.

Command Reference

SOUND
Syntax: SOUND <freq>,<duration> [,[volume][,voicell

Example:

SOUND 523.25,18.2,255

Brief

Produces a sound.

Description

SOUND produces a sound which is determined by the arguments it is
given:

<freq> determines the frequency and hence pitch of the note. Values
are expected in hertz. Any value outside the range 20-15000 will
produce the minimum or maximum sound as appropriate. The
following table shows the values for the middle octave - doubling the
value produces the note one octave higher.

Note Frequency
A 440.00
B 493.88
C 523.25
D 587.33
E 659.26
F 701.00
G 783.99

<duration> determines how long the note lasts. A value of 18.2
produces a note which lasts for one second; doubling this value makes
the note last twice as long. Any value between 0 and 77 can be given.

<volume> can be used to produce a note which is silent (0) to very
loud (255). The default is 127.

<voice> indicates which channel the sound will be on. Channels 0 and
3 are connected to the left speaker and channels 1 and 2 to the right.
The default is O.

481

AmigaBASIC : A Dabhand Guide

The example produces a middle C lasting for 1 second at maximum
volume from the left speaker.

Associated: WAVE

482

Command Reference

SOUND RESUMEIW AIT
Syntax: SOUND RESUME/WAIT

Example:

SOUND WAIT

SOUND 523.25, 9.1, 127, 0

SOUND 659.26, 9.1, 127, 1

SOUND 783.99, 9.1, 127, 2

SOUND 1046.50, 9.1, 127, 3

SOUND RESUME

Brief

Stores sounds or starts to play previously stored sounds.

Description

SOUND WAIT stops further SOUND commands from being executed.
Instead they are stored until a SOUND RESUME is executed. This
enables sounds on different channels to be all played together and so
enables different parts to be synchronised with each other.

Note that the buffer used to store the sounds is not infinite. An error
occurs if it becomes full.

483

AmigaBASIC : A Dabhand Guide

SPACES
Syntax: SPACE$«num»

Example:

sp20$ = SPACE$(20)
PRINT "Hello";sp20$;"there"

Brief

Returns a string containing <num> spaces.

Description

This function rounds the argument to the nearest integer and returns a
string containing that number of spaces. The argument must be in the
range 0-32767.

Associated: SPC

484

SPC
Syntax: SPC(X)

Example:

PRINT "Hello";SPC(20) :"there"

Brief

Generates X spaces in a PRINT statement.

Description

Command Reference

SPC can be used in conjunction with PRINT and LPRINT to output
spaces. X must be between 0 to 255.

PRINT SPC(X)

This function can be used to position the text cursor ready for the next
PRINT instruction. Note that a semi-colon need not be given explicitly
after it to stop the text cursor moving onto the next line.

Associated: PRINT, LPRINT, TAB, PTAB, SPACE$

485

AmigaBASIC : A Dabhand Guide

SQR
Syntax: SQR(X)

Example:

PRINT SQR(lOO)

Brief

Returns the square root of X.

Description

The square root of X is evaluated in the precision of the value
supplied, ie a single precision value is evaluated as a single precision
number and a double precision value is evaluated as a double
precision number. The value of X must be greater than or equal to
zero.

486

Command Reference

STICK
Syntax: STICK(N)

Example:

Brief

xpos%
ypos%

xpos% + STICK(O)
ypos% - STICK(l)

Returns a joystick direction.

STICK takes one argument: the number of the joystick you want to
read times two, plus one if you are reading the Y vertical movement:

Argument N Meaning
o Investigate X movement of joystick 1
1 Investigate Y movement of joystick 1
2 Investigate X movement of joystick 2
3 Investigate Y movement of joystick 2

The value returned is either -1, 0 or +1 which have the following
meanings:

Return Value
-1
o
1

Associated: STRIG

Meaning
Movement upwards or to the right
No movement
Movement downwards or to the left

487

AmigaBASIC : A Dabhand Guide

STOP
Syntax: STOP

Example:

Brief

REM This branch should not be taken
STOP

Halts program execution and returns to immediate mode.

Description

STOP is very useful when debugging a program. It allows the code to
be interrupted at particular positions to investigate what is going on.
Execution can then be continued using CaNT. Note that STOP does
not close any open files.

Associated: CaNT

488

Command Reference

STRIG
Syntax: STRIG(N)

Example:

If STRIG(O) PRINT "Fire"

Brief

Returns a joystick's button information.

Description

STRIG takes one argument whose meaning is as follows:

ArgumentN
o
1
2
3

Meaning
Investigate if button 1 was pressed since last call.
Investigate if button 1 is currently pressed.
Investigate if button 2 was pressed since last call.
Investigate if button 2 is currently pressed.

Hence the values 1 and 3 investigate the current status of the button
on one of the joysticks whereas the values 0 and 2 determine whether
a button press has occurred since the previous time STRIG(O) or
STRIG(2) was used. The values 0 and 2 therefore prevent button
presses being lost due to them occurring when the program is not
checking for them.

The value return by STRIG is as follows:

Return Value
o
1

Associated: STICK

Meaning
Button is not / has not been pressed
Button is / has been pressed

489

AmigaBASIC : A Dabhand Guide

STR$
Syntax: STR$(<num»

Example:

Brief

PRINT STR$ (1.23)
PRINT STR$(1)+STR$(2)+STR$(3)
PRINT STR$(1+2+3)

Returns the string representation of <num>.

Description

STR$ takes a number and generates a string which starts with either a
space (for positive numbers) or a minus sign (for negative numbers)
and contains one character for each of the digits etc in the string. In the
examples, the strings" 1.23", " 1 2 3" and " 6" are printed.

Associated: VAL

490

Command Reference

STRINGS
Syntax: STRING$«I>,<J»

STRING$(<I>,<string$»

Example:

PRINT STRING$(40,"*")

Brief

Returns a string containing multiple copies of a single character.

Description

The first syntax returns a string containing <I> copies of the character
whose ASCII code is <J>. The second returns a string containing <I>
copies of the first character of <string$>. The example prints 40
asterisks in a row.

491

AmigaBASIC : A Dabhand Guide

SUB ... STATIC
Syntax: SUB <subprog name>[(parameter list)]STATIC

Example:

Brief

CALL delay(lOOO)

SUB delay (timewait%) STATIC
FOR c% = 1 TO timewait%
NEXT
END SUB

Defines the start of a subprogram.

Description

A subprogram is essentially a mini program. Each subprogram must
have a unique name given by <subprog name> which can contain up
to 30 characters. This can be followed by an optional parameter list
which contains a series of variable names separated by spaces. Arrays
can be given in this list provided that they are followed by brackets.
Finally the keyword STATIC must be given.

The statements within the subprogram are only executed when a
CALL is made to the subprogram from within the main body of the
program. The number of arguments used in the call statement must
equal the number of parameters in the parameter list for the
subprogram. In addition, the values passed must be compatible with
the types of the parameter variables.

Execution returns to the statement after the subprogram call when
either an END SUB or EXIT SUB statement is reached. END SUB
marks the end of the body of the subprogram code. EXIT SUB can be
used anywhere within the subprogram in order to end execution of
the subprogram at other positions.

There are certain statements which you are not allowed to use inside
subprograms. These are:

492

Command Reference

& User-defined function definitions.
& Subprogram definitions (ie subprograms cannot be nested).
& COMMON statements.
e CLEAR statements.

Associated: END SUB, EXIT SUB, SHARED, CALL

493

AmigaBASIC : A Dabhand Guide

SWAP
Syntax: SWAP <varl>,<var2>

Example:

IF max% < min% THEN SWAP max%,min%

Brief

Exchanges the values of two variables.

Description

SWAP takes two variables of the same type and exchanges their
values. It is equivalent to:

temp = varl
varl = var2
var2 = temp

Note that the second variable must have already been defined but the
first one need not have been and will be initialised to zero.

494

Command Reference

SYSTEM
Syntax: SYSTEM

Brief

Returns to the Workbench.

Description

Giving the SYSTEM command is equivalent to selecting the Quit
option from the AmigaBASIC Project menu. It closes any open files,
produces a requester if any edited programs exist in memory to allow
them to be saved and leaves the ArnigaBASIC system.

495

AmigaBASIC : A Dabhand Guide

TAB
Syntax: T AB(X)

Example:

PRINT TAB(4);"Name";TAB(20);"Age"
PRINT TAB(4);"Michael Smith";TAB(20);14
PRINT TAB(4);"Frederick Browning";TAB(20);lS

Brief

Moves text cursor to column X.

Description

TAB can be used in conjunction with PRINT and LPRINT to position
the text cursor in a particular column. The left-hand column is
numbered 1 and the value given must be in the range 1-155.

If the cursor is already to the right of the column asked for, then it will
move to that column on the next row down. This is illustrated by the
example which produces:

Name
Michael Smith

Age
14

Frederick Browning 15

PRINT T AB(X) can be used to position the text cursor ready for the
next PRINT instruction. Note that a semi-colon need not be given
explicitly after it to stop the text cursor moving onto the next line.

Associated PRINT, LPRINT, PT AB, SPC

496

TAN
Syntax: T AN(X)

Example:

Brief

pi2 3.14159*2
INPUT "Angle in degrees :",angdeg%
PRINT TAN(pi2*angdeg%/360)

Returns the tangent of X.

Description

Command Reference

The tangent of X is evaluated in the precision of the value supplied, ie
a single precision value is evaluated as a single precision number and
a double precision value is evaluated as a double precision number.
The value of X is expected in radians.

Associated: COS, SIN, ATN

497

AmigaBASIC : A Dabhand Guide

TIME$
Example:

PRINT TIME$

Brief

Returns the current time.

Description

The TIME$ function reads the system clock and returns an eight
character string in the form: hh:mm:ss

The response at half past eight in the morning would be: 08:30:00

Associated: DATE$, TIMER

498

Command Reference

TIMER
Syntax: TIMER

Example:

timl& = TIMER

PRINT TIMER-timl&;"seconds taken"

Brief

Returns the number of seconds which have passed since midnight.

Description

The TIMER function reads the system clock and returns an integer
containing the number of seconds which have passed since midnight.
It is useful for timing how long sections of program take to execute.

TIMER can also be used in conjunction with RANDOMIZE for
reseeding the random number generator.

Associated: TIME$, RANDOMIZE

499

AmigaBASIC : A Dabhand Guide

TIMER ON/OFF/STOP
Syntax: TIMER ON/OFF/STOP

Example:

Brief

ON TIMER(60) GOSUB minI
TIMER ON
WHILE 1 = 1
WEND
minI:
PRINT "Minute gone by"
RETURN

Enables, disables, or suspends event trapping based on the passage of
time.

