
InsideandOut

i complete guide to learning

and applying AmigaBASIC

Abacus!
A Data Becker Book

AmigaBASIC

Inside and Out

Hannes Rugheimer • Christian Spanik

A Data Becker book

Published by

Abacus

First Printing, January 1988

Printed in U.S.A.

Copyright © 1986, 1987, 1988 Data Becker, GmbH

MerowingerstraBe 30

4000 Deusseldorf, West Germany

Copyright © 1988 Abacus

5370 52nd Street SE

Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise without the prior written permission of Abacus Software or Data

Becker, GmbH.

Every effort has been made to ensure complete and accurate information concerning the

material presented in this book. However, Abacus Software can neither guarantee nor be

held legally responsible for any mistakes in printing or faulty instructions contained in this

book. The authors always appreciate receiving notice of any errors or misprints.

Aegis Animator is a trademark of Aegis Development, Inc. Deluxe Music Construction

Set, DeluxeVideo and Instant Music are trademarks or registered trademarks of Electronic

Arts. AmigaBASIC and MS-DOS are trademarks or registered trademarks of Microsoft

Corporation. Amiga 500, Amiga 1000, Amiga 2000 Amiga, Graphicraft, Musicraft,

Sidecar and Textcraft are trademarks or registered trademarks of Commodore-Amiga Inc.

PC-BASIC is a registered trademark of International Business Machines Corporation. Star

Wars is a trademark of Twentieth Century-Fox, Inc.

ISBN 0-916439-87-9

Table of Contents

Introductions 1

About this book 3

Choose your introduction 6

Introduction 1 7

Introduction 2 ...14

1 Making things move:

Object animation 17

1.1 The Amiga's tutor: the Extras diskette 20

1.2 Introducing... AmigaBASIC 22

1.3 Experimenting with AmigaBASIC 24

1.4 First program: only flying is better 28

1.5 Here and there: BASIC and LIST windows 31

1.6 BASIC commands, functions, and more 34

1.7 Entering text in your video title program 40

1.8 Safety first: saving your programs 45

1.9 A clean slate: erasing BASIC programs with NEW 47

Intermission 1 Clean up with: program drawers 49

1.10 Something's moving out there: bobs and sprites 52

1.11 A star is Born: the object editor 54

1.12 Role assignments: more about graphic objects 58

1.13 Loading our STAR bob: reading graphic objects 60

1.14 Tracking down your errors: the TRACE function 64

1.15 Moving on up to: the OBJECT commands 66

1.16 Color comes into the game: color control 74

1.17 The fruits of our labors: the display program 81

2 All here in black and white:

Colors and resolution 89

2.1 Amiga teaser: A spectrum of color 92

2.2 Pixels, colors and memory: Amiga screen resolutions 94

2.3 Motion graphics: The Amiga' screens 99

2.4 Creating your own Amiga windows 103

2.5 Versatility: the first graphic commands 107

Intermission 2 Chaining your different programs together 113

2.6 Full circle: more graphic commands 116

iii

2.7 The turning point: bar graph and pie chart utility 124
2.8 Illusion or reality: the mouse and menus in BASIC 134
2.9 The AmigaBASIC paint program 140

Intermission 3 Bits, bytes and other mysteries 169

2.10 Blitter & the paint program: defining your fill patterns 176

3 Organizing your data:

Diskettes and file management 191

3.1 Saving it for posterity: making your own BASIC diskette 194

3.2 Directories, trees, and more: disk commands in AmigaBASIC 203
3.3 The data collector: a BASIC address book 209

3.4 Information for bar and pie charts: managing statistical data. 215
3.5 Amiga and friends: peripheral devices 236

3.6 Getting it down on paper: a print routine for the statistics program 250

4 A picture's worth a thousand bytes:
Loading and saving graphics 253

4.1 Give and take: the GET and PUT commands 256

4.2 Data in the fast lane: Interchange File Format (IFF) 263

4.3 American ingenuity at work: IFF reader routine 267

4.4 Passing the buck: loading and saving paint program graphics 274

Intermission 4 Compatibility's the key: improving your video title program 280

4.5 Lights, Camera, Action: loading graphics in the video title program 285

4.6 Another idea: loading and saving title sequences 292

4.7 AmigsBASIC's little extra: adding your own commands 296
Intermission 5 Amiga number systems 300

4.8 Save that picture: the PICSAVE command routine 306

5 Getting it organized:

All about data 313

5.1 It's all relative: using random files 316

5.2 Store it: a database program 321

5.3 A database is what you put into it: using the database 339

6 AmigaSpeak:

Speech in BASIC 343

6.1 The third teaser: the Amiga speaks 346

6.2 Say it with phonemes: SAY and TRANSLATE$ 347

6.3 All talk, no music: options with the SAY command 350
6.4 When all is said and done: the speech utility 355

iv

Appendices 329

A Error and help messages 391

B AmigaBASIC reference section 402

Bl Screen input and output 403
B2 Object animation 11!!!!!"^V.V.V.V."".".".".41O
B3 Graphic commands 1. "!!!!!!"^.V".".'".".#."!417
B4 Program control commands!.!!.425
B5 Calculations and BASIC functions!..........!447
B6 File, disk and input/output commands!461
B7 Speech and tone production !"."."!"!!471

C "Error-free'Mistings........ 475

Cl Video title program 475

C2 Video title program (IFF format) i./////^.V.#".".".".*!!481
C3 Paint program"490
C4 Statistical data manager !!ll^."V3.".""."."505
C5 Database program .!!.......!...514
C6 Speech utility... !!!!..!!.!.!!!.!....!..1!!.522
C7 Synthesizer utility !!!!!!!!!!...!.!.....!.....526

D Programs from the BASICDemos drawer 530

E A short technical dictionary 535

Index. ..543

Introductions

Abacus About this book

About this book

Format

The

Appendices

This AmigaBASIC book was written for the beginner as well as the

more advanced programmer. Depending on your level of ability, you

have a choice of two introductions (more about this below).

The chapters that follow the introductions were written for all readers.

Those who have no computer background at all should read the book

carefully, chapter by chapter. Don't skip ahead to later chapters, since

the material in each is based on material covered previously. If you

know a lot about computers, you'll probably be quite familiar with

some of the subjects covered. Still, the advanced programmers should

read each chapter in sequence, and not skip anything. This is because

many aspects of the Amiga are slightly different from those of other

computers.

Checkmarked messages like the following will often appear in the text

of the book:

W TURN ON YOUR AMIGA AND MONITOR.

These are instructions that you should perform in sequence to produce

the desired effect or Amiga operation that we're after.

You'll also find words in italics throughout the book. These italicized

words appear the first time that the terms are mentioned in the text.

Many of the italicized technical terms are defined in the Glossary

(Appendix E).

While we're talking about appendices, we'll mention that there's quite a

bit of practical information there. In your first attempts at

programming, you're bound to make a few mistakes. AmigaBASIC

will alert you to these errors with error messages. The error messages

usually result from typing mistakes or incorrect numbers that you

enter. Appendix A lists in alphabetical order the typical BASIC errors

that you might come across. We can't foresee all errors, though, since

these depend on your program and the internal status of the Amiga—and

there are many different types of errors. Appendix A will tell you what

could have caused the error, what it means, and what you might do to

fix the error.

Once you've finished our book, you'll want to write your own BASIC

programs. You'll probably have some questions about a command and

its usefulness in your program. Appendix B was included so that you

don't have to search the main part of the book for the command. Since

we don't use all of the commands and options in our programs, this

appendix will be a valuable reference from the start.

Introductions AmigaBASIC Inside and Out

Amiga x 3

Attention:

Amiga 1000

owners

Of course, we (the publishers) can make mistakes, too. This book
contains some long programs which might have some printing errors,

even though the programs were checked quite carefully before going to

press. To ensure that the programs are error-free in at least one place in

the book, Appendix C is our "error-free" appendix. This expression is

often found on diskettes. Each of the longer programs has been included

in this Appendix as a program listing which was transferred directly
from the Amiga to the computer on which this book was typeset. Since

all of these programs were tested, the listings should run without

problems. Therefore, if you suspect a command or line to be incorrect,
just verify it in Appendix C.

Commodore gave you some sample programs on the Extras diskette.
Appendix D gives brief explanations of how they work, what you

should look for when running them, and what you can do with them.

The text and programs in this book were written for the Amiga 500,

Amiga 1000 and Amiga 2000. As you may already know, the Amiga

has undergone a number of changes since the original model was

released (the Amiga 1000). Early in 1987, Commodore began the

production of two new machines: The Amiga 500, a self-contained unit

with keyboard, computer and disk drive in one hoiking; and the Amiga

2000, an "open system" capable of becoming a PC clone as well as an

Amiga. The Amiga 1000 is no longer being manufactured, but a large

number of these machines are still in use today.

We wrote this book to make it as useful as possible to all models of

the Amiga. This wasn't very hard to do, since all three Amigas are fully

compatible with each other. When necessary, we include remarks that

apply to only one particular Amiga model.

Here's the first remark: If you own an Amiga 1000 with 256K ofRAM

("read/write" Random Access Memory) with no memory expansion,

you are going to have to be careful with your memory usage. (This

doesn't apply to the Amiga 500 or Amiga 2000 owners—you have

plenty of free memory). An Amiga 1000 with no memory expansion

lacks some of the capabilities available with the other Amigas. Your

best bet is to go out and buy a 256K memory expansion as soon as

possible, since the majority of the programs in this book are geared

toward Amigas with 512K, standard for the 500 and 2000 models. Don't

even think about getting a second disk drive or other peripherals before

purchasing the memory expansion.

However, you can still learn AmigaBASIC and run most of the

programs included in this book, even if you lack 512K of memory.

Abacus About this book

We are assuming that if you own an Amiga 1000, you are using the

Kickstart 1.2 diskette as well as the Workbench 1.2 and Extras 1.2

diskettes, (the Amiga 500 and Amiga 2000 don't use Kickstart

diskettes; their startup data is built into the computer). If you don't own

these diskettes, get them from your dealer as soon as possible. If you

cannot purchase them right at the moment, perhaps you can borrow

them until you can order them by mail or by phone. If you have an

Amiga 500 or Amiga 2000, you have the right diskettes.

About the Extras diskette: Commodore has used various names for the

same diskette. The most frequent variations are Extras or Extras 1.2.

It's important that we stick to the same diskette names in this book, to

avoid confusion. If your Extras diskette is called anything other than

Extras, rename your diskette to this name. See Section 3.1 of this book

for renaming instructions.

AH references to color are based on the original colors of the

Screen Workbench. Also, all programs in this book were designed for use with
Output 60-character screen output That means that if you want the programs to

appear correctly on your monitor, your must switch your Ainiga to 60-

character output using Preferences. Click on the gadget marked 60

next to Text on the Preferences screen. You can then Save your

choice or Use it.

NOTE: You may wish to remove the Amiga 500's RAM diskette to free up

memory. To remove the RAM diskette from the Amiga 500, do the

following:

VV TURN ONTHE AMIGA

VV INSERT THE WORKBENCH DISKETTE WHEN THE AMIGA ASKS

YOU.

VV AS SOON AS THE BLUE SCREEN APPEARS, PRESS <CTRLxD>
(THIS BREAKS YOU OUT OF THE STARTUP SEQUENCE AND

ENTERS YOU INTOTHE CLI [COMMANDLINE INTERPRETER]).

VV TYPE LOADWB AND THEN PRESS <RETURN> AT THE 1 >

PROMPT. (THIS LOADS THE WORKBENCH).

VV TYPE ENDCLI AND THEN PRESS <RETURN> (THIS DROPS YOU
OUT OFTHE CLI AND RETURNS CONTROLTOTHE WORKBENCH).

Introductions AmigaBASIC Inside and Out

Choose your introduction

Are you already familiar with the operation of the Amiga? How much

experience do you have with computers in general? At this point you

should determine what type of reader you are, and determine the level of

your abilities.

We've written two different introductory chapters to start you off as

quickly as possible. The first introduction is for those of you who

haven't had much experience with computers and have just purchased an

Amiga. The second introduction is designed for people with a solid

experience with computers. Select the introduction with which you'd

like to start If you want to start from Square One, read Introduction 1.

Otherwise, skip ahead to Introduction 2.

By the way, the decision you are now making would look something

like this in BASIC:

IF NOT experienced THEN GOTO Introduction 1

IF experienced THEN GOTO Introduction 2

But don't let your Amiga decide this for you. Typing in and running

these lines would result in a Syntax error. Why? The answers to

this and other questions are revealed in the pages that follow. Once

you've read this book you'll have very few questions about

AmigaBASIC, and you'll be getting a lot more enjoyment out of your

Amiga.

Abacus Introduction 1

Introduction 1:

The mouse, the windows, and the Workbench

Starting up

your Amiga:

Kickstart

The

operating

system

If you chose to read this chapter, you probably aren't very familiar with

the Workbench or the Amiga's basic functions. Or perhaps you feel a

refresher course wouldn't hurt. Because of this we'll stress the

fundamental topics of starting and using the Amiga.

VV TURN ON YOUR AMIGA AND MONITOR.

When you turn the power on, the monitor first displays a plain dark-

grey screen. This means the Amiga is taking a self-test. Finally, the

screen turns white, and a picture of a hand holding a diskette appears on

the screen. This is your first encounter with the Amiga's most

important feature: symbol or icon language. If you own an Amiga
1000, this icon asks you to insert the Kickstart diskette. The Amiga
1000 needs this diskette before it can begin any operation, like some

people need coffee to start their day.

Here is one difference between the Amiga 1000 and the Amiga 500 or

2000. The Amiga 500 and 2000 have built-in operating systems, so

you won't have to use the Kickstart diskette to get started. If you own a

500 or 2000, skip to the Workbench procedure on the following page.

VV IF YOU OWN AN AMIGA 1000, INSERT YOUR KICKSTART

DISKETTE.

Be sure to insert the diskette in the direction shown by the picture on

your screen. The metal cover must be facing forward and the label

facing up.

The Kickstart diskette contains the Amiga 1000's operating system. An

operating system is a program that tells the computer how to perform
its computer operations. Without an operating system program, even

the most advanced computer is useless. The Amiga's operating system

tells it how to react to keyboard or mouse inputs, and how to display

graphics and text on the screen, for just a few examples. The operating

system's information is stored in a special area of memory within the

Amiga 1000, and can't be erased while the computer remains turned on.
The Amiga 1000 loads its operating system in about 20 seconds. Then

the Amiga requests another diskette, again through an icon. This time

the icon's diskette label says Workbench.

VV AFTER THE DISK DRIVE LIGHT GOES OFF, PRESS THE EJECT

BUTTON ONTHE DISK DRIVE.

The old diskette is partially ejected from the drive.

Introductions AmigaBASIC Inside and Out

VV REMOVETHE KICKSTART DISKETTE.

VV INSERTTHEWORKBENCH DISKETTE INTO THE INTERNAL DRIVE.

The drive will spin and load the Workbench. You'll now see a white

The line (called the title bar) at the top of a blue screen. Under this bar is an
Workbench icon with the name Workbench. This name refers to the diskette

currently in the drive. Whenever a new diskette is inserted in the drive,

its icon will appear on the Workbench screen.

VV START MOVING THE MOUSE AROUND.

When you move the mouse, you'll see that the red arrow on the screen

also moves. This arrow is called the pointer.

VV MOVETHE POINTER ONTO THEWORKBENCH DISKETTE ICON.

VV PRESS THE LEFT BUTTON OFTHE MOUSE ONCE.

As you'll see, the icon turns black. Why? The left mouse button

activates icons on the Workbench screen. The Amiga changes the icon's

color so you know which object is currently active. If you now click

the mouse again anywhere outside the icon, its color will change back

to white. Normally, only one symbol can be active at any time.

VV MOVETHE POINTER ONTOTHE WORKBENCH DISKETTE ICON.

VV PRESS THE LEFT MOUSE BUTTON TWICE IN RAPID SUCCESSION.

Pressing the mouse button like this is called double-clicking.

The pointer will now turn into a small cloud with two Z's in it. This is

called a wait pointer. The Amiga is again using pictorial language to

tell us that it is right in the middle of some important internal business

at the moment, and that you'll have to wait until it's done with the

activity. A frame then appears on the screen, and contains four different

kinds of icons. Once this is done, you'll see a picture similar to the one

on the following page.

The Amiga SOO screen will include an icon representing a RAM

diskette (see Section 3.5 for more information). The amount of free

memory displayed in the title bar will depend on which Amiga you

own, and how much memory is installed.

Abacus
Introduction 1

Figure 1:

The

Workbench

window

Title Bar

Back/front

gadgets

The frame is called a window. Some windows display the contents of
diskettes. The window frame, or border, also contains some important

elements. Figure 1 shows exactly what the window contains:

Every window has a name, in this case Workbench. If you can't
decipher this name, it's not because the Amiga is using some special
alphabet, but because the window hasn't been activated. In this case
move the pointer into the window and click the left button once. Now

the window is selected and the name should be easily readable.

Move the pointer onto this bar and press the left mouse button, and
hold it down. You can move the entire window back and forth on the
screen. At first only an orange frame proportional to the window
moves. This way you can tell where the window will be positioned if
you release the mouse button. Only when you release the button is the

new window repositioned.

These symbols are the small boxes in the upper right corner of the
window. They allow you to choose which window is displayed when
several windows are overlapping each other. To try this, select the
Clock icon. In case you don't remember how to do this, move the
pointer onto the Clock icon, and click the left mouse button twice in

rapid succession.

Introductions AmigaBASIC Inside and Out

Sizing

gadget

Scroll bar

Disk gauge

Close

gadget

After a few seconds a clock is displayed on the screen. It probably won't
display the correct time, but that's irrelevant at the moment. (You can

use Preferences to change the time. See your Amiga manual for

instructions on using Preferences.)

The clock should cover part of the Workbench window. If it
doesn't, move the clock window so that it's "in front".

V MOVE THE POINTER ONTO THE RIGHTMOST TWO SYMBOLS IN
THE TOP BORDER OF THE WORKBENCH WINDOW AND CLICK

ONCE.

The clock disappears behind the window.

Click the symbol on the left. The clock will be in the foreground once

more. These two symbols are called the front gadget and the back
gadget.

When you open many windows on the screen all at once, these gadgets

let you choose the windows "in front" and "in back" of each other.

When you drag the sizing gadget (in the lower right corner of the

window) with the pointer, the size of the window changes. You drag by
positioning the pointer on the symbol, pressing and holding the mouse

button, and then moving the mouse in any direction. Just as when you

shift the window's position on the screen, the size of the new window

is indicated by an orange frame. The actual size of the window changes
only when you release the mouse button.

The scroll bar indicates that a window is not big enough to display all

of its contents. In such a case, a blue area appears above or below the

scroll bar. These surfaces let you approximate which part of the window

is currently visible at the moment. By moving the scroll bar, you can

select a particular portion of the window. Instead of shifting the bar,

you can also click one of the scroll arrows positioned at either end of

the bar. This advances the window in the indicated direction, although at
slower speed. Windows have horizontal scroll bars as well as vertical

scroll bars. Of course, you can also change the size and shape of the

window, as we mentioned above.

The disk gauge bar to the left of the window indicates how much

memory is used up on a diskette. E stands for empty while F stands for
full. The closer the bar to F, the fuller the diskette.

Click the close gadget (in the upper left corner of the window) to close
the window. This will make the window disappear from the screen.

10

Abacus Introduction 1

The drawers are handy places to put your programs. If you double-click

Drawers on one of the drawers, a new window appears with more programs or

subdirectories. You could think of a diskette as a very tall file cabinet

with many drawers. If you're a neat person, you can organize programs

into drawers by category. You'll be able to view the contents of these

drawers whenever you open them. Go ahead and try this with the

Workbench drawers:

-H DOUBLE-CLICK ONE OF THE DRAWERS IN THE WORKBENCH

WINDOW.

A new window opens which belongs to the drawer you selected. In this

new window you may or may not find more icons.

VV NOW CLOSE THIS WINDOW BY CLICKING THE CLOSE GADGET IN

THE UPPERLEFT CORNER.

You can put anything you want into these drawers, even drawers within

drawers within drawers. The entire concept was patterned after the

structure of a workbench in a workshop. If you put tools into a
Workbench drawer, the surface of the desk will be clear for work.

Thus the name Workbench.

The trashcan lets you dispose of programs you no longer need. Again,

Trashcan this icon is modeled after an everyday object. If a program has been

placed in the trashcan, it's not necessarily lost yet. In fact, it will stay
in the trashcan until you empty the trash (how you do this is explained

in a little while). We can open the trashcan like a drawer, and recover

everything that you previously threw away.

VV DOUBLE-CLICKTHE TRASHCAN ICON.

The trashcan should be empty.

VV CLOSE THE TRASHCAN WINDOW.

How can you get rid of files and programs for good? This question

Menus brings us to pulldown menus. Since this book isn't supposed to be

boring (like the rest of those Amiga books), we'll try to provide some

variety now.

>W PRESS THE RIGHT MOUSE BUTTON.

If you haven't pressed the right button before, you'll notice that the

following three words are displayed instead of the title bar:

Workbench Disk Special

MOVE THE POINTER TO THE WORD Special WHILE HOLDING

DOWNTHE RIGHT MOUSE BUTTON.

11

Introductions AmigaBASIC Inside and Out

When the pointer reaches this word, Special's corresponding
pulldown menu appears. Menu sounds like something you'd expect to

find in a restaurant In fact, this computer menu also offers you a choice

of items. For example, this menu has the menu items Cleanup,

Last Error, Redraw, Snapshot, and Version. Some of these

items may not be very interesting right now, because they are not
active at the moment.

W KEEP THE RIGHT BUTTON DEPRESSED AND DRAG THE POINTER
DOWN.

While the cursor is moving down the menu, you'll see the individual

items outlined in black as the pointer passes them. However, this only

happens with active items. The right mouse button is referred to as the

menu button, since it is used to control the pulldown menus. The left

button is called the selection button. If you hear terms like "selection

button", "action button" or "activation button" in other books, it will

usually refer to the left mouse button. Now on to pulldown menus and

what you can do with them.

VV LEAVE THE Special MENU AND CLOSE ALL WINDOWS ON
THE SCREEN.

VV ACTIVATE THEWORKBENCH DISKETTE (CLICK FT ONCE).

VV SELECT Open FROM THE Workbench PULLDOWN MENU.

. . Here's another way to do this: Activate the Workbench diskette. Move

Playing with the pointer onto the word Workbench and then, while holding down
the windows the right mouse button, onto the word Open. When the background of

the word Open turns black, release the button. You'll see that this does

the same thing as a double-click: The Workbench window opens.

Now you know two methods of opening a diskette icon.

VV IF THE WORKBENCH DISKETTE ICON ISN'T BLACK ANYMORE,
ACTIVATE IT NOW BYCLICKING IT.

VV SELECT THE Cleanup ITEM FROM THE Special MENU.

The Cleanup function straightens up the icons in a particular

window. This is useful when you have dozens of icons scattered around

in a window. Cleanup will arrange them for you.

We still owe you an explanation: How do you get rid of the "trash" that

you don't want anymore?

Before we answer that, an important Warning: The files on your

Workbench diskette are all very important to the Amiga—none of these

files should be thrown away. Therefore, do not select Empty Trash

at this time.

12

Abacus Introduction 1

It's always advisable to work with a backup copy of the Workbench

Backup! original. The manuals that came with your Amiga explain how to copy
diskettes. You should also make backups of the other diskettes that

came with your Amiga. In this book we'll assume that you have made

these backup copies.

The final disposal of the files and programs in the trashcan is very

simple. When everything you want thrown away is in the trashcan,

activate the trashcan icon and select Empty Trash from the Disk

pulldown menu. Once this is done the data is lost forever, and you have

an empty trashcan.

This concludes our introduction to the Workbench. The additional

functions and capabilities of the Workbench are discussed in detail in

the book AMIGAfor Beginners, available from Abacus.

What you have learned in this introductory chapter should be enough to

guide you through our expedition into AmigaBASIC. Nevertheless, it

probably won't hurt to read the "expert" introductory chapter as well.

Don't worry if you don't understand everything written there—you've

already learned the most important things.

13

Introductions AmigaBASIC Inside and Out

Introduction 2:

Workbench—a quick review for advanced readers

If you've chosen to start with this section, you already have some

experience with the Amiga. Here we would just like to briefly explain

what happens when you start the Amiga, and review the basic functions

of the Workbench. If there is anything you don't understand, please refer
back to Introduction 1 for clarification.

Once the Amiga is turned on, it executes a self-test. If you own an

Amiga 1000, this self-test includes an audio output check (you'll hear a

short burst of sound). If you don't hear anything, there could be a bad

connection between your Amiga 1000 and your monitor speaker or

stereo system.

After this test an Amiga 1000 displays an icon requesting the Kickstart

Kickstart diskette. This diskette contains the Amiga's operating system, also
referred to as the kernel. The kernel contains various routines that are

utilized by the Amiga (for instance, screen output, input and output

control, and multitasking management). The contents of the Kickstart

diskette are loaded into a 256K region of the Amiga 1000's memory.

This region is treated as ROM (Read Only Memory) from that point

on. The Amiga 500 and Amiga 2000 operating systems are contained in

ROM chips, which eliminate the need for the Kickstart diskette.

However, the Amiga 1000 has one advantage: you can upgrade your

operating system by simply switching to upgraded Kickstart diskettes.

You can't do this with the Amiga 500 and 2000 computers.

The Amiga needs the Workbench diskette after the Kickstart (Amiga

Workbench l000) or the power-up procedure (Amiga 500 and 2000). Your work
area, or Workbench, is loaded from this diskette. The Workbench

diskette contains the AmigaDOS commands, system programs such as

printer output or speech synthesis, and some utilities. Once it is loaded,

you are in the Workbench itself, a graphic interface that lets you easily

control the Amiga using the mouse and windows.

The pointer is synchronized with the movement of the mouse on a flat

surface. The left mouse button is used mainly to activate icons and start

programs, while the right mouse button is used for selecting pulldown

menus.

14

Abacus Introduction 2

Icons

The Menus

Workbench

Disk

Special

The diskette symbol in the upper right corner of the screen represents

either the Workbench diskette or the RAM disk. These symbols are

called icons. When you move the pointer onto the Workbench diskette

icon and click the left mouse button twice, the diskette opens the

Workbench window. It contains other icons which represent the

contents of the Workbench diskette. If you were to click the clock icon,

for example, a program would be started which displays a clock.

The drawers (Demos, Utilities, System, Empty) represent

subdirectories. You must double-click these drawers individually if you

want to view their contents. Drawers may be nested inside of drawers,

etc.

There are several symbols in the window borders. If you are not familiar

with these symbols, please refer to Figure 1 and its corresponding text

in Introduction 1. These symbols are very important for the use of

windows and are explained in detail there.

You access the pulldown menus with the right mouse button. The right

button is also known as the menu button. As long as you hold down

the button, the titles of the available pulldown menus will be visible at

the top of the screen. When you move the pointer onto one of these

menu words, its pulldown menu will appear. To select one of the menu

choices, move the pointer onto the item and release the mouse button.

Only the easily readable items are available to you; the others, called

ghost items, are not active if they are not readable. The same goes for

windows. You can recognize active windows by their easily readable

titles.

The Open and Close items in the Workbench menu allow you to

open and close icons or windows. The Duplicate item copies

programs and diskettes. Rename allows you to give programs new

names. Discard erases programs. Info, opens an information

window that will let you view data such as the size, filetype, write

protection status, and documentation of a program.

The Empty Trash command from the Disk menu disposes of files

in the trashcan, which we will talk about later. Initialize allows

you to format diskettes.

Cleanup in the Special menu sorts and arranges disordered

windows. Last Error displays the operating system's last message.

You can recreate the previous screen with Redraw in case you made a

mistake. You can fix active icons in their present positions with
Snapshot. Version displays the version number of your

Workbench.

15

Introductions AmigaBASIC Inside and Out

After this quick rundown of the pulldown menus, we'd like to discuss

Trashcan one more thing: the trashcan. The trashcan is used to discard files that
are no longer needed and that you want erased. The trashcan is actually

nothing more than a special subdirectory. Only when you have activated

it and selected Empty Trash are the programs erased. However, you

cannot reverse an Empty Trash operation. For this reason alone, you

should only work with backup copies of your original diskettes.

You can find out how to make backups in the manuals that came with

your Amiga. Well assume that you are already working with backup

copies of your original Amiga diskettes.

16

Object animation

Abacus Object animation

Making things move:

Object animation

In the following chapters we'll be explaining and programming some of

the Amiga's amazing graphic capabilities. You've probably seen many

of its demonstrations already—and the graphics may be why you

purchased your Amiga in the first place. Believe it or not, you'll be

able to create most of these sophisticated graphic effects with

AmigaBASIC programs.

The following pages are a solid introduction to computer animation in

BASIC. In this first chapter, we'll show you what the Amiga has to

offer in animation (moving graphics). If you enter all of the listed

program examples, by the end of the chapter you'll have a short

program that will create custom animated title graphics. The graphics

can be used to title your videos by hooking up a VCR to the Amiga.

Even if you don't have a VCR, you're still sure to enjoy the results of

your first AmigaBASIC program.

19

Object animation AmigaBASIC Inside and Out

1.1
The Amiga's tutor:

the Extras diskette

As a first programming step, we have to "teach" the Amiga what

BASIC actually is. You'll want it to be able to respond to statements

like GOTO or IF...THEN. You might ask, how can I teach a computer

the BASIC language? This is a lot easier for the Amiga than you think.

The Amiga simply loads everything it needs from the diskette labeled

Extras. You'll need to read this whole book to learn BASIC.

WARNING: Since the owners of single drive systems need to switch diskettes often
from this point on, a bit of advice. Inject diskettes from the drive only

when the disk drive light is off. Ejecting the diskette prematurely could

cause all data on the diskette to be lost. You old computer pros should

take special note. Some computers allow you to take out the diskette

while the drive is running—the Amiga doesn't, and can be very

unforgiving if you try! Remember, the lit disk drive light means "Don't

remove the diskette!!"

First things first:

VV MAKE A BACKUP OF YOUR EXTRAS DISKETTE.

If you don't already know how to make backups, check your manual to

see how this is done.

If you own a second disk drive, insert the Extras diskette into the

external drive. Otherwise, eject the Workbench diskette and insert the

backup of the Extras diskette in the drive.

Remember to use Preferences to set your text width to 60

NOTE: columns (see page 5 of this book for instructions). The programs in
this book perform correctly only in 60 column mode.

You will now see the icons for the Workbench and the Extras diskettes

on the screen, even if you had to remove the Workbench diskette from

the drive. The Amiga has a special area reserved for this data, so that it

doesn't forget the Workbench.

VV OPENTHE EXTRAS DISKETTE

Move the pointer onto the Extras diskette icon and press the left mouse

The Extras button twice (double-clicking). A window appears on the screen
diskette containing seven icons: AmigaBASIC, BasicDemos, FD1. 2,

PCUtil, ReadMe, Tools and Trashcan. The first two are of the

most interest to us.

20

Abacus the Extras diskette

We'll take a moment to discuss the other icons: ReadMe is a document

that you can read from the Notepad on the Workbench diskette. It has

some notes on the current version of the Extras diskette. The Tools

drawer contains some programs which are described in detail in that

drawer. The same goes for PCUtil.

We'll discuss the contents of the FD1.2 drawer later. Do not delete this

file under any circumstances.

The white square with orange symbols in the foreground is the

AmigaBASIC icon. Click it. After a moment AmigaBASIC is loaded,

and the following windows are displayed:

Figure 2:

Amiga

BASIC

after loading

Again, a reminder that you must set your screen mode to 60 characters

using Preferences.

21

Object animation AmigaBASIC Inside and Out

1.2
Introducing...

AmigaBASIC

We have finally loaded AmigaBASIC—but what does all that stuff on

the screen mean? AmigaBASIC displays two windows. One is named

BASIC, the other is named LIST. (The LIST window is active, as

you can recognize by its easily readable title). The BASIC window

contains the following information:

Commodore Amiga BASIC

BASIC Version 1.2

Created 6 Oct 1986

Copyright (c) 1985, 1986

by Microsoft Corp.

220536 Bytes free in System

25000 Bytes free in BASIC

Don't worry if some of these items don't coincide exactly with what

you see on your monitor—it won't make any difference.

The version number might be entirely different. Software companies

Version like Microsoft Corp. always give their products version numbers.
number Software manufacturers keep correcting errors and improving features in

software even after it has been released, and thus the versions keep

getting updated. This version number is an easy way for you to find out

how old or new your product is. Because of the continuous upgrade

system, throughout the book we'll point out errors you might have in

your earlier AmigaBASIC version.

The first official release of a program is usually Version 1.00.

Sometimes you will see pre-releases with version numbers such as

0.99. This means that the programs aren't quite finished yet. When

small errors are corrected, Versions 1.01 and 1.02 follow. If more is

changed, Version 1.1 is released. To release Version 2.0, the developer

usually must make major strong improvements in the software.

During this upgrade process, however, more errors are made, so you

won't have to wait too long for Version 2.01—and so on. Some

programs have version numbers of 5.21. This doesn't necessarily mean

the original was error-ridden, but rather the program was quite

successful. Otherwise the software publisher wouldn't have kept putting

that much effort into improvements and expansions.

Your AmigaBASIC should be version number 1.2. Version 1.1 went

by the wayside, since there were problems adapting it to the Workbench

and Kickstart versions. You should not be using AmigaBASIC Version

1.0. If you have no other AmigaBASIC, buy the newest version of the

Extras diskette (Extras 1.2).

22

Abacus Introducing... AmigaBASIC

The next line reads Created 6 Oct 1986. This means the developers

Date of of AmigaBASIC typed the last line on 10/6/1986. (This date will
completion change in later versions, of course).

Copyright (c) 1985,198 6 by Microsoft Corp . Means

Copyright BASIC was written by Microsoft Corp. Microsoft has created many
notice successful versions of BASIC. The IBM PC, the Apple Macintosh and

almost all of the Commodore machines (from the old PET to the

Commodore 128) have BASIC implementations from Microsoft.

Because writing a BASIC interpreter is a lot of work, the company will

copyright it

The last two statements display the memory available in your Amiga.

Memory Memory is usually given in bytes (see the technical Glossary for the
available definition of a byte).

The first number indicates the number of free bytes in the Amiga— the

amount of memory that can be used by your BASIC files and other

programs. Depending on how many windows and diskettes you opened

before loading AmigaBASIC, and if there are any programs running in

the background, this value can be much lower than the 220536 bytes on

an Amiga 1000. A 256K memory expansion in our Amiga 1000, will

give us 512K RAM (Random Access Memory) total. The free memory

on the Amiga 500 or 2000 can be considerably more. If you loaded

AmigaBASIC without doing anything else beforehand, your free system

memory should be around 44000 bytes. You should also have about

44000 free bytes displayed in the second line. This number represents

the memory available to AmigaBASIC for files and programs.

Normally this is 25000 bytes, and 14000 without the expansion. You

might wonder why AmigaBASIC uses so little of the available system

memory. There are several answers to that question. First, through

multitasking other programs can run in the background (which uses

memory). Also, the color graphics the Amiga can produce require a lot

of memory. For example displaying all 4096 colors require as much as

128K per graphic.

23

Object animation AmigaBASIC Inside and Out

1.3
Experimenting with AmigaBASIC

LIST

Cursors

PRINT

NOTE:

Take a closer look at the LIST window, now. It's not completely

empty: in the upper left-hand corner you'll see an orange line. This line

is die BASIC cursor, which is presently in the LIST window.

Since we are more familiar with the BASIC window, let's see if we

can make it the active window.

Position the pointer somewhere in the BASIC window and click the

left mouse button once. The computer acknowledges this displaying an

OK on the screen. The window is now active. You can reactivate the

LIST window by clicking it, too. Up to now the Amiga is acting the

way it does in the Workbench— only one window can be open at a

time.

The first difference is in the number of cursors available. Here you have

two of them, the pointer and the BASIC cursor. The cursor shows

where the characters you type in at the keyboard will be written. This

cursor will be used often in BASIC.

We are finally ready to start some experiments with AmigaBASIC.

Type this line:

print "hello"

The line above should look exactly the same on the screen.

The Amiga 1000 has a <BACKSPACE> key, while the Amiga 500

has a "left arrow" (<—) key, which does the same thing as

<BACKSPACE>. Throughout this book, we'll refer to the

<BACKSPACE> key. While we're discussing keys, the Amiga 1000

has a <RETURN> key; the Amiga 500 use a key marked (J) which

does the same as the <RETURN> key. Throughout this book, we'll

refer to the <RETURN> key.

What is the purpose of the <RETURN> key? The Amiga doesn't know

that you are finished typing until you press that key. Pressing

<RETURN> tells the Amiga, "I'm done typing this line, you can

process it now." In case you made a typing error you can use the

<BACKSPACE> key to erase the characters at the left of the cursor.

Press the <RETURN> key once you've entered the line without errors.

24

Abacus EXPERIMENTING WITH AMIGABASIC

Error

messages

LET

Variables

The Amiga processes the line, then displays a friendly hello on the

screen, followed by the familiar OK. You told the Amiga to display

anything within quotation marks on the screen. It doesn't matter

whether you enter the command in upper or lower case. If you like, you

could even enter pRiNt without getting any different results. To tell

you it is done with all of its tasks, the Amiga follows up with OK.

It won't be to difficult to figure out what the next statement does:

print "how are you? " $

Throughout the rest of the book, the symbol H reminds us to press the

<RETURN> (J) key after the statement

Polite questions deserve polite answers, so enter:

Thank you, I'm fine, fl

You'll notice right away that it's not this easy to converse with the

computer. First you'll hear a beep, then see a requester with the

message undefined subprogram, followed by an OK gadget. As

you might have expected, this is an error message. The Amiga is

telling us that it cannot understand this sentence, which isn't

surprising. "Thank you, I'm fine" might be polite, but it certainly isn't

a BASIC command. To let the Amiga know that you acknowledge the

error message, you must click the OK gadget once. It will be easier to

leave the pointer in this area, since you may encounter a lot of errors in

the beginning.

Next you might wonder what the quotation marks are for. Well, try the

same command without them:

print hello 11

As a response your Amiga will display:

o

OK

Where did that 0 come from? Well, try the following lines.

let hello = 100 fl

print hello D

Now instead of a 0, you get 10 0 on the screen. Earlier we said that text

after PRINT statements must be within quotation marks. In this case,

hello is a numeric variable instead of text. These are the same

variables that always cause headaches in mathematics, mainly because

their values are unknown. In BASIC things aren't quite so difficult

25

Object animation AmigaBASIC Inside and Out

One of the things that BASIC can do is to execute mathematical

calculations. To be able to remember the values of such calculations

BASIC needs a place to save the results of these calculations. We use

variables for this purpose. The LET command assigns a value to

variables. Please enter the following.

print 7+5 51

The Amiga will print 12 as a result. If you now enter

let hello = 7+551

print hello5l

the Amiga will print 12 again. This time, though, the result of the

calculation was saved in the variable hello. If you don't believe this,

feel free to verify it:

print hello 51

Again the result is 12. We got a 0 at first because we asked the

computer to display the contents of a variable that wasn't defined yet.

Since all variables are 0 before they are defined, the Amiga responded

with the 0.

In case you are getting tired of typing, here's another tip. The LET

command isn't necessary. These two commands

let hello - 5^1

hello - 551

give the same result. Also, the PRINT command can be replaced by a

simple question mark (?).

print "hello" 51

aid

?"hello"!

do the same thing, and save some typing.

You can combine everything you've learned into this:

? "The sum of 5 and 7 is " 5+751

You will probably have a slight problem typing this in, since after

Front gadget typing the 5, the cursor reaches the LIST window. The cursor will
vanish behind this window. However, using the front and back gadgets

in the BASIC window will remedy this (these are the icons in the

upper right-hand corner of the BASIC window). As soon as you click

the front gadget, the BASIC window will become completely visible,

which gives you enough room to finish typing:

26

Abacus experimenting with AmigaBASIC

? "The sum of 5 and7 is M 5+7!

That looks pretty good, doesfi't it? You probably noticed that the

BASIC window looks rather cluttered. It can be cleaned up quite easily

with this command:

dsfl

Looks better, don't you think? The CLS comniahd clears the screen

CLS (CLear Screen) and positions the cursor in the upper left-hand corner.

This command is very useful if you are going to do a lot of work and

need an empty screen so that you have room for everything. If you want

to clear the screen just before something is printed, you can do this:

els :? "hello" fl

Here you've learned something else: You can write more than one

Multiple statement in a line if you separate them with a colon.
statements

If you think this is pretty dull stuff, we can do something more

interesting. As a taste of what's ahead we'll show you a program that

produces a few flying balls.

The first step is to name the program:

? "Flyingballs"fl

Now the title of our program is displayed on the screen, but what

happened to the line we wrote? This is where the LIST window

becomes important. Don't worry, you don't always have to retype a
line after you execute it

27

Object animation AmigaBASIC Inside and Out

1.4
First program:

only flying is better

The LIST window is partially hidden behind the BASIC window in

which we have been working. If you click the back gadget (the left

gadget of the two) the LIST window will come into the foreground

once more. Actually, the BASIC window is moved into the

background. Because of this you'll be able to see two windows at this

time. One is the LIST window we were looking for, the other is the

window for the Extras diskette. The cursor is useless to us for now.

Simply click the close gadget in the upper left-hand corner of the

Extras window.

If you're ready we can write our first program. It's actually quite easy.

Activate the LIST window by clicking the mouse within it. The

Entering the BASIC cursor disappears from the BASIC window and reappears in

program the list window.

VV TYPE IN THE FOLLOWING UNE

? "Flying balls" fl

The Amiga now responds differently than before. Instead of executing

the line, it changed the ? to PRINT. The cursor also moved down one

line and now waits for you to type more:

? "by John Doe" 5

You can type your own name if you like. Don't hesitate to take credit

for all your hard work (but don't call the family in until you have the
program up and running!) The Amiga again responds to the
<RETURN> key by changing the ? to PRINT and moving the cursor

to the next line.

The LIST window differs from the BASIC window in other aspects

as well. For instance, if you press one of the cursor control keys.
(These are the four keys with arrows on them, located to the lower right
of the <RETURN> key). The cursor will move in the direction

indicated by the arrow. If the cursor doesn't move and the Amiga emits
a beep, you've tried to move in a direction which the cursor cannot

move at the moment. Using the cursor keys and the <BACKSPACE>
key you can edit and correct errors within the windows. The window is
known as the screen editor, where you can move the cursor freely
within the whole window. The BASIC window, on the contrary, has a
line editor\ since corrections can only be made within a single line.

VV ENTER THE FOLLOWING LINES IN THE LIST WINDOW:

28

Abacus only flying is better

p$ = "Extras :BasicDeroos/Ball" fl

open p$ for input as 1 fl

object.shape l,input$(lof(1),1) fl

close 1 fl

Start: fl

for x=2 to 5 ^

object.shape x,l I

object.x x,320 fl

object.y x,60 fl

object.hit x,0,0 fl

object.ax x, ((x=2 or x«4)+.5)*6 5

object.ay x, ((x>3)+.5)*1.5 fl

next x fl

for x«2 to 5 1

object.on x : object.start x fl

next x fl

II

for x=l to 3500 : next x II

Bravo! You've just entered your first program in AmigaBASIC. Now

double check to make sure that everything is entered the way it is

printed here. The Amiga will change the BASIC command words into

uppercase when you press <RETURN> after each line. AmigaBASIC

will leave the words and letters that are not BASIC commands as they

were when you typed them in. If you discover an error you can use the

cursor keys and <BACKSPACE> to correct it

VV CLICK ON THE BASIC WINDOW AND ENTER:

run J

Hopefully you'll see four small balls that fly out from the middle of the

The program screen. It is possible that the Amiga will sound a protesting beep and
in action display the error requester in the upper part of the screen. In this case,

there's still an error in the program. Move the pointer into the OK

gadget and click the left mouse button once. Then compare your

program with ours carefully to check for any other typing errors.

That was pretty good, wasn't it?

You may not understand too much of what you typed. That's perfectly

alright — this was just supposed to give you a taste of what's ahead.

You can see how much you can accomplish with a little effort. The

individual commands and functions used will all be explained in

Chapter 2.

29

Object animation AmigaBASIC Inside and Out

Now select the save as item from the Project menu. To do this

Save As press the menu button (the right mouse button) and move the cursor

over the word Project. Pull the menu down with the pointer until

the cursor is on top of the word Save. Then release the button. A

selector will appear in the upper left-hand corner of the screen. Move

the pointer into the box below the Save program as : item and

click the left mouse button once. Then type: item

ball program 5

The box will disappear and the drive will spin for a short time. Wait
Saving your until the disk drive light is out again. You've now saved the new

programs program on the diskette for future experiments. This is very important:

unless you save a BASIC program, it will be lost entirely as soon as

you turn the Amiga off. Whether you turn the computer off

intentionally or your cat tears the plug out of the wall while pawing at

flies makes no difference. The only way you can store the program for

future use is to save it on a diskette.

M CLICK INTO THE BASIC WINDOW AND ENTERTHE FOLLOWING:

new fl

You'll see that the contents of both windows are erased, and the BASIC

cursor is again ready for anything that might come its way.

30

Abacus BASIC and LIST windows

1.5
Here and there:

BASIC and LIST windows

Where are

the line

numbers?

Starting the

video title

program

RUN

Our experiments in the BASIC window were in direct mode. This is

when the Amiga processes the commands immediately after you press

<RETURN>. In the LIST window the Amiga simply remembers the

entries until the program is started with the RUN command.

Maybe you've already seen some BASIC program listings. If so, you

probably noticed the line numbers preceding BASIC lines on other

computers. Why don't we have any line numbers in AmigaBASIC? The

answer is quite simple: Since the Amiga doesn't need them, there are

none.

Conventional computers require line numbers for various reasons. One

reason is that the computer uses line numbers to distinguish between

direct mode and program mode. Normally a command preceded by a line

number won't be executed right away (program mode). A command

without a line number in front of it will be executed immediately (direct

mode). The Amiga uses different windows to distinguish between the

two modes. This doesn't mean, however, that you're not allowed to use

line numbers. If you really want to use them, you can do so. We'll talk

about that later.

After our previous program it's about time to start something more

detailed. Let's work on the video title program. Please enter all the

following lines, since at the end of this section they will combine to

form a program. As you type these lines in, you'll be learning to use

BASIC.

Click in the LIST window and type this:

?"Video Title Program"^

?"by Hannes Ruegheimer"^

These are the first two lines of our program. By now you should be

familiar with everything these two lines do. They will tell the Amiga

to print the name of the program, and your name on the screen (don't

forget to substitute your name for Hannes).

If you'd like to see if the program works you use the RUN command.

However, you can't use this command in the LIST window, since the

Amiga would ignore it there. The RUN command must be entered in

direct mode. Click in the BASIC window and type:

runfl

31

Object animation AmigaBASIC Inside and Out

If you have entered everything correctly, the LIST window will

LIST disappear and the text will be printed in the BASIC window. Beneath

the text the Amiga will print OK. Therefore, the output of a BASIC

program is displayed in the BASIC window. There are several ways to

bring the listing back to the foreground. One of them is to type:

list!

The LIST window will return to the foreground.

For those who aren't all that fond of typing, the Amiga has some

Menus in shortcuts you can use. AmigaBASIC also has the pulldown menus
BASIC which you'll remember from the Workbench. If you press the right

mouse button, you'll see what's available. There are four menus:

Project. Edit Run Windows

The Project menu lets you manage your BASIC programs. It

contains items that erase, load and save programs. You already used one

of these items when you saved the ball program.

The Edit menu helps you in editing programs.

The Run menu has several items to start programs, to stop running

programs, and to affect program execution.

The Windows menu is used for the LIST and BASIC windows.

To start the program you could choose the Start item from the Run

menu. To select it, press the right mouse button and move the pointer

until the pointer is on top of the Start, then release the mouse

button.

As soon as you do this, the program will run, and the listing will

disappear again. Since you need to see the listing again, select the

Show List item from the Windows menu. As the name indicates,

this item will display the LIST window, whereas the Show Output

item will display the BASIC window.

32

Abacus BASIC and LIST windows

Keyboard
shortcuts

You may have noticed an A on a blue background followed by a letter
next to the items Start and Show List. The letters are R for

Start and L for Show List. These abbreviations are alternate
methods of running or listing a program:

Between the space bar and the right <ALT> key you'll find a key with
an A printed on it, either as a A outline (Amiga 1000) or and italicized

A (Amiga 500). This is one of the two Amiga keys which we'll
simply call the open Amiga key. The corresponding key on the left,
marked with either a solid red A (Amiga 1000) or a Commodore logo

(C=) (Amiga 500) we'll call the C= key. You can use the abbreviations
of Start and Show list by holding the <Amiga key> and pressing

<R> or <L>. You will continue to find such abbreviations for
important functions throughout this book. These are very convenient
when you are using the keyboard a great deal. The method you use
when you start a program or get the LIST window on the screen, is
you choice.

Menu

Edit menu:

Cut

Copy

Paste

Run menu:

Start

Stop

Step

Windows menu:

Show List

Key combination

<open Amiga><X>

<open AmigaxC>

<open AmigaxP>

<open AmigaxR>

<open Amigax.>

<open AmigaxT>

<open AmigaxL>

33

Object animation AmigaBASIC Inside and Out

1.6
BASIC commands, functions, and more

Now that you are familiar with both windows and the starting methods

of programs, it's time to add to our video title program once more.

Type the following lines in the LIST window:

?"Select:"fl

?"1 Enter Text"fl

?"2 Read Object"^

?"3 Move Objects

?"4 Define Color"51

?"5 Show Titled

These six new program lines, which you should understand,

demonstrates that BASIC isn't nearly as difficult as you might have

thought, and that the PRINT command is used very frequently. Here we

have used it to create a menu. You'll be able to enter text or a title.

Another item is to read objects, and another to give that object specific

movement. The next selection allows you to add some color, and the

last selection displays the whole thing so that you can see the title.

How does all this look on the screen? Simply type RUN to display the

Test running result. One more tip before you start the program: if you leave the
the program LIST window active (if you don't click in the BASIC window) and

then chose Start from the Run menu or use <Amiga key> and <R>,

the listing of the program will appear on the screen immediately after

the program is run. If you don't want this to happen, click in the

BASIC window beforehand.

RUN the program. It looks all right, except it's kind of jammed

Making together. That won't be difficult to change. Reactivate the LIST

space window. Now move the cursor past the quotation mark behind your

name and press <RETURN>. This creates a blank line. (This is how

you make yourself more room for programming).

/■

At this location type:

This is simply a PRINT statement without a <RETURN> or anything

else. If you press the cursor key with the arrow pointing down, the ?

will be changed to PRINT.

When you RUN the program again, you'll see that there is a blank line

between your name and the word Select:. Therefore, a PRINT

command without anything following produces a blank line.

34

Abacus BASIC COMMANDS, FUNCTIONS AND MORE

You can also get the opposite effect. Move the BASIC cursor in the

LIST window behind the word video title program and type a

semicolon (;) after the quotation mark. The first lines will then look

like this:

PRINT "video title program";fl

PRINT "by John Doe"f

RUN the program again. If you look at the first line you'll notice that

Saving your name was displayed immediately after the program title. A
space semicolon after a quotation mark in a PRINT statement will display the

next PRINT statement immediately at the end of the first There still is

a slight problem here. Our addition made program and by into one

word, since we never told the Amiga to print a space in between. Enter

a space before the quotation mark at the end of the first line in the
LIST window. To do this, move the cursor between the m of

"program" and the quotation mark and press the space bar. Whatever

you enter in the LIST window will be inserted at the current cursor

position.

We now have the menu selections on the screen. Next we need to

instruct the Amiga so that it recognizes which selection we choose.

Type the following in the LIST window:

n
? "Enter number:";fl

input all

The only new command is INPUT. To see what this new command

INPUT does, RUN the program again. You'll notice that the cursor is behind

the text "Enter number: ?". This looks right, but where did the

question mark come from? The question mark tells you that the Amiga

is waiting for you to enter something. This is the exact function of

INPUT: you are asked for input. Enter a number and press

<RETURN>. If this doesn't work and the screen flashes briefly, you

must activate the BASIC window (click in the BASIC window).

Whenever input is asked for, the BASIC window has to be active. The

number that you typed is saved in a variable named a.

When the program is finished running an OK appears in the window.

INPUT is a command that allows you to enter data during a program,

thus letting you "speak" to the Amiga. However, what does the Amiga

do with this data? Type the following in the BASIC window (not in

the LIST window):

? a fl

The Amiga answers by displaying the number you entered and saved in

variable a.

35

Object animation AmigaBASIC Inside and Out

Guru

meditations

IF...THEN

OR

BEEP

If you are a cooperative person, youll have entered a number between 1

and 5. Unfortunately, there are people who love to see computer

programs get stuck or crash. When a program crashes, the Amiga gets

"confused", for one of any number of reasons. It might be a power drop,

or something in the program code, or incorrect input. When a crash

occurs, the Amiga will display a big red and black box at the top of

your screen that says Guru meditation as a signal. We've given

the Amiga's system crash the nickname "guru". (If we say, "now it's

doing the guru", don't expect to see a friendly Indian dressed in red

driving by in a Rolls Royce). Don't worry, though, not everyone can

cause an Amiga to crash by simply entering a number other than 1

through 5, such as 6; this will just result in an error message. This

isn't as bad as a guru. Nevertheless, it is always wise to take user error

into account when writing programs. So, we have to find out if a

number smaller than 1 or larger than 5 has been entered. If this is the

case, we'll simply restart the program.

In BASIC that looks like this:

if a<l or a>5 then run fl

Add this line to the end of your program in the LIST window.

The BASIC command IF...THEN allows the computer to make

decisions or "branch". You can put any condition between IF and

THEN. The action taken by the computer once the condition is met

following the THEN. Thus:

IF (condition is met) THEN (do something)

In our example the condition is (a<l OR a>5). The OR means that

only one inequality has to be true for the condition to be met. After all,

there are no real numbers that are smaller than 1 and larger than 5 at the

same time. The RUN after THEN reruns the program if the condition is

true. You already know this command from the BASIC window. The

new fact is that it can be used within a program. From now on you can

enter any number you like, such as 0, 6, or 10. The Amiga will keep

on asking for input until you enter one of the correct numbers, no

matter how many you enter. Unlike some programmers, a computer is

inflexible. It will be satisfied only when the numbers are right.

Maybe you'd like to wake up a sleeping user who just entered the

wrong number and inform him of his error. Here you can use the tone

the Amiga uses to alert you to an error. To do this, enter the following

after the THEN.

beep: 51

The listing will then look like this:

IF a<l OR a>5 THEN BEEP : RIOT

36

Abacus BASIC COMMANDS, FUNCTIONS AND MORE

GOTO

Label and

variable

hints

Now it'll beep if the input is not correct, and the screen will blink; this

blink is built into the BEEP function. (You'll remember that the colon

after the BEEP separates different commands in a single line).

For now everything is still working fine. However, you don't want to

restart a large program just because of a small error.

We have the option of sending the program to a different point than its

beginning. The GOTO command lets the program jump to any other

program line. First of all, though, we need a way to tell the GOTO

where to jump. In conventional BASICs you simply specify a line

number. However, as we said before, the Amiga doesn't need line

numbers. Instead it uses labels. This means that the place to which you

want to jump has a name, or label. Get the LIST window on the

screen and move the cursor to the beginning of the INPUT command.

Create a new line by pressing <RETURN> and then enter:

query:5

The colon after the word is very important. It marks this word as a

label. You could use hello :, la . de . da :, hum. de . dum: or

program .start:, but none of these names would give you a clue

as to what that part of the program does. You'll find it easiest to use

names that indicate the part's function, so that everything makes sense

when you get done.

Now we can change the RUN in the last line to:

goto queryfl

This is also very easy. Position the cursor after RUN, press the

<BACKSPACE> key three times, and enter the new text. You might

run into the right border of the LIST window, in which case the

whole window will scroll to the right. When you move the cursor back,

the window moves also. The easiest solution is to enlarge the LIST

window, with the gadget in its lower right corner. This is done in the

same way as the Workbench windows.

Another thing about labels; letters and numbers are allowed, but spaces

can't be used. Punctuation can be a little tricky and sometimes causes

errors (commas or colons can make errors), and should be avoided.

Labels can be up to 40 characters long; the Amiga will ignore any

characters beyond that. This is also true of variables. So a variable

doesn't have to be a; it could be Amiga as well. One comment about

variables in this book: variable names will always be printed in courier

typeface (for instance, the variable initialvalue...) to identify

them as variables. It doesn't matter whether you enter the label or

variable in upper or lowercase, either: Hello, hello and hELLO will

all result in the same label or variable. AmigaBASIC will make sure

that everything in the LIST window is written the same way

throughout the program.

37

Object animation AmigaBASIC Inside and Out

Try the following experiment and enter this in the last line:

goto QuerySI

This time we used a capital as the first letter of the label. Press

<RETURN> and keep your eye on the label two lines above (here

query is still in lowercase.) AmigaBASIC adopts the last name

entered for all other identical names in the program. Above, query has

changed to Query as well.

If you like, you could add more labels to mark separate segments of the

program. AmigaBASIC strongly supports this method of structuring

your program. For example, mark the start of your program with a

label called Begin.

Our program looks like this so far:

Begin:5

PRINT "Video Title program"; SI

PRINT "by John Doe" SI

PRINTS

1

Selects

PRINT "Select:"SI

PRINT "1 Enter Text "SI

PRINT "2 Read Object"5

PRINT "3 Move Object"SI

PRINT "4 Define Color" SI

PRINT "5 Show Title"SI

PRINTS

PRINTS

PRINT "Enter number:";SI

SI

Query: SI

INPUT aSI

IF a<l OR a>5 THEN BEEP : GOTO QuerySI

A little earlier we were talking about user errors, one of which you

User errors might have already made. Typing a letter instead of a number. In that
case, you'll have noticed that the Amiga displays ?Redo from

Start on the screen. This simply means to type your input again.

We've already dealt with variables. Do you remember Hello or a?

We've just assigned numbers to these variables. This makes sense—

your math teacher would never have said something like, "the value of

y is Hello." For this reason, variables like a or Hello cannot be

assigned words or single letters.

38

Abacus BASIC commands, functions and more

To store characters or words, we must use a string variable. You could

String think of these variables as strings of characters, after the name. String
variables variables are indicated by a dollar sign following the variable name ($).

You can assign the variables a$orHello$ any combination of

characters you wish. To assign a string to a variable within a program,

you must use quotation marks. If we change the last lines of the
Query section along the following lines, even letters won't cause

errors.

INPUT

IF a$<"l" OR a$>"5fl THEN BEEP : GOTO Queryfl

Why are we being so cautious about user errors? Because we can't

anticipate how a user may respond to a prompt for input. The program

must be able to handle most any user response.

39

Object animation AmigaBASIC Inside and Out

1.7
Entering text in your video title program

Here's a potential problem. If the user continuously types an erroneous

responses the screen will soon fill up with error messages and the

original prompt will soon disappear. To avoid this problem we'll spend

some more time on the menu routine.

There's another thing you should know about the LIST window. We

have been using the cursor control keys to move the BASIC cursor, but

the mouse can also be used. You may have noticed that whenever you

opened the LIST window, the cursor appeared where you clicked the

mouse. You can move the mouse around the window a little faster than

the cursor control keys.

If you accidentally press the left mouse key and move the mouse,

Highlighting something completely different happens. An orange bar stretches from
the line the BASIC cursor is on to the actual position of the pointer.

Congratulations, you've just discovered another function of the screen

editor—the orange bar is called a highlight. Type some text at any

position in the program and move the pointer to that spot. Position the

mouse pointer at the start of the new text, press and hold the left mouse

key, and move the pointer to the end of the text. Be careful to stay

within the same line so extra lines aren't included in the highlighting.

When the text is completely within the orange highlight, release the

right mouse button.

Using

highlighting

Cut and

Paste

Now type more text. The old text will disappear and be replaced by the

text you are entering. Now highlight this new text and press the

<BACKSPACE> key. The entire text will disappear from the screen.

This is one way you can erase entire sections of a BASIC program.

However, be careful when you use this function. It is quite easy to erase

text, but it is time-consuming to retype it again. Always be certain that

only the text you want erased is within the orange field. Keep in mind

that once you erase text this way, it cannot be retrieved.

There are many other things we can do by highlighting a portion of

text. Now activate the Cut item from the Edit pulldown menu. If

you have only one drive, the Amiga asks you to take out the Extras

diskette and insert the Workbench diskette. To perform this item of the

Edit menu, AmigaBASIC needs a program that is located on the

Workbench diskette. (This item is called Clipboard device).

40

Abacus text input

Once this program is loaded you can re-insert the Extras diskette in the

drive, since the routine is now in the Amiga's memory. The Amiga can

detect which diskette is in the drive. Once the Cut function has been

performed you will see that part of your program has disappeared. Don't
worry—the text is in a special memory location called the clipboard.

Without changing the position of the BASIC cursor, select Paste

from the Edit menu, and the text will reappear. The contents of the

clipboard can be inserted at any position.

The Copy function of this menu works almost the same as Cut,

Copy except that the highlighted text won't disappear from the screen. This is

very helpful when you're duplicating parts of a program.

VV USE THESE METHODS TO EDIT AND EXPAND THE PROGRAM SO

THAT IT LOOKS LIKE THIS:

Begin:fl

PRINT "Video Title program";5

PRINT "by John Doefl

Select:5

PRINT "Select: "U

PRINT " 1 Enter Text"5

PRINT "2 Read Object" 5

PRINT "3 Move Object"^

PRINT "4 Define Color" 11

PRINT "5 ShowTitle"fl

PRINTS

H
Query:fl

LOCATE 10,15

PRINT "Enter number:"; fl

INPUT a$fl

IF a$<"l" or a$>"5" THEN BEEP : GOTO Query!

IF a$="l" THEN EnterTextfl

PRINT "Choice "a$" does not exist yet."!

GOTO Query!

Since we're still writing the program, we should note which menu

selections aren't completed. We will write the EnterText: routine
next. The other entries (2 through 5) will result in the message,

"Choice a$ does not exist yet." The variable a$ contains the

choice number. Here you can also see how text and variables can be
mixed in PRINT statements by using quotation marks.

41

Object animation AmigaBASIC Inside and Out

LOCATE

NOTE:

VAL

The LOCATE 10/1 command is also new. Normally, PRINT

statement output is displayed on the next screen line. However,

LOCATE allows you to specify an exact screen position at which to

display text (in our case, 10 lines down in the first column). This way

we can easily display the text "your choice:" at the same screen

position even if an incorrect response is made. Try typing a LOCATE

command in the direct mode (in the BASIC window). For example:

Iocate5f 20 : ? "hello"5

Now back to our video title program. If you run the program and

choose any item except 1, you see exactly what happens. The program

looks more polished, and it's foolproof as well. Owly an entry of <1>

will cause an error message. This is expected, since die EnterText:

label to which the GOTO is supposed to jump doesn't exist yet. That

would be like sending someone to house number 15 on a street that has

house numbers of only 1 through 4. If this is the first error message

you've encountered in a BASIC program, note that AmigaBASIC will

show the LIST window, and will highlight the line containing the

error. By clicking the mouse in the OK box after the error message has

occurred, you tell the Amiga that you have recognized the error.

There is only one way to correct this error: Write the missing

EnterText: routine. Add it to the existing program in the LIST

window.

You will notice that there is a paragraph mark (51) at the end of each

line of program text. There are times when a program line simply

wouldn't fit on one text line in this book. However, the line must be

typed in as one program line, as in the FIELD command we'll see

later. Press <RETURN> when you encounter these paragraph markers.

EnterText:ft

CLS : INPUT "How many lines of text (1-15) *f: NoofLines$fl

IF NoofLines$«" " THEN CLS : GOTO EnterText5

NoofLines«VAL (NoofLines$) f

IF NoofLines<l 0RNoofLines>15 THENBEEP : GOTO EnterTextfl

DIMtext$(NoofLines)I

FOR x=l TO NoofLines5

LINE INPUT "Text:";text$(x) fl

NEXT x : CLS : GOTO Beginfl

Here are several new commands. Before we examine them, here's one

more tip: you don't have to enter all the following lines. Their only

purpose is to demonstrate the functions of the commands, and they are

not part of the video title program.

You already know the difference between numerical variables, such as

a, and string variables like a$. Sometimes you need to change from

one variable type to another. The VAL command allows you to change

string variables into numerical variables. It is used this way:

42

Abacus
text input

DIM

Arrays

Multi
dimensional

arrays

FOR...NEXT

This introduces us to the third type of variable, the array. Arrays are
commonly used when many different pieces of data are stored under one
name You have to tell BASIC beforehand how many elements the
array is supposed to have, i.e. dimension the array. This is what the
DIM statement does.

Here's a mathematical example for arrays. You have dimensioned an
array with DIM t $ (10). This means that there can be 11 elements m
array t$, namely t$(0) , t$(l), t$ (2), and so on up to
t $ (10). Each individual element can contain its own string ot
characters. Note however, that the array t $ (z) is in no way related to

the variable t$.

Arrays can also be multi-dimensional, such as DIM a $ (2,2). This
array would result in the following nine elements:

a$(0,0) a$(0,l) a$(0,2)lt

a$(l,0) a$(l,l) a$ (1,2)11

a$<2,0) a$(2,l) a$(2,2)fl

Here again, each element represents an individual string of characters

that can be defined independently of one another.

A three-dimensional array can be visualized as a cube-shaped grid, with
individual strings at the intersecting points. The Amiga will support
arrays up to 255 dimensions. We'll deal with arrays more at a later

time.

This important command will increase the value of a variable from a
starting value to an end value step by step. The following example will

print all numbers from 1 to 50:

for x=l to 50SI

?xfl

next x«fl

In the first pass the value of x equals 1. When the program reaches the
NEXT command it branches back to the corresponding FOR statement.

The value of x is incremented by 1, making x equal to 2 in the second
pass, and so on. Once the end value of 50 is reached, the program will
go past the NEXT command instead of looping to the FOR again. Since
there's nothing left to do in this example, it will stop after completing

the loop.

43

Object animation AmigaBASIC Inside and Out

LINE

INPUT

How the
input

routine

works

A normal INPUT a$ has several restrictions— For example, you can't
use quotation marks or commas. On the otherhand, the LINE INPUT

command allows you to enter any string without restrictions.

Everything you enter until you press <RETURN> is included in the
string.

Now we are familiar with the individual components of the
EnterText: routine.

We use longer variable names in programs than z or t$. It's better to

use names that give us a general idea of a variable's function (for

example, text $, NoofLines). Using longer names doesn't change

any characteristics of the variable types and functions that were just
explained.

How does this part of the program function? First the program asks

how many lines of text will be entered. The minimum number is 1, the

maximum 15. Once this value is determined, the string array

text$ (x) will be dimensioned to this value. The same number of

LINE INPUT commands are used to determine the text in the string

array text$ (x). From there the text can be recalled at any time.

When all this is finished the screen is cleared and the program returns to

the menu.

This routine lets you enter text that will be displayed in front of the

moving object. To make a video title you would enter the title of a

movie— For instance, Star Wars in the first line and Part I in

the second line.

44

Abacus saving your programs

1.8
Safety first:

saving your programs

Our video tide program has already grown quite long and is only
temporary. If you accidentally switched off the power to your Amiga,
the program would be irretrievably lost, and all your work would be
down the drain. This is why it is advisable to save a program frequently
during its development. When a routine or program is completed, you

must have a means to store it permanently.

AmigaBASIC has two items in the Project pulldown menu called
Save and Save and Save As. Both will record the program presently in
Save As memory on a diskette. How do these commands differ from each other?

Select the Save As item. (If you have only one disk drive and have
taken the Extras diskette out of the drive, you will be asked to insert the
Extras diskette in the drive). After that you will see a requester in the
upper corner of the screen which says Save program as:. Below

this is an empty box. Move the pointer into the empty box and click
once. The box is now active, and a text cursor appears.

Programs saved to diskette need a name by which the Amiga can locate
them at a later time. We could call our program video title. Type

this name on the keyboard—it will appear in the box. If you make a
typing error in the process, two keys allow you to correct your mistake:
the <BACKSPACE> key erases the character to the left of the cursor,

while the key erases the character under the cursor. Once you
have entered the name, click the OK gadget. The requester will disappear

from the screen and the Amiga will start to save the program onto the

diskette.

The Save item is quite simple. If a program already has a name, all
you have to do is choose Save. You would use Save As if you
wanted to change the name of the program. When you save a program

under a new name, the old file is not erased.

AmigaBASIC gives you an alternative to the pulldown menu for saving
a program. The SAVE command can be entered directly into the

BASIC window:

has the same effect as the pulldown item of the same name. The

command:

save "name1'

has the same effect as the pulldown menu item Save As. You type the

name of the program within quotation marks.

45

Object animation AmigaBASIC Inside and Out

Now our program is on the diskette. If you were to turn the Amiga off
at this point, you could re-load your program from the diskette any time
you wanted to. Of course, who would want to turn it off now that
things are getting exciting?

46

Abacus ERASING BASIC PROGRAMS

1.9
A clean slate:

erasing BASIC programs with NEW

Now that your program is safely on diskette, you can safely clear it

from the Amiga's internal memory. The command that does this is

called NEW. You can enter it directly in the BASIC window or select it

from the Project menu. The Amiga clears both windows and

places the text cursor into the window that was active last. The program

has been completely erased; it is not in the internal memory of the

Amiga anymore. (The term internal memory refers to the memory chips

within the Amiga, while external memory refers to floppy diskettes,

hard drives, etc.)

AmigaBASIC is now ready for new commands. You might be

NEW thinking, "Sure, but what if you guys forgot to tell me to save the

program and then asked me to enter NEW?" As you might suspect,

AmigaBASIC has a solution to this problem. Let's write a short

BASIC program in the LIST window to demonstrate:

FORx=ltol00fl

PRINT xfl

NEXTxfl

The explanations in the last chapter should make the effect of this

t/n-NEWiflg program clear. It displays numbers from 1 to 100 on the screen. This

programs isn't very exciting, but it will do for our demonstration. If you like,
RUN the program. Now erase it using NEW from either the BASIC

window or the Project menu. Before clearing memory, the Amiga

prints a requester on the screen which says Current program is

not saved. Do you want to save it before proceeding?

There are three gadgets that you can click for an answer.

YES A requester asking you for the program name will appear

NO The NEW command is executed

CANCEL The requester and returns you to the program

This applies to old programs that have been edited as well as brand new

programs. AmigaBASIC will know if you have made any changes in

the program. If you try to erase it then, the Amiga will display the

same requester as above. You can erase this short program now; it has

served its purpose.

47

Object animation AmigaBASIC Inside and Out

. . The NEW command isn't the only method of erasing a BASIC program.
Exiting it is possible to exit AmigaBASIC completely. There are several
BASIC different ways to do this:

Enter the command SYSTEM in direct mode, which exits AmigaBASIC

and returns you to the Workbench. Or you can choose the Quit item

from the Project menu. Both methods accomplish the same thing.

A third way to quit AmigaBASIC is to close the BASIC window and

the LIST window by clicking their close gadgets. This also returns

you to the Workbench screen. In every case, AmigaBASIC will ask you

if you would like to save your program if it isn't already saved on
diskette.

VV NOW EXIT AMIGABASIC USING ONE OF THESE THREE METHODS.

48

Abacus
PROGRAM DRAWERS

Intermission 1

Clean up with:

program drawers

About

drawers

CAUTION:

You will find intermissions like this one throughout this book.
Intermissions describe important information that can't really be
classified with anything else. In this intermission we will create a
drawer for holding our BASIC programs. This doesn't really have much
to do with AmigaBASIC graphics, but you need to know this before we

can continue.

The Workbench will seem pretty empty compared to the recent

commotion on the BASIC screen. The only thing you might see is the
window of the Extras diskette. If this is the case, close this window by
clicking the close gadget. Now open the Extras window again. You
might be wondering why we're having you close the window and open
the window. New icons are displayed only once a window is reopened.
When you open it the second time you will see nine icons: the seven

original ones (Tools, FD1.2, ReadMe, AmigaBASIC, PCUtil,
Trashcan and BasicDemos) as well as two new ones. One of these
is the ball program, the other is an icon with the name you gave your

video title program. To understand these icons fully, you might need to
enlarge the Extras window. You will see that the icons look like
pieces of tractor-feed computer paper. The orange symbols on the paper
are similar to those on the AmigaBASIC icon. These are used to

identify BASIC program icons.

If you have looked at the BasicDemos drawer beforehand, you have

already seen many of these icons. We will deal more with the

BasicDemos drawer in the next chapter.

A drawer's purpose is to help you organize your data storage. However,

right now things look rather disorderly. Two programs are just floating
around the otherwise organized surface. We want to make a separate

drawer for the programs you will write during the course of this book.

We assume that you are working with a backup copy of your Extras

diskette. You should n£l save any files onto the original Extras

diskette. See the manual that came with your Amiga to find out how to
make backup copies. To protect the original Extras diskette from being
accidentally overwritten, slide the write-protect tab (move) to the
locked position. (The small sliding tab at the corner of the backside of a
diskette). The tab can have two positions. When the tab covers the little
square hole, your Amiga can write on that diskette. When the tab

exposes the square hole, the diskette is write-protected.

49

Object animation AmigaBASIC Inside and Out

Making a

drawer

Filling the

drawer

NOWOPENTHEWORKBENCH.

If you have a single drive system eject the Extras diskette and insert the
Workbench diskette. However, be sure to leave the Extras window

open! You'll find a drawer in the window called Empty. That drawer is
there specifically to be copied.

V ACTIVATE THE EMPTY DRAWER, DRAG IT OVER TO THE EXTRAS
WINDOWAND RELEASETHE LEFT MOUSE BUTTON.

The drawer will be copied to the Extras diskette. The Amiga will do

this automatically and you won't have to do anything else. If you have
a single drive system, the* Amiga will ask you to switch diskettes a

total of three times. It will tell you which diskette to enter each time.
Remember, do not eject the diskette until the light on the disk drive has

gone out! This is true even if the message on the screen says to insert

the next diskette while the drive light is on!

V WHEN THE COPYING IS FINISHED, CLOSE THE WORKBENCH
WINDOW. ACTIVATE THE NEW DRAWER AND CHOOSE THE

RENAME ITEM FROM THE WORKBENCH MENU.

A requester appears in the middle of the screen saying Empty with a

text cursor. Before you can type the new name you must click into this

requester. Delete the old name using the key and type in a name

(for example, my programs). Press <RETURN>.

We can put our ball program and video title program icons into this
new drawer.

V MOVE THE BALL PROGRAM ICONS SO IT IS ON TOP OF THE
DRAWER AND RELEASE THE LEFT MOUSE BUTTON.

This is how you put icons into drawers, the Trashcan, or other

diskettes. The Amiga takes care of everything else. When the pointer

returns to its normal shape you can repeat the process with the second
icon.

50

Abacus program drawers

Let's get organized with Clean Up before we go on to the next

Clean Up chapter. Clean Up neatly lines up the icons. There's more to it than

that, though. You have to let the Amiga know that the order you have

created is the final form you want.

Activate all icons in the Extras window. Here's a trick you can use:

Hold the <SHDFT> key as you activate one icon after the other. As

you'll see, all the icons stay active. Now we need to tell the Amiga that

all active icons are in this order when the window is opened. You use

the Snapshot item from the Special menu. This command

directs the Amiga to "snap a picture" of the present order and record it

on the diskette for later reference. The work area will remain the same

until a new snapshot is taken or until more programs are added.

51

Object animation AmigaBASIC Inside and Out

1.10
Something's moving out there:

bobs and sprites

You've probably been curious enough to take a look at the

BasicDemos drawer by now. This drawer contains a collection of

interesting demonstration programs, all written in AmigaBASIC.

There's quite a bit to see and hear in these programs. Go ahead and

experiment with these programs. But don't be worried if you don't

understand how these programs work and what they do. Your

AmigaBASIC manual explains them in detail.

At the moment we're interested in only one program. Open the

Ob j Edit BasicDemos drawer. This window takes longer to open, since it

contains a lot of different programs. Find the program called Ob j Edit.

Once you have found it, start the program by double-clicking it with

the left mouse button.

The name Ob j Edit is short for Object Editor. We know what an

editor is, from the Edit pulldown menu. But what are objects? And

why do we want to edit them? Keep reading.

Loading the program Ob jEdit will take a while since the Amiga has

to load BASIC as well. Any time you click a BASIC program on the

Workbench, the Amiga will load BASIC automatically. This simplifies

the loading process. You can use the programs even if you don't know

anything about AmigaBASIC.

Your Amiga then starts the Ob j Edit program. You should see this

displayed on the screen:

Enter 1 if you want to edit sprites^

Enter 0 if you want to edit bobsfl

The cursor should be waiting for your entry. The Amiga has objects

Objects that can move independently on the background. You have been dealing
with an object all along: the pointer. The pointer can move anywhere

on the screen. Whether it's the Workbench window, an

AmigaBASIC window or anything else in the background, you can

move the pointer freely to any screen position. Objects that move

independently of the background are invaluable for computer animation.

52

Abacus bobs and sprites

What do we mean by "independent of the background?" Older computers

Early didn't process movable objects. If movement was to be simulated on
computer the screen, an object would have to be drawn in one spot, erased, drawn

animation in another spot, erased, and so on. This process was then repeated

rapidly to give die illusion of movement.

This method had one problem: The background, which ideally should

remain constant, is changed as well. The spot where the object was

erased would remain blank. Imagine if this happened with the pointer.

Everytime you would move it, the cursor would erase everything in its

path. Soon nothing would be visible on the screen. Thus, early

animation was always quite simple.

Remember the old video games? One of the first was PONG, a table

tennis game. The only things you could see were a white square, a

center line and two narrow rectangles which could be moved by the

players using paddles. When the little square came on your side of the

center line, you would try to hit it back to the other side. The game was

quite successful, and its inventor, Nolan Bushnell, went on to found

another successful venture known as Atari Corporation.

PONG had no elaborate background because no affordable computer at

The need for the time was fast enough. For a long time, speed was the only thing
speed that made animation with a background possible. Instead of simply

erasing objects, the background would be.memorized and redrawn once

the object had moved past it. This process, however, requires a lot of

computation, and thus more time. To make the animation look "real",

the computers had to be very fast. Finally computer engineers thought

it would be really neat to construct a graphic chip to handle this

process. These chips were then developed and integrated into the home

computers of that time. This made it possible to move smaller objects

around the screen without having to worry about the background.

Different computers have different names for these objects. The most

widely known are player missile graphics (Atari 400 and 800

computers) and sprites (Commodore 64). The Amiga also has graphic

objects, but it has two different kinds: sprites, which function similarly

to the Commodore 64's sprites; and bobs (blitter object blocks). Well

discuss the advantages and disadvantages of each later on.

This brings us back to the ObjEdit program. It allows you to define

movable objects, both bobs and sprites. The one thing the program

needs to know from you right now is whether you would like to draw a

bob or a sprite. Well start with bobs.

53

Object animation AmigaBASIC Inside and Out

\ \ \ A star is Born:

the object editor

Let's add some motion to our video title program. We want to make an

object star, for example, fly across the title screen. We'll use a bob for

this purpose.

Enter a 0 and press <RETURN>. A window, a choice of four colors and

the text Bob size X: 31 Y: 31 Pen is displayed on the screen. If the

set of lines in the upper left-hand corner doesn't look like a window to

you, move the pointer to the lower right-hand corner (the sizing gadget)

and hold the left button down. When you move the mouse you'll see an

orange outline of the window moving with the pointer. When you

release the button, the resized window is displayed. Our bob will be

defined within this window. If you experiment a little further you'll find

there is a limitation to the window's size. If you move either

horizontally or vertically beyond these limitations, the orange outline

will disappear. Also, if you keep an eye on the values of X: and Y: in

the bottom line, you'll find that these numbers change as you change

the window's size. These numbers specify the window's dimensions

horizontally (X:) and vertically (Y:).

Now press the mouse's menu key. At the top of the screen you'll see

the following menu titles:

File Tools Enlarge

Select the Tools menu. Here are each of the tools listed individually:

The tool you'll find active after starting the program is the Pen. The

Pen presently active mode is specified at the end of the line that displays the

window size. You can draw freehand in Pen mode. The pen works like

drawing programs such as Graphicraft™ or DeluxePaint™. If you move

the mouse around the window while pressing the left button, the tip of

the pointer draws a line. With a little time and patience, you can draw

intricate objects.

Since it's difficult to draw a straight line in pen mode, this item can be

Line used to draw a line from one point to another. Click the mouse once at

the line's starting point, hold down the button, and move the line to its

endpoint

This menu item draws circles and ellipses. You specify the four corners

Ova 1 of a rectangle with the mouse. Once you release the left mouse button,

the circle/ellipse will be drawn within the rectangle.

This menu item works the same as the circle. However, it draws a

Rectang1 e rectangle when the mouse key is released.

54

Abacus THE OBJECT EDITOR

Erase

Paint

Changing

colors

Drawing the
star

Since people do make mistakes, this function lets you erase graphics in

the window by simply clicking the left mouse button.

With this item you can fill outlined areas with color. Simply move the

pointer into the area and click once. Note, however, that you can easily

ruin drawings with this function. The Paint command recognizes

only lines that were drawn in the presently active color as borders (we'll

talk about color selection in a minute). If there is the slightest break in

the border lines, even one dot, the color will flow out of the area into

the rest of the screen. When you work with Paint, you should save

your project regularly.

Below the window you'll see four colored boxes (blue, white, black and

orange). If you click one of these boxes you can change the active

color. The word Color:is displayed in the presently active color. If

you select blue as the active color, the word Color: disappears from

the blue box, since you can't read blue on blue. Select white as the

active color.

If you did some experimenting while we explored the Tool menu,

you should now erase the drawing. To do this select New from the

File menu. The following message box is displayed on the screen:

Current file is not saved

Do you want to save it?

Press Y if you want to save it

Press N if you don • t want to save it

Press C if you want to cancel command

If this seems familiar, think back to what BASIC does when you try to

NEW a program that hasn't been saved. The only difference is that here

you have to use the keyboard for input instead of the mouse. Press <N>

to tell the computer that you don't want to save anything. After that

you're presented with the question bobs or sprites? We'll stay

with bobs, so type <0> <RETURN>. (If you haven't drawn anything

yet, you won't need to do all this).

Now enlarge the window so that X reads approximately 140 and Y

approximately 70. These values don't have to be exact This is the size

of the window in which we want to draw our star.

Select the Line item from the Tool menu. Now we'll draw the

outline of our star. Since we will want to color it, make sure there are

no gaps in the lines. The easiest way to do this is not to move the

mouse between lines. The picture below shows roughly how it should

look:

55

Object animation AmigaBASIC Inside and Out

Figure 3:

The object

editor

If you're satisfied with the result you should save it, since you'll paint

it next. You should always be a little cautious using these drawing

programs. Select Save As from the File menu. Youll see Enter

Filename > on the screen. Type the name Star. Press

<RETURN>. The drive light will light; the bob is being saved. During

this time, don't do anything with the object editor. You could use the

Amiga when the disk drive is being accessed, but it's safer to leave it

alone during diskette operations.

Take one more look at your star. Are there any gaps in the lines? If

Coloring it there are, "seal" them up with the Pen function. Now activate the
in Paint item in the Tool menu. At the end of the last line on the

screen you'll see the word Paint. Move the pointer to the middle of

the star and click once. A white star should appear on the screen. If the

whole window turned white the lines weren't connected completely. If

there was a "leak", select Open from the File menu to reload your

star. Then you can search for the opening(s) and paint the star again

after you correct the problem.

If you accidentally type the wrong name for the Open requester, the

object editor stops and displays an error message. Click the OK gadget

and enter RUN in the BASIC window. Then the object editor restarts.

If the painting was successful, save the star with the Save item from

the File menu. Since the file has already been named, this command

automatically saves it under the same name.

56

Abacus THE OBJECT EDITOR

This completes our star. If you would like to play some more with the

Enlarging object editor there's one more function we should tell you about. The
bobs Enlarge menu contains a 4*4 item that lets you enlarge bobs, but

only if Y is less than 31 and X is less than 100. Larger bobs cause the

Amiga to give a response which you'll have to acknowledge by

pressing a key. Keep this in mind, otherwise the object editor will

sometimes behave strangely. You can use only the Pen in Enlarge

mode. The 1*1 item turns off this mode.

To exit the object editor, click the close gadget in the BASIC window.

Exiting If an error occurred while the program was running, you might have to
ObjEdit close the list window as well.

That's all there is to defining an object. The Amiga lets you simply

draw an object, rather than forcing you to use PEEKs and POKEs as you

would on other computers. If you think this is a nice feature, wait until

you see how easy it is to make objects move with the Amiga.

If you have left the object editor you will see the Workbench screen

again. Before we return to BASIC, let's get organized. Close and then

open the BasicDemos window. Then move the new Star icon

into the my programs drawer (or whatever you named the drawer). If

you have drawn other bobs while experimenting, put them into the

drawer as well. Then close the BasicDemos window for good. If

you like, you can arrange your program drawer with Snapshot before

closing the BasicDemos window.

57

Object animation AmigaBASIC Inside and Out

i -| sy Role assignments:

more about graphic objects

Now we know that the Amiga has two different types of graphic

objects: bobs and sprites. How are they both used? Does either have

advantages or disadvantages over the other? We'll answer these

questions in this section.

The history of the Amiga's development explains why it has two

Birth of the different types of graphic objects. When development began in 1983,
Amiga the machine was envisioned' as a game computer that would be far ahead

of anything else on the market. The relatively small Amiga

Corporation hired Jay Miner to design the special graphic chips. (Jay

Miner really has to be mentioned, for we have to thank him for most of

the Amiga's capabilities). Minor already designed the graphic chips for

the Atari 400/800 series. His experience made it easy for him to design

the video chip now called Denise, which has much more color and

graphic power than the Atari chips. Denise can also create sprites.

While Denise is responsible for most of the Amiga's graphics, there are

other chips that play a role in these processes. One of these, for

example, is the Agnes chip. Agnes, in turn, has the components Blitter

and Copper. It was these two components that created all the excitement

when the Amiga was introduced. The main function of Blitter is to

copy or manipulate memory or screen locations at high speed. This

process is aided by Copper, but as a BASIC programmer you really

don't need to know exactly how this works. The teamwork of Blitter

and Copper also makes the fast window processing possible.

Now for a surprise: The highly advanced Blitter chip makes computer

graphics' oldest concept feasible once more. If it is possible to quickly

shift and copy screens, why shouldn't you be able to draw, erase, redraw

and reconstruct the background? This is how the bobs (blitter object

blocks) evolved as an alternative, (or rather a complement), to sprites.

In short, bobs are graphic objects that are controlled by the Blitter.

58

Abacus MORE ABOUT GRAPHIC OBJECTS

Which are

better-bobs

or sprites?

Table 1:

comparison

of sprites

and bobs

If you ask which type of graphic object is "better", you have to keep in

mind they differ quite a bit in some respects, since they are produced and

controlled by two completely different chips. Both have advantages and

disadvantages, depending on the application.

You should know the following about Amiga sprites: Their horizontal

dimension is limited to 16 points on the screen—is about the same as

the width of two text characters. However, their vertical dimension is

unlimited. Their color selection is also somewhat limited, since only

four different colors can be used at a time. Normally the maximum

number of sprites is eight. Through various tricks, however, it is

possible to display more than eight sprites on the screen at one time.

Sprites also move faster than bobs.

Bobs, on the other hand, can be any size, horizontally as well as

vertically. Bobs can be 32 different colors, and the number of different

bobs is limited only by the availability of memory. Nevertheless, bobs

are noticeably slower than sprites, especially if many bobs are moving

at one time.

The following chart gives you an overview of the pros and cons for

these two graphic objects:

graphic object

controlled by:

maximum number:

colors:

speed:

sprite

Denise

8

(but can be duplicated)

up to 4

(for 2 sprites of the

same color)

very fast

bob

Agnes/Blitter

unlimited

(limited only by memory)

up to 32

(from any

available colors)

somewhat slower

AmigaBASIC makes the displaying sprites and bobs quite simple. The

same commands are used for both sprites and bobs, the only difference

being in the creation of the object in the object editor.

59

Object animation AmigaBASIC Inside and Out

1.13
Loading our STAR bob:

reading graphic objects

Our star is a bob, simply because a sprite would have been too small

for a proper star. Next we want to write a BASIC routine that will

define the movement of the Star bob across the screen. Before we can do

this, we have to load the video title program back into memory again.

Start up BASIC if it isn't up and running, and select the Open item

from the Project menu. In the upper left hand corner you'll see the

requester Name of program to load:. Click the mouse in the

requester box, and enter the name of your program drawer in which you

saved your video title program and star. Then press the </> key and

enter the name of your video title program. This input should look

something like this:

my programs/video titled

Press <RETURN>. If the Amiga displays an error message saying

File not found instead of loading, you have probably entered the

wrong drawer or program name. If you don't remember the names,

simply shrink the size of the BASIC and LIST windows and check
the Workbench for the actual names. The loaded program will be

displayed in the LIST window.

The method we just used to load our program is the alternative to

LOAD directly clicking it on the Workbench. Since there are two methods to

save a program, you might suspect there is also a way to load a

program in direct mode instead of the pulldown menu item. This

command is LOAD, and uses the same syntax as the requester. So you

could also have typed the following:

LOAD "my programs/video title"H

Which method you use is up to you. If you like using the keyboard,

you'll probably prefer this method. If you feel more comfortable using

the mouse, the pulldown menu will probably suit you better. In any

case, AmigaBASIC supports both items.

Now we would like to write our second routine—the first real routine

Subroutines was EnterText. We'll write the graphic object input the same way.
First we have to include the corresponding point in our first menu.

Until now you would get the response that this item did not exist yet,

if you chose any point other than 1. From now on it should be possible

to activate the ReadOb ject: routine with item 2.

60

Abacus READING GRAPHIC OBJECTS

Getting

around the

program

Files

Below the line

IF a$="l" THEN EnterTextfl

enter this line:

IF a$="2" THEN ReadObjectfl

Then press <ALTxcursor down>. In other words, hold down the

<ALT> key while pressing the bottom-most cursor key. This causes

the cursor to immediately "jump" to the program end. <ALTxcursor

down> will always jumps to the end of the program listing.

Correspondingly, <ALTxcursor up> jumps to the beginning of the

program. The combinations <ALTxcursor left> and <ALTxcursor

right> allow you to jump to the left and right edges of a program line.

These keyboard functions give you methods to move quickly through a

program without using the mouse.

At the end of the program we can insert the next routine:

ReadObject:fl

CLSfl

PRINT "Please enter the name of the object you want to load" fl

INPUT Objname$fl

IFObjname$="" THENCLS : GOTO Begins

OPEN Objname$ FOR INPUT AS If

OBJECT.SHAPE 1, INPUT$ (LOF (1) , 1) f

CLOSE 15

ObjFlag=l : CLS : GOTO Beginfl

This routine reads a graphic object from the diskette. There are three

lines that consist of new material:

OPEN name ofobject FOR INPUT AS 1J

OBJECT.SHAPE 1, INPUT$ (LOF (1) , 1) fl

CLOSE 151

The first line is responsible for opening the specified file (data on a

diskette that isn't a program) so it can be read. The explanation and use

of this first line can be found in Chapter 3 of this book, which deals

with files and diskette management. At this point we want to

concentrate on the graphics. What then happens at this command? The

contents of a file are read. The program knows the name of the file

through the input in the first three lines of the routine. Here we also

have a safety feature: In case the user presses <RETURN> without

entering a filename, the program will jump back to its start.

Now the data that was read from the diskette is assigned to INPUT $

(which is a string variable just like Helloora). The only

difference is that you can assign the contents of a file to this specific

variable. Again, more about this in the third chapter. This is possible

because strings can be up to 32767 characters long. This is plenty of

room for the files of a sprite or a bob. The file contains all the vital

61

Object animation AmigaBASIC Inside and Out

OBJECT

SHAPE

ELSE

information of the object, in this case our star, in a specific order.

Thanks to the object editor we don't have to worry about the

composition of this string— the Amiga already took care of this.

The OBJECT.SHAPE command assigns the string to graphic object

number 1 in the second line. This command gives the Amiga all the

necessary information about the appearance of the object, such as its

color, height, width, and other parameters. The third line closes the file

that was just opened.

Then the variable ObjFlag is set to 1. This variable tells the Amiga

if any file has been read yet. In a minute we'll discuss why it's

important for the program to know this. After this formality the

program returns to its start:

As soon as the object's appearance is defined, we can define its

movement as well. Type the following line in the Query: routine

below the two existing lines:

IF a$="3" THEN DefineMoveObjectfl

Then enter the following lines at the end of the program listing:

DefineMoveObject:f

CLS : IF ObjFlag=0 THEN BEEP ELSE Moverfl

PRINT "No object currently in memory! "fl

PRINT "Press any key"51

Pause: II

a$:INKEY$fl

IF a$="" THEN Paused

CLS : GOTO Begins

The last few lines comprise the beginning of the movement program. It

checks if an object has been read in. If none has been loaded, then there

isn't an object to move around. Then the Amiga displays an appropriate

response on the screen and waits for you to press a key. It then returns

to the main menu.

There are two new commands in these lines: ELSE and INKEY$. The

ELSE command is an expansion of the familiar IF...THEN function.

Until now we only used the command in the context IF (something is

true) THEN (do something). There are several additions to this command

that well introduce step by step.

Let's take a closer look at the line:

IF ObjFlag»0 THEN BEEP ELSE Moverfl

62

Abacus reading graphic objects

The first part of the line consists of the familiar IF command. If the

variable Ob jFlag is equal to 0, then the Amiga will sound a beep.

The new addition specifies an action that will apply if Ob jFlag is not

equal to 0. In this case the Amiga is supposed to go to the program

routine called Mover:. IF...THEN...ELSE tells the Amiga what to do

if something is true, and what to do if it isn't. This looks something
like:

IF (condition) THEN (do something) ELSE (do something else)fl

To demonstrate the command in an everyday situation imagine this.

A friend has just bought a new Amiga and wants to learn to program in

AmigaBASIC. He asks you where to get a good book on the subject.

You'll say, or at least so we hope, "Go to a software dealer and look for

AmigaBASIC Inside and Out by Abacus. If they don't have it, you can

order it direct from Abacus." Or, in BASIC: "IF BASIC book is

available at store THEN buy it, or ELSE order it."

This form of IF...THEN is especially interesting when—as in our

case—you need to execute several commands if the condition is true, or

send the program to a different point if the condition is not true. That

wasn't too difficult, was it? If you don't understand this concept quite

yet, youll soon learn a way to enhance jumps and loops.

First, though, another command: INKEY$, which is actually quite

INKEY$ simple. This string always contains the character that has just been
entered on the keyboard. If no key was pressed, INKEY$ is empty.

That's why the next line checks to see if the string is empty, and

repeats the process if it is empty. This is how we get the delay loop; it

waits until a$ has a value other than that of an empty string (""), i.e.,
until a key is pressed.

63

Object animation AmigaBASIC Inside and Out

Tracking down your errors:

the TRACE function

If you're confused by all these jumps, loops and inputs, the Amiga will

be able to help once more. Click the BASIC window and type:

goto DefineMoveObjectfl

This goto allows you to start programs at a specific point, instead of

Trace mode RUNning them right from the beginning. You'll hear a beep and the
text which you previously programmed is displayed on the screen, since

the object hasn't been read from the diskette. (If you can't see the

LIST window on the screen, select Show List from the Windows

pulldown menu). Then select the Trace On item from the Run

menu. You'll now see the Delay: routine in the LIST window and a

small orange Held that quickly moves from one command to the next.

To be more exact, it alternates between three lines each time. We have

just turned the trace mode on. In this mode the Amiga shows us which

line of the program is presently being executed. This function can be

invaluable when you're troubleshooting your own programs, or

figuring out someone else's programs. Now see what happens if you

press a key (since this is what the Amiga is waiting for you to do). The

program will return to its start, and will proceed to highlight commands

in orange as they are executed.

When the LIST window suddenly disappears, at an INPUT command

for instance, select Show List from the Windows menu again. If

the program lines or the listing itself are very long, AmigaBASIC will

often change the format of the program line displayed in the LIST

window. If you need to, you can enlarge the LIST window

accordingly. In the trace mode you should try to find the best placement

of the LIST and BASIC windows on the screen. What this

placement will look like depends mostly on where in the BASIC

window the program output will appear. Since our program is displayed

in the upper part of the BASIC window, position the LIST window

in the lower portion of the screen. AmigaBASIC always adjusts the

presently displayed program lines to fit the size of the LIST window.

Feel free to explore your program in trace mode. You might be able to

clear up any uncertainties about the program's function. You'll notice

the program runs quite a bit slower in trace mode than in normal mode.

This is because the Amiga now has more to do between commands and
because the execution has to be slow enough for the user to follow.

After all, the function is designed for the testing of programs.

To turn the trace mode off, go to the Run menu once more. In the
place of Trace On you'll now see Trace Off. This item turns the

trace mode off.

64

Abacus the toace function

AmigaBASIC also lets you use the trace function for specific parts of a
TRON and program. The two TRON (TRace ON) and TROFF (TRace OFF)
TROPF commands can be used just like any other BASIC command in the

program. They can also be used in the direct mode instead of the
pulldown menu items.

65

Object animation AmigaBASIC Inside and Out

1.15
Moving on up to:

the OBJECT commands

DIM

NOTE:

You might have noticed a slight bug in the EnterText: routine. If

you call up the routine only once, there's no problem. As soon as you

do it again, though, you get a Duplicate Definition error

message. What happened? The problem lies in the DIM command that

dimensions the text field once the number of text lines are determined.

DIM is not allowed to dimension the same variable more than once.

When you try to dimension it the second time, you'll get that error.

The easiest way to avoid this is to place all dims at the very beginning

of the program. There they'll be executed once and won't be used again.

When using this method, though, you need to know ahead of time how

many elements the arrays are going to need. Our text $ array requires a

maximum of 15 elements. Thus we'll dimension it to 15 elements at

the beginning of the program. First erase the line:

DIMtext$(NoofLines) fl

in the EnterText: routine. You can highlight the command with the

pointer and erase it by pressing <BACKSPACE>.

You can also dimension several arrays with one DIM statement While

we're at it, let's dimension the rest of the variables that will be required

in the course of this program. The purpose each array serves will be

explained when the particular array appears in the program.

Move the cursor to the beginning of the listing and type the following

lines:

Setup: II

d=15fl

DIM Text$ (d), Colormatrix (d, 3), Move (d), Speed (d) fl

Remember to save the program every once in a while. It's consistently

getting larger, and you don't want to lose any of your work.

Move the cursor to the end of the program, and then type the following

lines:

66

Abacus the OBJECT commands

Mover:51

PRINT "Move the object to it • s starting point "5

PRINT "using the cursor keys." 51

PRINT "When located press <RETURN>"5I

ox=100 : oy=100 : Destination^51

OBJECT.HIT1,0,05I

OBJECT.ON 151

OBJECT.STOP 1^1

Loop:51

a$=INKEY$5I

IFa$=CHR$(13) THEN DestDef51

IF a$=CHR$ (28) THEN oy=oy-25l

IF a$=CHR$ (31) THEN ox=ox-55I

IFa$=CHR$(30) THEN ox«ox+55I

IF a$=CHR$ (29) THEN oy=oy+25I

OBJECT.X 1, ox : OBJECT.Y 1, oy5I

GOTOLoop5I

51

DestDef:5I

CLS5I

Move (Destination*2+1) «ox : Move (Destination*2+2) =oy5l

Destination=Destination+l : Move(0)«Destination5I

IF Destinations THEN Enddef51

PRINT "Move the object to location"Destination5I

PRINT "<RETURN> - Set another location"5I

PRINT "<ESC> = End" 51

51

Loop2:51

a$=INKEY$5I

IFa$=CHR$(13) THEN DestDef51

IFa$=CHR$(27) THENEnddef5I

IF a$=CHR$ (28) THENoyoy-251

IF a$=CHR$ (31) THEN ox-ox-55I

IF a$=CHR$ (30) THEN ox=ox+55I

IF a$=CHR$ (29) THEN oy=oy+25I

OBJECT.X 1, ox : OBJECT.Y 1, oy5I

GOTOLoop25I

51

Enddef: 51

Move (0) =Destination5I

OBJECT.OFF 151

CLS : GOTOBegin5I

Well, you deserve a little break after entering this. (Don't forget to use

this break to save the program, too)!

Now that you are rested up, back to work. There are some new

commands in this section that we would like to talk about that fall into

two categories: OBJECT commands and other miscellaneous types of

commands.

67

Object animation AmigaBASIC Inside and Out

Bits, bytes

and ASCII

CHR$

More about

ASCII

Let's look at other types of commands first. CHR$ (x) is the only new

command in this group. To explain this command we'll have to take a

little look into the way the Amiga thinks. Feel free to sit back and

relax while we take you on an imaginary voyage inside the Amiga's

"brain".

Externally, it seems as though the Amiga deals with numbers and

letters without any amount of effort. It can be said that the Amiga

represents a completely new generation of computers. However, at the

most basic levels of its functions, nothing has changed since the

invention of ENIAC, the first real computer. The heart of the Amiga,

the microprocessor chips, can work with only two different conditions:

On and off. All of the computer's capabilities are based on these two

states.

These conditions correspond to the digits 0 and 1, which make up the

smallest unit of information, the bit. With various tricks and the

concept of binary numbers, a computer can process several bits at once

which in turn enables it to work not only with zeros and ones, but also

larger numbers.

To make the transition from numbers to letters, another concept is

needed: a letter is assigned to each number between 0 and 255. The

reason behind 255 is that the original machines could not process

higher numbers at an acceptable speed. (The highest number of the

Amiga's 68000 processor can process directly is 4,294,967,294.) The

order in which the characters are assigned has been standardized so that

different kinds of computers can communitate. The name for this

standard character assignment is the ASCII code (ASCII is the

abbreviation for American Standard Code for Information Interchange).

This brings us back to the CHR$ command. CHR$ is used to convert an

ASCII code to its corresponding character. We'll perform an experiment

in which we'll bring the Amiga's insides "outside". First enter the

following line in direct mode (be sure to click the LIST window into

the background so you have enough room on the screen):

width 60: for x=0 to 255 ; ?chr$ (x);: next x fl

Don't worry about the beep that you'll hear, since this is also included

in the ASCII code. Here we have to be more specific; ASCII codes

don'tjust contain text characters, but also control characters. CHR$ (7)

is one of them. It produces the beep. CHR$ (12) will clear the screen.

Even without these control characters there are quite a few other visible

ones, too. After all, your screen should be filled with a variety of

punctuation marks, numbers, upper and lowercase letters and other

special characters. There are also several small boxes which indicate

characters the Amiga can't display visually, such as the <HELP> key

or one of the function keys.

68

Abacus THE OBJECT COMMANDS

OBJECT

SHAPE

Syntax

errors

Now back to our normal world where we deal completely with letters

and numbers. After all that you now know, you'll be able to understand

the CHR$ easily. In our program it is used to check if a specific key

was pressed. The following program, for example, will wait until the

<ESC> key is pressed:

This sample program is not a part of the video title program, so enter it

separately. Make sure the video title program is saved, then enter NEW.

NEW clears out the current program in memory. Now click in the

LIST window and you can enter this simple program:

Delay: II

If INKEY$<>CHR$ (27) THEN Delayfl

The computer waits until you press the <ESC> key.

Now to the heart of our video title program, the OBJECT commands.

In order to move objects (bobs or sprites), the Amiga has a separate

group of commands, all of which begin with the word OBJECT

followed by a period. The OBJECT.SHAPE command is one example

you are already familiar with. This command is used to assign a

particular shape to an object. Its syntax looks like this:

OBJECT.SHAPE object number, definition string^

In BASIC, syntax refers to the correct composition of commands and

their corresponding values. If you typed this in the BASIC window:

object,shape 1%

you're violating the syntax, since the second value (the definition

string) was omitted. Try typing this example. The Amiga will tell you

that you have just made a Syntax error. Imagine someone trying

to speak a foreign language, but who isn't putting the words in the

right order. In the same way, the Amiga cannot understand sentences

that aren't structured correctly. The Syntax error message is the

Amiga's way of saying that something in the command is either

missing or incorrect.

69

Object animation AmigaBASIC Inside and Out

The values used in conjunction with a command are referred to as

Parameters parameters. The value object number in the previous
OBJECT.SHAPE command is a parameter. In the video title program

this value will always be 1, since only the object with the number 1

will be used. You already know the definition string (in our case the

bob). It was created with the object editor and saved on the diskette, and

can be loaded into any BASIC program.

OBJECT. X and OBJECT. Y are two other OBJECT commands that

OBJECT . X position an object at a particular spot on the screen, at a horizontal

OBJECT . Y coordinate (X) as well as a vertical coordinate (Y). The coordinates

specify the objects position from the upper left-hand corner of the

screen. The visible region for X is 0 to 617, and for Y is 0 to 185. The

object won't be visible on the screen if you specify larger coordinates.

You can specify larger coordinates, but that will only be useful if the

object is still partly visible. To specify a set of coordinates, the

commands are used like this:

OBJECT.X object number, x coordinate^

OBJECT.Y object number, y coordinate^

The object won't be visible quite yet after you enter these commands.

OBJECT . ON Another command is required for this:

OBJECT

OFF

OBJECT.VX

OBJECT.VY

OBJECT.ON object number^

This "turns on" (displays) an object whose coordinates have been

specified. The counterpart to this command is:

OBJECT.OFF object numberfl

This command, in turn, will "turn off' the object and make it disappear

from the screen.

Since these graphic objects are, after all, called "movable objects", there

are commands that move the object. Two of these are the OBJECT. vx

and OBJECT.VY commands. The V stands for velocity. These

commands specify the object's velocity in the X and Y directions. Here

again, VX represents the horizontal velocity, while VY represents the

vertical. The speed is given in units of screen points per second.

In the standard resolution used by AmigaBASIC, the screen is

comprised of 640*200 points (pixels). If you subtract the points that

are included in the border, you'll get the visible region of the

OBJECT.X and OBJECT.Y commands.

The starting coordinate is defined in screen points, too. An X-velocity

of 1 means the object will move one point to the right each second. A

Y-velocity of 2 means the object will move two points down each

second. If you give both X and Y velocities, the object will move

diagonally from the left top to the right bottom of the screen. "What if

70

Abacus
THE OBJECT COMMANDS

I want to make the thing go from right to left, or from the bottom to
the top?" Simple—just enter a negative velocity. An X-velocity of -1 is
like a reverse gear. The following figure will be useful, when you later
need to know the correct sign of the velocity for your own programs.

Figure 4:

The polarity

Of OBJECT

velocities

- Y

t
-X, -Y

-X,+Y

+X, -Y

+X,+Y

OBJECT.

START

If your object is supposed to move from the top right to the bottom
left, the X-velocity will have to be negative and the Y-velocity will
have to be positive. The values of the velocities will depend upon the

desired speed of the object

One more tip: when the X-velocity is considerably larger, the

movement is mostly horizontal. Correspondingly, if the Y-velocity is

much larger, the object will move vertically.

To press the Amiga's "accelerator", use the following two commands:

OBJECT.VX object number, x-velocityfl

OBJECT.VY object number, y-velocityll

However, as with the OBJECT.X and OBJECT.Y commands, these

only define the object's velocity, it still won't start to move yet. For

this you need another command:

OBJECT.START object numberfl

71

Object animation AmigaBASIC Inside and Out

OBJECT

STOP

OBJECT

HIT

When the Amiga receives this command, the object starts to move. The
best part is you don't have to do another thing from that point on. You

can go on to something else in your BASIC program while the Amiga

moves the object across the screen. But there has to be an "emergency
brake", too. The command:

OBJECT.STOP object number^!

will stop the object at its present position. You can see why it is

necessary to include an object number. It's the only way you can

specify which object the command is referring to.

Many other AmigaBASIC commands control object movement,

although we don't need them for our video title program. We will talk

about them at a later point. You'll find an concise description of these

commands in Appendix B.2 of this book.

There's one command we almost forgot from the Mover: program

routine: the OBJECT.HIT command. AmigaBASIC allows you to find

out if an object is colliding with something else on the screen. This is

known as collision control. The collision of objects is one of the

events that can affect a program. This topic can also be found in the

BASIC reference section under the ON COLLISION GOSUB command

(Appendix B.2). Without this command, the object would stop as soon

as it hit anything. This might be desirable in traffic control, but

unfortunately not in our program. The command:

OBJECT.HIT object number, 0,051

will specify that the object is allowed to collide with other graphic

objects as well as the screen border.

Once this process is clear, you might ask, "How does the whole thing

work together? What's behind this new part of the video title program?"

We've already checked if an object was really read into memory. If an

object is in memory, the variables ox and oy are set to 100. These

variables keep track of the coordinates at which the object is located.

Wejust explained the OBJECT.HIT 1,0,0 command.

The Mover: routine also turns object number one on, and turns off

any remaining movement. In later applications of the video title

program, an object in memory from a previous program will start

moving again once it is turned on.

72

Abacus THE OBJECT COMMANDS

Steering the

object

Now you can steer the object with the cursor control keys. Depending
on which key is pressed, the values of the X and Y coordinates will

change. The Loop routine will repeat this process until the
<RETURN> key is pressed. The actual position is then accepted as the
starting point. The program then jumps to the Destdef (destination

definition) routine. At this point the move array, which we
dimensioned at the beginning of the program, is activated. The X and Y
coordinates of the points of movement are repeatedly recorded. Their

value is stored in the array's first position, namely movement (0),

since this number will be needed later. The number of points is limited

to seven.

The definition of the destination points works the same way as defining

the starting points. The cursor control keys are used, and <RETURN>
accepts the specified point. The entry will end after the sixth point or
when the <ESC> key is pressed. The Enddef routine brings the

number of destination points up to date, removes the object from the

screen and returns to the main menu.

If you would like to try the program out to this point, start it. Use item
2 (Read Object) to read your star into memory. Any graphic object

could be used, if you have made others with the object editor. Item 3
(Move Object) will allow you to define the object's movement.

Play around with the function, it's the easiest way to find any mistakes

you might have made. The more complex a program becomes, the more

difficult it becomes to fool around with it like this. Actually, use a
more sophisticated term: you're debugging... just in case anyone in the

family should ask.

73

Object animation AmigaBASIC Inside and Out

1^ s Color comes into the game:

The Amiga can display 4096 different colors. This news created some

excitement when the computer was introduced, but it's probably old

news to you. Even so, this is an impressive display of colors,

especially considering that a short time ago even the most advanced

computers had trouble displaying more than 16 colors.

One of the determining factors is the Amiga's monitor, an analog RGB

What IS monitor. What are "analog* and "RGB"? You may know how a
RGB ? television operates: an electron beam scans the screen line by line. A

phosphorous layer on the screen is then illuminated where the electron

beam hits it. Because this process is so fast, the human eye cannot

detect how the picture is constructed dot by dot or line by line. The

result looks like a complete picture.

So far, so good. If technology was still that simple today, we'd still

have black and white television. For instance, green-screen

(monochrome) monitors have been marketed by well-known computer

companies for years. Even a black and white TV is technically more

demanding than a monochrome monitor, since the intensity of the

electron beam has to be varied in order to create different shades of grey

on the television screen.

When a few ingenious scientists invented the color TV, they installed

three electron beams next to one another. Each beam hit a different set

of points on the screen. One set of these points glows red, one green

and the third blue. Red-green-blue: RGB.

Other ingenious people discovered that these three colors can be used to

create any other color of the spectrum. The three beams also vary in

intensity and produce different shades of color. This concept was very

successful with TV, but it took a while before the idea caught on in the
computer field.

The manufacturers of monochrome monitors, now produced color

monitors with three electron beams of constant intensity for red, green

and blue. Because of the on/off mentality of computers, this concept is
quite simple: there is simply three connections between the monitor and

the computer for R, G and B. The system was restricted to only eight

colors: black, white, red, green, blue, yellow, cyan and purple. This

method is known as "digital color control". (As you might guess digital

refers to the 0 or 1 technology: Power or no power)

74

Abacus COLOR CONTROL

What is so different about the Amiga's monitor technology? The

Amiga and Amiga also has only three connections to its monitor. But each of these
RGB three connections has 16 different intensity levels, not just one. The

result is color quality that's almost identical to that of a TV. Even if

you've owned your Amiga just a few days, you might be familiar with

the RGB concept. Most Amiga programs allow you to adjust the color

by varying the red, green and blue intensities. In this respect the

Graphicraft drawing program behaves the same as the utility program

Preferences. If you feel a great urge to see your 4096 different

colors, reduce the size of the BASIC and LIST windows and activate

the Preferences program on the Workbench. (Before doing this, be

sure to save the current version of the video title program!) At the

bottom of the Preferences screen you'll find three adjustable strips.

