

The

Anliga Microsoft BASIC
Programmer's Guide

/

nwe
Amiga Microsoft BASIC
Programmer's Guide

William B. Sanders

Scott Foresman and Company
Glenview, Illinois • London

Amiga ASCII characters reprinted by permission of Commodore-Amiga, Inc.
Cole Porter's Anything Goes used by permission of Warner Bros. Inc.

Microsoft BASIC is a trademark of Microsoft Corporation.
Commodore Amiga is a registered trademark of Commodore Business

Machines, Inc.
IBM is a registered trademark of the International Business Machines

Corporation.
Apple is a registered trademark of Apple Computer, Inc.
Atari is a registered trademark of Atari Corporation.

Library of Congress Cataloging-in-Publication Data

Sanders, William B., 1944-
The Amiga Microsoft BASIC programmer's guide.

Includes index.
1. Amiga (Computer)-Programming. 2. BASIC

(Computer program language) I. Title.
QA76.8A46S26 1987 005.265 86-17867

1 2 3 4 5 6 KPF 91 90 89 88 87 86

ISBN 0-673-18523-0

Copyright © 1987 William B. Sanders.
All Rights Reserved.
Printed in the United States of America.

Notice of Liability

The information in this book is distributed on an "As Is" basis, without
warranty. Neither the author nor Scott, Foresman and Company shall have
any liability to customer or any other person or entity with respect to any
liability, loss, or damage caused or alleged to be caused directly or indirectly
by the programs contained herein. This includes, but is not limited to,
interruption of service, loss of data, loss of business or anticipatory profits, or
consequential damages from the use of the programs.

Scott, Foresman Professional Publishing Group books are available for bulk
sales at quantity discounts. For information, please contact Marketing
Manager, Professional Books, Professional Publishing Group, Scott,
Foresman and Company, 1900 East Lake Avenue, Glenview, IL 60025.

_________ CONTENTS __

Introduction to Basic Programming 1

Welcome to Programming 2
A Little Philosophy 4
Loading BASIC 5
LIST and OUTPUT Windows 6
Statements, Functions and Commands 8
Working with Text and Numbers 12
Editing Programs 13

Starting Operations 19

Fundamental Formats: Commas, Semicolons and Colons 19
Tabs, REMs, Ticks and Width 21
V~~~s ~

Math Operations 35

Sequential Calculations 35
Precedence 37
Math Functions 39

Sequential Modular Program Organization 47

Top Down Programming 48
Getting Things in Order 49

v

vi Contents

Interactive Data Entry 51
Getting Information to the Screen Clearly 58
READ That DATA 60
Breaking down Large Problems into Small Problems 62

Loops 67

The Loop Structure 67
FOR/NEXT Loops 68
Counters 72
WHILE/WEND Loops 73

Branch Structures 77

Branching 78
Computing with Relationals 82
Subroutines 87
Computed GOTO and GOSUB 88
Strings and Relationals 92
Subprograms 93

Arrays 99

Arrays as Grouped Variables 99
The DIMension of an Array 101
Keeping in Bounds 102
Buffers and Arrays 104
Multi-DIMensional Arrays 106
Arrays in Subprograms 111

Manipulating Strings 115

Substrings: Parts and Whole 115
Formatting Strings 116
Time after TIME$ 120
String Searching 122
Converting between String and Numeric Variables 124

Preparing Data and Formatting Output

Formatting and Manipulating Information
Screen Placement
PRINT USING: Formatting with Style
Highlighting Output with COLOR
How about a DA TE$

Of Mice and Menus

The Mouse Input
Pull down Menus
Setting up Your Menus
Toggling Menus
Refreshing the Menu

Screen Control

Scroll Management
Finding the Cursor with POS(O) and CSRLIN
Yes-The Amiga Does Do Windows
Screen Work

Drawing with Graphics

Pixels
The Amiga's COLORful Palette
Multiple Colors
Getting in Shape
Plots from Last Plot: Relative Plots
Amiga Art
PAINT
Getting Around: CIRCLE
Filling an AREA with PATTERN

Contents vii

129

129
130
132
135
137

141

141
141
142
145
149

151

151
152
155
159

163

163
164
166
168
174
176
176
177
179

viii Contents

Animation, Sprites and Bobs 185

Moving Graphics 185
Moving out with PUT and GET 187
Mouse Control 193
Sprites and Bobs 197
Using ObjEdit 197
Displaying Sprites and Bobs with OBJECT 198
Moving Sprites and Bobs 200
Managing Crashes with COLLISION 202
Making Bobs 205

Sound, Music and Voice Synthesizing 209

Amiga Sounds 209
The SOUND Statement 209
Amiga Music 212
More WAVE Work 217
Speech Synthesis 219
Translating Text to Talk 219
The SA Y Array 220
Writing Like It Sounds: Phonetic Transcription 222

The Disk System and Sequential Files 227

CHAIN Routines 229
Sequential Files 232
Making a Sequential File 233
Formatting Text and Numbers in Files with PRINT # USING 241

Random Access Files 247

Random and Sequential Files: Differences and Similarities 247
Random File Buffers 249
Finding and Changing Records 254

Contents ix

Printer Control 261

Text Output to the Printer 263
Decoding with CHR$ 264
CHR$ and Printer Control 267
Using the LPOS(O) Function 271
Opening LPT1: 272
LPRINT USING 273
Control That Format! 274

Telecommunications 277

~odems 277
Types of ~odems 278
Null ~odem 279
The CO~l: File 280
Reading from and Writing to the CO~l File 281
Amiga Terminal Program 283
Using the Amiga Terminal Program 289

Algorithms and Advanced Techniques 293

A Good Algorithm Is Worth a Thousand Lines of Code 294
The Bubble Sort 294
The Shell Sort 298
Rearrangements for Sorts 301
Artificial Intelligence and IF ... THEN 307

Appendix A: ASCII and Non-ASCII Character
Codes 313

Appendix 8: Using CLI Commands 315

Glossary 327

Index 347

________________ CHAPTER 1 __ _

Introduct'ion to BASIC
Programming

This book is about a programming language called Microsoft®
BASIC on the Commodore Amiga computer. You'll learn how to write
computer programs that you can use to do everything from writing text
on your screen to creating animated graphics. We'll go slowly and
systematically so that if you're new to programming you won't be
overwhelmed or lost If you do have experience programming, take a
close look at the next section describing the differences between Amiga
BASIC and other versions of the language. There are significant dif
ferences, but once understood, experienced programmers can jump to
different parts of the book describing specific features of Amiga BASIC or
how to take advantage of the many unique Amiga characteristics such as
pull down menus, multi-tasking and color graphics.

Amiga Notes

Important Notice!!

The Amiga was originally shipped with another version of BASIC
called "ABa siC." That version was dropped by Amiga and replaced by
a much improved version, Microsoft BASIC. If you do not have your
copy of the newer BASIC, contact your Amiga dealer and he will give
you a copy at no cost

1

2 The Amiga Microsoft BASIC Programmer's Guide

WELCOME TO PROGRAMMING

For those of you who are new to computer programming, you are in
for a real treat and surprise. The image of genius level IQ computer
programmers is a misleading stereotype clouded by ignorance of what a
programming language is. To some degree learning how to program is
like learning a foreign language. However, there are a lot fewer words in
programming, and there are no exceptions to the rules. When you learn
how to do something in a certain correct way, you will not encounter
"exceptions to the rule" or special idioms that will change how things are
done. In addition, your Amiga will tell you if you make a mistake and
point out what you did wrong. It's like having the most patient teacher in
the world helping you learn how to program.

Besides being easier to learn than a foreign language, Amiga BASIC
does things. It puts pictures on the screen, analyzes data and even
generates a voice synthesizer. Using this book, you can learn how to write
a computer operated checkbook, make learning games for your children,
create animated graphics and develop many other practical and fun
applications. You don't have to stick with the examples in the book. Use
the techniques you acquire to write programs for your own needs.

In addition, you will be able to do things with your computer you
may not ever have thought about For example, you'll learn how to write
a communications program to connect your Amiga to other computers
via a modem. (Modems are simply telephones for computers.) You can
call up your bank, a financial news service or send a letter across the
country. So besides being a tool to use for tasks you do already by some
other method, your BASIC programming skills can be used to create new
applications that will enhance your life in ways you did not consider
when you bought your computer.

Throw Caution to the Wind ...

The last thing you want to do with your Amiga and programming is
to be overly cautious. The mistaken belief that you can wreck a computer
by entering the wrong information on the keyboard is silly. You can wipe
out information on a disk or knock out work in memory that you've spent
a lot of time developing, but you can't hurt your computer. When you're
learning how to program, use a separate disk. Label it clearly as your
"Experiment Disk," and then try all kinds of things with your computer. If

Introduction to BASIC Programming 3

you wipe out this disk, you won't lose anything important If you do write
a program that is important for you to keep, just make a copy of that
program on another disk. This way, even if you wipe out your "Experi
ment Disk," you still have copies of your important programs.

Everyone makes mistakes in programming, even the most experienced
programmers. (In fact, experienced programmers make more mistakes
than beginners since they are not afraid to try more things.) Instead of
being a reason for not experimenting with your programming skills,
however, it is a good reason to have an "insurance policy," which will
guarantee that experimentation will not be a cause for losing important
data. So, while you should be innovative, do it with a safety net (By the
way, nobody ever listens to this advice initially. Everyone loses something
important, before they take it seriously.) Just remember, whether you
experiment or not, you'll make mistakes. You'll Ie am more-and have a
lot more fun-by trying out different things, so you might as well enjoy
yourself. A "back-up" disk with your important programs will protect you.

Amiga BASIC and Other BASICs

If you're familiar with BASIC programming on other microcom
puters, one of the first things you'll notice about the Amiga Microsoft
BASIC is the absence of line numbers. If you think of line numbers
simply as labels, you'll understand why they are not needed in Amiga's
BASIC. Microsoft BASIC on the Amiga uses descriptive labels followed
by colons that sit on lines all by themselves. You can use numbers as
labels, but it makes a lot more sense for you to use descriptive labels that
tell what your program is doing in different sections. For example:

PrintStuff:

might be used as a label for a section of the program that prints stuff on
the screen. It's a lot clearer than something like:

200:

even though the latter is perfectly correct to use in a program. Otherwise,
it is very similar to other BASICs. If you have used the later version of
Microsoft BASIC on the Apple Macintosh computer, you will find them
to be almost identical. Likewise, with the exception of line numbers,
BASICA on the IBM PC is very close to Amiga's version of BASIC.

4 The Amiga Microsoft BASIC Programmers Guide

Experienced BASIC programmers should concentrate on the follow
ing features of Amiga BASIC:

1. Pull-down MENU, MOUSE and SCROLL (screen and program
control)

2. Object editor, OBJECT.XX words and COLLISION (animated
graphics)

3. LIBRARY, PEEKW and POKEW (machine language routines)
4. SAY (voice synthesizer)
5. Subprograms, SUB, EXIT SUB and END SUB (BASIC subprograms)
6. Sound and graphics words if not used in previous BASICs

The above six categories mayor may not be in another version of
BASIC you've used, but they should be checked just in case. There are a
lot of other things about the Amiga that you will discover in this book.
Check out the list above, and don't be surprised if there's more than you
bargained for!

A LITTLE PHILOSOPHY

For beginners and experienced programmers alike there are different
attitudes and approaches to programming. It might sound stuffy and
"school marmish" to lecture you on one approach or another before we
even get started writing programs. We'll try to understand a style that is
both experimental and practical in terms of accomplishing a goal and
having fun in the process.

Amiga Microsoft BASIC has a certain built-in structure and
philosophy that makes programming a lot easier while not taking
anything away from creativity. To some, the term "structured program
ming" evokes images of weighty flowcharts and tedium. That's really not
accurate, and anyone who treats structured programming as a set of stiff
rules instead of a practical tool misses the point Basically, all structured
programming attempts to do is to organize the programming task. Let's
see how Amiga BASIC does it, and what this means to the novice and
experienced programmer alike.

1. TOP DOWN PROGRAMMING. This kind of program starts at a
given point and sequentially executes one task at a time. The alternative
is jumping all around the place instead of putting things in sequential

Introduction to BASIC Programming 5

order. This style of programming makes it easier to find errors (or "bugs"
as they're called in programming) and develop good programs. This does
not exclude jumping to modules that perform sub-tasks (called sub
routines) or, in Amiga BASIC, using subprograms and then returning to
the main sequence. Likewise, a program can branch out in different
directions in structured programming.

2. MODULAR PROGRAMMING. An old Chinese proverb states
that even a journey of a 1000 miles begins with a single step. The same
is true in structured programming. If you think of a program as a series of
steps to be taken one at a time instead of a giant step to be taken all at
once, the task is much easier and has a far greater chance of success.
Each part of a program can be seen as a module that does something for
the program. The most experienced and smartest programmers do not
work up long complex programming formulas to get a job done. Instead,
they take a big complex program and break it down into small, manage
able chunks that even a beginner could handle. Each of these chunks is
called a "module." The module is then placed into the proper place in
the sequence of the program. So instead of having a program of "100
lines," they have a simpler one of "10 modules." Later on you'll learn how
to save certain of these modules that are used over and over as "sub
programs." When you program, you can just reuse these subprograms
instead of having to write them all over again.

LOADING BASIC

To get going, put the Kickstart disk in your drive and then the Work
bench disk. If you have a single drive, remove the Workbench disk and
insert the "Extras" disk with both MBA SIC and the Amiga Tutor. (We
strongly advise you to make a copy of MBA SIC on a blank disk and use it
for an "experiment disk.") If you have a dual drive, place the disk with
MBASIC into the external drive. The internal drive is called 'dfo' and the
external drive 'd£1' in CLI (Command Line Interface), but you can easily
get everything cranked up from the workbench environment on your
screen. You will see an icon with the "Extras" or whatever name you gave
your "Experiment Disk." Place the pointer on the disk icon and give it a
double click with the left mouse button.

When the window opens, you will see an icon labeled 'AmigaBASIC'.
Place the pointer on that image and double-click it When the window
opens you will see the following message:

6 The Amiga Microsoft BASIC Programmer's Guide

Commodore Amiga 8ASIC
Version 1.00
Created Oct. 23. 1985
Copyright (cl 1985
by Microsoft Corp.
226048 8ytes free in System
25000 8ytes free in 8ASIC

The version and number of free bytes may vary depending on the
amount of memory and the version of BASIC you have, so don't worry if
your screen says something a little different The 226048 bytes free in this
System shows how much memory is free in your computer, while the
25000 free bytes in BASIC show how much room you have available to
program.

On the right side of your screen is the LIST window. In the upper left
hand corner of the LIST window is the cursor, a straight vertical red line.
(Your cursor may not be red if you've adjusted the colors, but don't worry
about it) You should see your pointer on the screen somewhere, too. At
this time your LIST window is the 'active' one since the word LIST on top
of the screen is clear. The other window, labeled BASIC, is dimmed; so
you know it's not active now. Every time you start, this is the way your
screen should look

LIST AND OUTPUT WINDOWS

Now that you know what things look like at the beginning, let's move
from the LIST window to the OUTPUT window. Move your pointer so
that it is outside of the LIST window, and give it a click The word 'Ok'
appears on your screen, and the cursor moves to the window labeled
BASIC. The LIST label is dimmed, and the BASIC label is clear, so you
know that you've switched windows.

Without further ado, put in your first command, FILES. Just type in
the word FILES and press the key marked 'Return':

FILES <Return>

After every entry is completed in the output window, press the
Return key. You'll find 'Return' is used more than just about any other key
you have. We'll remind you at first to press 'Return' by the notation

Introduction to BASIC Programming 7

<Return>. When you get used to pressing RETURN, you're on your own and
we'll take out the reminders. As soon as you pressed RETURN, your disk
light came on and all of the files on your disk were written on the screen.
You may have been surprised since there's a lot more on your disk than
you saw from the workbench on icons. For example, your "Extras" disk
only shows five icons, but from BASIC, you saw the following when you
used the FILES command:

Directory of:[Extras]
[Trashcan]
.info
AmigaBASIC
Amiga Tutor.info
[t]

[BasicDemos]
AmigaBASIC.info
[Tf iles]
Tfiles. info
BasicDemos.info
Disk.info
Trashcan.info
Amiga Tutor

You may think you've seen a lot, but there's still more. Each of the
filenames in brackets is actually a whole other set of files, called a
"subdirectory." To see what's in there, enter the FILES command and the
name of the subdirectory in quote marks. For example, type in the
following:

FILES "BasicDemos" <Return>

You'll see so many files that they'll scroll off your screen. If you have two
disk drives, and your disk with BASIC on it is in the external drive (dfl),
you can see what's on the internal drive by typing in:

FILES "DF0:" <Return>

If your Workbench disk is in the internal drive (dfO), you'll recognize
some of the files from that disk. Now you should know how to do the
following:

8 The Amlga Microsoft BASIC Programmer's Guide

1. See all the files on your disk
2. See the files in a subdirectory
3. See the files from either drive

It's not quite as easy as using the workbench and icons, but you can
see a lot more of what's on your disk Also, you've learned to explore
what's on your disk Later on, we'll be saving and loading files you create
in BASIC on the disk, but for now, we just want to show you how to find
your way around.

To do some more rudimentary explorations, press the right mouse
button and look at the top of your screen. You'll see four menu headings
for BASIC:

Project Edit Run Windows

To open a menu, hold the right mouse button and place the pointer over
the menu heading. You'll see the following:

Project Edit Run Windows
New Cut A9Jx Start A9JR Show List A9J
Open Copy A9Jc Stop A9J. Show Output
Save Paste A9Jp Continue
Save As Suspend A9Js
Quit Trace On

Step ..A1T

These menus are options available for working with programs in BASIC.
There are equivalent BASIC commands for these menu selections, and
we'll cover them all as we work our way through this book The A1
symbols indicate that the same thing can be done by pressing the
outlined A9J on your keyboard and the letter next to it For example, to
show the list window after you have run a program, you can press ..A1 and
L together rather than doing it from the menu. With practice and
experience, you will find which method of giving commands is the most
comfortable for you.

STATEMENTS, FUNCTIONS AND COMMANDS

BASIC, like other programming languages, has certain 'reserved
words.' These words are used in programs and from the direct mode.
When we use a word like FILES from the output window, it is a command

Introclualon to BASIC Programming 9

in that it makes something happen as soon as you press RETURN. Other
words are used within program lines in the deferred or program mode.
These are called statements. Finally, there are functions that are used with
statements that perform some built in or defined operation. Don't be overly
concerned with differentiating between statements, functions and com
mands at first Their difference will become clearer as you use them. To
get going, though, we'll look at examples of each and start programming.

PRINT Statement

You'll probably use PRINT more than any other statement It puts
both text and numbers on the screen. To see how it works, type in the
following in the output window:

PRINT "Amiga" <Return>

That works fine, and the word 'Amiga' appears on your screen. Now,
move over to the LIST window, and key in the same thing. This time
when you press RETURN, nothing happens other than the cursor moves
down a line. Press the right mouse key, select the Run Menu Bar and
click START. (Also try pressing the ~ and R keys to see what happens.)
That will execute your program, clear the screen and print the word
'Amiga' on your screen.

LIST command

Now that you've written and run your first BASIC program, you will
want to learn how to get your LIST window back. From the output
window, type in:

LIST <Return>

Your LIST window will reappear along with your little program. You will
be using the LIST command a lot since every time you run a program
from the output window, the LIST window disappears. You can also click
'Show List' from the Windows menu or use ~L to get LIST. Find which
way is easiest for you; one method of LISTing your program is as good as
another. (If you run a program from the LIST window using the pointer
or ~R, your LIST window will automatically return after you've run the
program. When you're developing a program and have to add more to it,

10 The Amiga Microsoft BASIC Programmer's Guide

it's a good idea to run the program from the LIST window to save a few
steps in getting back to it)

One more command you'll use a lot is NEW. The NEW command
removes the BASIC program currently in memory. Since you'll be writing
many programs, you'll want to get the old one out of the way before
starting a new one. So just type in NEW and press RETURN or click 'New'
from the Project window. As soon as you do that you'll get the following
message box:

Current program is not saved YES

Do you want to save it before proceeding? NO

CANCEL

Click NO unless you have written a program that's important to you. Now
when you start writing a different program, your LIST window will be
clear and ready to go.

The SQR Function

Now let's take a look at a function. Functions are used with state
ments or commands to perform some operation. For example, on just
about any calculator you can find the square root function with the (v')
symbol on the key. Your Amiga has no such key, but BASIC has a built-in
square root function you can use to get the same results. Pop back into
the LIST window by placing the pointer in the window and clicking it (If
there's anything in the LIST window, get rid of it with NEW.) Combining
the PRINT statement with the SQR, type in the following:

PRINT S[JR(4)

Run the program using any of the three methods you've learned, and
you'll get a '2' in the output window. Since 2 is the square root of 4,
you've probably guessed that the square root of any number that is in
parentheses will be found by the SQR function. Go back to the LIST
window and add some more lines with different values in the paren
theses to generate any square root you want

As we mentioned above, don't worry whether a reserved word is a
statement., function or command. Just experiment with them to see how
they work together, and you'll catch on to what each is and what it does.

Introduction to BASIC Programming 11

In certain cases you'll use a statement like a command, and commands
like statements. For example, from the Output Window, if you enter:

PRINT "Wackawacka do"

and hit RETURN, that banal message will be duly printed on your screen.
Thus, PRINT works just like a command from the Output Window.
Conversely, if you put in LIST as your last program statement, after you
RUN the program (even from the Output Window), your program will be
listed on the screen. In this case, LIST works just like a statement
Functions can work in either the LIST or Output Windows when com
bined with statements. So if you want to do a quick calculation from the
Output Window, you can. For example, if you type in:

PRINT 5QR(55) <Return)

you'll get the result (7.416198) immediately. When you do something like
that from the Output Window, it's called the "Direct" or "Immediate"
mode. The same thing written in the LIST Window and then run is
referred to as the "Deferred" or "Program" mode. The direct mode is good
for testing little routines to see quickly what the results are going to look
like and finding bugs in the program.

Amiga Notes

Se£ret Shortcut

One of the best kept secrets from beginners is the substitution of the
question mark for the PRINT statement If you put a question mark (?)
where yOl,! would normally place a PRINT statement, it will work just
likt:~ the PRINT statement From the UST Window, type in:

? ~ What happened?'

As soon as you press RETURN, the message changes to:

PRI NT · What happened? '

You can see the only question mark that changed was the one that
substituted for the PRINT statement The second question mark that
you wanted in your message stayed the way it was. So, instead oof
havi»g to type five keys for PRINT, you only need one.

12 The Amlga Microsoft BASIC Programmer's Guide

WORKING WITH TEXT AND NUMBERS

There are two distinct formats with PRINT. The first involves text, as
we have seen, and whatever is placed between quotation marks appears
on the screen when the program is run. Anything you put (except more
quotation marks) between the quotes gets printed. For example:

PRINT "2345DFGSRT+=Y3456WYN{P}Q234ASDF"

places 2345DFGSRT += Y3456WYN{ P }Q234ASDF on the output window's
screen.

The PRINT statement works differently with numbers. In fact, it
works pretty much like a calculator. You saw with the SQR example that
PRINT can work with functions. It works the same way with numbers. For
example, write in the following program and run it

PRINT 10 + 20

There are no quote marks; only numbers and the plus sign are used.
When you run the program, instead of printing '10 + 20' on the screen,
you get the sum of the two numbers, 30. The plus (+) sign is an operator.
You can also do other mathematical operations with numbers and
PRINT. Here's a list of the operations you can do and the associated keys.

1. Addition
2. Subtraction
3. Multiplication
4. Division
5. Modulo
6. Exponentiation
7. Integer Division

+

*(X)
/(-;-)
MOD

"
The addition and subtraction symbols are standard, but an asterisk

is used instead of an x for multiplication, and a slash is used instead of a
division sign. MOD finds the 'remainder' in division. For example, PRINT
10 MOD 8 results in 2 since 8 goes into 10 one time with a remainder
(modulo) of 2. The exponentiation refers to the "power of' expression in
math. For example, if you want to write two to the third power, you write,
23, but on your Amiga, you type in 2 A 3. Finally, integer division uses the

Introdualon to BASIC Programming 13

opposite type of slash (located in the upper right hand corner of your
keyboard). Integer division returns only whole numbers with no fractions.
For example 9 " 4 returns 2 while 9/4 returns 2.25.

From the direct mode, try the following to get a feel for printing
numbers and doing calculations:

PRINT 15 MOD 4

PRINT 10 * 8
PRINT 88/11

PRINT 3 A 2

PRINT 10 * 5 + 4 - 2
PRINT 15 " "/ (Note direction of slash!)

As you can see from the last example, you can put a lot on a single line,
both in the direct and program modes.

EDITING PROGRAMS

Everyone who writes programs makes mistakes. Even the best
planned and structured program will have some typing or syntax errors.
Rewriting programs from the beginning because of one little error is very
time consuming, so you should learn how to use your editor function im
mediately for correcting mistakes. There are also a lot of shortcuts you
can take with your editor to speed up the process of writing programs.
We'll finish this chapter by examining all of the tricks you can do with
your editor on the Amiga.

Amiga Editing

If you're used to other computer program editors, you may find the
one in Amiga Microsoft BASIC to be very different

Once you become accustomed to working with it, though you'll
appreciate all of its features.

All editing is done in the LIST Window using the mouse and
keyboard. To get started, write the following error-riddled program:

5tartHere:
PRINT "Amiga Edditor Work"
PRINT 5 x 5

14 The Amiga Microsoft BASIC Programmer's Guide

If you run this program, you'll get the following results in your output
window:

Amlga Eddltor Work
505

01<

Right away you can see that the word 'editor' is misspelled, and that '5 0
5' doesn't make any sense at all. (Assume you wanted to multiply 5 times
5 and you accidentally used the "x" instead of the asterisk In the next
chapter, you will see why you got the zero between the two 5s.)

To fix your program, place the pointer back in the LIST Window and
click the mouse. Now you're ready to edit First, to take care of the
misspelled 'Edditor,' place the pointer so that it is to the right of either 'd'
and click the left mouse button. (Most editing is done with the left mouse
button; so from now on we'll assume, unless otherwise stated, that a
reference to 'click' means press the left mouse button.) The cursor
appears to the right of the 'd.' Press the BACKSPACE key once to remove
the 'd.' Now the word 'Editor' appears spelled correctly.

Next, to use a different technique to do the same thing, find the four
arrow keys to the left of the numeric key pad on the right side of your
keyboard. Press the arrow keys until you position the cursor to the right
of the 'x' between the two 5s. Remove the 'x' by pressing the BACKSPACE
key, and then replace it with an asterisk (*). If you can do that, you've
learned about ninety percent of what you will be doing with your editor.
Basically, most of the repair work you'll be doing with the editor is fixing
up little mistakes and syntax errors. However, there are many more tricks
you can do, so let's look at them.

Cut, Copy and Paste

Sometimes, you'll want to remove, change or duplicate whole lines
of your program. To do that you hold down the left mouse button and
pull the cursor over the lines you want to duplicate. The part selected
becomes inverted or highlighted (the letters are black and the back
ground is orange or red). Click the right mouse button to pull down the
Edit Window and select either Copy or Cut If you select Copy, your line
will stay there and a copy of the line will be placed in memory. A Cut
selection will remove the line from the screen but keep it in memory.

Introduction to BASIC Programming 15

Amlga Notes

Be careful!

If you press BACKSPACE while a segment ' of a program is high
lighted, it will be shuffled off to silicon oblivion. A Cut removes the
segment from the screen but keeps it stored in memory, so you can
get it back with Paste. A BACKSPACE creams it for good (or for BAD)!
Go ahead and try it with a segment to see what happens.

Once you have Cut or Copied a segment, you can Paste it elsewhere
in the program or add a duplicate copy of it Just click Paste from the Edit
Window. For practice, select the line:

PRINT "Amiga Editor Work"

and make ten copies of it Then run the program to see what happens. If
you want, after you've made the first copy, select two lines together and
then Paste each two at a time.

With Cut, Copy and Paste, it might be easier to use the .il. key in
conjunction with 'X' for Cut, 'C' for Copy and 'P' for Paste. Then you can
work with both hands and save a little time. (Of course if you have
trouble chewing gum and programming at the same time, as I do, you
may not want to get too complicated with coordinated manipulations
right away!) If you want to select a big section from your program,
instead of dragging the cursor over an area it might be easier to click the
mouse at the beginning of the segment you want and then do a SHIFT
click at the end of the segment For example, place the cursor on the
beginning of the program currently in your LIST Window and click the
mouse. Then move the cursor to the very end of the program and press
the SHIFT key and click the mouse. The whole program is now high
lighted. Also, by placing the cursor at the far left of a line you want to
select, holding down the mouse button and moving the mouse downwards,
you can easily grab a whole line. The thing to do is to PRACTICE,
EXPERIMENT and have some fun trying out your editor. The more you
experiment now, the more time you'll save in the long run. Try some of
the following exercises:

16 The Arnlga Microsoft BASIC Programmer's Guide

1. Using your editor, write the following program:

PRINT "My name is <put your name here>. "
PRINT "My name is <put your friend's name here>. "
PRINT "My name is <put your dog's name here> . "
PRINT "My name is <put your bookie's name here>. "

2. Write this line and then get rid of it by both the Cut method and
select and BACKSPACE method.

PRINT "I love doing homework!!!"

3. Using your editor rearrange the first program to look like the
second:

PRINT "What is 5 + 34?"
PRINT 5 + 34
PRINT "how old are you?"
PRINT 35

PRINT "How old are you?"
PRINT 35
PRINT "What is 5 + 34?"
PRINT 5 + 34

A final editing trick we'll discuss at this point is the use of the SHIFT
and AL T keys with the arrow keys. As your programs get longer, they
will fill up your LIST Window. To see different parts of your program,
it is necessary to scroll down the LIST Window using either the mouse,
holding down the left button, or using the arrow keys. If you want to
jump a "page," hold down the SHIFT key and press the up or down
arrow key. Similarly, to jump a horizontal page, do the same thing with
the left and right arrow keys. Type in the following line:

PRINT "This will be an extremely long message that will cover
several horizontal 'pages' of your LIST Window."

We'll use the above line to show you horizontal scrolling and how to
jump whole pages in a single bound. Use your arrow keys to place the

Introduction to BASIC Programming 17

cursor to the left of the PRINT statement Now, press and hold the SHIFT
key and at the same time press the right arrow key. Do that until you
have read the whole line. Do the opposite to get back to the beginning of
the line. If you do the same thing with the AL T key instead of the SHIFT
key, you can jump to the beginning or end of the line. Try jumping back
and forth with the AL T and arrow keys. As your programs get bigger,
you'll appreciate this shortcut more and more.

Changing Window Sizes

Since the LIST Window takes up only half of your screen, program
lines will quickly scroll and segment so that you can only see part of a
program line at a time. To change the horizontal and vertical size of the
LIST Window, place the pointer on the top bar and, holding the left
mouse button down, drag the window to your left. Then place the pointer
in the lower right comer box of the window and pull (hold the button
and drag) the window to your right That will let you see more of your
program as you write it Leave a little space on the left side of your screen
so that you can place the cursor into the Output Window if you want Just
remember, Commodore made the Amiga flexible so that it could fit your
needs.

________________ CHAPTER

Starting Operations

FUNDAMENTAL FORMATS: COMMAS, SEMICOLONS
AND COLONS

2 __ -

In Chapter 1 you learned how to print letters and numbers on your
screen; now we will look at the first step in formatting what you print in
the Output Window. Write the following program and run it

5tartHere:
PRINT 1;2;3;4;5
PRINT 1,2,3,4,5
PRINT 1 : PRINT 2 : PRINT 3 : PRINT 4 : PRINT 5

Place the pointer in the Output Window and run the program. Your
screen should look like this:

1 2 3 4 5
1 2 3 4 5
1
2
3
4
5

01<

19

20 The Amlga Microsoft BASIC Programmer's Guide

The first set of numbers are right next to one another, separated by a
space. The next set is tabbed at intervals across the screen, and the last
set is on separate lines. The formatting characters are the semicolon,
comma and colon. The semicolon between numbers or text will place
printed characters adjacent to one another (we'll explain why the num
bers have a space between them shortly), and the comma separates
characters into five even placements across the screen. The colon works
just like a separate line, so if there's a colon or nothing on the rest of a
line after a character in a PRINT statement, the next character will be on
the next line. The colon is really not a formatting character; instead it
delineates different statements in a single line.

For the most part, we will be using separate lines instead of the
colon at first It is usually clearer to show each statement on individual
lines than to combine a lot of statements on a single line. This is
especially true if the program starts scrolling horizontally off the screen.
The major exception to the use of the colon as a line separator is with
line labels. The colon must go after a line label and program statements
can go after the line label colon. However, you cannot place a line label
and then another line label together on the same line. For example, the
following would not work:

Wrong
5tartHere: PRINT "Whoops" : 5econdLine : PRINT "I goofed"

If you try to run that, you'll get an 'Undefined subprogram' error. Go
ahead and run it to see what happens. After the error, click the 'OK' in the
error box and then fix the program with your editor to look like this:

Right
5tartHere: PRINT "Whoops"
5econdLine : PRINT "I goofed"

Using your editor, we'll change the values 1, 2, 3, 4 to the words One,
Two, Three, Four and run the program again. Remember to put in
quotation marks now, since we're dealing with text instead of numbers.

5tartHere:
PRINT "One"; "Two"; "Three"; "Four"; "Five"
PRINT "One". "Two". "Three". "Four". "Five"
PRINT "One: PRINT "Two: PRINT "Three: PRINT "Four PRINT "Five

Stanlng Operations 21

Run the program and you'll see one interesting difference between what
happened with your numbers. The first line looks like this:

OneTwoThreeFourFive

There are no spaces between the words. The numbers all had spaces
between them when a semicolon was used. What's going on? Numbers
actually have an "invisible" character in front of them denoting their
sign. That is, there's really a plus or minus in front of the number but you
cannot see the plus sign when it's there. For example, from the Direct
Mode type in:

PRINT 4 - 10

The result, -6, is presented on the screen with the negative sign clearly
visible. The same thing happens with positive numbers except you
cannot see the sign, and that's what is in those blank spaces between the
numbers. If you change the first program so that the numbers are in
quotation marks and treated like text, there will be no spaces between
them. Try changing:

PRINT 1;2;3;4;5

to

PRINT "1';'2';'3";"4";'5"

and run the program again.

TABS, REMS, TICKS AND WIDTH

To keep things clear, you will want to use your TAB key to space
parts of your program horizontally in your LIST Window. Usually, it's
helpful to have each segment label all the way on the left side of the
LIST Window. Each line that is part of a given segment should be one or
more tab stops to the right Each tab stop is three spaces. For example,
the following program has three parts with three line labels each. Notice
how clear the grouping is:

22 The Amlga Microsoft BASIC Programmer's Guide

PrintNumbers:
PRINT 123.45
PRINT 33
PRINT n

PrintText:
PRINT "What goes up";
PRINT "might just stay";
PRINT "there."

PrintBoth:
PRINT "This is ~";5
PRINT 4; " times";2;
PRINT "equals";2 * 4

At this stage of the game, this kind of formatting might not seem too
important since we're dealing with small programs. But later on when
you have great big programs, you'll be glad that you kept them in
separate modules and used tabs to delineate them. Take a good look
at the 'PrintBoth' segment of the program to see how we mixed numbers
and text It's easy to print numbers and text together, if you're careful to
place the semicolons and the quotation marks in the right places. Notice
that we even printed a computer result (2 * 4) mixed in with text

Using descriptive line and segment labels goes a long way to clarify
what a program means. However, there will be times when you want a lot
of comments about your program which require more than just a line
label. Using either the REM statement or tick mark ('), you can write
comment sections of your program that let you know what's going on.
The program ignores everything in a line after a REM statement or tick
mark. For example type in and run this next program:

REM This will not be printed to the screen, but it helps to
REM show you what REM does.

Comment One:
PRINT "This is printed to the screen."

'The tick or single quote mark has the same effect as REM.

Comment Two:
PRINT "Yet all you see is what follows PRINT."

Starting Operations 23

As your programs become larger and you write more programs,
these comments are crucial. While you are writing a program, you know
what you're doing, but when you look at it later on, you may have no
idea of why a certain portion is the way it is. Likewise, if you give your
program to someone else, the documentation helps them understand
what you've done. Further on in this book you'll see how much this
internal documentation helps as the programs become longer. It's not
much fun to write extra lines that "don't do anything," but in time you'll
be glad you did.

The width of your screen defaults to a width somewhere around
infinity. (Actually, it's 255, but if text goes beyond 255 it doesn't "wrap
around" but just keeps on going. No one knows where, though!) If the
material printed on the screen goes beyond the columns visible on your
screen, you can't see the whole line. For example, type in the following
line in your LIST Window and run it

PRINT "This message is so long that it will scroll right off the
side of your screen."

When you run this program, the words "of your screen" have been
shuffled off to the right and you can't see them. To see the whole thing,
write in the following line above your print statement (Use your editor;
don't rewrite the entire program.)

WIDTH 62

PRINT "This message is so long that it will scroll right off the
side of your screen."

This time when you run the program, you can see the whole message.
The WIDTH statement, in effect, adds a "carriage return" after the
maximum number of characters has been printed to the screen. There
fore, when you have lines longer than the screen width, just add a
WIDTH statement

Besides using WIDTH to change the width of your screen, you can
use this statement to change the tab stops. You saw how the comma
between PRINTed text and numbers placed the characters in about five
equal groups across the screen. If you wanted more groupings or
print-zones, then you'd have to change the tab stops. You use a tab value
with WIDTH to do this. For example, type in the following program:

24 The Amlga Microsoft BASIC Programmer's Guide

WIDTH 62,10 : REM Second value is tab value
PRINT "1","2","3","4","5","6","7","8","9","10'
WIDTH ,3: REM Notice the comma and lack of width value.

When you run the program, you get two different spacings for the
numbers. The first set has ten spaces between tabs, and the second has
three. We used the quote marks around the numbers so that we wouldn't
get the "invisible" spaces caused by the sign value in front of numbers.
Experiment with that program trying out different tab widths. Also, notice
how the second WIDTH statement only has a single number after a
comma. Since we wanted the Output Window width to remain the same
(62), we didn't have to put in a different width value. So we just placed a
comma after the position where the width value would normally be and
inserted our new tab width.

VARIABLES

Using variables is probably going to be one of the most important
things you're going to learn about programming in this book. They are
flexible and powerful tools, but they are very simple concepts. Essen
tially, a variable is just a symbol for a value or text Variables used with
numbers are called 'numeric variables' and ones used with text are called
'string variables.' Variables are called such because they change or vary
in content Think of variables as cartons that hold either numbers or text
As you know, the cartons contain what you put in them, and so do
variables.

NUMERIC VARIABLES. To get started with variables, you'll need
to know how to define or assign values to variables. We'll begin with
numeric variables. Clear memory with NEW and type in and run the
following program:

Numbers:
W=5
X=10
Y=33.3
Z=12 * 2
PRINT W,X,Y,Z

Staning Operations 25

As you can see, the values assigned to the letters were printed on the
screen. To 'assign' a value to a variable, you use the equal sign (=) and the
value you want You can also use computed values, as we did with the 'Z'
variable. In fact, computed values are the most important ones you will
use in programming.

Besides defining variables with numbers, you can define them with
other variables. For example:

x=y+z

is a perfectly correct way to assign a variable. You can use other
variables, a combination of variables and numbers, computations or even
the variable itself in variable assignment For example:

C=C+1

is a common way of assigning a "counter variable" that increments the
value of the variable 'C' each time the program passes through that line.
(Later you will see how a program can loop through a line several times.)

VARIABLE NAMES. Variable names are almost as flexible as
variables themselves, but there are some important rules to remember in
connection with them. In summary, variable names must have the fol
lowing characteristics:

1. Each variable must begin with an alphabetic letter (A-Z).
2. Reserved words cannot be used as variable names, but you can

use reserved words as parts of variable names.
3. Numbers and decimal points can be used in variable names, but

they cannot be the first character.
4. There is a limit of 40 characters in variable names.

The following examples show correct and incorrect examples of
variable names:

Name

NEW=15
RENEW = 15
2X=33
X2=33
THIS ONE=12
THIS.oNE=12

Comment

In valid: NEW is reserved word
Valid: NEW is only part of name
Invalid: First character must be letter
Valid: Numbers can be part of variable name
Invalid: Spaces are not allowed in variable name
Valid: Decimal points are allowed

26 The Amiga Microsoft BASIC Programmer's Guide

About the only other thing that's involved in naming variables is
upper or lower case. As far as your Amiga is concerned, case doesn't
count, so don't think that using different cases with the same name will
result in different variables. For example if you have:

WHOOPIE = 40

in one place, and

Whoopie = 90

further on in your program, the values of WHOOPIE will change from 40
to 90. My own personal preference is to keep all variable names in upper
case like key words. Then, anything in lower case is assumed to be text
messages or comments. When debugging programs, problems are easier
to find if you use a consistent format Here's a little reminder program to
show you what happens with changing case in variable names.

Apples = 20
Oranges = 40
FRUIT = Apples + Oranges
PRINT FRUIT
fruit = 99
PRINT FRUIT

As you can see, the two different results of PRINT FRUIT was due to
declaring FRUIT as being the sum of the variables 'Apples' and 'Oranges'
and then declaring the lower case 'fruit' to equal 99. So the second time
the value of FRUIT was printed, it showed 99 instead of 60.

Amiga Notes

When experimenting with little programs, it's easier to "clear memory"
by selecting material in the LIST Window with the mouse and wiping
it out with the BACKSPACE than by using NEW. Then you don't have
to go through the interruption of deciding whether to save the
program and all that other stuff. Your Amiga is just trying to be
'friendly' and prevent you from screwing up by giving you the save
option, but sometimes it just gets in the way. With longer programs,
you'll appreciate the chance to save a program before creaming it, but
with these little example programs, just blow it out with the mouse
drag-BACKSPACE technique.

Staning Operations 27

V ARIABLE PRECISION. The variables we've discussed so far have
all been single precision. Precision refers to the number of digits a
variable or constant can handle. Single precision variables are accurate
up to seven digits. To see how this works, write and run the following
little program:

Precision.Test:
A= 1234.5678
PRINT A

As soon as you press RETURN, a pound sign (#) appears after the last
digit This means the number is a double precision variable. When you
run the program, the '7' is rounded up to 8 and the result on your Output
Window is:

1234.568

Using your editor, change the program so that the variable 'A' is followed
by a pound sign (#) as follows:

Atf=1234.5678
PRINT Atf

Now you get all eight digits. Double precision can handle eight digits.
Your Amiga uses different types of variables for different tasks. The less
the precision in a variable, the less memory and the faster the execution
of a program. The default single precision variable is fine for most
applications, but in case you need the others, they too are available. Your
Amiga helps to remind you of this by adding the correct sign after double
precision numbers and long integers. The following summary shows the
different types of variables and their characteristics:

Symbol Type Features

A% Short Integer Integer values (whole) from -32768
to +32767

A& Long Integer Integer values between -2147483648
and +2147483648

AorA! Single Precision Precision to seven digits with
decimals

A# Double Precision Precision to 16 digits with
decimals

28 The Amlga Microsoft BASIC Programmer's Guide

Practice with the following examples. We'll put them all in a single
program and watch the results:

Show.Variables:
A% = 32767
PRINT "SHORT INTEGER";A%
A8. = 2147483647
PRINT "LONG INTEGER";A8.
A = 1234.567
PRINT "SINGLE PRECISION";A
A~ = 1234.567890123456
PRINT "DOU8LE PRECISION";A~

Notice what happens to the number in your LIST Window with long
integers and double precision numbers.

MASS ASSIGNMENTS AND CHANGES. Sometimes your program
needs nothing but double precision, integer, or long integer numbers.
Since it's no fun to keep remembering to put %, # or & after variable
names, you can assign all your variables to be a certain type all at once.
The keywords DEFINT, DEFLNG, DEFDBL and DEFSTR will declare
your numeric variables to be of a given precision. The DEF ... part of the
statements refers to DEFine the variable as a certain type, and the second
part of the statements refers to short integer (INT), long integer (LNG),
double precision (DBL) and string (STR). (The next section explains string
variables, so don't worry about that now.) You don't have to declare all
variables to be of a certain type; only the ones you want You simply type
in the range of variable names beginning with a given character that you
want declared. For example:

DEFINT x-z

would declare all variable names beginning with X, Y and Z to be short
integer variables. If you have "A-Z," then all variables would be declared
to be integers using DEFINT. You can even have split groupings such as:

DEFD8L A-C, M-O, X

making variables beginning A, B, C, M, N, 0 and X to be double precision
variables. (This may seem strange now, but in big programs, mass
declarations can really help organize things and make life simpler.)

Starting Operations 29

Besides making group declarations for variables, you can also change
variables. The functions CINT, CLNG, CSNG and CDBL change a numeric
variable into short integer, long integer and single and double precision
variables respectively. For example, run the following program:

Double.2.Int:
AIt= 1234.56789
A% = CINT (AIt)
PRINT A%

Since neither short nor long integers accept fractions (decimals), you only
get the first four digits. Furthermore, the fractions are rounded up. In
programs where you need to round off fractions, but need the fractions in
the computations, using CINT can be very handy.

Another function that turns variables and values into integer values
is INT. When you use INT, fractions are not rounded up, but instead are
simply dropped. For example, change the last example program by
removing the 'C' in 'CINT' so that it looks like the following:

Double.2.Int:
AIt= 1234.56789
A% = INT (AIt)
PRINT A%

Now instead of '1235,' your Output Window shows '1234.' When you need
to drop the fraction with no rounding up, use INT; when rounding up is
required, use CINT.

STRING VARIABLES. Variables that can hold text are called
"string variables," and they are denoted by a dollar sign ($). For example,
try the following:

5how5tring:
Computer$="Amiga"
PRINT Computer$

The same naming rules apply to string variables as they do to numeric
variables, and you can use all kinds of different symbols, including
numbers, in strings. For example:

30 The Amlga Microsoft BASIC Programmer's Guide

is a perfectly legitimate string declaration. However, when a number is
part of a string, it is not treated as a real number; it's considered text For
example, run the following little program:

Number.String:
TWO$ = "2"
FIVE$= "5"
PRINT TWO$ * FIVE$

That'll give you a Type mismatch error since you need numbers for
multiplication. Using your editor, change the program so that the asterisk
is a plus sign as in the following:

Number.String:
TWO$ = "2"
FIVE$= "5"
PRINT TWO$ + FIVE$

Now run it, and see what happens. You get '25' printed to your screen.
You have just discovered "concatenation." That means you've tied two
strings together using the plus sign. However, you really can't see how
concatenation works very well with numbers, so let's look at some
examples with text

String. Ties:
CITY$ = "San Diego," : REM SPACE AFTER COMMA
STATE$ = "California"
PRINT CITY$ + STATE$

LASTNAME$ = "Cadet"
FIRSTNAME$ = "Space"
PRINT FIRSTNAME$ +" "+LASTNAME$ REM SPACE BETWEEN QUOTES

FIRSTPART$="Ahhhh"
SECONDPART$="Choooo!"
SNEEZE$=FIRSTPART$ + SECONDPART$ REM CREATE THIRD STRING
PRINT SNEEZE$

Concatenation can be very useful when different parts of strings
have to be stored separately but brought together in different parts of the

Starting Operations 31

program. You'll find this especially true when writing programs that need
separate categories for first and last names. Also, note that new string
variables can be created by concatenating two other string variables as
we did with SNEEZE$.

The other basic formatting characteristics that apply to numeric
variables also apply to string variables. Semicolons place strings adjacent
to each other and commas separate them by tabs. For instance, this next
program shows string variable formats:

String.Formats:
DAV$= "Thursday"
MONTH$="JANUARV" REM SPACE AFTER 'V'
VEAR$="2010"
MONTHDAV$="25"
PRINT DAV$,MONTH$;MONTHDAV$,VEAR$

Finally, like numeric variables, you can make group declarations.
Using DEFSTR For example, DEFSTR A-Z would make all variables
string variables even without the dollar sign. This next little program
shows how to use DEFSTR:

Gang.Strings:
DEFSTR J-Z
A= '3'3

J="We want"
Z="drums in the band."
PRINT J;A;Z

STRING-NUMBER CONVERSIONS. Two of the more useful func
tions you will find in Amiga Microsoft BASIC are STR$ and VAL. These
are used to change string variables into numbers and numeric variables
into strings. First, let's look at VAL. It changes string numbers into real
numbers:

String.2.Num:
SIX$ = "6"
THIRTV$= "30"
SIX=VAL(SIX$)
THIRTV=VAL(THIRTV$)
PRINT SIX * THIRTV

32 The Amlga Microsoft BASIC Programmer's Guide

You may be wondering why on earth anyone would want to go
through all the trouble of first defining a string with a number and then
converting it to a numeric variable for math functions. Why not just
define numeric variables in the first place? There are certain kinds of
applications where a number may be part of a string for one situation
and then needed as a number for other things. Further on in this book
you'll learn how to use parts of strings. Sometimes numbers make up
only a part of what needs to be manipulated mathematically. In those
cases, you would need first to get the part of the string with the number
and then convert it to a real number.

On the other hand, you can convert numbers to strings. Using STR$,
numeric variables are transformed into string variables. For example, the
next program takes a numeric variable and transforms it into a string
variable, and then concatenates it with another string in a third string
variable.

Num.2.String:
A=10
A$=STR$(A)
HOME$=A$ + " Downing street"
PRINT HOME$

Like VAL, you may not see right away why STR$ is useful, but as you
progress, you will find it to be a very useful function.

SUMMARY

This chapter took you through the fundamentals of variables and
some elementary formatting. The several kinds of variables handle dif.:
ferent types of data with varying degrees of precision. The essence of a
variable is its ability to change in a program. Not only can a variable
change in content, as from one string or number to another, but variables
can also change in type. We found there were five different types of
variables; four numeric and one string. Numeric variables can keep the
same contents but be changed in type, as from integer to single precision
floating point Furthermore, strings can be transformed into numeric
variables and vice versa.

The flexibility of variables give them their power in programming.
We're used to calculating numbers, and numeric variables probably

Starting Operations 33

make more sense to us than string variables. However, just as the content
of our talk changes depending on the topic or conversation, string
variables can also change depending on what the program does. As you
progress, calculations with string variables will become as natural as
calculating numbers.

Finally, you should begin to understand the importance of format
ting. No matter how good a job you do in writing a program, it's
important for your program to show you what the results mean. If all you
get is the result of the calculation with no indication of what it is the
result of, or if everything is all scrunched together, then you're only doing
half of the programming job. As you add more to your programs,
formatting will increase in importance, and as you continue in this book
you'll learn more words to format with.

________________ CHAPTER 3 __ _

Math Operations

As we saw in Chapter 1, basic mathematics in BASIC is a simple
matter. Since your computer can take complex values and quickly return
computation results your Amiga is uniquely qualified to perform a wide
variety of mathematical tasks. Using the PRINT statement, the outcome of
any calculation is sent to the screen. For example:

PRINT 8.87 * 390.85

returns 3466.84 on your screen. But since that is nothing your calculator
can't do, let's see some other more valuable work Amiga programs
can do.

SEQUENTIAL CALCULATIONS

The first thing to learn is how to sequentially build a program that
will perform several calculations at once. More sophisticated calculators
do the same thing, but such calculators are actually performing computer
functions in that they are using memory storage. What we will be
examining here are very simple methods for computing results; more
advanced users may wish to skip this section and go directly to the
section on precedence. For those of you new to programming, though,
this section will be important for understanding how to organize more
complex mathematical operations.

35

36 The Amlga Microsoft BASIC Programmer's Guide

To get started, let's take a look at finding a mean or average. For
example, suppose you need to find the average number of disks you used
in your business per month during the last fiscal year. Supposing you
have records of the monthly volume of disks, you can simply add them
all up and divide the total by 12. To make our program clear, we'll use
month abbreviations as variable names:

Disk.Average:
JAN=10
FEB=13
MAR=15
APR=20
MAY='3
JUN=21
JUL=5
AUG=12
SEP=22
OCT=33
NOV=44
DEC=21

FirsLHalf:
TOTAL=JAN + FEB + MAR + APR + MAY + JUN

Second.Half:
TOTAL=TOTAL + JUL + AUG + SEP + OCT + NOV + DEC

Calc.Mean:
MEAN = TDTAL/12
PRINT "The average number of disks used was";MEAN

The program was relatively long for the simple task it performed,
and we could have started off by defining TOTAL as the sum of each
monthly value. For example:

TOTAL = 10+15+13+20+'3+21+6+12+22+33+44+21

would have done the same thing with less work However, there were
some other things to learn; so we took a more circuitous route. First, by
using descriptive variables, you have a much better idea of what's
happening. Thus, the monthly names show you in the listing exactly how
many disks were used each month. Second, you can see in the segments
labelled 'FirstHalf' and 'Second.Half' how to combine a value with itself.
The variable TOTAL is the sum of the first six months at the end of

Math Operations 37

'FirstHalf.' To combine TOTAL with the second six months, you need to
start by adding the first six, which in this case, are already accumulated
in TOTAL. Then, you add TOTAL to the second six months. If you just
defined TOTAL as the second six months, you would simply replace the
first six months with the second six months and not combine them.

When you first start programming, it is best to avoid shortcuts and
put all of the sequences in clearly labelled paths. This will help you
understand the structure of programming and layout all of the steps of a
problem. By breaking down a more complex problem into very simple
steps, you can solve just about any programming problem. This takes
more time, but as you become more proficient, you will see the value of
having taken the extra steps. While more advanced techniques may not
take the same number of programming steps, the logic of the steps is the
same.

PRECEDENCE

As we begin dealing with more and more complex math, we will
need to observe a certain order in which problems are executed. This is
called "precedence." Depending on the operations we use, and the results
we are attempting to obtain, we will use one order or another. For
example, let's suppose we want to multiply the sum of two numbers by a
third number-say the sum of 7 and 8 multiplied by 3. If you entered

PRINT "/ + 8 * 3

you would get 3 multiplied by 8 to which 7 is added on. You got 31, and
you wanted 45. Here's what actually happened in the form of a program:

Addemup:

A= 3 * 8

B= A + "/

PRINT B

And you wanted:

Add.first:
A="/ + 8

B=A * 3
PRINT B

38 The Amlga Microsoft BASIC Programmer's Guide

The reason for the sequence of execution in the order it took was
precedence-multiplication precedes addition. In general, math is com
puted from left to right, but the rules of precedence reorder the flow of
execution. The following list shows the order:

1. A Exponentiation
2. - Minus sign; not subtraction
3. * Multiplication
4. / Floating point division
5. " Integer division
6. MOD Modulo calculation
7. + - Addition and subtraction

Try some different problems and see if you can get what you want

Reordering Precedence

Once you get the knack of the order in which math operations work,
there is a way to simplify their organization. By placing two or more
numbers in parentheses, it is possible to raise their priority. Let's go back
to our example of adding 7 and 8 and then multiplying by 3, but this
time we will use parentheses:

PRINT (7 + 8) * 3

Since the multiplication sign has precedence over the addition sign,
without the parentheses we would have gotton 3 times 8 plus 7. However,
since all operations inside parentheses are executed first, your computer
first added 7 and 8 and then multiplied the sum by 3. If more than a
single set of parentheses is used in an equation, then the computer
executes the innermost first and works its way out

Amlga Notes

Precedence Maze

To help YO\l remember the order in which math operations are
executed within parentheses, think of the operations as being caught
in the center of a maze. Each maze segment is composed of paren
theses. and you must exit each parenthesis from the center outwards.
Once outside of the maze, everything works from left to right

Math Operations 39

The following examples show you some operations with paren
theses:

PRINT 20 + 10 * ((5 - 4)+7)
PRINT (12.43 + 92) / 3 A (11 - 3)

PRINT (62 - 3.1415) * (91 + 3.1415)

PRINT (((86 + 9) - (4.6 + 5)) / . 31) * 2.55
PRINT 6 / 2 * ((51 / 3) - (100 / 14) + 6)

It's important to remember to keep the number of left and right
parentheses the same. If you run into an error in your program using
re-ordered precedence, the first thing you should do is to count your
parentheses. Now try some of the following problems using the format
expected by your computer:

1. Using a single line, rewrite the program that calculated the
average number of disks used.

2. Multiply 15 by 15 and the result by 3.1415. This will compute the
area of a circle with a radius of 15. To find the area of any other
circle, change 15 to another value. (This would be a good little
routine to save.)

3. Add up the monthly charges on your utility bills and divide the
sum by 12. If you sell your house, you can tell prospective buyers
the average amount of your bills.

MATH FUNCTIONS

Math functions are built-in formulas for calculating commonly used
math operations. For example, the function COS returns the cosine of a
value. Similary, SQR returns the square root In addition to the built-in
functions, you can also define your own functions for specialized or
general needs you may encounter. In this section, we'll look at the built-in
functions and how to define your own.

Built-in Math Functions

Most of the functions in Amiga's BASIC are for mathematics. In this
section, we will only be concerned with those used in math (with the
exception of those that define variable types, e.g., DEFINT). These func-

40 The Amiga Microsoft BASIC Programmer's Guide

tions can be used for calculating straight math problems or for calculat
ing graphics and similar applications.

SIN. Returns the sine of a value. You may want double precision
with some of these functions, depending on your application. Note the
difference in the outputs using single and double precision in the
following example:

PRINT SIN(4)
8~ = SIN(82)
PRINT 8~ : REM Double precision output

Output:
-.7558024
.3132287859915587

COS. Returns the cosine of a value.

PRINT COS(4)
C~ = COS(82)
PRINT C~

Output:
-.5535435
.9495777057547705

ABS. Returns the positive value for any number, including negative
numbers.