Description

The timer, noticing that a given number of seconds have passed, can
be used to cause an event. An ON TIMER ... GOSUB statement is used
to specify the number of seconds and set up a handler for such an
event.

TIMER ON activates timer event trapping so that any such events will
be noted and acted on immediately by executing the handler.

TIMER OFF inactivates timer event trapping so any such events are
ignored.

TIMER STOP leaves timer event trapping activated but does not act on
the events immediately. Instead it waits until a TIMER ON statement
is executed and then executes the handler.

Associated: ON TIMER '" GOSUB

500

Command Reference

TRANSLATE$
Syntax: TRANSLA TE$(<string$»

Example:

SAY (TRANSLATE$ ("Hi there"»

Brief

Converts a sentence into a string of phonemes suitable for SAY.

Description

TRANS LA TE$ returns a string containing a series of phonemes which
represent the text it was given. This string is in a format which is
suitable to be passed straight to the SAY command so that it can be
spoken using the speech synthesiser. Note that English is a complex
and irregular language and TRANSLA TE$ is not perfect. Sometimes,
better results can be obtained if you spell words differently. For
example: SA Y(TRANSLATE$("Dayter"» produces a better English
pronunciation of the word 'data' than the correct spelling does.

Associated: SAY

501

AmigaBASIC : A Dabhand Guide

TROFF
Syntax: TROFF

Brief

Turns program tracing off.

Description

Giving the command TROFF is equivalent to selecting the Trace Off
option from the Run menu. It causes the tracing of statements to be
turned off so the remainder of the program is executed normally.

Associated: TROFF

502

Command Reference

TRON
Syntax: TRON

Brief

Turns program tracing on.

Description

Giving the command TRON is equivalent to selecting the Trace On
option from the Run menu. It causes the statement being executed to
be highlighted in the List window, if the window is visible. Thus
allowing the path through the program and the effect of the individual
statements to be seen.

Tracing is disabled if TROFF is used or a NEW command is given.

Associated:TROFF

503

AmigaBASIC : A Dabhand Guide

UBOUND
Syntax: UBOUND <array name>[,<Dirn>]

Example:

Brief

DIM array%(15)
FOR loop% = LBOUND(array%) TO UBOUND(array%)
array%(loop%) = RND*lO

NEXT

Returns the upper bound of an array dimension.

Description

This function returns the upper BOUNDary of the named array,
<array name>. Used in conjunction with LBOUND it allows the values
used within a DIM and OPTION BASE statement to be found.

UBOUND returns the value allocated by the DIM statement.
Therefore, if the array has not been DIMensioned, the default value of
ten will be returned.

The use of <Dim> is optional and is used to indicate which dimension
in a multidimensional array is to be used. The default value is I,
meaning the first dimension. Giving a dimension which does not exist
will produce the result O.

This function is particularly useful for subprograms. It allows them to
accept arrays of varying sizes and be able to handle them without
having to be explicitly told their number of dimensions and size of
each.

Associated: LBOUND

504

Command Reference

UCASE$
Syntax: UCASE$(<string expression»

Example:

Brief

repeat:

INPUT "Continue YIN :",ans$
ans$ = UCASE$(ans$)
IF ans$ = "N" THEN

END
ELSEIF ans$ = By" THEN

PRINT "Continuing"
ELSE

GOTO repeat

END IF

Copies a string and converts all characters to upper-case.

Description

The string which is passed in <string expression> is not altered. A
copy of it is taken, any lower-case characters in it are converted to
upper-case and this new string is returned.

UCASE$ is very useful when dealing with user input since it reduces
the number of checks which have to be made. For example, if you are
testing to see if the user input the word "YES", you would have to
otherwise test against "YES", "yes", "Yes" etc. Using UCASE$ to
convert their input means that only the one test against "YES" is
required.

In addition, it enables strings to be sorted alphabetically regardless of
their case. If case is taken into account then all lower case letters are
listed after upper case ones.

505

AmigaBASIC : A Dabhand Guide

VAL
Syntax: V AL(<string$»

Example:

PRINT VAL(TIME$);" hours"

Brief

Returns the numeric value of the string <stringS>.

Description

The function VAL takes a string of digits and converts it into a
number. It ignores any space or tab characters at the start of the string
and returns the value of string up to the first character which cannot
be treated as part of a number. In the example, only the hours part of
the time will be returned as a number because that is separated from
the minutes by a':'.

Note that it is not only digits which can be treated as valid
components of a number. PRINT V AL(llE2") prints the value 100.
Although the 'E' is a not a digit, 1E2 is a valid way of representing a
number using exponential format. Similarly, preceding '+' and '-'
characters are handled correctly.

If, however, the characters of the string (ignoring spaces) do not start
with a digit or a plus or minus sign, then VAL returns o.
Associated: STR$

506

VARPTR
Syntax: VARPTR (<variable name»

Example:

Brief

A% = 1

addr& = VARPTR(A%)
PRINT PEEKW(addr&)

Returns the address of the contents of a variable.

Description

Command Reference

This function takes a variable name and returns the address of the first
byte of data identified with it. For numbers, the address is the location
of the (start of) the number itself. For strings, it is the first byte of the
string descriptor rather than the first character of the string.

V ARPTR is for use mainly when calling machine code routines.
Normally, this is done by loading the machine code into an array such
as code% and using:

start% = VARPTR(code%(O»

CALL start%

to execute the code. Values can be passed to the machine code routine
in a similar manner.

Associated: SADD, CALL

507

AmigaBASIC : A Dabhand Guide

WAVE
Syntax: WAVE <voice>,<wave def> I SIN

Example:

Brief

DIM wf%(255)
FOR loop% = 0 TO 255

wf%(loop%) 127*RND
NEXT
WAVE O,wf%
SOUND 523.25,18.2,255

Defines the waveform for a sound channel.

Description

The WAVE statement requires two arguments. The first is simply the
channel which you want to assign the waveform to. Any sounds
subsequently produced on that channel will use the waveform
assigned to it. The second is either the word 'SIN' to select the default
wave form or an array containing at least 256 integer elements. Each of
these represents a point of the waveform. The maximum value of an
element is 127 which means that the waveform is at the maximum
height above the middle line. The minimum value is -128 which
means that the waveform is at the greatest distance below the line.

WAVE is a very versatile command which allows a wide range of
sounds to be produced from squeaks and buzzes to simulated string
instruments.

Associated: SOUND

508

WEND
Syntax: WEND

Brief

Marks the end of a WHILE ... WEND loop.

Description

See WHILE ... WEND

Command Reference

509

AmigaBASIC : A Dabhand Guide

WHILE ... WEND
Syntax: WHILE <logical exp> [statements] WEND

Example:

Brief

tim& = TIMER
WHILE TIMER - tim& < 30
CIRCLE (RND*640,RND*180),RND*60,RND*3

WEND

Executes a group of statements whilst a given condition remains true.

Description

WHILE must be followed by an expression which gives the result true
or false. This is normally followed by a series of statements which may
be split over several lines and are terminated by a WEND. If the
expression is true, then each of the statements is executed until the
WEND is reached. Then control jumps back to the start of the loop and
the expression is evaluated again. If the expression gives the result
false at any stage, then the statements inside the loop are jumped over
and execution starts at the first statement after the WEND.

Each WHILE statement must have one and only one WEND
associated with it. However, WHILE statements can be nested inside
each other in which case, when a WEND is executed, it is matched
with the most recent WHILE which is still being used. Note that
jumping into the middle of a WHILE ... WEND loop can lead to
problems because AmigaBASIC will not know what to do when it
reaches the WEND but has not encountered the WHILE associated
with it.

510

Command Reference

WIDTH
Syntax:

WIDTH [<output dev>,/<file no.>,/LPRINT] [<size>] [,<zone>]

Example:

WIDTH 40

PRINT STRING$ (50,"*")

Brief

Sets the line width and zone width.

Description

WIDTH affects the appearance of text output. The first argument
specifies which output device is to be affected. If this is missing, then
screen output is assumed. However, a particular device can be
specified by giving the device name, <output dev>, the printer can be
specified explicitly by using 'LPRINT' or a filenumber can be given if
output to a file is to be affected, <file no.>. Note that when changing
the line width or zone size for a file, the new settings only take effect
the next time the file is opened using the OPEN command.

The next argument, <size>, is the number of standard characters
which may be contained on one line. When this number is reached, a
carriage return will automatically be inserted. 255 is treated in a
special manner. Instead of specifying the number of characters, it is
treated as meaning that the line is infinitely wide. 255 is the default
value for the screen, 80 is the default value for a printer.

The final, optional argument, <zone> specifies the zone width. This is
used to divide each line up. When a comma is used to separate items
for PRINT and LPRINT statements, this forces the text cursor to move
to the start of the next zone. The default value is 15.

Associated: PRINT, LPRINT, PRINT#

511

AmigaBASIC : A Dabhand Guide

WINDOW
Syntax:

WINDOW <id> ,!<title>[,f(xl,yl)-(x2,y2)[,/ <type>[,<sc id>]]
WINOOW<id>
WINDOW<n>

Example:

Brief

SCREEN 1,640,256,4,2

WINDOW 2, "New", (100,50) - (200,100),31,1

COLOR 5,6

CLS

PRINT WINDOW (6)

Either creates a new output window, makes an existing output
window current or returns information about the current output
window.

Description

WINDOW has three separate uses and these are examined separately
below.

Creating New Windows
The WINDOW statement can be used to create an output window.
The first argument is the identity number of the window. This can be
any positive integer value. The AmigaBASIC output window has the
number 1. Using a number greater than this will create an additional
window rather than re-defining the existing one.

<title> is a string which will be used as the title of the window.

(x1,y1)-(x2,y2) defines the rectangular area of the window. If this
argument is omitted, the window will be created at the default size for
the screen which is the full screen size.

<type> determines the features which the window will contain. Each
feature has a different value:

512

Command Reference

Value Description

1 Sizing gadget provided to allow mouse control of window
size.

2 Window can be moved about using Title Bar.
4 Back gadget provided to allow window to be moved to

front/back.
8 Close gadget provided to allow window to be closed using

mouse.
16 Window is redrawn if a window in front of it is moved.

The number used is the sum of all the values of the features required.

<sc id> is the identity number of the screen which is to contain the
window. The default is to take the value -1 to add it to the Workbench
screen. However, other numbers can be given to add it to your own
screens which you have defined.

When the window is created, it is automatically selected as the current
output window. Therefore the remainder of the program sends all its
graphics output to this new window.

