
AmigaTMC Compiler

User's Reference Guide

Host Operating System: AmigaDOS

Target Processor: 68000

Target Operating System: AmigaDOS

Amiga C was developed by Lattice, Inc.

COPYRIGHT

This manual Copyright © Commodore-Amiga, Inc. and Lattice, Inc., 1986. All Rights
Reserved. This document may not, in whole or In part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine readable form without prior
consent, In writing, from Commodore-Amiga, Inc.

This software Copyright © Lattice, Inc., 1986. All Rights Reserved. The distribution and sale
of this product are intended for the use of the original purchaser only. Lawful users of this
program are hereby licensed only to read the program, from Its medium into memory of a
computer, solely for the purpose of executing the program. Duplicating or copying this
product for purposes other than backup, and seiling or otherwise distributing this product are
violations of the law.

DISCLAIMER

THE PROGRAM IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT THE DEVELOPER OR
COMMODORE-AMIGA, INC. OR ITS DEALERS) ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION. FURTHER, COMMODORE-AMIGA
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OF, OR THE RESULTS OF THE USE OF, THE PROGRAM IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE; AND YOU
RELY ON THE PROGRAM AND THE RESULTS SOLELY AT YOUR OWN RISK. IN NO EVENT
WILL COMMODORE-AMIGA, INC. BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE PROGRAM EVEN IF
IT HAS BEEN ADVISED OF THE POSSIBLITY OF SUCH DAMAGES. SOME LAWS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LlABLITIES FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY.

Amiga Is a trademark of Commodore-Amiga, Inc
Lattice is a trademark of Lattice, Inc., P. O. Box 3072, Glen Ellyn, II 60138.

(312) 858-7950, TWX 910-291-2190
IBM and IBMPC are registered trademarks of IBM Corp ..

CBM Product Number 327270-02 rev B

Contents

SECTION 1: Introduction and Basic Concepts 1-1

1.1 Documentation 1-2

1.2 Basic Concepts 1-3

SECTION 2: Language Definition 2-1

2.1 Summary of Differences 2-2

2.1.1·Differences from Previous Versions 2-2

2.1.2 Arbitrary Limitations 2-4

2.2 Major Language Features 2-5

2.2.1 Pre-Processor Features 2-5

2.2.2 Arithmetic Objects 2-7

2.4.6 Function Declarations

with Argument Types 2-26

2.2.3 Derived Objects 2-8

2.2.4 Storage Classes 2-9

2.2.5 Scope of Identifiers 2-11

2.2.6 Initializers 2-12

2.2.7 Expression Evaluation 2-13

2.2.8 Control Flow 2-15

2.3 Comparison to the

C Reference Manual 2-16

2.4 New Language Features 2-23

2.4.1 Void 2-23

2.4.2 Enumerations 2-23

2.4.3 Aggregate Assignment 2-24

2.4.4 Passing Aggregates by Value 2-25

2.4.5 Functions Returning Aggregates 2-26

SECTION 3: Standard Library Functions 3-1

3.1 Memory Allocation Functions 3-2

3.2.3 Program Exit and Jump Functions 3-52

3.3 Utility Functions and Macros 3-56

3.3.1 Memory Utilities 3-56

3.3.2 Character Type Macros

and Functions 3-60

3.1.1 Level 3 Memory Allocation 3-2

3.1.2 Level 2 Memory Allocation 3-6

3.1.3 Levell Memory Allocation 3-9

3.2 I/O and System Functions 3-12

3.2.1 Level 2 I/O Functions and Macros 3-12

3.2.2 Level 1 I/O Functions 3-40

3.3.3 String Utility Functions 3-61

3.3.4 Utility Macros 3-83

3.4 Mathematical Functions 3-83

4.1.2 Phase 2 4-11

SECTION 4: Program Generation

for AmigaDOS 4-1

4.1 Module Compilation 4-2

4.1.1 Phase 1 4-2

4.1.3 LC Command (Compiler Driver) 4-14

4.1.4 Object Module Disassembler 4-16

4.2 Program Linking 4-19

4.3 Compiler Processing 4-22

4.3.1 Phase 1 4-22

4.3.2 Phase 2 4-23

4.3.3 Error Processing 4-24

SECTION 5: 68000 Code Generation 5-1

5.1 Machine Dependencies 5-2

5.1.1 Data Elements 5-2

5.1.2 External Names 5-4

5.1.3 Arithmetic Operations

and Conversions 5-5

5.1.4 Floating Point Operations 5-7

5.1.5 Bit Fields 5-8

5.1.6 Register Variables 5-9

5.2 General Code Generation Strategies 5-9

5.3 Run-Time Program Environment 5-12

5.3.1 Object Code Conventions 5-14

5.3.2 Linkage Conventions 5-15

5.3.3 Function Call Conventions 5-16

5.3.4 Assembly Language Interface 5-19

SECTION 6: AmigaDOS System Interface 6-1

6.1 Program Execution 6-2

6.1.1 Run-Time Structure 6-2

6.1.2 Program Execution by Command 6-2

6.1.3 Using args and Workbench 6-5

6.1.4 Program Execution by Icon Selection 6-7

6.2 Library Implementation 6-8

6.2.1 File I/O 6-8

APPENDIX B: Compiler Errors B-1

6.2.2 Device I/O 6-10

6.2.3 Memory Allocation 6-10

6.2.4 Program Entry/Exit 6-12

6.2.5 Special Functions 6-14

6.2.6 Resources 6-15

6.2.7 File I/O 6-15

6.2.8 Single Character I/O 6-16

6.2.9 Windows 6-16

6.2.10 Memory Allocation 6-17

APPENDIX A: Error Messages

A.1 Unnumbered Messages

A.2 Numbered Messages

A-1

A-1

A-5

APPENDIX C: List of Files C-1

APPENDIX D: Getting Started with Amiga C D-1

INDEX 1-1

APPENDIX E: Compiler History E-1

APPENDIX F: The ATOMUtility F-1

APPENDIX G: Operator Summary G-1

SECTION 1:

Introduction and Basic Concepts

This document provides a functional description of Amiga C, an

implementation of the Lattice C compiler, a portable compiler for the

high level programming language called C. It makes no attempt to

discuss either programming fundamentals or how to program in C

itself. Although it has become somewhat outdated by recent

enhancements to the language, the authoritative text on Cremains

The C Programming Language, by Brian W. Kernighan and Dennis

M. Ritchie (Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1978); it provides an excellent tutorial introduction to the language.

1.1 Documentation

The manual is divided into six sections. The first three address the

Amiga implementation in general terms, while the second three

Introduction and Basic Concepts 1-1

describe the details of program development for a particular context.

This context can be characterized by three variables: (1) the host

operating system, under which the compiler executes and programs

are developed; (2) the target processor, which will execute the

machine language instructions generated by the compiler; and (3) the

target operating system, under which developed programs will be

loaded for execution. In some contexts the latter may be null, that

is, no operating system is involved because programs are part of a

stand-alone system and are placed in read-only memory. If the host

and target processors and operating systems are all the same, the

compiler is termed a native compiler, while if they differ, it is called a
cross compiler.

The general topics of the sections of the manual are as follows. First,

this introduction presents some basic concepts. Second, the language

accepted by the compiler is described. The third section then

presents the standard library functions in functional groups with

usage summaries. The fourth section describes program

development, including operating instructions for the compiler on the

host operating system, while the fifth section describes the generated

code and run-time program environment for the target processor.

The sixth section describes the target operating system interfaces in

terms of the standard library functions and the special functions
provided for that system.

As this document is intended to serve as a reference manual, each

topic is usually presented in full technical detail as it is encountered.

Some reference to sections not yet encountered is unavoidable, but

these references are specifically noted.

Error messages are described in Appendix A, and reporting

procedures for compiler errors in Appendix B. A list of the files

shipped with this version of Amiga C are contained in Appendix C. A

description of how to get started with Amiga C is in Appendix D.

Compiler history is described in Appendix E. A utility that prepares

a program for use with extended memory is described in Appendix F.

1-2 Introductionand BasicConcepts

1.2 Basic Concepts

Amiga C is a "classic" implementation of a compiled programming

language, whose goal is fast, compact programs suitable for

production use. Program development in such a system consists of a

number of iterated logical steps, as the diagram below shows:

Introductionand BasicConcepts 1-3

1-4 Introduction and Basic Concepts

After each step in the process, a check for errors is made. Notice

that the detection of an error invariably leads back to the first step,

and the repetition of the sequence.

(1) Source file preparation

The first step is to prepare text files for submission to the compiler.

These files define functions, which determine the flow of control in

the program, and data elements, which are used in the program for

the storage and manipulation of data. Since program source files are

ordinary text files, any general purpose text file editor may be used to

create and revise these files.

(2) Object module compilation

The function of the compiler is to translate the source language

representation of the program's components into what is called object

format. This format is an encoded sequence of machine language

instructions with linkage information. It represents a form

intermediate between the source files and the final program file.

Along with the translation process, the compiler verifies that the

source file conforms to the legal specifications of the language. An

error-free compilation does not, however, insure a working program.

(3) Program linking

In order to make programming a more manageable task, programs

can be built out of collections of smaller components called modules.

The collection of the component object modules into a single

program is called program linking, and it requires that all of the

modules are compiled and available for inclusion in the finished

program. Programs can also incorporate modules from a library of

useful functions provided with the compiler.

(4) Program execution and debugging

Once the program is completely linked, it can be executed to

perform the desired processing. Since most programs rarely work

exactly as designed. the detection and correction of program errors

becomes necessary. This process is known as debugging, and

involves repetition of the whole process of editing, compiling. linking

and execution.

Because of the number of steps involved in the process and the

length of time required to perform each step, this kind of program

development tends to be costly as far as the time required to produce

finished programs. The end product, however, is a program which

executes quickly and requires a minimal amount of memory for

execution.

Introduction and Basic Concepts 1-5

SECTION 2:

Language Definition

The Lattice portable C compiler accepts a program written in the C

programming language, determines the elementary actions specified

by that program, and eventually translates those actions into machine

language instructions. Although the final result of these processes is

highly machine-dependent, the actual language accepted by the

compiler is, for the most part, independent of any system or

implementation details. This section presents the language defined

by Version 3 of the Lattice C compiler, for this implementation, also

known as Amiga eVersion 1.1. Since this language conforms closely

to that of UNIX System V and differs in several ways from previous

implementations of Lattice C, the major differences are first

Language Definition 2-1

2-2 Language Definition

presented. The major features of the language are then discussed.

not in any attempt at completeness. but simply for the sake of

showing them from a different perspective.

The Lattice C language definition uses the Kernighan and Ritchie text

The C Programming Language as a base for comparisons. In the

future. a complete language reference for Lattice C will be made

available as an additional document. Until that time, the

specification of the language will remain the Kernighan and Ritchie

"C Reference Manual" as amended in Section 2.3. For those

programmers who are unfamiliar with some of the features of the

language added after the publication of the Kernighan and Ritchie

text, some examples have been provided in Section 2.4.

2.1 Summary of Differences

There are two classes of differences that appear in a discussion of an

implementation of a programming language. The first class is that of

actual semantic differences, that is. variations which cause the

meaning of language constructs to differ. The second class is merely

a reflection of the practical limitations to which all programs -

including compilers -- are subject. Each of the followingsubsections

presents the respective details for the Amiga implementation of C.

2.1.1 Differences from Previous Versions

Version 1.1 of Amiga C (Version 3 of Lattice C) incorporates several

of the more recent additions to the C programming language, as it

evolved at Bell Telephone Laboratories. It conforms closely to the

version of the language supported under UNIX System V. Efforts

are now under way to define an ANSI standard for the language, but

many of the features being discussed by the standardization

committee are not yet firmly established. Accordingly, Lattice has

not chosen to support any of the new language features with one

exception: an argument type-checking mechanism has been

provided which, although not fully compatible with the proposed

standard, at least addresses one of the more difficult debugging

problems of the language. For programmers who have used a

previous version of Lattice C, here is a summary of the major

changes in Version 3:

• The reserved symbol unsigned may be applied to any of

the integral data types, i.e., it is now a true modifier

rather than a separate data type.

• The special type void is supported; it describes a function

which has no return value.

• Enumerated data types may be declared using the special

type enum; these objects are integral but may only

assume values from a specified list of identifiers. The

declaration is similar to that for structure and union

objects; the identifiers defining permissible values can be

used as integer constants.

• Structures and unions of identical type may be copied by

means of an assignment statement. Structures and

unions may be passed by value to functions, and

functions may return a structure or union as a function

value.

• External functions may be declared with a list of type

names enclosed in the function call parentheses. When

such a function is called, the compiler checks the

supplied arguments against the expected types and

number of parameters. Warning messages are issued if

the actual types do not match.

• Several minor deviations from the standard language

have been corrected. The compiler no longer accepts

Language. Definition 2-3

the character $ in identifiers; comments do not nest;

multiple character constants are not accepted; and

separate copies of string constants are generated for each

instance of identical strings. All of these features can be

forced to revert to their previous characteristics by means

of a compile time option. In addition, char declarations

can be forced to be interpreted as unsigned char. See

Section 4.1.1 for details.

Several new warning messages have been added to the compiler as an

assistance to debugging, including a warning if an auto variable is

used in a context where it may not have been initialized, and a

warning if a locally visible object is declared but never referenced. In

addition, the error recovery of the compiler has been improved in an

effort to reduce the number of spurious error messages.

2.1.2 Arbitrary Limitations

Although the definition of a programming language is an idealized

abstraction, any real implementation is constrained by a number of

factors, not the least of which is practicality. The Amiga compiler

imposes the following arbitrary restrictions on the language it accepts:

• The maximum value of the constant expression defining

the size of a single subscript of an array is two less than

the largest unsigned target machine int (65533 for a

16-bit int, 4294967293 for a 32-bit int). The size of

arrays may also be limited by other machine-dependent

restrictions; see the section on target machine code

generation for details.

• The maximum length of an input source line is 512

bytes.

• The maximum size of a string constant is 256 bytes.

2-4 Language Definition

• Macros with arguments are limited to a maximum

number of 16 arguments.

• The maximum length of the substitution text for a

#define macro is 512 bytes.

• The maximum level of #include file nesting is 10.

These limitations are imposed because of the way objects are

represented internally by the compiler; our hope is that they are

reasonably large enough for most real programs.

2.2 Major Language Features

The material presented in this section is meant to clarify some of the

language features which are not always fully defined. These are

features which depend on implementation decisions made in the

design of the compiler itself, or on interpretations of the language

definition. Those language features which are specifically machine

dependent are described in Section 5 of this manual.

2.2.1 Pre-Processor Features

The Amiga C compiler supports the full set of pre-processor

commands described in Kernighan and Ritchie. Most

implementations perform the pre-processor commands concurrently

with lexical and syntactic analysis of the source file, because an

additional compilation step can be avoided by this technique. Other

versions of the compiler incorporate a separate pre-processor phase

in order to reduce the size of the first phases of the compiler. In

either case, the analysis of the pre-processor commands is largely

independent of the compiler's C language analysis. Thus, #define

text substitutions are not generally performed for any of the

pre-processor commands, although nesting of macro definitions is

Language Definition 2-5

#define A B

#define B A

possible since substituted text is always re-scanned for new #define

symbols.

Because the compiler uses a text buffer of fixed size, a particularly

complex macro may occasionally cause a line buffer overflow

condition; usually, however, this error occurs when more than one

macro reference occurs in the same source line, and can be

circumvented by placing the macros on different lines.

Circular definitions such as:

will be detected by the compiler if either A or B is ever used, as will

more subtle loops. Like many other implementations of C, the

Amiga compiler supports nested macro definitions, so that if the line:

#define XYZ 12

is followed later by:

#define XYZ 43

the new definition takes effect, but the old one is not forgotten. Note

that the compiler issues a warning message whenever a redefinition

occurs. In other words, after encountering:

#undef XYZ

the former definition (12) is restored. To completely undefine XYZ,

an additional #undef is required. The rule is that each #define must

be matched by a corresponding #undef before the symbol is truly

"forgotten. "

Two clarifications should be noted with regard to the #if command. If

a symbol appears in an #if expression which has not been defined in

a #define command, it is interpreted as if a value of zero had been

2-6 Language Definition

short or short int

char

long or long int

float

double or long float

specified. Similarly. a symbol which has been derined with a null

substitution text is interpreted as if a value of one had been specified.

These conventions are consistent with #ifdef usage, and permit the

use of expressions like:

#if SYM1 | SYM2 I SYM3

which causes subsequent code to be processed if any of the symbols

are defined.

2.2.2 Arithmetic Objects

Five types of arithmetic objects are supported by the Amiga

compiler; along with pointers, these objects represent the entities

which can be manipulated in a C program. The types are:

In addition, unsigned may be applied as a modifier to any of the

integral data types. This modification does not affect the size of the

object, and is significant only when such an object is used in an

expression involving conversion, multiplication, division, comparison,

or bitwise right shifts.

The natural size of integers for the target machine (the machine for

which code is being generated) is indicated by a plain int type

specifier; this type will be identical to either short or long, depending

on the architecture of the target machine. Enumeration data types

are a special type of integral data; they are treated as int, although

the compiler may elect to use a smaller integer for the actual storage

if the range of values permits.

LanguageDefinition 2-7

struct {

short i;

char c;

} x[10];

The compiler follows the standard pattern for conversions between

the various arithmetic types, the so-called "usual arithmetic

conversions" described in the Kernighan and Ritchie text. The only

exception to this occurs in connection with byte-oriented machines,

where expansion of char to int may be avoided if both operands in

an expression are char, and the target machine supports byte-mode

arithmetic and logical operations.

2.2.3 Derived Objects

The Amiga C compiler supports the standard extensions leading to

various kinds of derived objects. including pointers. functions. arrays,

and structures and unions. Declarations of these types may be

arbitrarily complex, although not all declarations result in a legal

object. For example, arrays of functions or functions returning arrays

are illegal. The compiler checks for these kinds of declarations and

also verifies that structures or unions do not contain instances of

themselves. Objects which are declared as arrays cannot have an

array length of zero. unless they are formal parameters or are

declared extern (see Section 2.2.4). All pointers are assumed to be

the same size -- usually. that of a plain int -- with one exception.

On word-addressed machines, pointers which point to objects which

can appear on an address boundary within a machine word may

differ in size from pointers to objects which must be

machine-word-aligned.

Note that the size of aggregates (arrays and structures) may be

affected by alignment requirements. For example, the array:

2-8 Language Definition

will occupy 40 bytes on machines which require short objects to be

aligned on an even byte address. Any such alignment padding willbe

included in the value returned by sizeof.

2.2.4 Storage Classes

Declared objects are assigned by the compiler to storage offsets which

are relative to one of several different storage bases. The assigned

storage base depends on the explicit storage class specified in the

declaration, or on the context of the declaration, as follows:

External An object is classified as external if the extern

keyword is present in its declaration, and the

object is not later defined in the source file (that

is, it is not declared outside the body of any

function without the extern keyword). Storage is

not allocated for external items because they are

assumed to exist in some other file, and must be

included during the linking process that builds a

set of object modules into a load module.

Static An object is classified as static if the static

keyword is present in its declaration or if it is

declared outside the body of any function

without an explicit storage class specifier.

Storage is allocated for static items in the data

section of the object module; all such locations

are initialized to zero unless an initializer

expression is included in the declaration (see

Section 2.2.6). Static items declared outside the

body of any function without the static keyword

are visible in other files, that is, they are

externally defined. Note that string constants

are allocated as static items, and are treated as

unnamed static arrays of char.

Language Definition 2-9

Auto An object is classified as auto if the auto

keyword is present in its declaration, or if it is

declared inside the body of any function without

an explicit storage class specifier (it is illegal to

declare an object auto outside the body of a

function). Storage is presumably allocated for

auto items using a stack mechanism during

execution of the function in which they are

defined.

Formal An object is classified as formal if it is a formal

parameter to one of the functions in the source

file. Storage is presumably allocated for formal

items when a function call is made during

execution of the program.

Note that the first phase of the compiler makes no assumption about

the validity of the register storage class declarator. Items which are

declared register are so flagged, but storage is allocated for them

anyway against either the auto or the formal storage base. The

implementation of register is machine-dependent and may not be

supported in some cases.

Note also that if the -x compile-time option is used, the implicit

storage class for items declared outside the body of any function

changes from static to extern. This allows a single header file to be

used for all external data definitions. When the main function is

compiled, the -x option is not used, and so the various objects are

defined and made externally visible; when the other functions are

compiled the -x option causes the same declarations to be

interpreted as references to objects defined elsewhere.

2-10 Language Definition

2.2.5 Scope of Identifiers

The Amiga compiler conforms almost exactly to the scope rules

discussed in Appendix A of the Kernighan and Ritchie text (pp.

205-206). The only exception arises in connection with structure

and union member names, where (in accordance with later versions

of the language) the compiler keeps separate lists of member names

for each structure or union; this means that additional classes of

non-conflicting identifiers occur for the various structures and

unions. Two additional points are worth clarifying.

First, when identifiers are declared at the beginning of a statement

block internal to a function (other than the first block immediately

following the function name), storage for any auto items declared is

allocated against the current base of auto storage. When the

statement block terminates, the next available auto storage offset is

reset to its value preceding those declarations. Thus, that storage

space may be reused by later local declarations. Rather than

generate explicit allocate and deallocate operations, the compiler

uses this mechanism to compute the total auto storage required by

the function; the resulting storage is allocated whenever the function

is called. With this scheme, functions will allocate possibly more

storage than will be needed (in the event that those inner statement

blocks are not executed), but the need for run-time dynamic

allocation within the function is avoided.

Second, when an identifier with a previous declaration is redefined

locally in a statement block with the extern storage class specifier, the

previous definition is superseded in the normal fashion but the

compiler also verifies compatibility with any preceding extern

definitions of the same name. This is done in accordance with the

principle expressed in the text, namely that all functions in a given

program which refer to the same external identifier refer to the same

object. Within a source file, the compiler also verifies that all

external declarations agree in type. The point is that in this

particular case -- where a local block redefines an identifier as

LanguageDefinition 2-11

int a[5], (*pa)[5] = &a;

extern -- the declaration effectively does not disappear upon

termination of the block, since the compiler now has an additional

external item for which it must verify equivalent declarations.

2.2.6 Initializers

Objects which are of the static storage class (as defined in Section

2.2.4) are guaranteed to contain binary zeros when the program

begins execution, unless an initializer expression is used to define a

different initial value. The Amiga compiler supports the full range of

initializer expressions described in Kernighan and Ritchie, but

restricts the initialization of pointers somewhat. An arithmetic object

may be initialized with an expression that evaluates to an arithmetic

constant which, if not of the appropriate type, is converted to that of

the target object.

The expression used to initialize a pointer is more restricted: it must

evaluate to the int constant zero or to a pointer expression yielding a

pointer of exactly the same type as the pointer being initialized. This

pointer expression can include the address of a previously declared

static or extern object, plus or minus an int constant, but it cannot

incorporate a cast (type conversion) operator, because pointer

conversions are not evaluated at compile time (exception: a cast

operator can be used on an int constant but not on a variable name).

This restriction makes it impossible to initialize a pointer to an array

unless the & operator is allowed to be used on an array name,

because the array name without the preceding & is automatically

converted to a pointer to the first element of the array. Accordingly,

the Amiga compiler accepts the & operator on an array name so that

declarations such as:

2-12 Language Definition

can be made. Note that if a pointer to a structure (or union) is being

initialized, the structure name used to generate an address must be

preceded by the & operator.

More complex objects (arrays and structures) may be initialized by

bracketed, comma-separated lists of initializer expressions, with each

expression corresponding to an arithmetic or pointer element of the

aggregate. A closing brace can be used to terminate the list early; see

Appendix A of Kernighan and Ritchie for examples. Unions may be

initialized in this implementation; a single expression corresponding

to the first member of the union is used. A character array may be

initialized with a string constant which need not be enclosed in

braces; this is the only exception to the rule requiring braces around

the list of initializers for an aggregate.

Initializer expressions for auto objects can only be applied to simple

arithmetic or pointer types (not to aggregates), and are entirely

equivalent to assignment statements.

2.2.7 Expression Evaluation

All of the standard operators are supported by the Amiga compiler,

in the standard order of precedence (see p. 49 of Kernighan and

Ritchie). Expressions are evaluated using an operator precedence

parsing technique which reduces complex expressions to a sequence

of unary and binary operations involving at most two operands.

Operations involving only constant operands (including floating point

constants) are evaluated by the compiler immediately, but no special

effort is made to re-order operands in order to group constants.

Thus, expressions such as:

c - 'A' + 'a'

must be parenthesized so that the compiler can evaluate the constant

part:

Language Definition 2-13

c + ('a' - 'A')

If at least one operand in an operation is not constant, the

intermediate expression result is represented by a temporary storage

location, known as a temporary. The temporary is then "plugged

into" the larger expression and becomes an operand of another

binary or unary operation; the process continues until the entire

expression has been evaluated. The lifetimes of temporaries and

their assignment to storage locations are determined by a subroutine

internal to the first phase of the compiler, which recognizes

identically generated temporaries within a straight-line block of code

and eliminates recomputation of equivalent results. Thus, common

sub-expressions are recognized and evaluated only once. For

example, in the statement:

a[i+1] = b[i+1];

the expression i+1 will be evaluated once and used for both

subscripting operations. Expressions which produce a result that is

never used and which have no side effects, such as:

i+j;

are discarded by this same subroutine.

Within the block of code examined by the temporary analysis

subroutine, operations which produce a temporary result are noted

and remembered so that later equivalent operations may be deleted,

as noted above. Two conditions (other than function calls, which

may have undetermined side effects) cause the subroutine to discard

an operation and no longer check for the equivalent operation later:

(1) if either of its operands appears directly as a result of a

subsequent operation; or (2) if a subsequent operation defines an

indirect (i.e., through a pointer) result for the same type of object as

one of the original operands. The latter condition is based on the

compiler's assumption that pointers are always used to refer to the

correct type of target object, so that, for example, if an assignment is

2-14 Language Definition

made using an int pointer only objects of type int can be changed.

Only when the programmer indulges in type punning -- using a

pointer to inspect an object as if it were a different type -- is this

assumption invalid, and it is hard to conceive of a case where the

common SUb-expression detection will cause a problem with this

somewhat dubious practice. Such inspections are generally better left

to assembly language modules in any case.

With the exception of this common sub-expression detection, which

may replace an operation with a previous, equivalent one,

expressions are evaluated in strict left-to-right order as they are

encountered, except, of course, where that is prevented by operator

precedence or parentheses. It is best not to make any assumptions,

however. about the order of evaluation, since the code generation

phase is generally free to re-order the sequence of many operations.

The most important exceptions are the logical OR (II) and logical

AND (&&) operators, for which the language definition guarantees

left-to-right evaluation. The code generation phase may have other

effects on expression evaluation. Check the implementation section

of this manual for full details.