When you are finished experimenting leave Preferences by simply

clicking the Use gadget.

NOTE: The present colors you set from Preferences remain in effect until

you change colors again, or turn the Amiga off.

Well, what did you think of that? Maybe you're frantically searching for

PALETTE an AmigaBASlC window with three color adjustments in it. Sorry,

but changing color in BASIC takes quite a bit more programming.

Don't worry, though, it's not difficult at all. The PALETTE command

is all you need to change colors in BASIC. The command requires four

numbers. The first number represents the color you wish to change.

Normally there are four colors available to you in AmigaBASlC. These

colors, along with their respective numbers, are:

color

blue

white

black

orange

number

0

1

2

3

The next three numbers specify the percentages of red, green and blue

that compose the particular color. This value must lie between 0 (0%)

and 1 (100%). Type this line in the BASIC window:

palette 0, 0.6, 0.2, 0.411

Well? You probably don't think too highly of our color choice. All

right, if you don't like it, try your own values. Taste is a very personal

matter.

By the way, you can leave off the zero before the decimal point in

BASIC. You could type the above PALETTE command like this, and it

will work just as well:

palette 0, .2, .3, .611

75

Object animation AmigaBASIC Inside and Out

Let's include the item Define Color in our video title program.
First of all, enter the following line in the Query: routine, so we
have another menu item:

if a$«" 4 " then DefineColorSI

We also need a little more code in the Setup: routine. Type in the
corrections, so that is looks like this:

Setup: 5

Colors=2 SI

d=15 : MaxColors=(2AColors)-lSI

TextColor=lSI

DIM Text$ (d), Colormatrix (d, 3), Move (d), Speed (d) SI

Filler$=STRING$ (16,"-") SI

Colormatrix (1,1) =15SI

Colormatrix (1,2) =15SI

Colormatrix (1,3) «15SI

Now to the end of the program. Here we have another lengthy part for

you—Take a break whenever you feel like it. Just remember to press

<RETURN> when you see the paragraph markers at the end of each

line (SI). And don't forget to save the program regularly!

DefineColor:SI

CLS:PRINT "Color values:"SI

Colors: SI

FOR x=0 TO MaxColorsSI

COLOR -(x=0),xSI

LOCATE 5, (x*4) + 1SI

PRINT x;CHR$(32);CHR$(32)SI

NEXT xSI

SI

ColorChange:SI

IOCATE 7,1: COLOR TextColor, BackgroundSI

PRINT "Enter the number of the color you want to

change. "SI

PRINT "(e = End)"; : BEEPSI

INPUT Answer$SI

IF UCASE$(Answer$)«"E" THEN AssignColorSI

Answer$=LEFT$ (Answer$, 2) SI

ColorNuiriber=VAL (Answer$) SI

IF ColorNunibeKO OR ColorNumber>MaxColors THEN BEEP: GOTO

ColorChangeSI

RGBRegulator: SI

r=Colormatrix(ColorNuniberf 1) SI

g=Colormatrix (ColorNuniber, 2) SI

b=Colormatrix (ColorNuniber, 3) SI

LOCATE 10,1: PRINT "Red: <7>=- <8>=+ ";Filler$SI

LOCATE 10,20+r : PRINT CHR$(124);SI

LOCATE 11,1: PRINT "Green: <4>=- <5>=+ ";Filler$SI

LOCATE 11,20+g : PRINT CHR$(124);SI

LOCATE 12,1: PRINT "Blue: <1>«- <2>-+ ";Filler$SI

76

Abacus color control

LOCATE 12,20+b : PRINT CHR$(124);fl

LOCATE 13,1: PRINT " <0>=Color

PALETTE ColorNumber,r/15,g/15,b/15fl

EnterKeys: 5

Key$=INKEY$fi

IF Key$="" THEN EnterKeys5

IF Key$="7" THEN r»r-lH

IF Key$="8" THEN

IF Key$="4" THEN

IF Key$=ft5" THEN

IF Key$="l" THEN b=b-lfl

IF Key$="2" THEN b=b+H

IF Key$="O" THEN ColorChangeH

IF r<0 THEN r=0fl

IF r>15 THEN r=15fl

IF g<0 THEN

IF g>15 THEN

IF b<0 THEN

IF b>15 THEN

Colormatrix (ColorN\Mnberf

Colormatrix(ColorNumber,

Colormatrix (ColorNumber, 3) «b^l

GOTO RGERegulatoril

AssignColor:^

a=Backgro\ind : a$="Backgroundllfl

GOSUB EnterColor:Background«a1I

a«TextColor : a$="Text Color"%

GOSUB EnterColor:TextColor-a1I

a«TextBackground : a$-"Text Background"

GOSUB EnterColor:TextBackground«afl

COLOR TextColor,Background^

CLS : GOTO Beginfl

EnterColor:^

LOCATE 14,15

PRINT a$": ft;a5

LOCATE 14,111

PRINT a$; : INPUT Answer$H

Answer«VAL (Answer$) fl

IF Answer$="" THEN Answer=.5^I

IF Answer<0 OR Answer>MaxColors THEN BEEP : GOTO Loop3fl

IF Answer<>.5 THEN a=Answer5

RETURNS

If you have any serious problems understanding the use of the

commands we have discussed, please see the Appendices about

command summaries. If that doesn't help, try to carefully reread the

parts that deal with those commands.

77

Object animation AmigaBASIC Inside and Out

Now for the new commands in this part: the command
STRING$ STRING$ (16,"-") will produce a string consisting of 16 dashes ("-

"). We need this string to make the color controller. The STRING$

function is extremely helpful when long strings that consist of one type
of character. Type in this line in the direct mode of BASIC:

width 50 : ? string$(800, "!") fl

All right, we admit that wasn't too nice. Your Amiga was rather busy

WIDTH for a while, wasn't it? You might have noticed that we used the WIDTH

command here a second time already without explaining it WIDTH is

used to specify how many characters wide the lines will be. This is

necessary because the Amiga doesn't automatically start a new line

when it reaches the edge of the screen. Instead it will print out of the

window, and the output will disappear from the screen. If you don't
believe it, try this:

width 255 : ? string$ (800, "! ") <RETURN>H

Depending on the margins used (60 or 80 characters per line, specified

with Preferences), the maximum value is WIDTH 62 or WIDTH

77 with which all characters will be visible.

Next there's the COLOR command. It is used to change the text color.

COLOR COLOR is followed by two parameters. These values specify the color

number of the foreground (first number) and the background (second

number). Thus, if you wish to write with the background color on

white, you'll have to enter the following:

color 0,111

The string function UCASE$ (...) stands for "uppercase". This

function will change the entire content of the string into uppercase:

?UCASE$ ("WouLdN'tYOuliKEToKnow?")^

While we're explaining strings: another line down you'll find this

command:

ColorNuiriber=sLEFT$ (Answer$, 2) 5

The string Answer$ is a user-input string. It's possible that the user

LEFT $ of the program might type a string longer than allowed. The program is
RI6HT$ only interested in the first two characters of the string. To isolate

characters from the left or the right of a string. The LEFT$ and

RIGHT $ commands are used. The first parameter specifies the string,

the second parameter determines how many characters are included. If

you would like to try:

?left$ ("Hello", 3), right$ ("Amiga",2) fl

UCASE$

78

Abacus COLOR CONTROL

"Wait a second, we could use this trick with LEFT$ in the main menu

of our program, right?" True, we can use it to make the main menu

selection foolproof. Enter the following in the Query: routine:

INPUT

a$=LEFT$(a$,l)fl

IFa$<"l" 0Ra$>"5" THEN BEEP : GOTO Queryfl

60SUB

RETURN

Inequality

Color

control

You'll find a command called GOSUB in the AssignColor: routine.

Although it looks a lot like the GOTO command, there is a difference.

The command stands for "GO to SUBroutine". A subroutine is a part of

a program that performs a certain function for the program. When the

Amiga reaches a GOSUB it remembers the line where it encountered the

GOSUB and then proceeds to the line specified by the command. The

subroutine is then executed until the Amiga reaches the RETURN

command, after which it returns to the line following the original

GOSUB command. RETURN and GOSUB work together, just like IF

and THEN or like FOR and NEXT. The commands always appear

together—otherwise you'll get an error message. If you don't quite

understand how these two commands work together, the trace function

can help you understand them.

We're almost finished with this routine, except for one little detail. Do

you see "IF answerOO" in Loop3 : ? What does it mean? We

know less than (<) as well as greater than (>), but it's impossible for a

number to be both at once. Right That's why <> means "not equal to"

in BASIC. The command is checking to see if the the value is not equal

toO.

The variable Colors specifies which is the highest allowed color

number. The program routine Def ineColor: prints little boxes

containing all of the valid color numbers on the screen. You're asked

which color to change. You can then enter the desired number or the

letter <E> to end the color changes. Thanks to the UCASE$ function it

doesn't matter whether the <£> is entered in uppercase or lowercase.

Once the color has been chosen the RGBRegulator: routine displays

a color control system. This can be easily controlled with the numerical

keyboard. The keys <7> and <8> change the red controller, <4> and

<5> change the green controller, <1> and <2> control the blue. The

<0> key signals that the color setting is satisfactory. In this case the

program jumps back and asks whether you want to change another

color. The variables r, g and b contain a number between 0 and 15

which represent the respective color intensities. These values are stored

in Colormatrix.

79

Object animation AmigaBASIC Inside and Out

A word about the color control routine: It isn't quite as convenient to

How the use as Preferences. One problem you might have noticed is that
color whenever a color is changed for the first time, the original setting is
control black. This is because AmigaBASIC is not able to read the actual value
Works of the color register. As long as the array Colormatrix doesn't

know the values, they are zero. For this reason we used the Setup:

routine to assign the color white to the Colormatrix so at least the

text color would have a value. Otherwise you would only see black.

Color control through the keyboard is slightly more tricky than using

the mouse (in programs such as Preferences or Graphicraft). Most

importantly, don't hold the keys down too long, since the number will

be repeated after a short time (which can be adjusted with

Preferences). In this case you might accidentally enter a huge

number without knowing it, which would be stored in the keyboard

buffer until the controllers react. At the end of the color adjustments the

program will ask you for three more values: you can enter one color

number each for the screen background, for the text and the text

background. These colors will then be used for the output of the text

which you entered in item 1 of the main menu. If you don't wish to

change the normal settings, simply press <RETURN> three times.

80

Abacus THE DISPLAY PROGRAM

1.17
The fruits of our labors:

the display program

How to

write an

output

program

Our video title program project is getting ever closer to completion.

The only subroutine that's still missing is the one that will display the

result of our program.

Imagine that the following section was not included and you had to

write the output routine on your own. How would you go about it?

First of all you would have to consider what the program is supposed to

do. This is how we'd envision the output of the final program:

First the screen should clear, then the program would wait for you to

press <RETURN>. During this time you'll be able to cue up your

VCR, make the necessary connections and start the tape. After

<RETURN> is pressed, there'll be a 10 second countdown, which will

be quite helpful when you're trying to splice video sequences and make

them look professional. Then we have to send the programmed text to

the screen in the colors that were selected. Would it be possible to

center it on the screen? That should look good. Once the text is

displayed the object, (in this case our star), should execute its

movement while the text remains on the screen. How about removing

the text from the screen in some way at the end? For instance by

scrolling it from the top and the bottom of the screen to the middle.

This will give the same effect as in the title screen of the

AmigaTutor program, which you might know from the Extras

diskette. Once this is done, there will be a few more seconds of silence.

"Cut! It's a wrap." This is how we pictured the function of the last part

of the video title program.

The next step of developing the program is taking sort of an inventory.

In other words, you need to see what you already have to work with,

and what you need to create. Up to now we have put together the

following program routines:

A graphic object on diskette that currently resides in memory and is

named object number 1.

An array called Move (d) contains up to seven points of the

specified movement The aiTay element Move (0) contains the exact

number of points. This element is followed by pairs of coordinates

of each point. The array is constructed in this manner: (number

of points), xl, yl, x2, y2, etc.

An array named Speed (d) where the x and y velocities are stored

with which the object is moved from point to point. This array is

constructed the same way as the Move (d) array. However, it is

still empty.

81

Object animation AmigaBASIC Inside and Out

DATE$

TIME$

TIMER

INT

An array called Text $ which contains up to 15 lines of text to be

printed on the screen.

The colors for the text and screen background are stored in the

variables Background, TextColor and TextBackground.

There's also an array called Colormatrix. However, this is not

needed anymore since the colors have already been taken over by the

Amiga system.

There are other variables and data, but they are not important to this

part of the program.

For the last part of the program we need more new commands so we'll

introduce them now. Try to imagine how each of the following

commands could be used to achieve the goals of this program routine.

The first new command will probably be useful only in the countdown

routine. How will the Amiga know when 10 seconds have expired?

Simple: the Amiga has several time/date functions in AmigaBASIC.

Type the following command in the BASIC window:

? date$fl

You see that DATE$ does, indeed, display the month, day and year

stored in the Amiga's memory. Yes, that's very nice, but we don't need

days and months—we need seconds. Try this command instead:

That's better. This command displays hours, minutes and seconds. The

time is set with Preferences, and at the moment it's probably

incorrect. You can isolate the seconds with the formula

(VAL (RIGHT$ (TIME$, 2))). However, this looks rather messy.

There is an alternative:

? timers

The variable TIMER will give you the time in seconds and in tenths of

seconds. It specifies the number of seconds that have passed since

00:00:00 (midnight). Remember, this depends upon the time setting in

Preferences.

Sometimes when calculating or comparing numbers, the numerals to

the right of the decimal point are unnecessary. Here we need only

seconds, not tenths of seconds. The BASIC function INT (x) can help

us in this case. The command stands for "INTeger":

?INT (23.42143)^1

82

Abacus THE DISPLAY PROGRAM

CINT

ABS

SCROLL

This omits the numbers to the right of the decimal point. The result is

23. Note that the function will not round off the number. INT

(9.99999) is 9, not 10. We'll introduce another command later for

rounding a number.

To use these commands to make the Amiga pause for exactly one

second, you would use the following procedure: The present value of

INT (TIMER) is assigned to a variable. (In other words, it is assigned

the number of seconds that have passed since midnight). A loop then

continually compares the value of the variable to the actual value of the

timer, until the two are not equal. After that, approximately one second

will have passed. In a listing it might look like this:

Tim=INT (TIMER) fl

IF INT (TIMER) =Tim THEN Wait2fl

(after one second, the loop will stop)

The command for the rounding off of numbers is CINT ("Convert to

INTeger"). The command rounds off numbers according to these rules:

up to and including 4.5000... will be rounded to 4, larger numbers

(from 4.5000...01 on) will be rounded up to 5. Compare this in

BASIC:

?cint (4.6) : ? int (4.6)5

We'll use the CINT function for calculating the object's velocity. Since

we're already talking about mathematical functions, we'll throw in

another one. What do you do if you need the value of a number, but

aren't concerned with its sign? Distant memories of math class might

help you out on this one. We're talking about absolute values, and in

BASIC they look like this:

?abs(-3.5) : ? abs (3.5) 5

We'll need this function to calculate the X and Y velocities from the

distance between two points in the path of our object's movement.

Because you so bravely suffered through all those mathematical

functions, we'll throw another graphic effect at you. Do you remember

how we were going to make the text disappear from the screen? The

screen was to be divided into an upper and lower half, which would

move toward the center and "swallow" the text. BASIC has its own

command for shifting sections of the screen. Type the following

example in the BASIC window:

forx=lto50 : scroll (0, 0) -(630,150), 2, 2 : 5

83

Object animation AmigaBASIC Inside and Out

The effect is clearly visible: the screen should be partially filled with

text. Then a section of the screen slowly sinks toward the lower right.

(You could program the sinking of the Titanic this way). You have

probably heard the expression scrolling which was derived from "screen

rolling". When you enter text in the bottom line on the screen and then

press <RETURN>, the screen will scroll upward. The top line will

disappear from the screen, while a new line will appear at the bottom.

The Amiga is able to scroll the screen in all directions. The syntax of

the SCROLL command looks like this:

SCROLL (xl,yl)-(x2,y2), x-direction, y-directionil

The expression (xl, yl) - (x2, y2) specifies the corners of the

rectangle that is scrolled. The coordinates (xl, yl) specify the upper

left-hand corner, while (x2, y2) specifies the lower right corner of the

rectangle. The values for the x-direction andy-direction

specify, just like in the OBJECT command, how many dots the

rectangle is moved in each direction. A single call of SCROLL will

cause the rectangle to immediately jump to its destination. To create

smooth movement, you must use a FOR...NEXT loop to repeat the

SCROLL command. We can make the output of our program disappear

from the screen with this function.

Those are all the new commands that we'll need in this part of the

program. When you enter the next part of the video title program,

please try to figure how each command works toward the goal of the

program as you type it. You already know what we're trying to

accomplish and what it's effect should be. Again, please don't forget to

save the program regularly!

Move to the end of the program and type the following:

ShowTitle:^

CLSfl

PRINT "Press the <RETURN> key"fl

PRINT "to begin showing the title."5

WaitforKey.fl

IF a$=CHR$(13) THEN CLS : c»10 :GOTO Countdown^

GOTO WaitforKeyfl

11

Countdown:f

LOCATE 10,28 : PRINT cU

c=c-l:IF c<0 THEN StartDisplayfl

TinrfNT (TIMER) fl

Wait2:fl

IF INT (TIMER) =Tim THEN Wait2fl

GOTO Countdown!!

StartDisplay:fl

WIDTH 60fl

COLOR TextColorr Background : CLSSI

84

Abacus the display program

COLOR TextColor,TextBackground5

FOR x=l TO NoofLines5

Text$«LEFT$(Text$(x), 60) 5

h«INT((60-LEN(Text$))/2)+25

LOCATE x+17-NoofLines,h : PRINT Text$5

NEXT x5

COLOR TextColor,Background^

IF Move(0)«0 THEN MoveText5

OBJECT.X l,Move(l)5

OBJECT.Y l,Move(2)5

OBJECT.ON 15

FOR x»l TO Move(0)-15

OBJECT.STOP 15

GOSUB VelocityCalc5

OBJECT.X l,Move(x*2-l)5

OBJECT.Y l,Move(x*2)5

OBJECT.VX l,Speed(x*2-l)5

OBJECT.VY l,Speed(x*2)5

OBJECT.HIT 1,0,05

OBJECT.START 15

Tst=TIMER5

5

Loop4:5

px=ABS (Move (x*2+l) -OBJECT.X (1)) 5

py=ABS (Move (x*2+2) -OBJECT.Y (1)) 5

IF INT(TIMER-Tst)<18 AND (px>15 OR py>15) THEN Loop45

NEXT x5

OBJECT.OFF 15

5

MoveText:5

Tst=TIMER5

IF Move (0)00 THEN Finish5

Wait3:5

IF TIMER-Tst<(2*NoofLines+2) THEN Wait35

Finish:5

FOR x=l TO 305

SCROLL (1,1)-(630,100), 0,35

SCROLL (1,100)-(630,180),0,-35

NEXT x5

COLOR TextColor,Background5

CLS : GOTO Begin5

5

VelocityCalc:5

ox=OBJECT.X (1) : oy-OBJECT.Y (1)5

Move(x*2-l) =ox : Move(x*2)=oy5

zx=Move(x*2+l) : zy=Move(x*2+2)5

FOR xx=l TO 64 STEP .25

Speed (x*2-l) =CINT ((zx-ox) /xx) 5

Speed(x*2) =CINT ((zy-oy) /xx) 5

IF ABS (Speed (x*2-l))<40 AND ABS (Speed (x*2))<40 THEN

xx=645

NEXT xx5

RETURN5

85

Object animation AmigaBASIC Inside and Out

How the

program

works

Displaying

the title

Set colors

Text

formatting

Moving the

object

If you got all that down, save it immediately—you probably don't need

us to tell you that anymore.

Do you understand approximately what the program does? We're now

going to go over the individual program routines. Compare our

explanations with the ones you have come up with on your own.

The ShowTitle: routine waits until the <RETURN> key is pressed.

The value CHR$ (13) corresponds to this key. Then the variable c is

set to 10. This is the counter for the countdown, which is why it is

printed on the screen during the countdown. Each second its value is

reduced by 1, until it reaches zero. The Wait2: loop waits one second

until the next value of c is displayed.

StartDisplay: first sets the screen width to 60 columns. Then it

clears the screen in a predetermined background color and sets the color

for the output of the text.

The loop that follows centers the text in the screen. The text is first

limited to 60 characters with LEFT$. Note that the text entry routine

will not accept more than 60 characters per line. The variable h

calculates the horizontal position in the row where the text should

begin. For this the remaining space on the line (60-LEN (text$))

is simply divided by two—one half for the left, one for the right.

Finally the text is printed at the calculated position and the color is

reset If no movement was specified (the equation IF Move (0) =0

checks for this) the program jumps to MoveText: immediately.

Otherwise the object is brought to its starting position and the

movement loop begins. At each pass the loop is interrupted to calculate

the velocity values (more about that in a minute). The calculated values

are transferred, and the OBJECT.HIT 1, 0, 0 command is used to turn

the collision control off. The Loop4: runs until the object has reached

its next destination point through 15 points. This value has proved

practical in previous experiments. However, because of the rounding

off, it is possible that the object will miss its destination. Because of

this a time-check is built in: if the object takes more than 18 seconds to

reach its destination, the movement is stopped, and the object starts

toward the next destination point. 18 seconds is the time in which the

object can move the longest possible distance, namely from one corner

of the screen to the opposite corner.

86

Abacus THE DISPLAY PROGRAM

How does the VelocityCalc: routine work? First it determines the

Computing actual coordinates, which don't coincide 100% with the values in the
the speed move(x) array. Thus the actual values are assigned to the array instead

of the theoretical ones. They are now the starting coordinates of the

next movement, and are assigned to the variables ox and oy. The end

coordinates are in the next two positions in the move (x) array. The

following FOR...NEXT loop divides the distance between the X and Y

coordinates by larger and larger numbers until both values are smaller

than 40. Otherwise the star will move too fast. The fact that both are

divided by the same number keeps the proportion between the X and Y

distances constant. This ratio must be read by the velocities so the

direction of the movement is correct. When the velocity is in the correct

ratio, xx is set to 64 and the loop is ended. (FOR xx=l TO 64 STEP

. 2 increases xx by 0.2 until xx becomes 64. As soon as xx equals

64, the loop ends.) Then back to the main program (this is called

RETURN in BASIC).

The MoveText: routine is the only one left. If no object movement

Moving the took place, the viewer won't have time to read the text. Here the
text program waits for two seconds per line of text to give the viewer time

to read it.

This is followed by our SCROLL routine, which moves the top and the

End bottom sections of the screen toward the middle. In this way the text
program and background disappear from the screen. The color also gets reset and

the screen is cleared, in case there's "leftover" text or background. After

that, the program returns to the main menu.

That's how it works. Oh, we almost forgot: the new program routine

must be included in the main menu, too. In the Query: routine, under

the line:

IF a$=»"4" THEN DefineColorfl

Add the line:

IF a$="5" THEN ShowTitlefl

87

Object animation AmigaBASIC Inside and Out

You're probably dying to try out the program. Now's your chance:
Run it!

Use item 1 to enter the text that you want displayed on the screen.

Use item 2 to read the object (star) from the diskette.

Select item 3 to determine its movement.

In case the present colors don't suit you, change them with item 4.

Remember that you can still change the text color after you enter <e>.

The first number entered will specify the screen color, the second

determines the actual text color. The third one allows you to highlight

the text with a colored bar. If you only press <RETURN>, the existing

values will be accepted.

Item 5 produces the whole title.

You'll get more out of this program by playing around with it than by

studying it. What you don't like, you can change in the menu

selections.

Once you have corrected the last errors, save the video title program one

Save it last time. In several places of this book we'll make a few changes and
again additions to the video title program, in order to make it more

convenient or more powerful. For instance when we use graphics for

the background from... No, never mind. We can't tell you about that

just yet.

For now the video title program is finished. Until the next chapter, we

wish you lots of fun with it

88

Colors and

resolution

Abacus Colors and resolution

It's all here in black and white:

Amiga colors and resolution

Right now you might be saying, "OK, I've got a computer that's

capable of displaying 32 of 4096 different colors at the same time, and

what have I seen of them so far? All of four colors!"

You've got a point. The four colors that we used can be changed with

the PALETTE command. We used this AmigaBASIC command in the

Item 4 routine of the program (Define colors) allows you to do

this. However, we haven't yet managed to display more than four colors

on the screen at the same time in AmigaBASIC. This is about to

change. This next chapter will introduce you to the Amiga's color in all

of its splendor.

91

Colors and resolution AmigaBASIC Inside and Out

2.1
Amiga teaser:

A spectrum of color

You might remember that these "teasers" at the beginning of each

chapter are meant to give you an idea of the Amiga's capabilities
without requiring a lot of programming effort. You don't need to

understand the program example right away. Just type it in exactly as it

is printed out and enjoy the results.

If you are an Amiga 1000 owner with only 256K to work with, you'll

need to incorporate some changes to this program, listed on the next

page.

Type in the following program:

SCREEN 1,320,200,5,15

WINDOW 2, "This is as colorful as it gets",, 23,111

FOR x=0 TO 75

FOR y=0 TO 35

co=x+y*85
LINE (x*38,y*45)-((x+l)*38, (y+1) *45) ,co,bf5

NEXT y,x5

WHILE INKEY$=""5

PALETTE INT(31*RND)+1,RND,RND,RND5

WEND5

WINDOW CLOSE 25

SCREEN CLOSE 15

WINDOW 15

You might be wondering whether there's a typographical error in the

second line of this program. Here's that line again, with the "error"

underlined:

WINDOW 2,"This is as colorful as it gets",^23,15

Don't worry, this is not a mistake. The two commas after the quotation

mark, followed by the number 23, are correct AmigaBASIC syntax.

Don't forget to Save the program on diskette after you've typed it in.
You can use the program at a later time for experiments when you

understand its concepts more clearly.

A few suggestions before you try the program out: You can change the
size of the window and shift its position. Also, look closely at the

appearance of the pulldown menus.

To end the program, simply press any key.

92

Abacus a spectrum of color

The lack of extra memory in a 256K Amiga 1000 becomes very

Program restricting when you're working with many colors and high resolution.
changes for Without the RAM memory expansion, it's almost impossible to
Amiga 1000 display more than eight colors on the screen at one time. If you have an
With 256K Amiga 1000 with 256K of memory, change the first two lines:

Before:

SCREEN 1,320,200,5,lfl

WINDOW 2,"This is as colorful as it gets",,23,lfl

After:

SCREEN 1,320,200,3,111

WINDOW 2, "This is as colorful as it gets",, 0,1^1

Also change the fifth line:

Before:

After:

co«(x+y*4) AND 7fl

Except for the few restrictions that we mentioned, this program version

will give you the same results as the original program.

93

Colors and resolution AmigaBASIC Inside and Out

2.2
Pixels, colors and memory:

Amiga screen resolutions

Color and

memory

Pixels

In the colorful demonstration program, you saw that it is possible to

randomly change and select colors on your Amiga.

AmigaBASIC has commands that allow you to manage any number of

windows. These windows can be on any one of a total of five screens.

You can use various resolutions and different color combinations for

screens and windows in BASIC. If what we've just said doesn't quite

make sense to you, you'll find out more in just a minute.

Before we continue with our programming, let's get a little background

on the subject of computer colors and resolution.

The display of colors and graphics are memory intensive. If you are or

used to be the owner of a 256K Amiga 1000, you know that many

graphic programs cannot run on your Amiga because of the limited
memory space. This is understandable, since the computer must

constantly load the information for the display of the screen in memory,

and the process usually gobbles up a large amount of your free

memory. This is the price you pay for the Amiga's easy to use mouse

control and sophisticated graphics.

Do you remember the bobs? These also had to be loaded into memory

first. Then they were copied into the actual screen display and removed
from the screen before the next movement. In fact, your Amiga
wouldn't be able to remember the location of any character or graphic

on the screen. Because the computer can only remember the location of

screen elements by keeping them in its memory, each graphic, each

character—each and every dot displayed on the monitor screen—uses up

part of your RAM.

The screen display of a computer is composed of thousands of small

dots called pixels. The picture on the screen is composed of pixels, just

like a picture in a newspaper is made up of points of ink. When the

points are small enough and the viewer is at a distance, the points form

a whole picture. You've learned this principle stated in this book

earlier, when we talked about the way a television works.

On a monochrome screen, a pixel can have only one of two values:

either on or off (visible or invisible). Thus the pixels can very easily be

displayed as bits in memory. Each point on a monochrome screen

corresponds to one bit in the computer's memory.

94

Abacus SCREEN RESOLUTIONS

Resolutions

Multiple

colors

The Amiga offers several levels of resolution. Each level displays a

different number of pixels on the screen. The lowest resolution consists

of 320 pixels horizontally and 200 pixels vertically. For an example,

the demonstration program at the beginning of this chapter is displayed

in low resolution. Multiply 320 by 200 pixels and you get a total of

64,000 individual pixels displayed on the screen.

Since the amount of memory used in programs and graphics are usually

given in bytes, and one byte consists of eight bits, 8,000 bytes are

required for this resolution. In other words, about 8 kilobytes (8K).

If you're curious as to why this equals "about" 8 kilobytes, refer to

Appendix E under the word "byte".

The next level of resolution displays 640 pixels horizontally and 400

vertically. This is the resolution which the Amiga displays most of the

time. The Workbench uses this resolution, as does AmigaBASIC. The

640 x 200 pixels yield a total of 128,000 pixels. Therefore, about 16K

of memory is required to display a screen in medium resolution.

There are still two higher levels of resolutions. They are produced in the

interlace mode, which we'll talk more about later. Their respective

resolutions are 320x400 (128,000 pixels, or 16K) and 640x400

(256,000 dots or 32K).

But the previous examples of resolution are quite simplified—we've

assumed that the picture is displayed in only one color. (There are

actually two colors, if you want to get technical. One color is used for

the foreground, such as white for text and graphics, and one color for

the background, such as blue). If a pixel is white, the bit is on (set). If

a pixel is blue, the bit in memory is off (not set).

One bit per pixel is all that's needed for these "one-color" displays.

However, how do we get four, eight, and even 32 colors on the screen

at the same time? Simple: When one bit isn't enough, use more bits.

For instance, if you have two bits for one point, you can already

distinguish between four colors. If both bits are off, blue could be

displayed. If the first bit is off and the second is on, the dot could be

white. If, in turn, the first bit is on and the second is off, the dot could

be black. If both bits are on, the dot could be a fourth color such as

orange. Screens with four colors are then possible, such as those you've

seen on the Workbench, or in the LIST and BASIC windows in

AmigaBASIC.

95

Colors and resolution AmigaBASIC Inside and Out

But now with four colors, every screen requires 32K instead of 16K. If

more colors are needed, more bits are used. For instance, using three

bits per pixel, eight colors can be displayed. Think of the different

combinations: off-off-off, off-off-on, off-on-off, off-on-on, on-off-off,

on-off-on, on-on-off and on-on-on.

You're probably getting dizzy from all those ofhs and ofs—excuse me,

offs and ons. So let's use the standard way of representing this off/on

system—by using binary numbers. The standard way to denote an "off

bit is with a 0. The standard way to denote an "on" bit is with a 1. So

the eight possible combinations that result from three bits look like

this:

000 001 010 011 100 101 110 111

This is our first real encounter with those mysterious binary numbers—

you'll hear more about them in Intermission 3. This little game can

be applied in the same way to four and five bits, and theoretically much

further. In fact, all of the Amiga's 4096 colors could be encoded with

only 12 bits, but the chips don't normally deal with producing video

graphics. Usually 32 colors is the limit.

The following table shows all possible levels of resolution, the

possible number of colors, and the amount of memory required by the

Amiga to produce these colors:

Table 2: The

Amiga's

resolution
1 J"± ir ^\ 1 fi
levels

Resolution

320 x 200

(low resolution,

normal mode)

640 x 200

(high resolution,

normal mode)

320 x 400

(low resolution,

interlace mode)

640 x 400

(high resolution,

interlace mode)

Colors

2

4

8

16

32

2

4

8

16

2

4

8

16

32

2

4

8

16

Bits/pixel

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

2

3

4

Memory requirements

8 kilobytes

16 kilobytes

24 kilobytes

32 kilobytes

40 kilobytes

16 kilobytes

32 kilobytes

48 kilobytes

64 kilobytes

16 kilobytes

32 kilobytes

48 kilobytes

64 kilobytes

80 kilobytes

32 kilobytes

64 kilobytes

96 kilobytes

128 kilobytes

96

Abacus SCREEN RESOLUTIONS

. Now can you see why there's been such intense competition among the

Bitplanes computer makers to offer as much memory for as little money as
possible? The table on the previous page also explains why it's so easy

to fill 512K bytes of memory with just two graphics.

Some more general theory on computer resolution and memory:

The bits that control a specific pixel aren't located consecutively in

memory. They are located in bitplanes, since this is a more efficient

way for the Amiga to store them. Only one bitplane is needed for two

colors. Two bitplanes are needed for four colors. The first bit of each

pixel is located in the first bitplane, and the second bit in the second

plane. If a third, a fourth, or a fifth bit is added, a corresponding third,

fourth, or fifth bitplane is added as well.

To understand the concept of bitplanes a little better, imagine this: the

planes are stacked on top of each other, and the more planes present, the

more colors that can be displayed. Take a look at Figure 5:

Figure 5:

Together the

"layered"

bitplanes

produce a

color picture

////////7//////////%

4th bltplano

97

Colors and resolution AmigaBASIC Inside and Out

Technically this illustration isn't quite correct, since the planes are

actually located one after the other in memory. In other words, the

Amiga stores the bits in the first plane, then the bits in the second

plane, and so on. Nevertheless, Figure 5 should make it easier for you

to visualize the concept

If at this point you are saying, "Whoa—I only understood about half of

this, and not even that half very well either," don't worry. It is not

essential to know the details of memory management to program colors

in AmigaBASIC. It's enough that you know how many bitplanes are

required for a certain number of colors, and approximately how much

memory a graphic will need. After all, you'll eat up 512K in a hurry if

you use colors and screens wastefully.

What exactly are these "screens", anyway? You'll find the answer in the

next section.

98

Abacus screens

2.3
"Motion" graphics:

The Amiga's screens

You might have used a graphic program where you pulled down the

entire screen with the mouse, and behind that screen a completely new

screen is visible—for instance, the famous bouncing ball demo. The

Amiga can "stack" different graphic screens one on top of the other, and

their order can be changed with the front and back gadgets. Once you've

closed all of the screens, you're left with an empty blue background.

Don't confuse screens with windows—they're two very distinct Amiga

What are features. In this context, the term screen refers to the entire "frame"
screens? displayed on the video monitor. In turn, the windows and icons are

displayed within this screen. Try the following little experiment:

VV REDUCE THE LIST AND BASIC WINDOWS IN SIZE SO THAT

THE WORKBENCH SCREEN IS VISIBLE (CLICK THE SIZING

GADGETS IN THE LOWER-RIGHT CORNER OF THESE WINDOWS).

VV MOVE THE POINTER TO THE WHITE TITLE BAR AT THE TOP OF

THE WORKBENCH SCREEN.

VV MOVE THE MOUSE DOWNWARD WHILE HOLDING THE LEFT

MOUSE BUTTON UNTIL THE ENTIRE SCREEN, INCLUDING ALL

ICONS AND WINDOWS, SLIDES DOWNWARD AND DISAPPEARS AT

THE BOTTOM OFTHE MONITOR.

You've just moved the Workbench screen. Usually there won't be any

other screen behind it, unless other programs are running on your

Amiga, or another screen is still active from one of your BASIC

experiments.

A screen can theoretically contain an unlimited number of windows and

icons. However, the screen resolution and the maximum number of

colors is constant throughout the screen. This is because these values

must be specified when a screen is created. These parameters remain

constant until the screen is redefined or closed. For example, you cannot

specify a different resolution or a different number of bitplanes for one

particular window in the screen, since the parameters stay the same

throughout the screen.

Drag the Workbench screen back into view. Then type the following

line in the BASIC window:

screen 1,320,200,3, I'll

99

Colors and resolution AmigaBASIC Inside and Out

SCREEN

WINDOW

SCREEN

CLOSE

As soon as you press <RETURN>, an empty screen is displayed. This

screen has a resolution of 320 x 200 pixels and has a maximum of

eight colors. Screens are actually independent video graphics, except

that all of the different screens can be displayed on the same video

monitor. You'll see that your new screen has a back gadget and front

gadget, just like the Workbench screen. If you click the back gadget,

the Workbench screen will come back into view. This back/front

system works exactly the same way with screens as with windows.

As soon as you create a screen, you can define windows in it. Type the

following line in the BASIC window:

window 1, "Hello",, 0, H

On the new screen you'll now see a window called Hello.

AmigaBASIC automatically makes this the new BASIC window (the

reason for this in a minute).

In any case, your Amiga is now displaying two screens: The

Workbench screen , and the Hello screen that you just created. Most

of the time you'll be working on the Workbench screen—for instance,

when you're programming in AmigaBASIC. You'd use the other

screens in the background to run other programs.

It's often difficult to use the front and back gadgets, because they are

usually covered by windows. So there's another way of bringing the

Workbench screen to the foreground. The key combination <C=><N>

(<Amiga key><N>for Amiga 1000) positions the Workbench in front

of all other screens. To position the Workbench in back of all other

screens, use the <C=><M>or <Amiga key><M> combination.

To close the new screen, type the following command in the BASIC

window:

screen close lfl

However, this closes the screen containing our BASIC window. Now

we're stranded without a BASIC window. Don't worry—simply select

the Show Output item from the Windows menu and the BASIC

window is redisplayed on the Workbench screen.

Now you know the most important commands you need to program

screens and windows in AmigaBASIC. But what do those numbers after

the commands mean? Let's look at our first example above:

screen 1,320,200,3,lfl

100

Abacus screens

Parameters

with

SCREEN

The first number after the SCREEN command is the screen ID number.

AmigaBASIC can manage up to four screens, so the screen ID number

must be between 1 and 4.

You might know what the next two values are: The first is the number

of horizontal pixels and the second is the number of vertical pixels.

However, these numbers don't specify the screen's resolution, only the

actual size of the screen within the current resolution. For example, try

this:

screen 1,200,200,3,11

When you type a vertical value below 200, you won't be able to move

the arrow past the bottom of the window. If you move this screen,

you'll only be able to pull it up to the defined height. Try this:

screen 1,200,100,3,15

The fourth value in the SCREEN command specifies the number of

bitplanes that the screen will have. This way you control the number of

colors that the screen will be able to display.

The last number specifies the screen's resolution. The following four

values are permitted:

Table 3:

Possible

resolutions

for SCREEN

Interlace

mode

Value

1

2

3

4

Resolution level

Low-res, normal

High-res, normal

Low-res, interlace

High-res, interlace

Pixels

320 x 200

640x200

320 x 400

640x400

The values that you give for the screen's horizontal and vertical sizes

must be within its resolution, otherwise you'll get all sorts of strange

results. For instance, don't select a size of 440 x 200 when your

resolution is 320 x 200 (resolution 1). Even though AmigaBASIC

won't display an error message, your should still avoid these "out-of-

bounds" values.

The table above uses the term interlace. It's about time we explain that

word. First, let's demonstrate the effect of the interlace mode on the

screen. Type this line:

screen 1,640,400,1,4

(400,300), 15, II

window l,"Test",(0,0)-

101

Colors and resolution AmigaBASIC Inside and Out

You'll notice two things right away: The characters on the screen are

extremely small, and the monitor screen is flickering. The advantage of

interlace mode is that it achieves a higher vertical resolution, and

produces graphics up to 400 pixels in height. The disadvantage of

interlace mode is that it causes the screen to flicker. Let's refer back to

television technology to discover how the higher vertical resolution is

produced, and why the picture is flickering.

You already know that the motion of objects on the monitor is

animated rather than "real". The picture is simply displayed over and

over at high speed (approximately 30 times a second). To the human

eye this animation looks continuous and fluid. However, the picture

still flickers considerably at 30 frames per second.

So that it wouldn't have to use more frames per second for higher

resolution graphics (which would complicate the transmission), the

Amiga uses a trick to stabilize the picture. In the first 1/60 second the

monitor shows only every second line of the picture. In the second 1/60

second, the picture is constructed again, this time displaying the lines

that were left blank during the first half. To the naked eye it seems as

though 60 frames per second are drawn, which is enough to stabilize the

picture and prevent it from flickering.

The Amiga uses the same trick, regardless of whether you use an

Stabilizing Amiga monitor or a television set In normal mode, a resolution of 200

the picture lines (or vertical pixels) is used. To double this number in interlace

mode, the Amiga sends a different picture when the monitor is

constructing the second set of lines. The two half graphics are combined

to form a picture with twice the vertical resolution. However, the

picture is quite unstable, because only 30 frames per second are now

being displayed.

Also, the higher the contrasts between bordering colors, the stronger the

flickering will be. The amount of flickering also depends upon the

shape of the object. Whether you use the interlace mode is up to you.

If you need an absolutely stable picture, there is an alternative. Special

monitors are available that have a slightly longer illumination time,

which minimizes the flickering. By the way, if you think that this

flickering is very unprofessional for a computer like the Amiga, take a

close look at the projection behind the newscasters during your local

11 o'clock news. Notice any similarities?

102

Abacus creating Amiga windows

2.4
Creating your own Amiga windows

Once you've defined your screens, the next step is to create the windows

in those screens. As you might have noticed in our examples, the
WINDOW command performs this task. If the interlace screen from the

last chapter is still active (indicated by the slight flickering of the other

screens), close it now:

screen close 15

To return to the BASIC window, select the Show Output item

from the Windows menu. Then type the following line in the

BASIC window:

window 2,"Hello", (320,20)-(615,150),31,-15

Owners of 256K Amiga 1000s must make another compromise here.

Type the following line instead:

window 2,"Hello",(320,20)-(580,120),15,-15

A window named Hello is displayed in the Workbench screen. Now

WINDOW type the following line:

for x«l to 100 : ? x : next x5

As you'll see, the numbers are displayed in the new window. The

command:

window output 15

displays the output in the BASIC window.

Well, it's time to make this a little more systematic. First the

parameters of the WINDOW command:

window 2,"Hello", (320,20)-(615,150),31,-15

for 256K Amiga 1000:

window 2,"Hello",(320,20)-(580,120) ,15,-15

103

Colors and resolution AmigaBASIC Inside and Out

WINDOW

parameters

Table 4:

Parameter

values for

the WINDOW

command

The first number after the command specifies the window ID number.

AmigaBASIC allows you to open any number of windows—at least

until you run out of memory. The number 1 is reserved for the

BASIC window, so you should use numbers starting at 2 to identify

the windows you create. If you type 1 for a new window, you can

change the size, resolution and colors of the BASIC window.

However, if you wish to display more than four colors or a higher

resolution than 640 x 200 pixels, the window will have to be moved to

a new screen, since the settings of the Workbench screen can't be

changed. The present version of AmigaBASIC is limited to a resolution

of 640 x 200 and two bitplanes (four colors).

The second parameter of the WINDOW command is the window's name.

It is entered as a string, either within quotation marks or in a string

variable.

The third parameter set of the WINDOW command specifies the position

and size of the window. If these values are missing, the window will

cover the entire screen. To display a window that's smaller than the

screen, you specify the coordinates of the upper left-hand corner and the

lower right-hand corner in the format (xl, y 1) - (x2, y2). For

example: (100,10)-(500,140)

The fourth value determines the features of the window. The individual

values are added together to form a single number that specifies the

properties you want the window to have. The following single values

are used:

1

2

4

8

16

Window size can be changed with the sizing

gadget

Window can be moved with the mouse

Window can be moved into the foreground or

background with the front and back gadgets.

Window can be closed with the closing gadget.

The contents of the window stay in memory

when the window size changes, or when the

window is in the background.

For instance, if you want a window that can be moved (2) and clicked

closed (8), as the fourth value you type 10 (2+8). A window whose size

can be changed (1), which can be moved (2) and can be clicked into the

background (4), requires 7 (1+2+4) as the fourth value. If the window is

to have all the available items, the fourth value will be 3 1

(1+2+4+8+16). However, note that the last item (16) uses up a lot of

memory, since the Amiga must store the entire window's contents at

the same time it's manipulating another window. A 256K Amiga 1000

really doesn't have enough memory to utilize this item.

104

Abacus creating Amiga windows

If the window's contents are not to be kept in memory (no value 16),
the window's contents are erased as soon as the window is moved, or

when another window is moved into the foreground. Therefore, if you
don't give a window the value 16, make sure that it remains in the

foreground and is not shifted—use the value 0 (no items) to be safe.
Depending on which value you type, the corresponding window icons

may or may not appear in the window frame.

The last value in the WINDOW command specifies the screen in which

the window is displayed. If you don't specify a value here, or else

specify the value -1, the window is displayed in the Workbench screen.

From the time that it's created with the WINDOW command, a window

WINDOW automatically becomes the output window. This means that any output

OUTPUT of a running BASIC program is displayed in the newly-created window.
To redirect the BASIC output back to another window, you use the

following command:

window output w±ndow_number^

WINDOW OUTPUT simply redirects the output to another window, and

does not change the window sizes or positions. AmigaBASIC even lets
you switch the output to a window that isn't open or visible. To

display the new output window in the foreground, you'd use this

command:

window window^numberf

The WINDOW CLOSE command closes the window you specify. It has

WINDOW no other parameters. However, this command works only with windows

CLOSE that were previously defined:

window close windowjiumber^.

The command above clears a defined window from the screen without

"Cleaning" deleting it. AmigaBASIC has no command that will erase a single
Windows window from memory once it is opened. Even the SCREEN CLOSE

command will not erase the screen's windows. Only a RUN command or
clearing a program from the corresponding pulldown menu item can

close those windows and screens.

As a result, you should not use too many windows when you're
programming. This impractical aspect of AmigaBASIC often disables a
WINDOW command that previously worked fine, which results in an
Illegal function call error message (although other errors

display this error message too). If this problem arises, either use
another window number or erase all windows by restarting the program.

Feel free to experiment with all the WINDOW commands you've just

learned. Use examples of your own.

105

Colors and resolution AmigaBASIC Inside and Out

Even though you might have tried all the examples, this section has

still probably seemed a little dry and boring. Let's use the new

knowledge about AmigaBASIC screens and windows to do something

useful.

We've used only four colors in our video title program up to now—

let's change this. Open your video title program and edit the

Setup: routine so that it looks like this:

Setup: SI

Colors«2fl

d=15 : Colors=(2AColors)-H

TextColor=lfl

SCREEN CLOSE 2fl

IF Colors>2 THEN SCREEN 2,640,200,Colors,2 : WINDOW 2,

"Videotitle",,28,25

DIM Text$ (d), Colormatrix (d, 3), Move (d), Speed (d) fl

Filler$=STRING$(16,"-") fl

Colormatrix(1,1)«15fl

Colormatrix(1,2)-155

Colormatrix(1,3)=155

Don't forget to save the new program version immediately. If you don't

want to lose the original version, then save the altered version under a

new name.

The Colors variable contains the number of bitplanes that are used.

The standard setting is 2. If you want to use more colors (and if your

Amiga has at least 512K of memory), you can type in 3 (for 8 colors)

or 4 (for 16 colors). If the value of Colors is greater than 2, the

program will define a corresponding screen and window. You can see

this clearly when you select item 4 in the menu (Define Color).

Things are starting to get fun... Now that you can create and program

screens and windows, we can move on to the AmigaBASIC commands

that use windows for graphic output.

106

Abacus first graphic commands

2.5
Versatility:

the first graphic commands

This section details the Amiga's graphic commands. One thing you'll

notice right away is that each graphic command has a complete set of

options, which makes them extremely versatile.

Click the BASIC window into the foreground for the following

experiment, so that you can see it completely.

Let's start out doing something small. Try this:

pset (400,100)^1

You may not notice it unless you look for it, but a small white dot is

PSET now displayed in the middle of your screen. It is in the location where

the LIST window usually starts, about halfway up the screen. If you

still can't see it, let's make it a little bigger. Type in this command:

pset (401,100)fl

This displays another dot next to the first. Now you should be able to

see them both clearly. The BASIC command PSET is used to produce

individual points of a graphic. Since two points on the screen aren't

very exciting, let's place a series of points adjacent to each other:

for x=l to 184 : pset (x,x),3 : next xfl

This displays an orange line on the screen.

The PSET command specifies where the point is placed using a set of

X and Y coordinates. These coordinates are enclosed within parentheses

(x, y) just like in the WINDOW command. It's the same concept used

in the popular game Battleship® (from Milton-Bradley). A set of two
coordinates specifies the target, and the Amiga draws a dot at that target

location. The only difference is that the Amiga won't say "You sank

my battleship!" (Incidentally, you could write a Battleship program in

AmigaBASIC—but you might want to get a little more programming

experience first).

In a normal window on the 640 x 200 screen, the X value can be

between 0 and 184 (part of the screen is used by the frame and the

window symbols). The color can be specified after the coordinates. The

complete syntax looks like this:

PSET (x,y),colorfl

107

Colors and resolution AmigaBASIC Inside and Out

The BASIC command line above which produced the diagonal line is
quite simple. The variable x is increased from 1 to 184 in steps of 1.
The values of the X and Y coordinates will always be the same—in
fact, they'll both have the value of x. Thus a point is drawn at (1,1), at
(2,2), (3,3), and so forth, up to (184,184), and draws a line across the
screen at a 45-degree angle.

However, AmigaBASIC gives you a much simpler method of drawing

lines: the LINE command. The line that we just drew with PSET can
also be drawn this way:

LINE (1,1)-(184,184)fl

The LINE command's parameters are the starting point of the line, a
LINE dash and the end point of the line. The final value specifies the color of

the line. You can also omit the first pair of coordinates; the line will
then start at the endpoint of the previous line:

LINE -(500,10),251

An easy way to create interesting graphics is to use random values. The

RND rnd (RaNDom) variable is used for this. RND always contains a
random number in the range between 0 and 1. Let's look at some

sample values:

for x=l to 10 : ? rnd : next x<H

Now type the following demonstration routine in the LIST window

and immediately save it to diskette. We'll experiment with the RND

command by changing this routine bit by bit. Also, don't hesitate to

experiment on your own. If you particularly like one of the effects you

get, be sure you save the version under a unique name.

The first version draws colored dots at random locations:

CLSfl

Loop: SI

PSET (617*RND,184*RND),3*RNDfl

GOTO LooplI

One thing about random numbers: When you multiply RND with a

number (for example, 617), you'll get a value between 0 and the

specified number (617). This determines the X and Y coordinates as

well as the color. Soon the screen will be covered with more and more

colored dots. To stop the program, press <Amiga> and <.>

simultaneously, or use the pulldown menu.

If you have plenty of free memory, you can do this on a higher

resolution screen with more colors:

108

Abacus first graphic commands

Color3=411

Omax=2AColors-lcil

SCREEN 1,640,200,Colors,2fl

WINDOW 2,"Dots",,31,15

CLSfl

Loopifl

PSET (617*RND,184*RND),Cmax*RNDfl

GOTO Loopfl

You can make the RGB composition of the colors random as well.

Simply insert these lines preceding the CLS command:

FOR x=l TO (2AColors)-lfl

PALETTE x,RND,RND,RNDfl

NEXT xfl

You'll use the formula (2 AColors) -1 quite frequently. It calculates
the highest possible number of colors from the number of available bit-
planes (in the variable Colors). The A symbol signifies an exponent,

i.e., 24 would be 2A4 in AmigaBASIC.

The RND command is very easy to use in conjunction with the
PALETTE command, since PALETTE requires numbers in the range

between 0 and 1. That's exactly the numbers RND produces.

Now replace the line containing the PSET command with this:

LINE -(617*RND,184*RND),Cmax*RNDH

This version creates a "haystack" of colored lines.

The LINE command is actually more powerful than you might suspect.

Type the following command line in the BASIC window:

LINE (10,10)-(300,100),l,M

As we said before, AmigaBASIC's graphic commands are very powerful
and versatile when taken advantage of their additional parameters. The b
stands for box, or rectangle. How did the Amiga know where and how
large to make the rectangles? The starting coordinate determines the
upper left corner, while the end coordinate is the lower right corner.

This might remind you of the format used to specify window sizes. In
fact, AmigaBASIC uses the same format to determine the coordinates
for points, lines, windows, rectangles and other graphic objects.

Add a , b to the LINE command in our little demonstration program:

LINE -(617*RND,184*RND),Cmax*RND,bfl

The results are again quite interesting. Hold on—the LINE command
has another surprise in store. You can also color in these rectangles. To
do this you replace the b parameter with bf (block fill). Try this

demonstration program:

109

Colors and resolution AmigaBASIC Inside and Out

LINE -(617*RNDf184*RND)/Croax*RND,bf5

Not bad!

However, some of you like to retain control and calculate everything

down to the finest detail. If you're one of these people, you might not

like the random functions very much. Another method to produce

computer graphics is mathematical formulas—this is easy in

AmigaBASIC, too.

At this time, save the demonstration program, then type NEW to clear

the memory. Do you remember all of those sine curves back in high

school math class? Type in this program routine for a refresher course:

FOR x=0 TO 617^1

y*=90+80*SIN (x/40) fl

PSET (x, y) fl

NEXT xfl

Do you still remember what the sine function does? Well, for starters,

SIN it has values in the range between -1 and +1. The formula in the second
line of the routine converts the SIN function into screen coordinates.

The X value is divided by 40 so that the curve doesn't get too "narrow".

The result is multiplied by 80 (producing numbers between -80 to +80)

and added to 90. This produces Y coordinates between 10 and 170.

If all this sounds too mathematical for you, simply plug different

values into the formula and see what happens. (Note: you may change

the 40; you may only reduce the 80; leave the 90 alone).

To produce a continuous curve instead of the series of dots that we now

have, you can use the LINE command again. First you'll have to

specify a starting point, so that the first line doesn't start at any point

on the screen. Because of this the first PSET command is retained:

PSET(0,90) fl

FOR x=0 TO 6175

y=90+80*SIN(x/40)fl

LINE -(x,y)f

NEXT x<H

If you use COS (cosine, the counterpart of sine) you'll see how the

COS curve changes. SIN and COS can produce many interesting effects.
We've put together a few demonstration programs for you to quickly
type in:

FOR x=0 TO 6171

y=90+80*SIN(x/40)fl

LINE (0,90)-(x,y)fl

NEXT xfl

110

Abacus first graphic commands

When you connect the points on a sine curve with some other fixed
point, an intricate line formation will result. Let's add some more

color:

0010X3=4fl

SCREEN 1,640,200,Colors,25

WINDOW 2,"sine lines",,15,15

FOR x=0 TO 6175

co=co+l : IF co>7 THEN co=05

y=90+80*SIN(x/40)5

LINE (0,90)-(x,y),cofl

NEXT x5

I
Experiment with other values—for example, in the LINE statement:

LINE (320,90)-(x,y),co5

On

LINE (320,184)-(x,y),co5

Now use the block and block-fill items in the LINE command:

LINE (320,184)-(x,y),co,b5

You're only limited by your own imagination. Remember, these are

only demonstration examples—try experimenting on your own! If you

use more complicated formulas, you might end up with something like:

Colors=45

SCREEN 1,640,200,Colors,25

WINDOW 2,"sine lines",,15,15

FOR x=0 TO 6175

co=co+l : IF co> 7 THEN co=05

yl=90+80*SIN(x/40)5

y2=90+70*SIN(x/60)5

LINE (x,yl)-(617-x,y2),co5

NEXT x5

Or.

Colors«45

SCREEN 1,640,200,Colors, 25

WINDOW 2,"sine lines",,15,15

FOR x=0 TO 6175

co=co+.5 : IF co>7 THEN co=»15

yl=90+80*SIN(x/40)5

y2=90+70*SIN(x/60)5

x2=320-300*SIN (x/50) 5

LINE (x,yl)-(x2,y2),co5

NEXT x5

111

Colors and resolution AmigaBASIC Inside and Out

Hopefully these examples will give you some incentive to start

experimenting with these commands. Remember, the worst thing that

can happen is that you'll get an error message,or that the output won't

be very pretty. In the process you'll learn how to use these graphic

commands to produce impressive displays.

Have you thought about spicing up the video title program with these

routines?

112

Abacus CHAINING PROGRAMS

Intermission #2

Chaining your different programs together

Appending

programs

ASCII

You might find that once you've played around with sine waves and

LINE commands, you produce a graphic that you modestly think is

astounding. Wouldn't it be nice if you could include it in the

background in your video title program? After all, even though the

flying objects and the colored text are impressive, the program still

lacks that little something in the background. You'll learn how to

change that in this intermission.

The Amiga has several different methods to display a background. First,

we'll use a simple method: we'll just append the program that draws the
sine curve onto the end of the video title program. Then we'll have the

program execution jump to that routine just before the text and moving

objects are displayed. Sine wave graphics are interesting enough in and

of themselves to be displayed as the background of the program. (By the
way, if you use this program to create a title for video, be sure to time

the title so you know how long it is. After all, you wouldn't want to

erase the footage on the cassette when you record the video title).

Back to the future: It would be senseless to save or print out the sine
wave program routine, then retype it at the end of the video title
program. Instead, AmigaBASIC can "chain" your programs together.

Load the sine wave program routine into memory. (It might still be in
memory, since it's the last one we typed in; otherwise, load it from

diskette).

Now it has to be resaved on diskette in a special format. Type the
following command line in the BASIC window:

save "videographic", all

The new ,a at the end represents ASCII. Haven't we heard of that
before? ASCII codes are the numbers that are used with the CHR$
command. ASCII stands for American Standard Code for Information
Interchange. The a following the SAVE command instructs the Amiga
to save the program in ASCII values. If this is a special parameter for
the SAVE command, what is its normal format for saving programs?

113

Colors and resolution AmigaBASIC Inside and Out

Normally you type the SAVE command without this item, or you

simply chose Save from the Project menu. In this case, the

program is saved on the diskette in a special memory-conserving format

(for more info about this, look under "Tokens" in Appendix E). But

if a program is saved in this format, it cannot be chained to another

program. Chaining only works if the program is saved in ASCII

format. Here's another item that you can use with SAVE:

SAVE "test",pfl

The p stands for "protect". This is used to save a program so that it can

Protecting be run, but not listed or altered. For example, say you wanted to sell
files your own BASIC software program. The buyer of the program should

be able to run and use the program, but should not be able to look at its

listing. You can accomplish this by saving programs in the protect

format. The program is encoded when it is written on the diskette, and

AmigaBASIC will not be able to decode it again. Once you click or

LOAD such a program, the LIST window is blocked, and the program

can only be run.

However, this protection won't take a professional pirate very long to

"crack" (decode). If a commercial program was protected with this

format, it would be only a matter of time until some pirate wrote a

counter program to crack the protection. However, this format is quite

adequate for home use.

Now that we've briefly discussed the pirating and program cracking

MERGE controversy, let's return to harmless applications. Once you've saved

the videographic program in ASCII format, load the video title

program. When you chain two programs, the first program must be in

memory while the second is loaded from diskette. The command that

chains a program saved in ASCII format is very simple:

merge "videographic"fl

(If your program has a different name, you'll have to use that name

instead).

Now the graphic program is chained to the end of your video title

program. That was pretty easy, wasn't it?

Now we just have to make sure that the sine wave subroutine is also

executed. First, give the subroutine a label, such as Graphics :. If

your new program still contains SCREEN and WINDOW commands, you

should delete them now. The largest number of colors can be found in

the variable Colors.

Make sure that you don't use any variables in the subroutine which are

already being used in the main program. This would be a confusing

source of errors.

114

Abacus chaining programs

At the end of the program you still need a RETURN command. In our

case it would look like this:

Graphics:f

FOR x=0 TO 6175

co=co+.5 : IF co>Colors THEN co=lfl

yl=90+80*SIN(x/40)5

y2«90+70*SIN(x/60)fl

x2=320-300*SIN(x/50)5

LINE (x,yl)-(x2,y2),cofl

NEXT xfl

RETURNS

The only thing still missing is the command that will call the

subroutine. Type the following lines in the program routine

StartDisplay: of the video title program:

StartDisplay: f

WIDTH 60fl

COLOR TextColor, Background : CLS1I

GOSUB Graphics^

COLOR TextColor,TextBackgroundfl

That's it. Run the altered program to see the results. And don't forget to

save the new version if you like it.

With the method introduced here, you can chain any number of

programs in any order you like. This can be very helpful when you're

writing larger programs.

You can merge several background graphics for your video title. For

instance, you could present several graphic routines from which the user

can chose.

So that you have enough graphic programs to offer, you should learn a

few new commands. This is why we'll move right along to...

115

Colors and resolution AmigaBASIC Inside and Out

2.6
Full circle:

more graphic commands

The next command that we'll learn about will draw circles. Here's a

preview of the command's capabilities:

CIRCLE (320, 90), 16051

CIRCLE (260,50),15,,,,.55

CIRCLE (380,50),15,,,,.55

CIRCLE (260,53),85

CIRCLE (380,53),85

CIRCLE (380,50),45,,.2,2.25

CIRCLE (260,50),45,,.8,2.85

CIRCLE (320,80),20,,,,.75

CIRCLE (320,110),80,,3.1,0,.25

CIRCLE (320,10),10,,4.7,1.5,.95

CIRCLE (320,15),5,,5,1.8,.75

This example isn't quite as easy to type in as previous examples. Be

CIRCLE careful to include the correct number of commas! Hopefully, you'll find

the result is well worth the effort. After all, this program looks pretty

neat when you run it If you like, save it on diskette for later use.

The AmigaBASIC command CIRCLE created this entire graphic

without the aid of any other commands. This in itself proves how

powerful CIRCLE is. Of all the AmigaBASIC commands, CIRCLE

offers you the most items. The face that we drew in our sample

program consists of circles, ellipses and arcs. All these graphic objects

can be created with parameters of the CIRCLE command.

This is the most simple form of the CIRCLE command:

CIRCLE (x,y),radius5

This command line creates a circle with a centerpoint at (x,y) and the

specified radius. The value of the radius is given in number of pixels.

However, the number of pixels is valid only in the X-direction. We'll

talk about the Y-direction later.

Of course, we can use different colors, too:

CIRCLE (x,y),radius,color5

Not only can CIRCLE create full circles, but also parts of circles, or

Arcs and arcs. The next two values specify the angles. The first angle determines
ellipses the start of the arc, the second is the end of the arc.

CIRCLE (x,y), radius, color, anglel, angle25

116

Abacus MORE GRAPHIC COMMANDS

Figure 6:

Angles as

coefficients

of n

The values of the angles must be in the range between 0 and 2*tc, since

the angles are specified in radians. A quarter of a circle ranges from 0 to

1.57; half of a circle from 0 to 3.14; three-quarters of a circle from 0 to

4.71; and a full circle from 0 to 6.28—although for a full circle you can

simply omit this parameter. The following figure should help you find

the correct angle values:

1.57

1.95 1.17

2.36 .78

2.75

3.14

3.53

0.39

0 / 6.28

5.89

3.93 5.50

4.32 5.10

4.71

AmigaBASIC also gives you a method to draw sectors of circles, e.g.,

for a pie chart. If you type a negative value for an angle, the

corresponding point will be connected to the center by a line. Try this

in the BASIC window:

circle (320,100),200,3,-1.57,-3.145

The seventh and last value determines whether the circle is to become

an ellipse. It specifies the relationship between the X-radius and the Y-

radius.

circle (x,y),radius,color,anglel,angle2,x/y-ratiofl

117

Colors and resolution AmigaBASIC Inside and Out

If you want to draw a perfect round circle the x/y ratio will depend

on adjustment of your monitor. The leftmost of the three knobs on the

back of the Amiga monitor determine the height of the picture. If this

adjustment is not normal, your circle will be displayed as an oval, and

vice versa. A value of 0.44 will be the correct x/y ratio at the

normal monitor setting. This is also the default value used by

AmigaBASIC if this parameter is not specified. Smaller values will

compress the circle into a horizontal ellipse. Values larger than 0.44

will stretch the circle into a vertical ellipse.

Armed with this knowledge, let's take on the listing for our

demonstration program:

The first line CIRCLE (32 0, 90), 160 draws a round circle with its

Making a center at (320,90) and a radius of 160 pixels.
face

The next two lines CIRCLE (260,50), 15,,,, .5 and CIRCLE

(380,50),15,,,,.5 draw the eyes. Two slightly egg-shaped

ellipses are formed, since the x/y ratio is slightly above the normal

value.

The fourth and fifth lines CIRCLE (2 60, 53) , 8 and CIRCLE

(380,53), 8 create the pupils within the eyes.

The following two lines draw the eyebrows:

CIRCLE (380,50),45,,.2,2.25

CIRCLE (260,50),45,,.8,2.8fl

Here we used normal circles with a radius of 45 pixels. However, only

segments of the circles are used (arcs), with starting angles of 0.2 and

0.8, and with ending angles of 2.2 and 2.8. To see where these angles

are, refer to Figure 6.

Now for the nose: CIRCLE (320,80),20,,,,.7 is positioned

exactly in the middle of our face, and its shape is definitely elliptical.

CIRCLE (320,110) ,80,,3.1,0, .2 is a half circle from n to 0

(where 0 is identical to 2*n) that forms a smile.

The last two commands draw a bit of hair:

CIRCLE (320,10),10,4.7,1.5,.95

CIRCLE (320,15),5,,5,1.8,.75

The two hairs are arcs from a vertical ellipse. Again, compare the

starting and ending angles to Figure 6.

Maybe you'd like to follow the face's construction step by step on the

screen. Unfortunately, the Amiga makes this difficult for us because it's

so fast. Even Trace mode won't help much in this case. For this

purpose there's another item on the Run pulldown menu that

118

Abacus more graphic commands

simplifies the testing of programs. The Step menu item notifies the

Amiga to execute one command and pause before executing the next

command. The Amiga pauses until you select the Step item from the

Run menu again, or until you press the <right AmigaxT> key

combination.

This Step item available from the menu does not have a corresponding

BASIC command. Try it out with this "face" program: Everytime you

select Step or press the key combination, another part of the face is

drawn. This way you can see how the graphic is constructed step by

step, and see the order in which the commands are executed. If you look

at the LIST window, you'll see that each command is highlighted as

it's" executed, just as in trace mode. <Amiga> <.> disables the step

mode.

Whether it's drawn fast or slow, the drawing of this program still

PAINT reminds you of something you'd find scribbled on a schoolroom

blackboard. To make it look more Amiga-like, we need another

command.

PAINT lets you color in the outlined areas. Change your program

listing so that it is identical to the listing below. Save this new version

as soon as you're done typing:

CIRCLE -(320,190) ,200,1,,, .65

PAINT (320,170),15

CIRCLE (320,90),160,35

PAINT (320,90),35

CIRCLE (260,50),15,1,,,.55

CIRCLE (380,50),15,1,,,.5H

PAINT (260,50),15

PAINT (380,50),15

CIRCLE (260,53),8,25

CIRCLE (380,53),8,25

PAINT (260,53),25

PAINT (380,53),25

CIRCLE (380,50,45,2,-2,2.25

CIRCLE (260,50),45,2,.8,2.85

CIRCLE (320,80),20,2,,,.75

CIRCLE (320,110),80,2,3.1,0,.25

CIRCLE (320,10),10,2,4.7,1.5,.95

CIRCLE (320,15),5,2,5,1.8,.75

CIRCLE (160,70),40,3,,,.65

CIRCLE (480,70),40,3,,,.65

PAINT (160,70),35

PAINT (480,70),35

CIRCLE (160,60),30,2,1,3,.35

CIRCLE (480,60),30,2,.3,2.2,.35

CIRCLE (150,65),25,2,4,1,.75

CIRCLE (490,65),25,2,2.2,5.4,.75

119

Colors and resolution AmigaBASIC Inside and Out

Painting the

face

Saving the

face

A note about

PAINT

Besides having new broad shoulders and a pair of ears, our little guy

now also has a more colorful face.

If you examine the construction of these graphics, you'll get an idea of

how the PAINT command really works: You specify a point within a

completely enclosed area. You also specify a color. AmigaBASIC then

fills the entire area within the boundary of the graphic with that color.

The Blitter chip makes the fast execution speed of this command

possible—its specialty is moving, filling or changing graphic objects.

Note one important characteristic of this command: PAINT recognizes

the outline only if it is drawn in one specified color. In the sample

program you might have seen that the body is drawn and painted before

the head, then the head is drawn and painted, covering up parts of the

body. The parameter for painting outlined areas has the following

syntax:

PAINT(x,y),color,outline colors

If no outline color is specified, the command assumes that it is the

same as the paint color. Therefore, PAINT (32 0, 90) , 3 will paint

everything around the point (320,90) until it reaches an orange outline.

If the outline was white (color number 1) and the paint color black

(color number 2), you'd need the following command:

PAINT (x,y),2,H

Please remember this aspect of the PAINT command—otherwise our

little guy would quickly lose his face.

The outline of the area that is filled with PAINT can be created by any

graphics command. The outlines do not have to consist of circles or

ellipses. The important thing is that the outline has absolutely no gaps

in its boundaries. Otherwise the color will "leak" beyond the intended

area. You might remember that we have already encountered this

problem in the object editor which we used to define our objects. That's

because the object editor is also a BASIC program, and uses the PAINT

command.

The next program demonstrates another method to create outlines. It

uses the LINE command to draw a grid whose individual segments are

randomly filled with color. After a while it'll really starts to look like

Battleship...

120

Abacus more graphic commands

Now to the listing:

FOR x=0 TO 615 STEP 15H

LINE (x,0)-(x,185)H

NEXT xH

FOR y=0 TO 180 STEP 105

LINE (0,y)-(635,y)H

NEXT yH

Filling

PAINT (635*RND,180*RND)H

GOTO Filling

The STEP in the FOR...NEXT loop might be new to you. This

command is used to change the size of the steps. The command line:

FOR x=0 TO 615 STEP 15

counts in increments of 15 from 0 to 615, in effect, 0, 15, 30, 45, etc.

The program uses this method to assure the correct spacing between the

bars of the grid. Try changing the STEP value and see what happens.

b m Now you know commands to create points, lines, rectangles, circles,

Pyramids in ellipses and arcs, and you know how to paint outlined areas in color.
BASIC However, AmigaBASIC offers you even more tools for programming

computer graphics. As you know, the Blitter chip can fill areas

incredibly fast. The next BASIC command we'll introduce uses this

feature to maximum advantage. First, another demonstration program

for you to type in:

COLOR 3, OH

AREA (100,150)H

AREA (400,150)^1

AREA (250,20) H

AREAFILLH

COLOR 2,OH

AREA (100,150)11

AREA (400,150)5

AREA (200,180)11

AREAFILLH

COLOR l,0H

AREA (250,20)11

AREA (400,150)11

AREA (450,100)11

AREAFILLH

This little program takes us back into the days of pyramids and

pharaohs. As you can see, you can create a pretty convincing optical

illusion with three differently colored triangles.

121

Colors and resolution AmigaBASIC Inside and Out

Don't think that you can only create triangles with the AREA

AREA command. You can specify the vertices of a polygon with several AREA

AREAFILL commands. The Amiga stores the specified points of your polygon

until it encounters the AREAFILL command. Then the specified object

is almost instantly drawn on the screen by the Blitter chip. However,

there is a restriction: Not even AmigaBASIC can remember more than

20 points at one time. Any points that are defined after the 20th point

are ignored. This shouldn't cramp your style, though, since a polygon

with 20 vertices is complex enough already.

If you draw random areas, you can again get some interesting results.

The next program is a good demonstration. (But don't forget to save

your pyramid first).

Color3=451

SCREEN 1,640,200,Colors,2\

WINDOW 1,"Areas",,15,lfl

Start: II

COLOR ((2*Colors)-l)*RND,0fl

FOR x=l TO 3+17*RNDfl

AREA (617*RND,184*RND)fl

NEXTfl

AREAFILI4

GOTO Starts

The program's structure is pretty simple. First a random color is chosen

from the available set of colors. The FOR...NEXT loop will "cycle"

between 3 and 20 times. (The minimum value is three, because that's

the minimum number of vertices needed to create a visible area... two

points would only create a line). Once the polygon is drawn, the

programjumps back to the label Start: and repeats the procedure.

Since all vertices are chosen randomly, you'll get some pretty strange,

twisted—interesting—creations. But the AREA can also be determined

with mathematical equations too:

Colors^fl

SCREEN 1,640,200,Colors,2f

WINDOW 1,"Areas",,15,H

FOR x=0 TO 617^1

co=co+l : IF co>(2AColors)-l THEN

COLOR co,Of

yl=90+80*SIN(X/49)fl

y2=90+70*COS((617-x)/25)fl

x2=ABS(320-x)fl

AREA (x,yl)fl

AREA (x2,y2)SI

AREA (x,x/4)fl

AREA (320,90)11

AREAFILLfl

NEXT xil

122

Abacus more graphic commands

AREA and AREAFILL are the last of the major graphics commands. In

the following sections we will apply all the commands we've leaned

about so far in a major program. This will give you a practical

application apart from the mere learning experience. First we'll tackle

programming with statistics, for those of you in business and

economics. After that we'll have a treat for those of you with artistic

tendencies. But thanks to the Amiga's graphic capabilities, these two

areas don't have to be entirely exclusive.

123

Colors and resolution AmigaBASIC Inside and Out

2.7
The turning point:

bar graph and pie chart utility

Pie charts

Bar charts

The program

You've seen bar graphs and pie charts before. T.V. reporters represent

election results in bar graphs. Your state government uses pie charts to

show who's getting each slice of the annual budget. The national

newspaper USA Today has taken bar graphs and pie charts to their

extreme by using them to replace intelligent journalistic commentary

altogether. Whatever the application, computer graphics are a popular

method of creating graphics to represent statistical information. The

Amiga was made to order for this.

As the name implies, pie charts is a circle divided into "pieces", like in

a pie. The size of a piece (sector) corresponds to the percentage of the

total. Whenever percentages (for instance, in the stock exchange),

composition (the membership of political parties), or relationships

(profit versus total sales) are used, pie charts can help us visualize the

numbers and gain a better understanding of the information.

Another method of graphically depicting statistical data is the bar chart.

The term has nothing to do with alcohol consumption, although a bar

chart could be used to convey this. A bar chart is composed of vertical

bars of different heights, with each bar representing an amount (value).

Bar charts are helpful in visualizing the relationships between different

values, or the development of a single value. You could display the

dollar amount of sales in a month, the rising or dropping cost of living,

price changes, or the progress of an investment with the help of bar

charts.

These charts can be used for as many applications as your imagination

can suggest

You could create bar charts and pie charts on your Amiga using the

standard graphic commands, but typing in a series of commands each
time you wish to make a chart takes too much time. To make the task
easier, we've written a program that will accept your statistical values,

then automatically create a bar chart or pie chart for you. The listing

begins on the next page:

124

Abacus bar graph and pie chart utility

Graphics:5

IF Array (0)«0 THEN RETURN5

IF UCASE$(Array$(O))»"B" THEN GOSUB BarGraph5

IF UCASE$(Array$(0))«"P" THEN GOSUB PieChart5

RETURNS

5

PieChart:5

Total=05

FOR x=l TO Array (0)5

Total-Total+Array (x) 5

NEXT x5

Divi=Total/6.283 : Anglel=.0001 : BColor=15

FOR x=l TO Array (0)5

LColor=BColor5

IF LColor>(2AColors)-l THEN LColor=15

BColor=LColor+15

IF BColor>(2AColors)-l THEN BColor=15

Angle2=Anglel+Array (x) /Divi5

CIRCLE (320,100),156,BColorfl

CIRCLE (320,100),150,BColor,-Angle2,-Anglelfl

PAINT (320,32)/LColor,BColor5

CIRCLE (320,100),150,BColor5

PAINT (320,32),0,BColor5

CIRCLE (320,100),150,BColor,-Anglel,-Angle25

MidAngle= (Anglel+Angle2) /2\

px=320+165*COS (MidAngle) \

py=100-80*SIN (MidAngle) 5

Distanced5

IF MidAngle>1.57 AND MidAngle<4.72 THEN Distance

LEN(Array$(x))fl

IF Distance>15 THEN Distance«155

COLOR LColor,05

LOCATE (py/9.25)+l,(px/9.95)+l-Distance5

PRINT Array$ (x); \

Anglel=Angle2\

NEXT xfl

CIRCLE (320,100),156,05

RETURN5

BarGraph:5

Max=.OOOl : LColor=05

FOR x-1 TO Array (0)5

IF Array (x)>Max THEN Max=Array (x) 5

NEXT x5

BarWidth=INT(550/(Array(0)))5

IF BarWidth>100 THEN BarWidth-1005

Factor*160/Max5

LOCATE 1,1 : PRINT Max;5

LOCATE 10,1 : PRINT Max/2;5

FOR x=0 TO 105

LINE (l,170-x*16)-(5,170-x*16)5

NEXT x5

FOR x»l TO Array (0)5

LColor=LColor+l : IF LColor>(2AColors)-1 THEN

LColor=15

LINE (30+ (x-1) *BarWidth, 170-Array (x) *Factor) -

(25+x*BarWidth,170),LColor,bf5

125

Colors and resolution AmigaBASIC Inside and Out

COLOR LColor,0fl

LOCATE 20, (4+(x-l)*(BarWictth/9.9))fl

PRINT Array$(x);fl

NEXT xfl

RETURNS

You should immediately save this graphics program on diskette.

Well, hopefully this wasn't too much work for you. The explanation

for this program follows:

The first thing you might have noticed about this listing is that it

Structured looks "different" from the previous ones. Most of its lines are indented

program a few spaces. What does this mean? The concept behind this is called
code structured programming. Typical BASIC programs tend to be very

difficult to read, which is the result of unstructured, ineffective

programming. Often even the program's author won't quite recognize a

program's structure after it's been laid aside for a short time.

Since AmigaBASIC has the tools needed to structure programs (labels,

subroutines, etc.), the program should be structured visually. If you
want to figure out how a program works from its listing, the listing

above will be much easier to understand than an normal unstructured

program. We've delayed discussing this method until now, since this is

the first time that you've typed an entire program all at once.

The rule for structured programming is simple: Wherever a new loop, a

new subroutine or any new logical unit begins, the lines of that unit are
indented one or two places to the right Wherever the distinct unit ends,

the lines are moved back one or two spaces to the left That's it—that's

the only rule.

If you'd like to structure it even a little more, you can insert blank lines

between separate units of the program.

In its present state, the new program is useless. After all, it's only a

Calling the subroutine—and we still don't have a routine that will call the utility

program up. For the first experiments, include the following little test program

at the start of your bar graph and pie chart utility. Move the cursor to

the beginning of the program, and type the following lines:

Setup :fl

Colors=3SI

SCREEN 4,640,200,Colors, 2fl

WINDOW 99,"Graphics",,8,4fl

PALETTE 7,.8,.2,.15

DIM Array (50), Array$ (50) fl

TestEntry:^

WINDOW H

INPUT "B=bar, P=pie: ",Array$(0)fl

126

Abacus bar graph and pie chart utility

Entry:5

Array (0) -Array (0) +lfl

PRINT "Value number "Array (0) " :M;fl

INPUT Array (Array (0)) fl

PRINT "Title:";5

INPUT Array$ (Array (0)) fl

IF Array$ (Array (0))<>"" THEN Entryfl

Jump: f

Array (0) «Array (0) -15

WINDOW 995

GOSUB Graphics^

END5

When you save this new version, select a different name from the

original program so that you'll have both the test version and the

subroutine on diskette. Do this in direct mode (SAVE "program") or

from the Save As item in the Project pulldown menu.

If you want to test out the program right away, decide whether you

A dry run want to display your data as a bar graph or a pie chart. First click in the
window then type a for the bar graph or a <p> for the pie chart,

then press <RETURN>. Then the program will ask you for the first

value. Type any value, such as 850. After you press <RETURN> the

program asks you for the value's title. This title will be printed under

the bar or next to the pie segment. You could type "Amiga", for

instance. In the last month 850 Amigas were sold. The next number

could be 400, with the title "Atari ST". A third number can represent

the total of all other computers, 1200, with the title "others". Then

press <RETURN> twice without typing any more values. These three

entries alone can create an informative picture of home computer sales.

(However, we don't take any responsibility for the statistical validity of
our sample numbers).

The subroutine requires three types of data from the main program.

Using the First it requires the number of possible bitplanes. This number is
program contained in the variable Colors. The numbers that will be displayed

in the picture are contained in the array Array (x) . This array can

have any number of elements, but so that you'll be able to read the

graph, use no more than 50 values. The number of values is stored in

the variable Array (0). If the value of this variable is 5, the data from

Array (1), Array (2), up to Array (5) will be used. You may

type any desired numbers for both types of graphics. This means that

you don't have to make sure that your values add up to 100%—the

subroutine will automatically convert your data into percentages.

127

Colors and resolution AmigaBASIC Inside and Out

Table 5:

Transferred

variables in

the bar

graph/pie

chart utility

The titles of your values are stored in the array Array $ (x). Each

number in the array Array (x) has a corresponding title in the

Array $ (X) array. Therefore the title to Array (1) would be in

Array $ (1), etc. The variable Array$ (0) contains the character

which identifies what type of chart your picture is. For bar graphs this

will be a b. For pie charts it will be a p. If you type any other

characters, the program quits without drawing a picture. You'll have to

substitute your own numbers for this sample data in your program.

For clarification, here's a list of the variables and the values in our

example:

Name

Colors

Array(0)

Array(1)

Array(2)

Array(3)

Array$(0)

Array$(l)

Array$(2)

Arrav$(3)

Sample contents

4

3

850

400

1200

P

Amiga

Atari

others

Remarks

number of bitplanes for the

Workbench screen: 2

number of elements in

Array and Array$

1st number

2nd number

3rd number

p = pie chart

b = bar graph

title of 1st number

title of 2nd number

title of 3rd number

The routine doesn't need any other value entries except for those listed

above. If you were to write your own data management program, you

might have to define the screen and the window in which you'd like the

graphic to appear.

Before the subroutine is called, a chosen window is made the output

window with the following command:

WINDOW window number

Then the subroutine is called up with this line:

GOSUB Graphics

This can be followed by separate program routines.

128

Abacus BAR GRAPH AND PIE CHART UTILITY

How it

works

Initialization

Color

Checking

input

Drawing

graphics

Making a

pie

The previous section gives you all you'll need to operate the utility

program. Now we'll discuss how the "nuts & bolts" of the program

work. If things get a little too mathematical here or there, keep in mind

that you don't have to understand the program completely to use it

First, in the Setup: routine, the test program sets the number of

bitplanes, opens a 640 x 200 screen with the desired number of colors

and opens a window with the number 99. We chose this high window

number so that it wouldn't get in your way in case you decided to make
some alterations.

The PALETTE command specifies a color. You can change all colors if

you'd like. Remember that PALETTE works only on the screen in

which the actual output window is positioned. We redefined the color 7

because it is of the same value as the color 1 when you turn the Amiga

on (white). If the pie chart has seven sectors and the sector with the

color 1 was placed next to the sector with the color 7, you'd have white

on white, which wouldn't be visible. Therefore we changed the color 7

to red. Next Array and Array$ are dimensioned to 50 elements each.

You type values in both arrays into the TestEntry: routine until a

title receives a blank entry. This signifies that all values are full.

The Jump: routine gives the content of Array (0) which contains

the number of data elements. Then window 99 is designated the output

window and the graphics subroutine is called up. After returning from

the subroutine, the program is ended.

The subroutine begins with the Graphics : routine, and first checks

to see if any values are present. If none are present, it jumps back to the

program start. The value of Array$ (0) decides whether a bar graph or

a pie chart is drawn. Thanks to the UCASE$ function it's irrelevant

whether an upper or lowercase letter is typed. Then, within the

subroutine, another subroutine is called to draw the specified chart type.

Let's look at the PieChart: subroutine. The first four lines add up

all existing values to get the total sum. This total corresponds to

100%. Each value can then by divided by a constant to calculate the size

of its arc. This number is assigned to the variable Divi. The number

6.283 is 2*tc—the largest possible angle. The starting value of

Angle1 is set slightly above 0, since the CIRCLE command cannot

tell the difference between +0 and -0. If it were an angle of 0, the first

sector wouldn't be connected with the center point correctly. The border

color BColor is assigned the starting value of 1 (white).

129

Colors and resolution AmigaBASIC Inside and Out

Coloring in

the chart

Computing

all the

angles

Adding text

The following FOR...NEXT loop contains the drawing commands. It is
executed until no more values are left At the beginning of the loop the
line color LColor takes on the old value of BColor. If one of the
colors is above the allowed maximum, it is set back to 1. (We don't
use the background color 0 for the chart). Then the border color is also

raised by one. So what's the deal with these two colors? As you
probably remember, PAINT accepts outlines of areas only in a specific
color. Since we want to paint the sectors of our pie chart in different

colors, we need a line color LColor and a border color BColor.

The trick used for painting the areas isn't mathematically elegant, but

it's quite practical. Practicality sometimes takes precedence. The
problem? PAINT always requires a point within the outlined area in
order to paint that area. Since the sectors are often of very different

sizes, this point isn't easy to calculate. The solution: we use two
concentric circles to construct the pie chart, the outer circle being
slightly larger (radius: 156) than the smaller (radius: 150). The border
color protects those parts of the circle that are already finished. Then the
area between the two circles is colored with PAINT and in the process

the color also spills into the rest of the circle. This is why we always
use a border color that is one number above the paint color. At the end

of the routine the outer circle is erased. If you watch very closely you'll
be able to recognize this process while the chart is being drawn.

Now let's see how the program executed our theoretical concept. The

fifth line in the loop calculates the new value of Angle2, the larger of
the two border angles. Its new value is the starting angle plus the size

of the arc allotted to the specified value. First the outer circle is drawn
in the present border color. Then the outline that will protect the
previously-drawn sectors is drawn. The PAINT command in the next

line paints in the color LColor and recognizes the outlines in the
color BColor as borders. Its starting point is exactly in the free area

between the concentric circles. After the areas are painted, the entire

inner circle is outlined in the border color and the area between the

circles is erased with the background color 0. Lastly, the sectors are

separated with the border color.

The remaining commands outside the loop have mainly one purpose:

print the appropriate titles next to the corresponding sectors. We had to
come up with another trick for this, too. First we calculate the angle

that exactly bisects each sector. This angle is called Midangle. To be

honest, this is where it starts getting tricky. How can you calculate a

point from just a radius and an angle? After all, we need to know the

location of this point to know where to place the titles. Figure 7 might

help you visualize this problem:

130

Abacus BAR GRAPH AND PIE CHART UTILITY

Figure 7:

The angle

that

intercepts

the arc—

finding the

intersection

Point of
intersection

(unknown)

Well, Hannes Ruegheimer finally came up with the answer after paging

through heaps of formulas that he had kept from his college exams.

There he found a ingenious equation under die heading "Geometric and

trigonometricfunctions":

Figure 8:

Sine and

cosine in the

circle

131

Colors and resolution AmigaBASIC Inside and Out

SIN and COS can be used for straight calculations, not just pretty

computer graphics! The radius multiplied by the cosine of the angle

will give us the X coordinate of our point, while the radius multiplied

by the sine of the angle will give us the Y coordinate. Simple, huh?

Now we have to convert the coordinates into actual screen coordinates

(the center is (320,100)), and we'll have the variables px and py.

Let's get to the next problem. If the text is positioned to the right of a

sector, it can be any length. At the worst it'll be cut off by the right

edge of the screen. However, a title that's to the left of its sector will

run into the sector after only a few characters, which you don't want to

happen. The line that starts with the:

distance=0fl

command gives the title the room it needs. When the angle is between

LEN 1.57 (1/2 * n) and 4.72 (1 1/2 * n), the title is displayed to the left of

the pie chart. In this case the length of the string is determined and the

text is moved over by that length. The last letter is displayed to the

immediate left of the circle. Here's another new AmigaBASIC

command: LEN (a$). This command counts the number of characters

contained in a string.

LEN ("hello") fl

would be 5, and

LEN ("Antidisestablishroentarianism") fl

is 28. (You can count them if you want).

If the distance of the title's first character from the circle is more than

15, it'll have to be restricted to 15. Unfortunately there's no more room

on the screen than that.

Finally, the coordinates in px and py (which are presently in pixels)

are converted to rows and columns for the LOCATE command. Then the

text is printed on the screen.

This program is set up to run at 60 characters per line. Please select

only this value in Preferences.

For the next execution of the loop the starting angle (Angle 1) is

assigned the value of the end angle (Angle2). Then the whole

procedure is repeated for the next sector. As we mentioned, the outer

circle is erased once all sectors are drawn. Then the subroutine jumps

back to the line from which it was called.

Hopefully you don't have a bad headache by now. Don't worry if you

didn't catch every math angle in this section—it won't really matter.

132

Abacus BAR GRAPH AND PIE CHART UTILITY

The rest of

the

equations...

Scaling the

bar chart

The BarGraph: subroutine isn't as hard to understand. Its first four

lines look for the largest values that were typed in. This value is then

stored in the variable Max. The lowest possible value for Max is

0.0001, since two lines down we'll have to divide 550 by Max, and

division by zero is illegal. Try this:

? i/ou

and you'll see that the Amiga will give you a Division by zero

error.

The variable BarWidth contains the width of the bars. This value

depends on the total number of bars that will be displayed. However,

BarWidth shouldn't be any larger than 100 pixels. After all, we're

drawing a bar graph—a bar that fills the whole screen isn't really a bar

graph anymore, but more like the Empire State Building.

The variable Factor contains the number by which each value has to

be multiplied to get the correct height. The maximum is 160 pixels.

All other values should be less than 160.

We'll draw a scale for the height of the bars at the left border of the

screen. The following five lines take care of this. The maximum value

and the halfway mark are printed along with 11 increment marks. The

last six lines of the subroutine contain the loop that draws the

individual bars. Like its counterpart in the pie chart program, the loop

is executed until all values have been displayed. The LINE command is

used to actually construct the bars on the screen. Each bar changes color

by one color number within the display limits. Again, the background

color is omitted.

Below the bars we'll print the text titles with the LOCATE and PRINT

commands. The position of the titles is dependent on the width of the

bars. The whole process is repeated for each bar, and then the program

jumps back to the beginning with RETURN.

Congratulations! You've finally made it through this mathematical

theory section. Take some time to experiment with your new utility

program. You won't believe the range of the statistics you can display.

In the course of this book we'll improve the input routine most of

all—for example, so that you can save values on diskette and keep track

of your finances over a length of time. If you're not interested in

economics and statistics, don't despair. In the next section we'll show

you a program that will bring out the true artist in you. After all, what

better canvas than your Amiga?

133

Colors and resolution AmigaBASIC Inside and Out

2.8
Illusion or reality:

the mouse and menus in BASIC

MENU

MENU

RESET

How do you think your own BASIC programs differ from the

professional software like Graphicraft™ or Textcraft™? Sure, these two

packages are faster and more powerful. However, the most

distinguishing feature is that professional programs are almost entirely

mouse driven. The entire program is controlled with the pointer and the

pulldown menus. You'll probably say, "Well, but those guys are

professionals..." Fine. From here on out, we'll uncover some more

AmigaBASIC programming secrets and promote you to a professional

standing in the process. In fact, it isn't difficult to write a BASIC

program that looks very professional.

Try typing in the following lines, for instance:

MENU 1,0,1, "Selection"?!

FOR x=l TO n

MENU l,x,l, "Option "-K;HR$ (48+x) fl

NEXT xfl

FOR x=2 TO 4fl

MENU x,0,0,""fl

NEXT xfl

ON MENU GOSUB Selection^

MENU ON

Delay:5

GOTO Delays

Selection:?!

LOCATE 10,20fl

PRINT "You chose option";MENU (1) ;fl

RETURNS

If you try the program, you'll probably think that it doesn't even do

anything. However, if you press the menu key of the mouse you'll see

that instead of the usual menu titles, there's only one new title in the

menu bar. Select this menu and take a look at its contents. As an

example there are 9 menu items. Select one of them and you'll see that

the corresponding number is displayed on the screen.

This program isn't very practical, but it's an indication of how easy it

is to program menus in BASIC, and how professional the results can

be. We don't have a pulldown item to stop the program, and the Run

menu with its Stop item is not available at the moment. Therefore,

press the <CTRLxC> combination. This key combination will let

you stop almost any BASIC program dead in its tracks. As you'll

notice, the usual pulldowns won't return to the screen even after the

program has been stopped. Since we need them to program, there has to

be some way of getting them back. The following BASIC command

will do this:

134

Abacus THE MOUSE AND MENUS IN BASIC

Specifying

menus

WARNING:

menu resets

Type this command in the BASIC window. The pulldown menus will

be available once more. Let's take a closer look at the individual

commands and their functions.

MENU requires three numerical values and the name to be assigned to

the menu. The command at the beginning of our sample program is:

MENU 1,0,1,"Selection"^

The first parameter after the MENU command specifies the number of

the menu. At the normal setting, the Project menu is number 1,

the Edit menu is number 2, the Run menu is number 3 and the

Windows menu is number 4. A maximum number of 10 pulldown

menus can be defined in the BASIC window.

The second parameter determines the item number in the menu. Number

0 is the title of the menu. Numbers 1 through 19 are items in the

menu.

The third parameter can be one of the following numbers:

0 disables (turns off) the specified menu item. The item will not be

available and will be displayed in difficult-to-read lettering. This is

also known as a ghost menu item. If the second number is a 0, the

entire menu will be disabled.

1 has the opposite effect of 0: it enables the menu item/menu. The

specified menu item or the entire menu is enabled and available for

use.

2 has the same effect as a 1, except for one difference: the selected

menu item is marked with a checkmark. This indicates to the user of

the program if this menu item is currently active.

Any string expression can be used for the title of a menu item: text

within quotation marks, or a string variable containing text. If you

omit this string parameter, the MENU command changes the parameters

of an existing pulldown item (but usually you'll be changing the third

number). The CHR$ command also lets you specify single characters or

add to text. (If you're wondering why we added the value x to the

number 48, take a look at the ASCII table under the CHR$ command in

Appendix B).

Type the following command line, but do not test out the resulting

pulldown! If no items are defined for the menu and the menu selected, it

might cause AmigaBASIC to crash. If you haven't saved your program

before this time, it would be lost with die crash.

menu 1,0,l,"Test"fl

135

Colors and resolution AmigaBASIC Inside and Out

Event

trapping

This line defines pulldown menu number 1 with the name Test. As

we said above, don't try the menu right now—you can see it after you

type in the next command. Type the next command right now. Leave

two spaces before the word Number (you'll see why in just a

moment).

menu 1,1,1," Number l"fl

Now you can take a look at the pulldown menu without risk. The

second command line created an item in the menu. However,

AmigaBASIC can't do much with this item in direct mode, since there

isn't any supporting program.

To disable menu number 1 entirely, type:

menu 1,0,051

To reverse this command, use:

menu 1,0,15

The next command marks the first item with a check mark:

menu 1,1,25

As you can see in our example, if you define fewer than four menus,

the predefined menus must be erased. The following line performs this:

for x=l to 4 : menu x,0,0,fltl : next xfl

This line erases all existing pulldown menus from the screen. This

could be quite useful in some programs. However, you already know

how to get them back:

menu resets

The MENU command arranges all menus just the way you want them.

Up to now we haven't talked about the monitoring and evaluation of

the menus. The method used to monitor the menus is one of

AmigaBASICs most fascinating capabilities. If you take a closer look

at our example (or follow it with TRACE) you'll see that the main

program actually consists of only the Delay loop. This loop

continually jumps back to itself.

136

Abacus THE MOUSE AND MENUS IN BASIC

MENU ON,

MENU OFF,

MENU STOP

ON MENU

60SUB

MENU(O)

MENU(l)

This works by the event trapping principle. If a certain event for which

AmigaBASIC has been waiting occurs, the running program is
immediately interrupted and a subroutine is called. Once the subroutine

has been executed, AmigaBASIC will continue program execution

where it was first interrupted. This method of programming is not only

practical, but very effective as well. You can write various subroutines

that deal with collision of graphic objects, error messages, menu and
mouse control or timers (timed intervals), while the main program is

doing something completely different.

The following command tells AmigaBASIC which subroutine to jump

to when an item is selected:

ON MENU GOSUB...U

This command lets you specify a line number or a label. Each variation

of event trapping has its own safety device, or trigger, that activates the

function. For the menu event trapping this trigger is:

MENU ONfl

If you want to interrupt the menu trapping, you can use the MENU

STOP command. To disable it completely, use the MENU OFF

command. The difference between these two commands is in the

"recognition" of the event with MENU STOP the Amiga still registers

any menu selection, but does not react to it. It will wait until event
trapping is activated again. Once event trapping is reactivated, it will

still register the selections that were made while the event trapping was

inactive. However, MENU OFF instructs the Amiga to stop trapping

events completely. No selections made during this time are registered

when the event trapping is turned back on.

These principles of ON, OFF and STOP are the same for all other event

trappings. We'll refer back to them several times in the course of this

book. Then you'll be able to tell the difference more clearly from some

direct examples of OFF and STOP.

The last question that we need to answer is, "What can I make the
subroutine do that I called with ON MENU GOSUB?" As we said, each

time a user selects a menu item, the item will call up its corresponding

subroutine. However, first the subroutine needs to find out which item

was actually selected. For this we have two new functions: MENU (0)

andMENU(l).

The MENU (0) command determines the number of the selected

pulldown menu, which corresponds to the first value in the MENU

command. The MENU (1) command determines the number of the

selected item within the selected pulldown menu. This value

corresponds to the second parameter of the MENU command.

137

Colors and resolution AmigaBASIC Inside and Out

The following demonstration routine will expand our sample program

by one menu item. Type this line exactly between the two FOR...NEXT

loops in the first part of the original menu program:

menu 1,10,1,"Quit"f

Revise the Selection: subroutine so that it matches this:

Selection:fl

IF MENU (1) =10 THEN MENU RESET : ENDfl

LOCATE 10,20SI

PRINT "You chose option"; MENU (1) fl

RETURNS

It works like this:

First the Selection: subroutine checks to see if you chose item

number 10. Number 10 represents Quit. If this item was selected, the

MENU RESET command is used to recall the default menus and the

program is ended with the END command. In all other respects, the

program will perform the same as before.

Since our example has only one pulldown menu, we don't have to

worry about the number of the menus or the MENU (0) value. In larger

programs with more than one pulldown menu, you'll have to determine

the number of the menus with MENU (0) before you can determine the

individual items with the MENU (1) command.

Is everything clear so far? If you still want more applicable

MOUSE demonstrations, it won't be long until we'll be able to show you all

these functions in an expanded, more powerful BASIC utility program.

But first we need one more basic concept: the mouse input and

programming. To demonstrate this, we'll present you with possibly the

shortest paint program ever written for the Amiga:

ON MOUSE GOSUB Drawfl

MOUSE ONfl

Delay:fl

GOTO Delays

Draw:^

WHILE MOUSE (0)O0fl

PSET (MOUSE(1),MOUSE(2))fl

WEND11

RETURNS

Considering how short it is, the program is quite impressive, don't you

think? As you can see, error trapping for the mouse is essentially the

same as error trapping for menus. The command:

ON MOUSE GOSUB...fl

specifies the subroutine that responds to the mouse.

138

Abacus the mouse and menus in BASIC

mouse om

This command activates the entire process. The infinite loop represents

a running program.

Only the Draw: routine contains something really new and worth

WHILE... explaining: the WHILE...WEND command. These two commands are

WEND another way to program loops. This type of loop is used to repeat an

operation while a specified condition is met A simple loop that waits

for any input would look like this:

WHILE INKEY$="" : WENDfl

You can try this example in the BASIC window. The WHILE...WEND

loop is often more practical and more elegant than FOR...NEXT or

IF...THEN, even though the three are fairly interchangeable. The

condition for which the WHILE...WEND loop tests in our demonstration

program is:

MOUSE (0)001

You probably noticed that you were able to draw only when you pressed

the left mouse button. The MOUSE (0) function supplies information

about the status of the mouse button. If the button is not depressed, its

value will be 0. If it is pressed, there are several possibilities, which

we'll discuss later. Should we come across any particular variables,

we'll explain them at that time. (If you want to know everything right

away, you can look under MOUSE (x) in the command descriptions of

the Appendix B). In addition to MOUSE (0), MOUSE (1) and

MOUSE (2) are used in our example. These two are actually more

simple than MOUSE (0):

MOUSE (1) contains the mouse's X coordinate.

MOUSE (2) contains the mouse's Y coordinate.

The two values are in pixels, and AmigaBASIC automatically counts

them in the corresponding screen. This is what makes drawing with the

mouse so simple.

What would be the best way to fully demonstrate all the capabilities of

the mouse and the pulldown menus, and at the same time create a

practical program that's interesting to use? Maybe you've already
guessed the kind of program our new program utility will be. In the
next section we'll write our own painting program—one that utilizes
almost all of AmigaBASIC s commands, is easy to use, and can
produce stunning graphics. It even has a few goodies.. .read on.

139

Colors and resolution AmigaBASIC Inside and Out

The AmigaBASIC paint program

This section introduces you to an AmigaBASIC utility that produces

top-notch graphics and drawings on your Amiga. A lot of work went

into developing this program. We're not saying this because we lack

modesty, but only to explain the program's great size. You'll want

plenty of time to tackle the biggest project in this book yet (you might

want to go get some snacks and something to drink before you start

typing). Are you ready? Say so long to your family and friends, close

the door and let's get started. We think the results and the learning

experience will be well worth the effort.

Of course, this program is contained on the Abacus optional program

diskette—complete, error-free and ready to run. If you dislike typing,

seriously consider purchasing the program diskette from your dealer or

directly from Abacus. (Suggested retail price is $14.95).

If you've been typing in all the previous examples in this book, you'll

Compatible already have two major utility programs: The video title generator to
programs create titles for video segments out of text and objects, and the bar

graph and pie chart utility to display statistical data in graphic form.

With these examples we are trying to accomplish one main goal: To

give you programs that you will enjoy as much as possible, but

programs that have real use other than for the learning process. There's

one important characteristic that these programs should have in

common, particularly for graphics: they should be compatible. This

means that you could produce a picture with the paint program and later

use that picture as a background in the video title program. After, all

graphics from "real" graphic programs like Graphicraft™ or

DeluxePaint™ should be readable and usable in AmigaBASIC (which
they are).

Our paint program is an important link in this compatibility chain. We
think it's a sophisticated, powerful utility program, with many features
found in commercial graphic programs. Of course, a program this
versatile will not be as short as our previous demonstration programs.
This means that the next two sections contain many pages of listings
that have to be entered. We'll be up front about it: it's going to take
you a while to enter it all. Take your time. It's fine if want to enter the
program in "modules," and then stick the book back on the shelf for a
while. But don't forget to save the program each time you stop!

When you're finished, we'll explain the program thoroughly and point
out special commands, items and tricks.

140

Abacus the AmigaBASIC paint program

Copy the program structure as much as possible. The final program

will be more clear this way, and you'll be able to find and correct

mistakes much faster.

Setup :5l

Colors=5 : MaxColors=s2AColors-15

DIM Pointer (4,1) ,AltColor(4) ,Colors% (31,2) 51

DIM FillPattern%(7),AllPatterns%(8,7),Solid%(1)51

DrawType=l : DrawColor=l : FillColor=2 : Mode=15l

51

Solid%(0)=&HFFFF : Solid% (1)«&HFFFF51

FOR x=0 TO 75

FillPattern%(x)*&HFFFF5I

AllPatterns% (0,x) -&HFFFF5I

NEXT x5I

FOR x«l TO 811

FOR y=0 TO 751

READ AllPatterns%(x,y)5I

NEXT y5I

NEXT x5l

51
DATA 24672,1542,24672,1542,24672,1542,24672,154251

DATA -13108,13107,-13108,13107,-13108,13107,

-13108,1310751
DATA 26214,13107,-26215,-13108,26214,13107,-26215,

-1310851

DATA -13108,-26215,13107,26214,-13108,

-26215,13107,2621451

DATA -258, -258, -258,0,-4113,-4113,-4113, 051

DATA -8185,-8197,-18019,-20491,-20467,-8197,-8185,-151

DATA 0,0,1632, 4080, 4080,2016,384, 051

DATA 960,1984,3520,6592,16320,25024,-3104,051

51

SCREEN 1,320,200, Colors, 151

WINDOW 2, "AmigaBASIC Draw Program", ,16,151

WINDOW CLOSE 351

WINDOW CLOSE 451

WINDOW 251

The program begins with a Setup: routine. Here all variables are set

to their starting values, the arrays are filled and the screens and windows

used for output are activated.

The variable Colors again contains the number of active bit-planes.

The values 2 (8 colors), 4 (16 colors) or 5 (32 colors) are available.
Normally you'll be working with 32 colors, since our program operates

in low resolution. Therefore, you shouldn't have any memory problems

with your 512K Amiga 1000 or standard Amiga 500 or 2000 models.

141

Colors and resolution AmigaBASIC Inside and Out

Integer

arrays

You probably noticed in the Colors$ array the unusual percentage
symbol following the array's name. AmigaBASIC offers different types

of variables. You already know two of these: the normal numerical
variables (a, b, c, hello...) and the string variables (a$, b$, c$,

hello$). String variables are identified by the dollar signs following

their names. The percentage symbol (%) works similarly. It identifies
integer variables. You already know about the BASIC functions INT

and CINT. Therefore you probably know that integers are always whole

numbers—they never have any digits to the right of the decimal point

It's possible to declare certain variables as integer variables before they

are used. Since these numbers will never have digits to the right of the

decimal point, they use less memory. This is because of the method by

which the Amiga manages numbers in RAM. Integers can only assume

values between -32768 and 32767. We'll take a closer look at this in

Intermission 3. Also, we'll be introducing other types of variables in

the next section of the book.

Try typing this line in the BASIC window:

a=7/3 : a

You'll see that the variable a% has no numbers to the right of the

decimal point. Since the paint program contains numbers that can only

be whole numbers, we use integer arrays for them. The Colors % array

is dimensioned as (31,2), so it can contain 32 x 3 elements. Remember

multidimensional arrays? It's easiest to visualize these arrays as tables

where each individual position represents a particular element of the
array. We can use up to 32 colors in the program, where three values

have to be specified for each color (R, G and B).

We also define the fill pattern in the Setup: routine. Fill patterns in
Fill patterns AmigaBASIC will be discussed in detail in the next section. For now

you only have to know one thing: the fill pattern process requires

integer arrays in which the patterns are stored. In our program we use

the arrays FillPattern%, AllPatterns% and Solid% for this

purpose. The FillPattern% array contains the structure of the

actual pattern, while AllPatterns% contains (as the name suggests)

all available patterns. Our paint program offers a choice of nine patterns

to fill areas. The definitions of all nine patterns are in the

AllPatterns% array. Solid% contains a special pattern that

produces solid, single-colored areas. We'll need this from time to time.

Hexadecimal

numbers

These arrays are filled with their default values in the Setup: routine.

But there's something special about the commands used in this routine:

look at the format for numbers. What's the meaning of that weird

looking &HFFFF? This is a hexadecimal value. This type of number is

especially useful for programmers. (You'll find further explanations of

hexadecimal numbers in Intermission 3). AmigaBASIC can work

with hexadecimal numbers as well as regular decimal values.

142

Abacus the AmigaBASIC paint program

The value &HFFFF performs a pattern definition in which all points are

turned off. This results in a solid, single-colored area. This pattern is

then assigned to the Solid% and FillPattern% arrays, as well as

the first of the nine pattern choices. Before we start the program, you

should chose from a selection of patterns. We've prepared nine of them

for you.

The required values are read in with DATA and READ. But "read in" with

READ what? The commands DATA and READ are a team that lets you enter

DATA values in a program, then reads them in and uses them in the program.

Values can be numbers or words or any desired combination of

characters. The data is written in a line that begins with the DATA

statement The statement is followed by the data, separated by commas.

The READ command then reads the data into the variables. The DATA

and READ combination is used only within a program listing, and

cannot be entered in direct mode.

The following five lines are not part of the paint program. If you'd like

to try the example, be sure to save your paint program in its present

form before typing these lines in:

READ a$,b$,c$,dfl

PRINT "I bought an ";a$fl

PRINT "It's a great ";b$;" that's a lot of ";c$;"."5

PRINT "With it you can do a ";d;" things."1

DATA Amiga, computer,fun,10OOfl

Do you see how it works? The values in the DATA line are assigned to

the corresponding variables in the READ line. In a program, the reading

always begins in the first DATA line, regardless of where it is located.

Then the values are read consecutively. Be careful that the variable types

and the values correspond. If you tried to read a character into a

numerical variable, you'd get a Type mismatch error message. If all

data have been read, and another READ command is encountered, the

Amiga would display an "Out of DATA" error message.

The

first block of DATA statements contain the structure of the nine

patterns. These values are read into the AllPatterns% array.

Next we define the output screen and output window.

As mentioned before, this paint program runs in low resolution (320 x

Low-res... 200 pixels), mostly because we want our graphics to be compatible
and why with commercial programs like Graphicraft™. Almost all commercial

paint programs use low resolution, since it makes 32 colors available.

If you've seen sample graphics on the Amiga, you'll probably agree

that the variety of color makes up for the slightly rougher resolution.

The next two program lines deactivate windows 3 and 4. In case they

are already displayed on the screen (which could happen if the program

is interrupted and then restarted).

143

Colors and resolution AmigaBASIC Inside and Out

Now go to the end of the program code you've typed so far, and enter
the next part of the paint program:

FOR x=0 TO 315

READ r,g,b5

PALETTE x,r/16,g/16,b/165

Colors%(x,0)»r : Colors%(x,1)=g : Colors%(x,2)-bfl

NEXT x5

5

DATA 0,0,3, 15,15,15, 0,3,12, 15,0,05

DATA 0,14,15, 15,0,15, 3,10,1, 15,14,05

DATA 15,8,0, 10,0,14 ,8,5,0, 11,8,35

DATA 2,11,0, 15,10,15, 0,0,9, 7,15,05

DATA 14,12,0, 15,2,3, 0,0,0, 15,11,105

DATA 0,6,8, 3,3,3, 4,4,4, 5,5,55

DATA 6,6,6, 7,7,7, 8,8,8, 9,9,95

DATA 11,11,11, 13,13,13, 0,0,15, 12,15,12 5

In this section the array Colors % is assigned its values. Throughout

the program, Colors% will contain the R, G and B content of the

available colors as numbers ranging from 0 to 15. At first, however, a

problem arises: you might remember from the video title program that

there is no AmigaBASIC command to read the actual values of the

color registers. The color registers can be changed with PALETTE, but

we know of no way to find out their values with BASIC.

If you changed the colors in the program for the first time, the default

setting would change to black (R=0, G=0, B=0). This would make the

program difficult to use—black drawings can be very hard to see on a

black background. So we've put the RGB values for 32 colors in the

Colors % array. They'll remain there until they are changed when the

program is running.

Go to the end of your program listing and type in the next section:

Pulldown:5

MENU 3,0,0,""5

MENU 4,0,0,""5

MENU l,0,l,"Program"5

MENU 1,1,1,"Draw "5

MENU 1,2,1,"Color Palette"5

MENU 1,3,1,"Fill Pattern "5

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

1,4,1,"Load Screen

1,5,1,"Save Screen

1,6,1,"Clear Screen

1,7,1,"End

2,0,1,"Drawing tools

"5

"5

"5

"5

"5

2,1,2," Draw freehand

2,2,1," Draw thick

2,3,1," Points

2,4,1," Spray

2,5,1," Lines

2,6,1," Frame

2,7,1," Box

"5

"5

"5

"5

"5

"5

"5

144

Abacus the AmigaBASIC paint program

MENU 2,8,1," Connected linesMfl

MENU 2,9,1," Oval "fl

MENU 2,10,1," Fill MU

MENU 2,11,1," Eraser "fl

MENU 2,12,1," Text

Here we define the pulldown menus. First the default menus 3 and 4 are

erased, since we only need two menus in our program. Menu 1 contains

the items that control the program: you can select the individual items

for color, screen and fill pattern control, as well as handling your files.

Menu 2 contains the individual tools that are used in the drawing

process.

The currently active tool is indicated with a checkmark to the left of its

item name. Be absolutely certain you leave two blank spaces when

you're entering the menu item names, so that the checkmark will fit on

the line without overlapping the item name.