Making a Window Current
The WINDOW <id> statement makes the window whose identity
number is <id> into the current output window. All text and graphics
will be directed to this window. In addition, this window becomes the
selected (active) window; it is brought to the front of the screen and
highlighted.

Returning Information About a Window
The WINDOW <n> function returns information about the current or
selected window. The type of information returned is determined by
<n> as follows:

<n> Returned information

o Window identity no. for the current output window
1 Window identity number
2 Width
3 Height
4 X co-ordinate of output cursor
5 Y co-ordirtate of output cursor

513

AmigaBASIC : A Dabhand Guide

6 Maximum colour number allowed
7 Pointer to the Intuition window
8 Pointer to the RASTPORT

The last two of these are only required if you are calling operating
system routines to manipulate the window.

Associated: SCREEN, WINDOW CLOSE/OUTPUT

514

WINDOW CLOSE/OUTPUT
Syntax: WINDOW CLOSE/OUTPUT <id>

Example:

WINDOW OUTPUT 1

Brief

Closes or makes current an Output window.

Description

Command Reference

Both commands affect the window whose identity number is given by
<id>.

WINDOW CLOSE makes the window invisible.

WINDOW OUTPUT makes the window into the current output
window. All text and graphics will be directed to this window.
However, it is not selected: hence it is not brought to the front of the
screen or highlighted.

Associated: WINDOW

515

AmigaBASIC : A Dabhand Guide

WRITE
Syntax: WRITE [<expression list>]

Example:

Brief

INPUT "What is your name";yourname$
WRITE "Hello",yourname$

Displays data in the current output window.

Description

WRITE, on its own, prints a blank line. If it is followed by an
expression list, then the values of these expressions are displayed on
the screen in the current output window.

The individual items may be numeric or string expressions which
must be separated by commas.

The items are output with commas between them. Numbers do not
have any spaces added before or after them. Strings are surrounded by
quotation marks. In the example, the following type of output will be
produced:

"Hello", "Fred"

Associated: PRINT, PRINT USING

516

WRITE#
Syntax: WRITE# <file no.>,<expression list>

Example:

WRITE#l a$,b$,x#,y#

Brief

Writes data to a sequential file.

Description

Command Reference

WRITE# should be followed by the number of the file to which the
data is to be sent, <file no.>. This, in turn, is followed by an expression
list containing the items to be sent. The individual items may be
numeric or string expressions and must be separated by commas.

The items are output with commas between them. Numbers do not
have any spaces added before or after them. Strings are surrounded by
quotation marks. A carriage return is always inserted at the end of
each expression list - no terminating punctuation character should be
placed here.

WRITE# is often the best way of sending data to a file. It eliminates the
need to explicitly add delimiters which is often necessary with
PRINT#.

The individual items may be numeric or string expressions which
must be separated by commas.

The items are output with commas between them. Numbers do not
have any spaces added before or after them. Strings are surrounded by
quotation marks.

Associated: PRINT#

517

AmigaBASIC: A Dabhand Guide

518

B : Error Messages
The following is a list of error messages which can occur when using
AmigaBASIC. Some of these have error numbers associated with
them. These are the errors which can occur whilst a program is
running. They can be trapped using the ON ERROR and ERR
statements.

Some errors are reported before the program starts to run. Many of
these are caused by unpaired FOR and NEXT or WHILE and WEND
or IF and END IF or SUB and END SUB statements. Note that
occasionally the message may be misleading. For example, a 'SUB
without END SUB' message can be caused by a subprogram
containing other structures which are wrongly paired. Note also that
these errors can be more easily located and largely eliminated by
using correctly indented code.

Advanced Feature (73)
This should never occur.

Argument count mismatch (37)
You have called a subprogram and passed it a different number of
arguments to the number declared in its definition.

Bad file mode (54)
This occurs when you try to use commands which aren't compatible
with the files you are acting on. For example PUT, GET or LOF with
sequential files, LOAD on a random access file, or MERGE on a non
ASCII file. The other situation in which this can occur is when you
have used a file mode other than 'A', '0', T or 'R' with the OPEN
command.

Bad file name (64)
An illegal file name has been used. The format required is:

"<device name or
drive>:<directory>/ ... /<directory>/<filename>"

519

AmigaBASIC : A Dabhand Guide

with each file or directory name being limited to 30.characters and the
total pathname being limited to 255 characters.

For example:

"DemoDisk:BASIC/Strings/Search"

Possible devices are:

SCRN: Screen
KYBD: Keyboard
LPT1: Printer
COM1: Serial port

Bad file number (52)
An attempt has been made to reference a file with a file number which
does not correspond to an open file. When OPEN is used, it assigns a
number to the file being opened and this number must then be used
whenever that file is to be accessed using commands such as PRINT#.

Bad record number (63)

This occurs when GET or PUT is used with a record number outside
the range 1 to 16777215.

BLOCK ELSEIEND If must be the first statement on the line
An ELSE or END IF statement has been found on a line containing
other statements.

Can't continue (17)

An attempt has been made to continue the execution of a halted
program after the program has been altered or after an error has
occurred.

Deadlock (77)

This should never occur.

Device 1/0 error (57)

The operating system failed to complete a disc access operation,
possibly due to the disc being faulty. The Workbench will need
reloading after this has occurred.

520

Error Messages

Device Unavailable (68)
An attempt has been made to input or output information from a
device which BASIC cannot get access to.

Disk full (61)
BASIC has attempted to save data to a disc but insufficient room exists
on it. The solution is to delete some of the files using 'KILL' or to save
the data onto a different disc.

Division by zero (11)
An attempt has been made to divide a number by O. Note, this can
often occur in expressions involving division due to typing mistakes.
Any variable takes the default value of 0, so if you type 'PRINT
l/xos%' instead of 'PRINT l/xpos%' then this error will probably be
generated.

Duplicate Definition (10)
This occurs if you try to dimension an array which has already been
dimensioned. An obvious cause of this is to include the array in two
definition statements. However two less obvious causes exist. One is
when an element of an array has been referred to before it is DIMmed.
This is because referencing an array element automatically assigns the
default dimension of 10 to the array. The second is using OPTION
BASE after a DIM statement, since this can alter the number of
elements in the array.

If you wish to redefine an array, the ERASE command must be used to
erase the contents of the first definition before the second is used.

Duplicate label (33)
The same label has been used more than once within a program.

ELSE/ELSEIF/END IF without IF
An ELSE, ELSEIF or END IF has been found although no
corresponding IF statement exists. This is often due to a statement
being placed after the THEN. This converts the IF statement into a
single line IF rather than a block structured one.

EXIT SUB outside of a subprogram
An EXIT SUB has been found outside of the definition of a
subprogram. It can only be used between the SUB and END SUB
statements.

521

AmigaBASIC : A Dabhand Guide

FIELD overflow (50)
The number of bytes allocated in a FIELD statement has exceeded the
buffer size assigned when the OPEN command was used to open the
random access file.

File already exists (58)
NAME has been used to change the name of a file to the name of
another existing file.

File already open (55)
Either OPEN has been used to try to open a file that is already open or
KILL has been used to try to delete a file which is open.

File not found (53)
The file being accessed could not be found. If just a filename was given
this is possibly because the wrong directory is currently selected.

FOR without NEXT (26)
A FOR statement has been found which does not have a
corresponding NEXT statement. Either it has been missed out
altogether or the loop variable name for it has been mistyped.

IF without END IF
A block structured IF statement has been started but no corresponding
END IF could be found. Possibly, the IF was meant to be a single line
IF but no statement was typed after the THEN.

Illegal direct (12)
Most commands can be used directly by typing them in the output
window. However, others such as DEF FN can only occur within
programs. This error is given when one of the latter types of
commands has been used directly.

Illegal function call (5)
This is a common error which occurs whenever you attempt to give an
argument which is out of range or of the wrong type to a BASIC
function. For example 'LOG(-l)'.

It will also occur if a negative array element is used, for example A(-l).

Input past end (62)
This error is given when you try to read data after the end of a file has
been reached. EOF should be used to avoid this happening.

522

Error Messages

Internal error (51)
TItis should never occur.

Line buffer overflow (23)
This occurs within the editor if an attempt is made to create a line
containing more than 255 characters. (It can also occur when the editor
gets confused - if this happens, split the line and concatenate it again.)

Missing operand (22)
An operator such as 'It' or 'AND' has been used without an expression
either side of it.

Missing STATIC in SUB statement
A SUB statement has been found which doesn't contain the obligatory
STATIC statement after the name or parameter list.

NEXT without FOR (1)
A NEXT statement has been found which does not have a
corresponding FOR statement. Either it has been missed out altogether
or the loop variable name has been mistyped.

No RESUME (19)
An error handling routine set up by an ON ERROR statement has
been entered but no RESUME statement has been found to return
control back out of the handler.

Out of DATA (4)
A READ statement has been used when there is no more DATA left
unread. This could be because RESTORE had been used to set the data
pointer to the wrong place.

OUT OF HEAP SPACE (14)
This is a special message which means that the system hasn't got
enough workspace left to continue executing your program. More
heap memory can be obtained by closing down other applications and
by using the CLEAR command to reallocate the memory available.

Out of memory (7)

This indicates that the BASIC data area is out of memory. Use CLEAR
to increase the memory available for your program and its variables.
Alternatively, try reducing the size of your program as described in
Chapter 11.

523

AmigaBASIC : A Dabhand Guide

Overflow (6)
This occurs when the result of a calculation is larger than the
maximum value allowed for the number format being used. If single
precision was being used, changing to double precision may help.

Permission Denied (70)
An attempt has been made to write to a disc which is write protected.

Rename across discs (74)
A different disc name has been specified when trying to rename a file
using the NAME command. NAME cannot be used to move a file
from one disc to another.

RESUME without error (20)
A RESUME statement has been encountered although an error
handler hasn't been activated. This is normally because an END
statement is missing between the end of the main program and the
definition of the error handler so execution fell through into the error
handling code.

RETURN without GOSUB (3)
A RETURN statement has been encountered although a GOSUB hasn't
been executed. This is normally because an END statement is missing
between the end of the main program and the subroutine code so
execution fell through into the body of the subroutine accidentally.

SHARED outside of a subprogram
A SHARED statement has been found outside of the definition of a
subprogram. It can only be used between the SUB and END SUB
statements. It makes sense to place the SHARED statement at the start
of a subprogram both for clarity and to prevent this occurring.

Statement illegal within subprogram
Certain commands may not be used within subprograms. These are:
'DEF FN', 'COMMON' and 'CLEAR'. Note also that 'SUB' may not be
used either, although this results in a different message being given.

String formula too complex (16)
This can occur if a very long or complicated string expression has been
used involving deeply nested string commands such as MID$. The
solution is to split the expression up into separate stages, using
temporary variables if necessary.

