

AmigaBASIC

A Dabhand Guide

by
Paul Fellows

AmigaBASIC: A Dabhand Guide

Written by Paul Fellows
© Solent Computer Products 1992
ISBN 1-870336-87-9

First Edition, first printing February, 1992
Editor: Syd Day

Typesetting: David Atherton, Bruce Smith
Production: Andrew Wygladala
Cover Artwork: Clare Atherton

All Trademarks and Registered Trademarks used in this book are
hereby acknowledged.

All rights reserved. No part of this publication may be reproduced or
translated in any form, by any means, mechanical, electronic or
otherwise, without the prior consent of the copyright holder.

Disclaimer: While every effort has been made to ensure that the
information in this publication is correct and accurate, the Publisher
can accept no liability for any consequential loss or damage, however
caused, arising as a result of using information printed in this book.

This book was produced using an Apple Macintosh desktop
" publishing system.

Typeset in 10/12pt Palatino.

Published by Dabs Press, PO Box 48, Prestwich, Manchester M25 7HF.
Telephone 061-773 8632. Fax 061-773 8290.

Printed and bound in the UK by BPCC Wheaton, Exeter EX2 8RP.

Contents

1: Introduction

The Basics

What Is a Program ?

Entering AmigaBASIC

Writing and Running a Program
Making Simple Edits

Menus and Amiga Key Commands
Creating Another Program
Errors

BASIC Lines

Loading and Saving

Leaving BASIC

2 : Starting Out

Points, Lines and Circles
Introduction to Variables
Loops

Using Colour

The Palette

Rectangles

Loops within Loops
Arcs and Ellipses
Making Sounds

3 : Interacting with the User

Handling Text

Asking for Input

Acting on Information Received
Looking for Input

Conditional Loops

4 : Writing Large Programs

Coping with Variables
Arrays

Dimensioning and Assigning to an Array

Multi-dimensional Arrays
Rules About Subscripts

15
16
16
17
18
19
20
21

24
25
27

29
29
31

36
38
39
41
43
46

53
53
55
58
61
62

65
65
65
66
67
69

AmigaBASIC : A Dabhand Guide

Making Editing Easier 70
Scrolling 70
Line Numbers and Labels 71
Keeping It Structured 72
Subroutines 73
Subprograms 75
Passing Parameters 76
Updating Parameters 77
Local and Shared Variables 78
Subprograms: Other Points to Note 79
Functions 80
Merging Programs Together 81
What To Do With Data 82
Reading and Defining Data 82
Re-using Data Statements 85
Error Handling 86
Debugging 88
Stepping Through a Program 88
Examining and Resetting Variables 89
Applying These Techniques 90
5 : Manipulating Text 93
String Expressions 94
Comparing Strings 94
Joining Strings Together 96
Converting Between Numbers and Strings 97
Finding the Length of a String 99
Finding Strings within Strings 9
Splitting Strings 101
Replacing Part of a String 103
Altering the Width of a Line 104
Character Positions 105
Tabulating Output 106
Positioning Text 108
A Final Example 109
6 : More On Graphics 137
Painting In Areas 137
Polygons and Patterns 139

Contents

Line Patterns 147
Creating Screens and Windows 148
Memory Usage 152
Using Multiple Windows 153
Menus 155
Mice 159
Storing Graphic Images 161
7 : Number Crunching 165
Types of Numeric Variables 165
Converting Between Different Numeric Types 168
Numeric Expressions 169
Arithmetic Operators 169
Relational Operators 170
Logical Operators 171
Operator Priority 173
Mathematical Functions 175
Advanced Use of Arrays 175
Array Space 179
Formatting Numbers on Output 180
8 : Sounds and Voices 183
Synchronisation 183
Waves 188
Speech 195
Phonemes 196
Punctuation 197
Altering the Voice 198
0 - Pitch 198

1 - Inflection 198

2 - Rate 198

3 - Voice 198

4 - Tuning 199
5-Volume 199

6 — Channel 199

7 -Mode 199

8 — Control 200

AmigaBASIC : A Dabhand Guide

9 : Animation 207
Bobs and Sprites 207

The Object Editor 208

Pen 209

Line 209

Oval 209

Rectangle 209

Eraser 209

Paint 209

Positioning Objects 210

Setting Things in Motion 212

The Area of Action 214

Handling Collisions 216

10 : File Handling 225
Sequential Files 225

Creating and Opening Files 225
Outputting and Inputting Data 226

Buffers 231

Random Access Files 232

Writing to Random Access Files 233

Reading from Random Access Files 236

Putting Theory into Practice 237

11 : Managing Resources 253
Linking Programs Together 253

Sharing Variables Between Programs 255

Overlays 256

Memory Management 259

The Stack 259

BASIC Data Area 260

The Heap 261

The FRE Function 262
Background Tasks 262

12 : Machine Code From Basic 267
Calling Machine Code Routines 267

Machine Code 267

The Central Processing Unit 268

Contents

Machine Code or Assembly Language 268
A Very Brief Overview 270
Accessing Machine Code From AmigaBASIC 272
Operating System Access 275

13 : Devices 277
Using Discs 277
Formatting a Disc 277
Naming a Disc 279
Copying BASIC Across 279
Creating Drawers 279
The Current Directory 280
Providing Pathnames 282
Acting on Files 282
Making Backups 283
Printers 283
Sending Output to a Printer 284
Using the Printer’s Features 285
Printed Listings 286
Joysticks 287
Input and Output Devices 288

Appendices

A : Command Reference 295
Introduction 295
ABS 296
AREA 297
AREAFILL 298
ASC 299
ATN 300
BEEP 301
BREAK ON/OFF/STOP 302
CALL 303
CBDL 305
CHAIN 306
CHDIR 308
CHR$ 309
CINT 310

AmigaBASIC : A Dabhand Guide

CIRCLE 311
CLEAR 313
CLNG 314
CLOSE 315
CLS 316
COLLISION 317
COLLISION ON/OFF/STOP 318
COLOR 319
COMMON 320
CONT 321
COSs 322
CSNG 323
CSRLIN 324
CVD 325
CVI 326
CVL 327
CVsS 328
DATA 329
DATES$ 330
DECLARE FUNCTION 331
DEF FN 332
DEFDBL 333
DEFINT 334
DEFLNG 335
DEFSNG 336
DEFSTR 337
DELETE 338
DIM 339
END 341
EOF 342
ERASE 343
ERR 344
ERL 345
ERROR 346
EXP 347
FIELD 348
FILES 349

FIX 350

Contents

FOR...NEXT 351
FRE 353
GET 354
GOSUB...RETURN 356
GOTO 357
HEX$ 358
IF...GOTO 359
IF.. THEN...ELSE 360
IF.. THEN...ELSE Block 361
INKEY$ 363
INPUT 364
INPUT$ 366
INPUT# 367
INSTR 368
INT 369
KILL 370
LBOUND 371
LEFT$ 372
LEN 373
LET 374
LIBRARY 375
LINE 376
LINE INPUT 377
LINE INPUT# 378
LIST 379
LLIST 381
LOAD 382
LOC 383
LOCATE 384
LOF 385
LOG 386
LPOS 387
LPRINT 388
LPRINT USING 389
LSET 390
MENU 391
MENU (0/1) 392
MENU RESET 393

AmigaBASIC : A Dabhand Guide

MENU ON/OFF/STOP 394
MERGE 395
MID$ 396
MKD$ 397
MKI$ 398
MKL$ 399
MKS$ 400
MOUSE 401
MOUSE(0) 402
MOUSE ON/OFF/STOP 404
MOUSE ON 405
NAME 406
NEW 407
NEXT 408
OBJECT.AX 409
OBJECT.AY 410
OBJECT.CLIP 411
OBJECT.CLOSE 412
OBJECT.HIT 413
OBJECT.OFF 414
OBJECT.ON 415
OBJECT.PLANES 416
OBJECT.PRIORITY 417
OBJECT.SHAPE 418
OBJECT.START 419
OBJECT.STOP 420
OBJECT.VX 421
OBJECT.VY 422
OBJECT X 423
OBJECT.Y 424
OCT$ 425
ON BREAK 426
ON COLLISION 427
ON ERROR GOTO 428
ON...GOTO 429
ON...GOSUB 430
ON MENU 431

ON MOUSE 432

10

Contents

ON TIMER 433
OPEN 434
OPTION BASE 436
PAINT 437
PALETTE 438
PATTERN 439
PEEK 441
PEEKL 442
PEEKW 443
POINT 444
POKE 445
POKEL 446
POKEW 447
POS 448
PRESET 449
PRINT 450
PRINT USING 451
PRINT# 452
PRINT# USING 454
PSET 455
PTAB 456
PUT 457
RANDOMIZE 459
READ 460
REM 461
RESTORE 462
RESUME 463
RETURN 464
RIGHT$ 465
RND 466
RSET 467
RUN 468
SADD 469
SAVE 470
SAY 471
SCREEN 474
SCROLL 476

SGN 477

11

AmigaBASIC : A Dabhand Guide

12

SHARED

SIN

SLEEP

SOUND

SOUND RESUME/WAIT
SPACE$

SPC

SQR

STICK

STOP

STRIG

STR$

STRING$
SUB...STATIC
SWAP

SYSTEM

TAB

TAN

TIME$

TIMER

TIMER ON/OFF/STOP
TRANSLATE$
TRON

TROFF
UBOUND
UCASES$

VAL

VARPTR

WAVE

WEND
WHILE...WEND
WIDTH
WINDOW
WINDOW CLOSE/OUTPUT
WRITE

WRITE#

478
479
480
481
483
484
485
486
487
488
489
490
491
492
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
515
516
517

Contents

B : Error Messages 519
Glossary 527
Other Dabs Press Books 541
Index 551

13

AmigaBASIC : A Dabhand Guide

14

AmigaBASIC

1 : Introduction

When you’ve got your new Amiga computer sitting proudly on the
desk, raring to go, you will no doubt want to put it through its paces
to see what it can do. Using the Workbench, you can do things such as
perform calculations, write letters and even make the computer speak
to you. But the capabilities of the Workbench are limited, so what do
you do when you feel that you’ve exhausted them and want to move
on to something else?

There are two possible routes. The first is to go out and buy some
different software packages. There are hundreds available which will
turn your machine into anything from a desktop publishing system to
a games console for zapping alien spacecraft.

The second option is to write your own software. This is not as
difficult as you might think. The advent of home computers has meant
that programming is now a pastime which anyone can participate in
and enjoy.

This book is aimed at all those people who want to take this second
route and learn how to control their computer. For those of you who
have never programmed a computer before, it starts at the beginning.
It explains what a program is and takes you, step by step, through the
stages involved in writing one. For readers who have programmed
other computers, the later chapters examine the features of
AmigaBASIC in greater detail. They cover topics such as animation,
file handling, synchronised sound production and the use of
subprograms.

Extensive use is made of example programs. Short examples are used
to illustrate each new point as it is made. In addition, larger programs
are built up to show how different features can be combined to create
real applications.

15

AmigaBASIC : A Dabhand Guide

The Basics

This chapter covers the groundwork for the rest of the book. It
introduces the AmigaBASIC system and demonstrates all the
fundamental concepts which are going to be needed at later stages.
These include how to use the editor to write and alter programs and
how to give commands to load, save and execute these programs.
Common problems which you may encounter are examined and some
standard terminology is explained.

What Is a Program ?

A person trying to direct a driver to a particular destination has two
ways he can go about it. He can travel with the driver and give the
instructions, one at a time, at the appropriate stage in the journey.
Alternatively, he can give the driver all the instructions before the
journey starts, so the driver can execute them in sequence as he goes.

This second approach is similar to programming a computer. A
program is just a series of instructions which you enter into the
computer and then tell the computer to carry out. It will step through
each of these instructions in turn, execute it, and move on
automatically to the next one.

Both the driver and the computer can only understand instructions
which are in a language that they know. For the driver this may mean
English, French, Italian etc. For the Amiga it means BASIC. BASIC is
an acronym for ‘Beginners’ All-purpose Symbolic Instruction Code’.
As the name implies it is ideal as an introductory language for
beginners. In addition, it is so versatile and powerful that many
commercially available software packages are written in it. These
properties have led it to become, by far, the most popular language for
home computers.

Returning to our driver analogy, there is another point to note at this
time. If you give either the driver or the computer the wrong
instructions then they won’t do as you expected.

For example, if you tell the driver to turn right rather than left, he will
almost certainly end up in the wrong place! Similarly, if you tell the

16

1 : Introduction

computer to multiply two numbers together, when you really wanted
to add them, then the result it produces will be wrong.

Alternatively, you might give them an instruction which doesn’t make
sense or is ambiguous. In this case, the driver may well curse, return
home, ask you to correct his list of instructions, and then try again.
Likewise, the computer will print a message to tell you all is not well
and stop. You will then have to correct the mistake and try executing
the program again.

However, the computer does have an advantage over the driver - it
has an endless supply of patience. Don’t be afraid of trying things out.
The computer won’t get annoyed if you keep making mistakes!

Entering AmigaBASIC

To write a program in BASIC, you first have to start up the
AmigaBASIC language which lives on the Amiga Extras Disk. To do
this:

e Turn on your Amiga.

e When the prompt appears, place the Workbench Disk into the
disc drive.

e When the disc drive light goes out, replace the Workbench Disk
by your copy of the Amiga Extras Disk.

e Double-click with the left-hand mouse button on the Extras Disk
icon.

° Double-click with the left-hand mouse button on the
AmigaBASIC icon.

The AmigaBASIC screen should appear. This consists of two windows
the main AmigaBASIC window which contains a few lines of text and
a smaller empty window whose title is ‘LIST’. These will be referred to
as the ‘Output window’ and the ‘List window’ respectively.

The two windows have different functions. The List window is used to
hold BASIC programs. You will see later in this chapter that all
programs are typed or loaded into this window and any editing you
do takes place in it.

The Output window lets you type commands into the computer: to
tell it to execute a program you have written, for example. In addition,

17

AmigaBASIC : A Dabhand Guide

your program can print its results or display its graphics in the Output
window. Therefore, this window can be used for all the
communication which occurs between you and the computer - your
commands to it and its replies to you.

Writing and Running a Program

When you enter AmigaBASIC, you will see that the title bar of the List
window is more distinctive than that of the Output window. This is
because the List window is selected. Therefore, any text you type at
this stage will be entered into the List window rather than the Output
window. Try typing the following:

CIRCLE (320,100),50

This is a BASIC program! It consists of just one ‘statement’ or
instruction. As you may well have guessed, this statement instructs
the computer to draw a circle.

‘CIRCLE’ is an example of a BASIC ‘keyword’. This is a word which
BASIC recognises and treats in a special way. The rest of the statement
provides the other information which BASIC needs in order to be able
to draw the circle. The ‘(320,100)" gives the position of the centre of the
circle and the ‘50" determines its radius.

To run this program select the Output window by clicking in it. Its
title bar will change to being the more distinctive of the two and the
prompt:

Ok

will be displayed. Then type:

RUN

The List window will disappear, leaving the Output window
occupying the full width of your monitor. Then the circle you
instructed the computer to draw will appear in the centre of this
window.

18

1 : Introduction

Making Simple Edits

Having just run your first program, the next thing to do is to return to
the List window and modify it. The List window is currently hidden
behind the Output window, because the Output window was moved
to the front when the circle was drawn. To bring the List window to
the front type:

LIST

and the List window will appear again, covering up most of the circle
you produced. Select this window by clicking in it. You will notice, if
you look closely, that there is a thin orange line or ‘cursor’ in this
window. This marks the position at which any text that you type will
appear. You can move this cursor around by pressing the arrow keys,
which are clustered to the right of the main keyboard or by
positioning the mouse pointer at the spot you want to move to and
clicking the left-hand button. Try this now. Don’t worry if the
computer beeps at you and flashes the screen. It does this whenever
you try to move the cursor anywhere that isn’t occupied by your

program.
What we are aiming to do is to edit the program so that it reads:

CIRCLE (420,100),150

The first stage is add a ‘1’ in front of the ‘50’. To do this, move the
cursor so that it lies between the ‘,” and the ‘5’ and press the number
‘I". This number will appear to the right of the cursor and the rest of
the text will be moved along to make room for it.

Now we want to change the ‘320’ into ‘420’. Move the cursor between
the ‘(" and the ‘3" and press the ‘Del’ key. This will delete the character
to the right of the cursor, ie the ‘3’. Now type the number ‘4’ and the
program should look like the one above.

Run the new program, as before, by selecting the Output window and
typing:

RUN

19

AmigaBASIC : A Dabhand Guide

The contents of the window will be cleared and a new, larger circle
will be drawn towards the right-hand side of the screen.

Menus and Amiga Key Commands

So far we have met two commands, one to execute a program and
another to bring the List window to the front of the screen. We issued
these commands by typing RUN and LIST respectively in the Output
window. However, there are alternative methods we could have used.

One is to use the BASIC menu bar. Hold down the menu button (this
is the right-hand mouse button) and the menu bar will appear at the
top of the screen. This has four entries: ‘Project’, ‘Edit’, ‘Run’ and
‘Windows’. Pointing at one of these entries displays the contents of
that particular menu. To select an item from a menu, point at the item
you want and release the menu button.

The LIST command is the same as selecting Show List from the
Windows menu, and the RUN command is equivalent to selecting
Start from the Run menu. Note that whichever window is selected at
the time you give the command to run a program will still be selected
after the program has ended, and hence will be brought to the front.
Try this now. Select the List window by clicking in it and select Start
from the Run menu. When the circle has been drawn, the List window
will be brought to the front of the screen and will partially obscure the
circle.

If you look through the items on the menus, you see that some of them
are followed by the Amiga key symbol and a letter. For example, Start
is followed by the Amiga symbol and an ‘R’. This describes the third
method of running a program — pressing the letter ‘R’ whilst holding
down the right Amiga key. (This key combination will be referred to
as ‘Amiga-R’ in the remainder of this book.) Similarly, you can bring
the List window to the front by pressing ‘Amiga-L’".

Some commands, which we will come across later, are only available
via one of these methods, but with most you have a choice. There is no
‘correct’ method which you should use. It’s up to you to select the one
which you prefer.

20

1 : Introduction

Creating Another Program
We are now going to start afresh on a new, larger program. To do this
either select the Output window and type:

NEW

or select the New entry from the Project Menu. In either case a
requester will be displayed which contains the following message:

Current program is not saved
Do you want to save it before proceeding?

This is because creating a new program will destroy the one you
currently have in the List window. Unless you save your current
program onto a disc first, it will be lost forever. In our case this isn’t a
problem. Our current program is so short that, if we wanted it back,
we could type it in again very easily. However, later in this book, we
are going to be developing some fairly large example programs which
will take a significant length of time to type in. At that stage, the
message will act as a very useful reminder that you will lose the
program if you go ahead and start a new one without saving the
current one first.

You are given three options:

YES which asks you to give a filename, saves the current
program to disc with this name and then clears out the
list window ready to start on a new program

NO which throws away the current program and prepares to
start on a new one

CANCEL which forgets that you ever asked to create a new
program and leaves the current one alone

In this case you should select the NO option. The List window should
now be empty again. Select it and enter the following:

CIRCLE (320,100),100
CIRCLE(160,50),50
CIRCLE (480,50),50
CIRCLE(160,150),50
CIRCLE (480,150),50

21

AmigaBASIC : A Dabhand Guide

Instead of typing each line in turn, you may find it easier to type in the
first line only and then copy it four times and make the necessary
alterations to the copied lines. Try this as follows:

Type in the first line and press the RETURN key.

Move the cursor to the start of the line and press the left-hand
mouse button.

With the mouse button still pressed, move the cursor down a line
— the top line will change to being black text on an orange
background to illustrate that it has been selected.

Release the mouse button.

Select Copy from the Edit menu or press ‘Amiga-C’ - this copies
the text which you have selected into the Clipboard.

Move the cursor to the start of the next line to mark the position
that you want to copy the text to.

Select Paste from the Edit menu or press ‘Amiga-P’ - this inserts a
copy of the contents of the Clipboard into your program at the
current position.

Repeat the last step three more times to give you the five circle
statements.

Edit the last four lines of the program by positioning the cursor at
the appropriate places in the text and either deleting or inserting
characters.

Then try running it.

Errors
Errors in programs are commonly referred to as ‘bugs’. They come in
all sorts of shapes and guises. In this section we are going to look at

errors caused by mistyping a program. Alter the current program so
that the second ‘CIRCLE’ is misspelt as ‘CRICLE":

CIRCLE (320,100),100
CRICLE(160,50),50
CIRCLE (480,50),50
CIRCLE(160,150),50
CIRCLE (480,150),50

1 : Introduction

Now try running this program. Everything will be normal until the
computer reaches the ‘CRICLE’. Then, since this word is not a valid
keyword, it fails to recognise it and reacts by beeping and flashing the
screen to tell you all is not well. More helpfully, it displays an error
requester describing what it thinks is wrong and brings the List
window back to the front with the offending statement enclosed in an
orange rectangle.

In this example, the error message it should have given is:

Undefined subprogram

Don’t worry about what this really means. At present, it can be
interpreted as ‘misspelt keyword'.

To continue from this situation, click on the OK gadget in the error
requester. Then select the List window so you can make the
appropriate correction to the program. Correct the program and then
add another mistake to the program by changing the last comma, on
that line, into a full stop:

CIRCLE (320,100),100

CIRCLE (160,50) .50

CIRCLE (480,50),50

CIRCLE (160,150),50
CIRCLE (480,150),50

Now try running it. The result should be the same except that the error
message this time will be:

Syntax error

This means that BASIC has recognised the keyword, but the rest of the
statement isn’t in the correct format.

The above examples cover the two most common situations you are
likely to encounter when typing in and running the programs later in
this book. Don’t worry if this happens, just correct the mistake and try
again.

23

AmigaBASIC : A Dabhand Guide

BASIC Lines

When we talk about a BASIC line, we are referring to a program line.
This can contain either a single BASIC statement, as in the above
examples, or several statements separated by colons:

CIRCLE (320,100),100

CIRCLE(160,50),50 : CIRCLE(480,50),50
CIRCLE (160,150),50 : CIRCLE(480,150),50

To convert your program to look like this, move the cursor to the start
of the third line before the ‘C’ of ‘CIRCLE'. Then press the ‘backspace’
key: this is represented on the main part of the keyboard as an arrow.