2.2.8 Control Flow

C offers a rich set of statement flow constructs, and the Amiga

compiler supports the full complement of them. Some minor points

of clarification are noted here. First of all, the compiler does verify

that switch statements contain:

1. At least one case or default entry.

2. No duplicate case values.

Language Definition 2-15

3. Not more than one default entry.

Code within a switch statement which cannot be reached is flagged as

an error by the compiler.

CRM 2.1 Comments

The code generation phase generally makes a special effort to

generate efficient sequences for control flow. In particular, the size

and number of branch instructions is kept to a minimum by extensive

analysis of the flow within a function, unreachable code is discarded,

and switch statements are analyzed to determine the most efficient of

several possible machine language constructs. Check the

implementation section of this manual for the details regarding this

particular code generator.

2.3 Comparison to the

Kernighan & Ritchie "C Reference Manual"

The most precise definition of the C programming language generally

available is in Appendix A of the Kernighan and Ritchie text, which

is entitled C Reference Manual. This section presents, in the same

order defined in the text, a series of amendments or annotations to

that manual; this commentary explicitly states any deviations of the

Amiga C language implementation from the features described.

Because this implementation is very close to the Kernighan and

Ritchie standard, many of the sections apply exactly as written; these

sections will not be commented upon. Any section not listed here

can be assumed to be fully valid for the language accepted by the

Amiga C compiler.

Although the default mode is that comments do not nest, a compile

time option can be used to allow comments to be nested, so that each

/* encountered must be matched by a corresponding */ before the

comment terminates.

2-16 Language Definition

CRM 2.3 Keywords

Two additional keywords, void and enum, are reserved.

CRM 2.4.1 Integer constants

In addition to the standard integer constants, names declared as

values for an enumeration type may be used as int constants.

'\xf9'

CRM 2.4.3 Character constants

An additional two escape sequences are recognized: \v specifies a

vertical tab (VT) character, and \x is used to introduce one or two

hexadecimal digits which define the value of a single character. Thus

generates a character with the value 0xF9. Although by default the

compiler permits only a single character to be defined, a compile

time option can be used to permit multiple character constants. The

result may be int or long, depending on the number of characters,

and its value is machine-dependent.

Language Definition 2-17

CRM 2.5 Strings

The same \x convention described above can be employed in strings,

where it is generally more useful. In addition, a compile time option

can be used to force the compiler to recognize identically written

string constants and only generate one copy of the string. (Note that

strings used to initialize char arrays - not char * -- are not actually
generated, because they are really just shorthand for a

comma-separated list of single-character constants.)

CRM 2.6 Hardware characteristics

See the implementation section of this manual for hardware
characteristics.

CRM 4. WHAT'S IN A NAME?

Each enumeration is conceptually a separate type with its own set of

named values. The properties of an enum type are identical to those

of int type.

The void type is used as the type returned by functions that generate

no return value; it thus represents the absence of any value.

CRM 6. CONVERSIONS

An expression can be converted to type void by means of a cast; the

most common use of this is to make explicit the discarding of a return

value from a function. An expression of type void, however, cannot

itself be converted or used in any way.

CRM 7.1 Primary expressions

The Amiga compiler always enforces the rules for the use of

structures and unions for the simple reason that it cannot otherwise

determine which list of member names is intended. Since the

compiler maintains a separate list of members for each type of

structure or union, the primary expression preceding the. or ->
operator must be immediately recognizable as a structure or pointer

to a structure of a specific type.

2-18 Language Definition

CRM 7.2 Unary operators

The requirement that the & operator can only be applied to an lvalue

is relaxed slightly to allow application to an array name (which is not

considered an lvalue). Note that the meaning of such a construct is a

pointer to the array itself, which is quite different from a pointer to

the first element of the array. The difference between a pointer to

an array and to an array's first element is only important when the

pointer is used in an expression with an int offset, because the offset

must be scaled (multiplied) by the size of the object to which the

pointer points. In this case the target object size is the size of the

whole array, rather than the size of a single element, if the pointer

points to the array as a whole.

CRM 7.7 Equality operators

The only integer to which a pointer may be compared is the integer

constant zero.

CRM 7.14 Assignment operators

Both operands of the simple assignment operator = may be structures
or unions of the same type.

CRM 8.1 Storage class-specifiers

The text states that the storage class-specifier, if omitted from a

declaration outside a function, is taken to be extern. This is

somewhat misleading, if not plainly inaccurate; in fact (as the text

points out in cRM 11.2), the presence or absence of extern is critical

to determining whether an object is being defined or referenced. As

Language Definition 2-19

void

enum-specifier

noted in Section 2.2.4 of this document, if extern is present, then the

declared object either exists in some other file or is defined later in

the same file; if no storage class specifier is present, then the

declared object is being defined and will be visible in other files. If

the static specifier is present, the object is also defined but is not

made externally visible. The only exception to these rules occurs for

functions, where it is the presence of a defining statement body that

determines whether the function is being defined.

The Amiga compiler can be forced to assume extern for all

declarations outside a function by means of the -x compile time

option. Declarations which explicitly specify static or extern are not

affected.

CRM 8.2 Type specifiers

Two additional type specifiers are supported:

The following additional multiple keyword types are recognized:

unsigned short

unsigned short int

unsigned long

unsigned long int

CRM 8.5 Structure and union declarations

The Amiga compiler treats the names of structure members quite

differently from Kernighan and Ritchie. The names of members and

tags do not conflict with each other or with the identifiers used for

ordinary variables. Both structure and union tags are in the same

2-20 Language Definition

Language Definition 2-21

class of names, so that the same tag cannot be used for both a

structure and a union. A separate list of members is maintained for

each structure; thus, a member name may not appear twice in a

particular structure, but the same name may be used in several

different structures within the same scope.

Enumerations are declared in much the same way as structures and

unions, with the list of member declarations replaced by a simple list

of identifiers. Enumerations are unique types which can only assume

values from a list of named constants. The language treats them as

int values but restricts operations on them to assignment and

comparison. (The named constants, however, may appear wherever

an int is legal.) The optional name which may follow the keyword

enum plays the same role as the structure or union tag; it names a

particular enumeration. All such names share the same space as

structure and union tags. The names of enumerators in the same

scope must be distinct from each other and from those of ordinary

variables.

CRM 8.7 Type names

Although a structure or union may appear in a type name specifier, it

must refer to an already known tag, that is, structure definitions

cannot be made inside a type name. Thus, the sequence

(struct { int high, low; } *) x

is not permitted, but

struct HL { int high, low; };

(struct HL *) x

is acceptable.

CRM 12.3 Conditional compilation

CRM 10.2 External data definitions

The Amiga compiler applies a simple rule to external data

declarations: if the keyword extern is present, the actual storage will

be allocated elsewhere, and the declaration is simply a reference to

it. Otherwise, it is interpreted as an actual definition which allocates

storage (unless the -x option has been used; see the comments on

CRM 8.1).

The constant expression following #if may not contain the sizeof

operator, and must appear on a single input line.

CRM 12.4 Line control

Although the filename for #line is denoted as identifier, it need not

conform to the characteristics of C identifiers. The compiler takes

whatever string of characters is supplied; the only lexical requirement

for the filename is that it cannot contain any white space.

CRM 14.1 Structures and unions

Structures and unions may be assigned, passed as arguments to

functions. and returned by functions.

The escape from typing rules described in the text is explicitly not

allowed by the Amiga compiler. In a reference to a structure or

union member. the name on the right must be a member of the

aggregate named or pointed to by the expression of the left. This

implementation, however, does not attempt to enforce any

2-22 Language DefInition

Language Definition 2-23

restrictions on reference to union members, such as requiring a value

to be assigned to a particular member before allowing it to be

examined via that member.

2.4 New Language Features

This section provides simple examples of the use of several of the

new language features not described in the Kernighan and Ritchie

text.

2.4.1 Void

The reserved word void is used to describe a function that has no

return value:

void novalO; 1* function with no return value */

void (*vp)O; /* pointer to void function */

While void operands may never be used in an expression, it is

occasionally useful to cast something to void:

int xfuncO; /* function returning int */

(void)(xfunc (a, b»; /* discard return value */

The use of the cast shows that the programmer is intentionally

discarding the return value from xfunc.

2.4.2 Enumerations

An enumerated data object is integral but may only assume values

from a specified list of identifiers, which can be viewed as integer

/* defining an enumerated data type */

constants. The actual values assigned to the identifiers normally

begin at zero and are incremented by one for each successive

identifier in the list. An explicit value, however, can be forced for

any identifier by using an = assignment. Subsequent identifiers are

assigned that new value plus one, and so forth. Here is an example:

enum color { red, blue, green = 4, puce, lavender };

/* defining enumerated data objects and pointers */

enum color x, *px;

/* using enumerated data objects */

x = red;
*px = x;
if (x == lavender) px = &x;

In this example, the symbols associated with the enumerated data

type color are assigned the following values:

0=> red

1 => blue

4 => green

5 => puce

6 => lavender

2.4.3 Aggregate Assignment

Structures or unions of identical type may be copied by assignment:

2-24 Language Definition

Language Definition 2-25

struct XYZ

{

int x;

double y;

long z;

} x, y, *px;

x = y;
*px = x;
*/

/* copies contents of y to x */

/ * copies x to the pointed to struct

For purposes of assignment or passing to functions (see below),

structures of identical type may also appear in a conditional

expression:

y = (i > 30) ? x : *px;

2.4.4 Passing Aggregates by Value

A structure or union which appears in an argument list without a

preceding ampersand (&) is passed by value to the function:

struct XYZ q;

functn(q);

The called function must make an appropriate declaration:

void functn(a);

struct XYZ a;

Because many existing programs pass the address of a structure

without using an ampersand (&) operator, the compiler generates a

warning whenever an aggregate is passed by value to a function. Note

that the Amiga implementation of aggregate passing by value actually

supplies the called function with a pointer which it uses to make a

local copy of the caller's structure immediately upon entry.

struct XYZ fxyz(a, b, c)

int a;

double b;

long c;

{

struct XYZ r;

2.4.5 Functions Returning Aggregates

A function may return an entire structure or union as a return value:

r.x = a;
r.y = b;

r.z = c;
return (r);

}

x = fxyz(2, 20., 2000L);

The return value must be copied by assignment to another aggregate

of the same type:

extern struct XYZ x, fxyz();

Note that the Amiga implementation actually returns a pointer to a

static copy of the returned aggregate. Because this copy persists only

long enough to assign the return value, such functions are still

recursively reentrant (but not, in general, multi-tasking reentrant).

2.4.6 Function Declarations with Argument Types

External functions may be declared with an enclosed list of type

names corresponding to expected arguments. When the function is

called, the compiler checks arguments against the types specified in

the prototype. Warning messages are issued if the actual argument

2-26 Language Definition

Language Definition 2-27

expressions supplied to the function do not agree with the expected

type or number of arguments. If additional arguments may be

present for which no type checking is desired, the list of type names

may be ended with a comma. Some examples are the following:

extern char *sbrk(int) ;

extern FILE *fopen (char *, char *);

extern double sin(double);

extern void fprintf(FILE *, char *,);

Three different warnings may be generated when calls to a function

declared with argument types is made. If the number of arguments

does not agree with those present in the prototype, warning 87 is

issued. If an expression defining an argument does not agree in type

with its corresponding declared type name, warning 88 is issued but

the expression is not converted to the indicated type. If the

expression is a constant, however, warning 89 is issued and the value

is converted accordingly.

SECTION 3:

Standard Library Functions 3-1

Standard Library Functions

In order to provide real portability, a C programming environment

must provide -- in a machine-independent way -- not only a

well-defined language but a library of useful functions as well. The

portable library provided with the Amiga C compiler attempts to

fulfill this requirement. Although not all of the features of these

functions can be implemented on every system supported by the

compiler, all systems must be able to provide the basic functions of

memory allocation, file input/output, and character string

manipulation; otherwise, the compiler itself could not be

implemented. An important side benefit of presenting the functions

from a machine-independent viewpoint is that it helps the

programmer think of them as such.

When referring to the function deSCriptionspresented in this section,

remember that the compiler assumes that a function will return an int

value unless it is explicitly declared otherwise. Any function which

returns any other kind of value must be declared as that kind of

function in advance of its first usage in the same file.

3.1 Memory Allocation Functions

The standard library provides memory allocation capabilities at

several different levels. The higher level functions call the lower

levels to perform the work, but provide easier interfaces in exchange

for the extra overhead. The actual amount of memory available is

system-dependent and usually depends on the size of the program.

All of the memory allocation functions return a pointer which is of

type char *, but is guaranteed to be properly aligned to store any
object.

3.1.1 Level 3 Memory Allocation

The functions described in this section provide a UNIX-compatible

memory-allocation facility. The blocks of memory obtained may be

released in any order, but it is an error to release something not

obtained by calling one of these functions. Because these functions

use overhead locations to keep track of allocation sizes, the free

function does not require a size argument. The overhead does,

however, decrease the efficiency with which these functions use the

available memory. If many small allocations are requested, the

available memory will be more efficently utilized if the level 2

functions are used instead.

3-2 Standard Library Functions

p = malloc(nbytes);

char *p;

unsigned nbytes;

block pointer

number of bytes requested

NAME

malloc -- UNIX-compatible memory allocation

SYNOPSIS

DESCRIPTION

Allocates a block of memory in a way that is compatible with UNIX.

The primary difference between malloc and getmem is that the

former allocates a structure at the front of each block. This can

result in very inefficient use of memory when making many small

allocation requests.

RETURNS

p = NULL if not enough space available

= pointer to block of nbytes of memory otherwise

CAUTIONS

Return value must be checked for NULL. The function should be

declared char * and a cast operator used if defining a pointer to

some other kind of object, as in:

char *malloc();

int *pi;

Standard Library Functions 3-3

pi = (int *)malloc(N);

p = calloc(nelt, eltsiz);

char *p;

unsigned nelt;

unsigned eltsiz;

block pointer

number of elements

element size in bytes

NAME

calloc - allocate memory and clear

SYNOPSIS

DESCRIPTION

Allocates and clears (sets to all zeros) a block of memory. The size

of the block is specified by the product of the two parameters; this

calling technique is obviously convenient for allocating arrays.

Typically, the second argument is a sizeof expression.

RETURNS

p = NULL if not enough space available

= pointer to block of memory otherwise

CAUTIONS

Return value must be checked for NULL. The function should be

declared char * and a cast used if defining a pointer to some other
kind of object, as in:

char *calloc ();
struct buffer *pb;

pb = (struct buffer *)calloc(4, sizeof(struct buffer));

3-4 Standard Library Functions

Standard LibraryFunctions 3-5

NAME

free - UNIX-compatible memory release function

SYNOPSIS

ret = free(cp);
int ret;

char *cp;
return code

block pointer

DESCRIPTION

Releases a block of memory that was previously allocated by malloc

or calloc. The pointer should be char * and is checked for validity,

that is, verified to be an element of the memory pool.

RETURNS

ret = 0 if successful

= -1 if invalid block pointer

CAUTIONS

Remember to cast the pointer back to char *, as in:

char *malloc();
int *pi;

pi = (int *) malloc(N);

if (free((char *)pi) 1=0) { ... error ... }

3.1.2 Level 2 Memory Allocation

The functions described in this section provide an efficient and

convenient memory allocation capability. Like the level 3 functions,

allocation and de-allocation requests may be made in any order, and

it is an error to free memory not obtained by means of one of these

functions. The caller must retain both the pointer and the size of the

block for use when it is freed; failure to provide the correct length

may lead to wasted memory (the functions can detect an incorrect

length when it is too large, but not when it is too small).

3-6 Standard Library Functions

Standard Library Functions 3-7

NAME

getmem/getml -- get a memory block

SYNOPSIS

p = getmem(nbytes);

p = getml(lnbytes);
char *p;

unsigned nbytes;

long lnbytes;

block pointer

number of bytes requested

long number of bytes requested

DESCRIPTION

These functions get a block of memory from the free memory pool.

If the pool is empty or a block of the requested size is not available,

more memory is obtained via the level 1 function sbrk. getml is

provided only on those systems that offer more storage than an

unsigned int can represent; it is otherwise identical to getmem.

RETURNS

p = NULL if not enough space available

= pointer to memory block otherwise

CAUTIONS

Return value must be checked for NULL. The function should be

declared char * and a cast used if defining a pointer to some other

kind of object, as in:

char *getmemO;

struct XYZ *PX;

pX = (struct XYZ *)getmem(sizeof(struct XYZ));

ret = rlsmem(cp, nbytes);

ret = rlsml(cp, Inbytes);

int ret;

char *cp;

unsigned nbytes;

long Inbytes;

return code

block pointer to be freed

size of block

size of block as long integer

NAME

rlsmem/rlsml -- release a memory block

SYNOPSIS

DESCRIPTION

These functions release the memory block by placing it on a free

block list. If the new block is adjacent to a block on the list, they are

combined. rlsml is provided only on those systems which offer more

storage than an unsigned int can represent; it is otherwise identical to

rlsmem.

RETURNS

ret = 0 if successful

= -1 if supplied block is not obtained by getmem or getml

or if it overlaps one of the blocks on the list

CAUTIONS

Return value should be checked for error. If the correct size is not

supplied, the block may not be freed properly.

3-8 Standard LibraryFunctions

Standard Library Functions 3-9

3.1.3 Levell Memory Allocation

The two functions defined at the lowest level of memory allocation

are primitives which perform the basic operations needed to

implement a more sophisticated facility; they are used by the level 2

functions for that purpose. sbrk treats the total amount of memory

available as a single block, from which portions of a specific size may

be allocated at the low end, creating a new block of smaller size. rbrk

merely resets the block back to its original size. The "break point"

mentioned here should not be confused with the breakpoint concept

used in debugging; this term simply refers to the address of the low

end of the block of memory manipulated by sbrk.

p = sbrk(nbytes);

char *p;

unsigned nbytes;

points to low allocated address

number of bytes to be allocated

NAME

sbrk/Isbrk - set memory break point

SYNOPSIS

p = NULL if request cannot be fulfilled

= pointer to low address of block if successful

DESCRIPTION

These functions allocate a block of memory of the requested size, if

possible; they form the basic UNIX memory allocator. On many

systems, memory is allocated by advancing the "memory break

point," which is simply the base address of a block of memory whose

location is system-dependent. The previous break point address is

then returned to the caller.

RETURNS

CAUTIONS

Return value must be checked for NULL. The function should be

declared char * and a cast used if defining a pointer to some other
kind of object.

3-10 Standard Library Functions

Standard Library Functions 3-11

NAME

rbrk -- reset memory break point

SYNOPSIS

rbrkO;

DESCRIPTION

Resets the memory break point to its original starting-point. This

effectively frees all memory allocated by any of the memory

allocation functions.

CAUTIONS

Like rstmem above, this function cannot be used if any files are open

and being accessed using the level 2 I/O functions.

3-12 Standard LibraryFunctions

3.2 1/0 and System Functions

The standard library provides I/O functions at several different levels,

with single character get and put functions and formatted I/O at the

highest levels, and direct byte stream I/O functions at the lowest

levels.

Two general classes of I/O functions are provided. First, the level 2

functions define a buffered text file interface which implements the

single character I/O functions as macros rather than function calls.

Second, the level 1 functions define a byte stream-oriented file

interface, primarily useful for manipulation of disk files, though most

of the same functions are applicable to devices (such as the user's

console) as well.

In general, these functions adhere to the UNIX convention for

reporting errors. When a failure indication from an I/O function is

obtained, programmers can inspect the global integer errno, which

willcontain one of the error codes defined in the header file error.h.

Additional information may be available from the global integer

_oserr, which contains an operating system error code, if applicable.

Check the implementation section of the manual for details.

The system functions discussed in this section are concerned with

program termination and transfer of control. Additional system

functions are described in the implementation section of the manual.

3.2.1 Level 2 110 Functions and Macros

These functions provide a buffered interface using a special structure,

manipulated internally by the functions, to which a pointer called the

file pointer is defined. This structure is defined in the standard I/O

header file (called stdio.h on most systems) which generally must be

included (by means of a #include statement) in the source file where

FILE *fp;

level 2 features are being used. The file pointer is used to specify the

file upon which operations are to be performed. Some functions

require a file pointer, such as

to be explicitly included in the calling sequence; others imply a

specific file pointer. In particular, the file pointers stdin and stdout

are implied by the use of several functions and macros; these files are

so commonly used that on most systems they are opened

automatically before the main function of a program begins

execution. Other file pointers must be declared by the programmer

and initialized by calls to the fopen function.

The level 2 functions are designed to work primarily with text files.

The usual C convention for line termination uses a single character,

the newline (\n), to indicate the end of a line.

The actual I/O operations are performed by the level 2 functions

through calls to the level 1 I/O functions described in the next

section. The normal mode of buffering, designed to support

sequential operations, performs read and write functions in 512-byte

blocks.

Normally the level 2 functions acquire buffers via the level 2 memory

allocator unless the file is on a device other than a disk.

Alternatively, the setbuf function allows a private buffer to be

attached. This function assumes that the buffer is the standard size,

which is defined via the BUFSIZ constant in stdio.h. If for some

reason operating the level 2 I/O functions in the buffered mode is not

desirable, the setnbf function can be called. This is done

automatically for non-disk files or if setbuf is called with a NULL

buffer pointer.

Standard Library Functions 3-13

In the descriptions below, some of the function calls are actually

implemented as macros; these are noted explicitly. The reason the

programmer should be aware of the distinction is because many

macros involve the conditional operator and may, under certain

conditions, evaluate an argument expression more than once. This

can cause unexpected results if that expression involves side effects,

such as increment or decrement operators or 'Unction calls. In

addition, unlike functions, macros do not have addresses, making it

impossible for pointers to them to be passed to other functions.

3-14 Standard Library Functions

#include "lattice/stdio.h"

fp = fopen(name, mode);

fp = freopen(name, mode, fpx);

FILE *fp;

char *name;

char *mode;

FILE *fpx;

file pointer for specified file

file name

access mode

existing file pointer (freopen

only)

NAME

fopen/freopen - open/re-open a buffered file

SYNOPSIS

DESCRIPTION

These functions open a file for buffered access. fopen returns a file

pointer after finding a free slot in a pre-defined array (_iob), while

freopen uses the file pointer supplied by the caller (useful for opening

stdin, etc.); note that this file pointer is automatically closed by

freopen before being reused. On most systems, no more than 20 files

(including stdin, stdout, and stderr, if those are opened for main)

can be opened using fopen or freopen. The null-terminated string

which specifies the filename must conform to local file naming

conventions. The access mode is also specified as a string, and may

be one of the following:

r open for reading (mode set according to _fmode)

w open for writing (mode set according to _fmode)

a open for appending (mode set according to _fmode)

Standard LibraryFunctions 3-15

fp = NULL if error

= file pointer for specified file if successful

The mode characters must be specified in lower case. The a option

adds to the end of an existing file, or creates a new one; the w option

discards any data in the file, if it already exists; the r option simply

reads an existing file. Opening the file to append forces all data to be

written to the current end of file, regardless of previous seeks.

Any of the above strings may be appended with a plus sign + to
indicate opening for update (both reading and writing). In this

mode, both reads and writes may be performed on the file; in order

to switch between reading and writing, however, an fseek or rewind

must be executed. If a file is opened for reading with a plus, then the

file must already exist; but if a file is opened for writing with a plus,

the file will be created anew. Opening for appending with a plus will

permit reads to take place from any position in the file, but all write

operations will occur at the end of the file.

RETURNS

CAUTIONS

The return code must be checked for NULL; the error return may be

generated if an invalid mode was specified or if the file was not

found, could not be created, or too many files were already open.

3-16 Standard Library Functions

Standard Library Functions 3-17

NAME

fclose -- close a buffered file

SYNOPSIS

#include "lattice/stdio.h"

ret = fclose(fp);
int ret;

FILE *fp;

return code

file pointer for file to be closed

DESCRIPTION

Completes the processing of a file and releases all related resources.

If the file was being written, any data which has accumulated in the

buffer is written to the file, and the level 1 close function is called for

the associated file descriptor. The buffer associated with the file

block is freed. fclose is automatically called for all open files when a

program calls the exit function (see Section 3.2.3) or when the main

program returns, but it is good programming practice to close files

explicitly. As the last buffer is not written until fclose is called, data

may be lost if an output file is not properly closed.

RETURNS

ret = -1 if error

= 0 if successful

int c;

FILE *fp;

next input character or EOF

file pointer

NAME

getc/getchar - get character from file

SYNOPSIS

#include "lattice/stdio.h"

c = getc(fp);
c = getchar();

DESCRIPTION

Gets the next character from the indicated file (stdin, in the case of

getchar). The value EOF (-1) is returned on end-of-file or error.

RETURNS

c = character
= EOF if end-of-file or error

CAUTIONS

Implemented as macros, so beware of side effects.

3-18 Standard LibraryFunctions

Standard Library Functions 3-19

NAME

putc/putchar -- put character to file

SYNOPSIS

#include "lattice /stdio.h"

r = putc(c, fp);

r = putchar(c);
int r;

char c;

FILE *fp;

same as character sent, or error code

character to be output

file pointer

DESCRIPTION

Puts the character to the indicated file (stdout, m the case of

putchar). The value EOF (-1) is returned on end-of-file or error.

RETURNS

r = character sent if successful
= EOF if error or end-of-file

CAUTIONS

Implemented as macros, so beware of side effects.

SYNOPSIS

NAME

fgetc/fputc -- get/put a character

#include "lattice/stdio.h"

r = fgetc(fp);

r = fputc(c, fp);

int r;

char c;

FILE *fp;

return character or code

character to be sent (fputc)

file pointer

DESCRIPTION

These functions get (fgetc) or put (fputc) a single character to the

indicated file. Since they are functions, they are often recommended

for use rather than the corresponding macros (getc and putc) in two

types of situations: (1) if many calls are made and/or (2) if the

programmer is concerned about the amount of memory used in the

macro expansions. The tradeoff is the usual one: the macro

executes more quickly because it saves a function call; the function

requires less memory since its code is present in the program only

once.

RETURNS

r = character if successful (c, for fputc)
= EOF if error or end-of-file

3-20 Standard Library Functions

NAME

ungetc -- push character back on input file

int r;

char c;

FILE *fp;

return character or code

character to be pushed back

file pointer

SYNOPSIS

#include "lattice/stdio.h"

r = ungetc(c, fp);

DESCRIPTION

Pushes back a character to the specified input file. The character

supplied must be the character most recently obtained by a getc (or

getchar, in which case fp should be supplied as stdin) invocation.

r = character if successful
= EOF if previous character does not match

RETURNS

Standard Library Functions 3-21

SYNOPSIS

NAME

fread/fwrite - read/write blocks of data from/to a fIle

#include "lattice /stdio. h"

nact = fread(p, s, n, fp);

nact = fwrite(p, s, n, fp);

int nact;

char *p;

int s;

int n;

actual number of blocks read or

written

pointer to first block of data

size of each block, in bytes

number of blocks to be read or

written

file pointerFILE *fp;

DESCRIPTION

These functions read (fread) or write (fwrite) blocks of data from or

to the specified file. Each block is of size s bytes; blocks start at p

and are stored contiguously from that location. n specifies the

number of blocks (of size s) that are to be read or written.