524

Error Messages

String too long (15)

An attempt has been made to create a string containing more than
32767 characters.

SUB already defined
Two subprograms with the same name have been found within a
program.

SUB without END SUB
A SUB statement has been found which does not have a
corresponding END SUB.

Subprogram already in use (36)
A subprogram has been called from within itself, which is not
allowed. This could occur because a direct CALL has been used from
one subprogram to itself or because one subprogram has CALLed a
second which has CALLed the first etc.

Subscript out of range (9)
An attempt has been made to access an array element which does not
exist. This could be because the subscript is greater than the value
used when the array was dimensioned (or 10 if no DIM statement has
been used). Alternatively it can be given because the wrong number of
subscripts have been given.

Syntax error (2)
This is a common error which can occur for a number of reasons.
These include having unequal numbers of opening and closing
brackets round expressions or using the wrong punctuation within a
statement.

Too many files (67)
This should never occur.

Too many subprograms
This occurs when a program is found to contain more than 255
subprograms.

Tried to declare SUB within a SUB
A subprogram has been found which contains the definition of
another subprogram. Note that there are other restrictions over what

525

AmigaBASIC : A Dabhand Guide

subprograms can contain, which are covered by a different error
message.

Type mismatch (13)
This happens when string variables are assigned numeric values or
vice versa. It can also occur when an attempt is made to SWAP the
values of two variables of different numeric types.

Undefined array (38)
An array has been referenced in a SHARED statement before it has
been created.

Undefined label (8)
A label has been used in a GOTO, GOSUB, RESTORE etc statement
which does not exist.

Undefined subprogram (35)
This is a common error which occurs when a command is misspelt.
BASIC, because it doesn't recognise the command, looks for a
subprogram of that name and because it doesn't find one gives the
message.

Alternatively, you may really have used a CALL statement to access a
subprogram which is not defined.

Undefined user function (18)
A user defined function has been used before its definition has been
executed.

Unknown volume (49)
You have given a disc name which cannot be found.

Unprintable error (many)
This should not occur.

WEND without WHILE (30)
A WEND statement has been found which does not have a
corresponding WHILE statement.

WHILE without WEND (29)
A WHILE statement has been found which does not have a
corresponding WEND statement.

526

Glossary
Address
An address is an integer number which identifies a particular memory
location. Each memory location has a different address. and so
individual ones can be identified to allow data to be stored in them or
read from them.

AmigaDOS
AmigaDOS is the name given to the Amiga's Operating System.

Argument
An argument is another name for a parameter. It is a piece of data
which is passed between the main program and a routine which it is
calling. For example, the AmigaBASIC function SIN takes one
argument which is the angle whose sine is to be returned.

Arithmetic Operators
Arithmetic operators are operators which act on numbers to produce a
numerical result. Some take just one operand, ie '+' (unary plus), '-'
(unary minus). Others require two to produce a result: these are: '+'
(addition), '-' (subtraction), '*' (multiplication), '/' (division), tAl (raise
to the power), 'MOD', (integer remainder) and '\' (integer division).

ASCII
ASCII stands for American Standard Code for Information
Interchange. It is a code adopted by most computer manufacturers
whereby the numbers between 1 and 128 are used to represent
different characters. The first 32 represent control characters, the other
96 represent the printable characters. For example, the letter 'a' has an
ASCII code of 97.

Assembler
An assembler is a program which converts assembly language
statements into machine code. It is the means by which the speed and
versatility of machine code can be obtained without having to write
directly in the binary numbers of machine code.

527

AmigaBASIC : A Dabhand Guide

Assembly Language Statements
These are statements which have a one-to-one mapping onto machine
code instructions. They consist of mnemonics such as CMP, BEQ
followed by the operands associated with them. An assembler is
required to convert them into machine code which the CPU can
execute.

BASIC
BASIC stands for Beginners All-purpose Symbolic Instruction Code. It
is a computer language which is used extensively in home micros
because it is easy to learn and yet powerful enough to allow a wide
variety of applications to be produced using it.

Binary
Binary is the base two number system in which all numbers are
represented by just the digits 0 and 1. Whereas in decimal a one in a
particular column represents a power of ten, in binary it represents a
power of two. Therefore, the first ten binary numbers are: 1, 10, 11,
100,101,110,111,1000,1001,1010.

Bit
Bit stands for binary digit. It takes one of two values, either 0 or 1.
Inside the computer, bits are used to represent the two possible states
of switches, either off or on.

Blitter
Blitter stands for 'bit blatter'. It is a co-processor which specialises in
copying and manipulating areas of memory very quickly. This enables
rectangular areas of the screen or 'bobs' to be moved around to create
animated scenes.

Bob
Bob stands for blitter object block. Bobs are one of the types of
moveable objects which the Amiga provides (the other being sprites).
Each type is handled by a different co-processor, bobs being looked
after by the one known as J Agnes'. Bobs have certain ad vantages over
sprites. Their size is unlimited; they can contain up to 32 colours
depending on the screen mode in operation and any number of them
can be displayed at once. However, they move only slowly and have a
tendency to flicker.

528

Glossary

Buffer
A buffer is an area of memory inside the Amiga which is used as a
temporary storage space for information being transferred between
different devices. For example, the keyboard buffer stores characters
entered at the keyboard until the CPU is ready to handle them.
Similarly, the disc buffers store data to be saved to disc so that
characters can be written out in blocks rather than individually which
would be very slow.

Bug
A bug is an error in a program. It can take one of many different
forms. For example a syntax error is a mistake in the format used
when writing a BASIC statement. This sort of error will be found as
soon as you try to execute the program. Logic errors are problems
caused by the BASIC you have written not doing what you intended it
to. The syntax of the program is correct so the program will run but
the results will not be as expected. These are both examples of bugs.

Byte
A byte is eight bits. It can be used to represent integers between 0 and
255 (00000000 to 11111111 in binary notation). Hence bytes can be used
to store characters using the ASCII notation. However most bytes in
memory form part of larger structures called 'words'.

CPU
CPU stands for Central Processing Unit. This is the chip inside the
machine which performs the main functions of the computer. The
CPU of the Amiga is a Motorola MC68000 which can execute millions
of machine code instructions per second.

Co-processor
A co-processor is one of the microprocessors inside the computer in
addition to the CPU. The Amiga contains three such co-processors
which specialise in displaying graphics, producing sound, performing
input/ output operations etc. They perform these functions for the
CPU leaving it free for other tasks.

Cursor
A cursor is a marker which shows you the area of the screen at which
you are 'located'. This is the position at which characters you type will
appear or it identifies the item which will be selected if you press the

529

AmigaBASIC : A Dabhand Guide

mouse button etc. The actual use depends on the type of cursor and
the environment it is being used in. One of the commonest ones which
you will come across is the cursor in the AmigaBASIC List window.
This is a thin orange line which marks the position in the program
where you are working.

Data
Data is the information which a program operates on. This data can be
supplied as part of the program or it can be read from disc whilst the
program is running or it can even be typed at the keyboard when
required.

Decimal
Decimal is the base ten number system in which all numbers are
represented by just the digits 0-9. It is the system which is in use in
our everyday lives. In decimal numbers, each digit in a column
represents a power of ten. For example, 123 represents 1 *10*10 + 2*10
+3.

Directory
A directory is a structure on a disc. The space available on discs can be
divided into a hierarchy of directories to allow the individual files to
be split up into related categories and hence located easily. Directories
are also referred to as 'drawers'.

Error messages
An error message is the text printed in response to the occurrence of a
problem which the Amiga does not know how to handle. These can be
given for a wide variety of reasons. For example, issuing a command
which BASIC does not recognise, calling a function with the wrong
number of arguments and trying to save a program to a disc which is
already full are all errors which will result in an error requester
appearing containing an appropriate error message. To continue after
an error, you must first click on the OK gadget in the requester.

Event
An event is the occurrence of a particular action. For example a mouse
button being pressed, a collision occurring between two objects or a
certain period of time passing are all events. All events can be trapped
by a BASIC program so they may be acted upon by parts of the
program called 'event handlers'. Once you have set up the event

530

Glossary

handler, you can leave the rest of the work to the computer.
AmigaBASIC checks after each statement to see if any of the events
which are being trapped have occurred and, if so, automatically
moves to the event handler and executes it before carrying on
executing the main program.

Expression
An expression is a sequence of constants and variables together with
'operators' which act on them. For example in the statement:

triarea = height * width / 2

the variable 'triarea' is assigned the value of the expression on the
right-hand side of the '=' sign. This expression contains two operators
'*' and' I' which act on the variables 'height' and 'width' and the
constant '2'.

File
A file is a just a sequence of bytes which can be held in memory or
stored to disc. These bytes can represent any type of data. Therefore
files can contain numeric data, names and addresses, screen pictures,
BASIC programs etc.

Floating Point Numbers
Floating point numbers are also known as 'reals'. They are numbers
which can contain a decimal fraction as well as a whole number part.
For example 11.2, 0.00456 etc. AmigaBASIC supports two different
types of floating point numbers, single precision and double precision.
Double precision numbers cover a greater range and hold values to a
greater precision.

By default, variables are treated as being single precision reals.
However, they can be defined explicitly as being single precision or
used for double precision reals by either using the definitions
DEFSNG (single precision) or DEFDBL (double precision) or by giving
the variable name a terminating 'I' (single precision) or '#' (double
precision). Double precision variables take up more space than single
precision ones and operations on them are slower.

531

AmigaBASIC : A Dabhand Guide

Function
A function is a routine which returns a result. Functions subdivide
into two types: intrinsic functions which are those provided by
AmigaBASIC and user defined functions which you can write yourself
as part of a program. Either sort of function can return a result of any
type, ie numeric or string. For example the intrinsic function ASC
returns a number which is the ASCII code of a character whereas
CHR$ returns a string containing the character represented by the
ASCII code given as an argument.

Gadget
A gadget is a temporary box which appears when the Amiga wants
you to enter information. In some cases, gadgets require you to type
text into them (these are known as 'string gadgets'). In other cases all
you have to do is click on them to select them.

Heap
The heap is an area of memory shared by BASIC and all the other
applications running on the Amiga. It is used for holding, amongst
other things, the information for controlling the screen display.
Therefore, a program which creates new screens and windows
requires a lot of heap space and runs the risk of generating the error
message 'OUT OF HEAP SPACE'.

Hex
Hex is short for hexadecimal. It is the base sixteen number system in
which all numbers are represented by the digits 0-9 and the letters A
to F. Whereas in decimal, a one in a particular column represents a
power of ten, in hex it represents a power of sixteen. Therefore, 123 in
hex represents the decimal number 1*16*16 + 2*16 + 3.