Normally, this deletes the character to the left of the cursor. However,
when the cursor is at the start of the line, there isn’t a character to be
deleted so the preceding carriage return is deleted instead. This results
in the contents of the two lines being merged together. Now type in
the colon to separate the two statements: and then repeat this process
for the last two circle commands.

If you want to split the BASIC line so that the two statements are on
separate lines again, all you need to do is to place the cursor at the
point you wish to split the line and press the RETURN key. Then
delete the colon since it is no longer necessary.

A program line can be up to 255 characters long. It can contain any
number of statements, provided that the maximum length is not
exceeded. Note that a statement must lie entirely on one line - it
cannot be split over two adjacent ones.

One program line is ended, and the next started, by pressing the
RETURN key. This inserts a carriage return into the program which
will be treated as part of the line but is invisible.

Normally, spaces between items in a statement are ignored. For
example:

CIRCLE (320 , 100) , 100
CIRCLE (160 , 50) , 50 : CIRCLE (480 , 50) , 50
CIRCLE (160 , 150) , 50 : CIRCLE (480 , 150) , 50

24

1 : Introduction

is perfectly acceptable. Using spaces usually makes the code more
readable. In the above program, the spaces have been used in two
ways. The first is to separate the different arguments, so that within
each statement the different values are clearly identifiable. The second
is to allow corresponding arguments in different statements to be
printed in columns. This makes it easier to compare the statements,
and see how one differs from the others.

Note, however, that spaces cannot be placed within the keywords
themselves. For example typing:

CIR CLE (320,100),100

produces an error.

However, spaces between the digits of numbers are automatically
removed:

CIRCLE (3 20,100),100

is converted by BASIC to:
CIRCLE (320,100),100

If a line begins with a REM statement then the line is not executed.
This provides a method of adding comments to your programs to
explain what is happening. For example:

REM Centre circle
CIRCLE (320 , 100) , 100

REM Corner circles
CIRCLE (160 , 50) , 50 : CIRCLE (480 , 50) , 50
CIRCLE (160 , 150) , 50 : CIRCLE (480 , 150) , 50

Loading and Saving
To save your current program, either type:

SAVE

in the Output window or select the Save As option from the Project
menu. A requester will appear asking:

25

AmigaBASIC : A Dabhand Guide

Save program as:

Click on the box provided and type the name which you wish to give
to your program, for example:

circles

Then click on the OK gadget. You should then hear the disc drive
spring into life as your program is stored safely away on the disc.

Now if you type:

NEW

or select the New entry from the Project menu, the computer will carry
out this instruction straight away without giving you a warning. This
is because it knows that the current program has already been saved
so that there is no risk of you losing it.

To load your program again type:

LOAD

into the Output window or select Open from the Project menu. Again
a requester will be displayed asking:

Name of program to load:

Click on the box, type:

circles

and click on the OK gadget. The disc drive will spin briefly and you
will be presented with the OK prompt. If you bring the List window to
the front, you will see your program displayed inside it, ready to be
edited or run etc.

You can type the whole of a SAVE or LOAD command in the Output
window without using the requester, if you wish. For example:

SAVE "circles"

26

1 : Introduction

or:

LOAD "circles"

Note that the name of the program must be enclosed between double
quotes.

Leaving BASIC

We will finish this chapter by exiting from BASIC, returning to the
Workbench and tidying up. To do this either type:

SYSTEM

in the Output window or select the Quit option from the Project menu.
You will then be back in the Workbench. Before you go on to other
things, it is worthwhile, at this stage, tidying up after yourself. Close
the window of the Extras Disk by clicking on the close gadget and
then open it again by double clicking on the Extras Disk icon. This
updates the display so that the new contents of the disc are shown. If
you study the contents you should notice that the circles program has
appeared. Rather than storing this program where it is, a better
method is to create a drawer to keep all your programs in and to move
it there. To do this:

e Open the workbench by double clicking on Workbench icon and
replacing the disc in the disc drive if necessary.

e Copy the drawer labelled ‘Empty’ to the Extras by clicking on it,
dragging it over to the Extras window and then releasing the
mouse button. Again, you will have to swap discs if you have a
single drive system.

e Activate the drawer by clicking on it and then rename it by
selecting the Rename item from the Workbench menu and
replacing the ‘Empty’ string by the name you want to use, for
example ‘Myprogs’, followed by RETURN.

¢ Finally, move the circles program to this drawer by dropping the
circles icon onto the drawer icon.

When you next enter BASIC, you can load the program by using the

name of the drawer as follows:

LOAD "Myprogs/circles"

27

AmigaBASIC : A Dabhand Guide

Similarly you can save further programs directly into this drawer in
the same manner, for example:

SAVE "Myprogs/newprog"

Note that the ‘/’ character is used to separate the drawer name from
the file name in both cases.

In addition, you can obtain a list of all the contents of the drawer by
typing:

FILES "Myprogs"
in the Output window. If you do this you should find two entries for
each program, for example:

circles

and:

circles.info

The ‘circles’ file contains the actual BASIC program. The ‘circles.info’
file contains the definition of the icon used to illustrate this file.

28

2 : Starting Out

When trying to learn about a new topic, there are three very important
words: ‘Why’, ‘'How’ and ‘What'. The introduction in this book aimed
to answer the question ‘Why should I bother learning how to program
my Amiga?’. If you've read this far, you will hopefully be convinced
that it’s a good thing to do. The first chapter went on to deal with the
question ‘How do I use the AmigaBASIC system?’. Using the
knowledge gained there, we can now move forward and start on the
final question which is, ‘What can I do with AmigaBASIC?

BASIC is a very big topic, covering many areas. In this chapter we are
going to look at two of the most rewarding ones graphics and sound.
Making the computer draw a picture or play a tune is very satisfying
and can be achieved by writing a straightforward program, just a few
lines long. However, life is not all play! We will also be looking at
some of the features of BASIC which will help you write well-
structured, easy to read, code.

Points, Lines and Circles

The graphics from a single command has to be placed entirely within
a single window. It is possible to create lots of windows and jump
between them, with some commands sending their graphics to one
and some to another. However, in this chapter we are going to be
dealing with the default case in which all graphics output is sent to the
BASIC Output window.

To perform any graphics command you need to provide coordinates
to tell the computer where it is to place the point, end of line, centre of
circle etc. Each output window is made up of ‘pixels’, which are
rectangular dots. The pixel in the top left-hand corner of the Output
window is defined to be at position (0,0). Increasing the x-coordinate
by one moves a point across by one pixel, and increasing the y-
coordinate by one moves it down by one pixel. The limits on the x and
y-coordinates depend on the size of the Output window. The
maximum theoretical value is 640 pixels horizontally by 256 pixels

29

AmigaBASIC : A Dabhand Guide

vertically (200 on an American monitor) - this is the number of pixels
which make up the whole screen. However, the BASIC Output
window doesn’t occupy the whole screen, so the maximum coordinate
is about (617,185), even when the window is fully expanded.

To see how to produce points, lines and circles, type in and run the
following program which draws a stick man:

CIRCLE (320, 50), 20

LINE (320, 60) - (320,100)
LINE (320,100) - (260,140)
LINE (320,100) - (380,140)
LINE (260, 70) - (380, 70)

PSET (315, 50)
PSET (325, 50)

Whenever a position is required, it must be given enclosed in brackets,
with the x- and y-coordinates separated by a comma. The PSET
command which plots a point, requires just a single position. The
CIRCLE command takes one position which determines the centre of
the circle, and another value which is used as the radius. The LINE
command requires two positions, separated by a hyphen (‘~’), which
specify the ends of the line.

Instead of giving a position as an absolute location, you can instead
supply it as an offset relative to the last graphics position used. To do
this, place the keyword ‘STEP’ before the position. For example, the
program above is equivalent to the following:

CIRCLE (320, 50), 20

LINE STEP (0, 10) - STEP (0, 40)
LINE STEP (0, 0) - STEP (- 60, 40)
LINE STEP (60,-40) - STEP (60, 40)
LINE STEP (-120,-70) - STEP (120, 0)
PSET STEP (- 65,-20)

PSET STEP (10, 0)

The values can be interpreted as follows: The first line starts ten pixels
below the centre of the circle and ends a further forty pixels below
that.

The next line starts where the previous one finished and ends sixty
pixels to the left and forty pixels down. The next line starts at an offset

30

2 : Starting Out

of 60 pixels to the right and 40 pixels up from the end of the previous
line. This coincides with where the previous line started, etc.

Using relative positions makes the program longer and, in some ways,
more difficult to write, so why should we bother doing it? To answer
this question, consider how you would have to alter each program if
you decided to draw the man in a different position within the
window, say 100 pixels to the left. In the first example, you would
have to alter every x-coordinate by subtracting 100 from it. In the
second example all you have to do is subtract 100 from the first
position. The rest, since they are all relative, don’t require changing.

Introduction to Variables

The version of the CIRCLE command which we have encountered so
far has been fairly simple. However, this keyword can also be used to
produce arcs and ellipses, in which case you have to supply a lot more
information. In its fullest form it can end up looking like this:

CIRCLE (320,100),50,3,1,2,4

If you met this instruction in a program, it wouldn’t be surprising if
you had difficulty remembering what all the numbers represented.
Without thumbing through a manual to look up its syntax you could
very well mix up the parameters, and end up drawing a different
shape to the one you were expecting.

It would be far easier to know what was going on if the statement
looked more like this:

CIRCLE (xpos,ypos),radius,col,startang, endang, aspect

where ‘xpos’, ‘ypos’, etc represented the appropriate values.

You can make your program look like this by using ‘variables’. A
variable is something which has a name and a value associated with it.
The name, for example: ‘xpos’ or ‘radius’ allows it to be identified and
its value to be either set or read. This value can be changed and read
as many times as you like.

31

AmigaBASIC : A Dabhand Guide

Variable names can contain characters, digits or full stops. The rules
for naming variables are as follows:

e The name may contain up to 40 characters.

¢ The name must start with a letter.

e The name may contain only numbers, letters and decimal points.

e The name must not be a BASIC reserved word, eg SIN or
COLOR.

Therefore all the following names are allowed:

Y

ypos
YPOS
Ypos
Y.position
YPOS1

But these are not acceptable:

1posy Doesn’t begin with a letter
Y-pos Contains a minus sign
POS BASIC reserved word

Upper-case characters are treated as being equivalent to lower-case
ones. For example ‘xpos’ refers to the same variable as ‘Xpos’ or
XPOS'. If you enter a line of BASIC containing keywords in lower-
case into the List window, when you press the RETURN key, these
keywords are automatically converted into upper-case. Therefore all
program listings will contain upper-case keywords. Hence it is a good
idea to use lower-case letters for variable names, since this
distinguishes them from the keywords and helps to make the program
more readable.

The variables we require here all have numeric values associated with
them, and so they are known as ‘numeric variables’. The other type of
variable is the ‘string variable’ which represents a string of characters
- this we will deal with in later chapters. You can assign a value to a
numeric variable as follows:

32

2 : Starting Out

LET xpos = 320

or, since the use of the LET keyword is optional, just by typing:

xpos = 320

The value assigned to a numeric variable can be specified as a single
number, as above, or the current value of another variable, or an
‘expression’. For example:

xpos = 100
ypoOS = Xpos
radius = (xpos + ypos) / 4

‘(xpos + ypos)/4’ is an example of an expression; it is a sequence of
numbers and variables together with ‘operators” which act on them.
The common operators are:

+ Add

- Subtract
* Multiply
/ Divide

Try the following program:

RANDOMIZE TIMER

xpos = 320

ypos = 100

radius = RND*60

CIRCLE (xpos,ypos),radius

This assigns values to the variables ‘xpos’, ‘ypos’ and ‘radius’, and
then uses those values to draw a circle. The value assigned to radius is
determined by the expression ‘RND*60’. RND is a BASIC keyword
- which returns a random number in the range 0 to 1. Therefore the
value assigned to radius will be somewhere in the range 0 to 60. The
RANDOMIZE TIMER command causes the random number generator
to be ‘reseeded’ with the number of seconds which have passed since

33

AmigaBASIC : A Dabhand Guide

random numbers each time the program is run, thus giving you a
different size circle each time.

Loops

So far, all the programs we have looked at have been executed in a
linear fashion. That is to say, the computer started at the top of the
program, executed each instruction in turn until it reached the end
and then stopped. This is not always the most convenient way to write
a program. Consider, for example, how to write a program to draw
two random circles on the screen. One obvious way is as follows:

REM First circle

Xpos = RND*620

ypos = RND*180

radius = RND*60

CIRCLE (xpos,ypos),radius
REM Second circle

Xpos = RND*620

ypos = RND*180

radius = RND*60

CIRCLE (xpos,ypos),radius

This is fine for drawing two circles, but what would you do if you
wanted to draw two hundred? It would be very inconvenient to have
to repeat the circle drawing code two hundred times. BASIC has a
solution to this problem. It supplies FOR and NEXT statements which
may be used to execute a block of the program a specified number of
times. These statements are placed so that they surround the block to
be repeated. Try the following example:
FOR count = 1 TO 200
Xpos = RND*620
ypos = RND*180
radius = RND*60
CIRCLE (xpos,ypos),radius
NEXT count

Note that the lines between the FOR and NEXT statements are
indented by two characters. This makes it clear to anyone reading the
program which lines are being repeated. It is not necessary to do this,
but it is a good habit to get into. It is also very easy to do, since

34

2 : Starting Out

pressing the TAB key inside the List window will move the cursor two
characters to the right. Then, when you press the RETURN key, the
cursor will move down a line and across so that it is positioned
underneath the first character of the previous line. This means that all
subsequent lines are indented by the same amount until you actively
start a line at a different position.

The variable ‘count’ is called the ‘control variable’. It is used to control
the number of times the block is executed. In this case, count is set
initially to one. When the NEXT statement is reached, count is
increased by one and the block of code is repeated. This continues
until count becomes greater than 200, in which case the computer will
move on to the statement after the NEXT.

In the example given above, the control variable is used only to record
the number of times the circle drawing code is executed. It is not
referred to in this block. Therefore the actual values it takes are
irrelevant. All that matters is the number of steps required to reach the
upper limit. For example the statement:

FOR count = 1 TO 200

could be replaced by:

FOR count = 0 TO 199

or even:

FOR count = -100 TO 99

and the result would be the same.

You are allowed to refer to the control variable inside the block. For
example, alter the program above to read as follows:

FOR count = 1 TO 200

Xpos = RND*620

ypos = RND*180

radius = count

CIRCLE (xpos,ypos),radius
NEXT count

AmigaBASIC : A Dabhand Guide

This example produces two hundred circles at random positions on
the screen. The radius of the first is one, that of the second is two, and
SO on.

The amount by which the control variable changes each time round
the loop is called the ‘step size’. In the above example no step size was
stated explicitly, so the default value of one was used. Other values
can be used as follows:

FOR count = 1 TO 200 STEP 5
Xpos = RND*620
ypos = RND*180
radius = count
CIRCLE (xpos,ypos),radius
NEXT count

This produces 40 circles at random positions. The radius of the first
will be one, that of the second six, and so on. Note that, in this case,
count will never take the value 200. The final value used will be 196.

The step size can be negative so that the control variable is decreased
each time. For example:
FOR count = 200 TO 1 STEP -5
X = RND*620
y = RND*180
radius = count

CIRCLE (xpos,ypos),radius
NEXT count

Again this produces 40 circles, but in this case they gradually become
smaller.

Using Colour

So far, our graphics have all been drawn in white. We are now going
to look at how we can use some of the other colours which are
available to us on the Amiga.

One method is to specify the colour to use by giving an extra
argument to the PSET, LINE and CIRCLE commands. For example, try
the following;:

36

2 : Starting Out

FOR count = 1 TO 20

Xpos = RND*620

ypos = RND*180

radius = RND*60

rd4 = radius/4

CIRCLE (xpos,ypos),radius,3

PSET (xpos-rd4,ypos),1

PSET (xpos+rd4,ypos),1

LINE (xpos-rd4, ypos+rd4) - (xpos+rd4,ypos+rd4),2
NEXT count

This draws the circles in colour three, the points in colour one and the
lines in colour two. These numbers correspond to the following
colours:

Colour 1 White
Colour 2 Black
Colour 3 Orange

The other colour number we could have used is colour 0:
Colour 0 Blue

However, this is the same as the background so any graphics we drew
in it would not have been visible!

If you don’t specify a colour, then the current ‘foreground colour’ will
be used. By default this is colour one, which is why all the lines, circles
and points we drew previously were drawn in white. You can set a
different foreground colour using the COLOR command. For example,
if you type:

COLOR 3

then all subsequent PSET and LINE commands etc, which don’t
specify a colour to use, will be drawn in red.

In addition to setting a different current foreground colour, you can
also set a different current background colour by giving a second
value to the COLOR command. For example:

COLOR 3,1

37

AmigaBASIC : A Dabhand Guide

sets the current foreground colour to colour three (orange), and the
current background colour to colour one (white).

Altering the current background colour has no immediate effect. The
results of this action will only be seen when subsequent commands are
given which use the background colour. For example:

COLOR 3,1
CLS

The COLOR command (note American spelling) sets the current
background to colour one. The CLS command then clears the contents
of the Output window, leaving it displayed in the current background
colour.

The Palette

The bad news I have to give you at this point is that, under default
conditions, the Output window can only display four different colours
at once. This is why only four colour numbers, zero to three, have
been used. Trying to use any other value would have produced an
error. We will see, in a later chapter, how you can arrange to display
more colours together in a window.

However, this doesn’t mean that you are limited to producing pictures
in white, black, blue and orange. You can use any four colours you
like from the range which the Amiga provides.

The way in which other colours are obtained is by making the colour
numbers represent different colours. For example, colour 0 doesn’t
have to remain as blue, you can define it to be green or grey or pink
etc. To do this, you use the PALETTE command.

PALETTE takes four parameters. The first is the colour number, which
is a whole number, currently limited to being in the range 0-3. The
other three are fractional values in the range 0 to 1.00, which specify
the amounts of red, green and blue you want the colour to contain. For
example:

PALETTE 2, 0.1, 0.5, 0.9

38

2 : Starting Out

defines colour two to contain a small amount of red, a moderate
amount of green and a large amount of blue, the result being a shade

of purple.

The general rule is: the higher the number, the brighter the colour.
Keeping the amounts of each of the three colours equal produces a
grey scale between black (all three set to zero) and white (all three set
to one). By altering the ratios between the amounts of red, green and
blue, all the other colours can be obtained. Table 2.1 below attempts to
describe the colours produced by certain combinations of red, green
and blue.

Red Green Blue
Black 0.00 0.00 0.00
Dark grey 0.30 0.30 0.30
Light grey 0.70 0.70 0.70

White 1.00 1.00 1.00
Red 1.00 0.00 0.00
Green 0.00 1.00 0.00
Blue 0.00 0.00 1.00
Yellow 1.00 1.00 0.00
Cyan 0.00 1.00 1.00
Magenta 1.00 0.00 1.00
Pink 1.00 0.40 0.40

Table 2.1. Colour Combinations.

Note that, re-defining the colour assigned to a colour number, affects
all the graphics currently displayed which are drawn using that colour
number, as well as any subsequent graphics produced using it.

Rectangles

The LINE command isn’t limited to producing lines, it can also be
used to draw rectangles. To draw a rectangle instead of a line, add an
extra parameter, ‘b’, to the end of the statement. Then the pairs of
coordinates will be taken as being the opposite corners of the box. For
example:

LINE (100,80) - (200,145),1,b

39

AmigaBASIC : A Dabhand Guide

Alternatively you can add a ‘bf’ instead and this will produce a ‘solid’
rectangle, ie the interior of it will be filled in:

LINE (100,80) - (200,145),1,bf

Plotting solid rectangles enables you to see the different colours which
are available more clearly. Try typing in and running the following

program:

COLOR 1,0
PALETTE 0,0,0,0
CLS
RANDOMIZE TIMER
LINE (80,20) - (560,160),1,bf
LINE (180,40) - (460,140),2,bf
LINE (280,60) - (360,120),3,bf
FOR count = 1 TO 20
red = RND
green = RND
blue = RND
PALETTE 3, red, green, blue
PALETTE 2, red*.8, green*.8, blue*.8
PALETTE 1, red*.4, green*.4, blue*.4
FOR delay = 1 TO 5000 : NEXT delay
NEXT count

The first three commands ensure that the background is displayed in
black. Then the program reseeds the random number generator and
draws three solid rectangles, gradually decreasing in size, inside each
other. Each of these is drawn in a different colour number: one, two or
three. Finally, the program enters a loop which it repeats twenty times.

Inside the loop, the program chooses random values for the amount of
red, green and blue to be used for a particular colour. Colour number
three is assigned this colour. Colour number two is assigned a slightly
darker shade by reducing all the values to 80% of their original size.
Similarly colour number one is assigned a darker shade still at 40% of
the original. The innermost FOR...NEXT loop is used as a ‘delay loop’.
Making the computer count from 1 to 5000, before changing the
palette again, ensures that each set of colours is displayed for a
reasonable length of time.

40

2 : Starting Out

At the end of this sequence, you could find yourself with an
unreadable colour for the text. The screen should revert back to the
default palette settings when the program has finished running.
However, you may need to remind it to do so. To do this:

© Select the List window.
o Edit the program, for example by typing a space.
® Select the Output window.

You should then be returned to white text on a blue background.

Loops within Loops

Using two loops at once, one within the other, is quite often a very
useful thing to be able to do. Consider the problem of drawing circles,
centred at regular intervals, on the screen. This requires one loop to
step through the x-coordinates. Then for each x value, another loop is
needed to step through the y-coordinates. For example:
FOR xpos = 20 TO 600 STEP 20
FOR ypos = 20 TO 160 STEP 20
CIRCLE (xpos,ypos), 5

NEXT ypos
NEXT xpos

This produces circles of radius five placed 20 units apart. The same
result could be obtained in a slightly different way:
FOR ypos = 20 TO 160 STEP 20
FOR xpos = 20 TO 600 STEP 20
CIRCLE (xpos,ypos), 5

NEXT xpos
NEXT ypos

The only difference between these two programs is the order in which
the circles are drawn. In the first one they are drawn a column at a
time, starting from the left-hand side of the screen. In the second they
are drawn a row at a time, starting from the top of the screen.