RETURNS

nact = actual number of blocks (of size s) read or written; may be

less than n if error or end-of-file occurred

CAUTIONS

Return value must be checked to verify that the correct number of

blocks was processed. The ferror and feof macros can be used to

determine the cause if the return value is less than n.

3-22 Standard Library Functions

SYNOPSIS

NAME

gets/fgets -- get a string

#include "lattice/stdio.h"

p = gets(s);

p = fgets(s, n, fp);

char *p;

char *s;

int n;

FILE *fp;

returned string pointer

buffer for input string

number of bytes in buffer

file pointer

DESCRIPTION

Gets an input string from a file. The specified file (stdin, in the case

of gets) is read until a newline is encountered or n-l characters have

been read (fgets only). Then, gets replaces the newline with a null

byte, while fgets passes the newline through with a null byte

appended.

RETURNS

p = NULL if end of file or error

= s if successful

CAUTIONS

For gets, there is no length parameter; thus, the input buffer

provided must be large enough to accommodate the string.

Standard Library Functions 3-23

NAME

int r;

char *s;

FILE *fp;

return code

output string pointer

file pointer

puts/fputs -- put a string

SYNOPSIS

#include "lattice/stdio.h"

r = puts(s);
r = fputs(s, fp);

DESCRIPTION

Puts an output string to a file. Characters from the string are written

to the specified file (stdout, in the case of puts) until a null byte is

encountered. The null byte is not written, but puts appends a

newline.

RETURNS

r = EOF if end-of-file or error

3-24 Standard Library Functions

FILE *fp;

char *ss;

char *cs;

-- ...ptrs ... ;

number of input items matched,

orEOF
file pointer (fscanf only)

input string (sscanf only)

format control string

pointers for return of input

values

NAME

scanf/fscanf/sscanf - perform formatted input conversions

SYNOPSIS

#include "lattice/stdio.h"

n = scanf(cs, ...ptrs);

n = fscanf(fp, cs, ptrs);

n = sscanf(ss, cs, ptrs);

int n;

DESCRIPTION

These functions perform formatted input conversions on text

obtained from three types of files:

1. the stdin file (scanf)

2. the specified fIle (fscanf)

3. the specified string (sscanf)

The control string contains format specifiers and/or characters to be

matched from the input; the list of pointer arguments specify where

the results of the conversions are to go. Format specifiers are of the

form

%[*][n] [l]X

Standard Library Functions 3-25

d -- decimal integer

o -- octal integer

x -- hexadecimal integer

h -- short integer

c -- single character

s -- character string

f -- floating point number

where

1. the optional * means that the conversion is to be

performed, but the result value not returned;

2. the optional n is a decimal number specifying a

maximum field width;

3. the optional l (el) is used to indicate a long int or long

float (i.e., double) result is desired;

4. X is one of the format type indicators from the following

list:

The format type must be specified in lower case. White space

characters in the control string are ignored; characters other than

format specifiers are expected to match the next non-white space

characters in the input. The input is scanned through white space to

locate the next input item in all cases except the c specifier, where

the next input character is returned without this initial scan. Note

that the %s specifier terminates on any white space. See the

Kernighan and Ritchie text for a more detailed explanation of the

formatted input functions.

3-26 Standard Library Functions

n = number of input items successfully matched, i.e., for

which valid text data was found; this includes all single

character items in the control string

RETURNS

= EOF if end-of-file or error is encountered during scan

CAUTIONS

All of the input values must be pointers to the result locations. Make

sure that the format specifiers match up properly with the result

locations. If the assignment suppression feature (*) is used,

remember that a pointer must not be supplied for that specifier.

Standard Library Functions 3-27

char *cs;

--- ... args ... ;

number of characters (sprintf

only)

file pointer (fprintf)

destination string pointer

(sprintf)

format control string

list of arguments to be formatted

NAME

printf/fprintf/sprintf - generate formatted output

SYNOPSIS

#include "lattice/stdio.h"

printf(cs, ... args ...);

fprintf(fp, cs, ... args);

n = sprintf(ds, cs, args ...);

int n;

FILE *fp;

char *ds;

DESCRIPTION

1. the stdout file (printf);

These functions perform formatted output conversions and send the

reSUltingtext to:

2. the specified file (fprintf); or

3. the specified output string (sprintf).

The control string contains ordinary characters, which are sent

without modification to the appropriate output, and format specifiers

of the form

%[-] [m] [.p] [l]X

3-28 Standard Library Functions

where

1. the optional - indicates the field is to be left justified

(right justified is the default);

2. the optional m field is a decimal number specifying a

minimum field width;

3. the optional .p field is the character . followed by a

decimal number specifying the precision of a floating

point image or the maximum number of characters to be

printed from a string;

4. the optional I (el) indicates that the item to be formatted

is long; and

5. X is one of the format type indicators from the following

list:

d -- decimal signed integer

u - decimal unsigned integer

x -- hexadecimal integer

o - octal integer

s - character string

c -- single character

f - fixed decimal floating point

e - exponential floating point

g - use e or f format, whichever is shorter

The format type must be specified in lower case. Characters in the

control string which are not part of a format specifier are sent to the

appropriate output; a % may be sent by using the sequence %%. See

the Kernighan and Ritchie text for a more detailed explanation of the

formatted output functions.

Standard Library Functions 3-29

3-30 Standard Library Functions

RETURNS

n = number of characters placed in ds (sprintf only), not including
the null byte terminator

CAUTIONS

For sprintf, no check of the size of the output string area is made;

thus, the buffer provided must be large enough to contain the

resulting image. In all cases, the format specifiers must match up

properly with the supplied values for formatting.

#include "lattice/stdio.h"

ret = fseek(fp, pos, mode);

int ret;

FILE *fp;

long pos;

int mode;

return code

file pointer

desired file position

offset mode

NAME

fseek -- seek to a new file position

SYNOPSIS

DESCRIPTION

Seeks to a new position in the specified file. See the lseek function

description (Section 3.2.2) for the meaning of the offset mode

argument.

RETURNS

ret = 0 if successful
= -1 if error

Standard Library Functions 3-31

#include "lattice/stdio.h"

pos = ftell(fp);
long pos;

FILE *fp;

current file position

file pointer

NAME

ftell -- return current file position

SYNOPSIS

DESCRIPTION

Returns the current file position, that is, the number of bytes from

the beginning of the file to the byte at which the next read or write

operation will transfer data.

RETURNS

pos = current file position (long)

CAUTIONS

The file position returned takes account of the buffering used on the

file, so that the file position returned is a logical file position rather

than the actual position.

3-32 Standard Library Functions

int ret;

FILE *fp;

return code

file pointer

NAME

ferror/feof -- check if error/end of file

SYNOPSIS

#include "1attice/stdio.h"

ret = feof(fp);
ret = ferror(fp);

DESCRIPTION

These macros generate a non-zero value if the indicated condition is

true for the specified file.

RETURNS

ret = non-zero if error (ferror) or end of file (feof)

= zero if not

Standard Library Functions 3-33

#include "Iattice/stdio.h"

c1rerr(fp);c1earerr(fp);

FILE *fp; file pointer

NAME

clrerr/clearerr -- clear error flag for file

SYNOPSIS

DESCRIPTION

Clears the error flag for the specified file. Once set, the flag will

remain set, forcing EOF returns for functions on the file, until this

function is called.

3-34 Standard Library Functions

int fn;

FILE *fp;
flle number associated with file pointer

file pointer

NAME

fileno - return flle number for file pointer

SYNOPSIS

#include "lattice/stdio.h"

fn = fileno (fp);

DESCRIPTION

Returns the flle number, used for the level 1 I/O calls, for the
specified file pointer.

RETURNS

fn = file number (file deSCriptor) for level 1 calls

CAUTIONS

Implemented as a macro.

Standard LibraryFunctions 3-35

CAUTIONS

NAME

rewind -- rewind a file

SYNOPSIS

#include "lattice/stdio.h"

rewind (fp);

FILE *fp; file pointer

DESCRIPTION

Resets the file position of the specified file to the beginning of the

file.

Implemented as a macro.

3-36 Standard Library Functions

NAME

fflush -- flush output buffer for file

SYNOPSIS

#include "lattice/stdio.h"

fflush (fp);

FILE *fp; file pointer

DESCRIPTION

Flushes the output buffer of the specified file, that is, forces it to be

written.

CAUTIONS

This macro must be used only on files which have been opened for

writing or appending.

Standard Library Functions 3- 37

#include ""lattice/stdio.h"

setbuf(fd,buf);

FILE *fp;

char *buf;

file pointer for file

pointer to buffer to be attached

NAME

setbuf - change buffer for level 2 file I/O

SYNOPSIS

DESCRIPTION

Attaches a private buffer to the file whose file pointer is fp. The

length of the buffer is assumed to be the same as _bufsiz, which is

defaulted to the constant BUFSIZ defined in stdio.h.

If the buffer pointer is NULL, then this function is equivalent to

setnbf.

CAUTIONS

buf must be large enough to accommodate _bufsiz characters.

3-38 Standard Library Functions

NAME

setnbf -- set file unbuffered

SYNOPSIS

#include "lattice/stdio.h"

setnbf(fp);

FILE *fp; file pointer

DESCRIPTION

Changes the buffering mode for the specified file pointer from the

default S12-byte block mode to the unbuffered mode used for

devices (including the user's console). In this mode, read and write

operations are performed using single characters.

CAUTIONS

Although the unbuffered mode may be used without difficulty on

files, the standard buffering mode is generally more efficient. Thus,

this function should only be used for those "files" which are

definitely known to be devices.

Standard Library Functions 3-39

int fd;

3.2.2 Level 1 1/0 Functions

These functions provide a basic, low-level I/O interface which allows

a file to be viewed as a stream of randomly addressable bytes.

Operations are performed on the file using the functions described in

this section; the file is specified by a file number or file descriptor,

such as

which is returned by open or creat when the file is opened. Data may

be read or written in blocks of any size, from a single byte to as much

as several kilobytes in a single operation. The concept of a file

position is key: the file position is a long integer, such as

long fpos;

which specifies the position of a byte in the file as the number of

bytes from the beginning of the file to that particular byte. Thus, the

first byte in the file is at file position 0L. Two distinct file positions

are maintained internally by the level 1 functions. The current file

position is the point at which data transfers take place between the

program and the file; it is set to zero when the file is opened, and is

advanced by the number of bytes read or written using the read and

write functions. The end of file position is simply the total number of

bytes contained in the file; it is changed only by write operations,

which increase the size of the file.

The current file position can be set to any value from zero up to and

including the end of file position using the Iseek function. Thus, to

append data to a file, the current file position is set to the end of the

file using Iseek before any write operations are performed. When

data is read from near the end of file, as much of the requested

count as can be satisfied is returned; zero is returned for attempts to

read when the file position is at the end of file.

3-40 Standard Library Functions

Although the level 1 functions are primarily useful for working with

files, they can be used to read and write data to devices (including

the user's terminal), as well. The exact nature of the I/O performed

is system-dependent, but it is generally unbuffered. The lseek

function has no effect on devices, and usually returns an error status.

The actual I/O operations on disk files are buffered, but at a level

that is generally transparent to the programmer. The buffering

makes close operations a necessity for files that are modified.

Standard Library Functions 3-41

#include "lattice/fcntl.h"

file = open(name, rwmode);
int file;

char *name;

int mode;

file number or error code

file name

indicates read/write mode and

other options (see below)

NAME

open - open a me

SYNOPSIS

DESCRIPTION

Opens a file for access using the level 1 I/O functions. The file name

must conform to local naming conventions. The mode word

indicates the type of I/O which will be performed on the file. The

header file fcntl.h defines the codes for the mode arguments:

O_RDONLY

O_WRONLY

O_RDWR

Read only access

Write only access

Read/write access

Also, the following flags can be ORed into the above codes:

O_CREAT Create the file if it doesn't exist

O_TRUNC Truncate (set to zero length) the

file if it does exist

O_EXCL Force create to fail if file exists

O_APPEND Seek to end-of-file before each

write

3-42 Standard Library Functions

The current file position is set to zero if the file is successfully

opened. On most systems, no more than 20 files (including any

which are being accessed through the level 2 functions, such as stdin,

stdout, etc.) can be open at the same time. Closing the file releases

the file number for use with some other file.

RETURNS

file = file number to access file, if successful

= -1 if error

CAUTIONS

Check the return value for error.

Standard Library Functions 3-43

#include "lattice /fcntl. h"

file = creat(name, pmode);

int file;

char *name;

int pmode;

file number or error code

file name

access privilege mode bits

NAME

creat -- create a new file

SYNOPSIS

DESCRIPTION

Creates a new file with the specified name and prepares it for access

via the level 1 I/O functions. The file name must conform to local

naming conventions. Creating a device is equivalent to opening it.

The access privilege mode bits are system-dependent and on some

systems may be largely ignored. If the file already exists, its contents

are discarded. The current file position and the end-of-file are both

zero (indicating an empty file) if the function is successful.

RETURNS

file = file number to access file, if successful
= -1 if error

CAUTIONS

Check the return value for error. creat should be used only on files

which are being completely rewritten, since any existing data is lost.

3-44 Standard Library Functions

NAME

unlink/remove - remove file name from file system

SYNOPSIS

ret = unlink(name);

ret = remove(name);
int ret;

char *name;
return code: 0 if successful

name of file to be removed

DESCRIPTION

Removes the specified file from the file system. The file name must

conform to local naming conventions. The specified file must not be

currently open. All data in the file is lost.

RETURNS

ret = 0 if successful

= -1 if error

CAUTIONS

Should be used with care since the file, once removed, is generally

irretrievable.

Standard Library Functions 3-45

NAME

rename -- rename a file

SYNOPSIS

error = rename(old,new);

int error;

char *old;

char *new;

o for success
old file name

new file name

DESCRIPTION

This function renames a file, if possible. A failure will occur if the

new file name already exists or if the old file name does not. The

specified file must not be currently open.

RETURNS

error = 0 if file successfully renamed
= -1 if error

3-46 Standard Library Functions

NAME

read -- read data from file

SYNOPSIS

status = read(file, buffer, length);

int status;

int file;

char *buffer;

int length;

status code or actual

length

file number for file

input buffer

number of bytes

requested

DESCRIPTION

Reads the next set of bytes from a file. The return count is always

equal to the number of bytes placed in the buffer and will never

exceed the length parameter, except in the case of an error, where

-1 is returned. The file position is advanced accordingly.

RETURNS

status = 0 if end-of-file
= -1 if error occurred

= number of bytes actually read, otherwise

CAUTIONS

If fewer than the requested number of bytes remain between the

current file position and the end-of-file, only that number is

transferred and returned.

Standard Library Functions 3-47

status = write(file, buffer, length);

int status;

int file;

char *buffer;

int length;

status code or actual length

file number

output buffer

number of bytes in buffer

NAME

write -- write data to file

SYNOPSIS

status = -1 if error

= number of bytes actually written

DESCRIPTION

Writes the next set of bytes to a file. The return count is equal to the

number of bytes written, unless an error occurred. The file position

is advanced accordingly.

RETURNS

CAUTIONS

The number of bytes written may be less than the supplied count if a

physical end-of-file limitation was encountered.

3-48 Standard LibraryFunctions

int file;

long offset;

int mode;

returned file position or error

code

file number for file

desired position

offset mode:

o = relative to beginning of file
1 = relative to current file

position

2 = relative to end-of-file

NAME

Iseek - seek to specified file position

SYNOPSIS

pos = Iseek(file, offset, mode);

long pos;

DESCRIPTION

Changes the current file position to anew position in the file. The

offset is specified as a long int and is added to the current position

(mode 1) or to the end-of-file (mode 2).

RETURNS

pos = -1L if error occurred

= new file position if successful

Standard Library Functions 3-49

cpos = Iseek(file, 0L, 1);

CAUTIONS

The offset parameter must be a long quantity; therefore a long

constant should be indicated when supplying a zero. In most cases,

the return code should be checked for error, which indicates that an

invalid file position (beyond the end-of-file) was specified. Note that

the current file position may be obtained by

long cpos, lseekO;

which will never return an error code.

3-50 Standard Library Functions

NAME

close -- close a file

SYNOPSIS

status = close (file);

int status;

status code:

int file;

o if successful
file number

DESCRIPTION

Closes a file and frees the file number for use in accessing another

file. Any buffers allocated when the file was opened are released.

RETURNS

status = 0 if successful
= -1 if error

CAUTIONS

This function must be called if the file was modified; otherwise, the

end-of-file and the actual data on disk may not be updated properly.

Standard Library Functions 3-51

3.2.3 Program Exit and Jump Functions

The program entry mechanism, that is, the means by which the main

function gains control, is sufficiently system-dependent that it must

be described in the implementation section of this manual. Program

exit, however, is somewhat more general, although not without its

own implementation dependencies.

The simplest way to terminate execution of a C program is for the

main function to execute a return statement, or -- even simpler -

to "drop through" its terminating brace. In many cases, however, a

more flexible program exit capability is needed; this is provided by

the exit and _exit functions described in this section. They offer the

advantage of allowing any function -- not just main -- to cause

termination of the program, and in some systems, they allow

information to be passed to other programs.

In some cases, it is useful for a program to be able to pass control

directly to another part of the program (within a different function)

without having to go through a long and possibly complicated series

of function returns. The setjmp and longjmp functions provide a

general capability for achieving this.

3-52 Standard Library Functions

NAME

exit -- terminate execution of program and close files

SYNOPSIS

exit (errcode);

int errcode; exit error code

DESCRIPTION

Terminates execution of the current program, but first closes all

output files which are currently open through the level 2 I/O

functions. The error code is normally set to zero to indicate no

error, and to a non-zero value if some kind of error exit was taken.

Standard Library Functions 3-53

NAME

SYNOPSIS

_exit - terminate execution immediately

_exit(errcode);

int errcode; exit error code

DESCRIPTION

Terminates execution of the current program immediately, without

checking for open files.

3-54 Standard Library Functions

NAME

setjmp/longjmp - perform non-local goto

SYNOPSIS

#include "setjmp.h"

ret = setjmp(save);

longjmp (save, value);

int ret;

int value;

jmp_buf save;

return code

return value

context save buffer

DESCRIPTION

The setjmp function saves the current stack mark in the buffer area

specified by save and returns a value of 0. A subsequent call to

longjmp will then cause control to return to the next statement after

the original setjmp call, with value as the return code. If value is 0, it

is forced to 1 by longjmp.

The jmp_buf descriptor is derined in the header file called setjmp.h.

This mechanism is useful for quickly popping back up through

multiple layers of function calls under exceptional circumstances.

Structured programming gurus lose a lot of sleep over the

"pathological connections" that can result from indiscriminate usage

of these functions.

CAUTIONS

Calling longjmp with an invalid save area is an effective way to disrupt

the system. One common error is to use longjmp after the function

calling setjmp has returned to its caller. This cannot hope to succeed,

since the stack frame for that function is no longer on the stack.

Standard Library Functions 3-55

3.3 Utility Functions and Macros

The portable library provides a variety of additional functions useful

for many of the common data manipulations performed by C

programs. Three utilities provide fast memory transfers; a set of

macros allows quick testing of character types; and several utility

functions facilitate character string handling.

3.3.1 Memory Utilities

The three utility functions described here are usually implemented in

machine language for maximum efficiency. These are the equivalent

of the almost universal FILL and MOVE subroutines defined in many

other languages.

3-56 Standard Library Functions

NAME

setmem -- initialize memory to specified char value

SYNOPSIS

setmem(p, n, c);

char *p;

unsigned n;

char c;

base of memory to be initialized

number of bytes to be initialized

initialization value

DESCRIPTION

Sets the specified number of bytes of memory to the specified byte

value. On many systems a hardware block fill instruction is used to

perform the initialization. This function is useful for the initialization

of auto char arrays.

CAUTIONS

Some systems may distinguish between char * pointers and pointers
of other types, so that it is good practice to use a cast operator when

arrays or pointers of other types are used for the p argument.

Standard Library Functions 3-57

NAME

movmem(s, d, n);

char *s;

char *d;

unsigned n;

source memory block

destination memory block

number of bytes to be transferred

movmem - move a block of memory

SYNOPSIS

DESCRIPTION

Moves memory from one location to another. The function checks

the relative locations of source and destination blocks, and performs

the move in the order necessary to preserve the data in the event of

overlap. On many systems a hardware block move instruction is used

to perform the transfer.

CAUTIONS

3-58 Standard Library Functions

Some systems may distinguish between char * pointers and pointers

of other types, so that it is good practice to use a cast operator when

arrays or pointers of other types are used for the sand d arguments.

NAME

repmem -- replicate values through memory

SYNOPSIS

repmem(s, v, lv, nv);

char *s;

char *v;

int Iv;

int nv;

memory to be initialized

template of values to be replicated

number of bytes in template

number of templates to be replicated

DESCRIPTION

Replicates a set of values throughout a block of memory. This

function is a generalized version of setmem, and can be used to

initialize arrays of items other than char. Note that the replication

count indicates the number of copies of v which are to be made, not

the total number of bytes to be initialized.

CAUTIONS

Some systems may distinguish between char * pointers and other

types of pointers, so that it is good practice to use a cast operator

when arrays or pointers of other types are used for the s and v

arguments.

Standard LibraryFunctions 3-59

3.3.2 Character Type Macros and Functions

The character type header file, called ctype.h on most systems,

defines several macros which are useful in the analysis of text data.

Most allow the programmer to determine quickly the type of a

character, i.e., whether it is alphabetic, numeric, punctuation, etc.

These macros refer to an external array called _ctype which is

indexed by the character itself, and so they are generally much faster

than functions which check the character against a range or discrete

list of values. Although ASCII is defined as a 7-bit code, the _ctype

array is defined to be 257 bytes long so that valid results are obtained

for any character value. This means that a character with the value

Oxb1, for instance, will be classified the same as a character with the

value Ox31. Programs that need to distinguish between these values

must test for the Ox80 bit before using one of these macros. Note

that _ctype is actually indexed by the character value plus one; this

allows the standard EOF value (-1) to be tested in a macro without

yielding a nonsense result. EOF yields a zero result for any of the

macros: it is not defined as any of the character types.

The following list presents the macros defined in the character type

header file ctype.h. Note that many of these will evaluate argument

expressions more than once; beware of using expressions with side

effects, such as function calls or increment or decrement operators.

Note that the file ctype.h must be included if any of these macros are

used; otherwise, the compiler will generate a reference to a function

of the same name. Those macros marked with a '*' are also

available in function form. In order to use the function form, do not

#include the ctype.h header file in that source file. If some of the

other capabilities of ctype.h are needed, the header file should be

included anyway; #undef directives can be used for the specific

macros that need to be treated as functions.

3-60 Standard Library Functions

* isalpha(c) non-zero if c is alphabetic, 0 if not

* isupper(c) non-zero if c is upper case, 0 if not

* islower(c) non-zero if c is lower case, 0 if not

* isdigit(c) non-zero if c is a digit 0-9, 0 if not

isxdigit(c) non-zero if c is a hexadecimal digit, 0

if not (0-9, A-F, a-f)

* isspace(c) non-zero if c is white space, 0 if not

ispunct(c) non-zero if c is punctuation, 0 if not

* isalnum(c) non-zero if c is alphabetic or digit

isprint(c) non-zero if c is printable (including blank)

isgraph(c) non-zero if c is graphic (excluding blank)

* iscntrl(c) non-zero if c is control character

isascii(c) non-zero if c is ASCII (0-127)

iscsym(c) non-zero if valid character for C identifier,

o if not
iscsymf(c) non-zero if valid first character for C

identifier, 0 if not

toascii (c) removes high bit from c

* toupper (c) converts c to upper case, if lower case

* tolower(c) converts c to lower case, if upper case

Note that the last two macros generate the value of c unchanged if it

does not qualify for the conversion.

3.3.3 String Utility Functions

The portable library provides several functions to perform many of

the most common string manipulations. These functions all work

with sequences of characters terminated by a null (zero) byte, which

is the C definition of a character string. A special naming convention

is used, which works as follows: The first two characters of a string

function are always st, while the third character indicates the type of

the return value from the function:

Standard Library Functions 3-61

stc function returns an int count

stp function returns a character pointer

sts function returns an int status value

Thus, the name of the function shows at a glance the type of value it

returns.

For compatibility with other C implementations, several other

function whose names begin with str have also been provided.

3-62 Standard Library Functions

NAME

strcat/strncat - concatenate strings

SYNOPSIS

to = strcat(to, from);
to = strncat(to, from, max);

char *to;

char *from;

int max;

destination string

source string

maximum number of characters

DESCRIPTION

These functions append the "from" string to the "to" string. For

strncat, no more than the specified maximum number of characters

will be appended. The result is always null-terminated.

RETURNS

to = pointer to result (same as original to argument)

CAUTIONS

strncat should be used if there is any question that the destination

string might not be large enough to hold the result. Either function

must be declared char * if the return value is to be used. The "to"

and "from" must not reference the same string.

Standard Library Functions 3-63

length = stclen(s);

length = strlen(s);
int length; number of bytes in s (before null)

NAME

strlen/stclen -- measure length of string

SYNOPSIS

3-64 Standard Library Functions

DESCRIPTION

These functions count the number of bytes in s before the null

terminator. The terminator itself is not included in the count. strlen

is provided for compatibility with other implementations.

RETURNS

length = number of bytes in string before null byte

NAME

strcpy/strncpy/stpcpy/stccpy -- copy one string to another

SYNOPSIS

to = strcpy(to, from);

to = strncpy(to, from, length);

to = stpcpy(to, from);

actual = stccpy(to, from, length);

int actual;

char *to;

char *from;

int length;

actual number of characters

moved (stccpy only)

destination string pointer

source string pointer

maximum length of copy

DESCRIPTION

These functions move the null-terminated source string to the

destination string. For strncpy and stccpy, if the source is too long

for the destination, its rightmost characters are not moved. The

destination string is always null-terminated.

RETURNS

to = pointer to destination string (same as original to

argument) (strcpy, strncpy, stpcpy)

actual = actual number of characters moved, including the null

terminator (stccpy only)

Standard Library Functions 3-65

CAUTIONS

strncpy or stccpy should be used if there is any question that the

destination string might not be large enough to hold the result.

Functions returning char * must be so declared before being used.

3-66 Standard Library Functions

NAME

strcmp/strncmp/stscmp -- compare two strings

SYNOPSIS

status = strcmp(s, t);

status = strncmp(s, t, length);

status = stscmp(s, t);

int status;

char *s;

char *t;

int length;

result of comparison >0 if s>t, 0

if s==t, <0 if s<t

first string to compare

second string to compare

length of comparison (strncmp

only)

DESCRIPTION

These functions compare two null-terminated strings, byte by byte,

and return an int status indicating the result of the comparison. If

zero, the strings are identical, up to and including the terminating

byte. If non-zero, the status indicates the result of the comparison of

the first pair of bytes which were not equal. For strncmp, no more

than the specified number of characters will be compared.