Integer
An integer is a whole number, ie one without a fractional part. For
example 27, -44, etc. AmigaBASIC supports two different types of
integers: short integers which are numbers between -32768 and
+32767 and long integers which lie in the range -2147483648 to
2147483647.

Variables can be defined as being integer variables by either using the
definitions DEFINT (short integer) or DEFLNG (long integer) or by
giving the variable name a terminating '%' (short integer) or '&' (long

532

Glossary

integer). Long integer variables take up more space than short integer
ones and operations on them are slower.

Interface
An interface is a connection which allows a peripheral device such as a
printer to be connected to the Amiga. The Amiga has several different
interfaces: a serial connector to allow it to be connected to other
computers, a parallel connector for attaching certain makes of printer,
two joystick connectors etc.

Interlacing
This is a technique used to double the vertical resolution of the screen.
The display on a TV or monitor screen is refreshed 50 times a second.
When the screen is interlaced, two different images are held, one
containing the odd rows and the other containing the even ones and
these are refreshed alternately. The disadvantage of interlacing is that
the screen flickers because it has to change between two different
images.

Interpreter
An interpreter is a program which reads the statements in a program,
one at a time, and analyses them. If they are legal, then it carries out
the operations which are necessary by using machine code routines
contained within itself. A 'compiler' is a different means of achieving
the same end result. It converts the entire program into machine code
without executing any of it. Once it has all been converted, the
resulting machine code can then be executed.

The advantage of compilers is that the work of analysing the code is
done before the program starts and therefore less work has to be done
during the execution phase so programs run faster. The disadvantage
is that the machine code which is run has no knowledge of the BASIC
which produced it. This means that you cannot step through a BASIC
program which has been compiled one statement at a time to
investigate the values of variables etc.

AmigaBASIC is an interpreter. In fact most home computers are
supplied with BASIC interpreters because they are easier to use. Often,
BASIC compilers are produced in addition by third party suppliers for
serious software developers.

533

AmigaBASIC : A Dabhand Guide

Intuition
Intuition is a library of routines contained in the Amiga Operating
System. These routines handle the manipulation of windows, menus
and the mouse etc.

Keyword
A keyword is a word which AmigaBASIC recognises and treats in a
special way. Every statement or function which AmigaBASIC
provides is a keyword, for example CIRCLE which is a statement used
to draw a circle and ASC which is a function which returns the ASCII
value of a character. The full list of keywords is given in the Reference
Section of this book. When you type a program into the List Window,
any keywords will be converted to upper-case when you move onto a
different line to distinguish them. You are not allowed to use
keywords as variable names.

Library
A library is a group of routines which are related in some way. The
operating system of the Amiga is divided into libraries. Each library
contains a list of addresses for each of the routines within it. These
addresses can be used to access the routines from within your own
programs.

List Window
The List window is one of the two windows which appear when you
enter the AmigaBASIC system. It is used for entering and editing
BASIC programs.

Logical Operators
Logical or 'boolean' operators can be looked at in two ways. The first
is to regard them as acting on logical operands, ie those which have
the value true or false. They then produce true or false as their result.
The second way is to regard them as acting on sequences of bits in
which case each bit of their result is obtained by acting on the
corresponding bit(s) or their operand(s).

The six logical operators are 'NOT', 'EQV', 'AND', 'OR', 'XOR' and
'IMP'.

534

Glossary

Menus
Menus are lists of items. You can see the titles of the menus available
at a particular time by pressing the right-hand mouse button. To see
the contents of one of these menus, point at the appropriate title with
the mouse button still held down and the menu will appear beneath it.
Then you can select one of the options which it contains by moving
the mouse pointer down to point to it and then releasing the mouse
button whilst it is highlighted.

AmigaBASIC has four menus: the Project Menu for dealing with
program files, the Edit Menu for entering and editing programs, the
Run Menu for controlling program execution and the Windows Menu
for displaying the AmigaBASIC windows.

Multitasking
Multitasking is a word used to describe the Amiga Operating System.
It means that the Amiga is able to run several tasks at once. The CPU
divides its attention between each of the tasks which is running at a
particular time. Therefore, the more tasks you try to run, the slower
each will be. However, multitasking is a very useful feature to have
since it allows you to leave one application, enter another to perform
some action and then return and continue where you left off. It also
means that you can be getting on with other things whilst something
else is happening as a 'background task'. For example you can start
printing something and, instead of having to wait for it to finish, you
can be writing a BASIC program whilst the printing is going on.

Octal
Octal is the base eight number system in which all numbers are
represented by the digits 0-7. Whereas in decimal a one in a particular
column represents a power of ten, in octal it represents a power of
eight. Therefore, 123 in octal represents the decimal number 1*8*8 +
2*8 + 3.

Opcode
Opcode stands for operation code. It is the part of a machine code
instruction which instructs the CPU what operation to perform. The
remainder of the instruction is the data to be used.

535

AmigaBASIC : A Dabhand Guide

Operand
An operand is a piece of data which is to be operated on. For example,
the addition operator requires two operands which are the two
numbers to be added together.

Operating System
An Operating System is the main program supplied with a computer
which is responsible for performing the fundamental actions of the
machine. Without the Operating System, no software would run. For
example the Amiga Operating System handles all the standard
interface inputs using the mouse and menus, the displaying of screens
and windows, the production of sound etc.

Output window
An output window is the window into which you type BASIC
commands for loading and saving programs etc. In addition, it is
where output from your programs can be displayed. You can create
several output windows; however only one of these can be 'current' at
a given time. Graphics and text produced by your programs will
always be sent to the current output window.

When you enter the AmigaBASIC system, a default output window is
created for you.

Parameter
A parameter is a piece of data which is passed between the main
program and a function or subprogram which it is calling. The value
which is passed is known as the 'actual parameter' and the variable
which is used in the function definition to receive it is the 'formal
parameter' .

Pixel
A pixel is a rectangular dot on the screen. It is the smallest element
into which the display can be subdivided in a given screen mode. The
pixel in the top left-hand comer of the output window is defined to be
at position (0,0). Increasing the x-co-ordinate by one moves a point
across by one pixel and increasing the y-co-ordinate by one moves it
down by one pixel. Higher resolution modes contain more pixels;
therefore each of the pixels is smaller and so the picture is clearer. The
number of bits used to represent each pixel determines the number of
colours which are available for the pixel to be displayed in.

536

Glossary

Program
A program is a series of instructions which you enter into the
computer and then tell the computer to carry out.

RAM
RAM stands for Random Access Memory. This is the memory inside
the computer which you can both write to and read from. However,
the contents of the RAM are lost when the computer is switched off.
To preserve them they have to be saved to disc and read in again next
time they are required.

Register
A register is a special memory location within the CPU. The Amiga's
CPU contains 16 registers which you can use when writing assembly
language programs. Eight of these are for holding data, the other eight
for addresses. Each is 32 bits in size.

Relational Operator
A relational operator is an operator which takes two operands and
returns one of two alternate results: either true or false. For example:

heightl > height2

Relational operators tend to be used mainly as tests in IF or WHILE
statements. The full list is '=' (equals), '<>' (not equals), '>' (greater
than), '<' (less than), '>=' (greater than or equals) and '<=' (less than or
equals).

Requester
A requester is a temporary box which appears to allow the Amiga to
communicate with you. These always contain gadgets asking for
input. For example, when you ask to save a program, a requester may
be given showing the previous name used and asking you to either
supply a new name or go ahead with the one suggested.

Another example is an 'error requester'. These are used to display
error messages when the Amiga has come across a problem with what
you have asked it to do. These give you no option about the input you
give - they contain just one gadget which you have to click on when
you have read the message and want to continue.

537

AmigaBASIC : A Dabhand Guide

ROM
ROM stands for Read Only Memory. The ROM is a permanent bank of
memory which cannot be changed. The data within it is not lost when
the computer is switched off, however it cannot be altered. Some
computers keep the whole of their Operating System in ROM so that
the machine is ready to be used once it has been turned on. However,
the Amiga contains just a small core system in ROM - enough to
enable it to start up the machine and load the main Operating System
from disc plus a few extras depending on the actual model.

Sprite
Sprites are one of the types of moveable objects which the Amiga
provides (the other being bobs). Each type is handled by a different co­
processor, sprites being looked after by the one known as 'Denise'.
Sprites are limited in certain respects. They can be a maximum of 16
pixels wide, they can contain only three colours and the number
which can appear on the screen at a given time is restricted. Their
advantage over bobs is that they move quickly and don't have such a
tendency to flicker.

Stack
The stack is an area of memory which is used internally by BASIC to
hold information about the flow of control of a program. For example,
it uses it to store the position in the program at which a subroutine call
is made so that it knows where to return to at the end of the
subroutine. When the end of the subroutine is reached, the return
address is removed from the stack. Hence, while you are within a
subroutine, there will be one entry on the stack. If this subroutine calls
a second subroutine, then the call address of this will be added as well
and, during execution of the second subroutine, there will be two
entries on the stack and so on. Therefore the amount of stack space
used by a program depends not on its size but on how deeply you nest
structures. Normally, the stack space required is not great.

String
A string is a sequence of characters. Constant strings should be
enclosed in brackets and can be any length up to 32767 characters. For
example "Hello" or "Joe Bloggs, 20 High Street, Scunchester".

538

Glossary

Variables can be defined as being string variables by either using the
definition DEFSTR or by giving the variable name a terminating '$'.

Subprogram
A subprogram is a block of code which starts with the keyword SUB
followed by the name of the subprogram and ends END SUB. To
execute the statements it contains, the main body of the program just
needs to issue the command CALL followed by the name of the
subprogram.

By default, the variables used within a subprogram are entirely
independent of those of the main program. However, they can have
values passed to them which allow them to vary their actions each
time they are called.

Subroutine
A subroutine is a block of code which starts with a line number or
label and ends with the keyword RETURN. A subroutine should be
kept separate from the main body of the program. To execute the
statements it contains, the main body of the program just needs to
issue the command GOSUB followed by the relevant line number or
label. Then all the statements in the subroutine will be executed until
the RETURN is reached at which point control will pass back to the
main body.

Token
A token is a code which is used to represent an AmigaBASIC
keyword. Each token is just one byte long. When an AmigaBASIC
program is saved to disc in the normal way, each keyword is replaced
by the appropriate token in order to save room on the disc.

Variable
A variable is something which has a name and a value associated with
it. The name allows it to be identified and its value to be either set or
read. You can set the value as many times as you wish so that it
'varies' throughout the program - hence the name. For example, you
can have a variable called 'radius' which is assigned the value for
several different circles in turn and used to calculate the perimeter and
area for each. Using variable names instead of explicit values in
expressions makes them easier to understand.