In both cases, one of the loops is contained wholly within the other.
This loop is said to be ‘nested’. Overlapping loops are not allowed. For
example:

41

AmigaBASIC : A Dabhand Guide

FOR xpos = 20 TO 600 STEP 20
FOR ypos = 20 TO 160 STEP 20
CIRCLE (xpos,ypos), 5
NEXT Xpos
NEXT ypos

would produce the error message:

NEXT without FOR

At first sight, this message may seem to be confusing since there
appears to be the correct number of FOR and NEXT statements. The
way BASIC comes to its conclusion about what is wrong is as follows:

1) The xpos loop was started first.
2) The ypos loop was started second.

3) Since one loop must be totally within another, the ypos loop must
be completed before the xpos loop can step on to its next value.

4) The NEXT xpos statement is found before the ypos loop has
ended.

5) Therefore the NEXT ypos statement is missing.

Since BASIC insists that each NEXT must apply to the most recent
FOR, it is not necessary to state the control variable after a NEXT.
There is only one loop which it can correctly refer to. For example:

FOR xposXT

is taken as being equivalent to:

FOR xpos = 20 TO 600 STEP 20
FOR ypos = 20 TO 160 STEP 20
CIRCLE (xpos,ypos), S
NEXT ypos
NEXT xpos

2 : Starting Out

Arcs and Ellipses

We mentioned above that the CIRCLE command can be used for
producing arcs and ellipses as well as circles. The parameters which it
can take are as follows:

CIRCLE (xpos,ypos),radius,col,startang, endang, aspect

The starting and ending parameters are the start and end angles of the
arc. These must be supplied in radians not degrees. Figure 2.1. (below)
shows the values of the different positions around the perimeter:

/2

3n/2

Figure 2.1. The starting and ending parameters are the start and end
angles of the arc. These must be supplied in radians not degrees.

Note that the arc will be drawn in an anti-clockwise direction.
Therefore, if you give a start angle of 0 and an end angle of x then the
top half of the circle will be drawn. Conversely, if you give a start
angle of © and an end angle of 0 the bottom half of the circle will
appear.

If either of the angles is negative, then it will be treated as though it
was positive for calculating the relevant position, but a line will be
drawn connecting that particular end of the arc to the centre.

43

AmigaBASIC : A Dabhand Guide

The following program demonstrates some of the different
combinations you can use:
pi = 3.14159
endl = pi/4
end2 = 3*pi/4
CIRCLE (110, 50),60,1, endl, end2
CIRCLE (250, 50),60,1,-endl, end2
CIRCLE (390, 50),60,1, endl,-end2
CIRCLE (530, 50),60,1,-endl, -end2
CIRCLE (110,130),60,1, end2, endl
CIRCLE (250,130),60,1, end2,-endl
CIRCLE (390,130),60,1,-end2, endl
CIRCLE (530,130),60,1,-end2, -endl

The aspect determines the shape of the circle/ellipse. If you specify an
aspect ratio of one, then the shape will measure the same number of
pixels horizontally as it does vertically. However, since the pixels are
not square, an ellipse will be produced. In fact, the pixels are roughly
twice as high as they are wide, so the height of the ellipse will appear
to be approximately twice that of the width.

Increasing the aspect ratio to two produces a shape which is the same
height as the previous ellipse but half the width. Hence it will appear
about four times as high as it is wide. Decreasing it to 0.5 produces a
shape which is the same width as the original ellipse but is half the
height. This makes it roughly circular.

Therefore, for a ‘circle’ whose radius is ‘rad’, the following applies:

no.pixels vertically no.pixels horizontally

If aspect = 1 rad rad
If aspect > 1 rad rad/aspect
If aspect < 1 rad*aspect rad

If you don’t specify an aspect, the default value of 0.44 is used. On
standard American monitors this produces circles. Unfortunately,
British monitors are different and the default value actually produces
ellipses which are wider than they are high. A more accurate value to
use in Britain is 0.56.

2 : Starting Out

The following program produces a display of ellipses enclosed within
a circle:

cirval = .56

Xpos = 320

ypos = 90

radl = 120

rad2 = 120*cirval

CIRCLE (xpos, ypos),radl,1,,,cirval
FOR ratio = 2 TO 10

aspl = cirval/ratio

asp2 = cirval*ratio

CIRCLE (xpos, ypos) ,radl,1l,,,aspl

CIRCLE (xpos, ypos),rad2,1,,,asp2
NEXT ratio

All the ellipses are centred at the same position. The first one has a
radius of 120 and an aspect of 0.56. Using the table above, this means
that its dimensions, in pixels, are as follows:

height = radius*aspect 120*0.56
width = radius = 120

Thus it appears to be circular.

The program then loops through different values, between two and
10, for the ratios of the width to the height. For each value it draws
two ellipses. The first has a radius of 120 and an aspect of 0.56/ratio
(which is always less than one). Therefore its dimensions are:

120*0.56/ratio
120

height radius*aspect
width = radius

This means that they always touch the circle at the left and right-hand
sides but the heights of successive ones decrease.

The second has a radius of 120*0.56 and an aspect of 0.56*ratio (which
is always greater than one). Its dimensions are:

height = radius = 120*0.56
width = radius/aspect = 120*0.56/(0.56*ratio)
= 120/ratio

45

AmigaBASIC : A Dabhand Guide

This means that they always touch the circle at the top and bottom but
the widths of successive ones decrease.

Making Sounds

Sound is another area which gives ‘visible’ results. The Amiga comes
equipped with four sound channels and, using BASIC, you can
produce sounds on any or all of these. In this chapter we are going to
concentrate on producing a single sound at a time. Later in this book
we'll look at how the channels can be synchronised and different types
of sound created.

To produce a note, you have to supply two pieces of information: its
frequency and its duration. These characteristics of a note are
examined below.

Frequency

The sounds we hear from musical instruments, people’s voices,
machinery etc are all composed of mixtures of waves. A pure, musical
sound contains just one wave, whereas discordant noise from
machinery contains many different waves, all jumbled together. Each
wave oscillates at a different frequency and, the higher the frequency,
the higher the pitch of the sound. For example Figure 2.2 shows the
difference between high and low:

h@AAAAAAAAAAAAAA
VAVAVAVAVAVAVAVAVAVAVAVAY

/\/\
NN

Figure 2.2. The difference between high and low frequencies.

46

2 : Starting Out

The frequency is measured in ‘Hertz’ or ‘cycles per second’. Table 2.2.
shows the frequencies of the notes in the octave, starting at middle C.

Note Frequency

C 523.25
C# 554.37
D 587.33
D# 622.25
E 659.26
F 701.00
F# 740.00
G 783.99
G# 830.61
A 880.00
A# 932.33
B 993.00
C 1046.50

Table 2.2. Note Frequency.

If you double the frequency of a note, you produce the note which is
exactly one octave higher. Consequently, halving the frequency gives
a note one octave lower. Using this rule and the table above, you
should be able to calculate the frequency of any note. To speed up this
process, the Figure 2.3 below gives the frequencies of the notes
covered by the treble and bass staves.

47

AmigaBASIC : A Dabhand Guide

o 7
o
O 7O oH©
& oto OO O
N o O BO o
oo © #O
V 523.25 587.33 659.26 740.00 830.61 932.33 1046.50 1174.66 1318.52
554.37 622.25 701.00 783.99 880.00 993.00 1108.74 1244.50 1402.00
=3
O un =
N kil £O O
= ' b A o NI
/ FOOHO ©

S HO Ous o
L *rv\./

523.25 466.17 415.31 370.00 329.63 293.67 261.63 233.09 207.65
469.50 440.00 392.00 350.50 311.13 277.18 248.25 220.00 196.00

Figure 2.3. Frequencies of the notes covered by the treble and bass
staves.

The computer is capable of producing sounds which range from 20
Hertz to 15000 Hertz. This gives you a range of more than nine
octaves. Any values you give will be rounded so that they lie in this
range. This means that specifying a frequency which is less than 20
Hertz will produce a 20-Hertz sound, ie the lowest note possible.
Similarly specifying a note greater than 15000 Hertz produces the
highest note possible.

Duration

The duration of a note is the length of time the note lasts. A duration
of 18.2 will produce a note which lasts for one second. There is a
simple, linear relationship between the value of the duration and the
number of seconds the note sounds for. Therefore doubling this value
will give a note lasting two seconds, trebling it will give one lasting
three seconds etc. The values which are allowed are those in the range
0 (no time at all) to 77 (just under four and a quarter seconds). The
following table lists the standard ranges for the most common tempos.
For each it gives the number of beats a minute and, calculated from
this, the duration value of each beat.

48

Producing a sound

Presto

Allegro
Moderato

Andante

Adagio
Larghetto

Largo

168 - 208
120 - 168
108 - 120
76 - 108
66 -76
60 - 66
40 - 60

53-6.5
6.5-9.1
9.1-10.1
10.1-14.4
14.4 -16.5
16.5-18.2
18.2-27.3

2 : Starting Out

The keyword used for producing a sound is, appropriately enough,

SOUND.

In its simplest form, the syntax it takes is as follows:

SOUND frequency,

For example:

SOUND 523.25,

18.

2

duration

produces a middle C lasting for one second.

You can also specify how loud the note is to be. This should be a value
in the range 0 (silent) to 255 (loudest). If you don't provide a value, the
default of 127 which is the middle of the range is used. Try the

following program:

SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND

523.
587.
659.
.00,
783.
880.
993.
1046.

701

25,
25,
26,

99,
00,
00,
50,

W W W WYY

.1,

31
63
95
127
159
191
223
255

Note that, when you type this into the list window, the *.00” string will
be replaced by a ‘!". The zeros after the decimal point are irrelevant so
BASIC has removed them but has left the ‘' to remind you that the
number is a floating point number not an integer.

49

AmigaBASIC : A Dabhand Guide

When you run this program, the computer will play the scale of C
major with each of the notes being louder than the previous one.

An example tune

Sound is another area where variables and expressions are a great
help. Instead of numbers like ‘523.25" which are meaningless to most
people, you can use letters to represent the notes. For example, you
might start the variable name with the letter of the note, ‘a’ - ‘g’. Then
the second letter could be a ‘n’, ’s” or ‘f’ to specify if a natural, sharp or
flat is wanted. Finally the last character could be a digit to indicate
which octave it is.

It is a good idea to use expressions for the durations of the notes. For
example you could specify the duration of the different types of notes
as follows:

quaver 0.5 * dur
crotchet 1.0 * dur
minim 2.0 * dur
semibreve 4.0 * dur

Then you can alter the tempo of the tune just by assigning a different
value to the variable ‘dur'.

The following program shows these tips in action:

REM Set up variables

g3n = 783.99
a4n = 880.00
b4n = 993.00
c4n = 1046.50
d4n = 1174.70
edn = 1318.50
f4s = 1480.00
g4n = 1568.00
dur = 8.0

REM Produce the sounds

SOUND g3n,2.0*dur
SOUND a4n, 0.5*dur
SOUND c4n,0.5*dur
SOUND b4n, 0.5*dur

50

SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND

ad4n, 0.5*dur
d4n, 1.0*dur
d4n,1.0*dur
d4n, 0.5*dur
edn, 0.5*dur
bdn, 0.5*dur
c4n, 0.5*dur
adn,1.0*dur
adn,1.0*dur
ad4n,0.5*dur
c4n,0.5*dur
b4dn, 0.5*dur
a4n, 0.5*dur
g3n,0.5*dur
g4n,0.5*dur
f4s,0.5*dur
edn, 0.5*dur
d4n, 0.5*dur
c4n,0.5*dur
b4n, 0.5*dur
a4n, 0.5*dur
g3n,2.0*dur
adn, 0.5*dur
c4n, 0.5*dur
bdn, 0.5*dur
a4n,0.5*dur
d4n,1.0*dur
d4n,1.0*dur
d4n, 0.5*dur
edn, 0.5*dur
b4n, 0.5*dur
c4n, 0.5*dur
adn,1.0*dur
adn,1.0*dur
a4n, 0.5*dur
c4n, 0.5*dur
bdn, 0.5*dur
a4n, 0.5*dur
g3n,0.5*dur
d4n, 0.5*dur
a4n, 0.5*dur
b4n, 0.5*dur
g3n,1.0*dur

2 : Starting Out

51

AmigaBASIC : A Dabhand Guide

52

3 : Interacting with the User

Virtually all commercially available programs ‘interact’ with the user.
That is, they ask the user to supply information or instructions and
then respond in different ways, depending on the particular piece of
data they are given.

An obvious example is provided by the type of program aimed at
testing a child’s maths ability. These write a simple sum on the screen
and wait for the child to type in an answer. Then they typically
respond by printing ‘right — well done’ or ‘wrong — try again’,
depending on whether the answer was correct or not.

Arcade games, such as Space Invaders, display a different form of
behaviour. These don’t stop and wait for you to type something.
Instead they enter a particular mode of behaviour and carry on in the
same manner until you interrupt them by pressing a key or button.
Then they temporarily stop what they were doing and react to your
input.

The chapter looks at these methods of interaction in more detail and
shows how a program can act in different ways, depending on the
input it gets.

Handling Text

Before we can contemplate having a question and answer session with
the computer, we have to know how to handle text. We saw in the
previous chapter how numeric variables can be used to hold numbers.
In a similar manner, BASIC provides string variables, which may be
used to store strings of characters, ie words and phrases. Each string
can be up to 255 characters long and can contain upper- and lower-
case letters, spaces, punctuation characters etc. The following shows a
few examples of strings being assigned to string variables.

namel$ = "Winston"

question$ = "How old are you?"

age$ = "21"

address$ = "10, Downing Street; London."

53

AmigaBASIC : A Dabhand Guide

Note that, in each case, the variable name ends in a ‘$’. This identifies
it as being a string variable rather than a numeric variable. Numbers
and strings have to be kept separate from each other. You cannot
assign a number to a string variable or vice versa. In the example
above, age$ was assigned a string containing the two characters 2’
and ‘1’, and not the number 21.

The simplest way to write a message in the Output window is to use
PRINT. For example:

namel$ = "Tom"
PRINT "Hello ";namel$, "How are you?"

outputs the following:

Hello Tom How are you?

A question mark can be used instead of the word PRINT in a PRINT
statement in order to save time. Therefore you could enter the above
program as:

namel$ = "Tom"
? "Hello ";namel$,"How are you?"

Note that, when you press RETURN at the end of the line, the
question mark will be converted into the word PRINT.

The PRINT statement can be followed by a list of items to be printed,
separated either by commas, semi-colons or spaces. The effect of a
semi-colon or space is to make the next item start immediately after
the previous one. The effect of a comma is to print the next item at the
start of the ‘next zone’. By default, a zone is 14 characters wide.
Therefore a comma will cause the item to be printed starting at
character position one or 15 or 29 or 43 etc, depending on how far
across it is currently.

A particular number of spaces can be output in different ways. For
example, two predefined strings ‘str1$’ and ‘str2$’ can be separated by
10 spaces either by typing:

54

3 : Interacting with the User

PRINT strl$ " " str2$

or more simply:

PRINT strl$ SPC(10) str2$

SPC is a keyword which can only be used as part of a PRINT
statement. Its argument specifies the number of spaces to be output
and can be any number in the range 0 to 255.

The characters ‘,’ and ‘; can also be used to determine where
subsequent PRINT statements start printing. If the list of items is
followed by a semi-colon or comma, then the next PRINT statement
will start printing on the same line. Otherwise, a carriage return will
be printed, and so the next PRINT statement will start at the beginning
of the next line down. For example:

PRINT "Hello ";

PRINT "there"
PRINT "John"

produces:

Hello there
John

Asking for Input
We often want a program to stop and wait for the user to type
something. This is very straightforward with BASIC. The following
program shows how it can be done:

PRINT "What is your name";

INPUT namel$
PRINT "Pleased to meet you ";namel$

When you RUN this program, the INPUT command prints a question
mark on the screen and waits for you to type in a string and press the
Return key. For example, you might type:

Fred

55

AmigaBASIC : A Dabhand Guide

The string you type is assigned to the variable ‘namel$’, and the
computer will respond by printing:

Pleased to meet you Fred

In the above program, the first PRINT statement was used to print a
message on the screen indicating the type of response which was
required. Without it, you would be presented with just a question
mark. Since you have seen the program, you know what it expects you
to type. However, anyone not knowing what the program was trying
to do would have no idea what sort of information to enter. Therefore
giving a message is very important. This message can be incorporated
into the INPUT instruction as follows:

INPUT "What is your name ";namel$
PRINT "Pleased to meet you ";namel$

Note that a question mark is automatically given after the INPUT
string. In some cases, you may wish to print out a message which is
not a question. If this is so, you can suppress the question mark by
replacing the semi-colon by a comma:

INPUT "Enter your name :",namel$
PRINT "Pleased to meet you ";namel$

Try running this program and typing:

Fred

You should find that the message printed is just the same as before,
because the spaces you typed before the first character have been
ignored. Now run it one more time and type:

Smith, Fred

This will produce the message:

?Redo from start

56

3 : Interacting with the User

This is because the comma is treated as a separator between two items
of data. Therefore the computer was expecting you to type in one
string and you have actually given it two: “Smith” and “Fred”. The
message means that the computer wants you to re-enter your
response.

If you require more than one piece of information, you can use several
INPUT statements, as in the following program:

INPUT "Enter your surname :",surname$
INPUT "Enter your first name :",namel$
PRINT "Pleased to meet you ";namel$;" ";surname$

In this case you will be expected to enter two strings separately, for
example:

Smith
Fred

and you will be rewarded with the message:

Pleased to meet you Fred Smith

An alternative method is to ask for several pieces of information to be
given at once by placing several variable names, separated by
commas, after the INPUT string. The above program can be modified
to demonstrate this as follows:

INPUT "Enter your surname and first
name:", surname$, namel$
PRINT "Pleased to meet you ";namel$;" ";surname$

This program expects two strings, separated by commas, to be given
on the same line. In this case the input:

Smith, Fred

is correct, whereas if you type just:

Fred

57

AmigaBASIC : A Dabhand Guide

the ‘?Redo from start’ message will be generated because you have
entered too few strings.

Acting on Information Received

Once you, as the programmer, have been given some information by
the user, you will no doubt want to do something with it. The above
examples used the strings given to personalise a message. This is a
very nice touch, often used to make the computer appear more
‘human’ and approachable. However, you might find that you want to
do different things depending on what the user typed. BASIC
provides the answer to this in the form of an IF statement, which
enables the computer to make a choice about whether or not to
execute a statement or group of statements. In its simplest form this
can be used as follows:

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN PRINT "Right - well done"

The IF is followed by a ‘conditional expression’. This is an expression
which gives the value true or false. If the result of the conditional
expression is true the computer executes the statement after the
THEN. In the example shown, the conditional expression is true when
ans% is equal to four, and is false otherwise. If the user types four then
the message ‘Right — well done’ will be printed.

Note that, in this example, the variable name is terminated by a ‘%’.
This acts like the ‘¢’ symbol to denote that the variable is of a
particular type. But whereas the ‘¢’ indicates that a variable is a string
variable, ‘%’ indicates that it is an ‘integer variable’. Integer variables
are a subclass of numeric variables which can hold only whole
numbers.

By default, a variable name without a special character on the end is
treated as a ‘real variable’, which can hold both whole and fractional
numbers. One disadvantage of real variables is that they don’t hold
numbers totally accurately. If the result of a calculation means that a
real variable should contain the value seven, then it might well
actually contain 6.999999 or 7.000001. Therefore, you should never test

58

3 : Interacting with the User

two real numbers for equality, since you cannot rely on them being
exactly the same.

Many of BASIC's statements act on integers. For example, the graphics
commands use integer coordinates. However, in most cases, these
statements will happily accept real numbers and use the nearest
integer value. Strictly speaking though, the programs we have written
such as:
FOR count = 1 TO 200

Xpos = RND*620

ypos = RND*180

radius = RND*60

CIRCLE (xpos,ypos),radius
NEXT count

should really be written as:

FOR count% = 1 TO 200

xpos% = INT(RND*620)

ypos% = INT(RND*180)

radius% = INT (RND*60)

CIRCLE (xpos%,ypos%),radius%
NEXT count$%

where INT is a function which takes a real number as an argument
and returns the largest integer less than or equal to it.

Returning now to the main issue of:

INPUT "What is 2 + 2"; ans%
IF ans% = 4 THEN PRINT "Right - well done"

If the user types any number other than four, then nothing will
happen. This isn’t very informative for the poor old user. What we
really ought to do is to give a different message if the answer is wrong.
To do this we can add an ELSE clause onto the end of the line:

INPUT "What is 2 + 2"; ans%

IF ans% = 4 THEN PRINT "Right - well done" ELSE PRINT
"Wrong"

59

AmigaBASIC : A Dabhand Guide

Now, if the answer is correct, the message of congratulations will be
given as before. But if the answer is wrong, the rather terse message
‘Wrong’ will be printed on the screen.

The THEN and ELSE keywords can be followed by more than one
statement:

INPUT "What is 2 + 2"; ans$%
IF ans% = 4 THEN PRINT "Right - well done" ELSE PRINT
"Wrong" :BEEP

This time, giving the wrong answer will print the message ‘Wrong’,
produce a short sound and flash the screen.

You can have as many statements as you like following the THEN and
ELSE keywords, provided that they will all fit on one BASIC line. (A
line can contain a maximum of 255 characters.) However, you will
probably find that the program becomes difficult to understand well
before this limit is reached. Unless the actions, to be performed
following the THEN and ELSE, are short and simple it is better to use
the second version of the IF statement:

INPUT "What is 2 + 2"; ans$
IF ans% = 4 THEN

PRINT "Right - well done"
ELSE

PRINT "Wrong"

BEEP
END IF

This version is distinguished from the first by the fact that the THEN
has nothing following it on the same line. In this version, the
statements which are executed conditionally are split over several
lines of the program. Depending on the result of the conditional
expression, either the block of statements occurring between the
THEN and the ELSE, or between the ELSE and the END IF, are
executed. Note that the END IF is vital. Without it, BASIC cannot tell
which statements are under the influence of the IF, and so gives an
error message.