Now that we've taken care of all the preliminaries, we're ready to type

the actual drawing program, MainLoop:

MainLoop:«fl

ON MENU GOSUB MenuSelectSI

ON MOUSE GOSUB EvalMousefl

MENU ONfl

mouse om

WHILE -I!

WENDfl

This routine activates event trapping for the menus and mouse control,

Using event and assigns the proper subprograms. Then you'll see a WHILE...WEND
trapping loop. This is not a typo. The number -1 after the WHILE represents a

true condition in AmigaBASIC. (We'll take a closer look at this in the

next Intermission). This configuration results in an infinite loop. As

long as you don't use the mouse (select a menu or click a mouse

button), the program will simply run in this loop. All functions in our

drawing program are controlled by event trapping. If you have

programmed BASIC on another computer before, this method might

seem strange to you. Nevertheless, it makes possible some very

flexible and powerful programs. Event trapping and "normal"

programming methods can be used in conjunction with one another.

How you structure a program depends on its requirements.

The main program is followed by the subprograms needed for the menu

control:

145

Colors and resolution AmigaBASIC Inside and Out

MenuSelect:fl

MenChoice=MENU(1)fl

ON Men GOTO Project, DrawToolsfl

EvalMouserfl

IF Mode=l THEN ON DrawType GOSOB

DrawThin, DrawThick,Points, Spray, DrawLines , Frame, Box, Conne

ctedLines, Oval, Fill, Eraser, Text^I

IF Mode=2 THEN GOSUB ColorPalette : IF EndOK=l THEN

GOSUB ColorDonefl

IF Mode=3 THEN GOSUB DefinePattern : IF EndOK-2 THEN

GOSUB PatternDone$

IF Mode=4 THEN GOSUB RGBDef : IF EndOK«3 THEN Mode=2 :

GOSUB SelectColorfl

RETURNS

Project:^

IF MenChoice=l THEN GOSUB ColorDone : GOSUB

PatternDone^

IF MenChoice»2 THEN GOSUB PatternDone : MENU 2,0,0 :

Mode=2 : GOSUB SelectColorfl

IF MenChoice»3 THEN GOSUB ColorDone : MENU 2,0,0 :

Mode=3 : GOSUB PatternEditorfl

IF MenChoice»4 THEN GOSUB ColorDone : GOSUB PatternDone

: GOSUB DrawLoadil

IF MenChoice=5 THEN GOSUB ColorDone : GOSUB PatternDone

: GOSUB DrawSavefl

IF MenChoice=6 AND Mode»l THEN OK~0 : GOSUB Query : IF

OK«1 THEN Adef=0 : AREAFILL: CLSfl

IF MenChoice=7 THEN GOSUB ColorDone : GOSUB PatternDone

: OK=0 : GOSUB Query : IF OK«=1 THEN Endlt 5

RETURNS

DrawTools:$

MENU 2,DrawType/lfl

DrawType = MENU (l)fl

MENU 2,DrawType,21

RETURNS

MenuSelect: determines the selected menu item. The variable men

0N...60T0 contains the menu number, and the variable menupoint contains the

selected menu item. Depending on which menu was selected, the

program jumps to either Project: or DrawTools :. Here we

encounter a new variation of the GOTO command. The 0N...G0T0

command jumps to a specific label or line number depending on the

value of a variable.

Don't enter the following line—it's not part of the paint program. We'd

just like to show you how this command operates:

ON x GOTO cocktail,appetizer,soup,roaincourse,dessertfl

146

Abacus the AmigaBASIC paint program

If x has a value of 1, the program will jump to the routine labeled

cocktail:. If x = 2, appetizer: is called up. If x = 3 it'll be the

soup:. x = 4 brings us to the maincourse: and x = 5 completes

the meal with dessert:. If x is less than 1 or greater than 6, the

program will simply skip the ON...GOTO command and continue with

the next line.

The EvalMouse: routine is responsible for the control and evaluation

DN...60SUB of the mouse. At the beginning of the EvalMouse : routine you'll

find a relatively long ON...GOSUB command. This command works the

same way as the ON...GOTO command. The only difference is that at the

next RETURN statement the program will return to the line were the

ON...GOSUB was given.

If you click the left mouse button when the program is running, the

program will jump to this label first. Clicking the mouse is a common

action, so what the click will accomplish depends on which mode the

program is in. The variable Mode determines this. The various

subprograms supply it with the correct values. If Mode has a value of

1, the program will be in drawing mode. This mode is selected with the

first item in the first pulldown menu.

The variable DrawType contains the active drawing type. When you

select an item in the second pulldown menu, you specify a particular

drawing action. There's a separate subprogram for each different type of

drawing. The program jumps to this subprogram as soon as the left

mouse button is clicked, and then that particular subprogram is

executed. If Mode has a value of 2, the color selection routine is active.

In this case, control of the program is handed over to the

ColorControl: subprogram. The variable EndOK tells us whether

the color adjustments are complete (indicated by clicking the OK

gadget). If EndOK is 1, AmigaBASIC executes the ColorDone :

subprogram.

If Mode has a value of 3, the procedure is the same, except that this

routine is responsible for the definition of the fill patterns. The

subprogram DefinePattern: will be called up. If the pattern

definition is ended, EndOK must have a value of 2.

Mode 4 isn't much different from the other three. It's a special function

of the color subprogram. A color isn't simply selected—the R, G and B

components of a color are selected with slide controllers with the

routine RGBDef:. There's a separate mode to distinguish between

color definition (the adjustment of colors with the RGB controllers) and

the selection of colors (picking the colors that will be used for

drawing). Once this mode is ended when EndOK=3, the program will

return to mode 2 (the color selection).

Since EvalMouse: is a subprogram, it must be ended with a

RETURN statement. This will return the program to the place where the

subprogram was called up.

147

Colors and resolution AmigaBASIC Inside and Out

The Project: routine is responsible for the operation of the first
Inside the pulldown menu. The variable MenuChoice contains the menu
menus selection that was captured by the MenuSelect: routine. Depending

on the value of MenuChoice, the individual subprograms are now

called up and carry out the specified functions. Menu item 1 is used to

return the drawing mode from the color or pattern subprogram. In the

beginning of the program, the drawing mode is automatically active

(remember Mode=l in Setup: ?). So, for the first menu item, the

program needs to call up only those parts that end the color and pattern

subprograms (namely the ColorDone : and PatternDone :

routines).

Menu item 2 calls the color selection subprogram up. In case the

pattern definition program is already running, it is first switched off

through a GOSUB PatternDone command. The second pulldown

that offers the selection of drawing types should be inaccessible while

the color program is running. Thus, MENU 2, 0, 0. The variable

Mode is assigned the number 2, and the program jumps to the

SelectColor: subprogram.

The third menu item activates the pattern editor. In this subprogram it

is possible to define fill patterns. First the color program is turned off,

in case it was still running, the drawing tool items are deactivated again

and the value 3 is assigned to Mode. After these preparations we

continue with the PatternEditor: routine.

Menu items 4 and 5 are not available at this point They'll allow you

to save and load graphics from diskette. We'll wait until the next

chapter to add this part of the program. You'll find detailed information

about peripherals and data management in that chapter.

Menu item 6 is allowed only in mode 1. It erases the present picture

from memory. Prior to erasing the picture, the Query: routine

displays a requester that asks you if you're sure you want to erase the

graphic. When you click the OK gadget, the erasing begins. The

Adef=0 and AREAFILL commands remove any area that might be in

construction. (This is the only type of drawing that isn't drawn

immediately, but constructed step by step). This process has to be

stopped before the screen can be cleared. Then the screen is finally

cleared with CLS.

The seventh and last menu item exits the paint program. The color and

pattern definitions are switched off first, and a requester similar to the

one for the erase item is displayed. If it is confirmed, the program

jumps to the Endlt: label, where the program is finally exited.

The Project: subprogram ends with a RETURN statement.

DrawTools : takes care of the second menu. The previous menu item

loses its check mark, the variable DrawType is updated and finally the

new menu item receives a check mark. That's it for DrawingType:.

148

Abacus the AmigaBASIC paint program

Now to the subprograms that produce the individual drawing modes.

We'll start with the first version of freehand drawing, the thin pen:

DrawThin: 51

Test- MOUSE (0) : x-MOUSE(l) : y=M0USE(2) 51

WHILE MOUSE (0)O05t

LINE (x, y)- (MOUSE (1), MOUSE (2)),DrawColor 51

x=MOUSE(l) : y=MOUSE(2)5I

WEND5I

FETURN5I

You might be wondering why we assigned the value of MOUSE (0) to

Drawing a the variable Test, which isn't even used. There's a pretty good reason
thin line for this—as you might remember, you can find out if the left mouse

button was pressed or is being pressed with MOUSE (0). MOUSE (1)

gives you the X-coordinate of the pointer, and MOUSE (2) gives you

the Y-coordinate of the pointer. Technically, MOUSE (1) and

MOUSE (2) give you the X- and Y-coordinates of the point at which

MOUSE (0) was last called. So, to get the most recent point, we need

to call MOUSE (0) just before we read the coordinate values. The

WHILE...WEND loop connects the last point drawn with the position of

the pointer as long as the left mouse button remains pressed. As a

result, a line is drawn freehand with the mouse.

The following subprogram for drawing freehand with the thick line is

almost identical:

DrawThick: 51

Test=MOUSE(0)5I

WHILE MOUSE (0)O05t

x=MOUSE(l) : y~MOUSE(2)5I

LINE (x,y)-(x+5,y+5),DrawCtolor,bf5I

WEND5I

RETURN5I

To produce a thick line, larger squares are drawn at the actual pointer

Drawing a position. When you drag the mouse relatively slow, a thick line is
thick line drawn. However, when you drag the mouse fast, the squares are drawn

spaced farther apart, producing a kind of dashed line.

If you purposely want to draw a dashed line, you use the next drawing

type:

Points: 51

Test=M0USE(0)5I

WHILE MOUSE (0)O05l

PSET (MOUSE (1), MOUSE (2)), DrawColor5I

WEND51

RETURN5I

149

Colors and resolution AmigaBASIC Inside and Out

Spray

effects

More about

lines

This draws a point at the position of the pointer. If you hold the button

down and drag the mouse slowly, you'll get a smooth line. If you drag

the mouse faster, the line will become dashed. This little subprogram is

the same one we used to earlier demonstrate the mouse.

The spraycan effect is also pretty easy to program:

Spray: !

Test=MOUSE (0)!

WHILE MOUSE (0)005

x=M0USE(l)+14*RND : y=MOUSE(2)+7*RND!

LINE (x,y)-(x,y),DrawColor,bf!

WEND!

RETURNS

The spraycan draws a cluster of small dots within a specified area. The

coordinates for the dots are created randomly. Horizontally, the dots can

be as far as 14 pixels from the position of the pointer, and seven pixels

vertically. Wait a second! Why use a complicated LINE command with

the block fill item for a simple point? After all, only one point is

drawn, since the upper left-hand and the lower right-hand corners of the

rectangle are identical. We did this for a good reason. This method has a

great advantage over using the PSET command: the block fill item uses

the presently active fill pattern, regardless of the graphic's size. If

you've selected a fill pattern and hold the spraycan on one spot for a

longer period of time, the pattern will build up in that area. You can

draw many interesting effects with this technique.

While we're talking about LINE, here are more routines that utilize

this command:

DrawLines: !

Test=MOUSE(0)!

xl=M0USE(3) : yl=M0USE(4)!

PSET (xl,y1),DrawColor!

WHILE MOUSE (0)00!

WEND!

LINE (xl,yl)-(M0USE(5),M0USE(6)),DrawColor!

RETURN!

This routine lets you draw lines between two points. The procedure is

very simple: move the pointer to the starting point, press the mouse

button and hold it while you drag it to the end point. Then simply

release the mouse button. There's your line.

You probably noticed the new parameters of MOUSE: MOUSE (3) and

MOUSE (4), MOUSE (5) and MOUSE (6) are used in this routine.

These values work like this:

If the mouse button is pressed and then released, these values result in

the following:

MOUSE (3) =the X-coordinate of the starting point

150

Abacus the AmigaBASIC paint program

MOUSE (4) =the Y-cooidinate of the starting point

MOUSE (5) =the X-coordinate of the ending point

MOUSE (6) =the Y-coordinate of the ending point

One more time: MOUSE (1) and MOUSE (2) give you the coordinates

Mouse of the point where the pointer was located when MOUSE (0) was called
coordinate last. However, MOUSE (3) to MOUSE (6) give you the starting and

checking ending coordinates of the movement. This movement begins with the
pressing of the left mouse button and ends with its release. The starting

coordinates are stored in xl and yl in the program. So that you can

see the point, it is marked on the screen with the PSET command. The

empty WHILE...WEND loop waits while the mouse button is pressed.

Once the button is released, the line is drawn from the starting point to

the end point where the mouse was released.

MOUSE (3), MOUSE (4), MOUSE (5) and MOUSE (6) are especially

useful when you're drawing lines and polygons (for which more than

one point is required). They can be used for the drawing of rectangles,

which is what our next routine does. Scroll to the end of your program

listing and type in the following lines:

Frame :5

Test=M0USE(0)5

xl=M0USE(3) : yl=MOUSE(4)5

Pointer(0,0) =xl : Pointer(0,1)=yl5

Pointer(1,0)-xl : Pointer(2,1) =yl5

Value=45

WHILE MOUSE (0)005

Pointer (3,0) "MOUSE (5) 5

Pointer (3,1) =M0USE (6) 5

Pointer(1,1)-Pointer(3,1)5

Pointer (2,0) ^Pointer (3,0)5

GOSUB PlacePoint5

WEND5

LINE (xl,yl)- (Pointer(3,0),Pointer(3,1)),DrawColor,b5

FETURN5

Most of this routine defines values of the Pointer array. Only at the

Rectangles very end do we have a LINE command. What's going on? With some
functions, such as the drawing of rectangles, colored rectangles and

circles, you can specify the object's size before it is finally drawn. But

you must have some way of seeing what the actual size of the object is.

Commercial programs show the object as it is being constructed. We

won't build this feature into our program, partly because we don't have

enough memory available, and partly because the program would be too

slow.

151

Colors and resolution AmigaBASIC Inside and Out

Instead, we've found another solution: our program displays only the

vertices (corners) of the object. These vertices are in the Pointer

array in the following order:

Pointer (0, 0) contains the X-coordinate of the first point

Pointer (0,1) contains the Y-coordinate of the second point

Pointer (1, 0) contains the X-coordinate of the second point

Pointer (1,1) contains the Y-coordinate of the second point

The variable Pointer (2,0) is the third X-value and

Pointer (2,1) is the third Y-value, and so forth. The variable

Value contains the number of points. The subroutine PlacePoint:

then converts the values contained in Pointer into movable points

on the screen.

To draw a rectangle, the user presses the mouse button and thus defines

Drawing one of the corner points. Now, while pressing the mouse button, he can
rectangles move to the diagonally opposite corner point and release the mouse

button to complete the rectangle. Throughout this process the corners

will be indicated by dots on the screen.

You might also notice something peculiar. In the WHILE...WEND loop

we read in MOUSE (5) and MOUSE (6), even though the mouse button

is still depressed and the movement is still not completed. If you used

MOUSE (5) and MOUSE (6) before the mouse button was released,

their values will be the same as MOUSE (1) and MOUSE (2). This

means that the last time MOUSE (0) was called is crucial in this case,

as well.

The block routine is identical to the rectangle routine except for one

Blocks symbol: the LINE command uses the bf (block fill) parameter instead
ofb.

Duplicate the previous program routine listing with Copy and Paste

from the Edit pulldown menu, and make the necessary changes:

152

Abacus THE AMIGABASIC PAINT PROGRAM

Test=MOUSE(0)fl

xl=M0USE(3) : yl=M0USE(4)fl

Pointer (0,0) «xl : Pointer (0,1) -ylfl

Pointer(l,0)=xl : Pointer(2,l)=y11

Value«=4fl

WHILE MOUSE (0)005

Pointer(3,0)-MOUSE(5)5

Pointer(3,1)-MOUSE(6) fl

Pointer(1,1)-Pointer(3,1)5

Pointer(2,0)-Pointer(3,0)5

GOSUB PlacePointfl

WENDfl

LINE (xl,yl)- (Pointer(3,0),Pointer(3,1)),DrawColor,bf5

RETURNS

The block item lets you draw rectangles the same way as before, except

that the rectangles are filled with the active fill pattern. To fill other

kinds of areas (objects other than blocks), you use the AREA command:

ConnectedLines:fl

Test=MOUSE(0)fl

xl=M0USE(3) : yl-M0USE(4)fl

IF yl>186 THEN yl=186fl

IF xl>311 THEN xl-3115

AREA (xl,yl)fl

IF Adef-0 THEN Adef«l : xa-xl : ya=ylfl

IF AdefOl AND xl=xa AND yl-ya THEN DoFillfl

Adef-Adef+1 : IF Adef=20 THEN DoFillfl

LINE (xa,ya)-(xl,yl),DrawColor5

xa=xl

RETURNS

COLOR DrawColor,0 : AREAFILL^IAdef-0

RETURNS!

Once you chose the Connected lines item in the Drawing

Drawing tools pulldown menu, you position the pointer where you want the
Other first vertex of the polygon. Click the mouse once and move the pointer

polygons to the second vertex. The previously defined points will be connected

with lines, so that you can see the outlines of the polygon. You can

repeat this process for as many as 20 points. After 20 points the

polygon is automatically displayed on the the screen, since the AREA

command cannot accept any more points. To draw the polygon before

the 20th point, you simply click the mouse twice without moving it,

and, voilk, there's your polygon.

153

Colors and resolution AmigaBASIC Inside and Out

The AREA command would display an error message if you chose a

Keep it in point outside the specified area. The maximum area in the window is
the area 186 points high and 311 points wide, automatically determined by the

ConnectedLines: subprogram. (The two IF...THEN lines are

responsible for this.) Then the program furnishes the Amiga with the

points of the actual clicks with the AREA command.

The variable Adef stores the number of previously defined vertices. If

Adef is 0, it is changed to 1, and AmigaBASIC uses the coordinates

that the mouse had when the item was called. These coordinates are

stored in xa and ya. These two coordinates are needed to make a line

from the previous point to the new point. The next program line checks

to see if the X- or Y-coordinate has changed since the last click. If they

didn't change, the definition is finished (DoFill:). At the definition

of each new point, AmigaBASIC increments the variable Adef by one.

If Ade f reaches the value of 20, the definition is ended by the

execution of the DoFill: routine. Finally, the old values are assigned

to xa and ya. The DoFill: routine sets Adef back to 0, sets the

chosen color with a COLOR command for AREAFILL, and draws the

desired object

See how easy it is to start talking computerese?

On to the next round! Up until now we've been working with square

Circles and and rectangular shapes. It's about time to produce something more
ellipses curvacious. The following routine draws the circles and ellipses:

Oval:1

Test=M0USE (0)5

xl=M0USE(3) : yl=MOUSE(4)fl

Pointer(0,0) =xl : Pointer (0,1) »yl II

Pointer (1,0)-xl : Pointer (2,1)-yl5

Pointer(3,0)=xl : Pointer(4,

WHILE MOUSE (O)OOfl

rl= ABS (xl-MOUSE (5)) fl

r2= ABS (yl-MOUSE (6)) 5

Pointer(I,l)=yl-r2 : Pointer(2,0)«xl+rlfl

Pointer(3,I)«yl+r2 : Pointer(4,0)=xl-rlfl

GOSUB PlacePoint!!

WENDfl

IF rl=0 THEN rl-.lH

IF rl<r2 THEN Factor-(r2/rl) : rl=rl*Factor

r2=r2*FactorSl

CIRCLE (xl,yl), rl,DrawColor,,, (r2/rl) fl

RETURNS!

154

Abacus the AmigaBASIC paint program

Figure 9:

Pointer

positions in

a circle

To create circles and ellipses with the drawing program, you move the

pointer onto the center point of the desired circle. Press the right mouse

button and drag the mouse. The horizontal distance of the mouse to the

center point determines the X-radius of the circle (ellipse). The vertical

distance determines the Y-radius. At the points of the circle (ellipse)

that are the farthest from the center point, you'll see four pointers. The

fifth pointer indicates the center point. The position of the individual
points of the circle are illustrated in Figure 9.

The circle is drawn when the mouse button is released. The coordinates

of the center point are stored in xl and y1. If you compare the figure

above with the values stored in the Pointer array, you'll see how it

works: each point has either a X-value or a Y-value in common with

the center point. The other value is determined in the WHILE...WEND

loop. The variable r 1 is the absolute value (always positive) of the X-

radius, and r2 is the same for the Y-radius. As long as the mouse

button remains pressed, only the pointers are displayed. If the X-radius

is equal to 0, it will be increased to 0.1, since you might get a

Division by Zero error otherwise.

We still have to figure out the ratio between the two radii, which we

need for the CIRCLE command. Normally the whole thing works only

if the X-radius is larger than or equal to the Y-radius. If this is not true

(If rl<r2 ...), we need to reverse this ratio. Once this is done, the

CIRCLE command finally draws the circle (ellipse).

Now we're going to add a routine that's responsible for coloring in the

outlined areas. The key command is PAINT:

155

Colors and resolution AmigaBASIC Inside and Out

Fill:5

Test=MOUSE(0)fl

IF Click=0 THENfl

SOUND 440,6,2005

x-MOUSE(l) : y=M0USE(2)fl

RETURNS

ELSEfl

Click0fl

IF ABS(x-MOUSE(l))«0 AND ABS(y-MOUSE(2))=0 THENfl

PAINT (x, y), FillColor, DrawColorfl

ELSEfl

SOUND 440,6,2005

END IFfl

END IF5

RETURNS

You've probably notice the unusual combination of IF...THEN...ELSE

Filling in and END IF statements. Actually you already know the individual

objects components: IF...THEN allows you to test conditions. An ELSE after

IF...THEN specifies what happens if the condition is false.

Often you'll need to execute more than one command in an IF...THEN

statement. Up to now you'd have to write those commands all in one

line. This will work as long as you don't have too many commands,
but the LIST window limits the program lines to 255 characters.

Also, too many commands on one line can be very confusing.

Because of this, AmigaBASIC gives you a way to increase the scope of

the IF...THEN...ELSE statement, and enter program parts of any length

in the statement. However, it's important that no commands are entered
on the same line after the IF...THEN and after the ELSE statement The

commands that are executed simply start on the next line. The whole

block is completed with a END IF statement The structure looks like

this:

IF (condition) THENfl

(program section^

that is to be executed^

if the conditional

is true.) <H

ELSE^I

(program section^

that is to be executed^

if the conditional

is false.)\

END IF11

As you can see in the paint program, we can integrate

IF...THEN/ELSE/END IF structures within each other. But if you

want to be able to make sense of it all, be sure to indent all of the lines

correctly.

156

Abacus THE AMIGABASIC PAINT PROGRAM

More about

filling in

Reading the

mouse

status

Why do we make such a big production of a simple PAINT command?

Do you remember the object editor? It's also a sort of paint program,

written in AmigaBASIC. If you color an area with the object editor, it

is very easy to destroy your entire window. Either you chose the wrong

border color, or you simply forgot that the PAINT function was active.

After we went through this agonizing experience, we wanted to

safeguard our program against such mistakes as much as possible. We

had a pretty good idea how to do it:

The Workbench uses a double click to finalize a selection. We adopted

this feature. Consequently, when you want to paint an area, you must

place the pointer within that area and click the mouse twice. At the first

click you'll hear a warning beep (we'll discuss the SOUND command

later in this book). If you have forgotten that the Fill mode was

active, this sound will remind you. At this point you can simply chose

another drawing type, and nothing will happen. Only if you click the

mouse a second time in the same position will the area be filled.

To determine how many times the mouse has been clicked, the number

of clicks is stored in the variable Click. The routine works like this:

At the first execution, Click=0. You click once at the pointer. Now

Click is raised to 1, the warning beep sounds, the program notes the

coordinates of the pointer's position and jumps back. The fill color

FillColor and the drawing or border color DrawColor can be

specified in the color selection subprogram.

When you click the mouse a second time, the Fill: routine is called

up. This time, since Click has the value 1 (not equal to 0), the

program will execute the ELSE subprogram. Click is set back to 0. If

the pointer position has not changed (simply compare the present

values with die ones stored in x and y), the area is colored. However, if

the coordinates have changed, another warning beep will sound and the

program will jump back. If you still want to fill the area, you must

click twice at the new position. It takes a little practice to hold the

mouse perfectly still while you're clicking it, but it's a small price to

pay for such a convenient safety feature. Should you want to permit a

slight movement of the mouse (technically known as slop), change the

second IF...THEN line in the Filling: routine like this:

IF ABS(x-MOUSE(l))<ll AND ABS(y-MOUSE (2))<6 THENfl

This revised line will allow a horizontal movement from the original

position of 10 points, and a vertical deviation of 5 points. Of course,

your chances of making a mistake are then increased.

157

Colors and resolution AmigaBASIC Inside and Out

Since we're now familiar with all the methods required to create a

Erasing graphic masterpiece, let's come up with an eraser to correct rough
errors drafts. For this we use the Eraser: routine:

Eraser:5

Test=MOUSE(O)fl

WHILE MOUSE (0)005

x=MOUSE(1):y=MOUSE(2)fl

PATTERN ,Solid%$

LINE (x,y)-(x+10,y+5),0,bffl

PATTERN ,FillPattern%fl

WENDfl

RETURNS

You'll need the eraser to remove unwanted portions of your drawing.

The program works the same way as the thick pen, except that the color

number 0 (the background color) is used. As a result, graphics that are

"erased" will receive the same color as the background, and therefore

become part of the background.

Another unknown command pops up in this routine: PATTERN. As its

PATTERN name implies, PATTERN pertains to our fill pattern. We'll save the

explanation of exactly how this command works for later. However,

you should know that PATTERN, Solid% instructs the program to

use a solid pattern. On the other hand, PATTERN, FillPattern%

will activate the pattern chosen in DefinePattern:.

Before the command that displays the eraser on the screen, we'll choose

the solid pattern, since otherwise you'd just erase in the presently active

pattern. The result would just be an inverse of the pattern. However, we

want everything in the particular spot to disappear. The opposite of

"everything's here" (Solid%) is "everything's gone"; that is why we

have the two PATTERN commands.

Don't panic if all this is confusing to you. Believe us, behind all this

clever advice are countless test-runs and even a few deletable expletives.

The next subprogram, which manages the different drawing modes, is

PlacePoint:. It creates the blinking pointer dots used by Frame:,

Box: and Oval: and displays them on the screen. The

PlacePoint: routine receives the coordinates in the Pointer array

from these subprograms.

158

Abacus the AmigaBASIC paint program

PlacePointrll

FOR x=0 TO Value-lU

xz=Pointer (x, 0) :yz=Pointer (x, 1) fl

IF xz<0 THEN xz«0 : Pointer (x, 0) =05

IF xz>311 THEN xz-311 : Pointer (x,0)=311fl

IF yz<0 THEN yz=0 : Pointer (x,l)=0<lI

IF yz>186 THEN yz=186 : Pointer (x, 1) =1865

AltColor (x) -POINT (xz, yz) fl

NEXT x<H

FOR x=0 TO Value-15

PSET (Pointer (x, 0), Pointer <x, 1)), - (AltColor (x) =0) fl

NEXT xfl

FOR x=0 TO Value-lfl

PSET (Pointer (x, 0), Pointer (x, 1)), AltColor (x) fl

NEXT xfl

RETURN^

The entire section consists of three FOR...NEXT loops. The first loop

calculates the points and stores what was there before. The second loop

sets the points, the third one erases them again. The routine loops the

same number of times as there are points. Since the counting starts at

0, the last point has the number Value-1. The four IF...THEN lines

in the first loop check if the coordinates of the actual point are outside

of the legal area. If the X-value is smaller than 0 or larger than 311, or

if the Y-value is smaller than 0 or larger than 186, the values are set to

the corresponding maximum/minimum number.

Next, the program stores the color of the point that was at the particular

position originally, in the AltColor array. The BASIC function

POINT (x, y) tells you which color a certain pixel is. It gives you the

color number of the specified point, or the number -1 if the point is

outside the legal area.

The task of the second loop in the above routine is to place the actual
1 equals 1 •.. point onto the screen. The only thing worth mentioning is the color to
or does it? be used: is calculated with the expression - (AltColor (x) =0). The

reason behind this is quite simple: we want the pointer to contrast

clearly with the background. Should the point that was originally at

this position have had the background color (number 0, black in the

default setting), the pointer should be in the color number 1 (white). If

the original point had some other color, the pointer will take on the

background color.

Now you know what the formula is supposed to accomplish, but you

still don't know how it works. The entire process has to do with how

AmigaBASIC conducts logical comparisons. An incorrect expression

has the value 0. A correct expression has a value of -1. We'll talk more

about this in Intermission 3. If you like, you can try typing this in

the BASIC window:

? (0=1) fl

159

Colors and resolution AmigaBASIC Inside and Out

In essence, we're asking the Amiga "Is zero the same as one?" The
Amiga will answer, "No, zero is not the same as one." In its own

language this is:

If the question is:

? (i=D

then the answer will be:

-l

This last answer says, in effect, "Yes, one is equal to one." That's

because a true expression has the logical value of -1.

The formula - (AltColor (x) =0) gives the following results:

0 AltColor (x) is not equal to zero, since - (false

expression) is-0, orO.

1 AltColor (x) is equal to zero, because - (true

expression) is-1), or 1.

As you can see, a rather complicated concept can be disguised by a

simple formula. Albert Einstein, for instance, said simply e=mc2.

Einstein's little equation was expressing a formula for a concept most

of us will never fully grasp.

The last FOR...NEXT loop supplies the pixels with their original colors,

and the pointers disappear from the screen.

Now to the last subroutine which deals with the drawing types.

Actually you can't call it a "drawing" type, since this routine is

responsible for text entries.

We placed this routine immediately after the Placepoint : routine in

our final version of the program. Because of the way that our

programming is structured, it really doesn't matter where it goes. You

can type it in at the end of the program, or you can insert this routine

right after Placepoint:.

160

Abacus the AmigaBASIC paint program

Text: $

Test=MOUSE(0)fl

x=MOUSE(l)

MENU OFF : MOUSE OFFfl

MENU 1,0,0 : MENU 2,0,OH

WINDOW 5,"Enter Text:",(0,177)-(311,185),18,lfl

CLSfl

LINE INPUT Text$<ll

WINDOW CLOSE 5fl

WINDOW 2f

MENU 1,0,1 : MENU 2,0,H

MENU ON : MOUSE ONfl

LOCATE INT(y/8.86)+l,INT(x/10)+l : COLOR

DrawColor,FillColorfl

PRINT Text$;fl

COLOR DrawColor,Ofl

RETURNS!

This menu selection can be used to label parts of your drawings. Click

the pointer at the location you want the label displayed. Then you'll see

a window appear at the bottom of the screen. You can drag this window

anywhere on the screen. Type the desired text and press <RETURN>.

The window will close and the text will be displayed at the position

you specified.

The Text: subprogram first determines the coordinates of the pointer.

Text entry The event trapping and both pulldown menus are disabled while the
window is on the screen for the text entry. The text is read in with

LINE INPUT, which means that any characters may be used. After the

text has been entered, we get rid of window 5, and turn window 2 back

on. Also, the two pulldown menus and event trapping are turned back

on. Before the text can be printed on the picture, the pixel-coordinates

must be converted into rows and columns for the LOCATE command.

To make the text colors more flexible, the actual text color is contained

in DrawColor, while the text background color is stored in

FillColor. This way you can use colored text highlighted by colored

bars. If you don't want a colored background for your text, simply

chose the background color (number 0) as your fill color. Before we

leave the subroutine, we have to use COLOR DrawColor, 0 to reset

the background color to 0. Otherwise if you tried to clear the screen, it

would be erased in the fill color.

This concludes the topic of drawing. Remember, don't forget to save

the program every once in a while.

Now we move on to the color subroutine. This routine is called up

Color when you chose the Color Palette item from the Program
control pulldown menu. There are two sections to the color routine. The first

subroutine is where you select the colors for drawing. The second

subroutine is where you define the RGB composition of the individual

colors.

Type in the first program section as follows:

161

Colors and resolution AmigaBASIC Inside and Out

SelectColor:H

ColorChoice=0 : EndOK=0H

MOUSE OFF : MENU OFFH

WINDOW 3, "Color Palette", (4,20) -(245,160), 18,111

PATTERN ,Solid%H

FOR x« 1 TO (MaxColors+l)/81t

FOR y= 0 TO 7 H

LINE (y*30, (x-1) *16)-((y+1) *30,x*16), (x-1) *8+y,bffl

NEXT yK

NEXT xfl

LINE (10,72)-(50,95),DrawColor,bH

LINE (15,75)-(45,93),DrawColor,bffl

LOCATE 12,1 : COLOR 0,1 : PRINT "Draw";fl

LINE (70r72)-(110,95),FillColor,M

LINE (75,75)-(105,93),FillColor,bf5

LOCATE 12,8 : COLOR 1,0 : PRINT "Fill11; 11

LINE (135,72)-(235,95),l,bH

LOCATE 10,16: PRINT "Palette";H

LINE (190,109)-(230,132), l,bH

LOCATE 14,21 : PRINT M0KM;1I

PATTERN ,FillPattern%U

MOUSE ON : MENU ONH

RETURNH

11

ColorPalette:H

Test=MOUSE(0)H

x=M0USE(3) : y=MOUSE(4)1I

It

GOSUB ChooseColorH

H

PATTERN ,Sol±d%H

LINE (10,72)-(50,95),DrawColor,bH

LINE (15,75)-(45,93),DrawColor,bfH

LINE (70,72)-(110,95),FillColor,bH

LINE (75,75)-(105,93),FillColor,bfH

PATTERN ,F±llPattern%H

H
IF WINDOW (0) =3 AND 72<y AND y<95 THENH

IF 70<x AND x<110 THEN ColorChoice=lH

IF 10<x AND x<50 THEN ColorChoice«0 H

162

Abacus the AmigaBASIC paint program

IF 135<x AND x<235 THEM

PATTERN ,Solid%H

PAINT (137,74),3,15

PATTERN ,FillPattern%H

GOSUB PaletteDefH

RETURNH

END IFH

END IFH

GOSUB OKCheckH

IF ColorChoice=0 THENH

LOCATE 12,2

LOCATE 12,8

ELSEH

LOCATE 12,2

LOCATE 12,8

END IFfl

RETURNS

COLOR 0,1

COLOR 1,0

COLOR 1,0

COLOR 0,1

PRINT "Draw"; 11

PRINT "Fill";II

PRINT "Draw";H

PRINT "Fill";H

ChooseColor:1I

IF WINDOW(0)=3 AND x<240 AND y<(2A (Colors+1)) THENH

fx=INT(x/30) : fy = INT(y/16)H

IF ColorChoice=0 THENH

DrawColor=fy*8+fx5

ELSE11

FillColor=fy*8+fxH

END IFI

END IFH

RETURNS

11

OKCheck:I

IF x>190 AND x<230 AND y>109 AND y<132 THENH

PATTERN ,Solid%H

PAINT (192,111),3,1 : EndOK=lH

PATTERN ,FillPattern%H

END IFH

RETURNS

11

ColorDone:H

MENU 2,0,1 : Mode=lU

WINDOW CLOSE 3H

WINDOW OUTPUT 2H

RETURNH

Quite a chunk, huh? As always, we'll go through and explain the

routine bit by bit (or at least byte by byte).

When ColorPalette: is first called up, it displays a new window

smaller than the drawing window. The new window contains colored

squares, one per available color. A click in one of these squares selects

its corresponding color.

163

Colors and resolution AmigaBASIC Inside and Out

Figure 10:

The Color

Palette

window in

the paint

program

How the

color

routines

work

Below the color squares are four more boxes. The first two indicate the

current drawing and fill colors. The fill color is important only for the

PAINT command, since in its case, a border color and a fill color can

be specified

If you click in one of these two boxes, you're specifying whether you

will change the drawing color or the fill color. The label of the chosen

box is printed in reverse video. The boxes themselves are displayed in

the active colors.

The Palette box will activate color definition. Since this part of the

program doesn't exist yet, you'll just have to wait A click in the OK

box will exit the color subroutine.

How did we program all this?

The SelectColor: routine constructs the window and its contents

and makes all necessary preparations. The variables ColorChoice

and EndOK are set to zero. The variable ColorChoice determines if

the drawing color (Co lo rCho ice=0) or the fill color

(ColorChoice=l) is changed. Event trapping must be disabled while

a window is being constructed. That's because if the output window is

changed during construction, part of the text and graphics would end up

in the wrong window. Therefore, we disable the monitoring of MOUSE

and MENU with the MOUSE OFF and MENU OFF commands. Now the

new window appears on the screen. It can be shifted with its contents

intact

164

Abacus the AmigaBASIC paint program

The mouse

and Color-

Palette:

To construct the colored squares, we'll need the solid pattern again, so

we use the PATTERN, Solid% command. The next two nested

FOR...NEXT loops bring the color into the window. If there are eight

available colors (3 bitplanes), one row of eight squares are drawn. If

there are 16 colors (4 bitplanes), two rows of eight squares are drawn. If

there are 32 colors, four rows are drawn. The expression

(Colors+1) /8 results in 1 for three bitplanes, 2 for four bitplanes

and 4 for five bitplanes. After that, the two boxes for the drawing and

fill colors are drawn, and the corresponding text is printed. The

Palette and OK boxes are also constructed in this routine. Before the

RETURN, the fill pattern is set back to the original pattern, and event

trapping is reactivated

While mode 2 is active, the ColorPalette: subroutine is

responsible for the evaluation of mouse clicks. First of all, the

coordinates of the mouse when the routine begins are determined. Then

the ChooseColor: subroutine is called up. It checks if one of the

color squares has been clicked. If one has been clicked, that color

becomes the new drawing or fill color, depending on the value of

ColorChoice.

Once the program returns from the ChooseColor: routine,

ColorPalette: will redraw the drawing color and fill color squares,

in case either was changed. The fill pattern from the Solid% variable

is used for this. Whenever areas outside the picture area are drawn, we

switch back to this solid pattern with the PATTERN command.

Otherwise these areas would be colored with one of the fill patterns.

If this doesn't make a lot of sense to you right now, don't worry—soon

we'll get to the Fillpattern subroutine, where all of your

questions will be answered.

You already know the function of the ChooseColor: routine: it

checks if one of the color squares has been clicked. If so, it changes

either the drawing or the fill color. In the IF...THEN statement you'll

find the function WINDOW (0). Like MOUSE, the WINDOW command

can transfer different types of data. The statement WINDOW (0) will

give you the number of the selected window. This is the window that

the user has selected by clicking the mouse. After all, we have to check

if the user clicked in the correct window, since he could just as well

have clicked in another one. One computer rule is that the programmer

should make all possible errors, before the user makes them. The

subroutine is only executed if a point within window 3 or within the

color squares was clicked.

165

Colors and resolution AmigaBASIC Inside and Out

We compare the Y-coordinate with the formula (2 A (Colors+1)),

Checking which depends on the number of available colors. The lower limit
bitplanes differs from one row of squares to two rows to four rows of color

squares. If there's only one row, y must be less than 16. If there are

two rows, 32 is the border, and with four rows the limit is 64. The

color squares have a height of exactly 16 pixels. The variable Colors

contains the number of bitplanes. If you don't trust our formula,

simply plug the possible values (3,4 or 5) into the formula. You'll see

that it works.

The variable fx is assigned the horizontal position of the square that

was clicked—in other words, how many squares from the left border the

mouse was clicked. The variable fy specifies the row where the square

is located. From these two values the color number can then be

calculated with the formula fy* 8+fx.

Depending on the value of ColorChoice, the new color is assigned

either to DrawColor or FillColor. The label OKCheck: is self-

explanatory. This routine checks if the OK box has been clicked. In this

case, EndOK is set to 1, and the program jumps back with RETURN.

The color program is then exited with the ColorDone: routine. The

Drawing tools pulldown menu is again displayed and mode is

set to 1. The color window (window 3) disappears from the screen, and

window 2 (in which the drawing is located) becomes the output window

once again.

Once you've entered all these program lines, you can chose from 8,16,

Color or 32 standard colors. However, maybe you don't quite like these
selections colors, or you need a lot of different shades of green for a country

landscape, and can do without the orange, dark blue and pink shades.

Whatever your needs, the following section of the program lets you use

the Palette box to change the RGB display of all available colors.

At this time insert the following program routine between the

subroutines ChooseColor: and ColorPalette:.

PaletteDef:fl

IF ColorChoice«0 THEN NewColor«DrawColor ELSE

NewColor-FillColorfl

PATTERN ,Solid%fl

LINE (0,71)-(240,107),0,bffl

COLOR l,0fl

LOCATE 9,2 : PRINT "RM;fl

LOCATE 10,2 : PRINT MG";fl

LOCATE 11,2 : PRINT "B";fl

LINE (24,70)-(218,78),l,bfl

LINE (24,80)-(218,88),l,bH

LINE <24,90)-(218,98),l,bfl

LINE (222,70)-(238,98),NewColor,bffl

Mode=4fl

PATTERN ,FillPattern%fl

RETURN fl

H

166

Abacus the AmigaBASIC paint program

RGBDefrfl

Test=MOUSE(O)fl

x=M0USE(3) : y=M0USE(4)fl

GOSUB ChooseColorfl

IF ColorChoice«0 THEN NewColor=DrawColor ELSE

NewColor=FillColorfl

GOSUB RGBRegulatoril

GOSUB OKCheck : IF EndOK«l THEN EndOK=3fl

WHILE MOUSE (0)005

x=MOUSE(l) : y=M0USE(2)fl

IF WINDOW(0)»3 AND x>26 AND x<218 AND y>70 AND y<98

THENfl

Colors%(NewColor,INT((y-71)/8.7))«INT((x-26)/12)fl

GOSUB RGBRegulatorfl

END IFfl

RETURNS

RGBRegulator:fl

PATTERN ,Solid%fl

LINE <25+r*12,71)-(37+r*12,77), 0,bffl

LINE (25+g*12, 81)-(37+g*12,87), O,bffl

LINE (25+b*12,91)-(37+b*12,97), 0,bffl

r=Colors%(NewColor,0)5

g=Colors%(NewColorf1)fl

b=Colors%(NewColor,2) f

LINE (25+r*12f71)-(37+r*12f77),lfbf5

LINE (25+g*12,81)-(37+g*12f 87), l,bffl

LINE (25+b*12f 91)-(37+b*12,97),1,bf5

PALETTE NewColor,r/16,g/16,b/16fl

LINE (222f 70) -(238,98),NewColor,bffl

PATTERN ,FillPattern%fl

RETURNS

The first of the three subroutines, PaletteDef:, is again responsible

for preparations and the screen construction. Depending on the value of

ColorChoice, the variable NewColor is assigned the color number

of the drawing color or the fill color. This will be changed, as long as

the user doesn't chose another color. The sliders for red, green and blue

appear in the Color window. Because we need to make a little room

for the sliders, we have to eliminate the color squares for the drawing

and fill colors, as well as the Palette box. To erase these squares,

we'll just let the Amiga draw a block in the background color (number

0). At this empty sqaure we'll draw the three sliders and display the

letters R, G and B as labels. We'll also draw a little box next to the

sliders which will display the current selected color, so that you can tell

at a glance which color you're adjusting.

Mode now has a value of four. We already determined in the

EvalMouse: routine that mode 4 is subordinate to mode 2. The

program needs the choice of modes so that it can tell what the user is

presently trying to specify with a mouse click.

167

Colors and resolution AmigaBASIC Inside and Out

Checking

mouse input

Moving the

sliders

The RGBdef: routine evaluates mouse input as long as the color

definition program remains active. Once the mouse coordinates have

been determined, the ChooseColor: routine checks if one of the

color squares was clicked. You can then determine which color is going

to be changed. The new color is also immediately assigned to the

variable NewColor.

The subroutine RGBRegulator: is next. It will adjust the sliders

according to the actual color values.

To check if the OK field was clicked, we'll borrow the OKcheck :

routine (which actually belongs to the ChooseColor: subroutine). If

the user is done, EndOK will be set to one. Then we switch this value

to three, and the end-signal for the color definition program is set. If

you click the OK box in mode four, the program will go one step back

into mode 2, the color selection. After clicking OK once more, you'll

be returned to the drawing mode again.

If this is a little too cumbersome for you, you can also simply select

the Draw item from the Program menu. This will put you in the

drawing mode immediately.

The WHILE...WEND loop in the RGBDef : routine shifts the sliders

automatically. One of the color components (R, G or B) in the

Colors % array is constantly adjusted—as long as the mouse button

remains pressed, the active window is number three and the pointer

remains within the bar controller. Which color component will be

adjusted depends on the Y-position of the pointer. The value of the

color component is determined by the pointer's X-position. Before the

IF...THEN statement and the WHILE...THEN loop are completed, the

RGBRegulator: routine is called up. This subroutine uses the

variables r, g and b to draw the controllers in their correct positions.

First the routine erases the old controller by redrawing it in the

background color. Then it reads the values of r, g and b from the

Colors% array. The result is always a number between 0 and 15. Zero

signifies "no color", while 15 means "full color". The sliders are

redisplayed at the new position if necessary. A PALETTE command

informs AmigaBASIC of the new color definition. Finally the new

color is drawn in the square representing the active color. Finally the

programjumps back with RETURN.

Select which color is redefined by clicking in one of the color squares.

The R, G and B sliders are dragged with the mouse, just like in

Preferences and other "professional" programs. Once all colors are

to your liking, exit the color definition with a click in the OK box.

You see that it's a lot easier to actually use the program than to listen

to our explanations. After all, that's the way it is with almost

everything in life. Imagine how much documentation you could write

on toothbrushes, refrigerators, or bicycles!

168

Abacus Bits, bytes and other mysteries

Intermission 3

Binary

numbers

Bits, bytes and other mysteries

Time to interrupt the flow of the learning process once again. Feel free

to take a break and rest your fingers before you read on—but after

you've saved all of your work to diskette.

The next part of the painting program involves the definition of fill

patterns. So that you'll understand the programming of these patterns,

first you need to know some fundamental mathematical principles. This

intermission explains binary numbers, hexadecimal numbers, and all of

the wonderful things that you can do with them.

You already know that a computer can only distinguish between two

conditions: 0 and 1—power on and power off, logically "true" and

logically "false". All operations of a computer are derived from these

two fundamental conditions.

We're interested in finding out how the Amiga can remember numbers

other than 0 and 1. The number 2 should give it quite a bit of trouble,

since it can't distinguish between no power, low power and high power.

Actually, you should already be able to guess the solution. What did we

do when one bit wasn't enough for all the colors? We simply added

another bit. The Amiga uses the same strategy to deal with larger

numbers. With one bit it can deal with 0 and 1. With two bits it can

already distinguish between 0, 1, 2 and 3. The numbers 0 through 7

look like this to the Amiga:

Table 6:

Decimal

numbers and

binary

numbers

number

0

1

2

3

in bits

000

001

010

011

number

4

5

6

7

in bits

100

101

110

111

These combinations are identical to the ones we know from bitplanes.

Maybe you've heard of the binary system in school. This number

system uses only the the digits 0 and 1, but can represent all numbers

of the decimal system. You may want to know why you'd want to use

the binary system, when you had enough trouble figuring out the

decimal system.

169

Colors and resolution AmigaBASIC Inside and Out

Using

binary

numbers

As easy as

1,10,11

Bytes,

words and

longwords

The binary system, which probably looked like a waste of time in math

class, is actually a very useful number system for computing. Our

standard decimal system uses ten numbers (0, 1, 2, ...,9). When ten

numbers aren't enough, another digit is added: one digit is sufficient for

9, but for 10 we need two digits. The values of each digit are always

powers of the base number (1=10*0,10=10Al, 100=10A2, etc.).

You might wonder why exactly the number 10 was chosen for the base

number. Thinking it over, there really isn't any particular reason. It's

probably because we humans have always needed some sort of help in

the field of mathematics. Since we have ten fingers and toes, 10 seems

to make logical sense. However, you can build number systems on any

base number: 3, 8, even 127, if you really wanted to.

Computers know only two numbers (0 and 1), and therefore must

operate with the binary system. A second digit is needed to represent the

decimal number 2 in binary. The same goes for all other exponents of

2: 2A0=l, 2A1=2,2A2=4,2A3=8,2M=16, etc. The binary system requires

a new digit for each of these numbers. The disadvantage is that even

relatively small numbers require a lot of digits. But aside from that

drawback, the whole thing works just as well as the decimal system. If

you want to calculate the value of a binary number, you simply add up

the values of each occupied digit

For example, look at the binary number 10011011. This is what its

value looks like when split up into exponents of 2:

value: 128

content: 1

64

(2*6)

0

32

(2*5)

0

16

(2*4)

1

8

(2A3)

1

4

(2*2)

0

2

(2A1)

1

1

CX))

1

The binary number 10011011 corresponds to the decimal value of

128+16+8+2+1, or 155.

For technical reasons, eight bits are commonly grouped into one unit

called a byte. A byte has eight bits, and so it has a maximum value of

255. If you want to check, simply add up all the decimal values in our

example above.

Each of the Amiga's memory cells can store one byte. This is a

holdover from the times when microprocessor chips could only handle

eight bits at a time (the Amiga's immediate predecessors at

Commodore—the C-64, C-128, etc.—used eight-bit chips). The

Amiga's main processor, the 68000, can handle 16 bits at a time. A

16-bit value is referred to as a word. A word consists of two bytes that

are stored in consecutive memory cells. With 16 bits you can display

numbers up to 65535. The 68000 processor can even handle 32-bit

values. These values are called longwordsy and have values between 0

and 4,294,967,294. Quite a number, huh? Don't worry, you don't need

to remember it

170

Abacus Bits, bytes and other mysteries

Hexadecimal

numbers

Table 7:

A

comparison

of the three

number

systems

Advantages

of hex

Hex

notation

Octal

notation

You won't be seeing the terms word or longword in this book. We

mentioned them simply so that you'd recognize them if you saw them

anywhere else.

Often only 15 or 31 bits are used to store a number, and the highest bit

is then used to store the sign of the number. Under these circumstances,

a 0 means positive, and a 1 means negative. AmigaBASIC works this

way, as well: 16-bit numbers are between -32768 and +32767, while

32-bit numbers range from -2147483647 to +2147483646. These

decimal numbers can get pretty lengthy, and aren't recognizable at a

glance anymore. This is one of the reasons why programmers came up

with another numeral system besides binary numbers. This is called the

hexadecimal system. This system is based on 16. The letters A to F are

used to count up from 10 to IS decimal and reach hexidecimal 10.

Here's a comparison of the three number systems:

decimal

0

1

2

3

4

5

6

7

binary

0000

0001

0010

0011

0100

0101

0110

0111

hex.

0

1

2

3

4

5

6

7

decimal

8

9

10

11

12

13

14

15

binary

1000

1001

1010

1011

1100

1101

1110

1111

hex.

8

9

A

B

C

D

E

F

The hexadecimal system has a few advantages over other number

systems when you work with computers. First, you can represent larger

numbers with fewer digits. The gain of one or two digit places may not

seem like much, but every little bit counts (no pun intended). Also, 16

is a power of two. This means that hexadecimal and binary numbers can

be easily interchanged. Four digits of a binary number always coincide

with one hexadecimal digit, as shown in the chart above.

For example, which way is easier to tell how many bits will be used:

with decimal 65535 or with hexadeciaml FFFF? See, hexadecimal isn't

all that bad...

If you're going to use hexadecimal numbers in AmigaBASIC, you'll

need to identify them some way. It's done by preceding the number

with an ampersand and an h:

? &h7fff

While we're on the subject of numbers, AmigaBASIC also recognizes

another number system: the octal system. In this system, the base is 8,

and digits range from 0 to 7. For example:

? &O7777

171

Colors and resolution AmigaBASIC Inside and Out

Logical

operators

AND

You'll almost never use octal numbers. On the other hand, you'll

commonly use hexadecimal and binary numbers. Unfortunately,

AmigaBASIC has no way of directly displaying binary numbers. You'll

use mostly decimal and hexadecimal numbers in your AmigaBASIC

programs. You can execute any mathematical function with them:

? &hf + &haO2

This line corresponds to 15+2562 and results in 2577. The line

notation is unimportant to AmigaBASIC—only the value itself counts.

You can even use other number system types in conjunction with one

another:

? 15 + &haO2

Actually, there's a lot more you can do with these kinds of numbers.

There are logical operators, for example. That sounds awfully

mathematical, but really isn't bad. You already know the AND and OR

commands. So far we've used them mainly in conjunction with the

IF...THEN statement:

A logical AND means "as well as": Both conditions have to be true for

the statement to be true.

OR stands for "either one of the two". Only one of the conditions needs

to be true for the statement to be true.

Commands like AND and OR are used to perform logical operations. In

this process individual bits are compared with each other. You already

know that AmigaBASIC expresses the value of a logical expression

with 0 and -1. Now we'll bring a little coherence to these explanations:

Let's start with AND. Type the following line in the BASIC window:

? 59 AND 93

The Amiga will reply with the number 25. How does this happen? It's

all very simple:

AND

00111011

01011101

00011001

(59)

(93)

(25)

In the result, a bit is set only when both of the two corresponding bits

are set. The following scheme demonstrates the possible and

combinations and their results.

0 AND 0 - 0

0 AND 1 - 0

1 AND 0=0

1 AND 1=1

172

Abacus Bits, bytes and other mysteries

When you perform logical operations on numbers, AmigaBASIC

compares them bit for bit and puts together a resulting number, as you

could see from the above example of AND. You'll see how this works

with the rest of the operators.

The next logical operator is OR. A logical OR sets a bit if either one

OR of its corresponding two bits are set. The following example:

? 77 OR 132

results in 205. Take a look at how this is done:

01001101 (77)

OR 10000100 (132)

11001101 (205)

The following combinations are possible with OR:

0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 - 1

There are still more logical operators. One of these is XOR, pronounced

XOR "eksor" and short for "exclusive or". This is not an exclusive

comparison in the sense that it can only be used by the rich and

famous—it means that either one bit or the other must be set for the

logic to be true. If both bits are set, then the resulting bit is not set:

90 XOR 213

results in 143.

01011010 (90)

XOR 11010101 (213)

10001111 (143)

Here are the possible XOR combinations:

0 XOR 0=0

0 XOR 1=1

1 XOR 0=1

1 XOR 1=0

The next logical operand is EQV, which is short for "EQuiValent". The

EQV resulting bit is set if its two corresponding bits have the same value.

This function isn't used very often. It's also not quite as simple as the

previous functions, since in this case the leading characters (positive or

negative signs) of the numbers have to be taken into account:

? 106 EQV -42

results in 67:

173

Colors and resolution AmigaBASIC Inside and Out

0001101010 (106)

EQV 1111010110 (-42)

0001000011 (67)

Combinations possible:

0 EQV 0=1

0 EQV 1=0

1 EQV 0=0

1 EQV 1=1

The next comparison is a little exotic. IMP stands for the mathemicial

IMP expression "IMPlied." Comparing the values sets the second bit

according to the first. There is an even clearer definition, but since

you'll almost never use this in practice, we won't go any further. Here

are the tables to demonstrate:

370 IMP

results in

-474

-337.

IMP

0

0

1

1

IMP

IMP

IMP

IMP

0101110010

1000100110

0001000011

0 = 1

1 = 1

0 = 0

1 = 1

(370)

(-474)

(-337)

The last logical operator is NOT. This function turns logical values

NOT around. The value 0 becomes -1 and -1 becomes 0. After all, "true" is

expressed through the number -1. This isn't quite consistent (up to

now, 1 was the counterpart to 0), but we can't change that. NOT

calculates the values by this formula:

new value = -old value-1

Thus, 0 can be changed into -1 and vice versa. This operation doesn't

make too much sense when used with all other numbers. Why should

NOT 2 be -3, anyway? Therfore, NOT is used almost exclusively in

IF...THEN statements or similar conditions. The following two BASIC

lines have exactly the same result:

IF NOT (a$="Hellofl) THEN...

aid

IF a$<>"Hello" THEN...

174

Abacus Bits, bytes and other mysteries

Well, you've done it. Now you know everything about bits, bytes,

number systems and logical operators. All this knowledge will come in

handy later in this book and when you're programming on your own.

You'll already see this in the next section.

If this intermission was a little dry for you, we'll try to make up for it

The next section deals with the Amiga's fill patterns, and brings us to

the completion of your paint program.

175

Colors and resolution AmigaBASIC Inside and Out

2.10
Blitter & the paint program:

defining your fill patterns

Designing

patterns

with

PATTERN

Patterned

lines

Fill patterns, like so many other Amiga graphic operations, are handled

by the Blitter chip. Besides just copying and coloring areas, the Blitter

chip can also execute complex area and pattern operations. It uses the

same logical operands that we looked at in the previous Intermission to

perform these operations. It's quite simple for Blitter to fill a block or

polygon created by AREA with any sort of graphic symbol, such as

little hearts or "Amiga A's", instead of a solid color. You can design

these patterns yourself form scratch. All that the blitter requires is the

data describing the particular pattern.

How does AmigaBASIC handle pattern operations? It has a special

PATTERN command for this purpose—you've seen it plenty of times

in the previous listings. The data that describes the pattern is entered

after PATTERN:

PATTERN (value for lines),(array for areas)

You can specify a pattern in the first position that will be used to draw

the individual lines. This pattern is specified with a 16-bit number.

There are 16 points across in which to specify your pattern. For

instance, if you want to draw the lines in a "point on/point off pattern,

the bits and values would look like this (we added the decimal and

hexadecimal values):

bits:

dec:

hex:

01010101 01010101

21845

&H5555

Type this in the BASIC window:

pattern &h5555

After this line is entered, the new pattern will be used to draw the lines.

A bit with the value of 1 represents a set (visible) pixel. A bit with the

value of 0 is an unset (invisible) pixel. Try typing in the BASIC

window this command to draw a few lines:

for x-1 to 1000 : line (635*rnd,185*rnd)-

(635*rnd,185*rnd) : nextfl

You'll have to look awfully close to see the individual pixels. Try it

again with a different pattern:

pattern Shcccc

176

Abacus defining your fill patterns

Now you should be able to see the pattern better.

The PATTERN command allows you to enter a bit pattern and then use

this new pattern with the normal AmigaBASIC graphic commands.

Your Amiga will do the rest.

By the way, you've just learned something new: A fill pattern or a line

pattern remains active until it is replaced by another one. The Amiga's

default pattern is "all points on", which corresponds to the hexadecimal

value &HFFFF.

Be very careful when you're filling areas, because the "invisible" points

Line in the line really aren't there. We're now drawing with a group of pixels
patterns VS. rather than a continuous line, and the color will just spill through our

fill patterns line. This is why we didn't include a pattern definition for lines in the

program, since lines are mostly used to create the outlines of colored

areas. Instead, you can define fill patterns for drawing in our paint

program. We use the second parameter of the PATTERN command for

this. The only difference is that for surface patterns, a whole array of

integer values is needed instead of a single number:

PATTERN,(array name)

Now you see why all our PATTERN commands have a comma before

the arrays Solid% and FillPattern%. This is because we simply

omitted the value for the line definition.

What values must the array have? Well, you already know that they

have to be integer values. This is obvious, since fractions would be

very hard to convert to bits. The fill pattern used to fill enclosed areas

and draw surfaces and blocks can be drawn, is also 16 pixels wide. The

patterns can be of any desired height. But there is one rule: The height

of the pattern in bits must always be a power of 2 (that is, 2,4, 8, 16,

etc.). We'll use a height of 8 pixels (16*8 pixels) per pattern in our

paint program. The areas that are filled can be much larger, since the

pattern will simply repeat itself within the area.

You can choose from nine different patterns in the paint program. You

may change any pattern in any way you like.

We can now enter the next lines in our program:

PatternEditor:fl

MOUSE OFF : MENU OFFfl

EndOK=0fl

WINDOW 4,"Fill Patterns",(54,30)-(300,130),18,lfl

LINE (0,0)-(132,66),3,M

II
FOR x=0 TO 2 fl

FOR y=0 TO 2 fl

FOR i=0 TO 711

177

Colors and resolution AmigaBASIC Inside and Out

FillPattern% (i)-AllPatterns%(y*3+x,

NEXT i

PATTERN ,FillPattern%5

LINE (144+x*34,y*25)-(175+x*34,23+y*25),l,bfl

NEXT yfl

NEXT x5

GOSUB MarkPatternfl

5

LINE (5,68)-(65,82),l,b5

LOCATE 9,2 : PRINT "Clear";fl

LINE (75,68)-(135,82),l,b5

LOCATE 9,9: PRINT "Inv.";5

LINE (5,85)-(65,100),l,b5

LOCATE 11,2 : PRINT "Load";5

LINE (75,85)-(135,100),l,b5

LOCATE 11,9: PRINT "Save";5

LINE (162,77)-(222,92),l,b5

LOCATE 10,19 : PRINT "OK";5

5

FOR i=0 TO 75

FillPattern% (i) »AllPatterns% (PtrnNuniber, i) 5

NEXT 15

GOSUB DrawPatternfl

MENU ON : MOUSE ONfl

RETURNS

DefinePattern:5

. Test=M0USE(0)5

x=M0USE(3) : y=MOUSE(4)5

IF WINDOW (0)»4 AND x<132 AND y<66 THENU

px=INT(x/8.25) : py-INT(y/8.25)5

Bit=FillPattern%(py) AND 2A(15-px)fl

IF Bit«0 THEN5

FillPattern«FillPattern%(py) OR 2A (15-px)5

ELSE5

FillPattern=FillPattern%(py) AND (65535&-2A(15-

px))5

END IF5I

IF FillPattern>32767 THEN FillPattern-FillPattern-

65536&5

FillPattern%(py)=FillPattern5

PATTERN ,Solid%5

LINE (px*8+4,py*8+2)-(px*8+9,py*8+8),-(Bit=0),bffl

PATTERN ,FillPattern%5

yl=INT(PtrnNuniber/3) : xl=PtrnNvunber-yl*35

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25),l,bf5

FOR i=0 TO 75

AllPatterns% (PtrnNuniber, i) «FillPattern% (i) 5

NEXT 111

RETURNS

END IF5

5

IF WINDOW(0)=4 AND x>142 AND x<244 AND y<75 THEN5

px«INT((x-143)/34) : py-INT(y/25)5

IF px+py*3=PtrnNumber THEN RETURN5

178

Abacus defining your fill patterns

PtrnNumber«px+py*351

FOR i»0 TO 751

FillPattern% (i)=AllPatterns% (PtrnNumber, i) 51

NEXT H

GOSUB MarkPattern5I

GOSUB DrawPattern5l

PATTERN ,FillPattern%5I

RETURNS

END IF 51

IF WINDOW(0)=4 AND x<222 AND x>162 AND y<93 AND y>76

THEN5I

PATTED ,Solid%5I

PAINT (164,78) ,2,151

PATTERN ,FillPattern%5I

EndOK«2 : RETURNS

END IF 51

51

IF WINDOW(0)=4 AND x<135 AND y>68 AND y<100 THEN5I

PATTERN ,Solid%5I

IF x<66 AND x>4 AND y<82 THEN5I

PAINT (6, 69), 2,151

LINE (l,l)-(131,65),0,bf5I

FOR i=0 TO 7 : AllPatterns% (PtrnNumber, i) =051

FillPattern%(i)='05I

NEXT5I

PAINT (6, 69), 0,151

PATTERN ,FillPattern%5I

yl=INT (PtrnNumber/3) : xl=PtmNumber-yl*35I

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25) ,l,bf5I

END IF 51

51

IF x<136 AND x>74 AND y<82 THEN5I

PAINT (76, 69), 2,151

FOR i=0 TO 751

FillPattern%(i)«FillPattern%(i) XOR &HFFFF5I

AllPatterns% (PtrnNumber, i) =FillPattern% (i) 51

NEXT i5I

GOSUB DrawPattern5I

PAINT (76, 69), 0,151

PATTERN ,FillPattem%5I

yl=INT(PtrnNumber/3) : xl=PtrnNumber-yl*35I

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25) ,l,bf5I

END IF5I

IF x<66 AND x>4 AND y>84 THEN GOSDB PtrnLoad5I

IF x<135 AND x>75 AND y>84 THEN GOSUB PtrnSave5I

END IF5I

RETURN51

51

MarkPattern:5l

yl«INT (AltPattern/3) : xl=AltPattern-yl*3 51

LINE (143+xl*34,yl*25-l)-(176+xl*34,24+yl*25),0,b5I

yl=INT (PtrnNumber/3) : xl-PtrnNumber-yl*35I

LINE (143+xl*34,yl*25-l)-(176+xl*34,24+yl*25),3,hf

AltPattern=xl+yl*35l

179

Colors and resolution AmigaBASIC Inside and Out

RETURNS

5

DrawPattern:5

MOUSE OFF : MENU OFF5

PATTERN ,Solid%5

LINE (l,l)-(131,65),0,bf 5

FOR y=*0 TO 75

FOR x=0 TO 155

Bit=FillPattern%(y) AND 2A(15-x)5

IF BitOO THEN LINE (x*8+4,y*8+2)-

(x*8+9,y*8+8),l,bf5

NEXT x5

NEXT y5

PATTERN ,FillPattern%5

MOUSE ON : MENU ON5

RETURNS

5

PtrnLoad:5

MOUSE OFF : MENU OFF5

PAINT (6r 86), 2,111

GOSUB EnterNamefl

IF Nam$="" THEN EndPtrnLoad^I

OPEN Nam$ FOR INPUT AS 15

FOR x=0 TO Sf

FOR y=0 TO 75

AllPatterns%(x,y)=CVI(INPUT$(2,1))5

NEXT yl

NEXT x5

CXOSE 15

5

EndPtrnLoad: 5

WINDOW CLOSE 5 : WINDOW 45

PAINT (6, 86) ,0,15

MOUSE ON : MENU ON5

FOR x=0 TO 85

FOR y«0 TO 75

FillPattern% (y)=AllPatterns%(x,y)5

PATTERN ,FillPattern%5

yl=INT(x/3) : xl=x-yl*35

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25),l,bf5

NEXT y5

NEXT x5

FOR i=0 TO 75

FillPattern%(i)=AllPatterns%(PtrnNumber,i)5

NEXT i5

GOSUB DrawPattern5

RETURN5

5

PtrnSave:5

MOUSE OFF : MENU OFF5

PAINT (78, 86), 2,15

GOSUB EnterName5

IF Nam$=ffff THEN EndPtrnLoad5

OPEN Nam$ FOR OUTPUT AS 15

FOR x=0 TO 85

FOR y=0 TO 75

180

Abacus defining your fill patterns

PRINT #1, MKI$ (AllPatterns% (x, y)) ; f

NEXT ySI

NEXT xH

CLOSE If

EndPtrnSave:^!

WINDOW CLOSE 5 : WINDOW 4fl

PAINT (78, 86), 0,lfl

MOUSE ON : MENU OOT

RETURNS

PatternDoneril

MENU 2,0,1 : Mode=lfl

WINDOW CLOSE 4fl

WINDOW OUTPUT 251

PATTERN ,FillPattern%fl

RETURN^

EnterName:fl

Altname$=Nam$5I

WINDOW 5,"Enter Name:", (0,80)-(311,88),0,If

CLSfl

LINE INPUT Nam$fl

IF Nam$= "=" OR Nam$="*" THEN Nam$=Altname$fl

RETURN!

You should be getting very familiar with the AmigaBASIC graphic

commands.

As in the Color subroutine, the first lines construct the window and

How the its contents. PatternEditor: is responsible for this procedure.
pattern During these preparations, event trapping is disabled. You'll see the

editor works nine available fill patterns displayed in the new window. They are stored

intheAHPatterns% array and are displayed on the screen by the

nested loops. The % symbol after the array names indicates that the

elements of the arrays will be integer values. You've already

encountered this with normal variables—it works the same way for

arrays. The eight pattern data items are first copied from the

AllPatterns% array to the FillPattern% array. The

FillPattern% array always contains the currently active pattern.

The subroutine then draws a small filled-in box for each pattern. Since

we read default values into all arrays from the DATA statements in the

beginning of the program, there are already nine patterns available.

Next the subroutine MarkPattern: is called up. It draws an orange

frame around the currently active pattern, so you can clearly recognize

it. The next lines construct the boxes for clear (erase pattern), Inv.

(inverse pattern), Load, Save and OK. To activate one of these

functions the user clicks the corresponding box with the mouse.

181

Colors and resolution AmigaBASIC Inside and Out

Lastly, the DrawPattern: routine is called up. This subroutine

draws the magnification of the active pattern. Here you can then click

the individual points of the pattern on or off, thus changing or defining

a pattern.

The event trapping is reactivated at the end of the subroutine, and the

program jumps back with RETURN. The following illustration shows

what the Fill Patterns window will look like:

Figure 11:

The Fill

Patterns

window of

the paint

program

Defining

patterns

You can compare your results to this picture to see if your version is

correct. If one or another pattern isn't quite the same as ours, even

though you haven't changed it, look closely at the DATA statements at

the beginning of the program. It's very easy to miss a DATA statement,

or type one in incorrectly.

Now for the DefinePattern: routine. This subroutine responds to

mouse input as long as mode 3 (the pattern definition) is active. First

we determine the coordinates of the mouse and store them in the

variables x and y. Then we check step by step the field in which the

click occurred, and what operations the program must follow. This

starts with the work grid in which the magnified pattern is visible.

182

Abacus defining your fill patterns

As mentioned before, each pixel of the pattern is enlarged and displayed

as a square on the screen. You can turn individual pixels on or off by

clicking the mouse. If the selected window is number 4 and the click

occurred within the work grid, we have to find out which particular

pixel was clicked. The variables px and py convert the mouse
coordinates into columns and rows to specify the location of the square
that was clicked.

The variable Bit isolates the bit corresponding to the selected pixel in

the FillPattern% array. For this we use the AND operand. The

resulting bit is set only when the same bit is set in the output number

(FillPattern% (py)) as in the reference number (2 A (15-px)).

Otherwise the resulting bit will have a value of zero. If bit has a value

of 0, the pixel that was clicked will be turned on. If the result is not 0,

the pixel will be erased. For this we use another AND operand with a

number in which all bits are set except the one that corresponds to the

chosen pixel. (We use this formula: 65536&-2A (15-px)). As a

result, all bits except the selected one remain unchanged while the
chosen bit will be erased.

The variable FillPattern contains a new value that is assigned to

the FillPattern% array. To assign the new value to the integer
array, there is one more thing we must take care of. Although the new

number will be 16 bits, it will always be positive. To get the

corresponding integer, we need to subtract 65535 from the numbers that

are larger than 32767. This way we'll receive a negative value which

will then be assigned to the FillPattern% array.

You're probably wondering why AmigaBASIC attaches a & character to

the number 65535 in the LIST window. This is done with all integer

numbers outside of the range -32768 to +32767.

This completes the mathematical explanation of the pattern definition.
t TOtn high However, you'll want to see the results of the definition displayed on
math to the screen as well. Depending on the status of the pixel, it will be set
low-res or erased in the work grid. The statement - (bit=0) reverses the value

of a bit. (Remember how true and false expressions are expressed?) If

bit has a value of 0, then the result is 1, and vice versa.

We'll use the result of this formula as the drawing color. With the

color 0 (background; invisible) or the color 1 (first drawing color;

visible) a LINE command draws a solid square. This way the status of

the pixel that was clicked will be reversed. If the pixel was off to begin

with, it will be turned on. If it was originally on, it will be erased.

First, the fill pattern has to be reset to Solid%, since we need a solid
square, not one filled with a pattern. This explains why we used the

PATTERN, Solid% command before any block-fill operations

throughout the program. Solid% deposited a solid pattern at the

beginning of the program. When we need areas outside of the picture

being drawn by the user, no pattern is read.

183

Colors and resolution AmigaBASIC Inside and Out

So that the user can see what the pattern will look like in actual size,

we reproduce the edited version in the rectangle where the original was.

Just changing the contents of the the FillPattern% array won't

change anything that's already been displayed on the screen. We need to

redraw the square with a LINE command and block-fill.

You can make use of this principle in designing your graphics. When

you choose a new pattern, or load a new set of patterns from diskette,

the patterns on the screen will remain unchanged. The reason for this is

that the blitter chip simply adopts the local pattern in the picture when

it draws the screen. You could achieve the same result by setting each

pixel of the pattern by hand, but this would take too much time and

effort

The subroutine DefinePattern: also places the new contents of

the FillPattern% array in the appropriate elements of the

AllPatterns% array, upon which the programjumps back.

The next section of the program allows you to redefine the actual

Changing pattern. Simply click in the rectangle of the pattern you wish to use or

the current modify. The square will then be identified by an orange frame and its

pattern contents will be copied into the work grid. The variable PtrnNumber

is assigned the number of the actual pattern. If the click occurred on the

already active pattern, the program simply jumps back with RETURN,

in order to save time.

The eight bits of data are copied from the AllPatterns% array to the

FillPattern% array, and MarkPattern: andDrawPattern:

are called. Again, an orange frame is drawn around the active pattern,

and the pattern is copied pixel by pixel into the work grid. This latter

operation takes the most time, so just sit back for a second. The new

pattern is then activated with PATTERN.

The next section requests a click in the OK gadget. This is simple: the

variable EndOK will equal 2, and then jump back. The routine

MouseCont rol:, which called this subroutine up, will take care of

the rest

Now all that's missing are the four gadgets for Clear, Inv., Load

Testing for and Save. The outer IF...THEN statement checks if the mouse

gadgets coordinates at the time of the click were within one of the four gadgets.

If not, the program simply continues execution. The inner IF...THEN

statements then check the coordinates for each gadget, one after the

other.

184

Abacus DEFINING YOUR FILL PATTERNS

Click the Clear gadget. The selected square is filled. As always, the

Solid% pattern is activated first. Within the work grid the LINE

command draws a box in the background color to erase the contents.

Erasing part of a picture simply consists of drawing over a particular

area using the background color. The eight values of the erased pattern

are set to zero in the FillPattern% and AllPatterns% arrays.

Then the Clear box that was just filled is returned to its normal

condition. Lastly, the new pattern (an empty field) is drawn at its place

in the pattern squares.

The routine for the Inv. gadget works in the same way. You can use

Inverted the XOR function to receive the negative value of a pattern: the 0 and 1
patterns values are simply exchanged. The XOR &HFFFF function does this for

us, since when comparing all bits with the number 1, 1 will become 0.

(1 XOR 1 = 0). Also, 0 will become 1 (0 XOR 1 = 1). The new values

are then assigned to FillPattern% and AllPatterns% right

away. Next the DrawPattern: routine is called up to display the

inverted pattern in the work grid. Everything else should be familiar to

you: clear the Inv. gadget and redraw the corresponding pattern square.

If the Load or Save gadgets were clicked, the LoadPattern: or

SavePattern: subroutine would be called up and after returning, the

program would simply jump back to the main program. We will look

at how both LoadPattern: and SavePattern: work in a little

bit.

We've already heard of the next routine, MarkPattern:. It first

clears the frame around the old pattern and then draws a frame around the

new one. The number of the new pattern is found in the variable

PtrnNumber. To remember the value of the old pattern the next time

around, the program places this number in the variable AltPattern.

You're also familiar with the function of the DrawPattern: routine.

It displays a fill pattern in the work grid pixel by pixel. The

construction of the work grid takes about three seconds. The event

trapping is disabled so that the subroutine is not interrupted during this

process. Also, the old contents of the work grid are erased by drawing a

block in the background color. To construct the grid, the individual

values of the FillPattern% array are checked—for each bit that is

set a square is drawn. Then the event trapping is turned back on and the

program returns to the main routine.

By the way, when was the last time you saved your program?

There's only one detail left: Your most thrilling pattern definition

Saving and won't be worth much unless you can save and retrieve patterns from
loading diskette. We've included the ability to load and save a complete set of
patterns nine fill patterns on diskette.

185

Colors and resolution AmigaBASIC Inside and Out

Loading fill

patterns

Saving fill

patterns

Saving

patterns

The next routine of the paint program, Pt rnLoad:, is responsible

for loading the fill patterns. The event trapping is first disabled, since

the Amiga doesn't want any interruptions during the execution of this

routine. The PAINT command in the second line fills the Load gadget

box to visually confirm the selection. When EnterName: is called

up, the Amiga asks you for the name of the file to be read or written to

diskette. The filename is stored in the variable Nam$. If you press

<RETURN> without entering a filename, Nam$ will be empty. In

this case we simply end the subroutine and return to Pt rnLoad:.

The EndPtrnLoad: routine takes care of this. If you do enter a

name, the corresponding file is opened for reading. You'll learn more

about this and the OPEN command in Chapter 3 (Loading and saving

graphics) and Chapter 5 (All about data) of this book. For now, all

you need to know is that the numbers that determine the patterns are

read into the AllPatterns% array little by little off the diskette.

This is done in the two nested FOR...NEXT loops. The CLOSE

command is a required companion to OPEN. (We'll discuss these

commands later on, also). EndPtrnLoad: ends the loading routine.

Window 5 was opened by EnterName: and must now be closed again

so that Window 4 is the output window again. Also, event trapping is

reactivated, which brings the new patterns to the screen. Up to now

they are simply stored in the AllPatterns% array—they have not

been displayed. To correct this, two nested loops copy the values for
pattern 1 through pattern 9 into the FillPattern% array. It draws

each of the nine pattern squares at the same time. After these two loops,

the FillPattern% array is assigned the new pattern that replaces the

last active pattern.

The two subroutines for saving fill patterns aren't difficult to follow,

either. The PtrnSave: routine disables event trapping, fills the

Save box, uses NameEntry: to determine the input filename, opens

the specified file for writing, and then writes the contents of
AllPatterns% to this file value by value. The file is closed, and the

patterns are saved. EndPatternSave: ends the saving of the

patterns. Window 5 must be closed and window 4 must be active. The

Save gadget is cleared, and then event trapping is turned back on.

We'll discuss the commands CVI,MKI$ and INPUT $ in detail in

Chapter 3 and Chapter 5.

Now we'll find out how to use AmigaBASICs loading and saving

functions. All nine patterns are saved at the same time in one file on
the diskette. A file is a set of records, just like a program, except that it

contains data. After you click the Save gadget, a requester will be
displayed in the center of the screen. This requester is the same width as

the screen, but only one line high. You type the name that you want

the file saved under in this line.

186

Abacus defining your fill patterns

Use the same rules for names that you use for programs. Choose short

but meaningful names, like Patternl. This way you'll recognize the

file much faster. Pressing <RETURN> inputs the entry. After you type

a name and confirm it with <RETURN>, you'll see the disk drive light
turn on.

Remember: do not take the diskette out of the drive while this light is

Qn.. After the file is written, the program returns to the pattern

definition routine.

To load a file of nine patterns, simply click the Load gadget. The

Loading requester for the name entry is displayed. Enter the name of the pattern
patterns file you want to load and press <RETURN>. The program then reads

the patterns from the file and displays them in the nine pattern squares.

You can then use these patterns just like the default patterns of the

program. After you use your paint program for awhile, you'll build a

large selection of fill patterns from which to choose.

Let's continue with the program. There's the PatternDone: routine,

which is virtually the same as the ColorDone: routine in the color

section. The pattern definition ends, and the program returns to drawing

mode. You execute this routine when you click the OK gadget.

PatternDone: reactivates the second pulldown menu that contains

the drawing tools, and sets the mode to number one (Draw mode). It

closes the pattern subroutine window, makes window 2 (where your

graphic is) the active window, activates the last chosen pattern and then

returns to the main program. Now you're ready to continue your

drawing or select any other tool.

We still need the EnterName: routine, which asks for a filename

during the Load and Save functions. The variable AltName$

contains the previous contents of Nam$. Then it activates the requester

in which you're to enter the name, and displays the cursor in the

requester with the CLS command. The program asks for input with the

LINE INPUT command. If you simply enter an equal sign (=) or an

asterisk (*), the filename that was last used will become the current

filename (the name found in the variable AltName $).

That's it., the program returns to the place from which it was called.

Your typing marathon is almost finished. Go to the end of the program

you have typed in so far. Enter these last few lines, and you'll have a

complete drawing program.

187

Colors and resolution AmigaBASIC Inside and Out

Query: fl

MENU 1,0,0 : MENU 2,0,0fl

MENU OFF : MOUSE OFFfl

WINDOW 5,"CAUTION!", (43,70)- (270,120),0,lfl

COLOR 0,1 : CLS : LOCATE 2,2fl

PRINT "Do you really want to"fl

PRINT " lose your picture?" fl

PATTERN ,Solid%fl

LOCATE 5,10 : PRINT "Yes";fl

LOCATE 5,17 : PRINT "No";fl

LINE (77,31)-(127,46),0,bfl

LINE (145,31)-(195,46),0,M

SOUND 880,6,100^1

Pause:5

Test=MOUSE(0)fl

WHILE MOUSE (0) -OH

x=MOUSE(l) : y=MOUSE(2)fl

WENDfl

IF (y<46 AND y>31) THENfl

IF (x<127 AND x>77) THEN PAINT (79,33),3,0 : OK-1 :

GOTO EndQuery fl

IF (x<195 AND x>145) THEN PAINT (147,33),3,0 : OK=0 :

GOTO EndQueryll

END IFfl

GOTO Pause II

EndQuery:fl

MENU ON : MOUSE ON : MENU 1,0,1 : MENU 2,0,15

WINDOW CLOSE 5 : WINDOW 25

RETURNS

Endltrfl

MENU RESETS

SCREEN CLOSE lfl

ENDfl

This final routine executes the safety check for erasing a picture or

Confirming exiting the program. As usual, we construct a window that is displayed

deletes on top of the screen. Event trapping is deactivated, as are the
pulldowns, so that the user knows that nothing else can be selected at

this time.

The window is titled CAUTION! to make sure the user knows that

this is his/her last chance to save the program. In the window you'll see

the message Do you really want to lose your

picture? and two gadgets for Yes and No. While the window is

being constructed, you'll hear a warning sound generated by a SOUND

command (more about this command later). The Pause : loop runs

until one of the two gadgets is clicked. Depending on your decision
(yes, erase or no, don't erase) the variable OK receives the

value 1 or 0. The subprogram that called the routine (Project:) then

reacts accordingly.

The EndQuery: routine is again quite simple. It ends Query: by

enabling the event trapping and reactivating the pulldown menus.

188

Abacus DEFINING YOUR FILL PATTERNS

All that remains of the program is one small routine, EndIt:. The

End program will jump to this routine when it is exited. The MENU
program reset command establishes the default pulldowns, SCREEN CLOSE

1 closes the screen that our paint program operates in. The END

command then terminates the program.

Actually, the END command is only cosmetic, because if the program

reaches the last line without further GOTO or GOSUB commands, it's

done anyway. Nevertheless, there are two reasons to use the END

command in this place. First, as in this case, it's used to mark the end

of the program in listing; second, it ends the program even if more

lines follow (e.g., subroutines).

You're back in direct mode... there's nothing but silence. The paint

program is finished. Congratulations, you've finished the longest

program yet! We hope you feel it was worth the trouble. After all, you

now have a powerful utility program at your disposal. In the next

chapter you'll learn how the graphics that you draw are stored on

diskette and how they can be retrieved. We'll also show you how to use

the graphics in other programs, such as the video title program.

Feel free to experiment with the paint program. We've told you all you

need to know to run it, but we'll give you some suggestions now.

. But first: While you're trying out the program, you'll most likely come

Debugging across errors you made while entering the program. Most of the time,
your final the program will stop and display the error in the LIST window. In
program that case, compare the specified line with the listing in this book, and

then correct the error.

If the program doesn't perform the way it's supposed to, the

troubleshooting becomes much more difficult. Most likely you'll have

to go over the whole program until you find the error. In any case,

don't be angry with yourself—it's almost impossible to enter so many

program lines without making a mistake. Even in the final phases of

the publishing of this book, we had to hammer out some errors that

were still hiding in there.

In any event, if you've understood everything we described here, you

have a solid knowledge of graphic programming on the Amiga.

189

Colors and resolution AmigaBASIC Inside and Out

Paint

program

tricks and

tips

About

text

using

In closing we want to give you some tips. After starting the program,

it will take a moment before it is operational. During this time all the

preparations will be carried out. After just a few seconds the program

will be ready to use.

A word about the pointer. You'll notice that the standard form of the

pointer doesn't work well for drawing. This is mainly because you can't

see the point with which you're drawing. If you like, you can use

Preferences to create your own pointer. For example, a pair of

cross hairs would be practical.

A note on patterns: you can use the fill patterns to fill areas and draw

thick lines. However, if the fill pattern used for drawing has any "holes"

in it, you won't be able to create an enclosed area. If you try to fill an

area created with such an outline, the color will spill onto the rest of

the picture. Because of this, one of your nine patterns should always be
a solid one (like our Solid% pattern) so that you can use it in

conjunction with PAINT.

Finally, something about writing text in the picture. This item should
be used sparingly, since it can easily clutter up the picture.When text is

printed, the drawing color is used for the text, while the fill color is
used for the text background. This way you can fit text into filled areas.

However, the text item cannot use fill patterns. Therefore, text will

cover anv object behind it since text has priority over graphics. If you

want to write text on the blank screen, just choose the background color

as your fill color.

These tips should help you to use the paint program more effectively.
They conclude Chapter 2 and the graphic section of this book.

You did remember to save the pr—no, never mind. You're almost a

professional programmer by now—you don't need reminding.

190

Diskettes and

file management

Abacus Diskettes and file management

Organizing your data:

Diskettes and file management

Now that we've worked with AmigaBASIC's graphics and animation,

we need to look at commands that are important when we work with

large amounts of data.

Usually data is stored on a diskette, sometimes referred to as a floppy

diskette. Your Amiga can use different types of diskettes. We'll look at

them later, and we'll work on some useful programs. First we want to

create a diskette that can be used exclusively by AmigaBASIC and its

programs. Up to now we've been using the Extras diskette, but we

can't continue this for too long—we'd run out of storage space in a

hurry.

193

Diskettes and file management AmigaBASIC Inside and Out

3.1
Saving it for posterity:

making your own BASIC diskette

Requesters

Making a

work

diskette

We've put quite a few programs on the Extras diskette since we first

opened it. We created a program drawer a few pages ago, and then we

started saving our programs in there without giving the process too

much thought.

In the meantime, the Extras diskette has been getting full. It was fairly

full to begin with, because AmigaBASIC, the BasicDemos drawer

and the AmigaTutor take up a large amount of storage space.

We hope you haven't had problems because of this. But perhaps when

you tried to save a program, you found that the Extras diskette was full.

In this case a requester is displayed. Requesters are produced by the

Workbench. The specific requester you get when you've run out of

room on your diskette is Volume Extras 1.2 is full. The

diskette has no room for your program, so it can't carry out your

command.

You confirm that you've read the message when you click the Cancel

gadget. If the window is displayed a second time, it's probably an error

in the current version of Workbench. Click the Cancel gadget again.

As if that wasn't enough warning, AmigaBASIC will give you the

Disk full error message. Just click the OK gadget.

If this has happened to you, you'll want to know how to make enough

disk space to store your program. Even if it hasn't happened to you yet,

it's bound to happen soon.

The solution to the problem is easy. We can make a seperate diskette

for AmigaBASIC and its programs. For this you'll need a blank

diskette, or a diskette that can be erased without destroying anything

important.

You can't make a diskette in AmigaBASIC itself; you need to exit

AmigaBASIC and return to the Workbench. If you don't have a

program in memory, select Quit from the Project menu, or type

the SYSTEM command in the BASIC window.

194

Abacus MAKING YOUR OWN BASIC DISKETTE

But what do you do when you have an important program in memory

Trapped? that you want to save, and you get a Disk full error? You haven't
stored your program on diskette yet If you leave AmigaBASIC, you'll

lose your entire program. You must leave the current BASIC program

in memory.

Thanks to the Amiga's multitasking abilities, it's easy to get around

this problem. Click the close gadget in the LIST window to close

it, and use the sizing gadget to shrink the BASIC window to its

smallest possible size. Drag this window with the drag gadget so that

you can see all of the Workbench window. AmigaBASIC will run

in the background while you use the Workbench.

To activate the Workbench, click anywhere outside of the BASIC

window. The title bar will display Workbench release 1.2. (or

whatever version number Workbench you own), followed by the

amount of memory available to you.

VV REMOVETHE EXTRAS DISKETTE FROM THE BUILT-IN (INTERNAL)

DISK DRIVE, AND INSERT A BLANK DISKETTE.

First you need toformat the new diskette. If this is the first time you're

Formatting doing this, you may not know why formatting is necessary. A diskette
diskettes is essentially a piece of magnetized plastic in a protective case. The

Amiga uses 3.5" diskettes. That means that the plastic magnetic media

of the diskette is about three and a half inches in diameter. Almost all

the latest personal computers use this type of diskette. A few years

back, personal computers used 5.25" disks, but these are more easily

damaged, harder to work with, and have less storage space than the

newer 3.5" diskettes.

The piece of plastic inside the diskette is magnetized. A magnetic head

in the disk drive, the read/write head, moves over the diskette as it spins

in the drive at high speed. The read/write head writes bits to diskette and

later reads them off the diskette. Positive magnetization means that the

bit is on; negative means that it is off. Groups of bits form bytes, and

bytes combine to form files and programs.

The bits are written on concentric tracks (concentric means that the

circular tracks lie inside of one another). You might think of a

computer diskette as a combination of a LP record and a magnetic tape.

Tracks need to be placed on the diskette before it is used, so that the

read/write head can do its job properly. These tracks need to be arranged

in a distinct format. Therfore, you need toformat each diskette before it

is used.

195

Diskettes and file management AmigaBASIC Inside and Out

Technical

information

• Maybe you're wondering why the tracks aren't already on the diskette.

Different This is because 3.5" diskettes are used by different types of computers.
formats Different computers have different diskette formats. Even though the

diskettes are the same size and material, the information on the diskette

is organized differently. The number of tracks, their distance from one

another, the coding of information and the diskette control information

vary greatly from one computer to another. For example, an Atari ST

computer can't do anything with an Amiga diskette, and vice versa.

Your Amiga can work with several disk formats. Normally, diskettes

AmigaDOS will be accessed using AmigaDOS. The abbreviation DOS stands for
Disk Operating System. AmigaDOS is a program that is responsible

for disk input, output and maintenance. If your Amiga is running under

another DOS, it can read diskettes in a different format. The Amiga

1000 can, for instance, read IBM PC diskettes by using a software MS-

DOS adapter, as can a fully-equipped Amiga 2000. As long as you're

working with AmigaBASIC, however, you don't need to worry about

other disk formats.

Here's the technical data for those of you who are interested. The

AmigaDOS disk format uses 80 tracks on each side of the diskette (160

tracks total) to store 880K per diskette. Since we read and write on both

sides of the diskette, Amiga disk drives have two read/write heads.

Remeber this when you shop for blank diskettes—make sure that you

buy double-sided diskettes (diskettes which have been checked for defects

on both sides).

If you put in an unformatted diskette, a disk icon with the name

DFO :BAD will appear in the Workbench window. Since

AmigaDOS can't read the diskette, it calls it "bad." The diskette is

either unformatted or it has a format that AmigaDOS doesn't understand

(like an Atari ST diskette).

NOTE: Make sure that the diskette you are going to format doesn't have any
important programs or data on it. The old information will be

destroyed, and you will not be able to recover any of it. You should put

labels on each of your diskettes so that you know what they contain. At

least write the diskette's name on the diskette. Blank diskettes that you

buy usually have labels in the package.

-H IF YOU'RE SURE THAT YOU WANT TO FORMAT THE DISKETTE,
THEN ACTIVATE THE DFO : BAD ICON. CLICKTHE ICON ONCE SO

THAT IT TURNS BLACK.

VV CHOOSE THE INITIALIZE ITEM FROM THE DISK PULLDOWN
MENU.

196

Abacus making your own BASIC diskette

Initializing and formatting are two items that describe the same process:

writing tracks on a new diskette.

Your Amiga displays a window that tells you to insert the Workbench

diskette. If you have two drives, you should insert the Workbench

diskette into the second drive. If you only have one drive, eject the

blank diskette and insert the Workbench diskette.

After a short while, the Amiga will ask you to insert the blank diskette

back into the drive.

To make sure that you know what you are doing, a requester asks if it

is OK to Initialize disk in drive DFO (all data will

be erased) ? If the diskette has a name, it will ask if it is OK to

Initialize disk ..., followed by the diskette's name.

>W YOU NEED TO CONFIRM THAT IT'S OK TO FORMAT THE

DISKETTE IN DRIVE 0.

AmigaDOS calls the internal disk drive DFO, and the first external drive

DF1.

The formatting process starts when you click the Continue gadget—

there's no way to cancel once it begins.

VV IF YOU'RE READY, CLICK CONTINUE.

The 80 tracks are written to diskette and then checked. The

Initialize window displays which track is being formatted, as

well as how many tracks still need to be formatted. The first track is

number 0, and the last track is number 79. The message Formatting

will appear while tracks are being written. Verifying means that

they are being checked for errors, or verified.

If the Amiga finds an error while checking the tracks, an error message

If the format is displayed. Several things might cause this. Try to format the diskette
goes wrong once or twice more. If it still doesn't format, then the diskette might

have a material defect in its plastic disk. Try another diskette. If you

have problems here as well, talk to your Amiga dealer. But chances are

everything will work correctly.

The formatting isn't completed when the 80 tracks are created on the

diskette. Your Amiga warns you of this by displaying the following

message in the Initialize window:

WARNING: Initialize Still in Progress. DO NOT

REMOVE DISK.

197

Diskettes and file management AmigaBASIC Inside and Out

Wait!!!

Rename

Copying

programs

The drive light will go out for a couple of seconds, but do not remove

the diskette yet. Some important control information will be written on

the diskette. Only then is the Amiga finished formatting the diskette.

The formatted diskette is given the name Empty. Click the Empty

disk icon. The window that appears will have a trashcan in it, and

nothing more. The disk gauge on the left side of the window shows that

the diskette is completely empty. We'll want to fill it step by step.

Empty is not a good name for your BASIC diskette, so we'll change

it. If the Empty disk icon isn't black any more, click the icon to re

activate it.

VV CHOOSE RENAME FROM THE WORKBENCH MENU.

This displays an input line in the center of the screen. Position the

pointer in this line and click. To delete the word Empty, press the

 key until the line is blank. Then you can type in the new

name. We should use a name that has some meaning. How about

"BASICDisk"?

VV ENTER THE NAME BASICDISK AND PRESS THE <RETURN>
KEY.

Empty will be renamed BASICDisk. Notice that the title in the window

changes when you change the name.

VV DON'T CLOSE THE BASICDISK WINDOW YET.

We want to copy some programs to our new diskette. First let's put

AmigaBASIC on the diskette. Insert the Extras diskette.

^N TAKE THE WORKBENCH DISKETTE FROM DRIVE 1 (THE SECOND
DRIVE) AND PUT IN THE EXTRAS DISKETTE.

It's a lot easier to make backups with two drives. If you only have one

drive, you'll need to change diskettes several times during the copying

process. Remember not to remove a diskette while the disk drive's light

is on. To be safe, you might wait until the disk drive stops spinning

(the noise will stop). If you don't follow this advice, you may lose all

die data on the diskette.

VV CLICKTHE EXTRAS ICON.

The corresponding window is displayed in the Workbench window.

VV MOVE THE POINTER ONTO THE AMIGABASIC ICON, PRESS AND
HOLD THE LEFT MOUSE BUTTON, AND DRAG THE ICON INTO THE

BASICDISK WINDOW.

198

Abacus MAKING YOUR OWN BASIC DISKETTE

Copying

with a

single disk

drive

Copying

drawers

To copy objects while in the Workbench, just move the icon from the

old window (Extras) into the new window (BASICDisk).

If you've got two drives, the copying will be done by now. The pointer

will turn into a wait pointer (a cloud with a few Z's drawn in it) during

the copy process.

If you've only got one drive, you need to exchange Extras and
BASICDisk several times. The Workbench will inform you which

diskette to insert by displaying a requester.

When the copying is done, the AmigaBASIC icon will appear in the

BASICDisk window.

Now we need to copy our BASIC programs. You can copy a drawer that
contains programs in the same way you copy a single program. The
number of times you'll need to exchange diskettes will depend on how

much memory you have available, and how many files and programs

are in the drawer.

V COPY YOUR PROGRAMS DRAWER FROM THE EXTRAS DISKETTETO

THE BASICDISK DISKETTE.

The programs are copied from one diskette to another, rather than

actually moved—copies of the programs can be found cm both diskettes

now. It works differently when you move files and drawers inside a

single diskette. For instance, when you move a BASIC program from
one drawer into another. In this case they are not copied, they are really

moved.

Now you've copied your programs and demos. The programs are not

arranged in your drawer, though. We should clean up the Workbench

now.

Leave the BASICDisk window open:

>W CLOSE THE EXTRAS WINDOW, THEN OPEN THE WORKBENCH

WINDOW.

As you know, if you have only a single drive, you'll be asked to put

the Workbench diskette in the drive. We're not going to spell out the

procedure anymore, since by now you should understand what you need

to do. Besides, the Amiga tells you what it wants.

In one of the earlier Intermissions, we made a drawer for your BASIC

programs. Perhaps you don't remember how we did that You'll find a

drawer called Empty in the Workbench window. Any time you

need a fresh empty drawer, simply copy the Empty drawer.

199

Diskettes and file management AmigaBASIC Inside and Out

. Move the drawer icon from the old window into the new window by

Copying holding down the left mouse button and then letting it loose. You've
into drawers copied things from the Workbench so many times by now, that we

don't need to say anything more about this.

Now click the close gadget for the Workbench window; we don't

need it any more. We'll do the rest of the clean-up work on our new

BASICDisk.

Putting your

drawers in

order

Since you'll be writng many AmigaBASIC programs in the future, it

makes sense to organize the drawer so that it's easier to find them.

Duplicate

We thought about what kinds of programs we'll be writing, and so we

suggest that you organize drawers in the following categories:

Video

Drawing programs

Graphics

Data

Music

Speech

Miscellaneous

We need a total of seven drawers. We want to divide the current contents

from my programs (or whatever this program drawer is called) into

several subdrawers. We'll do the same with programs we write later.

Now we'll create seven drawers:

VV CLICK ON THE EMPTY DRAWER AND CHOOSE DUPLICATE FROM
THE WORKBENCH PULLDOWN MENU.

Now we have two copies of a drawer. To prevent confusion, rename the

new drawer immediately.

V CLICK THE NEW DRAWER AND CHOOSE RENAME FROM THE
WORKBENCH PULLDOWN MENU.

Here's a trick to save you time. Since you'll need to delete the text

Empty or copy of Empty several times, instead of using

to get rid of the old text, use the <Amiga keyxx> key combination.

Move the drawers you just renamed out of the way, so that you'll have

enough room for the next one. Make five more copies in the same way.

When you are finished, move the drawers around in the BASICDisk

window. You can move them wherever you want using the mouse

pointer.

200

Abacus MAKING YOUR OWN BASIC DISKETTE

If you'll remember our first Intermission, or you have some experience
Snapshot working with the Workbench, you know that these operations are not

remembered by the Amiga unless you tell it to remember what you've
done. You make it remember this by pressing the <SHIFT> key in the
BASlCDisk icon, clicking all the icons inside the window, and then

choosing the Snapshot item from the Special pulldown menu.

The following illustration shows how our BASlCDisk window

looked after this. You can arrange yours any way you want.

Figure 12:

Our

BASlCDisk

window

Rearranging

the drawers

tokbench release i.2, 389384 free newory

All the drawers are in place. Now we need to move the programs from
the my programs drawer into the new drawers. Open this drawer, but

don't worry too much about how messy it is. The Amiga isn't big on
neatness. Now move the programs into the various drawers. This way

we can organize them by category. For instance, move the ball program

from the first chapter into the Graphics drawer. The Workbench
takes care of copying programs from one drawer to another on the same

diskette.

If you've had a BASIC program in the background since the beginning

of this chapter, you can take care of saving it now. You need to use a

BASIC command to do this. Click the BASIC window that is still in

the Workbench level and use the sizing gadget to enlarge it. Then

type the following command.

chdir "BASlCDisk:

followed by the name of the drawer the program should go in. For

graphics programs, you would type:

201

Diskettes and file management AmigaBASIC Inside and Out

chdir "BASICDisk:Graphics"

Then you can use the SAVE command or the corresponding pulldown
menu item to save your program. Then close the AmigaBASIC
window by clicking on the close gadget

Return to the Workbench and drag the rest of the programs into the
A place for seven drawers. Put all your video programs in the Video drawer. Put
everything the drawing programs and pattern files that you've saved in the

Drawing programs drawer. Move the bar chart/pie chart utility

into the Graphics drawer. We also put all the sample programs in
the drawer that worked with graphics or animation. The Data, Mus ic,

and Speech drawers are still empty. We'll have programs in them

before we're done with this book, though. The Miscellaneous
drawer contains programs that won't fit into any other category.

After moving your programs into the subdrawers, click the individual

drawers and select the Snapshot item. When you've finished with
this, you've completed your BASIC diskette. We'll use it from now on
to store your BASIC programs and files.

Close all the windows except BASICDisk and click the

AmigaBASIC icon. The next section will describe the AmigaBASIC

disk commands available to you.

202

Abacus DISK COMMANDS IN BASIC

3.2
Directories, trees, and more:

disk commands in AmigaBASIC

We needed to return to the Workbench to format and organize our new

BASIC diskette, since AmigaBASIC doesn't support these operations.

However, AmigaBASIC does have a number of disk commands that

SAVE and you can use. You have learned a couple already. To save programs, you

LOAD use *e SAVE command. To load programs, you use the LOAD
command. You can also use pulldown menu items to load and save, but
these are really BASIC commands. It doesn't matter whether the

command is called Open in the Project pulldown menu or LOAD

in the BASIC window; you'll get the same result using either one.

The first new command we'll look at is important if you want to

Look it up display the files or programs contained on a diskette. After a while
you'll probably forget the names of some of the programs. You can

look at your files by going to the Workbench level, but this method is
inconvenient, and takes too much time and memory.

It's easier to use a BASIC command. Type this command in the

BASIC window:

files

The FILES command shows you the names of all the files in the
FILES current disk directory. A file is anything that you can store on a

diskette: a program, data, a graphic, etc. A directory is the "table of

contents" of a diskette.

What's a current directory? Look at the output we got in response to the

FILES command. The first line says:

Directory of [BASICDisk]

AmigaBASIC lets you know which directory is being displayed. If

you're in the Workbench and look at the contents, you'll only see the

things that are in the BASICDisk window.

However, there are more than just program names (like AmigaBASIC)

Info files found here. If you look carefully, you'll notice that most names seem

to come in pairs. For instance, there is the file AmigaBASIC and the
file AmigaBASIC.info. We need to look at the way the Workbench

operates to understand what these info files do.

203

Diskettes and file management AmigaBASIC Inside and Out

Sub

directories

Figure 13:

Disk

directory

tree

structure

Every file on the diskette is assigned an icon by the Workbench. The

icons don't all look alike; you've probably seen programs that have
their own icons. Maybe you've worked with the IconEd program that

is on the Workbench diskette. (You can use IconEd to edit the
appearance of icons in any way you want).

The directory also displays names in square brackets. These are

subdirectories, also called drawers. They're displayed in the Workbench

as drawer icons. There are also info files for these drawers. You can use
them to store custom icons.

Subdirectories are fairly easy to understand. Programs and files are

stored in a subdirectory by category to keep them organized, just as we

did with our BASICDisk. You can nest drawers inside of drawers inside

of drawers, etc., or at least until you run out of memory.

Subdirectories can be explained graphically using a tree structure. Tree

structures illustrate how subdirectories are organized and how you can

move around subdirectories.

Amiga Gallery

Modern

Blue parrot

Classical

Mona Lisa

Durer self-portrait

Technical

Checkered dog

Pink elephant

White house'

Amiga at sunset

Suppose we have a diskette named AmigaGallery that we use to

store graphics. The disk name is the root of the tree. Two directories are

contained on the diskette: Classics and Modern (the tree has two

large limbs). If you want to load a graphic named Pink elephant,

you need to follow the path from Modern to Animals.

204

Abacus DISK COMMANDS IN BASIC

You can only load programs and data from the current directory. If the
program is in another location on the diskette, AmigaBASIC won't find

it. Programs can be identified by the path you must follow to get to

them. This means you can save several programs on the same diskette

under the same name, just as long as they are stored in different

directories.

To put this theory into practice, we need a BASIC command introduced

CHDIR in the last chapter—CHDIR (CHange DIRectory).

If you want to know the programs on the BASICDisk which are stored

in the Graphics directory, you use:

chdir "Graphics"

Now you've changed from the main directory, BASICDisk, to the

Graphics directory. If you use the FILES command to view its

contents, you'll see the new directory name in the first line:

Directory of: [Graphics]

This followed by the names of all the programs stored in the

Graphics directory. If the list contains another directory, you can use

CHDIR to climb higher in the tree.

What can you do when the program you're looking for isn't in the

directory you're in? There are two solutions: either you can retrace the

path you followed, or you can jump back to the root of the tree and

start over.

There are two types of commands you can use. Typing the following

line:

chdir "/"

moves you back one directory. In our example, you'll move from the

CHDIR "/" Animals directory into the Modern directory. If you type CHDIR

"/" again, you'll end up in AmigaGallery.

If you use a CHDIR "/" command when you are in the AmigaGallery

level, you'll get a File not found error message.

If you don't want to retrace your path, type the following command:

chdir ":"

This command returns you to the root of the tree. From here, you can

CHDIR " :" start climbing the tree again to find the program you're looking for.

Returning to

the root

205

Diskettes and file management AmigaBASIC Inside and Out

Multiple

drives and

CHDIR

Drive

designation

Moving

through the

sub

directories
quickly

One more thing we need to know. What happens if you've got more
than one disk drive? Up to now, we've just worked with one diskette,
(BASICDisk). If you've got two drives and would like to see the root
directory of drive 1, type:

chdir "dfl:"

AmigaBASIC refers to the internal disk drive as DFO : and the first
external drive as DF1:. The D stands for "Drive" and F for "Floppy." If

you have a third drive, it's called DF2 :. If you own a hard disk drive,
the system will call it DHO: (Drive Harddisk 0).

You can precede the name of a directory with the drive designator. For
instance:

chdir "dfl:Text"

designates the Text directory on drive 1 as the current directory. This

only makes sense if the drive is really connected. If AmigaBASIC can't

find the drive, it will ask you to insert a diskette with that name

(Please insert volume dfl in any drive).

By the way, you can use diskette names instead of drive designators:

chdir "BASICDisk:Graphics"

This line designates Graphics as the current directory, regardless of

which drive BASICDisk is in. If this diskette isn't already in a drive,
the Amiga will ask you to insert it into one of the drives.

Here's one more form of the CHDIR command:

chdir "dfl:Amiga-Gallery/Modern/Animals"

This is the fastest method to get at your Pink elephant graphic.

You can type the names of the directories you need to pass through on

the way to your destination, separating them with slashes (/). If you

type a nonexistent path or mistype a directory name, AmigaBASIC

displays a File not found error message. With a little bit of
practice, you'll get to be very good at climbing through the directories
on your AmigaBASIC diskettes.

AmigaBASIC can do more than this, though. You can load and save

programs and choose and display directories, but you can also rename

and delete your programs from the BASIC window.

We'll go through an example. First type a couple of program lines in

the LIST window (nothing special—we're going to delete this
program in a short while anyhow).

206

Abacus DISK COMMANDS IN BASIC

NAME

KILL

Now save your program with the Save As item in the Project

menu. Type in the name Test and press <RETURN>. Your Amiga

stores the file on the diskette. You can verify this using the FILES

command. You'll find the files Test and Test. info in the list.

Let's say that you don't like the name Test. Maybe you think the

name doesn't describe the program's contents well enough, and the

name Worthless is more appropriate. You could save the program

under another name, since it's still in memory, but that's a waste of

memory—you already have a copy of the program under the name

Test on the diskette.

A new BASIC command comes in handy here. Its called NAME, and you

can use it to rename your programs. To rename Test as Worthless,

type the following in the BASIC window:

NAME "Test" AS "Worthless"

The drive runs for a short while. Now your file has a new name. The

info filename was also changed—Test .info is now called

Worthless . info. If your info file is still called Test. info, then

you have an older version of AmigaBASIC. For temporary relief, use

the NAME function again:

NAME "Test.info" AS "Worthless.info"

Then everything will be OK. However, you should visit your dealer

immediately to get the newest version of AmigaBASIC.

The next command is useful for getting rid of unwanted files (like our

Worthless program). You can get rid of programs from the

Workbench by putting them in the trashcan, but you need to Empty

Trash yourself. It's quicker to use AmigaBASIC to delete files. This

is often an advantage, but it can be hazardous: Make sure that you really

want to get rid of a file. Once you have used the KILL command, you

can't get the file back. If you're sure that you want to delete

Worthless, type:

KILL "Worthless"

AmigaBASIC deletes the program quickly and painlessly.

We'd like to tell you about a little trick we learned. When you delete an

info file only, its corresponding program file is not displayed in the

Workbench window, but AmigaBASIC knows it exists. You'll be

able to see the filename using the FILES command, and you can still

execute the program. This is a good way to protect your program from

curious people. To produce this effect, you use this syntax:

207

Diskettes and file management AmigaBASIC Inside and Out

KILL "Junk.info"

You can KILL an info file from any filename to test this out. Start

experimenting with program and file structures using the disk

commands you already know. But the best is yet to come. We'll look at

managing data on diskettes. We're going to look at storing address lists,

stock prices, graphics and much more.

208

Abacus a BASIC address book

3.3
The data collector:

a BASIC address book

Up to this point we've simply saved AmigaBASIC programs to

diskette. The two previous times we saved files that were not programs

(for example, the object editor's object file and the paint program's fill

patterns), we told you we'd tell you more later. That time is now.

Obviously, you can store more than AmigaBASIC program files on a

Storing data diskette. You can also store data files. Data can be many things:
Numbers, text, pictures, and more. Most commercial programs save

data files to diskette, since the data would otherwise be erased when the

computer is turned off. For example, a data file contains information

about the characters created with a word processing program, so that

you can work with a document you typed in months ago.

We'll look at the simplest way that AmigaBASIC saves data and reads

it back later. The following program creates an address file on the

diskette:

OPEN "AddressFile" FOR OUTPUT AS H

Entry:fl

PRINTS

INPUT "Name";Nam$fl

INPUT "Address";Address$fl

INPUT "City";City$fl

INPUT "Phone";Phone$fl

PRINT#l,Nam$fl

PRINT#1, Address$U

PRINT#l,City$fl

PRINT#l,Phone$fl

PRINT "Record"x" ("Nam$") stored."fl

PRINT "Add more records?"fl

INPUT "Y/N:";Ans$fl

IF UCASE$(Ans$)«"Y" THEN Entry5

CLOSER

PRINT "File closed. Program ended."5

We'll put all our data management programs in the Data drawer. Type:

chdir "BASICDiskrData"

Save the program under the name Write Addresses. (Program

filenames can use blank spaces).

209

Diskettes and file management AmigaBASIC Inside and Out

How the

program

works

OPEN

PRINT#

Sequential

files

The OPEN command first opens the AddressFile file. A file must

be OPENed before a BASIC program can use it. This makes sense—you

can't read a book unless you open it.

You also use the OPEN command to declare whether you are going to

write to the file (OPEN...FOR OUTPUT) or read from it (OPEN...FOR

INPUT). You can either read from a file or you can write to the same

file, but you cannot do both at once. However, you can open several

files at once, some for input and others for output.

This is the reason that every open file is assigned a number (number 1

in our example) so that the Read and Write commands will know

which file to work with.

When an output file is opened for the first time (as in our example), the

OPEN command stores the file on diskette in the current directory. The

command's syntax looks like this:

OPEN "(File name)" FOR (Mode) AS (File number)

This command also has a second syntax. It contains the same

information, but in a different order:

OPEN "(Mode)", #(File number), "(File name)"

We could have written our first line like this:

OPEN "0", #1, "AddressFile"

You can use either form. Depending on the situation, one of the

command forms may be better than the other. We'll come back to this

later.

Now we have a file called AddressFile with the number 1 into

which we can write data. Now let's write some data to the file.

The Entry: subroutine starts by asking the user for the values of the

variables Nam$, Address$, City$, and Phone$. These strings

contain the information that comprise our electronic address book. To

write this data in the file, we use the PRINT# command. We put the

file number behind the PRINT* command. The command

PRINT#1, Nam$, writes the variable Nam$ in file number 1—i.e., in

AddressFile. The PRINTt command works like the regular

PRINT command, except that the output is sent to a file, not the

screen.