539

AmigaBASIC : A Dabhand Guide

Word
A word is 16 bits or two bytes. It can be used to hold numbers
between 0 and 65535 (0000000000000000 and 1111111111111111 in
binary). However, when used to represent short integers, the usual
convention is to interpret the top bit as the sign bit in which case a
word represents numbers between -32768 and +32767. Long integers
require two words to represent them.

540

Other Dabs Press Books
Dabs Press publishes a wide range of books on computer topics. There
follows a list of some of our recent and forthcoming titles.

If you are interested in any of these books, details of how to obtain
them are given at the end of the list.

Commodore Amiga
AmigaDOS: A Dabhand Guide by Mark Burgess

ISBN 1-870336-47-X. Price £14.95. Available NOW.

This is a comprehensive guide to the Commodore Amiga, and its disc
operating system, covering releases 1.2 and 1.3 of AmigaOOS/
Workbench. It provides a unique perspective on this powerful system
in a way which will be welcomed by the beginner and experienced
user alike.

Rather than simply reiterating the Amiga manual, this book takes a
genuinely different approach to understanding and using the Amiga
and contains a wealth of practical hand-on advice and hints and tips.

Among the many features in this book are:

@ Full coverage of AmigaOOS functions
(i) Filing with and without the WorkBench
Q The Amiga's hierarchical filing system
(i) Pathnames and device names
61 The Amiga/s multitasking capabilities
<> The AmigaOOS screen editor
(i) AmigaDOS commands
61 Batch processing
Q Amiga Error code descriptions
.. Use of the RAM discs
(i) Using AmigaOOS with C

541

AmigaBASIC : A Dabhand Guide

C: A Dabhand Guide by Mark Burgess

ISBN 1-870336-16-X. Price £14.95. Discs £7.95-£9.95 inc. VAT. Available
NOW.

This is the most comprehensive introductory guide to C yet written,
giving clear, comprehensive explanations of this important
programming language.

The book is packed with example programs, making use of all C's
facilities. Unique diagrams and illustrations help you visualise
programs and to think in C.

Assuming only a rudimentary knowledge of computing in a language
such as C or Pascal, you are provided with a grounding in how to
build up programs in a clear and efficient way.

The differences between various compilers are acknowledged and
sections on the popular compilers for the Amstrad/IBM PC, Acorn
machines including BBC and Archimedes, Atari ST and Commodore
Amiga are included, with notes concerning the ANSI and Kernighan
and Ritchie standard.

Features of the book include:

.. Compatible with all popular ANSI and K&R compilers

.. Sections for PCs, Atari, Amiga and Acorn

.. Diagrams to help you think in C
e Arrays and string handling
e Data structures
.. Mathematical programming
e Recursion
e Discs available for many machines

Mark Burgess writes computer programs in many languages of which
C is his favourite. He is an honours graduate in Theoretical Physics.

"J wish this book had been available when J was learning C" Personal
Computer World. " ... will give even relatively inexperienced programmers a
clear understanding of programming in c." Elektor Magazine (December
1988).

542

Other Dabs Press Books

Acorn Archimedes
Archimedes First Steps: A Dabhand Guide by Anne Rooney

ISBN 1-870336-73-9. Price £9.95. Available NOW.

This book is the ideal starting point for first-time users of the
Archimedes, taking you through the first few days and months of
owning and using the machine.

There is an abundance of software provided with the Archimedes, and
Anne goes through the programs, telling you how to get them started
and how to get the most out of them.

Many hints and shortcuts for using the RISe os Desktop are also
discussed, as are many third-party commercial software packages in
such fields as art, music and so on.

Budget DTP for the Acorn Archimedes & A3000: A Dabhand Guide
by Roger Amos

ISBN 1-870336-11-1. Price £12.95. Available Now.

Every Archimedes and BBe A3000 owner receives copies of the
!Draw, !Paint and !Edit software, along with the RIse os operating
software. This book shows how these applications can be used to
produce high-quality documents without the need for an expensive
desktop publishing package.

The book includes detailed descriptions of the various applications,
and helpful tips are given on how to get special effects such as drop
shadows and pie charts. There are also sections on fonts, clip art and
page layout as well as printers and reproduction of your finished
work.

Roger Amos is a technical journalist and public relations consultant,
who has used Acorn computers since the appearance of the BBe
Model B. He has a long-standing professional interest in typography
and has worked on Beebug's DTP package Ovation and their Outline
font creation programme.

543

AmigaBASIC : A Dabhand Guide

Archimedes Operating System: A Dabhand Guide
by Alex & Nic Van Someren

ISBN 1-870336-48-8. Price £14.95. Programs disc £9.95 inc.VAT.
Available NOW.

For Archimedes users who take their computing seriously, this guide
to the Operating System gives you a real insight into the micro's inner
workings. This book is applicable to any model of Archimedes.

The Relocatable Module system is one of the many areas covered. Its
format is explained and the information necessary for you to write
your own modules and applications is provided. This tutorial
approach is a common theme running throughout the book.

The sound system is explained and the text includes much
information never before published. The discerning llser will revel in
the wealth of information covering many aspects of RISC OS such as:

• The ARM instruction set
• Writing relocatable modules
• VIDC, MEMC and IOC
,. Sound
.. The voice generator
.. SWls
.. Vectors and Events
.. Command Line Interpreter
., The FileSwitch Module
• Floating Point Model

Throughout the book, programs are used to provide practical
examples to use side-by-side with the text, which go to make this
publication the ideal table-side companion for all Archimedes users.

A programs disc is also available containing all the listings from the
book, and some extra useful programs as well.

"Here is an essential book for Archimedes programmers" Micronet 800
(April 1989). "A jolly good read. Lots of really useful il1formation presented
in an accessible and readable manner ... this is a clearly written, well
presented book. It is up to the usual high standards we have come to expect

544

Other Dabs Press Books

from Dabs Press, and I wholeheartedly recommend it to all who want to know
more about their machine's operating system." Archive magazine March
1989.

Archimedes Assembly Language: A Dabhand Guide by Mike Ginns

ISBN 1-870336-20-8. Price £14.95. Programs Disc £9.95. Available
NOW.

Learn how to get the most from the remarkable Archimedes micro by
programming directly in the machine's own language, ARM machine
code. This is the only book that covers all aspects of machine
code/assembler programming specifically for the entire Archimedes
range.

For those new to assembler programming, this book contains sections
which take you step-by-step through new and exciting areas of
Archimedes programming, including many examples using the
features of the RISC OS Operating System, including the co-operative
multitasking environment.

e Practical tutorial approach with example programs
o Descriptions of all the processor instructions
e Using the Operating System, WIMPs and Vectors
" Co-operative multitasking explained
e Assembler equivalents of BASIC commands
e Sound and graphics in machine code

"The contents make the book a welcome addition to the manual provided with
the computer, and will, no doubt, be an invaluable source of information for
many owners of an Archimedes" Everyday Electronics (December 1988)

BASIC V: A Dabhand MiniGuide by Mike Williams

ISBN 1-870336-75-5. Price £9.95. Available NOW.

This is a practical guide to programming in BASIC V on the Acorn
Archimedes. Assuming a familiarity with the BBC BASIC language in
general, it describes the many new commands offered by BASIC V,
already acclaimed as one of the best and most structured versions of
the language on any micro.

The book is illustrated with a wealth of easy-to-follow examples.

545

AmigaBASIC : A Dabhand Guide

An essential aid for all Archimedes users, the book will also appeal to
existing BBC BASIC users who wish to be conversant with the new
features of BASIC V. Major topics covered include:

"Using the colour palette
,. Use of mouse and pointer
"'Operators & string handling
"Control structures
"Functions and procedures
.. Extended graphics commands

,. WHILE, IF and CASE
'" Local error handling
"'The Assembler
e Matrix operations
"Sound
-Hints and tips

Mike Williams has been working with computers for over twenty
years. For the past five, he has been editor of Beebug and RISC User
magazines, the latter being the largest circulation magazine devoted to
the Archimedes.

BBe Micro & Master
Master 512: A Dabhand Guide by Chris Snee

ISBN 1-870336-14-3. Price £9.95. Programs Disc £7.95 inc.VAT.
Available NOW.

This is a comprehensive reference guide for all users of the Master 512,
Acorn's PC-compatible add-on for the Master 128 and BBC Micros,
and the companion Volume to this book.

Master 512: A Dabhand Technical Guide by Robin Burton

ISBN 1-870336-80-1. Price £14.95. Program Disc £7.95 inc. V AT.
A vailable NOW

This second volume on the Acorn Master 512 covers the more
technical issues associated with the system and provides useful
information on technical utilities provided with the system, such as
EDBIN, the binary file editor.

Master Operating System: A Dabhand Guide by David Atherton

ISBN 1-870336-01-1. 272pp. Price £12.95. Program Disc £7.95 inc. VAT.
Available NOW.

Now in its second edition, this is the definitive reference work for
programmers of the BBC Model B+, Master 128, and Master Compact

546

Other Dabs Press Books

computers. It also contains much material of interest to BBC Model B
and Electron users. The book covers all the features of the Acorn
machine operating system (MOS).

Mastering Interpreters and Compilers by Bruce Smith

ISBN 0-563-21283-7. 314pp. Price £14.95 incl. programs disc (inel.VAT).
Available NOW.

This elear and comprehensive introduction to the often misunderstood
topic of computer language interpreters and compilers emphasise the
practical side of the art.

BSC Micro Assembler Bundle by Bruce Smith

ISBN 1-870336-08-9. Price £4.95 (inc. V AT). Available NOW.

This is a five part package of materials for anyone starting out learning
assembly language/machine code programming on the BBC
Micro /Master Series.

Mini Office II: A Dabhand Guide by Bruce Smith and Robin Burton

ISBN 1-870336-55-0. Price £9.95. Program Disc £7.95 inc.VAT.
Available NOW.

Bruce Smith and Robin Burton have joined forces to write this official
tutorial and reference guide to the award-winning and revolutionary
Mini Office II software. This book covers the BBC Micro and Master
versions of the program.

VIEW: A Dabhand Guide by Bruce Smith

ISBN 1-870336-00-3. Price £12.95. Program Disc £7.95 inc.VAT.
Available NOW.

Now in its second edition, this is the most comprehensive tutorial and
reference guide ever written about the Acornsoft VIEW
wordprocessor, for the BBC Micro, and issued as standard (but
without a manual!) on the BBC Master 128 and Compact computers.