This version of the IF statement can be taken one step further by
introducing ‘ELSEIF’ blocks. For example:

60

3 : Interacting with the User

INPUT "What is 2 + 2%; ans%
IF ans% = 4 THEN

PRINT "Right - well done"
ELSEIF ans% = 5 THEN

PRINT "Your answer is one too many"
ELSEIF ans% = 3 THEN

PRINT "Your answer is one too few"
ELSE

PRINT "Wrong"

BEEP
END IF

Now, if ans% is not equal to four, a further test is made to see if ans%
has the value five. If so, the message “Your answer is one too many’ is
printed. If not, then yet another test is made, this time to see if ans% is
three. If so the message “Your answer is one too few’ is printed. It is
only if all the tests produce the result false (ie the answer was not
three, four or five) that the statements after the ELSE are executed.

Looking for Input

INPUT is fine if you want your program to stop and ask for a piece of
information. But what do you do if you don’t want the program to
stop and give a prompt, you just want to see if the user has pressed a
key. The answer is to use INKEY$. This returns either the null string,
““, if nothing has been pressed, or a string containing the first
character read from the keyboard buffer otherwise. For example, type
in the following (leaving out the comments if you wish) :

PALETTE 0,0,0,0 : REM Colour 0 black

PALETTE 1,1,0,0 : REM Colour 1 red

PALETTE 2,0,1,0 : REM Colour 2 green

COLOR 1,0 : REM Select colour 0 for background
CLS : REM and clear the screen

xpos = 320 : REM Start off roughly in the

ypos = 100 : REM centre of the window

col =1 REM and in red

FOR loop = 1 TO 5000
a$ = INKEYS

IF a$ <> "" THEN
col = 3 - col
IF a$ = "x" THEN xpos = xpos + 10: col = 2
IF a$ = "z" THEN xpos = xpos - 10: col = 3

61

AmigaBASIC : A Dabhand Guide

END IF
CIRCLE (xpos,ypos),20,col,,,.56
NEXT

Now run this program. It will start by drawing a red circle on a black
background. If you press any key then the circle will switch to being
green, press another and it will change back to red again. Now try
pressing the ‘x” key. (Note that only a lower-case x will be responded
to — an upper-case one will be ignored.) When you do, INKEY$ will
return the string “x” to a$ and xpos will be increased, so that the circle
will be drawn to the right of the previous one. Similarly, pressing ‘z’
will cause the circle to move to the left, ‘#’ to move up and ‘/’ to move
down.

Note that, if you hold one of the keys down for a while, when you let
go the circles will carry on moving in the direction you selected. This
is because the computer frequently checks the keyboard and, if there is
a key held down it places this character in the keyboard buffer. These
characters are removed one at a time by INKEY$. Since characters can
be put in the keyboard buffer more frequently than INKEYS$ is called
to remove them, then the buffer gradually builds up a backlog of
characters. When you eventually let go, it takes a while for the
program to clear this backlog. If you hold a key down for too long
then the buffer becomes full and characters are lost.

Conditional Loops

Often, you don’t want to use INKEY$ just once or for a fixed length of
time. Instead you want to keep on using it until it finds a character.
For example, a game must continually check to see if the user has
pressed a key. While the keyboard buffer is empty the game can get on
with dealing with its side of the action. However, as soon as it finds a
character it must respond appropriately.

To carry out this kind of action you need to construct a
WHILE...WEND loop. As long as a particular condition is true, the
statements inside the loop will be executed. But soon as the condition
becomes false, the program moves on to execute the statements after
the end of the loop. A simple example illustrating this is given below:

WHILE INKEYS$ = ""

62

Xpos = RND*620
ypos = RND*180
radius = RND*60

3 : Interacting with the User

CIRCLE (xpos, ypos), radius

WEND

This program continues plotting random circles on the screen until

you press a key.

This concept can be used to amend the circle moving program we had

above. Change it to the following:

PALETTE 0,0,0,0 : REM
PALETTE 1,1,0,0 : REM
PALETTE 2,0,1,0 : REM
COLOR 1,0 : REM
CLS : REM
xpos = 320 : REM
ypos = 100 : REM
col =1 : REM
xoff = 0 : REM
yoff = 0 : REM
WHILE xpos > 0 AND xpos
180
a$ = INKEYS
IF a$ <> "" THEN
col = 3 - col
IF a$ = "x" THEN
IF a$ = "z" THEN
IF a$ = "#" THEN
IF a$ = "/" THEN
END IF
Xpos = Xpos + 10*xoff
ypos = ypos + S*yoff
CIRCLE (xpos,ypos),20,
WEND
END

Colour 0 black

Colour 1 red

Colour 2 green

Select colour 0 for background
and clear the screen

Start off roughly in the
centre of the window

and in red

No movement wanted

initially

< 620 AND ypos > 0 AND ypos <

xoff = 1 : yoff = 0
xoff = -1 yoff = 0
xoff = 0 : yoff = -1
xoff = 0 yoff = 1
col,,, .56

Every time round the WHILE...WEND loop, the position of the centre
of the CIRCLE is updated by adding on an x-offset and y-offset.
Initially, these offsets are zero, so the circle stays in the centre of the
screen. Pressing one of the direction keys assigns a non-zero number
to either xoff or yoff, so the circle starts moving in a particular
direction. It will continue moving in that direction until a different

AmigaBASIC : A Dabhand Guide

window, which causes the WHILE loop to terminate and so ends the
‘game’.

This program is better than the previous version in that it only
requires you to press a direction key once to make the circle move,
rather than having to press it continuously. This means that characters
will not build up in the buffer and so the response to a key press is
immediate, rather than delayed.

4 : Writing Large Programs

The larger the the programs you produce, the more disciplined you
must be as you write them. To prevent too many bugs creeping in, you
have to keep the program comprehensible. This means that variable
names must be meaningful, comments must be used when necessary,
and the program must be well structured so that the flow of control is
easy to follow.

This chapter looks at some of the techniques which can be used to help
achieve these ideals. And, since some programs will inevitably contain
bugs, the ways in which you can track bugs down and eliminate them.

Coping with Variables
Consider the case of wanting to read in the surnames of thirty
different children. You could do this as follows:

INPUT "Please give me a name: ",surnamel$
INPUT "Please give me a name: ",surname2$
INPUT "Please give me a name: ",surname3$

...

INPUT "Please give me a name: ",surname30$

However, this is a very long winded way of going about things. The
way it should be done is with a FOR loop. What currently prevents a
loop being used is the fact that the variable name is different in each
case.

Arrays
There is a way around this problem though, and that is to use an
‘array’. Arrays are groups of variables which share the same name. For

example, you can define an array called ‘surname$’ which holds thirty
different strings.

The individual members of an array are called ‘elements’. They are
identified by a ‘subscript’. This is an integer indicating the element’s
position within the array. The lowest value which a subscript may

65

AmigaBASIC : A Dabhand Guide

have is called the ‘lower bound’ and the highest value is called the
‘upper bound’.

Normally, the first element in an array has a subscript of 0, the second
a subscript of one etc. For example, for our array ‘surname$’:
surname$ (0) is the first element
surname$ (1) is the second element

.......

surname$ (n) is the (n+l)th element

Often it is more convenient for the first element of an array to have the
subscript one. You can specify that this is to be the case by using the
statement:

OPTION BASE 1

This would mean that the elements of ‘surname$’ become:

surname$ (1) is the first element
surname$ (2) is the second element

surname$ (n) is the nth element

OPTION BASE can only take the values zero or one. Therefore the first
element has to have a subscript of zero or one.

Dimensioning and Assigning to an Array

If an array is to contain more than ten elements, you need to tell
BASIC how big it is to be. You do this by using a DIM statement. For
example:

OPTION BASE 1
DIM surname$ (30)

allocates space in the computer’s memory for thirty string elements,
each called ‘surname$’, but each having a different subscript, one to
30.

Arrays may hold values of any type, ie floating point numbers,
integers or strings. For example:

66

4 : Writing Large Programs

OPTION BASE 1
DIM temperature(21)

allocates space for 21 floating point numbers.

The DIM statement initialises each of the elements of an array. If it is a
numerical array the elements are set to zero. If it is a string array the
elements are set to the null string. The elements may then be
individually assigned values, just like any other variables. For
example:

20.5
(temperature (1) + temperature(2))/2

temperature (1)
temperature (3)

The subscript need not be specified as a number. Instead, a variable
can be used. For example, we can go back to our original problem and
solve it as follows:

OPTION BASE 1

DIM surname$ (30)

FOR person% = 1 TO 30

INPUT "Please give me a name: ",surname$ (person%)
NEXT

Any arithmetic expression may be used as a subscript. Since the
subscripts can only be integers, any expression which gives a floating
point result has the number rounded to the nearest integer value.

Multi-dimensional Arrays

The examples shown above are of ‘one-dimensional’ arrays, ie they
may be thought of as a line of variables. More dimensions may be
used by providing more subscripts to identify an individual variable.
For example, with two-dimensional arrays individual variables are
identified by two subscripts.

A two-dimensional array may be defined as follows:

OPTION BASE 1
DIM colour%(80,40)

This allocates space for 3200 elements, each called colour% and each
identified by two subscripts:

67

AmigaBASIC : A Dabhand Guide

colour%(1,1) colour%(1,2) colour%(1,3)..colour%(1,40)
colour%(2,1) colour%(2,2) colour%(2,3)..colour%(2,40)

...

colour%(80,1) colour%(80,2) colour%(80,3) .. colour%(80,40)

Arrays may have as many dimensions as you like up to a maximum of
255. However, one-, two- and three-dimensional arrays are the most
useful.

The elements of a two-dimensional array can be thought of as the
positions on a piece of paper or the screen. Each position is at a certain
distance from one of the sides (given by the first subscript), and a
certain distance from either the top or bottom (given by the second
subscript). The array could be used to hold an item of information
about such positions. For example, the array ‘colour%’ above could
hold the colour of every pixel within a rectangle, 80 pixels across and
40 pixels high:

REM Choose the colours to use:
PALETTE 0,0,
PALETTE 1,1,
PALETTE 2,0,
PALETTE 3,0,0,
REM Draw 50 random circles in each colour; 1, 2 and 3
FOR col% =1 TO 3
FOR count%$ = 1 TO 50
pos% = INT (RND*620)
ypos% INT (RND*180)
radius% = INT(RND*60)
CIRCLE (xpos%, ypos%), radius%, col%
NEXT
NEXT
REM Draw a thick rectangle which contains 80x40 pixels
left.x% = 280
top.y% = 80
LINE (left.x%,top.y%) - STEP(81,41),0,b
LINE (left.x%-1,top.y%-1) - STEP(83,43),0,b
REM Define an array to hold the colours of each pixel of
the REM rectangle
OPTION BASE 1
DIM colour%(80,40)
REM Read the colour of each point
FOR xpos% = 1 TO 80
FOR ypos% = 1 TO 40

’
’

’

0
0
1
0

O oo

[

68

4 : Writing Large Programs

colour$% (xpos%, ypos%) =
POINT (left.x%+xpos%, top.y%+ypos%)
NEXT
NEXT
REM Now reproduce the rectangle
CLS
FOR xpos% = 1 TO 80
FOR ypos% = 1 TO 40
PSET (left.x% + xpos%,top.y% +
ypos%) ,colour$% (xpos%, ypos$%)
NEXT
NEXT

This program introduces a BASIC ‘function’ called POINT. A function
can be thought of as a statement which returns a value. We met
another example of a function in a earlier chapter which was RND.
The value returned by RND is a random number in the range 0-1. In
the case of POINT, the value returned is an integer in the range 0-3,
giving the colour of the pixel whose x- and y- coordinates are passed
as arguments. The other possible value which POINT can return is -1,
this occurs if the coordinates given lie outside the current Output
window.

Using three-dimensional arrays the model can be taken one stage
further. The third dimension can be used to specify the height of a
position relative to the plane of the piece of paper or screen. This
allows information about a three-dimensional volume to be held.

The physicists among you may see the potential for treating the fourth
dimension as representing time. However, beyond that, the
dimensions fail to have any meaning in the real world.

Rules About Subscripts
When using arrays, remember that if you DIM an array using a
particular number of subscripts, each element of the array must be
referenced with the same number of subscripts:

OPTION BASE 1

DIM colour%(80,40)
colour%(1l,1,1) =1

69

AmigaBASIC : A Dabhand Guide

produces the error ‘Subscript out of range’. A correct version would
be:

OPTION BASE 1
DIM colour%(80,40)
colour%(1,1) =1

In addition the numbers used as subscripts must be within the correct
range, ie between the lower and upper bound:
OPTION BASE 1

DIM colour%(80,40)
colour%(100,20) = 1

gives the error message because the first subscript must be between
one and 80. Similarly:
OPTION BASE 1

DIM colour%(80,40)
colour%(1,50) =1

gives an error because the second subscript lies outside the range one
to 40.

Making Editing Easier

As programs get bigger, using just the arrow keys to move around
them in the editor becomes a slow process. Fortunately, there are
faster ways of moving through programs.

Scrolling

As we have already seen, the four arrow keys normally act as follows;
Move up by one line
Move down by one line

Move right by one character
Move left by one character

However, if the cursor is already at the edge of the display in the
direction being moved, the following actions also occur:

70

4 : Writing Large Programs

Scroll right by three-quarters of a display
Scroll left by three-quarters of a display

To move faster in a particular direction, the arrow keys can be used in
combination with the SHIFT key or ALT keys. These move the cursor
to the following positions, scrolling as necessary:

SHIFT—T Move backwards by one windowful
SHIFT — | Move forwards by one windowful

SHIFT — — Move right by three-quarters of a display
SHIFT — « Move left by three-quarters of a display

ALT
ALT
ALT
ALT

—T Move to the beginning of the program
—1 Move to the end of the program

— — Move to the far right of the current line
— ¢« Move to the far left of the current line

Line Numbers and Labels

Any of you who have used BASIC on other machines will probably
have been surprised by the absence of line numbers in the programs
we have written so far. You can use line numbers, if you wish, in
AmigaBASIC. However you don’t have to. For example, a program

such as:

CIRCLE (320,100),100
CIRCLE (160,50),50
CIRCLE (480,50),50
CIRCLE(160,150),50
CIRCLE (480,150),50

can equally well be written as:

10
20
30
40
50

CIRCLE (320,100),100
CIRCLE (160,50),50
CIRCLE (480,50),50
CIRCLE (160,150),50
CIRCLE (480,150),50

You can use any whole number between 0 and 65529 for a line
number. However, it is important to note that AmigaBASIC executes

71

AmigaBASIC : A Dabhand Guide

each line of a program sequentially, regardless of any line number it
has. It does not execute them in numerical order of the line numbers.
The numbers are there purely as markers so you can refer to particular
positions in a program.

Instead of starting a line with a line number, you can start it with a
‘label’. This must begin with a letter, end with a colon and contain a
maximum of 39 letters, numbers or full stops in between. For example:

large.cir: CIRCLE(320,100),100

small.cirs:

CIRCLE(160,50) .50

CIRCLE (480,50),50

CIRCLE(160,150),50
CIRCLE (480,150),50

It is better to use labels rather than line numbers since they can be
made more descriptive and so help to document your code. The real
use of line numbers or labels is to mark positions of the code which
you want to ‘jump’ to in some way.

When listing a program, you can open the List window so that a
particular line is at the top of the window. To do this, you have to
select the Output window and type LIST, followed by the line number
or label of the line required. For example:

LIST small.cirs

Hence it is a good idea to start sections of a program with a label, so
that you can find them easily in the editor.

Keeping It Structured

We have already seen some features of AmigaBASIC which help to
structure a program. FOR and WHILE loops are two examples. These
allow a block of statements to be repeated several times, without the
need of having multiple copies of the statements within the code.
Another is the IF construct. This allows alternative pieces of code to be
executed, depending on certain conditions, the code being in a very
readable form. However, there are other structures which we have not
yet encountered.

72

4 : Writing Large Programs

Subroutines

Quite often you may find that a program contains the same block of
code several times at different places. This is obviously wasteful, but
what can be done about it? One solution is to use a ‘subroutine’. This
is a block of code which starts with a line number or label, and ends
with the keyword ‘RETURN'. To execute this block of statements, the
main body of the program just needs to issue the command ‘GOSUB’
followed by the relevant line number or label. Then all the statements
in the subroutine will be executed until the ‘RETURN’ is reached, at
which point BASIC will return to the statement in the main body of
the program immediately after the ‘GOSUB’, and continue executing
from there. The following diagram (Figure 4.1) should help to
illustrate the process:

\ 4 Body of
program

-

call of sub 1

- - .b_ - -
SR I

.......... call of sub 2

_
'
L]
L]
1
-t
'
'
1
L]
1

-

e

""""" END

Body of

..-_.__-_b______

Subroutine 1
forosmrenn e RETURN
--------------------- * Body of
Subroutine 2
L RETURN

Figure 4.1. Program flow at GOSUBs.

The above demonstrates the typical structure of a program containing
subroutines. The main body of the program occurs first, followed by
the keyword ‘ENDY, followed by the body of the subroutines. Note
that the ‘END’ statement is necessary to tell BASIC to stop executing

73

AmigaBASIC : A Dabhand Guide

the code once the bottom of the main body of the program has been
reached. Without it, BASIC would continue executing the code until it
reached the end of the text. This means that it would ‘fall through’ into
the first subroutine, and execute it as though it were part of the main
program. However, when it reached the ‘RETURN’ statement at the
end, the error message ‘RETURN WITHOUT GOSUB’ would be given.
This is because the subroutine wasn’t entered properly via a GOSUB
call so BASIC doesn’t know where it is to return to.

‘END’ may be printed at the end of all programs. However, normally
the end of the main body of the program coincides with the end of the
text, so the keyword is not necessary.

The following illustrates how a subroutine may be used:

REM Initialise the colours
PALETTE 0,0,0,0
PALETTE 1,.2,0,0
PALETTE 2,.2,.2,0
PALETTE 3,0,.2,0
REM Draw 3 solid circles vertically
xpos% = 320
FOR ypos% = 40 TO 120 STEP 40
col% = ypos%/40
FOR radius% = 1 TO 20
CIRCLE (xpos%,ypos$%),radius%,col%
NEXT
NEXT
REM Now loop round the traffic light sequence
REM five times
FOR count% = 1 TO 5
PALETTE 2,.2,.2,0 : PALETTE 1,1,0,0
GOSUB delay
PALETTE 2,1,1,0
GOSUB delay
PALETTE 1,.2,0,0 : PALETTE 2,.2,.2,0 : PALETTE 3,0,1,0
GOSUB delay
PALETTE 3,0,.2,0 : PALETTE 2,1,1,0
GOSUB delay
NEXT
REM finish by displaying all three lights
PALETTE 1,1,0,0
PALETTE 2,1,1,0
PALETTE 3,0,1,0
END
REM Subroutine to pause for a while
delay:

74

4 : Writing Large Programs

FOR c% = 1 TO 5000
NEXT
RETURN

Subprograms

A better method of keeping code well structured is to make use of
‘subprograms’. In some respects a subprogram is similar to a
subroutine. Both are groups of BASIC statements which perform a
particular task and which have a name or label assigned to them.
However the syntax used to define and call them is slightly different.
The following shows how the above program can be altered to use a
subprogram for the delay code, rather than a subroutine:

REM Initialise the colours
PALETTE 0,0,0,0
PALETTE 1,.2,0,0
PALETTE 2,.2,.2,0
PALETTE 3,0,.2,0
REM Draw 3 solid circles vertically
xpos% = 320
FOR ypos% = 40 TO 120 STEP 40
col% = ypos%/40
FOR radius% = 1 TO 20
CIRCLE (xpos%,ypos%),radius%,col%
NEXT
NEXT
REM Now loop round the traffic light sequence
REM five times
FOR count% = 1 TO 5
PALETTE 2,.2,.2,0 : PALETTE 1,1,0,0
CALL delay
PALETTE 2,1,1,0
CALL delay
PALETTE 1,.2,0,0 : PALETTE 2,.2,.2,0 : PALETTE 3,0,1,0
CALL delay
PALETTE 3,0,.2,0 : PALETTE 2,1,1,0
CALL delay
NEXT
REM Finish by displaying all three lights
PALETTE 1,1,0,0
PALETTE 2,1,1,0
PALETTE 3,0,1,0
REM Subprogram to pause for a while
SUB delay STATIC
FOR count% = 1 TO 5000
NEXT
END SUB

75

AmigaBASIC : A Dabhand Guide

The body of the subprogram is started by the statement ‘SUB’ and
ended by the statement ‘END SUB’. ‘SUB’ must be followed by the
name of the subprogram which may be up to 40 characters long and
then the keyword ‘STATIC'. The code of the subprogram can be called
from anywhere in the main body of the program by using the
keyword ‘CALL’, followed by the name of the subprogram.

The program illustrates two interesting facts about subprograms
which do not apply to subroutines. The first is that the code of the
subprogram is only executed when it is CALLed. At the end of the
traffic light loop, the program will execute the final three PALETTE
statements and then stop. The flow of control will not fall through into
the body of the subprogram. Therefore an ‘END’ statement is not
necessary.

The second is that by default, the variables used in the subprogram are
entirely independent from those of the main program. Assigning a
value to a variable within the subprogram does not affect the value of
any variable in the main program which has the same name. Therefore
the variable ‘count%’ can be used within the subprogram without it
affecting the loop variable, also called ‘count%’, of the loop from
which the subprogram is called.

Passing Parameters

What makes subprograms so useful is that fact that they can take
‘parameters’. These are variables which are passed values from the
main program. In the example above, the length of time each sequence
is displayed for is equal. In real life, the red and green stages would
last far longer than the intermediate, amber, stages. One way of
achieving this would be to have two different subprograms: one
which counted to 5000, and the other which counted to, say, 20000. A
better way is to alter the current subprogram as follows:
SUB delay (limit%) STATIC
FOR count% = 1 TO limit%

NEXT
END SUB

76

4 : Writing Large Programs

This now has one parameter which determines the value counted to
and hence the length of the delay. The main program also has to be
altered so that each time delay is called, a value is passed to it. For
example calls to delay have to take the following kind of format:

CALL delay (5000)

or alternatively:

period% = 20000 : CALL delay (period%)

This means that the main program can influence the action of the
subprogram. , in this example only one subprogram need be used,
even though different length delays are required.