We store the addresses in a sequential file. Sequential files store data

items one after the other, or in sequence. The file stores the first name,

then the address, city, and finally the telephone number. Then it stores

the second name, the second address, second city, etc.

210

Abacus A BASIC ADDRESS BOOK

Sequential files are one kind of file used by AmigaBASIC. Other

filetypes include random (or relative) files, which we'll discuss later.

The rest of the program should be easy for you to understand. We

increment the variable x so that we can display the number of addresses

that have been typed. Then the program asks the user if he wants to

enter more addresses. If <y> is pressed, the program will jump back to

the Entry: section.

You may not have noticed something about the INPUT line, or you

More about may have thought this was a typographical error. Look carefully at the
INPUT difference between these two commands:

INPUT " (Text) "/Variable (uses a semicolon)

INPUT " (Text) ",Variable (uses a comma)

We use both versions of the INPUT command in our example program.

If there is a semicolon between the text and the variable, AmigaBASIC

will display a question mark after the Text. If you use a comma, a

question mark is not displayed. We don't want a question mark

displayed when the program asks for <y> or <n>, so we use the comma

syntax.

If you press <n> or any key other than <y>, the program executes a

CLOSE CLOSE 1 command. The CLOSE command closes a file that was

opened with the OPEN command. The following happens along the

way:

When we issue a command to store data to diskette, the information

isn't written on the diskette character by character as we type it in. That

would take too long, and would tie up the disk drive. For instance, the

Amiga might be multitasking and trying to access another program on

the diskette, but couldn't access the other program as long as

AmigaBASIC had one or more disk files open in this way.

To avoid this conflict, a buffer is set up for each open file. A buffer is a

range of memory (usually 128 bytes long) in which characters are stored

until the buffer is full. When the buffer is eventually filled with 128

characters, these characters are transferred from the buffer and then

written to diskette. The CLOSE command ensures that the buffer

contents will be saved, even if the buffer isn't full yet.

The CLOSE command is also necessary before you issue some other

AmigaBASIC disk commands. You can't open a file again to read or

write until it has been CLOSEd. And you can't KILL a file or reNAME

it while it is open. The CLOSE command also frees up the file number

so that you can use it for another file.

If you try to read from or write to a CLOSEd file, you'll get a Bad

file number error message.

211

Diskettes and file management AmigaBASIC Inside and Out

How to

operate the

program

INPUT#

Working with this demonstration address program is pretty easy. The

Amiga will ask you for the address information item by item. After

typing an address, you need to press <y> to continue.

Type in the names of a couple of friends to try it out.

However, it doesn't do us a whole lot of good just to have the addresses

stored on a diskette. We still need a program that will read the addresses

from the diskette. Before typing in the new program following, save the

Write Address program if you haven't done so already. Use NEW

to clear the memory. Then type in the following program:

OPEN "AddressFile" FOR INPUT AS lfl

f

ReadData:1[

INPUT#l,Nam$fl

INPUT#l,Address$U

INPUT#l,City$fl

INPUT#l,Phone$fl

PRINTS

PRINT "Name: ";Nam$fl

PRINT "Address: ";Address$fl

PRINT "City: ";City$fl

PRINT "Phone: ";Phone$fl

1

IF EOF(1)=0 THEN ReadDatafl

CLOSE 151

When you run this program, the addresses are read from the file and

written to the screen. Save this program under the name Read

Address.

The OPEN command opens AddressFile FOR INPUT. You

should recognize this command from the graphics chapter, since we read

in graphic object data there.

To read in the data, AmigaBASIC must be able to find the file. If it

can't, it will give you a File not found error message. If you get

this error, and you're certain that the name you typed is correct Also,

you may have to use CHDIR to change the current directory.

We can use INPUT# to read in information from a file just as we can

use PRINT* to write out information to a file. It's important to read

the information in the order that it was written. Otherwise, you may get

someone named 10538 with a zip code of 949-4449 and who lives on

John Doe street!

The INPUT# command reads in variables just like the INPUT

command. The difference is that the information is read in from a fUg,

and not from the keyboard. The data from the file is then displayed on

the screen.

212

Abacus A BASIC ADDRESS BOOK

EOF

Reading

sequential

files

FOR

OUTPUT/

INPUT/

APPEND

The EOF (End of File) function tells us whether there is more data to be

read from the file or not You type the file number in parentheses. If

there is still more data to be read, EOF (File number) returns a 0.

If the last character has been read, it returns a -1. This way you can see

whether there's more information to be read or whether you should

close the file.

If you try to read from a file that doesn't have any more data, you'll get

an Input past end error message. This means that you tried to

read past the end of the file.

Reading a sequential file works much like READing DATA lines: the

pointer is moved one position over so that you always read the next

unread value. Remember, the sequential file displays the addresses on

the screen in the same order that they are stored in the file.

This is the most distinguishing characteristic of a sequential file: its

records must be read one after the other. If you only want to read the

tenth address, you must first read the first nine before you can get to the

tenth. It's impossible to jump over the data in between. Therefore,

sequential files are most useful when you're working with data that is

always processed in the same order.

If you wanted to expand the sequential file, it would be a hassle to read

in all the old data and then store it again. There's a way to avoid this:

you can open a file FOR APPEND to expand the file.

Load the Write Address program. Change the OUTPUT in the first

line to APPEND, like this:

OPEN "AddressFile" FOR APPEND AS 1

Start the program and type one or two addresses. Don't let it bother you

that the program thinks it is writing the first and second record—it is

actually writing the first and second records being appended. When you

finish, load the Read Address program and run it. You'll see that

the new addresses are stored at the end of the file, after the old addresses.

213

Diskettes and file management AmigaBASIC Inside and Out

NOTE: You can append data to sequential files at any time, but you cannot put
data at the beginning or the middle of the file. You cannot change or

delete information with this command, either.

If you want, you can use APPEND mode everytime you write to the

file. If the file doesn't exist, AmigaBASIC will respond as it does in

OUTPUT mode—it will create a new file.

Now that you know a little about sequential files, let's apply this

knowledge in a larger program. In the graphics chapter of this book, we

promised to include a utility for working with data for bar charts and pie

charts. This complementary program is listed in the next section.

214

Abacus managing statistical data

3.4
Information for bar and pie charts:

managing statistical data

You need groups of data available to create pie charts and bar graphs.

Previously, we typed in this data on the keyboard, but that's a poor

solution. Say you wanted to chart the daily price fluctuations of

Commodore's stock . You'd get tired of the stock market in a hurry if

you had to type in all this data every day, beginning with the initial

price. Next you'll write a program that will store these prices, so that

all you need to do is add one price number each day.

You already wrote the program that creates bar graphs and pie charts

from statistical data. It should be stored in the Graphics drawer of

your BASIC disk. You've also saved the address program. Use NEW to

erase the BASIC memory area. Now load the version of the bar

graph/pie chart program that was stored without the text input part.

Type CHDIR: "BASICDisk : Graphics" to get into the

Graphics drawer.

Look for the name of the program file using the FILES command.

Load the program. Move into the Data directory using the command

CHDIR ":Data".

Now we need to save the program as an ASCII file. You'll remember

we have already worked with chaining, or merging, programs in a

previous Intermission. Once again we have two programs that we can

either combine into one, or else we'll have to retype the code from one

program into the other. If you dislike typing as much as we do, you'll

want to MERGE the bar graph/pie chart program with our new program.

Therefore you need to save the chart program in ASCII format*

SAVE "NewBarPie",A

Now clear the memory using the NEW command. Type in the first

section of the new program:

Setup: 5

DIM Number$(58),Desc$(58),Value$(58)1

DIM Array$ (50), Array (50) 1

FOR x=l TO 58^1

IF x>4 AND x<55 THEN Number$ (x) «STR$ (x-4) \

NEXT xfl

1
Colors=31I

SCREEN 4,640,200,Colors,2\

WINDOW 99,"Graphics",,20,4fl

PALETTE 7,.8,.2,.11

215

Diskettes and file management AmigaBASIC Inside and Out

WINDOW 1,"Statistical-Data-Manager",(0,12)-

(631,111),22,-1*

*

MENU 1,0,1,"Data

MENU 1,1,1,"Load

MENU 1,2,1,"Save

MENU 1,3,1,"Delete"

MENU 1,4,1,"Quit

MENU 2,0,1,"Graphics"*

MENU 2,1,1, "Bar Graph"*

MENU 2,2,1,"Pie Chart"*

MENU 3,0,0,""*

MENU 4,0,0,""*

*

ON MENU GOSUB MenuControl*

MENU ON*

*

GOTO MainLoop*

The program begins by dimensioning the arrays that we'll need for the

Arrays program. Number $ is the number of the data line. Nam$ is the
description of a value. It might be the name of the company whose

stock you're charting. Value $ is the number that we need for

statistical purposes; it might be a percentage. We use a string array for

numbers because that makes the input routine simpler—it lets you type

whatever you want to type. The array's contents will be converted to

numbers when we call the graphics routine.

You should recognize Array$ and Array from the bar graph/pie chart

utility. We use these arrays to pass data to the subroutine.

The array Number $ will always have the same contents. As we said

earlier, it contains the numbers of the data lines. We allow up to 50

values, so we number things from 1 to 50. Why did we set the array up

to have 58 elements? Is that for safety reasons? Those are good

questions. Let's talk about them.

The basic idea is that you'll only be able to see a few of the 50 data

lines—you can't fit all 50 on the screen. A data line contains three

elements: The number of the data line at the beginning; the name of the

item; and the number that corresponds to the name.

You'll always see 9 data lines on the screen. Your work (input,

Cursor correction, insertion, deletion, etc.) will always be displayed on the fifth
placement line. The values 1 to 4 and 6 to 9 are for orientation—so that you can

see what values lie in the immediate vicinity of the present line. You

scroll the lines up and down with the cursor keys, while the cursor

stays in the middle line.

Since you'll want to work on the first and last lines of the file, we put

in some blank array fields to precede the first element and follow the

last element. The first real data line is in the fifth position in the array.

That's why we use 58; 4 + 50 + 4 = 58.

216

Abacus MANAGING STATISTICAL DATA

The FOR...NEXT loop sets the values for the Number$ array. The first

STR$ four positions are empty. Then we insert the numbers 1 to 50. Finally

we insert four more blank positions. You can use the STR$ command

to convert numbers into strings. STR$ is the opposite of VAL. The

following line:

? VAL(STR$(5))

returns the number 5. It converts the number 5 to a string and then back

VAL to a number. Converting from one data format to another is very

important, so we'll discuss mote of these commands later.

The variable TopLine is set to 1. TopLine -1 is the last line that

contains data. Since there isn't any data in the arrays at the beginning,

line 1 is the first line that doesn't contain any data.

You can set up one to four bitplanes, depending on how many colors

you want in your graphics.

Now we produce the screen and window for the Graphics :

subprogram. We define color number 7 from white to red. Sound

familiar? It should—we described these preparations in the description

of the bar graph/pie chart utility in Section 2.7.

Window 1 (the BASIC window) will be reduced and named

Statistical-Data-Management. If you don't like this name,

you can easily change it We typed -1 as the screen. While screen 1 to 4

are just for the user, -1 is the number of the Workbench screen.

Next we define the pulldown menu. We want to put this program under

Defining the menu control. We have Load, Save, Delete (erase the data in
pulldown memory), and Quit available as items in the File pulldown menu.

The Graphics menu lets you choose between a Bar Graph and a

Pie Chart.

Menus 3 and 4 have items Run and Window disabled.

Next we activate event trapping for the menu control and jump to

MainLoop:.

In contrast to drawing programs, this program isn't controlled just by

event trapping. The pulldown menu functions are breaks in the

MainLoop: and TypeText: program sections. Handling event

trapping this way is a typical method. It always makes sense when the

possible results (menus, mouse, timeouts, error handling, break

control, and collision checks) improve or expand on the things in the

main program.

Here's the subroutine that takes care of menu choices.

217

Diskettes and file management AmigaBASIC Inside and Out

MenuControl:51

Men=MENU(O) : MenuPoint«MENU(l) 51

IF Men=l THEM

IF MenuPoint-1 THEN GOSUB LoadData5l

IF MenuPoint=2 THEN GOSUB SaveData5I

IF MenuPoint=3 THEN GOSUB ClearData5I

IF MenuPoint=4 THEN Quit5l

END IF5I

IF Men=2 THEN5I

IF MenuPoint=l THEN Array$(0)="B"5I

IF MenuPoint=2 THEN Array$ (0)="P"5I

Array (0) =TopLine5I

IF Value$(Array(0)+4)="" THEN Array (0)=Array(0)-151

FOR x=l TO Array (0)51

Array$ (x) =Desc$ (x+4) 51

Array(x)=VAL(Value$(x+4))51

IF Array (x)=0 THEN Array (x)=. 0151

NEXT xSI

MENU OFF^l

MENU 1,0,0 : MENU 2,0,051

WINDOW 99 : CLSfl

f

GOSUB Graphics^

WINDOW 2, "Please press a key!", (350, 0)-(631, 0) ,20, 451

COLOR 0,1 : CLS5I

WHILE INKEY$=""5I

WEND5I

WINDOW CLOSE 251

WINDOW 151

MENU ON5I

MENU 1,0,1 : MENU 2,0,1 51

END IF5I

RETURN 51

The number of the chosen menu is placed in the variable Men. The

number of the chosen menu item is placed in the variable

MenuPoint. We did it the same way in the paint program. As you

can see, it's often smart to use old solutions to solve new problems.

If the first menu is used, the corresponding subroutines will be called

directly from the routine responsible for menu control. If the second

menu is chosen, one of the two sorts of graphics figures is chosen. The

first element in the array is Array$. This can be either a B (for Bar

chart) or P (for Pie chart) to identify which sort of chart is desired.

218

Abacus MANAGING STATISTICAL DATA

Line

adjustments

Menus while

drawing

Creating a

requester

The first position in Array must contain the number of data items

when the Graphics: subroutine is called. The variable TopLine

contains this value, which is handled by an assignment statement.

Sometimes, TopLine will be a little too big. If you press

<RETURN> after the last data input, the cursor will move one line

below the last data line. In this case, the value 0 without a description

would appear in the graphic figure if left alone. That would look silly.

To avoid this, the program checks if there is a number in the numerical

column of the last line. If there isn't, the line will be treated as an

empty line, and Array (0) will be decremented by one.

The following FOR...NEXT loop copies the contents of the the arrays

corresponding to data lines into the Array and Array$ arrays.

Remember that the field Desc$ and Value$ have four blank elements

at the beginning (thus we use Array$ (x) =Desc$ (x+4)). The loop

will be executed until it runs out of data lines.

The VAL function is used to convert the contents of Value$ into

numbers for the Array array. If it encounters a 0 in the file, the value

will be incremented by 0.01. This way we avoid a Division by

Zero error message in the Graphics: subroutine.

The menus are disabled during the drawing process with MENU OFF.

The two pulldown menus become ghost menus, which visually informs

you that none of the items are presently available.

The window in which the graphics will appear, WINDOW 9 9, is then

activated. First we erase it using CLS, since earlier graphics will still

be displayed in the window (if you've called it previously).

Everything else is taken care of in the Graphics: subroutine, which

is called using the GOSUB command.

After drawing the graphic, the program returns. We create a requester

that displays Please hit a key! The window itself is only two

pixels high, since the title explains all.

The WHILE...WEND loop waits for you to hit a key. Once you do this,

the requester will be closed and Window 1 (the BASIC or data entry

window) will be activated. Next the event trapping for menu selection

and the two pulldown menus are reactivated. Program control will

RETURN to the program line where the Amiga was interrupted by a

menu call.

Unfortunately, you can't try this new program out yet, since we're

missing the Graphics: subroutine. Also, we can't use this with

certain types of data yet

Type the next section of the program:

219

Diskettes and file management AmigaBASIC Inside and Out

MainLoop:^

CLSfl

IF TopLine>50 THEN TopLine=50fl

IF LineOne>TopLine THEN LineOne=TopLine : BEEP5

IF LineOncKl THEN LineOne=l : BEEPfl

PRINT "Nuiriber";TAB(10);"Description";TAB(45) ; "Value" II

FOR x=LineOne TO LineOne+85

COLOR 1,05

PRINT Nuniber$ (x) ;TAB (10) ;Desc$ (x) ;TAB (45) ;Value$ (x) 5

NEXT xfl

IF DescData«=0 THEN StartSlice=10 : EndSlice«40fl

IF DescData»l THEN StartSlice=45 : EndSlice=55fl

xp=StartSlice5

GOSUB TypeTextfl

in$=""5

GOTO MainLoop^I

TypeTextifl

IF xp<StartSlice THEN xp«StartSlicefl

LOCATE e^xp^l

COLOR 0,3 : PRINT " "; : COLOR 1,05

IF i$="" THEN TypeTextH

IF i$=CHR$(2) THEN LineOne»l : RETURN^

IF i$=CHR$(5) THEN LineOne«TopLine : RETURNS

IF i$=CHR$(4) THEN DeleteLine : RETURN^

IF i$=CHR$(14) THEN InsertLine : RETURN^

IF i$=CHR$(28) THEN GOSUB AcceptText : xp=StartSlice :

LineOne=LineOne-l: RETURNS

IF i$=CHR$(29) THEN GOSUB AcceptText : xp=StartSlice :

LineOne=LineOne+l: RETURNS

TextPos=xp-StartSlice+15

IF DescData=0 THEN Text$=Desc$(LineOne+4)5

IF DescData«l THEN Text$«Value$(LineOne+4)5

IF i$=CHR$(30) THEN5

IF TextPos<=LEN(Text$) THEN i$=MID$(Text$,TextPos,1)5

END IF 5

IF i$=CHR$(13) OR i$=CHR$(9) THEN5

GOSUB AcceptText^

DescData=l-DescData5

IF DescData=0 THEN LineOne-LineOne+H

xp«StartSlice5

IF TopLine<LineOne THEN TopLine-LineOneil

RETURNS

END IF5

IF i$=CHR$(8) OR i$=CHR$ (31) THEN5

LOCATE 6,xp5

IF TextPos<=LEN(Text$) THEN5

PRINT RIGHT$ (Text$,LEN (Text$)-TextPos+1);5

ELSE5

220

Abacus managing statistical data

PRINT " ";fl

END IFfl

xp^xp-l : IF xp<StartSlice THEN xp^StartSlice : BEEP

: GOTO TypeTextfl

in$=LEFT$ (in$, (LEN (in$) -1)) 5

GOTO TypeTextfl

END IFfl

IF i$=CHR$(34) THEN i$«CHR$(39) fl

IF i$ > CHR$(31) AND i$ < CHR$(127) THENfl

IF xp>=EndSlice THEN xp=EndSlice : BEEP : GOTO

TypeTextfl

LOCATE 6,xpfl

PRINT i$;fl

END IFfl

GOTO TypeTextfl

II
AcceptText:fl

IF in$<>"" THENfl

IF DescData*O THEN Desc$(LineOne+4)«in$5

IF DescData=l THEN Value$(Line0ne+4)=in$fl

END

RETURNS

DeleteLine:^!

FOR x=Line0ne+4 TO 545

Desc$(x)=Desc$(x+1)f

Value$(x)=Value$(x+1)fl

NEXT x5

TopLine=TopLine-l5

IF TopLine<l THEN TopLine=15

RETURNS

InsertLine:^I

IF TopLine>=50 THEN BEEP : RETURN^

FOR x=TopLine+4 TO LineOne+4 STEP -If

Desc$(x+1)=Desc$(x)I

Value$(x+1)«Value$(x)5

NEXT xfl

Desc$(LineOne+4)=""5

Value$(LineOne+4)=""H

TopLine=TopLine+15

RETURNS

The routine is divided into the following sections: TypeText: is

responsible for the data that is input; MainLoop: is responsible for

scrolling the lines. When you scroll, some information disappears at

the bottom of the screen and new data becomes visible at the top of the

screen, or vice versa. This allows the user to display at least a portion

of the entire file.

221

Diskettes and file management AmigaBASIC Inside and Out

Everytime the screen is moved, MainLoop: redisplays the text on the

screen. First it uses CLS to erase the screen. The value of TopLine

may not exceed 50. The variable LineOne contains the number of the

first line on the screen. More accurately, LineOne contains the array

position in the first of the nine data items that will be displayed on the

screen.

An example should make this clear. If LineOne equals 1, then the

first line will contain the values of Number$ (1), Desc$ (1), and

Value $ (1). As you know, these are empty, so the first line is blank.

The fifth line is the first line that can be reached by the cursor. It is

input line one. Number $ (5) contains the number one. Thus,

LineOne also contains the number of the current input line.

This may be a bit confusing. Don't worry about it though—all theory

is confusing until you apply it. You've got enough of the program

typed in that its rudimentary functions will now run.

Don't forget to save the program as you go along. If errors crop up,

correct them by comparing this listing to your listing, and insert the

corrections.

When everything runs correctly, hit <RETURN> a couple times. You

Trying out can also type in a few words so that the scrolling is easier to see. End

the program each input word by pressing <RETURN>.

You see that the cursor jumps between the column Desc and Array.

Type <RETURN> until the cursor is in input line five.

Now experiment with the <cursor up> and <cursor down> keys. You'll

see that the lines move up and down. When you've moved the cursor to

the top of the file, you'll see that input line one is preceded by four

blank lines. Right now, LineOne has the value 1—you're working

with input line one, and the first line on the screen is filled with the

first elements of the Number$, Desc$, and Value$ arrays.

If the cursor is on input line five, LineOne has the value five. That's

all there is to it. Once you understand this, the rest of the program

should be easy to follow.

The next two lines keep the scrolling from moving too far up or down.

The cursor cannot move further up than the first line or further down

than the last line (TopLine). We use a BEEP to remind the user of

that.

The program displays the column titles (Number, Description,

TAB and Value) and the nine data lines. We use a new BASIC command to

do this: TAB. The term TAB comes in deed from the word tabulator).

You've probably used tabs on typewriters or word processors

previously. The TAB command is used for the same thing: to jump to a

specified column on the screen:

222

Abacus
MANAGING STATISTICAL DATA

PRINT TAB(10);"Hello!"

prints "Hello!" starting at column 10 on the screen. You'll use TAB
to easily create tables and lists.

The variable DescData comes into play at the end of the
Mainloop:. The variable DescData lets the program know whether
a label (in the text column) or a number (in the numeric column) will
be input.

We use StartSlice and EndSlice to specify the boundaries of the
allowed input field for the TypeText: subroutine. The value xp is
also used in the TypeText: subroutine. It indicates the horizontal
position of the cursor. When input begins, it is equal to the start
column.

After these preparations, we call the TypeText: subroutine. After
returning, the input string in$ is erased. This is done so that it can be
used the next time. Finally, MainLoop: jumps to its own beginning.
As long as there is no interruption, the program will run indefinitely.

r. . Now let's take a look at the TypeText: subroutine. First we'll look
C Hanging at its basic functions. We wrote our own routines for keyboard input
keyboard here. Normally, we can use the AmigaBASIC commands INPUT and
input line input, but we can't use them here. While these commands are

being executed, AmigaBASIC can't check which keys were hit. Since
we want full control over all keys, we'll read each key with INKEY$
and then put words and numbers together later.

The program starts with one restriction on xp—it may not be smaller
than the StartSlice variable. This isn't possible at the beginning
since we've just made xp and StartSlice equal. However, during
input, you may move the cursor left or erase characters, and the cursor
may try to leave the input field on the left side. The first line of
TypeText: prevents this.

The cursor stays on one screen line, and can't be moved up or down.

Line 6 uses LOCATE 6, xp to set the cursor on the right line in the
correct horizontal position.

We create our own cursor in the shape of an orange box. We use
COLOR 0,3 to specify orange as the background color and blue as the

foreground color. If we type a blank, an orange box is the default. After
this, the colors for all other text are returned to their normal settings.

The central command in the input routine i$=lNKEY$ follows. The
INKEY$ variable i $ contains the current character input. If i$ is empty, then a

key wasn't pressed yet. In this case the TypeText: program will
jump to its beginning and wait until a key is pressed.

LOCATE

223

Diskettes and file management AmigaBASIC Inside and Out

Keyboard

buffer

Control

characters

Start of file

End of file

Deleting

lines

Inserting

lines

If you type faster than the Amiga can process the characters, the

characters won't be lost. AmigaBASIC has a 15-character long keyboard

buffer. The Amiga uses this "holding tank" to store characters for which

it isn't ready. The INKEY$ command reads from this buffer. If the

buffer is full and you type more, a short blip on the screen will warn

you that any characters typed at this time will be ignored. It's the same

blip you hear when AmigaBASIC doesn't have a window that it can use

for keyboard input.

The rest of the TypeText: subroutine is used to evaluate the

characters that are input. If you want to compare the contents of

INKEY$ (or a copy of it in in$), you need the CHR$ command. The

CHR$ command takes an ASCII code number and converts it into the

number's corresponding character. Now we can compare characters with

characters (INKEY$ with CHR$ (x)). If they are equal, the program

responds.

A CHR$ (2) is a <CONTROLxB> character. This is the character

produced when you press and hold down the <CTRL> key and then

press the key. The <CONTROLxB> character is not displayed

on the screen—most control characters aren't displayed. But this doesn't

mean that they have no effect. Many can greatly affect the execution of

a program. You'll notice that if you press <CONTROLxG> when

you're in the BASIC window, you'll hear a BEEP sound. You also

have some experience with <CONTROLxC>, the combination that

terminates the current BASIC program.

We use <CONTROLxB> to jump to the first line of the data list. The

variable LineOne is set to one and then we RETURN from the

subroutine. MainLoop: takes care of displaying the lines.

We use <CTRLxE> (CHR$ (5)) in a similar fashion. It can be used

to jump to the end of your file. The end of the file is the last line to

contain input It may also be a line containing no input at all.

We use <CONTROLxD> (CHR$ (4)) to delete a line. You can use

this key combination to delete the line on which the cursor is currently

located. The DeleteLine: routine handles this. After executing this

routine, the program returns to the MainLoop: routine.

We use <CONTROLxN> (CHR$ (14)) to insert a new line. The new

line is inserted at the current cursor position in the insertLine :

subroutine.

We tried the four control functions in a way that you can remember.

Here are short descriptions of their use:

<CONTROLxB>

<CONTROLxE>

<CONTROLxD>

<CONTROLxN>

beginning of text

end of text

delete a line

insert a line

224

Abacus MANAGING STATISTICAL DATA

Assigning

control

codes

Moving up a

line

Moving

down a line

<RETURN>

and <TAB>

When you program control codes, you should strive to assign easily

remembered values to the control characters. Whenever possible, you

should replace <CONTROL> sequences with pulldown menu items

since you can include explanatory text. Also, it's often much easier to

work with the mouse than with the keyboard.

The next two program lines handle the <cursor up> and <cursor down>

keys.

The <cursor up> key is CHR$ (28). When the user presses this key,

he leaves the current input field. The input there should be inserted into

the list The AcceptText: routine handles this. The cursor position

pointer, xp, is set to the start column so that it will be at the

beginning of the new input field. The variable LineOne is

decremented by one, and then we're ready to RETURN to the

MainLoop: to scroll up one line.

The <cursor down> key is CHR$ (29). This line is constructed exactly

like the previous line. The only difference is that it scrolls down.

The variable TextPos calculates the cursor's position in the current

input text. For example, if the cursor is located in column 14 and the

value of StartSlice is 10, we are in the (14-10+l)th position (the

fifth position) in the input text

The Text$ string contains the text that we are typing or correcting.

The value will be read from the field Desc$ or Value$ at the

beginning (the variable DescData decides which one).

The <cursor right> key corresponds to CHR$ (30). If the cursor is

located in a section of text that was typed previously (the I F

TextPos<=LEN (Text$) checks to make sure) and the user presses

<Cursor right>, i$ is assigned the value of the character in Text $ on

which the cursor is located.

The <RETURN> key is CHR$ (13); the <TAB> key is CHR$ (9) .

The <TAB> key is marked on Amiga 500 models by a pair of arrows

(|<- and -»|). The <RETURN> and <TAB> keys have the same

function in our program: terminate input to the current field. The

AcceptText: routine is called. The variable DescData (alternates

between 1 and 0) determines whether we are in the Description or

the Value column. The formula (Variable) =1- (Variable)

"toggles" the value of a variable between zero and one.

If DescData has the value zero, the program jumps from the Value

column to the Description column. A linefeed will be executed.

The variable xp is reset to the value of the first column. A new

TopLine is set. (The variable TopLine is the largest line number

that contains an input). If the new value of LineOne is larger than

TopLine, then TopLine will be reset equal to the LineOne

225

Diskettes and file management AmigaBASIC Inside and Out

Backspacing

and moving

left

Editing

input

Deleting

characters

variable. Now that the TypeText: routine has done its job, it

RETURNS to the Mainloop: routine.

The next program section searches for the <BACKSPACE> and

<cursor left> keys. The two keys have the same effect in our program:

delete the character to the left of the cursor.

There are two cases to consider. If the cursor is located on text that is in

the original string (IF TextPos<=LEN (Text$)....), the old text

should show up when you erase what was just typed. If there isn't any

text under the new input, a blank space will be displayed. The

following expression:

RIGHT$(Text$,LEN(Text$)-TextPos+1)

returns the segment of Text$ that is "behind" the current cursor

position.

If you make an error with an editor like this, you need to press

<BACKSPACE> until you've erased the incorrect character and all

those in front of it. You've got experience with this sort of editing

already in the BASIC window and the INPUT and LINE INPUT

commands.

If you are in a field that already contains text, you can move left and

right over the text. When you type a new character, the old character is

replaced. Move the cursor back over the new input and the old character

reappears. When you press <RETURN>, the new text up to the current

cursor position will be accepted. The text that follows the cursor will

be erased.

Incidentally, the Apple II's editor works in the same way. Steve Jobs

and Steve Wozniak developed the Apple II in a garage, and created

almost every piece of hardware and software themselves. They developed

this somewhat simple but functional mode of cursor control. This isn't

comparable to a screen-oriented editor, but it's not bad once you get

used to it. It's difficult to write a better editor in AmigaBASIC.

The actual characters are deleted like this: The cursor position xp is

decremented by one. If we reach the value of StartSlice, a beep

sounds and the cursor won't move any further. The input string in$ is

set so that it's equal to the segment of the string to the left of the

cursor (in$=LEFT$ (in$, (LEN (in$) -1))). Once this is done, the

program jumps to the beginning of the TypeText: section so that

you can input characters.

You may have noticed that you can't put quotation marks (") in the

string. All other characters are allowed, but quotation marks are replaced
by apostrophes ('). Quotation marks in text cause problems when you

store data. We'll explain later why this is so.

226

Abacus MANAGING STATISTICAL DATA

The last lines of the TypeText: loop are responsible for the input of

Limiting normal characters. We don't want control characters or function keys
input displayed, so we only allow ASCII codes from 32 to 126. If you are

interested, you can look at the table in the Appendix for a description of

these characters. If i $ is one of these characters and xp is less than or

equal to Endslice (in which case, the Amiga will beep and refuse to

accept other characters), the characters will be printed on the screen and

the input string in$ will receive another character. The cursor position

xp is incremented by one. Then the program jumps to the beginning of

the TypeText: loop.

So far so good. Now we need to look at the subroutines that help out

the TypeText: routine. We'll look at the AcceptText: routine.

The AcceptText: routine is called when it's time for the current

Assigning input text to be assigned to its corresponding array. The routine is only
text to an executed when the input string in$ isn't empty. If there's nothing

array there, there's nothing to assign. By the way, if the cursor is located in

the first position of an input field (where it always is when the cursor

first types an input field) and either <RETURN>, <TAB>, <cursor

up>, or <cursor down> are pressed, the field contents won't be changed.

This makes it possible to search through lists.

If in$ contains a string, its contents will be put into the Desc$ or the

Value$ array. The variable DescData determines which one. Then

we erase in$ so that it can be used for the next input. The variable

AltData is set to one.

The data can be changed only in the AcceptText: routine. If the user

Changing wants to leave the program without having saved the modified data, a
saved text warning window is displayed. At the beginning of the program

AltData has the value zero. Once data is changed, the value of

AltData is changed. The program knows that AltData equal to one

means that modifications have been made. Once AcceptText: has

performed its tasks, it returns to the line from which it was called.

The next subroutine DeleteLine : deletes a data line. Each of the

lines from the one after the current line to the last line of the file are

copied over the lines that precede them. The elements of the Desc$ and

Value $ arrays are assigned the contents of the next higher array

element.

The line which the cursor is on disappears and is replaced by the next

higher line. The TopLine is decremented by one. If we've reached the

top of the file (IF TopLine<l THEN...), then TopLine is set to

one. Once done, the subroutine RETURNS to the routine from which it

was called.

227

Diskettes and file management AmigaBASIC Inside and Out

DeleteLine: 's complementary subroutine is InsertLine:. It is

Inserting used to insert data lines. Before it tries to insert the lines, it checks if
lines of data there is room for another line. If TopLine equals 50, the list is already

full, and no more lines can be inserted. A beep sounds to indicate this.

If TopLine is less than 50, InsertLine: moves the elements one
position forward starting at the end of the file (TopLine+4) and going

back to the current line. We use STEP -1 to make the FOR...NEXT

loop count backwards. After the loop is complete, the last line moved

forward is erased so that new data can be inserted. The variable

TopLine is incremented by one. Then a RETURN is executed.

Now we're ready for the most important routines of our program: the

routines for reading from and writing to the diskette:

SaveData:5

MENU 1,0,0 : MENU 2,0,0 5

MENU OFF5

GOSUB TypeName5

WINDOW 15

IF Nam$="" THEN EndSavefl

OPEN Nam$ FOR OUTPUT AS 15

PRINT#1, TopLine+45

FOR x=l TO TopLine+45

WRITE #l,Desc$(x)5

WRITE #l,Value$(x)5

NEXT x5

CLOSE 15

5

EndSave:5

MENU 1,0,1 : MENU 2,0,15

MENU ON5

AltData=05

RETURN5

5

LoadData:5

IF AltData=l THEN GOSUB Query5

MENU 1,0,0 : MENU 2,0,05

MENU OFF5

GOSUB TypeName5

WINDOW 15

IF Nam$«"" THEN EndLoad5

FOR x=l TO 585

Desc$(x)»""5

Value$(x)»ff"5

NEXT x5

OPEN Nam$ FOR INPUT AS 15

INPUT #l,NiribrData5

TopLine=NmbrData-45

FOR x=l TO NnibrData5

INPUT #l,Desc$(x)5

INPUT #l,Value$(x)5

NEXT x5

Line0ne=sTopLine5

CLOSE 15

228

Abacus managing statistical data

EndLoad:H

WINDOW lfl

COLOR l,Ofl

CLSfl

PRINT "Number";TAB(10) /"Description";TAB(45) ;"Value"fl

FOR x=LineOne TO Line0ne+8fl

PRINT Number$ (x) ;TAB (10) ;Desc$ (x) ;TAB (45) ;Value$ (x) fl

NEXT xfl

MENU 1,0,1 : MENU 2,0,15

MENU ONfl

AltData=0fl

RETURNS

TypeName:5

Altname$=Nam$fl

WINDOW 2,"Type filename:", (50, 80)-(580,88) ,0,-lfl

CLSfl

LINE INPUT Nam$fl

IF Nam$= "=" OR Nam$«="*" THEN Nam$=Altname$5

WINDOW CLOSE 25

RETURNS

When you choose the Save item from the File pulldown menu, the

program executes the SaveData: subroutine. Event trapping makes it

possible to save at any time. Remember that the modifications you
make to the current cursor line won't be saved in the file unless you

press the <RETURN> or <TAB> key first. Modifications won't be

transferred to disk until you save the file.

The SaveData: routine first disables the menus. All the pulldown

menus are displayed as ghost menus now. Then the subroutine

TypeName: is called. It is used to receive the name of the file. If the

filename Nam$ is empty, nothing will be saved; instead the program

will jump directly to the EndSave: label.

Next the subroutine opens the file matching the name in Nam$ for

WRITE output. First we write the number of data items, TopLine+4, to the

file. The F0R...NEXT loop will be executed this many times. The loop

writes Desc$ and Value to the file. We use the WRITE command for

this.

You've seen print before, but what does WRITE do? Basically they

do the same thing—they write data (numeric or text) to the screen or to

a file. They differ in just a couple of details. Let's compare the two

commands in the BASIC window. Type the following lines:

PRINT 1,2,3;4;5;6

and

WRITE 1,2,3;4;5;6

229

Diskettes and file management AmigaBASIC Inside and Out

WRITE

VS.

PRINT

Carriage

returns and

linefeeds

When commas are used as dividing characters for the PRINT command,

numbers are printed in columns. Each column is 15 characters wide.

The WRITE command simply outputs the commas as well. When

colons are used as divider characters for the PRINT command, data

items are printed right after each other (positive numbers are proceeded

by a blank space since they don't have a sign). The write command

converts semicolons to commas. Try these examples:

PRINT "Hello, ";"how are you?"

and

WRITE "Hello, ";"how are you?"

They do different things. The WRITE command puts quotation marks

around strings, while PRINT doesn't.

Why is this important? Maybe you've done some thinking about how

AmigaBASIC works with characters in sequential files. A sequential

file is just a bunch of characters that follow one right after the other. So

how can AmigaBASIC tell where a data element begins and ends when

it reads from the file? AmigaBASIC uses various separators to do this.

We'll take a look at typewriters to explain. The carriage return code

(CHR$ (13)) is a separator character. The <RETURN> key gets its

name from the typewriter key that executes a carriage return and a

linefeed. Computer engineers used this idea for the characters that end a

line: the carriage return code (CHR$ (13)). The CHR$ (10) character

has a similar function. It is the linefeed character. It causes the screen or

printer to go down one line without returning to its beginning. Thus

carriage return and linefeed need to be used together.

Now back to programming. The PRINT statement puts this code

behind an input if the expression doesn't end with a comma or a

semicolon, whether you're printing on the screen or into a file. Writing

to a sequential file with the following commands:

PRINT #1, "Hello" SI

PRINT #1, 1,2,35

PRINT #1, 4;5;6fl

produces:

Hello<LINEFEED> K13 SPACES> 2<13 SPACES> 3 <LINEFEED> 4

5 6 <LINEFEED>fl

What can we learn from this example? First, if a PRINT statement is

not ended with a separator, a linefeed is automatically appended to the

input When a comma separates two data items, AmigaBASIC inserts

enough blanks to move to the next tab column. When a colon separates

two data items, data items are written directly following each other,

except that blanks will be used instead of +'s for positive numbers.

230

Abacus MANAGING STATISTICAL DATA

Problems

with

INPUT#

More about

WRITE

We have problems when we try to read values from a sequential file

with the INPUT* command, since INPUT* reads to the next separator.

Commas are treated as separators for this command.

Experiment with this by creating a file in the BASIC window:

open "Textfile" for output as lfl

a$="Hello, how are you?"H

b$="Testn L
print #1, a$f

print #l,b$fl

close If

We've written two strings to a sequential file. Now we want to read

them:

open "Testfile" for input as lfl

input #l,a$fl

input #l,b$fl

What's wrong? The string a $ has the value Hello. The string b$ has

the value how are you?. The comma in the string was interpreted

as a separator. We don't see "Test" anywhere. But we can change that

easily enough:

input #l,c$fl

?c$fl

close If

Finally we've read all the data items. The comma causes problems with

reading the string. This will cause our program to get all confused,

since the field contents read and written will be different

What does BASIC do to neutralize separators inside strings? It puts

quotation marks around the strings. That's why WRITE is so useful.

When we write data to disk using WRITE, we can be sure that the

strings will be read back correctly.

WRITE lets you put anything except quotation marks in strings. If you

use quotation marks, things will hit the fan. For this reason, the

TypeText: routine won't permit quotation marks—it automatically

converts them into apostrophes.

Wow! That was quite an explanation for just two lines of the program.

But hopefully you've learned a lot about sequential files. This will be

useful when you start writing your own data management programs.

231

Diskettes and file management AmigaBASIC Inside and Out

Deleting the

old file

. The SaveData: program section doesn't contain any more surprises.
Closing the The file is closed with the CLOSE command. The EndSave :
file procedure reactivates menu event trapping and sets AltData to zero.

AltData must be zero because the data in the file and in memory are

identical at present, and will remain so until you modify the data in

memory. We need to be able to read in the data that we wrote, so we

have the LoadData: subroutine.

Reading in new data means deleting the old data. To protect modified

data, we check AltData first. If modifications have been made, the

program section Query: gives the user the opportunity to save the

data (Query: is the program routine on the next page). We deactivate

menu trapping so that nothing gets screwed up.

The subroutine TypeName: furnishes a filename. If no name is input,

loading will be halted and the program branches to EndLoad:.

The following FOR...NEXT loop deletes the current data from the arrays.

Otherwise, if you read in a file that's shorter than the file currently in

memory, part of the old data will be appended to the list. We don't want

that to happen, so we delete all the data before we load the new file.

Now we open the file for reading. First we read the number of data

items in the file. Since the four blank array elements are stored at the

beginning of the file, TopLine is given the value NmbrData-4. All

the data is read into the Desc$ and Value$ arrays using a

FOR...NEXT loop.

After loading, the cursor is positioned to the last line of the file so that

you can append data. This is useful for lists which expand over time—

for instance information about stock prices. To do this, we set

LineOne equal to the value of the TopLine variable.

The EndLoad: routine has a couple lines that can also be found in the

MainLoop: of the program. The current list is displayed on the

screen. This is necessary because the MainLoop: is only activated by

a keystroke. However, the user should see the new data on the screen

before this occurs. Menu trapping is turned on again, and AltData is

set to zero. The data that was just read is identical to the data on the

diskette. Then we return from the subroutine.

The subroutine TypeName : is almost identical to a routine in the

Wildcards paint program. When you type the = or * wildcards, the last filename
that was accessed is used again. After this input, the window disappears

from the screen.

Now that we've typed and discussed routines for loading and saving

data, all we need is the Query: subroutine. It warns the user that the

current data hasn't been stored yet:

232

Abacus
MANAGING STATISTICAL DATA

WARNING:

Query: 5

WINDOW 2,"Attention!", (155,50)-(475,135),0,-15

COLOR 0,15

CLS5

LOCATE 2,35

PRINT " Your data has not"5

PRINT " yet been saved. "5

PRINT : PRINT " Save it now?" 5

LOCATE 8,12 : PRINT "Yes"5

LOCATE 8,21 : PRINT "No"5

LINE (95,57)-(148,74),0,b5

LINE (183,57)-(236,74),0,b5

BEEP'ft

WaitforMouse:5

Test=MOUSE(0)5

WHILE MOUSE(0)«05

WEND5

x-MOUSE(l) : y=MOUSE(2)5

IF 95<x AND x<148 AND 57<y AND y<74 THEN5

PAINT (97,59),3,05

GOSUB SaveData5

PAINT (97,59),1,05

WINDOW CLOSE 25

RETURN5

END IF5

IF 183<x AND x<236 AND 57<y AND y<74 THEN5

PAINT (185,59),3,05

WINDOW CLOSE 25

RETURN5

END IF5

GOTO WaitforMouse5

5

ClearData:5

IF AltData=l THEN GOSUB Query5

RUN5

5

Quit:5

IF AltData=l THEN GOSUB Query5

COLOR 1,05

MENU RESET5

CLS5

END5

The Query: routine is easy to understand. It creates a requester with a
white background and blue text. The requester displays the message
Your data has not yet been saved. Save it now?

and gadgets for Yes and No. A BEEP also sounds to alert you.

The WaitforMouse: subroutine waits for a Yes or No click. As
you can see, you can use the MOUSE commands without using event
trapping. If the user clicks in the Yes gadget, the field is painted orange

and the SaveData: routine is called.

If you leave an empty string for the filename, your data will be

completely lost—be careful.

233

Diskettes and file management AmigaBASIC Inside and Out

After the program is finished saving, it paints the gadget to its original

color, closes the window, and returns. If you click the No field, the

square paints the gadget orange, closes the window, and returns. If the

click occurs elsewhere in the window, the WaitforMouse:
subroutine is called again.

Finally, we use two small functions. The function DeleteData:

erases memory—all data items are cleared. The quickest and most

effective method to restore all variables to their original values is to

restart the program with the RUN command.

Using RUN inside a program starts the program at the beginning—all

variables and arrays are cleared. We may wish to do this occasionally

but certainly not all the time. Normally you should use GOTO when

you want to branch to the beginning of the program. It's the same for

the End: routine. This routine is used to end the program. Here we set

that background and text colors back to their original values, reactivate

the BASIC pulldown menus, and erase the screen. The END command

returns us to direct mode.

Now we're finished programming the data management section. But

we're still missing a vital link. We've got numbers—but no graphics!

Don't worry. You won't need to do much more.

At this time save the current version of the statistical data program to

the diskette. We saved the graphics routine in ASCII format before we

typed this program. Now we'll append it to this program using MERGE.

If you followed the instructions at the beginning of this section, you'll

have an ASCII version of your bar chart/pie chart utility in your Data

drawer. Use the FILES command to make sure it's there. Type the

following in the BASIC window:

merge "New BarPie"^

After a couple of seconds, the Graphics : routine will be written at

the end of your new program. Save the program immediately. (You can

use the same name that you used for the non-graphic version).

Now you should test the program for typing errors. Can you load and

save? Are the graphics displayed correctly? As you know, when you see

an error message, compare the line in which the error occurs with the

listing at the error-free program Appendix.

234

Abacus MANAGING STATISTICAL DATA

This new program displays a window that fills about half a screen.

Running the You'll see an orange cursor at the beginning of the column

program Description in line one. This is where you type the data to be
graphed. This text will be printed with the pie segment or under the bar

in the diagram that is drawn. You confirm the input by pressing

<RETURN>, <TAB>, or a <cursor up/down> key. You type die value

(number, percent, etc.) in the Value column. If the cursor is located

on the first character of an input, the input will not be changed.

Otherwise the program accepts the text up to the cursor position. Text

behind the cursor is erased. You use <BACKSPACE> or <cursor left>

to erase characters. The text that was typed over will reappear.

The screen will always contain nine lines of the data list The entire list

may contain a maximum of 50 elements. You use <CONTROLxB>

to jump to the beginning of the list, <C0NTR0LxE> to jump to the

end,<CONTROL><D> to delete a line, or <CONTROL><N> to insert

a new line.

To save a data list, choose Save from the Data menu. The Load

Saving a list item reads in data that was previously stored. You use Delete to clear

the program's woik area and Quit to return to BASIC direct mode.

Selecting

graphics

Tricks &

Tips

To choose either a pie chart or a bar graph, choose the desired form

from the Graphics pulldown menu. The graphic is constructed, and

then a small requester asks you to press a key. To hide this requester,

you can click it into the background. Press any key to return to the

input screen.

Here are a few tips to help you get the most out of this program:

Add an extra line to your file containing a round number that

is larger than all the others, to serve as a comparison value.

For example, if your largest value is 898, type 1000 in
another line. That makes the scaling much cleaner.

If you've got many small values in your pie chart, type

them between the large ones. If all the small values come at

the end, the label of one may overlap one another.

Keep your labels short in the pie charts. If the labels are too

long, they'll trail off the right edge of the screen or overlap
the graphic figure. Also, keep your description labels short

for bar charts, since there isn't much room per bar.

If you want to use specific colors, just write more

PALETTE commands behind the PALETTE command in the

Setup: section of the program.

235

Diskettes and file management AmigaBASIC Inside and Out

3.5
Amiga and friends:

peripheral devices

RAM disk

pros and

cons

RAM:

This section introduces you to the Amiga's peripheral devices. These

are hardware components that are connected to your Amiga (usually
with cables), but are not directly part of a computer—they're "optional
equipment." You can connect many different kinds of peripherals to
your Amiga. Even if you don't have a printer and haven't used the

various interfaces on your Amiga, you can learn about some interesting
possibilities.

The first peripheral we'll look at is the Amiga's RAM disk. You

actually have one more disk drive than you thought—or at least, it's a

reasonable substitute for a disk drive, and much cheaper.

Both AmigaBASIC and AmigaDOS allow you to use part of the
Amiga's memory as a virtual disk drive, or RAM disk. As you already

know, RAM stands for Random Access Memory. A RAM disk has no
moving parts; information is stored in memory instead of on a diskette.

That means you can write and read programs and data to the RAMjust
like you would a floppy diskette. A RAM disk can even have a
directory and drawers.

The effectiveness of a RAM disk depends on how much memory you

have available. The RAM disk uses dynamic memory allocation. In
other words, it uses the barest minimum amount of memory, only what

it actually needs. The memory used by the RAM disk can't be used by

AmigaBASIC or other programs at the same time. If you delete a
program that is stored in the RAM disk, the memory occupied by that

program is immediately freed up for other uses.

Let's see all this theory in practice. Type the following command in the
BASIC window:

chdir "ram:"fl

When you type this command the first time, your Amiga may request

the Workbench diskette for the RAM disk utility program.

Use FILES to look at the directory of the RAM disk. It doesn't have a

disk name. You'll see Directory of [] displayed. The RAM disk
directory may contain the BasicClip file. If you use Cut, Copy,

and Paste from the Edit pull-down menu, AmigaBASIC puts the
Clipboard's contents in the RAM disk.

Type a few program lines in the LIST window—nothing special, a

couple lines of text will suffice for this example. Now save the lines
you've input.

236

Abacus
PERIPHERAL DEVICES

Type the following line in the BASIC window:

save "tesf'fl

Almost as soon as you press <RETURN>, OK will appear on the
screen. This is one great feature ofRAM disks: they're super fast. Very
Uttle time is required to read from or write to a RAM disk, because the
files are simply juggled around in main memory.

Take a look at the RAM disk's directory. It will contain the files test
Back to info and test. info. AmigaBASIC automatically produces an info file
files when it saves a file. Workbench 1.2 puts an icon for the file in the

Workbench screen. This icon exists as long as the RAM disk is used.

Note: Workbench 1.1 can't open a window for the RAM disk. Type:

kill "test.info"

Then see your dealer about getting Version 1.2 of Workbench.

Now erase the memory with NEW and load test from the RAM disk:

load "test"

It's impressive to see the RAM disk in operation. Even lengthy BASIC
RAM disks programs can be loaded in seconds—a bare fraction of the time it takes

are not for a floppy disk drive. One advantage is that you can type program data
forever... on a RAM disk, and not to copy it to disk until the program is done.

Your work will be speeded up immensely.

There are many good applications for a RAM disk. However, you

should remember that unlike data that is stored on floppy diskettes, all
Hata on a RAM Hkic is temporary. A power surge, power failure or a

system crash will destroy that data.

NOTE: Many Amiga programs do not work with the RAM disk running. If
you own an unexpanded Amiga 500, you will have to disable the RAM
disk. We showed you how to do this earlier, but we'll reiterate:

VV TURN ON THE AMIGA, AND INSERT THE WORKBENCH DISKETTE

WHENTHE COMPUTER ASKS YOU TO.

VV WHEN THE BLUE SCREEN APPEARS, PRESS <CTRL><D>. A 1>

PROMPT WILL APPEAR (YOU ARE NOW IN THE CLI).

■>W TYPE LOADWBi WAIT UNTIL ANOTHER 1> PROMPT APPEARS ON

THE SCREEN.

VV TYPEENDCLlH.

237

Diskettes and file management AmigaBASIC Inside and Out

Printers

NOTE:

LPRINT

Separators

and LPRINT

Next we'll look at another of the Amiga's peripheral devices: printers.
Even if you don't have the hardware described, you should read the next
few pages for two reasons: First, you'll probably get your hands on

some of this hardware sooner than you think (that's why they invented

credit cards). Second, it can't hurt you to know the printer commands.

Before you can work with a printer, you need to make some

preparations. First you need a cable to connect your Amiga to your

printer. You can get a printer cable at any Amiga dealer.

There is a major difference between the printer cable available for the
Amiga 500 and 2000, and the cable sold for the Amiga 1000. Be
absolutely sure that you have the correct cable for your machine when

you buy it—the wrong cable will damage your Amiga.

Next, you need to set Preferences in the Workbench to inform the

Amiga which printer driver should be used. Printer drivers are utility

programs that control the format in which data is sent to specific

models of printers. The Workbench contains driver files for the most

popular makes and models of printers. Commodore and various printer

manufacturers are presently working on other driver files, if your printer

isn't listed. (You can find out more about this in your Amiga manual).

After you select the correct printer driver, all you need to do is turn the
printer's power switch on.

The simplest command for sending data to the printer is the LPRINT

command. The L in LPRINT stands for Line. The LPRINT command

works like the PRINT command: the only difference is that this

command sends output to the printer, not to the screen.

LPRINT "Hello, how are you?"

The Amiga needs to load the printer driver from the Workbench diskette

before the first printing can take place. Once the driver is loaded, your

printer prints the line Hello, how are you?. AmigaBASIC now

has all the information that it needs to about the printer.

LPRINT lets you use the same separators that PRINT normally uses:

LPRINT "Hello",5,"Amiga";"Test"

In the last chapter, we discussed control codes aqd separators. You'll

remember that when the line is ended with a semicolon, the output data

won't be printed immediately. Instead, the data will be stored in the

printer buffer until a linefeed (CHR$ (10)) code is encountered. The

following line executes two linefeeds:

LPRINT chr$(10)

238

Abacus PERIPHERAL DEVICES

LLIST

PRT:

LIST

DELETE

SCRN:

The first linefeed is produced by the CHR$ (10), and the second is

automatically produced by LPRINT. Your printer might not respond

correctly to the linefeed code, and print everything in the same line. If

this is the case, check the printer settings in Preferences and look

in your printer handbook. You may need to adjust the DIP switches in

your printer. If you can't figure out what to do, your computer dealer

should be able to help you out.

You can use the LLIST command to produce program listings on your

printer when you develop and test programs. For a demonstration, load

a short program and then type:

LLIST

Your printer prints out the program listing. AmigaBASIC is disabled

during printing. The printing can take a long time if the program is

large (such as your paint program). Multitasking can be a real timesaver

printing, because you won't have to wait for the printer to finish. For

example, you can click AmigaBASIC into the background and work

with another program during printing. Multitasking is dependent on

how much free memory you've got

Your printer may have buffer memory. This buffer stores the output

data in its own RAM and then signals the Amiga that the printing is

already done, so it can move on to the next task—even though the

printer still might have 15 minutes worth of printing ahead of it You

can terminate printing at any time using the <CONTROLxC> key

combination.

These are the fundamental AmigaBASIC printer commands. But

AmigaBASIC has many more commands for printing flexibility.

A device name (similar to RAM:) called PRT: (printer) offers you

another way to print out a program listing:

LIST ,"PRT:"

You can tell the LIST command where to redirect the listing by

appending more information to it. You can also write a file to disk

using this method. We'll demonstrate on the RAM disk:

LIST ,"RAM:Test"

This command produces a file called Test to which the program is

written in ASCII format. You can use the LIST command as an

alternative to the SAVE , A command.

Another interesting device is SCRN: (screen). Typing the command:

LIST , "SCRN:11

displays an entire program listing in the BASIC window.

239

Diskettes and file management AmigaBASIC Inside and Out

LPT1 :

Output files

I/O

KYBD

Back to printer output You can use both PRT: and LPT1: as device

names for the printer—they produce almost identical results. Microsoft
used two names to make AmigaBASIC as compatible as possible with
its other versions of BASIC. Microsoft's IBM PC BASIC uses LPT1:
(Line Printer 1) the first printer connected to the computer. To

make it easier to convert a BASIC program that runs on the IBM PC to

one that runs on the Amiga, Microsoft designed AmigaBASIC so that
it understands this device name and sends the output to PRT:, the
standard printer.

You can also use device names to open an output file, so that you can
send data to various devices:

OPEN "PRT:" for output as 1

This line sends all the output that is written to file 1 to the printer. If
AmigaBASIC responds with File already open, the device

PRT: is already being used for this. AmigaBASIC may refuse to build

a second connection. If you have some problems, and since we're only

experimenting now, clear all files and connections with the NEW

command. Then try typing:

PRINT#1, "Hello!"

Don't be surprised if this text isn't printed immediately. AmigaBASIC

always sets up a buffer for files, to avoid having to individually transfer
each character. The contents of the buffer are transferred when you use

the CLOSE command, or when the buffer gets full. This is the only

difference between LPT1: and PRT:—LPT1: prints immediately,

while PRT: uses a buffer. Typing the following line will start the
printer:

CLOSE 1

With these commands you can open files for any device. Of course, you
need to choose the correct mode. Opening the printer FOR INPUT

causes AmigaBASIC to respond with an error message like Bad file

mode or Device I/O error. The I/O stands for Input/Output.

You'll see this abbreviation a lot when you work with data transfer.

Since we've been using device names without paying too much

attention, AmigaBASIC may refuse to open some device. You can

always reload the Workbench in this case—this sets everything back to
the default settings.

You can use the keyboard (KYBD:) FOR INPUT to a program. The

following listing is a very simple program that accepts the characters
that you type in on the keyboard, displays the characters on the screen,
and then outputs them to your printer:

240

Abacus PERIPHERAL DEVICES

Escape

codes

Printer

history

OPEN "KYBD:" FOR INPUT AS H

OPEN "SCRN:" FOR OUTPUT AS 2$

OPEN "LPT1:" FOR OUTPUT AS 35

WHILE i$OCHR$(138)H

i$=INPUT$(l,l)fl

PRINT#2,i$;fl

IF i$=CHR$(13) THEN i$«=CHR$ (10) fl

IF i$=CHR$(8) THEN i$«CHR$ (127) fl

PRINT #3,i$fl

WEND1I

CLOSE l,2,3fl

We open the keyboard for reading and open the screen and printer for

writing (it can't be the other way around).

Hitting <F10> (CHR$ (138)) ends the program.

You may recognize INPUT$ from reading in object files. We'll discuss

it in more detail shortly.

We convert two special characters before we output to the printer. If the

user presses <RETURN> (CHR$ (13)), the character is converted to

CHR$ (10), so that the printer will execute a linefeed. If the user types

CHR$(8) <BACKSPACE>, the character is converted to

CHR$ (127) for the printer. This is the code that most printers use to

delete characters in the buffer. Each character is sent to the printer as

soon as it is input. However, as long as it hasn't been printed, we can

easily take care of errors by erasing the last character in the buffer.

If this doesn't work on your printer, take a look at your printer manual.

Most manuals contain a table of the character set. These tables give you

information about which control characters change the printer's print

style, the distance between lines, and much more.

There are a lot of <ESC> codes that you can use on your printer if it's

an Epson or an Epson-compatible. You may have discovered the

<ESC> key on the Amiga keyboard. The <ESC> character

(CHR$ (27)) can be used to produce many interesting effects. First

we'll take a quick look at the developments of printer standards.

When ASCII was developed many years ago, there were virtually no

powerful printers available for small computers. Hobbyists were happy

if their printers could print uppercase and lowercase letters. No one

thought about having them print in italics, bold, wide, or near letter-

quality text.

241

Diskettes and file management AmigaBASIC Inside and Out

Adding

codes for

printer

control

What escape

codes do

"Other"

escape

codes

Printer

drivers

Consequently, the positions in the ASCII code table weren't occupied

by letters, numbers, and miscellaneous characters (totaling about 30

codes unused) were enough to activate the primitive special printer

effects. For example, CHR$ (14) was used to enable extra-wide

characters on many printers. Today many codes, like CHR$ (10) and

CHR$ (13), have been usurped for other tasks, and there aren't nearly

enough unused codes to do this.

Computer specialists needed to expand the number of control codes. For

this reason, the engineers decided to use character 27 to form escape

codes. Character 27 instructs the printer not to print the character that

follows it, because it's a control character. For example, when the

printer encounters a CHR$ (69) alone, it prints out an E. But when it

encounters a CHR$ (27) and then a CHR$ (69), in other words

<ESCxE>, the printer knows that the 69 is a control character. It then

looks to find what <ESC><E> means.

The Japanese printer maker, Epson, developed a greatly extended printer

code standard to be used with dot-matrix printers. The <ESCxE>

sequence enables the bold print for Epson and Epson-compatible

printers. Many printers use this standard to handle control characters.

But for various, complex reasons, many printers are not Epson-

compatible. A printer manufacturer might have thought that they had a

superior method of escape code layout, or that their printer could out

perform the Epson standard using a simpler method. Or, more

commonly, the manufacturer chose to toe the line of another printer

standard, such as IBM's.

Normally, printer drivers work only with their specified printer. It

required a great effort by the user to convert the printer driver to work

with another printer. When he bought a new printer, the odds are it

wasn't compatible with the last. This means that he'd have to change

the printer driver and insert new control codes.

The developers of the Amiga found a better solution: They set up a

standard printer code table that is included in all Amiga programs. These

standard printer codes are then converted by the various printer driver

programs to the special character sequences required by each printer.

This way, the standard Amiga printer codes can be adapted to a wide

range of printers, each supported by its own printer driver program.

242

Abacus peripheral devices

Before you print for the first time, select the printer driver that

corresponds to your printer from the Preferences printer menu and

save your choice to the Workbench diskette. If your printer is not on

the list, don't panic: Many printers are designed to "clone" popular

models, and you should be able to print using a compatible driver for

another model. The Epson driver works with most dot-matrix printers.

The best thing to do is ask your dealer. However, if you have an

"oddball" printer, you should get in contact with Commodore or the

printer manufacturer for advice. (Luckily for you, most manufacturers

use the Amiga printer codes on the following pages).

Each separate printer driver in Preferences acts as kind of an

interpreter: It gets information in one language (Amiga's standard

control characters), and translates the information immediately into

another language (control characters which your specific printer can

understand). As long as the right printer driver can be found in

Preferences, the Amiga can handle the translation.

Tables 8a and 8b on the following pages are a complete overview of the

Amiga control codes. See your printer manual for more information on

the effect each code has on your printer.

243

Diskettes and file management AmigaBASIC Inside and Out

Table 8a:

Standard

printer

control

characters

Control character

CHR$(27)"c"

CHR$(27)ft#r

CHR$(27)MDM

CHR$(27)"Ett

CHR$(27)t!MM

CHR$(27)M[0mM

CHR$(27)M[lmM

CHR$(27)lt[22m"

CHR$(27)tl[3m"

CHR$(27r[23mM

CHR$(27)tl[4mlt

CHR$(27)"[24m"

CHR$(27);x;"mfl

CHR$(27)"[0wM

CHR$(27)M[2w"

CHR$(27)tf[lw"

CHR$(27)tt[4w"

CHR$(27)ll[3w"

CHR$(27)tl[6wlt

CHR$(27)"[5wtt

CHR$(27)!t[2lfCHR$(34)!tzfl

CHR$(27)tl[l"CHR$(34)tlzlt

CHR$(27)M[4tlCHR$(34)ttztl

CHR$(27)"[3llCHR$(34)ltzM

CHR$(27)ft[6"CHR$(34)llzM

CHR$(27)ft[5"CHR$(34)"zM

CHR$(27r[2v"

CHR$(27)lt[lvM

CHR$(27)"[4v"
CHR$(27)"[3v"

CHR$(27)tlLlt

CHR$(27)MKtf

CHR$(27n0vM

CHR$(27n2pM

CHR$(27)t!ripM

Effect

Printer initialization

Deactivate all other modes

linefeed, like CHR$(10)

Linefeed + carriage return,

likeCHR$(13)

Up one line

Normal printing

Bold on

Bold off

Italic on

Italic off

Underline on

Underline off

Background color (x from 30 to 39),

Foreground color (x from 40 to 49)

Normal font size

Elite type on

Elite type off

Condensed on

Condensed off

Enlarged on

Enlarged off

NLQon

NLQoff

Double-strike on

Double-strike off

Shaded print on

Shaded print off

Superscript on

Superscript off

Subscript on

Subscript off

Superscript (half-step)

Subscript (half-step)

Return to normal

Proportional type on

Proportional type off

244

Abacus PERIPHERAL DEVICES

Table 8b:

Standard

printer

control

characters

(continued)

Control character

CHR$(27)lf[0p"

CHR$(27)T;x;"E"
CHR$(27)"[5Ff

CHR$(27)"[7FI

CHR$(27)lt[6Ft

CHR$(27)"[0Fl

CHR$(27)tt[3Ft

CHR$(27)tl[lFt

CHR$(27)"[0zt!

CHR$(27)fl[lz"

CHR$(27)tt[lt;x;lltM

CHR$(27)lt[tt;x;lfq"

CHR$(27)ft[0qft

CHR$(27)fl(B"

CHR$(27)"(Rlt

CHR$(27)"(Kft

CHR$(27)ff(Alt

CHR$(27)"(E"

CHR$(27)t!(H"

CHR$(27)tf(Ytf

CHR$(27)"(Z"
CHR$(27)"(J"
CHR$(27)"(6M

CHR$(27)"(C"

CHR$(27)"#9"

CHR$(27)ff#0"

CHR$(27)"#8tt

CHR$(27)lf#2M

CHR$(27)lt#3tt

CHR$(27)"[tt;x;y;ttr"

CHR$(27)ft[";x;y;"sff

CHR$(27)ftHl!

CHR$(27)tlJ"

CHR$(27)"[0g"

CHR$(27)"[3gtt

CHR$(27)tt[lgtl

CHR$(27)"[4g"
CHR$(27)M#4M

CHR$(27)tf#5"

Effect

Delete proportional spacing

Proportional spacing=x

Move left

Move right

Block characters

Block characters off

Adjust character width

Centering

Line spacing 1/8 inch

Line spacing 1/6 inch

Page length at x lines

Page break at line x (tractor-feed)

Page break (tractor-feed)

American character set

French character set

German character set

English character set

Danish character set (no.l)

Swedish character set

Italian character set

Spanish character set

Japanese character set

Norwegian character set

Danish character set (no.2)

Set left margin

Set right margin

Set page header

Set page footer

Margin release

Set page header x lines from top

& page footer y lines from bottom

Set left margin (x) and

right margin (y)

Set horizontal tabulator

Set vertical tab

Clear horizontal tab

Clear all horizontal tabs

clear vertical tab

Clear all vertical tabs

Clear all tabs

Set standard tabs

245

Diskettes and file management AmigaBASIC Inside and Out

For an example of the use of these codes: If you wanted to tell your

printer to print bold type, you would type:

lprint chr$(27);"[lmM;"Hello!"

Of course, some printers can do more than others. When you use a

control character that the printer doesn't understand, then that control

character is simply ignored.

You could create your own printer driver with your own control codes.

About But converting control codes involves a lot of programming. There is a
interfaces solution, however. You can filter out characters directly through the

interface connected to your printer.

We haven't said anything about interfaces yet. Your Amiga has "ports"

through which data is transferred to and from peripheral devices. The

device name for the parallel interface is PAR:. The device name for the

serial interface is called SER:.

Most printers are connected to the Amiga's parallel interface, but they

PAR : could also be attached to the serial interface. A parallel interface has

many more data lines, because the bits that comprise characters are

transferred all at once (in parallel). A serial interface has only one data

line, and the bits are transferred one at a time (in serial). This is the

major difference between the two. We'll assume that you're using a

parallel interface with your printer.

To send control characters, open a file to the device PAR::

OPEN "PAR:" for output as 1

AmigaBASIC will refuse to open this file and will display File

already open. This is because data for the printer PRT : and

LPT1: is already being sent to the parallel interface. AmigaBASIC

thinks that if a printer is connected to the parallel interface, there can't

be a second device on the same interface—therefore PAR: is

unavailable.

Your only option is to reload the Workbench. We can do this with the

<CTRLxC=><Amiga key> combination (Amiga 1000 users:

<CTRLxleft Amiga keyxright Amiga key>). When you work with

AmigaBASIC you must decide at the beginning whether you want to

work with the filtered or the unfiltered printer connection. Once the

Workbench is loaded, insert your BASICDisk again and click the

AmigaBASIC icon. Then type in the command line above. Now you

can send data to the printer

PRINT #l,CHR$(27);CHR$(69);"Bold print!"fl

CLOSE If

If there isn't any bold print on the printer paper, then your printer

doesn't understand these particular control characters.

246

Abacus PERIPHERAL DEVICES

We've looked at RAM:, PRT :, LPT1:, PAR:, SER:, SCRN:, and

COM1 : kybd : so far. There's one device name that we haven't mentioned yet:

C0M1: is used to activate an RS-232 standard on a serial interface.

Since you probably won't use device, we put information about it in

Appendix B (look under the OPEN command).

We're not quite finished. There's another peripheral device that we

Joysticks haven't mentioned: joysticks. A joystick can move in four directions,
and has one or more tire buttons. They are better suited for video games

than for business programs. You're likely to find joysticks on a game

machine or a low-end home computer, but you can also use them on

the Amiga. You can use joysticks with AmigaBASIC—if you have a

joystick, get it out so we can experiment.

The right edge or back of the Amiga has two connectors named JOY1

and JOY2. The mouse is already plugged into the JOY1. Connect the

joystick to the JOY2 connector (we still need the mouse to work with

the Amiga).

If you move the joystick or hit the fire button, nothing happens.

AmigaBASIC doesn't "see" the new input device. We can change that

by entering the following program:

OPEN "ExtrasrBasicDenos/Ball" FOR INPUT AS 11

OBJECT.SHAPE 1,INPUT$(LOF(l),1)1

CLOSE 11

x=320 : y=1001

OBJECT.ON 15

WHILE 11

OBJECT.X l,xl

OBJECT.Y l,yl

x=x+STICK(2)l

y=y+STICK(3)l

WEND!

Save the program to disk and then try it out.

Let's use the joystick to move a graphic object around the screen. To

Using the this end, load Ball from the BasicDemos directory of the Extras
joystick diskette. It's alright to use your own sprite from the video program.

Now for a brief explanation of the joystick program. The variables x

and y contain the screen position of the graphic object. They are set at

the beginning of the program so that the object is in approximately the

middle of the screen. We use OBJECT. ON to make the object visible.

The infinite WHILE...WEND loop is used to move the object You'll see

S TICK a new command, STICK (x), that is used to read information from the

joystick. How does it work?

The Amiga can have two joysticks connected to it—one can be attached

to the first connector (JOY1), the other to the second connector (JOY2).

247

Diskettes and file management AmigaBASIC Inside and Out

The fire

button

STRI6

Each joystick can be moved in an X-direction and a Y-direction. The

number in parentheses following STICK determines which direction is

being monitored:

STICK (0) checks the X-movement ofjoystick one

STICK (1) checks the Y-movement ofjoystick one

STICK (2) checks the X-direction ofjoystick two

STICK (3) checks the Y-direction ofjoystick two

STICK (x) is a BASIC function which can take on three values

Value

0

1

-1

Meaning

no movement in the direction checked

movement up or to the right

movement down or to the left

If we move joystick up two, STICK (3) returns a one. The joystick

program adds die function values to the X- and Y-variables so that they

change when the joystick is moved. OBJECT. X and OBJECT. Y are

used to construct the object at its new screen position. Moving in the

X- and Y-direction at the same time produces diagonal movement You

should remember how this works from working with the OBJECT

commands before.

Experiment with this demonstration program to discover how joystick

movement affects the movement of the graphics object

Now let's play with the fire button. We'll expand the program by

adding a line inside the WHILE...WEND loop:

IF STRIG(3) *-l THEN

Now the Amiga beeps when you press the fire button. The STRIG (x)

command determines if the fire button was pressed. The command is an

abbreviation for Stick Trigger. You need to instruct STRIG (x)

what to monitor. STRIG (1) returns -1 when the fire button of JOY1

is pressed, while STRIG (3) returns a -1 when the fire button of

joystick two is pressed.

That still leaves STRIG (0) and STRIG (2) available. The way they

work is similar to the way MOUSE (0) works. They return a -1 when

the fire button was hit since the last check. In this way, you can check

if the button was hit while the program was busy with other tasks.

At this stage of your BASIC education, you're probably confident

enough to write your own video game. First one piece of advice: Feel

free to experiment with JOY1. But be careful—if even one joystick

command is issued to connection one, AmigaBASIC will expect a

joystick, and won't recognize the mouse any more. The mouse cursor

will lock in its position and can only be moved by holding down one of

the <Amiga> keys and then using the cursor keys.

248

Abacus peripheral devices

We'll show you how hard it is to work without a mouse. Save your

work and then type:

? stick (0)

Can't use the mouse, can you? The only way to solve this problem is

to type the NEW command—and sometimes even NEW doesn't work. If

not, all you can do is reload the Workbench Sometimes it makes you

wonder about this version of Microsoft BASIC...

249

Diskettes and file management AmigaBASIC Inside and Out

3.6
Getting it down on paper:

a print routine for the statistics program

Now you can use your new knowledge about printer commands to
expand the statistics program. Let's write a routine that will print out
the statistics file so you have a paper copy of collated data (for example,
your stock prices).

First load your statistics program. You won't need to make many
changes to it. We'll take care of the printouts by adding another menu
item. Accordingly, you'll need to change Setup: a little:

MENU 1,0,1,"Data "fl

MENU 1,1,1,"Load Mfl

MENU 1,2,1,"Save "fl

MENU 1,3,1,"Print wfl

MENU 1,4,1, "Delete11!

MENU 1,5,1,"Quit "f

You also need to make a few changes in the MenuCont rol: routine:

MenuControl:fl

Men=MENU(0) : MenuPoint=MENU(l)fl

IF Men=l THEN^I

IF MenuPoint=l THEN GOSUB LoadDatafl

IF MenuPoint=2 THEN GOSUB SaveDatafl

IF MenuPoint»3 THEN GOSUB PrintDatafl

IF MenuPoint=4 THEN GOSUB ClearDatafl

IF MenuPoint=5 THEN Quitfl

Now we need the new print routine. Insert it under the EnterName:
section of the program.

PrintData:5I

MENU 1,0,0 : MENU 2,0,05

MENU OFFfl

OPEN "PRT:" FOR OUTPUT AS 11

PRINT #l,"File:";Mtname$;CHR$(10)fl

PRINT #1,"Number";TAB(10)/"Description";TAB(45);

"Value"fl

FOR x=4 TO TopLine+45

PRINT #1, Number$(x); TAB (10); Desc$ (x) ; TAB (45);

Value$ (x) ^

NEXT xfl

CLOSE 1^[

MENU 1,0,1 : MENU 2,0,lfl

MENU

RETURN^

250

Abacus a print routine

This program is fairly simple to understand. First we suppress event

trapping, open a printer file, print the name of the file that was loaded

(Altname$ contains the name of the last file that was used), print the

title line, and then print the individual data lines. Then we close the

printer file, reactivate the menu, and return to the line where execution

was interrupted when PRINT was chosen.

You can have the data printed in several type styles if your printer

supports them.

When we expand and improve programs, it's easy to see the advantages

of AmigaBASIC—its modular construction makes it easy to add new

features to a program.

You need a hardcopy utility program to print the pie charts and bar

Hardcopy graphs on paper. We can't write one here, since graphic programming
varies widely from one printer to another, and so there's no solution

that works for all printers. Besides that, AmigaBASIC is simply too

slow for the calculations needed for printing out graphics. A normal

BASIC print routine would take about 40 minutes.

However, you should be able to make a hardcopy with the

GraphicDump utility that is being shipped with the latest versions of

the Workbench diskette. Consult the Amiga manual for instructions.

The next chapter discusses some possibilities for preserving your works

of art for all posterity. With a couple tricks, we'll get to graphic

hardcopies.

251

Loading and saving

raphics

Abacus Loading and saving graphics

A A picture's worth a thousand bytes:

^ Loading and saving graphics

You may have noticed that something vital was missing from our

drawing program: there's no way to save the graphics! It's no fun

devoting all that time to designing a graphic that's going to disappear
when you turn the computer off. We're now going to show you how to
save graphics to disk and call them back later.

255

Loading and saving graphics AmigaBASIC Inside and Out

4.1
Give and take:

the GET and PUT commands

Let's begin by introducing two new BASIC commands: GET and PUT.

The best explanation would be a demonstration program:

DIM Array%<563)5

5

CIRCLE (50,20), 405

CIRCLE (35,12),55

CIRCLE (65,12),55

CIRCLE (50,20),85

CIRCLE (50,18),30,,3.5,5.85

PAINT (50,20),3,15

GET (0,0)-(99,39),Array%5

5

CLS5

FOR x«=0 TO 55

FOR y=O TO 45

PUT (x*100,y*40), Array%5

NEXT y5

NEXT x5

An army of little faces is displayed on the screen, drawn with the

CIRCLE commands. But the two new commands are the really

important part of this demonstration program.

The GET command lets you save part of a graphic in a data array. This

GET example uses the data array Array%. The PUT command positions the
saved graphic segment anywhere on the screen. GET simply reads the

bits from the different bit patterns, puts these together into bytes and

stores the bytes in the array provided. PUT copies the bytes from the

given array into the bitplanes.

The GET command syntax is divided into coordinates reaching from the

upper left corner of the area selected to the lower right corner. The

screen area must be rectangular. After the coordinates goes the name of

the data array into which the data should be placed:

GET (xstart,ystart) - {xend,yend), array

Before you can use GET, you must first dimension a data array. You

can compute how many elements are needed for a given screen area with

a simple formula. We'll give this same formula to you in a moment.

256

Abacus THE GET AND PUT COMMANDS

PUT

Memory and

graphic data

Computing

memory for

graphics

The saved graphic can be displayed anywhere on the screen by using the

PUT command, followed by the upper left corner coordinates and the

name of the array:

PUT (xtarget,ytarget), data array

Here's the formula to compute the memory requirements of a graphic

area:

bitplanes * height * 2 * INT((width+16) /16) + 6

The values for width and height are given in pixels. The last part of the

formula calculates the number of bytes needed for a graphic segment of

the given size. This number must be multiplied by the number of

bitplanes, since a color point is made up of several bits, and there are

different bitplanes. Last, we add 6 bytes which contain other control

information. The result is the memory requirement in bytes. This

number is still not identical to the number of array elements, since an

integer array such as our Array% uses two bytes per array element.

You'll remember that an integer can be a value between -32768 and

+32767. The Amiga uses 16 bits (2 bytes) for storage.

How does the computation work for our example? The height of the

section is 40 pixels, the width 100 pixels. We'll compute from there:

(INT (100 + 16) /16)=INT (116/16) =7.Multiply 7*2=14. A

screen line 100 pixels wide requires 14 bytes for storage. 14*40 (the

height) equals S60. So, our little graphic requires 560 bytes of storage

space.

Since the Workbench screen works with a standard of 2 bitplanes, we

must double the number 560 to arrive at 1120. Add the 6 bytes for

control information, and our graphic requires a total of 1126 bytes

storage area.

When we dimension our array Array% for 1126 bytes, we must

dimension the array to 1126/2, or 563 elements.

As you can see, graphics require a large amount of memory, much more

than our statistical program needed for storing files.

If you're wondering where the 6 extra bytes go, you'll find them in the

first three elements of Array%:

? Array%(0); Array%(l); Array%(2)

The first element of the array contains the width of the graphic object,

the second element contains the height, and the third element contains

the number of bitplanes. You shouldn't change the order of this data,

since AmigaBASIC reads the internal graphic data in sequence.

257

Loading and saving graphics AmigaBASIC Inside and Out

PUT and

logical

operators

PRESET

PSET

You can place a third parameter in the PUT command, following the

array names: a logical comparison between the graphic from the data

array and the screen background. Normally, AmigaBASIC compares the

graphic and background with XOR. If no pixel is set in the background,

a pixel in the graphic appears as normal. If a background pixel is

already set, it will be inverted. Try this in direct mode and see for

yourself:

CLSI

LINE (100,120)-(199,139),l,bfl

PUT (100,100),Array%H

This inverts part of the face in which the selected block is located. An

interesting effect occurs when you use the PUT command again:

put (100,100),Array%3I

Amazing, isn't it? The face is erased completely. The XOR operator will

remove a graphic from the same area of the screen through a second

PUT command without disturbing the background. This trick can be

used for animation effects as well.

Let's try something else:

CLS

PUT (100,100),Array%,preset

The PRESET comparison inverts the graphic parameters and displays

reverse-video colors. The four standard colors of the Workbench are

reversed from their normal state: blue is orange; white is black; black is

white; and orange is blue.

You see the same effect when you activate an icon in the Workbench.

The text label is also displayed in reverse video.

COLOR 0,lfl

CLSfl

PUT (100,100),Array%,psetfl

The PSET comparison displays the graphic on the screen as it was

saved, without affecting the background.

CLSfl

LINE (100,120)-(199,139),l,bffl

PUT (100,100), Array%,andfl

258

Abacus THE GET AND PUT COMMANDS

Saving

graphic

data: One

method

MKI$

This example will combine the points with the background AND

relational operator. Now wherever there is already a set point, a point of

the graphic appears.

What's true for AND also applies to OR. Run the program again, and

type in the following in direct mode:

CLS5

LINE (100,120)-(199,139), l,bf5

PUT (100,100),Array%,or5

The OR operator copies the graphic in the screen without inverting the

foreground points. Now we've put a funny nose on our little faces.

Now we know all the relational operators between graphic and

background. We can use these to produce special effects.

You know how you can copy a graphic area and put it anywhere on the

screen. However, we haven't covered all the bases—we still need a

method of storing graphic data to diskette. Here's an idea: Save the

elements of the array to diskette. Try this demonstration program out:

DIM Array% (563)5

5

CIRCLE (50,20),405

CIRCLE (35,12),55

CIRCLE (65,12),55

CIRCLE (50,20),85

CIRLCE (50,18),30,,3.5,5.85

PAINT (50,20),3,15

GET (0,0)-(99,39),Array%5

5

OPEN "Face" FOR OUTPUT AS 15

FOR x=0 TO 5635

PRINT#1, MKI$ (Array% (x)); 5

NEXT x5

CLOSE 15

Save this version under a distinctive name.

One element you may not recognize is the MKI$ function. You'll be

using this function quite frequently. It is a big help in saving numbers

to diskette. The essential ruling is that when a number like -32768 is

saved to diskette in this form, it takes up 7 bytes: one byte for the

minus sign, five bytes for the digits, and at least 1 byte as a divider for

the next number. You also know that the number -32768 can be

represented as a 16-bit number. That is 2 times 8 bits, or 2 bytes. We

could use just a third of the memory—you could reduce reading and

writing times and save a lot of diskette space.

259

Loading and saving graphics AmigaBASIC Inside and Out

You can use the MKI$ function (MaKe Integer String) to convert a 16-

bit integer into 2 bytes. It creates a two-character-long string which you
can save to diskette. Note: the CHR$ function performs a similar

service on 8-bit numbers, allowing you to create a number up to 255
into one character (CHR$ (255)).

When you want to read back that value, you need another function to
convert the two bytes from MKI $ (or the single byte from CHR$) into

a number again. The reverse of CHR$ is ASC, which returns the ASCII

code number of a character. Try this:

a$=chr$(10): ? asc(a$)fl

If a$ is longer than one character, ASC will only look for the first

character of the string. The ASC function is also helpful when you need

a quick-n-dirty way of finding out the ASCII code of a character:

This returns 72, the ASCII code for an uppercase H.

The opposite of MKI$ is called CVI (ConVert to Integer). CVI

CVI converts a string to an integer:

a$=mki$ (32000) : ? cvi(a$)fl

The specified string must be at least two characters long. Longer strings

will only have their first two characters converted, and the rest of the

string is ignored.

Let's compare two commands that seem to have similar functions. You

learned about the CINT function in Chapter 1. CINT rounds off a

normal number, making the number an integer.

?CINT (3.9) fl

The VAL command converts a written number in a string to an actual

number

7VAL ("32768")5

CVI combines two bytes containing a string into a 16-bit number and

returns the result:

a$=chr$(0)+chr$(254): ? cvi(a$)5

The two bytes are produced by the two CHR$ commands. The result is

254, since the most significant 8 bits all have the value 0.

260

Abacus the GET and PUT commands

This may seem a little complicated, but stick with it as we go deeper
into BASIC programming. And all this numerical artistry is an integral

part of BASIC. When you understand the subtle differences between

these commands and functions, you can proceed to load your graphic

data from diskette.

Now we'll save you some typing time. Load in the original

demonstration program and make the changes printed below:

DIM Array%(563)fl

OPEN "Face" FOR INPUT AS lfl

FOR x=0 TO 563fl

Array% (x) =CVI (INPUT$ (2,1)) fl

NEXT xfl

CLOSE 15

CLSfl

FOR x=0 TO 5fl

FOR y=O TO 4fl

PUT (x*100,y*40), Array%fl

NEXT y<II

NEXT xU

When you double-checked this program, you may have noticed that the
little men are displayed on the screen without benefit of the CIRCLE

command. We've loaded the array Array% from diskette.

CVI has already been described, but maybe you noticed a few branches
INPUT$ from INPUT$. The INPUT$ command has been used often in this

book, but without any explanation. You use INPUT $ when you want

to read a specific number of characters from a disk file. INPUT$ (2,1)

produces a string that consists of the next two characters in the file

numbered 1. The syntax is:

INPUT$ (no. chars, filenumber)

If you've already determined how many characters you want to read,
INPUT $ should have no commas in it. CVI requires two bytes, so we

should read two items of data.

You must make sure that you read no more characters from the file than

are available. Otherwise AmigaBASIC displays an Input past end

error message—you tried to read in more data than was available. There

are two ways of avoiding this problem.

261

Loading and saving graphics AmigaBASIC Inside and Out

LOF

EOF

More about

INPUT$

The first solution is the LOF (x) function, which stands for Length of

File. The number in parentheses indicates the file number. As long as a

file is open, LOF gives the file length in bytes. You can read as many

characters as LOF states. To read a graphic object, the syntax would

look like this:

INPUT$(LOF(1),1)

All the characters from file number 1 will be packed into one string.

When you read single characters you will need a loop:

FOR x=l TO LOF(l)

The second item is the EOF (x) function. You already know about this

one. It returns a value of -1 when the end of file is reached. Otherwise it

returns a value of 0. You can also use a loop for this: while

EOF (1) =0, or (more elegantly, and in plainer English) WHILE NOT

EOF(l).

You shouldn't have any problems because we already know how many

characters are written to the file.

INPUT $ has an interesting side-effect: If you don't provide a file

number, INPUT$ reads the desired characters from the keyboard. Try

this:

? INPUT$ (10)fl

After you press <RETURN> the BASIC cursor reappears on the screen.

Type in a couple of characters. The characters are not displayed, but the

Amiga reserves them. After the tenth character has been typed, the

entire string is displayed on the screen.

INPUT$ is also handy for data transfer between other peripherals, and

for telecommunications. It is one of the most important AmigaBASIC

utility commands for reading data.

You've now learned a method of storing graphic data on diskette. This

method isn't a bad one at all for screen blocks. However, when we try

this method on entire screens we run into limitations. It would require

300*200 pixels and 5 bitplanes to store a graphic from our drawing

program, giving us an array of 21,000 elements. AmigaBASIC can't

handle an array this large—you'd need to read the screen section by

section with GET, then save it.

But wait—there's a better way to store the graphic on diskette.

262

Abacus Interchange File Format

4.2
Data in the fast lane:

Interchange File Format (IFF)

IFF and

what it

means

What else

can IFF do?

As soon as you buy a few commercial graphic programs like
DeluxeVideo™ or Aegis Animator™, one thing you'll notice
immediately is they produce files which are compatible with each other.
For example, a drawing made on Graphicraft™ can be read by
DeluxePaint™, and this can be used as the background or foreground in

an animation program. And so on.

This is no accident. In 1985, the software company Electronic Arts

invented a concept of setting up data in a standard, universal format, so

that any program could read and work with the files. This brainchild is
named IFF (Interchange File Format). Many other software firms have
taken the cue from the designers of IFF, and enjoy the format's
advantages. There is a good reason for this: It improves the image of
companies who sell software using this format. Plus, the usefulness of
a program increases with file compatibility: $100 for a paint program

that can only draw is a steep price. But $100 for a program which lets
you draw, create video titles, animation and other graphics, and lets you

move them to other graphic programs, is a better deal all around.

The IFF standard makes it possible to switch applications without

worrying about compatibility. Without IFF, the old files would be
useless anywhere else. The IFF data is recognized by virtually any
program, and whatever isn't recognized is simply ignored.

Most other computer owners have not been so lucky. Many paint
programs for popular home computers cannot interchange files, so a file
created with Program A cannot be used by Program B. The Commodore
64 is a victim of this sort of incompatibility.

IFF isn't just for graphics. This format can also save musical note
code, text, fonts, etc., although we want to concentrate on graphic data
here. Because you write graphic programs with IFF compatibility on
the Amiga, it's possible to load the graphics into commercial paint
programs from AmigaBASIC. It is also possible to read professionally

produced graphics into the AmigaBASIC paint program you wrote. For
example, you could load one of your "homegrown" graphics into a
commercial program to take advantage of the hardcopy and cut and paste
features. Also, you can exchange graphics and data files with anybody
else who owns an IFF-compatible paint program.

Before we jump into programming, let's take a look at the

fundamentals and functions of IFF.

263

Loading and saving graphics AmigaBASIC Inside and Out

Chunks and

forms

Bitmap

Identifiers

Figure 14:

IFF file

format

IFF combines all data that has the same function into one group under
IFF. This group of data is referred to as a Chunk.

An IFF file is comprised of several chunks. All chunks of similar types

are in a common form. An Amiga program tests the type of every
chunk by checking the identifier in each form, which contains
information about file type and length.

An IFF graphic file contains a minimum of three chunks. The first

chunk contains control data, like the width and height of the graphic and

the number of bitplanes. A second chunk contains the RGB values for
the colors. The third chunk contains the graphic itself—or more

accurately, the bits from which the graphic is constructed are stored

here. A collection of bits that make up a graphic is called a bitmap.

This name works well for bitplanes, since they make up the bitmap.

The bitmap can use more chunks: perhaps the data from a palette

animation (you've probably seen one of these cyclic color changes that
create the illusion of movement), or video hardware operating modes, or

the coordinates at which a graphic segment is displayed on the screen.

A chunk identifier and form identifier each consist of four bytes. The

four bytes make a code word that the IFF read routine can recognize,

followed by four more bytes that reserve the amount of data in the

graphic. This figure shows the design of a typical IFF graphic file:

FORM 40156

ILBM

BMHD

320, 200, 3,

20

o, 10, 11/ 320, 320

CMAP

32,

BODY

124,

48,

142

160,

, 42,

240,

213,

240,

96

0,

40000

140 r 0,

o, 0, 240, 128, ...

264

Abacus Interchange File Format

The first four characters in the fi'e get the word FORM. The next four

FORM and bytes contain the length of the form (40156 bytes) as a 32-bit number.
ILBM The reader program now knows that the beginning of a form has been

read, and totals 40156 bytes. Following this is a marker that indicates

the filetype. The example calls this ILBM, an abbreviation for

Interleaved BitMap—the bitmap is combined with other data in one

form. The reader program knows that the remaining data of this form

are in chunks, and all of them have something to do with the graphic.

Following this information is the first chunk: Four bytes containing

BMHD and the marker BMHD (BitMap HeaDer, which contains the control data).
CMAP The next four bytes give the number 20: The BMHD chunk consists of

20 bytes. The reader program can now branch to the subroutine to read

and interpret the control data. Then the four bytes from CMAP are read.

A Color MAP is exactly 96 bytes long. This chunk contains the data

for the RGB setting of colors. Red, Green and Blue each use up one

byte. Multiplied by 32 colors this gives us a total here of 96 bytes.

Therefore, the colors can be read from a standing subroutine.

96 bytes later, we read from the BODY file, which is 40,000 bytes

BODY long. The BODY chunk is the bitmap of the graphic. The data is
arranged here according to IFF standards: The lines of different bitplanes

are sequentially stacked in the file (the first line of the first bitplane, the

the first line of the second bitplane, etc). Following these rows are the

second line of the first bitplane, second line of the second bitplane, and

so on.

When the reader program has read the last byte of the last line of the
last bitplane, then a total of 40156 bytes have been read. The IFF file is

completed.

Theoretically the BMHD comes first, followed by BODY and CMAP.

BMHD must be the first chunk found in the file, since its data is
important to the size of the bitmap in the BODY chunk. First the

program gets the control data, then reads the colors. There is no preset

order for the rest of the chunks, though.

NOTE: A chunk must consist of an even number of bvtes. If the CMAP chunk

only contains color values for 7 color registers (21 bytes), a fillbyte

must "pad" the odd number from 21 to 22. This fillbyte is usually a 0.
The fillbyte will not be involved with the length information of the
chunk; it is just there as padding. Any odd numbers must be

incremented by 1 to the next even number. Figure 15 depicts the

fillbyte1 s function:

265

Loading and saving graphics AmigaBASIC Inside and Out

Figure 15:

All odd-

numbered

chunks are

padded with

fillbytes

CMAP

32, 48,

0

160, 240, 240,

21

240, 0, 0, 0, 240, 128,..

266

Abacus IW reader routine

4.3
American ingenuity at work:

IFF reader routine

Now let's put our theory into practice so that we can read IFF data—

one of the recent masterwoiks of good ol' American programming.

Before we do, one remark: Recently Commodore released a version of
the Extras diskette which has three additional programs in the
BASlCDemos drawer. These programs let you read and save IFF

graphics. These routines are described under the Libraries category (see

Appendix D). They run somewhat faster than the routines you'll find
in this chapter. However, the programs on the Extras diskette are

considerably harder to understand and use. For this reason, included are
your own AmigaBASIC IFF programs, which can be used without
accessing the libraries. But first we need to discuss all the

AmigaBASIC commands.

The following programs won't teach you everything you need to know
about programming disk input and output in AmigaBASIC. The goal
here is to learn IFF file techniques. You'll find everything you need to
know about the AmigaBASIC programs LoadACBM, LoadlLBM-

SaveACBM and SavelLBM that you'll find in Appendix D.

INPUT "Filename";Nam$fl

OPEN Nam$ FOR INPUT AS 15

Form$=INPUT$(4,l)5

Length=CVL (INPUT$ (4,1)) fl

IF INPUT$(4,1)<>"ILBM" THENfl

PRINT "ERROR IN DATA!"5

ENDfl

END IFfl

11

ReadData:1

IF EOF(l) THEN ENDfl

Chunk$=INPUT$(4,1)fl

Length=CVL(INPUT$(4,1))1

IF INT (Length/2)O (Length/2) THEN Length=Length+lfl

IF Chunk$="BMHD" THEN BMHeaderfl

IF Chunk$="CMAP" THEN ColorMapfl

IF Chunk$="BODY" THEN BodyMapfl

Duimry$=INPUT$ (Length, 1) 5

GOTO ReadDatafl

267

Loading and saving graphics AmigaBASIC Inside and Out

BMHeader: f

xd=CVI (INPUT$ (2,1)) fl

yd=CVI (INPUT$ (2,1)) fl

Dumrry$=INPUT$ (4,1) fl

BitPlane=ASC (INPUT$(1,1))5

Durany$=INPUT$ (11,1) fl

IF xd=320 THEN Typ=lfl

IF xd=640 THEN Typ=2fl

IF yd>200 THEN Typ=^ryp+2^I

SCREEN l,xd,yd,BitPlane,Typfl

WINDOW 2,Nam$,,0,H

Addr«PEEKL (WINDOW (8) +4) +85

FOR x=0 TO BitPlane-l^I

PlaneAddr (x) »PEEKL (Addr+4*x) f

NEXT xf

Dumray$!=sINPUT$ (Length-20f 1) ^1

GOTO ReadDatafl

ColorMap:^

FOR x=l TO Length/35

r«(ASC(INPUT$(lfl)) AND 240)/16fl

g=(ASC(INPUT$(l,l)) AND 240)/16fl

b=(ASC(INPUT$(lfl)) AND 240)/165

PALETTE (x-l),r/16,g/16,b/16fl

NEXT x5

IF INT (Length/3)O (Length/3) THEN Dummy$=INPUT$ (1

GOTO ReadDatafl

5

BodyMapril

ByteLine=xd/85
FOR yl=0 TO yd-15

FOR b=0 TO BitPlane-15

FOR xl=0 TO ByteLine/4-15
POKEL

PlaneAddr (b) +4*xl+ByteLine*yl, CVL (INPUT$ (4,1)) 5

NEXT xl5

NEXT b5

NEXT yl5

GOTO ReadData 5

This program can read IFF graphics in AmigaBASIC. Try this out in
your spare time. Save the program as you type it in, since there are a

few critical places where a typing error could cause a system crash. If it
hasn't been previously saved, the entire program will be lost

Start the program, input the name of the file from your graphic
Using the diskette, insert the appropriate diskette in the disk drive, and off we go.
program If you don't have a graphics diskette, just type in the following:

Extrasl.2:BasicDemos/Heart.ILBM.

268

Abacus IFF READER ROUTINE

The graphic

is loaded..

CVL

MKL$

Testing for

odd

numbered

chunks

Storing the

leftovers

The program determines the screen's resolution, reads the colors (note

that the pointer color is changed) and sets the graphic up line for line.

Notice what happens to the window borders: They will be overwritten

by the graphic data. When you first press the left mouse button, the

border will reappear. Also note that no pulldown menus can be accessed

while the top half of the graphic is being loaded. This is to prevent the

graphic data being loaded from overwriting the menu and its items—the

section on the graphic screen where the menus appear is skipped

Now you have a BASIC window in which an IFF graphic is

displayed. This gives you a thousand choices: You can put text over the

graphic, copy segments of the graphic with GET and PUT, move

graphic objects in front of the graphic, and more. But before you start

experimenting, more explanation of the program:

INPUT takes on the filename given for the file to be loaded. The first

INPUT $ (4,1) reads the FORM identifier, and takes the form length

into the variable length. We won't be working with this data any

longer.

The CVL command (ConVert Long) in the fourth line is not a typo. In

the same way that the CVI command converts 2 bytes into a 16-bit

number, CVL converts 4 bytes into a 32-bit number.

CVL's corresponding command for writing is called MKL$. We don't

know why it's necessary for the length of a form to be 32 bits, but in

any case, the IFF standard assigns file lengths of up to 4,294,967,295
bytes. In other words, up to 4 gigabytes can be filled with graphic data.

The next four bytes of the file should contain the identifier ILBM. If

this isn't the case, we aren't reading an ILBM file, and the program

terminates.

The variable Chunk$ reads the chunk identifier, and length reads the

chunk length.

The program line IF INT (Length/2) <> (Length/2) tests for

whether an even number exists there: length is divided by 2, and any

decimal value is removed. If both values are equal, then no decimal

point is added, and it is assumed that the value is divisible by 2. The

<> characters mean "not equal to". Odd numbers will be incremented by

1 to make the number even.

The program branches to the next program section, depending on the

contents of Chunk$. If the chunk is unrecognizable, the entire contents

are read into Dummy$. "Dummy" is a nickname for a placeholder.

Dummy$ contains the excess data, that is, the data which the program

cannot interpret or understand.

The loop ReadData: repeats until no more data exists in the file.

269

Loading and saving graphics AmigaBASIC Inside and Out

Memory

management

Intuition

The routine BMHD: reads the chunk of the same name. It usually has
20 bytes. The first two bytes contain 16-bit numbers for the width of
the graphic, and the next two bytes contain the height. We assign these
values to the variables xd and yd.

The next four bytes go into our Dummy$. In IFF standard, these stand
for the X- and Y-coordinates of the upper left corner of those graphics
that don't use the entire screen. Since we only want to work with full
screen graphics, these bytes don't interest us.

The next byte contains the number of bitplanes, and this value is
assigned to the variable BitPlane.

The next 11 bytes will hold the data used by the IFF format save
routine, and do not concern us at the moment.

xd can have a value of 320 or 640. yd can have a value of 200 or 400

(400 for interlace mode graphics). A value assigned for Typ is the
variable controlling the resolution.

Once the SCREEN is created, a window is constructed in which the
name of the file being read will be displayed.

Now comes the tricky part. Like any computer, the Amiga must
constantly monitor its memory. No bitmaps or data can be placed in

memory areas being used for the other programs (e.g., Workbench

routines or AmigaBASIC). The multitasking ability of the Amiga does
not allow for simple memory divisions. In other words, you can't say

"Here's where AmigaBASIC should go." The Amiga puts these
programs in different areas of memory.

Every memory cell can store 1 byte, and the Amiga's RAM consists of
about 262,000 or 524,000 memory cells that can be used for reading or
writing. In addition to read/write memory (RAM), the Amiga 500 and
2000 have 256K of established ROM (Read Only Memory), where the
Kickstart data resides. The Amiga 1000 has 256K of RAM into which
the contents of the Kickstart diskette are loaded. After loading, the
RAM is electronically moved, so that it behaves as if it were in ROM.

Each memory cell has a number assigned to it. This number is called an
address. The absolute first memory address in the Amiga has the
number 0, the second number 1, and so on.

The Amiga operating system has a program that checks which memory

range is allocated for a particular program. This memory management

program is called Intuition. And Intuition itself is a part of the

operating system. It knows, for example, that the addresses 0 through

40,000 are needed for the Workbench, addresses 40,001 to 72,000 are
needed for screen display, addresses 72001 to 160,000 are needed to store

AmigaBASIC, etc. (These numbers aren't real, they're just examples).

270

Abacus IFF READER ROUTINE

PEEK

POKE

PEEKW

POKEW

PEEKL

POKEL

Normally you wouldn't directly change the contents of memory
locations, since most changes could result in conflicts of interest.

Instead, AmigaBASIC gives you a series of commands to do this:
PEEK lets you view the contents of a memory location, and POKE lets

you write a value to a memory location. These commands are extremely

important for most computers, since they allowed the user to replace

routines for "missing" BASIC commands. For example, the
Commodore 64 has so many useful PEEKS and POKES that people
have written books on the subject. AmigaBASIC uses PEEKS and
POKES much less, since virtually every command is available in
AmigaBASIC. However, AmigaBASIC has no routines for saving or

loading graphics, so we have to use PEEK and POKE to create them.

Type the following line into the BASIC window:

? PEEK (30000) 5

This returns a number between 0 and 255. This is the value of the byte
stored at the memory address 30000. To put it another way: You get a

letter which contains an 8-bit number from the address 30000. The

resident of address 30000 has informed you which number he has.

POKE 30000, (value)5

This line writes a value to memory address 30000. Type a value which
can be read by PEEKing. Now you have sent a letter to the address

30000, which tells the resident of that address his new number.

If you want to write to 16 bits rather than 8 bits, then you use the
commands PEEKW and POKEW. The W stands for Word, the expression

for a 16-bit value. The PEEKW and POKEW commands work with two
bytes which reside next to one another in memory. The residents of

both memory addresses handle a total of 16 bits. Each contains 8 bits.
Our correspondent "resides" in the even-numbered memory address.

Type this:

POKEW 30001, (value)fl

The error message "Illegal function call" appears.

The entire game applies to 32-bit numbers as well. The commands here
are called PEEKL and POKEL (L=Longword). The address must also be
an even number. Four memory locations reside next to one another in

memory. This returns four addresses, each composed of 8 bits, for a

total of 32 bits.

This was the first battle. Now for the second, for which we use the

function WINDOW (8).

271

Loading and saving graphics AmigaBASIC Inside and Out

WINDOW(x)

Reading the
CMAP

chunk

Reading the

BODY

chunk

You should remember WINDOW (0). It returns the number of currently
active windows. But there are more WINDOW functions with different
capabilities. WINDOW (8) returns the address of a list (C programmers

and the computer industry call this structure), which Intuition

notes as data for the current windows. It's not as simple as it sounds:

The second four bytes of the list, indicated by WINDOW (8), contain

the address at which the other list begins. There are several 32-bit
values in this 8th bit of the list. These are the starting addresses of the

individual bitplanes. If you are not intimately acquainted with the

memory layout of the Amiga, you may not understand this

completely—you may not understand at all! However, you should

understand that we have put the addresses into the array

P laneAddr (x), where our individual bitplanes of the graphic

window lie in memory. More about this later.

Lastly, Dummy$ reads the extra bytes.

There is less involved in reading the CMAP chunk. Three bytes are read

for every color: One for R, one for G and one for B. We have already

mentioned that the IFF standard allows for this. The same applies to

resolution. The Amiga can understand 16 levels of R, G and B. IFF is

capable of giving 256 shades of color.

To utilize graphics from computers with more graphic ability than the

Amiga, the IFF developers thought up a neat trick: The topmost 4

bytes are used to store the color intensities from 0 to 15. This means

that between every color step, the Amiga has 15 numbers free to be

used for later refinements in color resolution. The percentages of red,

green and blue will still be in the correct proportions.

Reading the bytes, we isolate the top 4 bits with AND 240, and divide

the result by 16. Then we get the correct value for the PALETTE

command. Any fillbytes above and beyond that are taken by Dummy$.

The last program section reads the BODY chunk, or the bitmap. The

variable ByteLine calculates the number of bytes per screen line from

xd. The last section told you that the lines are stored in the sequence of

bitplane per screen line. We read that in the same way. Now we get to

see our PlaneAddr in action. We recognize the starting address of the

individual bitplanes, and put it in the proper place in memory line for

line. We then use the POKEL command since we need to get the fastest

result: Every execution of the loop reads 32 bits into memory.

The variable y1 counts up the lines of the graphic, b the bitplanes, and

xl the number of individual 32-bit numbers in the line. Once all the

bitmap data has been transferred to memory, the system returns to the

ReadData: routine.

If there are more chunks in the file, they will be read, even though our

program may not comprehend these other chunks.

272

Abacus IFF READER ROUTINE

Compressed

form

There is still a problem to be solved, which you may have run into in
the last chapter, especially if you own DeluxePaint. This package and
most other graphic programs have one disadvantage: The bitmap of the

BODY chunk is saved in compressedform. What's that?

Graphics are stored in more or less equally colored form. Quite often,
many areas of the screen are filled with die background color, which

means most other screen details cannot be seen. It doesn't make sense

to save the same value 2000 times to diskette. To save space on

diskette, programmers have developed a key system by which a set of
identical bytes can be combined. A graphic that takes up 40K in RAM

can be compressed this way so that it only takes up about 25K on
diskette. But compressed graphics can pose problems when you try to

load them in AmigaBASIC. A compensating routine would be

extremely difficult to write and extremely slow. So what does all this
mean? This: a graphic that was saved in DeluxePaint format is not read
directly into memory, the graphic will look nothing like the original.

Try it—if you have the time.

Graphics in low (320 x 200) resolution aren't so disastrous if you have

Graphicraft, for instance. Graphicraft doesn't compress when it saves.
You can load a compressed graphic into Graphicraft and save it Then

the graphic can be read from AmigaBASIC. However, Graphicraft
cannot read graphics in higher resolutions, such as 640 x 400. All the
current graphic programs that use high resolution save compressed

graphics, which can't be used in AmigaBASIC.

One other point: The IFF standard will allow any BASIC graphic to go

into any degree of resolution. More on this later.

273

Loading and saving graphics AmigaBASIC Inside and Out

4.4
Passing the buck:

loading and saving paint program graphics

Back to the big issue: We still have yet to load DeluxePaint graphics in

our paint program, or load our paint program graphics into Graphicraft,
etc.

After the groundwork we've laid in the last few sections, it shouldn't be

all that difficult to write a routine that loads and saves IFF files to and

from our paint program. Save the program from the last section, if you

haven't already, and then load the paint program.

We'll guide you step by step through the necessary stages. First type

the following lines into the Pro ject: section of the program:

IF MenChoice=4 THEN GOSUB ColorDone : GOSUB PatternDone :

GOSUB DrawLoadfl

IF MenChoice=5 THEN GOSUB ColorDone : GOSUB PatternDone :

GOSUB DrawSavefl

Now scroll through the listing to the PatternDone: section. Then

type in the following section:

DrawLoad:fl

MENU 2f0,0 : MENU 1,0,05

MENU OFF : MOUSE OFFfl

GOSUB EnterNamefl

WINDOW CLOSE 5$

WINDOW 2fl

IF Nam$=fltt THEN EndLoad fl

OPEN Nam$ FOR INPUT AS lfl

Form$=INPUT$(4,l)fl

Length=CVL(INPUT$(4,1))fl

IF INPUT$(4,1)O"ILBM" THEN BEEP : GOTO EndLoadfl

1

ReadData:1I

IF EOF(l) THEN EndLoadfl

Chunk$=INPUT$(4,l)fl

Length=CVL(INPUT$ (4,1)) fl

IF INT (Length/2)O(Length/2) THEN Length=Length+lH

IF Chunk$="BMHD" THEN BMHeaderfl

IF Chunk$="CMAP" THEN ColorMapfl

IF Chunk$="BODY" THEN BodyMapfl

Dummy$=INPUT$ (Length, 1) f

GOTO ReadDatafl

274

Abacus loading and saving paint program graphics

BMHeader: <ft

xd=CVI (INPUT$ (2, 1)) H

IF xd>320 THEN EndLoadH

yd=CVI (INPUT$ (2,1))H

IF yd>200 THEN EndLoadH

Dummy$=INPUT$ (4,1)H

BitPlane=ASC(INPUT$(1,1))fl

Dummy$=INPUT$(11,1)1

Addr=PEEKL (WINDOW (8) +4) +811

FOR x=0 TO BitPlane-lH

PlaneAddr (x) -PEEKL (Addr+4*x) H

NEXT x1I

GOTO ReadDataH

H

ColorMaprH

FOR x=0 TO (Length/3)-1H

r=(ASC(INPUT$(l,l)) AND 240)/16fl

g=(ASC(INPUT$(lfl)) AND 240)/16U

b=(ASC(INPUT$(lfl)) AND 240)/16H

PALETTE x,r/16,g/16,b/16U

Colors%(xf0)=r : Colors%(x,l)=g : Colors%(xf2)«M

NEXT x1I

IF INT (Length/3)O (Length/3) THEN Dumiry$=INPUT$ (1,1) 1

GOTO ReadDatafl

BodyMap:H

FOR yl=0 TO 199H

FOR b=0 TO BitPlane-lH

IF b<Colors THENH

FOR xl=0 TO 9f

POKEL

PlaneAddr (b)+4*xl+40*yl,CVL (INPUT$ (4f 1)) H

NEXT xlH

ELSEII

Dummy$=INPUT$ (40f 1) 5

END IFfl

NEXT M

NEXT ylH

GOTO ReadData H

f

EndLoad:fl

CLOSE 15

MENU ON : MOUSE OOT

MENU lf0fl : MENU 2,0,15

RETURNS!

DrawSaverU

MENU 2,0,0 : MENU 1,0,OH

MENU OFF : MOUSE OFFfl

GOSUB EnterNameU

WINDOW CLOSE 5fl

WINDOW 211

IF Nam$="" THEN EndSaveH

275

Loading and saving graphics AmigaBASIC Inside and Out

OPEN Nam$ FOR OUTPUT AS 1 LEN=FRE(0)-5005

PRINT #1, "FORM"; 5

PRINT #l,MKL$(156+8000*Colors);5
PRINT #1,"ILBM";5

PRINT #l,"BMHD";MKL$(20);5
PRINT #1,MKI$ (320);MKI$(200) ;5

PRINT #l,MKL$(0);5

PRINT #1,CHR$(Colors); 5

PRINT #l,CHR$(0);MKI$(0);MKI$(0);5

PRINT #l,CHR$(10);CHR$(ll);5

PRINT #l,MKI$(320);MKI$(200);5
5

PRINT #1,"CMAP";MKL$(96); 5

FOR x=0 TO 315

PRINT #l,CHR$(Colors%(x,0)*16);5
PRINT #l,CHR$(Colors%(x,l)*16);5

PRINT #l,CHR$(Colors%(x,2)*16);5
NEXT x5

5

PRINT #1,"BODY";MKL$(8000*Colors);5

Addr=PEEKL (WINDOW (8) +4) +85

FOR x=0 TO Colors-15

PlaneAddr (x) -PEEKL (Addr+4*x) 5

NEXT x5

FOR yl»0 TO 1995

FOR b=0 TO Colors-15

FOR xl=0 TO 9 5

PRINT#lf MKL$ (PEEKL (PlaneAddr (b) +4*xl+40*yl)); 5

NEXT xlfl

NEXT b5

PAddr=PlaneAddr (0) +40*yl5

POKE PAddrfPEEK(PAddr) AND 635

POKE PAddr+39,PEEK(PAddr+39) AND 2525

NEXT yl5

5

, PRINT #1, "CAMG";MKL$(4);5

PRINT #1,MKL$(16384);5

CLOSE 15

5

EndSave:5

MENU ON : MOUSE ON5

MENU 1,0,1 : MENU 2,0,15

RETURN5

You'll notice that this routine is only slightly different from the regular

How the load routine in the paint program. The BMHeader: routine, which
routine reads the BMHD chunk, tests the size of the graphic: If the graphic
works being read is wider than 320 pixels or taller than 200 pixels, the load

routine jumps out, since the graphic won't fit on the screen.

The RGB values read from ColorMap: are put into the array

Colors%, so that the paint program can use color normally.