PRINT A8S(-32)

Output:
32

ATN. Returns the arc tangent of a value. In calculating circle
segments for such applications as pie charts, this function is useful.

PRINT ATN (270)

Output:
1.557093

TAN. Returns number's tangent value.

PRINT TAN(90)

Output:

-1. 9952

Math Operations 41

EXP. Returns the base of natural logarithms (e) to e's power. The
value of e is 2.718281828490.

PRINT EXP(7)

Output:

1096.633

FIX. Drops, without rounding, fractions from number. Integer vari
ables will round numbers up, and INT rounds them down. FIX just cuts
off the fractions with no rounding whatsoever.

PRINT FIX(5.777)
A=5.777
A%=A
PRINT A%

Output:

5

6

INT. Returns the integer of a value rounded down.

PRINT INT(9.875)
A%=9.876
PRINT A%

Output:

9

10

LOG. Returns the logarithm of numbers greater than zero.

PRINT LOG(8)

42 The Amiga Microsoft BASIC Programmer's Guide

Output:
2.12179442

SQR. Returns the square root of a number.

PRINT SOR(lS)

Output:
4

The above functions are what you are probably most familiar with if
you use math a lot in your work. There are several non-math functions
that do everything from returning a value indicating the position of your
cursor on the screen, to finding the last file on your disk. We'll get to
those later. But now, let's take a look at three more numeric functions
closely tied to your computer.

Random Numbers

Your computer has a pseudo-random number generator. It is not a
true random number generator in that some base other than total chance
generates the numbers, but it is about as close as you can come. There is
a statement, RANDOMIZE and a function, RND, that when used together
can do a very good job of generating random numbers. The statement
RANDOMIZE seeds the random number generator. You can either put a
value after RANDOMIZE, enter a value from the keyboard or use TIMER
that generates the numbers of seconds after midnight from your Amiga's
internal clock. To get started, enter the following program that uses a
fixed random seed:

RANDOMIZE 55
A=RND(l)
B=RND(2)
C=RND(3)
D=RND(4)

PRINT A,B,C,D

Run the program a few times, and you will see that the four values are
always the same. Now change the first line to read:

RANDOMIZE TIMER
Etc

Math Operations 43

Again, run the program several times. Each time you run it, the values
change since the random number seed changes. Finally, delete TIMER so
that the first line simply reads

RANDOMIZE
Etc ...

This time when you run the program, you are asked to provide a number.
Go ahead and do it to see what happens. Depending on what you need in
a program, you can seed your random number generator in any of these
three ways.

You probably noticed that all of your numbers were fractions. What
if you wanted to write a program that needed whole numbers? Suppose
you wanted to make a simple math skill building program for your child
using integers and you wanted to randomly generate different values to
be added. All you have to do is to multiply the random values by 100,
and then use the INT function to change the number into an integer. For
example, run the following program several times to see the different
whole numbers it can generate:

RANDOMIZE TIMER
A=RND (1)
A= A * 100
A=INT(A)
PRINT A

A more compact way of doing that would be:

RANDOMIZE TIMER
A=INT(RND(1) * 100)
PRINT A

Compare the two programs to make sure you understand how the
sequence of the first program was maintained in the second. Remember
the rules of precedence and how they were ordered in the second
example.

To generate a range of numbers, you would use the following
formula:

44 The Amiga Microsoft BASIC Programmer's Guide

A= INT(RND * (H + 1-L)) + L

The variable H is the high limit and L is the low limit For example, if
you wanted to generate numbers between 5 and 25, you would use the
following:

A = INT(RND * (25+1-5)) + 5

Pick any two whole numbers you want, and see if you can write a
program that randomly generates values between the low and high
values you chose.

Hexadecimal and Octal Numbers

This section describes numbers that have a base different than
decimal. This will be only an illustrative introduction; in later chapters
we will describe different number bases and how they relate to your
computer.

Hexadecimal numbers are base 16; octal numbers are base 8. To
convert decimal values into hexadecimal or octal, use the HEX$ and
OCT$ functions, respectively. For example, the decimal value 10 in
hexadecimal is 'A' and in octal, it is 12. The following program shows
how to make the conversion:

Hex.Oct:
PRINT HEX$(10)
PRINT OCT$(10)

When you run that program, you'll get an 'A' and '12.' Both represent
integer numbers in another counting system. Also, both octal and
hexadecimal values are stored as strings. Therefore you must use string
variables for storage of octal and hex values.

Defined Functions

The final functions we will cover in this chapter are those that you
create yourself. To define your own functions, use DEF FN. For example,
if you want a function that will find the square of a number (to
compliment your built-in SQR function) you can define it with DEF FN.
Here's how:

Def.Square:
DEF FNSQ(X) = XA 2
PRINT FNSQ(4)
PRINT FNSQ(22)

Math Operations 45

The function FNSQ acts just like any of the other functions we've
discussed except instead of being built into your BASIC, it's one you've
created yourself. In the appendix of your Amigo BASIC manual that
comes with your computer, there's a whole list of functions you may
want to define.

SUMMARY

One of the easiest things for your computer to do is mathematical
calculations. The most important thing to remember about your calcula
tions is the order in which you put everything. Initially, it is best to lay all
of your calculations out in separate operations on separate lines. As you
become more adept at programming, you will be able to combine several
steps into a few. However, remember that even the most complex
problem can be broken down into several small steps.

Precedence is an important element to keep in mind when creating
equations. The order of precedence can be changed, and by doing so you
can write more compact programs. When you develop more sophisti
cated programs, precedence will become an increasingly important aspect
to watch.

Finally, you learned about the major functions available in BASIC.
These are actually little formulas that have been written for you, and as
you saw with defined functions, you can even make your own functions.
As you learn more and more about programming, you will learn a lot of
tricks where these arithmetic computations do much more than just print
numbers on the screen.

________________ CHAPTER 4 __ _

Sequential Modular
Program
Organization

This chapter will introduce you to program structure. As you begin
to program more, there will come a point where you will want to test
your creativity. In many ways, creative programming is just like creative
writing: you will want to pour out your program ideas just as a novelist
wants to create characters and a story. However, good novelists work
within a structure to provide a guide and sense to their story. The reader
can thus follow the development and benefit from the author's creative
efforts.

Since your Amiga provides a creative environment, there's a ten
dency for new programmers to confuse creativity with getting a little
routine to run. For example, by the time you are finished with this
chapter, you will be able to write an interactive program. You can be as
inventive and experimental as you wish. (In fact, you should experiment
and try things on your own! If you're not doing that already, begin doing
so right away.) As you progress in your learning and understanding, you
will want to tackle larger projects that require several different tech
niques and routines you've developed. If you have no organized procedure
or structure for arranging all of the creative routines you've written, you
can become snarled in an impossible tangle of program codes which will

47

48 The Amiga Microsoft BASIC Programmer's Guide

eventually get in the way of creativity. To avoid that problem, we will
begin here with procedures to help you keep everything running smoothly
and your creativity flowing.

TOP DOWN PROGRAMMING

What follows will seem so simple that you may wonder why we
bother pointing it out As you do more programming, the importance of
this chapter will become more obvious, but right now, it may appear that
we are belaboring the obvious. First, let's address the question of what is
'Top Down Programming.' With the few programming statements now at
your command, there may appear to be a single way to write a program-a
sequence with each part in place beginning at the top and going to the
bottom. That's essentially what we mean by 'Top Down: proceeding from
the beginning in an orderly fashion from the beginning to the end. For
example, this next program is a Top Down one:

5how.Functions:
Def.Vars:

5AMPLE=25
5AMPLE$="5ample="
5ROOT$="5quareroot="
TANGENT$="Tangent="
C05INE$="Cosine="

5creen.Output:
PRINT 5AMPLE$;5AMPLE
PRINT 5ROOT$; 5QR(5AMPLE)
PRINT TANGENT$; TAN(5AMPLE)
PRINT C05INE$; C05(5AMPLE)

The 'top' of the program was the first labelled line. That gives an idea
of what the program does. Next, all of the variables are defined with
names which tell something about what they do. Finally, we send the
information to the screen. Even before you run the program, you have a
pretty good idea of what to expect

Now compare it to the following:

Sequential Modular Program Organization 49

S=25 : S$="Sample=" : PRINT S$;S
R$="Squareroot=" : PRINT R$; SORtS)
T$="Tangent=" : PRINT T$; TAN(S)
C$="Coslne=" : PRINT C$;CDS(S)

Both programs do the same thing, but the second is not as clear or as well
organized as the first It may seem better than the first one since it takes
less space to write and the variable names are not as long. But suppose
the program was over a hundred lines long and there was a problem or
'bug' in it You would not be sure where the problem lies because
everything is mixed together. That is, you could not easily isolate the
problem. Instead of being able to go to the block that defines variables or
the block that prints things to the screen, you'd have to wade through the
combined definitions and output A less simple program would be a real
mess to fix.

Your Amiga provides a way of helping you. When most beginners
get going, they like to see how compact they can make their programs.
Instead of having several lines, they like to cram everything into a single
line. On some computers, the program listing will wrap around. This
means that if your program line scrolls off the screen to the right, it
'wraps around' and puts the line on the left In that way, very long
program lines can be viewed without scrolling. However, on your Amiga,
as soon as your program line goes off the right of your LIST Window, the
window scrolls. You can make very long program lines, but if you do, it's
necessary to scroll horizontally to see the whole line. In debugging a
program, this is a real problem. Therefore, expand your LIST Window to
fill the screen, and if your line starts scrolling horizontally, it's a subtle
hint from your Amiga that you'd be better off writing more lines instead
of trying to put everything on a single line.

GEITING THINGS IN ORDER

A key element of Top Down programming is planning. Instead of
sitting down at the keyboard and keying in whatever comes to mind, it's
a better idea to plan ahead. You don't have to make an elaborate flow
chart; rather, you should just jot down what you want your program to do
and the order in which it is to perform various tasks.

50 The Amlga Microsoft BASIC Programmer's Guide

Let's take a practical task for your computer and see how to write a
Top Down program. First, we'll list the things necessary to organize a Top
Down program:

1. State the goal of the program
2. Arrange the logical order of procedures to achieve the goal
3. Write the program

THE GOAL. Let's write a program that adds up the monthly ex
penses you have for major items in your family. We'll include expenses
for the following:

1. Housing
2. Transportation
3. Food
4. Clothing
5. Utilities

LOGICAL ORDER. Now let's see in what order we would have to
arrange a program so that it would achieve the goal:

1. Enter the data.
2. Find the sum of the data.
3. Label the results.
4. Send the results to the screen.

The arrangement here may appear obvious, and largely, it is, but
later on this step will be the most important thing to do correctly. At this
stage, we have very few programming statements and a relatively simple
goal. However, as you progress, you may have to juggle more information
and programming considerations. At that time you will be glad you spent
a little time laying out a program's order before you actually start writing
the program.

WRITE THE PROGRAM. Finally we come to the program. We can
now just follow the logical steps and crank out the program:

Fam.Expense:
Ent.Data:

HOUSE=755

TRANS=233
FOOD=532
CLOTH=124
UTIL=154

Find.Sum:

Sequential Modular Program Organization 51

SUM = HOUSE + TRANS + FOOD + CLOTH + UTIL

Make.Label:
SUM$='Total monthly expenses='

To.Screen:
PRINT SUM$;SUM

After having taken a few organizational steps, the program almost writes
itself. Save this program on your disk; you'll need it later.

INTERACTIVE DATA ENTRY

Now that you can see how to enter data into your program through
declarations of variables, let's see how it can be done dynamically and
interactively while your program is running. This will make your programs
far more flexible since you are not stuck with the data you entered when
equating variables. (Of course, you could rewrite the part of the program
where the variables are defined.)

INPUT. The first method we'll examine for getting data into your
program while it's running is INPUT. This statement stops the program
and waits until the RETURN key is pressed. Whatever you write before
you press RETURN is entered into one or more variables. There are two
important rules to remember:

1. Do not key in non-numbers using numeric variables.
2. Do not enter commas.

Now let's write a simple program that shows what INPUT can do:

INPUT A
PRINT A

52 The Amiga Microsoft BASIC Programmer's Guide

Run that little program. You will be presented with a question mark on
your screen. This is the 'prompt' for you to enter a value. Since 'A' is a
numeric variable, you must type in a number. Go ahead and pick any
number you want and press RETURN. When you do so, the number you
typed in is printed on the screen. Now, run the program again, but this
time instead of typing in a number, type in a letter to see what happens.
You'll get something like the following on your screen:

? W
?Redo from start

The "?Redo from start" message means you put in the wrong thing and it
gives you another chance to do it correctly. Just enter any number and
your computer will be as happy as a clam.

Change your program so that A is changed to A$.

INPUT A$
PRINT A$

Now when you run it, you can type in anything except commas. If you
enter numbers, though they are treated like text and cannot be used for
mathematical calculations. Run it a few times to try it out

As you can well imagine, if all you saw on your screen was a ques
tion mark, you may not know what to do next in a program. For example,
if your program wanted you to first enter a string and then a number, you
could not tell from just a question mark what you should do. There are
two ways to deal with this problem. First, you can simply use your PRINT
statement to write a message preceding the INPUT line. For example, this
program clearly shows you what the program expects:

Cost.Getter:
PRINT "Enter item" ;
INPUT ITEM$
PRINT "Enter cost";
INPUT PRICE
PRINT ITEM$, PRICE

When you run that program, you can tell exactly what type of informa
tion your computer wants. Furthermore, by using descriptive variable
names in the program, you can tell from the listing what each variable
does.

Sequential Modular Program Organization 53

Another way to do the same thing with INPUT is to place the prompt
message directly in the INPUT line. You can see how that's done in
another version of the last program:

Cost. Get ter:
INPUT "Enter item";ITEM$
INPUT "Enter cost";PRICE
PRINT ITEM$, PRICE

That saves time, but it does not make the program any less clear. In
fact, the program is probably clearer than the first method since you can
tell at a glance what needs to be entered and the name of the variable
that will store the information.

Using these new statements, let's rewrite the household expense
program so that you can easily enter any amounts you want without
having to change the program. (lllNT: Don't rewrite the whole program;
load the old one from your disk and just make changes with your editor.)

Fam.Expense:
Ent.Data:
INPUT "Mortgage/Rent"; HOUSE
INPUT "Transportation"; TRANS
INPUT "Food costs"; FOOD
INPUT "Clothing";CLoTH
INPUT "Utilities";UTIL

Find.Sum:
SUM = HOUSE + TRANS + FOOD + CLOTH + UTIL

Make.Label:
SUM$="Total monthly expenses="

To.Screen:
PRINT SUM$;SUM

That was easy; you just had to make a few changes from the old
program with your editor. Notice that the 'Find. Sum:' routine worked the
same with variables whose values you entered from the keyboard as with
those you placed in the program with equates. This version, though, is a
lot easier for entering different data than the first one.

54 The Amiga Microsoft BASIC Programmer's Guide

Amiga Notes

Savina New VenioDa and Keeping Old ODes

Since Murphy's Law ("If something can go wrong, it will") seems to
worle overtime with computer programs. it's a very good idea to make
progressive copies of your programs. Then if you goof up part of the
program and it chokes your Amiga to reset, you won't lose everything.
To save both the old version and new version of your program. all
you have to do is to choose the 'Save As' option from your project
menu. Then save the new version under a different name. The old
version stays intact on your disk and you have the new version as
well Once you have the final version completed, you can get rid of
the old ones taking up disle space.

Another way you can put INPUT to good use is by letting it insert
a pause in your program. If you want different messages sent to the screen
to be read separately, you can use INPUT to stop the program until the
user presses the RETURN key. The following program gives the user two
messages presented separately:

First. Info:
PRINT "This is to inform you that your lottery ticket"
PRINT : PRINT : PRINT
INPUT "Press RETURN to continue";RT$

5econd.Info:
CL5
PRINT "was eaten by the lottery computer."
PRINT
PRINT "(The computer was not an Amiga.)"

In this case, INPUT and the variable RT$ were just used to halt the
program; no information was stored in RT$. When you have long mes
sages that fill up the screen or you want different segments of messages
presented separately, such as in guessing games, this application of
INPUT can be very useful.

Sequential Modular Program Organization 55

Amlga Notes

.'IIIepI' IDput

One tri~ to use ,to inputanYthinsyou want in a string variable is to
pkK:e a quote ru.rt .•• the tint thiN yOu type in when prompted for
input You can insert COIllIllU with no problem and fheyare stored in
the string variable. Go ahead and try it Qut Just remember to put the
quote in first.

INPUT$. Besides using INPUT to stop your program and get infor
mation, you can use the keyword INPUT$. This word is used more
extensively with files (as discussed further on in the book), but it can also
be used with information from the keyboard. The only major problem
with INPUT$ is that you cannot see the keys you press on the screen. (In
computer talk, this means the keypresses are not 'echoed' to the screen.)
The format for INPUT$ is as follows:

V$=INPUT$(N)

The variable (V$) must be a string, and the program will wait until N
characters are received. For example the following program expects three
keypresses:

PRINT "Press any three keys"
THREE$=INPUT$(3)
PRINT THREE$

The advantage of INPUT$ over INPUT lies in the control of the
number of characters to be entered. But, it really is not a good substitute
for most INPUT applications since you cannot see what you write until a
PRINT statement sends the information to the screen. Also, INPUT$ takes
off as soon as the indicated number of keys are pressed, while using
INPUT, if you make a mistake, you can change it before pressing
RETURN. INPUT$ is better used as a temporary program pause where
any key can be pressed to continue the program flow. This next program
illustrates INPUT$ as a "hit any key" pause:

56 The Amlga Microsoft BASIC Programmer's Guide

Hi t.Me:
PRINT "What"s a female friend in Spanish?"
PRINT : PRINT : PRINT : PRINT : PRINT
PRINT "(Hit any key for answer.)"
HIT$=INPUT$(l)

Answer:
CLS
PRINT "An Amiga!"

Wha tever key is pressed is stored in the INPUT$ variable. In the
above program, it is HIT$. To better illustrate how INPUT$ stores
information in variables, we'll use a simple program that lets you press
three keys and then prints them on the screen:

Three.Key:
PRINT "Enter any three letter word"
THREE$=INPUT$(3)
PRINT "Your word is =>"; THREE$

The program creates a strange sensation by having you "type in the
dark" and then pop your word to the screen. However, it does show how
INPUT$ is used to store information in variables. Using several INPUT$
statements in a program you can create your own echo. (Hint When you
write this program use the copy and paste functions of your editor to
create those parts of the program that are redundant.)

Echo.Back:
PRINT "Enter any three letter word"

First.Let:
THREE$=INPUT$(l)
PRINT THREE$;
WORO$=WORO$ + THREE$

Second.Let:
THREE$=INPUT$(l)
PRINT THREE$;
WORO$=WORO$ + THREE$

Third.Let:
THREE$=INPUT$(l)
PRINT THREE$;
WORO$=WORO$ + THREE$

Sequential Modular Program Organization 57

Whole.Thing:
PRINT : PRINT : PRINT : PRINT
PRINT 'Your word is =)'; WORD$

Each time THREE$ is printed, it effectively echos back what you just
typed. Thus, while the program seems relatively long, it executes com
mands so fast that you cannot see all of the work being performed to get
your typing "out of the dark."

INKEY$. We're getting ahead of ourselves on this keyword, but it is
important to include it in this section about entering data interactively.
INKEY$ works a lot like INPUT$(l) except that it requires a routine with
a loop and branch. In the next two chapters we'll discuss loops and
branches. Right now just use the format for INKEY$ and wait until later
to see what it all means. The following example shows a possible
application:

Yes.No:
PRINT 'Answer lYles or [Nlo'

Get.l<ey:
ANSWER$=INKEY$: IF ANSWER$="THEN Get.Key
PRINT ANSWER$

As you can see, it has the same effect as INPUT$(l), but INPUT$ is a lot
easier to use.

UCASE$. The final keyword we'll introduce in this section changes
keyboard letters to uppercase. Later on when we get into branching, we'll
be dealing with evaluations of what key was last pressed. Since your
Amiga differentiates between upper and lower case letters when evaluat
ing strings, one way to save time and avoid confusion is to have all
entries of a certain type changed to upper case. (With numeric variables
case is ignored.) In that way, if you enter an upper or lower case letter, it
will be treated the same. For example, the query:

Do you want to continue?(Y/N)

is a common one. If your CAPS LOCK key is on, then you will automati
cally enter an upper case Y or N, but if it's not, you'll have to remember
to use a shifted Y or N. This may seem like a petty point, but when your
program bombs because you forgot to enter an upper case letter, you'll be

58 The Amiga Microsoft BASIC Programmer's Guide

glad you met UCASE$. The following program illustrates its use. When
you run it, make sure your CAPS LOCK key is off (the red light should be
out).

Auto.Cap:
PRINT "Do you want to continue?(Y/N)"
REPLY$=INPUT$(l)

Up. it:
REPLY$=UCA5E$(REPLY$)
PRINT REPLY$

Whether you run it with the CAPS LOCK on or off, it returns a capital
letter. This handy little function will crop up again and again, so keep it
in mind.

GETTING INFORMATION TO THE SCREEN CLEARLY

We saw that it is important to clearly label prompts so that the user
will know what to do next with input The same is true for output By
clearly labelling what you send to the screen with PRINT you know what
is going on. All along in this chapter, we've been using clear labels so
that you know the result of a calculation. A lot of times when we write
programs for ourselves, 'we know' what the output is for, so we don't
bother with clear labels. For example, if you write a simple calculator
program that does nothing but addition, you know the results are going
to be the sum of what you last entered. However, if you don't use the
program for a while and run it at a later date, you may have no idea of
what the output means. And when you become more skilled, you'll have
programs that can do a lot of different things. Compare the following two
simple calculator programs to see the important difference output labels
make:

Poor.Output.Labels:
INPUT "Enter a number:";N
PRINT TOTAL= TOTAL+N
PRINT TOTAL
INPUT "Enter a number:";N
PRINT TOTAL= TOTAL+N

Sequential Modular Program Organization 59

PRINT TOTAL
INPUT "Enter a number:";N
PRINT TOTAL= TOTAL+N
PRINT TOTAL

By making some very small changes in the program, you can see
exactly what your output is. Change it to look like the following:

Clear.Output.Labels:
INPUT "Enter a number:";N
PRINT TOTAL= TOTAL+N
PRINT "Running total is =)";TOTAL
INPUT "Enter a number:";N
PRINT TOTAL= TOTAL+N
PRINT"Running total is =)"; TOTAL
INPUT "Enter a number:"; N
PRINT TOTAL= TOTAL+N
PRINT "Final total is =)";TOTAL

The change is so little that it takes almost no time at all to include in
your program, but it makes a big difference in what YOl program does.

WRffE. Besides using PRINT for screen output, you can use another
statement called WRITE. The useful thing about WRITE is that it will
send anything to the screen. For example, enter the following from the
immediate mode:

WRITE "The absent are always in the wrong."

As you will see, the whole phrase, quotes and all, is sent to the
screen. If you need quotes in your output, you can use WRITE, but there
are some drawbacks using this word. Try the next line in the immediate
mode:

WRITE 2,4,6,8

Using PRINT, those numbers would be spaced in columns across the
screen, but with WRITE, you have no formatting with commas, and the
commas are simply plopped on your screen. In some applications, that
may be just what you need, but it is not a good idea to substitute WRITE

60 The Amlga Microsoft BASIC Programmer's Guide

for PRINT except in situations where you need the special characteristics
of WRITE. This next one will show you something strange:

WRITE WEIRD$

(Put that in a program to confuse someone!)

READ THAT DATA

Up to this point, we have four ways of putting information into
variables:

1. Equate (e.g., AMIGA$="Computer")
2. INPUT
3.INPUT$
4.INKEY$

Now we're going to learn a fifth way that uses two words in
combination with one another, READ and DATA This method makes it
relatively easy to store information within a program for later use. When
you become familiar with disk files, you will probably want to use them
instead, but for a simple data storage technique, READ/DATA is handy.
The information for the READ variable is in a program line beginning
with DATA Try this little program:

Watch.This:
READ A
READ A$
READ 8
PRINT A,A$,8

Info.Here:
DATA 23,5kidoo,88

The first READ statement loads the variable 'A' with the first element
in the DATA line. In our example, it's 23. Then the invisible pointer
moves to the next element, 'Skidoo.' Finally, the third READ statement
looks at the third element in the DATA line, 88. You have to keep your
READ variables straight with the kinds of data they will read. For

Sequential Modular Program Organization 61

example, if you had a numeric variable for the second element in the
DATA line, "Skidoo," you'd get an error message. Change the variable A$
to X and see what happens. You'll get a Type mismatch error. That's just
like trying the write:

X=" SI<idoo"

and it doesn't work any better.
Change the X back to A$ and insert the following line in the program

right after READ B:

READ X$: PRINT X$

When you run the program, you'll get an 'Out of DATA' error. That means
there were not enough DATA elements for the READ statements. There
must be at least the same number of DATA elements as there are READ
statements or a RESTORE statement The RESTORE statement simply
places the pointer back at the beginning of the DATA elements. Fix up
your program so that it looks like this:

Watch.This:
READ A
READ A$
READ B
RESTORE
READ X$
PRINT A,A$,B
PRINT X$

Info.Here:
Data 23,Skidoo,88

Your screen will now show:

23
23

SI<idoo 88

Here's what happened. The 23 was read into the variable 'A,' the text
"Skidoo" into the variable 'A$' and the number 88 into the variable 'B.'
The pointer was restored to the beginning of the DATA elements with

62 The Amlga Microsoft BASIC Programmer's Guide

RESTORE so that 23 became the next value to be read. The 23 was
loaded into a string variable this time. Notice in the output that the first
23 was one space out from the screen's side and the second one was right
next to the side. Do you know why? Remember, the first time the 23 was
defined in a numeric variable, so the invisible sign is taking up one space
there. When the 23 was read into 'X$,' it treated the number as though it
were text; therefore there's no invisible sign taking up a space.

BREAKING DOWN LARGE PROBLEMS INTO SMALL
PROBLEMS

An element of structured programming is organizing the parts se
quentially and clearly. Implied in that organization is the creation of
"modules" that are separately developed yet interwoven with the rest of
the program. One way to envision this kind of programming is as
compartments on a ship. Each compartment is watertight so that if one
part is breached, the rest of the compartments will not be flooded.
However, each compartment is part of the whole ship; even if one
compartment is flooded, it will be necessary to repair it

The modules or compartments of a program have an analogous
function in debugging programs. When a program doesn't work, it must
be fixed. With large programs that are unstructured, there's no easy way
of isolating, identifying and fixing the problem. That's because everything
is crammed together in a way that's like a ship with just one big
compartment If there's a hole, the entire ship is flooded. With modules,
on the other hand, the problem can be identified in terms of where the
program crashes. For example, if something in the data entry portion of
the program bombs, then you simply go to the module that handles data
entry and look for the problem. Thus, instead of dealing with a giant
complex problem, you deal with a small simple one.

At the same time that it is easier to fix a structured program with
discrete modules, it is also easier to build a program with modules. As we
have seen already, the actual parts of a program deal with fairly simple
things: entering data, calculations and output to the screen. Big complex
programs have to deal with those parts too, but by breaking them down
into modules, even the most forbidding program can be taken one simple
step at a time.

Sequential Modular Program Organization 63

labelling the Parts

In any manufacturing process, especially ones involving the as
sembly of many different parts, the various parts must be well labelled.
Even the smallest screw is in a bin with a label describing it Up to this
point we've been labelling our programs without really going into the
labelling process in detail. This last section will cover the importance of
labels as both module headings and program remarks.

MODULE HEADINGS. If you're used to programming with line
numbers, then you may be familiar with creating module headings by
blocking program segments by 100's. For example, the following is a
typical block structure with line numbers:

100 REM *****
110 REM INPUT

120 REM *****
130 INPUT "What would you like to say";MESSAGE$

200 REM ******
210 REM OUTPUT

220 REM ******
230 PRINT MESSAGE$

With the ability to use labels instead of line numbers, we can save a
lot of typing and still have clearly labelled segments. By using the TAB
key, it is very easy to label your segments in Amiga BASIC. The same
program on your Amiga would be written as:

Input.Data:
INPUT "What would you like to say"; MESSAGE$

Output.Data:
PRINT MESSAGE$

Using spaces between your modules further helps the readability of
your program listing and aids in finding errors and debugging. To some
degree, treat your program like an outline, using the tabs and vertical
spacing to add clarity to what you are doing.

64 The Amiga Microsoft BASIC Programmer's Guide

REM AND TICK('). Now that you can create module headings that
describe what's being done, what about REM and the tick mark (')? These
too, have their place, especially when you have something tricky you
want to describe in your program. For example, you may use a single
precision variable in your program, but you can make a note to yourself
or another user that the variable should be changed to a double precision
one if a greater degree of precision is required. The next program shows
how this might look:

Input.Number:
INPUT "Please enter value to be divided"; VALUE

REM - For greater precision change VALUE to VALUE~.

Calculate:
RESULT = VALUE/23.212

, RESULT is single precision and should not be changed.

The above two modules illustrate uses for REM and tick (') in
addition to the labelled modules. Remember, labels are to help you, so
use them any way you want that would be helpful. They don't have to get
in the way of your programming, and if you prefer, you can add them
after you've completed the program. You won't appreciate labels until
you have a long complex program to wade through where they serve as
guideposts.

SUMMARY

The purpose of this chapter is to start you programming in a way
that will make it easy for you to create what you want Structured
programming should not be viewed as a straightjacket to hinder creativity,
but instead as a tool which will help you realize your creativity. To the
extent that structured programming methods help you realize your goals,
they are useful. If you find a better way to get the job done, by all means
do so. The structured method is simply one way programmers have
found to help make the programming task simpler.

All programs can be broken down into some version of: 1) entering
information; 2) analyzing information; and 3) displaying information. In
this chapter you learned how to enter information with INPUT, INPUT$,

Sequential Modular Program Organization 65

INKEY$ and READ/DATA Before, all data entry was by equating vari
ables (e.g., A=4). Now you can either store data in your program or enter
it as it runs. We did little new for analyzing data in this chapter, but we
did learn that in addition to PRINT you can also use WRITE to send
information to your screen.

Finally, we reemphasized the importance of breaking down a big
problem into smaller problems. The module concept is built into Amiga
BASIC in the form of using labels instead of line numbers. Each label
describes and sets off a module. In later chapters we will see the
increasing importance of modulely formed routines, but even relatively
simple programs are made easier by using discrete simple modules for
getting tasks completed.

________________ CHAPTER 5 __ _

Loops

THE LOOP STRUCTURE

In the last chapter we looked at how to set up a modular sequential
program. The 'Top Down' structure is an aid to organize our programs so
that we can see where we're going and later see what we did. The se
quence in top down programming is simply a logical progression through
the various tasks. However, there are a lot of times when we need to do
the same thing more than once, such as enter names, read data or make
calculations. The loop structure allows us to do this without having to
rewrite the same thing several times. Diagrammatically, it looks like this:

Begin Loop
Tasl< A
Loop Limit? (Yes/No)
If = Loop Limit then go to Next Tasl<
If <> Loop Limit then go bacl< to Tasl< A

End Loop
Tasl< B
etc.

We will look at a number of different loop structures and see how they
fit into structured programming and what uses they have. They will
significantly add to your programming tools.

67

68 The Amlga Microsoft BASIC Programmer's Guide

FOR/NEXT LOOPS

With the FOR/NEXT loop you can go through a determined number
of steps, at variable increments if desired, and execute them until the
total number of steps is completed. Let's look at a simple example to get
started:

=>Cl1c/< NEW

Show.Loop:
CLS
AM$ = "Amiga"
FOR X = 1 TO 15: REM BEGIN LOOP
PRINT AM$

NEXT X : REM END LOOP
END

Now run the program and you will see 'Amiga' printed 15 times along the
left side of the screen. Notice also that at the end of the program, we had
END. The END statement stops a program. Since your program stops at
the end anyway, you may wonder why use it all. As we progress, we'll be
ending the program in different modules, depending on the kind of
program application. Introducing END at this time is preparatory for
later stages.

Let's look at another simple illustration to show what's happening to
"X" as the loop is being executed:

=>Cl1c/< NEW

Count.Loop:
CLS
FOR X = 1 TO 15

PRINT X
NEXT X

As we can see when the program is run, the value of "X" changes each
time the program proceeds through the loop. Think of a loop as a child
on a merry-go-round. Each time the merry-go-round completes a revolu
tion, the child gets a gold ring, beginning with one and ending, in our
example, with 15. Having seen how loops function, let's do something
practical with a loop. We'll write a "Checkbook" program.

LOOps 69

In our program, we are going to use variables in many ways. First,
our FOR/NEXT loop will use a variable. Let's use 'X' as the loop variable
name. Second, a variable will be used to indicate the number of loops to
be executed. We will use N%, an integer variable. Third, we will use
variables for the balance, the amount of the check and the new balance.
This program is going to be a little longer, so be sure to SAVE it to disk
every 5 lines or so.

=>Clic/< NEW

Checl<.Bool<:
CLS
CB$ = 'Checl<bool<'
PRINT : PRINT : PRINT CB$

REM *************************
REM INPUT INITIAL INFORMATION

REM *************************
INPUT 'HOW MANY CHECKS'; N%
INPUT 'YOUR CURRENT BALANCE' ;BALANCE
REM **********
REM BEGIN LOOP
REM **********
FOR X = 1 TO N%

PRINT 'BALANCE NoW=$';BALANCE
PRINT 'AMOUNT OF CHECK ~';X;

INPUT CHECK : REM VARIABLE FOR CHECK
BALANCE = BALANCE - CHECK : REM RUNNING BALANCE

NEXT X
REM ***********
REM TOP OF LOOP
REM ***********
REM

REM ***********************
REM PRINT OUT FINAL BALANCE
REM ***********************
CLS REM CLEAR SCREEN WHEN ALL CHECKS ARE ENTERED
PRINT : PRINT : PRINT
PRINT 'YOU NOW HAVE $'; BALANCE; 'IN YOUR ACCOUNT'
PRINT : PRINT ' THANK YOU AND COME AGAIN '
END

70 The Amiga Microsoft BASIC Programmer's Guide

That program would have taken far more steps had we not used the loop
structure.

Nested Loops

With certain applications, it is going to be necessary to have one or
more FOR/NEXT loops working inside one another. Let's look at a simple
application. Suppose you had two shelves with 10 books on each shelf.
You want to make a shelf roster indicating the shelf number (#1 or #2)
and book number (#1 through #10). Using a nested loop, we can do this
in the following program:

=>Clici< NEW

CLS
FOR S = 1 TO 2 : REM S FOR Shelf ~

FOR B 1 TO 10 : REM B FOR BOOK NUMBER
PRINT "Shelf tI" ; S ; "Bool< W'; B

NEXT B
NEXT S

END

In using nested loops, it is important to keep the loops straight The
innermost loop (the "B loop" in our example) must not have any other
FOR or NEXT statement inside of it Think of nested loops as a series of
fish eating one another, the largest fish's mouth encompassing the next
largest and so forth on down to the smallest fish.

Look at the following structure of nested loops:

For A = 1 TO N
FOR B = 1 TO N

FOR C = 1 TO N

FOR D = 1 TO N
NEXT D

NEXT C
NEXT B

NEXT A

Note how each loop begins (a FOR statement is executed) and is
terminated (encounters a NEXT statement) in a "nested" sequence. If you
have ever stacked a set of different sized cooking bowls, each one fits

Loops 71

inside the other; that is because the outer edge of one is larger than the
next one. Likewise, in nested loops, the "edge" of each loop is "larger"
than the one inside it and "smaller" than the one it is inside.

Loop Steps

Loops can go one step at a time, as we have been using them, or they
can step at different increments. The following program "steps" by 10:

=>Clic/< NEW

Step.Loop:
CLS
FOR JUMP = 90 TO 200 STEP 10

PRINT JUMP
NEXT JUMP

This allows you to increment your count by whatever amount you want
You can even use variables or anything else that has a numeric value. For
example:

=>Clic/< NEW

Variable.Step:
CLS
I(= 5 : N = 25

FOR VAR = K TO N STEP K
PRINT VAR

NEXT

Go ahead and run the program. "Now just a dam minute," you may
well be thinking to yourself. After the word NEXT, there should be a
"V AR" but there is none, right? Well, actually, in Amiga BASIC you really
do not need it, and you can save a little memory if you use NEXT
statements without the variable name. Even in nested loops, as long as
you put in enough NEXT statements, it is possible to run your program
without variable names after each NEXT statement However, it is good
programming practice to use variable names after NEXT statements,
especially in nested loops, so that you can keep everything straight

It is also possible to go backwards. In case you draw the last number
to be served, try this program:

72 The Amiga Microsoft BASIC Programmer's Guide

=>Cl1c/< NEW

Line.Cut:
FOR PLACE = 9 TO 1 STEP -1

PRINT 'Position in line =';PLACE
NEXT PLACE

As we get into more and more sophisticated (and useful) programs,
we will begin to see how all of these different features of Amiga BASIC
are used. You may not see the practicality of a statement initially, but
when you need it later on, you will wonder how you could program
without it!

COUNTERS

Often you will want to count the number of times a loop is executed
and keep a record of it in your program for later use. For example, if you
run a program that loops with a STEP of 3, you may not know exactly
how many times the loop will execute. To find out, programmers use
"counters," variables which are incremented, usually by +1, each time a
loop is executed. The following program illustrates the use of a counter.
[Notice: Up to now you've been reminded to Click NEW in the Project
Menu Bar before entering a new program. Now you'll have to remember
to either do that or enter NEW and press RETURN on your own.]

Count-Em:
CLS

FOR X = 4 TO 120 STEP 3
PRINT X
COUNT=COUNT + 1 REM THIS IS THE COUNTER

NEXT X
PRINT: PRINT 'LOOP EXECUTED "; COUNT; 'TIMES.'

The first time the loop was entered, the value of "COUNT" was 0, but
when the program got to the fifth line, the value of 1 was added to
COUNT to make it 1 (i.e.,O + 1 = 1). The second time through the loop, the
value of COUNT began at 1, then 1 was added, and at the top of the loop,
the value of COUNT was 2. This continued until the program exited
the loop. After all the looping was finished, your COUNT automati
cally told you how many times the loop was executed. Of course,

Loops 73

counters are not restricted to counting loops and they can be incre
mented by any value, including other variables, you may need. For
example, change the fifth line to read:

COUNT=COUNT + (8 * 3)

Run your program again and your "counter total" will be a good deal
higher.

WHILEfWEND LOOPS

Another type of loop available in Amiga BASIC is the WHILE/WEND
loop. This loop starts with WHILE and keeps looping through WEND (the
"top" of the loop) until a zero value (not true) is encountered. This kind of
loop is valuable for programs where you do not know the number of
times you will need to execute the contents of the loop. Let's start off with
a simple example that illustrates the structure of the WHILE/WEND:

Count.Down:
CL5

COUNT = 15 : REM Initialize 'Count'
WHILE COUNT

PRINT COUNT
COUNT = COUNT - 1

WEND

When you run the program, the numbers from 15 to 1 will be printed
to your screen. Essentially the program says, WHILE the value of COUNT
is not zero, execute the loop, but when it is zero, exit the loop. After the
value of COUNT reached 1, which was then printed, it was decremented
to 0 and went to the WEND statement The WEND statement tested it and
found it was zero, so the program exited the loop and ended.

Let's take a look at a practical application using WHILE/WEND. Let's
say you have just taken a trip, and you have written down all of your
expenses, but with the stack of notes and receipts, you do not want to
bother counting them. All you want to do is to add them all up and get a
total. Using the WHILE/WEND loop, you can do this and get a final result
When you are finished, you just enter O.

74 The Amiga Microsoft BASIC Programmer's Guide

Mad.Adder:
CL5
Rem ***********
REM 5ET UP LOOP
REM ***********
ADDEMUP = 1 : REM MU5T BE NON-ZERO
WHILE ADDEMUP

INPUT "Co5T OF ITEM OR 5ERVICE"; ADDEMUP
TOTAL = TOTAL + ADDEMUP

WEND
Rem ***********
REM PRINT TOTAL
REM ***********
CL5
PRINT : PRINT
PRINT "Your total expenses were $"; TOTAL

This handy little adding machine will add up your figures, and as
soon as you enter a zero, it prints out your total. You may be wondering
why your TOTAL was not one more than the actual total. After all, the
variable ADDEMUP was initialized as 1; therefore, there should be that
extra 1 to your total. Since the first value of the variable ADDEMUP that
was entered into TOTAL was what you INPUT, the initial value was
never entered into the running total.

Amiga Notes

Don't Jumpll!

H you have to jump out of a loop, don't jump out of a .FORINEXT
loop. There are ways to exit FORINEXT loops before the end of the
loop using a conditional branch that we'll learn about intha next
cllapter. For example, if your loop goes to 20, you can jump out before
that point Suppose you wanted to end the looping after only 10 loops.
you could .do j.t···However, you'll mess up some invisible things in
BASIGthat may really louse up your program. So, when You want to
jump out of a loop, use a WHILEIWENO loop. (You wonder Why
anyone would want to jump out of a loop? Read on!)

... .< .< •

Another way to use WHILE/WEND is to use the '0' (not equal to)
sign with a string. When something is not true it is usually flagged as a

Loops 75

'0,' but if the true condition is defined as not true, then the not true
becomes true. (That makes weird sense, but don't think about it We'll
look at an example instead.)

Goodbye.Loop:
WHILE SAAY$ (> "GONE"

WEND

BEEP: REM A New Word!!!
INPUT "Whatdaya say ";SAAY$
CLS
PRINT SAAY$
5AAY$=UCASE$(5AAY$)

We put in a new word, BEEP, that beeps your Amiga. That is one
way to get your attention in addition to a letter prompt (Also, it nearly
drove our program testers nuts, so you can get rid of it if you want) OK,
let's take a look at what we've wrought in this program. We used the vari
able name 'SAAY$' since SAY is a reserved word. The WHILE condition
states, "As long as SAA Y$ is not the word GONE, wave a 'true' flag, but if
SAA Y$ is 'GONE' then wave a 'false' flag." We used the UCASE$ function
to make SAA Y$ upper case so that no matter how you enter the
characters, they can be compared with the word GONE. If you had used
the word "Gone" or "gone," instead of the all caps, "GONE," you must use
the UCASE$ function to effectively make all versions of the word "gone"
acceptable.

In just about every respect, the WHILE/WEND loop acts like the
FOR/NEXT loop. It is necessary to have a "flag" to exit the loop, but
otherwise you can have nested WHILE/WEND loops and execute various
statements and functions within the loop. Just for fun, why don't you
change our Checkbook program to use a WHILE/WEND loop instead of
a FOR/NEXT loop so that you can put in as many or as few checks as
you want

SUMMARY

This chapter introduced a new structure, the loop. You have begun
to see the power of your computer, and we have really begun program
ming. The loop structure allows us, with a minimal amount of effort, to
tell the computer to go through a process several times with a single set
of instructions. With FOR/NEXT loops, we can set the parameters of an

76 The Amlga Microsoft BASIC Programmer's Guide

operation at any increment we want, and then sit back and let the Amiga
go to work for us. Using WHILE/WEND loops, we can tell the computer
when to exit the loop without having to set limits at the outset

However, we have only just begun programming! In the next chapter
we will learn the third major programming structure, the branch. Then
we will be able to combine all of the structures-sequence, loop and
branch-into very sophisticated programs. The more commands we know,
the less work it is to write a program.

________________ CHAPTER 6 __ _

Branch Structures

In this chapter we will explore new programming structures that will
greatly increase your programming tools. We will be examining some
sophisticated techniques, but by taking each a step at a time, you will
begin using them with ease. Later, when you develop your own programs,
be bold and tryout new statements.

One problem new programmers have is a tendency to stick with the
simple statements they have learned to get a job done. After all, why use
"complicated" statements to do what simpler ones can do? Well, the
answer to that has to do with simplicity. If one "complicated" statement
can do the work of 10 "simple" statements, which is actually simpler? As
you get into more and more sophisticated programming applications,
your programs can become longer and subject to more bugs. The more
statements you have to sift through, the more difficult it is to find the
bugs; therefore, while it is perfectly all right to create a long program
using a lot of simple statements as you're learning, you should begin
thinking about trying shortcuts through the use of the more advanced
statements.

Related to this issue of maximizing your knowledge of different
statements is that of letting the computer perform the computing. This
may sound strange at first, but often novices will figure everything out for
the computer and use it only as a glorified calculator. In the last chapter
you may remember we set up a counter to count the times a loop was
executed when we used a STEP 3 loop. We could have figured out how
many loops were executed instead of letting the computer do it with the

77

78 The Amiga Microsoft BASIC Programmer's Guide

counter, but that would have defeated the purpose of programming! So,
as you learn new statements, see how they can be used to perform the
calculations you had to work out yourself.

BRANCHING

So far, all of our programs have gone straight from the top to the
bottom with the exception of loops. If our Amiga is to do some real
decision making, we must have some way of giving it options. When a
program leaves a straight path, it is referred to as either "looping" or
"branching." We already know the purpose of a loop, but what is a
branch? By using the IF/THEN/ELSE and GOTO statements, we will see.
Consider the following program:

Start.Up:
CLS
PRINT "CHOOSE ONE ,OF THE FOLLOWING BY NUMBER"
PRINT
PRINT " 1. Enter Names"
PRINT "2. Sort Lists"
PRINT "3. Send to Printer"
PRINT "4. Find Name"
PRINT
INPUT "WHICH? " . X ,
CLS
IF X 1 THEN GoTo Get.Names
IF X 2 THEN GoTo Sort:
IF X 3 THEN GoTo Printer:
IF X 4 THEN GoTo Find:

Trap:
GoTo Start.Up
REM Above LINE IS A 'TRAP' TO MAKE SURE
REM THE USER CHOOSES I, 2, 3, OR 4

REM ********
REM BRANCHES
REM ********

Get.Names:
PRINT 'Enter Names' : END

Sort:
PRINT 'Sort Lists" : END

Printer:
PRINT 'Print on printer' END

Find:
PRINT 'Find Name" : END

Branch Structures 79

As you can see, your computer "branched" to the appropriate place,
did what it was told and ended. Not very inspiring, I admit., but it is a
clear example. Now, let's try something a little more practical for your
kids to play with in their math homework. While we're at it., we will
introduce another use of TIMER Notice the 'Pause' subroutine. Using a
long integer variable, we load the value of TIMER into the variable A&.
Then, the time is loaded into B&. In a loop, the subroutine keeps updating
B& and comparing it with A&. Where there is a difference of 2, indicating
that 2 seconds have passed, the program returns to the main program. By
changing the comparable value, it's possible to make pauses as long as
you like. If you want fractions of seconds, use double precision variables
and compare fractions.

CLS
INPUT 'What"s your name'; NA$
AG$=' Addition Practice ": PRINT AG$
Get.Problem:

PRINT : PRINT
INPUT "ENTER FIRST NUMBER --)" A
PRINT
INPUT "ENTER SECOND NUMBER--)" B
PRINT

Answer:
PRINT "WHAT IS "; A ; "+' ; B
IF C = A + B THEN Got.It
PRINT: PRINT 'That"s not it.
PRINT "Try again." : PRINT

GOSUB Pause
GOTO Answer

INPUT C

80 The Amlga Microsoft BASIC Programmer's Guide

Got.It:

REM **************
REM CORRECT AN5WER

REM **************
PRINT" Your answer is right. "; NA$
PRINT "That's good work."
PRINT

Do. It.Again:
PRINT "Do you want more questions? (Y/N): ";
AN$ = INPUT$(l)
AN$=UCA5E$(AN$)
IF AN$= "yo THEN CL5 : GO TO Get.Problem
CL5 : PRINT : PRINT : PRINT
PRINT "I look forward to seeing you again"

END
Pause:

REM ****************
REM Two 5econd Pause

REM ****************
TIMER ON
A& = INT(TIMER) : REM Use long integer variable w/ TIMER.
Check. It:

8&=INT(TIMER)
IF(8&-A&) < 2 THEN Check.It

RETURN

The more statements we learn, the more flexibility we have. See if you
can change the program so that it will handle multiplication, division
and subtraction.

Let's look carefully at our program to learn something about IF/THEN
statements. First, note in the 'Do.ltAgain' routine, the branch is to clear
the screen (CLS) if AN$ = "Y". If any other response is encountered it ends
the program. You may ask why the program did not branch to
'GetProblem' regardless of the response since the "GOTO GetProblem"
statement is after a colon, making it a new line. Good point The reason
is that after an IF statement, when the response or condition is null, the
program immediately drops to the next LINE. That is, any statement after
a colon in a line beginning with an IF statement will only be executed if
the condition of the IF statement is met Secondly, the condition of AN$
is queried as being a "Y" and not simply a Y without quotes. Since the user

Branch Structures 81

enters a Y and not a "Y," we assume that the program will accept a Y. But
remember AN$ is a "string" and not a numeric variable. Therefore in the
setting of the conditional, we must remember what kind of variable we
are using. On the other hand, if we used a numeric variable, such as AN
or AN%, we could have entered a line such as:

IF AN = 1 THEN ...

It is also possible to have an alternative branch with ELSE. Using
ELSE is an exception to the rule that if the 'true' condition of an IF is not
met, the program drops to the next line. Thus, if you want one of two
branches, you can use ELSE for another branch or statement Look at the
following program:

CLS
INPUT "CAN YOU SAY 'YEAH' ";Y$
IF Y$="YEAH" THEN El.Brancho ELSE other.Branch
END
El.Brancho:

REM ***********
REM BRANCH THEN
REM ***********
PRINT "YEAH, YEAH, YEAH"
END

Other.Branch:
REM ***********
REM BRANCH ELSE
REM ***********
PRINT "WHAT'D YOU SAY THAT FOR?"
END

Of course, ELSE does not have to branch to a new line. It can
execute a statement on its own. For example:

CLS
INPUT "ENTER 1 OR ELSE!"; A

REM *********************
REM One Line Two Branches

REM *********************
IF A=l THEN PRINT "ONE" ELSE PRINT "NOT ONE"

82 The Amiga Microsoft BASIC Programmer's Guide

COMPUTING WITH RELATIONALS

There are several different states of relation or "relationals," that we
can use for determining a branch. The following list of relationals can be
used with branches:

Symbol

<
>
< >
>=
<=

Meaning

equal to
less than
greater than
not equal to
greater than or equal to
less than or equal to

Now let's look at some of these, and see what might be done with
them. We'll start with some simple illustrations:

Compare.Size:
CLS
INPUT "NUMBER l-->";A
INPUT "NUMBER 2-->";B
IF A > B THEN Greater:
IF A < B THEN GOTO Less:
IF A B THEN Equal:

Greater:
PRINT "NUMBER 1 IS GREATER THAN NUMBER 2" : END

Less:
PRINT "NUMBER 1 IS LESS THAN NUMBER 2" : END

Equal : PRINT "THE NUMBERS ARE EQUAL" : END

Bar.Hopper:
CLS
INPUT "HOW OLD ARE YOU?"; AGEl
IF AGEl >=21 THEN Come.On.In
CLS : PRINT
PRINT "Sorry you're too young!"
END

Come.On.In:

REM **********
REM OLD ENOUGH

REM **********

Branch Structures 83

CL5 PRINT: PRINT "Do you come here often?"
PRINT "I'm a Virgo. What's your sign?"

OK, you have an idea how they can be used. Note that relationals
work with strings as well as numeric variables and with IF/THEN/ELSE
statements. There is also another way to use relationals. Try the following
from the immediate mode:

A = 10 : 8 = 20 : PRINT A = 8

Your computer responded with a 0, right? This is a logical operation. If a
condition is false, your Amiga responds with a "0," but if it is true, it
responds with a "-1." Now try the following little program:

CL5
A 10
8 = 20
C = A > 8
PRINT C

When you RUN the program, you again get a O. This is because the
variable C was defined as A being greater than B. Since A was less than
B the variable C was 0 or "false." Now, let's take it a step further:

Relational.8ranch:
CL5
A 10
B = 20
C = A > 8

IF C 0 THEN PRINT "A is less than 8" : END
IF C = -1 THEN PRINT "A is bigger than 8"

Later, we will see further applications of these logical operations of
the Amiga. For now, it is important to understand that a true condition is
represented by a "-1" and a false condition by a "0."

84 The Amlga Microsoft BASIC Programmer's Guide

Sometimes we need to set up more than a single relational. Suppose,
for example, that you are organizing your finances into 3 categories of
expenses: 1) under $10; 2) between $10 and $100; and 3) over $100. With
our relationals it would be simple to compare input under $10 and over
$100. But if we wanted to do something in between, we might have
some difficulty without added statements. The AND, OR and NOT
statements allow us to set ranges with our relationals.

AND. If all conditions are met then true
OR If one condition is met then true
NOT. If condition is not met then true

For example:

S ta r t:
CLS
INPUT
IF A <

"How much --)$"; A
10 THEN Small

IF A)

IF A)

10 AND A <= 100 THEN Medium
100 THEN Large

Small:

REM ****************
REM LESS THAN BRANCH

REM ****************
PRINT 'Piggy Bank Money'

Medium:

REM *****************
REM IN BETWEEN BRANCH

REM *****************
PRINT "A night on the town'

Large:

REM *******************
REM GREATER THAN BRANCH

REM *******************
PRINT 'A trip to Europe'

What.Next:

REM *****************
REM WHAT NEXT? BRANCH

REM *****************

GOTO Wha t. Nex t

GOTO Wha t . Nex t

PRINT" DO YOU WISH TO CONTINUE? ";
AN$ = INPUT$(l)

Branch Structures 85

IF AN$ <> "yo AND AN$ <> "N" THEN Listen.Up
IF AN$ = "yo THEN Start
CLS : PRINT "Goodbye" : END

Listen.Up:
BEEP
PRINT "ANSWER 'Y' OR 'N' PLEASE"
GOTO Wha t. Nex t

In the fifth line we set the conditional branch to be BOTH greater
than 10 and equal to or less than 100. The variable "A" had to meet both
conditions to branch. Similarly, in the 'WhatNext' routine, again using
the AND statement, we made sure that the response had to be either "Y"
or "N." If you are very perceptive, you may have asked yourself if there is
some fishy format in the program. There are conditional IF/THEN lines
that simply say 'THEN Start' and things like that What's going on?
Shouldn't there be a GOTO statement?

Again, we have slipped in another feature of Amiga BASIC. When
using IF/THEN statements, it is possible to drop the GOTO on a branch
and simply put in the line number. However, note that we have used
GOTO statements elsewhere in the program where no conditional is used
within the same line or within a single set of colons. Until you become
more familiar with programming you might want to keep your GOTO
statements after IF/THEN statements, but that is not required.

You may have another question involving the AND statement in the
'WhatNext' routine. In normal English if we say something is not "Y" or
"N" sometimes we mean that it must be one or the other, exclusively.
However, in programming, if we use OR, we are telling the program to
branch if either condition is met Thus, if we wrote the line as:

IF AN$ <> "yo OR AN$ <> "N" THEN Listen.Up

the program would have branched if AN$ was not equal to either "Y" or
"N." Thus if we responded with a "Y," that "Y" would NOT have been
equal to "N" and so the program would have branched to "ANSWER 'Y'
OR 'N' PLEASE"-not what we intended. To check this, change the AND
to an OR in the line and RUN the program.

86 The Amlga Microsoft BASIC Programmer's Guide

Now, let's use the OR and NOT statements in a program:

Find.True:
CL5
A=30
B=40
C=70

Find.Truth:
IF A + B C OR A < B OR A - B C THEN Truly
END

Truly:

REM ********************
REM Anything Can be True

REM ********************
PRINT "Truth, at last!!"

Looking at the 'Find.Truth' routine, we see that A - B does not equal
C. However, A + B does equal C and A is less than B. Using the OR
statement, only one statement has to be true to branch. Now, let's try the
following program:

CL5
X=lS
Y=20
Z=97

Go.Figure:
W=X + Y = Z
IF NOT W THEN No.No
END

No.No:

REM **********
REM NOT BRANCH

REM **********
PRINT "Of course it isn't true"

As can be seen from the example, it is possible to use the "negation" of a
formula to calculate a branch condition. In most cases, you will use <)
(not equal) or the positive case, but at other times it will be simpler to
employ NOT.

Branch Structures 87

SUBROUTINES

Often there is some operation you will want your computer to
perform at several different places in the program. Now, you can repeat
the instructions again and again or use eOTO's all over the place to
return to your original spot after branching to the operation. On the other
hand, you can set up "subroutines" and jump to them using eosUB and
get back to your starting point using the RETURN statement Up to a
point, the eOSUB statement works pretty much like the eOTO
statement since it sends your program bouncing off to a line out of
sequence. Also, the RETURN statement is something like eOTO since it
also sends your program to an out-of-sequence line. However, the
eOSUB/RETURN pair is unique in what it does. Let's take a look at a
simple example to see how it works:

Main.Body:
CLS
AMIGA$
AMIGA$
AMIGA$
END

"This is your Amiga" : GOSUB Print.Em
"sending you all kinds of" : GOSUB Print.Em
"Greetings!!!" : GOSUB Print.Em

REM Be sure to have your END Statement
REM between your subroutines and end of the body of
REM your program!!!

Print.Em:

REM ***************
REM SUBROUTINE CITY

REM ***************
PRINT AMIGA$
RETURN

Our example shows that a eOSUB statement works exactly like a
statement on the line itself except that it is executed elsewhere in the
program. The RETURN statement brings it back to the next statement
after the eOSUB statement Using the eo SUB/RETURN pair it is much
easier to weave in and out of a program than to use eOTO since the
RETURN automatically takes you back to the jump-off point To better
illustrate the usefulness of eOSUB, let's change the 'PrintEm' routine to

88 The Amiga Microsoft BASIC Programmer's Guide

something else. Try the following. [NOTE: We will be getting ahead of
ourselves a bit with this example, but it will illustrate something very
useful about GO SUB's.]