RETURNS

status = 0 if strings match

< 0 if first string less than second string

> 0 if first string greater than second string

CAUTIONS

The result of the comparison may depend on whether characters are

considered signed if any of the characters is greater than 127.

Standard Library Functions 3-67

SYNOPSIS

NAME

stcu_d - convert unsigned integer to decimal string

length = stcu_d(out, in, outlen);

int length;

char *out;

unsigned in;

int outlen;

output string length (excluding

null)

output string

input value

sizeof(out)

DESCRIPTION

Converts an unsigned integer into a string of decimal digits

terminated with a null byte. Leading zeros are not copied to the

output string, and if the input value is zero, only a single 0 character

is produced.

RETURNS

length = number of characters placed in output string, not including

the null terminator

CAUTIONS

If the output string is too small for the result, only the rightmost digits

are returned. Note that outlen must be one larger than the largest

number of digits.

3-68 Standard Library Functions

NAME

stci_d - convert signed integer to decimal string

SYNOPSIS

length = stci_d(out, in, outlen);

int length; output string length (excluding

nUll)

output string

input value

sizeof(out)

char *out;

int in;

int outlen;

DESCRIPTION

Converts an integer into a string of decimal digits terminated with a

null byte. If the integer is negative, the output string is preceded by a

-. Leading zeros are not copied to the output string.

RETURNS

length = number of characters placed in output string, not
including the null terminator

CAUTIONS

If the output string is too small for the result, the returned length may

be zero, or a partial string may be returned. Note that outlen must

be two larger than the largest number of digits.

Standard Library Functions 3-69

NAME

stch_i -- convert hexadecimal string to integer

count = stch_i(p, r);
int count;

char *p;

int *r;

number of characters scanned

input string

result integer

SYNOPSIS

DESCRIPTION

Converts a hexadecimal string into an integer. The process terminates

only when a non-hex character is encountered. Valid hex characters

are 0-9, A-F, and a-f.

RETURNS

count = 0 if input string does not begin with a hex digit

= number of characters scanned

CAUTIONS

No check for overflow is made during the processing.

3-70 Standard Library Functions

NAME

stcd_i -- convert decimal string to integer

SYNOPSIS

count = stcd_i(p, r);
int count;

char *p;

int *r;

number of characters scanned

input string

result integer

DESCRIPTION

Converts a decimal string into an integer. The process terminates

when a non-decimal character is found. Valid decimal characters

are 0-9. The first character may be + or -.

RETURNS

count = 0 if input string does not begin with a decimal digit

= number of characters scanned

CAUTIONS

No check for overflow is made during the processing.

Standard Library Functions 3-71

q = stpblk(p);
char *q;

char *p;

updated string pointer

initial string pointer

NAME

stpblk - skip blanks (white space)

SYNOPSIS

DESCRIPTION

Advances the string pointer past white space characters (space, tab,

or newline).

RETURNS

q = updated string pointer (advanced past white space)

CAUTIONS

Must be declared char *, as the stp prefIx indicates.

3-72 Standard Library Functions

NAME

stpsym -- get a symbol from a string

SYNOPSIS

p = stpsym(s, sym, symlen);

char *p;

char *s;

char *sym;

int symlen;

points to next character in s

input string

output string

sizeof(sym)

DESCRIPTION

Breaks out the next symbol from the input string. The first character

of the symbol must be alphabetic (upper or lower case), and the

remaining characters must be alphanumeric. Note that the pointer is

not advanced past any initial white space in the input string. The

output string is the null-terminated symbol.

RETURNS

p = pointer to next character (after symbol) in input string

CAUTIONS

Must be declared char *, as the stp prefix indicates. If no valid

symbol characters are found, p will equal s, and sym will contain an

initial null byte.

Standard LibraryFunctions 3-73

p = stptok(s, t0k, toklen, brk);

char *p;

char *s;

char *tok;

int toklen;

char *brk;

points to next char in s

input string

output string

sizeof(tok)

break string

NAME

stptok - get a token from a string

SYNOPSIS

DESCRIPTION

Breaks out the next token from the input string. The token consists

of all characters in s up to but not including the first character that is
in the break string. In other words, the break string defines a list of

characters which cannot be included in a token. Note that the

pointer is not advanced past any initial white space characters in the

input string. The output string is the null-terminated token.

RETURNS

p = pointer to next character (after token) in input string

CAUTIONS

Must be declared char *, as the stp prefix indicates. If no valid

token characters are found, p will equal s, and 10k will contain an

initial null byte.

3-74 Standard Library Functions

NAME

stpchr/strchr/strrchr -- find specific character in string

SYNOPSIS

p = stpchr(s, c);

p = strchr(s, c);
p = strrchr(s, c);
char *p;

char *s;

char C;

points to c in s (or is NULL)
points to string being scanned

character to be located

DESCRIPTION

The stpchr and strchr functions scan the specified string to find the

first occurrence of the specified character, while the strrchr function

scans for the last occurrence of the character. In either case, a

NULL pointer is returned if the character is not found in the string.

RETURNS

p = NULL if c not found in s

= pointer to first C found in s (stpchr, strchr)
= pointer to last c found in s (strrchr)

CAUTIONS

These functions must be declared char *.

Standard Library Functions 3-75

NAME

stpbrk/strpbrk -- find break character in string

p = stpbrk(s, b);

p = strpbrk(s, b);

char *p;

char *s;

char *b;

points to element of b in s

points to string being scanned

points to break character string

SYNOPSIS

DESCRIPTION

p = NULL if no element of b is found in s
= pointer to first element of bins (from left)

These functions scan the specified string to find the first occurrence

of a character from the break string b. In other words, b is a

null-terminated list of characters being sought. If the terminator byte

for s is hit first, a NULL pointer is returned.

RETURNS

CAUTIONS

These functions must be declared char *.

3-76 Standard Library Functions

NAME

strspn/strcspn/stcis/stcisn -- find longest initial span

SYNOPSIS

length = strspn(s, b);

length = strcspn(s, b);

length = stcis(s, b);

length = stcisn(s, b);

int length;

char *s;

char *b;

span length in bytes

points to string being scanned

points to character set string

DESCRIPTION

These functions compute the number of characters at the beginning

(left) of s that come from a specified character set. For strspn and

stcis, the character set consists of all characters in b, while for

strcspn and stcisn, the character set consists of all characters not in

b.

RETURNS

length = number of characters from the specified set that appear at

the beginning (left) of s.

Standard Library Functions 3-77

length = stcarg(s, b);

int length;

char *s;

char *b;

number of bytes in argument

text string pointer

break string pointer

NAME

stcarg -- get an argument

SYNOPSIS

DESCRIPTION

Scans the text string until one of the break characters is found or

until the text string ends (as indicated by a null character). While

scanning, the function skips over partial strings enclosed in single or

double quotes, and the backslash is recognized as an escape

character.

RETURNS

length = number of bytes (in s) in argument
= 0 if not found

3-78 Standard LibraryFunctions

NAME

stcpm - pattern match (unanchored)

SYNOPSIS

length = stcpm(s, p, q);
int length; length of matched string

char *s;

char *p;

char **q;

string being scanned

pattern string

points to matched string if found

DESCRIPTION

Scans the specified string to find the first substring that matches the

specified pattern. The pattern is specified in a simple form of regular

expression notation, where

? matches any character

s* matches zero or more occurrences of s

s+ matches one or more occurrences of s

The backslash is used as an escape character (to match one of the

special characters ?, *, or +). The scan is not anchored; that is, if a

matching string is not found at the first position of s, the next position

is tried, and so on. A pointer to the first matching substring is

returned at *q.

Standard Library Functions 3-79

RETURNS

length = 0 if no match
= length of matching substring, if successful

CAUTIONS

Note that the third argument must be a pointer to a character

pointer, since this function really returns two values: a pointer to,

and the length of, the first matching substring.

3-80 Standard Library Functions

NAME

stcpma -- pattern match (anchored)

SYNOPSIS

length = stcpma(s, p);

int length;

char *s;

char *p;

length of matching string

string being scanned

pattern string

DESCRIPTION

Scans the specified string to determine if it begins with a substring

that matches the specified pattern. See the description of stcpm for a

specification of the pattern format.

RETURNS

length = 0 if no match
= length of matching substring if successful

Standard Library Functions 3-81

NAME

stspfp -- parse file pattern

SYNOPSIS

error = stspfp(P, n);

int error;

return code:

char *p;

int n[16];

-1 if error

file name string

node index array

DESCRIPTION

Parses a file name pattern which consists of node names separated by

slashes. Each slash is replaced by a null byte, and the beginning

index of that node is placed in the index array. For example, the

pattern /abc/de/f has three nodes, and their indexes are 1 for abc, 5

for de, and 8 for f. Note that the leading slash, if present, is

skipped. Note also that a slash that is part of a node name (usually

unwise) must be preceded by a backslash. The last entry in the node

array n is set to -1 (in the example above, this causes n[3] to be -1).

RETURNS

error = 0 if successful
= -1 if too many nodes or other error

3-82 Standard Library Functions

3.3.4 Utility Macros

The standard I/O header file stdio.h defines three general utility

macros which are useful in working with arithmetic objects. They

are:

max (a, b)

min (a,b)

abs(a)

returns the maximum of a and b

returns the minimum of a and b

returns the absolute value of a

Several important restrictions must be noted.

First, since these are macros which use the conditional operator,

arguments with side effects (such as function calls or increment or

decrement operators) cannot be used, and the address-of operator

cannot be applied to these "functions". Second, beware of using the

macro names in declarations such as

int min;

because the compiler will try to expand min as a macro, and an error

message complaining of invalid macro usage willbe generated. Third,

only arithmetic data items should be used as arguments to these

macros; max and min should be supplied two arguments of the same

data type, although conversion will be performed if necessary.

3.4 Mathematical Functions

The functions described here include a large proportion of the

floating point math functions that are usually provided with UNIX.

Detailed specifications are given in the following manual pages. Note

that the header files math.h and limits.h should generally be

included when using these functions.

Standard Library Functions 3-83

NAME

exp/log/log10/pow/sqrt - exponential/logarithmic functions

SYNOPSIS

#include "lattice/math.h"

r = exp(x); compute exponential function of x

r = log(x); compute natural log of x

r = 10g10(x); compute base 10 log of x

r = pow(x,y); compute x to power y

r = sqrt(x); compute square root of x

double r;

double x,y;

result

arguments

DESCRIPTION

These functions return the result of the indicated exponential,

logarithmic, and power computations on double operands.

CAUTIONS

For log, 10g10, and sqrt, the x argument must be positive, and for

pow, the y argument must be an integer if x is negative.

These functions must be declared double. which can be

accomplished simply by including math.h. Also note that constant

arguments must be expressed as floating constants such as 3.0 instead

of 3.

3-84 Standard Library Functions

NAME

sin/cos/tan/asin/acos/atan/atan2 -- trigonometric functions

SYNOPSIS

#include "lattice/math.h"

x = sin(r);
x = cos(r);
x = tan(r);
r = asin(x);

r = acos(x);

r = atan(x);

r = atan2(y,x);

double r;
double x,y;

DESCRIPTION

compute sine of r (r in radians)

compute cosine of r

compute tangent of r

compute arcsine of x

compute arccosine of x

compute arctangent of x

compute arctangent of y/x

result

arguments

The sin, cos, and tan functions compute the normal trigonometric

functions of angles expressed in radians.

The asin function computes the inverse sine and returns a radian

value in the range -PI/2 to +PI/2.

The acos function computes the inverse cosine and returns a radian

value in the range 0 to PI.

The atan function computes the inverse tangent and returns a radian

value in the range -PI/2 to +PI/2.

The atan2 function computes the inverse sine of y/x and returns a

radian value in the range -PI to +PI.

Standard Library Functions 3-85

CAUTIONS

These function must be declared double, which can be accomplished

simply by including math.h.

3-86 Standard Library Functions

double x;

double y;

result

argument

NAME

sinh/cosh/tanh -- hyperbolic functions

SYNOPSIS

#include "lattice/math. h II

X = sinh (y); compute hyperbolic sine

x = cosh (y); compute hyperbolic cosine

x = tanh (y); compute hyperbolic tangent

DESCRIPTION

These functions compute and return the value of the indicated

hyperbolic functions.

CAUTIONS

These functions must be declared double, which can be

accomplished simply by including math.h.

Standard Library Functions 3-87

int x;

unsigned seed;

random number

random number seed

NAME

rand,srand -- simple random number generation

SYNOPSIS

x = rand();

srand(seed);

DESCRIPTION

The rand function returns pseudo-random numbers in the range

from 0 to the maximum positive integer value. At any time, srand

can be called to reset the number generator to a new starting point.

The initial default seed is 1. See the description of drand for more

sophisticated random number generation.

3-88 Standard Library Functions

NAME

drand - generate random numbers

SYNOPSIS

#include "lattice/math.h"

x = drand48(); generate double (internal seed)

x = erand48(y); generate double (external seed)

z = Irand48();

z = nrand48(y);

Z = mrand48();

z = jrand48(y);

srand48 (z);

p = seed48(y);

lcong48(k);

double X;

short YI3};

long Z;

short *p;

short kI7};

DESCRIPTION

generate positive long (internal seed)

generate positive long (external seed)

generate long (internal seed)

generate long (external seed)

set high 32 bits of internal seed

set all 48 bits of internal seed

set linear congruence parameters

double precision random number

48-bit seed supplied by caller

long integer random number

pointer to internal seed array

linear congruence parameters array

These functions generate pseudo-random numbers using the linear

congruential algorithm and 48-bit integer arithmetic. The normal

versions (drand48, Irand48, mrand48) utilize an internal 48-bit

storage area for the seed value. Special versions (erand48, nrand48,

jrand48) are provided for cases where several seeds are in use at the

same time, in which case the user provides the seed storage areas.

Standard Library Functions 3-89

X[n+l) = (a * X[n) + c) mod m

The drand48 and erand48 functions return values uniformly

distributed over the interval from 0.0 up to but not including 1.O.

The Irand48 and nrand48 functions return non-negative long

integers uniformly distributed over the interval from 0 to 2 * *31-1.

The mrand48 and jrand48 functions return signed long integers

uniformly distributed over the interval from -2 * *31 to 2 * * 31-1.

The srand48 and seed48 functions allow initialization of the internal

48-bit seed value to something other than the defaults. For srand48,

the specified long value is copied into the high 32 bits of the seed,

and the low 16 bits are set to 0x330e. For seed48, the entire 48-bits

are loaded from the specified array, and the function returns a

pointer to the internal seed array.

The Icong48 function allows a much more intricate initialization of

the linear congruential algorithm. The algorithm is of the form:

where m is 2 * *48 and the default values for a and care 0x5deece66d

and 0xb, respectively. The array passed to Icong48 contains the

value for X[n) in k[0] to k[2), the value for a in k[3} to k[5}, and

the value for c in k[6}. When seed48 is called, a and c are reset to

their original default values.

CAUTIONS

The functions drand48 and erand48 must be declared double; the

functions Irand48, nrand48, mrand48, and jrand48 must be

declared long; and the seed48 function must be declared short *.

3-90 Standard Library Functions

NAME

ceil/fabs/floor/fmod/frexp/ldexp/modf -- float conversions

SYNOPSIS

#include "lattice/math. h II

X = ceil(y); get ceiling integer

x = fabs(y); get absolute value

x = floor(y); get floor integer

x = fmod(y,z); get mod value

x = frexp (y,p); split into mantissa and exponent

x = ldexp(y,i); load exponent

x = modf(Y,p); split into integer and fraction

double x;

double y,z;

int i;
double *p;

result

operands

binary exponent value

for return of additional value

DESCRIPTION

These functions convert floating point numbers into various other

forms.

The floor and ceil functions return the integer values that are just

below and just above the specified value, respectively.

The fmod function returns y if z is zero. Otherwise, it returns a value

that has the same sign as y, is less than z, and satisfies the

relationship

y=i*z+x

where i is an integer.

Standard Library Functions 3-91

The frexp function splits y into its mantissa and exponent parts. The

exponent is placed into the area pointed to by p, while the mantissa is

returned by the function.

The ldexp function returns y * (2 * * i).

The modf function returns the fractional part of y with the same sign

as y and places the integer portion into the area pointed to by p.

CAUTIONS

These functions must be declared double, which can be

accomplished simply by including math.h.

3-92 Standard Library Functions

NAME

double x;

int i;

long l;

char *p;

double precision result

integer result

long integer result

pointer to ASCII string

atof/atoi/atol -- simple ASCII conversions

SYNOPSIS

#include "lattice/math.h"

x = atof(p); ASCII to floating point

i = atoi (P); ASCII to integer

l = atol (P); ASCII to long integer

DESCRIPTION

For atof, the ASCII string may contain a decimal point and may be

followed by an e or an E and a signed integer exponent. For all

functions, a leading minus sign indicates a negative number. White

space is not allowed between the minus sign and the number or

between the number and the exponent.

These functions skip over any leading white space (i.e., blanks, tabs,

and newlines) and then perform the appropriate conversion. The

conversion stops at the first unrecognized character, and no check is

made for overflow.

CAUTIONS

The function atof must be declared double, and the function atol

must be declared long.

Standard Library Functions 3-93

NAME

strtol - convert ASCII to long integer

SYNOPSIS

r = strtol(s,p,base);

long r;

char *s;

char **p;

int base;

result

string to be scanned

returns pointer to terminating character

conversion base

DESCRIPTION

Converts an ASCII string into a long integer, using the specified

number base for the conversion. Leading white space (blanks, tabs,

and newlines) is skipped, and the conversion proceeds until an

unrecognized character is hit. The pointer to the unrecognized

character is returned in p. If no conversion can be performed, p will

contain s, and the result will be 0.

The conversion base can be in the range from 0 to 36. If it is

non-zero, then the ASCII string may contain digit characters from 0

through 9 and from the letter A through as many letters as necessary,

with no distinction made between upper and lower case. For

example, if base is 13, then the allowable digit characters are 0

through 9 and A,B, and C or a, b, and c. If base is 16, then a

leading "0x" or "OX" may appear in the string.

If base is 0, then the leading characters of the string are examined to

determine the conversion base. A leading "0" indicates octal

conversion (base 8), while a leading "Ox" or "OX" indicates

hexadecimal conversion (base 16). A leading digit from 1 to 9

indicates decimal conversion (base 10).

3-94 Standard Library Functions

CAUTIONS

Must be declared as returning long.

Standard LibraryFunctions 3-95

NAME

ecvt -- convert floating point to ASCII

SYNOPSIS

char *p;

double value;

int ndig;

int *dec;

int *sign;

pointer to ASCII string

value to convert

number of digits in string

returns position of decimal point

non-zero if negative

#include "Iattice/math.h"

p = ecvt(value,ndig,dec,sign);

DESCRIPTION

Converts the specified value into a null-terminated ASCII string

containing the specified number of digits. The integer pointed to by

dec will then contain the relative location of the decimal point, with a

negative value meaning that the decimal is to the left of the returned

digits. The actual decimal point character is not included in the

generated string.

CAUTIONS

The pointer returned points to a static array which is overwritten by

each call to ecvt; thus, it should be copied elsewhere if necessary.

The function must be declared as returning char *. The include file
"lattice/math.h" will do this for you.

3-96 Standard Library Functions

NAME

math err -- handle math function error

int code;

struct exception *x;

non-zero for new return value

math exception block

SYNOPSIS

#include "lattice/math.h"

code = matherr(x);

DESCRIPTION

This function is called whenever one of the other math functions

detects an error. Upon entry, it receives the exception block that

describes the error in detail. This structure is defined in math.h, as

follows:

struct exception

{

int type;

char *name;

error type

name of function having error

double argl;

double arg2;

double ret;

};

first argument

second argument

proposed return value

Standard Library Functions 3-97

3-98 Standard Library Functions

The error type names derined in math.h are:

DOMAIN => domain error

SING => singularity

OVERFLOW => overflow

UNDERFLOW => underflow

TLOSS => total loss of significance

PLOSS => partial loss of significance

The standard version of matherr supplied in the library places the

appropriate error number into the external integer errno, and returns

zero. When matherr is called, the function that detected the error

will have placed its proposed return value into the exception

structure. The zero return code indicates that return value should be

used.

Programmers may supply their own version of matherr, if desired. On

particular errors, it may be desirable to cause the function detecting

the error to return a value other than its usual default. This can be

accomplished by storing a new return value in ret of the exception

structure, and then returning a non-zero value from matherr, which

forces the function to pick up the new value from the exception

structure.

SECfION 4:

Program Generation on AmigaDOS

The Amiga 68000 C compiler can be used on Amiga's AmigaDOS

operating system to generate programs to be executed on the Amiga

68000 processor. It accepts text files containing programs written in

the C programming language and produces relocatable machine code

in the Amiga format, suitable for use by the Amiga linker ALINK.

Program Generation on AmigaDOS 4-1

file.C -> LCI -> file.Q

fiIe.Q -> LC2 -> file.O

4.1 Module Compilation

The compiler is implemented as two executable files, LC1 and LC2.

Each program performs a portion of the compilation process and

must be invoked by separate commands; LC1 does not automatically

load LC2 when it completes its processing. Normally, LC2 should be

executed immediately after LC1 if there are no errors in the source

file. The compilation process can be diagrammed as follows:

4-2 ProgramGeneration on AmigaDOS

LC1 reads a C source file, whose name must end in the two

characters .C, and (provided there are no fatal errors) produces an

intermediate file of an identical name, except that it ends in the two

characters .Q. LC2 reads an intermediate file created by LC1 and

produces a binary file of the same name but ending in .0. The

intermediate file is deleted by LC2 when it completes its processing.

Each phase normally creates its output file in the same directory as

the input file. Note that if a source file defines more than one

function, so does its resulting object file. Individual functions cannot

be broken out from the object file when a program is linked; see

Section 4.3.2 for more information.

The object file produced by the compiler must be incorporated with

other object files and with run-time support subroutines in order to

produce an executable file. This can be accomplished by using the

Amiga utility ALINK; instructions for linking are presented in

Section 4.2.

4.1.1 Phase 1

The first phase of the compiler reads a C source file and produces an

intermediate file of logical records called quadruples, or quads. See

Lei [>listfile] [options] filename <RETURN>

Section 4.3.1 for a more detailed discussion of the processing

performed. The format of the command to invoke the first phase of

the compiler is:

The various command line specifiers are shown in the order they

must appear in the command. Required specifiers are shown in

emphasized type; optional specifiers are shown enclosed in brackets.

>listfile Causes the first phase messages to be written

to a specified file. These messages include

the compiler sign-on message and any error

or warning messages which may be

generated. The full filename must be

specified, including extension, if any. If the

file already exists, it is truncated and reused.

This option is useful for reviewing long lists

of error messages.

options Compile time options are specified as a

hyphen followed by a single letter; in some

cases, additional text may be appended. The

option letter may be supplied in either upper

or lower case. Each option must be

specified separately, with a separate hyphen

and letter (that is, they cannot be combined

as they can for certain UNIX programs).

Current options include:

Program Generation on AmigaDOS 4-3

d Allows the dollar sign ($) to be used

as an embedded character in

identifiers.

-b Informs the first phase that all static and

external data is to be addressed using a base

register, either A5 or A6, thus limiting the

total size of static data objects to 64K bytes.

Which address register will be used depends

on whether the -f option is specified on LC2

(see Section 4.1.2 below); AS is the default.

This option must be used if

position-independent code is desired.

-c[flags] Controls the various compatibility modes of

the compiler, which allow it to accept source

files compiled with a previous version of the

Amiga compiler. Each flag is specified as a

single letter in either upper or lower case;

more than one flag may be attached to the

-c, but no blanks are permitted (for

example, -cusw). The flag letters

recognized are:

c Allows comments to be nested; the

default now is that comments do not

nest.

m Permits the use of multiple character

constants (for example, 'XX').

4-4 Program Generation on AmigaDOS

s Causes the compiler to generate only

one copy of identical string

constants. By default the compiler

now generates unique copies of all

string constants, even if they are

identical.

u Forces all char declarations to be

interpreted as unsigned char.

Causes debugging information to be included

in the quad file. Specifically, line separator

quads are interspersed with the normal

quads. This allows the second phase to

collect information relating input line

numbers to program section offsets. If this

option is used, the object file produced will

contain line number/offset records, and can

be processed by the object module

disassembler to produce an intermixed

source code and machine code listing (see

Section 4.1.4 below). Note that the -d

option does not affect the size of the

function itself, only the object file.

w Shuts off the warning generated for

return statements that do not specify

a return value inside an int function.

(Functions which do not declare a

value should be declared void.)

Program Generation on AmigaDOS 4-5

#define symbol

-dsymbol

-dsymbol=value Causes the identifier "symbol" to be

defined, as if the compiler had encountered

a #define command for it. One of two forms

of the option may be used. The first form

merely defines the symbol with a null

substitution text; the equivalent C statement

is

The second form uses an equal sign to attach

a substitution text "value"; its equivalent is

#define symbol value

Several definitions can be made in the same

LC1 command; however, macros with

arguments cannot be defined from the

command line. This feature allows source

files containing conditional compilation

directives (#ifdef, #ifndef, #if, #else, #endif)

to be used to produce different results

without modifying the source file, simply by

defining the appropriate symbol on the LC1

command.

-iprefix Specifies that #include files are to be

searched for by prepending the filename

with the string prefix, unless the filename in

the #include statement is already prefixed by

a slash, backslash or period (/ ,\ or .)

directory specifier. Up to 4 different -i

strings may be specified in the same LCl

command. When an unprefixed #include

filename is encountered, the current

4-6 Program Generation on AmigaDOS

directory is searched first; then file names

are constructed and searched for. using

prefixes specified in -i options, in the same

left-to-right order as they were supplied on

the command line. No intervening blanks

are permitted in the string following the i.

Note that if a directory name is to be

specified as a prefix, a trailing slash must be

supplied (see examples below).

-1 Forces alignment of all data elements except

char and short to a byte offset evenly

divisible by four. This option is provided in

the event that code is to be generated for a

later version of the 68000 series which may

perform long operations more efficiently if

the values are stored at modulo 4 addresses.

-n Causes the compiler to retain a maximum of

8 characters for all identifier symbols,

including #define symbols. The default

symbol retention length is 31 characters.

-oname Modifies the name of the output file (the. Q

or quad file). If name ends with a backslash
(\). colon (:) or slash (/), the output file

name is formed by prepending the input

filename (the .C file which is being

compiled) with name. Any drive or

directory prefixes originally attached to the

input filename are discarded before the new

prefix is added. If name does not end with

one of these characters, it is used as the

complete name of the output file. Note that

no intervening blanks are permitted in the

string following the o.

Program Generation on AmigaDOS 4-7

filename Specifies the name of the C source file which

is to be compiled; this is the only command

line field which must be present. The

filename should be specified without the .C

extension; the first phase supplies the

extension automatically. Alphabetic

characters may be supplied in either upper

or lower case. Note that only files with a .C

extension can be compiled; if some other

extension is specified, the compiler ignores it

and tries to find name.C. (#include files, on

the other hand, must be fully specified with

extensions.) The current directory is

assumed unless another directory is

specified, and the quad file is created in the

same directory as the source file unless the

-0 option is used (see above).