The loops in the BodyMap: section set the values for a 320 x 200

graphic; the program will not read other formats.

276

Abacus LOADING AND SAVING PAINT PROGRAM GRAPHICS

Adapting

bitplanes

File buffers

FRE(0)

FRE(-l)

About

system

memory

Next we must adapt the number of bitplanes. When the graphic being

read has a screen of numerous bitplanes used in the paint program, the

data will be packed and taken up by Dummy$. The program only loads

in the number of bitplanes determined in the Colors variables.

Consequently, different colors can be specified at any time.

There is more new material in the DrawSave subroutine, which writes

the graphic to diskette in IFF format. It starts off just like

DrawLoad:, the pulldown menus are disabled and a filename read, then

the program opens a file for writing. But what does the

LEN=FRE (0) -500 mean? As you know, AmigaBASIC sets up a

buffer for every file where the bytes are first collected, before they are

written to diskette. This saves a lot of time, since saving to diskette is

the slowest computer operation. Normally the buffer is 128 bytes long.

The more memory in the buffer, the faster the data transfer.

Accordingly, the desired buffer length is specified in the OPEN

command. This occurs by appending the LEN= (buffer size) to

the OPEN command. For example:

OPEN Nam$ FOR OUTPUT AS 1 LEN-1000

This assigns file 1 a buffer of 1000 bytes.

The disadvantage of this method is that you don't have unlimited

memory—the memory range in AmigaBASIC in which the variables,

file buffer and arrays are located is only 25K in a S12K Amiga. The

starting message in AmigaBASIC tells the Amiga how many free bytes

are available.

AmigaBASIC also has a function that determines the number of bytes

free: FRE (x). Input the following into the BASIC window:

The number returned tells you the number of free bytes in BASIC

memory. The loaded paint program and S12K RAM will return a

number of about 9000. If there is a 0 in parentheses after the FRE, the

bytes free in BASIC memory are given. Replacing the 0 with -1 returns

the entire system memory:

The number returned is larger than the result of FRE (0). We can only

make a guess at its actual size—it all depends on what is happening in

the background, how many windows are open, and what programs are

loaded in memory at the time. You may have guessed that memory can

be found for the graphic bitmap in system memory. If you want more

memory in AmigaBASIC, we'll discuss this later.

277

Loading and saving graphics AmigaBASIC Inside and Out

How the

save routine

works

Computing

bitplane

addresses

Now the expression LEN=FRE (0) -500 makes sense. The rest of

BASIC memory is used as buffer memory, with 500 bytes reserved for

variables. If you overfill BASIC memory by even one byte,

AmigaBASIC displays an Out of memory error message.

We save at the highest speed possible in our save routine. Then the

buffer memory is freed up after the file is closed. The file opens, and we

send the data to its destination.

First we write the FORM type indicator into the file, followed by the

form length. This depends on the number of bitplanes. Every bitplane

uses 8000 bytes. 156 bytes take the color and control data. The total

memory requirement is 156+8000 x (no. of bitplanes).

The ILBM (interleaved bitmap) identifier follows.

Then the BMHD chunk is sent. It is usually 20 bytes long. The BMHD

chunk is followed by the number 320 (width) and the number 200

(height), each as 16-bit numbers. Then four nullbytes follow (the

starting coordinates for the graphic). The next byte contains the number

of bitplanes, followed by another nullbyte.

The following two bytes identify whether the graphic data in the BODY

chunk is stored in compressed form or not. The value 0 means no

compression. (Programs which have a compression compensation

routine use this information). Then two more nullbytes follow. These

aren't used in current versions of IFF; they are reserved for later

developments. Next come the two values 10 and 11. These values

indicate the degree of a pixel's width in proportion to its height, so that

the IFF graphic can be displayed on other computers. The screen

proportion can be radically different from computer to computer. The

Amiga uses 10:11—MKI$(10) ;MKI$(11).

Next come the numbers 320 and 200. These determine the selected

resolution, rather than the graphic size. Another 20 bytes and the

BMHD chunk is full.

Now we come to the colors. We save 32 color values, which is the

maximum number of colors we can display on a screen. We write a

total of 96 (32 x 3) RGB values into the CMAP chunk from the

Colors % array. You figure out the values as follows: IFF developers

give the files a finer color resolution than the Amiga can display.

Therefore, every color value must be multiplied by 16.

Now comes the main routine, the BODY chunk: Its length depends on

the number of bitplanes (each bitplane uses 8000 bytes). We compute

the addresses of the bitplanes in both DrawLoad: and DrawSave:.

It doesn't matter which routine is used first, but in any case we need the

current data for the array PlaneAddr.

278

Abacus LOADING AND SAVING PAINT PROGRAM GRAPHICS

The loop itself first reads from memory with PBEKL and then writes

the data to the file. To show what is being saved, we added the next

three program lines.

The variable PlaneAddr computes the first byte in the current

graphic line from the first bitplane for every execution. This byte is

POKEd into the address after the most significant bits are cleared (with

AND 63). Then the last byte of the graphic line is read into the least

significant bits, after they have been cleared with AND 252. The

result: The window borders disappear from top to bottom, and the line

height is saved. That's how you know when the program is finished

saving. The border then reappears when the menu button is clicked.

Last but not least, we save a chunk that our program won't read, but is

Saving the necessary to Graphicraft and other commercial programs: The CMAG
"spare" (Commodore AMiGa) chunk is only four bytes in size, and contains a
chunk 32-bit number which conveys information to Intuition about the

graphic operating mode. Once the last chunk is sent to diskette, the file

is closed. -

That's it. Now your paint program is LFF-compatible. You can load

graphics and save them, and use these graphics in other graphic

programs. Commercial paint programs allow you to cut and paste

sections of graphics, enlarge areas, or print hardcopies of your artwork,

among other things. Your paint program has a fill pattern editor which

you can put to good use with Graphicraft.

As you see, the Amiga has more compatibilities than incompatibilities.

With this motto in mind, we'll make our video title program IFF

compatible.

279

Loading and saving graphics AmigaBASIC Inside and Out

Intermission 4

Compatibility's the key:

improving your video title program

A matter of

resolution

Changes

How does this sound: You take a graphic created in Graphicraft, insert

some patterns you designed in your paint program, and then use this

graphic as the background for the animated video title program. To

accomplish this, we need to alter the video title program so that it's

able to read IFF files.

This presents one problem: the resolution mode. All Graphicraft

graphics and most popular IFF graphic systems are 320 x 200 pixels

(low res). Even your own paint program works only in this resolution.

But the video tide program is displayed in standard BASIC resolution

(640 x 200 pixels). So IFF graphics are too small. What can we do

about it?

The simplest and most sensible solution is to convert the video title

program so that it will run in low resolution. Not many changes need

to be made, since its first line sets the text display on the screen. The

other changes involve displaying larger, easier-to-read characters.

Load your video title program (located in the video drawer on the

BASICdisk).

If you save the program as you're typing the changes in, use a new

name so that you have two versions of the video title program.

Here are the program lines that must be changed:

In the Setup: section, delete the IF...THEN before the SCREEN

command. Line the old program, we only open one new screen when

more than two bitplanes are being read. Now we want to open one in

the new program everytime this occurs. The parameters for the

SCREEN command will be rewritten into 320 x 200 pixels. After the

alterations, the fifth line of Setup: should look like this:

[before]

If Colors>2 THEN SCREEN 2,640,200,Colors,2rWINDOW

2,"Videotitle",,28,211

[after]

SCREEN 2,320,200,Colors,1:WINDOW 2, "Videotitle", ,28,2^1

280

Abacus improving your video title program

A line below this contains a series of DIM statements. The

Colormatrix should be limited to the highest possible color

number. Change the parameter Colormatrix (df3) to

Colormatrix (31,3):

[before]

DIM Text$ (d), Colormatrix (d, 3), Move (d), Speed (d) fl

[after]

DIM Text$(d),Colormatrix(31,3) ,Move(d),Speed(d) fl

After these changes, we are done changing our Setup: routine. Now

we come to the Beginning:

[before] •

PRINT "Videotitle-Program M;fl

[after]

PRINT "Videotitle-Program "fl

The semicolon has been removed. This way we force a carriage return

between Videotitle-Program and the name. Otherwise, part of

the single line would read off the right edge of the screen.

Now we come to a longer, change-free section. Scroll to the

ReadObject: section to make a few small alterations:

More]

PRINT"Enter the name of the object you want to load. "5

[after]

PRINT"Enter the name of the":PRINT"object you want to

load. "11

Now scroll to the Mover: section:

More]

PRINT"Move the object to its starting poinffl

PRINT"using the cursor keys."5

[after]

PRINT"Move the object to its" fl

PRINT"starting point using"fl

PRINT"the cursor keys."5

281

Loading and saving graphics AmigaBASIC Inside and Out

Now for a much larger section. The screen display in Colors: must

be changed and the color numbers increased:

More]

Colors: SI

FOR x=0 TO Colors^

COLOR -(x=0),xfl

LOCATE 5,(X*4) + H

PRINT x;CHR$(32);CHR$(32)fl

NEXT xfl

[after]

Colors:f

FOR x=0 TO Colors5

IF (x/8)=INT(x/8) THEN PRINT fl

COLOR -(x=0),xfl

PRINT x;5

IF x<10 THEN PRINT CHR$(32);fl

NEXT xfl

This routine is fairly simple. IF (x/8) =INT (8)... means: If x is a

multiple of 8 (8,16 or 24), then a linefeed should follow, especially

when the color array is printed. And IF x<10 THEN... prints a blank

for the arrays with the numbers 0 to 9, since these are only one digit

numbers. From 10 on, the numbers are two-digit

Alter the next ColorChange: section:

More]

PRINT"Enter the number of the color you want to change."fl

lafter]

PRINT"Enter the number of the color11: PRINT "you want to

change, "fl

The changes in the RGBRegulator: section also compensate for the

smaller screen. The R, G and B sliders must be divided into two lines:

More]

LOCATE 10,l:PRINT"Red: <7>=- <8>=+";Filler$

LOCATE 10,20+riPRINT CHR$(124);

LOCATE ll,l:PRINT"Green: <4>»- <5>=+";Filler$

LOCATE ll,20+g:PRINT CHR$(124);

LOCATE 12fl:PRINT"Blue: <1>=- <2>=+";Filler$

LOCATE 12,20+b:PRINT CHR$(124);

LOCATE 13,1:PRINT" <0>=Color o.k."fl

282

Abacus improving your video title program

[after]

LOCATE 11,1: PRINT "Red: <7>«- <8>=+ ":PRINT Filler$5

LOCATE 12,r+l : PRINT CHR$(124);5

LOCATE 13,1: PRINT "Green: <4>=- <5>=+ ":PRINT Filler$5

LOCATE 14,g+l : PRINT CHR$(124);5

LOCATE 15,1: PRINT "Blue: <1>«- <2>-+ ":PRINT Filler$5

LOCATE 16,b+l : PRINT CHR$(124);5

LOCATE 17,1: PRINT " <0>=Color o.k."5

Did you find the differences? The LOCATE lines are incremented by 1,

and the LOCATE columns with 2 0+r are changed to 1+r. Then the

Filler$ is preceded by a PRINT statement each time.

The next change to the LOCATE statement in EnterColor: and

Loop3: is minor:

[before]

LOCATE 14,15

[after]

LOCATE 19,15

The last correction must also be made in two other places.

Alter Countdown: within the line of a column number:

More]

LOCATE 10,28:PRINT c5

[after]

LOCATE 10,15:PRINT c5

Change the line width returned from the WIDTH command in

StartDisplay: from 60 to 32.

More]

WIDTH 60^

[after]

WIDTH 325

283

Loading and saving graphics AmigaBASIC Inside and Out

The computations for line width should also be changed. Change the

value 60 to 32 in the sixth and seventh lines of StartDisplay::

[before]

Text$=LEFT$ (Text$ (x), 60) \

h=INT((60-LEN(Text$))/2)+2fl

[after]

Text$=LEFT$ (Text$ (x), 32) f

h=INT((32-LEN(Text$))/2)+25

All finished. The changes you made allow the program to run in low

(320 x 200) resolution. Experiment with the program until you find

your typing errors, if any.

Don't forget to save the program under the new name. When you're

ready, read on to discover how to load your IFF files.

284

Abacus LOADING GRAPHICS IN THE VIDEO TITLE PROGRAM

4.5
Lights, Camera, Action:

loading graphics in the video title program

The video title program will also need an IFF load routine. Rather than

making you type in the same program a third time, we'll use a few

tricks we've picked up while working with the peripheral devices. Save

and exit the video title program, change the current directory with

CHDIR and then load your paint program.

Your paint program contains a routine that reads 320 x 200 pixel

Merging graphics. We can move this routine over to the video title program with
routines into a minimum of effort Type the following lines in the BASIC window:

programs

list DrawLoad-EndLoad, "ram: iff.Load"

This command line saves the read routine of the paint program to the

RAM disk as an ASCII file. All of the program lines between the

labels DrawLoad: and EndLoad: will be saved as the file

IFF. Load.

Now delete the paint program from memory with NEW and load up the

new version of the video title program. Merge the IFF read routine by

typing the following command:

merge"ram:iff.Load"

Now we have the rough draft completed. Let's do some fine-tuning to

Refinements integrate the new routine into the program. First we need to add a menu
item for that routine. Go to Select: and type this in under line 5:

PRINT "6 Load Background Picture"

We have to compensate for this new menu item. Make the following

changes to the Query: section:

More]

IF a$<"l" OR a$>"5" THEN BEEP: GOTO Query

[after]

IF a$<"l" OR a$>"6" THEN BEEP: GOTO Query

The maximum input number is 6, not 5. A few lines later, in the series
of IF...THEN statements, we insert a call for the new routine:

IF a$="6" THEN SetupScreen

285

Loading and saving graphics AmigaBASIC Inside and Out

You must set the input line 1 higher to accomodate the new line.

Change the line parameter of the LOCATE instruction in the Query:

section:

More]

LOCATE 10,1

[after]

LOCATE 11,1

Type in the new routine SetupScreen: after the routine

VelocityCalc:.

SetupScreen:\

PRINT "Want to load a graphic"^

PRINT "background? (Y/N)"fl

\

Loop5:fl

LOCATE 2,19 : INPUT Answ$fl

IF UCASE$(Answ$)="N" THEN IFF=0 : CLS : GOTO Beginfl

IF UCASE$(Answ$)="Y" THEN IFF«1 : GOTO EnterName \

GOTO Loop5fl

\

EnterName:\

PRINTS

PRINT "Enter name:"5

INPUT Nam$fl

PRINT fl

PRINT "Use the color table for:"fl

PRINT Nam$fl

PRINT "Enter (Y/N)";fl

Loop6:\

LOCATE 9,12 : INPUT Answ$fl

IF UCASE$(Answ$)="N" THEN IFFTab=0 : CLS : GOTO Beginf

IF UCASE$(Answ$)="Y" THEN IFFTab=l : CLS : GOTO Beginfl

GOTO Loop65

The SetupScreen: routine first asks whether you want to load a

background graphic or not You can answer the prompt with either <y>

or <n>. Any other input returns you to the input loop. The IFF

variable later states whether an IFF graphic is being loaded (IFF=1) or

not (IFF=0).

The EnterName: routine asks for the name of the graphic. This entry

will be placed in Nam$. Then it asks whether or not it should load the

color table for the desired graphic (from the CMAP chunk).

286

Abacus LOADING GRAPHICS IN THE VIDEO TITLE PROGRAM

Same

variables,

different
uses?

NOTE: The text and the graphic must be the same colors. If you have put
different values in the text and background colors than those in the color
map of the graphic, then answer <n>. Then the program uses the color

table which was set up in the video title program. The variable
IFFTab helps the program to make the distinction.

Now we have to alter the ReadData: subroutine. We want to add a

few options to the current program. But we encounter a problem when

we add GOTO or GOSUB commands pointing to the new routine.

Our IFF load routine uses a lot of variables that are needed in the main
program. We can work around these variables, even Form$, Length

or Chunk $, but what do we do with x and y? x and y are used as a

sort of mathematical dimensioning, x has a value of 3000 in our

program. After we load the new background graphic, the program

returns to the load section. The variable x will then be used as the

counting variable in ColorMap:, and returns the value 31. You've

just lost 2969 pixels in one shot. That's no big deal, but which x is
the most important one?

You see, using the same variable in both a main program and a

subroutine can have unpredictable results. One solution is to use exotic
variable names in your subroutines, but this is no guarantee of variable
security.

The command SUB...STATIC was created to help. This lets you set up

a special type of subroutine called a subprogram. Subprograms are

different from subroutines in the sense of variable handling:
Subprograms use local variables. This means that all the variables

within the section have their own values apart from the variables in the

main program. If you use x in a subprogram and x in the main

program, the values are handled distinctly from one another.

You can change the x in the main program to another value, and the x

in the subprogram will remain unchanged. It's possible to assign the

SUB variable its own memory register. If AmigaBASIC jumps to the

main program from a subprogram, then back to the subprogram again,

you'll find the same value contents as before. STATIC follows the
SUB command. The name of the routine goes between SUB and
STAT ic. Foi example:

SUB converter STATIC

This line has nothing to do with the video title program—it is simply

END SUB used as an example. The command END SUB must be at the end of the
subprogram. You can put a subprogram anywhere in a program.

Because of the enclosure of SUB...STATIC and END SUB,

AmigaBASIC knows that this section doesn't belong to the main
program. The routine will not run itself, when you put it in the middle

of the program. For example, the following program would only
execute the first and last lines:

The

subprogram

SUB...

STATIC

287

Loading and saving graphics AmigaBASIC Inside and Out

x—100

SUB conversion STATIC

x=40

x=x*100+3

PRINT"Hi there!"

END SUB

PRINT x

Again, these lines are only used as an example.

There are some rules you should remember when programming

Subprogram subprograms. For example, no subprograms should be defined within a

errors

CALL

SUB/END delineator. The following structure is also prohibited:

SUB test STATIC

SUB test2 STATIC

PRINT "Test 2"

END SUB

PRINT"Test"

END SUB

The above lines display a Tried to declare SUB within a

SUB error message.

If two identically named subprograms exist, the Amiga displays a SUB

already defined error message.

If you forget the STATIC after the SUB, the Amiga displays a

Missing STATIC in SUB statement error message.

The END SUB is also required. If you forget it, the Amiga displays a

SUB without END SUB error message.

You use the CALL command to call a subroutine. For example:

CALL converter

You can even omit the CALL under certain conditions, and just give the

name of the subprogram:

converter

288

Abacus loading graphics in the video title program

Following are a few examples of proper and improper situations to use

Abbreviated the abbreviated call. (None of these have any bearing on the video
CALL title program, but soon we'll be able to apply this knowledge to reading

graphics):

FOR x=l TO 10: converter: NEXT x

This line is self-explanatory. The subprogram converter: is called

within the FOR...NEXT loop. The next case is a little harder to see:

converter: PRINT x

Is converter : a SUB call followed by a colon, or is it a label

belonging to the PRINT command? In this case, it is a label. CALL

would be necessary in this instance. Therefore:

CALL converter: PRINT x

Here is a similar example:

IF x«10 THEN converter

Is converter a label to which the program should branch, or is it a

subprogram? Here again, CALL is needed:

IF x=10 THEN CALL converter

Now that your burning questions about subprograms are answered, let's

get back to the video title program. We'll make the DrawLoad:

routine a subprogram. Now we can easily add changes to the IFF read

routine.

Add this to the DrawLoad: label:

SUB DrawLoad STATIC

And now we'll go back to the program. Now delete the program section
up to this line:

IF Nam$="" THEN EndLoad

You should have just deleted the first five lines of the DrawLoad:

subprogram. We'll type in something new in place of these lines.

Maybe you've already wondered: When the subprogram uses its own

variables, and the variables in the main program are not affected, what

do you do when you want to use values from the main program?

289

Loading and saving graphics AmigaBASIC Inside and Out

For example, you want to pass the number of bitplanes from the

variable Colors to the array Colormatrix when we load the IFF

graphic. Then you want to save the color values at IFFTab, from

which we can get the read routine with the color table, and the filename

Nam$.

What do you do?

Luckily, the developers of AmigaBASIC dreamed up a command for

SHARED this purpose: SHARED. Type the following line right after the

SUB...STATIC line:

SHARED Colors,Colormatrix(),IFFTab,Nam$<fl

The main program and the subprogram share the given variables. That

means that they are now common variables. You can specify both

variables and arrays in the SHARED command, if both groups use the

same values. As you've seen above, you must type a pair of empty

parentheses after an array name. This is how you distinguish between

array names and variable names. Already our problems are solved.

The next program change is in ColorMap:. Here is the original:

ColorMap:^

FOR x-0 TO (Length/3)-lfl

r=(ASC(INPUT$(l,l)) AND 240)/16fl

g=(ASC(INPUT$(l,l)) AND 240)/16fl

b=(ASC(INPUT$(l,l)) AND 240)/16fl

PALETTE x,r/16,g/16,b/16fl

Colors%(x,0)=r : Colors%(x,l)=g : Colors%(x,2)=bfl

NEXT xf

IF INT(Length/3)O(Length/3) THEN Dummy$=INPUT$(1,1)fl

GOTO ReadDatafl

And here is the modified version:

ColorMap:5

FOR x=0 TO (Length/3) -H

r=(ASC(INPUT$(l,l)) AND 240)/16fl

g=(ASC(INPUT$(l,l)) AND 240)/16fl

b=(ASC(INPUT$(l,l)) AND 240)/16fl

IF IFFTab=l THENfl

PALETTE x,r/16,g/16,b/16fl

Colormatrix(x, l)»r : Colormatrix(x,2)=g :

Colormatrix(x,3)«bfl

END IFfl

NEXT xfl

IF INT(Length/3)O(Length/3) THEN Dummy$=INPUT$(1,1)fl

GOTO ReadDatafl

290

Abacus LOADING GRAPHICS IN THE VIDEO TITLE PROGRAM

Using the

routine

NOTE:

First, an IF...THEN must be inserted. The colors being read will only

be passed when IFFTab has a value of 1. Second, the array Colors %

from our paint program is converted into the array Colormatrix in

our video title program. The second dimension of the array will be

incremented by one. The red value of color x is contained not in

Colors% (xf 0), but in Colors% (xf 1). The same goes for green

(changed from 1 to 2) and blue (changed from 2 to 3).

Next you alter to the EndLoad: routine :

EndLoad:^

CLOSE lfl

END SUBfl

We're almost done. The IFF routine is converted for the video title

program. We have to get a call to the subroutine. Move the cursor to

the program section startDisplay: and insert a CALL command:

StartDisplay:!!

WIDTH 32 5

COLOR TextColor, Background : CLS5

COLOR TextColor, TextBackgroundfl

IF IFF=1 THEN CALL DrawLoadfl

FOR x=l TO NoofLinesfl

Now the background graphic reading is built in, and we're done with the

program revision.

Don't forget to save the program to diskette!

The effect of the program alterations isn't difficult to follow. You click

menu item six when you want to use a background graphic, or click it

off when you don't. You can input a filename, and determine whether

the current colors or the colors in the IFF file should be used. After the

countdown, and before the text and animated objects are displayed, the

background graphic parameters are loaded.

Loading clears the window borders. This does not affect the video titles.

However, if you want the old border back, click the menu button on the

mouse.

If you want a second, fully movable graphic object on your video title,

redefine the pointer with Preferences. Then you can use the pointer

as the second object, controlling its movement with the mouse.

We hope you have lots of fun with your video title program. One last

treat for the video title fans is on the way. You'll see what it is in the

next chapter.

291

Loading and saving graphics AmigaBASIC Inside and Out

4.6
Another idea:

loading and saving title sequences

After you've designed a title, you may have been frustrated because you

couldn't save the parameters. Why can't the program save a title set and

call it back later? You'll find out in this section. You'll also find out a
solution to this problem.

Type in the following routine at the end of the current version:

StoreTitle:SI

CLS : PRINT "Save as what name: "SI

INPUT DatName$SI

OPEN DatName$ FOR OUTPUT AS IS!

PRINT #l,NoofLines : REM Number of text linesSI

FOR x»l TO NoofLinesSI

WRITE #l,Text$(x)SI

NEXT xSI

SI

PRINT #l,ObjFlag • Object loaded?SI

WRITE #l,Objname$ f file nameSI

SI

PRINT #l,Move(0) f Number of movements^

FOR x=l TO Move (0)5

PRINT #l,Move(x)SI

NEXT xSI

SI

PRINT #1, Colors f Number of BitplanesSI

FOR x=0 TO 31 • 32 Colors in IFF-StorageSI

PRINT #l,CHR$((^lormatrix(x,l)*16);SI

PRINT #l,CHR$(Colormatrix(x,2)*16);SI

PRINT #l,CHR$(Colormatrix(x,3)*16);SI

NEXT x SI

PRINT #1,Background f Text color etc.SI

PRINT #lfTextColorSI

PRINT #lfTextBackgroundSI

SI

PRINT #1,IFF f Screen background?SI

PRINT #l,IFFTab f Change colors?SI

WRITE #l,Nam$ f file nameSI

CLOSE 1SI

CLSSI

GOTO BeginSI

SI

ReadTitle:SI

CLS : PRINT "Name of file to load: "SI

INPUT DatName$SI

OPEN DatName$ FOR INPUT AS 1SI

INPUT #l,NoofLinesSI

FOR x=l TO NoofLinesSI

INPUT #l,Text$(x)SI

292

Abacus loading and saving title sequences

NEXT x5

5

INPUT #l,ObjFlag5

INPUT #l,0bjname$5

5

IF ObjFlag»l THEN5

OPEN Objname$ FOR INPUT AS 25

OBJECT.SHAPE 1,INPUT$(LOF(2),2)5

CLOSE 25

END IF5

INPUT #l,Move(0)5

FOR x=l TO Move (0)5

INPUT #l,Move(x)5

NEXT x5

5

INPUT #l,Colorl5

IF Colorl<=Colors THEN Colors=Color15

MaxColors=(2AColors)-15

FOR x=0 TO 315

r=(ASC(INPUT$(l,l)) AND 240)/165

g=(ASC(INPUT$(l,l)) AND 240)/165

b»(ASC(INPUT$(l,l)) AND 240)/165

PALETTE x,r/16,g/16,b/165
i!) Cl

Colormatrix (xf 3) «b5

NEXT x5

INPUT #lfBackgro\ind5

INPUT #l/TextColor5

INPUT #l,TextBackground5

5

INPUT #1,IFF5

INPUT #l,IFFTab5

INPUT #l,Nam$5

CLOSE 15

CLS5

GOTO Begin 5

You already have an idea of how the load and save routines work, so we

won't go through that again. Here are some notes on the areas of the

program which may not be clear to you:

We use the same syntax for saving colors as for IFF format, because

this syntax saves memory. But the file created is not IFF compatible.

The WRITE command avoids problems with commas in strings.

The data of a graphic object will be read directly into memory, as long

as the filename exists. OBJECT. SHAPE is defined as object number 1.

293

Loading and saving graphics AmigaBASIC Inside and Out

REM

Adding to

the menu

If the title file has more bitplanes than are allowed in the program, the

video title program will only use the allowed number of planes. The

variable Color1 reads the value from the file. If Color1 is less than

or equal to the value in Colors, then the read routine places the new
number into Colors.

Everything clear so far? Let's talk about REM. This is a REMark used

to write comments meant for the user or programmer—sort of like a

Post-It Note within the program. A REM has nothing to do with the

program's execution. Look at the OPENDatName$ line in

StoreTitle:

OPEN DatName$ FOR OUTPUT AS H

PRINT #l,NoofLines : REM Number of text linesfl

This tells us what is happening in the program. Any text following a

REM statement is ignored by the program. Try typing this in the

BASIC window:

FOR x=l TO 10:REM remark:NEXT x

This loop will not run correctly, since AmigaBASIC ignores the

NEXT x and displays a FOR without NEXT error message. To

get the full effect of the REM, you can also use an apostrophe instead of

REM. Look at a line in the StoreTitle: routine:

PRINT #l,ObjFlag • Object loaded?^

The remark after ' explains the purpose of the variable Ob jFlag. REM

and ■ are useful for explaining certain program sections, or offering

suggestions to the user. We used them in StoreTitle : to explain

the meanings of the variables.

The REM text is not executed by AmigaBASIC, but it must be read and

handled, which requires processing time. It's best to leave REMs out of

programs that require crucial timing. Although processing a REM only

takes a tiny fraction of a second, a FOR...NEXT loop that has to handle a

REM over 8000 times can eat up a half minute and more.

Still missing are the new items to be used in Select:. Insert the

following lines after item 6:

PRINT "7 Read title sequence"SI

PRINT "8 Store title sequence"fl

The Query: section must compensate for the new items. Add the

following lines to this section:

294

Abacus
LOADING AND SAVING TITLE SEQUENCES

The "short"

title

program

Query:5

LOCATE 13,111

PRINT "Enter number:"; 11

INPUT a$H

a$=LEFT$(a$,l)H
IF a$<"l" OR a$>"8" THEN BEEP: GOTO QueryU

IF a$="l" THEN EnterTextH

IF a$="2" THEN ReadObjectH

IF a$="3" THEN DefineMoveObjectH

IF a$="4" THEN DefineColorH

IF a$="5" THEN ShowTitleU

IF a$="6" THEN SetupScreenH

IF a$="7" THEN ReadTitleU

IF a$="8" THEN StoreTitleU

GOTO QueryU

The effect is fairly simple: When you have completed a title and want
to save it, you select item 8. The subroutine asks for the desired
filename. The data is then written into the given file. When you want

to call up the title later, you select option 7 and enter the filename.
After it loads the file, the program will recognize all data, and you

select ShowTitle:.

Another word about the title sequences. When you merge Setup:,

ShowTitle:, Ve locityCalc:, ReadTitle: and the

DrawLoad: subprograms into one program, and omit the rest of the
video title program, you'll have a short title routine that you can merge

into other programs.

Save this program under a different name, so that you don't delete the
video title program. When you need a program to load and execute
another program, you can use the CHAIN command. You can then
create a title with the video title program for opening a screen of a

game, or even for your financial programs.

295

Loading and saving graphics AmigaBASIC Inside and Out

4.7
AmigaBASIC's little extra:

adding your own commands

User-

defined

BASIC

commands

Modifying

DATE$

Now you know how the IFF load routine in a commercial program

works. It would have been much simpler if Microsoft had included its

own AmigaBASIC commands for loading and saving graphics.

Although AmigaBASIC is an extremely good BASIC, there are times
when you might want a specific, specialized command that just doesn't
exist in AmigaBASIC.

The developers of AmigaBASIC were prepared for this demand. They

gave the language the ability to respond to user-defined commands just

like BASIC commands. You've already seen one way to do this: with

subprograms. Maybe you didn't realize that we can program new
commands in with the SUB commands. For an example, remember the

DATE$ function from Section 1.17?

date$

This command furnishes AmigaDOS with the date for date stamping. If

the date is unknown, no stamp is given. This is why you enter the

correct date in Preferences. AmigaBASIC syntax for DATE$ puts

the month first, then the day, then the year. Maybe you'd prefer to have

your dates in European syntax (day,month,year). The following

subprogram will do just that:

SUB Dates STATIC^

PRINT MID$(DATE$, 4,2)"."LEFT$(DATE$,2)"."RIGHT$

(DATE$,4)fl

END

Thanks to this subprogram, you can now call DATES instead of

PRINT DATE$ to see your new syntax. Or use CALL DATES. Where

DATE$ returned 10-28-1986, the subprogram returns 28.10.1986. You

can even call this subprogram in direct mode. Type this in the BASIC

window:

DATESfl

When a subprogram is in a program currently in memory, you can call

it in direct mode.

Now you understand why AmigaBASIC displays the error message

Unidentified subprogram when it doesn't understand input.

Most of the time, this error is the result of a typing error. For example,

if you typed:

296

Abacus adding your own commands

pint a$

instead of

print a$

AmigaBASIC branches out, looking for a subprogram called pint.

Since it didn't find the program, it gives an error message instead. Try

it once.

Do you recognize the MID$ command? Unlike the LEFT$ and
MID$ RIGHT $ commands, it locates the middle of a string. You give the

string name, the position inside the string, and the length of the section

you want located:

PRINT MID$ (string name, position, length) SI

When you want to isolate two characters of the string a $ starting at the

fourth character, you would use MID$ (a$, 4, 2). Our subprogram

uses MID$ to get the two characters of the day (e.g., 28). The LEFT$
takes the month (10) and the RIGHT$ handles the four characters of the

year (1986).

Most commands are followed by a set of parameters. You can specify
MuItiple parameters in a subprogram as well. A simple example:

parameters
Say you want to write a program that will convert the exchange rate for

the American dollar into German Deutschmarks (DM). Or maybe you

have a friend coming from Germany, and you want to convert the DM
values to American dollars. Let's write a subprogram to do this.
Picking up today's Wall Street Journal, we find out that the American

dollar is worth 2.25 DM:

SUB Dollar (value) STATIC^

PRINT"$"value " = "value*2.25"DM"fl

END SUM

The parameters specified for a subprogram are enclosed in the

parentheses following the name of the subprogram itself. In this case,

the parameter has the name value. We can eliminate the parentheses

after the initial call. Try typing this in the BASIC window:

Dollar 34.005

Input this last line as if you just wanted to print it. The Amiga replies:

$ 34 = 76.5 DM

297

Loading and saving graphics AmigaBASIC Inside and Out

Our example takes on the dollar value of 34.00. The subprogram
Local assigns the given value to the variable value, and computes the DM
variables value from it. value is a local variable. You cannot access this

variable from the main program, nor from direct mode. This is

unnecessary in our program, since we just want the subprogram to
figure out the value to be computed.

But what do you do when you convert a value with a subprogram, and

you don't need the calculation immediately? No problem. This time

we'll compute the DM into dollars. The routine looks like this:

SUB Dollar(value) STATIC^

value - value *l/2.25fl

END SUBfl

Type this in the BASIC window:

value=13.50:Dollar value:?valuefl

So 13.5 DM is equal to $6.00. How did this work? The variable

value is assigned a value of 13.50. That is the DM value. Then the

subprogram Dollar was called with the parameter value. As you

displayed the variable, the contents were converted to 6. It is important
that the variable value in direct mode and the variable value in the
subroutine do not coincide. You could call the conversion with any
other variable. Try this:

DM=13.50:Dollar DM: ?DMfl

There's no magic here, just a connection with the syntax of the

subprogram. The local variable value in the Dollar subprogram

functions only as a marker for the value, and prepares the value for

computation. The value of DM is transferred to value. The

computation is then made on value. Once completed, the contents of

value are transferred back to DM and the subprogram is exited.

If you're not sure what we're talking about, here's another example.

We've written a simple subprogram that doubles the given number.

SUB doubled (numr) STATIC^

numr=numr*2fl

END SUBfl

Call the subprogram in the BASIC window as follows:

a=2:doubled a:print afl

doubled calls the subprogram and gives the variable a as the

parameter, numr is computed within the routine. Then the routine

passes the contents of its variable numr to the parameter a. That's how

the main program processes the result. Nothing is previously known

about the variable numr.

298

Abacus adding your own commands

Naturally, there are situations where you don't want your variable to
change. Instead, you want to be able to pass variables between

subprograms and the main program. The parentheses act as a "safety
zone" for the parameters where their contents can't be changed.

If you call the doubled routine repeatedly, a will not change:

a=2:doubled (a):print afl

The variable a has the value 2 before and after the SUB call. The
subprogram can be run as normal, but the result cannot be repeatedly
given as a, since a is protected by the parentheses. The routine seems

pretty useless. But when we go back to an earlier program, we see the

logic behind it:

SUB Dollar (value) STATIC^

PRINT value "DM are";fl

value^value*1/2.2511

PRINT"$" valued!

END

When you call this subprogram as before,

DM«21.60:Dollar DMfl

converts 21.60 DM to $9.60. But now check out the value of DM:

? DMfl

The dollar has replaced the Deutschmark. The value of DM was placed
in value, value was changed, and has been transferred back to DM.

Result DM has also been changed. Inside a program, the old value of

DM no longer exists.

Consequently, you should avoid:

DM«21.60:Dollar (DM)fl

The result is the same, but DM retains its original value.

It's quite possible that you are beginning to lose interest in foreign

currency exchange rates. So now we'll move on to some big fun. The
main reason we've spent so much time talking about subprograms is
because we're going to develop a routine that saves IFF graphics. If you
merge this program into your program, you'll be able to save any

graphic to diskette with one simple command.

But we have one more Intermission before we tackle that.

299

Loading and saving graphics
AmigaBASIC Inside and Out

Intermission 5

Amiga number systems

Decimal
numbers

Floating

point

numbers

This Intermission is going to be a little rough: it deals with number
systems and a lot of math. But both topics are very important to
understanding subprograms, and we've done our best to make a difficult
subject easily understood. Once you get to the end of this section, the
rest of the book is easy to follow. Everything clear so far? Let's go.

Most people can see the need for programming their own commands.
First we have to look at the internal functions of the Amiga. The
different examples with dollars, dates, Deutschmarks and doubled
numbers all used amounts notated as decimal numbers:

Dollar 34.00

We should be able to write just 34. That is the same as 34.00—or is it?

Call the original version of the Dollar subprogram into the LIST
window:

SUB Dollar (value) STATIC

PRINT "$"value "are "value*2.25" DM"
END SUB

Call this subprogram from the BASIC window with:

Dollar 34

Your Amiga will display a Type mismatch error. The number type
is mismatched, and it isn't accepting the value of Dollar. It took a
while to find out just why the Amiga reacts this way. As we said
before, we're going to look at its innermost functions.

The problem is this: The number 34 is a whole number to the Amiga.
Logical, yes, but value is not a whole number: value is afloating
point variable.

Let's look at how the Amiga handles numbers. We've learned about
different types of numbers: integers, 16-bit numbers, and 32-bit
numbers. All of these use one small system.

You will deal with floating-point variables most frequently. Floating
point variables are variables that have no ending character. For example,
Hello, a, and Colors are all floating-point variables. The term
floating-point means that the decimal point is not in afixed position.

300

Abacus Amiga number systems

Here are a few examples of floating-point numbers:

100.23

3.141593

1.3

.143

4.1165

The decimal point is not in a strictly-defined position. All the numbers

above can be used in floating-point variables. These values can have up
to seven places; more than seven places decrease accuracy. Try this:

a«0.2435475776443:?a

The result is .2435476. The digit after the seventh decimal place will be
truncated and rounded off. But this a small number. What does

AmigaBASIC do with larger numbers?

a=3426478236487367489:? a

The result is not the same number that you typed in. It has been
"abbreviated." The result of the first input will be:

3.426478E+18

You may already be familiar with scientific notation, or exponential

Scientific notation. Its first name comes from the fact that scientists, especially
notation physicists and mathematicians, work with very large and very small

numbers. Consequently they developed an alternate method of notation:

3.426478E+18 = 3.426478*10A18 (A means to the power of)

You learned in Intermission 3 how the binary system is based on the

Back to number 2. Every exponent of 2 increases the number by one digit: 2°= 1
binary (binary 1), 2*=2 (bin. 10), 22=4 (bin. 100), etc. The decimal system,

our resident number system, works the same way, except it works in

exponents of 10 to get to the next digit: 10°=l, lO^lO, 102=100,
103=1000. And so on. Every exponent of 10 increases the number's

size. For your information: The number lO1^ is equal to one trillion—
that's 1 with 18 zeros after it. The number of the exponent states the

number of zeros after the number.

1. OE+3 is 1.0*10A3, or 1000 (three zeros)

3. 4E+2 is 3.4*10A2, or 3.4*100 (two zeros), or 340

AmigaBASIC can also use exponential notation for small numbers:

a=l/202 : ?a

The result 4.950495E-03 means 4.950495 *10A(-3). 10A(-3) is 1/10A3.

In normal notation, the number would read 0.004950495.

301

Loading and saving graphics AmigaBASIC Inside and Out

Computers
and

floating
point

numbers

Precision

Why so

precise?

For those of you with math anxiety, bear with us: If you normally
don't work much with numbers and notations, you probably won't
write any programs involving them.

The result of the above example couldn't be handled properly by the
Amiga. All computers have difficulties with floating-point numbers.
You've seen how whole numbers are handled in Intermission 3.
Floating-point means that the computer has to start from scratch to
figure these numbers out If you really want to know you can look in
Appendix D of the AmigaBASIC manual that came with your Amiga—
but don't say we didn't warn you. This stuff is hard to follow.

Since the Amiga has to convert floating-point numbers into bits, some
math errors can crop up. Most computers handle them as rounding
errors. Try typing this:

? 100.1-1005

Instead of the traditional (and correct) 0.1, AmigaBASIC gives an
answer of 9.999847E-02. That's 0.099. It's close, but it still is
incorrect

Let's talk about precision. The example above would go under the
category of single precision. When a number is given in single

precision, it should be given with accurate numbers.

The precision depends on the internal number handling: Single
precision numbers can have up to 7 decimal places. The values lie in

the range between 10"38 and 10+37. The opposite is double precision.
You then have 16 decimal places, and values between 1O"308 and

20+307 Normally, AmigaBASIC uses single precision in its floating
point numbers. The double precision identifier is the # character
following the variable name. Compare these:

a=l/202 : ?a (result 4. 950495E-03)

a#=l/202 : ? a# (result 4.950494971126318D-03)

The second number has more decimal places, and consequently is more
accurate. The D that replaces the E means it has been handled as a

double precision number. 10E+3 and 10D+3 mean the same thing-
10A3, or 1000.

You may be wondering why so many decimal places are needed. The
degree of precision you want depends on the calculations you perform.

When possible, you should avoid double precision numbers, since they

have a major disadvantage: calculations take longer, and the numbers
require much more memoiy.

302

Abacus
Amiga number systems

You might want to take a break from all this now. It can be a strain
trying to absorb these concepts. But you now have an idea of the
essentials. The intermission won't get any more technical than what

you've just been through.

To recap what you've just learned. You know about floating-points,
single and double precision. Single precision is used on normal
variables used by AmigaBASIC. Double precision is used when a #

character is placed after a variable name.

You've probably noticed that the Amiga doesn't take floating-point
Integers numbers very well. You should avoid them when possible. You can

safely use numbers without decimal points; integer values are much
more acceptable. You know about integers: Variables like Hello%,
a%, andColors% can be values between -32768 and +32767—in
other words, 16-bit numbers with a leading character bit. This range is
more than adequate for most values (coordinates, colors, speeds, etc.).
And when the number must be larger or smaller than the allowable
range, AmigaBASIC uses 32-bit numbers. Then you can use integers
between -2147483648 and +2147483647. (However, you will rarely use

this full range when you program in BASIC).

When a variable should be a 32-bit integer, you must specify this by
typing an & after the variable name. Look at these two examples:

a%=100000

This returns an Overflow error message—the number's too large.

Now try it this way:

a&=100000

No more problem.

You've probably already noticed that AmigaBASIC displays 32-bit
numbers in the LIST window appended with a & character. For

example, your paint program uses the number 65535. This number

won't fit into 15 bits (there is also the bit reserved for the leading
character). The Amiga uses 32-bit representation instead.

You're almost home. The last variable type that we will discuss here is
Strings not difficult to understand: string variables. These variables contain

strings of characters with a maximum length of 32767 (the Amiga likes

that number), and are identified by the $ character.

Here's an overview of what we have learned:

303

Loading and saving graphics AmigaBASIC Inside and Out

Table 9:

Variable

types in

AmigaBASIC

The

line

bottom

Solving the

problem

Variable type

Floating-point,

(single precision)

Floating-point,

(double precision)

Short integer

Long integer

String

Identifier

none or!

#

%

&

$

Memory required

4 bytes

8 bytes

2bytes=16-bit

4 bytes=32-bit

5 bytes +

string length

Sample variable

.3245643,

2.43E+09

4.901960957795,

382D-03

32767, -17

-2147483648,65535

"Richard",

"Ruby"

The identifiers allow you to use the same variable names for completely

independent variables, a and a$ are not related to each other. Similarly,

a#, a% and a& are also independent variables. One thing to remember:

Normally, floating-point variables have no identifier for single

precision (they are the default variables for AmigaBASIC). If you add a

!, it is merely a formality: Hello and Hello ! are the same variable.

After all this, we still haven't explained why the Amiga won't accept

34 in the SUB call. It was expecting a floating-point number, and there

was no decimal point or decimal places after 34.

value=34 would solve this. When AmigaBASIC finds a whole

number in any input, it stores this number as an integer. This integer

number should be a floating-point number in the subprogram. But it

isn't Therefore you get a Type mismatch error. AmigaBASIC uses

internal number handling, so one solution is to "trick" your Amiga.

Add a decimal point to the number, without zeros:

Dollar 34.

The Amiga treats the blank space following the decimal point as zeros,

and stores the value as a floating-point number. That solves the

problem. You can also set up a number as a specific-precision by

appending an identifier:

Dollar 34!

AmigaBASIC then recognizes the number as a floating-point number in

single precision.

304

Abacus Amiga number systems

A few more examples: 3.4% is equal to 3 (this has nothing to do with
percentages). The number, which would normally be stored as a
floating-point number, is saved as a 16-bit integer. The decimal point is
discarded. 0.4& is equal to 0 (the same, but with 32-bit handling). 3# is
equal to 3. You see, the number doesn't change visually when you
switch to double precision, but it does change internally. So you should

know the difference between:

? 1/3

and

?l#/3

Let's use our integers in a subprogram:

SUB Pause (Sec%) STATICS!

Pauseltxfl

TIM-INT(TIMER) fl

WHILE INT (TIMER)-TIM : WENDfl

Sec%=Sec%-l

IF Sec%>0 THEN PauseltH

END SUBI

This subprogram is lifted from the parameter section of the video title
program. It waits for a specified number of seconds. The variable Sec%
waits for the input of an integer. So, calling the subprogram by typing:

Pause 10

results in a 10-second wait. When this subprogram is called, you should

only use integers, or you'll get a Type mismatch error.

Now you know a little bit about the internal workings of the
AmigaBASIC interpreter. Let's move on to the next project without
further ado: We're going to write a subroutine for saving IFF pictures.

305

Loading and saving graphics AmigaBASIC Inside and Out

4.8
Save that picture:

the PICSAVE command routine

Here's a reward for your patience. The following subprogram creates a
single command for saving graphic data.

SUB PicSave (Nam$, WindowNr%, ArrayYN%) STATIC5

IF ArrayYN%=4 THEN SHARED Colors%()5

IF ArrayYN%«0 THEN5

IF Colors% (0,0)02 THEN ERASE Colors% : DIM

Colors%(31,2)5

RESTORE ColorTable5

FOR x=0 TO 315

READ Colors%(x,0),Colors%(x,1),Colors%(x,2)5

NEXT x5

ColorTable: 5

DATA 2,3,10, 15,15,15, 0,0,0, 15,8,05

DATA 0,0,15, 15,0,15, 0,15,15, 15,15,155

DATA 6,1,1, 14,5,0, 8,15,0, 14,11,05

DATA 5,5,15, 9,0,15, 0,15,9, 12,12,125

DATA 0,0,0, 13,0,0, 0,0,0, 15,12,105

DATA 4,4,4, 5,5,5, 6,6,6, 7,7,75

DATA 8,8,8, 9,9,9, 10,10,10, 11,11,115

DATA 12,12,12, 13,13,13, 14,14,14, 15,15,155

END IF5

IF Nam$="" THEN EXIT SUB5

AltWindowNr=WINDOW (1)5

WINDOW WindowNr%5

Wide=WINDOW(2)5

IF Wide>320 THEN5

Wide=6405

Resolutions5

Planes^l60005

ELSE5

Wide=3205

Resolutions5

Planes=80005

END IF5

Height=WINDOW(3)5

IF Height>200 THEN5

Height=4005

Planes=Planes*25

Resolution^Resolution+25

ELSE5

Height=2005

END IF5

Colors=L0G(WINDOW(6)+1) /LOG(2) 5

306

Abacus the PICSAVE routine

OPEN Nam$ FOR OUTPUT AS 1 LEN=FRE(0)-500!

PRINT #1,"FORM";!

PRINT #1,MKL$ (156+Planes*Colors);fl

PRINT #1,"ILBM";!

PRINT #1,"BMHD";MKL$(20);!

PRINT #1,MKI$ (Wide) ;MKI$ (Height); !

PRINT #l,MKL$(0);!

PRINT #1,CHR$ (Colors); !

PRINT #l,CHR$(0);MKI$(0);MKI$(0);!

PRINT #l,CHR$(10);CHR$(ll);!

PRINT #1,MKI$(Wide);MKI$(Height);!

!

PRINT #1,"CMAP";MKL$(96); II

FOR x=0 TO 311

PRINT #l,CHR$(Colors%(x,0)*16);!

PRINT #l,CHR$(Colors%(x,l)*16);!

PRINT #l,CHR$(Colors%(x,2)*16);!

NEXT x!

!

PRINT #1,"BODY";MKL$(Planes*Colors);!

Addr«PEEKL (WINDOW (8) +4) +8!

FOR x=0 TO Colors-1!

PlaneAddr (x) =PEEKL (Addr+4*x) 1

NEXT xl

FOR yl=0 TO Height-ll

FOR b=0 TO Colors-11

FOR xl=0 TO (Wide/32)-1 1

PRINT#1,MKL$ (PEEKL(PlaneAddr (b)+4*xl+(Wide/8) *yl)) ;I

NEXT xlfl

NEXT hf

PAddr=PlaneAddr (0) + (Wide/8) *yll

POKE PAddrfPEEK(PAddr) AND 631

POKE PAddr+Wide/8-l,PEEK(PAddr+Wide/8-l) AND 2521

NEXT yll

1

PRINT #1,"CAMG";MKL$(4);1

PRINT #1,MKL$(16384);!

CLOSE 11

WINDOW AltWindowNr 1

END SUB!

When you save this program, save it in ASCII format:

save "PicSave"fa

Use the MERGE command to include the PICSAVE routine with any

program. And make sure that the program you're merging it to is also

an ASCII file.

There are a few aspects of this program that you may not understand.

Let's go through the individual steps of the program.

307

Loading and saving graphics AmigaBASIC Inside and Out

Following

the program

Self-

generating

arrays

The name of our routine is in the SUB...STATIC line. We call it

PICSAVE, short for Picture SAVE. The parameters follow the name,

enclosed in parentheses. As you can see, you can have several values at

once. The variable types must be given. The parameters for calling

PICSAVE look like this:

PICSAVE "(filename)",(window_number),

(color_array__pararoeters) f

The filename needs no explanation. You can input any name, along

with the drive number and the path to the subdirectory.

The second parameter is the window where the contents are stored.

The last parameter can be either a 0 or a 1. A value of 1 means that you

have set up an array in the subprogram itself called Colors % which

contains the dimension (31,2), and has all the RGB color values from 0

to 15 built in. We have already set up this type of array in the paint

program. The value 0 means that the default Workbench colors should

be used. This allows you to save graphics without much extra effort

from BASIC (try doing this with your sine graph).

The last of the three values, ArrayYN%, is used the same way in the

next two lines. If you enter a 1, the subprogram makes the Colors%

array common. If the main program does not have an array named

Colors%, AmigaBASIC returns an Undefined array error.

If ArrayYN% is 0, then there is a little more to do: First, the

subprogram checks to see what value is in the array element

Colors% (0, 0). If the contents is a 2, the array doesn't need to be

reDIMensioned.

But what if the array hasn't been dimensioned yet? When you use a set

data array without previously dimensioning it, AmigaBASIC

automatically dimensions it for you, with a standard size of 10

elements. For example, type this in the BASIC window:

? Testarray (1)^1

AmigaBASIC realizes that there is no array called Testarray, and so

it inserts a command DIM Testarray (10). Now you can use

elements from Testarray (0) to Testarray (10). Try using

Testarray(11):

Testarray (11) 5

You'll get a Subscript out of range error message (the element

is past the allowable range area). Testarray is only dimensioned to

10. The same goes for two- and multi-dimensional arrays:

? Anothertestarray(1,1)5

308

Abacus THE PICSAVE ROUTINE

automatically creates the array Anothertestarray (10,10). The

same happens with Colors! (0,0): If no such array exists,

AmigaBASIC will create the array Colors%(10,10). Your color

values are determined by the dimensioning Colors% (31,2). So if

no array exists, this is cleared, and the correct values are dimensioned.

The ERASE command clears arrays. You simply type the array name

ERASE after the command. The array and its contents are deleted, and can be

redimensioned later with DIM. For example: DIM Colors% (31,2).

As mentioned before, there are no commands to read the color values at

this time. But we can pull other color values from the CMAP chunk.

To solve this problem, we put a series of DATA statements in the

PICSAVE subprogram that contain the default color values for RGB.

These are the colors used by the PALETTE command in BASIC. When

you change colors in your own programs and want to save the graphic,

you have no other option than what is already in Colors% itself.

After reading the data array, we use a new command: RESTORE.

RESTORE RESTORE adjusts the pointer to the next DATA statement to be read,

set at a specific label (in our case, ColorTable:). It is sure that the

subprogram reads its own data and not the DATA lines in the main

program. We get data protection and color protection all in one: First,

you don't lose any of your data in the CMAP chunk of an IFF file, and

second, no IFF reader program can produce colors from a string like

"Grand Rapids."

The FOR...NEXT loop that follows reads the RGB values into the array

Colors%. Also, if you ask how we came up with using the

Workbench color data, the answer is: trial and error. We have compared

every color with the originals, and these just won.

If Nam$ is a null string, the routine should be stopped. EXIT SUB

EXIT SUB enables the return from a subprogram. AltWindowNr is marked as the

current output window. This number is transferred with WINDOW (1).

After you return to the main program, you want to return everything to

its original state. To call up some important data, we must make the

window in the variable WindowNr% the current window.

Now we come to a pair of new window commands: for example,

WINDOW (2) returns the width of the current window. This value is

received by the variable Wide. We want windows to be saved according

to the full size of the screen. The IF/THEN/ELSE/END IF structure

determines whether the height is 320 pixels or 640 pixels. This is

dependent upon the resolution (1 for 320 pixels, 2 for 640 pixels) and

the memory requirements for bitplanes (8000 bytes for 320 pixels,

16000 bytes for 640 pixels). Then we proceed to WINDOW (3) for the

height of the current window, either 200 or 400 pixels. 400 pixels

(interlace mode) doubles the memory requirements for bitplanes, and the

value for Resolution is raised by 21 (returns 3 for interlace pictures

and 4 for high-res).

309

Loading and saving graphics AmigaBASIC Inside and Out

Finally, we come to the number of bitplanes. As computed before, it's
all set up: WINDOW (6) returns the number of allowed colors in the

current output window. 3 bitplanes would make the number 7. We've

used the formula Color= (2 Abitplanes) -1 to compute the

number of allowed colors. We know the number, then go looking for

the bitplanes. We must also use the reverse of this formula. When you

know that 2Ax=8, you can find the value of x with the formula
LOG (8) /LOG (2). LOG stands for logarithm. (Here's a little tip for

the mathematicians: The LOG function computes the natural logarithm
of e=2.718282).

The preparations are completed. We now write the IFF data to the given
file. A few remarks: The FORM chunk needs are taken from

156+Planes*Colors. 156 is the file length without BODY, and

BODY has the length (bytes per plane) * (number of
planes).

After the CLOSE, we again make the window AltWindowNr the

current window (we've made memory provisions for this) once the
subprogram ends.

That's all there is to it. Now you have your own IFF save command
Calling which can be attached to any program with MERGE. The degree of
PICSAVE resolution, the height and width, and the number of bitplanes are set in

the routine. For example, if you want to save the contents of the
BASIC window, call the subprogram like this:

PICSAVE "BASICwindow",l,0

The resulting IFF file can be read with the IFF reader program in

Section 4.3. To work with IFF from outside of AmigaBASIC, use a

high-res program such as DeluxePaint. You can then make hardcopies

from a program like this. When you want to edit BASIC graphics like

your sine curve, you must create the graphic in a 320*200 resolution
window.

You can also use this subprogram/command with your bar/pie chart
program. Here's how:

VV LOADTHE BAR CHART/PIE CHART PROGRAM

VV MERGE THE PICSAVE ROUTINE

VV DISPLAYTHE SETUP : SUBROUTINE, AND ADD THE FOLLOWING
TOTHEMENU DEFINITION:

MENU 2,3,1,"Save Pic"

VV INSERT UNDER THEMENUCONTROL: ROUTINE LINE:

IF Men=2 THEN

310

Abacus the PICSAVE routine

THE FOLLOWING:

IF MenuPoint=3 THEN5

MENU 1,0,0: MENU 2,0,05

MENU OFF5

GOSUB EnterNamef

WINDOW 995

PicSave Nam$,99,05

WINDOW 15

MENU ON5

MENU 1,0,1 : MENU 2,0,15

END IF5

V SAVE THE PROGRAM.

You'll see the new option Save Pic in the pulldown menu. When

you select it, the current contents of the Graphics window are

saved to diskette. (Make sure you created a graphic, or else you'll have

saved an empty window). Remember that you can't use the graphic in

Graphicraft, which goes for all 640*200 graphics. Because you have

your own program, you can edit and print any graphics at any time.

Now that we've completed these IFF routines, we're in a position to

move on to the next theme: We are going to cover some of the more

interesting aspects of saving and loading non-graphic data.

311

All about data

Abacus All about data

Getting it organized:

All about data

You won't learn everything you need to know about data in this

chapter. You already know a number of BASIC commands used for file

handling, more specifically, sequential files. But we still haven't

touched on the topic of random access files. And random access files are

the focus of the following pages.

After you've read this section and typed in the program lines, you'll be

the proud owner of a versatile database program.

315

All about data AmigaBASIC Inside and Out

5.1
It's all relative:

using random files

About

sequential

files

About

random files

At this point you should be very familiar with sequential files. But in

case you've forgotten, sequential means in sequence—that is, the data

elements are stored one after the other. Sequential files work best at

several specific programming tasks. However, they are not suitable for

some more advanced applications.

All files sent to a printer are sequential. That makes sense, since a

printer prints characters one after another. Files input from the keyboard

or output to the screen are also sequential. And IFF files are sequential

files too.

Sequential files are the logical choice for these programming task

examples. However, when you want to read and write an address list,

record collection or other information, the sequential file's major

disadvantage is that they store their data in sequence on diskette. And

that's how we have to read the files—one after another. That's fine if
you need the address of Mrs. Andover from your telephone directory file

that contains 1000 listings. But in order to get to Ms. Tiemstra's phone

number, you have to go through the entire file each time—through the

addresses of Mr. Fischer, Mrs. Lloyd, Dr. Taber, and so on. You'd be

waiting for a long time for the system to read through the file.

Consequently, AmigaBASIC offers you a second type of file
management—the random file, also called the random access file.

Random access means that the individual file elements can be accessed

quickly and easily. Another definition of a random file would be a file

whose individual entries can be accessed relative to the first entry. This
is why a random access file is sometimes referred to as a relative file.

A name, street, city, state and zip are known as thefields of a record—
in this case, make up an address. We have an address for Mr. Fischer,

Mrs. Lloyd, Ms. Tiemstra, the Doctor, etc. Data records are a collection

of connected data fields.

A random access file assigns a number to each record. This lets you

quickly and easily access any record by its number when you want to

read or write to it. You can access the file no matter where the file is

located on the disk, or how large the file.

Creating a random access file requires only a few more commands than

creating a comparable sequential file. It's really quite easy.

Let's start with a simple example. Type in the following address book

program:

316

Abacus USING RANDOM FILES

Random file

OPEN

FIELD

OPEN "r",#l,"AddressFile.rel",92fl

FIELD #1,30 AS Nam$,30 AS Address$,20 AS City$f12 AS

Phone$5l

Entry:f

PRINT fl

INPUT "Name";NamEntry$fl

INPUT "Address";AddressEntry$5

INPUT "City";CityEntry$fl

INPUT "Phone";PhoneEntry$fl

LSET Nam$=NamEntry$1I

LSET Address$=sAddressEntry$fl

LSET City$=CityEntry$fl

LSET Phone$=PhoneEntry$fl

PUT #l,xfl

PRINT "Record "x" ("Nam$") stored."5

PRINT "Add more records?"^

INPUT "Y/N:";Ans$fl

IF UCASE$(Ans$)="Y" THEN Entryfl

1
CLOSE lfl

PRINT "File closed. Program ended. "SI

Save this program before you run it.

Now let's take a closer look at the program. We used the same syntax

for the OPEN command as we used earlier. OPEN has a second syntax,

used for random access files. It has one mode for all file operations (no

separate syntaxes for input, output or appending). The lower-case r

stands for random. Then the file number and filename follow. The last

parameter gives the random access file record length in bytes. The

number in the above program assigns a total address record length of 92

bytes.

Sequential files allow you to give the length of the file buffer. You

don't need to do anything like that with random access files;

AmigaBASIC sets up the buffer according to the length of the file

record.

The FIELD command is the first new command we've seen in this

program. It allows you to divide the data record buffer into individual

fields. Each of these fields is assigned a parameter variable.

FIELD [#](file number),(number of bytes) AS (variable

name),...

Your example uses the variable Nam$ to represent the 30 bytes

available. The contents of Nam$ will need no more than 30 bytes per

record in the file. It could be shorter, though. With the values in the

FIELD command, you set the maximum length of a variable outside
the file.

317

All about data AmigaBASIC Inside and Out

LSET

Random file

PUT

This also goes for the other variables: Address $ should be up to 30

characters in length, City$ up to 20, and Phone$ up to 12 characters

in length. Any extra charcters that are typed in will be lost.

We read in the address with the Entry: routine that follows. Here is

where we use other variables for input: variables NamEntry$,

AddressEntry$, CityEntry$ and PhoneEntry$. As you can

see, you can use entire names, but with one condition: You must use

names other than those placed in the FIELD command line so that the

next command (LSET) can function properly.

The FIELD variables are parameter variables. Nam$ is the name for a

30-byte-long area in the data buffer. The LSET command stores data to

this buffer area. In your case, the data is the variable NamEntry$. The

range with the name Street $ is assigned the contents of the variable

StreetEntry$. City$ and Phone$ work the same way.

If the assigned variable is longer than the corresponding buffer range,

the excess is truncated. If it is shorter than the buffer range, the rest of

the range is filled with blanks.

The FIELD command variables have an additional function: You can

assign a quantity that will go in the data buffer with LSET. If you read

the contents of a parameter variable, you would get the buffer contents

for the area defined by FIELD. Look at the following line:

PRINT "Storing record"x" :"Nam$

Nam$ contains the first 30 bytes of the buffer contents. The moment

you assign a value to Nam$ without using the LSET command (also

when using INPUT or Nam$=), the buffer assignment is changed. The

30 buffer bytes are then no longer available. Therefore, the data input is

transferred from the variable NamEnt ry$.

The entire statement above also applies to the other parameter variables

of the data record buffer. The syntax of LSET is very simple:

LSET (parameter variable) = (variable)

The data is now in buffer memory. We need a PUT command to place

the data on diskette. You've already used this command in your graphic

projects in Chapter 4, but these used the screen PUT, which is one of
two forms of the PUT command. The second PUT command is called

the random file PUT.

You type the file number following the random file PUT, and following

that the record number to which the current buffer data will be written.

Since writing will increment the record numbers by 1, no record will
remain unused. Theoretically you can use record numbers between 1 and
16777215. But before you try this number, there is one small

stipulation: 16777215 is theoretically the highest number that
AmigaBASIC can handle. The highest actual number depends on the

318

Abacus USING RANDOM FILES

Reading the

file

Running the

program

Random file

GET

available memory and the size of the record. In either case, that puts us

way below 16777215—in fact, a file this large would nearly fill a 20-

megabyte hard disk. An empty 3 1/2" Amiga diskette will hold 10000

records for your address file.

That's all the new commands on the file writing section. The rest of

this program is nothing new to you.

Save about 10 addresses for your family and friends in the address file

program. Then type in the following program to learn a little bit about

reading random files:

OPEN "r",#1, "AddressFile.rel", 92$

FIELD #1,30 AS Nam$,30 AS Address$,20 AS City$,12 AS

Phone$1I

11
ReadData:fl

INPUT "Address Number";Nmbrfl

GET #l,Nmbrfl

IF EOF(l) THEN PRINT "Record out of range." :GOTO

ReadDatail

PRINT Nam$fl

PRINT Address$fl

PRINT City$fl

PRINT Phone$fl

INPUT "Read another record (Y/N) ";ans$fl

IF UCASE$(ans$)O"N" THEN ReadDatafl

CLOSE lfl

PRINT "File closed. Program ended."5

The OPEN and FIELD program lines are the same as in the random file

writing program. The file is opened and the matching buffer is set up.

The buffer number and the record length used for reading must be

identical to the values used when you wrote the file.

Large file programs use sequential files as well as random access files.

The sequential file reads the necessary information about record length

into the program for use by the random file.

Since you give no read or write mode when opening random access

files, you can exchange reading and writing in any sequence you desire.

This is another advantage to random access files.

Your address reading program will first prompt you for the address

number (the record number). Since you've written 10 addresses into

your file, you can type any number between 1 and 10. Writing fewer

addresses means you can read fewer addresses—that is, the number must

be correspondingly lower.

Now for the partner to the PUT command: GET. This command also

has two forms—the random file GET and the screen GET.

319

All about data AmigaBASIC Inside and Out

EOF

Displaying

the data

The random file GET command reads a given data record from diskette,

and writes the data into the buffer. You supply the file number and the

desired record number. After the GET command the record is read, then

transferred from diskette to the buffer. You can then read the buffer's

contents from the parameter variables. Now we come to the address

data.

The function EOF works for random access files as it does for sequential

files. If you try to read a higher record number than actually exists,

EOF (1) returns the value -1. This gives you an idea of how many

records exist. If you don't include this command in your program,

you'll get strange data in your buffer: Either fragments and random

combinations of different records, or assortments of random characters,

mostly control characters.

The PRINT statement brings the address to the screen. As already

explained, you can read individual data fields from the parameter

variables with the GET command: Nam$, Address$, City$ and

Phone$ supply the assigned buffer contents.

Your program then asks whether you want to read more data or not.

When you press <n>, the file is closed and the program terminates. If

you press any other key the program will read a new data record.

A little experimentation with this program will demonstrate you the

advantages of random access files. Try reading address number 1, address

10, then address 8 and address 2. The Amiga finds your data almost

immediately.

Once you've thoroughly explored this program, we'll learn something

new, and at the same time create a useful program based on random

access files. You'll be able to file and organize anything from your

stamp collection to your financial portfolio.

320

Abacus A DATABASE PROGRAM

5.2
Store it:

a database program

We've actually written one database program already: The statistical

analysis program collects data at the first line of the program. This

sequential approach makes more sense when you're working with pie

charts or bar charts than it does with addresses or a record collection.

Besides, your statistical program isn't capable of handling two or more

sets of data. So now we'll write a more effective database program.

"Effective" means that you'll have the option of saving and altering

your data quickly and easily, at any time. You can use your database for

archiving your classical record collection, cataloging your CDs, putting

your recipes on disk, and so on.

Here's the program. It's the preparatory routines for your next project

(You might want to make a trip to the refrigerator first to help this

project along).

Setup:!

PALETTE 0,0,.1,.4!

PALETTE 2,0,1,0!

Begin:5

CLS : LOCATE 1,1 : PRINT "Select"!

LOCATE 1,25 : COLOR 3,0 : PRINT "Filename:"; :

1,011

IF Altname$<>"" THEN PRINT Altname$ ELSE PRINT

file)"!

PRINT!

COLOR 0,3 :PRINT SPACE$ (21) "AmigaBASIC

DataBase"SPACE$ (21) !

LOCATE 5,22 : COLOR 3,0!

PRINT "Please Choose:"!

LOCATE 7,22!

COLOR 0,1 :PRINT " 1 ";

file"!

LOCATE 9,22!

COLOR 0,1 :PRINT " 2 ";

data"!

LOCATE 11,22!

COLOR 0,1 :PRINT " 3 "j

file"!

LOCATE 13,22!

COLOR

"(no

COLOR 1,0 : PRINT " Create

: COLOR 1,0 : PRINT " Enter

COLOR 1,0 : PRINT " Read

COLOR 0,1 -.PRINT " 4 ";

file"!

LOCATE 15,22!

COLOR 0,1 :PRINT " 5 ";

COLOR 1,0 : PRINT " Search

COLOR 1,0 : PRINT " End"!

321

All about data AmigaBASIC Inside and Out

Setting up

the program

SPACE$(x)

Select:fl

LOCATE 18,1 : PRINT SPACE$(60)fl

LOCATE 18,22 : COLOR 3,0 : PRINT

COLOR 1,0 : LINE INPUT number$fl

number$=LEFT$ (number$, 1) 5

"Enter number:

IF number$<

IF number$a='

IF number$a

IF number$=

IF number$=

1" OR number$>"5" THEN Selects

1" THEN CreateFilefl

2" THEN EnterDatafl

3" THEN DataSearch=0

4" THEN DataSearch-1

GOTO ReadDatafl

GOTO ReadDatafl

PRINT

END<J

"Program ended. "1

There's not much new in Setup:. We call two PALETTE commands,

for cosmetic purposes. These commands make the blue background a

little darker, giving the program a more professional look. Don't

laugh—the screen is easier to read if you don't use the normal

Workbench colors. Also, the altered colors make the program look less

like it was written in AmigaBASIC. The second PALETTE command

changes the Workbench black to green. This color contrasts better with

the background.

The Begin: routine clears the screen and displays the word Select

in the upper left corner of the screen. We'll write the current mode in

this corner in the database program. This way, the user always knows

where this prompt will be displayed.

The middle of the first line will list the current file. We have no file the

first time we start the program, so the word None is displayed.

Now we print the headline list. Here's a new command: SPACE$ (x).

This refers to the spacebar (which we'll call <SPACE>). SPACE $

creates x number of spaces. You can print colorful bars with this, like

in the title bar; simply make a text color the same as the background

color, e.g., COLOR 0,3. We used dark blue on orange in the title bar.

SPACE $ also can erase text, but we'll talk more about that later.

Next comes a menu from which we select individual items.

Create file is called to create a new file. This program section lets

us give a filename, and the lengths of individual fields.

Enter data is where you type in your data.

Read file makes it possible to page through an entire file and

change individual data records.

Search file helps you to look for specific criteria in a data record.

End ends the program.

322

Abacus a database program

Next follow the program lines used for the selection. Here is where

SPACE $ acts as a delete function: Any time the user types something

into a selection, the old selection is erased and replaced by the new.

The individual routines of the program are called depending on the

input. Readfile: and Searchfile: both use ReadData:. The

variable DataSearch tells the program whether to read all data

records or just lode for one.

CreateFile:^

CLS : LOCATE 1,1 : COLOR 1,0 : PRINT "Create File"fl

LOCATE 1,25 : COLOR 3,0 : PRINT "Filename:";5

COLOR 1,0 : PRINT "(no file)" 5

COLOR 3,0 : LOCATE 3,15

PRINT "Enter field name and field length. "5

COLOR 1,011

FOR x=0 TO 95

Fieldname$="" : Length (x) =05

NEXT x5

LOCATE 4,1 : PRINT "Name" : LOCATE 4,26 : PRINT "Length

«40)"5

FOR x=0 TO 95

NoOfFields=x5

LOCATE x+6,1 : LINE INPUT Fieldname$ (x) 5

IF Fieldname$(x)«"" THEN x=10 :

NoOfFields=NoOfFields-l5

Fieldname$ (x) =LEFT$ (Fieldname$ (x), 25) 5

LOCATE x+6,26 : PRINT SPACE$(40) ;5

LOCATE x+6,26 : LINE INPUT Length$5

IF Length$="" OR ABS (VAL (Length$))>40 THEN

Length$="40"5
Length (x) =INT (ABS (VAL (Length$))) 5

IF Length (x)~0 THEN Length (x) «405

NEXT x5

5

Corrections:5

GOSUB EntryOK5

IF Corr=0 THEN 0penFile5

IF Corr«l THEN ErrorCorrectionfl

GOTO Corrections^

ErrorCorrection:fl

FOR x=0 TO NoOfFieldsfl

LOCATE x+6,1 : PRINT SPACE$(60)5

LOCATE x+6,25 : PRINT Length(x)U

LOCATE x+6,1 : PRINT Fieldname$ (x) 5

NEXT xf

FOR x=0 TO NoOfFieldsfl

LOCATE x+6,1 : LINE INPUT Fieldname$5

IF Fieldname$O"" THEN5

Fieldname$(x)=LEFT$(Fieldname$,25)5

LOCATE x+6,26 : LINE INPUT Length$fl

IF ABS(VAL(Length$))>40 THEN Length$="40"5

IF Length$<>"" THEN Length (x) =INT (ABS (VAL (Length$))) f

IF Length (x)=0 THEN Length (x) =405

323

All about data AmigaBASIC Inside and Out

NEXT x5

GOTO Corrections5

5

0penFile:5

LOCATE 19,1 : PRINT SPACE$(60);5

LOCATE 19,1 : COLOR 3,0 : PRINT "Enter Filename:";5

COLOR 1,0 : LINE INPUT Nam$5

RecordLength=05

FOR x=0 TO NoOfFieldsfl

RecordLength«RecordLength+Length (x) 5

NEXT x5

IF Nam$«"" OR RecordLength=0 THEN BEEP : GOTO BeginII

OPEN "R", #1, Nam$, RecordLengthfl

FIELD #l,Length(0) AS Dat$ (0),Length(1) AS

Dat$(l), Length (2) AS Dat$(2) ,Length(3) AS

Dat$(3),Length(4) AS Dat$(4) ,Length(5) AS

Dat$(5),Length(6) ASDat$(6), Length(7) AS

Dat$(7),Length(8) AS Dat$ (8) ,Length(9) AS Dat$ (9) II

We should discuss the line length acceptable to AmigaBASIC. Program

About line lines can be up to 255 characters in length, but good programming
length style doesn't allow this. In this case, however, it's unavoidable—you

must completely define the range within one line with FIELD. If you

start a new FIELD line, you erase the old contents of the buffer. If you

want to use 10 variables, we have to construct this line. Type in the

entire FIELD line above. But press <RETURN> only when you've

typed in the entire passage (ended with the printed paragraph mark).

The next section is typed in as usual:

FOR x=l TO NoOfFieldsfl

LSET Dat$(x)=" " 5

NEXT x5

CLOSE 15

OPEN Nam$+".Flds" FOR OUTPUT AS 25

PRINT #2,NoOfFields5

PRINT #2,RecordLength5

PRINT #2,05

FOR x=0 TO NoOfFields5

WRITE #2,Fieldname$(x)5

PRINT #2,Length(x)5

NEXT x5

CLOSE 25

Altname$=Nam$5

GOTO Beginfl

You create your file with this routine. First we print Create file

in the upper left corner of the screen while in the current mode. The file

currently being edited is named (no file), because no file is being

edited, so there is no filename.

324

Abacus A DATABASE PROGRAM

About color

usage

Field names

Making

corrections

Perhaps you were wondering about the elaborate use of COLOR in the

listing. We're trying to display a text color that's easy on the eyes:

Notes, warnings and explanations appear in orange. The data, title bar

and user input appear on the screen in white. The field names in the data

records are green. COLOR 3,0 specifies orange, COLOR 2, 0 specifies

green and COLOR 1, 0 specifies white text.

CreateFile: is where the user states the name and length of the data

fields. These entries go in as mentioned earlier.

Every data record can contain up to 10 single elements (from the loop

FOR x=0 TO 9).

The program marks the number of fields per data record in the variable

NoOfFields. This value increments by 1 for each new field input.

First we enter the field names. These are identifiers like Name,

Street, City, Title, etc. The maximum length of a field name is

25 characters. Then we need to allocate some space for the data itself.

If you enter a blank in this mode, the program recognizes that all fields

have been input. If you enter ten fields, then the loop will end on the

next NEXT.

If the field name is input, the field length is still missing. The

maximum length of a data field is 40 characters.

First a deleting SPACE$ (40) wipes out the current field name input—

25 characters are trimmed off. Now you input a value for the variable

Length$. If you don't type anything in, or type more than 40

characters, the field length will be limited to 40 characters. The nested

functions INT (ABS (VAL (Length$))) filters all intentional or

unintentional user errors out of the input. VAL converts the string to a

number. If they are letters or control characters, they are discarded. ABS

converts the number into a positive number; in other words, input

beginning with a minus sign is converted to positive. INT converts

numbers to integers. The field length must be a whole number. If the

user inputs 0, the default value of 40 is used. Hopefully this anticipates

all erroneous input

The loop executes 10 times. Then we have 10 field names, the highest

allowable number.

The Corrections :routine calls the EntryOK: subroutine. It's

used to ask you if your input has an error. If you answer <yes>, the

variable C o r r accepts the corrected input. Then the

ErrorCorrection: routine is called.

Here is where your previously entered data is printed on the screen, in

columns and underneath the field names and field lengths. A

FOR...NEXT loop counts from 1 to NoOfFields. Any field input can

be corrected.

325

All about data AmigaBASIC Inside and Out

The cursor is displayed at each field and asks for new input through a
LINE INPUT. If the answer is a null string, then the previously input

remains unchanged. Any other input replaces the old input. The reading

limitations of the field lengths are identical to the program lines
performing the same function in CreateFile:.

After all corrections are made, the program jumps back to the label
Corrections :, in case you want to make further revisions to your

fields. The routine runs as many times as you want to make
corrections.

. Next comes the OpenFile: routine, which asks for the name that the
Opening a file should find. A FOR...NEXT loop calculates the usable record length
file from the array contents of Length (x). If this record length equals

zero, then no fields have been defined for the record, and the Amiga will
BEEP and return to Begin:.

Otherwise, the random access file opens with the name given in Nam$.

Now we come to the abovementioned FIELD line. You must type this
in carefully as one single line.

As you can see, you can use field variables like Dat $ (x) as parameter

variables. The solution is different from your use of the amount of data

per record, as long as the names and their lengths are variable. Every

element of the data field Dat $ (x) is set into the buffer with the length

Length (x). If this length is made null by unused array elements,

then the overnumbered variables lose no buffer memory.

Finally, the data field in the buffer is filled with spaces, which erases

any current data.

That's the end of the database preliminary routines for the random

access file.

We created a sequential file in which we saved the number of fields

(NoOfFields), the length (RecordLength), the number of data

records from time 0, the field name and its length. The sequential file

has the name of the random access file with the extension .Fids. The

address file is called Addresses. Fids.

If this file is written, it uses Altname $ as the last-used filename and

the program returns to Begin:.

Now that we have a nice, open random access file begging for input,

lets fill it with data:

EnterData:fl

CLS : LOCATE 1,1 : PRINT "Enter data"fl

IF Nam$="" THENfl

LOCATE 3,1 : COLOR 3,0 : PRINT "Enter Filename:"5

COLOR 1,0 : LINE INPUT Nam$U

IF Nam$=ft=" OR Nam$="*" THEN Nam$=Altname$H

326

Abacus a database program

Altname$=Nam$H

END IFK

GOSUB FieldFileExistYNH

IF FileExist=O THENH

COLOR 3,0 : PRINT H

PRINT "Press any key."1I

WHILE INKEY$»"" : WEND : COLOR l,0H

GOTO BeginU

END IFH

GOSUB ReadFileFieldU

RecordNumber=NoOfRecords+lH

OPEN "R",#l,Nam$,RecordLength H

(Here's the long FIELD line again. You could use Copy and Paste

to duplicate it above and paste it here):

FIELD #l,Length(0) AS Dat$(0),Length(1) AS Dat$(l),

Length(2) AS Dat$ (2),Length(3) AS Dat$ (3) ,Length(4) AS

Dat$ (4), Length (5) AS Dat$ (5), Length(6) AS

Dat$(6),Length(7) AS Dat$(7),Length(8) AS

Dat$(8),Length(9) AS Dat$(9)H

Now for some more program lines:

InputLoop:H

CLS : LOCATE 1,1 : COLOR 1,0 : PRINT "Enter new

data"1I

LOCATE 1,25 : COLOR 3,0 : PRINT "File:";1t

COLOR 1,0 : PRINT Nam$U

Inpt=0H

LOCATE 1,50 : PRINT "Record: ";RecordNumber1[

PRINT : COLOR 3, OH

PRINT "Enter new data:" : COLOR l,0H

FOR x=0 TO NoOfFieldsH

LOCATE 5+x,l : COLOR 2,0 : PRINT Fieldname$ (x)": "H

NEXT x : COLOR l,0H

FOR x=0 TO NoOfFieldsH

LOCATE 5+x,LEN(Fieldname$(x))+3H

LINE INPUT Entry$H

IF Entry$<>"" THEN Inpt=lH

Entry$ (x) =LEFT$ (Entry$,Length (x)) H

LSET Dat$(x) - Entry$ (x) H

NEXT x1l

Corrections2:1I

GOSUB EntryOKH

IF Corr=0 THEN WriteRecordH

IF Corr=l THEN EnterCorrectionH

GOTO Corrections2H

EnterCorrection:H

CLS : LOCATE 1,1 : COLOR 1,0 : PRINT "Add Data"1i

LOCATE 1,25 : COLOR 3,0 : PRINT "File:";H

COLOR 1,0 : PRINT Nam$H

H
LOCATE 1,50 : PRINT "Record: ";RecordNumberH

327

All about data AmigaBASIC Inside and Out

PRINT : PRINT 5

FOR x«0 TO NoO£Fields5

LOCATE 5+x,l : COLOR 2,0 : PRINT Fieldname$(x)":

";5

COLOR 1,0 : PRINT Entry$ (x) 5

5

NEXT x5

FOR x=0 TO NoOfFields5

LOCATE 5+x,LEN(Fieldname$(x))+25

LINE INPUT Entry$5

IF Entry$<>"" THEN5

Inpt-U

Entry$ (x) =LEFT$ (Entry$, Length (x)) 5

LSET Dat$ (x) - Entry$ (x) 5

END IF5

NEXT x5

GOTO Corrections25

5

WriteRecord:5

IF Inpt=l THEN5

PUT #l,RecordNuniber5

IF DataFlag=l THEN DataFlag«0 : GOTO ReadLoopl

RecordNuniber=RecordNuinber+l5

END IF5

IF DataFlag=l THEN DataFlag=0 : GOTO ReadLoopfl

NextYN:!

LOCATE 19,1 : PRINT SPACE$(60) : COLOR 3,05

LOCATE 19,1 : PRINT "Next Record (Y/N)";5

COLOR 1,0 : LINE INPUT a$fl

IF UCASE$(a$)="Y" OR a$»"" THEN InputLoop^

IF UCASE$(a$)="N" THEN CloseFile^I

GOTO NextYN^

CloseFile:fl

CLOSE 15

OPEN Nam$+".Flds" FOR OUTPUT AS 25

PRINT #2,NoOfFields5

PRINT #2,RecordLength5

PRINT #2,RecordNumber-15

FOR x=0 TO NoOfFields5

WRITE #2,Fieldname$(x)5

PRINT #2,Length (x) 5

NEXT x5

CLOSE 25

Nam$«flll5

GOTO Begin5

. The EnterData: routine displays its name in the upper left corner of
Entering the screen. If Nam$ has no contents, a new filename should be entered.
data You can also use an equal sign (=) or an asterisk (*) to signify that

you wish to use the last filename used.

328

Abacus A DATABASE PROGRAM

Adding data

Input to

records

After this the following occurs: Normally the single program section

with Nam$ is cleared, followed by the file access. CreateFile: alone

is the exception to this. When you switch from the file preparation to

data input, the data is automatically placed in the file. You can

normally get newly created files from this value. That is why the

function is automatic.

The next call is the subroutine FieldFileExistYN:. It determines

whether there is a field file in existence with the same name.

FieldFileExistYN: puts its result into the variable FileExist. If

the value is 0, then the file is not read. If the value is 1, the file is read.

If the . Fids file exists, then a corresponding random access file is read

as well. We want to determine whether a specific file already exists,

without generating a File not found error. The trick to this is in the

subroutine.

If the file doesn't exist, the system returns to Begin: when you press

any key.

The subroutine ReadFileField: reads the .Fids file that

corresponds to the selected random file. Consequently, the values for the

variables NoOfFields, RecordLength and NoOfRecords are read in

addition to the field names and lengths.

If you want to append new data to your record, type the new

RecordNumber from NoOfRecords + 1. The data will open the

random access file, as well as the FIELD line.

Input Loop:, the actual input routine, displays Enter new data

and prints the current filename in the center of the first screen line.

These formalitites set a variable named Inpt to zero. This variable

stands for Input, and will later convey whether input is found or not.

The right corner of the screen displays the current record number with

which the user is working. Now the new data should be entered. The

program assists with a corresponding prompt From 0 to NoOfFields,

the field names appear on the screen. The cursor moves behind the first

name and waits for input with LINE INPUT. The first non-null input

(anything other than a <SPACE>) sets the variable Inpt to 1. This

signals that correct input will be found there. The input Entry$ is set

into the appropriate field length and then written to the file buffer by

LSET. The array Entry$ (x) marks all current data record input,

regardless of the status of the file buffer.

329

All about data AmigaBASIC Inside and Out

^ m If the loop is running, the user receives more opportunities to correct
Correcting errors. EntryOK: asks the question and divides the duties with Corr.
errors Setting Corr to 1 activates the EnterCorrection: routine. This

routine first displays the text Change Data in the upper left screen

line. The file and record numbers are also displayed. The next

FOR...NEXT loop displays field names and field contents on the screen.

This is followed by the input loop, which should look familiar. After
all corrections are made, the record is written to diskette by the

WriteRecord: routine (but only if Inpt=l).

If DataFlag=l, the end of the input jumps to ReadLoop:. If not,
then RecordNumber is incremented by 1 and a new input can be made.

NextYN: asks the user if he wants another record. If yes, then the file

is set for input. If not, the file is closed and a new .Fids file with the

current values is written. Note that this time Nam$ is cleared before the

jump back to Begin: before it is executed. A new filename must be

input before the next file access.

ReadData:5l

CLS : LOCATE 1,1 : PRINT "Read Data"5l

IF DataSearchKL THEN LOCATE 1,1 : PRINT "Search

Data"5l

LOCATE 3,1 : COLOR 3,0 : PRINT "Enter filename: "51

COLOR 1,0 : LINE INPUT Nam$5l

IF Nam$="»" OR Nam$="*" THEN Nam$=Altname$5I

IF Nam$»"" THEN Beginfl

Altname$=Nam$ 51

51

GOSUB FieldFileExistYN5I

IF FileExist=0 THEN5I

PRINT : COLOR 3,051

PRINT "Press any key."5

COLOR 1,05

WHILE INKEY$="" : WEND5I

GOTO Begin5I

END IF*

GOSUB ReadFileFieldfi

IF NoO£Records=0 THEN5I

PRINT : BEEP5I

COLOR 1,05

PRINT "No records in file!"51

PRINT : COLOR 3,051

PRINT "Press any key. "51

COLOR 1,051

WHILE INKEY$«"" : WEND5I

GOTO Begin5l

END IF5I

IF DataSearch«l THEN GOSUB SearchData5I

OPEN "R",#l,Nam$,RecordLength 51

FIELD #l,Length(0) AS Dat$(0),Length(1) AS Dat$(l),

Length(2) AS Dat$ (2) ,Length(3) AS Dat$ (3) ,Length(4) AS

Dat$(4),Length(5) AS Dat$(5) ,Length(6) AS

Dat$(6),Length(7) AS Dat$(7),Length(8) AS

Dat$(8),Length(9) AS Dat$(9)5I

330

Abacus a database program

RecordNumber=l ?!

You should be able to handle everything here. On to the next routine:

ReadLoop: ?I

CLS : LOCATE lfl : COLOR 1,0 : PRINT "Read Data"5

LOCATE 1,25 : COLOR 3,0 : PRINT "File:11;I

COLOR 1,0 : PRINT Nam$?I

COLOR 3,05

LOCATE 17,1 : PRINT "[Cursor UP] = Previous

Record"?!

LOCATE 17,37 : PRINT "[Fl] = First Record"^

PRINT " [Cursor Down] - Next Record"?!

LOCATE 18,37 : PRINT "[F2] = Last Record"?!

PRINT "[CTRL]-[P] - Print Record"?!

LOCATE 19,37 : PRINT "[HELP] - Alter Record"?!

PRINT "[F10] - Main Menu"; 11

?!

ReadRecord:?!

COLOR 1,0?!

IF RecordNuniber>NoOfRecords THEN BEEP :

RecordNuniber-NoOfRecords?!

IF RecordNumber<l THEN BEEP : RecordNuiriber=l?I

LOCATE 1,50 : PRINT "Record:"; RecordNuniber?!

GET #l,RecordNumber?l

IF DataSearch=l THEN LOCATE 1,1 : PRINT "Search Data"

: GOSUB ExamSearchData?!

IF DataSearch»l AND Found«0 THEOT

IF RecordNuitiber*NoOfRecords THEN Direction=-l?I

IF RecordNumber=NoOfRecords AND FindRecord«0 THENH

CLSfl

LOCATE 5,10 : PRINT "No record found!"?!

LOCATE 7,10 : COLOR 3,01

PRINT "Press any key."5

COLOR 1,0 : BEEP?!

WHILE INKEY$«"" : WEND : CLOSE 1 : GOTO Begin?!

END IFI

IF RecordNumber»l THEN Directional?!

RecordNumber=RecordNumber+Direction?[

GOTO ReadRecord?!

END IF?!

FindRecord=l?l

FOR x=0 TO NoOfFields?!

LOCATE 5+x,l : COLOR 2,0 : PRINT Fieldname$ (x)":

"?l

NEXT x : COLOR 1,0?!

FOR x=0 TO NoOfFields?!

LOCATE 5+x, LEN (Fieldname$ (x)) +3?l

PRINT Dat$ (x) ?!

Entry$(x)=Dat$(x)?l

NEXT xfl

Key$=""?l
WHILE Key$="H : Key$=INKEY$: WEND?!
IF Key$=CHR$(28) THEN RecordNumber=RecordNumber-l :

Direction=-l?l
IF Key$=CHR$(29) THEN RecordNumber=RecordNumber+l :

331

All about data AmigaBASIC Inside and Out

Directionalfl

IF Key$=CHR$(129) THEN RecordNumber»lfl

IF Key$=CHR$(130) THEN RecordNumber«NoOfRecords fl

IF Key$=CHR$(138) THEN EndLoadfl

IF Key$=CHR$ (16) THEM

FOR x=0 TO NoOfFieldsfl

LPRINT Fieldname$(x)":"Dat$(x)fl

NEXT xfl

LPRINT1

END IFfl

IF Key$«CHR$(139) THEN DataFlag=l : GOTO

EnterCorrectionf

GOTO ReadLoopfl

EndLoadrfl

CLOSE lfl

GOTO Beginfl

Before you continue, save the program.

ReadData: writes mode Read Data at position 1,1. The Select:

Reading and section should look familiar. The ReadDat a: subprogram has two
searching modes: Read data and Search data. In search mode, only the

record containing the previously input search key is displayed on the

screen. The variable DataSearch determines which mode is used. If

DataSearch has a value of 1, then search mode is active, otherwise

read mode is active. The first consequence of DataSearch=l is that

another identifier is displayed on the screen—Search Data.

Both modes are identical in the next section. A filename is input. The
last-used filename can be abbreviated with = or *.

The subroutine FieldFileExistYN: is called to determine whether a

file with the given name already exists on diskette. If not
(FileExist=O), then the subroutine prints a corresponding message.

After the message, the user presses a key and the subroutine exits. If the
file already exists, then ReadFileField: reads the file.

It's possible that no data records will be found, which results in a No
records in file! message. After the user presses a key, the program

returns to Begin:. Data must be written into the given file through

menu item 2 (Enter data) before it can be read.

If the search mode is active (DataSearch=l), the subroutine
SearchData: is called, where the user types in a word for the system.

Finally, the random access file may be opened. You've seen the FIELD
command before. Again, you might want to copy this section as you
did with Copy and Paste.

332

Abacus A DATABASE PROGRAM

The program displays the records beginning with record 1. Accordingly,

Data display we set the starting value of RecordNumber with this value.

Now the ReadLoop: begins. This routine reads and displays the data.

The program section begins with a mode identifier, stating the current

file being read. Then the screen setup begins. Beneath the area where the
data fields are displayed, the user gets an overview of the available keys

and their functions within the program. Let's look at which keys do

what.

Flipping

through the

records

NOTE:

The <cursor up> key lets you page back through the records, while the

<cursor down> key lets you page forward. <F1> goes directly to the

first record, and <F2> to the last record. Note that while in search

mode, only the records involved in the search are affected by these keys.
Jumps would be made to the next or previous record containing the

search string. <CTRL><P> prints the current record to the printer, and

the <HELP> key allows you to change the represented record, either for

correction or for updating. <F10> closes the file and returns you to

Begin:.

You can access your data with ReadRecord:. So that you can page

through records with the cursor keys, the program must test whether the

desired record number is too large or too small. In this case, it
determines the allowed values. The record number is displayed in the

upper right corner of the screen. The GET command loads the given

record from diskette into the data buffer.

Now we come to the data search routines. If the search mode is active,
the mode identifier will first be shown (Search Data rather than
Read Data). The program routine called ExamSearchData :

checks to see whether the record read fits the pattern of the search key. If
so, then Found is assigned the value of 1. If not found, it is assigned a
value of 0. The IF/END IF block follows this, and decides what

action is taken if the record does not have the search phrase. If the
upper limits of the record numbers are reached, the direction reverses and
the value becomes -1. The search is executed from back to front, and

will continue until the last record is found.

There is a problem with the search routines. If the current file doesn't
have the search string within any of the records, the program will
continue searching back and forth indefinately. Another problem is that

if the current record is the last record of the file, and no more records
could possibly be searched (FindRecord=0), then the search is
stopped and the No record found!-Press any key message

appears on the screen. Pressing a key returns us to the main menu.

But if the program finds at least one matching record, we can continue.
At the lower limit of the file (RecordNumber=l), the search moves
forward again (Direct ion=l) and looks toward the top of the file for
a search string. Direction is added to RecordNumber and new
records is read. After the END IF, FindRecord can be set to 1,

333

All about data AmigaBASIC Inside and Out

assuming that at least one matching record is found. From this we

come to two operating modes: The field name, then the contents of the

field, are displayed on the screen. The current record contents are marked

at the same time as the array Entry $ (x), so this data can be
corrected.

The WHILE...WEND loop that follows waits for a keypress, and sends

the pressed key to Key$. If Key$ gets the value CHR$ (28), then

you've pressed the <cursor up> key; the record number is decremented

by one. If the search mode is active, we search from back to front.

CHR$ (2 9), the code for <cursor down>, switches the search forward.

<F1> sends a CHR$ (12 9). This tells the computer you want to jump

to the beginning of the file and sets RecordNumber to 1.

CHR$ (130) corresponds to <F2>, and sends the program to the end of

the file. The variable NoOfRecords will contain the last record

number. CHR$ (138) corresponds to the <F10> key. This key returns
you to the main menu, but first closes the file in EndLoad:.

. When you want to print out the current record on a printer, press
Getting a <CTRL><P>. This key combination sends the code CHR$ (16). The
printout field names and field contents are sent to the printer by an LPRINT

command. The blank LPRlNTs place the necessary space between

individual data records on paper.

The <HELP> key (CHR$ (13 9)) lets you perform corrections or input

new data. DataFlag is set to 1 then EnterCorrection :is called.
These variables let the program know what routine to go to for
correction. Then the ReadLoop: is ended by calling it again.

EndLoad: returns the system to the main menu. The random access

file is closed, Nam$ is deleted, and the computer jumps back to
Begin:.

You still need routines to search your data, check whether the field file

you want to search is on the disk, and then read the field file. Go to the

end of the program you've typed so far, and type in the following lines:

SearchData:^

CLS : LOCATE 1,1 : COLOR 1,0 : PRINT "Search Data"fl

LOCATE 1,25 : COLOR 3,0 : PRINT "File:";fl

COLOR 1,0 : PRINT Nam$fl

FOR x=0 TO NoOfFieldsfl

LOCATE 5+x,l : PRINT Fieldhame$(x)":"fl

NEXT xfl

C0K)R 3,0 : LOCATE 4,1 fl

PRINT "Enter search string."fl

334

Abacus a database program

COLOR 1,05

FOR x«0 TO NoOfFields5

LOCATE 5+x, LEN (Fieldname$ (x)) +25

LINE INPUT Entry$5

IF Entry$<>"" THEN5

Search$«LEFT$ (Entry$f Length (x)) 5

SearchNo-x : x»105

ELSE!

Search$=""5

END IF5

NEXT x5

Corrections3:5

GOSUB EntryOK5

IF Corr=0 THEN EndSearch5

IF Corral THEN SearchCorr5

GOTO Corrections35

5

SearchCorr:5

LOCATE 5+SearchNo,l : PRINT

Fieldname$ (SearchNo)ff: "Search$5

LOCATE 5+SearchNo,LEN(Fieldname$(SearchNo))+25

LINE INPUT Entry$5

IF Entry$<>"" THEN

Search$=LEFT$ (Entry$, Length (SearchNo)) 5

GOTO Corrections35

5

EndSearch:5

IF Search$=fMt THEN SearchNo«0 : DataSearch=05

FindRecord=05

RETURNS

5

ExamSearchData:5

SearchLoop:5

x«+15
IF x>LEN(Dat$ (SearchNo))-LEN(Search$) THEN FounaX) :

RETURN5
IF MID$ (Dat$ (SearchNo) ,x,LEN (Search$))«Search$ THEN

Fovind=l : RETURN 5

GOTO SearchLoop 5

5

EntryOK:5

LOCATE 19,1 : COLOR 3,05

PRINT "Entry Okay? (Y/N)";5

COLOR 1,0 : INPUT "",a$5
IF UCASE$(a$)=MY" OR a$-fl" THEN Corr«0 : RETURN5

IF UCASE$(a$)«tlN" THEN Corr«l : RETURN5

GOTO EntryOK5

5
FieldFileExistYN:5

OPEN Nam$+fl.Flds" FOR APPEND AS 15
IF LOF(1)<»0 THEN FileExist=0 ELSE FileExist=15

CLOSE 15

IF FileExist=0 THEN5

LOCATE 3,1 : PRINT SPACE$(60) : BEEP5

LOCATE 3,1 : COLOR 1,0 : PRINT "File ";Nam$5

335

All about data AmigaBASIC Inside and Out

Hints for

data

searching

NOTE:

PRINT "not found! "f

KILL Nam$+".Fldsftfl

Nam$«"" : COLOR 3,0fl

END IFfl

RETURNS

ReadFileField:^

FOR x=l TO 105

Fieldname$(x)="" : Length(x)«0f

NEXT xfl

OPEN Narn$+".Flds" FOR INPUT AS 2fl

INPUT #2,NoOfFieldsfl

INPUT #2,RecordLengthfl

INPUT #2/No0fR€.cords5

FOR x=0 TO NoOfFieldsfl

INPUT #2,Fieldname$(x)fl

INPUT #2,Length(x)fl

NEXT x5

CLOSE 25

RETURNS

SearchData: contains all setups for the search mode. It identifies

the program section and determines the current filename. It displays the

field names on the screen, followed by Enter search string. You

have the option of inputting a string that tests all the fields in every

record.

If you want to look for every record in your collection by Elton John,

you'd enter the string Elton John in the Artist field. The program

then looks for the records in which the Artist field contains Elton

John. If you had entered the search text Elton John in the Title

field, for example, the Amiga would look for any references to Elton

John in the Title fields, where it might find Elton John's

Greatest Hits. This lets you see what follows the found search

strings, as well as the search strings themselves. It would be sufficient

to type John in the Artist field, although this would also give you

references to Olivia Newton-John and Robert John. You'd probably get
better results by using Elton as your search string.

Uppercase and lowercase lettering are matched exactly in the search. If

you had input John, you would not find Elton John. You can use this

search technique in an address list by searching by zipcode or telephone

number exchange. When you press the <SPACE> bar or single

character such as <e>, the computer will find as many listings which
contain the search pattern.

And how did we program all this?

336

Abacus A DATABASE PROGRAM

How the

search

routines

work

Corrections

The SearchData: section runs through the input loop. You can

move through all the fields by simply pressing <RETURN>, until you
reach the area into which you wish to input a search string. This input

is stored in the variable Search$. SearchNo contains the number of
fields that are compared. Corrections3: offers a correction option.

You can still only change the contents of Search$, and the selected

field is already taken.

EndSearch: jumps back to the line from which the subroutine was

first called. If Search $ has no contents, the search is aborted:
SearchNo and DataSearch each get the value 0. If 0 is in the

variable FindRecord, it can later be determined whether a record was

really found according to the last used search criteria.

ExamSearchData: is the section where the current record is tested

for the search string. The loop SearchLoop: runs until all possible
positions are compared between Dat $ and Search$. We get a partial
string from Dat $ by taking a section of the string the same length as

Search$. When x becomes greater than the length of Dat $ minus

the length of Search$, Search$ is assumed as not found in this

data record. Found is set to 0, and the subroutine returns. If the partial
string is found, Found is set to 1. The computer will jump back with

RETURN.

The next program section, Ent ryOK:, is called several times. This
determines whether the user wants to correct any input. The question
Entry Okay? (Y/N) appears on the screen, and INPUT waits for a

response. INPUT ff"f a$ suppresses the question mark. Pressing

either <n> or <SPACE> sets Corr equal to 0; no correction. We'll

accept any blank string, in order to make work with selection as fast as

possible, ended with <RETURN>. If you press <y>, Corr is set to 1.

The program then continues execution at the next routine.

The subroutine FieldFileExist: has already been mentioned here:

The . Fids file is checked to see if the given file actually exists. If you
want to open a reading file that isn't available, you get a File not

found error. The program ends, and the old contents are erased—that's

not a good solution. We can solve this problem with the APPEND

mode. When you open a sequential file FOR APPEND, then new records
are appended to the old entries without deleting them. If no file exists, a

new file is created.

Thus, we open the .Fids file FOR APPEND, and check it with the
LOF (1) for file length: If it is 0 or -1, there is no data in the file. You
must use APPEND for initially opening a file, since it doesn't yet exist
Therefore, FileExist=0 ELSE FileExist=l. If FileExist

has a value of 0, the message indicating that this file was not found is

displayed.

337

All about data AmigaBASIC Inside and Out

Last but not least, is the subroutine ReadFileField:. When the
.Fids file is read, this subroutine examines its contents. First a

FOR...NEXT loop deletes the contents of FieldName$ (x) and

Length (x). Since these read files have used fewer fields than the last

used, the old field name will remain stored, for a reason you'll see later.

Then the values for the number of fields per record (NoOfFields), the

total record length (RecordLength) and the past number of records in

the file (NoOfRecords) is loaded. The program can then use these to
open and access the file.

If you haven't saved this program yet, do it now! When that electrical

storm hits, or when someone trips over the power cord, you'll thank us
for reminding you.

338

Abacus USING THE DATABASE

5.3
A database is what you put into it:

using the database

All the important information you need to use this database program is

found in the previous program explanations. This section offers a few

helpful tips for using your AmigaBASIC database.

The most common use for a computer is data processing. But data

processing can be used for more than business—it could be used for fun

as well. You can store recipes, poems, videotapes, books, care

instructions for your houseplants, unsavory data about fellow

employees, football scores, stamp collections, your Amiga programs,

notes about newspaper articles, favorite restaurants—whatever you can

dream up, you can store it in your new database.

The first step is to create a new file with menu item 1. You can specify

up to 10 field names, as well as the length for each field. The

maximum field length is 40 characters. This value is the default if you

don't provide field length parameters—for example, if you simply press

<RETURN> in response to Name. Figure 16 shows typical input in

this mode:

Figure 16:

Database

program in

Create

File mode

339

All about data AmigaBASIC Inside and Out

Press <RETURN> twice to signal the database that you are through

creating your file field. Now you have the option of correcting any

typing errors. If you have made a mistake, then press <n><RETURN>

to answer the question Entry Okay? (Y/N). The cursor will be

displayed in the first data field. Either type in the new input or press

<RETURN>. When everything looks right, and you've pressed

<RETURN> to get through the rest of the fields, the program will ask

you Entry Okay? (Y/N) again. Answer <y><RETURN>. The

program will then ask you to Enter Filename:. Type the name

you want to call the file and press <RETURN>. The program opens the

two disk files and returns to the main menu.

You'll go directly to input mode when you choose item 2 (Enter

Data). If you have not created a file immediately before going to this

option, you must type a filename. The last filename used can be

abbreviated to = or *. This is especially practical when you want to

change between reading data and searching data in input mode.

A mask that includes your field names appears on the screen. The cursor

is in the first data field of the current record. Type in the data, and

remember that you'll get to correct your mistakes later. A completely

empty record will not be saved; instead, the input procedure is repeated.

When you answer the question Next Record (Y/N) with <y> or

<RETURN>, you'll go on to the next input. Answering <n> closes

the file and returns you to the main menu.

Menu item 3 displays the contents of a file. Input the filename or the

abbreviation = or *. If you don't provide a filename, or if no records

exist, the program will ask for input again. Beneath the data area, you'll

see the available keys and options printed in orange. You can flip

through the records either forward or backward, jump directly to the first

or last record, print the contents of a record, or alter the screen. The
<F10> key returns you to the main menu.

340

Abacus USING THE DATABASE

Figure 17:

Database

program in

Read Data

mode

In closing...

Menu item 4, theDataSearch mode, allows you to search all

records for your specified search criterion. Only the records in which the

criterion is found are displayed.

After selecting Search file, you type the filename to be searched.

The program displays the field names on screen, and asks you to input a

search string in one of the fields. This search string is searched for in all

the data records. After any input corrections, the program opens the file

and begins searching. When at least one record is found containing the

search string, the program displays the found record. Otherwise the No

record found message is displayed. The record found can be

handled as you would in Read Data mode. The program will only

exit the routine when the final record is displayed.

Your data should be handled with the same caution that you use in

handling your money. It's possible that your data might get mixed up

or destroyed, and many personal things that you were keeping in the

database may be lost

What next? Well, we're not quite finished with data processing. Quite

the contrary. You may wonder what data has to do with computer

speech, or even computer music, but the next section will tell you all

about it.

341

Speech in BASIC

Abacus Speech in BASIC

AmigaSpeak:

Speech in BASIC

Conversations with your Amiga have been one-sided—until now.

You'll soon see that just because the Amiga speaks only when spoken
to doesn't mean that it has nothing to say.

The Amiga has all of the hardware and software necessary to generate
computer speech that's amazingly understandable. Perhaps you have

already heard it talk. The Woikbench demos have speech programs, and

you will also find examples of Amiga's eloquence in the

BASICDemos drawer from the Extras diskette.

For the rest of this section, we assume that you have hooked your

Amiga to an auxiliary speaker of some sort. The monitor's built-in

speaker will do nicely, but there's nothing wrong with running the

Amiga's sound channel through a 200-watt stereo system. Whatever

you use, set the volume to a comfortable level, out of consideration for

the neighbors. We will be trying out noises and special effects later, and
not many people would be amused by an "attack imminent" siren.

345

Speech in BASIC AmigaBASIC Inside and Out

6.1
The third teaser:

the Amiga speaks

You'll recall we had no short samples in the chapters on file

management There's a reason for this: It's almost impossible to give a

simple but meaningful demonstration of the Amiga's file handling. We

had to explain in detail before we could do anything at all with files.

Now for some fun with your Amiga. Type in this simple program:

Text$="Amiga"H

Begin:^

Field% (0)=90+180*RNDU

Field%(2)=50+200*RNDfl

Field%(3)«RNDfl

Field%(4)=17000+10000*RNDfl

Field%(5)=40+24*RNDfl

Field%(6)=ll*RNDfl

SAY TRANSIATE$(Text$),Field%fl

GOTO Begin

You can use your Speech drawer for the first time when you save this

program. Type the command CHDIR ": Speech" first to save the

program in this drawer.

When you run the program, AmigaBASIC calls up the Workbench. If

you only have one disk drive, or if the Workbench is not presently in

one of your drives, a requester will ask for the Workbench disk. After a

short pause for loading, your Amiga begins to say its own name in

many different voices, speeds, tone frequencies, and loudnesses.

Your Amiga already has a split personality, doesn't it? If you don't

want it to talk about itself all the time, you can substitute other values

for Text $.

Do you want to learn to make your Amiga a veritable William Safire

among computers? Then read the next section.

346

Abacus SAY AND TRANSLATES

Say it with phonemes:

SAY and TRANSLATE$

Translating
text for the

Amiga

Making a

bilingual

Amiga

In the last sample, you already used the two most important commands

of speech synthesis: SAY and TRANSLATE $. The SAY command

creates artificial speech. However, it cannot function on its own. If you

try to get your Amiga to speak by typing a command like this in the

BASIC window:

SAY "Amiga" f

you will get an Illegal function call error message. The SAY

command does not directly pronounce the contents of a string.

First the text has to be translated into a form the Amiga can

understanAThis is where the TRANSLATE$ command comes in:

Text$=TRANSLATE$ ("Amiga") fl

SAY Text$fl

It translates the text into a form which SAY can handle—a form called a

phoneme code, which we will discuss later. We will now attempt to

make the Amiga speak an entire sentence. It would be wise to enlarge
the display area on the screen first*

width 60

Otherwise, some of the sentence would disappear behind the right edge

of the display. Once this is done, we get back to work:

Text$*"This is your Amiga speaking. I feel good. How are

Text$=TRANSLATE$(Text$)fl

SAY Text$fl

If you don't know the text ahead of time, you have to concentrate a

little to understand the Amiga, but it gets easier the more you work

with it.

Say you want to make the Amiga speak another language, German for

example. This is a problem, since the Amiga is a native-born American

and doesn't know any foreign languages particularly well. To

demonstrate, let's try a version of the above program which tries to say

roughly the same thing, only in German:

347

Speech in BASIC AmigaBASIC Inside and Out

Phoneme

codes

Rewriting

the language

Text$="Hallo, hier spricht Ihr Amiga. Wie geht es

Ihnen?"fl

Text$=TRANSLATE$ (Text$) f

SAY Text$

The first sentence sounds okay to a German ear, but the Amiga

mispronounces the second sentence badly, saying "Wy jate ess innen"

instead of "Vee kait ess eenen."

As we already mentioned, the SAY command only understands text

formatted in a special code. This code is called phoneme code. To see

what the foreign sentence "Wie geht es Ihnen?" looks like in phoneme

code, type this in:

Text$=*"Wie geht es Ihnen?"fl

Text$=TRANSLATE$ (Text$) I

SAY Text$fl

? Text$fl

The following then appears on the screen:

WAY4 JEH4T EH4Z IH4NEHN.

This is what a phoneme string looks like. It is the translation of "Wie

geht es Ihnen?" using the TRANSLATE $ function. You can now see

that the SAY function is not to blame for the mispronunciation of the

German. The blame lies with TRANSLATE $, which assumes that all

text given it is in English.

There are two ways that the existing AmigaBASIC can produce

reasonably correct German. The first would be to rewrite TRANSLATE$

to work with other languages. Whether Commodore or Microsoft are

planning to do this, we don't know. The second method would be to

create our own German phonemes. The third is to trick the

TRANSLATE $ routine; we could rewrite the sentence in American

sound spellings, somewhat like a basic book phrase, so that the result

sounds more or less German. An example:

Text$=TRANSLATE$ ("Vee kaiht ass eenan")U

SAY Text$

However, to do this correctly, you have to be very familiar with both

English and the language with which you're working, or else subject

yourself to a lot of trial and error.

Let's look at the phoneme code translation:

? Text$1I

Response:

VIY4 KEY3T AE4S IY4NAEN.

348

Abacus SAY AND TRANSLATES

But capitals
do

The phoneme is an idea from linguistics, and means "sound." The

Spelling phoneme code is a form of phonetic writing which has very little to do
doesn't with the correct spelling of a word, but is concerned with how the word
count here is pronounced. IY is the phoneme for a long "e", like in "bee" or "eat."

Thus, two sets of letters can be represented by the same phoneme. The

number 4 is a stress mark. It can be any number from 0 to 9, and

determines how strongly a syllable is stressed.

One very important thing about creating your own phonemes: They

must be typed in using capital letters. One lowercase letter will give

you an Illegal function call error message.

Let's try our own phoneme string. Type in the following:

Text$="VIY9 GEY3T AE1S IY6NAEN?"fl

SAY Text$fl

This version of "Wie geht es Ihnen?" is strongly stressed in the first

word, less so in the second and third, with a bit of an accent on the last

word. If you do not speak German, try and find someone who does, and

see what he thinks.

The format of phoneme code follows strict rules. You can't just

substitute letters for sounds when you feel like it. If you want to work

with phonemes in more detail, and have the ambition, we recommend

you read Appendix H of the AmigaBASIC manual. It thoroughly

explains how to build phoneme codes.