Replace: PRINT AMIGA$
With: SAY TRANSLATE$(AMIGA$)

Tum up the sound on your monitor or TV and your Amiga will talk
to you. As you can see, a single routine handled all of the talking, and by
changing only a single line, you were able to dramatically change what
the program did.

Amiga Notes

Now You Can See

By this stage, you should begin noticing how the structure of a
program really helps you to understand. debug and create the program.
We're getting into longer and longer programs, and we'll be adding
other variations on the basic structures and more modules as well.
Without clear organization, things would start to get out of hand at
this point Besides, it really isn't that much more work to do it right in
the first place.

COMPUTED GOTO AND GOSUB

Now we're going to get a little fancier, but in the long run, it will
result in clearer and simpler programming. As we have seen, we can
GOTO or GO SUB on a "conditional" (e.g., IF A = 1 THEN PrintIt). The
easier way to make a conditional jump is to use "computed" branches
using the ON statement For example:

CLS
GeLVal:

INPUT "ENTER A NUMBER FROM 1 TO 5 " ; A
IF A < 1 OR A > 5 THEN Get.Val : REM TRAP

Com.Sub:
ON A GOSUB One,Two,Three,Four,Five

Query:
PRINT "Do it again? (Y/N)" ;
AN$=INPUT$(l) : AN$=UCASE$(AN$)
IF AN$ <> "Y " THEN END
GOTO Get. Val

Subs:
REM *****************
REM FIVE SUBROUTINES!
REM *****************

One:
PRINT "ONE" PRINT

Two:
PRINT "TWO" PRINT

Three:
PRINT "THREE" : PRINT

Four:
PRINT "FOUR" PRINT

Five:
PRINT "FIVE" PRINT

RETURN

RETURN

: RETURN

RETURN

RETURN

Branch Structures 89

The format for a computed GOSUB/GOTO is to enter a variable
following the ON command. The program will then jump the number of
"commas" to the appropriate line number. If "1" is entered, it takes the
first line number, "2," the second, and so forth. It's a lot easier than
entering:

IF A 1 THEN GOSUB One
IF A 2 THEN GOSUB Two
etc.

However, it is necessary to use relatively small numbers in the "ON"
variable since there is a limited number of subroutines. If your program
is computing larger numbers, all you have to do is to convert the larger
numbers into smaller ones by changing the variables. For example:

Start:
CLS
INPUT "ENTER ANY NUMBER--> "; A

90 The Amiga Microsoft BASIC Programmer's Guide

IF A < 100 THEN B = 1
IF A >= 100 AND A < 200 THEN B 2
IF A >= 200 THEN B = 3

Com. Sub:
ON B GOSUB Uno.Oos.Tres
REM B is compute variable

Query:
PRINT "Do it again?(V/N)";
AN$ = INPUT$(l)

If AN$ <> "V" THEN END ELSE Start
E1.Subos:

REM **************
REM SUBROUTINE NET

REM **************
Uno:

PRINT "LESS THAN 100' : RETURN
Dos:

PRINT "MORE THAN 100 BUT LESS THAN 200 '
Tres:

PRINT 'MORE THAN 200' : RETURN

RETURN

RUN the program and enter any number you want Since the
program is branching on the variable B, and not on A (the INPUT
variable), you will not get an error since the greatest value of B can only
be 3.

Now let's get back to relationals and see how they can be used with
computed GO SUB's. Remember, in using relationals, the only numbers we
get are D's and l's for false and true respectively. However, we can use
these D's and l's just like regular numbers. Try the following:

CLS
Equates:

X 1 V 2 Z 3

A X < Z

B V > Z

C Z > X
Results:

PRINT "A + A =" ; A + A
PRINT PRINT 'A + B _II • - . A + B
PRINT : PRINT 'A + B + C =" ; A + B + C
END

Branch Structures 91

Now before you RUN the program, see if you can determine what
will be printed in the 'Results' segment Once you have made a deter
mination, RUN the program and see what happens. Go ahead and see
how you do. Let's go over it step by step.

1. Since X is less than Z, A will be "true" with a value of one (-1).
Therefore A + A (-1 + -1) will equal -2.

2. Since Y is not less than Z (Y = 2 and Z = 3, remember), B will be
"false" with a value of O. Therefore, A + B (-1 + 0) will total -1.

3. Since Z is greater than X, C will be "true" with a value of -1.
Therefore A + B + C (-1 + 0 + -1) will equal -2.

If you got it right, congratulations! If not, go over it again. Remember,
very simple things are happening, and so don't look for a complicated
explanation! Now that we see how we can get numbers by manipulating
relationals, let's use them in computed GO SUB's. The following program
shows how:

Bean.Calc:
CLS
INPUT "How many beans in the jar?";HM

Get.Beans:
BEANS = 1 + (HM >= 500) + (HM >= 1000)
IF BEANS = 0 THEN BEANS = 2
IF BEANS = -1 THEN BEANS = 3
ON BEANS GOSUB Some,More,Most

Again:
PRINT: INPUT "More bean counting (Y/N) "; AN$
AN$=UCASE$(AN$)
IF AN$ <> "V" THEN END ELSE Bean.Calc

Bean.Subs:

REM ***********
REM SUBROUTINES

REM ***********
Some:

CLS : PRINT "Not many beans- Less than 500"
RETURN

More:
CLS : PRINT "Nice bunch of beans - between 500 and 1000."
RETURN

92 The Amlga Microsoft BASIC Programmer's Guide

Most:
CLS : PRINT 'That's over 1000 beans'
RETURN

The program is hinged on the 'GetBean' formula or algorithm. Let's
see how it works:

1. There are 3 conditions:
a. HM is less than 500
b. HM is 500 or more but less than 1000
c. HM is 1000 or greater

2. If the first condition exists, both HM)= 500 and HM)= 1000
would be false. Thus 1 + 0 + 0 = 1. Therefore BEANS = 1.

3. If HM is)= 500 but less than 1000, then HM)= 500 would be true
but HM)= 1000 would be false. Thus we would have 1 + (-1) + 0
= O. Convert the value of BEANS to 2.

4. Finally if HM is both)= 500 and)= 1000, then our formula would
result in 1 + (- 1) + (-1) = -1. Convert the value of BEANS to 3.

Amlga Notes

Right is Risht

We've discussed using structured programming to help in your
programming tasks, but remember that structured programming is a
means to an end U there is ever a choice between getting a program
to work and having things in structured programming format, most
programmers will choose getting it done. Sometimes we get so
wrapped up in structured programming that we tend to forget it is a
way to help us. As long as a program does what it's supposed to do,
whether it follows the tenets of structured programming or not, it is
right

STRINGS AND RELATIONALS

Before we leave our discussion of computed GOTO's and GO SUE's
with relationals, let's take a look at how relationals handle strings. Try the
following:

Branch Structures 93

A$ = "A" : B$ = "B" : PRINT B$ > A$ <RETURN>

Surprised? In addition to comparing numeric variables, relationals can
compare alphabetic string variables with "A" being the lowest and "z"
the highest (Actually, any string variables can be compared, but we will
just look at the alphabetic ones here.) So if we ask if B$ is greater than
A$, we get a "-1" (true) since B$ was a Band A$ was an A Now you
might be wondering what on earth you could possibly want to do with
this knowledge. Well, in sorting strings (like putting names in alphabeti
cal order) such an operation is crucial. Later on we will show you a
routine for sorting strings, but for now let's make a simple string sorter for
two strings:

CLS
INPUT "WORD" IU --> " A$
INPUT "WORD" 1:12 --> " B$
PRINT PRINT : PRINT
IF A$ < B$ THEN PRINT A$ PRINT B$
IF A$ > B$ THEN PRINT B$ PRINT A$

Just what you needed! A program that will put two words in alphabetical
order!

SUBPROGRAMS

This section will introduce the concept of subprograms and show
some new tricks. However, we're starting to get into some advanced
concepts at this point, so instead of using more complex program
examples, we'll use very simple subprograms to focus on how sub
programs work. Thus, while the examples may appear to be trivial, we
hope you can grasp the significance of subprograms. Finally, we will only
show how to use BASIC subprograms even though it is possible to write
machine language subprograms.

To begin we'll show a simple subprogram that uses two variables to
keep a running total of numbers passed to it

Enter.Num:
INPUT "Enter value"; VALUE

CALL Addemup (VALUE,ToTAL)

94 The Amiga Microsoft BASIC Programmer's Guide

PRINT "Total="; TOTAL
IF VALUE <> 0 THEN Enter.Num

REM **********
REM SUBPROGRAM
REM **********
Run.Total:

SUB Addemup (A,B) STATIC
B=B+A

END SUB

In order to understand the significance of what happens in the above
program, consider the variables 'VALUE' and 'TOTAL' that are part of the
'Enter.Num' routine and the variables 'A' and 'B' that are part of the
'Run.Total' routine. Step by step, let's see what happens:

1. You input a number in the variable 'VALUE.'
2. The program calls the subprogram 'Addemup' with the variables

VALUE and TOTAL.
3. The subprogram uses the parallel variables A and B to calculate

VALUE and TOTAL. Variable 'A' parallels VALUE and 'B' paral
lels TOTAL.

4. The subprogram calculates 'B' as a running total and passes the
value of 'B' back to the parallel variable TOTAL.

5. The value of TOTAL is printed to the screen.
6. The program loops back to 'Enter.Num' until you enter a zero.

The interesting thing about subprograms is the use of local variables.
The variables in the subprogram that are declared STATIC are affected
only by the most recent call and retain their values. For example, in our
example, the variables 'A' and 'B' only use the last values passed to them.
They remain, in effect, zero, until they are called. This is useful in
programs that have different variables used in calling the same sub
program. With subroutines, it is necessary to use a common variable
name, but with subprograms, you can use different variable names, and
then pass their values to parallel variables in the subprogram. For
example, add the following routine to the above program. Oust tack it on
to the end of the program.)

Loop.Add:
FOR X = 1 TO 4

CALL Addemup (X,SUM)
PRINT"Sum="; SUM

NEXT X

Branch Structures 95

In the 'Loop.Add' routine, the variables 'X' and 'Sum' are used with the
parallel variables 'A' and 'B', and they work just fine. So the subprogram
can deal with any variables sent their way as long as the subprogram is
correctly called.

When passed from the main routine, variables are called arguments;
parallel values in the subprogram are called formal parameters. The
following outlines the connection between the two:

Main Program

Arguments
(W,X,Y$)

Subprogram

Formal Parameters
(A,B,C$)

By aligning the arguments in the main program with the formal
parameters in the subprogram, all operations are easily handled by the
subprograms. It requires careful planning and a well structured program,
but in the long run, it saves a lot of unnecessary redundancy. Just
remember to line up the variables so that they are parallel.

SHARED VARIABLES. Besides having local or static variables in sub
programs, it's possible to have 'global' or shared variables as well. These
are variables that have the same values in the main program and subpro
gram. The values in both the main and subprograms are affected by one
another. Any changes in one part will reflect changes in the other. Let's
look at a program that uses both shared and static subprograms to see
what happens differently between shared and static variables.

Two.Types:
CALL ONE (A.B)
PRINT A.B

CALL TWO
PRINT X.B

SUB ONE (X.V) STATIC
X=10
Y=20

END SUB

SUB TWO STATIC
SHARED B
X=30
B=B + 40

END SUB

96 The Amiga Microsoft BASIC Programmer's Guide

When you run the program, you will see,

10 20
o 60

The first subprogram passed values between A and B and X and Y in the
pattern of local variables we've already seen. However, when we at
tempted to pass the value of the variable 'X' from SUB TWO, we got a
zero. That's because there was no parallel variable for X in SUB TWO as
there was in SUB ONE. However, by making 'B' a shared variable, we took
the value it generated in the main program in interaction with the first
subprogram and passed it back and forth between the main and sub
program in SUB TWO.

This may be a bit confusing at first, and the difference between
shared and static variables in subprograms may not be clear at this point
However, with practice and experimentation, you will soon find that you
can put subprograms to very good use. Also note that both shared and
static subprograms have the word STATIC in them. That is more a matter
of form than description. It is possible to have a combination of static and
shared variables in the same subprogram. Only those declared as shared
will be so while the rest are assumed to be static.

Amlga Notes

Experimenting with New Tools

The only way to really understand new statements and tools in
programming is to try things out with them. Let's face it at this point
it's a lot easier to do calculations or other subroutine chores with
something else than subprograms. Besides, you can probably write a
more efficient program using non-subprograms now anyway. However,
unless you 'test drive' the new programming techniques you have
available, you may not remember or understand them when you do
need them. Keep refining your skill by testing out every single
programming statement, function and algorithm until you at least
know what it does. Then when you do need them, at least you'll
remember to give them a trial run and you won't be stuck without the
right tool.

There are more features to subprograms, and we will cover these
features as we progress. At this time, it is enough to see how local

Branch Structures 97

variables operate within a program, and how shared variables differ from
local variables. The final feature of subprograms we will deal with in this
section is the combination of shared and local variables within the same
subprogram. In 'SUB ONE' and 'SUB TWO' in the above program, we
looked at two subprograms using exclusively shared or static variables
within the same program, and now we'll see how that is done within the
same subprogram.

Dual.Sub:
INPUT "Enter Name"~ NA$
INPUT "Enter Address":AD$
INPUT "Years at address";YEARS

CALL Go.Fig (NA$,YEARS)

SUB Go.Fig (WHO$,TIEMPO) STATIC
SHARED AD$
CLS
PRINT WHO$";" lives at ";AD$
PRINT "They've been there for";TIEMPO';" years."

END SUB

The 'Go.Fig' subprogram has the static variables WHO$ and TIEMPO
aligned with NA$ and YEARS, respectively. However, AD$ is declared to
be a shared variable in the same subprogram; so the subprogram has
both static and shared variables.

SUMMARY

We covered a good deal in this chapter, and if you understood
everything, excellent! If you did not, don't worry, for with practice, it will
all become very clear. Whatever your understanding of the material,
though, experiment with all the statements. Remember to experiment
with your computer's commands, and as long as you have a practice disk
on which to tryout your skills, the worst that can happen is that you will
erase a few programs.

We saw how your Amiga computer can "make decisions" using the
IF/THEN/ELSE statements and relationals. Using subroutines it is pos
sible to branch at decision points to anywhere we want in our program.
Computed GOTO's and GO SUB's allow the execution to move ap-

98 The Amiga Microsoft BASIC Programmer's Guide

propriately with a minimal amount of programming. Subroutines also
help us organize our programs more efficiently and save time.

Finally, we examined subprograms. Unlike subroutines, subprograms
can employ local variables, and so different parts of your program can
use the same subprogram even though the variable names are different
That way it's possible to have the same routine take care of more chores.
Since subprograms can also handle shared variables, you can pass values
back and forth between your subprograms and main program. There's a
lot more to subprograms than we discussed in this chapter, but we'll get
to these other parts as we go along.

________________ CHAPTER 7 __ _

Arrays

ARRAYS AS GROUPED VARIABLES

Sometimes novice programmers have problems understanding ar
rays, so we'll take it slowly in this chapter. Usually, the confusion about
arrays stems from the novice overcomplicating things. In fact, arrays are
very simple, and if you keep that in mind you'll be using them with ease
in no time at all.

The best way to think about arrays is as a kind of variable. As we
have seen, we can name variables SUM, Nairobi$, KK%, Xl and so forth.
An array uses a single name with a number to differentiate different
variables. Consider the following two lists, one using regular string
variables and the other using a string array:

Variable

Tree$ = "Pine"
Bush$="Hedge"
Flower$ = "Rose"
Fruit$ = "Plum"

Array

Plant$(l) = "Pine"
Plant$(2) = "Hedge"
Plant$(3) = "Rose"
Plant$(4) = "Plum"

If we print 'Bush$' or 'Plant$(2),' the Amiga would respond with 'Hedge'
since in both cases, the word 'Hedge' is stored in those variables.
Likewise, we could use arrays for numeric variables such as:

99

100 The Amlga Microsoft BASIC Programmer's Guide

NUM(I)
NUM(2)
NUM(3)
NUM(4)

2

4

6

8 etc.

Again, you may well ask, "So what? Why not just use regular
numeric or string variables instead of arrays?" Well, for one thing, it can
be a lot easier to keep track of what you're doing in a program by using
arrays, and it can also save a lot of time. Consider the following program
for INPUTing a list of 10 names using a string array:

Quick.Name:
CLS

Name.In:
FOR X = 1 TO 10

PRINT "Name ~"; X
INPUT NAM$(X)

NEXT X
Name.Out:

CLS
FOR X = 1 TO 10

PRINT NAM$(X)
NEXT X

Now, write a program that does the same thing using non-array
variables. It would take a lot more coding to do so, but go ahead and try
it Use the variables NO$ through N9$ for the names. If you rewrote the
program, you saw how much time was saved by using arrays. But before
going on, let's take a closer look at how the program worked with the
FOR/NEXT loop and array variable:

1. The FOR/NEXT loop generated the numbers sequentially so that
the array would be the following:

FOR X = 1 TO 10
NAM$(I) (--First time through loop
NAM$(2) (--Second time through loop
NAM$(3) (--Third time through loop
NAM$(4) etc.
NAM$(S)
NAM$(6)

NAM$(7)
NAM$(B)
NAM$(9)
NAM$(10)

NEXT X

Arrays 101

2. Each string INPUT by the user was stored in a sequentially
numbered array variable.

3. Output, using the PRINT statement, was generated by the
FOR/NEXT loop sequentially supplying numbers to be entered
into array variables. Now, to get used to the idea that an array
variable is a variable, enter the following:

V(10) = 432 : PRINT V(10) <RETURN>
XYZ(9) = 2.432 : PRINT XYZ(9) <RETURN>
TooT$(l) = "BEEP!": + CHR$(7) : PRINT TooT$(l) <RETURN>
J%(5) = 321 : PRINT J%(5) <RETURN>

It's easy to forget and think of arrays as something more exotic than
they are. Just remember they're nicely organized variables.

THE DIMENSION OF AN ARRAY

In our array examples we haven't gone over the number 10. The
reason is that once our array is larger than 10 we have to use the DIM
(dimension) statement to reserve space for our array. (To be exact, 11
array elements are automatically numbered by dimension from 0 to 10.)
The following is an example of the format for DIMensioning an array:

Big.Array:
DIM NUMS(220)
FOR X = 1 TO 220

NUMS(X) = X
NEXT X
FOR X = 1 TO 220

PRINT NUMS(X);
NEXT X

102 The Amlga Microsoft BASIC Programmer's Guide

Run the program as it is written; it should work fine. Now delete the
line with the DIM statement and run the program again. You will get a
'Subscript out of range' error for not DIMing the array. That means your
array went over 10 with no DIM statement, and thus it is 'out of range.' If
your array went over 220 in the above program it would also be 'Out of
range' since the DIM statement only gives it an upper boundary of 220.
Whenever your arrays are going to have more than 11 values from 0 to
10, be sure to DIM them, and make sure you keep within the limits of the
programs you do DIM.

Amiga Notes

DIM It All

Many programmers always DIM arrays, regardless of the number of
elements in the array. It is perfectly all right to do so, and statements
such as DIM X$(3) or DIM N% (5) are valid Often when copying
programs from books or magazines you may run across these lower
level DIM statements because the programmer thinks it's a good idea
to DIM all arrays as part of programming style and clarity. Further
more, you can save memory space by using the minimal amount of
DIMension space, and if the program is large enough, it may be
necessary to DIM and array at less than 11. Finally, some old versions
of BASIC require all arrays to be DIMensioned

KEEPING IN BOUNDS

A couple of possibly useful functions for working with arrays are
LBOUND and UBOUND. They stand for 'lower bounds' and 'upper
bounds' respectively, and they return the lowest and highest value for an
array. Above we noted that arrays begin at 0 (zero) instead of 1 (one).
Actually, you can set the base of an array to be 0 or 1 using OPTION
BASE. It would be correct to say the default base value of an array is o.
The following is the entire range of options for OPTION BASE:

OPTION BASE 0
OPTION BASE 1

Arrays 103

You can save a byte or so of memory using OPTION BASE 1 since
most programmers start with 1 instead of 0 in using their arrays, but for
the most part, we will simply go with the default of o. (So we'll waste a
byte or so.)

Since LBOUND and UBOUND return the values of the array boun
daries, you can use them to automatically fill the limits of your array.
The general format is:

LBOUND(Array.Name)

For example, the following program "automatically" cranks out the
entire array simply by placing the LBOUND and UBOUND functions in a
loop:

Unbounded.Passion:
DIM Love(100)
WIDTH 62 : REM Keep it on the screen
FOR X= LBOUNO(Love) TO UBOUND(Love)

Love(X)=X
PRINT Love(X);

NEXT

Notice that the array generated 101 values (0-100) since the upper
boundary is 100 and the default lower boundary is zero. Now, insert
OPTION BASE 1 right above the line with the DIM statement and run the
program again. This time, there's only 100 values (1-100).

Using the LBOUND and UBOUND functions, you can link your loops
directly to the size of your array. It may be more convenient to store their
values in variables right after you dimension the array. Furthermore, you
can use a variable to dimension an array. The following program shows
you how:

Shop. List:
OPTION BASE 1
INPUT "How many items to buy ";ITEMS
DIM SHOP$(ITEMS) : REM Using variable for DIM
LOSHDP = LBOUNO(SHOP$)
HISHOP = UBOUND(SHOP$)

104 The Amlga Microsoft BASIC Programmer's Guide

Make.List:
FOR X = LOSHOP TO HISHOP

INPUT "Item to buy ";SHOP$(X)
NEXT X

Print.List:
CLS
FOR X = LOSHOP TO HISHOP

PRINT SHOP$(X)
NEXT X

Using the above method makes it a little easier to use the boundary
functions. The variables 'LOSHOP' and 'HlSHOP' are descriptive, making
it simple to remember to what array they belong.

BUFFERS AND ARRAYS

Just about any variable or array is a buffer. Buffers are simply
temporary storage places used until you print something on your screen
or put it somewhere more permanently. (Later, we'll see how to store data
on disks or send it over the phone lines by moving data into and out of
buffers.) Modular structured programming lends itself to using arrays as
buffers since each module is a task unto itself. As each task is being
performed, information can either be taken from or placed into a buffer.
If an array is used as a buffer, it can be maintained as a set of unique
variables to be used whenever needed. Consider the difference between
using a single array buffer and single variable buffer:

Single Variable

Data to variable
Da ta to screen
Data to variable
Da ta to screen
Data to variable
Data to screen
etc., ad nauseam

Single Array

All data to buffer
All data from buffer to screen

To see how useful an array buffer is, look at this next program. It is
divided into three main modules:

Arrays 105

1. Data entered into buffer
2. First task with buffer
3. Second task with buffer

As you will see, once the data is in the array buffer, you can do different
things with it

Show.And.Find:
INPUT "How many names to enter "; N
OPTION BASE 1
DIM Bufferl$(N),Buffer2$(N)
LOBUFF=LBOUND(Bufferl$)
HIBUFF=UBOUND(Bufferl$)

Enter.Data:
FOR X=LOBUFF TO HI BUFF

INPUT "Name ";Bufferl$(X)
INPUT "Phone Number ";Buffer2$(X)

NEXT X

Show.Data: 'Task 1
CLS
FOR X=LOBUFF TO HIBUFF

PRINT Bufferl$(X),Buffer2$(X)
NEXT X

PRINT : PRINT
PRINT "Hit any key to continue"
HIT$=INPUT$(l)

Find.Data: 'Task 2
CLS
INPUT "Find what person's number ";NA$
L=LOBUFF : H=HIBUFF
WHILE Flag$ <> "Gone"

IF L > H THEN GOSUB Not.Found
IF NA$=Bufferl$(L) THEN GOSUB Found
L=L+l

WEND

END

106 The Amiga Microsoft BASIC Programmer's Guide

Found:
Flag$="Gone"
PRINT NA$; " IS number is " ;Buffer2$(L)
RETURN

Not.Found:
Flag$="Gone"
L=L-l
PRINT NA$; " IS number is not here. "
RETURN

That was a long program, but with everything in blocks, it's easy to
see what happened. First, all the data were placed in an array. After that,
the information in the array was printed on the screen in the 'Show.Data'
block, and then searched for in the 'Find. Data' block. Notice how the
search routine worked. It was simple, yet efficient By comparing the
name you entered with the names in the buffer, it was able to quickly
find the phone number. Later on in the book when we examine files and
how to store information in them, we will use buffers to read and write
data to your disk.

MULTI-DIMENSIONAL ARRAYS

So far, all we have examined are single dimension arrays. However,
it is possible to have arrays with two or more dimensions. Let's begin
with two-dimensional arrays and examine how to use arrays with more
than a single dimension. The best way to think of a two-dimensional
array is as a matrix. For example, if our array ranged from 1 to 3 on two
dimensions the entire set would include: V(l,l) V(1,2) V(1,3) V(2,l) V(2,2)
V(2,3) V(3,1) V(3,2) and V(3,3). By laying it out on a matrix, we can think
of the first number as a row and the second as a column. This makes it
much clearer:

ROW #1
ROW #2
ROW #3

Column #1

V(l,l)
V(2,1)
V(3,1)

Column #2

V(1,2)
V(2,2)
V(3,2)

Column #3

V(1,3)
V(2,3)
V(3,3)

Arrays 107

Again, it is important to remember that each element in the array is
simply a type of variable. To drum that into your head do the following:

TWOOEE$(3,1)= "Twa dim array" : PRINT TWODEE$(3,1)
<RETURN>
ING%(2,2) = 81 : PRINT ING% <RETURN>
FP(1,1) = 3.212 : PRINT FP(1,1) <RETURN>

To use arrays to their fullest advantage in programs, they must be
envisioned as an orderly set of variables and not something else. Now,
let's use a two dimension array in a program. This first one will sequen
tially fill the array with numbers and print them on the screen. We will
use the variable names 'ROW' and 'COLUMN' for the loops and the array
name'RC':

Two.Dim.Array:
FOR ROW = 1 TO 2

FOR COLUMN = 1 TO 3
COUNT=COUNT+1
RC(ROW,COLUMN)=COUNT
PRINT RC(ROW,COLUMN),

NEXT COLUMN
PRINT : REM Start new raw

NEXT ROW

As you will see when you run the program, the values generated by
the variable 'COUNT' were stored in the two dimension array 'RC.' We
could have used variables or a single dimension array to do the same
thing since all an array does is to give the programmer an easier and
more systematic way of naming variables. When you need a way of
changing or defining a value in a more complex program, these multiple
dimensions will be very valuable. Let's look at another program that uses
a two dimension array to organize data. Note how the DIM statement is
used with two dimensions and how the DATA statements are 'reused' by
resetting them with RESTORE. Our program will line up 16 playing cards
in four columns. We'll use the ace and three face cards of the four suits:

Dealer:
DIM CARD$(4,4) 'Four suits and four cards

108 The Amlga Microsoft BASIC Programmer's Guide

Read.Data.Into.Array:
FOR S=l TO 4 : 'Suits

FOR FC=l TO 4 : 'Face cards
READ CARD$(S,FC)

NEXT FC
RESTORE

NEXT S

DATA Jack,Queen,King,Ace

Shuffle:
FOR S=l TO 4: 'Suits

ON S GOSU8 Clubs,Diamonds,Spades,Hearts
FOR FC=l TO 4: 'Face cards

PRINT CARD$(S,FC),
NEXT FC
PRINT

NEXT S
REM To be continued ...
END

Clubs:
PRINT "Clubs",
RETURN

Diamonds:
PRINT "Diamonds",
RETURN

Spades:
PRINT "Spades",
RETURN

Hearts:
PRINT "Hearts",
RETURN

When you RUN this program, all of your cards will be lined up.
However, you could have done the same thing with variables or a single
dimension array since all that "lines them up" is the use of the comma to
format the PRINT statement To see how the two dimension array may be
more useful, let's see how it can be used to "pick a card." Insert the
following lines to your program right after the line

REM To be continued.

and run it again.

PRINT 'Hit any key to continue'
HIT$ = INPUT$(l)
CLS
INPUT 'Enter row and column number ';ROW,COLUMN
CLS

Arrays 109

PRINT 'That card is the '; CARD$(ROW,COLUMN); , of ';
ON ROW GOSUB Clubs,Diamonds,Spades,Hearts

Note how we used a single INPUT to enter two values. We used the
format

INPUT A, B

and as long as the operator (program user) is told to enter the appropriate
number of responses and separate each response with a comma, every
thing will work fine. Remember that you must place a comma between
the values you enter when prompted to provide a row and column
number (e.g., you would enter 2,3 and then press RETURN). Now you can
locate the value or contents on a specific array on two dimensions.

The use of two-dimensional arrays in problems dealing with matrixes
is an important addition to your programming commands. It is also
possible to have several more dimensions in an array variable. As you
add more and more dimensions, you have to be careful not to confuse
the different aspects of a single array. Sometimes, when a multi-dimen
sional array becomes difficult to manage, it is better to break it down into
several one- or two-dimensional arrays. Just for fun, let's see what we
might want to do with a three-dimensional array with the following
program:

Librarian:
INPUT 'How many cases ';CASES
INPUT 'How many shelves on each case ';SHELVES
INPUT 'How many modules per shelf ';MODULES
DIM BOOK$(CASES,SHELVES,MODULES)

110 The Amiga Microsoft BASIC Programmer's Guide

Place.Books:
FOR C=l TO CASES

FOR S=l TO SHELVES
FOR M=l TO MODULES

PRINT "What book is in case";C;
PRINT" shelf";S;
PRINT" module";M;
INPUT BOOK$(C,S,M)

NEXT M
NEXT S

NEXT C

Find.Book:
CLS
INPUT "Which book to find"; TITLE$

FOR C=l TO CASES
FOR S=l TO SHELVES

FOR M=l TO MODULES
IF BOOK$(C,S,M)=TITLE$ THEN GoSUB Found.It: Flag=l
NEXT M

NEXT S
NEXT C
IF Flag=0 THEN PRINT "Title not found"
END

Found. It:
PRINT TITLE$; "is in case" ;C; "shelf" ;S;
PRINT" module";M

Another:
PRINT PRINT: Flag=0
PRINT "Find another bool«Y/N) ";

AN$=INPUT$(l)
AN$=UCASE$(AN$)
IF AN$="Y" THEN Find.Bool< ELSE End

GOTO Another

Now that was a pretty long program, so go over it carefully to make sure
you understand what it is doing. Again, let me remind you that a
three-dimensional array is simply a variable with a lot of numbers in

Arrays 111

parentheses. It would be a good idea to save this program on a disk as an
example of a multi-dimensional array.

ARRAYS IN SUBPROGRAMS

Arrays in subprograms work pretty much like variables with sub
programs but the format is different The array is set up in the main
program, just as you would any array. You must DIM your array in the
main program no matter how many elements it has, but whatever
variable name is used in the subprogram does not have to be dimen
sioned again. In other words, all arrays must be defined with a DIM
statement in the main program, but not in the subprograms.

When you call the subprogram, the array name is followed by a pair
of parentheses. For example, if you use the single dimension array 'A,' it
would be formatted as follows in a CALL:

CALL ASUB (A())

In the subprogram, the number of dimensions in the array is declared in
parentheses after the array name. For example, a single dimension array
named 'W' would appear as follows:

SUB MARINE (W(l))STATIC

To see how an array might look and work, the following program
has two different arrays in the main program that use a single sub
program array:

WIDTH 62
F i rsL One:

DIM MAIN(20)
CALL SUBBY (MAIN())
FOR X=l TO 20

PRINT MAIN(X),
NEXT X
PRINT :PRINT

SUB SUBBY (ASUB(l)) STATIC
C=0

112 The Amiga Microsoft BASIC Programme(s Guide

FOR 5=2 TO 40 5TEP 2
C=C+1
A5U8(C)=5

NEXT 5
END 5U8

5econd.One:
DIM OTHER(20)
CALL 5U88Y(OTHER())
FOR X=l TO 20

PRINT OTHER(X);
NEXT X

In the subprogram, the variable 'C' was set to zero at the beginning. This
was necessary since 'C' was not called for by either main routine. Had we
not declared HC" as zero at the start of the subprogram, the second time
the subprogram was called, its value would have begun at 20, since that's
what it was after the first main routine called it You may wonder why it
did not reset to zero since all the variables in the subprogram are local. If
any variable had been passed to 'C' in the second CALL, it would have
reverted to zero, but since it was left alone, it maintained its value after
the first call. This is useful to know in case you want to use the changed
value of a local variable after an initial CALL by another part of the
program, or if you want to avoid problems caused by the same thing. To
see what happens if 'C' is not reset to zero, remove the line C=O to see
what happens.

Multi-dimensional arrays and subprograms work just like single
dimension arrays except that the array number is changed from 1 to
something else. This next program shows you how to set up and use
multiple dimension arrays with subprograms:

Doubasub:
DIM DOU8(2.3)
CALL TWODEE (OOU8())
FOR X=l TO 2

FOR '1'=1 TO 3
PRINT DOU8(X.Y).

NEXT '1'
PRINT

NEXT X

SUB TWODEE (OK(2)) STATIC
FOR L=l TO 2

FOR M=l TO 3
OI«L.M)=L+M

NEXT
NEXT

END SUB

SUMMARY

Arrays 113

Arrays allow us to enter values into sequentially arranged variables
(or elements). By using FOR/NEXT and WHILE/WEND loops it is possible
to quickly program multiple variables up to the limits of a specified
dimension. Not only do arrays assist us in keeping variables orderly, they
eliminate a good deal of work as well. In the next chapter, we will begin
working with commands that help arrange everything for us. As our
programs become more and more sophisticated, we will need to keep
better track of what we're doing. By organizing our programs into small,
manageable chunks, we can create clear, useful programs.

_______ CHAPTER 8 __

Manipulating Strings

SUBSTRINGS: PARTS AND WHOLE

Up to this point our programming has involved "whole" strings. That
is, whatever we define a string to be no matter how long or short, it can
be considered a "whole" string. For example, if we define JUMP$ as
"Jump" then we can consider "Jump" to be the whole of JUMP$. If we
defined JUMP$ as "I have a lot to say about that," then "I have a lot to say
about that" would be the whole string of JUMP$. There will be occasions,
however, when we want to use only part of a string or tie several strings
together. (When you work with files, you will find this to be very
important) Also, there are applications where we will need to know the
length of strings, find the numeric values of strings and even change
strings into numeric variables and back again.

Amiga Notes

These Are Important

At this point in your programming career, you may not appreciate
how important partial strings or "substrings" are. It would seem that if
you need a part of a string, then just define a whole string that would
take care of the part. That makes sense, but you actually save time by
having strings broken up and put back together again. Your computer
will do most of the work for you, and once you see what can be done
with substrings, you'll be glad you have them.

115

116 The Amiga Microsoft BASIC Programmer's Guide

FORMATTING STRINGS

We will divide our discussion of string formatting into four parts: 1)
calculating the length of a string; 2) locating parts of strings; 3) changing
strings to numeric variables and back again; and 4) tying strings together
(concatenation).

How Long Is the String?

Sometimes it is necessary to calculate the length of a string for
formatting output Your Amiga is very good at telling you the length of a
particular string. By the statement, PRINT LEN (A$) you will be told the
number of characters (including spaces) your string has. Try the follow
ing little program to see how this works:

Get.String:
CLS
INPUT 'String Narne-> '; SN$
PRINT SN$; , has '; LEN(SN$); , letters'
PRINT: PRINT' Another string?(Y/ N) ';
AN$ = INPUT$(l)
AN$=UCASE$(AN$)
IF AN$ = 'Y' THEN Get.String

Now, to see a more practical application, let's see how to center a
string on your screen:

WIDTH 52
String.Ern.Along:

PRINT 'Enter string with less than 53 characters'
INPUT '-> ';CEN$
HALF=31-LEN(CEN$)/2
PRINT TAB(HALF);CEN$

More.Stuff:
PRINT: PRINT 'Hit any key for rnore or 'E' to exit'
HIT$=INPUT$(l) : HIT$=UCASE$(HIT$)
IF HIT$ <> 'E' THEN String.Ern.Along

Now that we can see how to compute the LENgth of a string and
then use that LENgth to compute our tabbing, let's see how we can

Manipulating Strings 117

control the input with the LEN statement Suppose you want to write a
program that will print out mailing labels, but your labels will only hold
33 characters. You want to make sure all of your entries are 33 or fewer
characters long, including spaces. To do this we will write a program that
checks the LENgth of a string before it is accepted:

Check.Size:
PRINT
INPUT "Enter name: 33 characters or less";NA$
IF LEN(NA$) > 33 THEN GoSUB Too.Long : GoTo Check. Size
PRINT NA$; " is an acceptable size.

MORE:
PRINT "More(Y/N)";
MoRE$=INPUT$(l) : MoRE$=UCASE$(MoRE$)
IF MoRE$="Y" THEN Check.Size ELSE END

Too.Long:
PRINT : BEEP
PRINT "Please use only 33 characters or less"
RETURN

Now the first thing you should do is to break the rule!!! Go ahead
and enter a string of more than 33 characters to see what happens. (If
your computer gets snotty with you, you can always give it a lobotomy
with NEW. It helps to remind it of that fact periodically.) If the program
was entered properly, it is impossible to enter a string of more than 33
characters. From the above examples, you can begin to see how the LEN
statement can be useful in several ways. There are many other ways that
such statements can be employed to reduce programming time, clarify
output and compute information. The key to understanding the useful
ness of a LEN statement is to experiment with it and see how other
programmers use the same statement

Finding The MIDdieS, LEFTS, and RIGHTS Parts
of a String

Suppose you want to use a single string variable to describe three
different conditions, such as "Rain,snow,Hail," but you want to use only
part of that string to describe an outcome. By using MID$, LEFT$ and
RIGHT$, it is possible to PRINT only that part of the string you want For

118 The Amiga Microsoft BASIC Programmer's Guide

example, the following program lets you use a single string to describe
three different conditions:

Weather.Man:
Weather$="Rain5nowHail"
PRINT "What's the weather (R)ain (5)now (H)ail?";
Predict$=INPUT$(l) : Predict$=UCA5E$(Predict$)

Substring:
PRINT
PRINT "It's going to";
IF Predict$="R" THEN PRINT LEFT$(Weather$,4)
IF Predict$="S" THEN PRINT MID$(Weather$,5,4)
IF Predict$="H" THEN PRINT RIGHT$(Weather$,4)

Realistically, you could have done the same thing with less trouble
using programming techniques we already know. But no matter, it was
for purposes of illustration and not to optimize program organization.
Let's see what the new statements do:

Statement

MID$(A$,N,L)

LEFf$(A$,L)

RIGHT$(A$,L)

Meaning

Finds the portion of A$ beginning at Nth character L
characters long
Finds the portion of A$ L characters long starting at the LEFT
side of the string
Finds the portion of A$ L characters long starting at the
RIGHT side of the string

To give you some immediate experience with these statements, try
the following:

5hoe$="Loafers" : PRINT LEFT$(5hoe$,4) <RETURN>
G$ = "Gypsy Rose Lee" : PRINT MID$(G$,7,4) <RETURN>
DK$= "All right!" : PRINT RIGHT$(DK$,6) <RETURN>

It's even possible to take a long string, break it up into parts and
create an entirely new string. For example, try the following:

Manipulating Strings 119

Riddle:
Whole$='When the going gets tough, the tough get weird'

Part1$=MID$(Whole$,16,3)
Part2$=RIGHT$(Whole$,5)
Part3$=LEFT$(Whole$,4)
Part4$=RIGHT$(Part3$,3)
Part5$=MID$(Whole$,19,l)
S$=SPACE$(l)

Dumb$=Part 1$ + S$ + Part2$ + S$ + Part4$ + Part5$
PRINT Dumb$

If you can guess what the output will be before you run the program, you
have a good understanding of how substrings work!

While we're at it, why not do this next one?

WIDTH 62
Inside.Dut:

INPUT 'What's your name ";na$
CLS
FOR X=LEN(na$) TO 1 STEP -1

PRINT MID$(na$,X,l);
NEXT X

Slow.Mo:
PRINT : PRINT
FOR X=LEN(na$) TO 1 STEP - 1

FOR Pause=l TO 500 : NEXT Pause
PRINT MID$(na$,X,l);

NEXT X

Back.Name:
PRINT : PRINT
FOR X=LEN(na$) TO 1 STEP - 1

Bname$= Bname$ + MID$(na$,X,l)
NEXT X

One.Line.Center:
PRINT TAB (31-LEN(Bname$)/2) Bname$

120 The Amiga Microsoft BASIC Programmer's Guide

The above exercise did a couple of things for you besides giving you
a chance to have a little fun. First, it demonstrated how loops and partial
strings (or substrings) can be used together to format output Second, it
showed how output could be slowed down for either an interesting effect
or simply to give the user time to see what's happening. Third, it showed
how to build a string one character at a time in the 'Back.Name'
subroutine. By rebuilding a new string it was simple to then center it
using a centering routine.

TIME AFTER TIMES

Try the following in the immediate mode:

PRINT TIME$

Now wait a few seconds and enter

PRINT TIME$ <RETURN>

The value of TIME$ changed. The longer the interval between when you
printed the first and second TIME$, the bigger the difference between the
times. TIME$ is set from the Workbench file "Preferences" but you can
access the various parts of TIME$ just like any other string. The layout of
TlME$ is in hours, minutes and seconds as:

hh.mm.ss

with each variable representing a two digit substring. For example, type
in the following:

PRINT RIGHT$(TIME$,2)

That returns the current number of seconds. The entire string can be
broken down into hours, minutes and seconds using the following
formats:

Hours:
Minutes:
Seconds:

Time Substrings

LEFT$(TIME$,2)
MID$(TIME$,4,2)
RIGHT$(TIME$,2)

Manipulating Strings 121

You can use time substrings to determine time in program execution.
For example, the following little program shows you how to to see how
many times a WHILE/WEND loop is executed in a 10 second period:

WIDTH 62
PRINT TIME$
SEC$=RIGHT$(TIME$.2)
SEC1=VAL(SEC$)
FLAG=1
WHILE FLAG

SEC$=RIGHT$(TIME$.2)
SEC=VAL(SEC$)
IF (SEC-SEC1» 10 THEN FLAG=0
CoUNT=CoUNT + 1 : PRINT COUNT;

WEND
PRINT : PRINT "Ten seconds are up"
END

This program generated a count of 345 in 10 seconds. You can test other
aspects of your programs using the TIME$ function. Further on in the
book, we'll be seeing some very useful applications for TIME$ in our
programs. For example, we'll put together a communications program
that you can use to call up commercial computer networks. Since
commercial networks charge by the minute, it will be very helpful to
have a built-in time display in the program that will tell us how long our
computer has been on the phone.

Using the TIMER function is another way to use the built-in clock in
our programs. However, using TIMER never requires a special setting of
the clock or substrings. By placing the number of seconds in parentheses
after TIMER, you can set your Amiga to jump to a timing routine
anywhere in your program once the timer routine has been set up. Use
the following sequence to set up the routine:

ON TIMER (N) GoSUB Subroutine.X
TIMER ON

If you ever need to write a program that should remind you of
something, time a response or even time an external device (like a robot!),
this function is handy to have. Since it can go anywhere in your program,
it can be very useful. For example, this next program shows how to use
TIMER to time the response to a question:

122 The Amiga Microsoft BASIC Programmer's Guide

natpS

ON TIMER (5) GOSUB Time.check
TIMER ON
PRINT "Question: Your computer was named after someone's ";
PRINT "Spanish girlfriend?"
PRINT "Answer please (T/F)"
Flag=l
WHILE flag

AN$=INI<EY$
IF AN$ <> "" THEN Flag=0

WEND
AN$=UCASE$(AN$)
IF AN$="F" THEN PRINT "The answer is false"
IF AN$="T" THEN PRINT "The answer is true"
END

Time.check:
PRINT "Your time is up:
Flag=0
RETURN

To turn off the event trapping, use TIMER OFF, and to suspend it
temporarily, use TIMER STOP.

STRING SEARCHING

Some programs require finding one string inside another string.
(Sure it sounds weird, but there are a lot of really neat things you can do
with it Honest) Using the INSTR statement along with the substring
statements (MID$ and the like), it is possible to find parts of a string and
then do something useful with them. We'll start off by seeing how INSTR
works, and then we'll do something practical with it

To begin with, INSTR finds the beginning position in a string of the
search string. For example, let's see where CUP is in HICCUP:

A$="HICCUP"
PRINT INSTR(A$, "CUP")

When you RUN the program, you get a '4' indicating that the fourth letter
of the word "HICCUP" begins the word "CUP." Since it is unlikely that

Manipulating Strings 123

you will need our example application anytime soon, let's see how it
might be used in a practical program.

Suppose you have a bunch of strings that are arranged with last
name first and first name last For instance, the name 'Sam Spade' is in a
string as:

Spade Sam

It is not unusual to arrange strings this way for purposes of alphabetical
sorting. However, when you want to create lists or mailing labels, it just
doesn't look right having people's names backwards. We'll create a little
program that will fix things so that first names come first and last names
last and then go through it and explain how it works.

Name.Flip:
CLS
INPUT "Last name and first name";NA$
SP$=SPACE$(l) : REM A SINGLE BLANK SPACE
L=INSTR(NA$,SP$)
NF$=MID$(NA$,L+l)
NL$=LEFT$(NA$,L-l)
PRINT NF$;SP$;NL$

When you RUN the program, be sure to put a space between the last
and first name when prompted. Stepping through the program, we find:

Step 1. We will look for the space between the last and first names
with SP$ which has been defined as a blank space.

Step 2. Using INSTR, we store the starting position of the space in
the variable L.

Step 3. The first name is everything to the right of the space; by
using MID$, we define NF$ as everything from the right of
the space to the end of the string. Remember, if we do not
put a second parameter value in for MID$, it defaults to
everything from the first parameter (starting position) to the
end of the string.

Step 4. Conversely, everything to the left of the space is the last
name, so we load that into the string variable, NL$ using
LEFT$.

Step 5. All we have to do now is to rearrange things in the order we
want and PRINT them out

124 The Amiga Microsoft BASIC Programmer's Guide

Amlga Notes

A Very Short Sermoa

By breaking down a problem into simple little tasks, it is a lot easier
to write programs.

CONVERTING BETWEEN STRING AND NUMERIC
VARIABLES

STRINGS TO NUMBERS. Now we're going to learn more about
changing strings to numbers and numbers to strings. In Chapter 2, you
were introduced to VAL and STR$. Now that you understand substrings,
these functions will mean more to you. To get started, let's RUN the
following program:

Score:
FOR X=l TO 10

READ Na$(X)
Score$(X)=RIGHT$(Na$(X),2)
Score(X) =VAL(Score$(X))
SUM=SUM+Score(X)

NEXT
Calculate:

Mean=SUM/10
PRINT 'The group's average is'; Mean

DATA Smith 76,Jones 85, Butler 97,Roosevelt 94
DATA Wong 83,Kimberly 71,Allen 79,Kim 63
DATA Jackson 90,Kelly 67

Using DATA that were originally in a string format, we were able to
change a portion of the string array to a numeric array. By making such
a conversion, we were able to use our mathematical operations to
determine the mean score for the group. In the 'Score' routine, we used
the following steps:

Manipulating Strings 125

1. Read the DATA into Na$ array.
2. Put the numeric substring into Score$ array.
3. Placed the Score$ string array into Score numeric array.
4. Tallied the Sum in the SUM variable.

All that was left was to divide the SUM by 10 to determine the average
score.

Enter these from the immediate mode to get the feel of how they
work

Tede$ "222" : PRINT VAL(Tede$) + 22 <RETURN>
Enough$ = "1025" : PRINT VAL(Enough$) * 10 <RETURN>
Deal$ = "44.95" : PRINT "Deal for you! ->$"; VAL(Deal$) / 2
<RETURN>

NUMBERS TO STRINGS. All right, now let's go the other way. We
saw why we might want to change strings to numbers, but we may also
want to change numbers to strings. To make the conversion we use the
STR$ statement For example, look at the following program:

Zipper.Fixer:
CL5
INPUT "What's your Zip Code"; ZIP
ZIP$ = 5TR$(ZIP)
PRINT : REM Just put in a vertical space
ZIP$ = RIGHT$ (ZIP$,5)
PARCEL$ = LEFT$(ZIP$,3)
PRINT ZIP$,PARCEL$

This program did two things. First of all, it took the invisible space
out of the zip code number by using the right five characters of the string.
That's important since numbers, you'll remember, have that blank space
in front of them. Also, since some shipping companies use the first three
digits of a Zip Code to determine shipping costs, P ARCEL$ shows how to
strip off the first three digits of a Zip Code. Now, let's get some practice
in the immediate mode:

B = 22.00 : B$ = 5TR$(B) : PRINT B$ <RETURN>
v = 2345 : V$ 5TR$(V): PRINT V$ <RETURN>
Money = 22.36 : Money$ = 5TR$(Money) : PRINT LEFT$(Money$,2)
<RETURN>

126 The Amiga Microsoft BASIC Programmer's Guide

Combining Strings with Concatenation

We have seen how we can take a portion of a string and PRINT it on
the screen. Now, we will tie strings together. This is called CONCATENA
TION and is accomplished by using the "+" sign with strings. For
example:

CLS
INPUT "Your City -) ";City$
INPUT "Your State -) "; State$
Send$ = City$ + I," + State$
PRINT Send$

By adding the comma (,) as a string between City$ and State$, you can
put both into a single string, Send$. When this is printed, you'll get
something like:

San Diego, CA

Thus, you can see how to concatenate both strings in variables and
strings directly. To see something a little more practical and a nifty trick
to boot, try the following program:

String.Line:
WIDTH 62
FOR X=l TO 62

LINE$=LINE$ + ,_,

NEXT X
PRINT : PRINT
PRINT LINE$

Until you get to the graphics chapter, you have something with which to
make lines.

Padding and Parsing

Two important functions in string manipulation are "padding" and
"parsing." Sometimes when creating files and formatting output, you will
want to have everything a certain size. For example, suppose you wanted
every string to be exactly 25 characters long. Those strings that are too
long, you want to cut or "parse," and those that are too short, you want to

Manipulating Strings 127

"pad." By inserting spaces in front of or at the end of a string, it is possible
to make it line up any way you want For example, the following program
shows how to "right justify" strings of any length using padding and
parsing:

Right.Just:
FOR X=l TO 5

INPUT "Write something"; A$(X)
IF LEN (A$(X)) > 25 THEN GOSUB Parse
IF LEN (A$(X)) < 25 THEN GOSUB Pad

NEXT

FOR X= 1 TO 5
PRINT A$(X)

NEXT

END

Parse:
A$(X) = LEFT$(A$(X).25)
RETURN

Pad:
WHILE Flag <> 1

A$(X) = SPACE$(l) + A$(X)
IF LEN (A$(X))= 25 THEN Flag= 1

WEND
Flag=0
RETURN

We introduced a new word, SPACE$(N), which makes a space N
characters long. For example, SPACE$(5) would create five spaces or, if
defined as part of a string, it would have a length of five.

SUMMARY

By this point., you should begin to see why substrings are important
Your computer can do all kinds of string manipulation tricks, and you
need to take advantage of them when you can. The more you program,

128 The Amiga Microsoft BASIC Programmer's Guide

the more you should let your Amiga do the work. Make it smart by using
the powerful programming statements you've learned, and then once it's
really smart, it can do all of the hard work.

Most of the work you will do with strings and substrings is to set up
interesting and clear output There will be many calculations used to set
up the output, and while it is important to understand the use of
substrings for output, it is also important to remember that substrings are
subject to calculations as well so that they can be formatted for correct
output This again reminds us of the importance of having clear, struc
tured programs. The next chapter will provide more tricks and tech
niques to format output that may be used with the substring functions
you learned in this chapter.

________________ CHAPTER 9 __ _

Preparing Data
and

Formatting Output

FORMATTING AND MANIPULATING INFORMATION

Your Amiga has several statements that will clearly arrange your
output for clear communication. This chapter concentrates on a number
of these statements and shows you how to use them to arrange things on
your screen for interesting and lucid presentations. We will write a fairly
large program that uses these new tricks to illustrate their functions.

Preparing information for output requires two types of data manipula
tion:

1. Numeric: manipulating numeric data with mathematical opera
tions

2. String: manipulating strings with concatenation and substring
statements

Numeric and string data manipulations often go hand in hand. To
use any kind of mathematical calculations, strings must be transformed
into numeric properties using such functions as LEN and VAL. To put the

129

130 The Amlga Microsoft BASIC Programmer's Guide

calculations into a useful format, the information then has to be trans
mitted into strings. Using values and strings, the final step is to put
everything on the screen, placing things so that they make sense. This
involves planning the position of things on the screen in relationship to
each other.

SCREEN PLACEMENT

We've used the comma, semicolon and even the PRINT statement to
format text on the screen. We also used TAB in an example of centering
text and how to use SPACE$. Here, we're going to take a close look at
these and other keywords used to place text on your screen. First, let's
take a look at some statements and functions:

Screen Placement Words

SPACE$(N)
TAB (N)

SPC (N)

LOCATE vertical, horizontal

Function

Creates a string with N number of spaces
Used within PRINT statement to place next
character N spaces from left margin
Used within PRINT statement to create
specified number of spaces. (SPC starts
printing non-space one space after N.)
Used to place cursor (and next screen
output) at specified row and column on
the screen

First, let's see how SPACE$, TAB and SPC are used within print
statements. They do not have to be separated from the text with commas,
colons or semicolons:

Spacer:
WIDTH 62
CLS
PRINT SPACE$(10) "Space String"
PRINT TAB (10)"TAB is here"
PRINT SPC(10)"SPC is here"
LOCATE 1.1
PRINT "Top!"
LOCATE 20.50
PRINT "Down and Out";
Hold$=INPUT$(1) : REM Keeps it from scrolling

Preparing Data and Formatting Output 131

The last line prevents the output from scrolling off the top of the screen.
(Pressing any key will cause the program to end.)

That little program did a lot First, notice how SPACES and SPC
placed the text in the same column while TAB put it one space to the left
Both SPACES and SPC planted 10 spaces and then the text The TAB
function placed the text right on column 10. Also note how the word
'Top' was put on the same line as 'Space String' without erasing the
screen. The nice thing about LOCATE is its ability to "plant" a character
right where you want it without scrolling the screen. However, if you put
a character or string too close to the right edge of the screen, with
LOCATE it will scroll to the next line. Change the horizontal value in the
second LOCATE statement from 50 to 60 and see what happens.

Now let's have some fun with our statements. Here's a little program
that will give you an idea of how to place text within your program. In
addition, it allows you set your WIDTH:

Madison.Ave:
INPUT "5creen width " ;5W
WIDTH 5W
CL5 : PRINT : PRINT
PRINT PRINT : INPUT "Your Ad Here
PRINT : INPUT "Column"; X
PRINT : INPUT "Row" ; Y

REM ************************
REM Put your Ad on the Screen

REM ************************
Billboard:

CL5
LOCATE Y,X : PRINT Commercial$;
PRINT: PRINT: PRINT "Press";
WRITE "M"
PRINT "for more"
AN$ = INPUT$(l) : AN$=UCA5E$(AN$)

" . ,

IF AN$ = "M" THEN Madison.Ave EL5E END

Commercial$

As you can see, variables can be used with formatting statements.
Thus, LOCATE Y,X is read in the same way as if we had used numbers.
Using the above program, what do you think would happen if you
entered "This is a very long and boring commercial," in column 50 with
a screen width of 62? Since the maximum horizontal position is 62
before text starts disappearing off the screen the string will run out of
horizontal room. Go ahead and see what happens, and when you use

132 The Arniga Microsoft BASIC Programmer's Guide

these statements in your programs, you will have a better understanding
of their parameters. Once you see how far you can push the horizontal,
see what the vertical limits are.

PRINT USING: FORMATTING WITH STYLE

You may have noticed by now that if you print a number on the
screen with a trailing zero after a decimal point, the zero gets dropped.
Likewise, if you try to put a dollar sign in front of a numeric variable,
there is a space between it and the number. For example, enter the
following:

PRINT "$" ;9.50

You want to get $9.60, but instead you get

$ 9.5

The PRINT USING statement solves these problems by allowing you
to format the output It's a strange term, but once you start using it, you
won't care what it's called. Type in the following:

PRINT USING "$$.~~";9.5

The pound (#) signs refer to the number of digits to be printed out minus
one. (Three pound signs make room for four digits.) The double dollar
signs align the output dollar sign adjacent to the first digit, and the period
between the dollar and pound signs shows the position of the decimal
point relative to the rest of the number. Try the following program to see
what happens when there are more digits than spaces for them:

Too.Much:

CLS
FOR X = 1 TO 200 STEP 45
PRINT USING "$$~";X

NEXT X

The results show:

$1
$46
$91

%$136
%$181

Preparing Data and Formatting Output 133

Now, change the PRINT USING line to:

PRINT USING "$$UU";X

This time you got

$1
$46
$91

$136
$181

If you add more pound (#) signs, you will just get more spaces to the
left of the dollar sign. Notice how all of the numbers are right justified
also. Now change the line by adding about five more pound (#) signs to
see what happens.

The dropped zeros problem was solved by adding the two pound
signs after the decimal point in the PRINT USING line. All you have to
do is to include a decimal point (.) among the pound signs (#) where you
want your decimal points. Watch this when you run it

Save.Zero:
CLS
FOR X = 10 TO 250 STEP 20

PRINT USING "UU.UU";X/5
NEXT X
A$ = INPUT$(1)

You got all your trailing zeros, and everything was lined up nicely.