Updating Parameters

By passing a constant value, such as 5000, the main program is
sending information to the subprogram. However, when the main
program passes a variable, the subprogram has the opportunity to
send information back. For example, what would you expect the
following to print?

a%$ =1

b% = 1

CALL double (a%)
PRINT a%

PRINT b%

SUB double (num%) STATIC
num$% = num% * 2

a%$ = 3
b% = 3
END SUB

The values actually printed are:

2
1

The subprogram has its own local copies of the variables a% and b%,
so the assignments to them do not alter the a% and b% in the main
program. However, it is being passed a% as a parameter. The value of

77

AmigaBASIC : A Dabhand Guide

the parameter is doubled by the subprogram, and hence the value of
a% is doubled. If you don’t want the values of the main program’s
variables to be altered by calling a subprogram, then you can enclose
them in brackets. For example:

as =1

b% =1

CALL double((a%))

PRINT a%

PRINT b%

SUB double (num$%) STATIC
num% = num% * 2

a$ = 3
b% = 3
END SUB
will print:

1
1

The situation is summarised in the table below:

Argument passed Effect on variable
variable updated
(variable) unaltered

It is a very important point to remember. Forgetting to use brackets,
when you meant to, can lead to all sorts of problems and it is very
difficult to spot this type of mistake when reading through a program.

Local and Shared Variables

An alternative way of referring to and/or updating the main
program’s variables inside a subprogram, is to use the SHARED
statement. For example:

a$ =1

b% =1

CALL treble

PRINT a%

PRINT b%

SUB treble STATIC
SHARED a%,b%

78

4 : Writing Large Programs

a% 3
b% 3
END SUB

gives the results:

3
3

The shared statement makes the variables inside the subprogram refer
to the same variables as the main program.

Any variables which are not parameters and are not SHARED are
local to the subprogram. The values of local variables are preserved
between calls to a subprogram. For example:

FOR loop% = 1 TO 5
CALL count

NEXT

SUB count STATIC

a% = a% + 1

PRINT a%

END SUB

will print:

Qs W

When the subprogram is first entered, its local variable a% will be
initialised to zero. The body of the subprogram increases a% by one
and prints its value. The next time count is entered, a% still has the
same value, so this time adding one gives the result two, etc.

Subprograms: Other Points to Note
There are a few more points which need to be made here about
subprograms. The first is that you cannot nest them, ie one
subprogram cannot contain the definition of second subprogram.
However a subprogram can call other subprograms.

79

AmigaBASIC : A Dabhand Guide

The second is that a program cannot contain two subprograms with
the same name. An error message will be given if this occurs.

Finally, you can return control, before the end of the subprogram is
reached, by using the ‘EXIT SUB’ command. For example, the
subprogram, used earlier to generate a pause, could be improved as
follows:
REM Subprogram to pause for a while
SUB delay(limit%) STATIC
IF limit$ < 1 THEN EXIT SUB
FOR count% = 1 TO limit%

NEXT
END SUB

This then checks that a valid length of time has been passed as a
parameter and, if not, it does nothing. Otherwise it pauses as before.

Functions

The last structure which we will look at here, very briefly, is the
‘function’. We’ve already met some BASIC functions; RND and
POINT. However, BASIC also allows you to create your own. The
following illustrates their syntax:

DEF FNadd(vall,val2) = vall + val2

The definition starts with ‘DEF FN’ followed by the name to be
assigned to the function. This must be adjacent to the DEF FN, with no
spaces in between. Then any parameters to be passed are given,
enclosed in round brackets and separated by commas. Finally the
definition contains an equals sign and an expression which specifies
the value which the function is to return.

User defined functions can be used in expressions. For example:

PRINT FNadd(a,b)

or alternatively:

sum = FNadd(a,b) + FNadd(c,d)

80

4 : Writing Large Programs

or:

sum = FNadd(FNadd(a,b),FNadd(c,d))

etc.

There are a few rules about the use of functions which are listed
below:

e The function definition must be executed before the function can
be called. Otherwise a ‘Undefined user function’ error will be
generated.

e A program can contain more than one definition of a function, in
which case the most recently executed definition will be used.

e Functions can return either numeric or string values. However, if
the result of the expression in the function definition does not
match the type of variable being assigned to when the function is
called, a ‘Type mismatch’ error will occur.

e Function definitions cannot occur within subprograms.

Because their definitions can only contain a single, one-line
expression, functions are of limited use. They have been included here
mainly for reference should you encounter any in other programs.

Merging Programs Together

At some stage, as you write more and more programs, you will
probably find that you would like to include the whole or part of one
program within a second. An easy way of combining two programs is
provided by the MERGE command which takes one program and
adds it to the end of the current program. The only complication is
that the program being merged has to be stored in a particular format.

Normally, when a BASIC program is saved, it is stored on disc in a
special, compact form. Each of the keywords is represented as a single
‘token’ or number, rather than being held as the characters making up
its name. For example, PRINT is stored as the single number 172
rather than the five numbers which represent the letters ‘P’, ‘R’, T, ‘N’
and ‘T".

81

AmigaBASIC : A Dabhand Guide

However, in order to be merged a program must look like ordinary
untokenised text. In order to store a program in this format, the ‘a’
option must be used when saving it. For example:

SAVE "prog2",a

Thus the sequence to merge one program ‘prog2’ onto the end of
another program ‘progl’ is as follows:

1) Create ‘progl’

2) Saveit as a BASIC program (SAVE “progl”)

3) Create ‘prog2’

4) Saveit as a text file (SAVE “prog2”,a)

5) Load the first program into memory (LOAD “progl”)

6) Merge the second program onto the end (MERGE “prog2”)

What To Do With Data

All programs require data. Even the first program we wrote, which
drew a single circle on the screen, required three pieces of information:
the x- and y-coordinates of the centre of the circle and its radius. So
far, all the data we have used has been mixed in with the code. For
example, if we’ve wanted to draw five circles at specific positions,
we’ve written the following type of program:

CIRCLE 320,100,50

CIRCLE 160,50, 25

CIRCLE 480,150,25

CIRCLE 160,150,25
CIRCLE 480,50,25

However, it is better, for programs which are going to handle large
amounts of data, to keep the program and the data separate.

Reading and Defining Data

BASIC provides a pair of very useful keywords for dealing with data.
These are DATA and READ. The DATA statement is used to store
items of data within a program. The READ statement is used to access
these items. For example, if you wish to draw a series of circles at fixed
points on the screen, you can do so as follows:

82

4 : Writing Large Programs

FOR count% = 1 TO 5
READ xpos$%,ypos$%, radius$%
CIRCLE (xpos%,ypos%),radius$

NEXT count$%

DATA 320,100,50

DATA 160,50,25

DATA 480,150, 25

DATA 160,150,25

DATA 480,50,25

This program produces exactly the same result as the previous
program.

When the program is run, the READ statement looks through the
program until it finds the first DATA statement. It then takes the first
item of data (the number 320) and assigns this to the variable xpos%.
Similarly it assigns the second item of data to ypos% and the third to
radius%. The next time round the loop the READ statement carries on
reading data from where it left off. This time it reads the numbers 160,
50 and 25 into xpos%,ypos% and radius%. This happens five times,
once each time round the loop. Therefore each set of three numbers is
read in turn.

The DATA statements can be followed by one or more items of data
separated by commas. In the above example the data was split, so that
the three items of data, which were assigned by each READ, were
together on one line. This was only to make it clear what each value
was to be used for, either the x-coordinate, y-coordinate or radius. The
following would work just as well:

FOR count% = 1 TO 5
READ xpos%, ypos%,radius$
CIRCLE (xpos%,ypos$%),radius%
NEXT count$%
DATA 320,100,50,160,50
DATA 25,480,150,25,160,150,25,480,50,25

DATA statements can contain a mixture of numbers and strings. You
must make sure, though, that the type of each item of data matches the
type of the variable it is being read into. For example:

FOR count% = 1 TO 5
READ namel$, age%

AmigaBASIC : A Dabhand Guide

PRINT "My name is ";namel$;" and I am ";age%;" years
old"
NEXT
DATA "Tom", 4,"Dick",5,"Harry",6
DATA "Jack",3,"Jill",3

Normally you can leave out the quotation marks around strings. In the
above program, for example, they are not necessary. However, they
are needed if you want to include commas in the string or if you want
the string to start or end with spaces:

READ A$,B$

PRINT A$

PRINT B$

DATA How are you?
DATA Well, I hope.

produces:

How are you?
Well

This is because the second READ reads characters until it comes across
the comma after the ‘Well’ and concludes that this ends the item of
data.

To obtain both sentences in full, change the program to be as follows:

READ AS$,BS$

PRINT AS,BS$

DATA How are you?
DATA "Well, I hope"

The DATA statements may occur anywhere in the program but it is
best to keep them on a line of their own. If BASIC reaches a DATA
statement when it is executing a program, it ignores it and goes on to
the next line. It only uses the DATA statements when it encounters a
READ.

When it attempts to READ the first item of data, it scans through the
lines of the program from the top until it finds the first DATA
statement and uses the first item of data on this line. The next READ

84

4 : Writing Large Programs

uses the second item, and so on until the DATA statement has no
more items of data left, in which case the next DATA statement is
searched for and used.

If there is too much data then the extra items are just left unread.
However, if there is insufficient data, BASIC produces the error
message:

Out of data

This indicates that it has tried to READ an item of data but found that
there was none left unread.

Re-using Data Statements
The keyword, RESTORE, may be used to set the data-pointer to the
start of a DATA statement, or any line above it. This allows the data
statements to be used in a different order from how they occur in the
program. They can even be used more than once, for example:
FOR count% = 1 TO 5

RESTORE

number% = INT(RND*3.99) + 1

FOR count2% = 1 TO number$%

READ numbers$
NEXT count2%

PRINT numbers$
NEXT count$%

DATA one, two,three, four

Each time round the main loop the RESTORE statement sets the data-
pointer to point to the first item of data. A number in the range one to
four is generated at random, and this number of items of data are
read. The final item read is printed. So if the random number was
three, three items of data would be read and the final one, the string
‘three’, would be printed.

You can restore to a specific line of data by using a label or line
number. For example, the following produces the same results as the
one above, but in a different manner:

85

AmigaBASIC : A Dabhand Guide

FOR count% = 1 TO 5
number$% = INT(RND*3.99) + 1
IF number% = 1 THEN
RESTORE 1

ELSEIF number% = 2 THEN
RESTORE 2

ELSEIF number% = 3 THEN
RESTORE 3

ELSE
RESTORE 4

END IF

READ number$

PRINT number$

NEXT count$%

1 DATA one

2 DATA two

3 DATA three

4 DATA four

This time, the RESTORE is followed by a number. The data-pointer is
set to the first DATA statement on or after the line of this number.
Then the next item of data is read and printed. So if the random
number was three, the data-pointer would be set to point at the DATA
statement on line three and the data on this line, the string ‘three’,
would be printed.

Error Handling

In this section we are going to distinguish between two different types
of errors which cause the program to stop. The first type are syntax
errors in the program itself. For example, mistyped keywords and
labels, forgotten END statements, unmatched FOR and NEXT
statements etc. These are easy to find since they will be reported the
first time the code, in which they occur, is executed.

The second type are errors due to interactions between the program
and the data it is acting on. In this case the program may work
perfectly well in some cases, but fail in others. For example, consider
the following program:

INPUT "Please give me a number";num
PRINT "The reciprocal of ";num;" is ";1/num

86

4 : Writing Large Programs

This program works fine for most numbers, but cannot cope with the
value zero. This causes the error message ‘DIVISION BY ZERO’ to be
reported.

This error is not due to the program being wrong, it is caused by the
program being given data that it cannot handle. Therefore it could be
classed as being a ‘user fault’ rather than a mistake by the
programmer. However, it is up to the programmer to anticipate all the
different responses that the user can give and prepare the program to
handle them.

One method of coping with errors is to set up ‘error handlers’. These
are routines which are called whenever an error occurs. For example:

ON ERROR GOTO errorhand
FOR loop% = 1 TO 5
INPUT "Please give me a number :",num
PRINT "The reciprocal of ";num;" is ";1/num
NEXT
END
errorhand:
IF ERR = 11 THEN
PRINT "infinite"
ELSE
ON ERROR GOTO 0
END IF
RESUME NEXT

The first statement of the program sets up an error handler which
starts at the label ‘errorhand:’. Unless an error occurs, the code starting
at this point is not executed. However, if an error does occur, BASIC
will immediately jump to this label and execute the code in the error
handler.

In this example, the error handler uses ERR to find out which
particular error has occurred. This function returns the number
associated with the last error, so allowing the particular error to be
identified. A full list of errors and error numbers are given in
appendix B.

The error, which the program is interested in trapping, is ‘Division by
zero’ whose error number is 11. If this is the value returned, then the
error handler prints out the string ‘infinite’ and then executes the

87

AmigaBASIC : A Dabhand Guide

‘RESUME NEXT’ statement, which instructs BASIC to continue
executing the program at the statement following the one on which
the error occurred. If any other error has been generated, then it
executes an ‘ON ERROR GOTO 0'. This turns error trapping off and so
allows BASIC to print out the error in the usual way.

The ‘RESUME’ statement is used to signify the end of the error
handler, and to instruct BASIC to continue executing the program. It
can take one of four forms:

Statement Execution resumes at

RESUME The statement which caused the error

RESUME 0 The statement which caused the error

RESUME NEXT The statement after the one which caused
the error

RESUME <line> The statement at the line number or label
given

Note that RESUME statements can only be used within error handlers.

Different error handlers can be used at different points in the code.
Whenever an error occurs, the most recently executed ON ERROR
GOTO statement is used to determine the address of the error handler
to use.

Debugging

Sooner or later, everybody writes a program which is syntactically
correct but which doesn’t do what they intended it to when it is run.
AmigaBASIC provides some good facilities to help track down the
mistakes when this occurs.

Stepping Through a Program

Instead of running a program as normal, you can ‘step’ through it. To
do this, start executing the program by selecting Step from the Run
menu or pressing ‘Amiga-T’. This will execute the first statement and
then wait. Selecting Step, or pressing ‘Amiga-T" again, executes the
next one and so on.

88

4 : Writing Large Programs

If you bring the List window to the front at any stage, this will contain
your program with an orange rectangle surrounding the statement
which has just been executed. This allows you see the path taken
through the code.

Stepping through a program is a never ending activity. When the end
of your program is reached, the next step takes you back to the
beginning and the whole process starts again. To break out of this
vicious circle, select the Continue option from the Run Menu. This will
execute the rest of the program as normal and stop when it reaches the
end.

If you have a large program which is causing problems, you will often
have a good idea roughly where the error is occurring. Unless the
error is thought to be close to the beginning, stepping through right
from the start of the program is a time-wasting activity. To avoid
doing this, you can place a STOP statement in the program just before
the area of code suspected of being wrong. This will stop BASIC
executing your program at that position. You can then use the Step
option to move through the subsequent statements one at a time.

Examining and Resetting Variables
While a program is temporarily suspended, you can find out the value
of a variable, for example col%, by selecting the Output window and

typing:

PRINT col$%

This helps to isolate any positions in a program where a variable is
being assigned the wrong value.

In addition, you can alter a value using the LET statement, for
example:

LET col% =1

This is particularly useful if you think you have found out where a
program is going wrong. It lets you set the variables to what you think
are the correct values and continue execution to see if that fixes the
problem.

89

AmigaBASIC : A Dabhand Guide

Applying These Techniques

To practise these techniques, see if you can find the two mistakes in
the following program, by stepping through it and examining the

values of its variables at various stages:

.palette

PALETTE 0,0,0,0
PALETTE 1, .4, .4, .4
PALETTE 2,.7,.7,.7
PALETTE 3,1,1,1
CLS

.start
OPTION BASE 1
DIM sales%(12)

input_figures

max% = 0
FOR month% = 1 TO 12
INPUT, "Monthly sales figure :";sales% (month%)
IF sales% (month%) > max% THEN max% = sales% (month%)
NEXT
.axes
xoffset% = 20
yoffset% = 160
width$% = 600

height% = 100
LINE (xoffset%,yoffset%) - STEP(width%,0),1
LINE (xoffset%,yoffset%) - STEP(0,-height%),1

.max_height

pixels.per.unit = max% / height$%
.bar_chart

coly =1

FOR month% = 1 TO 12

CALL bar (month$%)

NEXT

.bar
SUB bar (month%) STATIC

SHARED xoffset%, yoffset%, width%, height%, sales$%,

month% = month% - 1

90

col%

4 : Writing Large Programs

x1% = month%*xoffset%

x2% = month%*xoffset% + width$

y1l% = yoffset%

y2% = yoffset% - INT(pixels.per.unit*sales% (height%))
col% = 3 - col%

LINE (x1%,y1l%) - (x2%,y2%),col%,bf

END SUB

Currently, the program goes into a loop. To stop it, select Stop from
the Run Menu or press ‘Amiga-." (Amiga and the full stop key).

What the program is meant to do is to input 12 values, representing
the sales figures for 12 months, and to display a bar chart of the
results. When correct, its description is as follows:

The program loops round reading in the values. These are assumed to
be positive integers, but no check is made to ensure this. As each value
is entered, it is placed in the array sales% and the maximum value so
far is updated. When all twelve have been entered, it draws axes on
the screen, 600 pixels wide and 100 pixels high, and calculates the
number of pixels which represent each unit of sales to ensure that the
highest bar reaches the top of the axes.

Then it loops round again and for each month calls a subprogram to
draw the appropriate bar. The height of each bar is given by the sales
for the month multiplied by the number of pixels per unit, calculated
as described above. The bottom corner for each bar is a distance
(month% — 1)*width% away from the corner of the axes. Hence month
one starts 0 pixels from the left, month two width% pixels away,
month three 2*width% pixels away and so on.

The bars are plotted in alternating shades of grey, the colour numbers
used being two for the first, one for the second, two for the next etc.

The mistakes are given below.

‘pixels.per.unit’ should be SHARED in the subprogram — currently it is
assumed to be local and so is initialised to zero.

‘month%’ should be enclosed in brackets when it is passed to the
subprogram, so that assignments to the parameter within the
subprogram do not affect the variable in the main program. Currently
the parameter is being decreased by one in the subprogram and so

91

AmigaBASIC : A Dabhand Guide

month% is decreased from one to 0 inside the loop. The NEXT
statement increases it back to one again which means that the first bar
is plotted repeatedly and the loop never terminates.

92

5 : Manipulating Text

We have seen that BASIC can handle strings of characters but so far
we have made very little use of them. Strings input by the user have
been treated as ‘indivisible’ items — no attempt has been made to
analyse the words and letters which they contain. In addition, any text
printed on the screen has been printed where BASIC decided to put it
— we have not put much effort into controlling its position.

One of the hardest parts of writing a program is designing the
interface between the computer and the user. This problem is in two
parts. Firstly, we have to try to act intelligently with the text which the
user provides. Then we have to output our responses in an attractive
manner. Little things like printing titles off-centre, losing parts of
sentences off the edge of the screen, or splitting words between two
lines can ruin the image of a program.

Good demonstrations of both of these are provided by ‘adventure
games’. These are games which allow the player to explore a fantasy
world. This world usually consists of lots of different rooms and
locations containing treasures to collect, puzzles to solve and monsters
to defeat. The player moves about by giving instructions such as ‘Go
north” and ‘Enter hut’, and the computer acts as the player’s eyes and
ears, describing the location he is in and any interesting objects which
there are nearby. These objects can be collected and used by giving
commands such as ‘Get diamonds’ and ‘Light lamp’. More
sophisticated programs can understand a more complicated syntax
such as ‘Throw the axe at the giant’. These programs have to be able to
extract the individual words of interest from a given string. These are
then checked against lists of known verbs and nouns and acted on if
understood.

A more serious example is a database. Its function is to allow
information to be stored and retrieved quickly and easily. To retrieve
information the user has to give it a ‘pattern’ to use and it will then
search through all the records it has and list the ones which match this
pattern. For example, if names and addresses are being stored, a

93

AmigaBASIC : A Dabhand Guide

simple pattern would be the name ‘Joe Brown’. It will then give the
addresses of all the people it knows with that name. To be of any real
use, the database will have to allow ‘wildcarded patterns’. These
contain symbols which can match certain classes of letters. One
commonly used one is ¥ which matches any number of any letters.
For example “* Brown’ will give you the address of anyone whose
surname is Brown, whatever their first name. Thus a database must be
capable of searching strings to see if they contain a particular
sequence.

String Expressions

Some operators, such as the logical operators, obviously only make
sense when acting on integer operands. However, others can be used
on string variables as well.

Comparing Strings
All the comparison operators can be used on string variables. The ‘=’
and ‘<>’ operators test whether two strings are identical or not. The

other operators need to be looked at more closely to see how they
work.

Every character is represented within the computer by a number in the
range zero to 255. The system used to determine the value associated
with a particular character is known as ASCII. This stands for
‘American Standard Code for Information Interchange’. Virtually all
computers use this system, which means that information can be
exchanged between them easily.

BASIC provides a pair of functions for converting characters to their
ASCII number-codes and back again. These are ASC and CHR$. For
example:

FOR character% = ASC("A") TO ASC("zZ")
PRINT CHRS$ (character$%) ;
PRINT character$%

NEXT

FOR character$% = ASC("a") TO ASC("z")
PRINT CHRS$ (character%);
PRINT character$%

NEXT

94

5 : Manipulating Text

This program loops through all the letter A to Z and then a to z and
for each prints out its ASCII value.

It is these ASCII values which are used when comparing strings. For
example:

"BILL" < "FRED"

gives the result ‘true’ since the letter ‘B’ has an ASCII value which is
less than that for the letter ‘F’. Similarly

"BILL" < "BOB"

is also ‘true’. In this case the first letters are the same so the next two
are compared and the ASCII value for ‘T’ is less that the ASCII value
for ‘O’. In addition

"BILL" < "BILLY"

is ‘true’. No character at all is less than “Y’. Finally

"BILL" < "bill"

is ‘true’. All upper-case characters have ASCII values which are less
than the lower-case characters. The previous program illustrates this.