ViewSheet and ViewStore: A Dabhand Guide by Graham Bell

ISBN 1-870336-04-6. Price £12.95. Program Disc £7.95 inc. VAT.
Available NOW.

547

AmigaBASIC : A Dabhand Guide

This is a complete tutorial and reference guide for the ViewSheet
spreadsheet and ViewS tore database manager for the BBC Micro
model B/B+, Master 128 and Compact computers. Whether you wish
to check your bank statement or run a million-pound business, this
book is for you.

Z88
Z88 A Dabhand Guide by Trinity Concepts

ISBN 1-870336-60-7. Price £14.95. Available NOW

This is the most comprehensive guide for all users of the Z88 portable
computer and is indispensable for anyone wanting to get the most out
of their machine.

All of the standard built-in application programs, including (but by no
means limited to) PipeDream, are covered and clearly explained using
easy-to-follow examples, and many hints and tips are included en
route.

Z88 PipeDream: A Dabhand Guide by John Allen

ISBN 1-870336-61-5. Price £14.95. Available NOW

In this detailed and authoritative book, John Allen explains how to get
the most out of PipeDream, the standard business software supplied
with the Cambridge Z88 portable computer.

Psion Organiser
Psion Organiser LZ: A Dabhand Guide by Ian Sinclair

ISBN 1-870336-92-5. Price £14.95. Available NOW

In this exciting book, Ian Sinclair, the UK's premier computer author
delves into the new LZ Organiser from Psion, explaining how to use
the various utilities and the built-in programming language.

IBM PC Compatibles
BASIC on the PC: A Dabhand Guide by Geoff Cox

Price £14.95. Available early 1992.

548

Other Dabs Press Books

In this book, Geoff Cox provides a comprehensive tutorial and
reference to the programming language provided free with most mM­
compatible machines. As well as a friendly and helpful tutorial in
BASIC programming, the book contains a complete command
reference, detailing every command in GW-BASIC with examples of
its use.

The book is also suitable for programming with Microsoft
QuickBASIC and Borland TurboBASIC.

Ability and Ability Plus: A Dabhand Guide by Geoff Cox

ISBN 1-870336-51-8. Price £14.95. Available early 1992.

In this book, Geoff Cox provides a no-nonsense comprehensive
tutorial and reference to this popular integrated package for mM
compatible computers including the Amstrad range.

All aspects of all the modules are covered and, by the use of examples,
you are shown how to perform a range of business tasks and how to
use the programs in conjunction with each other, including
transferring of data.

AmstradPCW
PCW9512: A Dabhand Guide by F. John Atherton

ISBN 1-870336-50-X. Price £14.95. Available Spring 1992.

The Amstrad PCW9512 personal computer word processor and its
accompanying software, the LocoScript 2 system, has revolutionised
low-cost wordprocessing and introduced a whole generation of people
to computer-based word processing for the first time.

In this easy-to-follow guide, John explains how to use the program
starting from first principles, with no prior knowledge assumed, either
of the Amstrad PCW system, the LocoScript program or even
computers in general.

You are shown in practical detail how to set the system up to your
own preferences and how to produce neatly laid out letters, reports,
essays and so on.

549

AmigaBASIC : A Dabhand Guide

Difficult subjects are not avoided; instead they are introduced in a
painless and straightforward way. After you have read this book, you
will, without knowing it, become a perceptive and sagacious word
processor user!

F. John Atherton has used an Amstrad PCW machine for many years,
and has trained dozens of beginners on the machine. He has used the
most common questions and problems as the basis for many of the
topics in this book.

General
Software
Dabs Press publish a range of software for the Acorn Archimedes and
BBC Micro, including products as diverse as language compilers for
BASIC and Pascal, and computer games. For a free catalogue of
software, please contact us.

Obtaining Dabs Press Books and Software

You can obtain Dabs Press books and software from any good
bookshop or computer dealer, or in case of difficulty directly from us.

Orders can be sent by post and payment can be made by cheque
(drawn on a UK bank), postal order, credit card (quote number and
expiry date), or official order (education/public sector /PLCs only).

Telephone or fax orders can be made with a credit card - this is the
simplest and most popular method.

Our address, telephone number and fax number are on page 2 of this
book.

550

Index
...... 170
+ ... 170
- ... 170
< ... 95,170
<= ... 170
<> ... 94,170
= ... 94,170
> ... 170
>= ... 170
? ... 54,450
1\ ... 170
\ ... 170

ABS ... 175, 296
Absolute positions ... 30
Accelerating objects ... 214,409-

410
Address ... 527
Amiga keys ... 20
Amiga-.... 302
Amiga-C ... 22
Amiga-P ... 22
Amiga-R ... 20
AND ... 171-173
Angles ... 43
APPEND ... 226
Arcs ... 43-44,311
Arctangent ... 300
AREA ... 139-147,297
AREAFILL ... 139-147,298
Arguments ... 527
Arithmetic operators ... 169-170,

527

Arrays ... 65-70, 175-179
Dimensions ... 339,371,504
Elements ... 65
Multi-dimentional ... 67-69
Removing ... 343
Space ... 179
Subscripts ... 436

Arrow keys ... 19
ASC ... 94,299
ASCII ... 94,299,527
Aspect ratio ... 44
Assembler ... 527
Assemblers ... 269
Assembly language ... 268-270
Assigning to arrays ... 66
Assigning to variables ... 32,374
ATN ... 175,300

Background colour ... 37,319
Background tasks ... 262-263
Backups ... 283
BASIC ... 16,528

Data area ... 260-261
Leaving ... 27,495
Line ... 24

BEEP ... 301
Binary ... 528
Bit ... 528
Bits per pixel ... 149
Blitter ... 528
Bobs ... 207,528
BREAK ... 302,426
Break events ... 426

551

AmigaBASIC : A Dabhand Guide

Buffers ... 231,529
Bugs ... 529
Byte ... 529

CALL ... 76,303
Cataloguing directories ... 349
CDBL ... 168,305
Central processing unit ... 268
CHAIN ... 254,306
Channels for sound ... 46
Character position ... 105
CHOIR ... 280,308
CHR$... 94,309
CINT ... 310
CIRCLE ... 30,43-46,311
Circles ... 29-30,311
CLEAR ... 313
CLNG ... 168,314
CLOSE ... 315
CLS ... 38,316
Co-processor ... 529
COLLISION ... 216-217,317,318
Collisions between objects ...

215-217,413,427
COLOR ... 37,319
Colour ... 36-38

Background ... 37, 319
Foreground ... 37,319
Selection ... 438

Comments ... 25,461
COMMON ... 254,320
Comparing strings ... 94
Concatenation of strings ... 96
Conditional expressions ... 58
Conditional loops ... 62-64, 359-

362
CONT ... 321

552

Continuing program execution
... 321

Control variables ... 35-36
Conversions ... 234, 236
Converting between

numbers & strings ... 97-99
Converting between

numeric types ... 168,305,
310,314,323,350,369

Converting numbers to strings
... 309,490

Converting strings to numbers
325,326,327,328,397-
400,506

Coordinates ... 29
Copy ... 22
COS ... 175, 322
Cosine ... 322
CPU ... 268,529
Creating files ... 225
CSNG ... 168,323
CSRLIN ... 108, 324
CTRL-C ... 302
Current directory ... 280,308
Cursor ... 19, 529
CVD ... 236, 325
CVI ... 236, 326
CVL ... 236,327
CVS ... 236,328

DATA ... 82-85,329
Data ... 82-86,530, 460,462
Data area ... 260-261
DATE$... 330
Debugging ... 88-92, 502-503
Decimal ... 530
DECLARE FUNCTION ... 331
DEF FN ... 80,332

DEFDBL ... 166,333
DEFINT ... 166,334
DEFLNG ... 166,335
DEFSNG ... 166,336
DEFSTR ... 166, 337
Delay loops ... 40
DELETE ... 256,338
Deleting files ... 370
Depth of screen ... 149
Devices ... 277-293
DIM ... 66,339
Dimensioning arrays ... 66
Directories ... 308, 349, 530
Directory, Current ... 280
Discs ... 277-283
Drawers ... 279
Duration of sound ... 48

Editing a program ... 19,22,70-
71,338

Editing objects ... 208-210
Elements of an array ... 65
Ellipses ... 43-46, 311
ELSE ... 59
END ... 73,341
END SUB ... 76
Entering a program ... 21
EOF ... 228, 342
EQV ... 171-173
ERASE ... 179,343
ERL ... 345
ERR ... 344
ERROR ... 346
Error handling ... 86-88, 428,

463
Error messages ... 519-526, 530
Errors ... 22-23,344,345,346
Events ... 530

Index

Event trapping ... 302
Examining variables ... 89
EXIT SUB ... 80
EXP ... 175,347
Expressions ... 33,58, 169,531

FIELD ... 234, 348
Fields ... 232
FILES ... 349
Files ... 531 (see also Random

File,

Access Files &
Sequential Files)

Deletion ... 370
Closing ... 315
End of ... 342
Length ... 385
Name ... 282

Fill patterns ... 139-147,439
FIX ... 168, 350
Floating point ... 531
FOR ... 34-36,351,408
Foreground colour ... 37, 319
Formatting discs ... 277
Formatting numbers ... 180-181
FRE ... 262, 353
Frequency of sound ... 46-47
Functions ... 80-81, 332, 532

Mathematical ... 175

Gadget ... 532
GET ... 161,354
GOSUB ... 73,356
GOTO ... 357
Graphics output ... 29
Graphics, Storing images ...