134 The Amiga Microsoft BASIC Programmer's Guide

Try using a single dollar sign to see what happens:

One. Buck:
FOR X=l TO 130 STEP 30.5
PRINT USING "$~~~.~~"; X
NEXT

Notice how with a single dollar sign, all of the dollar signs line up evenly
and all of the numbers are right justified. That looks a little neater in
some applications, so depending on whether you want your dollar signs
lined up evenly or you want them directly next to the numbers, use one
or two dollar signs in your PRINT USING statements.

Now that you have an idea how to use PRINT USING with dollars
and cents, let's take a look at what else you can do with this statement
Enter the examples below to get used to each format

PRINT USING Formats Example

II One digit position for each pound sign (II).
1111.1111 Places decimal point in position

relative to pound signs and number of
pound signs.

$ Places left justified dollar sign next to
number.

$$ Places dollar sign adjacent to number.
! Prints only the first character of a string.

&. Prints the whole string when string length
is variable.

, , Prints the number of characters plus
two based on the number of spaces
between the back slashes. (NOTE: The
back slash is adjacent to the BACK
SPACE key.)

, Placed at the last position or last position
before a decimal point, places commas
every third position in numbers.

II Placed before character, that character is
placed as literal (i.e., any character you
want in the indicated position).

+ Outputs a plus or minus sign before
positive or negative numbers.

- Outputs a trailing minus sign after
negative numbers.

•••• Placed at the end of a PRINT USING
format, it results in an exponential output

PRINT USING "111111"; 689
PRINT USING "1111.111111"; 24.67

PRINT USING "$11.1111"; 8,90

PRINT USING "$$111111.1111"; 23.45
PRINT USING "'''; "Amiga"
PRINT USING "&."; Some$

PRINT USING ", ,";
"COMPUTER"

PRINT USING ", ,". ,
"Amiga"; "Computer"

PRINT USING "11111111111111111111111111,";

1234567891
PRINT USING "1111111111, .1111";

5555.55
PRINT USING "11%"; 8
PRINT USING "II ("; 66

PRINT USING
"+11111111.1111"; 22.33;-87

PRINT USING "11111111.1111-";

102; -42
PRINT USING "11111111"""; 525

Preparing Data and Formatting Output 135

Strings in PRINT USING

Another way to get the PRINT USING formats set up is to put them
into string variables. For example, when formatting dollars and cents or
percentages, you might want to do the following:

Tax.Calc:
Buck$= "$$~~~~~.~~"

SalesTax$= "~~.~%"

INPUT "Amount of purchase";Amount
INPUT "Sales tax (Enter decimal values) "; Tax
Total=Amount + (Amount * Tax)
Tax=Tax * 100

Out. Put:
PRINT "Your purchase is "; : PRINT USING Buck$; Amount
PRINT "Your sales tax is "; : PRINT USING SalesTax$;Tax
PRINT "It will cost you "; : PRINT USING Buck$;Total

Pay close attention to the last three lines in the "OutPut" module
showing how to use PRINT USING in combination with PRINT. In big
programs where various formats are used, you can define your PRINT
USING formats at the beginning of your program, making it a lot easier
to use the different outputs where required. Also, be sure to use a
variable name for your string that will be easily remembered.

HIGHLIGHTING OUTPUT WITH COLOR

In Chapter 12, we'll really get into graphics and color, but there is a
graphic statement you need now. It gives you the ability to create inverse
output which is important in formatting output That statement, COLOR,
can be used to 'toggle' white characters on a blue background with blue
characters on a white background. For example, run this program:

Toggle:
PRINT "Regular"
COLOR 0,1 : REM White background
PRINT "Inverse Video"
COLOR 1,0 : REM Back to normal
PRINT "Back to normal"

136 The Amiga Microsoft BASIC Programmer's Guide

The first value in color is the foreground color and the second is the
background color. There are several more color combinations we could
use, but that will have to wait until Chapter 12. In the meantime, try this
next program that demonstrates using variables with COLOR:

Flipper:
Message$= "This important message"
FOR x=l TO 9
Foreground=0
Background=l
COLOR Foreground.Background
PRINT Message$
Foreground=l
Background=0
COLOR Foreground.Background
PRINT Message$
NEXT
COLOR 1.0

You can also get a flashing effect by toggling normal and reverse
video using LOCATE. Look at this next program to see how:

Good.Eats:
WIDTH 62
Joe$=" Eat at Joe's"
L=LEN(Joe$)
Center=31 - L/2

Flasher:
WHILE Halt$ = ""

Hal t$=INI(EY$
COLOR 0.1
LOCATE 10.Center
PRINT Joe$
COLOR 1.0
LOCATE 10.Center
PRINT Joe$

WEND

COLOR 1.0

REM Loop until a key is pressed.

REM Remember to return to normal video.

Preparing Data and Formatting Output 137

While you're at it, see how the centering routine was used with LOCATE
and how it was set up to work until you pressed any key.

HOW ABOUT A DATES

The last screen presentation word we'll introduce in this chapter is
DA TE$. It works something like TIME$, but instead of the time you get
the date set from the Workbench 'Preferences.' To see what date your
Amiga is set to, key in the following:

PRINT DATE$

Your output will look something like:

05-07-1988

depending on the setting of your built-in calendar. (You can get clocks
with batteries to attach to your Amiga so that you do not have to update
your clock and calendar information.)

Since DATE$ is set up as a string, you can take the substrings and
use it to provide a descriptive date. By replacing the values in the
calendar (01-12) with the names of the months, January-December, you
can make a text calendar from your numeric calendar. The following is
one example:

Date.Maker:
DIM Month$(12)
FOR X=l TO 12

READ Month$(X)
NEXT X

Make.My.Date:
D$=DATE$
CMonth$=LEFT$(D$,2)
Day$=MID$(D$,4,2)
Day$=Day$ + ","

Year$=RIGHT$(D$,4)
YEAR=VAL(Year$)
CMonth = VAL(CMonth$)

138 The Amlga Microsoft BASIC Programmer's Guide

PRINT "Today is ";Month$(CMonth);SPC(1);Day$;Year

DATA January.february.March
DATA April.May.June
DATA July.August.September
DATA October.November.December

Now, let's take all the tricks you've learned in this chapter and
make one big program. We'll create an interesting menu for you to use in
your programs.

Snazy.Screen:
COLOR 0.1 REM reverse colors
CLS : REM Turn screen white
WIDTH 62
COLOR 1.0
BAR$=SPACE$(58)
fOR X=9 TO 2 STEP-1

LOCATE X.2
PRINT Bar$
LOCATE 19-X.2
PRINT Bar$

NEXT

Calendar:
Today$="Today is " + DATE$
Halfway = 31 - LEN(Today$)/2
LOCATE 19.Halfway
PRINT Today$;

Menu.A.la.Carte:
COLOR 0.1
fOR X=1 TO "/

LOCATE X*2+1.5
PRINT USING "~";X

NEXT
COLOR 1.0
fOR X=1 TO "/

READ Choice$
LOCATE X*2+1."/
PRINT Choice$

Preparing Data and Formatting Output 139

NEXT
LOCATE X*2+1,6
PRINT "Choose a number";
That.One$=INPUT$(l)

Your.Choice:
DATA Whatever,You,Want,In,Your,Menu,Here

You can put anything you want in the DATA statements, depending on
what your program does. You can also make more or fewer choices
available by changing the size of the loop.

SUMMARY

Formatting programs makes the difference between a useful and
not-so-useful application of your computer. The more organized and
clearer your program is, the better the chances are for simple yet effective
programming. Formatting is more than an exercise in making your
input/output fancy or interesting. It is a matter of communication be
tween your Amiga and you! After all, if you can't make heads or tails out
of what has been computed, the best calculations in the world are of
absolutely no use.

Formatting statements, such as TAB, SPC, SPACE$ and PRINT USING
give you a great deal of control over how things appear on the screen.
These are handy tools for organizing the various parts in a manner which
gives you complete control over your computer's output What may at
first seem like a petty, even silly command in Amiga BASIC can be
appreciated as an excellent tool upon useful application. The more you
apply these new tools, the better you will become at using them and
discover new applications for them.

_______________ cHA~ER10 __ _

Of Mice and Menus

THE MOUSE INPUT

So far the main input device we've used is the keyboard. The
interactive programs we've examined have been based on some response
triggered by pressing one or more keys. However, besides having every
thing the user wants to enter from the keyboard, the 'mouse' is an
important tool as well. You've probably used the mouse and pull-down
menus a lot with the Workbench disk or with BASIC-like saving programs,
and if you have some commercial programs, chances are they took
advantage of the mouse as well. This chapter will show you how to use
the mouse, pointers and pull down menus for interactive input with
programs you write. This chapter will concentrate on using the mouse
with the menu option, and in later chapters, primarily those dealing with
graphics, we'll see more the mouse can do on its own.

PULL DOWN MENUS

To get started, press the right button on your mouse and look at the
different menus from BASIC. The Project, Edit, Run and Windows menus
all represent "main choices" available to you. We'll refer to the main
choices simply as "menus." By holding down the right mouse button and

141

142 The Amiga Microsoft BASIC Programmer's Guide

AM

placing the pointer over one of the menus, you can see the "menu
options" or simply "options." We'll see how to use these menus and
options for getting things done from our own programs. To get started,
we'll review the various keywords in Amiga BASIC that use the pull
down menus and then get going on our own menus.

MENU N,O,S,N$. The keyword MENU has four parameters:
(N)umber from 1-10; (O)ption from 0-19; (S)tate from 0-2; and an op
tional string identification. Arranged horizontally from left to right each
menu is identified by this first number. Thus, if the first number is
2, then it will be the second menu from the left. The second number is
the option once the menu is pulled down. The identifying menu (the one
on the horizontal bar) has an option value of zero. The other ones are
arranged vertically with the lowest number in the highest vertical posi
tion. The third parameter indicates whether the menu is off (0), on (1) or
on and checked (2). Finally, there is an optional string that identifies the
menu.

ON MENU. ON MENU works like ON M GO SUB. The variable M
is read from MENU(O) or MENU(l) only or a variable that has been
defined as either. The main menus are based on the value of MENU(O)
and the option choices are based on MENU(l). The first branch is to the
main menu subroutine and the second branch is to the option within the
menu.

MENU RESET. This command resets all menus to default condi
tions of BASIC. This should always be executed in BASIC programs using
pull down menus before the program stops. It can be initiated from the
immediate mode if the program bombs and you need to reset the menus.

MENU ON/OFF/STOP. These options are used to enable, suspend
or halt menu options.

SETTING UP YOUR MENUS

The first thing to do is to decide what your main menus will be and
what options you want them to have. The following program is a simple
menu with four main menus with different kinds of options. Let's look at
it and then see why it works the way it does:

Of Mice and Menus 143

Menu.Define:
REM First, set up the menus and options.

MENU 1,0,1, "Group 1"
MENU 1,1,1, "Choice 1"
MENU 1,2,1, "Choice 2"

MENU 2,0,1, "Group 2"
MENU 2,1,1, "Choice 1"
MENU 2,2,0, "Choice 2"

MENU 3,0,1, "Exit"
MENU 3,1,2, " Get me outta here"

MENU 4,0,1, " " : REM Turn off Window 4

CL5
PRINT "Press the RIGHT mouse button and choose a menu."

Menu.Read:
REM Loop to scan menu choice.
CHooZEIT=MENU(0)
ON CHooZEIT GD5U8 GRoUP1,GRoUP2,TERMINATE

GoTo Menu.Read

GROUP 1:
ON MENU(l) Go5UB gl,g2
RETURN

gl:
PRINT "Group1/Choice1"
RETURN

g2:
PRINT "Group1/Choice2"
RETURN

GROUP2:
ON MENU(l) G05U8 g3,g4
RETURN

144 The Amlga Microsoft BASIC Programmer's Guide

g3:
PRINT "Group2/Choicel"
RETURN

g4:

PRINT "Group2/Choice2"
RETURN

TERMINATE:
PRINT "You have ended the program with the mouse!"
REM 8e sure to get the menus back to normal.

MENU RESET
END

The program first defines four menus. Menu 1 is defined as "Group
1," Menu 2 as "Group 2," Menu 3 as "Exit" and Menu 4 as a blank. Run
the program and look at the Menu Bar by pressing the right mouse
button. You just see:

Group 1 Group 2 Exit

You saw no fourth menu since it was used as a "cover" for the "Windows"
menu in the BASIC default Menu Bar. (Just for fun, change the name of
the fourth menu to see it on the Menu Bar.)

Now pull down each of the menus. With them all down at once,
they'd look like this:

Group 1

Choice 1
Choice 2

Group 2
Choice 2
(Choice2)

Exit
v Get me outta here

In the Group 1 menu, everything is active, and if you place the pointer
over any of the options and release the right mouse key, the program will
branch to the appropriate subroutine. However, in Group 2, the second
choice is "ghosted," meaning it is not currently active. If you click it,
nothing happens. Notice in the program listing the option is stated as:

MENU 2,2,O, "Choice 2"

The third parameter is zero, making it inactive. You may wonder why
bother with a menu option that you cannot use. The reason is that

Of Mice and Menus 145

instead of a number you may have a variable in that parameter position
which can be changed depending on what the program is doing. We'll
examine that later.

Finally, if you look at the single Exit menu option, you will see a
check mark next to it That check was created by placing a 2 in the third
parameter position. The listing shows:

MENU 3,0,1, "EXIT"
MENU 3,1,2 " Get me outta here"

The main menu can only have a 1 or 0 in the third parameter position,
but the option menu can have a 2 as well. When you use the 2, it creates
a check mark next to the option. Be sure to include two spaces in front of
the string name as was done in the example. Otherwise, the string and
check will crash into one another.

TOGGLING MENUS

The basic menu above sets the menus in a permanent configuration.
However, you can toggle menu labels, check marks and even "ghost"
images. First type in and run this next program, and then we'll see how
to use some of the features it has.

Header:
Vflag$="N"
Cflag$="A"
Gflag$="Ghost On"
GOSUB Menu.Set
WIDTH 62
ON MENU GOSUB Get.Menu
MENU ON

Writer:
CLS
PRINT "Start typing"
SubFlag=0
WHILE 1

IF SubFlag THEN Writer
Type$=INI<EY$
PRINT Type$;

WEND

146 The Amlga Microsoft BASIC Programmer's Guide

Get.Menu:
Mainmenu=MENU(0)
ON Mainmenu GOSUB Video,Calculate,Finish
RETURN

Video:
OptionSet 1=MENU(1)
ON OptionSet1 GOSUB Reverse,Normal,Ghost
RETURN

Reverse:
COLOR 0,1
CLS
Vflag$="R"
GOSUB Menu.Set
SubFlag=1
RETURN

Normal:
COLOR 1,0
CLS
Vflag$="N"
GOSUB Menu.Set
SubFlag=1
RETURN

Ghost:
IF Gflag$="Ghost On" THEN GOSUB Ghostoff
IF Gflag$="Ghost Off" THEN GOSUB Ghoston

Ghostoff:
Gflag=1
Gflag$="Ghost Off"
GOSUB Menu.Set
RETURN

Ghoston:
Gflag=0
Gflag$="Ghost On"
GOSUB Menu.Set
RETURN

RETURN
RETURN

Of Mice and Menus 147

Calculate:
IF Cflag$='A' THEN GOSUB Add ELSE GOSUB Subtract
RETURN

Add:
CLS:
PRINT 'Adding Machine: Enter 0 to exit'
N=-l : Sum=0
WHILE N

INPUT 'Number ';N
Sum=Sum + N
PRINT 'Running total is'; Sum

WEND
Cflag$='S'
GOSUB Menu.Set
SubFlag=l
RETURN

Subtract:
CLS
PRINT 'Subtracting Machine: Enter 0 to exit.'
N=-l : Total=0
INPUT 'Beginning value ';Total
WHILE N

INPUT 'Number to subtract ';N
Total= Total- N
PRINT 'Running balance is';Total

WEND
Cflag$='A'
GOSUB Menu.Set
SubFlag=l
RETURN

Finish:
MENU RESET
CLS
END

Menu.Set:

MENU 1,0,1, 'Screen'
IF Vflag$='R' THEN Rflag=2 ELSE Rflag=l

148 The Amiga Microsoft BASIC Programmer's Guide

MENU 1,1,Rflag, " Reverse"
IF Vflag$="N" THEN Nflag=2 ELSE Nflag=1
MENU 1,2,Nflag, " Normal"
MENU 1,3,1, Gflag$

MENU 2,0,1, "Calculate"
IF Cflag$="A" THEN M$="Add"
IF Cflag$="S" THEN M$="Subtract"
MENU 2,1,1, M$

MENU 3,0,1, "Exi t"
MENU 3,1,1, "Quit this sucker"

MENU 4,0,Gflag, "Ghost"
MENU 4,1,Gflag, "Booo"

RETURN

This menu program shows the flexibility of menus in programs. The
'Writer' routine represents any main program you may be using. In this
example it just loops endlessly, printing everything you type on the
screen. The main feature is that while in the 'Writer' routine, the program
will branch to the menu subroutines when the various menus and
options are clicked. Let's look at each option separately.

CHECKED OPTIONS. The options that are checked in the 'Screen'
menu simply change the third parameter in the MENU statement in the
'Menu. Set' subroutine. The 'Rflag' and 'Nflag' variables are changed
between 1 and 2 depending on whether 'Vflag$' has been set to 'R' or 'N'.
The 'Vflag$' variable is set in the 'Video' subroutine initiated by the click
of the mouse in the first menu. Notice that the third option in the 'Screen'
menu is not checked. That's because its third parameter is a constant
value of 1. This shows that the check option in setting up your menus
need not involve all of the options in a single main menu.

STRING TOGGLE. Changing the option name is a "string toggle"
since all you do is to change the string in the fourth parameter of the
MENU. This is done in the first and second main menus, 'Screen' and
'Calculate.' In the Screen menu, 'Ghost On' and 'Ghost Off' is toggled in
the variable Gflag$ and the option 'Add' and 'Subtract' in the 'Calcu
late' menu with Cflag$.

Of Mice and Menus 149

GHOST TOGGLE. Besides having the third MENU variable being a
1 or 2, it can also be a 0 (zero), making it inoperative. The 'Ghost' toggle
itself is in the Screen menu, but the 'Ghost' menu and 'Booo' option are
what get "ghosted." When the third parameter value is zero, the ghost is
"on" and dims the menu or option. Also, it turns off the option choice so
the program will not branch to a "ghosted" option.

REFRESHING THE MENU

Each time a variable value is changed, the program must branch to
the 'Menu. Set' routine to update the menu options. This is important to
remember since the only way for the new values to be reflected in the
menu items is for the numeric and string variables to be updated with
the new information in the MENU statement It is not enough simply to
change the variable value and not run it through MENU.

Another useful tip along the same lines is illustrated in the 'Writer'
routine. The SubFlag variable is toggled between the values of 0 and 1.
This variable serves to flag a jump to either of the 'Calculate' subroutines.
A 'SubFlag' value of 1 makes the program drop out of the WHILE/WEND
loop and then to the beginning of the 'Writer' routine thereby clearing the
screen and resetting the value of SubFlag to O. If there were no such flag,
the screen would stay cluttered with the last calculations from the 'Add'
or 'Subtract' option. By changing the value of 'SubFlag' in the sub
routines, you have a way of letting the program know that the subroutine
jump was made.

SUMMARY

This was a short and focused chapter, designed to tie together a lot
of programming skills. First, we saw how the mouse can be used as
another input device for branching programs to different options. The
powerful MENU statement is used to create user-controlled options while
a program is running. Equally important, you should begin to see how
crucial structure, especially module structure, is when creating programs
to keep everything simple yet integrated. Both program examples were
fairly long, yet they did very simple things. You can imagine the number
of things you must keep track of with more complex tasks.

150 The Amlga Microsoft BASIC Programmer's Guide

Finally, we saw how to use "flags" to report changing states within
the program. Both string and numeric variables update and refresh key
parts of your program. Think of them as messengers running around the
different modules making reports. The flags did everything from reporting
a jump to a subroutine, to changing the state of a main menu or menu
option. As we progress, whether or not programs use menu options, we
will be using flag variables more and more. That's because we're going to
be creating larger and more powerful programs, and the flags will report
what the different elements are doing.

________ CHAPTER 11 __

Screen Control

SCROLL MANAGEMENT

A major problem in output is keeping things on the screen when you
need them and getting them off when you do not need them. For
instance, suppose you need the first several values generated in this next
program:

CL5
FOR NUM = 1 TO S0

VALUE=RND(100) * 100
PRINT VALUE

NEXT NUM

Instead of numbers, suppose you have a list of names you sorted or
some other output you want to see before they zip off the top of the
screen. Depending on the desired output, screen format and so forth, there
are several different ways to control the scroll. We'll start with a simple
method.

5croll.Hold:
CL5
FOR num = 1 TO 80

IF Count=19 THEN GD5UB Hold.It

151

152 The Amiga Microsoft BASIC Programmer's Guide

Count=Count+1
PRINT num

NEXT num
GOSUB Hold. It
END

Hold.It:
COLOR 0,1
PRINT "Press any key";
Hold$=INPUT$(l)
COLOR 1,0
CLS : REM Optional to clear old screen
Count=0 REM Don't forget to reset counter!
RETURN

By keeping an eye on where the cursor will be next, you can stop output
until you have a chance to see what's on the screen.

FINDING THE CURSOR WITH POSIO) AND CSRLlN

While we are on the topic of locating the cursor position, let's take a
look at POS(O) and CSRLIN. The POS(O) function locates the horizontal
cursor position and CSRLIN the vertical. POS(O) allows you to control
side to side scrolling. For example, the following program enters a PRINT
statement to give a line feed when a certain horizontal position is
exceeded:

CLS
FOR X=l TO 42

Horizontal=POS(0)
IF Horizontal>30 THEN PRINT

PRINT "Block";
NEXT X

Run the program, and all the "Blocks" are arranged in a block Delete the
line defining Horizontal as POS(O) in the program and try it again. The
second time, the arrangement is not in blocks. In larger programs, you do
not want to have to determine where to locate the cursor every time there
is a new screen output You can store the values of POS(O) in variables,

Screen Control 153

and then use those variables to move the cursor back to the desired
position. The key to understanding how to use these two variables is to
experiment with them in formatting output

You can find the vertical position of the cursor just as easily with
CSRLIN. Run this program to see how CSRLIN keeps track of the Y
(vertical) position of your cursor:

CLS
FOR X = 1 TO 8

PRINT : REM Add extra line.
PRINT X;
PRINT "Cursor at";CSRLIN

NEXT X

Note that the value of the X and the position are not the same. That's
because we added an extra PRINT statement to show that no matter what
kind of spacing you use in your program, the vertical cursor position will
be tracked by CSRLIN.

If you use CSRLIN and POS(O) together, you can track the X, Y
position of your cursor anywhere on the screen. In programs where you
wish to pause, you will find it helpful to issue a line feed, tab spaces or
other cursor related routines. The following little "word processor" keeps
track of where the cursor is while you write text

Cheap.WP:
PRINT : PRINT
WHILE Writo$ (> "I" REM Vertical bar to exit.

Writo$=INPUT$(l)
PRINT Writo$;
Y=CSRLIN
X=POS(0)
LOCATE 1,1
PRINT Y;X
LOCATE Y,X

WEND

Each time you press the RETURN key, the Y (vertical value) increases and
each time a new character is printed to the right, the X (horizontal) value
increases. The running total is in the upper left hand corner, and the
cursor knows where to print the next letter since the program uses the X
and Y values in the second LOCATE statement

154 The Amlga Microsoft BASIC Programmer's Guide

In addition to controlling output by holding the scroll, you can also
control it by using sequential columns. To use more of the screen, you
could have the output tabbed to another column after the vertical screen
is filled. For example:

Two.Columns:
CLS
FOR X=l TO 36

IF X>18 THEN GOSU8 Column.Jump
PRINT X

NEXT X
END

REM **********
REM New Column
REM **********
Column.Jump:

IF X=19 THEN LOCATE 1,1
PRINT TA8(20);
RETURN

Another trick is to make "calculated columns" that come up simul
taneously. For example, the following program lines up output in three
equal columns. If the number is not equally divisible by three, then it tags
on the extra values in the last column. Notice how we used the MOD
(modulo = division remainder) function to determine whether or not the
number of columns would be even. See if you can change the program
to line up the numbers evenly with the extra values being placed in the
first two columns.

Tailer:
CLS
INPUT "Enter any number";N
Y=INT(N/3)
Jump= N MOD 3
FOR X=l TO Y

PRINT X,X+Y,X+(2*Y)
NEXT
IF Jump THEN GOSU8 Tail
END

Tail :
FOR K=X TO X+(Jump-1)

PRINT"K+(2*Y)
NEXT K
RETURN

Screen Control 155

You get the idea. Format your output in a manner that best uses your
size screen and your needs and get that scroll under control!

YES-THE AMIGA DOES DO WINDOWS

Another powerful Amiga formatting statement is WINDOW. This
statement allows you to partition your screen into separate little screens
or 'windows.' You may want your input in one window and output in
another, or you may want different colors for different windows. The
window statement can do a lot to make your programs look professional.
To get started, we'll partition your screen into two little screens. For each
window include:

1. The window number from 1 (default window) to the total number
of windows you use

2. Title of window
3. The window size in terms of a rectangle specified by the opposite

comers (in parentheses) as the X (horizontal)/Y (vertical) positions
4. Type of window based on adding the following values:

Value Characteristic

1 Can change window size
2 Can move window across screen
4 Can be moved front and back
8 Can close window

16 Reappears after being covered by another window

Set.Windows:
WINDOW 1, "alpha",(1,1)-(600,80),1S
WINDOW 2, "beta",(1,90)-(100,160),16

156 The Amlga Microsoft BASIC Programmer's Guide

Present.Windows:
WIDTH 62
WINDOW OUTPUT 1
PRINT "This is Window ~1"

WINDOW OUTPUT 2
WIDTH 9 : REM Remove this and see what happens
PRINT "And this is ~2"

WIDTH 62 : REM RESET TO WINDOW ~1 size

The two windows, labeled 'alpha' and 'beta' have different charac
teristics and sizes. The alpha window fills most of the horizontal screen
since it was drawn from pixel position 1 to position 600. A pixel is a dot
of light approximately 1/10 the horizontal size of a character. That is, for
every screen character, there's room for 10 pixels. You can get a few more
pixels in a window if you do not choose to have the screen change in size
or be removed. We'll discuss pixels further on in this chapter when we
discuss the SCREEN statement

The alpha window is type 15. The value 15 was generated by adding
1 + 2 + 4 + 8, giving the window all but the last (value 16) characteristic.
The beta window is only type 16. It cannot be moved, change its size or
move behind another window. It stays put and visible until you quit the
program and drop the LIST window over it If you want all of the
characteristics available in a single window, just use 31 as the type. (In
case you didn't notice, 31 is the sum of all of the values.)

To see some window characteristics, run the program and place the
pointer in the alpha window and click the mouse. You'll see the vertical
cursor appear in the alpha window. Now, in the immediate mode, type in:

PRINT 1 + 2 + 4 + B + 16

When you press RETURN, your result does not appear in the alpha
window. Instead, it appears in the beta window. To see why, list your
program and look at the last WINDOW OUTPUT statement It is to
window 2, not the alpha window, window 1. Therefore, until you tell your
Amiga that the output is to go to window 1, the alpha window, it will
continue to send all results to the beta window. To fix that, from the
immediate mode, type in:

WINDOW OUTPUT 1

Screen Control 157

Now, go ahead and add up some numbers in the alpha window. This
time the sum will appear in the alpha window. Of course you would
normally make the window output changes from the program itself.

The only window you can use with your cursor is window 1. Go
ahead and place the pointer on the beta window and click the mouse
button. The title bar will darken, indicating the window is selected, but
there will be no cursor; if you type in characters from the keyboard, they
will not appear on the screen. On the other hand, since the alpha window
is window 1, when it is selected, it darkens and the cursor appears.
However, you can input into your current window even if it is other than
window 1 when input is required. For example, the next program places
characters on the screen until you press the vertical character bar. Then
it goes into a "calculator window" for input and output

Set.Windows:
WINDOW 1, "Writer", (1,1)-(600,180),15
WINDOW 2, "Calculator",(400,1)-(600,100),15
WINDOW OUTPUT 1
WIDTH 60

Writer:
WHILE Typo$ (> "@"

TYPE$= I NI<EY$
PRINT Typo$;
IF Typo$="I" THEN GOSUB Calculate

WEND
WINDOW CLOSE 2
END

Calculate:
WINDOW OUTPUT 2
CLS : WIDTH 20
Num = -1
WHILE Num

PRINT "Enter value"
INPUT Num
Total=Total+Num
PRINT "Total=";Total

WEND

158 The Amiga Microsoft BASIC Programmer's Guide

WINDOW OUTPUT 1
WIDTH 60
RETURN

Notice when you run this program how the typing goes behind the
calculator window. That can be a problem, so let's see how to make the
calculator window appear only when it is needed. Change the program to
looks like this:

Set.Windows:
WINDOW 1, "Writer", (1,1)-(600,180),15
WINDOW OUTPUT 1
WIDTH 60

Writer:
WHILE Typo$ (> "~"

Typo$= I NI<EY$
PRINT Typo$;
IF Typo$=" I" THEN GOSU8 Calculate

WEND
END

Calculate:
GOSU8 Calc.Window
WINDOW OUTPUT 2
CLS : WIDTH 20
Num = -1
WHILE Num

PRINT "Enter value"
INPUT Num
Total=Total+Num
PRINT "Total=";Total

WEND
WINDOW CLOSE 2
WINDOW OUTPUT 1
WIDTH 60
RETURN

Calc.Window:
WINDOW 2, "Calculator",(400,l)-(600,100),15
RETURN

Screen Control 159

By using the WINDOW CLOSE statement in the 'Calculate' routine, you
can tum the 'Calculator' window off when it's not being used. When it is
needed, the 'Calc.Window' routine makes it reappear. When using multi
ple windows, it's wise to have each window as a separate subroutine so
that it can be turned on and off as needed.

Add the following window to the end of the last program to provide
instructions as to what keys to press for calculations and exit After

WINDOW 1, " W rite r . . .

type:

GOSUB Inst.Window

At very end of program:

Inst. Window:
WINDOW 3, "Instructions", (1,1)-(310,10),1
WINDOW OUTPUT 3
COLOR 0,1
PRINT" I" to Calculate - .~' to Exit.";
RETURN

It's also a good idea to add a couple of PRINT statements at the
beginning of the 'Writer' routine so that the output won't be covered by
the new window.

SCREEN WORK

Besides having a WINDOW statement, there is also a SCREEN
statement In the next chapter on graphics, we will see how SCREEN is
used with color and drawings, but it has some important implications for
use with screen formatting, so we will introduce it here.

To get started, look at this program using the SCREEN statement

Fat.Characters:
SCREEN 2,320,200,5,1

REM Last value in the following WINDOW statement
REM indicates the screen number.

160 The Amiga Microsoft BASIC Programmer's Guide

WINDOW 1. "Characters".(1.1)-(280.180).15.2
Alphabet$="abcdefghIjklmnopqrstuvwxyz"
Alpha$=UCASE$(Alphabet$)
PRINT Alpha$
PRINT Alphabet$

The first line sets the five screen parameters. They include:

1. Screen number or id
2. Horizontal pixels for screen, 1-640
3. Vertical pixels for screen, 1-400
4. Color number value:

Value Colors

1 2
2 4
3 8
4 16
5 32

5. Screen mode: Resolution and interlacing

Mode Resolution Interlaced

1 Low No
2 High No
3 Low Yes
4 High Yes

In our example, we used an identification number 2, a width of 320 and
height of 200 with 32 colors and non-interlaced low resolution screen. As
a result, the output showed "fat" letters and a screen we cannot use for
immediate mode input

To link our window to a screen, we had to add a parameter to the
WINDOW statement The value 2 after the 15 indicates that output in
Window 1 will be with Screen 2. As you can see, there is no need for
windows and screens to have the same identification number. Experi
ment with SCREEN by changing its values. We'll be doing more with it in
the next chapter on graphics and colors.

Screen Control 161

SUMMARY

This chapter concentrated on controlling screen output The more
use you can make of your Amiga screen, the more output it can handle.
Like everything else that becomes larger, your screen output must be
managed in order to keep it under control. If it gets out of hand, it will
scroll off the screen, be confused with mixed output and just look messy.
Using the POS(O) and CSRLIN functions, you can keep track of the
cursor's horizontal and vertical positions. When it reaches a point near
scrolling, you can hold the screen until the user has had a chance to see
everything needed. Similarly, using different algorithms, it's possible to
use more of the screen to place output anyway you wish.

If a single window is not enough, you can place output in as many
windows as you can create on the screen. This gives you the option of
separating different kinds of output in different windows, or bringing on
required output only when needed in a separate window. The WINDOW
statement in Amiga's BASIC makes that very easy. Combined with the
SCREEN statement, it is even simpler.

_______________ cHA~ERI2 __ _

Drawing With
Graphics

Your Amiga can produce spectacular graphics. There are several
aspects of Amiga graphics, but we will divide them into two major
categories: drawing and animation. This chapter will focus on creating
images, and the next chapter will examine animating images. Much of
what we use in the next chapter will be introduced in this chapter, so
before you have a go at animating graphics, you should finish this
chapter.

PIXELS

Graphics are produced with little "dots" on the screen. They are
referred to as "pixels," and each is made of a beam of light showing up
on the screen. Your screen is made up of different numbers of rows and
columns of pixels, depending on your screen mode. In the last chapter,
when we introduced SCREEN we noted there were four modes, depend
ing on which, there are different numbers of pixels:

1. Horizontal=320, Vertical=200
2. Horizontal=640, Vertical=200
3. Horizontal=320, Vertical=400
4. Horizontal=640, Vertical=400

163

164 The Amiga Microsoft BASIC Programmer's Guide

The default screen mode on your Amiga is 2, which means you have a
640 by 200 pixel matrix in which to create graphics without changing
any screens.

To light up a pixel on your screen, use the statement

PSET (X, Y) ,c

where X is the horizontal position, Y the vertical and C the color. PSET
works just like LOCATE in the text mode. (Think of PSET as Pixel-SET.)
The value C sets the color, or if no color is indicated, it defaults to the
current foreground color. Try the following:

CLS
PSET (320,100)

That will place a cursor in the center of your screen. Now try this next to
see the horizontal and vertical parameters:

FOR X= 1 TO 640
PSET (X,100)

NEXT X
FOR Y=1 TO 200

PSET (320,Y)
NEXT Y

This time you got a cross intersecting in the middle of the screen. You
should now be able to place a pixel anywhere you want on the screen. For
practice, see if you can place one in each of the four comers of the
screen.

THE AMIGA'S COLORFUL PALETTE

The main advantage of Amiga graphics is the wide variety of colors
available. (If you do not have a color TV or monitor, the colors will
appear as different shades of black and white. However, we will assume
the use of a color monitor as standard. If you have a color television, use
the low resolution mode for best results. If the colors are not what you
expect, adjust the color on your monitor or TV.)

Drawing With Graphics 165

The PALETTE statement has four parameters:

1. Number
2. Red value (0.0-1.0)
3. Green value (0.0-1.0)
4. Blue value (0.0-1.0)

To get started, we'll keep it simple. If any of the color values is 1 and
the others are 0, then the color with a value of 1 will appear predominantly.
For example, the following program will produce red letters and screen
borders:

PALETTE 1,1,0,0
PRINT "Red"

Change that to:

PALETTE 1,0,1,0
PRINT "Green"

and you'll get a solid green result The real power, though, comes by
combining the various colors in values between 0 and 1. For example, by
having the Red parameter at .5, you get a terra cotta red:

PALETTE 1,.5,0,0
PRINT "Terra Cotta"

Combine other color combinations, and you can get all kinds of
colors. If all of the values are 1, you create white, and if they are all zero,
you get black. The thing to do is to write a program that will let you enter
different values to see for yourself what colors you can create.

The next program lets you change the colors to any combination
you can dream up. As soon as you enter values of 1 for each color, the
program will exit and restore everything to normal. With each prompt,
just enter three values, separated by a comma and press RETURN. For
example, try:

1, .6, .67

166 The Amiga Microsoft BASIC Programmer's Guide

to get a cherry flavored Amiga screen. You might want to make a note of
any color values you'd like to use in a program.

WHILE Z$ <> "0"
COLOR 0,1
CLS

Get.Color:
INPUT "Values for red,green,blue";Red,Green,Blue
IF Red> 1 OR Green > 1 OR Blue> 1 THEN Get.Color
PALETTE l,Red,Green,Blue
IF Red + Green + Blue = 3 THEN Z$="O"

WEND
COLOR 1,0
CLS

MULTIPLE COLORS

You can only get the number of colors on the screen at the time that
is reserved by the SCREEN depth parameter. We'll use the high resolu
tion screen (non-interlaced) to examine how to get several different
colors on the screen at the same time. The maximum is 32, requiring a
depth value of 5. We'll use 16 colors to get started; thus, we'll use the
depth value of 4:

Color 16:
SCREEN 1, 600,380,4,2
WINDOW l,"Color 16",(1,1)-(550,350),15,1
RANDOMIZE TIMER
FOR X= 1 TO 15

PALETTE X,RND,RND,RND
COLOR X,0
PRINT "This color now"

NEXT

Notice how long it took to get everything on the screen. The more
colors you use in a program, the longer it takes for it to run. Also note
that we used only 15 of the available 16 colors. If you change the loop,
from 1 TO 15 to 0 TO 15, you'll get all 16 colors, except that the first one
will be invisible. The RND function gave us random colors, and since we

Drawing With Graphics 167

used the RANDOMIZE seed with the TIMER, we never know what the
colors will be. Run it several times to see what different combinations
you will get

If you use a depth of 5 for 32 separate palettes, you'll need low
resolution graphics. To get an idea of how to go about that, run this
revision of the 16 color demonstration:

Color.Gen:
SCREEN 1, 300,180,5,1
WINDOW 1,"Color32",(1,1)-(275,160),1S,1
RANDOMIZE TIMER
FOR X= 1 TO 31

PALETTE X,RND,RND,RND
COLOR X,0
IF X> 16 THEN LOCATE X-16,10
PRINT "Lo Color"

NEXT
PALETTE 1,1,1,1
COLOR 1,0

By combining your PSET and PALETTE statements, the following
program makes some colorful spots in low resolution and shows you
some tricks for defining color:

Sparl<ler:
SCREEN 1,320,200,3,1
WINDOW 1,"Sparkles",(10,10)-(270,170),1S,1
GOSUB Color.Palette
FOR Hue= 1 TO 7

RANDOMIZE TIMER
FOR More = 1 TO 9

COLOR J,0
X%=INT (RND * 270)
Y%=INT (RND * 170)
PSET (X%,Y%),Hue

NEXT More
NEXT Hue
COLOR 1,0
END

Color.Palette:
Yellow: PALETTE 1,1,1,.13

168 The Amlga Microsoft BASIC Programmer's Guide

Cherry: PALETTE 2,1,.6 •. 67
Fire.Engine: PALETTE 3,.93,.2.0
Lime: PALETTE 4,.73,1,0
Brown: PALETTE 5,.8,.6,.53
Aqua: PALETTE 6,0,.93,.87
Gray: PALETTE 7,.73,.73,.73
RETURN

GETTING IN SHAPE

OK, now that we have seen how to draw lines the hard way with
PSET, let's look at doing some things the easy way. Instead of having
loops to draw lines, we can use the LINE statement to draw lines, boxes
and fill in the boxes! The general format is:

LINE (X,Y) - (X1.Y1). COLOR

There's more to the format that we will get to in a second, but to get
started, we will draw a diagonal line we could not easily do with PSET:

Red.Line:
CLS
PALETTE 1,1,0.0
LINE (0,0) - (640,400) ,1

Now let's do something more with LINE. Instead of a line we will make
a rectangle. To do that we enter B at the end of our LINE. The B (for Box)
will use the x,y coordinates for the opposite comers of the rectangle:

Black.Box:
PALETTE 1,0,0,0
LINE (10,10)-(200.100).1,B

This time, instead of getting a diagonal line, you got a Box. Add an F
directly after the B. The F is for "Fill." See if you can guess what happens
when the F is added:

Pink.Box:
PALETTE 1,1,.6,.67
LINE (10,10)-(200.100),1,BF

Drawing With Graphics 169

The box is filled with the palette color!
All of this may seem interesting, but what can you do with colored

boxes? Well, for one thing, they are great for making graphs. We'll make
a bar graph with elongated vertical rectangles using the LINE statement
Our first graph will be a simple one that makes three vertical bars, each
in a different color. We will INPUT the values for each graph limited only
by the vertical "window" we will use. Instead of crowding everything into
our 400 vertical pixel screen, we will only use 380 vertical pixels. In this
way we will have room for labels and other enhancements at the bottom
of our chart

Scrn.Win:
SCREEN 1,300,190,2,1
WINDOW 2,"Graph 1",(1,1)-(275,170),15,1
WINDOW OUTPUT 2

EZ.Graph:
CLS
FOR X = 1 TO 3
Get. Plot:

PRINT "Value for bar ~";X;
INPUT Value(X)

Trap:
IF Value(X) > 150 THEN Get.Plot

NEXT X

Make.Graph:
GOSU8 Graph.Hues
COLOR 0,0
CLS
FOR X=l TO 3

Start=50 * X
Finish = Start + 40
Plot = 150 - Value(X)
COLOR X,0
LINE(Start,Plot) -(Finish,150),,8F

NEXT X

LINE (0,155) - (300,155)
WINDOW OUTPUT 1
END

170 The Amiga Microsoft BASIC Programmer's Guide

Graph.Hues:
Red: PALETTE 1,1,0,0
Green: PALETTE 2,0,1,0
Blue: PALETTE 3,0,0,1
RETURN

Let's see how the graph was made:

1. Values for the graph were entered in the array Value(X}.
2. The variable 'Start' used 50 times X to have the bars start at

positions 50, 100 and 150.
3. The variable 'Finish' set the width of each bar to be 40 pixels

since it uses the value of Start as an offset That leaves 10 pixels
between each bar.

4. The variable 'Plot' specified the starting location of the vertical
position by subtracting the value of Value(X} from 150, the
maximum value of the plot This was done because the vertical
pixels' values start at the top of the screen, and we wanted to have
the higher values placed higher on the screen. That is, since 5 is
"higher" on the vertical screen than, say 20, by subtracting Value(X}
from 150, the value 5 is now 145 and 20 is 130. Therefore, when
plotting the bars, the 20 (130) bar will appear "higher" than the 5
(145) bar.

5. The 'Make.Graph' routine draws the bars by using the variables
we defined. The value 150 is a constant representing the pixel
position where all the bars begin. The whole thing is run through
a FOR/NEXT loop between the X variable generating 3 different
palette colors, and 3 bars. Finally, a bottom line is drawn, and in
Line 190 the output window is returned to 1 so that we can see
output from the default window. (Things get very strange if you
forget to do that)

We took a very simple example, limiting the number of bars and the
maximum value. This is fine for bar charts that have a maximum value
of 150 and where you need only three parameters. But what about having
more graphs, higher values and perhaps labels? This is a little trickier,
but it can be done. To do this, we have to set up a ratio for a maximum
value relative to any value we enter, adjust the width of our bars
depending on the number of entries we make and figure out how to
place the labels where we want them. By using good algorithms, we can
let the computer figure all this out for us. Let's give it a try:

Smart-Plot:
CLS

Get-Max:
INPUT "Maximum value";MV
RATIO = 179.99/MV

Plot-Num:
PRINT

Drawing With Graphics 171

INPUT "Number of plots(MAX=144) ";N%
IF N%> 144 THEN Plot.Num
DIM VALUE(N%)
CLS

Plot-Info:
FOR X=l TO N%
Get.Plot:

PRINT "Value for plot" ;X; "(Maximum value=" ;MV;")"
INPUT "->";VALUE(X)
IF VALUE(X) > MV THEN Get.Plot
VALUE(X)= INT(VALUE(X) * RATIO)
NEXT X

Make.Graph:
CLS
FOR X = 1 TO N%
HORWIDTH = INT (640/N%): Start = HORWIDTH * (X-i)
Finish = Start + INT (HORWIDTH/2)
Plot = 180 - VALUE(X)
LINE(Start,Plot) - (Finish,180)"BF

NEXT X
LINE (0,181) - (640,181)

In comparing this second graph program with the first, you can see the
similarities. However, there are some important differences.

First, in the "GetMax" routine it was necessary to enter the maxi
mum values for the plots and the number of plots. This gives the program
a good deal more flexibility than our first one with only three plots and
a maximum value of 180.

Second, the variable RA TID determined the number by which we
would have to multiply our plot values to make full use of the 180
vertical pixels (179.99 was used for precision).

172 The Amiga Microsoft BASIC Programmer's Guide

Third, in the graph making block, we had to determine the horizon
tal width of the bars with the variable HORWIDTH. We used the INT
function in the process. This function turns values into integers (whole
numbers), rounding downwards. We did this since we wanted our LINE
statement to have integers for plotting the bars. (Your Amiga would not
know what to do with a plot at 103.45; it expects whole numbers for
plots.) Thus, both Value(X) and HORWIDTH were made into INTeger
values. Depending on the number of plots, the bar size varies. We did this
to make the chart use the maximum amount of screen space without
going over boundaries.

The only thing we left out of our graph is some kind of label. There
are a lot of different labels we could put in, but for simplicity, let's just
number our bars. This will show us how to mix text and graphics. The
important part will be to use LOCATE to place our text relative to where
our bars are going to be printed on the screen. Since we are using a 640
by 200 matrix with our graphics and a 62 by 20 (assuming a WIDTH
value of 62) matrix with our text, we are going to have to figure out an
algorithm to translate our graphic locations into text locations. To get
started we have to determine the relationship between our "plotting"
points for text relative to graphics by dividing the vertical and horizontal
graphic maximums by the text maximums. We will use the variable LV
and LH to represent LOCATE VERTICAL and LOCATE HORIZONTAL
respectively. Thus, we would have:

LV INT (200/20)
LH INT (640/62)

Next, we will have to find where each bar is being placed. Since we
used the variable START to set the beginning of our horizontal bars, we
can determine where our text will go. However, since we placed our first
bar at location zero, and we do not want to divide zeros, we will "pad"
the START variable. We will call the horizontal text position LST ART.

LSTART = 1 + INT ((l+START)/LH)

Our vertical position is a little easier since we know the bottom of
the bars are at graphic position 180. However, we want our labels below
the bars, so we will use position 182:

VSTART = 182/LV

Drawing With Graphics 173

Now to label the bars on your graph, insert the following lines:

Label.Find:
LV = INT (200/20) : LH = INT (640/62)
LSTART = 1 + INT ((1 + START)/LH)
VSTART = 182/LV
LOCATE VSTART.LSTART

PRINT X

We'll also change the bottom line to 150 (from 180) so there will be more
room for the labels.

Label.Plot:
WIDTH 62
CLS
Get.Max:

INPUT "Maximum value";MV
RATIO = 149.99/MV
Plot.Num:

PRINT
INPUT "Number of plots(MAX=144) ";N%
IF N%> 144 THEN Plot.Num

DIM VALUE(N%)
CLS

Plot. Info:
FOR X=l TO N%
GeLPlot:
PRINT "Value for plot";X; "(Maximum value=";MV;")"
INPUT "->";VALUE(X)
IF VALUE(X) > MV THEN Get.Plot
VALUE(X)= INT(VALUE(X) * RATIO)

NEXT X

Make.Graph:
CLS
FOR X = 1 TO N%

HORWIDTH = INT (640/N%): START = HORWIDTH * (X-l)
Finish = START + INT (HORWIDTH/2)
Plot = 150 - VALUE(X)
LINE(START.Plot) - (Finish.150) •• 8F

174 The Amiga Microsoft BASIC Programmer's Guide

Label.Find:

LV= INT(200/20) : LH= INT(640/62)
LSTART= 1 + INT((1 + START)/LH)
VSTART= 1+ INT (199/LV).
LOCATE VSTART,LSTART
PRINT X;

NEXT X
LINE (0,151) - (640,151)
A$=INPUT$(1)

The program is fine up to a point, but as you increase the number of
plots beyond 15, the numbers begin to get off center and pretty soon
there is a real mess. That's because the graphics are using finer plotting
points and the multidigit numbers begin bumping into the next bar.
However, the enhancements show you how to find where a label goes
relative to a graphic plotting point See what other labels you can
LOCATE on your graph. (HINT: For a neat chart using the 12 months of
the year labeled with the first letter of each month, create a big string
called "JFMAMJJASOND" and, using MID$, label each bar by month.)
Also, you might want to add some color to the bars. See if you can add
three colors in high resolution.

PLOTS FROM LAST PLOT: RELATIVE PLOTS

So far, we have only examined PSET and LINE in terms of absolute
plotting points. However, we can also make lines and points relative to
the last plot When using PSET, the STEP statement is read as an offset
to the last plotted point For example, enter the following:

CLS
PSET (20,20)
PSET STEP (20,20)

When you RUN the program, you can see the different locations of
the white dots on your screen. One dot is at position 20 vertical and 20
horizontal. The other dot is at 20 + 20 vertical and 20 + 20 horizontal.
Thus, even though the parentheses contained (20,20), the STEP statement
made a difference in where the pixel was set To make a diagonal line
with PSET STEP, you could do the following:

CLS
PSET (1,1) : REM SET THE BEGINNING
FOR X = 0 TO 199

PSET STEP (1,1)
NEXT X

Drawing With Graphics 175

You can also STEP backwards, just like with FOR/NEXT loops:

CLS
PSET (160,200)
FOR X = 1 TO 200

PSET STEP (0,-1)
NEXT X

In the same way, you can use relative lines. The last plotted point is
the starting point for your next line. This saves programming and makes
it simpler to conceive graphic shapes. For example, the following draws
an arrow, beginning with a regular line and then using offsets from the
last plotted point

Arrow:
CLS
LINE (0,100)-(319,100)
LINE - STEP (-50,-50)
LINE - STEP (0,100)
LINE - STEP (50,-50)

For an interesting effect, try the following using relative lines:

SCREEN 1,600,200,2,2
WINDOW 1, "Surprlse",(l,l)-(550,lB0),15,l
GOSUB Get.Colors:

CLS
FOR x=0 TO 100

PSET(x+100,x+50)
LINE - STEP(-50,-50),l
LINE -STEP (0,100),2
LINE -STEP (50,-50),3

NEXT x
END

176 The Amlga Microsoft BASIC Programmer's Guide

Get.Colors:
PALETTE 1,1,0,0
PALETTE 2,1,1,0
PALETTE 3,1.0,1
RETURN

You might note that this program is very similar to the first one except
we changed the beginning point from a line to PSET. Experiment and see
what you can create!

AMIGAART

We will now do some art work with the Amiga. So far all we have
done is to make shapes using pixels, lines and boxes. We were able to fill
in our boxes with the F function. Now we will see how to PAINT different
parts of our screen.

Paint

The PAINT statement allows you to indicate a point on your screen
and then fill in everything from that point to any line. If you have an
enclosed area, that area will be "filled" with color, and the rest of the
screen will remain in the original background color. The general format
for PAINT is:

PAINT (X.Y)

The following program draws a triangle and then fills it in:

CLS
LINE (160,100)-(160,50)
LINE - STEP (-100,50)
LINE -STEP (100,0)
PAINT (15'3,'3'3)

The PAINT statement must be inside the lines of the figure to be filled.
Thus, we placed our x,y coordinates to the left and above the point

Drawing With Graphics 177

where we started to draw our triangle. Now change the line with PAINT
to read:

PAINT (161,99)

The starting point will put the PAINT statement just outside of the
triangle. Run the program again to see what happens. Instead of painting
the triangle, it painted everything but the triangle. Now, to add color, we
simply include a color in the same format as we did with PSET using the
desired palette number for your color. Go back to the original program
and add a PALETTE, and we'll add another triangle:

SCREEN 1,600,200,2,2
WINDOW l,"Color Paint",(l,l)-(550,180),15,l

CLS
PALETTE 1,0,1,0
PALETTE 2,1,0,0
LINE (160,100)-(160,50),2
LINE -STEP (-100,50),2
LINE -STEP (100,0),2
PAINT (159,99),2

LINE (260,100)-(260,50),1
LINE -STEP (-100,50),1
LINE -STEP (100,0),1
PAINT (259,99),1

Getting Around: Circle

If you tried to draw a circle with pixels, you would need either a
good algorithm or a lot of patience and some graph paper. However, with
the CIRCLE statement, making circles is easy. The general format is:

CIRCLE (X,Y) RadiUS, C

The x,y coordinates specify the center of the circle and RADIUS, the
radius. C is the color parameter. For example, enter the following:

178 The Amlga Microsoft BASIC Programmer's Guide

CLS
CIRCLE (300,100), 50

There's your circle, and now add the following to fill it in:

PAINT (300,99)

Now, there's more to circles than just drawing and filling them in.
You can also specify starting and ending points and aspect ratio:

CIRCLE (X,V), RADIUS, C,S,E,AR

To get the points to begin and end, you have to use radians. These
are parts of the circle in terms of pi (3.141593). Think of the circle as a
clock using 12, 3, 6 and 9 o'clock positions. The starting position or zero is
3 o'clock and the circle is drawn counterclockwise from there:

12 (Pl/2)
9 (PI) 3 (2*PI)

6 (3 * (Pl/2))

Take a look at the following program to see how this works. We will
use the variables TWELVE, THREE, SIX and NINE to represent the
various positions on the circle:

CLS
PI=3.14159
TWELVE=Pl/2
THREE = 2*PI
SIX = 3*(Pl/2)
NINE=PI
CIRCLE (100,100),50"NINE,THREE

This program makes your Amiga smile at you! By defining the radians in
terms of positions on the clock, it's a lot easier to envision where your
curved lines will begin and end.

Another feature of CIRCLE can be seen if the starting or ending
position is negative. If so, a line will be drawn from center of the circle to
the edge. Let's see what happens with the following program. (While
we're at it, why not PAINT it too?)

CLS
PI=3.14159
TWEL VE=P 1/2
THREE = 2*PI
SIX = 3*(P1/2)
NINE=PI
CIRCLE (300.100).50 •• -THREE.-SIX
PAINT (300.99)

Drawing With Graphics 179

Notice that all we had to do to get a negative value was to place a minus
(-) sign before our start and end variables, THREE and SIX If you like pie
charts, this part of the CIRCLE statement can come in handy.

ASPECT. Finally, we can change the aspect ratio of a circle to
make ovals and oblong shapes. If this parameter is not specified, the
default value is 2.25-1 in high resolution or roughly 0.44. As long as the
aspect ratio is less than 1, the radius is measured horizontally. If the value
is more than 1, then it is measured on the Y or vertical axis. For example,
the following program will create three different ellipses with three
different aspect ratios affecting the Y axis:

CLS
FOR X = 1 TO 3
CIRCLE (300.100).50.X •••• X REM 4 Commas between X's
NEXT X

Now, to see the different horizontal aspect ratios change the CIRCLE
statement to read:

CIRCLE (300.100).20.X •••• (1/(X+l))

By experimenting, you can make all kinds of different ellipses. With
high resolution graphics, your ellipses are not as jagged, and even though
you are limited to black and white, your results will be more precise.

Filling an Area with Pattern

Another way to make shapes on your Amiga is with AREA, AREAFILL
and PATTERN. Basically, using AREA as a relative STEPping statement,
you can plot several points of a polygon, and then fill the area defined by

180 The Amlga Microsoft BASIC Programmer's Guide

the polygon with a PATTERN. The default pattern is a solid fill just as we
saw with circles and rectangles. For example, the following program fills
the area defined by the four area points with the current pattern:

AREA (1,1)
AREA STEP (300,100)
AREA STEP (-100,0)
AREA STEP (-140,-50)
AREA STEP (-60,-50)
AREAFILL
LOCATE 10,1

PATTERN. There are two ways to go in this section. Hang in there
and try to understand how bit patterns work, or just look at the examples
and wait until later to try and assimilate everything. In the last chapter,
we tackled more of the advanced technical materials, but if you think in
simplified terms as follows, you probably will understand how your
Amiga makes graphics.

First, everything your Amiga and all other computers do can be
boiled down to l's and O's. There's a counting system called 'binary' that
is made up entirely of l's and O's used by computer people to give
instructions to computers. The pixels on your screen are lit or unlit
depending on whether a lora 0 is signaled for a given position of your
screen. The counting system in binary works like the decimal system
you're used to, but it only has two digits instead of ten. Another counting
system, hexadecimal, works on a base of 16, which we will see, is very
useful. We will use hexadecimal (or hex as it's commonly called) to
create graphic patterns. Let's count from zero to 16 and compare the
three different numbering systems:

Decimal Binary Hexadecimal Decimal Binary Hexadecimal

0 0 0 9 1001 9
1 1 1 10 1010 A
2 10 2 11 1011 B
3 11 3 12 1100 C
4 100 4 13 1101 D
5 101 5 14 1110 E
6 110 6 15 1111 F
7 111 7 16 10000 10
8 1000 8

Drawing With Graphics 181

The hexadecimal system can count further than the other two
systems before having to add a second digit At 16, an interesting thing
happens; both the hex and binary systems add a digit Thus, numbering
from 0-15, the hexadecimal system can handle all values with a single
digit, and the binary with no more than four digits. If we can keep
everything between 0 and 15, it will be possible to simplify our counting
of binary numbers and control the l's and D's we will need for making
patterns.