-u Cancels all automatic symbol definitions for

the current compilation. Certain #define

symbols are normally pre-defined by the

compiler (see below); this flag cancels all of

those definitions.

-x Changes the default storage class for

external declarations (made outside the

body of a function) from external definition

to external reference. The usual meaning of

an external declaration for which an explicit

storage class is not present is to define

storage for the object and make it visible in

other files. The -x option causes such

declarations to be treated as if they were

preceded by the extern keyword, that is, the

object being declared is present in some

other file.

4-8 Program Generation on AmigaDOS

Include files may be specified enclosed in double quotes

("filename") or angle brackets «<filename>~; the two forms have

exactly the same effect. The name between the delimiters is taken at

face value; the extension must be specified if one is defined for the

file. The usual convention is to use .H for all header files.

Alphabetic characters in a file name may be specified in either upper

or lower case. Note that the current directory is always searched first

for #include files, and that prefixes specified in -i options are used

only if the name on the #include line is not prefixed with a slash,

backslash or period (/, \ or .) .

As an assistance to conditional compilation, the compiler

automatically #defines several symbols, which can be tested in #if,

#ifdef, or #ifndef directives to select appropriate code sequences

according to the target processor or operating system. Three symbols

are always defined in the compiler:

#define M68000 1

#define AMIGA 1

#define SPTR 1

If the -d flag was specified (as "-d", not "-dsymbol"), the following

symbol is defined:

#define DEBUG 1

The automatic definition of these symbols can be prevented by use of

the -u option, which cancels all of the above definitions.

Program Generation on AmigaDOS 4-9

4-10 Program Generation on AmigaDOS

EXAMPLES

Required parameter entries are shown in emphasized type. Optional

parameters are shown in regular type.

LeI -idf0:include/ xyzfile

This command executes the first phase of the compiler using file

XYZFILE.C as input, creating file XYZFILE.Q in the current

directory. Any #include files not found in the current drive/directory

will be searched for in the directory DF0:INCLUDE. Note the

trailing slash on the prefix attached to the -i flag; it is not

automatically assumed by the compiler.

LeI -odf1: -x XYZ

This command executes the first phase of the compiler using file

XYZ.C as input, creating file XYZ.Q on DF1; it causes all external

declarations without a storage class to be interpreted as extern

declarations.

LeI >tns.err -ccuw tns

This command executes the first phase of the compiler using file

TNS.C as input, creating file TNS.Q on the currently logged-in disk;

it creates a file TNS.ERR to contain all of the messages generated by

the compiler. The compiler will allow nested comments, interpret all

char declarations as unsigned char, and suppress warning messages

for return statements with no return value in int functions.

4.1.2 Phase 2

The second phase of the compiler reads a quad file created by the

first phase and creates an object file in the Amiga format. See

Section 4.3.2 for a more detailed discussion of the processing

performed. The format of the command to invoke the second phase

of the compiler is:

Le2 [options] filename <RETURN>

The various command line specifiers are shown in the order they

must appear in the command. Required specifiers are shown in

emphasized type; optional specifiers are shown in enclosed in

brackets.

-d Causes symbol information for externally

visible objects to be added to the object

file. This information will be retained in

the load module (program file) by the

linker, so that symbolic debuggers can

determine the location of externally

defined functions and data.

options Compile time options are specified as a hyphen

followed by a single letter; in some cases, additional

text may be appended. The option letter may be

supplied in either upper or lower case. Each option

must be specified separately, with a separate hyphen

and letter (that is, they cannot be combined as they

can for certain UNIX programs). Current options

include:

Program Generation on AmigaDOS 4-11

-fn

-oname

-r

-s

Specifies an address register to be used

for the stack frame pointer. Only two

values for "n" are allowed: S indicates

that register AS is to be used, 6 that

register A6 is to be used. The address

register used if the -f option is not

specified is A6. If the -b option is

specified on LC1, whichever of these

two registers is not used as the stack

frame pointer is used as the base register

for addressing static and external data.

Modifies the name of the output file (the

.0 file). If name ends with a backslash

(\), colon (:) or slash (/), the output file

name is formed by prepending the input

filename (the .Q file which is being

compiled) with name. Any drive or

directory prefixes originally attached to

the input filename are discarded before

the new prefix is added. If name does

not end with one of these characters, it

is used as the complete name of the

output file. Note that no intervening

blanks are permitted in the string

following the o.

Forces all function calls to use

PC-relative addressing, thus limiting the

range of function calls to plus or minus

32K. This option must be used if

position-independent code is desired.

Adds section names to the object file.

The Amiga linker will merge all sections

(hunks) with identical names. Normally,

the object file contains unnamed

4-12 Program Generation on AmigaDOS

filename

sections (hunks) which are not merged

with other sections; such unnamed

sections may be placed in memory at

widely different addresses when the final

program is loaded. The sections in all

modules compiled with the -s flag, on

the other hand, will be loaded in

contiguous memory. This may result in a

faster load time for the program, but it

may also prevent it from loading under

certain conditions. The -s flag is useful

for debugging purposes to force certain

modules to be loaded together.

-v Causes the code generator to omit the

code at entry to each function which

checks for stack overflow (see Section

5.3.3). Once a program has been

debugged, it may be desireable to

eliminate stack checking in all but a few

key routines since this adds 14 bytes to

each function.

Specifies the name of the intermediate file from

which code is to be generated; this is the only

command line field which must be present. This

intermediate file is a quad file with a .Q extension,

created by the first phase of the compiler. The file

name should be specified without the .Q extension;

the second phase supplies the extension

automatically. Alphabetic characters may be

supplied in either upper or lower case. The current

directory is assumed unless another directory is

specified, and the object file is created in the same

directory as the quad file unless the -0 option is used

(see above).

Program Generation on AmigaDOS 4-13

LC [options] files

EXAMPLES

LC2 -odf0:u790

This command executes the second phase of the compiler using file

U790.Q as input, causing the file U790.0 to be created on DF0.

LC2 -f5test4

This command executes the second phase of the compiler using file

TEST4.Q as input, causing the file TEST4.0 to be created. Address

register AS will be used as the stack frame pointer in the code

generated.

4.1.3 LC Command (Compiler Driver)

Supplied with the compiler is a program called LC that uses the

program load capabilities of AmigaDOS to call the two compiler

passes repeatedly for multiple compilations. The format of the

command to invoke this program is:

where options is a list of compiler options and files is a list of

filenames, separated by white space. Just as with LC1 and LC2, the

filenames should be specified without the .C extensions.

On the Amiga, the native version of the compiler now has available

the driver program 'LC' . This allows single command line

invocations of the compile process. The flags are exactly the same

except when they conflict between phases. The only instances of

these are the following:

-0 To redirect the output of the quad file, use the -q

option instead (same format as -0). By default, LC

4-14 Program Generation on AmigaDOS

will place the quad file in RAM:. This greatly

reduces compile times. However, if you do not have

enough memory, you may need to use the -q option

to place the quad file on disk.

-d This flag causes the -d option to be used with both

phases of the compiler. This has the effect of adding

symbol information and line number/offset

information to the object file.

-V This option stands for 'verbose'. It causes LC to

display the command lines it generates as it executes

them.

In general, the options are the same as for the LCl and LC2

commands, except where LCl and LC2 use the same option letter to

mean different things. This occurs only for the -0 option, and is

resolved as follows:

-qx Specifies prefix for quad files; same as LCl -0.

In other words, the quad file prefix is indicated using -q instead of

-0.

Program Generation on AmigaDOS 4-15

By default, LC directs the quad file to RAM:, allowing compilations

to proceed more quickly than if the quad file is created on disk.

However, on systems with less than 512K of memory, there may not

be enough memory to contain the quad file. In this instance, the -q
option should be used to cause the quad file to be generated on disk.

LC allows a blank between an option letter and the string that follows

it, as in

LC -d xyz file

This is compatible with UNIX, but causes a problem if the -d item is

just before the file name part of the command and was intended to

indicate debugging mode instead of defining a symbol, as in:

LC -d - program

LC -d program

The symbol "program" will be #defined instead of being treated as a

file name to be compiled. This problem can be avoided through use

of the UNIX convention of ending the options with a single dash:

Note that use of the -d option in this form on LC causes the -d

option to be set for both phases of the compiler, i.e., both symbol

information and line number/offset information will be included in

the resulting object file.

Use of the -V option will cause LC to display the command lines

used to execute each phase of the compiler.

EXAMPLES

Le -i1include/ -p ptrsub klax portq

This command compiles the files PTRSUB.C, KLAX.C, and

PORTQ.C, producing PTRSUB.O, KLAX.O, and PORTQ.O, if

successful compilations are made for each file. Any #include files not

found in the current directory will be searched for in /INCLUDE,

and the code for any functions generated will include a stack probe

instruction on entry.

4.1.4 Object Module Disassembler

The object module disassembler (OMD) provides a listing of the

machine language instructions generated for a particular C source

module. If the module is compiled with the -d option so that line

number/offset information is included in the object file, the

disassembler utility can produce a listing with interspersed source

code lines. This listing can then be used in association with the link

4-16 Program Generation on AmigaDOS

map for the program to determine the exact location of the code

generated to perform specific statements.

OMD [>listfile] [options] objfile [textfile]

The format of the command to invoke the object module

disassembler is

The various command line specifiers are shown in the order they

must appear in the command. Optional specifiers are shown

enclosed in brackets.

>listfile

options

The first option is used to direct the listing produced

by OMD to a specified file or device. If this option is

omitted, the listing output is written to the user's

console.

Two override options can be specified; each consists

of a hyphen followed by a single letter which

indicates the value to be overridden, and a string of

decimal digits specifying the override value. The

option letter may be specified in either upper or

lower case. There must be no embedded blanks in

any single option, but each must be specified as a

separate field. The valid options are:

-Xnnn Overrides the default maximum number

of external items which can be processed

by OMD; this number applies separately

to both external definitions and external

references. nnn specifies a decimal

number of external items which can be

processed. The default value is 200.

-Lnnn Overrides the default size for the line

number and offset information tables.

These tables are used only if the object

Program Generation on AmigaDOS 4-17

file was produced with the -d option;

line number/offset information from the

file is placed in these tables. The default

size (which defines the maximum

number of line number/offset pairs

which can be processed) is 100.

objfile Specifies the name of the object file, produced by

the compiler, which is to be processed by OMD. The

full name including the .0 extension must be

specified.

textfile Specifies the name of a C source code file which is to

be listed along with the disassembled instructions. If

this option is present, the object file must have been

compiled using the -d option for the LC1 command.

The full name including the .C extension must be

specified.

OMD processes only a single object module. The entire module is

read and loaded into memory before the listing is generated. The

memory needed to contain the program and data sections of the

module is automatically allocated, since the sizes of the files are

contained in the file.

If the textfile option is used, only the source text from the specified

file is listed; if it refers to any #include files, they will not be listed.

Some limitations of the textfile option should be noted. First, the

code generated for the third portion of for statements is placed at the

bottom of the loop; that code will appear in front of the next

statement after the end of the loop. Second, the compiler tends to

defer storing registers until the last possible moment, so that the code

shown for assignment statements often consists merely of loading

values into registers; the registers will be stored later. Finally, the

code generated for entry to a function will often be displayed in front

of the source lines defining that function. Thus, inspection of the

4-18 Program Generation on AmigaDOS

surrounding code may be necessary to determine the actual code

generated for a source file construct.

ERROR MESSAGES

EXAMPLES

OMD QRS.O

This command disassembles the object module QRS.O and writes the

listing to the user's console.

OMD >TEMP.LST -X400 XYZ.O XYZ.C

This command disassembles the object module XYZ.O and writes

the listing to the file TEMP.LST; it causes the source code lines from

XYZ.C to be placed in the listing, provided that line number and

offset information is present in the object file. It also provides for a

maximum number of 400 external items (same limit for both external

definitions and external references).

External items overflow

A variety of error conditions are detected by the object module

disassembler; all cause early termination of the output file and result

in the writing of an appropriate error message to stderr. These

messages are self-explanatory for the most part. If one of the

run-time-specifiable options is not sufficiently large, the error

message will indicate the specific option which was not large enough;

for example, if the module defines too many external definitions or

references, the message

will be produced.

Program Generation on AmigaDOS 4-19

1. The start-up file LStartup.Obj must be specified as the

first module included by the linker. This file defines the

AmigaDOS entry point for all C programs using the

Amiga C compiler.

4.2 Program Linking

After all of the component source modules for a program have been

compiled, they must be linked together to produce an executable

load module, or program file. This step is necessary for several

reasons. First, the object file produced by the second phase of the

compiler is not is a state suitable for execution. Second, most

programs make use of external functions not defined in the same

module; before such programs can execute, they must be

"connected" with those other functions. The functions may be

defined by the user, in which case they must be compiled and

available as object files during linking, or they may be defined in the

library supplied with the compiler. Note that the compiler generates

internal function calls to perform certain operations (see Section

5.1).

Although the usual concept of linking involves external function calls,

C also permits functions to access data locations defined in other

modules. This kind of reference is possible because the external

linkage mechanism supported by the object code associates an

external symbol with a memory location; this symbol is the identifier

used to declare the object in a C program. The programmer must be

careful to declare an object with the same attributes in both the

module which defines it and the module which refers to it, because

linking does not verify the type of reference made -- it simply

connects memory references using external symbols. The use of

include files for common external declarations will usually prevent

this kind of error.

The linking process in a general sense requires that all the

components of a program be specified, either directly or indirectly, as

input to the linker. Three types of input are required.

4-20 Program Generation on AmigaDOS

Program Generation on AmigaDOS 4-21

2. Functions generated by the user must be specified as

additional modules to be included. These modules

include the main module, as well as any additional

functions defined in other source modules.

3. The two files LC.LIB and AMIGA.LIB must be

specified as libraries to be searched during linking.

In the case of the linker supplied with AmigaDOS, these inputs are

specified by

1. Making LStartup.Obj the first module after the FROM

keyword on the ALINK command.

2. Including the names (with .0 extensions) of the user's

object files on the ALINK command, along with the C.O

start-up module after the FROM keyword.

3. Including LC.LIB and AMIGA.LIB after the LIBRARY

keyword on the ALINK command.

Note that for step 2, one of the files included in the FROM list must

be the main module, i.e., it must define the function main.

If the linker cannot find one of the .0 files mentioned on the ALINK

command, it will stop processing without creating an executable file.

Another error condition can arise if the linker cannot find all the

external items referred to in the .0 files specified. In this case the

message "Linker: unresolved external references:" will be generated

by the linker, followed by a list of the external names which were not

defined and the modules which referenced them. No attempt to

execute a program with unresolved externals should be made unless

it is certain that the missing functions will never be called.

EXAMPLE

ALINK FROM LStartup.Obj,XYZ.O,QRS.O TO CPROG LIBRARY

LC.LlB,AMIGA.LIB

This command executes the linker, producing CPROG as an

executable program, and causes the files XYZ.O and QRS.O to be

included in the program. The start-up module LStartup.Obj is

named first in the FROM list, and the files LC.LIB and AMIGA.LIB

are specified as libraries to be searched.

4.3 Compiler Processing

The Amiga C compiler under AmigaDOS is implemented as two

separately executable programs, each performing part of the

compilation task. This section discusses the structure of the compiler

in general terms, and describes the processing performed by both

phases. Special sections are devoted to a discussion of the topics of

error processing and code generation.

4-22 Program Generation on AmigaDOS

4.3.1 Phase 1

The first phase of the compiler performs all pre-processor functions

concurrently with lexical and syntactical analysis of the input file. It

generates the symbol tables, which contain information about the

various identifiers in the program, and produces an intermediate file

of logical records called quadruples, which represent the elementary

actions specified by the program. When the entire source program

has been processed (assuming there are no fatal errors), the

intermediate file (also called the quad file) is reviewed, and locally

common sub-expressions are detected and replaced by equivalent

results. Then selected symbol table information is written to the

quad file, for use by the second phase. The first phase is thus very

active as far as disk I/O is concerned. Generally, if the disk activity

stops for more than a few seconds, it is reasonable to assume that the

compiler has failed. See Appendix B for the compiler error reporting

procedure if this happens.

Program Generation on AmigaDOS 4-23

When the first phase begins execution, it writes a sign-on message to

the standard output which identifies the version of the compiler

which is being executed. On AmigaDOS the first phase returns an

exit code of zero if no errors were detected, and a code of one

otherwise. See Section 4.3.3 for more information about error

processing. Note that the quad file is deleted if any fatal errors are

detected, but not until the source file has been completely processed.

Aborting the first phase before it has terminated can therefore result

in the existence of an invalid quad file which should have been

deleted.

If the -p option is specified, the first phase of the compiler does not

create a quad file; instead, it creates a text file with the logical output

of the preprocessor. In this case, no syntactic checking of the file is

performed, and only error messages relating to the preprocessor are

generated.

4.3.2 Phase 2

The second phase of the compiler scans the quad file produced by

the first phase, and produces an object file in the Amiga object

binary format. This object code supports all of the necessary

relocation and external linkage conventions needed for C programs

(see Section 5.3 for details). A logical section of code text specifying

the machine language instructions which make up the executable

portion of the program is generated first, followed by a section of

data-defining text for all static items. Unlike the first phase, the

code generator is not always actively performing disk 110. Each

function is constructed in memory before its object code is

generated, so that there may be fairly sizable pauses during which no

apparent disk activity is taking place. In general, these delays should

not last more than several seconds. If no activity occurs for more

than about 30 seconds, the compiler has probably failed; see

Appendix B for information about reporting compiler problems.

When the second phase begins execution, it writes a sign-on message

to the standard output which identifies the version of the code

Module size P=pppp D=dddd U=uuuu

generator which is being executed. When code generation is

complete, the second phase writes a message of the form

to the standard output (usually the user's console). pppp indicates

the size in bytes of the program or executable portion of the module

generated, dddd the size in bytes of the initialized data section, and

uuuu the size in bytes of the uninitialized data section; all values are

given in hexadecimal. These sizes include the requirements for all of

the functions included in the original source file. Note that the sizes

define the amount of memory required for the module once it is

loaded (as part of a program) into memory; the .0 file requires more

space (or less) because it contains additional relocation information,

and does not represent uninitialized static data directly.

As noted in the introduction to Section 4.1, the code generator

produces a single. 0 module for a given source module, regardless of

how many functions were defined in that module. These functions

(if more than one is defined) cannot be separated at link time; if any

one of the functions is needed, all of them will be included.

Functions must be separated into individual source files and

compiled to produce separate object modules if it is necessary to

avoid this collective inclusion.

4.3.3 Error Processing

All error conditions (with the exception of internal compiler errors)

are detected by the first phase. As soon as the first fatal error is

encountered, the compiler stops generating quads; it then deletes the

quad file just before it terminates execution. This prevents the

second phase from attempting to generate code from an erroneous

quad file. Note that under AmigaDOS the compiler returns a zero if

no errors are detected, and a one otherwise. When the compiler

detects an error in an input file, it generates an error message of the

form:

4-24 Program Generation on AmigaDOS

Program Generation on AmigaDOS 4-25

filename line Error nn: descriptive text

where filename is the name of the current input file (which may not

be the original source file if #include files are used); line is the line

number, in decimal, of the current line in that file; nn is an error

number identifying the error; and descriptive text is a brief

description of the error condition. (Appendix A provides expanded

explanations for all error and warning messages produced by the

compiler.) All error messages are written to the standard output,

which is normally the user's console but can be directed to a file if

desired (see Section 4.1.1). A message similar to the one above but

with the text Warning instead of Error is generated for non-fatal

errors; in this case, generation of the quad file continues normally. In

some cases, an error message will be followed by the additional

message:

Execution terminated

which indicates that the compiler was too confused by the error to be

able to continue processing. The compiler uses a very simple error

recovery scheme which may sometimes cause a single error to induce

a succession of subsequent errors in a "cascade" effect. In general,

the programmer should attempt to correct the obvious errors first and

not be overly concerned about error messages for apparently valid

source lines (although all lines for which errors are reported should

be checked).

Error messages which begin with the text CXERR are internal

compiler errors which indicate a problem in the compiler itself. See

Appendix B for the compiler error reporting procedure. The

compiler generates a few other error messages that are not

numbered; they are usually self-explanatory. The most common of

these is the "Not enough memory" message, which means that the

compiler ran out of working memory.

SECTION 5:

68000 Code Generation

Any processor with a sufficiently rich instruction set allows

implementation of high-levellanguage constructs in a variety of ways,

and the 68000 is no exception. This section presents the general

strategy used by the Amiga compiler in generating code for the

68000, with a view toward clarifying the machine-dependent aspects

of the language, the compiler's choice of machine language

instructions, and the interface to user-written assembly language

modules.

68000 Code Generation 5- t

5.1.1 Data Elements

5.1 Machine Dependencies

The C language definition does not completely specify all aspects of

the language; a number of important features are described as

machine-dependent. This flexibility in some of the finer details

permits the language to be implemented on a variety of machine

architectures without forcing code generation sequences that are

elegant on one machine and awkward on another. This section

describes the machine-dependent features of the language as

implemented on the 68000 series. See Section 2 of the manual for a

description of the machine-independent features of the Amiga

implementation of the language.

The standard C data types are implemented according to the

following descriptions. The only data elements which do not require

alignment to a word offset are characters and character arrays; as

noted in Section 4.1.1, this word alignment can be forced to a long

word (four-byte) alignment for all objects larger than two bytes by a

compile time option. In all cases, regardless of the length of the data

element, the high order (most significant) byte is stored first,

followed by successively lower order bytes. This scheme is consistent

with the general byte ordering used on the 68000. The following

table summarizes the characteristics of the data types:

Type Length

in Bits Range

char 8 -128 to 127 (ASCII

characters)

unsigned char 8 o to 25S

short 16 -32768 to 32767

unsigned short 16 o to 65S3S

5-2 68000 Code Generation

int

unsigned int

long

float

double

char

unsigned char

int

long

long int

unsigned

or

unsignedint

unsigned long

short or short int

unsigned short

float

32

32

32

32

64

-2147483648 to 2147483647

o to 4294967295

-2147483648 to 2147483647

+/- 10E-37 to +/- 10E38

+/- 10E-307 to +/- 10E308

defines an 8-bit signed integer. Text

characters are generated with bit 7 reset,

according to the standard ASCII format.

defines an 8-bit unsigned integer.

all define a 32-bit signed integer.

all define a 32-bit unsigned integer.

both define a 16-bit signed integer.

defines a 16-bit unsigned integer.

defines a 32-bit signed floating point

number, with an 8-bit biased binary

exponent, and a 24-bit fractional part which

is stored in normalized form without the

high-order bit being explicitly represented.

The exponent bias is 127. This

representation is equivalent to approximately

6 or 7 decimal digits of precision.

68000 Code Generation 5-3

double or

long float defines a 64-bit signed floating point number.

with an 11-bit biased binary exponent, and a

53-bit fractional part which is stored in

normalized form without the high-order bit

being explicitly represented. The exponent bias

is 1023. This representation is equivalent to

approximately 15 or 16 decimal digits of

precision.

Pointers to the various data types and to functions are four bytes in

length, and contain the absolute address of the first byte of the target

object.

The total size of all objects declared within the same storage class is

limited according to the particular class, as follows:

Storage elass Maximum total size of objects declared

extern

static

auto

formal

1048S7S

104857S

S24287

2SS

Note that aggregates (structures and unions) declared as formal

parameters do not contribute their actual size to the total storage for

formals, but rather the size of a pointer. This is because aggregates

passed by value are passed as a pointer which is used to move the

contents of the aggregate to a local copy within the function; see

Section S.3.3.

5.1.2 External Names

External identifiers may be up to 31 characters in length in the

default case; if the -n option is used on LC1, they will be truncated

5-4 68000 Code Generation

to 8. Upper and lower case letters are distinct, i.e., case is

significant. A user may define external objects with any name that

does not conflict with the following classes of identifiers:

******* Certain library functions and data elements

(defined in modules written in C) are defined

with an initial underscore.

CX**** Run-time support functions (written in assembly

language) which implement C language features

such as long integer multiply and divide, floating

point arithmetic, and the like are defined with

CX as the first two characters.

The likelihood of collision with library definitions is remote, but users

should be aware of these conventions and avoid applying these types

of identifiers to external, user-defined functions and data.

5.1.3 Arithmetic Operations and Conversions

Arithmetic operations for the integral types (floating type operations

are discussed in the next section) are generally performed by in-line

code. Integer overflows are ignored in all cases, although signed

comparisons correctly include overflow in determining the relative

size of operands. Short integer division by zero generates a trap; long

integer division by zero simply generates a result of zero. Division of

negative integers causes truncation toward zero, just as it does for

positive integers, and the remainder has the same sign as the

dividend. Right shifts are arithmetic, that is, the sign bit is copied

into vacated bit positions, unless the operand being shifted is

unsigned; in that case, a logical (zero-fill) right shift is performed.

Function calls to library routines are generated only for long integer

multiplication and division (both signed and unsigned).

68000 Code Generation 5-5

Conversions are generated according to the "usual arithmetic

conversions" described in Kernighan and Ritchie, and are generally

trouble free. The following points should be noted:

1. char objects may be signed or unsigned in this

implementation. Thus, sign extension mayor may not

be performed during expansion to int. Note that all char

declarations may be forced to be interpreted as unsigned

char by means of a compile time option; see Section

4.1.1.

2. Conversion of short to long causes sign extension, while

conversion of unsigned short to long does not. The

inverse operations simply truncate the result, which is

undefined if its absolute value is too large to be

represented.

3. Expansion of char and short operands to int may not be

performed by the compiler if those operands only

participate in operations with other operands of the same

type, resulting in increased efficiency for sequences like

char a, b, c;

a = b + c;

Note that expansion is, however, always performed for

function call arguments.

4. Conversions from integral to floating types are fairly

straightforward. The inverse conversions cause any

fractional part to be dropped.

5-6 68000 Code Generation

S. Conversion from float to double is well-defined, but the

inverse operation may cause an underflow or overflow

condition since double has a much larger exponent

range. Considerable precision is also lost, though the

fraction is rounded to its nearest float equivalent.

6. In general, the presence of any unsigned operand in an

expression causes the result also to be unsigned.

5.1.4 Floating Point Operations

In accordance with the language definition, all floating point

arithmetic operations are performed using double precision operands,

and all function arguments of type float are converted to type double

before the function is called. The formats used are identical to the

32-bit and 64-bit formats defined by the proposed IEEE standard

for floating point representations. Legal floating point operations

include simple assignment, conversion to other arithmetic types,

unary minus (change sign), addition, subtraction, multiplication,

division, and comparison for equality or relative size. Note that, in

contrast to the signed integer representations, negative floating point

values are not represented in two's complement notation; positive

and negative numbers differ only in the sign bit. This means that two

kinds of zero are possible: positive and negative. All floating point

operations treat either value as true zero and generally produce

positive zero, whenever possible. Note that code which checks float

or double objects for zero by type punning (that is, examining the

objects as if they were int or some other integral type) may assume

(falsely) negative zero to be not zero.