AmigaBASICs SAY and TRANSLATE $ routines are stored under the

narrator name narrator .device in the Workbench. These routines gre

device loaded on the first use in AmigaBASIC of SAY or translate $.

When you restart the translation program, the Amiga goes immediately

to the Workbench. This is so the Amiga can jump to these routines as

quickly as possible when they are called. They consistently take up 30K

in RAM. Every NEW and RUN command deletes narrator. device

from memory, and then must be reloaded every time the speech

commands are used.

NOTE: There are occasions when the translation routine is supposed to be
deleted, but the Amiga doesn't cooperate—it stays in memory. The

partnership between AmigaBASIC and the Workbench is not as friendly

as you might think. That's when TRANSLATE $ is dropped and every

SAY command gives an Illegal function call error. We have

no cure for this problem, aside from reloading the Workbench. Don't

forget to save everything before reloading.

The problem occurs most frequently when you use the speech

commands in direct mode immediately after deleting a speech program.

It won't affect your speech program, so don't panic.

And now, let's get back to the Amiga and the spoken word.

349

Speech in BASIC AmigaBASIC Inside and Out

6.3
All talk, no music:

options with the SAY command

The really interesting thing about the example in Section 6.1 was

the amount of variation possible in the Amiga's voice. It can speak

high or low, fast or slow, accented or monotone, male or female. If you

were patient and sat through the entire program, you probably heard

some impressive examples, as well as some funny ones. The next

question is, how can you program these examples yourself? It's not

difficult, as you will soon see. The number of options and the extent of

the Amiga's abilities are really all that may be confusing you. Before

we start, please clear the program from the LIST window. We are

going to write a test program section by section.

First, a basic principle: You can specify an integer array of up to nine

Defining an elements after the text in the SAY command. More than nine elements
array for would accomplish nothing—SAY uses the first nine and ignores the

SAY extra elements. So the first thing you type in the LIST window

should be:

DIM speech%(8)

You already know that DIM speech% (8) allows ninfielements,

because the first element is zero, not one. It is really no great loss if

you leave the DIM statement out of a speech program. Default

dimensioning is 10, so only two bytes are wasted.

Each of the nine elements is a number that represents a certain property

or mode of the resulting voice. In this program, we want to read these

numbers from DATA statements:

\ FOR x=0 TO 85

READ Speech%(x)fl

NEXT x$

Now we need some way to input the text to be spoken:

speechinput: f

LINE INPUT "Text: ", typein$fl

If typein$<>"=" THEN text$=<typein$fl

speech$=TRANSLATE$ (text$) fl

CLS : PRINT text$fl

SAY speech$, speech%: 'Note the two different

speech variables^

GOTO speechinput^

We have constructed the program in such a way that you can repeat the

last sentence you entered by typing <=><RETURN>.

350

Abacus OPTIONS WITH THE SAY COMMAND

Voice

parameters

Base

frequency

Inflection

Rate

Voice

Here we go! With the following line, the Amiga will have a new voice:

DATA 140,0,160,0,22000,64,11,1,0^

Now try the program out. You'll notice that Amiga's voice has really

changed. It sounds a little higher and softer than the original voice. The

change is caused by the DATA statements, so let's look at what these

numbers do.

The first value in the integer field specifies the base frequency of the

voice. This value essentially decides the pitch of the voice, its most

important quality. The allowed values for the base frequency are 65

(very, very deep) through 320 (a real squeaky voice). The default base

frequency value is 110. We have chosen 140, which is a bit higher.

You can specify any base frequency that suits you. Experiment with

any number within the allowed range, and listen for yourself.

Change the listing for a moment, and set the base frequency to 80.

Quite resonant, don't you think? Try the extremes, 65, which sounds a

little morbid, and 320, which sounds unnaturally high. Now find a

frequency that you prefer, and use it

The second value in the integer field can be 0 or 1. This value regulates

inflection. 0 means inflection as found in normal speech. 1 yields a

completely monotone ("computer") voice. Naturally, the human voice

sounds nicer, but if you want to intentionally make your Amiga sound

like a robot, or to show off how much better the natural Amiga sounds

than a simple monotone, you know how to do it. The AmigaBASIC

default for this value is 0 (inflected speech).

The third value is really fun to play with. It represents the rate (number

of words per minute). The AmigaBASIC default rate is 150. We had the

Amiga speak a little faster with a value of 160. Change the speed to

350 and type "The big black bug bled black blood" or "Unique New

York." Try to say the phrase yourself at the same speed. Allowed values

for rate of speech are 40 through 400. At the faster rates, there is the

danger that Amiga will overtake itself and swallow syllables.

Conversely, very slow speeds (below 70) will put you to sleep.

The fourth value chooses the gender (sex) of the voice. The female

voice often sounds very similar to the computer onboard a certain

starship in a certain TV series. 0 (the default) creates a male voice, and

1 selects a female voice. To produce a true female vocal sound, you

must use a higher base frequency (try 240).

351

Speech in BASIC AmigaBASIC Inside and Out

This next value should also be modified for a female voice. Try setting

Tuning it to 23000. This value sets the tuning, or sampling frequency. Those
words may not mean anything to you-we'U talk some more about it in

Chapter 7: Sound and Music. For now, let's just say that it

affects both the tone of the voice and the base frequency. The value may

be any number between 5000 and 28000. The Amiga's default value is

22200, and ours is only a little higher. You should be careful when you

try variations at first, because even the smallest changes make a big

difference in the voice quality.

The sixth value is much simpler. Here, we choose a volume between 0

Volume and 64. We are using the highest volume, just like AmigaBASIC. This
value is useful for programming conversations or multiple voices,

where different volumes are desired. Remember that the volume control

on your monitor or stereo is also working, and that both the volume

control and the sixth field value will determine the total loudness.

The seventh value sets the output channel to one or more sound

Channel channels. You need to pay attention to this only when you can hook up
your Amiga to some kind of stereo device. The monitor's speaker only

has monoraul output, and sends everything to one speaker. However,

the Amiga is fully equipped for stereo. A total of four channels are

assigned to the left and right speakers. Channels number 0 and 3 (the

highest and lowest) represent Amiga's left outputs. The middle values,

1 and 2, represent the right outputs. You can achieve neat stereo effects

by changing the channels correctly, or a conversation between right and

left, at the very least

There are a few limitations to the Amiga's true "stereo" capabilities. An

echo effect exists in a true stereo system, where, even when just a

single voice is being transmitted, a slightly different signal is sent to

each speaker, instead of the exact same signal. The Amiga does not

have this capability. In addition, a normal stereo will have at least a

trace of every signal sent to each speaker. The Amiga has no such

effect. This sounds unnatural, especially when you're wearing

headphones. If a sound is sent to the left channel only, the right speaker

is completely dead. This sounds better on free-standing speakers, where

the echo effect is stimulated by the room acoustics.

There are twelve possible channel combinations, as listed in Table 10:

352

Abacus OPTIONS WITH THE SAY COMMAND

Table 10:

channel

setups for

the SAY

command

7th value in

integer array

0

1

2

3

4

5

6

7

8

9

10

11

channel/channels

channel 0

channel 1

channel 2

channel 3

channels 0 and 1

channels 0 and 2

channels 3 and 1

channels 3 and 2

all free left channels

all free right channels

any free pair

any free channel

remarks

left

right

right

left

stereo

stereo

stereo

stereo

0 and/or 3

Iand/or2

default value

About "free

channels"

Mode

Control

A channel can already be occupied by a previous program or BASIC

command. This only happens if a sound is already being created. A

channel is free if no sound is being sent on it.

You can use the given value to send your speech on any combination of

channels. When other SAY commands or sound commands are running,

you can choose one of the options that uses free channels.

AmigaBASIC uses the value 10 (any free left-right pair) as its standard

value. You used the value 11 (any free channel) in our DATA

statements. Remember: These experiments work only when a stereo

system is connected to the Amiga.

The last two values in the integer array decide how the Amiga should

behave when other commands follow a SAY command.

The eighth value is the synchronizaiton mode. If this value is 0,

AmigaBASIC performs synchronous speech output. That is, it waits

until the output of the SAY command is completely executed before it

executes any of the commands following it. 1 generates asynchronous

speech output. This works in a manner similar to OBJECT commands,

in that it simply starts the speech and executes the next commands at

the same time the speech is being output. The speech can run in the

background while AmigaBASIC performs other tasks. AmigaBASIC's

default synchronization mode is 0.

The ninth value is control (narrator. device control) is in effect

only when the eighth value is set at 1 (asynchronous output speech

output) for background execution. It determines how the Amiga should

behave when it encounters a SAY command while it is executing

speech. 0 starts each SAY command only after the previous one has been

executed. 2 interrupts the current output, and the new SAY command is

executed immediately.

353

Speech in BASIC AmigaBASIC Inside and Out

The 1 was left until last for a good reason. It has nothing to do with the

0 and 2 values. A 1 deactivates the SAY command and makes it

completely independent of all else that goes on. It can be used in larger

programs. The SAY command is toggled on or off through a variable

which contains a 0 for speech or a 1 for silence.

There we have it. There were a lot of options, weren't there? Experience

should tell you that a lot of experimentation will let you find the most

pleasant voice. To save you a lot of needless work and waiting time

(every time the program starts, a new narrator. device file is

created), we'll write a speech utility program in the next section.

354

Abacus THE SPEECH UTILITY

6.4
When all is said and done:

the speech utility

This next utility helps you experiment with the different voice options.
When you find a voice that you want to use later, you can store it and

add it to your programs with MERGE.

NOTE: First, remember to set the Amiga to 60-character screen mode. As

we've said before, you can set this mode using Preferences.

BuildScreenril

CLSfl

PALETTE 0, .1, .1, .4fl

LOCATE 2,2 : PRINT "Text:"5

LINE (60,7)-(612,18),l,M

LOCATE 19,45

11
PRINT "Freq. Speed Tuning Volume" 11

LINE (40,30)-(65,160),l,bH

LINE (120,30)-<145,160),l,bU

LINE (205,30)-(230,160), 1,M

LINE (285,30)-(310,160),l,bH

LOCATE 5,44 : PRINT "Male Female"H

LINE (420,30)-(495,48),l,b1I

LINE (510,30)-(585,48),l,bH

LOCATE 8,44 : PRINT "Human Comp."1I

LINE (420,57)-(495,75),l,bU

LINE (510,57)-(585,75),l,bU

LOCATE 11,47 : PRINT "Speak"H

LINE (450,84)-(555,102),l,bH

LOCATE 15,47 : PRINT "Store"U

LINE (450,120)-(555,138),l,bfl

The BuildScreen: routine constructs a system of labels and
Setting up gadgets. As you have seen in previous examples where we played with
the screen screen color, we have darkened the blue Workbench to make it look

better. The top line accepts the input for the text to be spoken. Beneath
this are the four sliders for adjusting the base frequency, the speech rate,
the tuning, and the volume. All of these values can be adjusted within

their full ranges.

Next to these are a pair of gadgets to select a male or female voice, and
one used to determine inflected (human) or unaccented (computer) voice
output. Below these, one gadget executes the speech with the presently
displayed values. You click the last gadget when you want to store the
present values for later use. Figure 18 shows how the screen should
look, so you can tell if you typed in the program correctly:

355

Speech in BASIC AmigaBASIC Inside and Out

Figure 18:

Speech

utility

program—

main menu

StartingValue:II

FOR x=0 TO 8fl

READ Speech%(x)fl

NEXT xfl

DATA 110,0,150,0,22200,64,10,0,05

GOSUB ShowValuefl

MainLoop:fl

ON MOUSE GOSUB ReadMousefl

MOUSE ONfl

WHILE 1 : WENDfl

StartingValue :places the AmigaBASIC default values for the

SAY command into the integer array Speech%. You can change any of

these values as the program runs, but we have to start somewhere; this

is why we provided these values for the DATA. If you would rather start

with different values, you can change the DATA statements without

causing any problems. However, it's important that you include a

DATA line. Toward the end of this section we call the ShowValue:

routine, which redisplays the sliders and gadgets to match the current

values in the integer array.

MainLoop: should tip you off that this program runs with event

trapping as well. The mouse and the keyboard are used only for our user

input, because pulldown menus are really not needed in this program.

356

Abacus the speech utility

ReadMouse:^

Test-MOUSE (O)fl

x=M0USE(3) : y~MOUSE(4)fl

IF x>39 AND x<311 AND y>29 AND y<161 THENfl

IF x<66 THENfl

Frequency:5

Speech% (0) - (255- (y-30) * (255/130)) +6511

Fretftelue- ((320-Speech% (0)) /255) *130fl

LINE (41,31)-(64,31+Frec[Value),0,bffl

LINE (41,32+FreqValue)-(64,159),3,bffl

y=MOUSE(6)fl

IF y<31 THEN y*31fl

IF y>159 THEN y=159fl

IF MOUSE(0)<=-l THEN Frequency!!

END IFfl

You should copy the last program lines (following IF x<66) using
Copy from the Edit menu and then paste it in three times with
Paste. These program lines will be used four times, with minor
alterations. The three copies follow immediately after the original, then

the program executes normally.

IF x>119 AND x<146 THENfl

Speeds

Speech%(2)-(360-(y-30)*(360/130))+405

SpeedValue*((400-Speech%(2))/360)*130fl

LINE (121,31)-(144,31+SpeedValue),0,bffl

LINE (121,32+SpeedValue)-(144,159),3,bffl

y=MOUSE(6)H

IF y<31 THEN y=31fl

IF y>159 THEN y=1591

IF MOUSE (0)<«-l THEN Speedfl

END IFI

IF x>204 AND x<231 THEM

Tuning:^!

Speech% (4) - (23000- (y-30) * (23000/130)) +500051

TuningValue«((28000-Speech%(4))/23000)*130fl

LINE (206r31)-(229,31+TuningValue),0bf5

LINE (206f32+TuningValue)-(229,159),

y

IF y<31 THEN

IF y>159 THEN yfl

IF MOUSE (0)<=-l THEN Tuning^

END IF1

IF x>284 AND x<311 THENH

Volume:^

Speech%(5)=(64-(y-30)*(64/130))\

VolumeValue=((64-Speech%(5))/64)*
LINE (286,31)-(309,31+VolumeValue),0,bffl

LINE (286,32+VolumeValue)-(309,159),3,bffl

y=MOUSE(6)!I

IF y<31 THEN y»3H

IF y>159 THEN y»159fl

IF MOUSE (0)<=-l THEN Volume^

END IFfl

357

Speech in BASIC AmigaBASIC Inside and Out

END IF!

IF x>419 AND x<496 AND y>29 AND y<49 THEN!

Speech%(3)=0!

PAINT (422,32),3,1 : PAINT (512,32),0,11

END IF!

IF x>509 AND x<586 AND y>29 AND y<49 THEM

Speech%(3)=l!

PAINT (422,32),0,1 : PAINT (512,32),3,lfl

END IF!

IF x>419 AND x<496 AND y>56 AND y<76 THEN!

Speech%(l)=0!

PAINT (422,59),3,1 : PAINT (512,59),0,15

END IF!

IF x>509 AND x<586 AND y>56 AND y<76 THEM

Speech%(l)«l!

PAINT (422,59),0,1 : PAINT (512,59),3,11

END IF!

IF x>59 AND x<613 AND y>6 AND y<19 THEN!

LOCATE 2,8 : PRINT SPACE$(54)!

LOCATE 2,8 : LINE INPUT Text$!

END IFfl

IF x>449 AND x<556 AND y>83 AND y<103 THEN!

PAINT (452,85),3,1!

SAY TRANSLATE$(Text$),Speech%!

PAINT (452, 85), 0,1!

END IF!

IF x>449 AND x<556 AND y>119 AND y<139 THEN!

PAINT (452,121),3,1!

LOCATE 2,8 : PRINT SPACE$(54)!

LOCATE 2,8 : COLOR 0,3 : PRINT "Filename:";!

COLOR 1,0 : LINE INPUT Nam$!

IF Nam$O"" THEN!

IF Nam$="=" OR Nam$="*" AND Altname$<>"" THEN

Nam$=Altname$!

OPEN Nam$ FOR OUTPUT AS 1!

PRINT #1, "REM DATAs made with AmigaBASIC-

Talker"!

PRINT #1, "DATA ";!

FOR x=0 TO 7!

PRINT #l,Speech%(x)",";!

NEXT x!

PRINT #l,Speech%(8)!

CLOSE 1!

Altname$«Nam$!

END IF!

LOCATE 2,8 : PRINT SPACE$(54)!

I£CATE 2,8 : COLOR 1,0 : PRINT Text$!

PAINT (452,121),0,1!

END IF!

!

RETURN!

358

Abacus
THE SPEECH UTILITY

Reading the

mouse

Sliders

Gadgets

The program spends most of its time in the ReadMouse: routine.
First, we call MOUSE (0) and assign the result to a dummy variable
called Test. We want only the most up-to-date values for the mouse

position.

We use the functions MOUSE (3) and MOUSE (4) to determine the X-

and Y-coordinates of the mouse position. (If you don't remember the
mouse functions very well, look back to Section 2.9 or Appendix
B.4). MOUSE (3) and MOUSE (4) return the coordinates when the
mouse button is pressed, calling a subprogram. These values are used
because we are only interested in the position of the mouse when the

mouse is clicked.

Then the pointer position is checked relative to the fields on the screen.

Where did the click occur? If the mouse was clicked somewhere in the
slider area, the program jumps to an independent program routine for
each slider (Freq, Speed, Tuning, and Volume). These four
routines are the same except for the numbers, data, and names.

We will go through the first slider Freq. (frequency) as an exercise.
Since the rest of the slider routines work exactly the same way, we will
spare you the tedium of explaining each one of them.

If the mouse pointer is located in the Freq. slider, we first determine a
new frequency and write it into the field Speech% (0). The variable
FreqValue contains the calculated value of the coordinates that
correspond to this frequency. The first of the two LINE commands uses
the blockfill option to fill the area above the mouse position blue. The
second LINE command colors the area below the mouse position
orange. We end up with a bar graph that rises with increasing frequency,

like the mercury in a thermometer.

y is the current position of the mouse at the click. If y is outside the
allowed values for the graph (31 to 159), the adopted value will be the
minimum or maximum value, depending on the pointer's position. If
MOUSE (0) is less than or equal to -1, this means that the mouse
button is still pressed. In this case, the indicator will be repositioned
again, because program control will loop back to the label.

The other slider routines manipulate their values in the same way using
the appropriate data. Next we check the gadget marked Male. If you
have clicked there, the variable Speech5* (3) is assigned the
corresponding value (0). The Male gadget changes color, and the
Female gadget is filled with the normal background color. The next
block checks to see if the click was in the Female gadget or not. If so,
Speech% (3) is set to 1, the Male gadget is filled with the normal
background color, and the Female gadget changes color.

359

Speech in BASIC AmigaBASIC Inside and Out

The third Human gadget produces inflected speech when clicked.
Speech% (1) is set to zero, and the gadgets change color accordingly:

Human on, Comp. off. The fourth Comp. gadget accomplishes exactly

the opposite of the Human gadget when clicked. Inflected speech is
toggled to the monotone voice. Speech% (1) is set to 1, the Human

gadget is filled with the background color, and the Comp. gadget
changes color.

The next routine accepts the input of the string to be spoken. Note that

this input must be ended with <RETURN> before normal event
trapping can resume. If the coordinates of the mouse click are within

the Speak gadget, a SAY command uses all of the present data, and
presents you with the desired (or undesired) speech.

The next program routine controls the storage of the DATA file. We use
Saving the the text window for filename input We clear space with SPACE $ and
data read the name in (= and * can be used as abbreviations for the last-used

name). If the name is not a null string, the file opens.

We're doing something tricky here, since the computer cannot tell the

difference between a sequential file and a BASIC program in ASCII

format. We are writing a series of commands into a file that we can
later add to another program using MERGE.

The REM line simply gives credit where credit is due—it tells where the

data came from. The next line contains the DATA statement, followed

by eight single numbers from Speech% (x) separated by commas.

The ninth value is written by itself following the loop, because the last

value after a DATA statement cannot be followed by a comma. This
completes the routine, and the file can be closed.

Altname$ stores the present filename so that we can use the

abbreviations = and * next time. Now we have to pay for all of this

user-friendliness and put everything back the way it was before we

started. A SPACE $ removes the filename and the old Text$ is put

back in its place. PAINT fills the Store gadget blue (it was orange
during the save operation).

The RETURN at the end of the ReadMouse: routine returns control to
the MainLoop: section, where the infinite WHILE...WEND loop does
what it does best.

We are still missing the subroutine that positions the gadgets and field
choices at the beginning of the program:

360

Abacus
THE SPEECH UTILITY

PAINT <512,32),O,1H

PAINT (512f32),3,151

PAINT (512,59),0,111

PAINT (512,59),3,15

Problem?

ShowValue:fl

LOCATE 2,8 : PRINT SPACE$(54)fl

LOCATE 2,8 : PRINT Text$fl

IF Speech%(3)»0 THEM

PAINT (422,32),3,1

ELSEH

PAINT (422,32),0,1

END IF!

IF Speech%(l)=0 THEM

PAINT (422,59),3,1

ELSE5

PAINT (422,59),0,1

END IF!

FreqValue- ((320-Speech% (0)) /255) *130fl
LINE (35,31+FreqValue)-(70,31+FreqValue)11
LINE (41,31)-(64,31+FreqValue),0,bfH

LINE (41,32+FreqValue)-(64,159),3,bffl

%
SpeedValue-((400-Speech%(2))/360)*130fl

LINE (115,31+SpeedValue)-(150,31+SpeedValue)fl

LINE (121,31)- (144,31+SpeedValue),0,bfH

LINE (121,32+SpeedValue)-(144,159),3,bff

TuningValue«< (28000-Speech%(4))/23000)*130I
LINE (200,31+TuningValue)-(235,31+TuningValue)fl

LINE (206,31)-(229,31+TuningValue),O,bfH

LINE (206,32+TuningValue) - (229,159), 3,bfII

VolumeValue= ((64-Speech% (5)) /64) *130fl
LINE (280,31+VolumeValue) - (315,31+VolumeValue) fl

LINE (286,31)-(309,31+VolumeValue),0,bffl

LINE (286,32+VolumeValue)-(309,159),3,bf5

RETURNS

Some sections of this routine should look familiar to you. They are
already in the ReadMouse: section in the same or a similar form.
Even so, you should not neglect to write them again in a single
subprogram, because this is necessary to complete the screen
construction. If we left the ShowValue: subroutine out of the
program, the individual sliders would not appear on the screen until
they were used for the first time. Every slider also has a "notch" in its
original position. This makes it easier to find the standard values later.

If you use your own values in the DATA line in the
StartingValues : routine, the notches will correspond to these
values. The program considers values in the DATA line to be defaults.

If your Amiga displays an Out of memory error, save the program,
reload Workbench, restart AmigaBASIC and close all open windows
(the BASlCDisk window, other Workbench windows, and the
LIST window). After this, there should certainly be enough free

memory to run die program without wary.

361

SPEECH IN BASIC AMIGABASIC INSIDE AND OUT

Uiin* thp ^ Speech !£lity is very simple t0 use' Use ** mouse t0 Push the
using me sliders up and down. After you click in the Text field, you can type in
program the text to be spoken. Remember to press <RETURN> before you use

the mouse again. Event trapping notices the mouse clicks, but cannot
do anything about it while an INPUT statement is active.

You can use the designated gadgets to choose whether the voice sounds
male or female, and inflected or monotone. A click in the Speak
gadget tells the Amiga to speak the current text using the current speech
parameters. The program must access Woikbench before the Amiga can

If you like the resulting voice, you can save the current values using a
click in the Store gadget. This produces an ASCII file that can be
added to another program with MERGE.

Save the speech utility with its final corrections. Now for a
demonstration: Create a pleasant voice and save it on the diskette. Call
your file speechdata. Then clear the LIST window (type NEW) and
type in this small example program:

FOR x=0 TO 811

READ a%(x) fl

NEXT xfl

SAY TRANSLATE$("Hello Amiga."),a%fl

Now we type the MERGE command in the BASIC window:

MERGE "speechdata"fl

This will add two new lines to your program:

REM DATAs made with AmigaBASIC-Talkerfl
DATA ...^

The DATA line contains all the values for the voice that you selected.

One final tip: if you are using the speech utility to develop a larger
program, just use the RAM disk. Use a name with the format

RAM: speechdata and MERGE from the RAM disk later. This works

much more quickly and does not use up space on your diskette.
However, if you want to keep your little DATA programs, you still

have to save them on a diskette. You can assemble your own collection
of voices on the diskette. Soon you'll have a rich selection of voices
from which to choose when your Amiga has something to say.

362

Sound and music

Abacus Sound and music

From special F/X to symphonies:

Sound and music

Now that we have covered one of the speech capabilities of the Amiga,

let's discuss musical possibilities. The Amiga hardware that generates

the speech is so powerful that you can use it to easily make very

complex special effects and music. However, there is one small
problem which needs attention. The full capabilities of the hardware are

not supported 100% by AmigaBASIC. While virtually all of the
Amiga's abilities discussed so far have been accessible through complex

and powerful BASIC commands, music and sound output is produced

by two seemingly limited commands.

365

Sound and music AmigaBASIC Inside and Out

7.1 The fourth teaser:
the music of Star Wars

All the information in the following sections focus on tone production
in AmigaBASIC. You shouldn't expect to produce the sort of music
you see in a professional music program or in Workbench demos, but

this next program shows what you can do in AmigaBASIC without a
lot of hard work:

Get Info:5

READ freq,durH

IF freq=-l THEN SOUND RESUME : END5

SOUND WAIT5

SOUND freq,dur,21,05

SOUND freq/2,dur,127,15

SOUND freq*2,dur,21,25

GOTO Get Infofl

5

DATA 523.25,15,784,15,698.48,65

DATA 659.28,6,587.28,6,1046.52,155

DATA 784,17,-1,-15

We've programmed the music from one of your favorite films. This
Sounds program performs the first few measures of the theme from Star
familiar Wars™. If by chance the music doesn't sound as smooth and melodic as

you remember it from your last visit to the theater, take another look at

the DATA statements. You may have made an error typing them in.

366

Abacus THE SOUND COMMAND

7.2
Let's play some music:

the SOUND command

BEEP

SOUND

Music-it's

all physics

Controlling

the

frequency

The SOUND command plays a critical role in producing all types of

sounds and notes. You've already seen SOUND at work in previous

programs. For example, the SOUND command was used to create a

warning beep in the paint program. This sort of task is pretty boring

for an artist like SOUND. But like most artists, SOUND is a freelancer,

and has to accept whatever work comes along.

There is also a BEEP command for producing warning tones. This
command produces the familiar Amiga beep and screen flash that lets

the user know something is wrong. BEEP produces a note with a fixed

frequency (pitch) and duration.

The SOUND command, on the other hand, is extremely flexible when it
comes to both frequency and duration. SOUND can do even more than

that, but we will talk about that soon.

Physical science says that music and sound are nothing more than
vibrations in the air which are received and processed by the human ear.

The frequency of a tone is the number of cycles (vibrations) that the
tone makes in one second. The more cycles per second, the higher the

tone. The unit for cycles per second is hertz, named after Heinrich
Rudolf Hertz, the German physicist who discovered electromagnetic

waves. If that discovery doesn't mean much to you, remember that his
work helped to make radio and television possible.

A radio, cassette recorder, or any stereo component handles the music as
a series of electrical signals, which are then sent to one or more

speakers. A magnet in the speaker causes a paper or plastic cone to

vibrate. This causes the air around the cone to vibrate, and we hear these

vibrations as music.

The sound synthesis on your Amiga works in exactly the same way.

The chip responsible for tone production creates an electrical signal of

corresponding frequency and sends it to one or both sound outputs. Like

with a stereo component, this signal must be amplified before it can be

sent to the speakers. The Amiga monitor has a small amplifier and

speaker built into it.

Enough theory for now. Let's get back to the Amiga. You can use

SOUND to input the frequency of a tone directly. The Amiga can

produce tones from 20 to 1500 hertz. Any moderately good stereo

system can handle notes in this range.

367

Sound and music AmigaBASIC Inside and Out

~ The other important value is the duration of the tone. Allowed values
C ontrolling are 0 through 77. A 0 produces no tone at all; a 1 produces a very short
duration tone; a 77 produces a tone of approximately four seconds' length. It's

possible to control the duration of the tone more precisely, but that is
not important to us right now. The following command:

SOUND 440,18fl

produces a 440-hertz tone that lasts for about one second. This

frequency is the international standard for "A", for those of you who are

accomplished musicians. For those of you who aren't, the international
standard "A" is the note to which every musician (supposedly) tunes.

The following command:

SOUND 500,10fl

produces a tone that's a little higher-pitched and shorter. If you want to

find out the values responsible for the infamous Amiga BEEP, try this:

SOUND 880, 351

If you're interested, 880 hertz is the "A" one octave above the "A" you

heard before. Do you want to hear your Amiga through its entire range?

No problem—just type in:

FOR x=20 TO 1500 STEP 10 : SOUND x,1 : NEXT Xfl

Do yourself and your ears a favor and turn the volume down a bit before

you press <RETURN>. It is an interesting acoustical phenomenon that

the human ear hears the medium frequency tones as louder than the

extremely high and low frequency tones. Also, very high tones played

at high volume can be very unpleasant to hear.

We used STEP 10 in the FOR line to avoid having to wait several

STEP minutes for the computer to finish. If you're curious, you can delete
that statement and see how long it takes.

With what you know so far, you can already produce all kinds of beeps

and tones. The only way you know to find the right tone is by trial and

error—but that will change soon.

Perhaps you think it's inconvenient to have to change your volume

control all the time. It's easy enough on your monitor, but maybe your

stereo is on the other side of the room. Then you have to keep walking

back and forth to change the volume control.

368

Abacus THE SOUND COMMAND

Volume

Voice

In stereo

AmigaBASIC has the solution: The third value of the SOUND

command. You can enter a value for volume just as you did with SAY.

This time, the allowed values are 0 (no sound) through 255 (maximum

loudness). If you do not enter a value for volume, AmigaBASIC uses

the default value 127—right in the middle.

Compare this command:

SOUND 880,10,48

with this command:

SOUND 880, 10, 255

Yes, the Amiga is quite a screamer. Let's listen to the same tone with

increasing volume:

FOR x=0 TO 255 : SOUND 880, l,x : NEXT x

This volume control is also quite helpful for warning beeps. You can

use it to make tones more or less noticeable. For music, it is

indispensible because dynamics (the relative loudness of musical

passages to one another) are an important aspect of music.

The fourth and last value that you can include with a SOUND command

is the voice. It determines which of the four stereo channels your signal

will use. Unlike the SAY command, SOUND can use only one channel at

a time (0,1,2, or 3). It's easy to remember: 0 and 3 are left channels, 1

and 2 are right channels. Channel 0 is the default value.

You need a stereo to actually hear output come from the left or right,

but the four channels have their uses in mono as well. You can use the

channels to play four different notes at the same time. For example, the

demonstration program used three tones at the same time. You have to

learn two more commands to make sure that all of the notes play

simultaneously. Please be patient a little longer.

When you combine volume control and channel assignment, interesting
things can happen. A tone that gets softer in the left channel and louder

in the right seems to travel from left to right. Let's try it. Type this

short program in the LIST window:

FOR x=0 TO 255fl

SOUND 440,l,x,0fl

SOUND 440,l,255-x,lH

NEXT xfl

Add the same code written "in reverse" to create an acoustical tennis

match.

369

Sound and music AmigaBASIC Inside and Out

Now we're familiar with the SOUND command, but our examples so far

have been less than melodic. You need information about frequencies to

play notes. Our system is based on A-440 (440 hertz). Let's look at the

octave in which this note falls. (An octave is the interval from one "C"

to the next) Table 11 has all the information you really need to make

music:

Table 11:

Frequencies

in one

octave

Note name

C

D

E

F

Frequency (in hertz)

261.63

293.66

329.63

349.23

Note name

G

A

B

C

Frequency (in hertz)

392.00

440.00

493.88

523.25

Table 12:

SOUND

command

notes and

frequencies

The principle behind calculating frequencies is fairly simple. The

frequency doubles with every octave. In the next higher octave, the "A"

is 880 hertz, the "F" 698.46 hertz, and so on. Divide the values by two,

and you go an octave lower. For example, the "A" in the next lower

octave is 220 hertz. Notes lower than the "C" (130.82 hertz) in this

octave are almost worthless for music, because notes begin to sound

like low rumblings from about 100 hertz on down. Table 12 contains

the most usable musical frequencies, to save you the trouble of

calculating the notes everytime.

Note name,

octave no.

c,l

<U

e,l

f,l

g,l
a,l

b,l
c,2

d,2

e,2

f,2

g,2
a,2

b,2

c,5

Frequency (in hertz)

130.82

146.83

164.82

174.62

196.00

220.00

246.94

261.63

293.66

329.63

349.23

392.00

440.00

493.88

2093.00

Note name,

octave no.

c,3

43
e,3

f,3

g.3
a,3

b,3

c,4

<W

e,4

f,4

g,4
a.4

b,4

Frequency (in hertz)

523.28

587.28

659.28

698.48

784.00

880.00

987.76

1046.52

1174.52

1318.52

1396.92

1568.00

1760.00

1975.52

The 2093 hertz "C" is already a bit high. Higher frequencies will hardly

sound musical.

Now you can find out which notes were used in our Star Wars sample

by looking up the values from the DATA line in the table. When you

compose music, it will be the other way around. You will know the

notes first, and will have to look up the frequencies in the table.

370

Abacus THE SOUND COMMAND

Now all you need is information about tone duration. This is not

measured in seconds, but in smaller units, so that 18.2 duration units

equal one second. Table 13 contains more accurate values:

Table 13:

Tone

lengths in

seconds and

equivalents

for SOUND

Duration

in

seconds

0.1

0.2

0.4

0.5

0.6

SOUND

duration

units

1.8

3.6

7.3

9.1

10.9

Duration

in

seconds

0.8

1.0

2.0

3.0

4.0

SOUND

duration

units

14.6

18.2

36.4

54.6

72.8

You can use this table to compute any duration. If you need 3.5

seconds, just add the value for 3.0 seconds with the value for 0.5—that

is, 54.6 + 9.1 = 63.7. Therefore, a tone duration value of 63.7 produces

a three & one half second tone.

We just played it by ear when we assigned tone durations in the

demonstration program. Try experimenting with the tempo in this

latest program to see how it sounds.

Now you are prepared to program your own songs if you want to. Try a

folk tune or, if you're feeling really ambitious, something classical like

Beethoven's Symphony #5.

371

Sound and music AmigaBASIC Inside and Out

7.3
Hurry up and wait:

SOUND WAIT and SOUND RESUME

SOUND

WAIT

SOUND

RESUME

The SOUND command plays notes in sequence, one after the other. A

SOUND command does not normally start until the tones from any

preceding SOUND commands are finished. The rest of the program can

usually run in the background. While the Amiga is making music,

AmigaBASIC can devote itself to other problems. This means that all

you have to do to keep music playing constantly is stick a note here

and there in the program. Don't overdo it, though. Every note takes

some memory space, and if you try to encode an entire symphony, you

will probably get an Out of memory error message.

We've already said that it's possible to play up to four notes at once.

How is this done? You need a command that prevents the notes from

being played immediately: SOUND WAIT.

All SOUND commands following SOUND WAIT are stored in sequence

without being played, until a SOUND RESUME command is

encountered. SOUND RESUME plays all of the notes stored since the

previous SOUND WAIT according to the following rule: Tones that are

assigned to the same channel are played one at a time in sequence.

Tones assigned to different channels are played simultaneously.

First, let's try this:

SOUND WAIT5

SOUND 440,105

SOUND 880,lOfl

SOUND RESUMED

The notes are played one after the other because they are both assigned

to the default channel, 0. Now try this:

SOUND WAITfl

SOUND 261.63,36,,Of

SOUND 329.63,36,,lfl

SOUND 392,36,,25

SOUND RESUMES!

The notes of this musical triad are played simultneously, because they

use different channels. If you want to compose musical pieces where

notes in different channels are played for different durations, you have to

fill unused channels with zero-volumes so that the right notes stay

together. A short table should make this more clear:

372

Abacus SOUND WAIT and SOUND RESUME

Table 14:

Sounds and

channels

Tones-*

channels

i

0

1

2

3

1st

tone

523.25

659.28

784.00

2nd

tone

784

987.76

1174.52

3rd

tone

698.48

0

0

4th

tone

659.28

0

0

5th

tone

587.28

0

0

6th

tone

1046.52

1318.52

1568

7th

tone

784

987.76

1174.52

If channels 1 and 2 are not filled with "null" notes between the third and

fifth notes, the sixth notes of these channels would be played with the

third note of channel 0. Look at the table closely, and the last sentence

should become clear.

Would you like to hear the results? Type the following program into

your LIST window:

SOUND WAIT5

5

Getlnfo:5

READ freq, dur,vol,chl5

IF freq»-l THEN Play5

SOUND freq,dur,vol,chl5

GOTO GetInfo: SI

5

Play: 51

SOUND RESUMED

5

DATA 523.23,15,121,0, 659.28,15,96,1, 784,15,96,25

DATA 784.15,15,222,0, 987.76,15,180,1, 1174.52,15,180,21

DATA 698.48,6,127,0, 0,6,0,1, 0,6,0,25

DATA 659.28,6,127,0, 0,6,0,1, 0,6,0,25

DATA 587.28,6,127,0, 0,6,0,1, 0,6,0,25

DATA 1046.52,15,225,0, 1318.52,15,180,1, 1568,15,180,25

DATA 784,24,180,0, 987.76,24,160,1, 1174.52,24,160,25

DATA -1,-1,-1,-15

Sounds good, doesn't it? The DATA lines correspond exactly with the

above table. The Getlnfo: loop reads in all of the values for the

SOUND command, and SOUND writes all of the values into a line where

they wait to be played. When the value -1 is read in as a frequency, then

the program knows that there is no more DATA, and exits.

If the melody is too high for your tastes, just divide the frequency by

two after it is read in:

SOUND freq/2,time,volume,chl

Now, the song plays an octave lower. But don't use frequencies much

higher or lower than these two octaves.

These commands give you a lot to play with when you compose

music. But stay tuned—it gets better.

373

Sound and music
AmigaBASIC Inside and Out

H A Listen up:

7 • ^ a bit of acoustical theory

Vibrations

Sine waves

Before we explore any more of AmigaBASIC's musical talents, let's
cover some more theory and fundamentals so that you can better
understand what is being explained.

You already know that a tone is a vibration in the air. Every device that
produces any kind of music must therefore produce the right vibrations.

A musical instrument starts the vibration from a string (guitar, violin
piano), a membrane or hard object (percussion instruments) or a column
of air (organ, brasses or woodwinds). Stereo equipment, electronic
musical instruments and computers use an oscillator to produce
electronic vibrations. An amplifier sends the speaker an electrical
signal, stronger or weaker depending on the vibration, based on the
signal from the attached equipment. The characteristics of the tone
depend on the qualities of the vibration.

To better comprehend the characteristics of these air vibrations, they can
be compared to the ripples made in a body of water when you drop a
stone into the water. The change in air density follows a similar pattern
to the ripples on the surface.

A typical sound waveform is the sine wave, similar to the one we
worked on in Chapter 2.

If you talk about a sine wave in reference to tones, it means that the
vibration moves up and down according to the SIN function. For
audible sound, this is generally pretty fast—440 times per second for
our "A", for example.

Take a look at Figure 19. This sine curve stands for a complete
vibration. The curve begins at the level of the middle line, climbs up,
falls back to the level of the middle line, keeps falling, and then climbs
back up. When the curve gets back to the middle line, one cycle has
been completed. This vibration must take place 440 times per second
for us to hear an "A" in our basic octave. The more vibrations per
second, the higher the tone.

374

Abacus A BIT OF ACOUSTICAL THEORY

Figure 19:

A sine wave

Amplitude

Timbre

Analog and

digital

music

Vibrations below a certain frequency, in the neighborhood of 20 hertz,

are no longer heard as tones. We still hear low-frequency vibrations

when they are very large, as when someone slams a door. To repeat, the

pitch of a tone depends on the frequency of the vibration.

The volume also depends on the vibration. The higher the wave, the

louder we hear it The height of a wave—that is, the distance from the

highest point of the wave to the middle line—is called the amplitude.

The amplitude of the wave is responsible for the loudness of the tone.

Other properties of the wave influence the tone produced. The waveform

also determines the timbre (pronounced either "timber" or "tamber",

depending on the musician you ask) or tone color of a particular

musical instrument or sound. We will cover this in more detail in the

next section.

Until recently only the "analog" method was used to store and replay

sound. When you play a record, the phonograph needle vibrates, and the

amplifier changes these vibrations into electrical signals that are output

to the speakers. Tapes and cassettes work similarly, except that tapes

have a variable magnetic signal which the tape head can read.

In recent years, a computer concept has found its way into the home in

the form of CDs (compact disks) and synthesizers: digital recording.

"Digital" involves bits and computers. Small wonder that this concept

is used in the Amiga. How does it work? The Amiga is made to store

and process numbers, and does that best Digital recording, storage, and

replay is achieved by representing analog vibrations as digital values.

375

Sound and music AmigaBASIC Inside and Out

Basics of

digital

recording

Paula

The principle is simple. Let's look at how tones are digitally recorded

and stored on CDs. Several thousand times per second, the present

position of the vibration is recorded and converted to a number. If the

position of the vibration is recorded often enough, the resulting series

of numbers quite accurately represents the actual wave. These numbers

can then be used to play the sound back. The frequency (tone), the

amplitude (loudness) and the form of the wave can thus be divided into

fragments and put back together again.

The process of representing vibrations using numbers is called

sampling. The realism of a sampled sound depends mainly on the

sampling frequency, or number of amplitude readings made at a time.

The sampling frequency can run up to 30,000 values per second on the

Amiga. A CD player samples disk data more than 40,000 times per

second.

Playback, or synthesis, of music simply reverses the recording process.

The chip inside the Amiga which is responsible for sound synthesis (we

call it Paula) converts designated digital values in memory into analog

electrical signals. For this purpose, Paula is equipped with a

digital/analog (D/A) converter. These are electronic circuits that read in

a digital number (a byte, for example), and create an electrical signal

with an intensity corresponding to the number. This electrical signal

then needs only to be sent to Amiga's sound output port and sent to the

speaker(s). A digital sound is born. Because Paula has four of these D/A

converters, we have four stereo channels to work with.

376

Abacus waveforms

c Splish, splash:

• ^ waveforms

You already know which characteristics of a sound wave are responsible
for volume and pitch: the frequency dictates the pitch, and the amplitude
dictates the volume/The waveform is sometimes even more important
It determines the tonal characteristics of a note. If you sampled sound
from a musical instrument or any other specific tone generator and
turned the sample into a graphic representation, you would see a
characteristic waveform for every instrument chosen. A sine wave

sounds very soft and harmonic. Pure sine waves do not occur in nature,

however. Percussion instruments like the drum produce irregular, shaip-
edged waveforms.

The higher the sampling rate, the better the original wave can be

reproduced. Perhaps you have already seen and heard programs that play

short musical passages with amazingly good fidelity. These programs
use a very high sampling rate and play only a short passage of a

digitized piece of music. Usually, the memory is used up in just a few

seconds. In these cases, 512K is not much memory at all. A compact

disk, which can play about 70 minutes of acoustically high-quality
music, has a storage capacity of 550 megabytes.

Despite these limitations, the music reproducing capabilities of the

WAVE Amiga should not be ignored. AmigaBASIC itself remains pretty quiet
about what these capabilities are. There are only two commands for
producing tones: SOUND and WAVE. You already know about the

SOUND command. WAVE allows you to vary the waveform.

AmigaBASIC normally uses the sine wave. This is all we have heard in
our examples so far. If you want to use another waveform, start by

dimensioning an integer array with at least 256 elements. The numbers

in the array can range between -128 and 127. Each element represents an

analog/digital conversion of 8 bits. The digital values resulting from
the conversion are 8-bit numbers.

For comparison, a CD player reads digital values of 16 bits. This does

not mean that the CD player delivers sound twice as good as the

Amiga's. Various hardware and software tricks allow the Amiga to

produce tones that sound considerably better than you might expect.

Now, back to WAVE. In the WAVE array, the value -128 means that the

wave has the lowest possible value below the middle line. Likewise,

127 is the largest value above the middle line for the vibration. You can

write a program to calculate the values used to produce a waveform for

Amiga tone reproduction. But what should the waveforms look like?

377

Sound and music AmigaBASIC Inside and Out

Triangle

wave

There are other waveforms besides the sine wave, and they all yield

different tonal results. First, we have the trianglewave. This runs

similarly to the sine wave, but sounds "sharper" because the vibration

changes values abruptly, rather than gradually as in the sine curve.

There is a drawing of a triangular wave in Figure 20.

Sine wave
Triangle wave

Figure 20:

Different

waveforms

Square (pulse) wave Noise

Let's try this new waveform with our three-voice Star Wars program.

Add the following segment to the beginning of the program:

DIM triangle%(255)5

FOR x=0 TO 621

triangle%(x)=af

NEXT x5

FOR x=63 TO 1885

triangle%(x)=afl

NEXT xfl

FOR x=189 TO 2555

triangle%(x)=a5

NEXT xfl

WAVE 0,triangle%$

WAVE l,triangle%fl

WAVE 2,triangle%5

ERASE triangle%5

First, we need to define the integer array triangle%. The first

FOR...NEXT loop calculates the array elements for the segment of the

triangular wave that goes from the starting point to the high extreme

value. The next loop produces the values for the descent to the lowest

extreme. Finally, the third loop takes care of the climb back to the

starting point. Take a quick look at Figure 20 and compare the lines

drawn in the graphic to the corresponding program commands.

378

Abacus WAVEFORMS

The WAVE commands converts the three voices we use to correspond

Changing with the array triangle %. If you wanted to, you could use a different
waveforms waveform for each of the Amiga's four voices. Each WAVE statement

assigns its voice a section of memory, for storage of sampling values.

Once this memory has been allocated, we no longer need the array

triangle % unless we are going to use it later. Since we're not

going to use it later in the Star Wars theme program, clear out the array

with ERASE. If you have a lot of these waveforms or are writing a

large program, it's a good idea to ERASE them once they are assigned

to voices. Otherwise you waste a lot of memory.

When you run the program, you'll notice that the tones sound a little

different. This new waveform also stays in effect when you return to

direct mode. This allows you to try some quick and easy experiments

right in the BASIC window. For example, you'll notice that the

BEEP sounds different than before. This is because the BEEP is sent

through channel 0.

If you want to go back to the old familiar BEEP, just type in:

WAVE 0, SIOT

This command sets the waveform for channel 0 back to a sine wave.

S IN is not an integer array, but an option of the WAVE command that

allows you to quickly restore the default sine wave.

The next waveform we'll look at is the square wave. This waveform

Square consists only ofjumps from one amplitude to another. This produces a
waves wooden sound. Look at Figure 20 for a graph of this waveform. If you

want to hear a square wave, store the triangular version of the Star Wars

program and edit the beginning routine so that it looks like this:

DIM rectangle%(256)5

FOR x=0 TO 127f

rectangle%(x)«127$

NEXT xfl

FOR x=128 TO 2565

rectangle% (x) —1285

NEXT xfl

WAVE 0,rectangle%1

WAVE l,rectangle%5

WAVE 2,rectangle%fl

ERASE rectangle%5

The rest of the program needs no changes. A square wave is very easy

to construct In the first half of the data field, you read in the maximum

value 127, and in the second half read the lowest possible value -128. If

you want to store this program, remember to give it a new name like

square.

379

Sound and music AmigaBASIC Inside and Out

White noise
The fourth waveform is white noise. This wave doesn't follow any hard

and fast rules—it's actually a random sound. The result often sounds

like an electric bell or an alarm clock buzzer. With lower frequencies,

you can also imitate explosions and other sound effects. Figure 20

shows a typical white noise waveform.

DIM noise%(255)f

FOR x»0 TO 2555

noise%(x)=RND*255-128fl

NEXT xfl

WAVE 0,noise%fl

WAVE l,noise%fl

WAVE 2,noise%fl

ERASE noise%<R

If you save the new routine, don't forget to assign it a new name.

The formula RND*255-128 chooses a random number between -128

and 127. This is the range allowed for sampling values.

Now you are familiar with three different computer-produced

waveforms. The triangular wave sounds somewhat sharper and clearer

than the sine wave. The square wave sounds wooden but clear. The

white noise usually sounds pretty bad.

It's interesting to note that lower notes sound better in the square and

white noise waveforms than the same notes with the sine wave or the

triangular wave.

If you are the curious type, you'll want to try out several other

waveforms. Next you'll write a utility to make this testing easier. This

is also the last utility program that we'll write together in this book—

but the book isn't over yet....

380

Abacus the synthesizer utility

7.6
Grand Finale:

the synthesizer utility

This synthesizer program is certainly no substitute for commercial

music programs like Musicraft™, Instant Music™ or the Deluxe

Music Construction Set™. Using AmigaBASIC alone, is impossible

to produce music comparable with what these packages can do.

This program is designed to produce various waveforms for you to try

out. If you find a sound that you like, you can save the WAVE data array

and then use it later in your own programs. Type in the program now:

Setup: 5

DIM Waveform% (256) 5

DEF FNYWaveform(a)»ABS(Waveform%(a)-128)5

5

SCREEN 1,320,200,2,15

WINDOW 2,"Waveform",(0,0)-(256,63),22,15

FOR x=0 TO 2565

Waveform% (x) =127*SIN (x/20) 5

NEXT x5

WINDOW 3,"Function",(195,80)-(310,175),22,15

WINDOW OUTPUT 35

LINE (5,5)-(55,30),l,b5

PSET (5,17)5

FOR x=0 TO 485

LINE -((x+5),17-10*SIN(x/3.8))5

NEXT x5

LINE (59,5)-(110,30),l,b5

LINE (59,18)-(67,7) : LINE -(83,27)5

LINE -(99,7) : LINE -(107,18)5

LINE (5,35)-(55,60),l,b5

LINE (7,47)-(7,37)5

LINE -(18,37)

LINE -(30,57)

LINE -(41,37)

LINE -(53,57)

LINE -(18,57)5

LINE -(30,37)5

LINE -(41,57)5

LINE -(53,47)5

LINE (59,35)-(110,60),l,b5

LOCATE 6,7 : PRINT "Clear"5

LINE (5,65)-(55,90),l,b5

LOCATE 9,2 : PRINT "Save"5

LINE (59,65)-(110,90),l,b5

LOCATE 9,7 : PRINT "Load"5

5

WINDOW OUTPUT 25

GOSUB ShowWave5

5

5

ON MOUSE GOSUB MouseControl5

381

Sound and music AmigaBASIC Inside and Out

MOUSE ONSI

SI

WINDOW 3fl

SI

KeyInput:SI

a$=INKEY$SI

F-OSI

IF a$=ltlf THEN F=0 : GOTO KeyInputSI

IF a$=CHR$(9) THEN F-261.63SI

IF a$="l" THEN F-277.185

IF a$="q" THEN F-293.66SI

IF a$="2" THEN F=311.13f

IF a$="w" THEN F»329.63SI

IF a$=ffe" THEN F-349.23SI

IF a$="4" THEN F=369.99SI

IF a$="r" THEN F=392!SI

IF a$="5" THEN F-415.3SI

IF a$="t" THEN F=440!5

IF a$="6" THEN F-466.165

IF a$»"y" THEN F=493.88SI

IF a$="uft THEN F=523.255

IF a$="8" THEN F-554.375

IF a$=fti" THEN F«587.585

IF a$=ft9" THEN F=622.25f

IF a$="o" THEN F-659.285

IF a$="p" THEN F=698.48f

IF a$="-" THEN F«739.99i

IF a$="[" THEN F«784!5

IF a$=s"=" THEN F»830.61f

IF a$="]" THEN F-8805

IF a$=CHR$(93) THEN F=932.33f

IF a$=CHR$(13) THEN F-987.76f

IF a$=CHR$<139) THEN F«1046.525

IF F=0 THEN Keylnputfl

f

Play:5

Vol«127 : IF F«0 THEN l=Ofl

SOUND WAITf

SOUND F,3fVol,05

SOUND F, 3^01,15

SOUND RESUMED

GOTO KeylnputSI

MouseControl: 5

IF WINDOW (0)«2 THEN AlterWaveformSI

IF WINDOW (0)-3 THEN AlterFunctionf

RETUPNSI

SI

AlterWaveform:1

WINDOW 25

WHILE MOUSE (0)<0f

x=M0USE(5)SI

IF x>256 THEN GOSUB ShowWave : RETURNS

IF X<1 THEN xf-15

y=M0USE(6)SI

IF y> 63 THEN GOSUB ShowWave : RETURNS!

382

Abacus the synthesizer utility

LINE (x-l,FNYWaveform(x-l)/4) - (x,FNYWaveform(x) /4), 05

LINE (x-1,FNYWaveform(x-l) /4) - (x,y), 15

Waveform% (x) «127- (y*4) 5

WEND5

GOSUB ShoWWave5

RETURNS

5

AlterFunction:5

Test«M0USE(0)5

x=MOUSE (3) 5

y=MOUSE(4)5

IF x>4 AND x<56 AND y>4 AND y<31 THEM

WINDOW 3 : PAINT (7,6),3,1$

FOR x=0 TO 2565

Waveform% (x) «127*SIN (x/20) 5

NEXT x5

GOSUB ShowWave5

WINDOW 3 : PAINT (6,6), 0,15

END IF5

IF x>58 AND x<lll AND y>4 AND y<31 THEN5

WINDOW 3 : PAINT (60,6),3,lfl

FOR x=0 TO 256f

IF x<41 THEN Waveform%(x)=x*3 : a=x*3f

IF (x>=41 AND x<126) OR (x>=210) THEN a=a-2.57 :

Wavefonri% (x) =»af

IF x>«126 AND x<210 THEN a=a+2.57 : Waveform% (x)=af

NEXT xfl

GOSUB ShowWavef

WINDOW 3 : PAINT (60,6)f0flf

END IFf

IF x>4 AND x<61 AND y>34 AND y<61 THENf

WINDOW 3 : PAINT (6,36),3,If

FOR x=0 TO 2565

IF x<64 OR (x>«128 AND x<191) THEN

Waveform%(x)»127f

IF (x>«64 AND x<128) OR x>192 THEN Waveform% (x) «-

1285

NEXT x5

GOSUB ShowWavel

WINDOW 3 : PAINT (6,36),0fl 5

END IF5

IF x>58 AND x<lll AND y>34 AND y<61 THEN5

WINDOW 35

PAINT (60,36),3,15

FOR x=0 TO 2565

Waveform% (x) =05

NEXT x5

GOSUB ShowWave5

WINDOW 3 : PAINT (60,36),0,15

END IF5

IF x>4 AND x<61 AND y>64 AND y<91 THEN5

WINDOW 35

PAINT (6,66),3,15

GOSUB EnterName5

IF Nam$=ft" THEN PAINT (6,66), 0,1 : RETURN5

OPEN Nam$ FOR OUTPUT AS 15

383

Sound and music AmigaBASIC Inside and Out

FOR x=0 TO 2565

PRINT #1, CHR$ (127-Waveform% (x)); 5

NEXT x5

CLOSE 15

WINDOW 3 : PAINT (6, 66), 0,15

END IF5

IF x>58 AND x<lll AND y>64 AND y<91 THEN5

WINDOW 35

PAINT (62,66),3,15

GOSUB EnterName5

IF Nam$="" THEN PAINT (62,66) ,0,1 : RETURNS!

OPEN Nam$ FOR INPUT AS 15

FOR x=0 TO 2565

Waveform% (x)=127-ASC(INPUT$ (1,1)) 5

NEXT x5

CLOSE 15

WINDOW 3 : PAINT (62,66),0,15

GOSUB ShowWave5

END IF5

RETURN5

5

ShowWave:5

WINDOW 2 : CLS5

FOR x=l TO 2565

LINE (x-1, FNYWaveform (x-1) /4) -

(x, FNYWaveform (x)/4), 15

NEXT x5

WINDOW 35

WAVE 0,Waveform%5

WAVE l,Waveform%5

RETURN5

5

EnterName:5

WINDOW 4,"Enter Filename:",(5,100)-(300,110),0,15

CLS : LINE INPUT Nam$ 5

IF Nam$="=" OR Nam$="*" THEN Nam$=Altname$5

IF Nam$O"" THEN Altname$=Nam$5

WINDOW CLOSE 4 : WINDOW 35

RETURN5

Save the program immediately.

In the Setup: segment, we start out by dimensioning the integer array

Waveform%. We can use 257 individual values for our waveform.

The next command, DEF FN, is one you haven't used or really needed

DEP FN yet. This command is helpful in programs that have to perform a lot of
calculations. DEF FN stands for DEFine FunctioN. It allows you to

define your own BASIC functions.

384

Abacus the synthesizer utility

y=SIN (x) is a function that's built into AmigaBASIC. If, for

example, you wanted to use the following function repeatedly

throughout a program:

y=SIN (x) *COS (x) +0. 5* (SIN (x) -COS (x))

then it would be unnecessary to type in the entire line every time you

use it. You could save a lot of effort and make your program much

easier to read if you type a line like this:

DEF FNhello (x) =SIN (x) *COS (x) + 0. 5* (SIN (x) -COS (x))

at the beginning of the program. From then on, you could specify the

function FNhello instead of that long formula. The name of the

function is hello; the prefix FN distinguishes it from normal

variables. If you type PRINT FNhello (1), AmigaBASIC looks up

the function definition and calculates the result for x=l.

One or more variables can follow the function name. Then comes the

formula expressed in terms of these parameters. You can use the

variable names in the definition line quite normally in the rest of the

program. The function definition does not process them in any way, but

uses them only as a method of expressing the procedure to be

performed

Let's look at another example, this time a simple one: DEF

FNdouble (x) =2 *x. Whenever the line FNdouble (2) appears in

the program, AmigaBASIC looks for the definition of FNdouble and

then knows that it must do to the 2 in the command line what the

definition line tells it to do with the x. If you call a function that is

not defined with DEF FN, you'll get an Undefined user

function error message.

We use the function FNYWaveform to convert the values we used for

DEF PN in field definition into integers between 0 and 255. If you remember,
our program WAVE fields have to be composed of values between -128 and +127. If

you subtract 128 from one of these values and remove the minus sign,

we get a number between 0 and 255. In BASIC, all this translates to

DEF FNYWaveform(a)=ABS(Waveform%(a)-128).

Our program runs in a low-res screen (320 by 200 points). Next to this,

we display a second window which shows us the waveform type.

The synthesizer uses a sine wave as an initial waveform. This wave is a

bit different from the default wave that AmigaBASIC normally uses.

The F0R...NEXT loop in the Setup: section of the program calculates

these initial values.

385

Sound and music AmigaBASIC Inside and Out

The window contains the gadgets that you click to specify options. One

Waveform gadget chooses the sine wave, one a triangular wave, and one for a
gadgets square wave. We used LINE commands to construct the gadgets. The

first gadget has a sine wave drawn inside it, the second gadget has a

triangular wave, and third a square wave, using a total of nine lines.

Besides these gadgets, there is a gadget for erasing the current wave, one

for storing the WAVE array, and one for reading in wave data.

If window 3 is closed, we call ShowWave: to display the present

waveform (a sine wave at the beginning of the program) in window 2.

The output window for all other functions is window 3. This window

must be activated when you play tones (click window 3 after you alter

the waveform). AmigaBASIC can receive input from only one window,

so we chose window 3 for this. The other windows merely perform

event trapping with the mouse.

KeyInput: checks the keyboard input and assigns it to a$. You have

The simulated the upper and lower rows of a piano keyboard. The keys
keyboard <TAB>, <Q>, <W>, <E>... <HELP> represent the white keys of the

piano. The row of keys above these represents the black keys. We

assign a frequency to F depending on the value of a$. You already

know the frequencies of the white keys from Table 12. We have

calculated the rest; you can see them in the program listing.

Play: plays the tone specified by the keypress. You send one tone to

a left channel and one to a right channel. Both tones start at the same

time with SOUND RESUME. This means that the music will play off

both speakers if you are listening to your Amiga in stereo.

MouseCont rol: uses the function WINDOW (0) to determine the

window in which the mouse was clicked. Depending on the result, the

subprogram AlterWaveform: or AlterFunction: is called.

AlterWaveform: makes window 2 an output window. You can use

the mouse in this window to input a waveform as you would in the

paint program. The present waveform is erased.

If you move the mouse out of the window (IF x>256orIF y>63),

Combined then the subprogram ShowWave:properly combines the new part of
waveforms the curve with the part of the old curve which has not been erased yet,

removing lines from the screen which are no longer relevant. The

program returns to AlterWaveform: with RETURN.

The LINE commands erase the old wave segments (color 0) and draw in

the new ones (color 1). Finally, the position in Waveform %

corresponding to the X-coordinate of the mouse click is given its value.

The variable y (the Y-coordinate of the mouse click) lies between 0 and

63, which is the height of the window. To get values between -128 and

+127, we use the formula 127- (y*4).

386

Abacus THE SYNTHESIZER UTILITY

Finally, the subroutine ShowWave: is called at the end of

AlterWaveform:. Parts of the old wave which are no longer a part

of the array Waveform% will often remain on screen after the new

lines are drawn, especially if you move the mouse quickly. For this

reason, we always clear the screen and draw the present wave after every

change. Besides this, ShowWave: serves to assign the array to the two

channels with WAVE.

Next comes the program segment AlterFunction:. This function

Changing detects and acts upon clicks in window 3 (titled Function). The
functions variables x and y contain the position of the mouse when it was last

clicked. The position of the mouse at other times is not important and

is not recorded.

The first IF/END IF block checks to see if the click took place in the

sine gadget. If so, we store the values for the sine wave in

Waveform%, call ShowWave:, and jump back. Whenever a gadget is

clicked, it is filled with color before the work begins and then returned

to its original color when the work is completed. The next routine for

the triangle gadget works exactly the same way. The variable a is

counted up and then back down to get the values for the triangular

wave. The gadget for the square wave also works this way. The values

in Waveform% are 127 for a while, then -128, then 127 again, etc.

The Clear gadget erases the present waveform by simply setting all of

the values in Waveform% to zero.

That leaves the Save and Load gadgets. If the Save gadget is clicked,

Saving and a sequential file is opened for writing. If the Load gadget is clicked, the
loading file is opened for reading. EnterName: is an old friend from previous

programs; it takes care of finding a filename.

That finishes off AlterWaveform:. This just leaves two short

subprograms to go.

ShowWave: displays the current waveform in window 2. Once again,

FNYWaveform is used to calculate the screen coordinates (we used it

before in AlterWaveform:). You calculate the Y-coordinate by

dividing the values ranging from 0 to 256 by four. The WAVE

commands at the end of the subroutine ensure that the waveforms are

used to play the notes.

EnterName: asks for the input of a filename. You can use = or * as

an abbreviation for the last name used. We use a fourth window for a

short time for this filename input.

Well, that was easy. It's pretty simple to use the program, too.

Take the mouse and draw a waveform in the Waveform window. If

Using the you keep experimenting, you will soon know how different waveforms

program sound.

387

Sound and music AmigaBASIC Inside and Out

You can play notes on the upper two rows of the keyboard.

Unfortunately, you can only play one note at a time because the

computer can only input one keystroke at a time.

If you want to call up one of the standard waveforms so that you can

alter it, just click the corresponding gadget in the Function

window. You can also start from scratch by clicking the Clear gadget

Once you do that, you can't make any music until you enter

something.

If you like a particular waveform, you can save it by clicking the Save

gadget All you have to do then is supply a filename. A click on Load

lets you read in values which have already been saved.

You can read values stored into your own programs with a routine like

this:

OPEN filename FOR INPUT AS 15

FOR x=0 TO 2565

Waveform% (x) =127-ASC (INPUT$ (1,1)) f

NEXT xf

CLOSE 11

All you have to do then is assign the waveform array to the voices you

want that waveform to have. Remember, you can assign different

waveforms to different voices. Every SOUND command uses the

waveform of the voice that it chooses.

All that's left to do is wish you the best of luck and lots of fun with

your music. As we have said, there's really no more music in

AmigaBASIC. But there's more music in the Amiga itself, as anyone

who has listened to a professional music program can attest

388

Appendices

Abacus Error and help messages

Error and

help messages

This chapter contains an alphabetical listing of all the error messages

that you can run into while working with AmigaBASIC. If you come

across an error number while working with this book or programming,

look in this Appendix to find possible causes and hints to get rid of the

problem.

AmigaBASIC will find some errors before the program runs. Others it

will find only while the program is running. In both cases, the error

will be displayed in the LIST window and an error requester will

appear. You must click the OK gadget in the requester before you can

fix the error. The error numbers included here are used with the ON

ERROR command and the ERR system variable. Appendix B.4

(Program control commands) contains more information about this.

Normal errors are printed here in all uppercase lettering, and include the

error number. The errors found before a program is executed are

displayed in both uppercase and lowercase characters, and have a hyphen

(-) instead of an error number.

ADVANCED FEATURE Error number : 7 3

This error will only appear if you use a command that isn't in this

book. This message appears when AmigaBASIC recognizes a command

as legitimate but realizes that it hasn't been implemented in the current

version of AmigaBASIC. We don't know of any such commands. This

error is a holdover from earlier Microsoft BASIC versions.

ARGUMENT COUNT MISMATCH Error number : 3 7

This message occurs when you call a subprogram with too many or too

few arguments/values/text Look at the first line of the subprogram to

find out how many and what sort of arguments are needed. Pass exactly

that many parameters when you call the subprogram.

BAD FILE MODE Error number : 5 4

You'll get this error message if you try to use commands that can't be

used with that sort of file. Here are possible reasons for this error:

You tried to use MERGE to append a program that wasn't stored in

ASCII format. You need to load the program and resave the program

using SAVE "program name", A to be able to merge the files.

391

Appendix A AmigaBASIC Inside and Out

You tried to load a random file with the LOAD command

You used random file commands in a sequential file (for example, GET
or PUT).

You entered a mode other than "I", "o", "A", or "R" for the OPEN
command.

BAD PILE NAME Error number: 6 4

You gave a filename in an incorrect format (either too long or in a form
unacceptable to AmigaBASIC). Section 3.2 describes filename formats.
The basic format is:

" (device name or drive) : (directory) / (directory) /... /
(file name)"5

BAD FILE NUMBER Error number : 5 2

This usually means that you gave a file number that wasn't opened yet
to a command like PRINT* or INPUT*. Look at the OPEN commands
in your program to find the file numbers.

BAD RECORD NUMBER Error number : 6 3

You tried to access an illegal record with a GET or PUT command.
Legal record numbers range from 0 to 16777215.

BLOCK ELSE/END IP must be the first statement on
the line

Error number:

These two commands must be the first and only command on a line.
Otherwise AmigaBASIC can't recognize an IF/ELSE/END if
structure. This problem can usually be avoided by writing structured
code. This error is recognized before the program is run.

CAN'T CONTINUE Error number: 17

This message appears after CONT is input, or when Continue is

chosen from the Run pulldown menu. Continuation is possible only if
no errors have occurred, and if the program has not been modified since
the break. You need to restart the program with the RUN command.

392

Abacus Error and help messages

DEADLOCK Error number: 7 7

We're not sure about this one: The error message exists, but we can't

find any documentation on it. It's probably an operating system

message, and not from AmigaBASIC. It could be some sort of internal

error.

DEVICE I/O ERROR Error number : 5 7

AmigaDOS could not complete an input/output operation. The cause

could be a technical problem—with a disk, for example. Usually you

need to reload the Workbench when this problem occurs.

DEVICE UNAVAILABLE Error number : 6 8

The device is either not connected or not turned on. AmigaBASIC can't

access the device. You may need to reload the Workbench.

DISK FULL Error number: 61

This error usually occurs when you are saving programs or writing data.

There isn't enough room on the disk to store your file. Either delete a

few programs that you don't want (or copy them to another disk before

deleting them) or use a newly formatted disk.

If you come across this error for the first time while working with the

Extras diskette in Chapter 1 of this book, please take a look at

Section 3.1.

DIVISION BY ZERO Error number : 11

It is illegal to divide by 0. This error will show up when you do

something like PRINT 1/0. It could occur through a variable that

hasn't been assigned a value, or from an error in your formula. It is also

possible that you mistyped a variable name.

DUPLICATE DEFINITION Error number : 1 0

You'll get this error if you try to redimension an array that has already

been dimensioned. The array could not be redimensioned because you

used a DIM command for this variable name, or because you used the

array before using the DIM statement. In this case you can delete the

array with the ERASE command. You can find the array's upper and

lower limits with UBOUND and LBOUND. If you use the OPTION

BASE command after the first DIM in the program, you will get this

error message.

393

Appendix A AmigaBASIC Inside and Out

DUPLICATE LABEL Error number: 3 3

Two different program sections have been assigned the same label. You

need to rename one program section. It might be that AmigaBASIC

read something as a label that you didn't intend to be a label; delete the

colon at the end of a piece of text. It may be that you have mistaken a

subprogram for a subroutine, or the other way around. You're allowed

to give a subprogram a name that has already been used as a label

(that's a bad idea, because it makes the code more difficult to follow),

but then the CALL command is needed to avoid confusing the program.

ELSE/ELSE IF/END IF without IF Error number: -

One of these commands was found even though there isn't an IF to

start a legal IF/END IF block. Perhaps you put a command after the

THEN in the IF line. You may not do that in an IF/END IF block, or

the program won't be able to distinguish the two uses of the IF

command. AmigaBASIC finds this error before the program starts.

EXIT SUB outside Of a subprogram Error number: -

The command EXIT SUB may only appear in a block of code that is

started with SUB and ended with the END SUB command. You may

have put the END SUB too early in the program, or you might have

interchanged the END SUB and EXIT SUB commands. AmigaBASIC

finds this error before the program starts.

FIELD OVERFLOW Error number: 5 0

This error means that in a random file, more buffer bytes should have

been assigned in FIELD than were stated in the OPEN command as the

file length. Your file structure should be carefully planned in advance so

that you'll always know how many bytes will be needed.

FILE ALREADY EXISTS Error number: 5 8

You entered a name that already exists with the SAVE or name

command. Use another name. If you insist on using that name, use

CHDIR to move the system into another directory.

FILE ALREADY OPEN Error number : 5 5

This message appears when you try to open a file that is already open.

AmigaBASIC also displays this message when you try to KILL a file

that is presently open. You need to close the file before you can KILL
it.

394

Abacus Error and help messages

FILE NOT FOUND Error number : 5 3

The file you are looking for cannot be found. You may have mistyped

the filename. It is also possible that you are in the wrong directory (use

FILES to view directories, and CHDIR to change directories).

FOR WITHOUT NEXT Error number : 2 6

AmigaBASIC found a FOR that doesn't have a corresponding NEXT.

You either forgot the NEXT, or made an error when you typed the

counting variable. It works best if you make sure your FOR...NEXT

loops match up and avoid putting a variable name behind NEXT.

IF without END IF Error number: -

If you use an IF/END IF block, you need to put an END IF at the

end. You may have forgotten the END IF command. Perhaps you didn't

want an IF/END IF block but didn't put anything after the THEN in

the IF line. In this case, AmigaBASIC thinks that this is an IF/END

IF block. If you don't want to put a command after the THEN, use a

REM statement

Since this error is found before the program starts, it may occur while

you are developing a program because you haven't finished

programming a line.

ILLEGAL DIRECT Error number: 12

Some commands may only be used in programs, and cannot be used in

direct mode. You'll get this error message when you type program

mode commands in the BASIC window. The commands DEF FN,

COMMON, and SUB are typical examples.

ILLEGAL FUNCTION CALL Error number: 5

This error occurs when you pass illegal values to a BASIC command.

You'll get this error if you use negative values for array elements, or if

you use them with the GET and PUT commands.

This error also happens when you attempt to pass parameters to a

BASIC command that are too large, too small, or of the wrong type. If

this error message appears after LIST, the program was saved in

protected form (SAVE "filename", P).

395

Appendix A AmigaBASIC Inside and Out

INPUT PAST END Error number : 6 2

This message appears when you try to read past the end of a file, or try

to read a file that was opened FOR OUTPUT only. Use the EOF and

LOF commands to avoid this error.

INTERNAL ERROR Error number : 5 1

You can't do anything about this: AmigaBASIC found an internal error.

You must reload the AmigaBASIC program.

LINE BUFFER OVERFLOW Error number : 2 3

You'll get this message when the screen editor in the LIST window

has problems. You may have tried to put too many characters on a

line—255 is the maximum number of characters per line.

The cause can also be an error in the screen editor. Try using Cut and

Paste from the Edit menu a few times. The error will often
disappear.

MISSING OPERAND Error number: 2 2

This message appears when you omit a value after a command (like

AND, OR, XOR, etc.) or a calculation sign (like +, -, etc.).

Missing STATIC in SUB Statement Error number: -

Every SUB needs a STATIC command. You must enter a STATIC, and

if you don't, AmigaBASIC will give you this eiTor message before the
program starts.

NEXT WITHOUT FOR Error number : 1

AmigaBASIC found a NEXT statement that wasn't paired with a FOR

statement. This is the logical complement of the "FOR WITHOUT

NEXT" error message (see that message for more information).

NO RESUME Error number: 19

AmigaBASIC can't find a RESUME command inside an ON ERROR
routine. RESUME is needed to close the subprogram and jump back to
the error's location.

396

Abacus Error and help messages

OUT OF DATA Error number: 4

You reached the end of the DATA statements while READing DATA

values. There are no more DATA available. Your program should be

able to recognize this on its own. You can, for example, use -1 as the

last DATA value and compare the data read with this number. Don't

forget that you can change the DATA pointer with the RESTORE

command.

OUT OF HEAP SPACE Error number : 1 4

This message is pretty frightening the first time it appears. It shows up

in red on the screen. This message occurs if there isn't enough system

memory to perform your task. Click with the left mouse button to

continue. Using the CLEAR command might help; if it doesn't, save

your program, restart the Workbench, and click AmigaBASIC. Close

extra programs and windows. When there are not any other memory

users in the Amiga, you'll have a bit more space.

OUT OF MEMORY Error number: 7

This message means that the BASIC memory area is out of space. It

doesn't necessarily mean that the whole system is out of memory. It

only means that your program and your BASIC files together take up

too much space. The CLEAR command will often help here (also, see

"OUT OF HEAP SPACE" above).

OVERFLOW Error number: 6

This means that a number is too big to be represented in the numeric

format desired (see Intermission 5 for an explanation of number

formats). You can usually avoid this error by using double precision

variables.

PERMISSION DENIED Error number: 7 0

This error usually occurs when you are trying to write to a write-

protected disk. If you are sure you want to write on it, take the disk out

of the drive when the red light is off and move the write-protect slider.

Then put the diskette back in the drive.

RENAME ACROSS DISKS Error number: 7 4

You tried to enter a new diskette name for the NAME command in a

filename. You may not change the diskette name, however, because the

result would be a copying process and not a renaming process.

397

Appendix A AmigaBASIC Inside and Out

RESUME WITHOUT ERROR Error number : 2 0

AmigaBASIC found a command even though an error hasn't occurred.

The program probably got into an ERROR loop accidentally. You

should end the main program before ERROR loops and subroutines, or

make sure to put jumps before ON ERROR/RESUME blocks. Neither

subroutines nor ON ERROR/RESUME blocks are automatically jumped

over.

RETURN WITHOUT 60SUB Error number: 3

AmigaBASIC found a RETURN command, but there was no GOSUB

performed beforehand. This usually happens when a program accidently

gets into a subroutine. Remember that subroutines aren't automatically

executed, even though subprograms are. Your program should jump to

another area in the last line before the subroutine.

SHARED outside Of a subprogram Error number: -

You may only use the SHARED command within a subprogram. The

END SUB statement could be a few lines too early. Perhaps you

interchanged the EXIT SUB and END SUB commands.

Statement illegal within subprogram

Error number: -

Some commands may not be used in a subprogram. You may not use

the DEF FN, the COMMON, or the CLEAR commands there. Do not use

them between the SUB and END SUB commands.

STRING FORMULA TOO COMPLEX Error number : 1 6

You'll get this error if your string commands (MID$,LEFT$,

RIGHT$, etc...) are nested too deeply. Divide your formulas into

several lines.

STRING TOO LONG Error number : 1 5

Strings may be up to 32767 characters long in AmigaBASIC. You'll

get this error if a string is any longer than this. Just divide the string

into several smaller strings.

SUB already defined Error number: -

You get this error when you have two subprograms with the same

name. You need to rename one of them.

398

Abacus Error and help messages

SUBPROGRAM ALREADY IN USE Error number : 3 6

A subprogram may call other subprograms, but it may not call itself.

This error occurs if a subprogram calls itself.

You'll also get this error if you abort a subprogram, then call it again.
In this case, end the old subprogram with CONT, or restart the program

with the RUN command

SUBSCRIPT OUT OF RANGE Error number: 9

This error happens when you try to access an array element which lies

out of the range set by automatic dimensioning. It can also occur when

you enter more dimensions than you declared in the DIM statement

This error is often the result of mistyping an array name. It may be that

you are accessing array elements using a variable that has the wrong

value.

SUB without: END SUB Error number: -

The SUB and END SUB commands belong together. You'll get this

error if you have a SUB command without a corresponding END SUB

command. Structured programming helps avoid this problem.

SYNTAX ERROR Error number : 2

AmigaBASIC understood part of the command, but another part is

incorrect—things are in the wrong onto, or are being used in the wrong

context. There may be an unequal number of left and right parentheses.

You'll also get a "Syntax error" if you try to READ a string from a

DATA line into a normal variable. See Appendix B if you aren't sure

how a particular command should be used.

TOO MANY FILES Error number: 6 7

In other BASIC versions created by Microsoft, this means that there are

too many Hies on a disk. That can't happen on the Amiga, since the

disk is organized differently here than on other computers. If there isn't

any more room on the diskette, the "Disk full" error message is

displayed.

You are allowed a maximum of 256 files open simultaneously in

AmigaBASIC. Since you'll rarely need that many files, you may never

see this error message.

399

Appendix A AmigaBASIC Inside and Out

Tried to declare SUB within a SUB Error number: -

You are not allowed to declare a subprogram inside another subprogram.

You may define them one after the other, though.

TYPE MISMATCH Error number: 13

You'll get this error if you try to assign something in one numeric

format to something in another format without converting it first (see

Intermission 5 [Amiga number systems] for a detailed description).

Variables must be of the same type for the SWAP command as well.

UNDEFINED ARRAY Error number : 3 8

You entered the name of a array that doesn't exist in the program behind

the SHARED command. Perhaps you didn't intend to use an array name.

If not, you need to erase the parentheses behind the variable name.

UNDEFINED LABEL Error number: 8

You used a label that doesn't exist in the program (probably behind a

GOTO or GOSUB statement). See if you mistyped the name. It is

common to forget the colon behind labels. However, colons are needed

if the label names a line or a program section.

UNDEFINED SUBPROGRAM Error number: 3 5

You'll get this message if you call a nonexistent subprogram. You may

not realize that you called a subprogram because AmigaBASIC doesn't

recognize a command that you mistyped, it will look for a subprogram

with the same name. If it doesn't find one, this message will appear.

You'll probably see this fairly often.

UNDEFINED USER FUNCTION Error number: 18

You'll get this if you try to use a function (FN...) that you didn't define

with the DEF FN command. Maybe you mistyped the function name.

Perhaps you started a variable name with FN (which is not allowed).

Remember that CLEAR deletes function definitions.

400

Abacus Error and help messages

UNKNOWN VOLUME Error number : 4 9

You'll get this error if you enter a diskette name that AmigaBASIC

can't find. It could be a typing error. If you enter a diskette name that

AmigaBASIC can't find, AmigaDOS asks about the diskette in a

requester. If you click Cancel in this requester, AmigaBASIC will

know that the diskette name was a mistake.

UNPRINTABLE ERROR Error numbers : 21, 24, 25,27,28,

31, 32, 39-48, 56, 59, 60,

65, 69, 71, 72, 75, 76, 78-255

An error has occurred for which AmigaBASIC has no error text This

usually happens when you define your own error routines with the ON

ERROR and ERROR commands. If you define your own error numbers,

these must be requested from ON ERROR as well.

WEND WITHOUT WHILE Error number : 3 0

You need a WHILE for every WEND command. If you get this error,

AmigaBASIC has found at least one WEND too many. If you write a

structured code, you are less likely to forget something. Since WHILE

and WEND always go together, pair up the WHILES and WENDs to find

where the missing one is.

WHILE WITHOUT WEND Error number : 2 9

This is the reverse of "WEND without WHILE"—AmigaBASIC has

found at least one WHILE too many. See the WEND without WHILE

message.

401

Appendix B AmigaBASIC Inside and Out

BAmigaBASIC
reference section

This Appendix contains a description of AmigaBASICs commands.

We arranged them by type, and put them in alphabetical order according

to their type. You can find out about unfamiliar commands here, as

well as learn more about ones you know something about

You'll have to do more experimenting yourself with the unfamiliar

commands, since they often have lots of options. We explain the

options completely, but due to space constraints not as thoroughly as

before.

The following information is given about each command:

Command : [This is the command name] Section [This lists the section

that first mentions the command]

Syntax: This area lists all command options, [parameters in

brackets are optional].

Here is where you'll find descriptions of each command, and a few

examples of program code using the command.

402

Abacus Screen input and output

B.I
Screen input

and output

BEEP

Syntax:

Section 1.6

CLS

Syntax:

BEEP

This command outputs a tone and a short flash on the screen. You can

use this to get the user's attention. The beep can't be heard unless at

least one sound channel (channel 0) is connected to a loudspeaker.

You can use PRINT CHR$ (7) instead of BEEP—they do exactly the

same thing.

Section 1.3

CLS

CLS erases the screen in the current output window. The output cursor

will be placed in the upper left corner. That means that the next output

made with the PRINT or some similar command will appear in this

position.

COLOR Section 1.16

Syntax: COLOR [Foreground-color] [,Background-color]

The COLOR command sets the foreground color (text and graphics color)

and the background color (screen background). A number is entered for

each color. The size of the number depends on the number of bits per

pixel being used by the screen.

Using the PALETTE command and the settings in Preferences, you

can set which color corresponds to which number. If you leave off one

or both values, AmigaBASIC immediately defaults to color number 1

(usually white) as Foreground-color and number 0 (usually blue) as

Background-color.

If you change Background-color value right before displaying text,

the text appears on a colored bar.

The background is usually unchanged in most graphic commands.

403

Appendix B AmigaBASIC Inside and Out

CSRLIN

Syntax: CSRLIN

CSRLIN is a system variable. Like DATE$ and FRE (0), it is a variable

assigned to a value by AmigaBASIC. The user can't modify these
variables.

The variable CSRLIN contains the current line that the cursor is in. It is

used to make calculations for LOCATE. Compare this with the POS

command.

INKEY$

Syntax:

Section 1.13

INKEY$

This command reads a character from the keyboard buffer and passes it

as a string one character long. If a key wasn't hit (the buffer is empty),

INKEY$ passes an empty string.

The INKEY$ command does not display a character on the screen—it

only passes the character.

INPUT Section 1.6

Syntax: INPUT [" (Explanatory text)"] [, or ;] Variable [,

Variable, Variable,...]

INPUT allows the user to enter values from the keyboard during a

program run. The values are then assigned to the variables.

If you want, you can have the INPUT command print explanatory text

on the screen so the user will know what to type. If the text is followed

by a semicolon (;), AmigaBASIC displays a question mark after the

text. If you put a comma (,) after the text, a question mark will not be

printed.

You can have several variables assigned values. The individual values

must be separated from each other by commas. If the number of inputs

expected and the number received are different, the error message

"?Redo from start" will appear. That means that the input must be

typed in over again.

If you put a semicolon beforb the explanatory text, the cursor will stay

behind the last character INPUT to the program. The next output from

the computer will be displayed starting there.

404

Abacus Screen input and output

LINE INPUT Section 1.7

Syntax: LINE INPUT [" (Explanatory text) "] [, or ;] String

variable

The LINE INPUT command reads a string variable from the keyboard.

The string may include any character, including commas, semicolons,

etc. <RETURN> must end the input.

You can give explanatory text here, too. Unlike INPUT, LINE INPUT

can have only one variable. This variable must be a string variable; any

other types will give you a "Type mismatch" error.

LINE INPUT doesn't put a question mark after the explanatory text; it

makes no difference whether you put a comma or a semicolon between

the text and the variable.

If you put a semicolon between line input and the explanatory text,

the next output to the screen will start at the location right after the

user input

LOCATE Section 1.7

Syntax: LOCATE [Row] [,Column]

This command puts the output cursor at a particular position on the

screen. You need to give positive values for Row and Column, since the

(1,1) position is the upper left corner of the screen. In 60-character

mode, the largest possible value for Row is 21, and 62 is the largest

value for Column. In 80-character mode, Row can be a maximum of 23,

and Column a maximum of 77.

POS

Syntax: POS(x)

You may enter anything for x. It is just a dummy variable. (Many

BASIC functions require that you give an argument, a value in

parenthesis.) POS (x) returns the number of the column where the

cursor is presently located (the output cursor, the position on the screen

where the next output will be printed). If you need to know the current

cursor position, you can do the following:

Row«CSRLIN : Column«POS(0)

405

Appendix B AmigaBASIC Inside and Out

PRINT Section L3

Syntax: PRINT [Variable or Value] [Separator] [Variable or

Value]...

You can abbreviate the PRINT command to ?. PRINT is used to output

variables and values, including string variables and text, to the screen.

Text must be in quotation marks.

If you don't write any variables or values down, a blank line will be

printed

Several characters can be used as separators. A semicolon (;) has the

outputs printed right after each other. A comma (,) will print the next

output at the next tab position (normally the tabs are set at every 15th

column, but you can change that with the WIDTH command).

You can also use #, &, and % to separate variable names. They work just

like the semicolon.

If there is a semicolon at the end, the next output will directly follow

the last item printed by this line. Otherwise a linefeed will be executed.

PRINT USING

Syntax: PRINT USING [format string]; [Variable or Value] [;]

You can use PRINT USING to format your output. It is useful for

printing numbers in tables. You can also use it for string variables.

You use format string to enter the desired format. There are a

number of options possible: A number sign (#) stands for a digit. The

numbers after the decimal point that aren't printed are rounded.

print using "###.##";32.4 produces 32.40

print using "###.##";17 17.00

print using "###.##";324.124 324.12

print using "###.##",-128.489 28.49

print using ••###.##"; 129.9984 130.00

If the number has more places in front of the decimal point than there

are number signs in front of the decimal point in the format string, a %

will be printed as an identifier.

print using "####.###";43259.3253 %43259.325

Putting a + in front of the string guarantees that a plus sign or minus

sign (leading character) will be printed in front of the value. The + can

also be at the end; then the plus/minus sign will appear after the value.

You may also put a - at the end of the format string. Then a minus

sign will be printed behind negative values.

406

Abacus Screen input and output

print using "+###.##";324.234 +324.23

print using "+###.##";-518.284 -518.28

print using "###.##+";-518.294 518.28-

print using "###.##-";324.234 324.23

print using "###.##-";-518.294 518.27-

If you put two asterisks (*♦) in front of die number signs (#), the blank

spaces will be filled with asterisks. The two asterisks count as digit

positions as well.

print using "**##.##";42.2 **42.20

print using "**#####.##";43.1 *****43.10

print using "**###.##";-523.456 *-523.46

Two dollar signs ($$) cause a single dollar sign ($) to be printed. The

first dollar sign is the signal for the character to be printed later; the

second dollar sign marks a digit position. If you want to have a +

printed in every case, it must be behind the number.

print using "$$###.##";43.54 $43.54

print using "$$###.##";-43.54 -$43.54

print using "$$###.##";-53245.345 %-$53245.35

print using "$$###.##+f;45.3 $45.30+

print using "$$+##.##";45.3 %$45+

The last example above shows the sort of error that occurs when you

try to use + and $$ together. The PRINT USING command will not

print the digits that come after the decimal point, since the $$+ confuse

the computer. But you can combine the effects of the ** and $$

combinations. Type "**$". This represents three character positions—

one for the dollar sign, and two for digits or asterisks. It works like

this:

print using "**$##.##";45.3 **$45.30

print using "**$##.##";345.3 *$345.30

If you put a comma to the left of the decimal point, you can get neater

formatting for large numbers.

print using "#########,.##",-3444233.50

3,444,233.50

The commas count as character positions. Does this remind you of

Intermission 5, especially the exponential notation of numbers? If you

want, PRINT USING can work in exponential form. To do so put four

carets (exponent signs,A A A A) at the end of the format string.

print using "##.##AAAA";34.53 3.45E+01

print using "###.##AAAA";.009 9.00E-03

The underline character (_), causes the next character to be printed,

instead of being treated as a formatting character.

407

Appendix B AmigaBASIC Inside and Out

print using "_####.##";34.95 # 34.95

You may also put text in the format strings. The text may be of any

length. However, you may not define more than 24 digits in a string. If

you try, for instance, to use more than 24 numbers, you will get an

"Illegal function call" error.

print using "Here is the number: ##.##";3.3 Here is the

number: 3.3

If the PRINT USING command does not understand your text

formatting, just type a _ in front of the formats.

Now we're ready for the next topic. We can format strings as well as

numbers. An exclamation point (!) tells the computer to print the first

character of a string only:

print using "!";"Amiga" A

If you want to set a maximum size of more than one character, put

blank spaces between two backslashes (\). You can find this key to the

left of the <BACKSPACE> key. The number of spaces between the

two backslashes plus two is the total length of the string.

print using "\ \";"Hello" He

There are two spaces between the backslashes in the example. If the

string is longer, it will be shortened. If it is shorter than the given

length, spaces will be added. Finally, there is the & format symbol. It

lets you print strings of any length.

print using "\\";"Amiga" Am

print using "&";"Amiga" Amiga

Of course, you could get that result without using the PRINT USING

command.

PRINT USING isn't a very simple command to use. However, if you

use the most important options, it makes creating formatted lists and

tables much easier. It works much better than using LOCATE and the

string functions.

Experiment with the PRINT US ING command; it will pay off.

SPC

Syntax: SPC(x)

This command prints x number of blank spaces, x must be between 0

and 255. The SPC command is often useful for constructing screen

masks.

408

Abacus Screen input and output

TAB

Syntax:

Section 3.4

TAB(x);

This command is used to format printer output. AmigaBASIC nils the

space between the current print position and column x with blanks.

Print output begins at column x. If the current print position is past

column x, the next line will be printed starting at column x.

You can only use TAB with the PRINT, PRINT*, and LPRINT

commands.

WIDTH Section 1.16

Syntax: WIDTH [Width] [,Tab width]

WIDTH [LPRINT] [f Width] [f Tab width]

WIDTH #File number [, Width] [, Tab width]

WIDTH Device name [, Width] [,Tab width]

The WIDTH command has four valid syntaxes, some of which are used

for data handling. We'll go through them one by one.

The basic WIDTH function sets the line width for output. Since the

Amiga is quite willing to write to the right of the screen border (it has

no automatic linefeed), the screen width needs to be set in your BASIC

programs. You do this using the syntax: Use WIDTH 61 for 60

characters per line; Use WIDTH 7 6 for 80 characters per line.

The second value behind WIDTH gives the distance for positioning by

commas in PRINT statements. You can also set line width and tab

distance for the printer. You can do it with the LPRINT option, or by

using the third syntax. Open a printer file and set the file number. The

value set with WIDTH is only used in the file that it is specified for.

Printer output using LPRINT is not affected.

The fourth syntax lets you write values directly to a device (SCRN,

LPT1, C0M1). The line width and tab distance, will be used after the

next file is OPENed. If a file is already open, it won't be affected. The

printer's default value is 80 characters per line.

WRITE Section 3.4

Syntax: WRITE [Variable or Value] [Separator] [Variable or

Value]...

The WRITE command prints characters starting at the current print

position like the PRINT command. Only commas (,) and semicolons

(;) may be used as separators. The difference between the two

commands is that WRITE puts commas between the individual values

and puts quotation marks on strings. This makes WRITE especially

good for outputting values to files.

409

Appendix B AmigaBASIC Inside and Out

B.2
Object

animation

COLLISION

Syntax: Value=COLLISION(Object number)

Here COLLIS ION is a function. The word can be used in several ways

to deal with collisions. Every collision is written in a delay area so that

you can ask about and work with each collision. AmigaBASIC cannot

handle more than 16 collisions at the same time.

The number of the object involved in the collision is placed in

parentheses. The result is the number of the object that collided with

the object you asked about. It is also possible to collide with the

window borders. That gives results between -1 and -4:

-1 =

-2 =

-3 =

-4 =

upper bender

left border

lower border

right border

You can also write 0 or -1 for Object number.

The function COLLISION (0) returns the number of the object that

was involved in the most recent collision without removing it from the

waiting area. This is useful for finding out which collisions have

occurred without having to work with them right away.

COLLISION (-1) tells you in which window the collision occurred.

This can be useful if you have objects moving in several windows.

COLLISION ON

COLLISION OFF

COLLISION STOP

Syntax: COLLIS ION ON

COLLISION OFF

COLLISION STOP

These commands are used for event trapping of object collisions. The

COLLISION ON command makes the computer start looking for

collisions. The COLLISION OFF command tells it to quit looking,

while COLLISION STOP tells it to stop looking until another

COLLISION ON command is sent.

410

Abacus Object animation

You can use ON COLLISION GOSUB to branch to the appropriate

subroutine when collisions occur. You can then use the COLLISION

function to find out more about which objects were involved.

OBJECT.AX Section 1.15

OBJECT.AY

Syntax: OBJECT.AX Object number, Acceleration

OBJECTAY Object number, Acceleration

You set the acceleration for an object with these commands. The

horizontal acceleration is set with the OBJECT.AX command. Positive

numbers move the object from left to right, negative numbers from

right to left

OBJECT.AY sets the vertical acceleration. Positive values move the

object downward, negative values upward. Look at Figure 4 in Section

1.15 to find out more.

The acceleration is entered in pixels per second. The movement does not

actually start until you give the OBJECT.START command.

OBJECT.CLIP

Syntax: OBJECT CLIP (xlfyl)-(x2,y2)

You declare a rectangle with the OBJECT.CLIP command.

AmigaBASIC will only move objects within this rectangle. In other

words, the object is only visible when its coordinates are within the

clip area.

AmigaBASIC takes the window size as the default value. If the window

is enlarged or reduced, however, the rectangle will have to be changed as

well. It isn't automatic!

OBJECT.CLOSE

Syntax: OBJECT.CLOSE [Object number] [,Object number...]

An object uses up space as long as it is in memory. If it is no longer

needed, you should use OBJECT.CLOSE to free up that space.

If you don't enter an object number, all the objects that belong to the

current output window will be erased, and their memory spaces freed up.

411

Appendix B AmigaBASIC Inside and Out

OBJECT.HIT

Syntax: OBJECT.HIT Object number, [Valuel] [,Value2]

This command is used to set which objects (or screen boundaries) can

collide with which objects. You can keep certain objects from colliding

(for instance, it might not matter if objects go past the screen

boundaries, or you might not want a space ship to collide with a star in

a program).

If a collision is possible and it does occur, it can be checked with

collision event trapping. You can find more about this in the

description of ON COLLISION GOSUB and COLLISION.

The default setting is that any object can collide with any other object

and with the screen boundries. You can enter 16-bit decimal numbers

for Valuel and Value2. If the low bit in Value2 is set (if

Value2 is a odd number), the object can collide with the screen

boundary. If it isn't set, it can fly out of the visible area.

The rest of the bits are used as follows. Valuel stands for the object

itself. Value2 stands for other objects that our object can run into. If

there is a collision, AmigaBASIC ANDs Value2 of the strange object

with Value 1 of our object If none of the set bits match up (if we get

a zero ANDing), then a collision has not occurred. If any bits match, a

collision has happened. For example:

Object

Space ship

Rocket

Star

Valuel:

00000000 00000010

00000000 00000010

00000000 00000100

Value2:

00000000 00000011

00000000 00000010

00000000 00000100

We wrote the numbers in binary to make comparing them easier. You

need to give the value as a decimal number when you call the

OBJECT .HIT command. For example, the command for the space

ship is:

OBJECT.HIT 1,2,3

Now we'll look at the bits. The low bit in the space ship's Value2 is

set. The space ship cannot leave the boundaries of the screen. The

rocket and the star may leave the screen in any direction.

Valuel of the space ship and Value2 of the rocket are set so those

two can collide—that is, if the rocket meets up with the space ship, a

collision occurs.

We set the second bit in Value2 of the space ship and in Valuel of

the rocket so that a collision will occur if the reverse happens. Only the

third bit is set for the star so it can't get into collisions.

412

Abacus Object animation

OBJECT.ON Section 1.15

OBJECT.OFF

Syntax: OBJECT.ON [Object number] [,Objectnumber,...]

OBJECT.OFF [Object number] [,Object number,...]

OBJECT.ON makes the object whose number is given, visible. The

OBJECT.OFF command makes it invisible. If you don't give a number,

the command applies to all the objects in the current output window.

OBJECT.OFF also stops moving objects so that you can't get into

collisions with invisible objects.

OBJECT.P LANES

Syntax: OBJECT.PLANES Object number [, Bitplane] [, Planevalue]

You probably won't use this command very often, because it deals

mostly with the inner workings of the Amiga. Bitplane is an 8-bit

value which is written as a decimal number. The set bits determine in

which bitplanes the object will appear. For example, if you have four

bitplanes available and want to have the object show up in the first and

third plane (levels 0 and 2), you need to enter 2*0 + 2A2 = 1 + 4 = 5.

The other value, Planevalue (also an 8-bit number), tells what

should be put in the other bitplanes.

OBJECT.PRIORITY

Syntax: OBJECT.PRIORITY Object number, Priority number

You can set the priority of individual objects using the

OBJECT.PRIORITY command. You can use it to determine which

object will be visible when several objects occupy the same screen

location.

Priority number is a number between -32768 and +32767. When

two objects are at the same spot, the one with higher priority will be

displayed in front. If they have the same value, either could be in the

foreground.

OBJECT.SHAPE Section 1.13

Syntax: OBJECT.SHAPE Object number, Definition string

OBJECT.SHAPE Object number, other Object number

413

Appendix B AmigaBASIC Inside and Out

This command sets the shape, size, and color of an object. All of this

information is in a definition string that you can read from a sequential

file.

OPEN "(Object file)" FOR INPUT AS 1

OBJECT.SHAPE Object number, INPUT$(LOF(l),1)

CLOSE 1

You can create the data items in the sequential object file with the

ObjectEditor from the BASICDemos drawer of the Extras diskette.

You can find out more about this in Section 1.11 (the object editor).

The second syntax lets you copy the definition of an object already in

memory to another object Then you can have several identical objects

in memory.

OBJECT.START Section 1.15

OBJECT.STOP

Syntax: OBJECT.START [Objectnumber] [,Objectnumber,...]

OBJECT.STOP [Object number] [,0bject number,...]

The OBJECT.START command starts an object's movement. The

OBJECT.STOP command makes it stop moving. You can make several

objects start or stop moving at the same time.

OBJECT.vx and .VY set the object's speed and/or acceleration. You can

use OBJECT.X and OBJECT.Y to set where the object should be put

initially, then start the movement using the OBJECT.START command.

Now the object will move on its own and your program can worry

about other things.

AmigaBASIC automatically executes OBJECT.STOP for objects

involved in collisions.

OBJECT.VX Section 1.15

OBJECT.VY

Syntax: OBJECT.VX Object number, Speed

OBJECT.VY Object number, Speed

These two commands set the speed of moving objects. You set the

horizontal speed with OBJECT.vx and the vertical speed with the

OBJECT.VY command. Positive values move the object toward the left

or downwarATo move right or upward use negative numbers.

Look at Figure 4 on page 70 for more information. The speed is entered

in pixels per second. The object starts moving from the place specified

with the OBJECT.START command.

414

Abacus Object animation

OBJECT.VX

OBJECT.VY

Syntax:

Section 1.15

Value = OBJECT.VX (Object number)

Value = OBJECT.VY (Object number)

This function tells you the present speed of an object. You can use this

information in calculations, for instance, to vary the speed from time to

time.

OBJECT.X

OBJECT.Y

Syntax:

Section 1.15

OBJECT.X Object number, X-coordinate

OBJECT.X Object number, Y-coordinate

You use OBJECT.X and OBJECT.Y to set the position and/or the starting

point of an object's movement X-coordinate and Y-coordinate

give the location of the upper left comer of the object The values that

make the object visible on the screen depends on the resolution of the

current window.

Objects don't have to be in the visible region, but the coordinates must

be between -32768 and +32767. Remember that objects won't be

visible until you use the OBJECT. ON command.

OBJECT.X

OBJECT.Y

Syntax:

Section 1.15

Value = OBJECT.X (Object nuniber)

Value = OBJECT.Y (Object number)

Here OBJECT.X and OBJECT.Y function as BASIC functions. You can

find the present location of an object using these commands. Using this

information, you can decide what to do with the object. In this way,

your program need only look at an object as needed. Value is set to the

screen coordinates of the upper left corner of the object

415

Appendix B AmigaBASIC Inside and Out

ON COLLISION GOSUB

Syntax: ON COLLISION GOSUB Labe1

You can use this command to deal with collisions. You determine

which subroutine to branch to when a collision occurs. Just give the

label for the routine that is in charge at the parameter Label.

If you enter a 0 instead of a label or line number, event trapping for

collisions will be turned off. This happens even if "0" is also a label or

a line number in your program. To turn on collision event trapping,

use the COLLISION ON command.

416

Abacus Graphic commands

B.3
Graphic

commands

AREA

Syntax:

Section 2.6

AREA [STEP] (x,y)

You use AREA to enter a point on a polygon. The AREAFILL command

draws the polygon on the screen (see AREAFILL for more information).

If you add STEP to AREA, the x and y will be added to the last

coordinates used.

AREAFILL

Syntax:

Section 2.6

AREAFILL [mode]

You can give up to twenty corner points with the AREA command;

AmigaBASIC can't handle any more. If you use the AREAFILL

command, the polygon specified using the AREA command will be put

on the screen. This goes very quickly because of the blitter chip.

There are two values for mode. If you enter a 0, the polygon will be

filled with the pattern you set with the PATTERN command. If you enter

a 1, the polygon will be inverted. If your colors are set normally, this

means that:

BLUEWILLBECOME ORANGE

WHITE WILL BECOME BLACK

BLACKWILLBECOMEWHITE

ORANGEWELL BECOME BLUE

CIRCLE Section 2.6

Syntax: CIRCLE [STEP] (x,y),Radius [,Color] [,Start angle]

[, End angle] [, x/y relationship]

This command draws a circle or an ellipse with the center located at

(x, y). Radius is the x-direction of the radius in pixels. If you have a

STEP preceding (x, y), AmigaBASIC adds the values x and y to the

last graphic coordinates used.

Color is the number of the color to be used. The value allowed for the

number depends on how many bitplanes are being used by that screen.

417

Appendix B AmigaBASIC Inside and Out

Start angle and End angle make it easier to draw sections of a

circle. Enter the angles (a multiple of n) of the start and end points in

radians. Negative angles cause the start and end points to be connected

to the middle point. Figure 6 on page 116 will help you determine the

angle.

x/y relationship determines the relationship between the x-radius

and the y-radius. By changing this value, you can draw all sorts of

ellipses. Values of less than 0.44 yield a small y-radius. Values over

0.44 yield an ellipse with the y-radius bigger than the x-radius. The

value 0.44 will usually (depending on the monitor) draw a perfect circle.

GET (screen GET) Section4.1

Syntax: GET (xl, yl) - (x2f y2), array name [(index,...)]

You can use this command to store the contents of a section of the

screen in a data array. The array must be a number. You can use an

integer, a floating-point array, or a double precision floating-point

array. Use the following formula to calculate the size of the array in

bytes:

6 + Bitplanes * Height * 2 * INT((Width + 16) / 16)

You can then divide this number by the number of bytes per array

element.

2 bytes for an integer array (Anarray% (x))

4 bytes for a floating-point array (Anarray (x))

8 bytes for a double precision floating-point array (Anarray* (x))

Array element 0 contains the width, element 1 the height, and element

2 the number of bitplanes in the screen segment that was saved.

If you have a multi-dimensional array, you can store several segments

in the array. You can also store different views of the same figure so

that you can change them quickly.

To display the segment on the screen again, use the PUT command.

LINE Section 2.5

Syntax: LINE [[STEP] (xl,yl)] - [STEP] (x2,y2) [,Color] [,Bor

,BF]

This command can be used to draw a line, a box, or a filled in box. The

simplest use is to give a starting and ending point (LINE (xl, y1) -

(x2, y2)), which gives you a straight line.

418

Abacus Graphic commands

If you leave off the first point (LINE - (x2, y2)), AmigaBASIC draws

a line from the last graphic point used to the point (x2, y2). You can

use both possibilities in connection with STEP. Then the x and y

values will be added to the previous graphic point. You can enter a

color number to set the color this should be drawn in. You can put a , B

at the end; then a box will be drawn. The coordinates (xl, y1) and

(x2, y2) are two opposite corners of the box. If you use , BF, a box

filled in with the drawing color will be drawn on the screen.

PAINT Section 2.6

Syntax: PAINT [STEP] (x,y) [,Paint color] [,Boundary color]

This command paints an enclosed surface in the Paint color. If you

didn't enter a Boundary color, Paint color will be used as

Boundary color. If neither color is stated, AmigaBASIC uses the

current drawing color. To use PAINT, you must be in a window whose

type is between 16 and 31 (the window contents must be buffered in

memory).

PALETTE Section 1.16

Syntax: PALETTE Color-id, Red, Green, Blue

You can produce colors using the PALETTE command. The number of

possible colors depends on the number of bitplanes on the screen. Every

color has a Color-id number assigned to it This number (that can

range from 0 to 31 at best) is assigned to a particular color.

Enter a number between 0 (0%) and 1 (100%) for the Red, Green, and

Blue components. The new color settings replace the old ones. The

four Workbench colors (colors 0 to 3 are used by Workbench, and can

be changed in Preferences) will be returned by the Amiga when a

program starts and ends.

PATTERN Section 2.10

Syntax: PATTERN [16-bit value for line] [,array for surface]

You can use this command to set the fill pattern for lines and surfaces.

If you're using PATTERN with lines, you can give a 16-bit value. This

defines a 16-pixel-wide pattern. Every set bit in the number corresponds

to a point on the screen. The 16-bit number can be entered in decimal

(e.g., 65535), hex (&HFFFF), or octal (&O177777) format

419

Appendix B AmigaBASIC Inside and Out

For areas, enter an integer array. The numbers in the array define a

pattern that can be used for fill and paint activities (PAINT, AREAFILL,

or LINE..., BF). The set bits correspond to visible points on the screen

here as well.

The number of elements in the array must be a power of 2 (e.g., 1, 2,

4, 8, 16, or 32).

POINT

Syntax: POINT (x,y)

This BASIC function gets the number of the color at POINT (x, y) in

the current output window. If the point is outside the window, the value

returned will be -1.

PRESET

PSET

Syntax:

Section 2.5

PRESET [STEP] (x,y) [color-id]

PSET [STEP] (x,y) [,Color]

These commands draw a point in the current output window, x and y are

the point's coordinates. You can use STEP to draw additional points

relative to the last point drawn. The point color is set by entering the

color-id. There is only one difference between PRESET and PSET;

when the color is not specified, PRESET draws using the background

color, while PSET draws the current drawing color.

PTAB

Syntax: PRINT PTAB (x)

This function works just like TAB except that the position is given here

in pixels instead of characters. Using this, you can position text

accurately within the current line. For example:

FOR x-0 TO 100

PRINT PTAB(x);"Hello!"

NEXT x

PUT (screen PUT) Section4.1

Syntax: PUT [STEP] (x,y), array name [(index,...)] [,action-verb]

You need this command to PUT the screen sections that you placed in

an array with the GET command back onto the screen. The parameters

420

Abacus Graphic commands

SCREEN

Syntax:

are the same as for the GET command, so please look there if you need

more information.

Only action-verb is new here. You can choose several different ways

to put the object onto the screen:

PSET: The data will overwrite the screen area. It will look exactly the

same after being writtten to the screen as it did when it was read.

PRESET: The picture is inverted.

AND: Only the points that remain after ANDing the segment being read

in with the background will be put on the screen.

OR: The array contents and the background are ORed together. The

segment will be completely copied onto the background.

XOR: This is the default for action-verb. The segment is copied to

the screen. The picture underneath will be displayed inverted.

Section 2.3

SCREEN screen-id, width, height, depth, mode

You can use this command to create a new screen. AmigaBASIC allows

four screens in addition to the Woikbench screen (numbers 1 - 4).

width and height are in pixels, depth sets the number of bitplanes

used on the screen.

depth (number

ofbitplanes)

1

2

3

4

5

total number of

colors available

2

4

8

16

32

mode states the degree of resolution and whether or not interlace mode

is operating, mode is a number between 1 and 4.

Mode:

1

2

3

4

Description:

320*200 pixels

640*200 pixels

320*400 pixels (interlace)

640*400 pixels (interlace)

Memory needed per bitplane:

8000 bytes

16000 bytes

16000 bytes

32000 bvtes

421

Appendix B AmigaBASIC Inside and Out

SCREEN CLOSE

Syntax: SCREEN CLOSE screen-id

Since screens use quite a bit of memory, you should close them when
you no longer need them. The SCREEN CLOSE command is used for
this. It clears the screen whether there are windows on it or not, and
frees up the memory that was being used by the screen.

SCROLL Section 1.17

Syntax: SCROLL <xl,yl)-(x2-y2) ,delta-x,delta-y

Using this command, you can move a screen segment in any direction,
(xl, y 1) - (x2, y2) is the format for a rectangle. The rectangle's

contents are moved, delta-x determines how many points the

contents should be moved in a horizontal direction. Positive values

move the screen segment to the right, and negative values move it to

the left, delta-y does the same for the vertical direction. Positive
values move the segment downward, negative values upward.

WINDOW Section 2.4

Syntax: WINDOW window-id [.title] [, (xl, yl) - (x2,y2)]
[/type] [,screen-id]

You can use this to create and use new windows. Every window has a

window-id, a number that allows you to easily access windows. The

BASIC window has a window-id of 1, user created windows have

window-id numbers from 2 on up.

When you create a window, you can give it a title and declare a

rectangle sized (xl, y1) - (x2, y2) that states the upper left and

lower right corners of the window. If you don't set a size,

AmigaBASIC uses the entire screen for the window.

type is a number formed by one or a combination of the following

numbers added together

1 You can enlarge and shrink the window with the size gadget and

your mouse.

2 You can move the window using the title bar and the mouse.

4 The window has a back gadget so that you can click it to the

background on the screen.

8 The window has a close gadget

422

Abacus Graphic commands

16 The window contents are reconstructed after being moved, or

covered by another window. You need to use this option if you

want to use the PAINT command in the window.

You can also say which screen the window should be placed on. If you

omit all the options and use the WINDOW command as follows:

WINDOW window-id

the window will be put in the foreground and used as the output

window.

WINDOW Section 2.4

Syntax: WINDOW (x)

This version of WINDOW is a BASIC function. You can find out things

about the current output window using it. x is a value between 0 and 8.

WINDOW (0) gives you the window-id of the selected output window.

It does not have to be the current output window; it can also be the

window that was last clicked with the mouse (the window whose title

isn't printed in ghost print).

WINDOW (1) gives the window-id of the current output window (the

window to which AmigaBASIC sends all screen output).

WINDOW (2) gives the width of the current output window in pixels.

WINDOW (4) gives the X-coordinate in pixels of the location in the

current output window where the next character will appear. It gives

you the current location of the output cursor.

window (5) gives the Y-coordinate in pixels of the location in the

current output window where the next character will appear.

WINDOW (6) tells you the maximum color number allowed in the

current output window.

WINDOW (7) is a pointer to the record of the Intuition window

corresponding to the current output window.

WINDOW (8) gives the address of the Intuition data area of the

RASTPORT structure (see the manual entitled Intuition: The Amiga User

Interface, available from your Amiga dealer). You'll only use this value

if you know the Amiga operating system very well.

423

Appendix B AmigaBASIC Inside and Out

WINDOW CLOSE Section 2.4

Syntax: WINDOW CLOSE window-id

This command removes the window from the screen without erasing the
window. You can still send output to the window even though it is
invisible.

WINDOW OUTPUT Section 2.4

Syntax: WINDOW OUTPUT window-id

The window stated in this function will be turned into the output
window, but it won't be brought to the foreground. That is its only

difference from the WINDOW window-id command. In this way, you
can send output to invisible windows.