Imagine a line as a series of pixels, turned on or off, and a pattern as
a stack of lines. To draw a 16 pixel line with l's and O's, we would have
something like the following:

0101010101010101

That 16 digit binary number would be difficult to convert to either
decimal or hexadecimal, but we could break it up into groups of four and
then convert the four digit value into hex values like so:

Binary 0101 0101 0101 0101

Hex 5 5 5 5
Hex value = $5555 (a dollar sign indicates a hex value)

That particular configuration broke down into four equal value
groupings. The value 101 in binary equals 5 in hex. (We read 0101 the
same as 101.) If we made a line with every other pixel lit, it would look
"light" or "screened" compared with a solid line. That's exactly what the
above configuration would do. Suppose, we wanted every other group of
four pixels lit, we would have a pattern like the following:

Binary
Hex

1111
<F>

0000
<0>

1111
<F>

0000
<0>

Thus, the value $FOFO would result in a somewhat different line pattern
than $5555. By stacking up these lines, we can begin to have patterns
made up of different line combinations. For example, let's make a
checkerboard pattern. We would need lines alternating in solids and fills.
The following would look a lot like a checkerboard:

182 The Amlga Microsoft BASIC Programmer's Guide

1111 0000 1111 0000 (Hex=$FOFO)
1111 0000 1111 0000 (Hex=$FOFO)
0000 1111 0000 1111 (Hex=$OFOF)
0000 1111 0000 1111 (Hex=$OFOF)

If you follow so far, the rest is easy. The PATTERN statement
establishes an array made up of the lines. The lines are defined as
hexadecimal numbers. If you remember, we get hexadecimal values in
Amiga BASIC using the '&H' symbol. Thus, &HFOFO would give us
$FOFO. Forget about decimal, and just make the translations between
binary and hexadecimal using the number conversion table above. Let's
look at a program that will make a checkered pattern and then see how
it was done:

Checl<.Patt:
DIM Pattern1%(1)
Pattern1%(0)=&HFFFF
Pattern1%(1)=&HO
PATTERN&HFFF,Pattern1%

Box:
Pointl : AREA(l,l)
Point2: AREA STEP (300,0)
Point3: AREA STEP (0,100)
Point4: AREA STEP (-300,0)
AREAFILL
LOCATE 15,1

Each array must be a power of 2 (e.g., 2,4,8,16, etc.), so the dimension
of the array is a power of two minus one. (That's because there's the zero
element in each array that counts toward the total.) In our example, we
dimensioned an array called 'Patternl %' with four elements numbered
from zero to three. Using the PATTERN statement and the address $FFF
(&HFFF), we placed the array called 'Patternl %' into memory. This time
when the AREAFILL command was given, it filled with the checkered
pattern. Any other kind of fill or paint will give the defined pattern. For
example, enter the following at the end of the program:

CIRCLE (400,150),50
PAINT (401,151)

Drawing With Graphics 183

You'll get a checkered circle. Even your cursor looks blotchy since the
pattern affects it too. Until you restore the pattern to the default solid one,
it will continue to be blotchy. The following little routine restores
everything for you:

50lid. Pat tern:
DIM 50lid%(1)
501id%(0)=&HFFFF
501id%(1)=&HFFFF
PATTERN &HFFF.501id%

If you place that little routine at the end of your programs where you
change the pattern, the default program will be restored when you're
finished.

SUMMARY

This chapter was just the first part of using your powerful Amiga
graphics. By thinking of your screen as a pixel canvas, you can draw just
about anything you want Beginning with the individual pixels and the
PSET statement, we could place pixels anywhere we wanted on the
screen. The screen itself was set by SCREEN to give us options in terms
of resolution, mode, size and color depth. Using LINE and CIRCLE, we
saw how to make not only lines and circles but also boxes and ellipses.
All of these can be colored in with PAINT if desired.

Various colors can be controlled with PALETTE giving the user an
almost infinite set of possible hues by changing the combinations of red,
green and blue settings. Multiple colors can be interchanged simul
taneously on the screen. Finally, the "brush" that paints and fills can be
altered with PATTERN. It is a little tricky to work with pattern changes
since it involves making translations between binary and hexadecimal
values, but you do have complete control over the patterns. With practice,
it will be relatively simple and you'll learn a lot Like everything else with
your Amiga the key to getting the most out of it is practice and
experimentation.

________ CHAPTER 13.-

Animation, Sprites
and Bobs

MOVING GRAPHICS

This chapter is going to show you how to move graphics. Not only
will we be moving graphics with animation techniques, we'll also see
how you can use the mouse to interact with your graphics programs.
(While we're at it, we might as well look at some general control moves
with the mouse too.) In part we'll be using the techniques we learned in
Chapter 12, but we'll also introduce new graphic concepts using "sprites"
and "bobs" that are particularly well suited for animation.

Animation can be used in games and special effects. However, we
will only touch upon some elementary examples to provide you with the
concepts of how animation works. Basically, you plot a position and then
plot a new position and cover up the old position. This gives the
appearance of a "pixel" moving since it is plotted from one adjacent
position to another and its previous position "erased" with a blue plot
We can use the PRESET statement to erase our pixel. PRESET works like
PSET, but if there is no color parameter, it defaults to blue. For example,
the following program will "move" a pixel from side to side by plotting it
in white with PSET and erasing it with PRESET:

185

186 The Amlga Microsoft BASIC Programmer's Guide

CL5
X=320 : V=100
FOR I< = 1 TO 20

P5ET (X. V).2
FOR HOLD = 1 TO 1000 NEXT HOLD
PRE5ET (X.V)
P5ET (X+9.V).2
FOR HOLD = 1 TO 1000 NEXT HOLD
PRE5ET (X+9.V)

NEXT 1<

If you watched carefully, you saw what appeared to be a moving
pixel. However, we can see from what we entered, that it is really a
matter of plotting a pixel in one position, erasing it and drawing it in
another position. For a more dramatic example, the following program
will start in the upper left hand comer of your screen and "bounce" a
white pixel around your screen.

CL5
FOR XV = 0 TO 199

P5ET (XV.XV).1
FOR HOLD=1 TO 10 NEXT HOLD
PRE5ET (XV.XV)

NEXT XV
REM ************
REM UP AND RIGHT
REM ************
V=199
FOR X=200 TO 300

V=V-1
P5ET (X, V) ,3
FOR HOLD = 1 TO 10: NEXT HOLD
PRE5ET (X,V)

NEXT X
REM ************
REM UP AND LEFT
REM ************
J=V
FOR V=J TO 1 5TEP-1

Animation, Sprites and Bobs 187

X=X-1
PSET (X, Y) ,1
FOR HOLD = 1 TO 10 NEXT HOLD
PRESET (X,Y)

NEXT Y
REM **************
REM DOWN AND LEFT
REM **************
J = Y
FOR Y= J TO 199

X=X-1
PSET (X , Y) ,1
FOR HOLD = 1 TO 10 NEXT HOLD
PRESET(X,Y)

Next Y

By experimenting with different algorithms, you can do anything from
making letters and numbers to animated games.

MOVING OUT WITH PUT AND GET

At this point we are going to have to slow down and carefully
examine the graphics statements PUT and GET. These two statements
have a special use and meaning with graphics that are entirely different
from the PUT and GET used in file handling in the chapter on random
access files.

The best way to envision how GET and PUT work is to think of a
specified area of your screen with graphics. The GET statement "scans"
that specified area of your screen, and sticks the graphics into a special
array. Then, using that array name, PUT places that graphic anywhere
you specify on the screen. In other words, you could draw anything on
the screen and then have it moved wherever you want without having to
redraw it All you would have to do is to PUT it somewhere else. For
animation, GET and PUT allow you to draw whatever you want and
move them smoothly across the screen.

For the most part PUT and GET are just like all the other graphic
statements we have been using in terms of locating coordinates and

188 The Amlga Microsoft BASIC Programmer's Guide

placing graphics on those coordinates. However, before you get going, it
is necessary to figure out the dimension of the special integer array for
your graphics. To do that we use the following formula:

BYTE$ = 6 +((YLen) *2* INT«XLen+16)/16) *D>
(Ylen = Vertical length; YLen = Y2-Y1+1. XLen = Horizontal width.

XLen = X2-X1. D = Depth. Default is 2, but depends on SCREEN
parameter.)

The dimension of the array is

<DIM C%(BYTE%IBE»
(BE represents the Bytes per Element Integer = 2 bytes; Single

precision = 4 bytes; Double precision = 8 bytes. C% = Array name.)

We'll stick with the integer arrays to keep it simple (and fast).
To use GET and PUT, we take the following steps:

STEP 1. Determine the size of the graphic area you will use. Think
of the area in terms of the number of horizontal and vertical coordinates
you will need for your graphic display. For example, you might want a 10
by 15 "screen" for your graphics made up of 10 rows and 15 columns.
Define the variables XLen and YLen.

STEP 2. Decide what screen depth and type of variable you want to
use. Define the variables BE and D.

STEP 3. Determine the value of BYTE% by placing the variables in
the formula, and then the array size by dividing BYTE% by BE. Dimen
sion your array (BYTE%/BE) using any legal variable name you want
Integer arrays should be followed by a percent sign.

Once the first three steps are completed, the rest is easy. The secret
to using GET and PUT in graphics is carefully organizing your program
up to this point From now on, things are much simpler.

STEP 4. Draw your graphics within the limits of the graphic area
you defined. If your "graphic screen" is 10 by 15, for example, all of your
graphics have to be within 10 rows and 15 columns.

STEP 5. Place your graphics in your special graphic array with
GET. The format for GET is:

GET (Xl.Vl) - (X2.V2). C%

Animation, Sprites and Bobs 189

Xl and Yl are the X, Y coordinates of the upper left hand comer of your
"graphic screen" and X2 and Y2 the X, Y coordinates of the lower right
hand comer of your "graphic screen." The variable C% represents the
name of an integer array in which your graphics are stored. This is a
special type of array since there is no subscript following it as in normal
arrays.

STEP 6. Locate your graphics wherever you wish on your screen
with PUT. The format for PUT is:

PUT (X, Y) , C%

The default condition for PUT is XOR, which means that the pixels are
compared with the pixels on the screen. If the pixels are different, the
color of the pixel will be turned into the pixel in the array. If the pixels
are the same, the pixel will be changed to the background color. This
allows you to use PUT twice in a row to create animation. The first time
the graphic will be printed on the screen, and the next time it will be
erased. Now that we have seen all the steps necessary to use GET and
PUT in graphics, let's start off with a simple example:

Bouncer:
REM %%%%%%%%%%%%%%%%
REM Define Variables

0=2 : REM Default Depth
BE=2 : REM Integer Array
XLen=B : REM Horizontal length
Ylen=B : REM Vertical length
REM %%%%%%%%%%%%%%%%%%%%
REM Calculate Array Size
REM %%%%%%%%%%%%%%%%%%%%
Byte%=6+(Ylen)*2*INT((XLen+1S)/16)*D
DIM C%(Byte%/BE)
REM %%%%%%%%%%%%
REM Draw Graphic
REM %%%%%%%%%%%%
CIRCLE(4,4),4,l
PAINT(4,4),l

190 The Amlga Microsoft BASIC Programmer's Guide

REM %%%%%%%%%%%%
REM Get Graphics
REM %%%%%%%%%%%%
GET (1 • 1) - (8. 8) • C%
REM %%%%%%%%%%%%
REM Move Graphic
REM %%%%%%%%%%%%
FOR X=l TO 500

PUT (X .100) • C%
PUT (X .1(0) • C%

NEXT X
PUT (X. 1(0). C%

Move cursor out of the way
LOCATE 19.1

When you RUN the above program, you will see a little ball appear
in the upper left hand comer. That's to show you the original graphic you
created and its location. You will then see the same ball move from the
lower left towards the right of the screen. It doesn't matter what you draw.
As long as it is placed in the graphic array with GET, it can be easily
moved around with PUT. Let's create a space fighter, some stars and
planets and then zoom around with our Amiga Space Fighter!

Array.Fighter:
SCREEN 1.620.200.2.2
WINDOW 1."Zoom".(1.1)-(590.180).15.1

Le.Palette:
PALETTE 1.1.0.0 'Red
PALETTE 2.0 •. 93 •. 87 'Aqua
PALETTE 3 •. 73.1.0 'Lime
CLS

Milky.Way:
REM ====================
REM Stars in the Galaxy
REM ====================
RANDOMIZE TIMER
FOR X= 1 TO 50

StarH = 1 + INT(RND *(62+1))
StarV=l +INT(RND * (20+1))
LOCATE StarV.StarH

Animation, Sprites and Bobs 191

StarColor=StarColor + 1
IF StarColor = 4 THEN StarColor=0
COLOR StarColor
PRINT "*";

NEXT X
REM ============
REM Add Planets
REM ============
CIRCLE (50.50).30.1
PAINT(50.50).1
CIRCLE (400.150).20.1
PAINT(400.150).1
CIRCLE (220.30).50.2
PAINT(220.50).2

Set-Array:
REM ===========
REM Array Setup
REM ===========
0=2
8E=2
XLen=17
Ylen=17
8yte%= 6 +(Ylen) *2* INT((XLen + 16)/16)*0
DIM SF%(8yte%/8E)
REM ============
REM Draw Fighter
REM ============
CIRCLE (10.100).5.3
PAINT (10.100).3
LINE (2.100)-(18.100).3
LINE (2.92)-(2.108).3
LINE (18.92)-(18.108).3
REM ====================
REM Get Fighter in Array
REM ====================
GET (2.92)-(18.108).SF%

Up.And.Away:
REM =========
REM Take Off!
REM =========

192 The Amiga Microsoft BASIC Programmer's Guide

PUT (2,92) ,SF%

FOR X=2 TO 500

PUT (X ,100), SF%

PUT (X ,100), SF%

NEXT X

J=X : Y=100

FOR X=J TO 10 STEP -1

PUT (X, Y) ,SF%

PUT (X, Y) ,SF%

Y=Y-1 : IF Y < 12 THEN Y=12

NEXT X

J=X : I(=Y

FOR Y=I(TO 160

PUT (J, Y) , SF%

PUT (J, Y) , SF%

NEXT Y

PUT (J, Y) , SF%

As your little space fighter flew around the screen, you may have
noticed that it did not disturb any of the text created "stars" or the
graphic planets. The fighter flickered some and the color seemed to fade
as it moved, but overall, it looked pretty neat As it passed across the
planets' faces, it did not leave a "scar."

You can speed up your fighter by including a STEP value and
putting it at 2 or more. You can put a pause loop between the identical
PUT statements and the moving figure will not be as pale, but it will slow
down considerably. By combining STEP and pauses, you will be able to
adjust the fighter's movement and its appearance so that it looks good
to you.

A final aspect of PUT is the use of AND and OR The default mode
of XOR is ideal for animation where you do not want to disturb the
existing images on the screen. However, you may want to cover over
them or wipe them out or get some other desired effect by using AND
or OR For example, you may wish to create a "paint brush" that will
shade in parts of the screen with various colors using a combination of
AND or OR Add/change the following lines to your Amiga Fighter
program to see one effect

Warp.Speed:

W=Y

X=J

oR.Effect:
FOR Y=W TO 0 STEP -4

PUT (X.Y).SF%.oR
PUT (X.Y).SF%.oR
X=X+5

NEXT Y
X=J-2

AND.Effect:
FOR Y=W TO 0 STEP -4

PUT (X.Y).SF%.AND
PUT (X.Y).SF%.AND
X=X+5

NEXT Y

Animation, Sprites and Bobs 193

In the next chapter we're going to discuss sound. You can combine
sound with your animated graphics to create arcade style games. Now,
we're going to see how to control graphics with the mouse.

MOUSE CONTROL

We saw how to use the mouse with menus in programs, and here
we're going to see how to use it with graphics. Now that you're used to
finding the X and Y pixel coordinates on your screen in graphics,
controlling them with the mouse will be relatively simple since it too is
located with X and Y coordinates.

The MOUSE function returns the following information:

Mouse (0).
O. Left mouse button is not currently pressed.
1. Left mouse button is not currently pressed, but it was pressed

since the last time there was a call to the MOUSE(O) function.
Mouse functions 3-6 return the start and end points in this
situation.

2. Left mouse button is not currently pressed, but it was clicked
twice since the last time there was a call to the MOUSE(O)
function. Mouse functions 3-6 return the start and end points in
this situation.

194 The Amiga Microsoft BASIC Programmer's Guide

3. Left mouse button is not currently pressed, but it was clicked
three times since the last time there was a call to the MOUSE(O)
function. Mouse functions 3-6 return the start and end points in
this situation.

-1. Left mouse button is currently pressed once. Mouse functions 1-6
return the current, start and end points in this situation. (-2 and -3
return similar information for the button having been pressed two
and three times respectively.)

For the following functions, we will use X and Y to be:
X=Horizontal coordinate
Y=Vertical coordinate

MOUSE(l). Current X position on screen since last time left button
was pressed.

MOUSE(2). Current Y position on screen since last time left button
was pressed.

MOUSE(3). Starting X position on screen since last time left button
was pressed prior to a call to MOUSE(O).

MOUSE(4). Starting Y position on screen since last time left button
was pressed prior to a call to MOUSE(O).

MOUSE(5). The X position of mouse cursor if button is pressed when
MOUSE(O) was called. If button was not pressed when call to MOUSE(O)
was made, then it is the X position when button was released.

MOUSE(6).The Y position of mouse cursor if button is pressed when
MOUSE(O) was called. If button was not pressed when call to MOUSE(O)
was made, then it is the Y position when button was released.

The best way to see how this works is to write a program that will
show you what's going on with these different functions. In other words,
we're going to put the Amiga to work as a tutor for itself. (To stop
execution on this program, press the right button and select 'Stop' from
the Menu Bar.) Be sure to experiment with all the different positions with
your mouse and quickly press the button different numbers of times to
see how it affects the value of MOUSE(O).

MouseTell :
COLOR 0,1
PRINT "Press left mouse button to start"
COLOR 1,0
Flag=l

Animation, Sprites and Bobs 195

MouseClicl<:
IF MOUSE(0)=0 THEN MouseClick

ShowInfo:
IF Flag=1 THEN Flag=0 : CLS
LOCATE 1.1
PRINT "Left button: MOUSE(0)=";MOUSE(0)
LOCATE 3.1
PRINT "Current X: MOUSE(1)=";MOUSE(1)
LOCATE 5.1
PRINT "Current Y: MOUSE(2)=";MOUSE(2)
LOCATE /.1
PRINT "Starting X: MOUSE(3)=";MOUSE(3)
LOCATE 9.1
PRINT "Starting Y: MOUSE(4)=";MOUSE(4)
LOCATE 11.1
PRINT "Ending X: MOUSE(S)=";MOUSE(5)
LOCATE 13.1
PRINT "Ending Y: MOUSE(6)=";MOUSE(6)
GOTO MouseClick

After experimenting with the 'MouseTell' program for a while you should
have some idea of the different mouse functions. Now, we're ready to
make a program using graphics and the mouse. By incorporating PSET
into a mouse routine, and using the X and Y positions of the mouse
pointer, we can create a simple drawing program:

MouseDraw:
MouseClick:

IF MOUSE(0)=2 THEN END
IF MOUSE(0)=0 THEN MouseClick
X=MOUSE(1)
Y=MOUSE(2)
PSET(X.Y)

GOTO MouseClick

That was simple, and it works fine for making sketches. All you have
to use are the MOUSE(l) and MOUSE(2) functions. Now, let's see about
using the MOUSE(3-6) functions in a graphics program. Also, let's see
how to exit the program by using a "triple click" instead of having to rely
on the pull down menu "Stop" method. Instead of using PSET, this

196 The Amlga Microsoft BASIC Programmer's Guide

program will use LINE and make graphic box designs created by holding
down the mouse button and "dragging" different designs:

MouseBox:
MouseClicl<:

IF MoUSE(0)=3 THEN END 'Three clicl<s to exit
IF MoUSE(0)=0 THEN MouseClicl<

Mal<e.Box:
'Hold left button down and drag
'across screen
Xl=MoUSE(3)
Yl=MoUSE(4)
X2=MoUSE(S)
Y2=MoUSE(6)

Box.Here:
LINE (Xl.Yl)-(X2.Y2) •• b
GoTo MouseCl icl<

You can do the same thing with CIRCLE by replacing the 'Box.Here'
routine with the following:

Circle.Here:
IF X2 > Xl THEN Radius X2 -Xl
CIRCLE (Xl.Yl).Radius
GoTo MouseCl icl<

Now, if we use those X and Y values returned by the mouse to PUT
our graphics, we can move pictures with the mouse. Let's make our own
arrow pointer for the mouse and move it around with PUT:

MousePut:
DIM Arrow%(1l6)
LINE(1.S)-(20.ll) •• BF
LINE(30.8)-STEP(-10.-8)
LINE-STEP(0.l6)
LINE-STEP(10. -8)
GET (1.1)-(30.20).Arrow%

Clicl<Mouse:
IF MoUSE(0)=0 THEN Clicl<Mouse
IF ABS(X-MoUSE(l)) > 3 THEN MoveIt
IF ABS(Y-MoUSE(l)) < 3 THEN Clicl<Mouse

MoveIt:
PUT(X.Y).Arrow%
IF Flag=0 THEN Flag=l CLS
X=MoUSE(l)
Y=MoUSE(2)
PUT (X.Y).Arrow%
GoTo Cl icl<Mouse

Animation, Sprites and Bobs 197

When you run the program, notice where the regular pointer connects
with the fat arrow we made. See if you can change the program so that
the points of both arrows connect whenever it moves. To make an "arrow
brush" change the second PUT statement to:

PUT(X-2.Y-2).Arrow%

The main point is to try different things. By combining several
techniques from this and the previous chapter, you will soon be able to
create a drawing program that will do anything you want on your Amiga.

SPRITES AND BOBS

In a file called "Basic Demos" on your "Extra" disk (the one with
AmigaBasic), there's a program called ObjEdit You'll need it and two
support files, in the same general file, called 'Library' and 'graphics.bmap'
for this next section. They are used to edit and create sprites and bobs.
First, we'll make a sprite and then see how to use the OBJECT and
COLLISION statements to use them. Then we'll do the same with a bob
and explain the differences between the two.

USING OBJEDIT

The ObjEdit program makes it very simple to create sprites and
bobs. Just run the program, and you will be given a choice of making
sprites (1) or bobs (0). The first time through choose sprites.

SPRITES. In the upper left hand comer of your screen you'll see a
little vertical rectangle that is your "canvas" for drawing sprites. Press the
right mouse button and you'll see menus for 'File,' 'Tools' and 'Enlarge.'

198 The Amiga Microsoft BASIC Programmer's Guide

At the bottom of your screen, you'll see a color bar that you use to select
your drawing colors. Just point and click to choose a color.

To get started, select 'Oval' from your Tools menu. Using the orange
color, draw an oval at the top of your canvas by placing the pointer in
your little canvas, holding down the left button and dragging the pointer.
It will look like a box, but it will turn into an oval when you release the
left button. Next, choose 'Paint' from your tools, and color the oval by
clicking the pointer inside the oval. Next, click the white and the
rectangle in the Tools menu and draw a rectangle about halfway down
the oval and then fill it with white "paint" It should look like a bullet
Finally, choose black, and draw some fins to make a sprite rocket

I" I II
~ ~~

To touch up your rocket, choose 4 x 4 from the enlarge menu. When
you're in the enlarged state, the only tool you can use is the pen. That's
why we first did the basic drawing in the little canvas before using the
enlarged one.

When you're finished touching up your rocket, choose 'Save as .. .'
from the File menu and save the rocket under the name "Rocket Sprite."
Be sure to use the name "RocketSprite" since we'll be using it in our
example program. Choose 'Quit' from the File menu, and then NEW to
get the ObjEdit program out of memory.

DISPLAYING SPRITES AND BOBS WITH OBJECT

You use the same statements to manipulate sprites and bobs, a
variation on the OBJECT statement There are 16 different OBJECT
statements you can use for manipulating your sprites and bobs. First, you
need to get your sprite or bob in memory. To do that, use OBJECT. SHAPE
where the number{#} can be anything from 1 upwards depending on
how much memory is left The procedure for placing a sprite or bob in
memory that has been created with the ObjEdit program is as follows:

Animation, Sprites and Bobs 199

OPEN "Sprite/Bob Name" FOR INPUT AS 1
OBJECT.SHAPE 1,INPUT$(LOF(1), 1)
CLOSE 1

The number (file number) in the first line can be from 1 to 255, and the
values after LOF must correspond to that number. The OBJECT.SHAPE
number has no bearing on the file number. If we changed the OB
JECT.SHAPE number from 1 to 3, everything would work fine.

To position a sprite/bob on your screen, you use OBJECT X # and
OBJECT.Y #, positioning the X and Y coordinates respectively. For ex
ample:

OBJECT.X 1,320
OBJECT.Y 1,100

would place a sprite/bob in the middle of the non-interlaced high
resolution screen.

Once positioned, you then tum on your object or objects with
OBJECT.oN #. The object number is optional. If no number is used, all
sprites/bobs will be turned on at once. Let's write a program to display
our rocket in the middle of the screen:

Get.Sprite:
OPEN "Rocket.Sprite" FOR INPUT AS 1
OBJECT.SHAPE 1,INPUT$(LOF(1), 1)
CLOSE 1

Show.Sprite:
OBJECT.X 1,320
OBJECT.Y 1,100

Turn.On:
OBJECT.ON

If you wanted several sprites on at the same time, you would have to
open a "file" for each sprite. For example, if we want several rockets at
once, we would use the following:

Get.Lots:
OPEN "Rocket.Sprite" FOR INPUT AS 3
OPEN "Rocket.Sprite" FOR INPUT AS 4

OPEN "Rocket. Spr i te' FOR INPUT AS 5

200 The Amlga Microsoft BASIC Programmer's Guide

OBJECT.SHAPE 1,INPUT$(LOF(3),3)
OBJECT.SHAPE 2,INPUT$(LOF(4),4)
OBJECT.SHAPE 3,INPUT$(LOF(5),5)

Close.Ern.All:
CLOSE 3
CLOSE 4
CLOSE 5

Place.Sprites:
OBJECT.X 1,570
OBJECT.Y 1,15
OBJECT.X 2,220
OBJECT.Y 2,100
OBJECT.X 3,340
OBJECT.Y 3,160

Turn.On:
OBJECT.ON

Notice that the sprites stay on your screen, even when you list your
program. To tum them off, just place the following line at the end of the
program. As soon as you hit any key, they'll all disappear:

Off.Ern:
OBJECT.OFF

To tum off selected sprites, place their number after the OB]ECT.oFF
statement

MOVING SPRITES AND BOBS

Sprites and bobs are not moved in the same way as we have been
moving other graphics. Two sets of statements control the direction,
velocity and acceleration variables of sprites and bobs.

OBJECT.VXJVY. Velocity refers to the number of pixels a sprite or
bob moves in a given amount of time. A positive X value moves to the

Animation, Sprites and Bobs 201

right and a negative X value moves to the left Positive Y moves down,
and negative Y moves up. The statements:

OBJECT.VX 1.0 'No horizontal movement
OBJECT.VY 1.-100 'Negative Y moves up

would move an object straight up. This would be good for our rocket; so
let's use it in a program:

Go.Sprite:
OPEN 'Rocket.Sprite' FOR INPUT AS 1
OBJECT.SHAPE 1.INPUT$(LOF(1).1)
CLOSE 1

Place.Sprite:
OBJECT.X 1.320
OBJECT.Y 1.100

Sprite.Speed:
OBJECT.VX 1.0
OBJECT.VY 1.-100

Turn.On:
OBJECT.ON
OBJECT.START 1

WHILE 1
'Forever loop - click stop to exit

SLEEP
WEND

The line OBJECT.ST ART 1 begins the sprite movement OBJECT STOP 1
has the opposite effect

OBJECT.AX/AY. Acceleration refers to the number of pixels a
sprite or bob moves at an increasing velocity. A positive X value ac
celerates to the right and a negative X value to the left Positive Y
accelerates down, and negative Y moves up. The following statements
can be used:

202 The Amlga Microsoft BASIC Programmer's Guide

OBJECT.AX 1.10 'Slight horizontal movement
OBJECT.AY 1.-10 'Negative Y moves up

By slightly changing our last program, we can test these statements:

Speedup.Sprite:
OPEN "Rocket.Sprite" FOR INPUT AS 1
OBJECT.SHAPE 1.INPUT$(LOF(1).1)
CLOSE 1

Place.Sprite:
OBJECT.X 1.320
OBJECT.Y 1.100

Sprite.Acceleratlon:
OBJECT.AX 1.0
OBJECT.AY 1.-10

Turn.On:
OBJECT.ON
OBJECT. START 1

WHILE 1
SLEEP

WEND

Experiment a lot with the velocity, acceleration and direction in the
above two programs. Once you can move your sprites in any direction
you want, then go on to the next sections.

MANAGING CRASHES WITH COLLISION

When your sprite smacks into the border, it would be nice if you
knew so that you could reverse it or do something other than have it just
protruding from the side. The COLLISION statement is a special event
handling routine that does just that Like MENU, you can set up a
subroutine handler using ON COLLISION GOSUB and have it initiated
anywhere in the program by using a COLLISION ON statement In the

Animation, Sprites and Bobs 203

following program, if you collide with the border, the subroutine stops
the program and pronounces the condition (Crash!) at the top of the
screen:

Collide.Sprite:
ON COLLISION GOSUB Crash
COLLI S I ON ON
OPEN "Rocket.Sprite" FOR INPUT AS 1
OBJECT.SHAPE 1.INPUT$(LOF(1).1)
CLOSE 1

Place.Sprite:
OBJECT.X 1.320
OBJECT.Y 1.100

Sprite.Acceleration:
OBJECT.AX 1.0
OBJECT.AY 1.-10

Turn.On:
OBJECT.ON
OBJECT.START 1

WHILE Bang <> 1
SLEEP

WEND
END

Crash:
PRINT "Crash!"
Bang=1
RETURN

You can also have the collision detection reverse the direction of your
sprite or bob by "bouncing" it off the sides.

Besides hitting the sides, your sprites and bobs can also hit other
objects. The default condition for colliding objects is for them to stop.
With a collision routine, they can be made to bounce off one another, or
they can be made to pass over one another. By using OBJECT.HIT, each
object can be made to hit or pass through other objects and/or the
border. For example, the following program has one sprite pass through
another, but collide with the border, while the other sprite doesn't collide
with anything:

204 The Amlga Microsoft BASIC Programmer's Guide

Hit.Sprite:
ON COLLISION GOSUB Smack
COLLISION ON
OPEN "Rocket.Sprite" FOR INPUT AS 1
OPEN "Rocket.Sprite" FOR INPUT AS 2
OBJECT.SHAPE 1,INPUT$(LOF(1),1)
OBJECT.SHAPE 2,INPUT$(LOF(2),2)
CLOSE 1
CLOSE 2

Hit.Fix:
"Object 1 collides with nothing
OBJECT.HIT 1,0,0

"Object 2 collides with border
"but not Object 1
OBJECT.HIT 2,2,2

Place.Sprite:
OBJECT.X 1,320
OBJECT.Y 1,100
OBJECT.X 2,220
OBJECT.Y 2,100

Move.Ob2:
OBJECT.VX 2,40
OBJECT.VY 2,0

Turn.On:
OBJECT.ON
OBJECT.START 2

WHILE 1
SLEEP
WEND

Smacl< :
OBJECT.AX 1,0
OBJECT.AY 1,-20
OBJECT.START 1
RETURN

Animation, Sprites and Bobs 205

Using OBJECT.HIT is tricky since you have to use masks. Basically,
the first parameter of OBJECT.HIT is the object number and the next two
values define the masks. The second parameter is the "Me Mask" and the
third is the "HitMask" The setting of bits in these two masks determines
whether the border and other objects will collide or pass through one
another. Experiment with the values of the two masks to see what
happens. For a really detailed discussion of this process, see pages 2-159
through 2-163 of the ROM KERNAL MANUAL VOL. 1 (Published by
Commodore, Inc.).

MAKING BOBS

Since we've covered most of the statements for dealing with sprites
and bobs, making and moving bobs will be simple, but there are some
differences. First, run the "ObjEdit" program, but this time choose "Bobs"
instead of "Sprites." When you get your canvas, place the pointer in the
lower left hand comer and pull it to the left and downward. Using this
larger canvas, you can easily create large graphic objects to be animated.
For example, the following shows a car bob created on the enlarged
canvas (by a nonartist).

When you're finished, save the bob under the name, "Car.Bob" for use in
the following program:

Get.Bob:
ON COLLISION GOSUB Stop.It
COLLISION ON
OPEN "Car.Bob" FOR INPUT AS 1
OBJECT.SHAPE 1, INPUT$(LOF(l),l)
CLOSE 1

206 The Amiga Microsoft BASIC Programmer's Guide

Show.8ob:
08JECT.X 1,100
08JECT.Y 1,15

Lool<. No. Y:
08JECT.VX 1,30

IThere is no 08JECT.VY since it's going to be
Izero anyway.

Turn.On:
08JECT.ON
08JECT.START

WHILE Halt <> 1
SLEEP
WEND
END

Stop.It:
8EEP
Halt=l
RETURN

With a more talented artist than this book's author (which includes
most people), you can do a lot with bobs. Bobs are slower than sprites
and not as smooth in animation. However, they are easy to create, and
you can use a full set of colors with them. The screen depth of sprites is
limited to 2, while any screen depth can be used with bobs.

SUMMARY

We've spent a lot of time with graphics in these last two chapters, but
we've only begun to explore what you can accomplish graphically on
your Amiga. There are a lot of graphic statements to keep straight, but in
the long run, they make it a lot easier to work with and get the most out
of your Amiga's graphic capabilities.

Moving graphics with the mouse or through automatic animation
routines involves simple, fundamental algorithms. All movement is on an
X, Y axis, and by increasing or decreasing those values the graphic figure

Animation, Sprites and Bobs 207

appears to move, whether it is because of the position of the mouse or a
value generated in a loop. As we saw in the last chapter, though, the basic
structures of sequence, branch and loop are used to create graphics just
as they are used to accomplish any other programming task. In the next
chapter, we will continue with those structures, but instead of examining
graphics, we will be looking at sounds, music and voice synthesizing in
programming your Amiga.

________ CHAPTER 14 __

Sound, Music and
Voice Synthesizing

AMIGA SOUNDS

Your Arniga has incredible sound generating capabilities. Most new
microcomputers do, but Amiga BASIC capitalizes on the wide variety of
sounds that can be generated by having special sound statements.

We will first examine how to make simple and complex sounds on
your computer. Next, we'll see how to incorporate these sounds into
routines and how to control them. Then, we'll look at how to use these
words to make music and musical instrument sounds. Finally, we'll show
you how you can incorporate the built-in voice synthesizer into your
programs with the special words available in Amiga BASIC.

The Sound Statement

The sound statement on your Amiga has four parameters, namely:

1. Frequency: 20-15000 (measured in hertz). The higher the fre
quency, the higher the pitch of the sound.

2. Duration: 0-77. This is how long the sound is held.
209

210 The Amlga Microsoft BASIC Programmer's Guide

3. Volume: 0-255. From a default of 127, the sound can be turned up
or down.

4. Voice: 0,3 and 1,2. Without speakers, voices 0 and 3 work off the
speakers in the monitor. 0,3 = left speaker and 1, 2 = right speaker.

To see the range of these parameters and experience what they
sound like, turn up your sound and enter the following program:

Sound. Tester:
WHILE F <> 5 'A value of 5 for frequency exits.

INPUT "Frequency 20-15000 ";F
INPUT "Duration 0-77";0
INPUT "Volume 0-255";V
INPUT "Voice 0-3 ";A
SOUND F,D,V,A

WEND

You created a lot of racket with that Now let's use another word that will
give you even more control over the sound.

The WAVE statement works with a special 256 element array. (The
array is something like the one used with PUT/GET graphics in the last
chapters.) The form of the wave can be virtually any pattern that can fit
into the array, with element values from -128 to 127. The statement has
only two parameters, voice (0,3,1,2) and the array that defines the wave. It
is possible to use the SIN (sine) function to define the wave pattern
instead of creating your own wave. To get started, let's make a simple
program that will provide an example of how to build a wave array:

DIM Timbre%(255)
FOR X= -128 to 127

Timbre% (C) =X
C=C+1

NEXT X

WAVE 0,Timbre%
SOUND 200,30,127,0

The wave form built by the array is a straight single line from -128 to
+127. Now, change the WAVE statement in the above program to the
following:

WAVE 0,SIN

Sound, Music and Voice Synthesizing 211

This time when you run the program, there is a different sound even
though the SOUND parameters were not changed. You have a lot of
control over the way your sounds come out, and with all of the possible
combinations, you can make just about any sound you want You can
even have your Amiga generate multiple voices simultaneously. We'll
just use the 0 and 3 voice in case you only have the monitor set up, but
for those of you who are real music and sound buffs, there's a lot more
you can do by expanding on what we will discuss in this chapter.

To get sounds to come out at the same time, use two different voices
in two SOUND statements and the SOUND WAIT and SOUND RESUME
statements. These two statements wait until all of the sound information
is ready to play, and then release all the voices at once in any SOUND
statements between SOUND WAIT and SOUND RESUME. For example,
using two different WAVE definitions and two different voices, the
following program lets you further experiment with the different sound
parameters:

Sound.Waiter:
GOSUB Timber
WHILE F <> 5

INPUT "Frequency 20-15000 ";F
INPUT "Duration 0-77";D
INPUT "Volume 0-255";V
WAVE 0. Timbre%
WAVE 3.SIN
SOUND WAIT

SOUND F.D.V.0
SOUND F.D.V.3

SOUND RESUME
WEND
END

Timber:
DIM Timbre%(255)
FOR Y=l TO 2

FOR X=0 TO 126
C=C+1
Timbre%(C)=X

NEXT X
NEXT Y

RETURN

REM Voice Zero
REM Voice Three

212 The Amiga Microsoft BASIC Programmer's Guide

Thus, besides having control over the sound and wave parameters,
you can mix multiple sounds and waves on different voices for even
more sounds. The best thing to do is to experiment and see what comes
up.

AMIGA MUSIC

Since Amiga BASIC gives you so much control over the sounds,
making music should not be too difficult Simple music is easy to create
with some organization and programming care. We'll make up a set of
basic musical notes and a few song programs to see how it is done. More
advanced and sophisticated programs are left to your own resources and
imagination.

First, let's make up a set of notes. We'll start with a low octave, and
progressively multiply the note values by powers of two to make a set of
four octaves. In other words after defining seven basic notes in an array
and by using the note name for the array name, we'll let your Amiga
figure out the rest and then play it for you. (Notice we do not dimension
the array since no array goes over four elements.)

Notes:
C(1)=130.81
0(1)=146.83
E(1)=164.81
F(1)=174.61
G(1)=196
A(1)=220
8(1)=246.94

Three.More.Octaves:
FOR X=l TO 3

C(X+1)=C(1) * (2 ~ X)
0(X+1)=0(1) * (2 ~ X)

E(X+1)=E(1) * (2 ~ X)
F(X+1)=F(1) * (2 ~ X)
G(X+1)=G(1) * (2 ~ X)
A(X+1)=A(1) * (2 A X)

8(X+1)=8(1) * (2 A X)
NEXT X

Play.Notes:
FOR Octave=l TO 4

Sound, Music and Voice Synthesizing 213

SOUND C(Octave) ,10,127,0
SOUND D(Octave),10,127,0
SOUND E(Octave),10,127,0
SOUND F(Octave),10,127,0
SOUND G(Octave),10,127,0
SOUND A(Octave),10,127,0
SOUND 8(Octave),10,127,0

NEXT

Now that all of the notes are in an array, it shouldn't be too difficult
to create a program that allows you to enter notes from sheet music. For
this basic program, we'll forego sharps, flats and dotted notes. Use the
following plan:

1. Put the notes of four octaves in an array.
2. Input the notes/octave in a single variable using the format

Note-octave (e.g., C4, A2).
3. Input the note durations as (W)hole, (H)alf, (Q)uarter, (E)ighth and

(S)ixteenth notes.
4. After all values are in an array, play the song.

SongWriter:
Notes:

C(1)=130.81
0(1)=146.83
E(1)=164.81
F(1)=174.61
G(1)=196
A(1)=220
8(1)=246.94

FOR X=l TO 3
C(X+1)=C(1) * (2 A X)
D(X+1)=D(1) * (2 A X)

214 The Amiga Microsoft BASIC Programmer's Guide

E(X+l)=E(l) * (2 A X)
F(X+l)=F(l) * (2 A X)
G(X+l)=G(l) * (2 A X)

A(X+l)=A(l) * (2 A X)

8(X+l)=8(1) * (2 A X)
NEXT X

Enter.Notes:
INPUT "How many notes ";N%
DIM Note(N%)
DIM Dur(N%)
Wnote=20: 'Set tempo with whole note
FOR X= 1 TO N%

PRINT "Note ~";X;
INPUT Note$
Note$=UCASE$(Note$)
Octave$=RIGHT$(Note$,l)
Octave=VAL(Octave$)
Snote$=LEFT$(Note$,l)

IF Snote$="C" THEN Note(X)=C(Octave)
IF Snote$="D" THEN Note(X)=D(Octave)
IF Snote$="E" THEN Note(X)=E(Octave)
IF Snote$="F" THEN Note(X)=F(Octave)
IF Snote$="G" THEN Note(X)=G(Octave)
IF Snote$="A" THEN Note(X)=A(Octave)
IF SNote$="8" THEN Note(X)=8(Octave)

Note.Duration:
PRINT "Duration (W,H,Q,E,S) of note ~";X;
INPUT Dur$
Dur$=UCASE$(Dur$)
IF Dur$="W" THEN
IF Dur$="H" THEN
IF Dur$="Q" THEN
IF Dur$="E" THEN
IF Dur$="S" THEN

NEXT X

Play.It.Amiga:
FOR X=l TO N%

Dur(X)=Wnote: 'Whole
Dur(X)=Wnote/2: 'Half
Dur(X)=Wnote/4: 'Quarter
Dur(X)=Wnote/8: 'Eighth
Dur(X)=Wnote/16: 'Sixteenth

SOUND Note(X),Dur(X),127,0
NEXT X

Sound, Music and Voice Synthesizing 215

Because we're using a single volume and voice, they are constant If you
wanted, they could be varied as well. Likewise, you could set up a routine
to find sharps, flats and dotted notes.

Song Reader

If you spend time creating a song, you might as well have a way to
save it so you can play it whenever you want rather than having to enter
all the notes and durations each time you run the program. By making
some changes in the above program, we can have a program that will
store music in DATA statements. Look at the following program with
some lines from Cole Porter's Anything Goes. (Don't rewrite the whole
program! Use your editor to make just the necessary changes from the last
program.)

Song.Reader:
Notes:

C(1)=130.81
D(1)=146.83
E(1)=164.81
F(1)=174.61
G(1)=196
A(1)=220
8(1)=246.94

FOR X=l TO 3
C(X+1)=C(1) * (2 A X)
D(X+1)=D(1) * (2 A X)
E(X+1)=E(1) * (2 A X)
F(X+1)=F(1) * (2 A X)
G(X+1)=G(1) * (2 A X)
A(X+1)=A(1) * (2 A X)
8(X+1)=8(1) * (2 A X)

NEXT X

Read.Notes:
N$=33
DIM Dur(N%)
DIM Note(N%)
Wnote=20: 'Tempo
FOR X= 1 TO N%

216 The Arnlga Microsoft BASIC Programmer's Guide

READ Note$
Note$=UCASE$(Note$)
Octave$=RIGHT$(Note$,l)
Dctave=VAL(Octave$)

Snote$=LEFT$(Note$,l)
IF Snote$="C" THEN Note(X)=C(Octave)
IF Snote$="D" THEN Note(X)=D(Octave)
IF Snote$="E" THEN Note(X)=E(Octave)
IF Snote$="F" THEN Note(X)=F(Octave)
IF Snote$="G" THEN Note(X)=G(Octave)
IF Snote$="A" THEN Note(X)=A(Octave)
IF SNote$="B" THEN Note(X)=B(Octave)

Note.Duration:
READ Dur$
Dur$=UCASE$(Dur$)

IF Dur$="W" THEN Dur(X)=Wnote
IF Dur$="H" THEN Dur(X)=Wnote/2
IF Dur$="O" THEN Dur(X)=Wnote/4
IF Dur$="E" THEN Dur(X)=Wnote/8
IF Dur$="S" THEN Dur(X)=Wnote/16

NEXT X
FOR X=l TO N%
SOUND Note(X),Dur(X),12?,0
NEXT

Anything.Goes:
'ANYTHING GOES
'©1934 (Renewed) WARNER BROS. INC.
'All Rights Reserved
'Used by Permission

DATA G3,O,G3,O,A3,O,E3,O,G3,O,A3,O,G3,E,A3,E
DATA A3,E,G3,E,E3,O,G3,E,A3,O,E3,E,G3,O,A3,E
DATA C4,E,C4,E,A3,E,C4,O,D4,O,E4,O,D4,W,D4,O
DATA 00,O,C4,E,00,S,C4,E,00,S,C4,O,00,S,C4,W,C4,O

All of the DATA statements are alternating notes and duration
values. The 00 "notes" are actually pauses, either at rests or between
identical notes for separation.

Sound, Music and Voice Synthesizing 217

MORE WAVE WORK

Let's do a little more work with WAVE. The following example
illustrates a sawtooth-form wave: Look at the routine for creating the
"Timbre%" array:

Sawtooth.Wave:
CLEAR
GOSU8 Timber
F=500
D=10
V=127
A=0
WAVE 0,Timbre%
SOUND F/4,D,V,A
SOUND F/2,D,V,A
SOUND F,D,V,A
SOUND 2*F,D,V,A
END

Timber:
DIM Timbre%(255)
'Sawtooth

FOR X=0 TO 42
Timbre%(C)=X
C=C+1

NEXT X
FOR X=-42 TO 42

Timbre%(C)=X
C=C+1

NEXT X
FOR X=-42 TO 42

Timbre%(C)=X
C=C+1

NEXT X
FOR X= -42 TO 0

Timbre%(C)=X
C=C+1

NEXT X
PRINT C REM Check Array Size
RETURN

218 The Amlga Microsoft BASIC Programmer's Guide

The same fundamental routine is used to create the pulse wave
illustrated below, but it was set up with the intention of changing the
pulse width for generating different wave forms and sounds:

Pulse.Wave:
CLEAR
GOSUB Timber
F=500
D=10
V=127
A=0
WAVE 0. Timbre%
SOUND F/4.D.V.A
SOUND F/2.D.V.A
SOUND F.D.V.A
SOUND 2*F.D.V.A
END

Timber:
DIM Timbre%(255)
'Pulse
PH=90:'Pulse height
PW=70:'Pulse width

FOR X=1 TO 3
FOR Y=1 TO PW

Timbre%(C)=PH
C=C+1

NEXT Y
FOR Z=1 TO 10

Timbre%(C)=-PH
C=C+1

NEXT Z
NEXT X
1(=255-C
FOR R=C TO C+I(

Timbre% (R) =PH
NEXT R
PRINT R : REM Check array size. Be careful setting

, the PH and PW variables or the array will overflow
RETURN

Sound, Music and Voice Synthesizing 219

You can create different instrumental sounds, sound effects, noises
and just about any other audible output by working with the various
sound statements. It's important to keep notes on various sounds you
discover and to systematically work with information you get from your
programs.

SPEECH SYNTHESIS

There are two basic ways to do voice synthesizing on your Amiga:
the easy way and the hard way. We'll look at the easy way first, using
TRANSLATE$, so that you can get off to a running start with voice
synthesizing. Then we'll see how to make a bridge between the built-in
translating capabilities and give you options using an array you build
yourself. Finally, we'll examine "the hard way" to do voice synthesizing.
This lets you do all sorts of things with your Amiga's voice so that it will
say what you want, the way you want it said.

Translating Text to Talk

The first thing to try is using the statement SAY with TRANSLATE$.
SAY works something like the PRINT statement, except instead of the
output being shown on your screen, it is sent to the built-in voice syn
thesizer. When using regular text (and regularly spelled text), the TRANS
LATE$ function is required. The general format is:

SAY TRANSLATE$ ("MESSAGE")

or

SAY TRANSLATE$ (MESSAGE$)

To get started, try the following little programs (substitute your name
for "Sam"):

First. Tall<:
One.Way:

SAY TRANSLATE$ ("Feed me silicone")
Another:

Tall<$= "And I will tall< to you"
SAY TRANSLATE$ (Tall<$)

220 The Amiga Microsoft BASIC Programmer's Guide

Still.Another:

END

Talk2$ = TRANSLATE$ ("You can start now")
SAY TALI<2$

Talk.To.Me:
Message$= "Hello. My name is Amiga and your name"
Message2$ = "is Sam. I know that because you told"
Message3$ = "me so."
BigMessage$= Message$ + Message2$ + Message3$
SAY TRANSLATE$ (BigMessage$)
END

As you can see from the examples, there are different ways you can
format the SAY TRANSLATE$ sequence. There is no inherent advantage
of one way over another, so use whatever method is most appropriate to
your programming needs.

The SAY Array

To control various parts of the speech presentation, you can use the
optional integer "mode-array." This array has nine parameters to change
the sound of the speech. We'll glance at what each one does and then
look at examples of what you can do with them:

Number Control Range and Function

0 Pitch 65-320 Voice pitch in hertz (110 = default)
1 Inflection 0-1 Modulation-Inflection (0), Monotone (1)
2 Rate 40-400 Speech rate
3 Gender 0-I-Male (0), Female (1)
4 Tune 5000-28000 from Low to High
5 Volume 0-64 (64 = default)
6 Channel See below (10 = default)

Value Channel(s)
0 0
1 1
2 2
3 3
4 0+1
5 0+2

Number

7
8

Control

Value

6
7
8
9
10
11
Mode
Control

Sound, Music and Voice Synthesizing 221

Range and Function

Channel(s)

1 + 3
2 + 3
Either available left channel
Either available right channel
Either available left/right pair of channels
Any available single channel
0-1-Synchronous (0), Asynchronous (1)
0-2 (with Asynchronous mode
only)-Normal (0), Stop speech (1),
Override (2)

To work with the parameters of the array, each value is read into a
nine-element integer array. The array is then placed at the end of a voice
command sequence, as:

SAY TRANSLATE$ (TEXT$), ARRAY%

The following program illustrates using an array with the SAY
statement

Wake. Up:
FOR X=0 TO 8

READ V
TALI(% (X) =V

NEXT

DATA 200
DATA 0
DATA 145
DATA 1
DATA 24000
DATA 64
DATA 10
DATA 0
DATA 0

:'Pitch - higher than default
: 'Inflection
:'Rate - slower than default
: 'Gender - female
: 'Higher voice
:'Default volume
:'Either available pair of speakers
: 'Defaul t mode
: 'Default control

222 The Amiga Microsoft BASIC Programmer's Guide

Messagel:
TEXT$=TRANSLATE$ ('GOOD MORNING BILL')
SAY (TEXT$),TALK%
Message2:
TEXT2$='How are you today'
SAY TRANSLATE$ (TEXT2$), TALK%

Normally, you'd want to put all of the DATA in a single line, but it was
arranged vertically in this case to more clearly show all of the element
values that make up the array TALK%. Change the different parameters
in the preceding program to get your Amiga to sound just the way you
want Change the rate of speech to about 150 (the default), and then
experiment with the pitch, gender and tuning to see what you can create.

Writing Like It Sounds: Phonetic Transcription

Now we'll start doing speech synthesis the hard way. Since all of the
work we'll be doing requires that phonetic spellings be in caps, put your
CAPS LOCK key on. Read Appendix H in your Amiga BASIC Manual
carefully, and forget everything you ever learned about spelling. Your
built-in speech synthesizer (called Narrator) will only recognize words
spelled phonetically. If you want it to work correctly, you have to spell
your messages with the phonetic spellings we'll examine in this section.

Here's a list of things to keep in mind when you work with phonetic
transcri ption:

1. Keep CAPS LOCK on.
2. All vowels (a, e, i, 0, u) have two letters.
3. Use only phonetic spellings.
4. Do not use TRANSLATE$.

The general format is:

SAY 'PHONETIC SPELLING'

You can place the text in a string, concatenate and do everything else
that can be done with strings. However, all spellings must be in the
special Narrator alphabet For example, to say "hello," do not enter this:

SAY 'HELLO'

Sound, Music and Voice Synthesizing 223

That would result in an 'illegal function call' error. Instead, write:

SAY "/HEHLDH"

To see the difference between using TRANSLATE$ and the phonetic
spellings, run the following little program:

SAY TRANSLATE$ ("Hello")
SAY "/HEHLDH"

The first hello sounded more like "halo," while the second "hello"
sounded more like what we expect to hear when the word is spoken.
That is the advantage of using phonetic spellings. While it is a lot more
difficult than using TRANSLATE$ and the normal spelling of words, the
phonetic method lets you adjust the Narrator's speech to a more natural
sound.

Narrator's Phonetic Alphabet

The following alphabet is to be used with the SAY statement when
not using TRANSLA TE$:

Phoneme Sound Phoneme Sound Phoneme Sound

Vowels
IY feet ER fir AH thunder
EH set AX around UH hook
AA lot IH sit OH order
AO walk AE fan IX slid

Consonants
R row IH hunt TH thick
W way B bun ZH assure
M money D dig DH there
NX ding K come J jade
S soul L hello IC loch
F fool Y yet P pull
Z was N in T top
V vest SH mush G gale
CH chow

224 The Amiga Microsoft BASIC Programmer's Guide

EY
OY

DX (tongue flap)
QX (silent vowel)
UL
IL

shade
soil

city
made
=AXL
=IXL

Characters
1-9

?

()

Diphthongs
OW blow AW
AY side UW

Special
Q
LX
UM
1M

mitLen RX
fall
=AXM UN
=IXM IN

Function
Stress range on syllable
Last character of sentence
Last character of sentence
Phrase delimiter
Clause delimiter (comma)
Noun phrase delimiters

power
shrew

star

=AXN
=IXN

The above phonemes and characters (all in CAPS) make up the
entries that Narrator can understand after a SAY statement (without a
TRANSLATE$ statement). Like everything else we've discussed, ex
perimentation is the key to getting things the way you want them,
especially when it comes to the subjective sounds your Amiga can create.
However, some examples will help, and we do need to say a few things
about stress and intonation before you take off on your own.

STRESS. By placing a number between one and nine (1-9) after the
vowel in any syllable you want stressed, Narrator will emphasize that
syllable. For example, in the sentence "I want you," stress can be placed
on anyone of the three words. A lover would stress the want, a choice
would stress you and a desire would stress the 1. Try the following three
examples to see the difference in sound depending on where the stress is
placed:

SAY "AYS WAONT YUHUW"
SAY "AY WAOSNT YUHUW"
SAY "AY WAONT YUHSUW"

'Stress on I
'Stress on want
'Stress on you

Besides placing emphasis on syllables, stress values also change the
sound of words. If a word doesn't sound right after you've experimented
with different phoneme combinations, try changing the stress placement
to see if that helps.

Sound, Music and Voice Synthesizing 225

STRESS MARK VALVES. The following is a list of suggested stress
mark values:

Speech Part Value

Nouns 5
Pronouns 3
Verbs 4
Adjectives 5
Adverbs 7
Quantifiers 7
Exclamations 9
Articles 0
Prepositions 0
Conjunctions 0
Secondary stress 1 or 2

Another form of stress is intonation. Placing a value after the stress
value gives a word its intonation value. Depending on how you want the
statement to sound, more or less should be placed after the stress values.
Take a look at the following example to see how this works:

SAY "IH4Z AENIY5WAAN 'HAAM?"
'Is anyone home

The verb 'is' has a stress of 4 following the first phoneme vowel, while the
noun 'anyone' is stressed on the second syllable with a 5. In reading this
question, it would look like:

Is anyone home?

To add intonation, you would simply place a second number next to
the first stress values. For example:

SAY "IH4Z AENIY57WAAN 'HARM?"

places an intonation value of 7 after the stress value of 5 in "anyone."
Change the value and listen carefully to how it sounds with different
intonation values.

In addition to using all of the phoneme alphabet with SAY, you can
also include the array to change the mode parameters. By using the
phoneme method combined with an array, you can have your "AH
MIY5GAH" talk up a storm. See if you can develop accents and other
styles of speech to give your computer a vocal personality.

226 The Amiga Microsoft BASIC Programmer's Guide

SUMMARY

Like the previous two chapters on graphics, we spent a good deal of
time just to get the fundamentals of sound across. Your Amiga is so
powerful and complex that only by experimenting with your BASIC
statements can you really begin to appreciate the capabilities it has. By
changing the various values in the sound parameters, you can create
anything from sound effects to a symphony. The Narrator speech syn
thesizer gives your Amiga a voice as well as the ability to produce a
multitude of sounds. (In fact, if you worked with the SOUND statement
enough, you could probably make your own speech synthesizer!)

The key to using new statements, especially unique ones like SAY, is
to begin incorporating them into your programs. Instead of having a text
prompt appear on the screen, send the output to the speaker and create
a talking prompt In the rest of this book, we'll use our newer statements
to liven up the programs and illustrate how you can use them to enhance
your programs.

________ CHAPTER 15 __

The Disk System and
Sequential Files

In this chapter we are going to learn more about working with the
disk system and creating data files. You will find out how to link program
files and do other work with program files. The functions in this chapter
have many practical applications, and we will attempt to use generic
examples that you can customize for your own use. We are going to make
simple sequential text file programs. These files are very useful for
storing information you have entered; rather than having to reenter the
data all over again, you simply OPEN a file and INPUT # the data. To
show how these files work, we will make a simple program for keeping
and updating names, cities and states.