Floating point arithmetic and comparison operations are performed

by generating calls to library routines written in assembly language.

Floating point exceptions are processed by a library function called

eXF ERR that is called according to the following convention:

68000 Code Generation 5-7

eXFERR(errno);

int errno;

where errno can be

1 = underflow

2 = overflow

3 = divide by zero

The standard version of CXFERR supplied in the libraries simply

ignores all error conditions. A different version can be written (in

either C or assembly language) to print out an error message and

terminate processing, or take any other action. If CXFERR returns

to the library function which called it, each exception is processed as

follows:

Underflow Sets the result equal to zero.

Overflow Sets the result to plus or minus infinity.

Zerodivide Sets the result equal to zero.

5.1.5 Bit Fields

Bit fields are fetched on a long word basis, that is, the entire word

containing the desired bit field is loaded (or stored) even if the field

is 16 bits or less in size. Bit fields are assigned from left to right

within a machine word; the maximum field size is 31 bits. Bit fields

are considered unsigned in this implementation; sign extension is not

performed when the value of a field is expanded in an arithmetic

expression. If a structure is declared

5-8 68000 Code Generation

struct {

unsigned x : 20;

unsigned y : 9;

unsigned z : 3;

} a;

then a occupies a single 32-bit word, a.x resides in bits 31 through

12, a.y in bits 11 through 3, and a.z in bits 2, 1 and 0. Bit fields of

only a single bit are tested and assigned constant values using the

BTST, BSET, or BCLR instructions.

5.1.6 Register Variables

A register variable declaration may be accepted for any pointer or

other data object with a size of no more than 4 bytes. Up to four

pointers may be assigned to address registers starting with AS down

through A2; up to six simple data elements may be assigned to data

registers starting with D7 down through D2. The registers are

assigned in the same order in which they appear in the function

declaration, with formal parameters being assigned first. Naturally, if

AS is used as a frame pointer via the -f option described in Section

4.1.2, it is not available for use as a register variable.

The use of register variables affects the entry sequence at the start of

the function in which they are declared, by requiring an additional

instruction to save the previous registers' values before they are used

in the function. See Section 5.3.3 for more information.

5.2 General Code Generation Strategies

When the code for a function is buffered in memory before being

written to the object file, branch instructions are not explicitly

represented in the function image. Instead, they are represented by

68000 Code Generation 5-9

special structures denoting the type and target of each branch. When

the function has been completely defined, the branch instructions are

analyzed and several important optimizations are performed:

1. Any branch instruction that passes control directly to

another branch instruction is re-routed to branch

directly to the target location.

2. A conditional branch instruction that branches over a

single unconditional branch is replaced by a single

conditional branch instruction of the opposite sense.

3. Sections of code into which control does not flow are

detected and discarded.

4. Each branch instruction is coded in the smallest possible

machine language sequence required to reach the target

location.

Most of these optimizations are applied iteratively until no further

improvement is obtained.

The code generator also makes a special effort to generate efficient

code for the switch statement. Three different code sequences may

be produced, depending on the number and range of the case values.

1. If the number of cases is three or fewer, control is routed

to the case entries by a series of test and branch

instructions.

5-10 68000 Code Generation

2. If the case values are all positive and the difference

between the maximum and minimum case values is less

than twice the number of cases, the compiler generates a

branch table which is directly indexed by the switch

value. The value is adjusted, if necessary, by the

minimum case value and compared against the size of

the table before indexing. This construction requires

minimal execution time and a table no longer than that

required for the type of sequence described in No.3.

3. Otherwise, the compiler generates a table of [case value,

branch address] pairs, which is linearly searched for the

switch value.

All of the above sequences are generated in-line without function

calls because the number of instruction bytes is small enough that

little benefit would be gained by implementing them as library

functions.

Aside from these special control flow analyses, the compiler does not

perform any global data flow analysis or any loop optimizations.

Thus, values in registers (except for register variables) are not

preserved across regions into which control may be directed. The

compiler does, however, retain information about register contents

after conditional branches which cause control to leave a region of

code. Throughout each section of code into which control cannot

branch (although it may exit via conditional branches), values which

are loaded into registers are retained as long as possible so as to avoid

redundant load and store operations. The allocation of registers is

guided by next-use information, obtained by analysis of the local

block of code, which indicates which operands will be used again in

subsequent operations. This information also assists the compiler, in

analyzing binary operations, in its decision whether to load both

operands into registers or to load one operand and use a memory

reference to the other. Generally, the result of such an operation will

be computed in a register, but sequences like

68000 Code Generation 5-11

i += j;

will load the value of j into a register and compute the result directly

into the memory location for i (but only if i is not used later in the

same local block of code).

The hardware registers DO through D7 are used as general purpose

accumulators, while A0 through A4 (and AS, if not used as a frame

pointer) are used for pointer values, allowing access to indirect

operands. Either AS or A6 is used to address the current stack

frame; see Section S.3.3 for more information. The use of registers

for register variables is described in Section S.1. 6.

5.3 Run-Time Program Environment

This section describes the run-time environment which is implicitly

assumed by the 68000 code generator and its effect on the interface

between C and assembly language. Some knowledge of the

architecture of the 68000 processor and of basic object code and

linkage concepts is required in order to understand much of the

information presented.

The C programming language provides for three distinct classes of

objects in memory: the instructions which make up the executable

functions, the static data items which persist independently of any of

the functions which refer to them, and the automatic data items

which exist only while a function is invoked. Many implementations

support, through library functions, an additional dynamic memory

allocation facility which returns pointers to objects not explicitly

declared. Because the 68000 processor has a linear address space,

no special assumptions about the location of any of these components

are needed. Thus, in the general case, functions and data may be

placed anywhere in memory because of the following conventions:

5-12 68000 Code Generation

1. All function calls are generated using a JSR instruction

with a 32-bit absolute address.

2. All static and external data elements are accessed via

32-bit absolute addresses.

3. All automatic data elements are allocated and accessed

relative to address register A7; if the offset of a data

element exceeds the directly addressable range of 32K

bytes, it is accessed by transferring the frame pointer

register to another address register and adding in the

offset value.

Note that, by default, stack overflow checking is performed upon

entry to any function (see Section 5.3.3). The code which performs

this checking can be eliminated by compiling with the -v option

described in Section 4.1.2.

If the -r option on LC2 is used, function calls are generated using a

JSR instruction with a 16-bit PC-relative offset. Thus, no function

call can reach farther that 32767 bytes above or below itself. If the

-b option of LC1 is used, static and external data elements are

accessed using 16-bit offsets from an address register (A5 or A6).

This limits the size of static and external data to a maximum of 65S3S

bytes.

These rather severe restrictions are necessary in order to produce

true position-independent code. In addition, note that pointers

cannot be initialized by static declarations such as

char *p = "string";

if position-independent code is desired; at compile time, the only

way to initialize such an object is to generate a relocatable address

reference that will result in an absolute address at run time. This

problem illustrates another limitation of position-independent C code

on the 68000: once the address of an object is computed and

68000 Code Generation 5-13

5-14 68000 Code Generation

assigned to a pointer, the target object may not be moved to another

location without destroying the validity of such a pointer.

(Note: On Amiga systems, these position-independent features are

not supported by the standard startup module or library.)

5.3.1 Object Code Conventions

The object file created by the second phase of the compiler is in the

standard Amiga format, and defines the instructions and data

necessary to implement the module specified by the C source file; it

also contains relocation and linkage information necessary to

guarantee that the components will be addressed properly when the

module is executed or referenced as part of a linked program. While

the addressing conventions used by the code generator permit data

and functions to be scattered randomly throughout memory, it is

possible to force functions and data to be collected together at link

time into two contiguous blocks. The object module produced by the

compiler is designed to facilitate this grouping by placing functions

and data into separate control sections (the Amiga documentation

refers to them as hunks). At link time, all elements in the same

named control section are placed in contiguous regions of memory.

By default, the sections created by the compiler are not named; the

-s flag is used to cause them to be named.

The code section (named "text" if the -s flag is used) is the control

section which includes the instructions which perform the actions

specified by any functions defined in the source file.

Two data sections are defined. The first (named "data" if the -s flag

is used) is the control section which includes all explicitly initialized

static data items which are defined in the source file, and the second

(named "data" if the -s flag is used) is the logical control section

which specifies the size of all uninitialized static data items. Static

data in this sense includes not only those data items explicitly

declared static but also items declared outside the body of a function

without an explicit storage class identifier. String constants are

considered initialized static data, and are placed in the "data"

section. (Note that uninitialized static data items are not explicitly

represented in the object file, although they are guaranteed to be

zero at run time. Similarly, automatic data items are simply allocated

on the stack at run time and are not explicitly defined in the object

file.) The net effect of these control section assignments (if the -s

flag is used) is to force, at link time, all functions to be collected

together and all static data items to be similarly combined. There are

two advantages to this structure. In the event of a program error

which addresses an array out of range, the effect is usually less

catastrophic if it is only data (not instructions) which are destroyed.

In addition, some processors may support memory management

hardware which will allow protection or mapping of contiguous

portions of memory; separating program and data portions of a

program facilitates use of such capabilities.

On Amiga systems, however, there is no particular advantage to this

structure. In fact, since the operating system uses a scatter loading

technique to allocate memory, use of the -s flag may result in a

program which requires too much contiguous memory to be loaded

under certain conditions (depending on other tasks which may also

be executing).

5.3.2 Linkage Conventions

As noted in Section S.1.2, external identifiers may be up to 31

characters in length, depending on whether the -n option was used

when the module was compiled. The relocation information in the

object file defines all external names as an unspecified type, that is,

there is no set of attributes associated with the name; it is simply an

address within the memory defined by the final load module. It is

therefore an error to define two items with the same external name in

the same program. It is the programmer's responsibility to prevent

68000 Code Generation 5-15

1. The value of the frame pointer register (either AS or A6)

is saved on the stack, the stack pointer is transferred to

the frame pointer register, and the stack pointer is then

adjusted downward by the number of bytes of stack

space required by the called function (this local storage is

also called a stack frame). This sequence of operations

is accomplished by a simple LINK instruction, if the

needed storage is less than 32K bytes; or by explicit

instructions to push the frame pointer register, transfer to

it the stack pointer, and allocate the needed storage, if

more than 32K bytes. The frame pointer is either AS or

A6, depending on the -f option used to compile the

function (see Section 4.1.2).

this occurrence, and also to make sure that modules refer to external

names in a consistent way (i.e., a function should not refer to "xyz"

as short when it is actually defined as int in some other module).

External definition and reference from assembly language modules

are discussed in Section S.3.4.

5.3.3 Function Call Conventions

When a C function makes a call to another function, it first pushes

the values of any arguments onto the stack and then makes a call to

that function. For external functions, a JSR instruction with an

absolute long address is used (resolved at link time); for functions

defined in the same module, a BSR instruction is used (resolved at

compile time). The arguments are pushed in right-to-Ieft order

because the stack grows downward on the 68000; this allows the

called function to address the arguments in the natural left-to-right

(low-address-to-high-address) order. Note that the C language

definition requires all char and short arguments to be expanded to

int, so that a minimum of four bytes is pushed for each argument.

The first actions taken by the called function are as follows:

5-16 68000 Code Generation

3. The startup routine saves all the registers except D0 upon

entry, and then saves the stack pointer in the static

location _StackPtr. It then computes the lowest address

on the stack and stores the value in _base. The stack

checking code adds 14 bytes to the size of each function.

2. If any of the registers D2-D7 or A2-AS are used in the

function, a MOVEM.L instruction is used to save their

current values on the stack. These registers may be in

use by the calling program as register variables; see

Section S.1.6.

If stack checking is not desired, this code can be

eliminated by using the -v flag with phase-2 of the

compiler. If the -v option was not used to compile the

function, the following instructions are generated to

check for stack overflow:

CMPA.L

BCC

JMP

_base,A7

label

_cxovf

label: ;next instruction

These instructions compare the stack pointer (A7) to the

contents of the external long integer location _base

(which must be defined in the startup module and

initialized to contain the lowest permitted address for the

stack) and branch to the external entry point _cxovf if

stack overflow has occured. See Section 6.2.4 for more

information.

The routine _cxovf resets the stack pointer to a safe state

and calls cxovf to display a message. When the operator

responds to the message, the program terminates through

_exit after closing any open files.

68000 Code Generation 5-17

4. If the called function expects to be supplied one or more

arguments which are aggregates (structures or unions), it

copies the contents of those aggregates to local storage.

Note that, when an aggregate is passed by value, the

compiler does not push a copy of the aggregate onto the

stack. Instead, it supplies the address of the object to

the called function, which uses that address to make a

local copy of the aggregate.

The offsets of the various components on the stack are indicated by

the following diagram.

High

Low

Function arguments are addressed positively from the frame pointer,

while the auto data elements are addressed negatively. Temporaries

(used for storage of reusable intermediate expression results) are

placed below all of the auto data items but are addressed positively

from A7. Only as much storage as is actually needed is allocated for

temporaries. Note that the first 32K of automatic data is addressed

much more efficiently than any subsequent elements; thUS, it is

advantageous for functions to use no more than 32K bytes of local

storage.

S-18 68000 Code Generation

When a function returns to its caller, it first loads the function return

value, if any, into predefined registers. The size of the value

returned determines the register(s) used:

8 bits

16 bits

32 bits

64 bits

D0.B (low byte of D0, char functions only)

D0.W (low word of D0, short functions only)

D0.L (all other integral types and pointers)

(D0.L, D1.L) (double functions only)

For double precision values, the high order bits are contained in D0.

Note that functions returning aggregates (structures or unions)

actually return a pointer to a static copy of the aggregate. Because

this copy persists only long enough to assign the return value, such

functions are nonetheless recursively reentrant (but not multi-tasking

reentrant) .

After the return value is loaded, the function restores any of the

registers D2-D7 or A2-A5 which were saved on entry, by another

MOVEM.L instruction. The UNLK instruction is then used to

restore both the frame pointer register and the stack pointer, and an

RTS is executed to return to the calling function. As is customary in

C, that function is responsible for de-allocating any stack space used

to push arguments. An ADDQ.L instruction is used if four or eight

bytes of arguments were pushed; otherwise, an instruction like

LEA A7,12(A7)

is used to restore A7 if more than eight bytes of arguments were

pushed on the stack. (Note: LEA is used instead of ADDA.W

because it is faster by four clock cycles.)

5.3.4 Assembly Language Interface

Programmers may write assembly language modules for inclusion in C

programs, provided that these modules adhere to the object code,

68000 Code Generation 5-19

DX

DY

DZ

XDEF

DC.L

DC.W

DC.L

DX,DY,DZ

4000H

8000H

DX

linkage, and function call conventions described in the preceding

sections. An assembly language module which defines one or more

functions to be called from C should observe the following:

1. The statements defining the functions should be placed

in the text section by preceding them with

SECTION text

This is not an absolute requirement, since the functions

will be accessible regardless of the section in which they

are defined, but it assures them of placement with the C

functions during linking (if the -s option is used). Each

function entry must be declared in an XDEF statement:

XDEF AFUNC

AFUNC EQU *

2. If the module is to define data locations to be accessed

(using extern declarations) in C modules, those

definitions should be placed in the data section by

preceding them with

SECTION data,DATA

Each data element must be declared in an XDEF

statement in order to be accessible in the C modules:

S-20 68000 Code Generation

3. Any of the registers D4-D7 or A2-A6 must be preserved

by the module, and the return value loaded into the

appropriate data registers.

To call a C function from an assembly language module, an XREF

declaration for the function must be included. Before calling the

function (via JSR), the caller must supply any expected arguments in

the proper order (see Section S.3.3). After control returns from the

called function, the stack pointer must be adjusted by the caller to

account for pushed arguments.

XREF cfunc

MOVE.L DO,-(A7) push argument

MOVE.L D1,-(A7)

JSR cfunc call function

ADDQ #8,A7 restore stack ptr

Data elements defined in a C module may be accessed via XREF

statements, as well:

XREF XD2,XD3

MOVE.L XD2,D0

68000 Code Generation 5-21

fetch argument

fetch byte

The following example functions illustrate some of the requirements

discussed above.

XDEF _inp,_outp

SECTION text

*
* c = inp (ioaddr);

* char c;

* char *ioaddr;

*
_inp MOVE.L

MOVE.B

RTS

*
* outp (c.ioaddr) ;

* char c;

* char *ioaddr;

*
_outp MOVE.L

MOVE.L

MOVE.B

RTS

END

returns byte from specified 110 address

returned byte

110 address

4(A7),AO

(AO),DO

writes byte to specified 110 address

byte to be written

110 address

4(A7),AO

8(A7) ,DO

DO,(AO)

5-22 68000 Code Generation

fetch first arB (last pushed)

fetch second arB

write byte

SECTION 6:

AmigaDOS System Interface

Although the portable library functions described in Section 3 of this

manual define a general purpose interface to the typical environment

provided for C programs, there are inevitably many details and

variations which are system-dependent. In this section, the

execution of C programs and some of the details of the AmigaDOS

library implementation are presented in order to clarify the

peculiarities of this particular environment.

AmigaDOS System Interface 6-1

6-2 AmigaDOS System Interface

6.1 Program Execution

Under the AmigaDOS operating system, programs reside in files and

may be loaded by user commands or by icon selection. The creation

of program files is described in Section 4.2.

6.1.1 Run-Time Structure

Because AmigaDOS is a multitasking operating system, programs are

not loaded at any fixed address but are placed in memory at

whatever locations are available when the request to load the

programs is received. Portions of a program may' be loaded at widely

different addresses in the default case, although modules compiled

with the -s flag described in Section 4.1.2 will be loaded into

contiguous regions of memory.

The amount of memory provided by the operating system for the

run-time stack is normally 4000 bytes; it can be changed to some

other value by the STACK command. See the AmigaDOS User's

Manual for details. For Amiga C programs, a minimum of 8000

bytes is recommended.

6.1.2 Program Execution by Command

When a C program is executed, the function main is called to begin

execution. Two important services are performed for main before it

receives control.

1. The command which executed the program is analyzed,

and information from the command line is supplied as

parameters to main. The analysis performed and the

nature of the parameters supplied will be discussed in

detail below. This feature is designed to make it easier

to process command line inputs to the program.

2. The buffered text files stdin (standard input), stdout

(standard output), and stderr (standard error) are

opened and thus available for use by the program.

Normally, all three units are assigned to the user's

console, but stdin and stdout may be assigned elsewhere

by command line options described below. This feature

allows flexibility in the use of programs which work with

text file I/O using the standard getchar and putchar

macros.

The simplest way to execute a C program is to type the name of the

program file, followed by a return «return». Since the command

line provides a convenient way to supply input to a program, a

program execution request will often contain other information. The

general format of the command line to execute a C program is:

pgmname [<infile] [>outfile] [args]<RETURN>

Required specifiers are shown in emphasized type; optional specifiers

are shown enclosed in brackets. Everything after pgmname is

optional, as the brackets indicate. The additional items <infile and

>outfile, if present, must appear before all other command line

arguments following the program name. Note that these items do not

contribute to the argument count. The term field is used in this

section to mean a sequence of printable characters terminated by a

white space character, and separated from other fields by one or

more white space characters (blanks, tabs, or the end of the

command).

AmigaDOS System Interface 6- 3

The first optional field names a file or

device to which the standard input

(stdin) is to be assigned. This option is

useful only if the program being executed

actually uses the standard input (that is, it

processes text input using getchar or

scanf or makes explicit getc or fscanf

calls using stdin). The file or device

name must be immediately preceded by a

< character. The file must exist, or the

program will be aborted with the error

message "UNABLE TO OPEN

REDIRECTION FILE."

pgmname This field names the program to be executed; it is

the name of the file created when the program was

linked.

<infile

>outfile The second optional field names a file or

device to which the standard output

(stdout) is to be assigned. This option is

useful only if the program being executed

actually uses the standard output (that is,

it generates text output using putchar or

printf or makes explicit putc or fprintf

calls using stdout). The file or device

name must be immediately preceded by a

> character. The file is opened as a new

file, which discards its previous contents

if they already existed and creates an

empty file. If the filename specified is

invalid or not enough directory space is

available to create the new file, the

program is aborted with the error

message "UNABLE TO OPEN

REDIRECTION FILE."

6-4 AmigaDOS System Interface

args Any additional fields beyond the program

name and the two optional fields are

extracted and passed to the function

main as two arguments:

main (argc, argv)

int argc; /* number of arguments */

char *argv []; /* array of ptrs to arg strings */

Each arg string is terminated by a null byte. Arguments appear in

argv in the same order in which they were found on the command

line, with argv[0] the name by which the program was invoked. Note

that the optional redirection specifiers are not included in the argv

list of strings.

6.1.3 Using args and Workbench

Under AmigaDOS, programs may also be executed by selecting an

icon using the Amiga Workbench interface. The standard startup

module allows programs to be executed from either the command

line or through icon selection. In the latter case, the main function is

supplied with argc and argv, but there is no command line associated

with the invocation of the program, and the value of argc is always

zero.

A new, general purpose startup routine (LStartup.asm, LStartup.obj)

is provided with this release. Linking with this code will enable your

program to run as a eLI task or Workbench task without relinking

(as long as it does not require command line parameters).

Workbench viewsprograms via an associated" .info" file. To enable

your program to run under Workbench, create an icon (and" .info"

file) for it with the icon editor. Then you can invoke it with either a

CLI command, or a Workbench double-click. The simplest way to

AmigaDOS System Interface 6-5

6-6 AmigaDOS System Interface

do this is to copy one of the demo ".info" files; e.g., copy

LINES.INFO to MYPROG.INFO. This will result in an identical

icon for your program.

Lattice decided to set argc to 0 if the program was initiated via

Workbench, which is consistent with having no command line.

(Note: Under CLI, argc will always be at least 1, with *argv[0] being

the program name.) This will allow programs currently running

under the CLI to run under Workbench without problems. To

access the Workbench structure, use the external pointer

WBenchMsg. This pointer is valid only if argc is equal to 0.

The routine _main detects when the program is executed under

Workbench and will automatically open a default window assigned to

stdin, stdout, and stderr. If compiled with the -dTINY option,

_main does not reference any level-2 110 functions, and does not

open the default window. Note that the window is only opened when

invoked from Workbench. If the program is invoked via the CLI,

then the CLI window is used for stdin, stdout, and stderr (unless 1/0

redirection is specified).

EXAMPLES

ePROG <INPUT.R C to PQP 12

This command executes the program file ePROG, and connects stdin

to the file INPUT.R. The main function will be supplied an argc

value of 3, with strings c, PQP, and 12 in the argv array.

errlst >errors.log data

This command executes ERRLST with stdout connected to

ERRORS.LOG, which will be created as a new file. The main

function will be supplied with an argc value of 2, with strings c and

data in the argv array.

6.1.4 Program Execution by Icon Selection

Under AmigaDOS programs may also be executed by selection of an

icon using the Amiga WorkBench interface. The standard startup

module allows programs to be executed from either the command

line or through icon selection. In the latter case, the main function is

supplied with argc and argv, but there is no command line associated

with the invocation of the program, and the value of argc is always

zero.

The Workbench obtains icon and other information about a program

from an associated .INFO file (e.g., the program MYPROG must be

accompanied by MYPROG.INFO). To enable a program to execute

under Workbench, the icon editor must be used to create an icon

and .INFO file. Alternatively, as a shortcut, one of the demo .INFO

files can be copied, resulting in an identical icon for the new

program.

A program can determine whether it was invoked by a command or

by an icon by checking the value of argc. If a command was used to

execute the program, argc willbe at least one, with argv [OJ the name

of the program file. If argc is zero, the program was invoked under

Workbench, and the external pointer WBenchMsg can be used to

access the Workbench structure (see Amiga documentation for

details). Note that this pointer is valid only if argc is zero.

When a program is executed under Workbench, a window is opened

and assigned to stdin, stdout, and stderr. I/O redirection is not

supported. Note that the window is only opened when a program is

invoked from Workbench; if the program is executed by command,

the CLI window is used for stdin, stdout, and stderr (unless I/O

redirection is specified).

AmigaDOS System Interface 6-7

dfn:pathname/filename

6.2 Library Implementation

A complete implementation of the standard C library described in

Section 3 is provided for AmigaDOS. The operating system supports

a number of powerful features which allow a full implementation of

the standard file 110 functions; Section 6.2.1 discusses file I/O. The

general topic of device 110, with emphasis on screen and keyboard,

is discussed in Section 6.2.2. Dynamic memory allocation is

supported via calls to the operating system, but its operation is not

entirely compatible with UNIX implementations, as Section 6.2.3

warns. The basic program entry and exit functions are described in

Section 6.2.4, and some special functions unique to the AmigaDOS

implementation are discussed briefly in Section 6.2.5.

6.2.1 File I/O

Filenames are specified to the 1/0 functions according to the

standard AmigaDOS format as follows:

where dfn: is an optional drive specifier, pathname is an optional

directory specifier, and filename is the name of the file. If the drive

specifier is omitted, the current drive is used; if the pathname is

omitted, the current directory is used. The filename string is

terminated by a null byte. Alphabetic characters may be supplied in

either upper or lower case; actual filenames use upper case letters

only. Only those characters which are legal for filenames under

AmigaDOS are acceptable; consult the AmigaDOS documentation

for details.

The level 1 1/0 functions perform disk 1/0 by making direct calls to

AmigaDOS so that all buffering is performed by the operating system.

Programs using the level 2 110 functions cannot use the rbrk

6-8 AmigaDOS System Interface

The portable library provides a system-dependent option when a file

is opened or created; the programmer may select one of two modes

of 110 operation while a file is open. On the AmigaDOS system,

there is no difference between the two modes; thus, the text and

binary modes are equivalent. Programmers attempting to move

programs written for other Lattice C implementations should note

that, although the external locations _fmode and _iomode are not

defined in the library, the fopen function will recognize mode strings

such as "ra" or "wb" and process them correctly. Thus, in most

cases, only minor changes will be required for programs which

explicitly selected text or binary mode.

function, because fopen allocates a buffer using getmem. In the

AmigaDOS implementation, both the level 2 (fopen, putc, getc,

fclose) and the level 1 (open, creat, read, write, close) 1/0 functions

are limited to 20 open files, including devices, and including the

three (stdin, stdout, stderr) which are automatically opened for the

main program.

Two other functions should be clarified under the heading of file I/O.

The creat function gets a system-dependent argument, the access

privilege mode bits; these are ignored under the AmigaDOS

implementation. The lseek function has an offset mode, not always

implemented, which specifies an offset relative to the end of file.

Because AmigaDOS retains the exact file size in its directory, this

mode can be and is implemented in this version.

Under AmigaDOS, the external integer location _oserr will contain

the AmigaDOS system error code if a failure indication is obtained

from an 1/0 function. These codes are described in the AmigaDOS

reference manual.