You need to be aware that upper- and lower-case characters are
represented differently, particularly when you are dealing with input
from a user. For example, the simple request:

INPUT "Do you wish to continue (Y/N)"; ans$

would probably be complained about if it only accepted Y’ or ‘N’ and
ignored ‘y’ and ‘n’.

The problem of recognising what the user has typed becomes harder if
longer strings are permitted. For example there are four different
variations of NO : ‘NO’, ‘No’, ‘no’ and ‘nO’ and eight of YES : ‘YES’,
‘Yes’, ‘yes’, 'YEs’, ‘yeS’, ‘yES’, ‘yEs’ and ‘YeS'.

Rather than testing a string which has been input against all the
possible permutations of upper- and lower-case letters, it is easier to

95

AmigaBASIC : A Dabhand Guide

convert it to upper-case and then just do one test. To do this, the
function UCASES$ can be used. This takes a string as an argument and
returns it with all the characters converted into upper-case. For
example:
answer$ = ""
WHILE answer$ <> "YES"
INPUT "Do you wish to continue (YES/NO)"; ans$
answer$ = UCASES$ (ans$)
IF answer$ = "NO" THEN END
WEND
REM rest of program

This extract from a program starts by asking the user to enter either
“YES’ or ‘'NO’. The string typed is converted to upper-case. Then, if it
matches the string ‘NO’, the program ends. If it matches the string
“YES’ then the program will move onto the statement after the WEND.
Otherwise, the loop will be repeated and the question asked again.

Joining Strings Together
The ‘+’ operator is used to ‘join together’, or more correctly speaking
‘concatenate’, two strings. For example:

namel$ = "Winston"
surname$ = "Churchill"
PRINT namel$ + " " + surname$

Running this program produces:

Winston Churchill

Note, however, that the other arithmetic operators are meaningless
when applied to strings and produce an error message.

To obtain a string containing multiple copies of a character, the
STRINGS function can be used. This takes two arguments. The first is
an integer specifying the length of the string to be returned. The
second is either the ASCII code of the character wanted, or a string
starting with the character wanted. For example, the following three
programs produce the same output:

96

5 : Manipulating Text

REM Progl
FOR loop% = 1 TO 10

PRINT STRINGS (loop%,ASC("*"))
NEXT

REM Prog2
FOR loop% = 1 TO 10

PRINT STRINGS (loop%, "*")
NEXT

REM Prog3
FOR loop% = 1 TO 10

PRINT STRINGS (loop%,"*/+-")
NEXT

If the character to be repeated is a space, then an alternative method is
to use SPACES$. This takes just one argument, which is the number of
spaces required.

Converting Between Numbers and Strings

It has been emphasised, throughout this book, that strings and
numbers are fundamentally different. You cannot assign a number to
a string variable and vice versa. However, at times this may cause a
problem. For example you may have a string and want to treat its
characters as a number. AmigaBASIC provides routines to handle this
kind of situation.

The function VAL takes a string of digits and converts it into a
number. For example:

stringl$ = "42"

string2$ = "37"

numl% = VAL(stringl$)

num2% = VAL (string2$)
PRINT numl$% + num2%

will output the value 79.

97

AmigaBASIC : A Dabhand Guide

VAL ignores any space or tab characters at the start of the string and
returns the value of string, up to the first character which cannot be
treated as part of a number. For example:

PRINT VAL (" 12 High Street")

prints the value 12. Remember that it is not only digits which can be
treated as valid components of a number. For example:

PRINT VAL("1E2")

prints the value 100. Although the ‘E’ is a not a digit, 1E2 is a valid
way of representing a number using exponential format.

The string may begin with a ‘+” or *~/, for example:

number$% = VAL ("-8")

assigns the value -8 to ‘number%’.

If, however, the characters of the string (ignoring spaces) do not start
with a digit or a plus or minus sign, then VAL returns 0.

There are three functions for converting a number into a string. The
most commonly used is STR$. This takes a decimal number as its
argument and returns the string containing the digits of the number.
For example:

numl$% 42

num2% 37

stringl$ = STRS$ (numl%)
string2$ = STRS$ (num2%)
PRINT stringl$ + string2$

produces the string * 42 37’.

Note that the strings start with a space. All positive numbers are
converted to strings with a leading space whereas negative ones have
a leading minus sign.

The other two functions are HEX$ and OCT$. These also take a
decimal number as their argument. However, the strings they produce

98

5 : Manipulating Text

represent the hexadecimal (base 16), and octal (base eight), values of
this number respectively.

Octal numbers contain eight digits zero to seven. A one in a particular
column represents a power of eight, ie:

... 6481

With hexadecimal numbers there is a slight problem. They require 16
digits to represent the decimal values 0 to 15. We can use the digits 0
to 9 as usual, but have to use the letters ‘A’ to ‘F’ to represent the
values ten to fifteen. Therefore 4AC is a valid hexadecimal number. Its
decimal equivalent is 4*256 + 10*16 + 12, ie 1196. Therefore:

PRINT HEX$ (1196)
will print the string ‘4AC’.

Finding the Length of a String

Given a string, the first thing you may wish to know about it is its
length. This can be determined as follows:

INPUT "Please give me a string :",A$
PRINT LEN (AS)

LEN returns the number of characters in a string including spaces, tab
characters etc. This will be an integer value between 0 (for the null
string) and 255 (which is the maximum number of characters allowed
in a string).

Finding Strings within Strings
AmigaBASIC provides a function, INSTR, to check if one string occurs
within another. This function returns a number giving the position,
within the longer string, at which it found the start of the shorter one.
If the longer string does not contain the shorter one at all, then INSTR
returns 0. For example:

INPUT "Please type an upper-case letter :",letter$

IF LEN(letter$) < 1 THEN

PRINT "You gave me a null string"

ELSEIF LEN(letter$) > 1 THEN
PRINT "You typed too many characters"

AmigaBASIC : A Dabhand Guide

ELSE
pos.in.string% =
INSTR ("ABCDEFGHIJKLMNOPQRSTUVWXYZ", letter$)
IF pos.in.string% <> 0 THEN
PRINT letter$ " is at position "
pos.in.string%,PRINT" in the alphabet."
ELSE
PRINT "The character was not an upper-case letter”
END IF
END IF

This program inputs a string from the user and checks that it contains
a single character. If so, it uses INSTR to find if this string occurs
within the sequence ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ'. If it
does then INSTR returns the position at which it found the string, ie
‘A’ gives the result one, ‘B’ gives two and so on. If the string was not
found, for example if the user typed a lower-case letter or a digit, then
INSTR returns 0 and the program tells the user that they didn’t type
an upper-case letter.

You can also tell INSTR the position in the longer string at which you
wish it to start looking for the shorter one. For example:

PRINT INSTR(1,"The cat sat on the mat.","at")

will start the search for ‘at’ at position one, ie the start of the sentence.
It will therefore give the result six since it will find the ‘at’ of the word
‘cat’. This is the same as:

PRINT INSTR("The cat sat on the mat.","at")

since the position defaults to one if it is not given explicitly.
In contrast:

PRINT INSTR(11,"The cat sat on the mat.","at")

will start the search at the the 11th letter of the sentence, ie the ‘t’ of
‘sat’. This will give the result 21 since it will find the ‘at’ of the word
‘mat’.

Using this feature, you can find all occurrences of one string inside
another, for example:

100

5 : Manipulating Text

rest% = -1

WHILE res% <> 0
res% = INSTR(res%+2,"The cat sat on the mat.","at")
IF res% <> 0 THEN PRINT res$%

WEND

PRINT "All found"

This program starts searching at position one in the sentence. Each
time it finds an occurrence of ‘at’, it prints out the position and starts
searching again, starting at the next character of the sentence. The
following illustrates what is happening. The “* symbol denotes the
position at which each search starts, and the ‘%’ symbol shows the
positions of the ‘at’ strings which are found.

The cat sat on the mat.
* %*%* %*

Splitting Strings

BASIC provides three functions for taking a large string and extracting
a smaller one from within it. The simplest are LEFT$ and RIGHTS$.
These return a string made up of a particular number of characters
from the left-hand or right-hand end of another string. For example:

PRINT LEFT$ ("HELLO", 2)

will print:

HE

ie the first two characters of the string ‘'HELLO'. Similarly
PRINT RIGHT$ ("HELLO",2)
will print:

LO

which are the last two characters of the string.

The third function is MID$. This returns a number of characters
starting from a given position within the string. For example:

101

AmigaBASIC : A Dabhand Guide

PRINT MID$ ("HELLO", 2, 3)

will print:

ELL

That is three characters from the string ‘HELLO’ starting from the
second character.

You can use MID$ to extract each character in turn from a string as
follows:

INPUT "Enter a string :",stringl$

FOR start% = 1 TO LEN(stringl$)

PRINT MIDS (stringl$,start%,1)
NEXT start%

MIDS$ is being used to find a single character at a time. The position of
this character within the string is determined by ‘start%’, which starts
at the value one and increases by one each time round the loop. The
number of characters printed is dictated by the length of the string.

MID$ is particularly useful when used in conjunction with INSTR,
which we met above. For example:

INPUT “"Enter a sentence",stringl$
start% =1
space% = INSTR(stringl$," ")
WHILE space% <> 0
num$ = space% - start$%
PRINT MIDS$ (stringl$, start$, num%)
start$ = space%$+1l
space% = INSTR(start%,stringl$," ")
WEND
PRINT MID$ (stringl$,start%,LEN(stringl$)+1)

Try running this program and typing in the sentence:

The quick brown fox jumps over the lazy dog

You should find that each word is printed out on a separate line as
follows:

102

5 : Manipulating Text

The
quick
brown
fox
Jjumps
over
the
lazy
dog

What the program is doing is extracting each word of the sentence in
turn and printing it out. It begins by initialising the value of ‘start%’ to
one, ie the position of the first character of the sentence. Next, INSTR
is used to find the position of the first space in the sentence, and this
value is assigned to ‘space%’.

Then the loop starts. The first line within the loop sets ‘num%’ to be
the difference between ‘space%’ and ‘start%’. This gives the number of
characters in the first word. Using MIDS$, this number of characters is
extracted from the sentence starting at position ‘start%’, and is printed
out. Then the program prepares to find the next word. ‘start%’ is
updated to the value ‘space% + 1'. Since ‘space%’ contains the position
of the first space, ‘space% + 1’ will give the position of the start of the
second word. (This is making the assumption that words are
separated by just a single space — the program won’t work properly if
this is not the case.) INSTR is used again to find the position of a space
within the sentence. This time the sentence is searched from the start
of the second word, rather than from the beginning, so that the second
space is found. Then the process is repeated.

This continues until no more spaces are found. At this stage, start%
holds the position of the start of the final word which has not yet been
printed. Therefore the final PRINT is needed to complete the process
and print the remaining characters of the string.

Replacing Part of a String

MIDS$ can also be used to replace part of a string. For example:

a$ = "AAAAAAAA"
MIDS (a$,3,2) = "BCDE"
PRINT a$

103

AmigaBASIC : A Dabhand Guide

This program takes the variable ‘a$’ which contains the string
‘AAAAAAAA’ and replaces two of the characters in it, starting at
position three, with the first two characters of the string ‘BCDE’. The
result is the string "AABCAAAA’.

If the final argument is omitted, then the whole of the replacing string
is used:
a$ = "ARARAAAA"

MID$ (a$,3) = "BCDE"
PRINT a$

This gives the result ‘"AABCDEAA’.
Note that the length of the string being replaced is never altered:

a$ = "AAAAAAAA"
MIDS$ (a$,3) = "BCDEFGHI"
PRINT a$

This gives the result ‘AABCDEFG’. MID$ starts at position three and
carries on replacing the characters in ‘a$’ with those in the right-hand
string, until it runs out of characters in ‘a$’ to replace.

Altering the Width of a Line

What does BASIC do when it is asked to print a line which is wider
than the width of the screen? To find out, try running the following
program:

test$ = "The quick brown fox jumps over the lazy dog"
PRINT "The phrase '" test$ "' contains all the letters
of the alphabet."

You should find that the last few words of the sentence disappear off
the right-hand side of the screen. AmigaBASIC has the concept of a
‘line width'. This is a limit on the number of characters which can be
printed on a line. If this number is reached, then BASIC inserts a
carriage return and continues printing on the next screen line. The
default line width is infinite, ie BASIC will never insert a carriage

104

5 : Manipulating Text

return for you however many characters you try to print. To change
this, use the WIDTH statement, for example:

WIDTH 62

sets the line width to 62 characters. This is a good number to choose
when using the default font, since it is the maximum number of
characters which can be fitted onto one line. Giving WIDTH an
argument between one and 254 sets the line width to a particular
number of characters, the value 255 is the default, which is taken as
meaning infinite.

To see the effect of WIDTH try the following program:

a$ "aaaaaaaaaa"

b$ "bbbbbbbbbb"

FOR chars% = 20 TO 80 STEP 20
WIDTH chars$%
PRINT a$;b$;a$;b$;a$;b$;as$;b$
PRINT

NEXT

Character Positions

Whenever you print a character, it appears at the current ‘pen
position’. Just like a graphics coordinate, this has a position which is
measured relative to the left-hand side and top of the screen.
However, instead of being measured in pixels, it is measured in terms
of lines and columns. A character which is in the top left-hand corner
is in column one on line one. Moving down a row increases the line
number and moving right by one character increases the column
number.

With the default font, all the characters are equal. Therefore if you
start at the left-hand side of a line and print 50 characters, they will
appear in columns 1-50 exactly. However, this is not always the case.
Some fonts are ‘proportionally spaced’, which means that different
characters have different widths. For example ‘m’ and ‘w’ are wider
than ‘i’ and ‘l'. In this case, what do we mean by the width of a
character? It is actually determined by the character ‘0’ of the font
being used. So if you print the number ‘0" fifty times, the last one is

105

AmigaBASIC : A Dabhand Guide

defined to be in column 50. Whereas the fiftieth letter ‘m’ will
probably be in a higher numbered column and the fiftieth letter ‘i’ in a
lower numbered one.

For the sake of clarity, the examples in this chapter assume that the
default font is being used.

Tabulating Output

Another use of WIDTH is to alter the ‘zone widths’. For example:

WIDTH 62,10

sets the line width to 62 and the zone width to 10 columns. Therefore,
if you use a comma to separate items to be printed, these will appear
either in column 1, 11, 21, 31, 41, 51 or 61. For example, try the
following:

max.string$ = "1234567890"

FOR loop% = 1 TO 10
min.str$ = LEFTS$ (max.string$, loop%)
WIDTH 62, loop%

PRINT

min.str$;min.str$;min.str$;min.str$;min.str$;min.str$:
PRINT u_n, n_"’ n_", "_n, n_u, w_u

NEXT

Each time round the loop, the loop variable is used to determine the
zone width and the number of characters of the sequence ‘1234567890
which are placed in ‘max.string$’. Then six copies of ‘max.string$ are
printed consecutively, followed on the line beneath by six ‘-~
characters, each at the start of a zone. Since the zone width is equal to
the number of characters in ‘max.string$’, this has the effect of
underlining the start of each copy of ‘max.string$’. Therefore the ~
always lies beneath the number 1 as shown below:

111111

123412341234123412341234

123451234512345123451234512345

106

5 : Manipulating Text

123456123456123456123456123456123456

123456712345671234567123456712345671234567

123456781234567812345678123456781234567812345678

123456789123456789123456789123456789123456789123456789

123456789012345678901234567890123456789012345678901234567890

A more flexible way of outputting text in columns is provided by the
TAB statement. This is used as part of the PRINT statement, as
follows:

INPUT "Please input three strings :",a$,b$,c$
PRINT a$;TAB(10) ;b$;TAB(15) ;c$

The argument which TAB takes determines the column at which the
following string will be printed. If the current pen position lies beyond
this column, then the string will be printed in the correct column of the
line below. For example, entering the strings:

Fred, Jonathon, Steve

produces:

Fred Jonathon
Steve

This means that you can determine exactly the columns in which items
will be printed.

Outputting text more precisely can be achieved in a similar manner
using PTAB. This is the exception to the rule which says that text is
positioned in terms of rows and columns. It allows you to move to a
particular pixel along a line and print at that position. This means that,
even with the default font, characters can be ‘out of line’ with each
other. For example:

FOR loop%$ = 1 TO 16
start.pos% = 315 - 5* (loop%-1)

107

AmigaBASIC : A Dabhand Guide

PRINT PTAB(start.pos%) ;ST
RINGS (loop%, "*")
NEXT

This uses the fact that the width of each character in the default font is
ten pixels to build a symmetrical tree of stars.

Note that the semi-colon following the TAB and PTAB statements is
optional, ie:

PRINT TAB(10);a$

is equivalent to:

PRINT TAB(10)a$

Positioning Text
The next step on from positioning text at a particular column is

locating it by giving both the column and line. You can do this using
the statement LOCATE, for example:

LOCATE 10,20

moves the pen position to line 10, column 20. Subsequent PRINT
statements will then start at that position. If you wish to change only
the line or only the column, then you can give it just one value and it
takes the other from the current position. For example:

LOCATE ,15

moves the pen to column 15 of the current line and:

LOCATE 5

moves the pen to line five but keeps it in the same column.
To read the current position yourself, use the following functions:

CSRLIN Returns the line number
POS Returns the column number

108

5 : Manipulating Text

For example:
curlin% = CSRLIN
curcol% = POS(0)

Note that you must supply an argument to POS, however; this can be
any value since it is ignored.

Note also that, if proportional fonts are being used or the pen has been
aligned to pixel positions, then these values are only approximate.

These statements for positioning text and the other string handling
routines introduced in this chapter are demonstrated in the following
program. It is a small adventure game, as described in the
introduction. The aim is to find the treasure. To do this you have to
explore the different locations, looking for items to help you find it
and avoid getting killed by the monsters which are out to get you.

A Final Example

The following program demonstrates the use of strings in an
adventure game. It is only a small implementation, containing 20
rooms and recognising just a few one or two word instructions.
However, it does show the principles involved. In addition, it
provides the full framework on which you could create a full size
game, should you wish to do so.

Try playing it. The object of the game is to find the treasure. To do so
you will have to overcome a few obstacles on the way. You can move
around using instructions such as ‘GO NORTH"’ (this can actually be
abbreviated to ‘'NORTH’ or simply ‘N’). ‘INV’ will give you an
inventory of what you are carrying and ‘LOOK’ will repeat the
description of your current location. Read the descriptions carefully:
some of them contain clues as to what you should do. You'll have to
work out the rest of the instructions for yourself. If you have problems
solving it, then take a look at how the program works.

MapInit:

locs% = 20 : verbs% = 15

nouns$% = 21 : items% = 9

OPTION BASE 1
DIM SHARED des$ (locs%)

109

AmigaBASIC : A Dabhand Guide

DIM SHARED N%(locs$%),S%(locs%),E%(locs%),W%(locs%), U%(locs%),D%(locss)
RESTORE roomdata

FOR room% = 1 TO locs%

READ des$ (room$),N% (room%),S% (room%) ,E% (room%) ,W% (room%), U%(roomt)
,D% (room%) NEXT
DIM SHARED itemloc%(items$%),itemdes$(items%),itemadj$ (items%)
RESTORE itemdata:
FOR item%$ = 1 TO items%

READ itemadj$ (item%),itemdes$ (item%),itemlocs (item%)

NEXT

MainBody:

dead$ =0 : curloc% =1
torchon% = 0 : baton¥ = 0
bought% = 0 : lock% =0
awake$ =0

CALL look(""™)
WHILE dead$% = 0
PRINT
LINE INPUT ":";sen$
sen$ = UCASES (sen$)
CALL parse(sen$,words%$,wordl$, word2$)
IF words$%$ > 2 THEN
CALL pp("Sorry, the sentence is too complex.")
CALL pp("Please enter just one or two words.")
ELSE
CALL ident (wordl$,word2$,words%,noun$,verb$, states)
IF state% = 1 THEN
CALL act (noun$,verb$)
END IF
END IF
WEND
IF dead%$ = 1 THEN
CALL pp("Sorry, you didn't make it!"™)
ELSE
CALL pp("Well done.")
END IF
END

parse:
SUB parse (sen$,words$,wordl$,word2$) STATIC
CALL tspcrem(sen$)
CALL lspcrem(sen$)
spacepos% = INSTR(sen$," ")
IF spacepos% = 0 THEN
wordl$ = sen$
word2$ = "

110

5 : Manipulating Text

n
-

words$%
ELSE
wordl$ = MIDS$ (sen$, 1, spacepos%-1)
sen$ = MIDS$ (sen$, spacepost+1)
CALL lspcrem(sen$)
spacepos% = INSTR(sen$," ")
IF spacepos% = 0 THEN
word2$ = sen$
words% = 2
ELSE
words$
END IF
END IF
END SUB

1]
w

ident:
SUB ident (wordl$,word2$,words%,noun$, verb$, state%) STATIC
SHARED nouns$%, verbs%
nounl% = 0 : noun2% = 0 : verblt = 0 : verb2% = 0
state¥ = 0 : noun$ = "" : verb$ = "¢
RESTORE nounlist:
FOR loop% = 1 TO nouns$%
READ word$: word$ = UCASES (word$)
IF word$ = wordl$ THEN nounl% = 1
IF word$ = word2$ THEN noun2% = 1
NEXT
RESTORE verblist:
FOR loop% = 1 TO verbs%
READ word$: word$ = UCASES$ (word$)
IF word$ = wordl$ THEN verbl% =1
IF word$ = word2$ THEN verb2% =1
NEXT
IF nounl% = 1 AND noun2% = 1 THEN
CALL pp("I can't cope with more than 1 noun")
ELSEIF verbl% = 1 AND verb2% = 1 THEN
CALL pp("I can't cope with more than 1 verb")
ELSEIF nounl% = 0 AND noun2% = 0 AND verbl% = 0 AND verb2% = 0 THEN
IF words% = 1 THEN
CALL pp("I don't know that word")
ELSE
CALL pp("I don't know those words")
END IF
ELSEIF nounl% = 0 AND noun2% = 0 AND words% = 2 THEN
IF verbl% = 1 THEN
CALL pp("I don't know the noun '"+word2$+"'")
ELSE
CALL pp("I don't know the noun '"+wordl$+"'")
END IF
ELSEIF verbl% = 0 AND verb2% = 0 AND words% = 2 THEN