One of the most useful applications of BASIC programs saved in
ASCII format is to save frequently used subroutines and then use the
MERGE statement to create a program from existing subroutines. You
have to make sure your subroutines all have unique sets of line labels,
but otherwise, a set of subroutines saved as ASCII files can save a lot of
unnecessary programming. For example, SAVE the following two
programs as ASCII files:

CL5
INPUT "How many names"; N%
FOR X = 1 TO N%

227

228 The Amlga Microsoft BASIC Programmer's Guide

INPUT "Name ";10$
G05UB Mid.5creen

NEXT
END

Now type in:

5AVE "Namer",A<RETURN>

After you have done that, enter NEW and do the next program:

Mid.5creen:
'Routine for centering text
L = 31 - LEN(10$)/2
PRINT TAB(L)IO$
RETURN

Next enter:

5AVE "Mid.5creen",A <RETURN>

Now you have two programs saved as ASCII files. Neither program
will work by itself. If you tried to use them as regular BASIC program
files, as soon as you loaded the second one, the first one would be wiped
out However, with ASCII files and the MERGE command, you can load
them separately. Once they are both loaded, you can RUN the combined
program, and if you want, you can even SAVE it as a BASIC program or
ASCII file. Key in the following sequence:

LOAD "Namer" <RETURN>
MERGE "Mid.5creen"<RETURN>
RUN <RETURN>

At this point everything should work just fine. Now enter:

5AVE "Mid.Name"<RETURN>

You now have a BASIC file that is made up of two ASCII files. As you
collect useful subroutines, keep a record of their line number ranges. You
can thus write a program simply by MERGEing several subroutines.

The Disk System and Sequential Files 229

CHAIN ROUTINES

Another way to save and use program chunks is with the CHAIN
statement Unlike MERGE, which brings two programs together, the
CHAIN statement allows you to use only parts of a program at a time. In
other words, one program could be used as an input buffer, for example,
and then it would be erased from memory and a second part could be
used as an output routine. The variables and arrays can be optionally
passed from the first to the second part with either an ALL or COMMON
statement If ALL is used, then all of the variables and arrays are passed.
If COMMON is used, then only those specified are used. Let's make two
very standard routines to show how CHAIN works. First, we'll make a
name and address input buffer that puts keyboard information into an
array:

Input.Names.Addresses:
INPUT "How many names";N%
DIM Names$(N%),Address$(N%),City$(N%)
DIM State$(N%),ZIP$(N%)

REM ************
REM Input Buffer

REM ************
FOR X=l TO N%

INPUT "Name"; Names$(X)
INPUT "Address "; Address$(X)
INPUT "City"; City$(X)
INPUT "State "; State$(X)
INPUT "Zip Code "; ZIP$(X)
PRINT

NEXT X

CHAIN "NameAd.Output" " ALL

That can be used with just about any program we want to enter
names and addresses. (Later we'll use it for our sequential file program.)
Notice at the bottom on the program, the CHAIN statement specifies
another file called "NameAd.Output" and has ALL preceded by two
commas. (We'll see what option goes between the two commas further
on.) All five arrays and the integer variable N%, along with their contents,

230 The Amiga Microsoft BASIC Programmer's Guide

are passed to the program called "NameAd.Output" Let's see what it
looks like:

Name.Address.Output:

REM *************************
REM Output Buffer to Screen

REM *************************
CLS
FOR X=1 TO N%

PRINT 'Name: '; Names$(X)
PRINT 'Address: '; Address$(X)
PRINT 'City. State. Zip: '; City$(X);'. ';
PRINT State$(X);SPACE$(1); ZIP$(X)
PRINT

NEXT X

This is another frequently used routine for printing names and
addresses in a format often used for addressing a letter. (We have left the
headers, 'Name:', etc. for illustration purposes.) Notice that the output
routine uses a different format to send information to the screen than that
used for entering the data.

In our example, we needed to use all of the arrays and variables in
the first program. However, there may be occasions where you will need
only some of the values to be passed. In this case you would specify their
"passage" with COMMON, and ALL would be omitted from the CHAIN
statement sequence. Here are a couple of short routines that illustrate the
use of COMMON with selected variables and arrays:

Get.Seal:
FOR X=1 TO 10

Ball$(X)=STR$(X)
NEXT
N=2
FOR X=1 TO 10 STEP N

Seal$(X)='Seal' + Ball$(X)
NEXT
COMMON Seal$().N
CHAIN 'See.Seal'

Save the above program as "Get Seal."

See.Seal:
FOR X=l TO 10 STEP N

PRINT Seal$(X)
NEXT

The Disk System and Sequential Files 231

Save above program as "See.Seal."
Notice that we generated a set of numbers with the array 'Ball$,' but

we did not need it in the program we chained to the first one after 'Seal$'
was defined. However, we did need the variable 'N' and the array 'Seal$'
which were passed with COMMON. Had we used ALL in the first
program, we would have passed the unnecessary array 'Ball$.'

Also, take note of the format for passing arrays. There is no need to
specify the dimension, only the array name followed by the double
parentheses-'{)'. Variables are simply passed using the variables' name
as in the original program.

It is also possible to use CHAIN with an option to specify the first
line to be executed in the chained on program. Unfortunately, line labels
cannot be used. For example, these two routines show how the first
program chains the second beginning at line 30:

First. One:
PRINT "This is from the first program"
Chain "Show", 30

Save as "One."

No.Show:
PRINT "This is not to be seen"

30 PRINT "Show this"
More.Show:

PRINT "This can also been seen"

Save as "Show."
When you run the first program, it will chain the second, but it will

not execute the first PRINT statement since it is before line 30 in the
program. This option may not be used right away, but when you have an
application where you need to begin in the middle of a routine, it can be
useful.

232 The Amiga Microsoft BASIC Programmer's Guide

Amlga Notes

Changing Drives and Drawers

When you start writing a lot of programs and creating several files,
you will want to organize everything in different "drawers" on your
disk. To open a file in a specific drawer, you have to enter the name
of the drawer. a slash (/) and the name of the file. In some cases, you
may even have to specify disk drive drawer and file name.

Creating drawers within drawers can really make it difficult for
you to locate a specific file. H you want to save everything in a single
drawer or even a subdrawer, and get everything out of the same
subsection on your disk, it's a lot easier to use CHOIR to make the
drawer the "current" or default file directory. To do that, just enter:

CHOIR "dfn:drawer"

where 'tt is the drive number (usually 0 or 1). and 'drawer' is the name
of the subdirectory. To check if you're in the correct subdirectory,
catalog your disk from BASIC with FILES; if all you see are files in
your selected subdirectory, you know you did it correctly.

SEOUENTIAL FILES

To get started working with sequential files, think of them as another
place for outputting information instead of the screen, and another place
for inputting information instead of the keyboard. Unless we save infor
mation in DATA statements, we really have no other way of preserving
material we create with our programs.

From Buffer to Disk and Disk to Buffer

The key to understanding files is to understand the concept of a
"buffer." A buffer is not a file; it is the "bucket" that you use to "pour"
information into a disk file and into which you temporarily store infor
mation from a disk file. Basically, you will use the following sequence in
file work

The Disk System and Sequential Files 233

Keyboard Input -) Buffer
Buffer Output -) Disk File
Disk Input -) Buffer
Buffer Output -) Screen

Arrays and variables are buffers. It's as simple as that Enter data, and
it goes into a variable or array. That's the buffer. Write the information in
the array or variable to the disk, and that's buffer output to the disk. It is
important to keep the buffer concept that simple. Novice programmers
tend to overcomplicate these things, making it unnecessarily difficult for
themselves.

MAKING A SEQUENTIAL FILE

Our first step will be to write a program that creates a sequential file.
To create a file, use:

OPEN "Filename" FOR OUTPUT AS ~l

That opens a new file identified as #1. Any number will do. Next, to write
the buffer to the disk, enter:

PRINT ~l. (or PRINT~l. USING or WRITE~l.)

The number must match the file number used to create the sequential
file.

When all of the buffer has been written to the disk, close it with:

CLOSE ~l

If no file number is specified, all files will be closed. Sometimes you will
need more than a single file open at the same time. In those cases, you
will only want to close the opened files and maybe not all of them.

The above simple statements cover everything we need in sequential
files so we can begin using them. Let's write a creation program for a file.
We'll make one for a nursery business that will hold the names of plants
that customers have requested information about

234 The Amiga Microsoft BASIC Programmer's Guide

Plant.File:
CLS
LOCATE 10.1
INPUT "How many requests";N%
DIM Plant$(N%)
CLS
REM ******
REM Buffer
REM ******
FOR X = 1 TO N%

INPUT Plant$(X)
NEXT X

REM *******************************
REM Put Buffer into Sequential File

REM *******************************
OPEN "Plants" FOR OUTPUT AS ~1

FOR X = 1 TO N%
PRINT ~1. Plant$(X)

NEXT X
CLOSE ~1

END

After you enter the program, run it; remember the number of plants
that you entered. Save the program under the name "PlantEntry," as we
will come back to it later. Enter FILES from BASIC to make sure there is
a file called 'Plants' that was created by our "PlantEntry" program.

The next step is to read our files, using:

OPEN "FILENAME" FOR INPUT AS ~1

The only difference is that the information is now going to be input
instead of output. It is input from the disk into a buffer. Thus, instead of
PRINT#, use:

INPUT~l. (or LINE INPUT~l)

The buffer used for input can be a variable or an array. It does not
have to be the same array or variable name used for entering the
information into the file. In fact, it is not even necessary to use the same
type of buffer. If an array buffer placed the information into the file, a
varia ble buffer can take it out

The Disk System and Sequential Files 235

Next, you will need something to see if all of the information is out
of the file. To do that, use the EOF (end of file) function. The fundamental
form is:

IF EDF (1) 1 THEN end of file has been reached

The loop:

WHILE NOT EDF(l)
Read f i 1 e, etc.

WEND
Close

is a fairly standard way of reading all of the contents of a file.
The following program will OPEN 'Plants,' INPUT the file, check

EOF, CLOSE the file and then PRINT out the contents on the screen.
Notice the similarities and differences between this program and the one
used to write files:

Plant.Read:
CLS
OPEN "Plants" FOR INPUT AS ~l

REM
REM Put Sequential File into Buffer
REM
WHILE NOT EOF(l)

INPUT ~l.Plant$
PRINT Plant$

WEND
CLOSE ~l

END

Save this under the file name "PlantRead." Using the EOF function
eliminates the need to keep track of the number of files you entered. If
there are more files, EOF(1) (with "1" being the file number, e.g., INPUT
#1), then EOF(1) = o. If EOF(l) = -1 then the program has found the End
Of File. Using the WHILE/WEND statement, we check for the case where
EOF is NOT true. When this condition is met, the program exits the loop.
Notice that as soon as we INPUT# the data from the 'Plants' file we
PRINTed it to the screen using the normal PRINT statement Also notice

236 The Amlga Microsoft BASIC Programmer's Guide

that we used a string variable buffer, "Plant$," instead of a string array
buffer.

Thus far, we have a program that will OUTPUT a list of names in a
data file and one that will INPUT those names back to us. What happens,
though, if we want to add some names to the file? Well, we could make
a new file under another name, but a better way is to APPEND our
current 'Plants' file. Using the APPEND statement, we write our additional
file name(s) at the bottom of the data list in our existing file. It is
important to remember that when using APPEND, there must be an
existing file to which we can APPEND our data. To do that, use the
following format

OPEN "FILENAME" FOR APPEND AS ~1
PRINT~l (or PRINT~l USING or WRITE~l)
CLOSE~l

We will need only a slightly different program than 'PlantEntry.' Simply
load 'PlantEntry,' make the appropriate changes and save the program
under the name 'PlantApnd':

Plant.Apnd:
CLS
LOCATE 10,1
INPUT "How many requests to add";N%
DIM Plant$(N%)
CLS
REM ******
REM Buffer
REM ******
FOR X=l TO N%

INPUT Plant$(X)
NEXT X

REM *******************************
REM Put Buffer into Sequential File

REM *******************************
OPEN "Plants" FOR APPEND AS ~1

FOR X=l TO N%
PRINT ~l,Plant$(X)

NEXT X
CLOSE ~1
END

The Disk System and Sequential Files 237

That didn't take much work, did it? All you had to do was change
OUTPUT to APPEND; once you SAVE the program as 'PlantApnd,' you
have programs that will OUTPUl', INPUT and APPEND sequential text
files.

We've seen how to OUTPUT, APPEND and INPUT elements of a
single file. However, since file names are essentially just strings, we could
use variables to do a lot of the work automatically. Remember, if we can
write one program that will do most of the work, then we can save a lot
of time by writing several little programs. The following program,
'Ad.Book,' will create, append and read any text file you want It handles
names and addresses, but that can be changed if so desired.

Amiga Notes

Amip Short Cut #2561(

The follOwing program is relatively long. but certain parts of it are
very similar to earlier ones. Therefore, rather than re-typing everything
that is similar, it is much easier to use the CHAIN, MERGE and EDIT
functions available on your Amiga. Using your cut and paste func
tions in the editor, change OUTPUT to APPEND and change the block
labels as well We'll be using our "general" name, address, etc. buffer
that we introduced at the beginning of the chapter.

Address.Book:
Menu.Service:

MENU 1,0,1, "file Work"
MENU 1,1,1, "Create New Address Book"
MENU 1,2,1, "Append to Existing Book"
MENU 1,3,1, "Read An Address Book "

MENU 2,0,1, "(-)" : REM Cover Menu Bar 2
MENU 2,1,1, "Not in use"

MENU 3,0,1, "Exit"
MENU 3,1,1, "Quit the program"

MENU 4,0,1, "(-)" : REM Cover Menu Bar 4
MENU 4,1,1 , "Not in use"

238 The Amiga Microsoft BASIC Programmer's Guide

Clear.Me:
Flag=0
CLS
PRINT "Press the RIGHT mouse button and choose a menu."

Menu.Read:
REM Loop to scan menu choice.
IF Flag THEN Clear.Me
CHooZEIT=MENU(0)
ON CHooZEIT GoSUB Make.It.Empty1.Terminate.Empty2

GoTo Menu.Read

Make. It:
Flag=MENU(1)
ON MENU(1) GoSUB Get.Buffer.Get.Buffer.Read.File
RETURN

Empty1:
RETURN

Terminate:
MENU RESET
CLS
END

Empty2:
RETURN

Get.Buffer:
GoSUB See. Files
INPUT "How many names";N%

PRINT
DIM Names$(N%).Address$(N%).City$(N%)
DIM State$(N%).Zip$(N%)

REM ************
REM Input Buffer

REM ************
FOR X=1 TO N%

INPUT "Name"; Names$(X)
INPUT "Address "; Address$(X)

The Disk System and Sequential Flies 239

INPUT "City"; City$(X)
INPUT "State "; State$(X)
INPUT "Zip Code "; Zip$(X)
PRINT

NEXT X
IF Flag=l THEN Create.File ELSE Append.File

Create.File:

REM *******************************
REM Put Buffer into Sequential File

REM *******************************
OPEN NF$ FOR OUTPUT AS nl
FOR X=l TO N%

PRINTnl, Names$(X)
PRINTnl, Address$(X)
PRINTnl, City$(X)
PRINTnl, State$(X)
PRINTnl, Zip$(X)

NEXT X
CLOSE nl
RETURN

Append.File:

REM *******************************
REM Put Buffer into Sequential File

REM *******************************
OPEN NF$ FOR APPEND AS nl
FOR X=l TO N%

PRINTnl, Names$(X)
PRINTnl, Address$(X)
PRINTnl, City$(X)
PRINTnl, State$(X)
PRINTnl, Zip$(X)

NEXT X
CLOSE nl
RETURN

Read.File:
GOSUB See. F 11 es

REM *******************************
REM Put Sequential File into Buffer

REM *******************************
OPEN NF$ FOR INPUT AS nl

240 The Amiga Microsoft BASIC Programmer's Guide

WHILE NDT EOF(l)
INPunu. Names$
INPUTIU. Address$
INPunu. City$
INPUTU1. State$
INPUTU1. Zip$

REM **************************
REM Send From Buffer to Screen

REM **************************
PRINT Names$
PRINT Address$
PRINT City$; ". ";State$; SPACE$(l);Zip$
PRINT
Count=Count+1
IF Count=5 THEN GOSUB Hold.It

WEND
CLOSE IU
GOSUB Hold.It

RETURN

Hold. It:
COLOR 0.1
PRINT "<Hit any key to continue)";
Hit$=INPUT$(l)
COLOR 1.0
RETURN

See. Files:
INPUT "Would you like to see the flles";F$
F$=UCASE$(F$)
IF F$="Y" THEN FILES
PRINT
COLOR 0.1
INPUT "Name of File ";NF$
COLOR 1.0
PRINT

RETURN

That was a long program, but if you used your editing tricks, you
saved a lot of duplicate efforts. Take special note of menus 2 and 4 that
are not in use. The "Not in use" notice and the empty subroutines for

The Disk System and Sequential Flies 241

those two menus are to prevent a program crash. If you have some blanks
in the MENU statements, you're likely to bomb your program if they are
accidentally chosen. To prevent such mistakes, it is better to put some
thing in the menus.

FORMATTING TEXT AND NUMBERS IN FILES
WITH PRINT # USING

Another way of storing information on disks is with PRINT # USING.
Like the PRINT USING statement we examined in formatting output to
the screen, PRINT # USING does the same thing to the disk. The format
is slightly different, but the statement works essentially the same. If you
use programs where the formatting of numeric data is important, such as
expense accounts, PRINT # USING is very handy. The following program
shows how to use PRINT # USING to keep track of expenses on a
business trip:

Trip.Expenses:

REM ***************************
REM Put information into buffer

REM ***************************
INPUT "Trip to: ";NF$
PRINT
INPUT "Airline tickets ";AirTic
INPUT "Cab fare ";CabFare
INPUT "Hotel ";Hotel
INPUT "Meals ";Meals
TripSum = AirTic + CabFare + Hotel + Meals

REM **************************************
REM Send from buffer to disk with $ format

REM **************************************
8uck$="$$~~~~.~~"

OPEN NF$ FOR OUTPUT AS ~1

PRINT ~1. USING 8uck$;AirTic
PRINT ~1. USING 8uck$;CabFare
PRINT ~1. USING 8uck$;Hotel
PRINT ~1. USING 8uck$;Meals
PRINT ~1. USING 8uck$;TripSum
CLOSE ~1

242 The Amlga Microsoft BASIC Programmer's Guide

See.File:
CLS

REM ***********************
REM Send file to buffer

REM ***********************
INPUT "Name of file to read ";NF$
OPEN NF$ FOR INPUT AS ~l

WHILE NOT EDF(l)
INPUT ~l,Num$
PRINT Num$

WEND

Notice how numeric variables are used to write the file to the disk,
but we use a string variable to read the data from the disk. The reason
for this is, when PRINT #, USING wrote the file to disk, it included string
elements in the dollar sign. If you try reading that data with a numeric
variable, you'll get a "Type mismatch" error. Since there may be times
when you need numeric data for calculations (adding up all your trip
expenses for a month or year for instance), let's see how we can change
it back to numbers. Exchange the 'See.File' routine for the following to
see how to make the transformation:

Change. File:
CLS

REM ***
REM Send file to buffer and change to numbers

REM ***
INPUT "Name of file to read ";NF$
OPEN NF$ FOR INPUT AS ~l

WHILE NOT EOF(l)
INPUT ~l,Num$
PRINT Num$,
NL=LEN(Num$)-l
Num$=RIGHT$(Num$,NL)
Num=VAL(Num$)
PRINT Num

WEND

LINE INPUn

Let's take a look at what else we can do with an input statement
Suppose you want to enter a name, address and phone number into an

The Disk System and Sequential Flies 243

array, store it on disk and read it back later. Using LINE INPUT, it is
possible to use a single string or string array variable to put all the
information in at once. Likewise, when retrieving information from the
disk, you can get a whole line using LINE INPUT #. This is especially use
ful when you are reading a file with an unknown format For example, let's
say that you want to read the contents of a disk but you do not know
whether it is composed of strings or numeric variables or their order. By
using LINE INPUT # and a string variable, you can read the file line by
line rather than variable by variable.

To see how LINE INPUT works, enter the following program. When
you RUN it, be sure to include commas between the store, plant and
availability. Unlike the INPUT statement, commas will not result in an
error message when LINE INPUT is used.

Line.Put:

REM ****************************
REM Load Buffer using LINE INPUT

REM ****************************
CLS
INPUT 'Enter number of nurseries'; N%
DIM Store$(N%)
CLS
FOR X=l TO N%

LINE INPUT 'Store,Plant,Available(Y'N)';Store$(X)
NEXT X

Buffer.Out:

REM **************************
REM Send from Buffer to Screen

REM **************************
CLS
FOR X=l TO N%

PRINT Store$(X)
NEXT X

If you want, you can change the program to send the buffer out to
the disk instead of to the screen. Just change the Buffer.Out routine to be
inside an open file.

The next program will divide the three items we entered in the last
program into three separate arrays. The buffer will be written to the disk,
using three arrays, but by using LINE INPUT# we'll load everything back
into a single variable buffer. Also, take note of the method used to enter
'Avail$(X).' A single keystroke is all that's needed, so it saves time. (Of

244 The Amiga Microsoft BASIC Programmer's Guide

course, it is a little risky since the user cannot correct a typing error
before pressing RETURN as with INPUT.)

Array.Put:

REM ****************************
REM Load Buffer using 3 Arrays

REM ****************************
CLS
INPUT "Enter number of nurseries"; N%
DIM Store$(N%),Plant$(N%),Avail$(N%)
CLS
FOR X=l TO N%

INPUT "Store";Store$(X)
INPUT "Plant";Plant$(X)
PRINT "Is it in stock (Y/N)"
Avail$(X)=INPUT$(l)
PRINT

NEXT X
Buffer.Out:

REM *****************************
REM Send from Buffer to Disk

REM *****************************
OPEN "Plant.Here" FOR OUTPUT AS ~l

CLS
FOR X=l TO N%

PRINT ~l,Store$(X),
PRINT ~l,Plant$(X),
PRINT ~l,Avail$(X)

NEXT X
CLOSE ~l

Hit.l<ey:
PRINT "Hit any key to load back into memory."
Hit$=INPUT$(l)
CLS

Buffer.Bacl<:
OPEN "Plant.Here" FOR INPUT AS ~l
WHILE NOT EOF(l)

LINE INPUT ~l,Buffer$
PRINT Buffer$

WEND
CLOSE ~l

The Disk System and Sequential Files 245

The output showed the information lined up in columns. The
commas act as column tabs when the information is written to disk. To
see a different effect, change the three PRINT # statements to a single
line:

WRITE nl. Store$(X).Plant$(X).Avail$(X)

and change the OPEN statement to APPEND. Now when you run the
program and enter data, you can see the two different ways WRITE# and
PRINT# store data on the disk. The commas do not work as tab setters,
and the quote marks are around the strings.

SUMMARY

The disk system on the Amiga provides for several applications to
make your programming tasks easier and more practical. The MERGE
and CHAIN statements allow you to use small routines in different
programs without having to rewrite program segments or routines. This is
a further extension of the module programming style we've discussed
and used throughout this book. Modular programming does more than
make the creation of large, complex programs feasible; using modules
with MERGE and CHAIN makes the overall task much easier.

Sequential files are very handy for a lot of applications, but they can
be tricky. Work and experiment with them until you are comfortable
using the various parts. The main thing to remember is to use buffers to
organize data before it is written to the disk and after it has been read
from the disk. However, the disk file organization can be changed once
the data is in the buffers. File statements such as LINE INPUT # and
PRINT #, USING help organize data between the buffer and the disk, so
even disorganized data can be reformatted if the need arises.

________ CHAPTER 16_

Random Access Files

RANDOM AND SEOUENTIAL FILES: DIFFERENCES
AND SIMILARITIES

If you can imagine sequential files to be like oil tankers that are
filled up with oil by pumping the oil into big empty holds, random
access files are like container ships with containers of equal size. Large
or small size cargoes can go into each container, but the containers are
all the same. The big advantage of random access files over sequential
files is that they store each set of information as a single record; instead
of having to open the entire file, you just open the container with your
record and examine it

To create random files, you first decide how big a container you will
need, based on the maximum size of the material you will be putting in
the container. Since all we can put into a random access file is numbers
or strings, the problem is greatly simplified. Each character in a string
takes 1 byte. (As you remember, a "byte" is a unit of measurement in the
Amiga's memory.) Therefore, if your maximum length for a given string is
10, it will be necessary to allocate a total of 10 bytes: one for each of the
ten characters. With numbers, storage is different In summary, you must
plan for following allocations:

247

248 The Amiga Microsoft BASIC Programmer's Guide

Variable

String
Short Integer
Long Integer
Single precision number
Double precision number

Bytes

1 byte per character
2 bytes per number
4 bytes per number
4 bytes per number
8 bytes per number

Data placed into a random access file must be in a string format
You will learn the special words needed to make that change. To get
started, we will examine how to place simple strings into random files.

Like sequential files, you first place the information into a buffer and
then send it to the file on the disk. However, there are very important
differences in formatting random access files. When you OPEN a random
access file, you must include the length of the file. First, as we did with
sequential files, we OPEN the file and place the name of the file in
quotes. However, instead of writing the mode, we indicate the file
number and the length of our file. The following example shows the
format for OPENing a random access file:

OPEN "R", Itl, "RanFile" ,40

(Default is 128 if file length is not specified.)
With this statement we can either write to or read from the disk,

depending on what else we place in the program. Unlike sequential files,
we do not indicate whether the mode is OUTPUT or INPUT when we
OPEN a random access file.

Random access files are divided into fields, each with a maximum
length. The FIELD statement expects a file number, width and string
variable.

FIELD Itl, 20 AS X$, 10 AS Y$, 10 AS Z$

The above statement sets the width of X$ at 20, Y$ at 10 and Z$ at 10.
When the file is opened, the length value (the last value entered) must be
equal to the total of the sum of the FIELD values. In the above example
the length must be 20 + 10 + 10 = 40. When you open a random access
file, indicated by the "R" after the OPEN command, the value 40 must be
placed at the end of the statement sequence:

Random Access Flies 249

OPEN "R".~1."RanFile".40

Remember, the same format is used to open a random access file for
input or output

RANDOM FILE BUFFERS

To illustrate how to use random access files, we will use a variation
of the buffer we built for names and addresses in the last chapter. (Just
load the routine from your disk, and we can patch this together easily.)
Before we can enter the data into a random access file, we have to use
the LSET statement to store our records in their respective fields.
Moreover, the variable names we LSET cannot be the same ones we have
in the input buffer. Therefore, we have two sets of variables: one for the
input buffer and one for LSET. The nice thing about LSET is that it
automatically "pads" the strings with sufficient spaces to fit the field
exactly or truncate the string if it is too long. However, it is absolutely
necessary to use different string variable names for INPUT and LSET.

Names$ for name-LSET = N$
Address$ for address-LSET = A$
City$ for a city's name-LSET = C$
StateS for a state's two character abbreviation-LSET = S$
ZipS for a zip code-LSET = Z$

Since names of people and cities are of different length, we have to
decide on a maximum size name; longer names will simply be truncated
to our desired size. This process is extremely important in working with
random access files since we are limited to the number of bytes specified
when we open a random access file. If our entries go over that length,
they will spill over into the next record. Therefore, we will limit the
length of a name to 20, the address to 30, a city to 10, states to the
2-character abbreviations employed by the post office and zip codes to 5.
(If you want, you can use the new longer form zip code. Just remember to
add the extra amount to your calculation.) If a string is longer or shorter
than the specified length, the LSET statement will take care of padding
and truncating. Thus, if one of your entries has too long a name, it will be
stored only at the length set in the FIELD statement To recap:

250 The Amlga Microsoft BASIC Programmer's Guide

N$=20
A$=30
C$= 10
S$= 2
Z$= 5

TOTAL = 67

To get going, this next program will write a single record:

All.Purpose.Buffer:
N%=l
DIM Names$(N%),Address$(N%),City$(N%)
DIM State$(N%),Zip$(N%)

REM ************
REM Input Buffer

REM ************
FOR X = 1 TO N%

INPUT 'Name';Names$(X)
INPUT 'Address ';Address$(X)
INPUT 'City'; City$(X)
INPUT 'State '; State$(X)
INPUT 'Zip Code '; Zip$(X)
PRINT

NEXT X

REM **************
REM Write A Record

REM **************
Record%=l
OPEN 'R', !:tl, 'RanAd', 57
FIELD !:tl,20 AS N$,30 AS A$, 10 AS C$,2 AS S$,5 AS Z$
FOR X=l TO N%

LSET N$=Names$(X)
LSET A$=Address$(X)
LSET C$=City$(X)
LSET S$=State$(X)
LSET Z$=Zip$(X)
PUT !:tl,Record%

NEXT X
CLOSE !:tl

Random Access Files 251

That was a lot of work to enter a single record, but be patient and we
will do more. Now, we will GET# a record from a random access file.
Like writing random access files, we must OPEN them with a specified
length and read them in terms of a specified Record. The following
program will read Record #1 in the name and address file:

REM **************
REM Read A Record

REM **************
N%=l
Record%=l
OPEN "R". la. "RanAd" .67
FIELD U1.20 AS N$.30 AS A$. 10 AS C$.2 AS S$.5 AS Z$
FOR X=l TO N%
GET U1.Record%
PRINT N$
PRINT A$
PRINT C$;". ";S$;SPACE$(l);Z$
NEXT X
CLOSE U1

All that's needed to write multiple records is a counter that incre
ments the record number in the variable 'Record%.' However, since we
are using random access files now, there is no APPEND statement
Therefore, we need a way to keep track of what the last record was so
that if we want to add a record, we will not accidentally write over an
existing record. To do that, we'll build on some routines to the exiting
program.

First we need a little random file to store our pointer that tells us
how many records there are in the file. This will be a one record file that
uses a number. We'll use an integer number since it takes the least
number of bytes, and we do not need fractions. Since random access files
can only handle strings, we need to transform numbers into strings and
then back to numbers. There are special file words for changing numbers
into strings:

MKI$-Short integer
MKL$-Long integer
MKS$-Single precision number
MKD$-Double precision number

252 The Amiga Microsoft BASIC Programmer's Guide

The following is an example of how to change a single precision
variable into a string for use in a random access file:

L5ET N$=MK5$(Num)

Now, whatever value is in the variable 'Num' is written to the file as 'N$.'
We also need a conversion function to change numbers stored in

random access files back into integers or real numbers.

CVJ-Short integer
CVL-Long integer
CVS-Single precision number
CVD-Double precision number

For example, the following would change a long integer stored as a four
byte string in Record #3 back into a long integer for calculations:

GET In,3

LongI&=CVL(N$)

Now we'll put all of this together in a program that will let us write
as many random access files as we want and add new records to the file:

REM **********
REM File Mal<er

REM **********
Get. File. Name:

INPUT "Name of file ";NF%
Point. F ile:

NP$=NF$+ ".P"
Get.5tate:

INPUT "Is this a (N)ew or (E)xisting file";AN$
AN$=UCA5E$(AN$)
IF AN$="N" THEN Pointer$=l : Flag=l
IF AN$="E" THEN G05UB Get.Pointer Flag=2
IF Flag < 1 THEN Get.5tate

All.Purpose.Buffer:
INPUT "How many items to enter ";N%
OIM Names$(N%) ,Address$(N%) ,City$(N%)
DIM 5tate$(N%),Zip$(N%)

REM ************
REM Input Buffer

REM ************
FOR X = 1 TO N%

INPUT 'Name'; Names$(X)
INPUT 'Address '; Address$(X)
INPUT 'City'; City$(X)
INPUT 'State '; State$(X)
INPUT 'Zip Code '; Zip$(X)
PRINT

NEXT X

REM **************
REM Write A Record

REM **************

Random Access Flies 253

IF F lag=l THEN Record%=Pointer% ELSE Record%=Pointer% + 1
OPEN 'R'. ~1. NF$.67
FIELD ~1.20 AS N$.30 AS A$. 10 AS C$.2 AS S$.5 AS Z$
FOR X=l TO N%

LSET N$=Names$(X)
LSET A$=Address$(X)
LSET C$=City$(X)
LSET S$=State$(X)
LSET Z$=Zip$(X)
PUT ~l.Record%
Record%=Record%+l

NEXT X
CLOSE ~1

Set.Pointer:
Pointer%=Record%-l
OPEN 'R'. ~1. NP$.2
FIELD ~1.2 AS P$
LSET P$=MKI$(Pointer%)
PUT ~1. 1
Pointer%=CVI(P$)
CLOSE ~1

END

Get.Pointer:
OPEN 'R'. ~1. NP$.2: I The pOinter file

254 The Amiga Microsoft BASIC Programmer's Guide

FIELD Ul.2 AS P$
GET Ul.l
Pointer%=CVI(P$)
PRINT "Begin with record U"; Pointer%
PRINT
CLOSE Ul
RETURN

Notice how we made an accompanying "pointer file" name simply by
appending a ".P" to whatever name we used for the main file. In effect,
each time the program is run, it works with two separate but related
random access files.

FINDING AND CHANGING RECORDS

The big advantage of random access files is in locating and changing
records without having to load the whole file into memory. If you need to
change or locate information, the record number lets you go directly to it

SEARCH FOR RECORD. Finding a single record is relatively simple,
but there is a trick that you will need to know. When the information in
a buffer is saved to disk, it is automatically "padded" with LSET. That
means there will be a lot of extra spaces added to the string when it is
read from the random file. Unless you get rid of the excess spaces, you'll
never match the search string with the one in your file. The little routine
'Strip.Pad' contained in the following program does that by just taking
the LEFT$ portion of the string from the record that matches the length
of the search string. Since all the padding is done with spaces added to
the right end of the string, it is easy to solve this problem. You just have
to realize what you are looking for. For example, since our program has
all strings in the name field defined as 20 bytes long (i.e., 20 AS N$), a
name like 'Tom Jones,' which has nine characters, will have 11 spaces
padded on with LSET. If the search string is 'Tom Jones,' then the length
of it will be nine. (The space between 'Tom' and 'Jones' is counted.) By
truncating all but the first nine characters of all names compared with
the search string, if 'Tom Jones' is in our file, it will be found.

REM ***********
REM Find Record

REM ***********
WIDTH 62
Get.File.Name:

INPUT "Name of file ";NF$
Poin t. F ile:
NP$=NF$+ ".P"

Get.5tate:
G05UB Get.Pointer

Name.Find:
INPUT "Name to find";Who$

REM **************
REM Read A Record

REM **************
INPUT "Begin with Record "";Record%

OPEN "R". "1. NF$.67

Random Access Flies 255

FIELD "1.20 A5 N$.30 A5 A$. 10 A5 C$.2 A5 5$.5 A5 Z$
FOR X=Record% TO Pointer%
GET "l.Record%
Names$=N$
Address$=A$
City$=C$
5tate$=5$
Zip$=Z$
PRINT

5trip.Pad:
Lfind=LEN(Who$)
Match$=LEFT$(Names$.Lfind)
IF Match$=Who$ THEN G05UB 5how.Find

Next.Record:
Record%=Record%+l
NEXT X

CL05E "1
IF Flag <> 7 THEN PRINT "Name not found." BEEP
END

Get.Pointer:
OPEN "R". "1. NP$.2
FIELD "1.2 A5 P$
GET "1. 1
Pointer%=CVI(P$)

r-------------------------------- - - - - - -

256 The Amiga Microsoft BASIC Programmer's Guide

PRINT "There are"; Pointer% ." records in this file"
PRINT
CLOSE 1:11
RETURN

Show.Find:
PRINT Names$
PRINT Address$
PRINT City$;", ";State$;SPACE$(l);Zip$
PRINT
COLOR 0,1
PRINT "Press any key to continue";
COLOR 1,0
Hit$=INPUT$(l)
X=Pointer%
Flag=7
RETURN

CHANGING A RECORD. Since each record is written almost like a
"mini-file," it is possible to go into an existing random access file and
change a single record without having to change the entire file. This is
done by rewriting the record by record number. Thus, all you need is to
find the record number of the record you wish to change. To make this
easy, the program should first show the records in the file by record
number; you don't want to have to memorize all the record numbers. The
process is then identical to creating or appending a random file except
you can put the information anywhere in the file you want, not just at the
end of the file. In outline, the blocks of the program include:

1. Open the file
2. Show the records and record numbers
3. Choose the record by number
4. Put new information into buffer
5. Write single file to disk

Notice how we reused some slightly changed parts of other programs.
Remember, it is smarter to use existing blocks of programs than reinvent
ing the wheel every time you sit down and program.

REM **************
REM Change Records

REM **************

Get.File.Name:
INPUT "Name of file ";NF$
NP$=NF$ + ".P"

Get.State:
GOSUB Get.Pointer

REM ************
REM Show Records

REM ************
INPUT "Begin with Record U";Record%
CLS
OPEN "R", U1, NF$,67

Random Access Files 257

FIELD U1,20 AS N$,30 AS A$,10 AS C$,2 AS 5$,5 AS Z$
FOR X=Record% TO Pointer%

GET U1,Record%
Names$=N$
Address$=A$
City$=C$
State$=S$
Zip$=Z$
COLOR 0,1
PRINT "Record U" ; Record%
COLOR 1,0
PRINT Names$
PRINT Address$
PRINT C i ty$; " , ";State$;SPACE$(1);Zip$
Record%=Record%+1
Count=Count+1
IF Count >3 THEN Count=0

NEXT X
CLOSE U1
PRINT

Choose.Record:

GOSUB Hold.It

INPUT "Which record to change";Record%
GOSUB Record.Changer
PRINT
PRINT "Change another record (Y/N)"
An$=INPUT$(1)
An$=UCASE$(An$)
IF An$="Y" THEN Choose. Record

END

258 The Amiga Microsoft BASIC Programmer's Guide

Get.Pointer:
OPEN "R". ~1. NP$.2
FIELD lH.2 AS P$
GET tH. 1
Pointer%=CVI(P$)
PRINT "There are"; Pointer % ;" records in this file"
PRINT
CLOSE
RETURN

Hold.It:
PRINT
COLOR 0.1
PRINT "Press any key to continue";
COLOR 1.0
Hit$=INPUT$(1)
RETURN

Record.Changer:

REM ************
REM Input Buffer

REM ************
CLS
INPUT "Name"; Names$
INPUT "Address "; Address$
INPUT "City"; City$
INPUT "State "; State$
INPUT "Zip Code "; Zip$

REM *******************
REM Write Single Record

REM *******************
OPEN "R'. ~1. NF$.67
FIELD ~1.20 AS N$.30 AS A$.10 AS C$.2 AS 5$.5 AS Z$

LSET N$=Names$
LSET A$=Address$
LSET C$=City$
LSET S$=State$
LSET Z$=Zip$
PUT ~1.Record%

CLOSE ~1

Return

Random Access Files 259

Now that you have seen how to create, append, read, find and
change records in random access files, see if you can write a program
that does all these things. Using parts of the programs you already have,
merge the various parts together to make one large 'master' random
access file program.

SUMMARY

The secret to random access files, like all other programming, is
careful planning broken down into small modules. This is especially true
with random access files since it is necessary to decide at the outset how
many bytes are to be allocated to different fields within each record.
However, once the plan is laid and the bytes are allocated, the rest is
relatively simple. For practical purposes of keeping records, they are a lot
easier than sequential files since each record can be treated almost like
a unique file in itself. This makes it easy to change the information in
individual records.

The automatic padding and parsing in LSET help in keeping every
thing the correct size in the file, but when getting data from the file, it is
important to remember that spaces have been added to the file informa
tion. Therefore, once the strings are in a buffer, it is necessary to strip
spaces from the strings. Similarly, when using number translation words,
remember to change the numbers to strings for storage and real numbers
or to integers for calculations as needed.

________ CHAPTER 17 __

Printer Control

Your Amiga either gets information from a source or puts it some
where. Your printer is another device where you can put information: the
statement PRINT "This message" puts information on your screen; SAVE
or PRINT# puts information on your disk. Just like you put things on your
screen or disk, you can put it on your printer. However, the procedures for
sending material to your printer and using your printer's special
capabilities require certain routines we have not yet discussed. While
much of what we will examine in this chapter will not be new in terms
of the language of commands, it will be new in terms of how to arrange
those commands.

In addition, we'll see how the printer can be used for things other
output devices do not handle very well. For example, no matter how long
a program listing is, it can be printed out to the printer, while long listings
on the screen scroll right off the top into silicon oblivion. Likewise,
mailing labels and letters need to be sent to the printer. In short, while
not everything needs to be printed, a number of things do, and it is very
simple with Amiga BASIC.

There are a vast array of printers available for use with your Amiga.
However, to keep things simple and to show the maximum us~ of your
Amiga with a printer, most examples will be done with a typical dot
matrix printer. This type of printer will provide all graphic and text
features you will need, and it is easily interfaced with the Amiga system.
It is also very inexpensive. If you have another printer and an interface
for the Amiga, then you will have to rely heavily on your printer's

261

262 The Amiga Microsoft BASIC Programmer's Guide

manual. Unfortunately, many printer manuals are not very good for
beginners since they tend to use highly technical descriptions of how to
interface and operate their printers. Therefore, pay special attention to
the codes used to tum on or off special features of your printer. This is
usually done with a CHR$ function from BASIC that we will learn in this
chapter.

Amiga Notes

Getting The Risht Printer

Before you run out and buy a printer, get some advice from a fellow
Amiga owner. You can hook up either a parallel or serial printer to
your Amiga, but most printers run off the parallel port. (The printer
icon is used to indicate the parallel port.) Depending on what you
intend the primary function of your printer to be, you will want one
type or another. Here is a list of printers with suggested uses:

1. Dot Matrix. This is the most versatile printer for text and
graphics. There is a wide variety of types and quality; for an
all around general use printer, this one is hard to beal The
higher quality ones can produce near "letter quality" text and
excellent graphics as well.

2. Ink Jet These printers have all of the qualities of a dot matrix
printer, but are much quieter. The replacement cartridges
have to be replaced more often than ribbons. They are not
reco~mended for use where carbon duplicates are required

3. Daisy Wheel. This printer is something like a computer driven
typewriter and produces letter quality type. For heavy text
work, such as business letters and multiple copy "carbon"
printing. these are excellent However, they make a lot of
racket and they are much slower than dot matrix printers.
Also, they are not very good for graphics.

4. Laser Printer. These printers are very expensive compared
with the others we've discussed, but for desk top publishing
(such as newsletter and small press publications), they are fast
becoming a standard They produce near typeset quality text
and graphics, and they have been use~ to typeset books and
magazines.

5. Color Printers. Dot matrix and ink jet printers are available in
color as well as black ink. If you want to take advantage of
your Amiga's color capabilities, this may be what you want

(Continues)

Printer Control 263

Their qualities vary greatly, and be sure to get a demonstra
tionon an Amiga of tbe printer's capabilities before you buy.
The price of these printers has dI:9pped in 1I1e last few years,
and good ones are very affordable. Be sure the printer can
handle black only ribbons and ink jets as well as color since
there is often a very short life span on the color ribbons and
ink cartridges. Also, remember that while the Amiga color
looks great, reproducing color for newsletters or some similar
project is expensive.

TEXT OUTPUT TO THE PRINTER

Listing a program on your printer is a good way to de-bug it, so we'll
start with a program listing. Load any program you would like listed to
your printer, tum on your printer, make sure it is "on-line," and enter:

LLIST <Return>

Instead of listing to your screen, your listing was to your printer. The
LLIST statement stems from (L)ineprinter LIST. Most printers used today
are either dot matrix or daisy wheels, but think of your printer as a
Lineprinter, and it will help remember why you have to stick an "L"
before the statements that access your printer. Now that we can LLIST a
program to the printer, let's see how we can LPRINT as well. Enter the
following:

LPRINT "Amiga Computer" <Return>

Again, it is simple to have output go to the printer instead of the screen.
Let's try a little program that works like a typewriter to see how

LPRINT works:

WIDTH 60
WHILE T$ <> "@"

T$=INPUT$(l)
LPRINT T$;

'Take the following line out to see what happens
PRINT T$;

264 The Amiga Microsoft BASIC Programmer's Guide

'The above line lets you see your text on the screen.
X=X+l
IF X=60 THEN X=0 : LPRINT

WEND

The first thing we will learn about is the ASCII code. ASCII
(pronounced ASS-KEY) stands for the American Standard Code for
Information Interchange. Essentially, this is a set of numbers that has
been standardized to reference certain characters. In Amiga BASIC the
CHR$ (character string) function ties into ASCII and can be used to
directly output ASCII. As we will see, the CHR$ command is very useful
for outputting special characters. Certain characters used with Amiga
BASIC are not standard ASCII, but most of the normal alphanumeric
characters are.

CECODII'''G WITH CHRS

Up to this point we have not used control characters. To take a look
at your control characters, hold down the Control key and press several
different keys. From the Program Mode, you can create those characters
and more using the CHR$ function. For example, to get a paragraph
symbol, qj:

PRINT CHR$(182) <Return>

Whenever we want to access a character, all we have to do is enter the
CHR$ and the decimal value of the character we want For example the
alphabet begins at 65, so to run through the alphabet from A-Z, you
would write something like the following program:

FOR X= 65 TO (65 + 25)
PRINT CHR$(X);

NEXT X

There are keys and characters that are inaccessible in a program
unless you use the ASCII code or CHR$ to get them. For example, the
following currency conversion program shows how to use CHR$ to get
both the Japanese Yen and British Pound symbols:

Printer Control 265

'Foreign Currency converter
PRINT "How many ";CHR$(165);:INPUT" to the dollar";Yen
PRINT "How many dollars per ";CHR$(163);:INPUT Pound
CLS
PRINT "Choose conversion 1 or 2"
PRINT
FOR X=l TO 2

Currency=165 + Loop
PRINT X;". ";CHR$(Currency)
Loop = Loop - 2

NEXT

PRINT

Funds$=INPUT$(l) : Funds=VAL(Funds$)
ON Funds GOSUB Rising.Sun,God.Save.The.Queen

END

Rising.Sun:
CLS
INPUT "How many dollars";Bucks
NewDough=Bucks * Yen
PRINT
PRINT "You have "; CHR$(165);NewDough
RETURN

God.Save.The.Queen:
CLS
INPUT "How many dollars";Bucks
NewDough=Bucks / Pound
PRINT
PRINT "You have "; CHR$(163);NewDough

RETURN

Note how the program used numeric variables to generate the correct
CHR$ values for the Yen and Pound in the loop. That is another possible
use of CHR$ to incorporate in your programs.

You may also want to find certain CHR$ values to use in your
programs simply by pressing the various keys. For example, suppose you
want to use one of the ten function keys along the top of your keyboard,
the ESC key or some other key that does not show up on your screen
when you press it Using CHR$, you would be able to use that key in your
program.

266 The Amlga Microsoft BASIC Programmer's Guide

The opposite of CHR$ is ASC. It finds the ASCII values of the
character you want For example,

PRINT ASC("A")

would return a "65," the ASCII value of a capital "A" The following
program shows you the value of any key you press that has an ASCII
value. You might want to take note of the value of the ten function keys,
the arrow keys, the HELP key and other keys you may want to use. The
program uses the ESC key to exit using its value, CHR$(27). Also, be sure
to press the CTRL key in conjunction with the alphabetic keys to see
what their values are as well. (If you press CTRL-C, the program will stop,
since that is a break sequence.)

'CHR$ finder
I<ey. Me:

PRINT "Hit a key (ESC to quit)"
I<EY$=INPUT$(1)
PRINT "The ASCII value of ";I<EY$:" is";ASC(I<EY$)
IF ASC(I<EY$)=27 THEN END ELSE l<ey.Me

Now that you have a handle on going between ASCII and related
characters, here's a program that will map the whole thing for you.

WIDTH 60
FOR x=32 TO 255
count = count + 1
IF count = 72 THEN count=0: GOSUB Holdit
PRINT x;"=";CHR$(x),
NEXT
END

Holdit:
PRINT
COLOR 0,1
PRINT "Hit a key";
COLOR 1,0
A$=INPUT$(1)
PRINT
RETURN

Printer Control 267

CHRS AND PRINTER CONTROL

Most printer manuals are less than crystal clear on what is required
to make the printer do all of its tricks. However, once you learn how to
interpret the manuals, they can be very useful. First of all, there is a
sequence of codes, usually control or ESC sequences, that are required to
get your printer to do something. For example, if your printer manual
says that

ESC $A
or ESC HA
or ESC ctrl-J

(or some cryptic variation thereof) will make your printer perform a
linefeed, here's what's going on:

1. First the printer wants the ESC (escape) code-CHR$(27}.
2. Next it wants Hex value A, which is 10 in decimal. (Both $A and

HA are ways to indicate hex values.) To convert from hex to
decimal just PRINT &Hxx where 'xx' is the hex value. You will get
the decimal equivalent Use only the derived decimal value in the
CHR$ function. To find the values of things like ctrl-J, use the
Ascn converter program above.

3. The combined sequence is CHR$(27} + CHR$(10}.
4. LPRINT the sequence to your printer.

For example:

WIDE$=CHR$(14)
PRINT WIDE$; "This is wide type"

will print double width on most dot matrix printers. It's a lot clearer to
use descriptive string names, as we did in the above example, rather than
just the CHR$ values.

The following shows character string values and functions for the
Epson printer:

CHR$(8}-Back space
CHR$(10}-Line feed

268 The Amlga Microsoft BASIC Programmer's Guide

CHR$(12}-Form feed
CHR$(13}-Carriage return
CHR$(14}-Double width
CHR$(15 }-Condensed
CHR$(18}-Tum off condensed
CHR$(20}-Tum off double width
CHR$(27} + "X"-Escape, used in conjunction with the following
characters [e.g., CHR$(27} + "E" would tum on emphasized printing]:

"E"-Emphasized printing
"F"-Tum off emphasized printing
"G"-Double strike printing
"H" - Tum off double strike printing
"K"-Normal density printing
"L"~Dual density printing
"Q"-Set column width

Now that we know the various combinations for setting typefaces,
we'll create a program that will execute them for us on our printer. We
will be using the Epson printer codes, and if you are using a different
type of printer, just substitute the ones that work on your printer for
those used in the example. With the exception of the expanded typeface
on your printer, CHR$(14}, once you send a change of typeface to your
printer, it will stay there.

TypeFacer:
COLOR 0,1
PRINT "8e sure your printer is turned on and on line";
COLOR 1,0
PRINT : PRINT
PRINT "Hit any key to continue:"
Hit$=INPUT$ (1)

GetFace:
CLS
PRINT "Which face?"
PRINT
PRINT "(W) ide" : PRINT
PRINT" (C)ondensed" : PRINT
PRINT "(O)ouble Strike" : PRINT
PRINT" (E)mphasized" : PRINT
PRINT" (N)ormal" : PRINT

Typeface$=INPUT$(l)
Typeface$=UCASE$(Typeface$)

JumpFace:
IF Typeface$="W"
IF Typeface$="C"
IF Typeface$="O"
IF Typeface$="E"
IF Typeface$="N"

Fatface:
LPRINT
Fat$=CHR$(14)

THEN Fatface
THEN Li ttleface
THEN Two8ang
THEN HardPoint
THEN Mundane

LPRINT Fat$; "Fat Face";
END

Li ttleface:
LPRINT
Scrunched$=CHR$(lS)

Printer Control 269

LPRINT Scrunched$; "You can get a lot in a little ";
LPRINT "space with this face."
END

Two8ang:
LPRINT
ESC$=CHR$(27)
BangBang$=ESC$ + "G"
LPRINT 8ang8ang$; "This will look 80LD"
END

HardPoint:
LPRINT
ESC$=CHR$(27)
Stress$=ESC$+"E"
LPRINT Stress$; "This is to really mal<e a point."
END

Mundane:
LPRINT
ESC$=CHR$(27)
LPRINT CHR$(18)
LPRINT ESC$ + "F"

270 The Amlga Microsoft BASIC Programmer's Guide

LPRINT ESC$ + 'H'
END

Now, let's take a look at a program that will do something useful
with the printer. For example, you might want to have a printed copy of
a list (called a 'hardcopy' in computer parlance) of your program library,
so you could see at a glance what programs you have. The following
program follows the same general format used with the file programs.
First, load everything into a buffer. Then output the buffer to the printer
instead of a file.

ProgramFiler.Printer:
Input.Buffer:
INPUT 'How many programs to print'; N%
DIM Program$(N%)
FOR X=l TO N%

INPUT 'Program name ';Program$(X)
NEXT X

Pr inter. Output:
FOR X=l TO N%

LPRINT Program$(X)
NEXT X

That was nice and simple, but it was not a lot different than using a
typewriter to do the same thing. If we could use the printer in conjunc
tion with a file program, then it would be possible to take something out
of a file and send it to the printer. Go back to Chapter 15 and get the big
sequential file that wrote the names and addresses. Change the routine
with the title:

REM **************************
REM Send From Buffer to Screen

REM **************************
etc

to the following:

REM ***************************
REM Send From Buffer to Printer

REM ***************************

LPRINT Names$
LPRINT Address$
LPRINT City$;" ";State$; SPACE$(I);Zip$
LPRINT

WEND
CLOSE IU

RETURN

Printer Control 271

Now when you choose, "Read an address book" with the mouse, your file
will be sent to the printer. By making a few more changes, it would be
very simple to have the program send the output to both the screen and
the printer. See if you can enhance the sequential file program to do
both.

USING THE LPOSIO) FUNCTION

On some applications, you will want to keep track of where the
printhead on the printer is. With the LPOS function, this is simple. Using
a dummy variable, LPOS (DV) returns the current head position. To see
how this works, look at the following program:

PrintPos:
LPRINT
FOR X= 1 TO 200

LPRINT "X";
IF LPOS(0) > 19 THEN LPRINT

NEXT X

FOR y= 1 TO 200
LPRINT "Y";
IF LPOS(0) >24 THEN LPRINT

NEXT Y

The LPOS function comes in very handy when you want to write a
program that has special formats on your printer. For example, you may
want to have wide and narrow columns in different places on your
printer paper. As you saw in the above example, the X's and Y's had
different "column" widths.

272 The Amiga Microsoft BASIC Programmer's Guide

OPENING LPT1:

In some applications, you may want to open the printer as a logical
file, just as you would a disk file. For example, suppose you had a routine
that could be used to output a format that you could use for either the
screen or the printer.

A special file name, LPT1:, is used to indicate the "file" is the printer.
The general format

OPEN "LPT1:" FOR OUTPUT AS ~l

where "#1" can be any file number, as with disk files, will send output to
that device. Thus, PRINT #1 would go to the printer if the file were
opened as "LPT1:." The screen can also be used as a "file" output device
with the file name "SCRN:." Instead of having two routines doing the
same thing, you'd just open either the screen or the printer as the output
device. The following program shows how this is done.

INPUT "How many names";N%
PRINT
DIM Names$(N%).Address$(N%).City$(N%)
DIM State$(N%).Zip$(N%)

REM ************************
REM All Purpose Input Buffer

REM ************************
FOR X=l TO N%

INPUT "Name"; Names$(X)
INPUT "Address "; Address$(X)
INPUT "City"; City$(X)
INPUT "State "; State$(X)
INPUT "Zip Code "; Zip$(X)
PRINT

NEXT X

Choose.One:
CLS
PRINT "Output to (S)creen or (P)rinter"
SP$=INPUT$(l)
SP$=UCASE$(SP$)

Printer Control 273

IF SP$ <) uP" AND SP$ <) "5" THEN Choose. One
IF SP$="S" THEN GOSU8 OutScreen
IF SP$="P" THEN GOSU8 OutPrinter

FOR X=l
PRINT
PRINT
PRINT
PRINT

NEXT
CLOSE ttl

END

Outscreen:

TO N%
In. Names$(X)
In. Address$ (X)
ttl.City$(X);" • ";State$(X);SPACE$(l);Zlp$(X)
ttl. Dummy$

OPEN "SCRN:" FOR OUTPUT AS ttl
RETURN

OutPrinter:
OPEN "LPT1:" FOR OUTPUT AS ttl
RETURN

See if you can make a change in the program so that the output device
is a disk file. Just add an "OutDisk" subroutine.

LPRINT USING

The LPRINT USING statement is just like PRINT USING except it
outputs to the printer. For example, to line up a column of financial
figures, you could use:

LPRINT USING " $$tttttttt.tttt "

The following program will print out a list of checks along with their
total:

CheckLister:
INPUT "How many checks to enter ";N%
INPUT "Starting with Check number ";CN%
DIM Checl<s(N%)

274 The Amiga Microsoft BASIC Programmer's Guide

FOR X=l TO N%
PRINT "Amount for check number";CN%;
INPUT Checks(X)
Total=Total + Checks(X)
CN%=CN%+l

NEXT X
PrintChecks:
Oollar$="$$~~~~~.~~"

FOR X= 1 TO N%
LPRINT USING Dollar$;Checks(X)

NEXT X
LPRINT
LPRINT "Total=";
LPRINT USING Dollar$;Total

You can change the 'Dollar$' format to left justify all of the dollar signs
by using a single dollar sign instead of the double one.

CONTROL THAT FORMAT.

The output on the above program is all right, but the total is out of
line with the column of checks. In many ways, controlling your printer
format is just like controlling the format on your screen. Using the TAB()
statement with LPRINT it is possible to line things up correctly. The
statement

LPRINT TAB(lS)

for example, will set the next printed character to position 15. Run this
next little program to see the spacing TAB() makes:

LPRINT
FOR 1<=1 TO 19

LPRINT "X";
NEXT 1<

LPRINT "X"
LPRINT TAB(lS)
LPRINT "X"

Printer Control 275

Notice that the single "X" in the second line is in the fifteenth position,
not the sixteenth. Just as it works on your screen, TAB(N) positions the
output on your printer in the position 'N' in parentheses. However, you
must remember to have a lower tab value before a higher tab value on
the same line.