161-164

553

AmigaBASIC : A Dabhand Guide

Hard copy ... 286
Heap ... 261-262,532
Hex ... 532
HEX$... 98,358
Hexadecimal notation ... 99,

358,532
High resolution screens ... 148

IF ... 58-61,359-362
IMP ... 171-173
Indentation ... 34-35
INKEY$... 61,363
INPUT ... 55-58, 226, 364
Input devices ... 288
INPUT# ... 227,367
INPUT$... 366
Inputting data ... 227
INSTR ... 99, 368
INT ... 59,168,369
Integers ... 58,166,532
Interface ... 533
Interlacing ... 148,533
Interpreter ... 533
Intuition ... 534

Joysticks ... 287-288,487,489
Keyword ... 18, 534

KILL ... 370

Labels ... 71-72
LBOUND ... 175,371
Leaving BASIC ... 27
LEFT$... 372
LEN ... 99,373
Length of strings ... 99,373
LET ... 33,374
Libraries ... 331,534

554

LIBRARY ... 275,375
LINE ... 30,39-41,376
LINE INPUT ... 377
LINE INPUT# ... 377
Line numbers ... 71-72
Line patterns .. , 147-148,439
Line width ... 104-105,511
Lines ... 29-30, 376
Linking programs ... 253-254
LIST ... 19,20,379
List window ... 17,534
Listings ... 286
LLIST ... 286,381
LOAD ... 26, 382
Loading a program ... 25
LOC ... 383
Local variables ... 78-79
LOCATE ... 108,384
LOF ... 175,385
LOG ... 386
Logical operators '" 171,534
Loops ... 34-36, 351

Conditional ... 62-64
Delay ... 40
Nested ... 41
Overlapping ... 41

Low resolution screens ... 148
Lower bounds ... 66
LPOS ... 387
LPRINT ... 284, 388-389
LSET ... 390

Machine code ... 267
Accessing from BASIC ...
272-275
Calling from BASIC ... 303
Subroutines ... 375

Mathematical functions ... 175

Memory management ... 259,
353

Memory re-allocation ... 313
Memory usage ... 152
MENU ... 156, 391-394
Menu bar ... 20
Menu events ... 431
Menus ... 155-159,535
MERGE ... 81, 255, 395
Merging programs ... 81-82
MID$... 101-104,396
MKD$... 234, 397
MKI$... 234, 398
MKL$... 234, 399
MKS$... 234, 400
MOD ... 170
MOUSE ... 159,401-405
Mouse events ... 432
Mouse input ... 159-161
Moving objects ... 212-213
Multi-dimensional arrays ... 67-

69
Multiple windows ... 153-155
Multitasking ... 535

NAME ... 282,405
Naming discs ... 279
Naturallogarithrn ... 386
Nested loops ... 41
NEW ... 21,26,407
New entry ... 21,26
NEXT ... 34-36,408
NOT ... 171-173
Number to string conversion ...

98-99,234,309,425,
490

Numbers, Formatting ... 180-
181

Index

Numeric expressions ... 169
Numeric type conversions ...

168,305,310,314,323,
350,369

Numeric variables ... 32-33, 165-
168

OBJECT ... 210-215
OBJECT.AX ... 409
OBJECT.AY ... 310
OBJECT. CLIP ... 411
OBJECT. CLOSE ... 412
OBJECT.HIT ... 413
OBJECT. OFF ... 414
OBJECT.ON ... 415
OBJECT. PLANES ... 416
OBJECT. PRIORITY ... 417
OBJECT.5HAPE ... 418
OBJECT.START ... 419
OBJECT.STOP ... 420
OBJECT.VX ... 421
OBJECT.VY ... 422
OBJECT.X ... 423
OBJECT.Y ... 424
Objects,

Accelerating ... 214,409-410
Bounding box ... 411
Collision ... 215-217,317,413,

427
Editing ... 208-210
Moving ... 212-213
Position ... 210-211,423-424
Velocity ... 419-422
Visibility ... 414-415,417

OCT$... 98,425
Octal ... 99,425,535
Offsets ... 30
ON ... 429-430

555

AmigaBASIC : A Dabhand Guide

ON BREAK ... 426
ON COLLISION ... 427
ON ERROR GOTO
ONMENU ... 431
ON MOUSE ... 432
ON TIMER ... 433
Opcode ... 269, 535
OPEN ... 225, 434
Open ... 26
Opening files ... 225
Operand ... 536
Operating system ... 536
Operating system access ... 275
Operation code ... 269
Operators ... 33, 169-174

Arithmetic ... 169-170,527
Logical ... 171, 534
Priority ... 173-173
Relational ... 170
String ... 94-97

OPTION BASE ... 436
OR ... 171-173
OUTPUT ... 225
Output devices ... 288
Output window ... 17,29,512-

515,536
Outputting data ... 226
Outputting to a printer ... 284
Overlapping loops ... 41
Overlays ... 254, 256, 306

PAINT ... 137-139,437
PALEITE ... 38-39,438
Parameters ... 76-78,536

Array ... 175
Paste ... 22
Pathnames ... 282
PATTERN ... 140-142, 439

556

Patterns ... 139-147
PEEK ... 441
PEEKL ... 442
PEEKW ... 443
Pen position ... 105
Phonemes ... 195-197,501
Pixels ... 29, 536
POINT ... 444
Points ... 29-30,449,4455
POKE ... 445
POKEL ... 446
POKEW ... 447
Polygons ... 139-147,297,298
POS ... 108,448
Positioning objects ... 210
Positions, Absolute ... 30
Positions, Relative ... 30
PRESET ... 449
Pretty printer ... 134
PRINT ... 54-55,450
PRINT USING ... 180,451
PRINT# ... 227,452
PRINT# USING ... 454
Printers ... 283-287,387,388-389
Printing spaces ... 485
Priority of operators ... 173-173
Program ... 537

Deleting ... 407
Editing ... 18, 22, 70-71, 338
Entering ... 18,21
Execution ... 468
Halting execution ... 208,340
Length ... 385
Line ... 24
Linking ... 253-254
Loading ... 25-27, 382
Merging ... 81-82,395
Renaming ... 406

Running ... 19
Saving ... 25-27,470
Stepping through ... 88
Suspending execution ... 480
Termination ... 341
Tracing ... 502-503

PSET ... 30,455
PTAB ... 107,456
PUT ... 161,457

Quit ... 27, 495
Random access files ...

232,325-328,342,348,354,
383,390,397-400,434-435,
457,467

Random access
Random numbers ... 33,459,

466
RANDOMIZE ... 33,459
READ ... 82-85,460
Real variables ... 58
Reals, Trailing declaration

characters ... 166
Records ... 232
Rectangles ... 39-41,376
Register ... 269, 537
Relational operators ... 170,537
Relative positions ... 30
REM ... 25,461
Requester ... 537
Resetting variables ... 89
RESTORE ... 85, 462
RESUME ... 88,463
RETURN ... 73, 464
RIGHT$... 101,465
RND ... 33,466
ROM ... 538
RSET ... 467

Index

RUN ... 19-20,468
Running a program ... 19

SADD ... 469
SAVE ... 25-27,470
Save As ... 25-27
Saving a program ... 25
Saving graphic images ... 161-

164,354
SAY ... 195,471
SCREEN ... 150,474
Screen depth ... 149
Screens ... 148-152
SCROLL ... 476
Sequential files ... 225-231, 342,

367,378,383,434-435,
452-454, 517

SGN ... 477
SHARED ... 478
Shared variables ... 78-79
Show list ... 20
SIN ... 175,479
Sine ... 479
Size specifier ... 269
SLEEP ... 480
Solid shapes ... 137-147
SOUND ... 49-50,481-483
Sound channels ... 183-184
SOUND RESUME ... 184
SOUND WAIT ... 184
Sounds ... 46-50, 183-190
Source code ... 269
SPACE$... 484
Spaces

In a statement ... 24
In a string ... 484
Outputting ... 55
When printing ... 485

557

AmigaBASIC : A Dabhand Guide

SPC ... 55,485
Speech ... 195-200,471,501
Splitting strings ... 101
Sprites ... 207,538
SQR ... 175,486
Square roots ... 486
Stack ... 259-260,538
Start ... 20
Statement ... 18
STATIC ... 76
STEP ... 30,36,302
Step size ... 36
Stepping through programs ...

88
STICK ... 287,487
STOP ... 488
STR$... 98,490
STRIG ... 287, 489
String to number conversion ...

97-98,236,325,326,
327,328,397-400,506

String variables ... 32, 53-55
STRING$... 96, 491
Strings ... 53-55,538

Comparing ... 94-96
Concatenating ... 96
Finding substrings in ... 99
Joining ... 96
Length of ... 99,373
Multiple characters ... 491
Of spaces ... 484
Operators ... 94-97
Splitting ... 101
Substrings in ... 368, 372, 396,
465
Trailing declaration character
... 166
Upper case ... 505

558

SUB ... 76,492
Subprograms ... 75-80,478,539
Subprograms, Calling ... 303
Subroutines ... 73-74,356,464,

492,539
Subscripts ... 65, 69-70,436
Substrings ... 99,101-103,368,

372,373,396,465
SWAP ... 494
Synchronisation ... 183-184
Syntax error ... 23
SYSTEM ... 27, 495

TAB ... 107,496
Tabulating output ... 106-108
TAN ... 175,497
Tangent ... 497
Tempos ... 48-49
Text ... 53-55
Text position ... 105-109,384,

448,456,496
Text,
THEN ... 58
Time events ... 433
TIME$... 498
TIMER ... 499-500
Token ... 539
Trailing declaration characters

... 166
TRANSLATE$... 195-196,501
TROFF ... 502
TRON ... 503
Type conversions ... 234, 236
UBOUND ... 175,504
UCASE$... 505
Upper bounds ... 66
VAL ... 97,506
Variables ... 31-34,539

Assigning to '" 32,374
Control ... 35-36
definition of type ... 333-337
Erasing ... 313
Examining ... 89
Integer ... 58
Local ... 78-79
Numeric ... 32-33, 165-168
Real ... 58
Resetting ... 89
Shared ... 78-79,255-256,320,
478
String ... 32, 53-55
Swapping values ... 494

VARPTR ... 507

WAVE ... 189,508
Waveforms ... 508
Waves ... 189-190
WEND '" 509
WHILE ... 62-64,510
WIDTH ... 105-106,511
Width of lines ... 104-105
WINDOW ... 151, 512-515
Window, List ... 17
Window, Output ... 17
Windows ... 148-155
Word ... 540
WRITE ... 516
WRITE# ... 230,517

XOR ... 171-173

Zone width ... 106, 511

Index

559

j . . ,

C\ lAc... c\:1-.

-----,.A Dabhand Guide ,-----'
AmigaBASIC: A Dabhand Guide provides a fully structured
tutorial to using AmigaBASIC on the whole range of Commodore
Amiga computers.

Practical application is one of the many themes running through
the pages and as such the many varied programs contained in its
pages are both useful, and informative in programming
technique. You are assumed to have a grounding of the way in
which your Amiga works but no prior knowledge of BASIC itself is
necessary. A graphical theme is applied to the many examples in
the book so that the techniques described are visually reinforced.

The many features of this book include:

• Writing and editing a program
• Handling and understanding errors
• Communicating with the user
• Text handling
• Graphics and the palette
• Animation, sprites and collisions
• Sound, Voices and speech
• Structured programming
• File handling
• Writing large programs
• Debugging programs
• Memory and resource management

AmigaBASIC: A Dabhand Guide is one of the most comprehensive
and informative books on this topic, and an indispensable
reference to any AmigaBASIC programmer.

Paul Fellows is a professional computer programmer and writer
with many years of experience in the field.

£15.95
ISBN 1 870336 87 9

I I
9 781870 336871