111

AmigaBASIC : A Dabhand Guide

IF nounl$% = 1 THEN
CALL pp("I don't know the verb '"+word2$+"'")
ELSE
CALL pp("I don't know the verb '"+wordl$+"'")
END IF
ELSE
IF nounl% = 1 THEN noun$ = wordl$

IF noun2% = 1 THEN noun$ = word2$
IF verbl% = 1 THEN verb$ = wordl$
IF verb2% = 1 THEN verb$ = word2$
state¥ = 1
END IF
END SUB

act:
SUB act (noun$,verb$) STATIC
IF verb$ = "" THEN
CALL direction(noun$, statuss$)
IF status®% = 1 THEN
verb$ = "GO"
ELSE
CALL iown(noun$,status$)
IF status% = 1 THEN
verb$ = "DROP"

ELSE
verb$ = "GET"
END IF
END IF
END IF
IF verb$ = "INV™ THEN

CALL inv(noun$)

ELSEIF verb$ = "LOOK" THEN
CALL look (noun$)

ELSEIF verb$ = "IN"™ OR verb$ = "ENTER" THEN
CALL enter (noun$)

ELSEIF verb$ = "OUT" OR verb$ = "EXIT" THEN
CALL leave (noun$)

ELSEIF verb$ = "GO" THEN
CALL go (noun$)

ELSEIF verb$ = "GET" OR verb$ = "“TAKE" THEN
CALL take (noun$)

ELSEIF verb$ = "DROP" THEN
CALL drop (noun$)
ELSEIF verb$ = "BUY" THEN

CALL buy (noun$)

ELSEIF verb$ = "EAT" THEN
CALL eat (noun$)

ELSEIF verb$ = "UNLOCK" THEN

112

5 : Manipulating Text

CALL unlock (noun$)
ELSEIF verb$ = "ON" THEN
CALL onv (noun$)
ELSEIF verb$ = "OFF" THEN
CALL offv(noun$)
END IF
END SUB

direction:
SUB direction(noun$,status%) STATIC
status% = 0
RESTORE dirlist
FOR loop% = 1 TO 12
READ dir$
IF UCASE$ (dir$) = noun$ THEN status% = 1
NEXT
END SUB

iown:
SUB iown (noun$, status%)STATIC
statust = 0
CALL itemid(noun$,item%)
IF item% <> 0 THEN
IF itemloc%(item%) = 0 THEN status% = 1
END IF
END SUB

inv:
SUB inv(noun$) STATIC
SHARED items%
IF noun$ = "" THEN
count% = 0 : c% =0
FOR loop% = 1 TO items$%
IF itemloc%(loop%) = 0 THEN count% = count% + 1
NEXT
IF count% > 0 THEN
CALL pp("You are holding")
FOR loop% = 1 TO items$%
IF itemloc% (loop%) = 0 THEN
IF c% = count% - 1 AND count% <> 1 THEN
CALL pp("and")
END IF
CALL pp(itemadj$ (loop%))
IF c% = count% - 1 THEN
CALL pp(itemdes$ (loop%)+".")
ELSEIF c% = count% - 2 THEN
CALL pp(itemdes$ (loop%))
ELSE
CALL pp(itemdes$ (loop%)+",")

113

AmigaBASIC : A Dabhand Guide

END IF
cy =ct + 1
END IF
NEXT
ELSE
CALL pp("You are not holding anything.")
END IF
ELSE
CALL pp("I don't understand that instruction")
END IF
END SUB
look:

SUB look (noun$) STATIC
SHARED curloc%, torchon%,baton%,bought$, lockt,deadt, awakes
IF noun$ = "" THEN
CALL pp("You are "+des$ (curloct))
IF curloc% = 20 THEN
dead$ = -1
ELSE
IF torchon% = 1 AND baton% > 10 THEN
CALL pp("Your torch has faded.")
torchon% = 0
IF (curloc%>=8 AND curloc%<=16) OR curloc%>=19 THEN
CALL pp("It's dark in here.™)
CALL pp("If you move, you may fall into a pit.")
END IF
ELSEIF torchon% = 0 AND (curloc% = 8 OR curloct% = 16 OR curloc% =
19) THEN
CALL pp("It's dark in here.")
CALL pp("If you move, you may fall into a pit.")
END IF
CALL exits(curloc%)
CALL contents (curloct)
END IF
ELSE
CALL pp("I don't understand that instruction")
END IF
END SUB

go:
SUB go(noun$) STATIC
SHARED curloc%,torchon%,baton%,bought$%, lock%,dead%, awake$
CALL direction(noun$, status%)
IF status% = 1 THEN
oldloc% = curloc}
CALL iown ("TORCH",status%)
IF torchon% = 0 THEN

114

5 : Manipulating Text

IF (curloc% >= 8 AND curloc% <= 16) OR curloc% = 19 OR curloc% = 20

THEN
CALL pp("Oops, you've fallen into a pit and broken your neck.")
dead% =1
END IF
END IF

IF dead% = 0 THEN
moved$ = 1
IF noun$ = "NORTH" OR noun$= "N" THEN
CALL checkgo (N% () ,moved$)
ELSEIF noun$ = "SOUTH" OR noun$= "S"“ THEN
CALL checkgo (5% () ,moved$)
ELSEIF noun$ = "EAST" OR noun$= "E" THEN
CALL checkgo (E% () ,moved$)
ELSEIF noun$ = "WEST" OR noun$= "W" THEN
CALL checkgo (W% () ,moved%)
ELSEIF noun$ = "UP" OR noun$= "U" THEN
CALL checkgo (U% () ,moved$%)
ELSEIF noun$ = "DOWN" OR noun$= "D" THEN
IF lock% = 0 AND curloc% = 18 THEN
CALL pp("You can't - the trapdoor is locked.")
moved® = 0
ELSE
CALL checkgo (D% () ,moved$)
END IF
END IF
IF moved% = 1 THEN
IF torchon% = 1 THEN baton% = baton% + 1
CALL look("")
CALL giant (oldloc¥%)
END IF
END IF
ELSE
CALL pp("I don't understand that instruction")
END IF
END SUB
SUB checkgo (dir% () ,moved%) STATIC
SHARED curloc%
IF dir%(curloc%) = 0 THEN
CALL pp ("There is no way to go in that direction.™)
moved% = 0
ELSE
curloc% = dir%(curloct)
END IF
END SUB
SUB giant (oldloc%) STATIC
SHARED curloc%, awake%, dead%
CALL itemid ("GIANT",gi%)

115

AmigaBASIC : A Dabhand Guide

IF itemloc%(gi%) = curloc% THEN
IF awake% = 1 THEN

CALL pp("The giant sees you, licks his lips and eats you.")

dead$ = 1

ELSE
CALL itemid ("FOOD", fo%)
IF itemloc% (fo%) = 0 THEN

CALL pp("The giant's nose starts twitching.")
CALL pp("Suddenly he wakes up, sees you and the food and eats you
both.")
dead$ =1
ELSE
CALL pp("Although you tiptoe about very quietly, the giant starts
to wake up.")
awake% = 1
END IF
END IF
ELSE
IF awake% = 1 THEN
itemloc% (gi%) = oldloc%
CALL itemid ("FOOD", fo%)
IF itemloc%(gi%) = itemloc% (fo%) THEN
awake% = 0
itemloc% (fo%) = -1
SAY (TRANSLATES ("Yummy, yummy"))
END IF
END IF
END IF
END SUB

take:
SUB take (noun$) STATIC
SHARED curloc%, torchon%,baton%,bought$%, lock$,dead%, awake$

CALL itemid(noun$,item%)

IF item% <> 0 THEN

IF itemloc%(item%) = curloc% THEN
IF noun$ = "GIANT" THEN
CALL pp("The giant wakes up as you struggle to lift him.")

CALL pp(“"He is not amused and kills you with a single blow")
dead% =1

ELSEIF noun$ = "BATTERY" AND bought$% = 0 THEN
CALL pp("The shop keeper isn't happy about you taking the battery
without paying for it.")
CALL pp("He calls the police to escort you away.")

dead$ =1

ELSE
CALL pp("You get the "+itemdes$ (item%)+".")
itemloc% (item%) = 0

END IF

116

5 : Manipulating Text

ELSE
CALL pp("I see no "t+itemdes$ (item%)+" here.")
END IF
ELSE
CALL pp ("I don't understand that instruction")
END IF
END SUB

drop:
SUB drop(noun$) STATIC
SHARED curloc$, torchon$,baton%,bought%, lock%,dead$, awake$
CALL itemid (noun$,item$)
IF item% <> 0 THEN
IF itemloc%(item%) = 0 THEN
CALL pp("You drop the "+itemdes$ (item%)+".")

itemloc% (item%) = curloc%
IF (noun$ = "BATTERY" OR noun$ = "TORCH") THEN
IF noun$ = "BATTERY" AND torchon% = 1 THEN

CALL pp("Your torch has now gone out.")
torchon% = 0
IF (curloc%>=8 AND curloc%<=16) OR curloc%>=19 THEN
CALL pp("It's dark in here.")
CALL pp("If you move you may fall into a pit.")
END IF
ELSEIF noun$ = "TORCH" THEN
CALL itemid ("BATTERY", ba%)
IF itemloc% (ba%) = 0 THEN
itemloc% (ba%) = curloc$%
IF torchon% = 1 THEN
CALL pp("The battery falls out of it and the light goes
out.")
torchon% = 0
IF curloc%>=8 OR curloc%<=16 OR curloc%>=19 THEN
CALL pp("It's dark in here.")
CALL pp("If you move you may fall into a pit.")
END IF
ELSE
CALL pp("The battery falls out of it.")
END IF
END IF
END IF
END IF
ELSE
CALL pp("You are not holding the "+itemdes$ (item$)+".")
END IF
ELSE
CALL pp("I don't understand that instruction")
END IF
END SUB

117

AmigaBASIC : A Dabhand Guide

enter:
SUB enter (noun$) STATIC
SHARED curloc$%, torchon%,baton%,bought%, lock%, dead$, awake$
IF noun$ = "" THEN
IF curloc% = 2 THEN
curloc%= 3
CALL look("")
ELSEIF curloc% = 4 THEN
curloc% = 5
CALL look("")
ELSE
CALL pp("There is nothing here I can enter.")
END IF
ELSEIF noun$ = "HUT" THEN
IF curloc% = 2 THEN
curloc% = 3
CALL look("")
ELSE
CALL pp("There isn't a hut here to enter.")
END IF
ELSEIF noun$ = "SHOP" THEN
IF curloc% = 4 THEN
curloct% = 5
CALL look("")
ELSE
CALL pp("There isn't a shop here to enter.")
END IF
ELSE
CALL pp("I don't understand that instruction")
END IF
END SUB

leave:
SUB leave (noun$) STATIC
SHARED curloc%, torchon%,baton%,bought$%, lock%, dead$, awake$
IF noun$ = "" THEN
IF curloc% = 3 THEN
curloct= 2
CALL look("")
ELSEIF curloc% = 5 THEN
curloct = 4
CALL look ("")
ELSE
CALL pp("There is nothing here I can exit.")
END IF
ELSEIF noun$ = "HUT" THEN
IF curloc% = 3 THEN
curloct% = 2

118

CALL look ("")
ELSE
CALL pp("You're not inside a hut.")
END IF
ELSEIF noun$ = "SHOP" THEN
IF curloc% = 5 THEN
curloct = 4
CALL look(™")
ELSE
CALL pp(“"You're not inside a shop.")
END IF
ELSE
CALL pp("I don't understand that instruction")
END IF
END SUB

buy:
SUB buy (noun$) STATIC
SHARED curloc%, torchon$,baton%, bought%, lock%, deads,
CALL itemid(noun$,item$)
IF item% <> 0 THEN
IF itemloc%(item%) = curloc% THEN
IF noun$ = "BATTERY" THEN
IF bought% = 0 THEN
CALL itemid ("SOVEREIGN", sov%)
IF itemloc$(sov¥) = 0 THEN

5 : Manipulating Text

awake$

CALL pp("The shopkeeper takes your sovereign in exchange for

the battery.")
itemloc% (item%) = 0
itemloct (sovs) = -1
bought% = 1

ELSE

CALL pp("You have nothing to pay for it with.")

END IF
ELSE
CALL pp("You've already paid for it.")
END IF
ELSE

CALL pp ("It appears not to belong to anyone.")
CALL pp("I should just take it if I were you.")

END IF
ELSE
CALL pp("I see no "+itemdes$ (item%)+" here.")
END IF
ELSE
CALL pp("I can't apply that without a noun")
END IF
END SUB

119

AmigaBASIC : A Dabhand Guide

eat:
SUB eat (noun$) STATIC
SHARED curloc%,torchon$,baton%,bought%, lock%,dead%, awake%
IF noun$ <> "" THEN
IF noun$ = "FOOD" THEN
CALL itemid ("FOOD", fo%)
IF itemloc%(fo%) = 0 THEN
CALL pp("You eat the food and immediately fall asleep.")
CALL pp("Some time later you wake up again, feeling very sick."™)

itemloc% (fo%) = -1
IF torchon% = 1 THEN baton% = baton% + 5
ELSE
CALL pp("You haven't got any food.")
END IF
ELSE
CALL pp("Don't be silly!")
END IF
ELSE
CALL pp("I can't apply that without a noun.")
END IF
END SUB
unlock:

SUB unlock (noun$) STATIC
SHARED curloc%,torchon$,baton%,bought%, lock%,dead$, awaket
IF noun$ <> "" THEN
IF noun$ = "DOOR" THEN
IF curloc% = 18 THEN
CALL itemid ("KEY", ke%)
IF itemloc%(ke%) = 0 THEN
IF lock% = 0 THEN
CALL pp("You unlock the door with your key.")
lock% = 1
ELSE
CALL pp("The door is already unlocked.")
END IF
ELSE
CALL pp("You haven't got the key.")
END IF
ELSE
CALL pp("There isn't a door here.")
END IF
ELSE
CALL pp("I don't understand that instruction.")
END IF
ELSE
CALL pp("I can't apply that without a noun.")
END IF
END SUB

120

5 : Manipulating Text

onv:
SUB onv (noun$) STATIC
SHARED curloc%, torchon%,baton%,bought%, lock%,dead%, avake$
IF noun$ <> "" THEN
IF noun$ = "TORCH" THEN
CALL itemid ("TORCH",tor%)
IF itemloc%(tor%) = 0 THEN
CALL itemid ("BATTERY",bat$%)
IF itemloc%(bat%) = 0 THEN
IF torchon% <> 1 THEN
IF baton% <= 10 THEN
CALL pp("Your torch is now on.")
torchon$% = 1
ELSE
CALL pp(“"Sorry, the battery is dead.")
END IF
ELSE
CALL pp("The torch is already on.")
END IF
ELSE
CALL pp("You don't have a battery for it.")
END IF
ELSE
CALL pp(“"You aren't carrying a torch.")
END IF
ELSE
CALL pp("I don't understand that instruction.")
END IF
ELSE
CALL pp("I can't apply that without a noun.")
END IF
END SUB

offv:
SUB offv(noun$) STATIC
SHARED curloc%, torchon%,baton%, bought%, lock%,dead%, awake$%
IF noun$ <> "" THEN
IF noun$ = "“TORCH" THEN
CALL itemid ("TORCH",tor%)
IF itemloc%(tor%) = 0 THEN
IF torchon% = 1 THEN
CALL pp("Your torch is now off.")
torchon% = 0
IF (curloc%>=8 AND curloc%<=16) OR curloc%$>=19 THEN
CALL pp("It's dark in here.")
CALL pp("If you move you may fall into a pit.")
END IF
ELSE

121

AmigaBASIC : A Dabhand Guide

CALL pp("The torch is already off.")

END IF
ELSE
CALL pp("You aren't carrying a torch.")
END IF
ELSE
CALL pp("I don't understand that instruction.")
END IF
ELSE

CALL pp("I can't apply that without a noun.")
END IF
END SUB

exits:
SUB exits(room%) STATIC
count% = 0 : c% =0
IF N%(room%) <> THEN count% = count%
IF S%(room%) <> THEN count% = count%
IF E%(room%) <> THEN count% = count%
IF W% (room%) <> THEN count% = count}
IF U%(room%) <> THEN count% = count$%
IF D% (room%) <> 0 THEN count% = count?
IF count% = 1 THEN
CALL pp("There is an exit")
ELSEIF count% > 1 THEN
CALL pp("There are exits")
END IF

o oo o o
+ + + + + +
I o o B S ST

IF N%(room%) <> 0 THEN CALL eachexit ("north",c%,count%)
IF S%(room%) <> 0 THEN CALL eachexit ("south",c$%,count%)
IF E%(room%) <> 0 THEN CALL eachexit ("east",c%,count%)
IF W% (room%) <> 0 THEN CALL eachexit ("west",c%,count%)
IF U%(room%) <> 0 THEN CALL eachexit ("up",c%,count%)
IF D% (room%) <> 0 THEN CALL eachexit ("down",c$%,count%)
END SUB
eachexit:

SUB eachexit (dir$,c%,count%) STATIC
IF count% = 1 THEN
CALL pp(dir$+".")
ELSEIF c% = count% - 1 THEN
CALL pp("and "+dir$+".")
ELSEIF c% = count% - 2 THEN
CALL pp(dir$)

ELSE
CALL pp(dir$+",")
END IF
ct =c% + 1
END SUB

122

5 : Manipulating Text

contents:
SUB contents (room%) STATIC
SHARED curloc%,items%, awake$
count¥% = 0 : c% =0
FOR loop% = 1 TO items%
IF itemloc% (loop%) = curloc% THEN count% = count% + 1
NEXT
IF count$ = 1 THEN
CALL pp("There is")
ELSEIF count% > 1 THEN
CALL pp("There are")
END IF
IF count% > 0 THEN
FOR loop% = 1 TO items$%
IF itemloc%(loop%) = curloc% THEN
IF c% = count% - 1 AND count% <> 1 THEN
CALL pp("and")
END IF
IF itemdes$ (loop%) = "giant" AND awake% = 1 THEN
CALL pp(" an angry looking")
ELSE
CALL pp(itemadj$ (loop%))
END IF
IF c% = count% - 1 THEN
CALL pp(itemdes$ (loop%)+" here.")
ELSEIF c% = count% - 2 THEN
CALL pp (itemdes$ (loop$%))

ELSE
CALL pp(itemdes$ (loop%)+",")
END IF
ct =c% +1
END IF
NEXT
END IF
END SUB
lspcrem:
SUB lspcrem(sen$) STATIC
ch$ = = "

WHILE ch$ = " "
ch$ = LEFTS$ (sen$,1)
IF ch$ = " " THEN sen$ = MIDS$ (sen$,2)
WEND
END SUB

tspcrem:

SUB tspcrem(sen$) STATIC
ch§ = " "
WHILE ch$ = » »

123

AmigaBASIC : A Dabhand Guide

ch$ = RIGHTS (sen$,1)
IF ch$ = " " THEN sen$ = MID$(sen$,1,LEN(sen$)-1)
WEND
END SUB

pPpP:
SUB pp(sen$) STATIC
spos% = 0 : done% = 0 : chars% = 60
WHILE done% = 0
oldspos% = spos% + 1
spos% = INSTR(oldspos$%,sen$," ")
IF spos% > 0 THEN
word$ = MIDS (sen$,oldspost, spost-oldspos%)
IF POS(0) > chars% - (LEN(word$) + 1) THEN PRINT
PRINT " ";word$;
ELSE
done% = 1
END IF
WEND
word$ = MIDS (sen$,oldspos$t)
IF POS(0) > chars% - (LEN(word$) + 1) THEN PRINT
PRINT " ";word$;
END SUB

itemid:
SUB itemid(noun$,item%) STATIC
SHARED items$%
item% = 0
FOR loop% = 1 TO items%
IF UCASES (itemdes$ (loop%))= UCASES (noun$) THEN
item% = loop%
END IF
NEXT
END SUB

itemdata:

DATA "a shiny gold","sovereign", 0
DATA "a sturdy grey",“torch",3
DATA "“a torch","battery",5

DATA "a tasty morsel of","food",11
DATA "a loudly snoring“,"giant",16
DATA "a large metal", "key",13
DATA "","hut",-1

DATA "","shop",-1

DATA “"","door",-1

nounlist:

dirlist:
DATA north, n, south, s, east, e, west, w, up, u, down,

124

d

5 : Manipulating Text

DATA sovereign, torch, battery, food, giant, key

DATA hut, shop, door

verblist:

DATA look, inv, go, in, out, enter, exit

DATA get, take, drop, buy, on, off, eat, unlock roomdata:

DATA "in clearing in the forest.",0,2,0,0,0,0

DATA "at a junction between well-worn paths. A small hut stands at the
roadside.",1,6,4,0,0,0

DATA "inside the hut.",0,0,0,0,0,0

DATA "at the end of the path in front of a strange looking shop.",0,0,
0,2,0,0

DATA "inside the shop. All kinds of strange objects stock the shelves.
In the centre is a table containing this week’s special offers."
,0,0,0,0,0,0

DATA "at the edge of a small lake.",2,7,0,0,0,0

DATA "following a small, stream which abruptly disappears into the ground
.",6,0,0,0,0,8

DATA "in a musty smelling corridor.",0,0,9,0,7,0

DATA "in a windy passage way.",0,10,0,8,0,0

DATA "inside a giant hall.*,9,16,11,0,0,0

DATA "in a huge kitchen. Cooking implements are littered around the place
and the aroma of baking fills the air.",0,12,0,10,0,0

DATA "in a dining hall. The room is dominated by a massive table in the
centre with a single chair at its head.",11,14,13,0,0,0

DATA "in a study. Row upon row of leather bound volumes deck the walls."
,0,0,0,12,0,0

DATA "in a bedroom. A huge single bed is placed against one wall and an
equally huge wardrobe against another.",12,0,0,15,0,0

DATA "in a corridor.",16,0,14,0,0,0

DATA "in the sitting room. There is an armchair in one corner but very
little other furniture.",10,15,0,17,0,0

DATA "outside in a fantastic garden. Beautiful flowers are growing
everywhere and gently singing to each other. The air is heavy with their
scent.",0,18,16,0,0,0

DATA "at the edge of the garden. There is a trap door in the ground."
,17,0,0,0,0,19

DATA "in a small, damp corridor.",0,20,0,0,18,0

DATA "in the treasure room. You've reached your destination.",0,0,0,0,0,0

The program works as follows:

Maplnit:

It starts by setting up the following variables:

locs% = number of rooms

verbs% = number of verbs it knows

nouns% = number of nduns it knows (items% + the 12 directions)

125

AmigaBASIC

items%

: A Dabhand Guide

= number of items it knows

Then it sets up various arrays, reading the data for them from the data

statements at

des$
N%

S%

E%
W%

U%
D%
itemloc%
itemdes$
itemadj$

the bottom of the program:

holds the descriptions of the rooms

holds the number of the location to the north of each
room

holds the number of the location to the south of each
room

holds the number of the location to the east of each room
holds the number of the location to the west of each
room

holds the number of the location up from each room
holds the number of the location down from each room
holds the number of the location of each item

holds the definition of each item

holds the adjective describing each item

Note that, if an item has a location number of 0, then it is being carried

by the player.