Going back to our check lister program, let's rewrite it to see if we
can format the output to look better. We'll also toss in a printout of the
check numbers and a line under the column of check values:

CheckListerPlus:
INPUT "How many checks to enter ";N%
INPUT "Starting with Check number ";CN%
SN%=CN%
DIM Checks(N%)
FOR X=1 TO N%

PRINT "Amount for check number";CN%;
INPUT Checks(X)
Total=Total + Checks(X)
CN%=CN%+1

NEXT X

PrintChecks:
LPRINT
Dollar$="$UUUUU.UU"
FOR X= 1 TO N%

LPRINT "U" ;SN%;
LPRINT TAB(10)
LPRINT USING Dollar$;Checks(X)
SN%=SN%+1

NEXT X
LPRINT TAB(10)
LPRINT "---------
LPRINT "Total=";
LPRINT TAB (10)
LPRINT USING Dollar$;Total

You can make calculated spacing and relative spacing with SPC() or
SPACE$ just as you can on the screen. However, LOCATE only applies to
positioning on your screen and will not work with printer output

276 The Amiga Microsoft BASIC Programmer's Guide

SUMMARY

This chapter covered two very important topics. We examined how
to get output to the printer and how to use the CHR$ function. The two
topics are separate but related. The ASCII code can be used to create
non-keyable and non-printed characters, or in the case of printers, issue
direct commands. The CHR$ function is a way of placing ASCII in a
string format Conversely, using the ASC function, strings can be decoded
into ASCII values. Thus, you saw how to encode and decode ASCII for
accessing features of your Amiga and printer that could not otherwise
have been utilized.

Sending material to your printer is simply a matter of using LPRINT
instead of PRINT. Many of the same formatting statements used with
screen formatting can be used with your printer as well. Thus, the main
difference is where the output will be placed. Likewise, your printer can
be opened as an output device very much in the same way as your disk
when LPRT1: is incorporated as a file name. This enables you to use a
single routine to output data to different devices, including your printer,
disk, screen and, as we will see in the next chapter, your communications
port

________ CHAPTER 18_

Telecommunications

One of the most exciting things you can do with your Amiga is to
talk with other computers. Not only can you talk with other Amigas, your
Amiga can talk with any other computer that uses ASCII. You can even
communicate with mainframes. The best part is that all this can be done
with a modem and your Amiga BASIC. Just as you can send output to
your screen, printer or disk, you can open a file to be sent to your built-in
communications port

Most of this chapter will consist of a large program that uses just
about every trick you've learned plus some new ones. However, first, we
will discuss what is involved in, and what you will need to know to
perform, computer communications.

MODEMS

A modem is very much like a telephone that uses computer "voices"
instead of human ones. If you have ever picked up a telephone and heard
a high pitched whine, you have an idea of what computers sound like
when they talk. Your computer uses lines on your communications or
'RS232' port on the back of your Amiga as its "mouth" and "ears." The 25
pins on your RS232 port have the following characteristics:

277

278 The Amiga Microsoft BASIC Programmer's Guide

Pin

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Code

GND
TXT
RXD
RTS
CTS
DSR
GND
CD

-5
AUDO
AUDI
EB
INT2

DTR
+5

+12
C2
RESB

Characteristic

Frame ground
Send data
Receive data
Request to send
Clear to send
Data set ready
System ground
Carrier detect
Unused
Unused
Unused
Unused
Unused
-5 volt power
Audio out
Audio in
Buffered port clock 716 kHz
Interrupt line to Amiga
Unused
Data terminal ready
+5 volt power
Unused
+12 volt power
3.58 MHZ Clock
Buffered system reset

The first eight pins are of primary concern with most modems. As
long as the pins are compatible with the pins on the Amiga port,
everything will work fine with a standard RS232 cable. Therefore, if you
do not have a modem, be sure the one you purchase uses the standard
RS232 configuration for pins 1-8. For the most part, you won't have to
worry about the pin configuration on your Amiga. Just plug one end of
your modem cable into your modem and the other into your com
munications (RS232) port

TYPES OF MODEMS

There are a lot of different brands of modems on the market, but the
single most important consideration is baud rate. The baud rate is a

Telecommunications 279

measure of speed at which a modem can transfer data. If you subscribe
to an online network, you pay by the number of minutes you use the
system. The faster you can transmit data, the less time you have to spend
to get information from the system. (When you get data from another
system, it is called downloading and when you send data to another
system, it is called uploading. Those terms are important to remember.)
Thus, not only can you save time with having a higher baud rate, you can
save money as well.

Unfortunately, the higher the baud rate of modems, the higher the
cost The least expensive modems are 300 baud, and they are very slow.
Slightly more expensive, but significantly faster, are 1200 baud modems.
These are recommended as the best deal at the time of this writing since
they are four times faster than the 300 baud modems, and only slightly
more expensive. (A good price for a 1200 baud modem is around $150
compared with $100 for 300 baud.) The 2400 baud modems are the next
step, and while clearly better to have than a 1200 baud one, they tend to
be expensive. The inexpensive ones cost around $300-$400. However, if
your business does a lot of communications, especially over long dis
tance lines, they may well pay for the difference in initial cost outlay as
savings on long distance bills. (For instance, if your 1200 baud modem
results in long distance bills of $100 per month, you can figure a 2400
baud would cost $50 to send the same amount of data. The $600 annual
savings of a 2400 baud modem over a 1200 baud modem would more
than make up the difference and save a lot of time as well.)

NULL MODEM
AM

If you have data on a computer other than an Amiga, and you want to
transfer data from your other computer to the Amiga over short distances
(Le., a few feet), there's a simple and fast way to do it Since most ASCII
formatted files, such as text files created from word processors, will
directly transfer from any other computer to your Amiga, you can
preserve all of your work done on another computer by transferring the
files via a null modem. The best part about null modems, besides the fact
that you can build them yourself for a few dollars, is that they run at 9600
baud.

Basically, all you have to do is to get an RS232 connector for your
Amiga. (A male DB25 connector is required for the Amiga; depending on
the other kind of computer, you'll need the appropriate connector for the

280 The Amiga Microsoft BASIC Programmer's Guide

other end. Usually, the RS232 connector is a male or female DB25, but
some computers, such as the Apple® MacIntosh ® require other kinds of
connectors, such as a DB9.) Then, get three wires and solder them in the
solder eyes of the connectors so that the grounds (GND) are connected
directly, and the transfer (send) lines of one are connected to the receive
lines of the other. That's all there is to it (If you have no experience with
soldering or electronics, get the help of someone who does. BY NO
MEANS SHOULD ANY CONNECTIONS BE MADE BETWEEN TWO
COMPUTERS WHILE EITHER HAS ITS POWER TURNED ON.)

The following diagram shows the connections and pins used with
two standard DB25 RS232 connectors. The pin numbers may differ with
different interfaces, but since the RS232 connector is a standard, you
should not find too much variation.

GND
(Frame Ground)

I Pin 1

Pin 1

GND
(Frame Ground)

THE (OMI: FILE

TXT (Send)

Pin 2 I

Pin 2

TXT (Send)

Null Modem

RXD (Receive)

Pin 3

Pin 3

RXD (Receive)

Like the printer and screen 'files', there is a special file for com
munications, 'COM1:.' As with disk, printer and screen files, when you
open a file with 'COM1:' as the file name, all subsequent PRINT #N
statements will send the information out the communications port to
your modem or null modem. However, the 'COM1:' file has special
parameters to set before communications will work correctly. The general
format is:

OPEN 'COMl: Baud,parIty,data-bIts, stop-bIts' AS ~N

Telecommunications 281

When a COM1 file is opened, its parameters are treated as part of a large
string defined by the characters surrounded by parentheses. Baud, data
bits and stop-bits are numbers and parity is one of three alphabetic
characters. Let's take a quick look at each parameter.

BAUD RATE. As mentioned in the above discussion of modems,
the speed of communications is measured in baud. In most cases only
300, 1200, 2400 and 9600 are relevant since most modems are set up for
one of those rates. However, 110, 150, 600, 1800, 3600, 4800, 7200 and
19200 are also valid baud rates.

PARITY. Parity can be even (E), odd (0) or none (N). Most of the
time, N is used, but you can also use E or O.

DATA-BITS. This can be a tricky parameter since you may be
getting more than you bargained for in some transmissions. If straight
ASCII is transmitted, 8 data-bits is what you want to use. However, if
"overhead" bits are transmitted, then you only want the "real" informa
tion, not the overhead. This overhead is "stripped" by specifying less than
8 bits to be accepted as transmitted data. The extra parity bits and stop
bits constitute the overhead. Usually there is only a 1 bit overhead so 7
bits would be used, but 5 or 6 bits may also be specified.

STOP-BITS. This is easy to remember. Unless transmitting at 110
baud, use 1 as the stop-bit parameter (110 baud uses 2).

For example, a fairly standard COM1: opening would be:

OPEN "COM1: 1200,N,B,1" AS ~1

That would open the communications channel for 1200 baud com
munications with no parity, 8 bits and 1 stop-bit as file number one.

READING FROM AND WRITING TO THE COMI FILE

To understand how to send and receive data through the com
munications port, we'll have to learn what LOC(N) is and a new parameter
for INPUT$. When the COM1: file is opened, LOC(N) returns a '1' if there's
something ready to be read. The 'N' is the opened file number. If there's

282 The Amlga Microsoft BASIC Programmer's Guide

nothing, a "0" is returned. Thus, by scanning LOC(N) for a "1," it's easy to
trap incoming data in a buffer by using a string variable or array.

When we looked at INPUT$O, we found that the first parameter was
the number of characters to be read to make up the string. However,
there's a second parameter: the file number. Thus, INPUT$(N1,N2)
specifies the number of characters to be read into a buffer (N1) from a
given file (N2). Putting this together with LaC, we can take data coming
into the communications port and put it in a buffer. For example, the
following routine reads data coming into the communications port, puts
it in a 1 byte buffer and prints it on the screen:

OPEN "COM1: 1200,N,B,1" AS n1
Check.Com:
WHILE LOC(1) <> 0

RECEIVE$ = INPUT$(1,1)
PRINT RECEIVE$;

WEND
GOTO Check.Com : REM Infinite loop

Now that we can see how to receive data, we will need a way to
send data. That is really easy since it's just like writing data to a file.
Using PRINT #N, you simply write the data to send to the COM1 file
number. By scanning the keyboard for input using INKEY$, we can wait
until there's something to send and then shoot it out the communications
port one character at a time. The following routine shows how to send
data and use the F1 key, CHR$(129), to exit the routine:

OPEN "COM1: 1200,N,B,1" AS n1
WHILE 1$ <> CHR$(129)

I$=INI<EY$
IF 1$ <> "" THEN PRINT n1,1$;

WEND

That's all there is to sending straight ASCII code. It is possible to
send other types of data, but we'll stick to ASCII since it is the easiest and
least confusing. If we combine the send and receive routines, we can both
read and write. The 'Dumb.Terminal' routine in the main program does
just that

Telecommunications 283

AMIGA TERMINAL PROGRAM

All right, we're set to jump into the big communications program.
The heart of the program is the 'Dumb.Terminal' routine, and most of the
rest is material that you already know. The program uses a sprite to
indicate that your 'download' (receive data) is "on," and so the first thing
to do is to create a sprite with the 'ObjEdit' program that looks like the
following and save it under the name "Dnload." (The shaded areas
represent different colors.)

It must be saved on the same disk as your terminal program. The
reason for using a sprite is that it can superimpose itself on the screen
over any text without erasing it Everything that is received while the
receive is turned on will be placed in a buffer and written to the disk It's
easy to forget that it's on, so we've included a sprite to remind you. You
want to end the download once you've got the good stuff and write
everything to your disk without a lot of excess junk

Once you've created and saved the sprite, key in the following
program and save it It is set up for 60 column text, so if you have your
text set to 80, change it with the "Preference" file to 60. It would be a very
good idea to save the program after each module is typed in:

START.HERE:
CLS : CLEAR
GOSUB GraphlcHead
GOSUB Header
Flag$="C" : WIDTH 52 : 5W$="52"
GOSUB Get.Sprite
Cflag=2 : CR$=" Carrlage Return On"
FOR SET=1 TO 4 : CHECK(5ET)=1 NEXT
Baud=1200 : CHECK(3)=2
GOSUB Se t. baud

284 The Amiga Microsoft BASIC Programmer's Guide

GoSUB Set.menus
ON MENU GoSUB Get.Menu

Dumb.Terminal:
OPEN "coml:"+Baud$+".n.B.l" AS 1
WHILE I$ <> CHR$(129)
WHILE LoC(I)<>0

R$=INPUT$(I.I)
PRINT R$;
IF Flag$="R" THEN GoSUB Buffer

WEND
I$=INI<EY$
IF Flag$="D" THEN I$="ATDT"+Dial$+CHR$(13)
IF Flag$="D" THEN Flag$="C" : PRINT I$
IF Flag$="X" THEN Flag$="C": CLOSE: GoTo Dumb.Terminal:
IF I$<>"" THEN PRINT ~l.I$;

WEND

End. It. All:
MENU RESET:CLoSE:END

Get.Menu:
Menupick=MENU(0)
ON Menupick GoSUB Get.baud.Get.Term.Get.ops
RETURN

Set.menus:
MENU ON
MENU 1.0.1. "Set Baud Rate"

MENU 1.I.CHECK(I). " 9600"
MENU 1.2.CHECI«2) • " 2400"
MENU 1.3. CHECI« 3) • " 1200"
MENU 1.4.CHECK(4). " 300"

MENU 2.0.1. " Communicate"
MENU 2.1.1. "Start Receive ASCII"
MENU 2.2.1. "End Receive ASCII"
MENU 2.3.1. "Send ASCI I"
MENU 2.4.1. "Terminal"

Men.ops:
MENU 3.0.1. "Options"

Telecommunications 285

MENU 3,1,1, "Clear screen"
MENU 3,2,Cflag, CR$
MENU 3,3,1, "Dial a Number"
MENU 3,4,1, "Screen Width" +SW$

MENU 4,0,1, ""
MENU 4,1,1, "Nothing"
RETURN

Get.baud:
FOR CK=l TO 4: CHECK(CK)=l : NEXT
ON MENU (1) GOSUB b9,b2,b1,b3
GOSUB Set.menus
CLOSE: Flag$="N" : GOSUB Dumb.Terminal
RETURN

b9:
Baud=9600 : GOSUB Set.baud:CHECK(1)=2
b2:
Baud=2400 :GOSUB Set.baud
b1:
Baud=1200 :GOSUB Set. baud
b3:
Baud=300 : GOSUB Set.baud

Set. baud:
Flag$="X"
Baud$=STR$(Baud)
C$="com1:"+Baud$+",n,B,l"
PRINT "Baud Set at";Baud$

RETURN

Get.Term:
ON MENU(l) GOSUB R1,R2,R3

RETURN

R1:
REM Start Receive
DIM Buffer$(255)
Flag$="R"

:CHECK(2)=2

: CHECI« 3) =2 :

:CHECI«4)=2:

INPUT "Name of File to Save";RF$
SAY TRANSLATE$("Receiving data now")

RETURN

RETURN

RETURN

RETURN

286 The Arnlga Microsoft BASIC Programmer's Guide

GoSUB Show.Sprite
RETURN

R2:
REM End Receive
OPEN RF$ FOR OUTPUT AS 2
Flag$="T" : REM 'T' is for 'Terminal'
FOR X = 0 TO COUNT
PRINT~2.Buffer$(X)

NEXT
CLOSE ~2

SAY TRANSLATE$ ("Buffer saved to disk")
FOR Pause=l TO 200: NEXT Pause
SAY TRANSLATE$("Receive OFF")
oBJECT.oFF
ERASE Buffer$

RETURN

R3:
REM Send File
CLS : COLOR 0.1
PRINT "Directory(Y/N)?";
DIR$=INPUT$(l)
COLOR 1.0 : PRINT
DIR$=UCASE$(DIR$)
IF DIR$="Y" THEN FILES
INPUT "File to send";FS$
ON ERROR GoTo Fix.Error
OPEN FS$ FOR INPUT AS~2
IF Flag$="Error" THEN Flag$="C"
WHILE NOT EoF(2)

IF Cflag=l THEN INPUT 1l2. SEND$
IF Cflag=l THEN PRINT Ill. SEND$;

RETURN

IF Cflag=2 THEN LINE INPUT ~2. SEND$
IF Cflag=2 THEN PRINT Ill. SEND$
IF Echo$="on" THEN PRINT SEND$;

WEND
PRINT ~1.CHR$(13)
CLOSE ~2

SAY TRANSLATE$ ("Transfer complete")

GOSUB Header
RETURN

Get. Ops:

Telecommunications 287

ON MENU(l)GOSUB Header,Carriage,Oial,Wide
RETURN

Header:
CLS
COLOR 0,1
PRINT "Press the 'Fl' key to quit"
COLOR 1,0

RETURN

Carriage:
IF Cflag=l THEN Cflag=2 : CR$=" Carriage Return On" :GOSUB Men.Ops:

RETURN
IF Cflag=2 THEN Cflag=l : CR$="Carriage Return Off"

GOSUB Men.Ops
RETURN

Dial:
INPUT "Enter number to dial please";Oial$
Flag$="D"

RETURN

Wide:
INPUT "Screen width desired (1-255) ";SW
SW$=STR$(SW)
WIDTH SW
GOSUB Men.Ops
RETURN

REM *******************
REM Subroutine Suburbia

REM *******************

Get.Sprite:
OPEN "Dnload" FOR INPUT AS 3
OBJECT.SHAPE l,INPUT$(LOF(3),3)

288 The Amiga Microsoft BASIC Programmer's Guide

CLOSE 3
RETURN

Show.Sprite:
oBJECT.X 1,570
oBJECT.Y 1,15
Turn.on:
oBJECT.oN

RETURN

Buffer:
Buffer$(CoUNT)=Buffer$(CoUNT) + R$
IF LEN(Buffer$(CoUNT)) = 254 THEN CoUNT=CoUNT+1

RETURN

Fix.Error:
IF ERR = 53 THEN CLS : PRINT "File not on disk"
PRINT "Try again and use the Directory option."
Flag$="Error"
IF ERR <> 53 THEN CLS : PRINT "Unknown error" : LIST END
RESUME NEXT

GraphicHead:
PALETTE 0,0,0,0
PALETTE 1,1,0,0
COLOR 0,1
CLS
WIDTH 255
Amiter$=" Bay Sic Amiga "
BA$=" BASIC Amiga "
Version$= " Version 1.0 "
Term$="Terminal Program"
Hit$="(Hit any key to continue)"
SAY TRANSLATE$(Amiter$)
FOR X= 1 to 52

SOUND (500+(X*3)),2
LOCATE 10,X
PRINT BA$;

NEXT
FOR X=52 TO 23 STEP -1

LOCATE 10,X

PRINT Term$;
NEXT
SAY TRANSLATE$(Term$)
LOCATE 11,31-LEN(Version$)/2
PRINT Version$
LOCATE 18,31 - LEN (Hit$)/2
PRINT Hit$
BEEP
A$=INPUT$(l)
PALETTE 0,0,0,.6
PALETTE 1,1,1,1
COLOR 1,0
RETURN

PRINT Term$;
NEXT
SAY TRANSLATE$(Term$)
LOCATE 11,31-LEN(Version$)/2
PRINT Version$
LOCATE 18,31 - LEN (Hit$)/2
PRINT Hit$
BEEP
A$=INPUT$(l)
PALETTE 0,0,0,.6
PALETTE 1,1,1,1
COLOR 1,0
RETURN

Telecommunications 289

After all of that work, be sure to save a back up copy of the program
on a separate disk.

USING THE AMIGA TERMINAL PROGRAM

The program may have been hard to write, but it is easy to use.
Everything is done with the mouse and menu bar. The three menus
include the following:

1. Set baud rate. If your modem is other than 1200 baud, change the
default value to whatever baud your modem is in the program.
Alternatively you can click the baud rate from the menu bar. This

290 The Amlga Microsoft BASIC Programmer's Guide

will be very useful if you have a 1200 or 2400 baud modem and
wish to communicate with someone who has a slower rate. For
example, if you have 1200 baud and you call a bulletin board
with 300 baud, you can change the baud rate by clicking 300 on
the baud rate menu.

2. Communicate. To upload (send) and download (receive) data, use
this menu. You can only send or receive ASCII files with this
program, so if you try any other kind of data, you're liable to get
garbage. To begin a download, click the "Start Receive ASCII"
option. Provide a unique file name (i.e., one not on your disk!)
when prompted for a file name. Your sprite will pop up on the
screen and your voice synthesizer will let you know that you have
begun receiving data. When you get the data you want, click "End
Receive ASCII" and your buffer will be written to the disk and the
sprite will disappear. (Your Amiga will tell you that the data has
been written to the disk.) The "Terminal" option just returns to
the "Dumb Terminal" loop.

3. Options. You have four options. The "Clear screen" option just
clears the screen. Once it gets filled with text, you can clear it if
you want to send something from the keyboard. Second, you can
toggle the "Carriage Return" on or off. Basically, this will deter
mine whether or not a carriage return is placed at the end of a
line or not When sending program files in ASCII format, leave the
carriage return option on. When sending text, tum it off.

The "Dial a number" option is a little different since it uses a
special protocol not found on all modems. On some modems, a
special "Hayes" protocol can be used employing the built-in
autodial features of a modem. If your modem does not have
autodial capabilities or does not use the "Hayes" version, this
feature will not work. However, since the "Hayes" protocol is
fairly standard on most modems using auto dial, try this option if
your modem has autodial features. (Autodial simply means you
can dial a number from your computer rather than having to dial
from your phone's buttons.) When prompted to enter a number,
just type in the number you want to call and press RETURN. On
your screen, "ATDT" and the phone number will appear. The
"ATDT" is the "Hayes" modem code for dialing a touchtone
number. The "AT" preface is used for all other built-in modem
commands as well. You can use them directly from the default
terminal mode. (The 'terminal mode' is the "Dumb.Terminal"
routine that loops looking for keyboard input or input from the

Telecommunications 291

communications port.) Just key in "AT" and the other code from
the terminal mode, and your modem will perform its designated
function. If your modem uses another protocol, read your modem
manual, and type in its protocol from the terminal mode.

The final option is to change the screen width. If you want to
communicate using a wider screen, such as 80 columns, change
the screen width first from the 'Preferences' on the Workbench,
and then change it from the 'Options' menu. You may also wish
to change the default from 62 to something else in the program
itself.

SUMMARY

This chapter was designed to do two things. First, it showed you how
to work with COM1: files. The communications port is simply treated as
another place to receive or send data. However, by treating it as a file, it
is a lot easier to use. The LOC function and INPUT$ with two parameters
allow easy access to the communications port.

A second and perhaps more important purpose of this chapter was
to bring together the sum of the parts into a whole. We were able to use
graphics, menus, sound, voice and different types of files all in a single
program. In some cases, more than a single file was opened simul
taneously to accommodate disk and communications files. All of the
techniques that have been presented were integrated usefully. However,
since each part was in a separate module, it was not that difficult to
create. Moreover, if you want to add something to the program, you
should be able to do so with little difficulty. By learning how to write
your own programs, you can tailor the program to fit your needs more
precisely, and that, after all, is the purpose of computers.

_______________ CHA~ER19 __ _

Algorithms and
Advanced
Techniques

This final chapter illustrates what we have been attempting to do
throughout this book develop good programming techniques. Perhaps
we've said it too many times, but the secret to good programming is
breaking a big problem down into manageable sized modules. However,
there are various techniques to make those modules more efficient by
using the correct algorithm. In the context of programming, efficiency
refers to two things: less programming code and less execution time. If
one algorithm takes less code and executes faster than another, then it is
better to use. Throughout this book, we've used various algorithms to get
things done. Many have not been too efficient since we were attempting
to keep things relatively simple so that you could understand what was
happening and learn new statements, functions and commands.

The advanced techniques we will examine constitute extending our
knowledge of existing programming techniques instead of learning new
ones. Using what we know, we can do more things by incorporating
extensions of current knowledge so that the new information is a matter
of reorganizing the old. Using examples from artificial intelligence, we
will see how your Amiga can be turned into an "intelligent" machine.
The IF .. THEN statement will be used in a new, expanded way.

293

.I

/

294 The Amlga Microsoft BASIC Programmer's Guide

a

A GOOD ALGORITHM IS WORTH A THOUSAND
LINES OF CODE

The heart of good programs are good algorithms. Essentially al
gorithms are routines, formulas or sets of instructions that perform single
tasks. Throughout this book, you've been introduced to all different kinds
of algorithms even though we did not call them by that name. Some
algorithms you will develop on your own, while others are fairly standard
solutions to programming problems. Usually programmers just "look up"
the standard algorithms and use them whenever needed.

Some of the most persistently revised and discussed algorithms are
sort routines. Sorts are algorithms that put lists in alphabetical or numeri
cal order. There are a lot of different sorts, but we will only deal with two
in order to show how one algorithm can perform a task more efficiently
than another. The sorts we will examine are relatively simple so that you
can better understand what is going on. However, even if you do not fully
see why one is more efficient than another (or even how they work), you
can simply compare the speeds at which each sorts a list of strings.

THE BUBBLE SORT

The bubble sort is so named since the strings near the top "bubble
up" from the bottom of the list Like all sorts, the bubble sort works with
string arrays rather than non-array strings. There are two listings with the
bubble sort below: one to illustrate graphically on your screen how the
sort works, and the other to give a more practical demonstration.

The bubble sort works by comparing the two strings

A$(5) (= A$(5+1)

and either getting the next string or swapping the two compared strings.
For example, suppose the original list had the following:

A$(7)
A$(B)

"Oranges"
"Apples"

Algorithms and Advanced Techniques 295

When the sort compares those two, it would be:

A$(S) = "Oranges"
A$(S+l) = "Apples"

Since "Oranges" is greater than "Apples" (i.e., the ASCII value of '0' is
greater than the ASCII value of 'A') the two strings are swapped so that
they are now:

A$(S) = "Apples"
A$(S+l)= "Oranges"

The routine continues until all of the strings are in order.

Bubble.Sort:
CLS

REM ************
REM Input Buffer

REM ************
INPUT "Number of strings to sort ";N%
DIM A$(N%+l)
FOR X=l TO N%

PRINT "String U";X;
INPUT A$(X)

NEXT X
T=X-l
CLS

REM ***************
REM Unsorted Output

REM ***************
FOR X=l TO N%

PRINT A$(X)
NEXT X

Bubble.Algorithm:

REM ************
REM Sort Strings

REM ************

296 The Amlga Microsoft BASIC Programmer's Guide

Compare:
Flag=0
FOR 5=1 TO T

IF A$(5) (= A$(5+1) THEN Get.Next.5tring
SWAP A$(5),A$(5+1)
LOCATE 5,1 PRINT 5PACE$(50)
COLOR 0,1
LOCATE 5,1 PRINT A$(S)
COLOR 1,0
LOCATE 5+1,1 PRINT 5PACE$(50)
LOCATE 5+1,1 PRINT A$(5+1)
Flag=l
T=5

Get.Next.5tring:
NEXT 5
IF Flag=l THEN Compare

Clear.Top:
LOCATE 1,1 PRINT 5PACE$(50)
LOCATE 1B,l

To see the "bubble" effect, enter the following list of 10 words:

apples
bananas
cranberry
grapes
lemons
oranges
peaches
kumquats
raisins
alfalfa

You'll see alfalfa "bubble" right to the top. Bubble sorts are most
efficient with partially sorted lists. In fact, they are one of the most
efficient sorts with partially sorted lists. While other sorts are much better
algorithms for sorting wholly unsorted lists, the bubble sort is good for
several applications. For example, if you have a data base to which you
keep adding names, each time you add a name, you add it to a partially

AJgorlthms and Advanced Techniques 297

sorted list (This assumes you sort it each time you add a new name.)
Therefore, the lowly bubble sort may be just the algorithm you need in
some applications.

To give you a better example of the bubble sort's use, here's another
listing that will sort much faster since it does not have to print to screen
each time a swap is made:

Bubble.50rt:
CL5

REM ************
REM Input Buffer

REM ************
INPUT "Number of strings to sort ";N%
DIM A$(N%+l)
FOR X=l TO N%

PRINT "String "";X;
INPUT A$(X)

NEXT X
Z=X
T=X-1
CL5
Bubble.Algorithm:

REM ************
REM Sort Strings

REM ************
Compare:

Flag=0
FOR 5=1 TO T

IF A$(5) (= A$(5+1) THEN Get.Next.5tring
SWAP A$(5),A$(5+1)
Flag=l
T=5

Get.Next.5tring:
NEXT 5
IF Flag=l THEN Compare

Out. Put. It:

REM ************
REM Out to Screen

REM *************

298 The Amlga Microsoft BASIC Programmer's Guide

FOR X=l TO Z
PRINT A$(X)
Count = Count + 1

If Count > 18 THEN Count 0 GOSUB Hold.Screen
NEXT X
END
Hold.Screen:

COLOR 0,1
PRINT "Hit any key";
Hit$=INPUT$(l)
COLOR 1,0
CLS
RETURN

Further on in this chapter, we will see how the bubble sort can be
integrated into a database program.

THE SHELL SORT

This next sort algorithm can sort lists about four times as fast as the
bubble sort Like the bubble sort, it compares string arrays (or numbers)
and substitutes places in the array if one is out of order relative to the one
with which it is compared. However, the sort does not continuously run
through the loop comparing strings next to one another in order. Instead,
it makes bigger jumps so that if the top of the order happens to be on the
bottom, it will be placed in the correct position much faster than it
would be by the bubble sort Run the first example to see how the
appearance of arrangement is different from the bubble sort The list on
the left will have gaps in it, but it shows how the resorting takes place. It
happens so fast that it is hard to see what's going on. Use a long list of
words to best see the sorting. The list on the right is simply a fully sorted
list with the gaps filled in.

Shell.Sort:
CLS

REM ************
REM Input Buffer

REM ************

Algorithms and Advanced Techniques 299

INPUT "Number of strings to sort ";N%
DIM A$(N%+1)
FOR X=1 TO N%

PRINT "String ~";X;
INPUT A$(X)

NEXT X
T=X-1
CLS
Shell.Algorithm:
REM ************
REM Sort Strings
REM ************
N=N%
L=(2AINT(LoG(N)/LoG(2)))-1
Start:

L=INT(L/2)
IF L<1 THEN Sorted.output
FOR J=1 TO L

FOR K=J + L TO N STEP L
1=1<
T$=A$(1)
Compare:
IF A$(I-L) <= T$ THEN Substitute
A$(1)=A$(I-L)

I=I-L
IF I) L THEN Compare

Substitute:
A$(1)=T$

LOCATE 1.1 : PRINT T$
NEXT 1<

NEXT J
GoTo Start

Sorted.output:
FOR X=1 TO T

LOCATE X.20
PRINT A$(X);

NEXT X

Now, let's put it in a program that will better show the speed of the
sort and you can use:

300 The Amlga Microsoft BASIC Programmer's Guide

Shell.Sort:
CLS
REM ************
REM Input Buffer

REM ************
INPUT "Number of strings to sort (at least 4) ";N%
DIM A$(N%+l)
FOR X=l TO N%

PRINT "String U";X;
INPUT A$(X)

NEXT X
Z=X
T=X-l
CLS
Shell.Algorithm:
REM ************
REM Sort Strings

REM ************
N=N%
L=(2AINT(LoG(N)/LoG(2)))-1
Start:

L=INT(L/2)
IF L<l THEN Sorted.output
FOR J=l TO L

FOR K=J + L TO N STEP L
I=K
T$=A$(I)
Compare:
IF A$(I-L) <= T$ THEN Substitute
A$(I)=A$(I-L)
I=I-L
IF I > L THEN Compare
Substitute:
A$(I)=T$

NEXT I(

NEXT J
GoTo Start

Sorted.output:
FOR X=l TO T
PRINT A$(X)

Algorithms and Advanced Techniques 301

Count=Count + 1
IF Count > 17 THEN Count=0 GOSUB Hold.Screen
NEXT X

END
Hold.Screen:
Color 0,1
PRINT 'Hit any key';
Hit$=INPUT$(l)
COLOR 1,0
CLS
RETURN

Having seen the relative advantages in speed, you can see the
importance of using the appropriate algorithms. However, it is equally
important to understand that any algorithm that gets the job done is the
first priority of programming. As you become more adept at program
ming and working out your own algorithms, you will become better at
making more efficient ones. Furthermore, you should remember to save a
good algorithm on your disk as a routine to be incorporated into your
other programs when needed.

REARRANGEMENTS FOR SORTS

Besides sorting lists of strings by themselves, it is often important to
sort information that accompanies strings. For example, if you have a list
of names and addresses, how do you sort by name and get the addresses,
cities and other information to accompany the sorted order of the names
if they are in separate strings?

To see how to develop algorithms for rearranging data for "bundled"
sorting, let's start with something simple. Suppose you have a list of
names and phone numbers in the arrays NA$ and PH$. You want to put
the names in alphabetical order with the phone numbers, but you want
to keep the strings separate. Here's what to do:

1. First concatenate NA$ and PH$ with the phone number on the
right

2. Sort the list
3. Separate the individual strings in the sorted list using RIGHT$.

\

302 The Amiga Microsoft BASIC Programmer's Guide

For example:

Before sort:
NA$(5) Wilson Betty
PH$(5) = 555-4321

Concatenate:
A$(5) = NA$(5) + PH$(5)

Once the sort is complete, we will assume that A$(5) is moved to
A$(30).

A$(30) = Wilson Betty 555-4321
L=8 [Number of characters in the phone number]
LS=LEN(A$(30)) [Number of characters in entire string.]
NA$(30) LEFT$(A$(30).LS-L)
PH$(30) = RIGHT$(A$(30).L)

Let's write a program that does all that and a couple of other things
as well. Since we want to sort by the last name, but it feels more natural
to enter the first and then the last name, we will have the computer
reverse the order when it sorts the information and then change it back to
the first-last order:

InpuLBuff:
INPUT 'How many names to enter ';N%
DIM NF$(N%+1).NL$(N%+1).PH$(N%+1)
FOR X=1 TO N%

INPUT 'First name'; NF$(X)
INPUT 'Last name'; NL$(X)
INPUT 'Phone number (XXX-XXXX)';PH$(X)
PRINT

NEXT X
Z=X
T=X-1
Rearrange:

FOR X= 1 TO N%
A$(X) = NL$(X)+'*'+NF$(X)+PH$(X)
NEXT X

Algorithms and Advanced Techniques 303

Sort:
Compare:

Flag=0
FOR S=l TO T

IF A$(S) (= A$(S+l) THEN Get.Next.String
SWAP A$(S),A$(S+l)
Flag=l
T=S

Get.Next.String:
NEXT S
IF Flag=l THEN Compare

Undo.Algorithm:
L=8
FOR X=2 TO Z

LS=LEN(A$(X))
PH$(X)=RIGHT$(A$(X),L)
N$=LEFT$(A$(X),LS-L)

GOSUB Find.Asterisk:
NL$(X)=LEFT$(N$,P-1)
LL=LEN(NL$(X))
LN=LEN(N$)
LF=LN-LL-1
NF$(X)=RIGHT$(N$,LF)

NEXT X

Ou t . Pu t. It :
FOR X=2 TO Z

PRINT NF$(X);SPACE$(l);NL$(X)
PRINT 'Phone: ';PH$(X)
PRINT
Count = Count + 1
IF Count> 9 THEN Count 0 GOSUB Hold.Screen

NEXT X
END
Hold.Screen:

COLOR 0,1
PRINT 'Hit any key';
Hit$=INPUT$(l)
COLOR 1,0

304 The Amlga Microsoft BASIC Programmer's Guide

CLS
RETURN

Find.Asterisk:
FOR F=l TO LEN(N$)

IF MID$(N$.F.l)="*" THEN P=F
NEXT
RETURN

'Undo.Algorithm' in the above program is fairly involved and it takes
up processing time. Another way to do the same thing is to insert
"carriage returns" in the strings in the form of a CHR$. The ASCII code for
a carriage return is 13, so by concatenating CHR$(13) in the combining
string to be sorted, we can kill two birds with one stone. On the one hand,
it is possible to format the output as desired, yet we can also sort on the
name and not scramble the rest of the information. This gives us the best
of both worlds and a much simpler algorithm.

While we're shov'v-ing another algorithm for scrambling, sorting and
unscrambling strings, we'll see how to put it in a sequential file. The
sorting algorithm will "shuffle in" all new information added to the file so
that whether you build a new file or add to an existing one, this program
will sort it for you. It can be used as a handy file for keeping a list of
sorted names and addresses. (Change PRINT to LPRINT and it can be
used to send the information to your printer. You can use it to label all
your party invitations!) Let's first take a look at the program and then see
how it works:

GoSUB Define
Get. F ile. Name:

INPUT "Name of file ";Fame$
PRINT "(N)ew or (E)xisting File";
Ne$=INPUT$(l)
Ne$=UCASE$(Ne$)
IF Ne$ < > "N" AND Ne$ < > "E" THEN Get.File.Name
PRINT
INPUT "How many names ";N%
IF Ne$="E" THEN GoSUB old.one
IF Ne$="N" THEN L%=N%:DIM A$(L%)

Input. It.All:
DIM NF$(L%).NL$(L%).AD$(L%).CT$(L%).SA$(L%).ZIP$(L%)
CLS

Algorithms and Advanced Techniques 305

FOR X=(l+Count) TO N% +Count
INPUT "First Name ";NF$(X)
NF$(X)=SPACE$(l)+NF$(X)
INPUT "Last Name ";NL$(X)
INPUT "Address";AO$(X)
INPUT "City";CT$(X)
INPUT "State";SA$(X)
INPUT "Zip Code";ZIP$(X)

NEXT X
T=X-1
Z=X

PRINT
FOR X=(l+Count) TO N% +Count

REM Insert Carriage returns and spaces
A$(X)=NL$(X)+NF$(X)+CR$+AO$(X)+CR$+CT$(X)+". "
A$(X)=A$(X)+SA$(X)+SP$+ZIP$(X)

NEXT X

Sort:
'This is the optimum use of a bubble sort
'since the file will be re-sorted each time
'the program is run. Therefore. it is doing
'a partial sort each time after the first
'rather than a full sort. The bubble sort
'is the best type of sort for this kind of
'sorting problem.
Compare:

Flag=0
FOR S=l TO T

IF A$(S) (= A$(S+l) THEN Get.Next.String
SWAP A$(S).A$(S+l)
Flag=l
T=S

Get.Next.String:
NEXT S
IF Flag=l THEN Compare

Write.File:
REM Sorted file is written to disk.
OPEN Fame$ FOR OUTPUT AS ~1
FOR X=2 TO Z

306 The Amiga Microsoft BASIC Programmer's Guide

PR I NT tfl, A$ (X)
NEXT X
CLOSE ttl
END

old.one:
CLS
OPEN Fame$ FOR INPUT AS ttl
WHILE NOT EDF(l)

INPUT ttl,A$,8$,C$,D$
Count = Count + 1

WEND
CLOSE ttl
L%=Count+N%+l
DIM A$(L%)
OPEN Fame$ FOR INPUT AS ttl
FOR X=l TO Count

INPUT ttl,A$,8$,C$,D$
REM Insert Carriage returns and spaces
A$(X)=A$+CR$+8$+CR$+C$+" , "+SP$+D$
PRINT A$(X) : REM Change to LPRINT for printer output.
PRINT
ScreenFill=ScreenFill+l
IF ScreenFill=4 THEN ScreenFill=0
IF ScreenFill=0 THEN GDSU8 Hold.lt

NEXT X
CLOSE ttl
I<ILL Fame$
KILL Fame$+".info"
SumFiles=X
RETURN

Define:
CR$=CHR$(13)
SP$=SPACE$(l)
RETURN

Hold. It:
COLOR 0,1

REM Carriage Return

PRINT" Hit any key";

Algorithms and Advanced Techniques 307

COLOR 1,0
PRINT
A$=INPUT$(l)

RETURN

The algorithm for inserting the "carriage return" is in both the
algorithm for sorting the original material and the material being read
from the disk. Note how much simpler the routine is than the one used
in the previous program. However, also note that we left the names in the
order of last name first Thus, while there are certain advantages in the
simplicity of the second algorithm, it does not give the same amount of
control as the first

ARTIFICIAL INTELLIGENCE AND IF ... THEN ...

Up to this point we've used only the most simple IF ... THEN ... ELSE
structure. On your Amiga BASIC, you can also use "block" and "nested"
structures with conditionals. As the use of artificial intelligence becomes
increasingly important in the use of computers and robots driven by
artificial intelligence software, these conditional structures are equally
more important (Artificial intelligence is called 'AI' and pronounced "aay
eye" by the hip practitioners of the art To make the right impression, just
say "aay eye" and you're in like Flint)

To get started, take a look at the following program that will tell
what kind of grade you'll get by entering a number:

INPUT "Enter a test score "; N
Blocl< 1:
If N >59 THEN
If N >69 THEN
PRINT "You're
PRINT "That's

ELSE
PRINT "You're

END If

Passing and
nice"

below a C"

ELSEIf N < 60 THEN
PRINT "You're in trouble!"

END If

above a D"

308 The Amiga Microsoft BASIC Programmer's Guide

Blocl<2:
IF N >7'3 THEN
PRINT "You"re above average"

IF N >8'3 THEN
PRINT "You"re hot!"

ELSE
PRINT "You have a B"

END IF
END IF

In a block structure, each IF statement requires an END IF statement
at the end of the block just like each FOR statement needs a NEXT
statement Using the block structure means that you can have several
lines as the consequence of a true condition. For example, in Blockl,
there are two PRINT statements following the second IF statement
Without the block structure, you would have to put everything on the
same line. Also, you can insert the ELSEIF statement that allows an
additional condition with a single END IF.

In Block2 you can better see the "nested" character of the block
structure being used. Both END IF statements are together at the end of
the block satisfying the requirement of one END IF statement for each IF
statement With a nested block structure, if the outside (first) IF statement
is not true, then the inner (second, etc.) IF statement will not be executed
even if the condition of its test is true. For example, the second condition
in the following program could never be executed because if it is true the
first one would have to be false:

INPUT "Enter a number";N
IF N > 100 THEN

PRINT "You can see this"
IF N < 100 THEN

PRINT "But you will never get this"
END IF

END IF

Now that you have an idea of how the block conditional structure
works, let's take a look at a simple example of artificial intelligence. We'll
use the voice synthesizer to make a simulation of a program that appears
to "think" or understand what a person wants. Even for this simple
example, it takes a lot of programming since your Amiga will have to

Algorithms and Advanced Techniques 309

make a lot of conditional branches. (It will also begin to give you an idea
of how smart people really are!) We will use a "tree structure" that will
lead to different directions depending on the response of the user. If we
had an input that could read voice it would be even more exciting, but
try this program out anyway. It simulates a computer running a very
small book store trying to help a customer:

SAY TRANSLATE$("Hello, may I help you?")
GoSUB Voices
Instruct:

SAY TRANSLATE$("Please respond with the keyboard")
SAY TRANSLATE$("Type, Y, for Yes")
SAY TRANSLATE$("N, for no.")
SAY TRANSLATE$("Do you understand")
GoSUB Respond
IF A$="N" THEN Instruct

Categoryl:
SAY TRANSLATE$("Good. I will ask more questions.")
SAY TRANSLATE$("You will respond with a Y or N.")
SAY TRANSLATE$("Would you like fiction?")
GoSUB Respond
IF A$="Y" THEN

SAY TRANSLATE$("Good. I like it too.")
GDTo Fiction

ELSE
GoTo Nonfiction

END IF

Fiction:
SAY TRANSLATE$("Do you like row manz?")
GoSUB Respond
IF A$="Y" THEN GoTo Romance
SAY TRANSLATE$("How about science fiction?")

GoSUB Respond
IF A$='Y" THEN GoSUB Sci.Fi

END
Romance:

SAY TRANSLATE$("Hello. I am in charge of row manz"),Talkf%
SAY TRANSLATE$("I luv, a good row manz"),Talkf%

310 The Amlga Microsoft BASIC Programmer's Guide

SAY TRANSLATE$("Would you like a gothic row manz?"),Talkf%
GOSUB Respond
IF A$="Y" THEN

SAY TRANSLATE$("I like Chips on Fire"),Talkf%
SAY TRANSLATE$("It is about two programmers").Talkf%
SAY TRANSLATE$("who fall in luv."),Talkf%

ELSE
SAY TRANSLATE$("How about Historical row manz?"),Talkf%
GO SUB Respond
IF A$="Y" THEN

SAY TRANSLATE$("Try Love in Silicon Valley"),Talkf%
END IF

END IF
SAY TRANSLATE$("That is all I have.")

END

Sci.Fl:
SAY TRANSLATE$("I. in joy. row bot. stor eez."),Talkr%
SAY TRANSLATE$("Do you like row bot stor eez?")
GOSUB Respond
IF A$="Y" THEN

SAY TRANSLATE$("That is a good choice.")
SAY TRANSLATE$("We will get a long well.")
SAY TRANSLATE$("That is all for today.")
SAY TRANSLATE$("My chips are tired.")
SAY TRANSLATE$("Good bye.")

ELSE
SAY TRANSLATE$("Too bad.")
SAY TRANSLATE$("You will miss me.")
SAY TRANSLATE$("I am gone.")

END IF
END

Nonfiction:
SAY TRANSLATE$("You must like non fiction then.")
SAY TRANSLATE$("I enjoy reading computer books.")
SAY TRANSLATE$("Do you want a computer book?")
GOSUB Respond
IF A$="Y" THEN

SAY TRANSLATE$("You already have one.")
SAY TRANSLATE$("You got this program from it.")
SAY TRANSLATE$("Read it again.")

Algorithms and Advanced Techniques 311

ELSE
SAY TRANSLATE$("Too bad. That's all I have")
SAY TRANSLATE$("in non fiction.")

END IF
END

Respond:
A$=INPUT$(l)
A$=UCASE$(A$)
IF A$ <> "Y" AND A$ <> "N" THEN

SAY TRANSLATE$("I can only respond to Y or N")
GoTo Respond

END IF
RETURN
Voices:

Female:
FOR X=0 TO 8

READ Tall<f%(X)
NEXT X
DATA 200.0.145.1.22000.64.10.0.0

Robot:
FOR X=0 TO 8
READ Tall<r%(X)

NEXT X
DATA 200.0.160.0.22000.64.10.0.0
RETURN
DATA 200.0.160.0.22000.64.10.0.0
RETURN

Try changing the parameters on the voices and adding more types of
books. The example is trivial, but it is fun, and you can change it to do
something more practical. If you have an attachment that can read voice
input, you can really do a lot with your Amiga and even simple AI.

SUMMARY

This chapter takes us to the end of the book. Beyond this, there's still
more to programming, but from here on out you're on your own!
However, you should be able to do most of the things you will need to

312 The Amlga Microsoft BASIC Programmer's Guide

do, and with practice, programming will be as simple as working your
VCR or driving your car. Developing algorithms can be as fun and
challenging as doing a crossword puzzle, and artificial intelligence is just
developing as a new area of interest For the Amiga, these tasks are
possible since the computer has so much power.

As a parting suggestion for those of you who will spend time writing
BASIC programs for your Amiga, let me reiterate the approach we've
stressed throughout this book: keep it simple! All structures in program
ming can be broken down into bite-sized parts. Each part can be
developed into a module, and a collection of modules can be organized
into a program. None of the statements, functions or commands are
inherently complex. Like computers, they are fundamentally simple. The
more complex structures emerge from various parts which are combined
to perform complex tasks. However, by keeping the parts distinct and the
modules relatively small and separate, programming your Amiga is not
only possible, it is a lot of fun too.

APPENDIX A

ASCII Character Codes

Dec Hex CUR Dec Hex CUR Dec Hex CUR

009 09H HT 052 34H 4 095 5FH
010 OAH LF 053 35H 5 096 60H
011 OBH VT 054 36H 6 097 61H a
012 OCH FF 055 37H 7 098 62H b
013 ODH CR 056 38H 8 099 63H c
014 OEH SO 057 39H 9 100 64H d
015 OFH SI 058 3AH 101 65H e
016 10H DLE 059 3BH 102 66H f
017 llH DCl 060 3CH < 103 67H g
018 12H DC2 061 3DH 104 68H h
019 13H DC3 062 3EH > 105 69H
020 14H DC4 063 3FH ? 106 6AH j
021 15H NAK 064 40H @ 107 6BH k
022 16H SYN 065 41H A 108 6CH 1
023 17H ETB 066 42H B 109 6DH m
024 18H CAN 067 43H C 110 6EH n
025 19H EM 068 44H D 111 6FH 0

026 lAH SUB 069 45H E 112 70H P
027 IBH ESCAPE 070 46H F 113 71H q
028 lCH FS 071 47H G 114 72H r
029 IDH GS 072 48H H 115 73H s
030 lEH RS 073 49H I 116 74H t
031 IFH US 074 4AH J 117 75H u
032 20H SPACE 075 4BH K 118 76H v
033 21H 076 4CH L 119 77H w
034 22H 077 4DH M 120 78H x
035 23H # 078 4EH N 121 79H Y
036 24H $ 079 4FH 0 122 7AH z
037 25H % 080 50H P 123 7BH {

038 26H & 081 51H Q 124 7CH I
039 27H 082 52H R 125 7DH }

040 28H 083 53H S 126 7EH
041 29H 084 54H T 127 7FH DEL
042 2AH * 085 55H U

Dec = decimal, Hex = hexadecimal (H), CHR= character, LF = LineF eed, FF = F ormF eed, CR= Car-
riage Return, DEL=Rubout

313

314 The Amlga Microsoft BASIC Programmer's Guide

Non-ASCII Character Codes

b. a a a a a a a a 1 1 1 1 1 1 1 1

~ 0_ a a J>. 1 1 1 1 a a a a 1 1 1 1

b. a a 1 1 a a 1 1 a a 1 1 a a 1 1

t>:. a 1 J>. 2 a 1 a 1 a 1 a 1 a 1 a 1

b. b. b. b. 00 01 02 03 04 05 ~ 07 08 09 10 11 12 13 14 15

J>. a a a 00 SF'_ 0 @ p P NBSP A -e 11 0
a a a 1 01 ! 1 A a a q i ± A til II n

J>. 0 2 a 02 2 B R b r ¢ 2 A 0 a 0

a a 1 1 03 # 3 C S C 5 £ 3 A 6 a 6

J>. 2 o_ J>. 04.. $ 4 D T d t > :0: A 6 a 0
a 1 a 1 05 > % 5 E U e u ¥- !l A 0 d 0
a 1 1 a 06 & 6 F V f v : ~ A: b 1Il 0

a 1 1 1 07 » 7 G W 9 w § C m !< XI.
1 a a a 08 /:: (8 H X h x E II! e 0

1 0.. a 1 09) 9 I Y i Y @ 1 E U e u
1 0 1 0 10 J Z j Z ! Q E U e u
1 a ~ 1 11 + ~ [J<. { « » E U Ii G

1 1 0 0 12 < L \ I I
... v. 1 0 1 U

1 1 0 1 13 - = M 1 m) \ SHY Y, i Y i Y
1 1 1 a 14) N n ® :y. i P i P

15 / ? 0 0
:: :: - "I r3 .j Y - :::::::

APPENDIX B
USING CLI

Command Line Interface

On your Workbench disk you have probably noticed the CLI icon.
This is an alternative operating system you can use to control your
Amiga. CLI stands for "Command Line Interface." It is especially useful
for handling DOS (Disk Operating System), and while it is more awkward
than using the mouse and icons, it is very powerful. This is a brief
introduction to CLI and the special commands it has. We will con
centrate on things than can be done better with CLI than with the icon
system. To learn more about CLI, read Commodore's AmigaDOS User's
Manual.

Open the CLI icon, and you will open the CLI Window. The follow
ing prompt will appear:

1>

Next to that prompt is where you enter your CLI commands. To give
yourself enough room to see what you're doing, widen the window to its
full size using the mouse. Once you have a big enough window, enter the
following:

1> DIR <Press Return>

The DIR command works like FILES in BASIC. It shows you what is on
the disk.

To experiment, take a blank disk and place it in the external disk
drive. (If you have only a single disk drive, this will be a bit tedious, so
just make a copy of your Workbench disk and use it) To prepare the disk
from CLI, use the FORMAT command exactly in the following sequence
(do include the words DRIVE and NAME):

1>FORMAT DRIVE DF1: NAME "CLIDISK" <Press Return>
315

316 The Amlga Microsoft BASIC Programmer's Guide

Your Amiga will instruct you to:

Insert disk to be formatted and press RETURN

When completed you will see:

Format cyl 79
Ver ify cyl 79
Disk "CLIDISK" formatted and initialized

Now to make it a disk that can be "booted" (start up your Amiga), type in:

1> INSTALL DF1:

After you get the prompt back, you're all set You could have used
any formatted disk, and it is not required to have a special CLI disk, but
since there's a good chance of erasing information on the disk, it's better
to be safe than sorry. To exit CLI, just type in ENDCLI and press RETURN.

The CLI Commands

The language of CLI is a separate one from BASIC, and we will only
present a short glossary of these commands here along with some brief
examples of their use. This is not meant to be a full explanation of eLI
but rather a quick reference to CLI commands.

ASSIGN Name: Dir/dir/file
This is a temporary assignment of a logical device name to a filing

system directory. Its most practical use is in quickly getting to a file in a
subdirectory. For example if you have a file in DF1: subdirectory SORTS
with the name BUBBLE you would have to use DF1:S0RTS/BUBBLE to
pull it out With ASSIGN, you can issue a single word command to get
your file.

Example:

ASSIGN SORTO: DF1:SORTS/BUBBLE

Now any reference to SORTO: will pull out BUBBLE for you.

Appendix B 317

BREAK Process #,Ctrl Char
The BREAK command sets flags to break at a given process number

with control keys C-F. BREAK ALL sets all Ctrl (C-F) flags.
Example:

BREAK 3 D

sets CTRL-D attention flag to process 3.

CD Dir:Sub/Sub
This sets the Current Directory to the drive and subdirectory(ies)

specified.
Example:

CD DF1:CH19/SoRTS

would set the current directory to SORTS in drive 1 in subdirectory
CH19.

COpy File TO DskIDir
Copies file or files from current OR specified drive to target disk and

directory. The word ALL as file name will copy all files.
Example:

COpy df0:shell to dfl:sorts/shell

would copy the file 'shell' from drive 0 to drive 1 in the subdirectory
called 'sorts.' The existing file called 'shell' in drive 1 would be replaced
by the one from drive O.

DATE Day-month-year (or Hour:Min)
Sets date to specified day-month-year or time. Using TO option

sends current set date to specified file. The word TOMORROW incre
ments date by one day.

Example:

DATE 17-May-BB

would set date to May 17, 1988.

318 The Amiga Microsoft BASIC Programmer's Guide

DATE 10:45

would set time to 10:45.

DELETE Filename
Works like KILL in BASIC. It deletes a single or multiple files up

to 10.
Example:

Delete sdump . bl<u

would remove a file named 'sdump.bku.'

Delete df0: ~? ALL

would remove all files from drive O.

DIR [drive:subdirectory]
Displays the contents of current drive and/or specified drive and

subdirectory.
Example:

Di r df1:ch19

would display on the screen all of the files in the subdirectory 'ch19' on
drive 1.

DISKCOPY FROM drive TO drive
Copies the entire disk
Example:

DI5KCOPY FROM df1: to df0

would copy the disk in drive 1 to drive O.

ECHO $
Displays argument on screen. Used in a stream of commands with

RUN.
Example:

Echo "Current drive"

would print that message on screen.

ED Filename {Size} '"
Uses built-in text editor to edit files.
Example:

ED Names/Friends

Appendix B 319

would edit a file called "Friends" in the subdirectory "Names."
"'See Chapter 3 of AmigaDOS User's Manual for instructions on using
this editor.

EDIT Fllename**
Edits with built-in line editor text files.

"'*To use this editor see Chapter 4 of the AmigaDOS User's Manual.

ENDCU
Quits CLI and returns to icon system.
Example:

ENOCLl

EXECUTE Commandfile
Acts as automatic command executer of commands in a given file

with or without arguments. Used for executing "DOS Programs" written
with the ED editor.

Example: Enter the editor, using

ED Test l<RETURN>

Once in the editor, type in:

ECHO "This is a test of execute" <Press RETURN>
OIR df0: <Press RETURN>
OIR dfl: <Press RETURN>

Press the ESC key, and when the asterisk appears at the bottom of the
screen, type an "X" and press RETURN. The file will be saved to disk.
When you see the 1> prompt, you can EXECUTE the file "Test I" by
typing:

320 The Amiga Microsoft BASIC Programmer's Guide

Execute test 1

All of the commands you put in the file will now be executed. See your
AmigaDOS User's Manual for details.

FAILAT N
Sets error code where command sequence will stop execution if

code level is exceeded. Error codes are usually 5, 10 or 20, and so a level
should not be too great above 20. The default limit is 10.

Example:

FAILAT 15

FAULT N
Displays fault code message.
Example:

Fault III

would return Fault 111:Error 111.

FILENOTE Filename COMMENT String
Attaches a note to specified file.
Example:

FILENOTE test 1 comment "This is an example of execute"

would show

test 1
:This is an example of execute

when the LIST command is given.

FORMAT DRIVE df NAME string
Prepare a disk for use in the Amiga format
Example:

FORMAT Drive dfl: name "Filedisk"

would format a disk in drive 1 with the name "Filedisk."

Appendix B 321

IF Condition Action ENDIF
Works something like the IF statement in BASIC except it works with

a command list Words NOT, WARN, ERROR, FAIL EXISTS and EQ are
condi tionals.