424

Abacus Program control commands

B.4
Program control

commands

BREAK ON

BREAK OFF

BREAK STOP

Syntax: BREAK ON

BREAK OFF

BREAK STOP

This command takes care of event trapping for program breaks.
Normally you can break by hitting <CTRLxC>, or by choosing
Stop from the Run pulldown menu. If you want to stop users from
stopping a program, or even just one section of a program, you can use

these commands. You set the corresponding subroutine responsible
with the ON BREAK GOSUB command. The BREAK ON command turns
on event trapping, while BREAK OFF deactivates it until the program

finds another BREAK ON command. The BREAK STOP command turns

off BREAK event trapping.

CALL Section 4.5

Syntax: [CALL] name [(argument-list,...)]

[CALL] Variable [(Value,...)]

The first form is for CALLing a subprogram. You can find more about
these programs under the SUB...STATIC command. Usually you can
leave off the CALL; you only need it if confusion might occur otherwise
(for instance, if you have a normal label with the same name).

You can also CALL machine language subroutines. As you may know,
BASIC isn't the Amiga's native language; it uses an interpreter. If you
want to communicate with the Amiga in its native language, you need
to know 68000 assembly language. If you don't, you can skip the next

several paragraphs.

You need to get the machine language program in memory. You can

load it from the diskette or READ it into a DATA array. You can find the
machine language routine's starting address with the VARPTR or SADD

function.

425

Appendix B AmigaBASIC Inside and Out

An example:

DIM MachineProgram% (20)

FOR x«0 TO 20

READ MachineProgram% (x)

NEXT x

StartAddress&=VARPTR(MachineProgram% (0))

CALL StartAddress*(10,20)

DATA ...

The whole program is stored in the MachineProgram% array. You
can find the address this array starts at using

VARPTR (MachineProgram% (0))

You can pass parameters to the routine with the CALL command (in

our example, we passed 10 and 20). You can also put a machine
language program in a string.

FOR x-0 TO 20

READ Value

Ma$«Ma$+MKI$ (Value)

NEXT x

StartAddress&»SADD (Ma$)

CALL StartAddress*(10,20)

DATA ...

The SADD function gives you the starting address of a string. Using

MKI$, you put together a string using the single values that you find

on the DATA line.

You can also CALL machine language routines from a library. Look

under the LIBRARY command for more information.

CHAIN

Syntax: CHAIN [MERGE] filename[,expression] [,ALL]

[,DELETE range]

This command makes it possible for one BASIC program to load and

pass control to another BASIC program. The difference between this

command and the MERGE command is that the calling program is

partially or completely erased in CHAIN. The word MERGE is just one

of several options for the CHAIN command. If you use it, the calling

program will be overwritten starting at the line number stated in

expression. The program that you load must be stored as an ASCII

file on the diskette.

If you don't use the MERGE command, expression states the line

number in the loaded program from which the program should run. You

may not use a label instead of a line number. Here, a line number must

426

Abacus Program control commands

be used in AmigaBASIC. The ALL option passes all the variables in
the current program to the program that is loaded. If you just want to

pass some of them, you can use the COMMON command to say which

ones should be passed. If you use the COMMON command, you may not

use the ALL option.

The DELETE option deletes a range of lines in the loaded program. You

can declare a range using either line numbers or labels.

The CHAIN command resets the DATA element pointer to the

beginning. It works like the RESTORE command. All open files
remain open after executing the CHAIN command, as do settings like

OPTION BASE. However, CHAIN turns off event trapping. You must

reactivate event trapping in the new program if it is needed. The type

declarations made with DEFINT, DEFLNG, etc., are also dropped. If the

DEF FN command isn't in the newly created program, AmigaBASIC

will forget the function definition.

CLEAR

Syntax: CLEAR [,basicData] [,stack]

You can use CLEAR to erase all variables, strings, and arrays. This

command also shuts all open files and more.

The CLEAR command lets you change the amount of memory used by
AmigaBASIC. You can enlarge or reduce the memory allocation for

BASIC programs and data. The minimum BASIC memory size is 1024

bytes (IK). The upper limit is the amount of system memory. The

Amiga needs lots of space for graphics in graphic programs, so leave

enough space available. If the Amiga runs out of space, you'll get a

system crash (see Section 1.6 [more BASIC functions] for our

discussion of Guru Meditations).

If a program works mostly with data and doesn't need much graphic
memory, you can make the BASIC memory area fairly large. The

default setting for basicData is 25000 bytes on the 512K Amiga.

For example:

CLEAR,40000

This makes 40000 bytes available for the BASIC system.

The stack is the memory area that AmigaBASIC uses for internal

things. For instance, it keeps track of the counters in a F0R...NEXT

loop here. It also keeps track of the line to RETURN to. Its normal

setting is 4789 bytes. It cannot be smaller than 1024 bytes. Take a

look at the FRE (x) command, which will tell you about determining

current memory sizes.

427

Appendix B AmigaBASIC Inside and Out

COMMON

Syntax: COMMON Variable-list

This command passes individual variables to a program that you load
with the CHAIN command. If you want to pass arrays, you need to
identify them with empty parentheses:

CHAIN " (Program name)"

COMMON a,B$,Hello%, Colors (), Texts$()

You may use several COMMON commands but each variable may appear
only once.

CONT

Syntax:

DATA

Syntax:

CONT

With CONT, you can have a program continue from the point where it

was stopped by a <CTRLxC>, Stop from the Run pulldown menu,

or a STOP or END command in the program. The program couldn't

have been altered since the break, or you'll get a "Can't continue"
enor.

Section 2.9

DATA constant-list

You can put values (numbers or strings) on a DATA line. You can then

READ them. The values are separated by commas. If a string has

commas or semicolons, these must be put in quotation marks.

You may put DATA lines any place in the program. The DATA values
will be read one after the other.

DECLARE FUNCTION...LIBRARY

Syntax: DECLARE FUNCTION-id[param-list] LIBRARY

If you want to use a machine language program that is a function (i.e.,

which produces a value), and this function is contained in a library,

you need to declare the function with the declare

FUNCTION...LIBRARY command (see also CALL and library). If

the value produced is a certain type, just put the type designator on the
end of the function's name:

DECLARE FUNCTION Test%(Test value) LIBRARY

428

Abacus Program control commands

DEF FN

Syntax:

The machine language function Test% (Test__value) produces a 16-
bit integer as its value. Inputting the variables that the machine
language program expects is unnecessary since AmigaBASIC doesn't
get involved in that. If you write them though, you'll know which
values later need to be passed to the function when you call it.

Section 7.6

DEF FN name [(parameter-list)] = function-definition

Using DEF FN, you can create your own BASIC functions. You write
the function name right after FN. If you want to use the function in a
program, you do something like PRINT FNa (100) or

Test=FNText (1,2,4). The optional values in parentheses are used in
the formula the same way as the values in parentheses in the definition
(DEF FNa (x) = 2 *x). The program can also use variables that aren't in

parentheses to calculate the value of the function:

DEF FNTest(x) -» 2*x*a

a=100 : PRINT FNTest(25)

a=12 : PRINT FNTest(25)

These examples return the values 5000 and 600. You can also define

functions using string functions:

DEF FNFirst$(a$) = LEFT$(a$,l)

PRINT FNFirst$("Amiga")

This example prints an A.

DEFDBL

DEFINT

DEFLN6

DEFSN6

DEFSTR

Syntax: DEFDBL letter-range

DEFINT letter-range

DEFLNG letter-range

DEFSNG letter-range

DEFSTR letter-range

You can use these commands to set certain variable names to certain

variable types. Give the first letter of each variable name in the

letter-range. For example, DEFINT a-c means that from this time

on, all variables that start with a, b, or c (i.e., Amiga, alpha, Beta,

Charlie, ...) become 16-bit integers. You don't need to use % any

more. This holds true for arrays as well. However, if you use a type

designator, the designator gets top priority. For instance, Answer$ will

429

Appendix B AmigaBASIC Inside and Out

be treated as a string, although Answer will be treated as a 16-bit
integer. The following settings are possible:

Command:

DEFINT

DEFLNG

DEFSNG

DEFDBL

DEFSTR

Variable type:

16-bit integer (short INTeger)

32-bit integer (LoNG integer)

SiNGle-precision floating-point

DouBLe-precision floating point

STRing

Sample variable:

Hello%

Hello&

Hello, Hello!

Hello#

Hello$

You need to set the variable type before you use the variables.

DELETE

Syntax: DELETE [Label or Line number] [-] [Label or Line number]

You can use DELETE in both program and direct modes to delete lines.
Enter the range of lines to be deleted:

DELETE Beginning - ColorDef deletes all the lines between the

two labels.

DELETE Beginning - deletes all the lines from the label Beginning

to the end of the program.

DELETE - ColorDef deletes all the lines from the beginning of the

program to the ColorDef label.

DIM Section L7

Syntax: DIM [SHARED] Array(Value [,Value,...]) [.Array (...),...]

You use DIM to dimension arrays used in your program. If you don't

dimension the array, AmigaBASIC automatically sets the array size to

10 elements. Dimensioning is intended to keep an array from taking up

any more memory than is necessary.

If you use the SHARED option, the array can be used by subprograms as

well as the main program. You may only put the DIM SHARED

command in the main program, though. If you want to use a number of

normal variables in all subprograms, you can use the DIM SHARED

command:

DIM SHARED Colors%(31,2), Colors

The variable Colors is a global variable, in contrast to the local

variables that subprograms use.

430

Abacus Program control commands

END

Syntax:

END SUB

Syntax:

Using the OPTION BASE command, you can set whether the smallest

array element in all arrays is a zero or a one.

You can set up multi-dimensional arrays (for example, DIM

Array (2,2,2)). You may have up to 255 dimensions. The highest

number of a array element is 32767. You'll never reach either
maximum number, since you would run out of memory long before

that.

Section 2.10

END

This command ends a BASIC program. All open files are closed.

Section 4.5

END SUB

This ends a subprogram. See the SUB command explanation for more

information.

ERASE

Syntax: ERASE Array [, Array...]

The ERASE command erases an array. The memory the array occupies is

freed up, and the contents are erased You can redimension an array with

DIM after erasing it

ERL

Syntax: ERL

This system variable contains the number of the last line executed

before an error occurs when you are doing error trapping (event trapping

for errors). It is impossible to find the label name that comes before the
error. See ON ERROR GOSUB for more information.

ERR

Syntax: ERR

This and ERL are system variables for error trapping. This gives you the
number of the error. You can find out which number goes with which

error by looking in Appendix A (Error and help messages). See ON

ERROR GOSUB in this Appendix for more information.

431

Appendix B AmigaBASIC Inside and Out

ERROR

Syntax: ERROR error-number

Here is a third command used in connection with errors. Using ON

ERROR GOSUB to do error trapping, you can create your own error

messages. Just take an error number that isn't in use, and use the

ERROR command to create this error. Error trapping branches to the

corresponding subroutine. There you can use ERR to find out the error

number. AmigaBASICs error window cannot display your error

messages. However, you can create your own error window and have

it displayed by your subroutine.

If you enter an error number that AmigaBASIC uses and don't use error

trapping, you create an error that really hasn't occurred. You can use

that to protect your program against unauthorized users. Try this:

ERROR 2

A "Syntax error" will occur.

EXIT SUB

Syntax: EXIT SUB

Section 4.8

This command makes it possible to leave a subprogram before it is

done executing. You can find more in the SUB...STATIC command

description.

FOR...NEXT Section 1.7

Syntax: FORvariable=xTOy [STEP z] NEXT [variable] [.variable

This command is used for loops. Everything between the FOR and NEXT

command will be performed several times. The first time through the

loop, the counter variable has the value x. The next time through,

the variable is incremented by z (if STEP z is omitted then x is

incremented by 1 each time the loop is executed). This continues until

variable is greater than y.

The variable after the next command is optional. If it is omitted, it

increments the most recent FOR command. It is possible to match

several FOR...NEXT loops with a single NEXT command.

FOR x=l TO 100

FOR y=l TO 20

FOR z«l TO 30

NEXT z,y,x

432

Abacus Program control commands

As you can see in the example, you can also nest your FOR...NEXT

loops. The inner loops must be closed before the outer ones can be

closed.

FRE(x) Section 4.4

Syntax: FRE (x)

These system variables give information about the size of individual

memory ranges. You enter a value for x to specify the memory range.

FRE (0) tells you how much free memory there is in BASIC memory;

that is, the number of bytes that aren't presently being used by the

program and its variables.

FRE (-1) tells you how much space is left in system memory.

FRE (-2) tells you how many bytes on the stack are not being used by

AmigaBASIC.

GOSUB...RETURN Section 1.16

Syntax: GOSUB line

RETURN [line]

You can call a subroutine with GOSUB. AmigaBASIC notes where the

GOSUB is located and then branches to the line. If it finds a RETURN

command in this subroutine, it returns to the line following the GOSUB

command and continues.

You can also put the line number line following the RETURN

command. Then AmigaBASIC branches to the label following the

RETURN command. You need to make sure that the GOSUB command

isn't inside of a loop (i.e., FOR...NEXT, WHILE...WEND), or inside of

another subroutine. Otherwise the loop or subroutine will be ended

incorrectly, if it ends at all. This can lead to error messages like "FOR

WITHOUT NEXT" or "WHILE WITHOUT WEND".

GOTO Section 1.6

Syntax: GOTO line

This command causes the program to jump to the line that follows the

GOTO; the program continues working there, line can be either a line

number or a label.

433

Appendix B AmigaBASIC Inside and Out

IF...THEN...ELSE Section 1.6

Syntax: IF expression THEN then-clause [ELSE else-clause]
IF expression GOTO line [ELSE else-clause]

IF expression THEN statementBlock

[ELSEIF expression THEN statementBlock]

[ELSE statementBlock]

END IF

The IF...THEN statement makes it possible to check conditions and then

execute commands or make jumps based on the results.

There are many different syntaxes. The simplest IF...THEN command

looks like this:

IF expression THEN then-clause

The condition is always a comparison that has a logical value (for

example IF a<10 or IF Hello=0...). If the condition is met,

AmigaBASIC returns the value -1 (true). If the condition is not met,

the result is 0 (false). In the example above, the then-clause that

follows the THEN will be executed if its condition is met. You can also

expand the command with an ELSE. Here you can tell the program what

to do if the conditions aren't met.

IF a<10 THEN PRINT "a is smaller than 10"

ELSE PRINT "a isn't smaller than 10"

You can put a GOTO and a label or line number behind the condition

instead of a THEN and a command.

If several program lines should be executed if the condition is met, you

should use the IF/ELSE IF/ELSE/ENDIF structure/The IF...THEN line

sets the condition. There may not be any other commands behind the

THEN command. The commands that are below this line and before the

next END IF, ELSE, or ELSE IF command will be executed if the

conditions are met The optional ELSE IF...THEN line gives a second

condition to be checked if the first condition isn't met. There may not

be a command behind the THEN here, either. The commands that should

be executed if the second condition is met begin on the next line.

The optional ELSE line tells what to do if none of the previous

conditions were met

The END IF command ends the whole IF ELSE IF/ELSE structure.

You can nest these structures inside each other. For example:

434

Abacus Program control commands

IF...THEN

IF...THEN

ELSE

END IF

ELSE IF...THEN

IF...THEN

END IF

ELSE

END IF

Structured programming here is almost unavoidable.

let Section 1.3

Syntax: LET variable=value

LET assigns value to variable. The LET can be omitted; a simple

assignment, like a=10, works.

LIBRARY

Syntax: LIBRARY filename

If you want to use machine language subroutines in your program, you

don't necessarily have to write them yourself. You can use libraries.

These libraries contain a number of machine language programs or calls

that perform certain useful functions. You need information about

parameters and parameter types that the library routines expect. To find

this, you'll have to use the documentation that exists for machine
language programmers and software developers: the Amiga ROM
Kernel Manual and Intuition: The Amiga User Interface. AH the

machine language routines in the operating system and in the libraries

are explained there.

You can't do anything without this information. For this reason, we

have not included an example of Library in this book. The program

Library in the BASICDemos drawer of the Extras diskette will explain

how it goes. You CALL the machine language routines. For instance, in

the subprogram Font: from the Library program, we CALL

CloseFont (pFont &). The CloseFont: routine is part of the
graphics. library that is accessed at the beginning of the program.

These libraries must be in .BMAP format. Read Appendix D to find an

explanation of the Library and ConvertFD programs. AmigaBASIC

can use up to five libraries simultaneouly.

435

Appendix B AmigaBASIC Inside and Out

You cannot only CALL programs, you can use machine language

functions. These functions (which produce a result in contrast to CALL

routines) must be accessed with the DECLARE FUNCTIONALIBRARY

command. For example, the Library demo contains the

AskSoftStyle&, OpenFont&, and Executes functions.

LIST Section 1.5

Syntax: LIST [line] [-] [line] [,"filename"]

This command lists the program in memory. You can list an entire

program from the beginning to end by typing LIST without any

options, or you can list starting from a certain line number or label in

the program to another line number or label.

Enter the range of lines to be listed:

LIST lists the entire program from the beginning to end.

LIST line lists the line specified, line can be either a line number or

label.

LIST Beginning - ColorDef lists all the lines from Beginning to

ColorDef.

LIST Beginning - lists all the lines from the Beginning label to

the end of the program.

LIST - ColorDef lists all the lines from the beginning of the

program to the ColorDef label.

LIST normally lists the program in the LIST window. However,

adding , filename to LIST will send the program listing to a file or a

device:

LISTf "SCRN:" you list a program in the BASIC window.

LIST, "PRT:" sends your listing to the printer.

LIST, "DFO: Test" sends the program to diskette in ASCII format

MENU Section 2.8

Syntax: MENU menu-id, item-id, state [,title-string]

You can use MENU to create your own pulldown menus in

AmigaBASIC. You can use event trapping to respond to menu choices.

menu-id is the number of the pulldown menu. The first pulldown

menu is number 1, the last is number 10.

436

Abacus Program control commands

MENU

Syntax:

item-id is an item within the chosen pulldown menu. A pulldown

menu may have up to 19 options. The value 0 sets the title of the

pulldown menu.

There are three possible values for state:

0 turns off the menu item. The item will be printed in ghost print

and will not be available. If you enter 0 for item-id, the whole

menu will be turned off.

1 turns on a menu option (or the whole menu if you enter item-id

0).

2 activates a menu item and puts a small check next to it. You

should put two spaces in your text so that the check doesn't

overwrite your text You can't have a check next to the title of the

menu.

If you use the MENU command to turn menu items on and off, that's it

If you create a new menu, you must enter the text that goes with each

menu option.

Section 2.8

MENU(x)

This BASIC function gives information about the last menu option

that was chosen.

MENU (0) lets you know the number of the menu that the item was in.

MENU (1) lets you know which item was chosen from the pulldown

menu.

MENU ON

MENU OFF

MENU STOP

Syntax: MENU ON

MENU OFF

MENU STOP

These commands activate, deactivate or hold event trapping for menu

control. The MENU ON command turns on menu trapping; MENU OFF

turns it off; and MENU STOP turns it off until the next occurrence of

MENU ON.

You can let the program know which subroutine is in charge of the

menus with the ON MENU GOSUB command.

437

Appendix B AmigaBASIC Inside and Out

MOUSE Section 2.8

Syntax: MOUSE (x)

The MOUSE function gives information about the clicks and movement

of the mouse.

The value in the parenthesis can range from 0 to 6. They have the

following meanings: MOUSE (0) tells you the present state of the left

mouse key. If MOUSE (0) is executed during the program,

AmigaBASIC notes the present condition of the mouse. You should

call MOUSE (0) before you use MOUSE (1) through MOUSE (6). If you

don't need the value, assign it a dummy variable. MOUSE (0) can take

on the following values:

0 The left mouse key is not being pressed.

1 The left mouse key is not being pressed right now, but it was

pressed since the last time MOUSE (0) was called.

2,3 The left mouse key is not currently being pressed, but it has

been pressed several times since the last time MOUSE (0) was

called. 2 means that the left mouse key was pressed twice; 3

means that it was pressed three or more times.

-1 The left mouse key is now being held down after having been

clicked once.

-2,-3 The left mouse key is now being held down after having been

clicked two (-2) or three (-3) times.

MOUSE (1) gives the X-coordinate of the pointer the last time

mouse (0) was called.

MOUSE (2) gives the Y-coordinate of the pointer the last time

MOUSE (0) was called.

MOUSE (3) gives the starting X-coordinate of the pointer the last time

the left button was pressed before calling MOUSE (0).

MOUSE (4) gives the starting Y-coordinate of the pointer the last time

the left button was pressed before calling MOUSE (0).

MOUSE (5) gives the ending X-coordinate of the pointer the last time

the left button was pressed before calling MOUSE (0).

MOUSE (6) gives the ending Y-coordinate of the pointer the last time

the left button was pressed before calling MOUSE (0).

438

Abacus Program control commands

MOUSE ON Section 2.8

MOUSE OFF

MOUSE STOP

Syntax: MOUSE ON

MOUSE OFF

MOUSE STOP

These commands activate, pause or deactivate event trapping for the

mouse. A mouse click is something that can be checked for event

trapping. The MOUSE ON command makes it possible to do mouse

trapping; MOUSE OFF turns it off; and MOUSE STOP turns it off until the

next MOUSE ON command.

The subroutine that handles mouse clicks can be set with the ON

MOUSE GOSUB command.

NEW Section 1.9

Syntax: NEW

The NEW command erases the program currently in memory. Before it

does this, all the files are closed and the trace mode is turned off by the

TROFF command.

If you haven't saved the program in its current form, a requester will

advise you of that fact

ON BREAK GOSUB

Syntax: ON BREAK GOSUB label

You can use this command to tell AmigaBASIC which subroutine to

branch to, if there is a program break and if event trapping is active for

this event.

You can give a label or a line number. If you enter 0 as the label,

program break event trapping will be turned off. You need to use

BREAK ON to reactivate it.

The subroutine should let the user know that the program can't be

broken and how he can end the program anyway (it would be nice to

have a "Would you really like to quit" requester which has yes and no

gadgets).

AmigaBASIC blocks break trapping while the subroutine is running so

that a second event can't disturb taking care of the first

The subroutine must be ended with the RETURN command.

439

Appendix B AmigaBASIC Inside and Out

ON ERROR GOSUB

Syntax: ON ERROR GOSUB label

Using this command, you can let AmigaBASIC know which

subroutine to call if an error shows up and event trapping for errors is

active. You can enter a label or a line number. If you enter a 0, event

trapping for errors will be turned off.

You can use ERR to find out which error it was, and ERL to find out the

last line number before the incorrect line occurred. Using the ERROR

command, it is even possible to use your own error numbers in the

program. If another error occurs in the subroutine, AmigaBASIC

crashes the program. To return to the main program, you need a

RESUME command at the end of the subroutine (see RESUME for more

information).

ON...GOSUB

Syntax: ON x GOSUB label [, label] [, label]

Section 2.9

Using this command, you can call various subroutines making your

choice based on the value of x. If x=l, the program jumps to the first

label, if x=2 it jumps to the second, etc. If x is a floating-point

number, the value will be rounded. If x is bigger than the number of

labels that follow the GOSUB, the program continues moving along, but

it doesn't jump. If x is negative, you'll get an "Illegal function

call" error.

ON...GOTO

Syntax:

Section 2.9

ON x GOTO label [, label] [, label]

Read the explanation of ON...GOSUB above, since ON...GOTO functions are

the same way. The only difference is that the program jumps to another

section instead of calling a subroutine.

ON MENU GOSUB Section 2.8

Syntax: ON MENU GOSUB label

You use this command to tell AmigaBASIC which subroutine to call

when the user chooses an item from a pulldown menu, and when event

trapping is active for this event You can give a label or a line number

for label. If you enter 0 as the label, event trapping for pulldown

menus will be turned off. To reactivate it, you need to use the menu ON

command. You can find which option was chosen with the MENU (x)

440

Abacus Program control commands

function. AmigaBASIC blocks menu trapping while the subroutine is

running, so that a second event can't take over the first event. The

subroutine must be ended with a RETURN command.

ON MOUSE GOSUB Section 2.8

Syntax: ONMOUSE GOSUB Label

You can use this command to tell AmigaBASIC which subroutine to

call when the user clicks the left mouse key, and when event trapping is

active for this event You can use a label or a line number for label. If

you enter 0 for label, event trapping for the mouse will be turned off.

To activate it, you need to use the MOUSE ON command. You can get

information about the mouse using the MOUSE (x) function.

AmigaBASIC blocks mouse trapping while the subprogram is running,

so that a second event can't interfere with processing the first event.

The subroutine must be ended with the RETURN command

ON TIMER GOSUB

Syntax: ON TIMER (x) GOSUB Label

This tells AmigaBASIC which subroutine to call if x seconds have

gone by since the last timer event, and if event trapping is active. This

version of event trapping makes it possible to call a subprogram at

regular intervals, x must be between 1 (1 second) and 86400 (60*60*24

seconds = 24 hours). You can use a label or a line number. If you enter

0 for a label, timer event trapping will be turned off. To activate it, you

need to use the TIMER ON command.

AmigaBASIC blocks timer trapping while the subroutine is running,

so that a second event can't interfere with processing the first. The

subroutine must end with a RETURN command.

OPTION BASE

Syntax: OPTION BASE x

Arrays usually have a starting element number of 0 (such as

Hello (0), Hue (0, 0)). If you want your arrays to start with 1

(Hello (1), Hue (1,1)), use the OPTION BASE 1 command. This

command must be executed before any DIM statements are executed and

before array elements are accessed Otherwise, you'll get a "Duplicate

definition" error.

441

Appendix B AmigaBASIC Inside and Out

RANDOMIZE

Syntax: RANDOMIZE [x]

RANDOMIZE TIMER

If you use random numbers (RND), you'll get the same values every

time you run the program. The RANDOMIZE command gets around this

problem by giving you a series of random numbers. If you give

RANDOMIZE a number between - 32768 and 32767, the number will be

used for random number computations. If you enter the same number,

you'll get the same sequence of random numbers. If you don't enter a

value, AmigaBASIC asks you for a value with:

Random Number Seed (-32768 to 32767)?

If you don't want to enter values manually, just use RANDOMIZE

TIMER. AmigaBASIC uses the current time to make the calculations.

In this way, you can get truly random numbers—your program will

give different numbers each time it runs.

READ

Syntax:

REM

Syntax:

Section 2.9

READ variable-list

This command reads a value from a DATA line, and puts the value in the

variable that follows it. The variable must be of the same type as the

value read (string to string, number to number). Each READ command

increments an internal DATA pointer. If all the DATA statements are read

before the pointer is done, you'll get an "Out of DATA" error.

Section 4.6

REM [text]

You can use REM to put comments at the end of a BASIC line. You can

also use it to produce a whole line of text. The REM command must be

the last command on a line, or the only command on a line. Everything

that comes after it in the line will be ignored by AmigaBASIC. You

can use an apostrophe (') instead of the REM command if you wish.

442

Abacus Program control commands

RESTORE

Syntax:

Section 4.8

RESTORE [line]

As you've read in the READ and DATA commands, READ increments a

pointer which points to the next DATA element to be read. You can use

RESTORE to move the pointer to a line or label you specify (backwards

or forwards). If you don't have a label behind RESTORE, the DATA

pointer will be reset to the beginning of the program.

RESUME

Syntax: RESUME [0]

RESUME NEXT

RESUME line

The RESUME command is used to end the subroutine that handles the

error caught with error trapping (see ON ERROR GOSUB). RESUME or

RESUME 0 executes the command that caused the error. RESUME NEXT

returns to the line following the one where the error occurred. In this

way, commands which contain errors can be ignored. RESUME line

lets youjump to any label, like one version of the RETURN command.

RUN

Syntax: RUN [label]

RUN filename [,R]

The RUN command starts the current BASIC program. The screen is

cleared, the LIST window is moved to the background, and any open

files are closed. You can use the RUN command in the BASIC window

and in the program. If you put label after RUN, the program starts at

the label entered. If you follow RUN with filename, the program

named will be loaded and started. If you put a , R after filename, all

the open files stay open. This lets you load a program that will do more

file handling on these open files.

SHARED

Syntax:

Section 4.5

SHARED variable-list

This command goes inside a subprogram. It says which variables from

the main program can be used in the subprogram as well. The variable

names are placed after the SHARED command. You identify arrays with a

pair of empty parentheses:

SUB Test STATIC

SHARED Testnuniber, TestArray (), Test$

443

Appendix B AmigaBASIC Inside and Out

You can use several SHARED commands but only inside a subprogram.

Compare this with the DIM command, which also has a SHARED

option.

SLEEP

Syntax: SLEEP

This command is useful when you're doing event trapping. It stops the

program until something happens that can be checked by event

trapping. It isn't necessary that event trapping be activated for the event

in this case. The following actions end SLEEP:

Pressing a key on the keyboard

Clicking the left mouse key

• Choosing a menu option in a pulldown menu

Graphic object collision

• End of a TIMER execution

The SLEEP command is useful when you want to have the user press a

key, any key. In contrast to INKEY$, SLEEP recognizes keys like

<SHIFT>, <ALT>, <CTRL>, and <Amiga>.

STOP

Syntax: STOP

This command stops a running BASIC program. You can use CONT to

continue the program. The STOP command does not close open files.

You should keep that in mind when you return to direct mode.

SUB...STATIC

Syntax: SUB subprogram-name [(parameter-list, ...)] STATIC

You start a subprogram with this command. A subprogram is a

subroutine that is independent from the rest of the program. It uses its

own variables, but can use variables from the main program by using

the SHARED command. Every subprogram has a name that can be used

to call it You can call it with the CALL command, but you can usually

leave off that command. The name may be up to 40 characters in

length. You can pass variables to the subprogram. You need to make

sure that the type of variable that is passed agrees with the kind the

SUB...STATIC line indicates. You identify arrays with parentheses:

444

Abacus Program control commands

SUB Hello (Test, Colors(), Alpha) STATIC

A subprogram is ended with the END SUB command. The lines of code

between SUB and END SUB are only executed when the routine is called

If a subprogram is in the middle of the main program, AmigaBASIC

jumps right over it

The EXIT SUB command makes it possible to leave a subprogram

before the END SUB command is reached

SWAP

Syntax: SWAP variablel, variable2

This command switches the values of two variables. After executing

this command, variablel has variable2's old value and vice versa.

The two variables must be of the same variable type.

SYSTEM Section 1.9

Syntax: SYSTEM

This command ends AmigaBASIC. The Amiga returns to the

Workbench or to the CLI, depending on where you called AmigaBASIC
from.

If the current program wasn't saved yet, AmigaBASIC will alert you to
that and offer you the chance to save the program.

TIMER ON

TIMER OFF

TIMER STOP

Syntax: TIMER ON

TIMER OFF

TIMER STOP

These commands control timer event trapping. The TIMER ON

command activates it; TIMER OFF turns it off; and TIMER STOP causes

all timer events before the next TIMER ON command to be ignored.

Using the ON TIMER GOSUB command, you can declare which

subprogram to jump to when there is a timer break.

445

Appendix B AmigaBASIC Inside and Out

TRON Section L14

TROFF

Syntax: TRON

TROFF

These two commands control the Trace function. The TRON

command turns trace mode on; TROFF turns it off.

If the Trace function is activated, the current command will be

displayed in the LIST window in an orange rectangle. That can be

very useful when you are testing the program.

WHILE...WEND Section 2.8

Syntax: WHILE expression

[statement] WEND

A WHILE...WEND loop is executed as long as the conditions are met.

When the conditions are no longer met, the program continues after the

WEND command.

A typical example is waiting for someone to input something from the

keyboard:

WHILE INKEY$="" : WEND

You can nest WHILE...WEND loops to any depth within each other.

446

Abacus Calculations and BASIC functions

B.5
Calculations and
BASIC functions

ABS

Syntax:

Section L17

ABS (Value)

The ABS function returns the absolute value of a number. The absolute

value is the number without its positive or negative leading character.

Forexample,ABS(-2) is 2; ABS (0) is 0.

AND

Syntax:

Intermission 3

value = Value1 AND Value2

The logical operation AND produces value by combining the individual

bits ofValuel and Value2 as follows:

0 AM) 0

0 AND 1

1 AND 0

1 AND 1

ASC Section 4.3

Syntax: Value=ASC (String)

The ASC function puts the ASCII (American Standard Code for

Information Interchange) code of the first character of the string that is

in parentheses into Value. If the string is empty, you'll get an

"Illegal function call" error. You can find a table of ASCII

codes in the description of CHR$.

ATN

Syntax: Value=ATN (Value)

The ATN command calculates the arctangent of the value in parentheses,

with the answer in radians. The value lies between -l/2*rc and +1/2*tc.

If you want to convert degrees into radians, use one of the following
formulas:

Degrees = (180 * Radians)/n

Degrees = 57.296 * Radians

447

Appendix B AmigaBASIC Inside and Out

CDBL

CINT

CLNG

CSN6

Syntax:

Section 1.17

CDBL (Value)

CINT (Value)

CLNG (Value)

CSNG (Value)

This series of commands convert a number into another format.

CDBL produces a double precision floating point number.

CINT produces a 16-bit integer. The number will be rounded in the

usual fashion (i.e., CINT (3.4) =3 and CINT (3.5) =4). The Value in

parentheses must be between -32768 and 32767.

CLNG produces a 32 bit integer. The number is rounded. The Value in

parentheses must be between - 2147483648 and 2147483647.

CSNG produces a single precision floating point number.

If Value is too big to fit into a variable of the desired numeric type,

you'll get an "Overflow" error. Read Intermission 5 to find out about

the various numeric types.

CHR$

Syntax:

Section 1.15

CHR$ (Value)

The CHR$ statement produces the character that corresponds to the

ASCII (American Standard Code for Information Interchange) code

number stated in parentheses as Value. Value must be in integer

between 0 and 255. The ASCII code is a code which assigns every

printable character and every control character a value between 0 and

255. The codes from 128 to 255 are non-standard, but the Amiga uses

them for function keys and foreign characters. The characters with boxes

next to them haven't been assigned values. Figure 21 is a table of

ASCH codes.

448

Abacus Calculations and BASIC functions

9

1

2
3

4
5
6
7

8
9

18
11

12

13
14

15
16

17
18
19

28

21

22
23

24
25

26
27

28

29
36

31
32

Figure

ASCII

tCTRLl-10]

[CTRLMA1
[CTRLHBJ
tCTRLl-ECl

[CTRLHD1
[CTRLHE1
[CTRLHF1
[CTRL3-tQ]

tCTRLJ-tHJ
[CTRLHI]

[CIRLHJ]
[CTRLl-m

ICTRll-IL]
CCTRL3-EM1
[CTRLJ-tN]

UTRLHOl
tCTRLl-tPl

tCTRL]-[QI
ICTRLHR1
tCTRL]-lS]

[CTRLJ-tTl

ICTRLl-IUI

ICTRLHV1

ICTRLHW]

ICTRLJ-IXJ
ICTRLl-m

ICTRL1-IZ1
[CTRLl-Ctl

ICTRLl-lM

ICTRLHN
ICTRLl-l*)

(CTRL1-U

21a:

table

(Break)

(Beep)

(BACKSPACE)

(TAB)

(Line feed)

(Delete)

(Return)

(ESC)

(up)

(down)

(right)

(left)

64

65

66
67

68
69
78
71

72
73

74
75

76

77
78

79
88

81
32
93
34

85

06
87

88
89

98
91

92

93
94

95
96

0

A
B

C

D
E
F
G

H
I

J
K

L

H
N

0
P

0
R
S
T
U

V
w

X
Y

Z
I

\

1
A

T

128

129
139

131

132
133
134
135

136
137

138
139

148

141
142

143
144

145
146
147

148

149

158
151

152
153

154
155

156

157
158

159
168

0

D

n

D

D
Q
0
D

D
a

0
D

D

D
D

0
D

0
D
D

D

0

D
D

a
D

D
D

D

a
a

D

(Fl)

(F2)

(F3)

(F4)

<F5)

(F6)

(F7)

(F8)

(F9)

(F1O)

(HELP)

192

193

194
195

196
197
198
199

268
281

282
283

284

285
286

287
288

289
218
211

212

213

214
215

216
217

218
219

228

221
222

223
224

A

A

A
A

ft
A
*

C
t

t

t
E

I

t
t

I

D

N

a

%

V
D

it

0
0

y

*

1)
i

449

Appendix

33
34

35

36

37
38

39
AQ

41

42
43

44
45

46
47

48
49
58

51
52

53
54

55
56
57

58

59
68

61
62
63

Figure

ASCII

B

1
II

It

5

7,
a

'

+

-

/

6
1

2

3
4

5
6

7
8
9
;

i

j

}

?

21b:

table

AmigaBASIC Inside and Out

97
98
99

iee

lei
162

163
164
185

166
187

198

189

no
111

112
113

114

115
116

117
119

119
128

121

122

123
124

125
126
127

a

b
c

d

e

f

g

h
i

j
k

1
M

n

0

p

q

p

s

t

u

V

W

X

y

z

{
1

}
r/

$

161
162
163

164

165
166

167

168
169

176
171

172
173

174
175

176
177

178

179
188

181
182

183
184
185

186

187
188

189
198
191

i

£

H

V
1
i

\

0
&

«

-

0

f

2

J

i

U
1
i

<
0

i

«

I

225
226
227

228

229
238

231

232
233

234
235

236
237

238

239

248
241

242

243
244

245
246

247
248
249

258

251
252

253

254
255

a

I

a
a

a

c

*

1
e

\
i

I
i

«
6

6
6

&

b

D

(J

a
u

a
ii

t
y

COS Section 2.5

Syntax: Value=COS (Value)

The COS function calculates the cosine of a value. The value in

parentheses must be in radians. If you want to convert from degrees to

radians, use one of the following formulas:

Radians - (n * Degrees)/180

Radians = 0.0175 * Degrees

450

Abacus Calculations and BASIC functions

CVD

CVI

CVL

CVS

Syntax:

DATE$

Syntax:

EQV

Syntax:

Section 4.1

Value=CVD (8-byte-long string)

Value=CVI (2-byte-long string)

Value=CVL (4-byte-long string)

Value=CVS (4-byte-long string)

It is quicker and consumes less memory to read numbers from and write

numbers to files as strings. The MK*$ functions help you do this. To

convert these strings back to numbers when you read diem, these four

functions are available.

The CVD function converts an 8-byte-long string into a double

precision floating-point number.

The CVI function converts a 2-byte-long string into a 16-bit integer.

The CVL function converts a 4-byte-long string into a 32-bit integer.

The CVS function converts a 4-byte-long string into a single precision

floating-point number.

Read Intermission 5 to find out more about numeric types.

Section 1.17

String=DATE$

This function gives you the system date in the form of a string that is

10 characters long. The system date is the date that is set with

Preferences. The date is in MM-DD-YYYY format

Intermission 3

Value = Valuel EQV Value2

The logical operation EQV combines the individual bits of Valuel and

Value2 to produce Value in the following way:

0 EQV 0=1

0 EW 1 = 0

1 EQV 0=0

1 EQV 1=1

451

Appendix B AmigaBASIC Inside and Out

EXP

Syntax: Value=EXP (Value)

The EXP function calculates the exponent of e (2.7182818284590). e is

the base number for natural logarithms.

See LOG for more information.

FIX

Syntax: Value=FIX (Value)

This function removes the decimal places of a number. For example,

FIX (3.2353251 is 3 and FIX (-2 .3532325) is-2. In contrast to

INT and CINT, FIX does not round off numbers, merely returns the

whole number left when the decimal places are removed.

HEX$

Syntax: HEX$ (Value)

This function produces a hexadecimal number from a decimal number.

Value is a number between—32768 and 65535.

print HEX$ (60037) produces EA85.

You can find more about hexadecimal numbers in Intermission 3.

IMP Intermission 3

Syntax: Value = Value1 IMP Value2

The logical operator IMP uses the individual bits of Value 1 and

Value2 to produce Value in the following ways:

0 IMP 0 = 1

0 IMP 1 - 1

1 IMP 0=0

1 IMP 1 - 1

INSTR

Syntax: Value=INSTR([Value,] string, search-string)

This function searches for search-string in the preceding String.

If it finds search-string within string, it gives the position at

which search-string starts in string.

452

Abacus Calculations and BASIC functions

INT

Syntax:

INSTR will return 0 if search-string isn't found, if it is an empty

string, or if it is longer than the string to be searched.

You have the option of including the position in the string from which

the search should begin. If this position is bigger than the length of the

string to be searched, you'll get a 0 as the result.

INSTR("Amigaft,"iga") givesa3.

INSTR ("Hello", "iga") gives aO.

INSTR(3, "Test", "es") gives a0.

Section 1.17

Value=INT(Value)

This function converts a floating-point number into an integer. This

function has the following differences from CINT and FIX: It drops off
the part behind the decimal point if the number is positive, but it
rounds the number if it is negative; the INT command produces the

nearest integer smaller than or equal to the input number.

INT (3.4) is 3.

INT (3.8) is 3.

INT (-2.2) is-3.

The INT function can work with numbers in any range.

LBOUND

UBOUND

Syntax: Value=LBOUND (Array [,Dimension])

Value=UBOUND(Array [,Dimension])

This function gives you the number of the first (Lower BOUNDary)

array element and the last (Upper BOUNDary) array element. In this

way, you can find the values which were set with DIM and OPTION

BASE.

For example, using OPTION BASE 0 :DIM a (200) would make

LBOUND (a) equal to 0, and UBOUND (a) equal to 200.

If you give a dimension value, you can find the upper and lower bounds

of individual dimensions.

For example, from DIM a(3,4f56), UBOUND (a, 1) gives you the

size of the first array dimension, which is 3. UBOUND (a, 2) gives 4;

UBOUND (a, 3) gives 56.

If you leave off the dimension value, you'll get the answer for the first

array dimension.

453

Appendix B AmigaBASIC Inside and Out

LEFT$

Syntax:

Section L16

LEN

Syntax:

LOG

Syntax:

String= LEFT$ (String, Number)

LEFT$ produces a string using the left part of the string that is entered.

The number is the number of characters in the string on the left side of

the equal sign (i.e., the one you are producing with this function).

Since strings may not be longer than 32767 characters in

AmigaBASIC, the number must be between 0 and 32767.

LEFT$ ("Amiga is great! ",5) returns "Amiga".

Value=LEN (String)

Section 1.17

The LEN function tells you how many characters String contains.

Blanks and control characters in the string are counted as well.

LEN ("Amiga is great! ") returns 15.

Value=LOG (Value)

Section 4.8

The LOG function calculates the natural logarithm of a number. The

natural logarithm is the logarithm of e. e is 2.7182818284590.

The logarithm of a to base b is the number c where bc=a. LOG (a) to

the base b is c.

If you need logarithms for calculations in BASIC (like in our PICSAVE

routine), then you may need another base. Here is the formula to find

the logarithm of a number in another base:

LOG (a) to the base b = LOG (a)/LOG (b)

MID$ Section 4.7

Syntax: String section=MID$ (String, Position [, Length])

You can use MID $ to extract a piece of a string. Enter the St ring and

the Position of the first character to be included in the new string.

You can also enter the Length of St ring. If you don't enter a length,

you'll get everything at and following the position specified.

MID$ ("Amiga is great! ••, 10,5) produces "great".

454

Abacus Calculations and BASIC functions

MID$

Syntax:

MKD$

MKI$

MKL$

MKS$

Syntax:

MID$ (String, Position [,Length]) =Replace-string

This version of MID$ is used to overwrite part of String with
Replace-string. Position is the position at which the

overwriting starts. If you enter a Length, only that many characters

will be overwritten.

a$«"Amiga is super!" : MID$(a$, 10)-"great"

returns "Amiga is great!".

Section 4.1

MKD$ (double precision floating-point number)

MKI$ (16-bit integer)

MKL$ (32-bit integer)

MKS$ (single precision floating-point number)

Time and memory can be saved by storing numbers as strings which

contain as many characters as the number has bytes:

MKD$ converts a double precision floating-point number into an 8-byte-

long string.

MKI$ converts a 16-bit integer into a 2-byte-long string.

MKL$ converts a 32-bit integer into a 4-byte-long string.

MKS $ converts a single precision floating-point number into a 4-byte-

long string.

You can convert these numbers back to the original format using the

CV* commands.

NOT

Syntax:

Intermission 3

Value = NOT Value

The logical operation NOT converts a 0 to a -1 and a -1 to a 0. It

reverses the value of a condition:

IF NOT (a<l) THEN...

The THEN will be executed when a is not less than 1, i.e., when a is

greater than or equal to 1. This is done using the following formula:

NOT x - -(x+1)

455

Appendix B AmigaBASIC Inside and Out

OCT$

Syntax:

OR

Syntax:

PEEK

Syntax:

PEEKL

Syntax:

This doesn't make much sense for values other than -1 and 0.

String=OCT$(Value)

This function produces a string containing the octal representation of a

number. If you've forgotten what an octal number is, look at
Intermission 3.

0CT$ (60037) produces &O165205.

Value = Valuel OR Value2

Intermission 3

The logical operation OR produces Value by combining the individual

bits of Valuel and Value2 as follows:

0 OR 0 =

0 OR 1 -

1 OR 0 -

1 OR 1 =

Section 4.3

PEEK(Address)

PEEK finds the contents of the address given to it. It returns a number

between 0 and 255, a byte. The highest allowable number for

Address on the Amiga is 16777215. Many of the addresses in this

range will have nothing in them, unless you have a full 8 megabytes of

RAM added on.

Section 4.3

PEEKL(Address)

PEEKL returns the contents of four consecutive bytes starting at

Address. Address must be an even number. It returns a number

between -2147483648 and +2147483647, a 4-byte integer. You can find

out more about addresses under the PEEK command.

456

Abacus Calculations and BASIC functions

PEEKW

Syntax:

Section 4.3

PEEKW (Address)

PEEKW returns the contents of the two bytes which start at Address.

Address must be an even number. It returns a number between 32768
and +32767, a 2-byte integer. You can find more about addresses under

the PEEK command.

POKE

Syntax:

Section 4.3

POKE Address, Value

POKE writes a one-byte value into the memory location you specify at

Addres s. You can find out more about addresses under PEEK.

You should be careful when you write values to memory. If you don't
plan correctly and don't know a fair amount about the Amiga operating

system, you might do more harm than good.

POKEL

Syntax:

Section 4.3

POKEL Address, Value

The POKEL command writes a 4-byte value to the four-byte-long range

starting at Address. Address must be an even number. You can find
more about the command itself under the PEEKL and POKE commands.

POKEW

Syntax:

Section 4.3

POKEW Address, Value

POKEW writes a 2-byte value in the two-byte-long memory block

starting at Address. Address must be an even number. You can find

more about the legal addresses under the PEEK command. You'll also

find more information concerning this command under the PEEKW and

POKE commands.

RIGHT$

Syntax:

Section 1.16

String section=RIGHT$ (String, Length)

This string function produces a string containing Length number of

characters from the right end of String.

RIGHT$ ("Amiga is great!", 6) produces "great! ".

457

Appendix B AmigaBASIC Inside and Out

RND

Syntax:

Section 2.5

Value=RND [(x)]

The RND function produces a random number between 0 and 1.

If you enter a value in the brackets, you can control the production of
the random number: 1 and all positive values produce a fixed sequence
of random numbers. Everytime you execute the program, the same
numbers will be used. The default is this mode.

0 gives you the last random number. If you just work with RND (0),

you'll always get the same number. -1 and all negative values pass a
new starting value that is used to produce random numbers. If you enter

the same random numbers, you'll get the same random number

sequence. You can find more by reading about the RANDOMIZE
command.

You'll often need a random number within a certain range. Here is the
formula.

Random « Start + ((End-Start) *RND)

If the numbers must be integers, use

Random - INT(Start +((End-Start+1)*RND))

SADD

Syntax Value=SADD($tring)

This function is especially good for machine language programs. It

gives you the starting address in memory of String. If you use new

strings in your program, you'll need to ask about the starting address

again, because AmigaBASIC moves strings around a lot

SGN

Syntax Value=SGN (Value)

The SGN function finds the sign of a variable. It comes back

-1 for negative numbers

0 for the number 0

1 for positive numbers

458

Abacus Calculations and BASIC functions

SIN

Syntax:

Section 2.5

Value=SIN (Value)

The S IN function calculates the sine of an angle entered in radians. If

you would prefer to work in degrees, look under COS to find out how to

calculate the radians that correspond to degree measurement

SPACE$ Section 5.2

Syntax: String=SPACE$ (Length)

This string function produces a string containing Length number of

spaces. Length must be in integer between 0 and 32767. Strings like

this are useful for formatting screen and printer output. They can also

be used to erase single lines on the screen.

SQR

Syntax: Value=SQR(Value)

SQR calculates the square root of a number.

SQR (4) is 2, SQR (2) is 1.414214.

STR$

Syntax:

STRIN6$

Syntax:

Section 3.4

String=STR$ (Value)

STR$ converts a number into a string. It doesn't produce bytes for

storage, but instead produces a string containing all the digits in the

number.

STR$(4095) is "4095".

STRING$ (Length, ASCII-code)

STRING$ (Length,String)

Section 1.16

The STRING$ function produces a string of the desired Length

containing just the character that corresponds to ASCII-code, or to the

first character of the string:

PRINT STRING$(100,191)

PRINT STRING$(100,"A")

459

Appendix B AmigaBASIC Inside and Out

TAN

Syntax: TAN (Value)

The TAN function calculates the tangent of an angle which is entered in

radians. You can find out how to convert degrees into radians by the
description of the COS function.

TIME$

Syntax:

TIMER

Syntax:

UCASE$

Syntax:

VAL

Syntax:

Section 1.17

TIME$

The TIME$ function gives the system time. You can set this time in

Preferences; it is not automatically correct. An 8-character-long

string is returned in the form HH:MM:SS (hours:minutes:seconds).

Section 1.17

TIMER

The function TIMER gives you the current system time in seconds. It

tells you the number of seconds that have gone by since midnight

(00:00:00). The value comes from the Amiga's inner clock, so it is not

necessarily set to the current time. You need to set it with

Preferences to be sure that it is correct

Section 1.16

UCASE$ (String)

The UCASE$ command converts all the lower-case letters in the input

string into upper-case letters.

UCASE$ ("Amiga") is "AMIGA".

This is really useful for sorting text alphabetically and for checking user

input.

Section 1.7

VAL(String)

The VAL function is the converse of the STR$ function. A string that

contains a number will be converted into a number. It will only read

characters up to the point the first letter appears:

460

Abacus Calculations and BASIC functions

VAL("1234HelloM) is 1234.

VAL("1234Hello4567") is 1234 as well.

VAL("Hellol234") isO.

VARPTR

Syntax: VARPTR (Variable)

This is similar to what SADD does for strings; VARPTR finds the

starting address of a variable in memory.

You'll need VARPTR a lot if you use machine language subroutines in

AmigaBASIC. You can find more information in the description of the

CALL command.

XOR Intermission 3

Syntax: Valuel XOR Value2

The XOR operation produces Value by operating on the bits of Valuel

and Value2 as follows:

0 XOR 0=0

0 XOR 1-1

1 XOR 0 - 1

1 XOR 1 » 0

461

Appendix B AmigaBASIC Inside and Out

B.6
File, disk, and

input/output commands

CHDIR Section 3.2

Syntax: CHDIR " [Device or disk drive:] [Directory]

[/Directory...]"

The CHDIR command changes the current directory. You can either go

deeper into the subdirectories, or you can choose a totally new path.

Figure 13 on page 204 shows you how a system of subdirectories is

constructed.

You can use CHDIR "/" to move up one level in the system of

directories. If you are already at the highest level and try to move up,

you'll get a "File not found" error. You'll get the same message if

you enter a subdirectory that doesn't exist. You can get to the top level

directory with CHDIR ":".

CLOSE Section 3.3

Syntax: CLOSE [[#] File number] [, [#] File number]

The CLOSE command can be used to close one or more files.

There are several reasons to close files.

First, AmigaBASIC has a temporary buffer for every file. The last

buffer contents won't be written to disk until you use the CLOSE

command. Second, AmigaDOS writes certain information to disk about

the current status of the file (for example, the length of the file). Third,

the file number will be freed up for use by another OPEN command.

You can find more about files under the description of the OPEN

command.

EOF

Syntax:

Section 3.3

EOF (File number)

The EOF function checks if there are more data to be read from a file.

EOF (File number) returns 0 when more data are read. It returns -1

when you've reached die end of the file.

462

Abacus File, disk, and input/output commands

You can use this function to see whether you may read in more data or

not. If you try to read data and no more data is available, you'll get the

"Input past end" error message.

FIELD Section 5.1

Syntax: FIELD [#] File number, Length AS STRING [, Length AS

STRING, ...]

This command is used for working with random tiles. You can use it to

set up a data record buffer and to define different string variables as

transfer variables for the buffer. Length is the number of characters in

a field. STRING is a variable name. If you want to set up a record buffer

with 10 bytes for the first name and 20 bytes for the last name, you can

do as follows:

FIELD #1, 10 AS FirstName$, 20 AS LastName$

Only the commands LSET and RSET may be used to assign new values

to these variables or the relationship between variable and buffer will be

messed up. The total length of all the fields may not be longer than the

record length declared for the file when you used the OPEN command.

Otherwise you'll get a "Field overflow" error. If you enter a new

FIELD line for the same file, the buffer will be completely redivided.

FILES

Syntax:

Section 3.2

FILES [Directory]

FILES shows the current directory contents on the screen. You can use

CHDIR to change the directory you are in. If you enter a directory after

the FILES command, you can look at the directory's contents without

making it into the current directory. This is useful when you are

searching for a specific directory.

GET (Random file GET) Section 5.1

Syntax: GET [#] File number [, Record number]

The GET command reads the record whose number is specified into the

file buffer when you are working with random files. If you don't enter a

record number, the next record number will be used. The record number

must theoretically lie between 0 and 16777215. In practice, the storage

capacity of the device (floppy disk, hard disk, RAM disk) governs the

size of the biggest record number. In any case, the number is usually

much less than 16777215.

463

Appendix B AmigaBASIC Inside and Out

INPUT$

Syntax:

After using the GET command, you can read the contents of the buffer.

You can either use the transfer variables defined with the FIELD

command or with the INPUT* and LINE INPUT* commands.

Section 4.1

String=INPUT$ (Length [, [#] File number])

This command is used for sequential files. It reads a string of the

specified length from the file specified.

If you leave off the file number, INPUT$ reads the desired number of

characters from the keyboard. The text cursor appears while this is

being read, but your input won't be put on the screen while you type.

You can't stop the reading from the keyboard with the <RETURN>

key. The only way to stop it is by using <CTRLxC>. When you read

bytes using INPUT $, you can convert them back to numbers using the

CV* functions.

INPUT#

Syntax:

Section 3.3

INPUT* File number, Variable [, Variable, ...]

This command works like the normal screen INPUT, but it reads

variables or strings from a file instead. This file must have been

OPENed beforehand. The data that INPUT* read was previously written

into the file with PRINT* or WRITE*.

INPUT* reads a variable until it reaches the next separator in the file.

This command recognizes spaces, commas, carriage returns

(CHR$ (10)), and linefeeds (CHR$ (13)) as separators. Spaces aren't

recognized as separators for strings. If you want to read strings which

contain commas, you need to write the strings to the file in quotation

marks.

KILL

Syntax:

Section 3.2

KILL File name

You can use KILL to erase files from a floppy disk, hard disk, or RAM

disk. Files that are currently open may not be erased. The current

version of AmigaBASIC automatically erases the info file at the same

time.

464

Abacus File, disk, and input/output commands

LINE INPUT#

Syntax: LINE INPUT* File nuniberf Variable

This command works just like LINE INPUT, except that it reads

characters from a file. It only recognizes carriage returns (CHR$ (10))

and linefeeds (CHR$ (13)) as separators. All other characters, including

spaces and commas, will be included in the string.

LLIST

Syntax:

LOAD

Syntax:

Section 3.5

LLIST [Line number or label] [-] [Line number or label]

The LLIST command works like LIST, except that it sends the listing

to a printer connected to the Amiga. You can tell the Amiga what kind
of printer and interface you are using in the Preferences menu. See

the LIST command description for more information.

Section 1.13

LOAD [Filename] [,R]

The LOAD command loads a program from a floppy disk, hard disk, or

RAM disk. If you put, R behind the program name, the program will

be started right after loading. If you do not enter Filename,

AmigaBASIC will use a requester to ask you for a name.

LOC

Syntax: Value=L0C (File number)

The LOC function gives the number of the data block on floppy disk,

hard disk, or RAM disk that was last read or written. Even though this

value is dependent only on the division of memory by AmigaDOS, it

will give you the number of the last record that was read when you are

working with random files. This is because a block in a buffer always

corresponds to a record when you are working with random files.

It's more complicated for sequential files. Here, the LOC function gives

the block number in a way that is dependent on the buffer size. The

standard size for the buffer is 128 bytes, but you can change that when

you use the OPEN command.

465

Appendix B AmigaBASIC Inside and Out

LOF

Syntax:

Section 4.1

LOF (File number)

The LOF function finds the length of a file in bytes. You can use this to

read in the information when you recognize the value or read in the

whole file at once (e.g., for OBJECT.SHAPE).

LPOS

Syntax: LPOS (x)

This works like POS, but gives the value of the last character in the

printer buffer that was output. You can use this to find how many

characters in the current line have already been sent to the printer. The

value x is just a formal parameter here too (compare this with POS).

LPRINT Section 3.5

Syntax: LPRINT [Variable or Value] [separator] [Variable or

Value ...]

This works like PRINT, except that the output is sent to a printer

connected to the Amiga. The characters are buffered, and are printed

when a carriage return code is found (CHR$ (10)). If you don't put a

separator after the last variable, AmigaBASIC automatically sends a

CHR$(10) to the printer.

See the description of PRINT for more information.

LPRINT USING

Syntax: LPRINT USING (Format string) ; (Variable or Value) [;]

This works like the PRINT USING statement, except that the output

goes to the printer. See the LPRINT and PRINT USING command

descriptions for more information.

LSET

Syntax:

Section 5.1

LSET Transfer-string=String

The LSET command is used for working with random files. It transfers

data into the record buffer. Take Transfer-string that you defined in

the FIELD command and assign it a string. This string will be

transferred to the buffer. The L in LSET stands for Left-justified. If the

data are shorter than the length specified in the FIELD command, it will

be put in the data field in left-justified format (i.e., the text will be

466

Abacus File, disk, and input/output commands

placed flush with the left margin, and spaces will be inserted to the

right of the text). Compare this with the RSET command.To transfer

numeric information to the buffer, you need to use conversion functions

like MK*$ or STR$. To move data from the buffer to the diskette, use

the PUT command.

MERGE

Syntax:

Intermission 2

MERGE Filename

You can use MERGE to read a program or subprogram from diskette and

append it to the current program. The program you read must be in

ASCII format on the diskette (see SAVE).

You can execute MERGE during the program. However, after executing

MERGE, AmigaBASIC returns to direct mode. The CHAIN command is

better for chaining and loading programs. In contrast, the MERGE

command is intended for use while developing your program.

NAME

Syntax:

Section 3.2

NAME (Old filename) AS (New filename)

You can use NAME to rename a file on a floppy disk, hard disk, or RAM

disk. Don't use a device or directory identifier in the new name that

isn't in the old name, or you'll get a "Rename across disks" error.

The current version of AmigaBASIC automatically renames the info

file at the same time.

OPEN Section 3.3

Syntax: OPEN File name [FORMode] AS [#] File number

[LEN=Length]

OPEN Mode-symbol, [#] File number, Filename [, Length]

The OPEN command opens a file. You can use either syntax version;

both do the same thing. In the first syntax, you first enter the filename

and then the mode. You can open a file FOR INPUT, FOR OUTPUT, or

FOR append. All of these modes are for working with sequential files.

If you leave off FOR and the mode in the first syntax, AmigaBASIC

opens a random file.

467

Appendix B AmigaBASIC Inside and Out

At the end of the OPEN line, you have the option of entering the length

of the buffer in bytes. This is really important for random files. The

number that you enter here is the sum of the field lengths from the

FIELD command. The second version looks a bit different, but works

exactly the same, mode-symbol is a letter that represents the file's

mode: I stands for sequential input, 0 for sequential output, A for

sequenial append mode, and R for a random file. The other things mean

exactly the same thing as they did in the first version.

You can open sequential files for all input and output devices (SCRN:,

KYBD:, PRT:, PAR:, SER:) and read data from them or send data to

them. A sequential file may only be opened for reading or writing. You
can't do both at the same time.

OPEN "C0M1:"

Syntax: OPENtfCOMl: [Baud] [,Parity] [,Wordlength]

[,Stopbits]lf [FORmode] AS [#] [Filenumber]

You can use this variation of the OPEN command to open a file for an

RS-232 interface, an interface for serial data transfer. If you do not

intend to use one of these interfaces, the following information won't

be of much use to you.

Baud is the rate of transfer (baudrate). It can be 110, 150, 300, 600,

1200, 1800, 2400, 4800, 9600, or 19200. The standard value is 9600.

The value you use depends on the device you wish to exchange data

with.

Parity sets the mode for checking the data when you send and receive

it. The sender and receiver must use the same value. There are three

options: E (even), O (odd), and N (none—no parity check). The standard

setting is E.

Wordlength tells how many bits per byte contain information. The

values 5,6,7, and 8 are possible; 7 is the standard value.

Stopbits sets the number of stop bits. This value must be controlled

for serial transfer as well. The values available are 1 and 2. Normally 2

stop bits are used at 110 baud, and all the other baud rates use 1 stop

bit. You may change this if you wish.

You can choose FOR INPUT or FOR OUTPUT as modes. If you leave off

FOR mode, you'll be in a mode where you can both send and receive

information.

468

Abacus File, disk, and input/output commands

PRINT# Section 33

PRINT# USING

Syntax: PRINT* File number [USING (Format string) ;] [[Variable

or value] [Separator] [Variable or Value ...]

These two commands workjust like PRINT and PRINT USING, except

that they write their output to a file. You can find more information

under the descriptions of the PRINT, PRINT USING, and INPUT#

commands.

PUT (random file PUT) Section5.1

Syntax: PUT [#] File number [,Record-number]

The PUT command writes the data in the record buffer of a random file

to the disk. Only after using it is the data really in the file. You can

enter or leave off Record-number. It you don't enter it, AmigaBASIC

writes it to the record whose number is one larger than the current

record. The record number must be between 0 and 16777215. You can

find more information under the random file GET command.

RSET

Syntax: RSET Transfer string=String

The RSET and LSET commands are used for writing data in the record

buffer when you are working with random files.You use a transfer

variable that was defined by a FIELD command and assign it a string.

This string will be transferred to the buffer.The R in RSET stands for

Right-justified. That means that when the data is shorter than the field

that is reserved for it in the file, the data will be right-justified in the

data field. That means that all the blanks will be on the left, at the

beginning of the field, and the text will be moved so that its right edge

is flush with the right margin.

This is especially useful for numeric values that are printed out in a

standard format. To set up the data record buffer, you need the FIELD

command. To move the data from the buffer to the diskette, use the PUT

command. By the way, RSET and LSET can be used on normal strings

to produce strings that are right- or left-justified. Try it out.

Form$=SPACE$(20)

RSET Form$=MAmiga"

WRITE Form$

469

Appendix B AmigaBASIC Inside and Out

SAVE

Syntax:

STICK

Syntax:

STRIG

Syntax:

Section 1.8

SAVE [(Filename)] [,A] [,B] [,P]

You can SAVE programs to floppy disk, hard disk, or RAM disk with

this command. If you don't enter Filename, AmigaBASIC will use a

requester to ask you for the name of the program. If you put an , A after

Filename, it will be stored in ASCII format You need this format if

you want to use MERGE to combine programs, or to edit an

AmigaBASIC program using a text editor.

If you put, B after Filename, the program will be stored in binary

format That is the default file form; the , B can be left off if you wish.

The commands will be stored in tokenized form. You can store the

program in a protected form by using the , P option. The program can

be loaded and run, but cannot be listed or changed.

Section 3.5

STICK (x)

This command returns information from the joysticks that are connected

to the Amiga. The x tells what information you want:

Value:

0

1

2

3

Information:

x-movement ofjoystick 1

y-movement ofjoystick 1

x-movement ofjoystick 2

y-movement ofjoystick 2

STICK (x) returns 1 if the joystick was moved up or to the right

STICK (x) returns 0 if the joystick asked about wasn't moved.

STICK (x) returns -1 if the joystick was moved down or left

Be careful with joystick 1. If there's a mouse there instead of a joystick,

the mouse is blocked from registering, as soon as you use STICK (0)

or STICK (1).

Section 3.5

STRIG (x)

You can use STRIG to find whether the fire button on a joystick was

hit. The x tells which information you want to have.

STRIG (0) asks if the fire button on joystick 1 was hit since the last

STRIG (0). If yes, you'll get a -1, if no, you'll get a 0.

470

Abacus File, disk, and input/output commands

STRIG (1) asks if the fire button on joystick 1 is presently being

pressed. A -1 = yes, while a 0 = no.

STRIG (2) asks if the fire button on joystick 2 was pressed since the

last STRIG (2). A -1 = yes, while a 0 = no.

STRIG (3) asks if the fire button on joystick 2 is presently being

pressed. A -1 = yes, while a 0 = no.

You can find more information in the description of the STICK

command.

WRITE# Section 3.4

Syntax: WRITE# File number, [Variable or Value] [Separator]

[Variable or Value...]

This command works like WRITE, except that its output is sent to a

file.

The command is especially good for writing strings to sequential files,

since they'll be sent to the file within quotation marks. When you read

them, you'll get the whole string, even if it contains separators. You

may not have quotation marks in die string.

471

Appendix B AmigaBASIC Inside and Out

B.7
Speech and
tone production

SAY Section 6.2

Syntax: SAY Phoneme-string [, Array% (0), Array% (1), Array% (2),

Array% (3), Array% (4), Array% (5), Array% (6), Array% (7),

Array%(8)]

The SAY command says a string that is written using phoneme codes.

You can use the TRANSLATE $ command to convert normal text into

phoneme code. You can also enter the text in phonemes yourself.

Appendix H of the Amiga BASIC manual explains how to do this. You

can put the name of an integer array that has at least 9 elements behind
Phoneme string. The integers influence the way the Amiga will talk:

Array% (0) is the pitch of the speech. You can set how high the voice

should be here. Values range from 65 (deep) to 320 (high). The default

value (value that will be used if you don't put an array behind the

phoneme string) is 110.

Array% (1) determines whether the speech should be inflected (0) or

computer monotone (1). The default value is 0.

Array% (2) sets the rate of speed. This value is in words per minute.

Values can range from 40 (slow) to 400 (fast). The default value is 150.

Array% (3) determines whether the voice should sound male (0) or

female (1).

Array% (4) determines the tuning, or sampling frequency. This value

influences the voice deepness most of all. Values may range from 5000

(deep) to 28000 (high). The default value is 22200. Extreme values lead

to incomprehensible speech.

Array% (5) determines the volume level. The values may range from 0

(sound off) to 65 (loud). The default value is 65.

Array% (6) determines which channel the voice will go through (see

Table 10 in Section 6.3). The default value is 10 (any free pair of right

and left channels).

Array% (7) determines whether AmigaBASIC should halt the program

while the computer is talking (0) or if the speech should run in the

background while the program continues (1).

472

Abacus Speech and tone production

Array% (8) determines what should happen if two SAY commands

follow each other (on condition that you have a 1 in Array% (7)). 0

means that the first SAY command will go to completion and then the

new one will follow. 2 means that the new command will be executed

immediately. The old speech output will be halted. 1 means that the

current speech command won't be executed, regardless of the value in

Array% (7). As long as this value is a 1, the SAY command cannot be

executed.

SOUND Section 7.2

Syntax: SOUND frequency, duration[, volume] [, voice]

This command produces a tone. Enter the frequency in hertz. Values

from 20 to 15000 hertz are allowed. Table 11 in Section 7.2 shows you

which frequencies correspond to which musical notes. The duration of

the tone is a value between 0 and 77. If you want the tone to play for

about a second, you need to enter a value of about 18. Take a look at

Table 12 on page 374. You can enter a volume level between 0 and

255. If you don't enter one, AmigaBASIC uses the default value 127.

You can also control the voice channel the tone will use. There are four

values available:

0 and 3 = left channel

1 and 2 = right channel

The default channel for both SOUND and BEEP is channel 0.

SOUND RESUME Section 7.3

SOUND WAIT

Syntax: SOUND RESUME

SOUND WAIT

To get several tones playing at the same time, or have a tune play in

the background, put the tones into a wait loop. The SOUND WAIT

command causes the SOUND commands to be stored instead of

immediately executed. For multiple-voice music, unoccupied sound

channels must be set; the best thing to do is use a tone with a volume

level of 0.

The SOUND RESUME command causes the tone loop to start

473

Appendix B AmigaBASIC Inside and Out

TRANSLATE$ Section 6.2

Syntax: Phoneme string=TRANSLATE$ (String)

This string function translates String into Phoneme string.

Phoneme string lets the SAY statement speak. Read the description of

the SAY statement.

WAVE Section 7.5

Syntax: WAVE Channel number, Integer array%

WAVE Channel number, SIN

You can use WAVE to change the waveform that will be used with the

SOUND command. You can use SIN to have a sine wave. SIN is the

default value, the one used when you don't state WAVE.

You can also use an integer array that contains at least 256 elements.

The integer array contains a user-defined waveform. The array values lie

between -128 and +127; they give the amplitude of the wave at the time
of sampling. If you're confused, read Sections 7.4 (A bit of acoustical

theory) and 7.5 (Waveforms).

The waveform will be assigned to one or more of the four tone channels

(0 and 3 = left channel, 1 and 2 = right channel). After this assignment,

you should ERASE the array to save memory.

474

Abacus "Error-free" listings

"Error-free"
listings

The following programs were directly transferred from the Amiga to our
publishing equipment to ensure error-free programs. They are noticeably
lengthy, and due to their size, your chances of making errors increase. If
you would like to purchase a optional diskette containing the programs
in this book (saving you the hassle of typing them in) there is ordering
information in the back of this book.

The SI marker signifies the <Return> key. Formatting the programs to
fit into this book caused some lines that must be typed in on one line
to appear on more than one line. The 5 symbol is used to show when

the <Return> key should be pressed.

475

Appendix C AmigaBASIC Inside and Out

c.i
Video title
program

Setup: 5

Colors=45

d«15 : MaxColors«(2AColors)-l 5

TextColor=15

SCREEN CLOSE 25

IF Colors>2 THEN SCREEN 2,640,200,Colors,2 : WINDCW

2,"Videotitle",,28,25

1 The previous line is memory-sensitive-see Chapter 1 and

Section 2.4 for details^

DIM Text$ (d), Colormatrix (d, 3), Move (d), Speed (d) 5

Filler$»STRING$ (16, ••-") 5

Colormatrix (1,1) =155

Colormatrix (1,2) -151

Colormatrix (1,3) -155

5

Begin: 5

PRINT "Videotitle-Program ";5

PRINT "by Hannes RMCHR$(252) "gheimer"5

PRINTS

Select:5

PRINT "Select:"5

PRINT "1 Enter Text"fl

PRINT "2 Read Object" PRINT "3 Move Object"^

PRINT "4 Define Color"5

PRINT "5 Show Title"f

PRINTS

Query: 5

LOCATE 10,15

PRINT "Enter number:";5

INPUT a$5

a$=LEFT$(a$,l)5

IF a$<"l" OR a$>"5" THEN BEEP: GOTO Queryfl

IF a$="l" THEN EnterText5

IF a$="2" THEN ReadObjectf

IF a$="3" THEN DefineMove0bject5

IF a$="4" THEN DefineColorfl

IF a$="5" THEN ShowTitlefl

PRINT5

END5

5

EnterText:5

CLS:INPUT "How many lines of text (l-15)";NoofLines$5

IF NoofLines$="" THEN CLS: GOTO Beginfl

NoofLines»VAL(NoofLines$)5

IF NoofLines<l OR NoofLines>15 THEN BEEP: GOTO

EnterTextfl

FOR x=l TO NoofLines5

476

Abacus Video title program

LINE INPUT "Text:";Text$(x)fl

NEXT x : CLS : GOTO Beginfl

f

ReadObject:<Jl

CLSf

PRINT "Enter the NAME of the object you want TO load."*]
INPUT Objname$fl

IF Objname$«="" THEN CLS : GOTO Beginfl

OPEN Objname$ FOR INPUT AS If

OBJECT.SHAPE 1,INPUT$(LOF(l),1)f

CLOSE If

ObjFlag=l : CLS : GOTO Beginfl

f

DefineMoveObject:f

CLS: IF ObjFlag=0 THEN BEEP ELSE Moverfl

PRINT "No object currently in merory!"3I

PRINT "Press any key."fl

Pauseif

a$=INKEY$fl

IF a$«"" THEN Paused

CLS: GOTO Beginfl

f

Mover:f

PRINT "Move the object to it's starting point"fl

PRINT "using the cursor keys."U

PRINT "When located press <RETURN>"fl

ox~100 : oy«100 : Destination=05
OBJECT.HIT 1,0,Ofl

OBJECT. ON 1^1

OBJECT.STOP 15

Loop:f

IF a$=CHR$(13) THEN DestDeffl

IF a$=CHR$(28) THEN oy=oy-2fl

IF a$«CHR$(31) THEN ox«ox-5H

IF a$=CHR$(30) THEN ox«ox+5SI

IF a$=CHR$(29) THEN oy«noy+25

OBJECT.X l,ox : OBJECT.Y l,oyfl

GOTO LooplI

f

DestDef:SI

CLSf

Move(Destination*2+l)«=ox : Move (Destination*2+2)=oyfl

Destination=Destination+l : Move(0)"Destination^

IF Destination«7 THEN Enddeff

PRINT "Move the object to location"Destinationfl

PRINT "<RETURN> » Set another location"f

PRINT "<ESO - End"f

Loop2:f

IF a$=CHR$(13) THEN DestDef^

IF a$=CHR$(27) THEN Enddeff

IF a$=CHR$(28) THEN oy«»oy-25

IF a$=CHR$(31) THEN ox=ox-5fl

IF a$=CHR$(30> THEN ox=ox+5fl

IF a$=CHR$(29) THEN oy=oy+25

477

Appendix C AmigaBASIC Inside and Out

OBJECT.X l,ox : OBJECT.Y l,oyfl

GOTO Loop2fl

Enddef:fl

Move(0)^Destination^

OBJECT.OFF 1H

CLS^ : GOTO Beginfl

DefineColor:1I

CLS-.PRINT "Color values:"fl

Colors:fl

FOR x=0 TO MaxColorsfl

COLOR -(x=0),xfl

LOCATE 5,(x*4) + H

PRINT x;CHR$ (32) ;CHR$ (32)11

NEXT xf

ColorChange:H

LOCATE 7,1:COLOR TextColor,Background^

PRINT "Enter the number of the color you want to

change."fl

PRINT "(e « End)"; : BEEPfl

INPUT Answer$^l

IF UCASE$(Answer$)="E" THEN AssignColorfl

Answer$=LEFT$ (Answer$, 2) 11

ColorNumber«VAL (Answer$) %

IF ColorNumber<0 OR ColorNumber>MaxColors THEN BEEP:

GOTO ColorChangefl

RGBRegulator:5l

r»Colormatrix (ColorNuniber, 1) 51

g«Colormatrix (ColorNuniber^) ^

b«Colormatrix (ColorNumber, 3) 5

LOCATE 10,1: PRINT "Red: <7>«- <8>=+ ";Filler$fl

LOCATE 10f20+r : PRINT CHR$(124);fl

LOCATE 11,1: PRINT "Green: <4>«- <5>«+ ";Filler$H

LOCATE llf20+g : PRINT CHR$(124);fl

LOCATE 12,1: PRINT "Blue: <1>~- <2>=+ ";Filler$H

LOCATE 12,20+b : PRINT CHR$(124);5

LOCATE 13,1: PRINT " <0>-Color o.k."fl

PALETTE ColorNumber,r/15,g/15,b/15f

EnterKeys:1l

Key$=INKEY$5l

IF Key$-"" THEN EnterKeys^I

IF Key$="7" THEN

IF Key$-"8" THEN

IF Key$="4" THEN g«g-lfl

IF Key$="5" THEN g«g+H

IF Key$«"l" THEN

IF Key$«"2" THEN

IF Key$«"0" THEN ColorChangeH

IF r<0 THEN

IF r>15 THEN r-15fl.

IF g<0 THEN

478

Abacus Video title program

IF g>15 THEN

IF b<0 THEN

IF b>15 THEN

Colormatrix (ColorNumber, 1)

Colonnatrix (ColorNumber,) gfl

Colormatrix (ColorNumber, 3) -bfl

GOTO RGBRegulatorfl

AssignColor:fl

a«Background : a$s»"Background"fl

GOSUB EnterColor:Background^

a=TextColor : a$="Text Color"fl

GOSUB EnterColor:TextColor«»a5

SI

a=TextBackground : a$="Text Background"

GOSUB EnterColor:TextBackground-a5

COIOR TextColor,Backgroundfl

CLS : GOTO Begins

EnterColor:^

LOCATE 14f1

PRINT a$":

LOCATE 14,1SI

PRINT a$; : INPUT Answer$fl

Answer«VAL (Answer$) f

IF Answer$»"" THEN Answer.5^1

IF AnsweKO OR Answer>MaxColors THEN BEEP : GOTO Loop3fl

IF Answer<>.5 THEN a»Answerfl

RETURNS

ShowTitle:1I

CLSfl

PRINT "Press the <RETURN> key"5

PRINT "to begin showing the title,

WaitforKey:fl

IF a$=CHR$(13) THEN CLS : c=10 :GOTO Countdown^

GOTO WaitforKey^I

Countdown: fl

LOCATE 10,28 : PRINT cfl

c=c-l:IF c<0 THEN StartDisplay^I

Tim«INT (TIMER) fl

Wait2:H

IF INT (TIMER) =Tim THEN Wait2fl

GOTO Countdown^

11

StartDisplay: fl

WIDTH 60 f

COLOR TextColor,Background : CLSfl

479

Appendix C AmigaBASIC Inside and Out

COLOR TextColor,TextBackground1I

FOR x»l TO NoofLinesS

Text$=LEFT$(Text$(x), 60)11

h-INT ((60-LEN (Text$)) /2) +2S

LOCATE x+17-NoofLines,h : PRINT Text$1t

NEXT xS

COLOR TextColor,Backgrounds

IF Move(0)=0 THEN MoveTextS

S

OBJECT.X 1, Moved)*

OBJECT.Y 1,Move (2)*

OBJECT.ON 1*

FOR x«l TO Move(0)-IS

OBJECT. STOP 111

GOSUB VelocityCalcS

OBJECT.X l,Move(x*2-l)S

OBJECT.Y l,Move(x*2)S

OBJECT.VX 1, Speed (x*2-l) S

OBJECT.VY 1, Speed (x*2) 11

OBJECT.HIT 1,0,011

OBJECT. START 111

H

Tst«TIMERH

Loop4:1I

px«ABS (Move (x*2+l) -OBJECT.X (1)) U

py«ABS (Move (x*2+2) -OBJECT.Y (1)) H

IF INT(TIMER-Tst)<18 AND (px>15 OR py>15) THEN Loop4H

NEXT xil

OBJECT. OFF 1H

H

MoveText:1I

Tst=TIMERH

IF Move (0)00 THEN FinishU

Wait3:1I

IF TIMER-Tst<(2*NoofLines+2) THEN Wait3H

Finish:H

FOR x=l TO 30 H

SCROLL (1,1)-(630,100), 0,311

SCROLL (1,100)-(630,180),0,-3 H

NEXT x1I

COLOR TextColor,Backgrounds

CLS : GOTO BeginU

H

VelocityCalc:H

ox=OBJECT.X (1) : oy=OBJECT.Y (1)H

Move(x*2-l)»ox : Move(x*2)=oy1I

zx=Move (x*2+l) : zy=Move(x*2+2) H

FOR xx=l TO 64 STEP .211

Speed (x*2-l) =CINT ((zx-ox) /xx) H

Speed (x*2) «CINT ((zy-oy) /xx) H

IF ABS (Speed (x*2-l))<40 AND ABS (Speed (x*2))<40 THEN

xx=64H

NEXT xx1I

RETURNS

480

Abacus Video title program (IFF format)

Video title program
(IFF format)

Setup:!

Colors=5!

d=45 : MaxColors=(2AColors)-l !

TextColor=l!

SCREEN CLOSE 2!

SCREEN 2,320,200,Colors,1 : WINDOW

2,"Videotitle",,28,25

DIM Text$ (d), Colormatrix (31,3), Move (d), Speed (d) !

Filler$»STRING$ (16, ••-") !

Colormatrix(1,1)-151

Colormatrix(1,2)-151

Colormatrix(1,3)=151

!

Begin:!

PRINT "Videotitle-Program"!

PRINT "by Hannes R"CHR$(252) "gheimer"!

PRINT!

!

Select:!

PRINT "Select:"!

PRINT "1 Enter Text"!

PRINT "2

PRINT "3

PRINT "4

PRINT "5

PRINT "6

PRINT "7

PRINT "8

PRINT !
qr

"1

Query:!

LOCATE 13,

Read

Move

Object"!

Object"!

Define Color"!

Show

Load

Read

Stor«

■ 11

Title"!

Background Picture"!

title sequence"!

i title sequence"!

PRINT "Enter number:";!

INPUT a$!

a$=LEFT$(a$,lM
IF a$<"l"

IF a$«"l"

IF a$="2"

IF a$="3"

IF a$="4"

IF a$="5"

IF a$="6"

IF a$="7"

IF a$="8"

I

OR a$>"8" THEN BEEP: GOTO Query!

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

EnterText!

ReadObject!

DefineMoveObject!

DefineColor!

ShowTitle!

SetupScreen!

ReadTitle!

StoreTitle!

GOTO Query1

481

Appendix C AmigaBASIC Inside and Out

EnterText:5

CLS:PRINT "How many lines" : INPUT "of text (1-

15)";NoofLines$SI

IF NoofLines$= "" THEN CLS: GOTO Beginfl

NoofLines=VAL (NoofLines$) 5

IF NoofLines<l OR NoofLines>15 THEN BEEP: GOTO

EnterText«H

FOR x=l TO NoofLinesfl

LINE INPUT "Text:";Text$(x)fl

NEXT x : CLS : GOTO Beginfl

ReadObject:fl

CLSfl

PRINT "Enter the name of the" : PRINT "object you want

to load."5

INPUT 0bjname$5l

IF Objname$«"" THEN CLS : GOTO Beginfl

OPEN Objnaroe$ FOR INPUT AS 1H

OBJECT. SHAPE 1, INPUT$ (LOF (1) ,1)^1

CLOSE 15

ObjFlag=l : CLS : GOTO Beginfl

DefineMoveObject:fl

CLS: IF ObjFlag»0 THEN BEEP ELSE Moverfl

PRINT "No object currently in memory! "fl

PRINT "Press any key."fl

Pause:5

IF a$«"" THEN Paused

CLS: GOTO Beginfl

f

Mover:f

PRINT "Move the object to itfs"fl

PRINT "starting point using"5

PRINT "the cursor keys."5

PRINT "When located press <RETURN>"fl

ox«*100 : oy=100 : Destination^fl

OBJECT.HIT 1,0,01

OBJECT. ON 111

OBJECT.STOP 15

Loop:5

a$«INKEY$5
IF a$«CHR$(13) THEN DestDeffl

IF a$=CHR$(28) THEN oy«oy-25

IF a$=CHR$(31) THEN ox=ox-55

IF a$=CHR$(30) THEN ox«ox+55

IF a$=CHR$(29) THEN oy«oy+25

OBJECT.X l,ox : OBJECT.Y l,oyfl

GOTO Loop5

DestDef:5l

CLS5

Move(Destination*2+l)««ox : Move (Destination*2+2)=oy5

Destination«Destination+l : Move(0)^Destination^

IF Destinations THEN Enddeff

PRINT "Move the object to location"Destinationfl

482

Abacus Video title program (IFF format)

PRINT "<RETURN> - Set another location"fl

PRINT "<ESO « End"fl

Loop2:fl

IF a$=CHR$(13) THEN DestDefl

IF a$=CHR$(27) THEN Enddeffl

IF a$«CHR$(28) THEN oy=oy-2fl

IF a$=CHR$(31) THEN ox«ox-5fl

IF a$=CHR$(30) THEN ox»ox+5fl

IF a$=CHR$(29) THEN oy«oy+2fl

OBJECT.X l,ox : OBJECT.Y l,oyfl

GOTO Loop2fl

I
Enddef:fl

Move(0)«Destinationfl

OBJECT.OFF lfl

CLS : GOTO Beginfl

DefineColor:^

CLS:PRINT "Color values:"5

Colors:fl

FOR x~0 TO MaxColors^I

IF (x/8)=INT(x/8) THEN PRINT 5

COLOR -<x=0),xfl

PRINT x;5I

IF x<10 THEN PRINT CHR$(32);5

NEXT xfl

ColorChange:^

LOCATE 7,1:COLOR TextColor,Background^

PRINT "Enter the number of the color" 5

PRINT "you want to change."5

PRINT "(e - End)"; : BEEPfl

INPUT Answer$fl

IF UCASE$(Answer$)«"E" THEN AssignColorfl

Answer$=LEFT$(Answer$,2)f

ColorNumber«VAL(Answer$)f

IF ColorNumber<0 OR ColorNuiriber>MaxColors THEN BEEP:

GOTO ColorChangefl

RGBRegulator:H

r=Colormatrix(ColorNumber,1)f

g=Colormatrix(ColorNumber,2)5

b»Colormatrix(ColorNumber,3)fl

LOCATE 11,1: PRINT "Red: <7>— <8>-+ ":PRINT Filler$5

LOCATE 12,r+l : PRINT CHR$(124);5

LOCATE 13,1: PRINT "Green: <4>=- <5>«+ ":PRINT Filler$5

LOCATE 14,g+l : PRINT CHR$(124);5

LOCATE 15,1: PRINT "Blue: <1>— <2>=+ ":PRINT

Filler$SI
LOCATE 16,b+l : PRINT CHR$(124);5

LOCATE 17,1: PRINT " <0>-Color o.k."fl

PALETTE ColorNumber,r/16,g/16,b/161

EnterKeys: <U

483

Appendix C AmigaBASIC Inside and Out

Key$«INKEY$H

IF Key$="" THEN EnterKeysf

IF Key$«"7" THEN r=r-lfl

IF Key$="8" THEN r-r+15

IF Key$*"4" THEN g-g-lfl

IF Key$»ff5" THEN

IF Key$="l" THEN

IF Key$«"2" THEN b-b+lfl

IF Key$="O" THEN ColorChangefl

IF r<0 THEN r«=0fl

IF r>15 THEN r-15fl

IF g<0 THEN g=0fl

IF g>15 THEN g»15fl

IF b<0 THEN

IF b>15 THEN

Colormatrix(ColorNumber,1)

Colormatrix (ColorNumber,

Colormatrix (ColorNumber,

GOTO RGBRegulator^

AssignColor:^

a«Background : a$=lfBackgroundlf5

GOSUB EnterColor:Background=a^[

a=TextColor : a$«"Text Color"\

GOSUB EnterColor:TextColor=a^I

a=TextBackground s a$="Text Background"^

GOSUB EnterColor: TextBackground^a^I

t

COIOR TextColor, Background^

CLS : GOTO Beginfl

EnterColor:fl

LOCATE 19, If

PRINT a$": ";afl

Loop3:Sl

LOCATE 19, If

PRINT a$; : INPUT Answer$f

Answer=YAL(Answer$)f

IF Answer$«"lf THEN Answer™. 5f

IF AnsweKO OR Answer>MaxColors THEN BEEP : GOTO Loop3f

IF Answer<>,5 THEN a«Answerf

RETURNS

ShowTitle:f

CLSf

PRINT "Press the <RETURN> key"f

PRINT "to begin showing the title, "f

WaitforKey:f

a$=INKEY$f

IF a$=CHR$(13) THEN CLS : c«10 :GOTO Countdown^

484

Abacus Video title program (IFF format)

GOTO WaitforKeySI

SI

Countdown: SI

LOCATE 10,15 : PRINT cSI

c=»c-l:IF c<0 THEN StartDisplaySI

Tim=*INT (TIMER) SI

Wait2:SI

IF INT (TIMER) ~Tim THEN Wait2SI

GOTO Countdown^

SI

StartDisplayrSl

WIDTH 32 SI

COLOR TextColor, Background : CLSSl

COLOR TextColor, TextBackgroundSI

IF IFF=1 THEN CALL DrawLoadSI

FOR x«l TO NoofLinesSI

Text$=LEFT$ (Text$ (x), 32) SI

h=INT ((32-LEN (Text$)) /2)+2SI

LOCATE x+17-NoofLinesfh : PRINT Text$SI

NEXT xSl

COLOR TextColor, Backgrounds

IF Move(0)=0 THEN MoveTextSI

SI

OBJECT.X l,Move(l)SI

OBJECT.Y l,Move(2)SI

OBJECT. ON 1SI

FOR x«l TO Move(0)-lSI

OBJECT.STOP 11

GOSUB VelocityCalcSI

OBJECT.X l,Move(x*2-l)Sl

OBJECT.Y l,Move(x*2)SI

OBJECT.VX 1, Speed (x*2-l) SI

OBJECT.VY 1, Speed (x*2) SI

OBJECT.HIT 1,0, OSl

OBJECT. START 1SI

SI

Tst=TIMERSl

Loop4:SI

px=ABS (Move (x*2+l) -OBJECT.X (1)) SI

py=ABS (Move (x*2+2) -OBJECT.Y (1)) SI

IF INT(TIMER-Tst)<18 AND (px>15 OR py>15) THEN Loop4SI

NEXT xSI

OBJECT. OFF 1SI

SI

MoveText:Sl

Tst=TIMERSI

IF Move (0)00 THEN FinishSI

Wait3:Sl
IF TIMER-Tst< (2*NoofLines+2) THEN Wait3SI

Finish: SI

FOR x=l TO 30 SI

SCROLL (l,l)-(630,100),0,3SI

SCROLL (1,100)-(630,180), 0,-3 SI

NEXT xSI

COLOR TextColor, BackgroundSl

CLS : GOTO BeginSl

485

Appendix C AmigaBASIC Inside and Out

VelocityCalc:!

ox-OBJECT.X (1) : oy=OBJECT.Y (1)5

Move(x*2-l)=ox : Move(x*2)«oy!

zx=Move (x*2+l) : zy«Move(x*2+2)5

FOR xx=l TO 64 STEP .2!

Speed(x*2-l) =CINT ((zx-ox) /xx) fl

Speed(x*2) =CINT ((zy-oy) /xx) 5

IF ABS (Speed(x*2-l))<40 AND ABS (Speed (x*2))<40 THEN

NEXT xx!

RETURNS

!

SetupScreen:!

CLS!

PRINT "Want to load a graphic"!

PRINT "background? (Y/N) "5

!

Loop5:!

LOCATE 2f19 : INPUT Answ$fl

IF UCASE$(Answ$)»"N" THEN IFF=0 : CLS : GOTO Beginfl

IF UCASE$(Answ$)»"Y" THEN IFF=1 : GOTO EnterName 51

GOTO

EnterName:5

PRINTS

PRINT "Enter name:"fl

INPUT Nam$5

PRINT 5

PRINT "Use the color table for: "11

PRINT Nam$fl

PRINT "Enter (Y/N)";fl

Loop6:fl

LOCATE 9,12 : INPUT Answ$U

IF UCASE$(Answ$)-"N" THEN IFFTab=0 : CLS : GOTO Beginfl

IF UCASE$(Answ$)-"Y" THEN IFFTab=l : CLS : GOTO Begin!

GOTO Loop65

SUB DrawLoad STATIC^

SHARED Colors, Colormatrix (), IFFTab,Nam$5

IF Nam$«"" THEN EndLoad %

OPEN Nam$ FOR INPUT AS If

Form$=INPUT$(4,1)5

Length=CVL(INPUT$(4,1))5

IF INPUT$(4fl)O"ILBM" THEN BEEP : GOTO EndLoad!

ReadData:!

IF EOF(l) THEN EndLoad!

Chunk$«INPUT$(4,l)!

Length=CVL(INPUT$(4,1))!

IF INT (Length/2)O (Length/2) THEN Length=Length+l!

IF Chunk$-"BMHD" THEN BMHeader!

IF Chunk$="CMAP" THEN ColorMap!

IF Chunk$="BODY" THEN BooyMap!

Duromy$s=iINPUT$ (Length, 1)!

486

Abacus Video title program (IFF format)

GOTO ReadDataH

H

BMHeader: H

xd«CVI (INPUT$ (2,1)) H

IF xd>320 THEN EndLoadH

yd=CVI(INPUT$(2,1))H

IF yd>200 THEN EndLoadH

Diimmy$=INPUT$ (4,1) II

Bitplane*ASC(INPUT$(1,1))H

Dummy$=INPUT$ (11,1)H

Addr-PEEKL (WINDOW (8) +4) +8H

FOR x=0 TO Bitplane-lH

PlaneAddr (x) =PEEKL (Addr+4*x) H

NEXT xH

GOTO ReadDataH

f

ColorMap:1I

FOR x=0 TO (Length/3) -H

r-(ASC(INPUT$(lfl)) AND 240)/16U

g«(ASC(INPUT$(l,l)) AND 240)/16H

b=(ASC(INPUT$(l/l)) AND 240)/16fl

IF IFFTab=l THENfl

PALETTE x,r/16,g/16,b/161

Colormatrix (xf l)-r : Colormatrix(x,2)«g :

Colormatrix (x, 3) «bfl

END IF5

NEXT x1I

IF INT (Length/3)O (Length/3) THEN Dummy$=INPUT$ (1,

GOTO ReadDatafl

FOR yl=0 TO 19911

FOR b«0 TO Bitplane-lH

IF b<Colors THENH

FOR xl=0 TO 9H

POKEL

PlaneAddr (b) +4*xl+40*yl,CVL(INPUT$ (4f 1)) H

NEXT xlH

ELSEH

Dummy$=INPUT$(40,1)H

END IFU

NEXT M

NEXT ylH

GOTO ReadDataH

H

EndLoad:H

CLOSE 1H

END SUBH

H

StoreTitle:H

CLS : PRINT "Save as what name:"H

INPUT DatName$H

OPEN DatName$ FOR OUTPUT AS 111

PRINT #l,NoofLines : REM Number of text linesH

FOR x=l TO NoofLinesH

WRITE #lfText$(x)H

487

J

Appendix C AmigaBASIC Inside and Out

NEXT x5

5

PRINT #l,ObjFlag f Object loaded?5

WRITE #l,Objname$ • file name5

5

PRINT #l,Move(0) • Number of movements5

FOR x=l TO Move (0)5

PRINT #l,Move(x)5

NEXT x5

5

PRINT #1,Colors f Number of Bitplanes5

FOR x~0 TO 31 f 32 Colors in IFF-Storage5

PRINT #1,CHR$(Colormatrix(x,1)*16);5

PRINT #1,CHR$ (Colormatrix(x, 2)*16);5

PRINT #1,CHR$ (Colormatrix(x,3)*16);fl

NEXT x 5

PRINT #1,Background f Text color etc.fl

PRINT #l,TextColor1I

PRINT #lfTextBackground5

PRINT #1,IFF f Screen background?^

PRINT #l,IFFTab f Change colors ?1I

WRITE #l,Nam$ f file namefl

CLOSE 15

CLS5I

GOTO Begins

1

ReadTitle:^

CLS : PRINT "Name of file to load:"5

INPUT DatName$H

OPEN DatName$ FOR INPUT AS If

INPUT #l,NoofLinesfl

FOR x=4 TO NoofLinesH

INPUT #l,Text$(x)fl

NEXT x^l

INPUT #l,ObjFlagfl

INPUT #l/0bjname$H

H

IF ObjFlag-1 THENH

OPEN Objname$ FOR INPUT AS 2«H

OBJECT.SHAPE 1,INPUT$(LOF(2),2)5

CLOSE 25

END IF5

INPUT #1,Move(0)5

FOR x=l TO Move(0)5

INPUT #l,Move(x)5

NEXT x5

5

INPUT #lfColorl5

IF Colorl<=Colors THEN Colors=Color15

MaxColors=(2AColors)-15

FOR x=0 TO 315

r«(ASC(INPUT$(l,l)) AND 240)/165

g=(ASC(INPUT$(lfl)) AND 240)/165

488

Abacus Video title program (IFF format)

b»(ASC(INPUT$(l,l)) AND 240)/16fl

PALETTE x,r/16,g/16,b/16fl

Colormatrix (x, 1) «r : Colormatrix (x, 2) «g

Colorroatrix (x, 3) «bH

NEXT x^I

INPUT #1 .Background^

INPUT #l,TextColor1l

INPUT #l,TextBackgroundfl

INPUT #,

INPUT #lfIFFTabfl

INPUT #l,Nam$H

CLOSE 15

CLSfl

C30T0 Begin 5

489

Appendix C AmigaBASIC Inside and Out

C.3
Paint
program

Setup: 51

Colors=5 : MaxColors=52AColors-l^I

DIM Pointer (4,1), AltColor (4) ,Colors% (31,2) 51

DIM FillPattern%(7),AllPatterns%(8,7),Solid%(1)51

DrawType«l : DrawColor=l : FillColor=2 : Mode=15I

51

Solid%(0)=&HFFFF : Solid% (1)=&HFFFF5I

FOR x=0 TO 751

FillPattern% (x) «&HFFFF5I

AllPatterns% (0,x) «&HFFFF5I

NEXT x5I

FOR x-1 TO 851

FOR y«0 TO 751

READ AllPatterns%(x,y)5I

NEXT y5I

NEXT x5I

51

DATA 24672,1542,24672,1542,24672,1542,24672,154251

DATA -13108,13107,-13108,13107,-13108,13107,-

13108,1310751

DATA 26214,13107,-26215,-13108,26214,13107,-26215,-

1310851

DATA -13108,-26215,13107,26214,-13108,-

26215,13107,2621451

DATA -258, -258, -258,0, -4113,-4113,-4113, 051

DATA -8185,-8197,-18019,-20491,-20467,-8197,-8185,-151

DATA 0,0,1632,4080, 4080,2016,384,051

DATA 960,1984,3520,6592,16320,25024,-3104,051

51

SCREEN 1,320,200, Colors, 151

WINDOW 2, "AmigaBASIC Draw Program", ,16,151

WINDOW CLOSE 351

WINDOW CLOSE 451

WINDOW 251

51

FOR x=0 TO 3151

READ r,g,b5I

PALETTE x,r/16,g/16,b/165I

Colors%(x,0)»r : Colors% (x,l)«g : Colors% (x, 2) =b5l
NEXT x5I

51

DATA 0,0,3, 15,15,15, 0,3,12, 15,0,051

DATA 0,14,15, 15,0,15, 3,10,1, 15,14,051

DATA 15,8,0, 10,0,14 ,8,5,0, 11,8,351

DATA 2,11,0, 15,10,15, 0,0,9, 7,15,051

DATA 14,12,0, 15,2,3, 0,0,0, 15,11,1051

490

Abacus Paint program

DATA 0,6,8, 3,3,3, 4,4,4, 5,5,55

DATA 6,6,6, 7,7,7, 8,8,8, 9,9,95

DATA 11,11,11, 13,13,13, 0,0,15, 12,15,12 fl

Pulldown:5

MENU 3,0,0,""5

MENU 4,0,0,""5

MENU 1,0,1,"Program"5

MENU 1,1,1,"Draw Mfl

MENU 1,2,1, "Color Palette"!!

MENU 1,3,1,"Fill Pattern "5

MENU 1,4,1,"Load Screen "5

MENU 1,5,1,"Save Screen "5

MENU 1,6,1,"Clear Screen "5

MENU 1,7,1,"End "31

MENU 2,0,1,"Drawing tools'^

MENU 2,1,2," Draw freehand "fl

MENU 2,2,1," Draw thick "fl

MENU 2,3,1," Points "fl

MENU 2,4,1," Spray "fl

MENU 2,5,1," Lines "31

MENU 2,6,1," Frame "31

MENU 2,7,1," Box "31

MENU 2,8,1," Connected lines"3I

MENU 2,9,1," Oval "31

MENU 2,10,1," Fill "31

MENU 2,11,1," Eraser "31

MENU 2,12,1," Text "31

31

MainLoop:3I

ON MENU GOSUB MenuSelectfl

ON MOUSE GOSUB EvalMouse^I

MENU ONfl

MOUSE ONH

WHILE -H

WEND"ft

MenuSelect:1I

Men=MENU(0)fl

MenChoice=MENU(1)fl

ON Men GOTO Project,DrawToolsfl

EvalMouse:$

IF Mode=l THEN ON DrawType GOSUB

DrawThin, DrawThick, Points, Spray, DrawLines, Frame, Box, Conne

ctedLines,Oval,Fill,Eraser,Textfl

IF Mode=2 THEN GOSUB ColorPalette : IF EndOK=l THEN

GOSUB ColorDonefl

IF Mode=3 THEN GOSUB DefinePattem : IF EndOK=2 THEN

GOSUB PatternDoneU

IF Mode=4 THEN GOSUB RGBDef : IF EndOK«3 THEN Mode=2 :

GOSUB SelectColor!!

RETUBNH

491

Appendix C AmigaBASIC Inside and Out

Project:5

IF MenChoice«l THEN GOSUB ColorDone : GOSUB

PatternDone5

IF MenChoice»2 THEN GOSUB PatternDone : MENU 2,0,0 :

Mode»2 : GOSUB SelectColor5

IF MenChoice«3 THEN GOSUB ColorDone : MENU 2f0,0 :

Mode=3 : GOSUB PatternEditor5

IF MenChoice«4 THEN GOSUB ColorDone : GOSUB PatternDone

: GOSUB DrawLoadfl

IF MenChoice-5 THEN GOSUB ColorDone : GOSUB PatternDone

: GOSUB DrawSave5

IF MenChoice«6 AND Mode«l THEN OK=0 : GOSUB Query : IF

OK=1 THEN Adef«O : AREAFILL: CLS5

IF MenChoice«7 THEN GOSUB ColorDone : GOSUB PatternDone

: OK=0 : GOSUB Query : IF OK«1 THEN Endlt f

RETURNS

DrawTools:^

MENU 2fDrawTypefIf

DrawType - MENU (1)5

MENU 2,DrawType,25

RETURNS

H

DrawThin:5

Test- MOUSE (0) : x=MOUSE(l) : y=M0USE(2)5

WHILE MOUSE (0)005

LINE (x, y)- (MOUSE (1), MOUSE (2))/DrawColor 5

x=MOUSE(l) : y«MOUSE(2)5

WEND5

RETURNS

5

DrawThick:5

Test=MOUSE(0)5

WHILE MOUSE (0)005

x=MOUSE(l) : y»MOUSE(2)5

LINE (x,y)-(x+5,y+5),DrawColor,bf5

WEND5

RETURN5

5

Points:5

Test«MOUSE(0)5

WHILE MOUSE (0)0-05

PSET (MOUSE(1),MOUSE(2)),DrawColor5

WEND5

RETURN5

5

Spray: 5

Test«MOUSE(0)5

WHILE MOUSE (0)005

x=M0USE(l)+14*RND : y=MOUSE(2)+7*RND5

LINE (x,y)-(x,y),DrawColor,bf5

WEND5

RETURN5

5

492

Abacus Paint program

DrawLines: 5

Test=MOUSE(O)fl

xl=M0USE(3) : yl-MOUSE(4)5

PSET (xl,yl),DrawColorfl

WHILE MOUSE (0)O0fl

WENDfl

LINE (xl,yl)-(MOUSE(5),MOUSE(6)),DrawColorfl

RETURN^

Frame: 5

Test-MOUSE(0)fl

xl=M0USE(3) : yl=MOUSE(4)fl

Pointer(0,0)-xl : Pointer (0,1)-yl«fl

Pointer(1,0) =xl : Pointer(2,l)»ylfl

Value-45

WHILE MOUSE (O)OOfl

Pointer(3,0)-MOUSE(5)f

Pointer(3,1)-MOUSE(6) 5

Pointer(1,1)-Pointer(3,1)5

Pointer(2,0)-Pointer(3,0)5

GOSUB PlacePointfl

LINE (xl, yl) - (Pointer (3,0), Pointer (3,1)), DrawColor, bfl

RETURNS

Box: f

Test-M0USE(0)5

xl=MOUSE(3) : yl=MOUSE(4)5

Pointer(0,0)=xl : Pointer(0,1)-yl5

Pointer(1,0)«xl : Pointer(2,l)-yl5

Value-45

WHILE MOUSE (0)005

Pointer(3,0)-MOUSE(5)5

Pointer(3,1)-MOUSE(6)5

! Pointer(1,1)-Pointer(3,1)5

Pointer(2,0)-Pointer(3,0)f

GOSUB PlacePointfl

WEND5

LINE (xl,yl)-(Pointer (3,0),Pointer (3,1)),DrawColor,bf5

RETURNS

ConnectedLines: 5

Test=M0USE(0)5

xl=M0USE(3) : yl-MOUSE(4)5

IF yl>186 THEN yl«186fl

IF xl>311 THEN xl-3115

AREA (xl,yl)5

IF Adef-0 THEN Adef-l : xa«xl : ya-yl5

IF AdefOl AND xl-xa AND yl«ya THEN

Adef=Adef+l : IF Adef-20 THEN

LINE (xa,ya)-(xl,yl),DrawColorfl

xa-xl : ya-yH

RETURNS

493

Appendix C AmigaBASIC Inside and Out

DoFill:5

Adef~O : COLOR DrawColor, 0 : AREAFILL 5

RETURNS

5

0val:5

Test-MOUSE(0)5

xl=M0USE(3) : yl=MOUSE(4)5

Pointer (0,0) =xl : Pointer(0,l)=yl5

Pointer(l,0)=»xl : Pointer(2,1) =y15

Pointer (3,0)=xl : Pointer(4,1)«yl5

Value«55

WHILE MOUSE (0)005

rl« ABS (xl-MOUSE (5)) f

r2- ABS (yl-MOUSE (6)) 5

Pointer(I,l)«yl-r2 : Pointer(2,0)«xl+r15

Pointer(3,I)=yl+r2 : Pointer(4,0)«xl-r15

GOSUB PlacePoint5

WEND5

IF rl-0 THEN rl«.15

IF rl<r2 THEN Factor»(r2/rl) : rl«rl*Factor

r2s»r2*Factor5

CIRCLE (xl,yl), rl,DrawColor,,, (r2/rl) 5

RETURN5

5

5

Fill:5

Test«MOUSE(0)5

IF Click=O THEN5

SOUND 440,6,2005

x«M0USE(l) : y»MOUSE(2)5

RETURN5

ELSE5

Click«05

IF ABS (x-MOUSE (1))<11 AND ABS(y-MOUSE(2))<6 THEN5

PAINT (x,y),FillColor,DrawColor5

ELSE5

SOUND 440,6,2005

END IF5

END IF5

RETURN5

5

Eraser:5

Test«MOUSE(0)5

WHILE MOUSE (0)005

x=M0USE(1):y=MOUSE(2)5

PATTERN ,Solid%5

LINE (x,y)-(x+10,y+5),0,bf5

PATTERN ,FillPattern%5

WEND5

RETURN5

5

494

Abacus Paint program

Text: 5

Test«M0USE(0)5

x-MOUSE(l) : y=M0USE(2)5

MENU OFF : MOUSE OFF5

MENU 1,0,0 : MENU 2,0,05

WINDOW 5,"Enter Text:", (0,177)-(311,185) ,18,111

CLS5

LINE INPUT Text$5

WINDOW CLOSE 55

WINDOW 25

MENU 1,0,1 : MENU 2,0,15

MENU ON : MOUSE ON5

LOCATE INT(y/8.86)+l,INT(x/10)+l : COLOR

DrawColor,FillColor5

PRINT Text$;5

COLOR DrawColor,05

RETURN5

5

PlacePoint:5

FOR x»0 TO Value-15

xz-Pointer (x,0):yz»Pointer(x,1)5

IF xz<0 THEN xz-0 : Pointer(x,0)»05

IF xz>311 THEN xz-311 : Pointer(x,0)=3115

IF yz<0 THEN yz-0 : Pointer(x,l)-05

IF yz>186 THEN yz-186 : Pointer(x,l)«l865

AltColor (x) -POINT (xz, yz) 5

NEXT x5

FOR x=0 TO Value-15

PSET (Pointer (x, 0), Pointer (x, 1)), - (AltColor (x) -0) 5

NEXT x5

FOR x=0 TO Value-15

PSET (Pointer (x, 0), Pointer (x, 1)), AltColor (x) 5

NEXT x5

RETURN5

5

SelectColor:5

ColorChoice-0 : EndOK-05

MOUSE OFF : MENU OFF5

WINDOW 3,"Color Palette",(4,20)-(245,160),18,15

PATTERN ,Solid%5

FOR x- 1 TO (MaxColors+l)/85

FOR y= 0 TO 7 5

LINE (y*30,(x-l)*16)-((y+l)*30,x*16),(x-l)*8+y,bf5

NEXT y5

NEXT x5

LINE (10,72)-(50,95),DrawColor,b5

LINE (15,75)-(45,93),DrawColor,bf5

LOCATE 12,2 : COLOR 0,1 : PRINT "Draw";5

LINE (70,72)-(110,95),FillColor,b5

LINE (75,75)-(105,93),FillColor,bf5

LOCATE 12,8 : COLOR 1,0 : PRINT "Fill";5

495

Appendix C AmigaBASIC Inside and Out

LINE (135, 72)-(235, 95),l,bfl

LOCATE 10,16: PRINT "Palette";

LINE (190,109)-(230,132), l,bfl

LOCATE 14,21 : PRINT "OK";fl

PATTERN ,FillPattern%fl

MOUSE ON : MENU ONfl

RETURNS

ColorPalette:fl

Test=MOUSE(0)fl

x«M0USE(3) : y»MOUSE(4)fl

GOSUB ChooseColorfl

1

PATTERN ,Solid%fl

LINE (10,72)-(50,95),DrawColor,bfl

LINE (15,75)-(45,93),DrawColor,bf^I

LINE (70,72)-(110,95),FillColor,bfl

LINE (75,75)-(105,93),FillColor,bffl

PATTERN ,FillPattern%fl

IF WINDOW (0) =3 AND 72<y AND y<95 THENfl

IF 70<x AND x<110 THEN ColorChoice=lfl

IF 10<x AND x<50 THEN ColorChoice=0 5

IF 135<x AND x<235 THEN5

PATTERN fSolid%I

PAINT (137,74),3,15

PATTERN ,FillPattern%fl

GOSUB PaletteDef5

RETURNS

END in

END IFfl

GOSUB OKCheckH

IF ColorChoice»0 THENS

LOCATE

LOCATE

ELSESI

LOCATE

LOCATE

END IFSI

RETURNS!

12,2

12,8

12,2

12,8

: COLOR

: COLOR

: COLOR

: COLOR

I

0,1

1,0

1,0

0,1

: PRINT

: PRINT

: PRINT

: PRINT

"Draw";

"Fill";

"Draw";

"Fill";

PaletteDefiSI

IF ColorChoice^O THEN NewColor=DrawColor ELSE

NewColor=FillColorfl

PATTERN ,Solid%SI

LINE (0,71)-(240,107),0,bfSI

COLOR l,0Sl

LOCATE 9,2 : PRINT "R";fl

LOCATE 10,2 : PRINT "G";fl

LOCATE 11,2 : PRINT "B";fl

LINE (24,70)-(218,78),l,bSI

496

Abacus Paint program

LINE (24,80)-(218,88),l,bfl

LINE <24f90)-(218,98),l,M

LINE (222,70)-(238,98),NewColor,bffl

PATTERN ,FillPattern%fl

RETURN fl

RGBDefrfl

Test=MOUSE(O)fl

x=M0USE(3) : y=M0USE(4)fl

GOSUB ChooseColorfl

IF ColorChoice»0 THEN NewColor-DrawColor ELSE

NewColor-FillColorfl

GOSUB RGBRegulatorfl

GOSUB OKCheck : IF EndOK-1 THEN EndOK=3fl

WHILE MOUSE <0) 00$

x~MOUSE(l) : y=MOUSE(2)fl

IF WINDOW(0)«3 AND x>26 AND x<218 AND y>70 AND y<98

THEN^I

Colors%(NewColor,INT((y-71)/8.7))»INT((x-26)/12)5

GOSUB RGBRegulatorfl

END IFH

WENDU

RETURNS

RGBRegulator: 5

PATTERN ,Solid%fl

LINE (25+r*12f 71)-(37+r*12,77),0,bffl

LINE (25+g*12f 81)-<37+g*12,87), 0,bf\

LINE (25+b*12,91)-(37+b*12,97),0,bff

r=Colors%(NewColor,0)U

g=Colors%(NewColor,1)I

b»Colors%(NewColor,2) fl

LINE (25+r*12f71)-(37+r*12f77),l,bf5

LINE (25+g*12,81)-(37+g*12f 87), l,bft

LINE (25+b*12f91)-(37+b*12,97),l,bf^l

PALETTE NewColor, r/16,g/16,b/16fl

LINE (222f70)-(238,98),NewColor,bffl

PATTERN ,FillPattem%fl

RETURNS!