If the number is -1, then the object no longer exists or is

being treated as a special object.

Note also that the arrays are all SHARED, so that the contents of them
can be accessed by the subprograms as well as the main program.

Main Body:
This starts by setting up various flags:
curloc% = number of the current room
dead% = 0 if the player is still alive
= 1if the player is dead
= —1 if the player has successfully completed the
game
torchon% = 0 if the torch is off and 1 otherwise
baton% = number of moves the battery has been on for
bought% = 0 if the battery has not yet been bought
=1 otherwise
lock% = 0 if the trapdoor is locked and 1 otherwise
awake% = 0 if the giant is asleep and 1 otherwise

126

5 : Manipulating Text

These flags are SHARED by the subprograms which occur later on in
the program to do the work. This means that they get updated
automatically as the state of one of the items changes.

Then the program calls the subprogram ‘look’ to print the description
for the current room.

The main loop continues while the player is still alive but has not yet
completed the game. This loop reads in an instruction from the user
(LINE INPUT assigns the whole line to the variable, including
characters which INPUT on its own treats as separators). This is then
parsed to obtain the individual words in it by the subprogram ‘parse’.
Provided that just one or two words were given, these are then
analysed to see if the program recognises them by the subprogram
‘ident’. This subprogram prints out messages if the individual words
don’t make sense and returns ‘state%’ as 0. Otherwise, it assigns the
appropriate words to:

verb$ = verb input or the null string if no verb was given
noun$ = noun input or the null string if no noun was given

and returns ‘state%’ as one. Finally, the subprogram ‘act’ is called to
act upon the instruction.

parse:

The parser starts by calling other subprograms to remove the leading
and trailing spaces from the instruction. Then it searches for a space. If
one is not found, the instruction must consist of just a single word.
This is assigned to ‘word1$’ and a null string is placed in ‘word2$’.

If a space is found, then the letters up to the space are placed in
‘word1$’ and ‘sen$’ is altered by these letters and the space being
removed from the start of it. Note that, since ‘sen$’ is being passed
from ‘act’ without being enclosed in round brackets, then the contents
of the variable being passed are being altered by this action. This
doesn’t matter since it is not going to be used again. If you wished,
you could use the brackets to ensure that it is not changed.

Then any leading spaces are removed again. This is so that two words
which are typed in with more than one space separating them are
dealt with correctly. Again a space is looked for. If one is found then
the sentence must have contained at least three words and so

127

AmigaBASIC : A Dabhand Guide

‘words%’ is set to three and the main body rejects it. Otherwise, the
remaining word is placed in ‘word2$'.

ident:

This subprogram tries to identify the words entered. It loops round all
the nouns and verbs which is knows. For each one, if it matches one of
the words, a flag is set:

nounl% = 0 if word1$ is not a noun and 1 otherwise
noun2% =0 if word2$ is not a noun and 1 otherwise
verbl% =0 if word1$ is not a verb and 1 otherwise
verb2% =0 if word2$ is not a verb and 1 otherwise

It then checks for the combinations which are disallowed. Two verbs
or two nouns are rejected. Similarly, if it doesn’t recognise any of
them, it complains. The other checks ensure that, if two words were
typed and only one is recognised, then the program states that it
doesn’t know about the other one. Finally, ‘noun$’ and ‘verb$’ are
assigned the values of ‘word1$’ and ‘word2$’ according to the results
of the search.

act:

This is the subprogram which deals with individual verbs. It starts by
trying to guess which verb was meant when only a noun was given. If
the noun is a direction, then the verb is assumed to be ‘GO’. Otherwise
it is assumed to be either ‘DROP’ or ‘GET’, depending on whether or
not the player is currently holding the noun.

Having now ensured that it has a verb, it calls the appropriate
subprogram to deal with it.

direction:

This is used by ‘act’ to determine whether the noun is a direction. It
loops round, reading all the directions and checking to see if they
match the noun which is passed as its first parameter. If the noun is a
direction, the second parameter, ‘status%’, is returned as one;
otherwise, it is returned as zero.

iown:
This again is used by ‘act’. It checks to see if the noun given is the

name of an item which the player is currently holding. ‘itemid%” gives
the number of a particular item. The location of this is then checked to

128

5 : Manipulating Text

see if it is zero (ie belongs to the player). Again the second parameter
is returned as one if the routine successfully found that the item was
owned and zero otherwise.

inv:

This is the first of the subprograms for handling a verb. It checks that
the ‘INV’ instruction has not been followed by a noun and, if not, it
counts the number of items which the player is holding. If the number
is zero then a message is printed saying that nothing is being held.
Otherwise the beginning of the sentence ‘You are holding’ is printed,
and a list of the items is output.

Note the way in which the list is given. If the current item is the last
one (ie the count of items already printed is one less than the total
number of items) then a full-stop is placed after it. If, in addition, there
have been others in the list, then its description is preceded by the
word ‘and’. If it is the second to last (the count is two less than the
total) then it is printed on its own. Finally, any other item is printed
followed by a comma to separate it from the ones which are still to
come. This allows you to obtain the following types of lists (the items
are not ones which actually occur in the game):

You are holding a red ball.

The red ball is the last item so it is printed with a full stop after it.
Since there were no others, nothing is printed before it.

You are holding a blue bag and a red ball.

The blue bag is the second to last item so it is printed normally. This
time, the red ball is not the only item so it is preceded by the word
‘and’.

You are holding a green lollipop, a blue bag and a red
ball.

The green lollipop is not the last nor the second to last item, so it is
printed followed by a comma. The others are given as above.

129

AmigaBASIC : A Dabhand Guide

look:

Provided that the instruction was given on its own, this subprogram
prints out the description of the current room. If this room is the last
one then it sets ‘dead’ to -1 to indicate that the player has succeeded.

It then goes on to deal with the state of the torch. If the battery has run
out then ‘torchon%’ is set to 0 and a message is printed. If, in addition,
the player is currently in an underground room, a warning message is
given.

If ‘torchon%’ was already 0, and the player is in a room which is one
move away from the outside world, then the same warning is issued.
This ensures that when he goes indoors, he is warned about the
possibility of falling into a pit and given the opportunity of preventing
it from happening.

Finally, subprograms are called to list the exits available and any items
which there may be in the current location.

go:

This subprogram deals with moving the player about. It checks to
make sure that the noun is a valid location and, if so, starts by saving
the number of the current location.

It then checks to see if the torch is on. If it isn’t and the current location
is one of the underground rooms, then this means that the player is
moving about in the dark. It therefore tells him that he has fallen into a
pit and sets ‘dead %’ to one.

The next block deals with each direction in turn. It starts by assuming
that the move will take place and sets the local variable ‘moved%’ to
one. Then it calls a subprogram to check if there is any way to go in
that direction. If there is, then ‘curloc%’ is updated. If not, the
subprogram prints a message and sets ‘moved %’ to 0. The only special
case is when the player is trying to go down through the trap door in
location 18. He is prevented from doing this if the door is locked.

Provided that the move succeeded, the number of moves that the
battery has been on for is updated if the torch is on. Then the
description of the new location is printed. Finally, a separate
subprogram is called to handle the special cases involving the giant.

130

5 : Manipulating Text

checkgo:

This is a subprogram used by ‘go’. It is passed an array which contains
the locations lying in a particular direction from each room. Then for
the current location, it checks to see if there is any way to go in that
direction and acts as described above.

giant:

Again this is used only by ‘go’. It starts by finding where the giant is
and, if he is in the current location, then it makes further checks. If he
is awake then he eats the player. If he is asleep but the player is
carrying the food he wakes up in a hurry and eats the player and the
food. If he is asleep and the player hasn’t got the food with him then
he wakes up but takes no immediate aggressive action.

While the giant is awake, he is moved to the location which the player
has just left. This means that, if the player backtracks, he will meet a
hungry, wide awake giant and will be killed. The final twist is that if
the giant comes across a room containing the food, he eats it and falls
asleep again. The player is given a clue about this happening by the
words “Yummy, yummy’ being spoken. (Speech will be dealt with
properly in a later chapter.) This means that the player, on returning to
this location, will find him slumbering peacefully.

take:

This deals with the verbs ‘GET’ and ‘TAKE'. The first check is that
these have been followed by a noun to indicate what is to be taken.
Next a check is made to ensure that the item wanted is actually in the
current location. Then normally a message is given saying that the
item has been obtained and the location of the item is altered to
indicate that it now is being carried. One exception to this is when the
player tries to get the giant. In this case the giant kills him. The other is
when he tries to get the battery for the first time. This is classed as
shop lifting and the player is removed from the game.

drop:

This is the opposite to ‘take’. It checks to make sure that the item
specified is currently being carried and, if so, transfers its location to
the current room. The special cases are when dropping the torch or
battery. If the battery is dropped whilst the torch is on, then the torch
automatically goes out. If the torch is dropped whilst the player is also

131

AmigaBASIC : A Dabhand Guide

holding the battery, then the battery falls with it. Again the torch, if it
was on, is extinguished. In either case, if the torch goes out whilst the
player is underground, the warning about falling into a pit is given.

enter:

This deals with ‘ENTER’ and ‘IN’. It can be used on its own or with
the nouns ‘SHOP’ or ‘HUT'. If it is used on its own, it enters
whichever of these two the player is next to. All it does is to alter the
current location to be inside either of these and to call ‘look’ to print
out the description of this room. However, it does check beforehand
that the player is actually standing next to the building he wants to
enter.

leave:
This deals with ‘EXIT” and ‘OUT’ in a similar manner to ‘enter’ above.

buy:

This is provided to allow the battery to be obtained. Trying to buy any
other object in the room just produces a message telling the player to
take it. The battery can only be bought if: it is in the current location, it
hasn’t been bought already and the player is holding the sovereign to
pay for it with.

eat:

Trying to eat anything other than the food gives an appropriate
message! Eating the food effectively puts the player to sleep for five
game moves. If the torch is on, the number of moves the battery has
been on for is increased by this number. The only other effect is to
destroy the food - its location is set to -1.

unlock:

The only item which can be unlocked is the door. The checks made are
that: the door is in the current location, it is currently locked and that
the player has the key. If so, ‘lock%’ is set to one so that it is possible to
move down through it later.

onv:

This deals with turning the torch on. For this to be possible, the player
must be carrying both the torch and the battery, and the battery must
not have already been on for more than 10 game moves. If this is the

132

5 : Manipulating Text

case, then ‘torchon%’ is set to one. Trying to turn the torch on when it
is already on has no effect other than producing a message.

offv:

This turns the torch off again provided it is being carried and that it is
currently on. Turning it off sets ‘torchon%’ back to 0. In addition, if the
player is currently underground, the warning about pits is given.

exits:

This is the subprogram which prints out all the exits available from the
current location. It starts by counting them and then goes through
them again, printing those available. The method used to do this is the
same as that used by ‘inv’ to deal with items.

eachexit:
This subprogram is called from ‘exits’ above. It handles one direction
at a time.

contents:

This is similar to ‘inv’, except that it lists the items in a particular
location, rather than those being carried by the player. It starts by
counting the number of items and then printing ‘There is’ or ‘There
are’ depending on whether or not more than one has been found. Then
the items and their adjectives are printed. The method of deciding
when to print commas or the word ‘and’ is the same as in ‘inv’. The
list is terminated by the word ‘here.

There is one special case which this subprogram deals with. If the
giant is awake, then the description stored in the array, ‘a loudly
snoring’, is replaced by ‘an angry looking’'.

Ispcrem:

This removes leading spaces from a string. If checks whether or not
the left-hand character is a space. If so, it converts the string into itself
minus the first character and repeats the check.

tspcrem:
This removes trailing spaces by repeatedly checking the right-hand
character and removing it when necessary.

133

AmigaBASIC : A Dabhand Guide

pp:

This subprogram is the ‘pretty printer’. All printing performed by the
program is carried out by passing the string to be printed to this
routine. It acts by locating the individual words in the sentence and
then printing them out, preceded by a space. If the word won’t fit on
the current line, then a new one is started.

The individual words are extracted by finding the successive spaces in
the string and then taking the letters between the previous space and
the current one. Note that it is assumed that the string does not start or
end with spaces and that words are separated by just a single string.
Since this routine is dealing only with text contained in the program
and not with text which the player inputs, this is a legitimate
simplification. Note also that, when no further space is found, the last
word still needs to be printed. The number of words is always one
greater than the number of spaces.

The width of the screen has been set to 60 characters. To determine
whether or not a word will fit on the current line, POS(0) is called to
return the column that the text cursor is in. The maximum width of the
window is set to be 60 (it is held in chars%). If the maximum width is
less than the current position plus the length of the word plus one (for
the space in front of it), then a PRINT command is given to move to
the next line. A space and the word is then printed and the text cursor
is left at the end of the word.

Note that a space is printed even when a new line is being used. This
means that all text starts in column two. Hence the prompts for user
input which are printed in the first column are more distinctive.

itemid:

This is passed a noun and it returns a number stating which element it
is in the item arrays. If the noun is not an item, then the number
returned is 0.

itemdata:

These data statements contain the adjectives, names and initial
locations of all the items which are read into arrays at the start of the
program. Note that, since the hut, shop and door aren’t to be included
in the list of items which can be picked up and dropped, their location

134

5 : Manipulating Text

is set to —1. This means that they are never found and consequently
that no adjective is required for them.

noundata:
This marks the start of the data statements containing the list of nouns
which the program knows about.

dirlist:
Similarly, this marks the start of the list of directions.

verblist:
And this, the list of verbs.

roomdata:

Finally comes the data for each of the rooms in the form of its
description and then six integers. Each integer gives the number of the
location which is north, south, east, west, up or down respectively
from the room described.

135

AmigaBASIC : A 'Dabhand Guide

136

6 : More On Graphics

‘A picture is worth a thousand words’ is how the saying goes. To help
you to cut down the number of words you need, this chapter returns
to the subject of graphics. It completes the list of commands which
BASIC provides for creating different outlines and solid shapes. Then,
by moving on to show you how to create your own screens and
windows, it makes available to you up to 32 colours to experiment
with.

The use of mouse and menus is heavily involved in all screen
activities. Therefore, these two topics are also dealt with fully. Finally,
to prevent you from losing your masterpiece once you have created it,
the secrets of how to save a copy of all or part of a window to disc will
be revealed.

Painting In Areas

Most of the graphics commands we have met so far have only drawn
the outline of shapes, the exception being the LINE command which
can be used to create solid rectangles. However, without solid shapes,
graphics look very drab. We have already ‘improvised’ in order to
create solid shapes in the traffic lights example in Chapter Four, which
required solid circles to be plotted. We created these by drawing a
series of circles, centred at the same position, each with a radius one
greater than the previous one. This achieved the effect we wanted but
not very efficiently.

So why doesn’t AmigaBASIC provide commands to create solid
circles, sectors, ellipses etc? The answer lies in the PAINT command.
This command is a general purpose one which can be used to fill any
enclosed area with a given colour. Therefore to obtain a solid circle, all
you have to do is draw its outline and then PAINT it.

In its simplest form, PAINT takes the follow format:

137

AmigaBASIC : A Dabhand Guide

PAINT (50,50)

The co-ordinates of any position within the region to be filled can be
used. PAINT will start at the point given and fill in all directions until
it meets the border of the shape. As with all the other graphics
commands, the position can be given relative to the previous location
by using the STEP option:

PAINT STEP (0,0)

There are two further arguments which it can be given. The first is the
colour with which the region is to be filled. For example:

PAINT (50,50), 2

will fill a region with colour two. If no value is specified, the current
foreground colour is used.

The second is the colour of the border. PAINT can only recognise
borders of a single colour. Consider the example of a small circle of
colour one inside a larger circle of colour two. If you start filling from
the centre using a border colour of one, just the small circle will be
coloured. However, if you use a border colour of two, the whole of the
large one will be painted. In the second case, PAINT doesn’t recognise
the line in colour one as anything special, so doesn’t stop when it
reaches it — only lines of colour two limit its action. These examples are
given below for you to try out:

PALETTE 0,0
PALETTE 1,1
PALETTE 2,0
PALETTE 3,0
CLS

CIRCLE (320,100),40,1
CIRCLE (320,100),80,2
PAINT (320,100),3,1
PALETTE 0,0,0,0
PALETTE 1,1,0,0
PALETTE 2,0,1,0
PALETTE 3,0,0,1

CLS

CIRCLE (320,100),40,1
CIRCLE (320,100),80,2

IOIO
IOIO
/1,0

0,1

I

138

6 : More On Graphics

PAINT (320,100),3,2

By default, the border colour is the same as the paint colour. Try
altering the example above yet again to give:

PALETTE 0,0,0,
PALETTE 1,1,0,
PALETTE 2,0,1
PALETTE 3,0,0
CLS

CIRCLE (320,100),40,1
CIRCLE (320,100),80,2
PAINT (320,100),3

P O OO

’
7

Now PAINT uses the paint colour, ie colour three, as the border
colour. Since there are no lines drawn in colour three to limit the area
being filled, the whole screen is painted.

Further examples of PAINT will be given later on in this chapter.

Polygons and Patterns
We can now produce both the outline and solid versions of the
standard shapes; rectangles, circles and ellipses. But there are many
other shapes which we might want to draw, such as triangles,
hexagons, etc. We could produce these with the LINE command, for
example:

LINE (100, 80) - (500, 80)

LINE (500, 80) - (250,150)
LINE (250,150) - (100, 80)

draws a triangle which we could then fill in using PAINT:

PAINT (250,120)

However, we have had to supply a lot of redundant information using
this method. The co-ordinates for each corner had to be given twice:
once as the end of one line and once as the start of the next line. Since
polygons are such common things to want to create, AmigaBASIC
provides us with a simpler method of making them, in the form of
AREA and AREAFILL:

139

AmigaBASIC : A Dabhand Guide

AREA (100, 80)
AREA (500, 80)
AREA (250,150)
AREAFILL

Each AREA statement defines a point of the polygon to be drawn, and
the AREAFILL statement creates this polygon. Like the other graphics
statements, AREA can take co-ordinates which are given relative to
the previous one by using STEP. Having seen how the other
statements work, you might also expect AREAFILL to take an
argument which specifies a colour to use. However, this is not the
case. It is actually much more versatile than that. Instead of just letting
you fill the area with a single colour, AREAFILL allows you to fill it
with a ‘colour pattern’. The pattern to use has to be defined, prior to
the AREAFILL statement, using the PATTERN command. To see this
in action, try the following:

COLOR 1,3

DIM pat%(7)

pat%(0) = &HFFFF : REM The &H means that
pat%(l) = &H8080 : REM the numbers are
pat%(2) = &H8080 : REM being given in
pat%(3) = &H8080 : REM hexadecimal format
pat%(4) = &HFFFF

pat%(5) = &H808

pat%(6) = &H808

pat%(7) = &H808

PATTERN, pat%

AREA (100, 80)
AREA (500, 80)
AREA (250,150)
AREAFILL

This fills the triangle with a brickwork pattern. PATTERN is quite a
complicated command to use. It can take up to two arguments. The
first (which has been omitted in the example above) sets up a pattern
to be used for drawing lines — we will move onto this a little later. The
second argument is the one we are interested in at the moment, since
this specifies a pattern for filling polygons. This argument must be an
integer array containing at least two elements. Each element of the
array defines a block which is 16 pixels across, the individual elements

140

6 : More On Graphics

define subsequent rows of the block. This is illustrated below in Figure
6.1.

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Figure 6.1. Each element of the array defines a block which is 16 pixels
across, the individual elements define subsequent rows of the block.

The individual elements are best thought of as bit patterns. Each bit of
the number corresponds to one pixel. For example, the hexadecimal
numbers we used above have the following bit patterns:

&HFFFF 1111111111111111
&H8080 1000000010000O0CO0CO
&H8080 1000000010000O0CO0CO
&H8080 100000001000O0OO0CO0CO
&HFFFF 1111111111111111
&H0808 0000100000001 000
&H0808 0000100000001 0O00O0
&H0808 0000100000O0O0100O00

If you study the bit patterns above, you can see how the brick pattern
was formed. The AREAFILL command coloured all the pixels
corresponding to bits which were set in the current foreground colour,
and all the pixels corresponding to bits which were unset in the
current background colour. Therefore the 1s created the white ‘mortar’
and the Os the red ‘bricks’.

The block defined using PATTERN is repeated throughout the whole
area to be filled. The width of the pattern is limited to 16 pixels,

141

AmigaBASIC : A Dabhand Guide

therefore patterns will always repeat every 16 pixels. However, the
number of rows defined can be altered by using larger arrays. The one
limitation is that the number used must be a power of two, ie, 2, 4, 8,
16 etc.

The pattern defined will be used by all AREAFILL commands until
the PATTERN command is used again to create a new one. Altering
the pattern will n