Example:

IF EXISTS testl
EXECUTE testl
ELSE
ECHO "It's not here Jack"
ENDIF

INFO

INFO

Returns information about files.
Example:

would show status of both drives.

INSTAll. Drive
Makes a formatted disk able to boot Amiga.
Example:

INSTALL dfl:

JOIN Filel File2 AS Filen
Combines several files into large single file.
Example:

JOIN testl test2 test3 AS combinefile

would join files named 'testl,' 'test2' and 'test3' into single file called
'combinefile.'

LAB String
Makes labels in sequence of command. Works something like module

la bels in BASIC programs.

322 The Amlga Microsoft BASIC Programmer's Guide

Example:

[In command sequence created in ED.]
IF EXISTS test!
SlOP DOlT
ELSE
ECHO "It"s not here Jack"
ENDIF
LAB DOlT
EXECUTE tes t!

would jump to line LAB DOlT in true condition.

llST Dir
Returns information about file or directory without sorting.
Example:

LIST df1:test 1

would show information about file named 'testl' on drive 1.

MAKEDIR Dir.Name
Creates a new subdirectory.
Example:

MAKEDIR dfl:ch19/sorts

would create a subdirectory 'sorts' in the subdirectory ch19 on drive 1.

NEWCll CON:X,Y,W,H,T
Creates a new CLI window beginning at horizontal X, vertical Y at W

width and H height The T is the window's title.
Example:

makes a new window in the upper left hand comer of the screen called
"Bilzcli." To get rid of the window, use ENDCLI while in that particular
CLI window. It will not affect the first CLI window.

Appendix B 323

PROMPT%N
Changes the current prompt in the current CLI window.
Example:

PROMPT "%I:f>"

would tum prompt into #>.

PROTECT Filename R, W,D,E
Allows user to specify which options-Read, Write, Delete and Ex

ecute-the user does not want protected.
Example:

PROTECT test2 rwe

would allow everything except deletion of test2.

QUIT Errorcode
Exits command sequence if a certain error code is encountered.
Example:

QUIT 30

If a return code of 30 is encountered, then terminate.

RELABEL Drive Diskname
Changes the volume name of a disk
Example:

RELABEL df0: "workshop"

would change the current name of the disk in drive 0 to 'Workshop.'

RENAME NameOld AS NameNew
Renames a file.
Example:

RENAME testl AS test2

would change the name of the file 'tesU' to 'test2.'

324 The Amiga Microsoft BASIC Programmer's Guide

RUN Commandt + Command2
Allows putting multiple commands together in single module from

immediate execution mode.
Example:

RUN d i r d fl: +

dir dfl2l:

would display first the directory of dfl and then of dfo.

SEARCH File string
Returns line with search string in files.
Example:

SEARCH Sort "six"

would return the line the word "six" was found on in the file 'Sort'

SKIP Label
Jumps to labeled line. Usually used as a conditional jump.
Example: See LAB example above.

SORT Filename TO Filename2
Sort the contents of a given file into a specified new file.
Example:

SORT Testl TO TestSorted

will alphabetize the contents of Testl and write the results to disk in the
file TestSorted.

STACK {N}
Either shows stack size or sets stack size.
Example:

STACI<

would show stack size.

STACI< 6121121121

would set stack to 6000 bytes.

Appendix B 325

STATUS N {FULL}
Returns information about CLI processes currently existing.
Example:

STATUS FULL

would return the stack size, global vector and CLI command.

TYPE Filename
Displays contents of file. Typically used with sequential file to read

it for information. Good for reading files created with ED.
Example:

TYPE test2

would display the contents of the file "test 2" to screen, but it would not
execute any commands that may be in the file.

WAIT N MINS {UNTIL HH:MM}
Stops execution until given time or amount of time in seconds.
Example:

WAIT 3 MINS

would stop execution for three minutes.

WAIT UNTIL 10:45

would stop execution until quarter of eleven.

WHY
Explains the return code.
Example:

l>asd <RETURN>
Unknown command asd
l>WHY <RETURN>
Last command failed because object not found

BASIC GLOSSARY

This glossary is designed as a quick reference for using the many
statements, functions and commands you have learned in this book. In
some cases requiring a lengthy explanation, the reader is referred to the
body of the book for further discussion of the keyword. The examples are
to show format rather than to provide detailed usage.

ABS() Gives the absolute value of a number or variable.

PRINT ABS(123.45)

AND Logical operator used in equations (assignments) and logical expressions.

IF A$ <> 'Y' AND A$ <> 'N' THEN GOTO Find
ON A$= 'Y' AND SUM AND CT GOTO Terminate
A = A$ = 'Y' AND B$ = 'Y'

APPEND Adds data to end of existing sequential text file.

OPEN 'TEXT.TXT' FOR APPEND AS ~1

AREA {STEP} (X,Y) Specified point to be part of polygon that can be drawn
with AREAFILL.

AREA (10,20)
AREA STEP (0,9)

AREAFILL Fills the inside of a polygon specified by the last two AREA state
ments. Mode 0 fills with PATTERN and 1 inverts filled area.

AREAFILL

ASC() Returns ASCII value of first character in string.

PRINT ASC ('W') or A$ = 'Amiga' : PRINT ASC(A$)

ATN() Returns arctangent of number or variable.

PRINT ATN (333)

327

328 The Amlga Microsoft BASIC Programmer's Guide

BEEP Emits bell sound.

IF AN$ (> "yo AND AN$ (> "N' THEN BEEP

BREAK ON {OFF,STOP} Turns BREAK event trap on, off or suspends it

BREAK ON
ON BREAK GOSUB Hold.It

CALL Goes to machine subroutine at a given OFFSET from DEF SEG with
argument of variable passed to subroutine.

DEF SEG = &H4000 : A = 0 : CALL A (V$)

CDBL() Changes variable to double precision number.

x = 10.7 : Y~ = CDBL(X)
PRINT Y~

CHAIN Preserves and passes variables from one program to another.

CHAIN "df1:Sort"

CHR$() Returns the character represented by given ASCII value.

IF EF$ (> CHR$(13) THEN PRINT

CINT() Converts number into integer. Rounds up if fractional value is 0.5 or
greater. Rounds down if fractional value is less than 0.5.

x = 5.49
PRINT CINT(X)

CHOIR Specifies current directory, including subdirectory.

CHOIR 'df1:CH19"

CIRCLE (X,y),R,C,S,E,A Draws a circle beginning at x,y with radius of R
Optionally, the color C, starting angle S, ending angle E and aspect A
may be included.

CIRCLE (100,100),20

BASIC Glossary 329

CLEAR {data,stack} All variables and arrays are reset to zero.

CLEAR
CLEAR,1000,200

CLOSE Closes specified OPEN file.

CLOSE III

CLOSE [Closes all OPEN files]

CLS Clears screen and places cursor in upper left-hand corner of screen.

CLS

COllISION(OS) Returns collision information with an OBJECT.sHAPE (OS). A
negative number from -1 to -4 indicates collision with one of the
borders, top, left. bottom, or right respectively.

X=COLLISION(N)
X=ABS(X)
ON X GOSUB Top,Left,Bottom,Right

COllISION {ON,OFF,STOP} Sets up enable, disable or suspension of
COLLISION.

COLLISION ON

COLOR F,B Sets (F)oreground, and (B)ackground color in relationship to
PALETTE color established with PALETTE statement

COLOR 0,1

CLNG() Changes numeric variable into long-integer format

A&=CLNG(A%)

COMMON Used with CHAIN command to pass variables between programs.

COMMON A$,B,C%
CHAIN "Names.Numbers"

CONT Continue program after a STOP or Amiga-period has been detected.

CONT

)

330 The Amlga Microsoft BASIC Programmer's Guide

COS() Returns the cosine of variable or number.

C=COS(321)

CSNG() Changes variable or value to single-precision.

X~ = 10.232221233~
PRINT CSNG(X~)

CSRIJN Returns the vertical location of the current cursor.

LOCATE 20,1 : V = CSRLIN : PRINT V

CVI, CVS, CVD Changes strings into numeric variables of integer, single or
double precision. Generally used in random access files to convert
stored strings into numeric variables.

FIELD ~1 5 AS A$, 7 AS 8$, 20 AS C$
GET ~l

A~= CVI (A$)
8 = CVS (8$)
C~ = CVD (C$)

DATA Strings or numbers to be READ.

DATA 17857,Rancho 8ernado, 'Play it again, Sam'

DATE$ Special string to be defined from Workbench 'Preference' file as
month/day/year.

D$ = DATE$: PRINT D$

DECLARE FUNCTION (This advanced machine language function was not
covered.) Used to call up value in given library and returns parameters
in function specified.

DEF FN() Defines a function for simple real variable.

DEF FN A(X) = X * X
PRINT FN A(5)
[Result = 25)

BASIC Glossary 331

DEF SEG Sets address of current segment of memory. That address is set at zero
(0) for offset in subsequent address access.

DEF SEG = &HB800
PDKE 0,65 : PDKE 1,10

DEF {INT,LNG,SNG,DBL,STR} Defines variables beginning with given charac
ters as being integer, long integer, single precision, double precision or
strings, respectively. Defined variables do not require sign after variable.

DEFSTR 8
Bear="Bear"
PRINT Bear

DEFINT A-M
INPUT "Number attending meeting";L

DELETE Deletes line, range of lines or labeled line.

DELETE 40-90
DELETE Dataline

DIM Allocates maximum range of array.

DIM A$ (100)

END Terminates running of program and exits to Immediate mode.

END

EOF() Sets flag to -1 if end of file has been found and to 0 if not

WHILE NDT EDF(l)

ERASE Specified array is erased.

ERASE Names$

ERL Variable for line with error.

IF ERL = 50 THEN Handle.Error

332 The Amiga Microsoft BASIC Programmer's Guide

ERR Variable for error code.

IF ERR = 10 THEN Err.Check

ERROR N% Simulates error.

ERROR 11 [Division by zero error Simulated]

EXP() Returns e to indicated power.

PRINT EXP (/)

FIELD Specifies space for variable in random access files.

FIELD ~1, 1 AS A$, 9 AS V$

FILES Shows files on disk.

FILES <RETURN>
FILES "dfl:" <RETURN>

FIX Returns integer of number.

PRINT FIX (324.65)
[Result = 324]

FOR/NEXT/STEP Sets up loop with specified bottom and top limit incremented
or decremented by optional STEP at NEXT.

FOR X= 5 TO 500 STEP 50
PRINT X
NEXT X

FRE() Returns available memory.

PRINT FRE(0)

GET {Files} Reads record from specified random file.

GET 1

BASIC Glossary 333

GET(Xa,Ya)-(Xb,Yb),A {Graphics} Reads the special graphics array in terms of
the specified coordinates as the upper left- and lower right-hand corners
of a screen area.

GET(l,l)-(B,B),C%

GOSUBIRETURN Branches to subroutine at given line number and comes back
to the next line number after the GOSUB after encountering RETURN.

GDSUB Define
PRINT A$

Define:
A$ = "Amiga"
RETURN

GOTO Branches to given line label or number.

GDTO Center.It
GDTD 200

HEX$(D) Returns the hexadecimal value of given decimal number, D.

PRINT HEX$(10)

IF-THEN-ELSE Sets up conditional logic for execution.

IF Querry$ = 'M" THEN Start ELSE END

IFrrHENIELSE/ELSElFIEND IF Block conditional.

IF A$ = V$ THEN
A=10
B=55
ELSEIF A$=G$ THEN
A=9
B:BB

END IF

334 The Amiga Microsoft BASIC Programmer's Guide

INKEY$ Reads single character from keyboard input

Get.l<ey:
AN$ = INI<EY$: IF AN$ = " THEN Get.l<ey
IF AN$ = 'E' THEN END

INPUT Halts program execution until string or numbers entered and RETURN
key is pressed. May enter message within INPUT statement

INPUT 'First word-) , . Vocab$(X) ,
INPUT 'Enter single dimension number-) , . S ,
INPUT "ENTER INTEGER NUMBER -) " . N!l: ,
PRINT 'Press RETURN to continue";
INPUT CR$

INPUT# Reads data from OPEN file or specified device.

INPUT In, Info$

INPUT$(N) Halts execution until N number of key presses have been made.
Returns string of length N from keyboard or file.

PRINT 'Pick AB OR BA -)';
C$ = INPUT$(2)

IF C$ = 'AB' THEN Look.Up ELSE Look.Down

X$ = INPUT$(l,l) {from file}

INSTR(A$,B$) Examines B$ for occurrence of A$ and returns position of first
character of B$. [Optional: INSTR(P,A$,B$) where P equals the starting
position in A$ to begin search.]

FULLNAME$ = "Jack B. Quick"
LASTNAME$ = "QUick'
N = INSTR(FULLNAME$,LASTNAME$)
PRINT MID$(FULLNAME$,N)

INT() Returns integer value of number or variable.

PRINT INT(98.76)

KILL Deletes file from disk Extender must be used with this command.

I<ILL "Dumb.Sort"

BASIC Glossary 335

LBOUND() {UBOUND} Finds (L)ower and (U)pper boundaries of array.

DIM A$(255)
PRINT LBOUND(A$),UBOUND(A$)
[Results = 0,255]

LEFf$(,) Returns specified number of characters from a given string beginning
with character at far left

Bybye$ = 'So Long'
PRINT LEFT$ (A$,2)
[Result = So]

LEN Returns the length in terms of number of characters of a specified string.

PRINT LEN(Names$)

LET Optionally used in assigning value to variables.

LET NoVic = 900

IJBRARY (Advanced machine language using routine not covered.) Opens
machine language subprograms. Used with CALL.

liNE (Hl,Vl)-(H2,V2),C,BF Draws line from coordinates (H)orizontal (V)erticall
to H2,V2 in optional color C, optional (B)ox and optional (F)ill.

LINE (100,100)-(150,150)
LINE -(200,50)
LINE (10,10)-(B0,B0),l,BF

liNE INPUT Accepts entire line of up to 254 characters ignoring delimiters such
as commas.

LINE INPUT 'Last name,First name';LF$

liNE INPUT # Accepts entire line of up to 254 characters from sequential file.

LINE INPUT U1,LF$

liST Lists program currently in memory to screen. Specify line label to have it
listed at top of list window or range of lines for partial listing.

LIST
LIST compare
LIST 30-B0

336 The Amlga Microsoft BASIC Programmer's Guide

LUST Lists program currently in memory to printer.

LLIST

LOAD Loads program specified from disk or tape. Optionally, LOAD
"FILENAME",R to load and run program.

LOAD "LaSorta"
LOAD "LaSorta",R

LOC() Used in determining position in current 128 byte "record" in sequential
file. With random access files, returns the last record number of read or
write.

N = LoC(1)
PRINT "Record ~";N

LOCATE R,C Sets (R)ow and (C)olumn of next PRINT. Places cursor at R,c.

LOCATE 10,5: PRINT 'HERE"

LOF() Returns length of file.

OPEN "NameAd" AS ~2
PRINT LoF(2)
CLOSE

LOG() Returns natural logarithm (to base E) of specific number or variable.

PRINT LOG (19)

LPOS() Returns current horizontal position of printer.

Pnow = LPoS(0)
IF Pnow > 50 THEN LPRINT

LPRINT Outputs information to printer.

LPRINT "Print this"
LPRINT Address$,K,Record%

LPRINT USING Outputs to printer with PRINT USING format (See PRINT
USING.)

LPRINT USING '$$~~~~.~~";Money

BASIC Glossary 337

LSET Used in random access files for moving data into buffer. Must use different
name than used with INPUT. If LSET is used, spaces pad the extra
positions automatically. (See also RSET.)

LSET City$ = C$

MENU N,m,S, "Name" Sets pulldown menus for use in BASIC program. In
dividual (N)umber for each menu, an (ID)entification for each option and
a (S)tate of on, off or checked. Name is optional string. MENU(O) returns
the number of last chosen menu (N), and MENU(l) returns the last
chosen option number (ID). MENU RESET is used to return menu state
to default It should be used at the end of every BASIC program that uses
the MENU statement

MENU 2,0,l,"Sort File"

MENU {ON,OFF,STOP} Enables, disables or suspends use of MENU event trap
ping.

MENU ON
ON MENU GOSUB Menu.Select

MERGE Load ASCII program into memory without removing current program.

MERGE "SectionB"

MID$(, ,) Returns a portion of a string beginning with the nth character from the
left for the number of characters indicated in the third position.

Mouth$ = "YakettyYak"
PRINT MID$(A$,3,3)
[Resul t = i<et]

MKI$, MKL$, MKS$, MKD$ Used in random access files to convert integer, long
integer, single precision or double precision numeric values into strings.

LSET V$ = MKL$(V&)

MOD Returns the "modulo" or remainder of a division result

PRINT B MOD 3
[Results = 2]

338 The Amiga Microsoft BASIC Programmer's Guide

MOUSE Returns information about left mouse button and mouse position.

IF MOUSE(0) = 1 THEN GOSUB Fire
X=MOUSE(l)
Y=MOUSE(2)
PSET (X, '1')

MOUSE {ON,OFF,STOP} Enables, disables or suspends mouse event trapping.

MOUSE STOP

NAME Used to rename files from BASIC.

NAME "Part" AS "Whole"

NEW Clears program and variables in memory.

NEW

NOT Logical negation in logical expression.

IF A NOT B THEN C = R
C = NOT (D AND E)

OBJECT (See chapter on sprites for the several OBJECT. prefaced statements.)

OCT$(N) Returns octal value of decimal value N.

PRINT OCT$(55)

ON Sets up computed GOTO, GO SUB, with MENU, MOUSE, TIMER, ERROR,
BREAK, COLLISION, or variable to branch line.

ON A GOSUB First,Second,Third
ON ERROR GOTO Handle.Error
ON MENU(0) GOTO Get.Menu
ON TIMER GO TO Time.Set
ON MOUSE GOSUB Squeek
ON BREAK GOSUB Halt.Report
ON COLLISION GOSUB Check.Side

OPEN Accesses channel to input/output device of OUTPUT, INPUT or APPEND.

OPEN "Address.Book" FOR OUTPUT AS 1

OPTION BASE Set minimum array value to 0 or 1.

OPT! ON BASE 1
DIM City$(100)
FOR X=l TO 100

READ City$(X)
NEXT X

OR Logical OR in logical expression.

IF A=10 OR 8 = 20 THEN GOTO 190
C = D OR E OR 1<

BASIC Glossary 339

PAINT(H,V),C,BC "Paints" a specified area with optional color and border color.

CLS
COLOR 0,1
CIRCLE (100,100), 50,2

PAINT (220,190),2,2

PALETrE ID,R,G,B Sets "paint brush" color with ID from 0-31 to intensity of
(R)ed, (G)reen and (B)lue of 0-1.

PALETTE 3,.4,1,.31
COLOR 1,3
CLS

PATTERN L,P Creates the texture of lines and fill areas.

FOR X=0 TO 3
READ Texture%(X)

NEXT
PATTERN &HFFF,Texture%

PEEK {PEEKL,PEEKW) Returns memory byte's contents of given decimal ad
dress location (8 bit). PEEKL returns long integer word (32 bit address)
and PEEKW returns short integer word (16 bit).

D = PEEI< (3000)
IF PEEK (12300) = 5 THEN GOTO What.Next

POINT (X,y) Returns the color in PALETTE ID value of pixel at location x,Y.

PRINT POINT (100,100)

340 The Amlga Microsoft BASIC Programmer's Guide

POKE {POKEL,POKEW) Inserts given value in specified decimal memory loca
tion as 8 bit word. POKEL inserts as 32 bit word and POKEW inserts as
16 bit word.

POKE 0,10 (Sets memory location 0 to decimal value 10)

POS() Gives the current horizontal position of the cursor.

PRINT "Cursor here';: PRINT POS(0)

PRESET [STEP] (X,y),C Set pixel at location X, Y to background color C. (See
also PSET.)

PRESET 100,100

PRINT Outputs string, number, expression, function or variable to screen.

PRINT "Anything';N%,V$,K&

PRINT USING Outputs formatted strings or numbers to screen.

PRINT USING "$$UUU.UU";33.23

PRINT # Prints (writes) output to disk file or OPEN logical file.

80 PRINT Ul, Names$

PRINT#, USING Writes to file in PRINT USING format (See PRINT USING).

PRINT Ul, USING "$UUUU.UU";8ucks

PSET [STEP] (X,y),C Turns on pixel at position X, Y with color C. Step is an
optional parameter for position relative to last pixel.

PSET (100, 5S) ,2

PT AB(H) Sets next print position to horizontal pixel position H. (Note the
different positions created by T AB() and PT AB() in example below.)

PRINT TAB(5S) "About here"
PRINT PTAB(S5) "About here'

BASIC Glossary 341

PUT (H,V),G,A {Graphics} Sends colors to horizontal and vertical coordinates
on screen in graphic array with optional action defaulted to XOR

PUT (X ,100) ,G%
PUT (X,100),G%,AND

PUT# {Files} Used in random access files to write data to disk. File number and
field number must be specified.

FIELD ~2, 10 AS City$
LSET C$ = Clty$
PUT ~2,Record%

RANDOMIZE Seeds random number generator with optional numeric value.

RANDOMIZE TIMER

READ Enters DATA statement's contents into variable.

READ Total
READ X$(9)
DATA 123,Harold

REM Non-executable statement Allows remarks in program lines.

CR$ = CHR$(13): REM Carriage return

RESUME Goes to first statement of line where error occurred in error-handling
routine.

ON ERROR GOTo Fix_It
ERROR 6
END
Fix.It:
PRINT "There's a problem." : RESUME

RETURN Returns program to next line after GOSUB command

RETURN

RIGlIT$ (,) Returns the rightmost n characters of given string.

Amiga$= "Amiga" : PRINT RIGHT$(A$,2)
[Result = ga 1

342 The Amiga Microsoft BAS.C Programmer's Guide

RND() Generates a random number less than 1 and greater than or equal to 0 in
Amiga BASIC.

PRINT RND(S)
INT (RND (1) * (N) + 1) (Generates whole random numbers
from 1 to N, with N being the upper limit of desired numbers.)
INT (RND*(N2+2-N1)+N1) (Generates whole random numbers from N1
to N2.)

RSET Used in random access files for moving data into buffer. Must use
different name than used with INPUT. If LSET is used, spaces pad the
extra positions automatically.

RSET CITY$ = C$

RUN Executes program in memory.

RUN

SAVE Records program on disk.

SAVE "Souls"
SAVE "df0: Money"

SADD(W$) Returns the address of the first byte of string W$.

PRINT SADD("What next")
PRINT SADD (G$)

SAY Talk$, mode-array. Sends output to voice synthesizer. (See Chapter 14 for
description of mode-array.)

SAY TRANSLATE$("Listen to this")

SCREEN m,W,H,D,M Specifies current window as screen number ID, with W
width, H height, D depth and M mode. (See chapter on graphics for using
these options.)

SCREEN 1,100,100,2,1

SCROLL (Xl,Yl)-(X2-Y2),R,D Scrolls the rectangle defined by Xl-Y2 R pixels to
the right and D pixels down. (Negative values reverse direction.)

SCROLL (10,10)-(20,20),10,10

BASIC Glossary 343

SGN Returns sign of numeric value with 1 = positive, 0 = 0 and -1 = negative.

Sign = SGN(-22)
PRINT Sign

SHARED Specifies in subprogram what variables it shares with values from
main program. These variables do not have to be passed as parameters.

SHARED A$, V()

SIN() Returns the sine of variable or number.

PRINT SIN(123)

SLEEP Suspends program until initiating event trap is sprung to reinitiate action.

SLEEP

SOUND F,D,[V,Vo] Emits sound of (F)requency (20-15000 Hz) and (D)uration
(0-77) with optional V volume from 0-255 and (Vo)ice 0-3 from speaker.
Defaults to o.

SOUND 2000,50,255,0

SP ACE$(N) String of N spaces.

Form$ = SPACE$(30)
PRINT 'Name' 5$ 'Invoice U'

SPC() Skips specified number of spaces in PRINT statement

PRINT SPC(29); 'HERE'

SQR() Returns the square root of variable or number.

PRINT SOR(49)

STICK() Returns horizontal and vertical coordinates of joystick

STICK(0) = horizontal value joystick A
STICK(l) vertical value joystick A
STICK(2) = horizontal value joystick 8
STICK(3) = vertical value joystick 8

X = STI CI« 0) : Y = ST ICI« 1)
PSET X,Y

344 The Arnlga Microsoft BASIC Programmer's Guide

STOP Halts execution and prints line number where break occurs. (CaNT
command will restart program at next instruction after STOP command.)

STOP

STR$() Converts number/variable into string variable.

T = 123 : T$= STR$(T) : TT$= '$' + T$ + '.00'

STRIG Checks to see if joystick button has been pressed. Requires STRIG ON to
activate. The STRIG function returns -1 if STRIG(O) pressed since last
STRIG(O) function call, otherwise zero. STRIG(1) returns -1 if button is
currently being pressed or zero if not [On second stick STRIG(2) and
STRING(3) do the same respectively.]

STRIG(0) ON
B STRIG(0)

IF B THEN GOSUB Bang

STRINGS(N,ASCD) or STRING(Nt,sS) Creates a string of N length made up of
ASCII values 0-255 or of S$.

M$ = STRING$(1,14)
PRINT M$, MUSIC ' M$

A$ = 11*11

AS$ = STRING$(10,A$)
FOR I = 1 TO 4 : PRINT AS$: NEXT

SUB Name(params) STATIC. Begins a subprogram. END SUB and EXIT SUB
either mark the end of the subprogram or make up conditional exit of
subprogram. STATIC indicates use of local variables within subprogram.
Arrays specify the number of dimensions in the array, not elements.

SUB Center(A$,E$(1)) STATIC

SWAP Vt,V2 Switches contents (V)ariable1 with (V)ariable2.

SWAP A$,B$
SWAP T$(1), T$(X+1)
SWAP M%,N%

SYSTEM Returns to Workbench or CLI.

SYSTEM

BASIC Glossary 345

TABO Sets horizontal tab from within a PRINT statement

PRINT TAB(20);"PoSltlon across"

TAN() Provides the tangent of number or variable.

PRINT TAN(K)

TIME$ Returns time as set in Workbench "Preferences."

PRINT TIME$

Get. Time:
TIME$
IF VAL(RIGHT$ (T$,2)) > 30 THEN 200
GOTO Get. Time
PRINT T$

TIMER {ON,OFF,STOP} Event trapping based on time. TIMER is function that
returns value based on seconds after midnight

TIMER ON
ON TIMER(S) G05UB There

TRANSLATE$ Transforms strings into phonemes used with SAY statement and
voice synthesizer.

SAY TRAN5LATE$ ("If I can get out of here")

TRON and TROFF Turns on trace function for display of line numbers in
program execution. (Turned off with TROFF.)

TRON

UBOUND (See LBOUND)

UCASE$ Transforms string into upper case string.

AN$=UCA5E$(AN$)

V AL() Used to convert string to numeric value.

ValGirl$="21"
PRINT VAL(ValGlrl$)

346 The Amiga Microsoft BASIC Programmer's Guide

V ARPTR() Returns address of variable.

1(=22
PR I NT VARPTR (I()

WAVE, V, WD Creates wave definition in array WD with voice V. (Note: a special
array is created.)

DIM Hear(255)
FOR X=0 TO 255

Hear(X)=X
NEXT
WAVE 2,Hear

WHILE .. WEND Loop statement that continues until untrue condition is met

WHILE V$ <> "Cuit'
INPUT V$
PRINT V$
WEND

WIDTH Sets screen output width to specified limit to 255.

WIDTH 62

WINDOW N, "Name",(Xl,Yl)-(X2,Y2),T,SID {WINDOW CLOSE,WINDOW OUT
PUT,WINDOW(N)} Creates a window in given Xl-Y2 rectangle of given
type T and screen id (SID). (See Chapter 11 for full explanation of all
parameters.)

WINDOW 2,"Calculation",(10,20)-(100,100),15

WRITE Sends output to screen while it ignores all delimiters except commas
but with no screen formatting. Commas and quotation marks act as
delimiters but are printed.

WRITE 1,2,3 ; 'Gets it all"
[Result = 1,2,3;"Gets it all"]

WRITE# Works like PRINT# with files except it does not place spaces in front of
positive numbers and operates like WRITE with respect to commas and
quotation marks.

WRITE U1,City$,State$,InvDice

_________ Index __

!, 27-28, 134
",55,59. See also String variables
#, 27-28, 132-35
$, 29, 132-35
%,27-28
&, 27-28, 134
',22-23,64
0, 38-39
*, 12
+, 134. See also Addition

with INPUT statement, 51-52,
55, 109

with LINE INPUT statement,
243

with ON statement, 89
with PRINT statement, 20
with PRINT USING statement,

134
with WRITE statements, 59

-,134
I, 12
:,3,20,80
;,20-21
?, 11, 52
?Redo from start error

message, 52
" 12-13, 134
",12, 134

ABS function, 40
Acceleration, of moving sprites

and bobs, 201-2
Addition, 12, 38. See also

Mathematical operations
Address book program, 237-41
"A1 key, 8, 9, 15
Algorithms, 293-94

for artificial intelligence,
307-11

bubble sorts, 294-98
rearrangements for sorts,

301-7
shell sorts, 298- 301

ALL statement, 229- 30
Alphabet, phonetic, 223-24
ALT key, 16-17
Amiga BASIC

advanced features of, 4
compared to other BASIC

languages, 3
entering, 6
functions in, 39-40. See also

Functions
loading, 5-6

AND statement, 84-86
with PUT statement, 192-93

APPEND statement, 236-37
Apple Macintosh, 3, 280

AREAFILL statement, 179-80, 182
AREA statement, 179- 80
Arguments, 95
Array variables, 99- 10l.

See also Integer array;
Variables

boundaries of, 102- 4
bubble sorts and, 294-95
as buffers, 104-6
as buffers for sequential files,

234
for creating graphs, 169- 70
DIM statement and, 101-2, 107
multi-dimensional, 106- 11
passed between programs

with CHAIN statement,
229-31

with PATTERN statement, 182
in subprograms, 111- 13
with WAVE statement, 210,

217-18
Arrow keys, 14, 16-17
Artificial intelligence, 307- 11
ASCII format, 227-28, 279,

290. See also CHR$ function
Aspect ratios, 179
ATDT, 290- 91
A TN function, 40
Autodial, 290

347

348 The Amiga Microsoft BASIC Programmer's Guide

B (Box), 168
BACKSPACE key, 14, 15, 26
Bar graphs, 169-74
BASIC languages, 3. See also

Amiga BASIC
BASIC window. See OUTPUT

window
Baud rate, 278-79, 281, 289-90
Binary numbers, 180-81
Bits, 281
Block structure, of

IF/THEN/ELSE statements,
307-11

Bobs
crashing, 202-5
creating, 205-6
displaying, 198-200
moving, 200-202

Box (B), 168
Branching, 77

with computed GOTO and
GO SUB statement, 88-92

with IF/THEN/ELSE
statement, 78-86

with ON MENU statement,
142-43

with relationals, 82-86
with subroutines, 87-88

British Pound symbol, 264-65
Bubble sorts, 294-98
Buffers, 104-6, 232-33
Bytes, 247-48

Calculations, sequential, 35-37
Calendar, 137-38
CALL statement, 93-97, 111-12
Carriage return, in sorting, 304-7.

See also RETURN key
Case (alphabetic), 26, 57-58
CDBL function, 29
Centering, 116, 136-37
CHAIN statement, 229-31
CHDIR statement, 232
Checkerboard pattern, 181-83
Check marks, in menus, 145, 148
CHR$ function, 304

decoding, 264-66
and printer control, 267-71
in telecommunications, 282

CINT function, 29
CIRCLE statement, 177-79

with MOUSE functions, 196

CLNG function, 29
CLOSE statement, 233-36
COLLISION statement, 202-5
Color printers, 262-63
COLOR statement, 135-37.

See also PALETTE
statement

Columns, 154-55
Commands, 8-9, 11. See also

Functions; Statements
Fll..ES, 6-8
LIST, 9-10, 11
NEW, 10, 26

COMMON statement, 230-31
Concatenation, 30-31, 126
Copy, 14-15
COS function, 40
Counters, in FOR/NEXT

loops, 72-73
CSNG function, 29
CSRLIN function, 152-55
CTRL key, 264, 266
Cursor, 6

locating position of, 152-55
with WINDOW statements,

157
Cut, 14-15

Daisy wheel printers, 262
Data-bits, 281
Data entry

with INKEY$ statement, 57
with INPUT$ statement, 55-57
with INPUT statement, 51-54
with READ and DATA

statements, 60-62
with UCASE$ statement, 57-58

Data files. See Random access
files; Sequential files

DATA statement, 60-62, 124-25
for creating menus, 139
with multi-dimensional

arrays, 107-8
with SAY statement for speech

synthesis, 221
with SOUND statement for

storing music, 215-16
DATE$ function, 137-39
Debugging

structured programming
and, 5, 49, 62

variable naming and, 26

Decimal point, formatting with
PRINT USING statement,
133

DEFDBL function, 28
Deferred mode. See Program

mode
DEF FN, 44-45
DEFINT function, 28
DEFLNG function, 28
DEFSTR function, 28, 31
Descriptive labels, 3, 20,

63. See also Labelling
DIM statement, 101-2, 107

with subprograms, 111
Direct mode. See OUTPUT

window
Disks

backing up, 2- 3
drawers and files on, 7-8, 232
and loading Amiga BASIC, 5

Division, 12
Documentation, 22-23
Dot matrix printers, 262
Downloading, 279, 282, 283, 290
Drives. See Disks

Echo,55-57
Editing programs, 13-17
Ellipses, 179
ELSE statement See

IF/THEN/ELSE statement
END IF statement, 308
END statement, 68
EOF function, 235
Epson printers, 267-68
Error messages

?Redo from start, 52
illegal function call, 223
SubSCript out of range, 102
Type mismatch, 30, 61, 242

ESC key, 265-66
ESC sequences, 267-70
EXP function, 41
Exponentiation, 12

F (Fill), 168
FIELD statement, 248
Fl key, 282
Files, 6-8. See also Random

access files; Sequential files
COM1:, 280-82

disks and. 232
LPT1:.272
printers and. 270. 272
screen and. 272
SCRN:.272
for sprites and bobs. 199-200
transferring via modem. See

Telecommunications
FILES command. 6-8
Fill (F). 168
FIX function. 41
Flagging

in menu programs. 148-49
in WHILE/WEND loops. 74-75

Flashing effect, 136
FOR/NEXT loops. 68-70

and array variables. 100-101.
103-4

counters in. 72-73
for creating graphs. 169- 70
for creating musical scales.

213-14
to format output with

substrings. 119
for moving graphics. 186-87.

190-93
nested. 70-71
steps in. 71-72
variable names in. 71

Formal parameters. 95
Formatting. 129-30

with COLOR statement,
135-37

with functions. 130-32
printer. 274-75. See also

Printer control
with PRINT statement, 19-21
with PRINT USING statement,

132-35
program listings. 21- 22. 63
sequential files. 241-45
strings. See Strings
with WRITE statements. 59

Function keys. 265-66
Functions. 9. See also

Commands; Statements
ABS.40
ATN.40
built in. 39-44
CDBL. 29
CHR$. See CHR$ function
CINT.29
CLNG.29

COS. 40
CSNG.29
CSRLIN. 152-55
DATE$.137-39
DEFDBL.28
defined. 44- 45
DEFINT.28
DEFLNG.28
DEFSTR, 28. 31
EOF.235
EXP.41
FIX. 41
HEX$.44
INSTR 122-23
INT. 29. 41.43.172
LBOUND. 102-4
LEFT$. 117-20. 123.254
LEN. 116-17
LOC.281-82
LOG. 41, 299-300
LPOS. 271
~D$. 117-20. 122-23
MOD. 12. 154
MOUSE. 193-97
OCT$.44
OPTION BASE. 102-3
POS(0). 152-55
RIGHT$.117-20
RND.42-44.166-67
SIN. 40. 210
SPACES. 127. 130-32
SPC.130-32
SQR 10-11. 42
STR$. 32. 125
TAB. 116. 130-32
TAN. 41
TIME$.42-43. 79-80. 120-22
UBOUND.102-4
VAL. 31-32. 124-25

GET statement
for graphics. 187-93
for random access files. 251

Ghost toggle. 149
GOSUB statement, 87-88. See

also Subroutines
with COLLISION statement,

202-4
computed. 88- 92
in menu programs. 143
in window programs. 159

Index 349

GOTO statement, 78-81
computed. 88-92
relationals and. 82-86

Graphics
CIRCLE statement, 177-79
COLLISION statement, 202-5
creating colors with PALETTE

statement, 164-68
creating shapes. 168-74
creating sprites. 197-98
displaying sprites and

bobs. 198-200
drawing ellipses with aspect

ratios. 179
filling with PAINT statement,

176- 77
filling with PATTERN

statement, 179-83
lighting pixels with PSET

statement, 163- 64
moving sprites and bobs.

200-202
moving with MOUSE

functions. 193-97
moving with PRESET

statement, 185-87
moving with PUT and GET

statements. 187-93
relative plots. 174-76
text in. 172-74

Graphics array. See Integer array
Graphs. 169-74

"Hayes" protocol, 290
HEX$ function. 44
Hexadecimal numbers.

44. 180-83
determining decimal

equivalent, 267

IBM PC. 3
IF/THEN/ELSE statement, 78- 81

block structure for artificial
intelligence. 307- 11

relationals and. 82-86
Illegal function call error

message. 223
Immediate mode. See OUTPUT

window

350 The Amiga Microsoft BASIC Programmer's Guide

INKEY$ statement, 57
in telecommunications

programs, 282
in window programs, 157-58

Ink jet printers, 262
INPUT$ statement, 55-57

with telecommunications,
281-82

INPUT statement, 51-54.
See also LINE INPUT
statement

with array variables, 100-101,
169

with CHAIN statement, 229-30
checking with LEN function,

117
entering more than one

value with, 109
with sequential files, 234-35
in window programs, 157-58

INSTR function, 122-23
Integer array

with PUT/GET statements, 188,
189

with SAY statement,
220-22, 225

Integer division, 12-13
Interactive data entry. See Data

entry
INT function, 29,41,43

for creating graphs, 172
Intonation, in speech synthesis,

225
Inverse output, 135-37

Japanese Yen symbol, 264-65
Jumping, 16-17. See also

Scrolling from loops, 74

Labelling. See also Descriptive
labels

in graphics, 172-74
with PRINT statements, 58-59

Laser printers, 262
LBOUND function, 102-4
LEFT$ function, 117-20, 123

for searching random
access files, 254

LEN function, 116-17
LINE INPUT statement, 242-44.

See also INPUT statement

Line numbers, 3, 63. See
also Descriptive labels

LINE statement, 168-74
with MOUSE functions, 196
relative plotting of, 175

LIST command, 9-10, 11. See
also LLIST statement

LIST window, 6
editing programs in, 13-14
running programs from, 9
scrolling in, 16-17,49

LLIST statement, 263. See
also LIST command

Loading, Amiga BASIC, 5-6
Local variables, 94-97, 112
LOCATE statement, 130-32

for centering strings on screen,
136-37

with cursor position
functions, 153

for text in graphics, 172-74
LOC function, 281-82
LOG function, 41

for shell sorts, 299-300
Logical operations, 83, 90-92
Loops, 67

counters in, 72-73
FOR/NEXT. See FOR/NEXT

loops
jumping out of, 74
nested,70-71
steps in, 71-72
WHILE/WEND, 73-75,235

LPOS function, 271. See
also POS function

LPRINT statement, 263-64. See
also PRINT statement

LPRINT USING statement,
273-74. See also PRINT
USING statement

LPT1: filename, 272
LSET statement, 249-50, 254

Macintosh, Apple, 3, 280
Masks, in OBJECT.HIT statement,

205
Mathematical operations, 12-13

built-in functions, 39-42
defined functions, 44-45
generating random numbers,

42-44

hexadecimal and octal
numbers, 44

parentheses in, 38-39
precedence of, 37-39
sequential calculations, 35-37

Mathematical relations. See
Relationals

Memory
clearing programs from, 10, 26
placing arrays in, 182
saving with DIM statement,

102
saving with OPTION

BASE function, 103
Menus, 141-42. See also MENU

statements
creating, 138-39, 142-45
opening, 8
refreshing, 149
toggling, 145-49

MENU statements, 142-45.
See also Menus

MENU ON/OFF/STOP
statement, 142

MENU RESET statement, 142
ON MENU statement, 142-43,

240-41
in telecommunications

programs, 289-91
MERGE statement, 227-28
Microsoft BASIC. See Amiga

BASIC; BASIC
MID$ function, 117-20, 122-23
Modems, 277-78

autodial, 290
baud rate, 278-79, 281, 289-90

MOD function, 12, 154
Modular programming,

5, 62-64. See also Structured
programming

Mouse. See also MOUSE
functions

for changing window sizes, 17
for controlling moving

graphics, 193-97
editing programs with, 13-15,

26
with menus, 141-42
for running programs

from the LIST window, 9
MOUSE functions, 193-97. See

also Mouse

Multi-dimensional arrays, 106-11
and subprograms, 112-13

Multiplication, 12, 38. See
also Mathematical
operations

Music. See also SOUND
statement

notes, 212-15
songs, 215-16

Narrator, 222-25
Nested IF/THEN/ELSE

statements, 308
Nested loops, 70-71. See also

Loops
NEW command, 10, 26
NEXT statement See FOR/NEXT

loops
NOT statement, 84-86
Numbers, 12-13. See also

Mathematical operations;
Numeric variables

binary, 180-81
bytes for storing, 247-48
hexadecimal, 44, 180-83, 267
octal,44
random, 42-44

Numeric variables. See also
Numbers; Variables

assigning, 24-25
changing, 29
converting to string, 32,

125, 251-52
defining, 28
naming, 25-26
precision of, 27-29
in WHILE/WEND loops, 73-74

OBJECT statements
OBJECTAXlAV, 201-2
OBJECT.HIT, 203-5
OBJECT.ON/OFF, 199-200
OBJECT.SHAPE, 198-200
OBJECT.START/STOP, 201
OBJECT.VXlVY, 200-201
OBJECTX/Y, 199-200

ObjEdit program, 197-98,205-6
Oblong shapes, 179
OCT$ function, 44
Octal numbers, 44

Online networks, 279
ON MENU statement, 142-43,

240-41. See also MENU
statements

ON statement, 88-92
in menu programs, 143

OPEN statement
with "COM1:" filename, 280-81
with "LPT1:" filename, 272-73
with random access files,

248-49
with "SCRN:" filename, 272
with sequential files, 233-36

Operations. See Mathematical
operations

OPTION BASE function, 102-3
OR statement, 84-86

with PUT statement, 192-93
OUTPUT window

commands in, 8-9
displaying files in, 6-8
LISTing programs from, 9
PRINT statement in, 11

Ovals, 179
Overhead bits, 281

Padding strings, 126-27, 249, 254
PAINT statement, 176-77
PALETTE statement, 164-68
Parameters

formal, 95
of integer array with

SAY statement, 220-22, 225
with MENU statement, 142-45,

149
with OBJECT. HIT statement,

205
for opening the COM1:

file, 280-81
with PALETTE statement, 165
with SCREEN statement,

159-60, 166-67, 188
with SOUND statement,

210-11
Parity, 281
Parsing strings, 126-27, 249
Paste, 14-15
PATTERN statement, 179-83
Pauses, in programs

using INPUT statement, 54,
55-56

Index 351

using TIME$ function,
79-80, 121-22

Phonetic transcription, 222-25
Pi,178
Pixels, 156, 163-64, 181, 189
POS(O) function, 152-55. See

also LPOS function
Pound symbol, British, 264-65
Precedence, of mathematical

operations, 37-39
PRESET statement, 185-87
Printer control

CHR$ and, 267-71
with LPOS function, 271
with LPRINT USING

statement, 273-74
with OPEN "LPT1:" statement,

272-73
text output, 263-64
typefaces, 268-70
with TAB, SPACE$ and

SPC functions, 274-75
Printers, types of, 261-63
PRINT statement, 9, 11. See also

LPRINT statement
with INPUT statement, 52
labelling with, 58-59
with numbers, 12
output formatting and,

19-21, 31
with sequential files, 233-34,

244-45
with text, 12

PRINT USING statement,
132-35. See also LPRINT
USING statement

with sequential files, 241-45
Programming

avoiding shortcuts in, 37
creative, 47-48
defining, 2
experimenting, 2-3
structured, 4-5, 47-51, 62-64,

104
Program mode. See LIST

window
Programs

address book, 237-41
for artificial intelligence, 309- 11
editing, 13-17
formatting with TAB

key, 21-22, 63

352 The Arniga Microsoft BASIC Programmer's Guide

Programs (continued)
listing 9-10, 11
ObjEdit, 197-98, 205-6
pauses in, 54, 55-56, 79-80,

121-22
PRINT USING statements

at beginning of, 135
progressive copies of, 54
remarks in, 22-23, 64
running, 9
saving, 54
from subroutines using

MERGE statements, 227-28
telecommunications, 283-91
timing with TIME$ function,

121-22
using parts of with CHAIN

statement, 229-31
Project window, 10
Prompts, for INPUT statements,

52-53
PSET statement, 164

with MOUSE functions, 195
with PALETTE statement, 167
with PRESET statement,

185-87
STEP statement with, 174- 75

PUT statement
for graphics, 187-93
for graphics with MOUSE

functions, 196- 97
with random access files,

250-51

Radians, 178
Random access files

adding new records to, 252-54
buffers and variables in,

249-54
changing a record, 256- 59
creating, 247-49
number of records in, 251
searching, 254- 56

RANDOMIZE statement, 42-43
with PALETTE statement,

166-67
Random numbers, 42-44
READ statement, 60-62, 124-25
Relationals

with computed GOSUB
statement, 90-92

in IF/THEN/ELSE statements,
82-86

with strings, 92-93, 294-95
Relative plots, 174-76
REM statement, 22-23, 64
Reserved words. See Commands;

Functions; Statements
Resolution, screen, 160
RESTORE statement, 61-62

with multi-dimensional
arrays, 107-8

RETURN key, 6-7. See
also Carriage return

RETURN statement, 87. See also
GOSUB statement

RIGHT$ function, 117-20
RND function, 42-44

with PALETTE statement,
166-67

RS232 connector, 279-80
RS232 port, 277-78

Save As option, 54
SAVE statement, 227-28
SAY statement

integer array with, 220-22
with TRANSLATE$ statement,

219-22
Screen. See also SCREEN

statement; Windows
creating, 159-60
creating columns on, 154-55
as a file with OPEN "LPT1:"

statement, 272
formatting. See Formatting
locating cursor position

on, 152-55
scrolling, 16-17,49,151-52
width at 23-24, 291

SCREEN statement, 159-60. See
also Screen

and moving graphics, 188
with PALETTE statement,

166-67
SCRN: filename, 272
Scrolling, 16-17, 49

control of, 151-52
Sequential calculations, 35-37
Sequential files

appending, 236-37
buffers and, 232-33

creating address book
with,237-41

formatting with PRINT USING
statement, 241-45

input from disk, 234-36
output to disk, 233-34
sorting, 304-7

Shared variables, 95-97
Shell sorts, 298-301
SfUFT key, 15, 16-17
SIN function, 40

with WAVE statement, 210
Sorts

bubble, 294-98
rearrangements with

bundled,301-7
shell, 298-301

SOUND statement, 209- 10. See
also Speech synthesis

for creating musical notes,
212-15

for creating songs, 215-16
SOUND WAIT/RESUME, 211
with WAVE statement, 210- 12,

217-19
SPACE$ function, 127,

130-32, 275
SPC function, 130- 32, 275
Speech synthesis

for artificial intelligence,
308-11

stress in, 224-25
using SAY and TRANSLA TE$

statements, 219-22
using SAY statement

and phonetic transcription,
222-25

Sprites
crashing, 202- 5
creating, 197-98
displaying, 198-200
moving, 200-202
for telecommunications

program, 283
SQR function, 10-11,42
Statements, 11. See also

Commands; Functions
ALL,229-30
AND,84-86,192-93
APPEND, 236-37
AREA, 179-80
AREPUrILL, 179-80, 182

CPlLL, 93-97, 111-12
CHAIN, 229- 31
CHDIR, 232
CURCLE, 177-79, 196
CLOSE, 233- 36
COLLISION, 202-5
COLOR, 135-37
COMMON, 230-31
DATA See DATA statement
DIM, 101-2, 107, 111
ELSE. See IF/THEN/ELSE

statement
END,68
END IF, 308
FIELD,248
FOR/NEXT. See FOR/NEXT

loops
GET, 187-93, 251
GOSUB. See GOSUB statement
GOTO. See GOTO statement
IF/THEN/ELSE. See

IF/THEN/ELSE statement
INKEY$, 57, 157- 58, 282
I~lTT$, 55-57, 281- 82
I~lTT. See INPlTT statement
LINE I~lTT, 242-44
LINE, 168- 74, 175, 196
LLIST,263
LOCATE. See LOCATE

statement
LPRlNT, 263-64
LPRINT USING, 273- 74
LSET, 249-50, 254
MENU. See MENU statements
MERGE,227- 28
NEXT. See FOR/NEXT loops
NOT,84-86
OBJECT. See OBJECT

statements
ON, 88-92, 143
OPEN. See OPEN statement
OR, 84-86, 192-93
PAINT, 176- 77
PPlLETTE,164- 68
PATTERN,179-83
PRESET, 185-87
PRINT. See PRINT statement
PRINT USING, 132- 35, 241 -45
PSET. See PSET statement
PlTT. See PlTT statement
RANDOMIZE, 42- 43, 166- 67
READ,60-62, 124-25

REM, 22-23, 64
RESTORE, 61 - 62,107- 8
RETURN,87
SAVE, 227-28
SAY, 219-22
SCREEN, 159-60, 166-67, 188
SOUND. See SOUND

statement
STEP. See STEP statement
SWAP,295-96
THEN. See IF/THEN/ELSE

statement
TRANSLATE$,219-22
UCASE$,57-58
WAVE,21O-12
WHILE/WEND, 73-75, 235
WIDTH, 23-24, 131
WINDOW, 155- 60
WRITE, 59-60, 245

Static variables, 94-97, 112
STEP statement

with AREA statement, 179-80
in FOR/NEXT loops, 71-72
for moving graphics, 192
with PSET statement, 174-75

Stop-bits, 281
STR$ function, 32

and substrings, 125
Stress, with speech synthesis,

224- 25
Strings, 115. See also String

variables; Substrings
bytes for storing, 247
centering, 116, 136-37
concatenating, 126
created from substrings, 119
determining length with LEN

function, 116-17
padding, 126-27, 249, 254
relationals and, 92-93, 294-95
searching for substrings, 122-23
truncating, 126-27, 249

String toggle, 148
String variables. See also Strings;

Variables
assigning, 31
as buffers for sequential

files, 236
concatenating, 30-31,126
converting to numeric, 31-32,

124-25,252
naming, 29

Index 353

with PRINT USING statement,
135

in random access files, 249-51
Structured programming,

4- 5,47-51,62-64
array variables as buffers in,

104
Subdirectories, 7, 232
Subprograms, 5, 93-97.

See also Subroutines
array variables in, 111-13

Subroutines, 87- 88. See also
Subprograms

with COLLISION statement,
202-4

with computed GOSUB
statement, 88-92

to create programs with
MERGE statement, 227-28

with ON MENU statement,
142, 240-41

in window programs, 159
Subscript out of range

error message, 102
Substrings. See also Strings

with DATE$ function, 137-38
functions for finding, 117-20
numbers and, 124- 25
for searching random access

files, 254
searching strings for, 122-23
with TIME$ function, 120- 22

Subtraction, 12. See also
Mathematical operations

SWAP statement, 295-96

TAB function, 116, 130-32,
274- 75

TAB key, formatting program
listings with, 21-22,63

TAB stops
defined by WIDTH statement,

23-24
writing sequential files

with, 245
TAN function, 41
Telecommunications

COM1: file and, 280- 82
creating program for, 283-89
modems, 277-80
using program for, 289-91

354 The Amiga Microsoft BASIC Programmer's Guide

Text, 12. See also String
variables in graphics,
172-74

THEN statement See
IF/THEN/ELSE statement

Three-dimensional arrays. See
Multi-dimensional arrays

Tick mark ('), 22-23, 64
TlME$ function, 42-43,

79-80, 120-22
Toggling, in menus, 145-49
Top down programming, 4-5,

48-51. See also Structured
programming

TRANSLATE$ statement,
219-22

Truncating strings, 126-27,
249

Two-dimensional arrays. See
Multi-dimensional arrays

Typefaces, 268-70
Type mismatch error message,

30,61,242

UBOUND function, 102-4
UCASE$ statement, 57-58
Uploading, 279, 282, 290

VAL function, 31-32
with substrings, 124-25

Variables. See also Array
variables; Numeric
variables; String variables

as buffers for sequential files,
234

with cursor position
functions, 152-53

descriptive, 36
with formatting statements,

131,241-45
in FOR/NEXT loops, 69, 71
in IFITHEN/ELSE statement,

80-81
with INPUT statements, 52
in menu programs, 148-49
parallel, 94-96
passed between programs

with CHAIN statement,
229-31

with READ and DATA
statements, 60-62, 124-25

relationals and, 83
shared, 95-97
static, 94-97, 112
string-number conversions,

31-32,124-25,251-52
in subprograms, 93-97

Velocity, of moving sprites
and bobs,200-201

Voice. See SOUND statement;
Speech synthesis

WAVE statement, 210-12
WEND statement See

WHILE/WEND loops
WHILE/WEND loops, 73-75

with EOF function, 235
WIDTH statement, 23-24

setting with INPUT statement,
131

Windows, 17,23-24,155-60.
See also LIST window;
OUTPUT window; Screen

WINDOW statement, 155-60
WRITE statement, 59-60

with sequential files, 245

XOR, 189, 192

Yen symbol, Japanese, 264-65

Zeroes, formatting with PRINT
USING statement, 132-33

ANOTHER COMMODORE BOOK FROM SCOTT, FORESMAN
AND COMPANY

PROGRAMMING COMMODORE
GRAPIDCS WITH YOUR
64 OR 128

By John Michael Lane, 224 pages, softbound, $14.95.
Code: 18084

Improve your graphics programming on the Commodore 64 and 128
computers with this clear and well-written introduction to the world of
Commodore graphics. This highly readable tutorial starts with the sim
plest applications and works up to the more complex

You'll learn how to
• create sprite animation
• design your own character images
• use machine language subroutines
• work with multicolor character modes
• create bar, line, and pie graphs and more

PROGRAMMING COMMODORE GRAPHICS WITH YOUR 64 OR 128
also provides 3 applications programs-for business graphics, a math
bingo game, and a racing game with sprites-that show a variety of
graphics techniques in action.

HERE'S HOW TO ORDER:

Contact your local bookstore or computer store, or send the handy order
form below to:

Scott, Foresman and Company
Professional Publishing Group
1900 East Lake Avenue
Glenview, IL 60025

In Canada, contact
Macmillan of Canada
164 Commander Blvd.
Agincourt, Ontario
M1S 3C7

[1 YES, please send me copies of PROGRAMMING
COMMODORE GRAPHICS WITH YOUR 64 OR 128, $14.95,18084

Please check method of payment

[1 Check/Money Order [1 MasterCard [1 VISA

Amount enclosed $ _____ _
Credit Card No. _____________ Exp. Date _____ _
Signature _______________________ _

Name {please print} ____________________ _
Address ________________________ __

City _____________ State ____ Zip _____ _

Add applicable sales tax, plus 6% of total for shipping.

Full payment must accompany your order.

Mail order form to: Scott, Foresman and Company
Professional Publishing Group
1900 East Lake Avenue
Glenview, IL 60025

A18523

HERE'S HOW TO RECEIVE YOUR FREE CATALOG OF THE LATEST
COMPUTER BOOKS FROM SCOTT, FORESMAN AND COMPANY

Simply mail in the coupon below to receive your free copy of our latest
catalog featuring computer and management books, and find out how
they can benefit you.

[I YES, please send me my free catalog of your latest computer and
management books! I am especially interested to learn more about your
books on [I Programming

[I Business Applications

[I Networking and Telecommunications
[I Other __________ _

Name (please print} ____________________ _
Address ________________________ __

City _____________ State ____ Zip _____ _

Mail coupon to: Scott, Foresman and Company
Professional Publishing Group
1900 East Lake Avenue
Glenview, Illinois 60025

B18523

Pro ram Your Amiga Quickly and Easi y

Reviewers say:

" .. . exceptionally clear, fun- to-do examples really speed up the
Amiga Microsoft BASIC learning process:'

" If your time is of valu~, t his is the book for you:'

Master Amiga Microsoft BASIC with this easy-to-understand book. You'll find a
complete, step-by-step guide to Microsoft BASIC for the Amiga, and numerous,
interesting examples of advanced features, designed for both beginning and
intermediate users.

Noted computer author Bill Sanders helps you discover how to

crea te and customize your own software for your individual needs

teach your children with learning games you can write yourself ,
write database and multi-tasking programs

integrate different programs to work together

call up your favorite electronic information service using the book's terminal
program

The Amiga Microsoft BASIC Programmer's Guide gives special attention to the
color graphics and voice synthesizer - two of Amiga 's most unique features . It
also provides extensive coverage of pull-down menus and special mouse control,
using practical program examples, including a specia l artificia l inte ll igence
program.

With The Amiga Microsoft BASIC Programmer's Guide, learning how to un
leash your Amiga 's potential has never been easier.

Dr. William B. Sanders is a professor at San Diego State University
and is the author of numerous computer books, including
THE ELEMENTARY ATARI ST. He is also the author of several
commercial software programs.

Scott, Foresman and Company

ISBN 0- 673-18523-0