ChooseColor:5l

IF WINDOW(0)=3 AND x<240 AND y<(2A(Colors+1)) THEM

fx=INT(x/30) : fy - INT(y/16)fl

IF ColorChoice«0 THEN I

DrawColor=fy*8+fxf

ELSE^I

FillColor»fy*8+fxfl

END IFH

END IFH

RETURNS

OKCheck:fl

IF x>190 AND x<230 AND y>109 AND y<132

PATTERN ,Solid%U

PAINT (192,111),3,1 : EndOK=lfl

497

Appendix C AmigaBASIC Inside and Out

PATTERN ,FillPattern%5I

END IF5I

RETURNS

51

ColorDone:f

MENU 2,0,1 : Mode=15l

WINDOW CLOSE 351

WINDOW OUTPUT 251

RETURNS

51

PatternEditor:5l

MOUSE OFF : MENU OFF5I

EndOK»05I

WINDOW 4,"Fill Patterns",(54,30)-(300,130),18,151

LINE (0,0)-(132,66),3,b5l

51

FOR x«0 TO 2 51

FOR y«0 TO 2 51

FOR i=0 TO 7: FillPattern%(i)=AllPatterns%(y*3+x,i)

: NEXT i5l

PATTERN ,FillPattern%5I

LINE (144+x*34,y*25)-(175+x*34,23+y*25) ,l,bf5I

NEXT y5I

NEXT x5I

GOSUB MarkPattern5I

51

LINE (5,68)-(65,82),l,b5I

LOCATE 9,2 : PRINT "Clear";51

LINE (75,68)-(135,82),l,b5I

LOCATE 9,9: PRINT "Inv.";5l

LINE (5,85)-(65,100),l,b5I

LOCATE 11,2 : PRINT "Load";51

LINE (75,85)-(135,100),l,b5I

LOCATE 11,9: PRINT "Save";51

LINE (162,77)-(222,92),l,b5I

LOCATE 10,19 : PRINT "OK";5I

51

FOR i«0 TO 7 :

FillPattern%(i)-AllPatterns%(PtrnNumber,i) : NEXT i5I

GOSUB DrawPattern5I

51

MENU ON : MOUSE ON5I

RETURN5I

51

DefinePattern:5I

Test=MOUSE(0)5I

x«MOUSE(3) : y«MOUSE(4)5I

IF WINDOW (0) =4 AND x<132 AND y<66 THEN5I

px=INT(x/8.25) : py«INT (y/8.25) 51

Bit=FillPattem% (py) AND 2* (15-px) 51

IF Bit«0 THEN5I

FillPattern-FillPattern% (py) OR 2A (15-px) 51

ELSE5I

FillPattern=FillPattern%(py) AND (65535&-2A(15-

px))5l

END IF5I

498

Abacus Paint program

IF FillPattern>32767 THEN FillPattern«FillPattern-

65536&!

FillPattern%(py)-FillPattern!

PATTERN ,Solid%!

LINE (px*8+4,py*8+2)-(px*8+9,py*8+8) ,-(Bit»O) ,bf!

PATTERN ,FillPattern%!

yl»INT(PtrnNuiriber/3) : xl»PtrnNuinber-yl*3!

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25),l,bf!

FOR i=0 TO 7 :

AllPatterns%(PtrnNumberfi)«FillPattern%(i) : NEXT ill

RETURNS

END IF !

IF WINDOW(0)»4 AND x>142 AND x<244 AND y<75 THEN!

px«INT((x-143)/34) : py-INT (y/25)!

IF px+py*3«PtrnNumber THEN RETURN!

PtrnNumber«px+py*3!

FOR i=0 TO 7 :

FillPattern%(i)«AllPatterns%(PtrnNurober,i) : NEXT if

GOSUB MarkPattern^I

GOSUB DrawPattern^I

PATTERN ,FillPattern%fl

RETURNS

END IF H

IF WINDOW(0)=4 AND x<222 AND x>162 AND y<93 AND y>76

THEN^I

PATTERN fSolid%^I

PAINT (164,78),2,1U

PATTERN ,FillPattern%5

EndOK«2 : RETURN!

END IF fl

IF WINDOW(0)-4 AND x<135 AND y>68 AND y<100 THENH

PATTERN ,Solid%5

IF x<66 AND x>4 AND y<82 THEN5

PAINT (6,69),2,lfl

LINE (l,l)-(131,65),0,bfl

FOR i=0 TO 7 : AllPatterns%(PtrnNumber,i)=O :

FillPattem%(i)«O : NEXT!

PAINT (6, 69), 0,15

PATTERN ,FillPattern%5

yl=INT (PtrnNurriber/3) : xl«PtrnNuiriber-yl*3fl

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25),l,bf!

END IF f

IF x<136 AND x>74 AND y<82 THEN!

PAINT (76, 69), 2,1!

FOR i»0 TO 7!

FillPattern%(i)«FillPattern%(i) XOR &HFFFF!

AllPatterns% (PtrnNurriber, i) «FillPattern% (i)!

NEXT i!

GOSUB DrawPattern!

PAINT (76, 69), 0,1!

PATTERN ,FillPattern%!

yl=INT(PtrnNuniber/3) : xl=PtrnNuniber-yl*3!

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25),l,bf!

END IF!

499

Appendix C AmigaBASIC Inside and Out

IF x<66 AND x>4 AND y>84 THEN GOSUB PtrnLoad5

IF x<135 AND x>75 AND y>84 THEN GOSUB PtrnSave5

END IFfl

RETURN5

5

MarkPattern:5

yl»INT(AltPattern/3) : xl=AltPattern-yl*3 5

LINE (143+xl*34,yl*25-l)-(176+xl*34,24+yl*25),0,b5

yl-INT (PtrnNumber/3) : xl«PtrnNurnber-yl*35

LINE <143+xl*34,yl*25-l)-(176+xl*34,24+yl*25),3,b5

AltPattern»xl+yl*35

RETURNS

5

DrawPattern:5

MOUSE OFF : MENU OFF5

PATTERN ,Solid%5

LINE (l,l)-(131,65),0,bf 5

FOR y»0 TO 75

FOR x«0 TO 15T1

Bit=FillPattern% (y) AND 2A(15-x)^I

IF BitOO THEN LINE (x*8+4fy*8+2)-

(x*8+9,y*8+8),l,bffl

NEXT xf

NEXT y^l

PATTERN ,FillPattern%!

MOUSE ON : MENU ONfl

RETURNS

PtrnLoad:!

MOUSE OFF : MENU OFF5

PAINT (6,86),2,If

GOSUB EnterNameU

IF Nam$-"" THEN EndPtmLoadfl

OPEN Nam$ FOR INPUT AS If

FOR x=0 TO 8fl

FOR y»0 TO 7H

AllPatterns%(xry)=CVI(INPUT$(2,1))5

NEXT yfl

NEXT xfl

CLOSE If

EndPtrnLoad:5

WINDOW CLOSE 5 : WINDOW 45

PAINT (6,86), 0,15

MOUSE ON : MENU ON5

FOR x«0 TO 85

FOR y«0 TO 75

FillPattern% (y) «AllPattems% (x,y) 5

PATTERN ,FillPattern%5

yl-INT(x/3) : xl=x-yl*35

LINE (144+xl*34,yl*25)-(175+xl*34,23+yl*25),l,bf5
NEXT y5

NEXT x5

500

Abacus Paint program

FOR i«0 TO 7 :

FillPattern% (i) =AllPatterns% (PtrnNuniber, i) : NEXT5

GOSUB DrawPattern5

RETURNS

5

PtrnSave:5

MOUSE OFF : MENU OFF5

PAINT (78, 86), 2,15

GOSUB EnterName5

IF Nam$«"" THEN EndPtrnLoad5

OPEN Nam$ FOR OUTPUT AS 11

FOR x-0 TO 85

FOR y=0 TO 75

PRINT #1, MKI$ (AllPatterns% (x, y)); 5

NEXT y5

NEXT x5

CLOSE 111

5

EndPtrnSave:5

WINDOW CLOSE 5 : WINDOW 4fl

PAINT (78r86)f0f15

MOUSE ON : MENU ONfl

RETURNS

PatternDone:^

MENU 2,0,1 : Mode-15

WINDOW CLOSE 41

WINDOW OUTPUT 25

PATTERN ,FillPattern%5

RETURNS

DrawLoad:^

MENU 2,0,0 : MENU 1,0,05

MENU OFF : MOUSE OFF5

GOSUB EnterNamefl

WINDOW CLOSE 55

WINDOW 25

IF Nam$«fMf THEN EndLoad 5

OPEN Nam$ FOR INPUT AS 15

Form$=INPUT$(4,l)5

Length«CVL(INPUT$(4,1))5

IF INPUT$(4,1)O"ILBM" THEN BEEP : GOTO EndLoad5

5

ReadData:5

IF EOF(l) THEN EndLoad5

Chunk$»INPUT$(4,1)5

Length=CVL(INPUT$(4,1))5

IF INT (Length/2)O (Length/2) THEN Length«Length+15

IF Chunk$-"BMHDM THEN BMHeader5

IF Chunk$="CMAP" THEN ColorMap5

IF Chunk$«"BODYM THEN BodyMap5

Dummy$=INPUT$ (Length, 1) 5

GOTO ReadData5

5

501

Appendix C AmigaBASIC Inside and Out

BMHeader: H

xd=€VI (INPUT$ (2,1)) H

IF xd>320 THEN EndLoadH

yd«CVI(INPUT$(2,1))H

IF yd>200 THEN EndLoadH

Dummy$«INPUT$ (4,1) H

BitPlane»ASC(INPUT$(1,1))I

Dummy$=INPUT$ (11 , 1) H

Addr=PEEKL (WINDOW (8) +4) +811

FOR x«0 TO BitPlane-lH

PlaneAddr (x) -PEEKL (Addrf4*x) <&

NEXT x1l

GOTO ReadData^l

ColorMap:1I

FOR x=0 TO (Length/3)-15

r=(ASC(INPUT$(l,l)) AND 240)/16fl

g=(ASC(INPUT$(l,l)) AND 240)/16fl
b=(ASC(INPUT$(lfl)) AND 240)/16H

PALETTE x,r/16,g/16,b/16fl

Colors%(xf0)»r : Colors% (x,l)=g : Colors%(x/2)=b^I

NEXT xfl

IF INT (Length/3)O (Length/3) THEN Dummy$-INPUT$ (1,1) 51

• GOTO ReadDatafl

FOR yl«0 TO

FOR b=0 TO BitPlane-lfl

IF b<Colors THEN5

FOR xl=0 TO 9%

POKEL

PlaneAddr(b)+4*xl+40*yl,CVL(INPUT$(4,1))H

NEXT xlfl

ELSE51

Dummy$=INPUT$(40,1)fl

END IPI

NEXT bf

NEXT ylfl

GOTO ReadData I

11

EndLoad:H

CLOSE 111

MENU ON : MOUSE ONfl

MENU 1,0,1 : MENU 2,0,111

RETURNS

DrawSave:1I

MENU 2,0,0 : MENU 1,0,011

MENU OFF : MOUSE OFFH

GOSUB EnterNameU

WINDOW CLOSE 5U

WINDOW 211

IF Nam$=tMI THEN EndSaveH

OPEN Nam$ FOR OUTPUT AS 1 LEN«FRE (0)-500H

PRINT #1, "FORM"; H

PRINT #l,MKL$(156+8000*Colors);H

502

Abacus Paint program

PRINT #1,"ILBM";5

PRINT #l,"BMHD";MKL$(20);5

PRINT #l,MKI$(320);MKI$(200);5

PRINT #1,MKL$(O);5

PRINT #1,CHR$ (Colors); 5

PRINT #l,CHR$(0);MKI$(0);MKI$(0);5

PRINT #l,CHR$(10);CHR$(ll);5

PRINT #l,MKI$(320);MKI$(200);5
5

PRINT #1,"CMAP";MKL$(96); 5

FOR x=0 TO 315

PRINT #l,CHR$(Colors%(x,0)*16);5

PRINT #l,CHR$(Colors%(x,l)*16);5

PRINT #l,CHR$(Colors%(x,2)*16);5
NEXT x5

5

PRINT #1,"BODY";MKL$(8000*Colors);5

Addr=PEEKL (WINDOW (8) +4) +85

FOR x=0 TO Colors-15

PlaneAddr (x) «=»PEEKL (Addr+4*x) 5

NEXT x5

FOR yl«0 TO 1995

FOR b»0 TO Colors-15

FOR xl-0 TO 9 5

PRINT#1,MKL$ (PEEKL (PlaneAddr (b) +4*xl+40*yl)) ; 5

NEXT xl5

NEXT b5

PAddr=PlaneAddr(0)+40*yl5
POKE PAddr,PEEK(PAddr) AND 635

POKE PAddr+39,PEEK(PAddr+39) AND 2525

NEXT yl5

5

PRINT #1,"CAMG";MKL$(4);5

PRINT #1,MKL$(16384);5

CLOSE 15

5

EndSave:5

MENU ON : MOUSE ON5

MENU 1,0,1 : MENU 2,0,15

RETURN5

5

EnterName:5

Altname$=Nam$5

WINDOW 5,"Enter Name:",(0,80)-(311,88),0,15

CLS5

LINE INPUT Nam$5

IF Nam$= "=" OR Nam$«"*" THEN Nam$=Altname$5

RETURN5

5

Query: 5

MENU 1,0,0 : MENU 2,0,05

MENU OFF : MOUSE OFF5

WINDOW 5,"CAUTION!", (43,70)- (270,120),0,15

COLOR 0,1 : CLS : LOCATE 2,25

PRINT "Do you really want to"5

PRINT " lose your picture?"5

503

Appendix C AmigaBASIC Inside and Out

PATTERN ,Solid%fl

LOCATE 5,10 : PRINT "Yes";fl

LOCATE 5,17 : PRINT "No";fl

LINE (77,31)-(127,46),0,bfl

LINE (145,31)-(195,46),0,bH

SOUND 880,6,100fl

Pause: 11

Test=M0USE(0)fl

WHILE MOUSE(0)-OH

x-MOUSE(l) : y»MOUSE(2)H

WENDfl

IF (y<46 AND y>31) THENfl

IF (x<127 AND x>77) THEN PAINT (79,33),3,0 : OK»1 :

GOTO EndQuery fl

IF (x<195 AND x>145) THEN PAINT (147,33),3,0 : OK=0 :

GOTO EndQueryfl

END IFH

GOTO Pause H

EndQuery:H

MENU ON : MOUSE ON : MENU 1,0,1 : MENU 2,0,lfl

WINDOW CLOSE 5 : WINDOW 2fl

RETURNS

Endlt:fl

MENU RESETS

SCREEN CLOSE lfl

504

Abacus Statistical data manager

C.4
Statistical
data manager

Setup: SI

DIM Nuniber$ (58) ,Desc$ (58) ,Value$ (58) H

DIM Array$ (50) .Array (50) H

FOR x=l TO 585

IF x>4 AND x<55 THEN Nuniber$ (x)«STR$ (x-4) II

NEXT xH

TopLine=lH

H

Colors=3H

SCREEN 4,640,200,Colors,2H

WINDOW 99,"Graphics",,20,45

PALETTE 7, .8, .2, .111

H

WINDOW 1,"Statistical-Data-Manager",(0,12)-

(631,111),22,-15

H

MENU 1,0,1,"Data "H

MENU 1,1,1,"Load "H

MENU 1,2,1,"Save "5

MENU 1,3,1,"Print "5

MENU 1,4,1,"Delete1^

MENU 1,5,1,"Quit "5

MENU 2,0,1,"Graphics"5

MENU 2,1,1,"Bar Graph"5

MENU 2,2,1,"Pie Chart"fl

MENU 2,3,1,"Save Pic"fl

MENU 3,0,0,""5

MENU 4,0,0, ""^l

ON MENU GOSUB MenuControlfl

MENU ONfl

11
GOTO MainLoopH

11

MenuControl:1l

Men=MENU(0) : MenuPoint«MENU(l)H

IF Men«l THENH

IF MenuPoint«l THEN GOSUB LoadDataH

IF MenuPoint»2 THEN GOSUB SaveDataH

IF MenuPoint»3 THEN GOSUB PrintDataH

IF MenuPoint=4 THEN GOSUB ClearDataH

IF MenuPoint«5 THEN QuitH

END IFH

IF Men=2 THENH

IF MenuPoint»3 THENH

MENU 1,0,0: MENU 2,0,OH

MENU OFFH

GOSUB EnterName^l

WINDOW 99H

505

Appendix C AmigaBASIC Inside and Out

PicSave Nam$,99,0I

WINDOW II

MENU ONI

MENU 1,0,1 : MENU 2,0,11

END IE!

IF MenuPoint«l THEN Array$(0)="B"I

IF MenuPoint«2 THEN Array$(0)«"P"I

Array(0)-TopLinel

IF Value$(Array(0)+4)="" THEN Array (0)-Array (0) -II

FOR x=l TO Array (0)1

Array$ (x) -Desc$ (x+4) I

Array (x) -VAL (Value$ (x+4)) I

IF Array (x)«0 THEN Array(x)». 011

NEXT xl

MENU OFFI

MENU 1,0,0 : MENU 2,0,01

WINDOW 99 : CLSI

I
GOSUB Graphics!

I
WINDOW 2,"Please press a key!",(350,0)-(631,0),20,41

COLOR 0,1 : CLSI

WHILE INKEY$«""I

WENDI

WINDOW CLOSE 21

WINDOW II

MENU ONI

MENU 1,0,1 : MENU 2,0,11

END IFI

RETURNI

I

MainLoop:!

CLSI

IF TopLine>50 THEN TopLine»50I

IF LineOne>TopLine THEN LineOne=TopLine : BEEPI

IF LineOne<l THEN LineOne»l : BEEPI

PRINT "Number";TAB(10);"Description";TAB(45) ;"Value"I

FOR x»LineOne TO Line0ne+8I

COLOR 1,01

PRINT Number$ (x) ;TAB (10) ;Desc$ (x) ;TAB (45) ;Value$ (x) I

NEXT xl

IF DescData=0 THEN StartSlice«10 : EndSlice=40I

IF DescData=l THEN StartSlice»45 : EndSlice=55I

xp-StartSlicel

I

GOSUB EnterTextl

I

GOTO MainLoopI

I

I

506

Abacus Statistical data manager

EnterText:$

IF xp<StartSlice THEN xp=StartSlicefl

LOCATE 6,xpfl

COLOR 0,3 : PRINT " "; : COLOR l,0fl

i$=INKEY$fl

IF i$="" THEN EnterText51

IF i$=CHR$(2) THEN LineOne«l : RETURNS

IF i$«CHR$ (5) THEN LineOne-TopLine : RETURN^

IF i$=CHR$(4) THEN DeleteLine : RETURN^

IF i$=CHR$(14) THEN InsertLine : RETURN^

IF i$«CHR$ (28) THEN GOSUB AcceptText : xp=StartSlice :

LineOne=LineOne-l: RETURNS

IF i$=CHR$(29) THEN GOSUB AcceptText : xp=StartSlice :

LineOne^LineOne+l: RETURNS

TextPos«xp-StartSlice+1f

IF DescData«0 THEN Text$«Desc$(LineOne+4)fl

IF DescData»l THEN Text$-Value$(LineOne+4)f

IF i$=CHR$(30) THEN5

IF TextPos<-LEN(Text$) THEN i$»MID$(Text$,TextPos/l)5

END IF f

IF i$=CHR$(13) OR i$«CHR$(9) THEN5

GOSUB AcceptTextH

DescData«l-DescDatafl

IF DescData=0 THEN LineOne»LineOne+l^I

xp=StartSlicefl

IF TopLine<LineOne THEN TopLine«LineOne5

RETURN^

END IFH

IF i$=CHR$(8) OR i$=CHR$(31) THEN5

LOCATE 6fxpf

IF TextPos<»LEN(Text$) THEN1

PRINT RIGHT$(Text$,LEN(Text$)-TextPos+1);f

ELSEH

PRINT " ";fl

END in

xp=xp-l : IF xp<StartSlice THEN xp«StartSlice :

: GOTO EnterText^I

in$=LEFT$(in$,(LEN(in$)-l))H

GOTO EnterText^I

END IFfl

IF i$*CHR$(34) THEN i$«=CHR$(39) H

IF i$ > CHR$(31) AND i$ < CHR$(127) THEN1

IF xp>=EndSlice THEN xp=EndSlice : RP!F.p : GOTO

EnterTextf

LOCATE 6,xpfl

PRINT i$;^l

END IFU

GOTO EnterText^I

507

Appendix C AmigaBASIC Inside and Out

AcceptTextrfl

IF in$OM" THENH

IF DescData»O THEN Desc$(Line0ne+4)=in$H

IF DescData=l THEN Value$(Line0ne+4)=in$1I

in$»""H

AltData-15

END IFH

RETURNS

I
DeleteLine:^

FOR x»Line0ne+4 TO 5411

Desc$ (x) -Desc$ (x+1) fl

Value$ (x) =Value$ (x+1) 11

NEXT xH

TopLine=TopLine-1H

IF TopLine<l THEN TopLine«lH

RETURNS

<$.
InsertLineifl

IF TopLine>-50 THEN BEEP : RETURN^

FOR x=TopLine+4 TO LineOne+4 STEP -1H

Desc$(x+1)»Desc$(x)H

Value$(x+1)=Value$(x)f

NEXT x5

Desc$ (LineOne+4) -""11

Value$(LineOne+4)=""fl

TopLine«TopLine+lH

RETURNS!

SaveData:$

MENU 1,0,0 : MENU 2,0,0 f

MENU OFFfl

GOSUB EnterNameU

WINDOW II

IF Nam$»"" THEN EndSaveH

OPEN Nam$ FOR OUTPUT AS II

PRINT #l,TopLine+4fl

FOR x=l TO TopLine+4fl

WRITE #l,Desc$(x)H

WRITE #l,Value$(x)H

NEXT xfl

CLOSE 11

EndSave:1I

MENU 1,0,1 : MENU 2,0,111

MENU ONH

AltData=0H

RETURNS

508

Abacus Statistical data manager

LoadData:5

IF AltData=l THEN GOSUB Query5

MENU 1,0,0 : MENU 2,0,011

MENU OFF5

GOSUB EnterName5

WINDOW 15

IF Nam$«"" THEN EndLoad5

FOR x=l TO 585

Desc$(x)=""5

Value$(x)»""5

NEXT x5

OPEN Nam$ FOR INPUT AS 15

INPUT #l,NmbrData5

TopLine=»NmibrData-45

FOR x=l TO NmbrData5

INPUT #l,Desc$(x)5

INPUT #l,Value$(x)5

NEXT x5

Line0ne=TopLine5

CLOSE 15

EndLoad:5

WINDCW 15

COLOR 1,05

CLS5

PRINT "Number";TAB(10) /"Description";TAB(45) ;"Array"5

FOR x«LineOne TO LineOne+85

PRINT Number$ (x) ;TAB(10) ;Desc$ (x) ;TAB (45) ;Value$ (x) 5

NEXT x5

MENU 1,0,1 : MENU 2,0,15

MENU ON5

AltData=05

RETURN5

5

EnterName:5

Altname$=Nam$5

WINDOW 2,"Enter filename:",(50,80)-(580,88),0,-15

CLS5

LINE INPUT Nam$5

IF Nam$« "-•• OR Nam$="*" THEN Nam$=Altname$5

WINDOW CLOSE 25

RETURN5

5

PrintData:5

MENU 1,0,0 : MENU 2,0,05

MENU OFF5

OPEN "PRT:" FOR OUTPUT AS 15

PRINT #1,"File:";Altname$;CHR$(10)5

PRINT

#1, "Number";TAB(10) /"Description";TAB(45) ;"Value"5

FOR x=4 TO TopLine+45

PRINT #1, Number$(x);TAB(10);Desc$(x);TAB(45);

Value$(x)5

NEXT x5

CLOSE 15

MENU 1,0,1 : MENU 2,0,15

509

Appendix C AmigaBASIC Inside and Out

MENU ON5I

RETURNS

51

Query: 51

WINDOW 2,"Attention!",(155,50)-(475,135),0,-15

COLOR 0,1^1

CLS51

LOCATE 2,351

PRINT " Your data has not"5I

PRINT " yet been saved. "51

PRINT : PRINT " Save it now?" 51

LOCATE 8,12 : PRINT "Yes"5I

LOCATE 8,21 : PRINT "No"5l

LINE (95,57)-(148,74),0,b5I

LINE (183,57)-(236,74),0,b5I

BEEP51

WaitforMouse:5I

Test=MOUSE(0)5I

WHILE MOUSE (0) =051

WEND5I

x»M0USE(l) : y=MOUSE(2)5I

IF 95<x AND x<148 AND 57<y AND y<74 THEN5I

PAINT (97,59), 3, 051

GOSUB SaveData5I

PAINT (97,59), 1,051

WINDOW CLOSE 251

RETURN51

END IF5I

IF 183<x AND x<236 AND 57<y AND y<74 THEN5I

PAINT (185,59), 3, 051

WINDOW CLOSE 251

RETURN5I

END IF51

GOTO WaitforMouse5I

51

ClearData:5I

IF AltData«l THEN GOSUB Query5I

RUN5I

51

Quit:5l

IF AltData»l THEN GOSUB Query5I

COLOR 1,051

MENU RESET51

CLS5I

END51

51

Graphics: 51

IF Array (0)»0 THEN RETURN 51

IF UCASE$ (Array$ (0)) «"B" THEN GOSUB BarGraph5I

IF UCASE$(Array$(0))="P" THEN GOSUB PieChart5l

RETURN5I

510

Abacus Statistical data manager

PieChart:5

Total=05

FOR x=l TO Array (0)51

Total»Total+Array (x) 5

NEXT x5

Divi=Total/6.283 : Anglel-.0001 : BColor«15

FOR x=l TO Array (0)5

LColor=BColor5

IF LColor>(2*Colors)-l THEN LColor-15

BColor«LColor+15

IF BColor>(2AColors)-l THEN BColor=15

Angle2=Anglel+Array(x)/Divi5

CIRCLE (320,100),156,BColor 5

CIRCLE (320,100) ,150,BColor,-Angle2,-Anglel5

PAINT (320,32),LColor,BColor5

CIRCLE (320,100),150,BColorfl

PAINT (320,32),0,BColor5

CIRCLE (320,100),150,BColor,-Anglel,-Angle2fl

MidAngle«(Anglel+Angle2)/2f

px=320+165*COS(MidAngle)5

py=100-80*SIN(MidAngle)fl

IF MidAngle>1.57 AND MidAngle<4.72 THEN

Distance«LEN (Array$ (x)) $

IF Distance>15 THEN Distance=155

COLOR LColor,05

LOCATE (py/9.25)+l,(px/9.95)+l-DistanceH

PRINT Array$ (x); 5

Anglel»Angle2H

NEXT xfl

CIRCLE (320,100),156,05

RETURNS

BarGraphifl

Max».0001 : LColor«01I

FOR x~l TO Array (0)5

IF Array (x)>Max THEN Max=Array (x) 5

NEXT x5

BarWidth=INT(550/(Array(0)))5

IF BarWidth>100 THEN BarWidth=1005

Factor=160/Max5

LOCATE 1,1 : PRINT Max;5

LOCATE 10,1 : PRINT Max/2;5

FOR x=0 TO 105

LINE (l,170-x*16)-(5,170-x*16)5

NEXT x 5

FOR x»l TO Array (0)5

LColor=LColor+l : IF LColor>(2AColors)-l THEN

LColor=15

LINE (30+ (x-1) *BarWidth, 170-Array (x) *Factor) -

(25+x*BarWidth,170)fLColor,bf5

COLOR LColor,05

511

Appendix C AmigaBASIC Inside and Out

LOCATE 20, (4+(x-l)*(BarWidth/*.9))H

PRINT Array$ (x) ; H

NEXT xH

RETURNS

H

SUB PicSave (Nam$,WindowNr%, ArrayYN%) STATICH

IF ArrayYN%=l THEN SHARED Colors%()H

IF ArrayYN%=0 THEN5

IF Colors%<0,0)02 THEN ERASE Colors% : DIM

Colors5* (31,2)11

RESTORE ColorTableU

FOR x«0 TO 31H

READ Colors%(x,0),Colors%(x,1),Colors%(x, 2)H

NEXT xH

ColorTable: 5

DATA 2,3,10, 15,15,15, 0,0,0, 15,8,011

DATA 0,0,15, 15,0,15, 0,15,15, 15,15,155

DATA 6,1,1, 14,5,0, 8,15,0, 14,11,011

DATA 5,5,15, 9,0,15, 0,15,9, 12,12,1211

DATA 0,0,0, 13,0,0, 0,0,0, 15,12,1011

DATA 4,4,4, 5,5,5, 6,6,6, 7,7,7H

DATA 8,8,8, 9,9,9, 10,10,10, 11,11,1111

DATA 12,12,12, 13,13,13, 14,14,14, 15,15,1511

END IFH

IF Nam$="fl THEN EXIT SUBH

AltWindowNr-WINDOW (1) U

WINDOW WindowNr%U

Wide=WINDOW(2)U

IF Wide>320 THENH

Wide=640H

Resolution^H

Planes=16000U

ELSEH

Wide=320H

Resolution»lH

Planes=8000H

END IFH

Height=WINDOW(3)H

IF Height>200 THENH

Height=400H

Planes«Planes*21I

Resolution^Resolution+2H

ELSEU

Height=200H

END IFH

Colors=L0G(WIND0W(6)+l) /LOG(2) H

11

OPEN Nam$ FOR OUTPUT AS 1 LEN=FRE(0)-500U

PRINT #1,"FORM";H

PRINT #1,MKL$(156+Planes*Colors);H

PRINT #1,"ILBM";H

PRINT #1,"BMHD";MKL$(20);H

PRINT #1,MKI$(Wide);MKI$(Height);H

PRINT #1,MKL$(O);H

PRINT #1,CHR$ (Colors); H

PRINT #l,CHR$(0);MKI$(0);MKI$(0);1I

512

Abacus Statistical data manager

PRINT #l,CHR$(10);CHR$(ll);5
PRINT #1,MKI$ (Wide) ;MKI$ (Height) ; 5

5

PRINT #1,"CMAP";MKL$(96); 5

FOR x=0 TO 315

PRINT #1,CHR$(Colors%(x, 0) *16) ;5

PRINT #l,CHR$(Colors%(x,l)*16);5

PRINT #l,CHR$(Colors%(x,2)*16);5
NEXT x5

5

PRINT #1, »BODY";MKL$ (Planes*Colors) ;5

Addr=PEEKL (WINDOW (8) +4) +85

FOR x=»0 TO Colors-15

PlaneAddr (x) -PEEKL (Addr+4*x) 5

NEXT x5

FOR yl-0 TO Height-15

FOR b=0 TO Colors-15

FOR xl=0 TO (Wide/32)-1 5

PRINT#1,MKL$ (PEEKL (PlaneAddr (b) +4*xl+ (Wide/8) *yl)) ; f

NEXT xl5

NEXT b5

PAddr=PlaneAddr (0) + (Wide/8) *yl5

POKE PAddr,PEEK(PAddr) AND 635

POKE PAddr+Wide/8-l,PEEK(PAddr+Wide/8-l) AND 2525
NEXT yl5

5

PRINT #1/"CAMG"/MKL$(4);5

PRINT #1,MKL$(16384);5

CLOSE 15

WINDOW AltWindowNr 5

END SUB5

513

Appendix C AmigaBASIC Inside and Out

C.5
Database
program

Setup: 5

PALETTE 0,0,.1,.45

PALETTE 2,0,1,05

5

Begin:5

CLS : LOCATE 1,1 : PRINT "Select"5

LOCATE 1,25 : COLOR 3,0 : PRINT "Filename:"; : COLOR

1,05

IF Altname$<>"" THEN PRINT Altname$ ELSE PRINT " (no

file)"5

PRINTS

COLOR 0,3 : PRINT SPACE$ (21) "AmigaBASIC

DataBase"SPACE$ (21) 5

LOCATE 5,22 : COLOR 3,05

PRINT "Please Choose:"5

LOCATE 7,225

COLOR 0,1 :PRINT " 1 "; : COLOR 1,0 : PRINT " Create

File"5

LOCATE 9,225

COLOR 0,1 :PRINT " 2 "; : COLOR 1,0 : PRINT " Enter

data"5

LOCATE 11,225

COLOR 0,1 :PRINT " 3 "; : COLOR 1,0 : PRINT " Read

file"5

LOCATE 13,225

COLOR 0,1 :PRINT " 4 "; : COLOR 1,0 : PRINT " Search

file"5

LOCATE 15,225

COLOR 0,1 :PRINT " 5 "; : COLOR 1,0 : PRINT " End"5

Select:5

LOCATE 18,1 : PRINT SPACE$(60)5

LOCATE 18,22 : COLOR 3,0 : PRINT "Enter number:";5

COLOR 1,0 : LINE INPUT number$5

number$«LEFT$(number$, 1)5

IF number$<"l" OR number$>"5" THEN Select5

IF number$»"l" THEN CreateFile5

IF number$="2" THEN EnterData5

IF number$«"3" THEN DataSearch«0 : GOTO ReadData5

IF number$~"4" THEN DataSearch«l : GOTO ReadData5

PRINT "Program ended."5

END5

5

CreateFile:5

CLS : LOCATE 1,1 : COLOR 1,0 : PRINT "Create File"5

LOCATE 1,25 : COLOR 3,0 : PRINT "Filename:";5

COLOR 1,0 : PRINT "(no file)" 5

COLOR 3,0 : LOCATE 3,15

PRINT "Enter field name and field length. "5

COLOR 1,05

514

Abacus Database program

FOR x-0 TO 9fl

Fieldname$-"" : Length (x)-OH

NEXT xfl

LOCATE 4,1 : PRINT "Name" : LOCATE 4,26 : PRINT "Length

FOR x»0 TO 9fl

NoOfFields«xH

LOCATE x+6,1 : LINE INPUT Fieldname$(x)H

IF Fieldname$(x)-"" THEN x-10 :

NoOfFields=NoOfFields-lfl

Fieldname$ (x) «LEFT$ (Fieldname$ (x), 25) fl

LOCATE x+6,26 : PRINT SPACE$ (40) ;H

LOCATE x+6,26 : LINE INPUT Length$H

IF Length$»"" OR ABS (VAL (Length$))>40 THEN

Length$="40"fl

Length (x) -INT (ABS (VAL (Length$))) H

IF Length (x)=0 THEN Length (x)-401

NEXT xfl

II
Corrections:fl

GOSUB EntryOKfl

IF Corr=0 THEN QpenFileH

IF Corr-1 THEN ErrorCorrectionfl

GOTO Corrections^!

ErrorCorrection:H

FOR x=0 TO NoOfFieldsfl

LOCATE x+6,1 : PRINT SPACE$(60)H

LOCATE x+6,25 : PRINT Length (x) II

LOCATE x+6,1 : PRINT Fieldname$(x)5

NEXT xfl

FOR x«0 TO NoOfFieldsfl

LOCATE x+6,1 : LINE INPUT Fieldname$fl

IF Fieldname$O"" THEN

Fieldname$ (x) -LEFT$ (Fieldname$, 25) 5

LOCATE x+6,26 : LINE INPUT Length$H

IF ABS(VAL(Length$))>40 THEN Length$-"40"H

IF Length$<>"" THEN Length (x) -INT (ABS (VAL (Length$))) fl

IF Length (x)»0 THEN Length (x)-405

NEXT xf

GOTO Corrections!

OpenFile:!

LOCATE 19,1 : PRINT SPACE$(60) ;fl

LOCATE 19,1 : COLOR 3,0 : PRINT "Enter Filename:";fl

COLOR 1,0 : LINE INPUT Nam$fl

RecordLength=Ofl

FOR x=0 TO NoOfFieldsH

RecordLength=RecordLength+Length (x) f

NEXT x!

IF Nam$="" OR RecordLength-0 THEN BEEP : GOTO Beginfl

OPEN "R",#l,Nam$,RecordLengtM

515

Appendix C AmigaBASIC Inside and Out

FIELD #l,Length(0) AS Dat$ (0),Length(1) AS Dat$ (1),

Length (2) AS Dat$(2), Length (3) AS Dat$(3),

Length(4) AS Dat$(4), Length (5) AS Dat$(5),

Length(6) AS Dat$(€),Length(7) AS Dat$ (7),

Length(8) AS Dat$(8) .Length(9) AS Dat$(9)5

FOR x»l TO NoOfFieldsfl

LSET Dat$(x)»" " 5

NEXT x5

CLOSE 15

OPEN Nam$+fl.Fldsft FOR OUTPUT AS 25

PRINT #2,NoOfFields5

PRINT #2,RecordLength5

PRINT #2,05

FOR x=0 TO NoOfFields5

WRITE #2,Fieldname$(x)5

PRINT #2, Length (x) 5

NEXT x5

CLOSE 25

Altname$=Nam$5

GOTO Begins

5

EnterData:5

CLS : LOCATE 1,1 : PRINT "Enter data"5

IF Nam$«"" THENfl

LOCATE 3fl : COLOR 3,0 : PRINT "Enter Filename:"5

COLOR 1,0 : LINE INPUT Nam$fl

IF Nam$="=" OR Nam$="*" THEN Nam$=Altname$5

IF Nam$="" THEN Begins

Altname$»Nam$H

END IF5

GOSUB FieldFileExistYN^I

IF FileExist=0 THENfl

COLOR 3,0 : PRINT 5

PRINT "Press any key."5

WHILE INKEY$="" : WEND : COLOR 1,05

GOTO Beginfl

END IF5

GOSUB ReadFileFieldf

RecordNurnber»=NoOfRecords+l5

5

OPEN "R",#l,Nam$,RecordLength 5

FIELD #l,Length(0) AS Dat$(0),Length(1) AS

Dat$(l), Length (2) AS Dat$(2) ,Length(3) AS

Dat$(3),Length(4) AS Dat$(4) ,Length(5) AS

Dat$(5),Length(6) AS Dat$(6), Length (7) AS

Dat$(7),Length(8) AS Dat$(8),Length(9) AS Dat$(9)5

5

InputLoop:5

CLS : LOCATE 1,1 : COLOR 1,0 : PRINT "Enter new

data"5

LOCATE 1,25 : COLOR 3,0 : PRINT "File:";5

COLOR 1,0 : PRINT Nam$5

516

Abacus Database program

Inpt=OSI

LOCATE 1,50 : PRINT "Record: ";RecordNumberSI

PRINT : COLOR 3,0SI

PRINT "Enter new data:" : COLOR l,0SI

FOR x=0 TO NoOfFieldsSI

LOCATE 5+x,l : COLOR 2,0 : PRINT Fieldname$ (x)":

NEXT x : COLOR l,0Sl

FOR x-0 TO NoOfFieldsSI

LOCATE 5+x, LEN (Fieldname$ (x)) +3SI

LINE INPUT Entry$SI

IF Entry$<>"" THEN Inpt-lSI

Entry$ (x) =LEFT$ (Entry$, Length (x)) SI

LSET Dat$(x) - Entry$(x)SI

NEXT xSI

Corrections2:SI

GOSUB EntryOKSI

IF Corr»0 THEN WriteRecordSI

IF Corr«l THEN EnterCorrectionSI

GOTO Corrections2 SI

SI

EnterCorrection: SI

CLS : LOCATE 1,1 : COLOR 1,0 : SI

PRINT "Add Data" SI

LOCATE 1,25 : COLOR 3,0 : PRINT "File:";SI

COLOR 1,0 : PRINT Nam$SI

LOCATE 1,50 : PRINT "Record: ";RecordNuniberSI

PRINT : PRINT SI

FOR x=0 TO NoOfFieldsSI

LOCATE 5+x,l : COLOR 2,0 : PRINT Fieldname$(x)":

11" SI

COLOR 1,0 : PRINT Entry$ (x) SI

NEXT xSI

FOR x«=0 TO NoOfFieldsSI

LOCATE 5+x, LEN (Fieldname$ (x)) +2SI

LINE INPUT Entry$SI

IF Entry$<>"" THENSI

Entry$ (x) «LEFT$ (Entry$, Length (x)) SI

LSET Dat$(x) - Entry$(x)fl

END IFSI

NEXT xSI

GOTO Corrections2SI

SI

WriteRecord:Sl

IF Inpt=l THENSl

PUT #l,RecordNumberSl

IF DataFlag»l THEN DataFlag»0 : GOTO ReadLoopSI

RecordNumber^RecordNumber+l SI

END IFSI

IF DataFlag=l THEN DataFlag=0 : GOTO ReadLoopSI

517

Appendix C AmigaBASIC Inside and Out

NextYN:5

LOCATE 19,1 : PRINT SPACE$(60) : COLOR 3,011

LOCATE 19,1 : PRINT "Next Record (Y/N)";5

COLOR 1,0 : LINE INPUT a$5

IF UCASE$(a$)="Y" OR a$»"" THEN InputLoop5

IF UCASE$(a$)«"N" THEN CloseFile5

GOTO NextYN5

5

CloseFile:5

CLOSE 15

OPEN Nam$+".Flds" FOR OUTPUT AS 25

PRINT #2,NoOfFields5

PRINT #2,RecordLength5

PRINT #2,RecordNumber-15

FOR x«0 TO NoOfFields5

WRITE #2,Fieldname$(x)5

PRINT #2, Length (x) 5

NEXT x5

CLOSE 25

Nam$«""5

GOTO Begin5

5

ReadData:<H

CLS : LOCATE 1,1 : PRINT "Read Data"5

IF DataSearch«l THEN LOCATE 1,1 : PRINT "Search

Data"5

LOCATE 3,1 : COLOR 3,0 : PRINT "Enter filename:"5

COLOR 1,0 : LINE INPUT Nam$5

IF Nam$="«" OR Nam$»"*" THEN Nam$-Altname$5

IF Nam$«"" THEN Begin5

Altname$»Nam$5

5

GOSUB FieldFileExistYN5

IF FileExist«0 THEN5

PRINT : COLOR 3,05

PRINT "Press any key."5

COLOR 1,05

WHILE INKEY$="" : WEND5

GOTO Begin5

END IF5

GOSUB ReadFileField5

IF NoOfRecords«0 THEN5

PRINT : BEEP5

COLOR 1,05

PRINT "No records in file!"5

PRINT : COLOR 3,05

PRINT "Press any key."5

COLOR 1,05

WHILE INKEY$="" : WEND5

GOTO Begin5

END IF5

IF DataSearch«l THEN GOSUB SearchData5

OPEN "R",#l,Nam$,RecordLength 5

518

Abacus Database program

FIELD #l,Length<0) AS Dat$(O),Length(1) AS Dat$(l),

Length (2) AS Dat$(2),Length(3) AS Dat$(3),

Length(4) AS Dat$(4),Length(5) AS Dat$(5),

Length(6) AS Dat$(6),Length(7) AS Dat$(7),

Length(8) AS Dat$(8),Length(9) AS Dat$(9)!

RecordNuiriber«l!

ReadLoop:!

CLS : I/DCATE 1,1 : COLOR lf0 : PRINT "Read Data"!

LOCATE 1,25 : COLOR 3,0 : PRINT "File:11;!

COLOR 1,0 : PRINT Nam$!

COLOR 3,051

LOCATE 17,1 : PRINT "[Cursor UP] - Previous

Record"!

LOCATE 17,37 : PRINT "[Fl] - First Record"!

PRINT "[Cursor Down] » Next Record"5

LOCATE 18,37 : PRINT "[F2] - Last Record"!

PRINT "[CTRL]-[P] - Print Record"!

LOCATE 19,37 : PRINT "[HELP] - Alter Record"!

PRINT "[F10] - Main Menu";!

ReadRecord:!

COLOR 1,0!

IF RecordNuniber>NoOfRecords THEN BEEP :

RecordNuiriber=NoOfRecords!

IF RecordNuiriber<l THEN BEEP : RecordNumber-1!

LOCATE 1,50 : PRINT "Record: ";RecordNumber!

GET #l,RecordNuiriber!

IF DataSearch«l THEN LOCATE 1,1 : PRINT "Search Data"

: GOSUB ExamSearchData!

IF DataSearch=l AND Found-0 THEN!

IF RecordNumber«NoOfRecords THEN Direction=-l!

IF RecordNuitiber«NoOfRecords AND FindRecord«0 THEN!

CLS!

LOCATE 5,10 : PRINT "No record found!"!

LOCATE 7,10 : COLOR 3,0!

PRINT "Press any key."!

COLOR 1,0 : BEEP!

WHILE INKEY$-"" : WEND : CLOSE 1 : GOTO Begin!

END IF!

IF RecordNuniber»l THEN Direction«l!

RecordNumber«RecordNuinber+Direction!

GOTO ReadRecord!

END IF!

FindRecord«l!

FOR x-0 TO NoOfFields!

LOCATE 5+x,l : COLOR 2,0 : PRINT Fieldname$ (x)": "!

NEXT x : COLOR 1,0!

FOR x«0 TO NoOfFields!

LOCATE 5+x, LEN (Fieldname$ (x)) +3!

PRINT Dat$(x)!

Entry$(x)=Dat$(x)!

NEXT x!

Key$«""!

WHILE Key$="" : Key$«INKEY$: WEND!

519

Appendix C AmigaBASIC Inside and Out

IF Key$=CHR$ (28) THEN RecordNuniber-RecordNuiriber-1

Direction^-m

IF Key$=CHR$(29) THEN RecordNumber=RecordNumber+l

Directions

IF Key$=CHR$ (129) THEN RecordNuiriber-=lH

IF Key$=CHR$(130) THEN RecordNumber-NoOfRecords'lI

IF Key$=CHR$ (138) THEN EndLoadfl

IF Key$=CHR$ (16) THEN*

FOR x-0 TO NoOfFieldsfl

LPRINT Fieldname$ (x) ": "Dat$ (x) fl

NEXT xfl

LPRINTfl

END IFfl

IF Key$-CHR$(139) THEN DataFlag-1 : GOTO

EnterCorrectionfl

GOTO ReadLoopfl

EndLoad:^

CLOSE 1^1

GOTO Begins

************** Subprogram *******************fl

SearchData:^

CLS : LOCATE 1,1 : COLOR 1,0 : PRINT "Search Data"fl

LOCATE 1,25 : COLOR 3,0 : PRINT "File:";fl

COLOR 1,0 : PRINT Nam$fl

FOR x-0 TO NoOfFieldsfl

LOCATE 5+x,l : PRINT Fieldname$ (x) ":Mfl

NEXT xl

COLOR 3,0 : LOCATE 4,1 H

PRINT "Enter search string."H

COLOR 1,05

FOR x»0 TO NoOfFieldsfl

LOCATE 5+x,LEN(Fieldname$(x))+2H

LINE INPUT Entry$fl

IF Entry$<>"" THEN^l

Search$=LEFT$ (Entry$, Length (x)) 5

SearchNo«x : x=10fl

ELSEH

Search$-""^I

END IFfl

NEXT xf

Corrections3:5

GOSOB EntryOK^I

IF Corr=0 THEN EndSearch^I

IF Corr»l THEN SearchCorrfl

GOTO Corrections3^I

SearchCorr:fl

LOCATE 5+SearchNo,l : PRINT

Fieldname$(SearchNo)":"Search$fl

LOCATE 5+SearchNo,LEN(Fieldname$(SearchNo))+25

LINE INPUT Entry$fl

520

Abacus Database program

IF Entry$<>"" THEN

Search$=LEFT$ (Entry$, Length (SearchNo)) SI

GOTO Corrections3SI

SI

EndSearch: SI

IF Search$="" THEN SearchNo=0 : DataSearch=OSI

FindRecord=0SI

RETURNSI

SI

ExamSearchData: SI

x=0SI

SearchLoop:SI

x«=x+lSI

IF x>LEN(Dat$ (SearchNo))-LEN(Search$) THEN FouncNO :

RETURNSI

IF MID$ (Dat$ (SearchNo), x, LEN (Search$)) =Search$ THEN

FouncVl : RETURN $

GOTO SearchLoop 1

EntryOK:SI

LOCATE 19,1 : COLOR 3,0fl

PRINT "Entry Okay? (Y/N)";Sl

COLOR 1,0 : INPUT "",a$U

IF UCASE$(a$)»"Y" OR a$-"" THEN Corr«0 : RETURNS

IF UCASE$(a$)-"N" THEN Corr-1 : RETURN^

GOTO EntryOOT

FieldFileExistYN: SI

OPEN Nam$+".Flds" FOR APPEND AS lfl

IF LOF(1)<=0 THEN FileExist«0 ELSE FileExist«lSI

CLOSE 1SI

IF FileExist»0 THENSI

LOCATE 3,1 : PRINT SPACE$(60) : BEEPSI

LOCATE 3,1 : COLOR 1,0 : PRINT "File ";Nam$SI

PRINT "not found! "SI

KILL Nam$+".Flds"SI

Nam$-"" : COLOR 3,0SI

END IFSI

RETURNSI

SI

ReadFileField:SI

FOR x«l TO 10SI

Fieldname$(x)-"" : Length (x) =0SI

NEXT xSl

OPEN Nam$+".Flds" FOR INPUT AS 2SI

INPUT #2,NoOfFieldsSI

INPUT #2,RecordLengthSI

INPUT #2,NoOfRecordsSI

FOR x»0 TO NoOfFieldsSI

INPUT #2,Fieldname$(x)SI

INPUT #2, Length (x) SI

NEXT xSI

CLOSE 2SI

RETURNSI

521

Appendix C AmigaBASIC Inside and Out

C.6
Speech

utility

BuildScreen:5l

CL35I

PALETTE 0r .1, .1, .451

LOCATE 2,2 : PRINT "Text:"51

LINE (60,7)-(612,18),l,b5I

LOCATE 19,451

PRINT "Freq. Speed Tuning Volume"51

LINE (40,30)-(65,160),l,b5l

LINE (120,30)-(145,160),l,b5I

LINE (205,30)-(230,160),l,b5I

LINE (285,30)-(310,160),l,b5I

LOCATE 5,44 : PRINT "Male Feroale"5I

LINE (420,30)-(495,48),l,b5I

LINE (510,30)-(585,48),l,b5I

LOCATE 8,44 : PRINT "Human Comp."5I

LINE (420,57)-(495,75),l,b5I

LINE (510,57)-(585,75),l,b5l

LOCATE 11,47 : PRINT "Speak"5I

LINE (450,84)-(555,102),l,b5I

LOCATE 15,47 : PRINT "Store"5I

LINE (450,120)-(555,138),l,b5l

51

StartingValue:5I

FOR x=0 TO 851

READ Speech%(x)5l

NEXT x5I

DATA 110,0,150,0,22200,64,10,0,051

GOSUB ShoWValue5I

51

MainLoop:5I

ON MOUSE GOSUB ReadMouse5I

MOUSE ON5I

WHILE 1 : WEND5I

51

ReadMouse: 51

Test»MOUSE(0)5l

x=MOUSE(3) : y-MOUSE(4)5l

IF x>39 AND x<311 AND y>29 AND y<161 THEN51

IF x<66 THEN51

Frequency: 51

Speech% (0) - (255- (y-30) * (255/130)) +6551

Frec£telue= ((320-Speech% (0)) /255) *1305I

LINE (41,31)-(64,31+Fre3Value) ,0,bf5l

LINE (41,32+FreqValue)-(64,159) ,3,bf5l

y-MOUSE(6)5l

522

Abacus Speech utility

IF y<31 THEN y=31!

IF y>159 THEN y«159!

IF MOUSE (OX—1 THEN Frequency!

END IF!

IF x>119 AND x<146 THEN!

Speed: !

Speech%(2)-(360-(y-30)*(360/130))+40!

SpeedValue-((400-Speech%(2))/360)*130!

LINE (121,31)-(144,31+SpeedValue),0,bf!

LINE (121,32+SpeedValue)-(144,159),3,bf!

y-MOUSE(6)!

IF y<31 THEN y«31!

IF y>159 THEN y«159!

IF MOUSE(0)<—1 THEN Speed!

END IF!

IF x>204 AND x<231 THEN!

Tuning:!

Speech%(4)-(23000-(y-30)*(23000/130))+5000!

TuningValue=((28000-Speech%(4))/23000)*130!

LINE (206,31)-(229,31+TuningValue),O,bf!

LINE (206, 32+TuningValue)-(229,159), 3,bf!

y«MOUSE(6)!

IF y<31 THEN y=31!

IF y>159 THEN y=159!

IF MOUSE(0)<«-l THEN Tuning!

END IF!

IF x>284 AND x<311 THEN!

Volume:!

Speech%(5)-(64-(y-30)*(64/130))!

VolumeValue=((64-Speech%(5))/64)*130!

LINE (286,31)-(309,31+VolumeValue),O,bf!

LINE (286,32+VolumeValue)-(309,159), 3,bf!

y»MOUSE(6)!

IF y<31 THEN y=31!

IF y>159 THEN y»159!

IF MOUSE (0)<=-l THEN Volume!

END IF!

END IF!

IF x>419 AND x<496 AND y>29 AND y<49 THEN!

Speech%(3)»0!

PAINT (422,32),3,1 : PAINT (512,32),0,1!

END IF!

IF x>509 AND x<586 AND y>29 AND y<49 THEN!

Speech%(3)=l!

PAINT (422,32),0,1 : PAINT (512,32),3,1!

END IF!

IF x>419 AND x<496 AND y>56 AND y<76 THEN!

Speech%(l)»0!

PAINT (422,59),3,1 : PAINT (512,59),0,1!

END IF!

IF x>509 AND x<586 AND y>56 AND y<76 THEN!

Speech%(l)=l!

PAINT (422,59),0,1 : PAINT (512,59),3,1!

END IF!

523

Appendix C AmigaBASIC Inside and Out

IF x>59 AND x<613 AND y>6 AND y<19 THENH

LOCATE 2,8 : PRINT SPACE$ (54)11

LOCATE 2,8 : LINE INPUT Text$H

END IFH

IF x>449 AND x<556 AND y>83 AND y<103 THENH

PAINT (452, 85), 3,111

SAY TRANSLATE$ (Text$),Speech%H

PAINT (452, 85), 0,111

END IFH

IF x>449 AND x<556 AND y>119 AND y<139 THENH

PAINT (452,121),3,111

LOCATE 2,8 : PRINT SPACE$ (54)11

LOCATE 2,8 : COLOR 0,3 : PRINT "Filename:M;fl

COLOR 1,0 : LINE INPUT Nam$H

IF Nam$<>"" THENU
IF Nam$«"«" OR Nam$="*" AND Altname$OtMt THEN

Nam$=Altname$H

OPEN Nam$ FOR OUTPUT AS 111

PRINT #1, "REM DATAs made with AmigaBASIC-

Talker"H

PRINT #1, "DATA ";1I

FOR x=0 TO 711

PRINT #l,Speech%(x)",";1l

NEXT x1l

PRINT #l,Speech%(8)H

CLOSE 111

Altname$=Nam$1l

END IFH

LOCATE 2,8 : PRINT SPACE$(54)1I

LOCATE 2,8 : COLOR 1,0 : PRINT Text$H

PAINT (452,121),0,111

END IFH

H

RETURNH

11

ShowValueiH

LOCATE 2,8 : PRINT SPACE$(54)H

LOCATE 2,8 : PRINT Text$11

IF Speech%(3)«0 THENU

PAINT (422,32),3,1 : PAINT (512,32),0,1H

ELSEH

PAINT (422,32),0,1 : PAINT (512,32),3,1H

END IFH

IF Speech%(l)*0 THENU

PAINT (422,59), 3,1 : PAINT (512,59) ,0,111

ELSEH

PAINT (422,59),0,1 : PAINT (512,59) ,3,111

END IFU

U

524

Abacus Speech utility

FreqValue=((320-Speech%(0))/255>

LINE (35,31+FreqValue)-(70f 31+FreqValue)fl

LINE (41f31)-(64,31+FreqValue),0,bffl

LINE (41,32+FreqValue)-(64,159),3,bffl

11

SpeedValue=((400-Speech%(2))/360)*130fl

LINE (115,31+SpeedValue)-(150,31+SpeedValue)fl

LINE (121,31)-(144,31+SpeedValue),0,bf5

LINE (121,32+SpeedValue)-(144,159),3,bffl

TuningValue=((28000-Speech%(4))/23000)*130fl

LINE (200,31+TuningValue)-(235,31+TuningValue)fl

LINE (206,31)-(229,31+TuningValue),0,bff

LINE (206,32+TuningValue)-(229,159),3,bffl

VolumeValue= ((64-Speech%(5))/64)

LINE (280,31+VolumeValue)-(315,31+VolumeValue)fl

LINE (286,31)- (309,31+VolumeValue),0,bfI

LINE (286,32+VolumeValue)-(309,159),3,bff

1

RETURNS

525

Appendix C AmigaBASIC Inside and Out

C.7
Synthesizer

utility

Setup: 51

DIM Waveform% (256) 51

DEF FNYWaveform (a) =»ABS (Waveform% (a) -128) 51

51

SCREEN 1,320,200,2,151

WINDOW 2, "Waveform", (0,0) - (256, 63) ,22,151

51

FOR x=0 TO 25651

Waveform% (x) =127*SIN (x/20) 51

NEXT x5I

51

51
WINDOW 3, "Function", (195, 80)-(310,175) ,22,151

WINDOW OUTPUT 351

LINE (5,5)-(55,30),l,b5I

PSET (5,17)51

FOR x=0 TO 4851

LINE -((x+5),17-10*SIN(x/3.8))5I

NEXT x5I

LINE (59,5)-(110,30),l,b5I

LINE (59,18)-(67,7) : LINE -(83,27)51

LINE -(99,7) : LINE -(107,18)51

LINE (5,35)-(55,60),l,b5l

LINE (7,47)-(7,37)5l

LINE -(18,37)

LINE -(30,57)

LINE -(41,37)

LINE -(53,57)

LINE -(18,57)51

LINE -(30,37)51

LINE -(41,57)51

LINE -(53,47)51

LINE (59,35)-(110,60),l,b5I

LOCATE 6,7 : PRINT "Clear"51

LINE (5,65)-(55,90),l,b5l

LOCATE 9,2 : PRINT "Save"5l

LINE (59,65)-(110,90),l,b5l

LOCATE 9,7 : PRINT "Load"5l

51

WINDOW OUTPUT 251

GOSUB ShowWave5l

51

51
ON MOUSE GOSUB MouseControl5l

MOUSE ON51

51

WINDOW 351

51

526

Abacus Synthesizer utility

KeyInput:5I

a$«INKEY$5I

F-05I

IF a$="" THEN F=0 : GOTO KeyInputs

IF a$=CHR$(9) THEN F»261.63fl

IF a$="l" THEN F«277.18fl

IF a$«"q" THEN F-293.665

IF a$=ff2" THEN F-311.135

IF a$«"w" THEN F-329.635I

IF a$="e" THEN F-349.235I

IF a$="4" THEN F«369.99fl

IF a$«"r" THEN F-392I5I

IF a$="5" THEN F«415.3^

IF a$»"t" THEN F-440!^

IF a$=ft6" THEN F=466.16fl

IF a$«"y" THEN F-493.88H

IF a$-"u" THEN F-523.25H

IF a$~"8" THEN F«554.375

IF a$="i" THEN F-587.585

IF a$»"9" THEN F=622.25fl

IF a$»"o" THEN F«659.28fl

IF a$="p" THEN F«698.485

IF a$-"-" THEN F-739.99^

IF a$-"[" THEN F«784!^I

IF a$«="='" THEN F»830.61fl

IF a$="]" THEN F-88011

IF a$=CHR$(93) THEN F-932.335

IF a$=CHR$(13) THEN F-987.765

IF a$«CHR$(139) THEN F-1046.525

IF F»0 THEN Keylnputfl

Play:^

Vol=127 : IF F-0 THEN 1-05

SOUND WAITfl

SOUND Ff3fVolf0^I

SOUND F,3,Vol,lfl

SOUND RESUMED

GOTO KeyInput5

51

MouseControl:f

IF WINDOW (0)-2 THEN AlterWavefontfl

IF WINDOW (0) =3 THEN AlterFunctionfl

RETURNS

AlterWaveform: 51

WINDOW 251

WHILE MOUSE (0)<05I

x=MOUSE(5)5I

IF x>256 THEN GOSUB ShowWave : RETURNS

IF x<l THEN x=15I

527

Appendix C AmigaBASIC Inside and Out

IF y> 63 THEN GOSUB ShowWave :RETURNSI

LINE (x-l,FNYWaveform(x-l)/4) - (x,FNYWaveform(x) /4), OSI

LINE (x-1,FNYWaveform(x-l) /4) - (x,y), 1SI

Waveform% (x) =127- (y*4) SI

WENDSI

GOSUB ShowWaveSI

RETURNS!

SI

AlterFunction;SI

Test=MOUSE(0)SI

x=MOUSE (3) SI

y=MOUSE(4)Sl

IF x>4 AND x<56 AND y>4 AND y<31 THENSI

WINDOW 3 : PAINT (7,6),3,1SI

FOR x-0 TO 256SI

Waveform% (x) »127*SIN (x/20) SI

NEXT xSl

GOSUB ShowWaveSI

WINDOW 3 : PAINT (6,6),0,11

END IFSI

IF x>58 AND x<lll AND y>4 AND y<31 THENSl

WINDOW 3 : PAINT <6O,6),3,1SI

FOR x=»0 TO 256SI

IF x<41 THEN Waveform%(x)=«x*3 : a=»x*3H

IF (x>=41 AND x<126) OR (x>=210) THEN a=a-2.57 :

Waveform% (x) =aSI

IF x>=126 AND x<210 THEN a»a+2.57 : Waveform% (x) =aSl

NEXT xH

GOSUB ShowWaveSI

WINDOW 3 : PAINT (60f6),0flSl

END IFfl

IF x>4 AND x<61 AND y>34 AND y<61 THEM

WINDOW 3 : PAINT (6,36)r3,lSl

FOR x=0 TO 256SI

IF x<64 OR (x>«128 AND x<191) THEN

Waveform%(x)=127SI

IF (x>=64 AND x<128) OR x>192 THEN Waveform% (x) =-

128SI

NEXT xSI

GOSUB ShowWaveSI

WINDOW 3 : PAINT (6,36),0,1 SI

END IFSI

IF x>58 AND x<lll AND y>34 AND y<61 THENSI

WINDOW 3SI

PAINT (60f36),3,lSl

FOR x=0 TO 256SI

Waveform% (x) =OSt

NEXT xSl

GOSUB ShowWaveSl

WINDOW 3 : PAINT (60, 36) ,0,1SI

END IFSI

IF x>4 AND x<61 AND y>64 AND y<91 THENSI

WINDOW 3SI

PAINT (6,66),3,11

GOSUB EnterNameSl

IF Nam$=lfM THEN PAINT (6,66), 0,1 : RETURNS!

528

Abacus Synthesizer utility

OPEN Nam$ FOR OUTPUT AS 15

FOR x«0 TO 2565

PRINT #1, CHR$ (127-Waveform% (x)); 5

NEXT x5

CLOSE 15

WINDOW 3 : PAINT (6, 66),0,15

END IF5

IF x>58 AND x<lll AND y>64 AND y<91 THEN5

WINDOW 35

PAINT (62,66),3,15

GOSUB EnterName5

IF Nam$="" THEN PAINT (62,66),0,1 : RETURN5

OPEN Nam$ FOR INPUT AS 15

FOR x=0 TO 2565

Waveform% (x)»127-ASC(INPUT$(1,1))5

NEXT x5

CLOSE 15

WINDOW 3 : PAINT (62,66),0,15

GOSUB ShowWave5

END IF5

RETURN5

5

ShowWave:5

WINDOW 2 : CLS5

FOR x«=l TO 2565

LINE (x-1,FNYWaveform (x-1) /4) -

(x, FNYWaveform (x) /4), 15

NEXT x5

WINDOW 35

WAVE 0,Waveform%5

WAVE l,Waveform%5

RETURN5

5

EnterName:5

WINDOW 4,"Enter Filename:",(5,100)-(300,110),0,15

CLS : LINE INPUT Nam$ 5

IF Nam$-"=" OR Nam$»"*" THEN Nam$=Altname$5

IF Nam$O"" THEN Altname$=Nam$5

WINDOW CLOSE 4 : WINDOW 35

RETURN5

529

Appendix D AmigaBASIC Inside and Out

D

LIST-ME

Music

Appendix D: Programs from the

BASICDemos drawer

Commodore includes several demonstration programs along with

AmigaBASIC on the Extras diskette. You'll find these programs in the

BASICDemos drawer of the Extras diskette.

LIST-ME tells you what the programs do and how they work. However,

this information is incomplete, and you don't want to have to load this

program every time you want to learn how to use another program. To

make things more convenient, this Appendix briefly describes the

programs.

As mentioned above, this is an introduction to the other programs. Just

take a hint from its name and list it. The program is made up of REM

lines (all of the lines begin with an apostrophe (')). You can read the

text in the LIST window. The program is set up for 80 characters per

line, so you can read the complete text in the LIST window. If you

want, you can print this program on a printer, so that you'll have it

available in hardcopy. We think that this Appendix should be enough

information, though.

AmigaBASIC makes music in this program. It's not bad. The people

who wrote the program put a lot of effort into it. They converted a
three-voice composition into DATA statements, and included line

graphics to represent the whole thing.

The program section PlaySong: reads the DATA values and calculates

frequencies. The DATA statements contain the notes written as letters (c,

d, e, f, g, etc.) as well as information about the note lengths, octave

changes, and rests.

They used a trick for computing the waveform. Instead of calculating

the values of the desired sine wave directly, they put the calculated
values in DATA statements, since reading is faster than calculating. A

poor math student and AmigaBASIC have a lot in common. The

formula for the values is in front of the DATA lines in the listing.

Event trapping is used to draw the graphics. Every two seconds ON
TIMER calls the TimeSlice: subroutine. The graphic's size is

automatically adjusted to the current window size.

530

Abacus Programs from the BASICDemos drawer

Library

Here you can find out how to use LIBRARY functions to produce

different type styles, for instance. The libraries graphics .map and

dos. map are used for this. To find out the exact procedures, read about

the functions DECLARE FUNCTIONALIBRARY and LIBRARY in

Appendix B.

The subprogram DosLibDemo shows how to call AmigaDOS

functions from AmigaBASIC. To use this section, you need to start

AmigaBASIC from CLI, and not from the Workbench.

BitPlanes

ScreenPrint

Screen

Demo

There is a great deal possible in library programming that is normally

impossible in AmigaBASIC. Both these programs are good examples

of this. The Bitplanes listing should look familiar to you from

reading Section 4.3. It is possible to read the starting addresses of

screens and windows, or the current color layout.

ScreenPrint is a hardcopy routine that was extremely difficult to

realize under AmigaBASIC library control. This program is designed

specifically for whoever intends to do any intensive study into library

programming. The BitPlanes program can be ended by a mouseclick;

ScreenPrint stops as soon as you press the <Q> key.

Color rectangles are drawn with AREA on a 320*200 point screen using

32 colors (5 bitplanes). The program uses SIN and COS formulas to

calculate the positions of the corners. The PATTERN command is used

to include some simple fill patterns. If you enlarge or reduce the

window size, the rectangle's size will change. Colors are chosen at

random.

This program uses four windows and shows a little bit of multitasking

in BASIC. The first window has two balls jumping around. The second

window has lines that move around, similar to those that appear in the

Music program. The third window contains the rectangles that were in

Screen. The fourth window contains some brightly colored circles.

You can enlarge the first window. As soon as the balls notice that the

window is bigger, they use the new space. You can close the other three

windows by clicking their close gadgets; the other programs will

move quite a bit faster then. The window with the balls (the

Animation window) turns out to be a reduced BASIC window. The

531

Appendix D AmigaBASIC Inside and Out

subprograms NextLine, NextPoly, and NextCircle are called right

after each other in a WHILE...WEND loop. They take care of the action in

windows 2 to 4, while the object animation in window 1 is controlled

by event trapping. The collision of balls with each other or the border

is taken care of here. The Demo program reads how the balls should

look from the file called ball.

Picture

Picture2

ObjEdit

These are two copies of the same program. The AmigaBASIC manual

from Commodore uses this program to help you get to know how

AmigaBASIC works. Commodore uses mouse control and the screen

GET and screen PUT commands. You can use the mouse to put a

CIRCLE graphic on the screen. Since a chapter in the manual says to

modify the program, there are two versions on the diskette.

You know this one already—it's the object editor that you use to make

graphic objects for animation. Section 1.11 describes how to use the

program.

One piece of advice: if you've got 512K RAM and it doesn't bother you

to have objects flicker, you can change the number of allowed colors in

the listing of the object editor. At the beginning, the construction of an

object file can be found after apostrophes. Then there's a DEF FN and a

DIM command. In the following program section, you'll find commands

at the end of lines that won't be executed because they are preceded by

apostrophes ('). If you remove the apostrophes, you can assign the

number of bitplanes to the variable Depth. You can choose 3 or 4

since the program only works on a 640*200-pixel screen. However, 16

colors is quite a bit Remember that object files don't save colors. You

need to have the program that reads them in set the colors.

Remember that each bitplane added increases the amount of flickering

that shows up in bob animation in the current version of

AmigaBASIC. To understand the ObjEdit program well, you need

some experience with AmigaBASIC. If you have the time and the

desire, you ought to examine the way the object editor is put together.

The program uses event trapping just like our paint program.

Terminal

This program shows how to use a serial interface. If you're connected to

something with a 9600 baud transfer rate, you can send and receive

characters. For more information on OPENing a serial channel, see

OPEN "C0M1:" in Appendix B.

532

Abacus Programs from the BASICDemos drawer

ConvertFd

Speech

This is a utility program for people who work a lot with LIBRARY

routines. LIBRARY files must be stored in a special format on diskette

(.BMAP format) if AmigaBASIC is to use them. The BASICDemos

drawer contains four libraries of this sort—exec.map, diskfontjnap,

dos .map and graphics .map; these programs are used by the

Library program, Iib2, and others. If you have other libraries that

end with . FD, you can use ConvertFd to produce a . BMAP file. You'll

find . FD files in the FD1.2 drawer of the Extras diskette. You should

not use this program until you have some experience with libraries.

This program works a lot like our speech utility. First AmigaBASIC

requests the Workbench. If you only have one disk drive, put the

Workbench diskette in it. Then you can enter a line of text. It will be

spoken after you hit the <RETURN> key.

There are six parameters that affect the voice. Pitch is the deepness of

the voice, the frequency. Inflection has two settings and is in charge

of inflection (the speech can have human inflection, or be in

monotone). Rate affects the speed and Voice provides the gender of

the voice (male or female). Tune regulates the sampling frequency

which affects the voice pitch. Volume affects how loud the speech will

be. The program is only intended for testing; it does not allow you to

store values.

LoadACBM

LoadlLBM-SaveACBM

SavelLBM

Commodore put these utilities into the Extras 1.2 diskette to

compensate for the lack of IFF load and save commands in

AmigaBASIC. These three programs mainly play the roles of libraries;

they are unable to function on their own. First, let's discuss the

meaning ofACBM. We have already discussed the ILBM, or interleaved

bitmap, in Section 4.2 (Interchange File Format). This is the way that

IFF pictures are saved—the graphic is saved line by line, with all the

bitplanes of the first line saved, then the second line's bitplanes, and so

on. This system has two advantages: First, You'll see the correct colors

from the moment the picture is being loaded; second, the memory form

is easily handled when switching different degrees of resolution. For

this reason, all the IFF compatible programs known to us save in

ILBM form.

There is a disadvantage to ILBM, however: Some computations must

occur during loading which slow down the entire procedure, particularly

in BASIC. You'll remember how slow our own IFF routines were.

533

Appendix D AmigaBASIC Inside and Out

With that, Commodore invented a new chunk type for its utilities

which handle bitmap information: The ACBMs, or Amiga Contiguous

BitMaps. This format saves individual bitplanes one after the other, and

loads them into Amiga memory in the same way. The files are read

very quickly, and no calculation time is involved. The speed factor is

not without a price: ACBMs can only be saved from or loaded into

memory in the degree of resolution in which they were created

originally. See for yourself whether the advantages over ILBM

outweigh the disadvantages of ACBM format.

There is yet another problem: What helps the speed factor when you

don't want to read a "normal" IFF graphic? GraphiCraft and DPaint

only save ILBMs. On to the three Commodore-generated programs:

LoadlLBM-SaveACBM reads normal ILBMs, computes parameters, and

saves the files as ACBMs. These ACBMs can then be read with the

program LoadACBM. SavelLBM completes the trio; this program

creates a movable line graphic, and saves it as an ILBM. An important

advantage to these three routines: They are capable of handling color

palette animation. The necessary data are found in a chunk within the

IFF file in a section called CCRT.

NOTE: If you want to merge these three routines in your own BASIC

programs, you should be sure that an ILBM file comes at the end of the

string. We want this to be compatible in the end.

534

Abacus A SHORT TECHNICAL DICTIONARY

E
A short

technical dictionary

The words printed in italics were used in the book without explaining

them in great detail. You can find what they mean in this Appendix.

AmigaDOS

DOS is the abbreviation for Disk Operating System. This is the

program that takes care of data transfer between the Amiga and its disk

drives. It is also responsible for the organization of the data on the

diskette. You can give AmigaDOS commands directly through CLI, the

Command Line Interpreter contained in the Workbench.

ASCII

This is the abbreviation for American Standard Code for Information

Interchange. This is a standard code which assigns a particular byte

value to each character. You can find an ASCII table in Appendix B.5

(Calculations and BASIC functions) under the description of the CHR$

command.

BASIC

This is the abbreviation for Beginners All-purpose Symbolic

Instruction Code. This is not a completely accurate description of

BASIC; BASIC is neither a pure beginner language nor a particular^

powerful symbol manipulator. However, BASIC was developed when

most people were using complicated languages like assembly language,

COBOL, and FORTRAN, which explains how it got this name.

Binary system

This is the number system also known as base two. Numbers have

another digit for each power of two. 0 and 1 are used as the digits. The

decimal numbers 1 to 11 look like this in binary:

decimal

0

1

2

3

4

5

binary

0000

0001

0010

0011

0100

0101

decimal

6

7

8

9

10

11

binary

0110

0111

1000

1001

1010

1011

535

Appendix E AmigaBASIC Inside and Out

Bit

This is an abbreviation for binary digit. A bit is the smallest unit of

information. It can be either "on" or "off, "set" or "cleared", "true" or

"false", 0 or 1. Eight bits taken together form one byte.

Bitplane

Each point on the screen corresponds to one bit when graphics are

stored. To make it possible to use several colors, there are several more

bits per screen point (pixel). Graphics are made up of several of these

bitplanes. The bits which lie under each other determine the color of a

screen point. See Figure 5 in Section 2.2 (Resolution) for an

illustration of bitplanes.

Byte

Every memory location in the Amiga stores exactly one byte. A byte is

8 bits. This division comes from the time of 8-bit microprocessors. A

byte can store a value between 0 (binary 00000000) and 255 (binary

11111111). Usually a byte is used to store a character or a letter.

Since each kilobyte (K) contains 2*0 bytes, IK contains not 1000 but
1024 bytes. 256K contains 262144 bytes; 512K contains 524288

bytes. You get a few more bytes than you thought

Compatibility

If two devices are software compatible, they can use the same software.

The Amiga 1000 can be made partially IBM-PC compatible through

software or hardware (Sidecar™); the Amiga 2000 has ports into which

an IBM-PC emulator can be connected. If two programs are data

compatible, they can use the same data. This is frequently the case on

the Amiga because of IFF.

Cursor

This is the marker that shows you where on the screen you are writing

or working. There are several sorts of cursors on the Amiga. There is

the pointer, the small arrow that moves when you move the mouse.

There is the BASIC cursor that you see in the LIST and BASIC

windows. Keyboard input is written at the cursor location. Other

programs use other sorts of cursors.

DIA converter

This stands for Digital/Analog converter. It converts a digital signal (a

list of numeric values) into an analog electrical current The bigger the

number, the stronger the voltage. This is used, for instance, to produce

music on the Amiga. The chip that makes music, called Paula, has a
built-in D/A converter.

536

Abacus A SHORT TECHNICAL DICTIONARY

To digitize music (convert it into numerical values), you need a

program that does the reverse—an A/D converter.

Decimal numbers

These are the normal base 10 numbers. They contain the digits 0,1,2,

3,4, 5, 6, 7, 8, and 9. This is sort of a number that humans find most
natural; however, computers don't like them as much as humans do.

See Intermission 3 for more information.

Directory

This refers to the directory of a diskette. It tells what files are available

on that particular diskette.

Editor

An editor is a part of a program or operating system that is in charge of
cursor control. It takes care of input, insertion, deletion, and correction
of text on the screen. Look at the descriptions of Screen editor and Line

editor as well. Simply stated, it allows you to make changes, whether it

is a text editor, icon editor or object editor.

Hardcopy

The screen's contents are printed onto a sheet of paper. AmigaBASIC
has difficulty making hardcopies; you need a utility program.

Hardware

Hardware consists of the devices and components of a computer (i.e.,
monitor, printer, keyboard). Hardware is the stuff you can touch (see

Software).

Hexadecimal system

This is a very popular number system for computers. The hexadecimal
system is also called base 16. It has the digits 0, 1, 2,..., 8, 9, A, B,
C, D, E, and F. To identify such numbers, we put a $ character to the
left of the number. The first 36 hexadecimal numbers look like this:

Dec

0

1

2

3

4

5

6

7

8

Hex

$0

$1
$2

$3

$4

$5

$6

$7

$8

Dec

9

10

11

12

13

14

15

16

17

Hex

$9

$A

$B

$C

$D

$E

$F

$10

$11

Dec

18

19

20

21

22

23

24

25

26

Hex

$12

$13

$14

$15

$16

$17

$18

$19

$1A

Dec

27

28

29

30

31

32

33

34

35

Hex

$1B

$1C

$1D

$1E

$1F

$20

$21

$22

$23

537

Appendix E AmigaBASIC Inside and Out

IFF

This stands for Interchange File Format. This is a file format for Amiga

data developed by Electronic Arts. Read Section 4.2 (Interchange File
Format) for more information.

Interface

This is a connection that you can use to connect the Amiga to

peripheral devices or data transfer connections. The Amiga has several

interfaces; a parallel interface, a serial interface, an interface for extra

disk drives, and various interfaces for video screens.

Interlace mode

This is in-between-line mode. By doubling the lines represented on the

monitor, we can get a higher resolution. Read Section 2.2 (Resolution)

for more information.

Interpreter

This is what AmigaBASIC is: The Amiga doesn't directly understand

BASIC. That is expected, since the computer only thinks in terms of

"current on, current off. The BASIC interpreter translates the BASIC

commands into machine language commands the Amiga and its

microprocessor can understand.

Intuition

This is a part of the Amiga operating system. Intuition is

responsible for working with windows and taking care of similar tasks.

Many Intuition routines can be used as subroutines in other

programs.

Joystick

It is a device that registers direction (mostly used in games). You can

hook two of these input devices to your Amiga.

Kernel

The kernel is part of the operating system on which all the other parts

are based. It takes care of input, output and similar tasks. It is loaded

from the Kickstart diskette (Amiga 1060) or the Kickstart ROM
(Amiga 500 and Amiga 2000) and cannot be modified when it is in
memory.

538

Abacus A short technical dictionary

Line editor

This is an editor that only allows you to work on a single line at a

time. You can't work on the whole screen like you can with a screen

editor. The cursor can be moved left and right but not up and down.

AmigaBASIC only has a line editor in the BASIC window.

Machine language

This is the language that the 68000 processor of the Amiga understands

directly. It consists ofjust zeros and ones, but it can be made somewhat

more understandable for people. Those who program in machine

language use mnemonics like MOVEA, MOVEC, CMP I, and SBCD. Now

you can see why machine language programmers think BASIC

commands are so much easier.

Microprocessor

This is the brain of the computer; a chip that controls the most

important functions of computing. A microprocessor can execute

machine language commands very quickly. The Amiga has a 68000

microprocessor, which can execute almost 8 million of these commands

per second. So that it can concentrate on the really important things,

many routine tasks such as data exchange, putting things on the screen,

and the like are handled by its co-processors Agnus, Denise, and Paula.

Multitasking

Multitasking means running several programs at the same time in a

way that keeps each one independent from all the rest. While the user

works with one program, others continue executing in the background.

In this way, you can save time and output data from several sources at

one time. Since the processor must divide its time amoung several

tasks, each program will run slower than it would otherwise.

Near letter quality

Dot-matrix printers often produce output that is hard to read and looks

bad. By using some tricks, they can be made to produce text that looks
about as good as text printed on a typewriter or a daisywheel printer.

Operating system

The operating system is the program that always runs in the computer.

It handles basic functions like keyboard input, screen displays, working
with the interfaces, and doing other tasks. The Amiga operating system

has several parts. Take a look at the descriptions of In tuition,

Kernel, andAmigaDOS.

539

Appendix £ AmigaBASIC Inside and Out

Peripheral devices

These are devices that can be hooked up to the Amiga. Examples are

printers, plotters, second disk drives, hard drives, graphic tables,

scanners, joysticks, etc. All peripherals are considered hardware.

Pixel

A pixel (picture element) is a single screen point. In the Amiga,

bitplanes are used to represent a pixel with one to five bits in memory.

A computer picture is built up using pixels. The more pixels that are

used on the screen, the better die resolution will be, and hence the more

realistic the picture. Colors are also very important here. You can find

more information in Section 2.2 (Resolution).

Printer

A printer is a peripheral device used for printing data, text, and graphics

on paper. You can use several types of printers with the Amiga; you set

up the relationship between the two in the Preferences program on

die Workbench diskette. Most printers are connected to the Amiga's

parallel interface, but some use the serial interface (see Section 3.5 for

more information). There are several kinds of printers: Dot-matrix (the

most common); ink jet (the quietest); laser (the best and most

expensive); and daisywheel (the nicest print next to laser printing)

printers. The difference is the principle used to put characters on the

paper. Daisywheel printers can't print graphics, since they are designed

like typewriters. In near letter quality (NLQ) mode, dot-matrix printers

can produce output that looks almost as good as daisywheel output

RAM

This is an abbreviation for Random Access Memory. You can write

values to this sort of memory and then read the values back later. The

only problem is that its contents are erased when you turn off the

computer. You need to save data that is stored in RAM on a diskette or

hard disk.

ROM

This stands for Read Only Memory. In contrast to RAM, ROM isn't

erased when the computer is turned off. You can't write your own data

to ROM, and it's hard to get rid of what is there. This characteristic

makes it good for the operatng system and similar things. The Amiga

500 and Amiga 2000 have most of the contents of the Extras diskette

stored in ROM.

There is very little true ROM in the Amiga 1000. The ROMs only

contain the loader program for the Kickstart diskette and the "hand

holding disk" icons. The RAM section where the operating system is

put can be locked up electronically so that it acts almost like ROM.

However, it is still erased when the computer is turned off.

540

Abacus A short technical dictionary

Screen

The picture that appears on the monitor is called the screen. You can

find more on this in Section 2.3 (Screens).

Screen Editor or Full Screen Editor

An editor is responsible for controlling the cursor. A screen editor lets

you move the cursor any place on the screen to input or correct things.

The AmigaBASIC LIST window has a screen editor. This sort of

editor is much more useful than a line editor.

Scrolling

Scrolling means that data disappears out one boundary of the screen so

that you can see data that was previously hidden. In this way, you can

see sections of the total picture on the screen. Think of an old biblical

scroll—as you roll up the top, you unroll the bottom to read more of

the scroll.

Software

This is the program and data in a computer's memory. You can't touch

it, although you can touch the diskette it is written on. Hardware can

only be used correctly when you have the right software.

Token

A token is a one-byte code for a BASIC command. AmigaBASIC uses

tokens to save room on the diskette when programs are saved to

diskette. Instead of storing the PRINT statement as the characters P, R,

I, N and T, the token 172 is stored. When the program is read back in,

AmigaBASIC replaces the token 172 with the PRINT statement

Utility

This is a program that helps you perform a certain task. You can call

any program that is useful a utility. This book contains a lot of useful

programs, therefore, it contains a lot of utilities.

541

Index

68000 nucroproct

A/D converter

ABS

absolute value

Agnus chip

AmigaDOS

Amplitude

Analog music

sssor 170,

83,

58,

375,

Analog RGB monitor

AND 172, 396,

Appending programs

Arcs

AREA

Area fill patterns

AREAFILL

Arrays

ASC

ASCII

ASCII format

ASCII table

ATN

Back gadget

Background color

Backups

122,

122,

43, 216,

260,

68, 113,307,360,

28,

Bar graph/pie chart program 124,

Base frequency

BASIC screen

BASIC window

107, 135, 176, 1

351,

513

511

447

447

263

196

472

375

74

447

113

116

417

177

417

378

447

535

391

449

447

100

78

20

217

310

355

22

31-32, 64, 95, 99

194, 203, 296, 310

379,

BasicDemos drawer 20, 49, 52,

Baudrate

BEEP

Binary system

Bitplanes 97,

Bits

Blitterchip

36, 326, 367, 379,

68, 169, 301,

106, 127, 165,169,

310,

68, 95, 195, 302,

58,

347,

443

194

467

403

535

264

536

536

120

Blitter object blocks (bobs) 53, 54, 58

BODY

Branch

265, 272, 310

36

BREAK OFF

BREAK ON

BREAK STOP

Buffer

Bytes 68,95,

CALL

Carriage return

CDBL

CHAIN

Chaining programs

Changing directories

CHDIR 202, 205, 285,

CHR$ 68, 113,

Chunk

CINT 83,

CIRCLE

CLEAR

Clipboard device

CLNG

CLOSE 211,

Close gadget

CLS 27, 109,

COLLISION

COLLISION OFF

COLLISION ON

COLLISION STOP

COLOR

Color control

COM1

Combined waveforms

COMMON

Compact disk player

Computer animation

CONT

Control characters

Convert to integer (CVI)

Copper chip

Copy

Copying drawers

Copying programs

COS

Crash

211,

170,

288,

346,

135,

260,

116,

397,

240,

219,

78,

425,

239,

195,

394,

113,

425

439

425

318

510

425

230

448

426

114

205

394-395

260,

448,

261,

398,

310,

258,

325,

74, 79,

395,

110,

247,

398,

392,

68,

199,

385,

461

448

264

451

417

427

40

448

461

28

403

410

410

410

410

403

161

409

386

428

377

53

428

224

260

58

41

200

198

450

36

543

CSNG

CSRLIN

Cursor control

Cut

CVD

CVI

CVL

CVS

D/A converter

DATA

Database program

DATE$

Decimal numbers

Decimal numbers

DEF FN

DEFDBL

DEFINT

DEFLNG

DEFSNG

DEFSTR

DELETE

Deleting files (KILL)

40, 61,

384,

Digital/Analog converter

Directory

Decimal system

DECLARE FUNCTION...

Defining an array

Defining patterns

Definition

DeluxePaint

DeluxeVideo

Denise video chip

DIM 43,66,

Dimensioning arrays

DIP switches

Direct mode

Directory

Disk commands

Disk gauge

Drawers

Drive designation

Editor

Ellipses

ELSE

END

END IF

END SUB

EOF 213,

EQV

309,

287,

262,

187,

350,

82,

395,

216,

40,

260,

269,

397,

296,

398,

207,

461,

448

404

536

396

450

450

450

450

536

428

321

404

300

537

429

429

429

429

429

429

430

337

536

511

169

LIBRARY428

350,

21

394,

320,

399,

31

,49,

116,

62,

395,

431,

396,

350

182

104

263

263

58

430

43

239

,68

203

203

198

204

206

537

117

434

431

434

445

462

173

ERASE 55, 136, 309,

ERL

ERR

ERROR

Error messages 25, 36, 60,

Error requester

Event trapping

Exclusive OR

EXIT SUB

EXP

Extras diskette 20

FD1.2

FIELD

File format

FILES 61,

FIX

Floating-point numbers

Floppy disk

Flying balls program

FOR 368,395,

Foreground color

Form

Format error

Formatting diskettes

FOR...NEXT 43,79,

139, 289, 309, 326,

FRE(x)

Frequency

Front gadget

Full Screen Editor

Function keys

Gadgets 194,

GET (Random file GET)

GET

GOSUB 79,398,

GOTO 37,79,

Graphic commands

Graphicraft

Guru meditation

Hard disk

Hardware

Help messages

Hertz

HEX$

Hexadecimal system

Highlighting

379,

391,

105,

309,

,40,

317,

203,

213,

122

378,

241,

355,

256,

400,

400,

169

431,

431,

431,

398,

,112,

136,

173,

394,

194,

474

440

440

432

391

29

356

258

432

451

393

20,49

394,

395,

300,

27

240,

462

392

463

452

451

463

,29

467

78

264-265

195-197

, 130

395,

26,

322,

359,

395,

433,

433,

107,

134,

236,

367,

195

138

432

433

367

100

515

385

362

463

418

443

434

417

263

36

463

537

391

473

452

, 171,537

40

544

IconEd program 204

IF 394

IF/END IF 394

IFF 263-309,538

IF...THEN 36, 62, 79, 139, 159, 434

IF...THEN...ELSE 63, 434

IF...THEN...ELSE/END IF 392

IMP 174,452

Info files 203,237,464

Initializing 197

Ink jet printer 514

INKEY$ 62, 63, 223, 404

INPUT 35, 211, 223, 404-464

INPUT$ 187, 261, 464

Input/output commands 462

INSTR 452

INT 82,453

Integer array 472

Integers 300, 303, 472

Interface 246,538

Interlace mode 101, 309, 538

Interpreter 538

Intuition 270, 538

Joysticks

Kernel

Keyboard buffer

Keyboard input

Kickstart diskette

KILL

Kilobytes

KYBD

247, 538

538

224

386

538

207, 464

95

240

Labels

LBOUND

LEFT$

LEN

LET

LIBRARY

LINE

LINE INPUT

Line editor

Line numbers

Linefeed

LIST

LIST window

107, 114,

350,

LLIST

LOAD

37, 440

393, 453

78, 297, 398, 454

132, 454

25, 435

426, 435,

108, 359, 386, 418

44, 223, 326, 405, 465

28, 539

31

230, 238

32, 436, 465

22, 31, 64, 95, 99

183, 195, 206, 239, 303

362, 369, 373, 391, 443

239, 465

60,203, 392, 465

LoadACBM

LoadlLBM-SaveACBM

LOC

LOCATE 42, 133,

LOF

LOG

Logical operators

Longword

Loop

LPOS

LPRINT

LPRINT USING

LPT1

LSET

533

533

465

223, 404, 405

262, 396, 466

310, 454

172, 173, 258

170

126

466

409, 466

466

240, 409

318, 466

Machine language 539

Memory expansion 23

MENU 134, 164, 436, 437

MENU OFF 137, 164, 437

MENU ON 137,437

MENU RESET 134

MENU STOP 137,437

Menu key 54

Menus 32, 134-135, 285

MERGE 114, 307, 355, 360, 391, 467

Merging programs 285

Microprocessor 539

Microsoft Corp 23,391

MID$ 297, 398, 454, 455

MKD$ 455

MKI$ 187,259,269,455

MKL$ 455

MKS$ 455

Monitors 74,94

MOUSE 40, 138, 164, 359, 438

MOUSE OFF 164,439

MOUSE ON 439,441

MOUSE STOP 439

MS-DOS 196

Multi-dimensional arrays 43, 308

Multiple colors 95

Multitasking 23, 239, 539

Music 366-367

NAME 207, 394, 397, 467

Near letter quality 539

NEW 47,55,69,110,237,362395-396

439

NEXT 396

NOT 174,455

Notepad 21

545

Number systems

OBJECT. 66, 69, 70, 71

Object animation

OBJECT.AX

OBJECT.AY

OBJECT.CLIP

OBJECT.CLOSE

OBJECT.HIT

OBJECT.OFF

OBJECT.ON

OBJECT.PLANES

OBJECT.PRIORITY

OBJECT. SHAPE 62,

OBJECT.START

OBJECT.STOP

OBJECT.VX

OBJECT.VY

OBJECT.X

OBJECT.Y

ObjEdit

OCT$

Octal system

ON BREAK GOSUB

ON COLLISION GOSUE

ON ERROR

ON ERROR GOSUB

ON MENU GOSUB

ON MOUSE GOSUB

ON TIMER GOSUB

ON...GOSUB

ON...GOTO

OPEN 56, 60, 203, 317,

OPEN...FOR INPUT

Operating system

OPTION BASE

OR 36, 173,

PAINT 55,56, 119,

Paint program

PALETTE 75,91,

PAR

Parallel interface

Parity

Paste

PATTERN

Paula chip

PCUtil

PEEK

PEEKL

293,

70,

70,

i

392,

393,

259,

164,

109,

322,

104,300

, 72, 353

19, 410

411

411

411

411

412

413

70, 413

413

413

413, 465

414

414

414, 415

414, 415

70, 415

70, 415

52, 532

456

171

425, 439

72, 416

391, 396

440

137, 440

441

441

440

440

394, 467

210

539

427, 441

396, 456

360, 419

308

129, 235

403, 419

246

512

468

40, 396

176, 419

376

20, 21, 49

271, 456

271, 456

PEEKW

Peripheral devices

Phoneme codes

PICSAVE routine

Pie Chart

Pitch

Pixels 94, 116,

POINT

POINT(x,y)

Pointer

POKE

POKEL

POKEW

PONG

POS

PRESET

PRINT 24, 34, 133,

PRINT USING

Printer cable

Printer drivers

Program control

Programjumps

Program trace

Protected format

Protecting files

PRT

PSET

PTAB

Pulldown menus

PUT 256, 258, 318,

Pyramids

Quit

RAM

Random Access Memory

Random file GET

Random file OPEN

Random file PUT

Random files

Random numbers

RANDOMIZE

RANDOMIZE TIMER

Read/write head

ReadMe

REM

Rename

Requester

Resolutions

RESTORE

117,

230,

393,

107,

135,

395,

270,

211,

294,

194,

309,

271,

236,

347,

306,

124,

367,

258,

271,

271,

271,

258,

289,

403,

239,

258,

136,

420,

362,

392,

21

360,

198,

346,

94

397,

457

540

472

307

217

532

540

420

159

52

457

457

457

53

405

420

320

406

406

238

259

425

37

64

114

114

436

420

420

219

469

121

48

540

23

319

317

318

466

108

442

442

195

,49

442

397

391

,95

443

546

RESUME

RESUME NEXT

RETURN

RGB

RIGHT$

RND

ROM

Root directory

RS-232 interface

RSET

RUN 31, 32,

SADD

Sampling

SAVE 45,56,

Save As

SavelLBM

Saving programs

SAY

SCREEN

SCREEN CLOSE

Screen Editor

Screen get

Screen put

Screen setup

SCRN

SCROLL

Scrolling

Sequential file
SER

Serial data transfer

SGN

SHARED

SIN

Sine function (SIN)

Sine waves

SLEEP

Snapshot

SOUND

SOUND RESUME

SOUND WAIT

Sound and music

Sound channels

396,

74,

78,

105,

113,

347,

110,

Sound length (duration)

Sound waves

SPACE$

SPC

Speech

Sprites

398,

79,

168,

297,

118,

440,

115,

265,

398,

108,

270,

134,

392,

425,

443

443

433

308

456

458

540

205

468

469

135

443

457

376-377

202, 203,

350,

100,

100,

239,

210,

379,

367,

345,

394,

391

470

45,46

356,

270,

105,

409,

83,

84,

316,

290,

459,

374,

51,

377,

372,

372,

352,

322,

355,

53

507

30

472

421

422

28

319

318

355

436

422

541

392

246

468

458

442

474

110

377

444

201

473

473

473

365

473

368

374

459

408

471

,59

SQR

Square waves

STATIC

Statistics

STEP

STICK

STOP

Stop bits

STR$

STRIG

String array

String variables

STRINGS

Strings

Structured programming

SUB 287, 394, 395,

Subdirectories

Subprogram 287,

Subroutine 60, 114,

Subscript out of range

SUB...STATIC

SWAP

Syntax errors

Synthesizer utility

SYSTEM

System crashes

TAB

TAN

Television

Text editing

Text formatting

Textcraft

THEN

Timbre

TIME$

TIMER

TIMER OFF

TIMER ON

TIMER STOP

Tide

Token

Tone production

Trace mode

Trace Off

Trace On

Tracks

TRANSLATES

Trashcan

Triangle wave

TROFF

396,

310,

115,

287,

48,

82,

287,

247,

134,

217,

248,

39,

78,

303,

458

379

396

123

368

470

444

468

458

470

216

303

458

398

126

, 398-399

332,

126,

425,

400,

69,

194,

222,

82,

444,

64,

347,

204

391

160

399

444

445

399

381

445

36

409

459

74

161

86

134

394

375

460

460

445

445

445

135

515

472

119

64

64

195

474

20,49

64,65,

378

446

547

TRON

Tuning

UBOUND

UCASE$

Un-NEWing program

User errors

Utility programs

VAL

Variables

VARPTR

Vibrations

Video Title Program

Volume

WAVE

Waveforms

WEND

WHILE

WHILE...THEN

WHILE...WEND

WIDTH

Wildcards

WINDOW 100, 107,

WINDOW CLOSE

WINDOW OUTPUT

WINDOW parameters

Word

Workbench

Workbench screen.

WRITE

64

78,

5

42, 82,

352, 355,

377,

,65,

351,

393,

129,

217,

25,

425,

31

368,

386,

374,377,

139,

360,

262,

219,

433,

78,

446

355

453

460

47

38

541

460

114

461

374

,81

473

474

386

401

401

168

334

446

409

232

128, 165,422-423

346,

229, 293,

105,

105,

170,

362,

99,

409,

424

424

104

468

393

104

471

XOR 173, 258, 396, 461

548

Optional Diskette

Amiga BASIC

Inside and Out

For your convenience, the program listings contained in this book

are available on an Amiga formatted floppy disk. You should

order the diskette if you want to use the programs, but don't want

to type them in from the listings in the book.

All programs on the diskette have been fully tested. You can

change the programs for your particular needs. The diskette is

available for $14.95 plus $2.00 ($5.00 foreign) for postage and

handling.

When ordering, please give your name and shipping address.

Enclose a check, money order or credit card information. Mail

your order to:

Abacus Software

5370 52nd Street SE

Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.

Amiga

Books
Great introductory book!

Amiga for Beginners
A perfect introductory book if you're a new or prospective Amiga

owner. Amiga forBeginners introduces you to Intuition (the

Amiga's graphic interface), the mouse, the windows, the versatile

CLI—this first volume in ourAmiga series explains every

practical aspect of the Amiga in plain English. Includes clear,

step-by-step instructions for common Amiga tasks. Amiga for

Beginners is all the info you need to get up and running with

your Amiga 500,1000 or 2000. Topics include: •Unpacking and

connecting the Amiga's components •Starting up your Amiga

•Windows -Files •Customizing the Workbench •Exploring the

Extras disk •Taking your first steps in the AmioBASIC

programming language -BASIC graphics commands -BASIC

animation •AmigaDOS functions -Using the CLI to perform

"housekeeping" chores •First Aid appendix •Keyword appendix

"Technical appendix •Glossary. Available December 87.200

pages. (Optional program diskette not available).

(630) $16.95

"How-to" BASIC tutorial

AmigaBASIC—

inside & Out
Above and beyond any BASIC tutorial you've ever seen. This

definitive 550-page volume will turn you into an AmigaBASIC

expert. Amiga BASIC—Inside & Out teaches you Amiga

BASIC with a "hands-on," program-oriented approach, and

explains the language in a clear, easy to understand style. Topics

include: -Fundamental concepts of BASIC -Completely details

all AmigaBASIC commands, with syntax and parameters

•Graphic objects and color control •Interchange file format (IFF)

•\foice synthesis, sound & music -Sequential & random access

files -Complete Reference Section includes Glossary,

AmigaBASIC Reference Guide, error message descriptions.

After you've learned BASIC with Amiga BASIC—Inside &

Out, you'll have many useful, working programs: •Video titling

program for high-quality OBJECT animation on your VCR tapes

•IFF-compatible paint program (lets you load in graphics created

on other graphic programs) •Bar graph & pie chart program

•Simple music synthesizer •Speech synthesis utility program

•Full-featured database.

Available November 1987.550 pages.

(610) $24.95

(612) Optional program diskette $14.95

Insider's secrets!

Amiga Tricks & T ips
A superb collection of quick hitters for all Amiga owners.

Patterned after our best-selling Tricks & Tips books for the

Commodore 64 & Commodore 128, Amiga Tricks & Tips

contains dozens of programming techniques and program listings

that anyone with an Amiga computer can use, whether you're a

beginner or a seasoned programmer. Amiga Tricks & Tips is

easy to understand, and lists program examples in BASIC. It's

packed with vital Amigainfo: -Details on windows and gadgets

•Using disk-resident fonts -Tips for printing hardcopy -Creating

yourown requesters -Accessing Amiga libraries fromBASIC

•Reserving important 68000 memory •CLI command overview

•Getting the most out of the ED editor •Customizing your own

Workbench •Controlling Intuition •AmioaDOS functions -Hints

for effective programming

Available January 88.300 pages.

(615) $19.95

(617) Optional program diskette

Guide to Amiga 68000 language

$14.95

Amiga Machine Language
The practical guide for learning how to program your Amioa in

ultrafast machine language. Used in conjunction with our

AssemPr o Amiga software package, A miga Machine

Language is a comprehensive introduction to 68000 assembler/

machine language programming. Topics include:

• 68000 microprocessor architecture -68000 address modes and

instruction set •Accessing the Amiga's RAM memory, operating

system and multitasking capabilities -Details the powerful Amiga

libraries for using AmioaDOS (input, output, disk and printer

operations) •Details Intuition (windows, screens, requesters,

pulldown menus) -Speech and sound facilities from machine

language -Many useful programs listed and explained.

Available January 88.225 pages.

(660) $19-95

(662) Optional program diskette $14.95

Optional Program Diskettes

contain all ofthe programsfound in these

books—complete, error-free and ready to run.

Save yourselfthe time and and trouble oftyping

in the program listings. Each diskette: $14$5.

More Amiga books

coming soon!

Selected Abacus Products for the Amiga computers

TextPro
The Ideal Word Processing

Package for the Amiga

TextPro Amiga is an full-function word processing

package that shares the true spirit of the Amiga: easy to

use, fast and powerful—with a surprising number of

"extra" features.

You can write your first TextPro documents without

even reading the manual. Select options from the

dropdown menus with your mouse, or use the time-saving

shortcut keys to edit, format and print your documents.

Yet TextPro is much more than a beginner's package. It

has the professional features you need for all of your

printed documents. Fast formatting on the screen: bold,

italic, underline, etc. Centering and margin justification.

Page headers and footers. Automatic hyphenation of text.

You can customize the TextPro keyboard and function

keys to suit your own style. Even merge IFF-format

graphics right into your documents. TextPro includes

BTSnap, a utility for saving IFF graphics that you can

use in your graphics programs. This package can also

convert and print other popular word processor files.

TextPro is output-oriented. This means you can print

your documents to exact specifications—and get top

performance out of your dot-matrix or letter quality

printer. (Printer drivers included on diskette let you

customize TextPro to virtually any printer on the

market). The complete tutorial and manual shows you

how it's all done, step by step.

TextPro sets a new standard for word processors in its

price range. Easy to use, packed with advanced features—

it's the Ideal package for all of your wordprocessing needs.

Backed by the Abacus 30-day MoneyBack

Guarantee.

Suggested retail price: $79.95

Features

Fast editing and formatting on screen

Display bold, italic, underline, superscript and subscript

characters

Select options from dropdown menus or handy shortcut

keys

Automatic wordwrap & page numbering

Sophisticated tab and indent options, with centering &

margin justification

Move, Copy, Delete, Search &Replace options

Automatic hyphenation

Customize up to 30 function keys to store often-used

text, macro commands

Merge IFF format graphics into your documents

Includes BTSnap program for saving IFF graphics from

any program

Load & save files through RS-232 port

Flexible, uttrafast printer output—printer drivers for

most popular dot-matrix & letter quality printers included

Comprehensive tutorial and manual

Not copy protected

Selected Abacus Products for the Amiga computers

AssemPro

Machine Language Development

System for the Amiga

Bridge the gap between slow higher-level languages and

ultra-fast machine language programming: AssemPro

Amiga unlocks the full power of the AMIGA'S 68000

processor. It's a complete developer's kit for rapidly

developing machine language/assembler programs on your

Amiga. AssemPro has everything you need to write

professional-quality programs "down to the bare metal":

editor, debugger, disassembler & reassembler.

Yet AssemPro isn't just for the 68000 experts.

AssemPro is easy to use. You select options from

dropdown menus or with shortcut keys, which makes your

program development a much simpler process. With the

optional Abacus book Amiga Machine Language

(see page 3), AssemPro is the perfect introduction to

Amiga machine language development and programming.

AssemPro also has the professional features that

advanced programmers look for. Lots of "extras" eliminate

the most tedious, repetitious and time-consuming m/1

programming tasks. Like syntax error search/replace

functions to speed program alterations and debugging. And

you can compile to memory for lightning speed. The

comprehensive tutorial and manual have the detailed

information you need for fast, effective programming.

AssemPro Amiga offers more professional features,

speed, sheer power, and ease of operation than any

assembler package we've seen for the money. Test drive

your AssemPro Amiga with the security of the

Abacus 30-day MoneyBack Guarantee. Available

January 1988.

Suggested retail price: $99.95

Features
Integrated Editor, Debugger, Disassembler and

Reassembler

Large operating system library

Runs under CLI and Workbench

Produces either PC-relocatable or absolute code

Create custom macros for nearly any parameter (of

different types)

Error search and replace functions

Cross-reference list

Menu-controlled conditional and repeated assembly

Full 32-bit arithmetic

Advanced debugger with 68020 single-step emulation

Written completely in machine language for ultra-fast

operation

Runs on any Amiga with 512K or more and Kickstart

version 1.2

Not copy protected

Machine languageprogramming requires a solid understanding
of the Amiga'snardware ana operating system. We do not

recommend thispackage to beginning Amigaprogrammers

Selected Abacus Products for the Amiga computers

BeckerText
Powerful Word Processing

Package for the Amiga

BeckerText Amiga is more than just a word processor.

BeckerText Amiga gives you all of the easy-to-use

features found in our TextPro Amiga, plus it lets you

do a whole lot more. You can merge sophisticated IFF-

graphics anywhere in your document You can hyphenate,

create indexes and generate a table of contents for your

documents, automatically. And what you see on the

BeckerText screen is what you get when you print the

document—real WYSIWYG formatting on your Amiga.

But BeckerText gives you still more: it lets you

perform calculations of numerical data within your

documents, using flexible templates to add, subtract,

multiply and divide up to five columns of numbers on a

page. BeckerText can also display and print multiple

columns of text, up to five columns per page, for

professional-looking newsletters, presentations, reports,

etc. Its expandable built-in spell checker eliminates those

distracting typographical errors.

BeckerText works with most popular dot-matrix and

letter-quality printers, and even the latest laser printers for

typeset-quality output. Includes comprehensive tutorial

and manual.

BeckerText gives you the power and flexibility that you

need to produce the professional-quality documents that

you demand.

When you need more from your word processor than just

word processing, you need BeckerText Amiga.

Discover the power of BeckerText. Available February

1988.

Suggested retail price: $150.00

Features

Select options from pulldown menus or handy shortcut

keys

Fast, true WYSIWYG formatting

Bold, italic, underline, superscript and subscript

characters

Automatic wordwrap and page numbering

Sophisticated tab and indent options, with centering and

margin justification

Move, (3opy, Delete, Search and Replace
Automatic hyphenation, with automatic table of

contents and index generation

Write up to 999 characters per line with horizontal

scrolling feature

Check spelling as you write or interactively proof

document; add to dictionary

Performs calculations within your documents—

calculate in columns with flexible templates

Customize 30 function keys to store often-used text

and macro commands

Merge IFF graphics into documents

Includes BTSnap program for converting text blocks to

IFF graphics

C-source mode for quick and easy C language program

editing

Print up to 5 columns on a single page

Adapts to virtually any dot-matrix, letter-quality or laser

printer

Comprehensive tutorial and manual

Not copy protected

Selected Abacus Products for the Amiga computers

DafaRetrieve

A Powerful Database Manager

for the Amiga

Imagine a powerful database for your Amiga: one that's

fast, has a huge data capacity, yet is easy to work with.

Now think DataRetrieve Amiga. It works the same

way as your Amiga—graphic and intuitive, with no

obscure commands. You quickly set up your data files

using convenient on-screen templates called masks. Select

commands from the pulldown menus or time-saving

shortcut keys. Customize the masks with different text

fonts, styles, colors, sizes and graphics. If you have any

questions, Help screens are available at the touch of a

button. And DataRetrieve's 128-page manual is clear

and comprehensive.

DataRetrieve is easy to use—but it also has

professional features for your most demanding database

applications. Password security for your data.

Sophisticated indexing with variable precision. Full

Search and Select functions. File sizes, data sets and data

fields limited only by your memory and disk storage

space. Customize up to 20 function keys to store macro

commands and often-used text. For optimum access speed,

DataRetrieve takes advantage of the Amiga's multi

tasking.

You can exchange data with TextPro Amiga,

BeckerText Amiga and other packages to easily

produce form letters, mailing labels, index cards,

bulletins, etc. DataRetrieve prints data reports to most

dot-matrix & letter-quality printers.

DataRetrieve is the perfect database for your Amiga.

Get this proven system today with the assurance of the

Abacus 30-day MoneyBack Guarantee.

Suggested retail price: $79.95

Features

• Select commands and options from the pulldown menus

or shortcut keys

• Enter data into convenient screenmasks

• Enhance screen masks with different text styles, fonts,

colors, graphics, etc.

• Work with 8 databases concurrently

• Define different field types: text, date, time, numeric &

selection

• Customize 20 function keys to store macro commands

and text

• Specify up to 80 index fields for superfast access to

your data

• Perform simple or complex data searches

• Create subsets of a larger database for even faster

operation

• Exchange data with other packages: form letters,

mailing lists etc.

• Produce custom printer forms: index cards, labels,

Rolodex*cards, etc. Adapts to most dot-matrix & letter-

quality printers

• Protect your data with passwords

• Get Help from online screens

• Not copy protected

• Max. file size

• Max. data record size

• Max. data set

• Max. no. of data fields

• Max. field size

Limited only

by your memory

and disk space

A

InsideandOut

owners who want to tap the Amiga's true

power using AmigaBASIC.

AmigaBASIC—Inside and Out is a

combination of a beginning tutorial, an

advanced guide, and an authoritative

reference, all in one book.

AmigaBASIC—Inside and Out

teaches AmigaBASIC with a ha/ids-on

approach and explains every detail of the

language in clear, easy to understand

terms. If you're a beginner, the

introduction eases you into programming

right away, with a minimum of effort. If

you're an advanced programmer, you'll

discover the hidden powers of your Amiga.

Every Amiga user will see the value of the

Reference Section: included are a complete

glossary, an AmigaBASIC duick Reference
Guide, and detailed error message

descriptions with tips for avoiding the

"guru" next time.

AmigaBASIC—Inside and Out topics

include: • windows • mouse functions •

object animation • object editor • screen

resolution • creating pull-down menus • fill

patterns • disk drive operations • disk

commands • file formats • creating custom

AmigaBASIC commands • sound and tone

generation

learning and applying

AmigaBASIC

Many real working programs

presented, described and

explained:

• Exciting graphics demonstrations

• Graphic objects animation

• Video titling program for creating unique

titles on your VCR

• Powerful data base

• Full-featured Paint program

• Charting application for creating detailed

pie charts and bar graphs

• Speech utility for remarkable human

voice synthesis demonstrations

• Synthesizer program to create custom

sound effects and music

AmigaBASIC—Inside and Out is an

essential tutorial and reference book for all

Amiga users.

ISBN D-cUfc)43ci-fl7-c!

Abacus 370 52nd Street SE • Grand Rapids, Ml 49508