AmigaDOS System Interface 6-9

6-10 AmigaDOS System Interface

6.2.2 Device 1/0

The level 1 I/O functions supplied in the Amiga C library for

AmigaDOS do not perform any special processing for devices, but

simply treat them as if they were disk files. This technique works for

many simple devices such as CON:, LPT:, and SER:. In order to

perform 110 for special devices, direct calls to the Amiga library

functions for the device must be made; consult the AmigaDOS

documentation for details.

Screen and keyboard I/O under AmigaDOS is accomplished through

windows. Access to the full range of capabilities for windows must be

achieved using direct AmigaDOS function calls, but the C library

functions can be used to perform simple I/O functions to a window.

In particular, stdin, stdout, and stderr are set up to perform 110 to

the current window, unless they are redirected as described in

Section 6.1.2. Note that AmigaDOS does not support single

character input from windows in a straightforward way; thus, when a

program requests a single character from a window, no characters will

be received by the program until a newline is received from the

keyboard. The console 110 functions getch, putch, cgets, cputs,

cprintf, and cscanf which are supplied under other implementations

of Lattice C are not presently available under AmigaDOS.

6.2.3 Memory Allocation

The full set of memory allocation functions 'described in Section 3.1

is provided under AmigaDOS, although the sbrk function operates in

a slightly different manner from other implementations (see below).

The amount of memory in the system available for use via memory

allocation depends on the total amount of memory installed and the

amount which has been allocated by other active processes.

Under AmigaDOS, the operating system memory allocation facility is

used to obtain memory. When direct calls to sbrk are made, a block

of the requested size is obtained from AmigaDOS. Unlike other

implementations of sbrk, however, the AmigaDOS version of this

function does not necessarily return contiguous portions of memory

on successive calls. In other words, the UNIX view of sbrk as simply

advancing a pointer to the base of a block of memory somewhere

outside the program is not correct under AmigaDOS. Note that rbrk

is implemented as in other systems, i.e., it returns all allocated

memory to the operating system. The AmigaDOS functions called by

sbrk and rbrk are AlIocMem and FreeMem, respectively.

The level 2 memory allocation function getmem operates as in other

implementations, by calling sbrk if none of the available blocks from

prior rlsmem calls is large enough to satisfy the requested amount of

memory. Instead of passing the exact requested size to sbrk,

however, getmem rounds up the needed size according to the value in

the external integer _mstep. This approach avoids the high cost of

the operating system overhead in processing many small allocation

requests from AmigaDOS. If a program primarily makes calls to

getmem for large blocks, a large value for _mstep may leave large

"holes" in the memory pool. In that case, a small value can be

stored in _mstep (this can be done at any time, as often as desired).

The default value supplied in the startup module for _mstep is 1024;

the value can be overwritten by including a reference to _mstep in

the user's program:

extern int _mstep;

and then simply making an assignment, such as:

_mstep = 512;

Note that the reset function rbrk cannot be used if any of the level 2

110 functions are also being used on currently open files. Only those

The level 2 memory allocation functions bldmem, allmem, and

rstmem are not available under AmigaDOS. The level 3 functions

work as in other implementations, by calling getmem and rlsmem.

AmigaDOS System Interface 6-11

1. The library function printf sends its output to the

pre-defined file pointer stdout, which is normally

opened by _main. If the code that performs this

function is removed, printf calls will produce no visible

output (the I/O library functions ignore attempts to read

or write unopened files). A similar caveat applies to the

use of scanf, which reads from stdin.

files and devices which are being accessed in buffered mode,

however, allocate a file access block using getmem; rbrk may be used

if the only open file pointers are set up for unbuffered access. A file

may be closed, then re-opened after rbrk is called; however, any file

pointers must be updated if this is done, because there is no

guarantee that the same value will be returned when the file is

opened again.

6.2.4 Program Entry/Exit

The start-up module LStartup.obj calls _main to begin execution of a

C program, and passes to it a copy of the command line which

executed the program. The standard version of _main supplied in

the library analyzes the command line and passes the command-line

arguments to main. If the level 2 file pointers stdin, stdout, and

stderr are not needed in a program, the file _MAIN.C can be

recompiled with a -dTINY option (causing the symbol TINY to be

defined), which will eliminate the code which opens those three files,

and the resulting object file can be included when the program is

linked. Please note the following important cautions if this is done.

2. If the goal is to avoid including the level 2 I/O functions

in the linked program, the library function exit should

not be called, since it closes all buffered output file

before terminating execution and automatically causes

level 2 functions to be included. Call _exit instead.

6-12 AmigaDOS System Interface

The source to the standard library version of _main has been

supplied as _MAIN.C, which can be customized as needed.

The program exit functions exit and _exit are described in Section

3.2.4. Under AmigaDOS, the error code argument is passed back to

the operating system, where it can be tested in a batch file using the

IF command (see AmigaDOS User's Manual).

If either of these keys has been typed, the appropriate character is

echoed to the console window, all level-1 files are closed, and the

program is terminated. Programs that do not use level-1 I/O or that

need to check more frequently for interruption may call the function

Chk_Abort(), which will return zero if neither of the interrupt

characters were typed, or the appropriate signal value (which will be

non-zero; see AmigaDOS documentation) otherwise. Note that

control does not return to the caller unless Enable_Abort is zero; if it

is non-zero, the program is simply terminated as described above. By

default, Enable_Abort is zero; it must be forced to a non-zero value

in order to activate the interrupt checking.

Programs can also be terminated by task interruption, if desired. If

the external int location Enable_Abort contains a nonzero value, a

check for the characters Ctrl-C and Ctrl-D is made whenever a call

to one of the level-1 110 functions is processed.

Detection of Crtl-C and Ctrl-D is provided in the I/O library. If the

external integer location Enable_Abort is set to non-zero, a check

for these conditions is performed every time a level-l I/O call is

made.

Enable _Abort = 1;

To check for ^C/^D every time a level-1 I/O call is made. Exit if

found:

AmigaDOS System Interface 6-13

Enable_Abort = 0;
If (0 1= Chk_Abort()) {

do_my_cleanup();

exit(1);

}

To check for ^crD (for example within a loop) and if found, have C

handle exiting for you:

Enable_Abort = 1;
Chk_Abort();

To check for ^CrD (for example within a loop) and if found, NOT

have C exit for you:

6.2.5 Special Functions

An extensive set of functions which can be called directly from Care

available in the library file AMIGA.LIB. The use of these functions

is described in the AmigaDOS documentation. Please note the

following important caution. Many of the functions in AMIGA.LIB

are very similar in name to standard C functions, but often they are

quite different in operation. Remember that case is significant in

external symbols, so that the function open is not the same as Open.

Beware of confusion with Amiga C library functions, and be sure to

supply the correct types and number of expected arguments. The

following paragraphs discuss additional considerations when using

AmigaDOS functions.

6-14 AmigaDOS System Interface

6.2.6 Resources

Neither AmigaDOS nor the ROM Kernel keep track of the resources

used by running tasks. Files opened by a task will remain open

indefinitely unless explicitly closed, and memory allocated will

remain unusable by other tasks unless explicitly released. For these

reasons, C programs must be careful to close all open files and

release all allocated memory before terminating execution.

The Amiga 110 and memory allocation functions provide this service

for the programmer by maintaining information about all open

AmigaDOS files and allocated memory. When a program terminates,

all files still open are closed and all allocated memory is returned to

the system. If the -dTINY option is used to compile _main, only

those files open at the AmigaDOS level will be closed, i.e., level 2

files are not closed.

6.2.7 File 1/0

The Amiga library provides several 110 functions which are very

similar to the Amiga C level 1 110 functions in both name and

function. It is important, however, to note that they are different in

significant ways.

First, as noted in the introduction above, case is significant; if the

Open function is called instead of open, the AmigaDOS function will

be called, not the Amiga C function. In addition, the AmigaDOS

calls use a file handle which is similar but not at all identical to the

level 1 file descriptor returned by open or creat. In other words, the

AmigaDOS file handle cannot be used in a call to an Amiga C

function, and an Amiga C file descriptor cannot be used in an

AmigaDOS call. The Amiga C 110 functions do in fact call the

AmigaDOS functions to perform the actual 110; thUS,it is possible to

AmigaDOSSystemInterface 6-15

6-16 AmigaDOS System Interface

obtain the AmigaDOS file handle from the level 1 I/O structure and

use this value to make direct AmigaDOS calls. This technique is not

recommended but may be useful in certain unusual circumstances.

6.2.8 Single Character 110

AmigaDOS does not support single character I/O from a standard

console device (i.e., window) because input from such a device does

not terminate at the operating system level until a newline (return) is

typed. This is true of both the console window used as the default

stdin device (the device name *) and any windows opened as CON:.

On the other hand, new AmigaDOS windows opened as RAW: will

return the data as the keys are pressed.

6.2.9 Windows

Except in the simple case of the AmigaDOS window CON:, there is

no consistent set of functions for performing both file I/O functions

and window operations. The AmigaDOS console window can be

treated as a file, and can be used with any of the level 1 or level 2 I/O

functions. This window, however, is a single instance of an extremely

flexible windowing system and may not provide the features

necessary for many applications.

In the general case, windows must be opened and manipulated by

calls to the Amiga Intuition functions in the Amiga library. Because

of the availability of the console window, there are some areas of

possible confusion.

First, the file handle returned when opening a console window is not

a window structure pointer, and may not be used with the Intuition

window functions. This is true even of the file handle returned at the

AmigaDOS level. Similarly, the pointer returned by the Intuition

AmigaDOSSystem Interface 6-17

OpenWindow function cannot be used to write data to the window

with any of the standard 110 library functions.

In addition, there are no standard Amiga C library functions to

manipulate windows (other than the console windows). Thus,

non-console windows must be opened and manipulated with

Intuition calls. This means that no information about the windows is

automatically maintained by the program, and if the windows are not

closed before the program terminates, they will remain open and the

memory associated with them will remain allocated indefinitely.

6.2.10 Memory Allocation

The memory allocated by the Amiga C memory allocation functions

is not assigned from any set of particular locations; it may reside

anywhere in the machine's address space. This makes them

unsuitable for allocating memory for screens, since such memory

must be in the lower S12K bytes of memory. Until a function is

provided which allows specification of the type of memory desired,

programmers must use the ROM Kernel function AlIocMem to

allocate screen RAM. If this technique is used, the program must

ensure that all such memory is deallocated before it terminates.

Note that if you do this, you MUST deallocate this memory before

terminating. The Amiga ROM Kernel Manual refers to an entry in

the task structure that can be used to maintain a linked list of

allocated memory, allowing the memory to be automatically

deallocated when the task terminates. However, the CLI does not

perform this operation. This means that if you use this method of

deallocating memory while running under the CLI, that memory will

either remain allocated until the CLI task itself terminates or will be

lost forever when the next program using this method initializes the

list header.

6-18 AmigaDOS System Interface

Version 3.03 of the library implements a slightly better version of the

memory allocation functions. The previous version passed all

memory allocation requests through to the system. This version

maintains a local memory pool that grows as needed. Note the

addition of a new global variable called _mstep. This contains the

size of the incremens by which the local memory pool grows. If your

memory allocation requests are for large blocks, a large step size may

leave gaping holes in the memory pool. If this is the case, store a

small value in _mstep (it can be changed at any time, as often as

desired). Note that the memory pool grows by multiples of _mstep.

For example, if you request 4096, and _mstep contains 600. If the

pool does not contain enough contiguous memory to satisfy the

request, it will request a block of memory from the system that is

«(4K + _mstep) / _mstep) * _mstep bytes long (i.e., it rounds up to
the next even _mstep multiple). In this example it requests 4200

bytes.

AppendixA; Error Messages A-I

APPENDIXA:

Error Messages

This appendix describes the various messages produced by the first

and second phases of the compiler. Error messages beginning with

the text CXERR are compiler errors and described in Appendix B.

A.l Unnumbered Messages

These messages describe error conditions in the environment, rather

than errors in the source file due to improper language specifications.

Can't open source file

Can't create object file

The second phase of the compiler was unable to create the .0 file.

This error usually results from a full directory on the output disk.

Can't create quad file

The first phase of the compiler was unable to create the .Q file. This

error usually results from a full directory on the output disk.

Can't open quad file

The second phase of the compiler was unable to open the .Q file

specified on the LC2 command, usually because it did not exist on

the specified (or current) directory.

The first phase of the compiler was unable to open the .C file

specified on the LCl command, usually because it did not exist on

the specified (or current) directory.

Combined output file name too large

The output file name constructed by LC1 or LC2 by combining the

source or quad file name with the text specified using the -0 option

exceeded the maximum file name size of 64 bytes.

File name missing

A file name was not specified on the LC1 or LC2 command.

A-2 Appendix A: Error Messages

No functions or data defined

Intermediate file error

The first phase of the compiler encountered an error when writing to

the .Q file. This error usually results from an out-of-space condition

on the output disk.

Invalid command line option

An invalid command line option (beginning with a -) was specified

on either the LC1 or the LC2 command. See Sections 4.1.1 and

4.1.2 for valid command line options. The option is ignored, but the

compilation is not otherwise affected. In other words, this error is

not fatal.

Invalid symbol definition

The name attached to -d specifying a symbol to be defined was not a

valid C identifier or was followed by text which did not begin with an

equal sign.

A source file which did not define any functions or data elements was

processed by the compiler. This error always terminates execution of

the compiler. It can be generated by forgetting to terminate a

comment, which then causes the compiler to treat the entire file as a

comment.

Appendix A: Error Messages A-3

Not enough memory

This message is generated when either phase of the compiler uses up

all the available working memory. The only cure for this error is

either to increase the available memory on the system, or (if the

maximum is already available) reduce the size and complexity of the

source file. Particularly large functions will generate this error

A-4 Appendix A: Error Messages

regardless of how much memory is available; break the task into

smaller functions if this occurs.

Object file error

The second phase of the compiler encountered an error when writing

to the .0 file. This error usually results from an out-of-space

condition on the output disk.

Parameters beyond file name ignored

Additional information was present on the command line beyond the

name of the source or quad file to be compiled. The compiler option

flags must be specified before the name of the file to be compiled.

-c option

One of the characters following the -c option on LC1 was not a

recognized compiler control character. See Section 4.1.1 for a list of

the valid compiler control options.

-i option ignored

More than four (4) -i option strings were specified on the LCl

command; only the first four are retained and used.

The end of an input file was encountered when the compiler

expected more data. This may occur on an #include file or

the original source file. In many cases, correction of a

previous error will eliminate this one.

A.2 Numbered Messages

These error messages describe syntax or specification errors in the

source file; they are generated by the first phase of the compiler. A

few are warning messages that simply remark on marginally

acceptable constructions but do not prevent the creation of the quad

file. See Section 4.3.3 for more information about error processing.

1 This error is generated by a variety of conditions in

connection with pre-processor commands, including

specifying an unrecognized command, failure to include

white space between command elements, or use of an illegal

pre-processor symbol.

3 The file name specified on an #include command was not

found.

4 An unrecognized element was encountered in the input file

that could not be classified as any of the valid lexical

constructs (such as an identifier or one of the valid

expression operators). This may occur if control characters

or other illegal characters were detected in the source file.

5 A pre-processor #define macro was used with the wrong

number of arguments.

6 Expansion of a #define macro caused the compiler's line

buffer to overflow. This may occur if more than one lengthy

macro appeared on a single input line.

Appendix A: Error Messages A-S

16 A function argument expression specified following the (

function call operator was invalid. This may occur if an

argument expression was omitted.

7 The maximum extent of #include file nesting was exceeded;

the compiler supports #include nesting to a maximum depth

of 8.

8 A cast (type conversion) operator was incorrectly specified in

an expression.

9 The named identifier was undefined in the context in which

it appeared, that is, it had not been previously declared. This

message is only generated once; subsequent encounters with

the identifier assume that it is of type int (which may cause

other errors).

10 An error was detected in the expression following the [

character (presumably a subscript expression). This may

occur if the expression in brackets was null (not present).

11 The length of a string constant exceeded the maximum

allowed by the compiler (256 bytes). This will occur if the

closing " (double quote) was omitted in specifying the string.

12 The expression preceding the . (period) or -> structure

reference operator was not recognizable by the compiler as a

structure or pointer to a structure.

13 An identifier indicating the desired aggregate member was

not found following the • (period) or -> operator.

14 The indicated identifier was not a member of the structure or

union to which the • (period) or -> referred.

15 The identifier preceding the (function call operator was not

implicitly or explicitly declared as a function.

A-6 AppendixA: Error Messages

18 During expression evaluation, the end of an expression was

encountered but an operator was still pending evaluation.

This may occur if an operand was omitted for a binary

operation.

17 During expression evaluation, the end of an expression was

encountered but more than one operand was still awaiting

evaluation. This may occur if an expression contained an

incorrectly specified operation.

19 The number of opening and closing parentheses in an

expression was not equal. This error message may also occur

if a macro was poorly specified or improperly used.

20 An expression which did not evaluate to a constant was

encountered in a context which required a constant result.

This may occur if one of the operators not valid for constant

expressions was present.

21 An identifier declared as a structure or union was

encountered in an expression where aggregates are not

permitted. Only the direct assignment and conditional

operators may be used on aggregates, and explicit or implicit

testing of aggregates as a whole is not permitted.

22 (non-fatal warning) An identifier declared as a structure or

union appeared as a function argument without the preceding

& operator. In Version 1.1 of Amiga C, aggregates may be

passed by value, so that this is a legal construct; the warning

message is generated to call attention to the very different

meaning of this interpretation from that of previous versions.

Appendix A: Error Messages A-7

23 The conditional operator was used erroneously. This may

occur if the '1 operator was present but the : was not found

when expected.

A-8 Appendix A: Error Messages

24 The context of the expression required an operand to be a

pointer. This may occur if the expression following * did not
evaluate to a pointer.

25 The context of the expression required an operand to be an

lvalue. This may occur if the expression following & was not

an lvalue, or if the left side of an assignment expression was

not an lvalue.

26 The context of the expression required an operand to be

arithmetic (not a pointer, function, or aggregate).

27 The context of the expression required an operand to be

either arithmetic or a pointer. This may occur for the logical

OR and logical AND operators.

28 During expression evaluation, the end of an expression was

encountered but not enough operands were available for

evaluation. This may occur if a binary operation was

improperly specified.

29 An operation was specified which was invalid for pointer

operands (such as one of the arithmetic operations other

than addition).

30 (non-fatal warning) In an assignment statement defining a

value for a pointer variable, the expression on the right side

of the = operator did not evaluate to a pointer of the exact

same type as the pointer variable being assigned, i.e., it did

not point to the same type of object. The warning also

occurs when a pointer of any type is assigned to an arithmetic

object. Note that the same message may be a fatal error if

generated for an initializer expression.

31 The context of an expression required an operand to be

integral, i.e., one of the integer types (char, int, short,

unsigned, or long).

34 The expression used to initialize an object was invalid. This

may occur for a variety of reasons, including failure to

separate elements in an initializer list with commas or

specification of an expression which did not evaluate to a

constant. Some experimentation may be required in order to

determine the exact cause of the error.

32 The expression specifying the type name for a cast

(conversion) operation or a sizeof expression was invalid.

33 An attempt was made to attach an initializer expression to a

structure, union, or array that was declared auto. Such

initializations are expressly disallowed by the language.

37 The specified statement label was encountered more than

once during processing of the current function.

35 During processing of an initializer list or a structure or union

member declaration list, the compiler expected a closing

right brace, but did not find it. This may occur if too many

elements were specified in an initializer expression list or if a

structure member was improperly declared.

36 A statement within the body of a switch statement was not

preceded by a case or default prefix which would allow

control to reach that statement. This may occur if a break or

return statement is followed by any other statement without

an intervening case or default prefix.

38 In a body of compound statements, the number of opening

left braces { and closing right braces } was not equal. This

may occur if the compiler got "out of phase" due to a

previous error.

Appendix A: Error Messages A-9

39 One of the C language reserved words appeared in an invalid

context (e.g., as a variable name). Note that entry is

reserved although it is not implemented in the compiler.

48 The expression defining the looping condition in a while or

do loop was null (not present). Indefinite loops must supply

the constant 1, if that is what is intended.

40 A break statement was detected that was not within the scope

of a while, do, for, or switch statement. This may occur due

to an error in a preceding statement.

41 A case prefix was encountered outside the scope of a switch

statement. This may occur due to an error in a preceding

statement.

42 The expression defining a case value did not evaluate to an

int constant.

43 A case prefix was encountered which defined a constant

value already used in a previous case prefix within the same

switch statement.

44 A continue statement was detected that was not within the

scope of a while, do, or for loop. This may occur due to an

error in a preceding statement.

45 A default prefix was encountered outside the scope of a

switch statement. This may occur due to an error in a

preceding statement.

46 A default prefix was encountered within the scope of a

switch statement in which a preceding default prefix had

already been encountered.

47 Following the body of a do statement, the while clause was

expected but not found. This may occur due to an error

within the body of the do statement.

49 An else keyword was detected that was not within the scope

of a preceding if statement. This may occur due to an error

in a preceding statement.

A-10 Appendix A: Error Messages

50 A statement label following the goto keyword was expected

but not found.

52 The expression following the if keyword was null (not

present).

51 The indicated identifier, which appeared in a goto statement

as a statement label, was already defined as a variable within

the scope of the current function.

53 The expression following the return keyword could not be

legally converted to the type of the value returned by the

function.

54 The expression defining the value for a switch statement did

not define an int value or a value that could be legally

converted to int.

57 The compiler expected but did not find a semi-colon (;).

This error generally means that the compiler completed the

processing of an expression but did not find the statement

terminator (;). This may occur if too many closing

parentheses were included or if an expression was otherwise

incorrectly formed. Because the compiler scans through

white space to look for the semi-colon, the line number for

this error message may be subsequent to the actual line

where a semi-colon was needed.

5S (non-fatal warning) The statement defining the body of a

switch statement did not contain at least one case prefix.

S6 The compiler expected but did not find a colon (:). This

error message may be generated if a case expression was

improperly specified, or if the colon was simply omitted

following a label or prefix to a statement.

Appendix A: Error Messages A-11

A-12 Appendix A: Error Messages

58 A parenthesis required by the syntax of the current statement

was expected but was not found (as in a while or for loop).

This may occur if the enclosed expression was incorrectly

specified, causing the compiler to end the expression early.

59 In processing declarations, the compiler encountered a

storage class invalid for that declaration context (such as

auto or register for external objects). This may occur if, due

to preceding errors, the compiler began processing portions

of the body of a function as if they were external definitions.

60 The types of the aggregates involved in an assignment or

conditional operation were not exactly the same. This error

may also be generated for enum objects.

61 The indicated structure or union tag was not previously

defined; that is, the members of the aggregate were

unknown. Note that a reference to an undefined tag is

permitted if the object being declared is a pointer, but not if

it is an actual instance of an aggregate. This message may be

issued as a warning after the entire source file has been

processed if a pointer was declared with a tag that was never

defined.

62 A structure or union tag has been detected in the opposite

usage from which it was originally declared (i.e., a tag

originally applied to a struct has appeared on an aggregate

with the union specifier). The Amiga compiler defines only

one class of identifiers for both structure and union tags.

63 The indicated identifier has been declared more than once

within the same scope. This error may be generated due to a

preceding error, but is generally the result of improper

declarations.

64 A declaration of the members of a structure or union did not

contain at least one member name.

69 The structure or union whose declaration was just processed

contains an instance of itself, which is illegal. This may be

generated if the * is forgotten on a structure pointer

declaration, or if (due to some intertwining of structure

definitions) the structure actually contains an instance of

itself.

6S An attempt was made to define a function body when the

compiler was not processing external definitions. This may

occur if a preceding error caused the compiler to "get out of

phase" with respect to declarations in the source file.

66 The expression defining the size of a subscript in an array

declaration did not evaluate to a positive int constant. This

may also occur if a zero length was specified for an inner

(i.e., not the leftmost) subscript of an array object.

67 A declaration specified an illegal object as defined by this

version of C. Illegal objects include functions which return

arrays and arrays of functions.

68 A structure or union declaration included an object declared

as a function. This is illegal, although an aggregate may

contain a pointer to a function.

70 The formal parameter of a function was declared illegally as

a function.

71 A variable was declared before the opening brace of a

function, but it did not appear in the list of formal names

enclosed in parentheses following the function name.

Appendix A: Error Messages A-13

72 An external item has been declared with attributes which

conflict with a previous declaration. This may occur if a

function was used earlier, as an implicit int function, and was

then declared as returning some other kind of value.

Functions which return a value other than int must be

declared before they are used so that the compiler is aware

of the type of the function value.

73 In processing the declaration of objects, the compiler

expected to find another line of declarations but did not, in

fact, find one. This error may be generated if a preceding

error caused the compiler to "get out of phase" with respect

to declarations.

74 (non-fatal warning) A string constant used as an initializer

for a char array defined more characters than the specified

array length. Only as many characters as are needed to

define the entire array are taken from the first characters of

the string constant.

7S An attempt was made to apply the sizeof operator to a bit

field, which is illegal.

76 The compiler expected, but did not find, an opening left

brace in the current context. This may occur if the opening

brace was omitted on a list of initiaIizer expressions for an

aggregate.

77 In processing a declaration, the compiler expected to find an

identifier which was to be declared. This may occur if the

prefixes to an identifier in a declaration (parentheses and

asterisks) are improperly specified, or if a sequence of

declarations is listed incorrectly.

78 The indicated statement label was referred to in the most

recent function in a goto statement, but no definition of the

label was found in that function.

79 (non-fatal warning) More than one identifier within the list

for an enumeration type had the same value. While this is

not technically an error, it is usually of questionable value.

A-14 AppendixA: Error Messages

85 (non-fatal warning) The expression specifying the value to

be returned by a function was not of the same type as the

function itself. The value specified is automatically

converted to the appropriate type; the warning merely serves

as notification of the conversion. The warning can be

eliminated by using a cast operator to force the return value

to the function type. This warning is also issued when a

return statement with a null expression (i.e., no return value)

appears in a function which was not declared void;

generation of the warning for this particular context can be

disabled using a compile time option (see Section 4.1.1).

80 The number of bits specified for a bit field was invalid. Note

that the compiler does not accept bit fields which are exactly

the length of a machine word (such as 16 on a 16-bit

machine); these must be declared as ordinary int or unsigned

variables.

81 The current input line contained a reference to a

pre-processor symbol which was defined with a circular

definition, or loop.

82 The size of an object exceeded the maximum legal size for

objects in its storage class; or, the last object declared caused

the total size of declared objects for that storage class to

exceed that maximum.

83 (non-fatal warning) An indirect pointer reference (usually a

subscripted expression) used an address beyond the size of

the object used as a base for the address calculation. This

generally occurs when an expression makes reference to an

element beyond the end of an array.

84 (non-fatal warning) A #define statement was encountered

for an already defined symbol. As noted in Section 2.2.1,

the second definition takes precedence, but requires an

additional #undef statement before the symbol is truly

undefined.

Appendix A: Error Messages A-IS

A-16 Appendix A: Error Messages

86 (non-fatal warning) The types of the formal parameters

declared in the actual definition of a function did not agree

with those of a preceding declaration of that function with

argument type specifiers.

87 (non-fatal warning) The number of function arguments

supplied to a function did not agree with the number of

arguments in its declaration using argument type specifiers.

88 (non-fatal warning) The type of a function argument

expression did not agree with its corresponding type declared

in the list of argument type specifiers for that function. Note

that the compiler does not automatically convert the

expression to the specified type; it merely issues this warning.

89 (non-fatal warning) The type of a constant expression used

as a function argument did not agree with its corresponding

type declared in the list of argument type specifiers for that

function. In this case, the compiler does convert the

expression to the expected type.

90 The type specifier for an argument type in a function

declaration was incorrectly formed. Argument type

specifiers are formed according to the rules for type names in

cast operators or sizeof expressions.

91 One of the operands in an expression was of type void; this is

expressly disallowed, since void represents no value.

92 (non-fatal warning) An expression statement did not cause

either an assignment or a function call to take place. Such a

statement serves no useful purpose, and can be eliminated;

usually, this error is generated for incorrectly specified

expressions in which an assignment operator was omitted or

mistyped.

93 (non-fatal warning) An object with local scope was declared

but never referenced within that scope. This warning is

provided as a convenience to warn of declarations that may

no longer be needed (if, for example, the code in which the

variable was used was eliminated but not its declaration). It

may also occur if the only use of the object is confined to

statements which are not compiled because of conditional

compilation directives (#if, etc.).

Appendix A: Error Messages A-17

94 (non-fatal warning) An auto variable was used in an

expression without having been previously initialized by an

assignment statement or appearing in a function argument list

with a preceding & (i.e., its address passed to a function).

Note that the compiler considers the variable initialized once

any statement causes it to be initialized, even though control

may not flow from that statement to other subsequent uses of

the variable. Note also that this warning will be issued if the

third expression in a for statement uses a variable which has

not yet been initialized, which may be incorrect if that

variable is initialized inside the body of the for statement.

APPENDIXB:

Compiler Errors

Appendix B: CompilerErrors B-1

This appendix describes the procedure to be used for reporting

compiler errors. These are errors that result not from the user's

incorrect specifications but from the compiler itself failing to operate

properly. There are five general kinds of errors which can occur:

1. The compiler generates an error message for a source

module which is actually correct.

2. The compiler fails to generate an error message for an

incorrect source module.

CXERR: nn

3. The compiler detects an internal error condition and

generates an error message of the form

where nn is an internal error number.

4. The compiler dies mysteriously (crashes) while compiling

a source module.

5. The compiler generates incorrect code for a correct

source module.

The last type of error is, of course, the most difficult to determine

and the most vexing for the programmer, who has no indication that

anything is wrong until something inexplicably doesn't work, and who

only concludes that the compiler is at fault after a long and

painstaking study of his or her own code.

Lattice is anxious to know about and repair any compiler errors as

quickly as possible, so please report any problems promptly. The

difficulties encountered may be spared the next programmer if this is

done. In order to maintain a more precise record of the bugs that

are discovered, all problems should be reported in writing to:

Lattice, Inc.

P.O. Box 3072

Glen Ellyn, Illinois 60138

In all cases, include the following items of information:

1. A listing of the source module for which the error

occurred. Don't forget to include listings of any #include

files used (and watch out for #include file nesting; don't

forget the inner files as well). Supplying the source on

IBM PC-compatible disk format will save time.

B-2 AppendixB: Compiler Errors

4. A description of the problem, along with any other

information which may be helpful such as the results of

your investigation into the problem. Obviously, errors of

type 3 (see above) don't need anything more than a terse

"Causes CXERR 23."

2. The revision number of the compiler, when it was

purchased and the serial number.

3. Your name and address and, if possible, a telephone

number with information about the best time to call.

Our current policy calls for a free update to the first finder of a

compiler bug.

Appendix B: Compiler Errors B-3

APPENDIXC:

List of Files

The following files are supplied as part of the AmigaDOS 68000

compiler package.

Supported Executable Files

LC Compiler command line handler (runs LC:LC1 and

LC:LC2)

LCl C compiler (phase 1)

LC2 C compiler (phase 2)

Appendix c: List of Files C-1

OMD

Lrecv

Object module disassembler

Serial receive program.

Amiga linker (see AmigaDOS Developer's manual)

Alink Temporary Object Modifier

Display Object and linked files

Receive binary file from serial port.

Alink

ATOM

ObjDump

Read

Unsupported Executable Files

ROMWack Enter ROM debugger (uses the serial port at 9600

baud). Documented in ROM KERNEL Manual.

Displays every memory allocation and deallocation

to the serial port. To use it, connect a 9600 baud

terminal to the serial port. From the CLI, issue the

command NEWCLI. From the new CLI window,

issue the command SNOOP.

Snoop

You can halt SNOOP by typing a 'q' into the new CLI window. If

you say "run snoop" there will be no way to stop it without rebooting

the Amiga.

Run-time and Library Files

LStartup.obj C program entry/exit module for AmigaDOS Link

with LC.LIB+AMIGA.LIB

LC.lib Run-time and I/O library for math and functions

derined in this manual.

Amiga.lib Run-time and I/O library for functions defined in:

AmigaOOS Developers manual, Intuition manual,

and ROM Kernel manual.

C-2 Appendix C: List of Files

Appendix C: List of Files C-3

Debug.lib KPutFmt and other routines for sending debugging

output to the serial port. These routines are

summarized in the Amiga ROM Kernel Manual. For

your convenience, a copy of the Debug.lib summary

document is also provided in this errata.

Astartup.obj Amiga startup routine. If you do not use any of the

Lattice I/O calls, and use only Intuition, DOS, ...

calls you can use this startup routine. If you do link

with AMIGA.LIB+LC. LIB. (Note the change in

order from LStartup.obj.)

Sequence (execute) Files

make_C_CLI Convert a Workbench diskette to a CLI diskette.

makesimple Compile and link a C program.

make Compile a C program.

link Link a C program and up to 4 other object modules.

Include (.h) Files

include/Lattice/#? Include files mentioned in this manual.

include/#?/#? Other Amiga include files.

Function definition files. These files contain

summaries of the parameters and calling

sequences for the routines contained in the

Amiga kickstart and disk-based libraries. The

files also list which parameters must be loaded

into which registers before the corresponding

routine is called. The files are provided for

information only and are likely to be of more use

to an assembly language programmer. However

a C programmer may find them informative.

Function Definition (.rd) Files

FD.FILES/#?

Source Code

avail.c

frags.c

AStartup .asm

LStartup.asm

mymain.c

mysub.c

one. window.c

SpeechToy.c

ovs.asm

_main.c

_cxovf.asm

Memory utility

Memory utility

Source code for AStartup.obj

Source code for LStartup.obj

Sample C program

Sample C program

Sample C program for window 110 and graphics.

"Large" C application. Uses lots of Amiga

features and system calls.

Overlay supervisor source

Source code for main.o, that LStartup.obj

expects to be linked into.

Source code for stack checking routine.

C-4 Appendix c: List of Files

Misc. Files

ovs-020

#?.info

Overlay supervisor that will handle up to 20

overlays.

Icon and Workbench info files.

Appendix C: List of Files C-5

Appendix D: Getting Started D-l

APPENDIXD:

Getting Started with Amiga C

This appendix describes how to set up your C development system

and how to compile, link, and execute your first programs.

To start you will need

• Two blank diskettes.

• The original C-DEVEL master diskette.

• The original Workbench diskette.

 An Amiga 1000 computer.

 S12K (or more) RAM memory.

 One external 3.S-inch floppy disk drive.

We strongly suggest that you also obtain:

 AmigaDOS User's, Developer's, and Technical

Reference manuals

 Amiga Intuition Manual

 Amiga Hardware Manual

c. Make a second copy of your original Workbench

diskette by Dragging the Workbench diskette icon

over the blank diskette icon.

 Amiga ROM Kernel Manual

You will need to create two diskettes for normal compiler use. One

diskette is called a "CLI" disk, and the other is your "working"

compiler disk. Here are the steps necessary to create both of these

diskettes.

I. Create a "C-CLI" diskette from a Workbench diskette by

eliminating the Workbench-specific files, and those files that are

seldom needed:

1. Diskcopy your original (master) Workbench diskette.

a. Boot the original (master) Workbench diskette.

Make sure it is write protected.

b. Insert a blank diskette into the external disk drive

(named df1:).

D-2 AppendixD: OettingStarted

Appendix D: Getting Started D-3

d. Once the diskette is copied select the "copy of

Workbench" icon.

e. Choose Workbench-Rename from the menu.

f. Click in the name window.

g. Type <Right-Amiga><X> to delete the old name.

h. Type "C-CLI" and press <RETURN>.

i. Put the original in a safe place.

2. Boot the copy. Place it in the internal drive and

press

<CTRL><Left-Amiga><Right-Amiga>

3. Select and open the C-CLI icon. If you missed the

Rename instruction in step one, be sure to change the

name from "copy of Workbench" to "C-CLI".

4. Select and open Preferences.

5. Activate the CLI and 80-column modes.

6. (Optional) Select printer and graphics information to

match your system configuration. You may also want to

take this opportunity to set the date.

7. "Save" your preferences. Do NOT select "Use".

8. Select and open the System drawer.

9. Select and open the CLI.

10. Send the CLI window to back (revealing the System and

C-CLI windows).

Clearing excess in C directory

Clearing excess in Fonts directory

Not deleted - object in use

Clearing excess in Devs directory

Clearing excess in Libs directory

Clearing excess in Root directory

Not deleted - object in use

Fixing startup sequence in S directory.

Done.

11. Close the C-CLI and System windows.

12. Insert the C-DEVEL diskette in drive df1:.

13. Make sure your C-CLI diskette (the COPY of your

original Workbench diskette) is still in df0: (the internal

disk drive).

14. Select the CLI window and type "execute

df1:s/make_c_cli" .

15. Wait as the followingmessages appear:

II. Create a "C development work" diskette from the "C-DEVEL"

diskette.

1. Insert the "C-CLI" diskette (which you have just

constructed in the last process) into the internal drive

and reboot.

2. Diskcopy the original C-DEVEL diskette.

a. Insert the original into df1: (the external drive).

b. Type "Diskcopy df1: to df0:"

D-4 Appendix D: Getting Started

Appendix D: Getting Started D-S

c. Wait for the followingmessages

Place disk to copy FROM in df1:

Place disk to copy TO in df0:

Press RETURN when ready _

d. Insert a blank diskette in dfO: (the internal drive).

e. Press <RETURN>, wait for the diskcopy to

complete.

3. Reinsert the "C-CLI" diskette in the df0: (internal)

drive.

4. Insert the copy of C-DEVEL in the df1: (external)

drive.

S. Copy all commands from the C-DEVEL diskette to the

C-CLI diskette by typing: "copy df1:c c:"

6. Delete all commands from the C-DEVEL diskette by

typing: "delete df1:c/#?".

Compiling Your First and Second Programs

1. Compile your first program. This example demonstrates

compiling and linking a single source file into an executable file.

1. Change your default directory to the examples directory

on the df1: drive. Type "CD DF1:examples".

2. Execute the MakeSimple file using Frags as the file you

want compiled. Type "execute makesimple frags".

- compiling ... frags.c

Amiga 68000 C Compiler (Phase 1) V3.03

Copyright (C) 1984 Lattice, Inc.

Amiga 68000 C Compiler (Phase 2) V3.03

Copyright (C) 1984 Lattice, Inc.

Module size P=00000 110 D=0000003E

U=00000000

- Linking ... frags.o and to create frags

Amiga Linker Version 2.20

Copyright (C) 1985 Tenchstar Ltd., T/A

Metacomco.

All rights reserved.

Linking complete - maximum code size =

11748 ($00002DE4) bytes

- done compiling and linking 'frags'. --

3. You should see something like the following messages:

4. The program is now available to be run. Type "frags" to

run it. This program prints a list of the number of free

memory blocks of given sizes.

II. Compile your second program. This example demonstrates

linking more than one of your object modules together by using

the execute files MAKE and LINK.

1. Compile the main routine by typing "execute make

mymain".

2. Compile the subroutine by typing "execute make mysub"

3. Link the two routines together by typing "execute link

mymain mysub". The result will be a file "mymain",

which you can run.

D-6 Appendix D: Getting Started

Appendix D: Oetting Started 0-7

Compiling Your Own Programs

1. Use ED or EDIT to create or modify your program

(filename.c) .

a. If you use any of the Amiga include files, the

statement:

#inc1ude "exec/types.h"

must appear at the beginning of your program.

2. Compile using 'makesimple' if you have just one module

to compile and link. Compile using 'make' if you have

several modules to compile before linking.

3. If you didn't use the makesimple execute command,

then link by executing the link file.

4. If you want to use make and makesimple in directories

other than C-OEVEL:examples, copy them to the :s

directory on df0: (C-CLI) by typing:

copy OF1 :examples/make#? df0:s

You should see the messages:

OF 1:examples/Make ..copied

OF 1:examples/MakeSimple ..copied

5. If, while compiling large programs, you get a "Software

Error, Task held" message, try increasing the size of

your stack.

execute make _main -dTINY

Compiling SpeechToy.c

1. Change your directory to examples by typing

CD :examples

2. Allocate a larger stack space by typing

stack 15000

3. Compile by typing

Execute make SpeechToy

4. Compile _main.c by typing

S. Link by typing

execute link SpeechToy _main

6. To run SpeechToy from Workbench, move it up into the

root directory by typing

rename speechtoy :speechtoy

rename speechtoy.info :speechtoy.info

The structure of a typical C program is as follows:

 Workbench or CLI loads the program.

 The startup code is executed (either Astartup or

Lstartup, depending on which startup file you specified

for the link command.)

D-8 Appendix D: Getting Started

Appendix D: Getting Started D-9

 Startup, in turn, executes the code in _main.c. The

code for _main.c usually is taken from lc.lib, but you can

ask that a different library be utilized by specifying the

library at link time by

1. Compiling _main.c.

2. Linking, using the command:

:c/alink Lstartup.obj+ _main.o+mymain.o

LIBRARy

The _main.c code in turn executes the main() routine in your

program.

When your program calls exit(), the C compiler closes any files it

knows you've opened, deallocates any memory it knows you've

allocated and exits (to CLI or Workbench).

Warning: If you call Exit() (Note uppercase E!) no files willbe closed

for you.

Notes and Cautions

1. PLEASE be sure to read the errata for the C manual.

Some of the information in it could save you a lot of time

and effort.

2. If you invoke the C compiler using the LC command,

you must first assign LC: to the directory containing LC1

and LC2. If you followed the set-up instructions above,

this command would be: ASSIGN LC: C-CLI:C

D-10

3. If you are compiling large C programs, you may need to

increase the stack size. For example, to compile the

SpeechToy demo you should use the commands:

CD C-DEVEL:EXAMPLES

STACK 15000

EXECUTE MAKESIMPLE SPEECHTOY

4. I/O is buffered (for efficiency) by the Amiga C run-time

routines. This is most noticeable when you're using

console I/O. If you want to flush output to the console,

use the macro defined in include/lattice/stdio.h:

fflush(stdout) ;

S. The stack-checking scheme will not always work. If the

code you are running is interrupt code, it will report

stack overflow even if no problem exists. To disable

stack checking use the -v option when invoking the

second pass of the compiler.

6. The default stack size of the cross-compiler for MSDOS

has been increased. Note that the default stack size on

the Amiga is set via the STACK command and may need

to be increased.

7. Do NOT use the -s (combine hunks) compiler option if

you are using overlays. The linker (Alink) can not

handle this and will generate an internal error #22.

8. Comments have been stripped from the include (.h)

files. A complete listing (including comments) of these is

included in the ROM Kernel Manual. Some.h files have

been updated since the VI.I ROM Kernel Manual was

published. Those supplied on disk are correct.

Appendix D: Getting Started

Definition

9. The symbols PI and PID2 are defined in three separate

include files (Iattice/math.h, libraries/mathffp.h, and

lattice/dec.h). If you only include one of these .h files

you'll have no problem. However if you include more

than one be sure that you declare PI and PID2 explicitly

(using the definition you want) BEFORE including the .h

files.

File

math.h

math.h

mathffp.h

mathffp.h

dec.h

dec.h

#define PI 3.14159265358979323846

#define PID2 1.57079632679489661923

#define PI «FLOAT) 3.1415192653857)

<none>
extern char PI []; /* Constant PI */

extern char PID2 []; /* Constant PI/2 */

10. The function abs() is defined in three separate include

files (Iattice/stdio.h, libraries/mathffp.h and

clib/macros.h). The same warnings and procedure apply

to abs() as do to PI.

File

mathffp.h

stdio.h

macros.h

Definition

FLOAT abs();

#define abs (x) «x)<O?-(x): (x»

#define ABS(x) «x<O)?(-(x»:(x»

11. The constant E is defined in two separate include files

(lattice/dec.h, and libraries/mathffp.h). The same

warnings and procedure apply to E as do to PI (above).

Appendix D: Getting Started D-ll

_console_dev, _SysBase, _msize, _fperr, _OOSBase,

_mstep, _mbase, _mnext, _StackPtr, _base,

_XCEXIT, _oserr

File Definition

mathffp.h #define E «FLOAT) 2.7182818284590453)

dec.h extern char E[]; /* E(base of natural logs)*/

12. You may need to increase the stack size of the CLI prior

to running your program.

13. There are two Startup routines provided. If you do not

use any of the Amiga C I/O calls or stack checking, and

use only Intuition/DOS calls, you can use the Amiga

startup routine (Astartup.obj). If you use AStartup, link

with.AMIGA.LIB+LC.LIB. (Note the change in order

from LStartup.obj.)

14. The externals _ProgramName, _base, and _StackPtr

are used for stack checking. These are defined in

LStartup.obj.

15. The followingexternals are defined in LStartup.obj. If

they are unresolved at the time you link you need to link

with Lstartup.obj:

ED Summary

The ED and EDIT editors are fully described in the AmigaDOS

User's Manual. This summary of the editors' features is provided to

let you create and edit your programs, even if you do not have the

AmigaDOS User's Manual.

D-12 Appendix D: Getting Started

Appendix D: Getting Started D-13

To edit a file, type:

ED filename.c

Most ED commands can be executed either of two ways:

1. Directly, by pressing a control character

2. In command mode, by typing

<ESC>characters<RETURN>

For example, if you have positioned the cursor in the middle of a line

you can press AM «control><M» or <RETURN> to split that line.

You can also type <ESC><S><RETURN>.

While using command mode you can precede any command with a

decimal integer. You can also group commands, using parentheses

and semicolons. For example, to change all occurrences of "old" to

"new" in a file and then change the first three occurrences of "was"

to "is" you can type:

<ESC>t;rpe/old/new/;t;3e/was/is/<RETURN>

The three columns in the following table represent (respectively):

1. Command mode sequence

2. Control character (or arrow key) character

3. Description

MOVEMENT Operations

Command Control

Mnnn

F/s/

BF/s/

CL <--

CR -->

^I

^R

^T

CS ^]

CE ^]

(up-arrow key)

(down-arrow key)

N

P

^E

^D

^U

B

T

Description

Move to line number nnn.

Find a given string (s).

Find string, searching backwards.

Move cursor left one character.

Move cursor right one character.

Move cursor to next tab stop.

Move cursor left one word.

Move cursor right one word.

Move cursor to start of line.

Move cursor to end of line. Toggles

from the end to the start of a line.

Move cursor up.

Move cursor down.

Move cursor to start of next line.

Move cursor to start of previous

line.

Move cursor to top or bottom of

screen.

Scroll text down.

Scroll text up.

Move cursor to bottom of file.

Move cursor to top of file.

D-14 Appendix D: Oetting Started

Command Control Description

CHANGE (insert, exchange, delete) Operations

Command Control Description

S

I/s/

A/s/

IF!f!

DC del

BackSp

^0

Insert <cr> (Split line).

Insert string before line.

Insert string after line.

Insert file (f is the file name).

Delete current character.

Delete previous character.

Delete next word.

Delete next <cr> (Join lines)

Delete to end of line.

Delete line.

Exchange w/Query (replace string s

with t).

Exchange.

Check case in searches.

Don't check case.

Flip case of current character.

J

o
EQ/s/t/

E/s/t/

LC

UC

Miscellaneous Operations

SL

SR

ST

EX

SH

Q

Undo changes.

Repeat until an error (use RPE/old

/new/ to search and replace to end

of file).

Set Left margin.

Set Right margin.

Set Tab distance (default = 3).
Extend right margin.

Show information.

Quit (do not save changes).

U

RP

Appendix D: Getting Started D-1S

Command Control Description

Command Control Description

SA

X

^G

Save file.

Exit (save and quit).

Repeat last command mode

command.

After doing

<ESC>F/search-strlng/<RETURN>.

you can type ^G to find the next

occurrence.

BLOCK Operations

Before you can do any block operations you must first "mark" the

start and end of the block. A block contains the entire first line, last

line, and all lines in between. If you change the file the block is

"unmarked" .

BE

BS

SB

Block End

Block Start

Show block. Move 1st line of block

to top of screen.

Insert block

Delete Block (Mark using BS and

BE)

Write block to named file

IB

DB

WB!f!

Alink Summary

ALINK is fully described in the AmigaDOS Developer's Manual.

The following is a very brief summary.

D-16 Appendix D: Getting Started

Appendix D: Getting Started D-17

Basic command options:

Alink file[+file ...] [WITH file] [LIB file[+file ...]]

[XREF file] [WIDTH n] [MAP file] [TO file]

Typical link command:

ALink LStartup.obj+foo.o LIB lib:lc.lib+amiga.lib to foo

Link command using a with file for creating an overlayed loadable

file:

Alink with foo.with

where foo.with contains:

FROM startup.obj*

myfile.o*

TO myfile.ld

LIBRARY Ie.lib*

amiga.lib

OVERLAY

a,b

b

*aa,bb

**ccc,ddd

Appendix B: Compiler History B-1

APPENDIXE:

Compiler History

"Read.Me" file information. This includes a list of fixed bugs,

changes, and general information.

This is release 1.1 of the Amiga C cross compiler.

Bug Fixes and Changes

Release 1.1 incorporates the following changes and bug fixes:

10. Operations involving unsigned and float operands no

longer generate a CXERR: 13.

1. "Unreachable code in switch statement" changed from

error to warning.

2. Assignment of a pointer to a short integer changed from

error to warning.

3. "File not found" changed from warning to error. Also,

the file name is now listed in the message.

4. Functions returning a double-precision value now assigns

the correct value if used by an indirect assignment.

5. Pointer subtraction of a constant (cast as a pointer) from

a pointer no longer generates an invalid instruction.

6. If two or more functions returning structures are used as

arguments in a function call, the values are now passed

correctly.

7. Stack overflow no longer results from certain expressions

involving short operands.

8. The size of a structure containing a bit field now includes

the size of the last machine word if the last member is a

bit field.

9. The correct conversions are now being performed for

conversions to unsigned.

11. When objects whose size was not a power of two was

subscripted with a short index, long multiplication was

performed. Now the multiplication is performed in-line

with the MUL instruction.

E-2 Appendix E: Compiler History

Appendix E: Compiler History E-3

12. Indirect references with offsets greater than 32K now

work correctly.

13. There were miscellaneous problems with short and

character expressions where the operands were not being

extended or masked correctly. These have been

corrected.

14. Technically invalid declarations are no longer accepted

by the compiler (e.g., int a(space)b(space)c; instead of

int a,b,c;).

15. Expressions like «a != 0) != 0) are now evaluated

properly.

16. When character pointers were converted to other types

of pointers the value was forced to an even value to

cause alignment on word boundaries. This has been

removed; Caveat Emptor.

17. Casting an enum to an integral type no longer generates

an error message.

18. Initialization of arrays of structures no longer required

full use of brackets.

19. Enum declarations caused the compiler to fail on the

Amiga, usually dragging the system down with it. This is

fixed.

20. Division of 2 unsigned shorts no longer generates an OR

instruction.

21. Floating point comparisons now generated the correct

sense comparison.

26. Several minor deviations from the standard language

have been corrected. The compiler no longer accepts

the character $ in identifiers; comments do NOT nest;

multiple character constants are not accepted; and

separate copies of string constants are generated for each

instance of identical strings. All of these defaults can be

forced to their previous characteristics by means of a new

compile time option (see below). In addition, "char"

declarations can be forced to be interpreted as "unsigned

char".

22. Several new warning messages have been added to the

compiler to assist in debugging, this includes a warning if

an "auto" variable is used in a context where it may not

have been initialized, and a warning if a locally visible

object is declared but never referenced. (Note: On the

uninitialized variable warning, the compiler will warn if

the "increment" portion of a "for" loop uses a variable

that has not at that time been initialized; this warning is

incorrect if that variable is assigned inside the body of

the loop.)

23. The error recovery of the compiler has been improved in

an effort to reduce the number of spurious error

messages. For example, the warning about pointers to

undefined structures has been removed.

24. The code that generated a MoveSR instruction has been

removed. Compiled code should now run on 68000,

68010 and 68020 CPUs.

25. The -a flag has been eliminated; the compiler uses a

simple scheme that detects objects whose address has

been computed to determine what values can be aliased.

The resulting code quality is, in most cases, as good as or

better than that in the previous version.

E-4 Appendix E: Compiler History

AppendixE: CompilerHistory E-S

Release 1.1 fixed numerous bugs from version 1.0, including the

following:

1. Address register (pointer) comparisons to NULL were

sometimes made within WORD mode. This meant if an

address register contained zero in the low 16 bits,

comparison with zero was TRUE.

2. Negative values in switch statements could sometimes

generate huge object files.

3. Certain constructs with logical negation (!) caused TEST

instructions to be followed by a MOVE, destroying the

status values before the corresponding

branch-on-condition instruction.

4. Bit fields of 16 bits were not masked properly when

extracting the field.

5. Backwards gotos did not always work properly.

6. Register variables did not work properly, often resulting

in code sequences similar to bug 3.

7. Backslash (\) continuation of macro definition lines did

not work properly.

Enumerated data types

Structure assignment

Structure argument passing and function return types

VOID data types

"signed" as a true modifier for all data types

Amiga Run-time C Support

Amiga provides a library of routines that are compatible with Amiga

C in object file format and calling conventions. However, there are

several caveats that the programmer should be aware of before using

these functions.

New Features

This version of the compiler supports what are commonly known as

"System V features" in reference to enhancements implemented

under UNIX System V. These include:

It is especially important to be aware of the structure argument

passing feature. In non-System V compilers, if a structure name is

used as an argument in a function call, the address of the structure is

passed to the function (which will have declared the argument to be a

structure pointer). In this version of the compiler the ENTIRE

STRUCTURE will be pushed onto the stack as an argument instead

of just a pointer to it. This feature was implemented to provide called

functions with their own local (temporary) copy of the structure.

Therefore, unless you want to pass entire structures as arguments, be

certain that you use the address- of operator (&) when using

structures as function parameters.

Version 1.1 of the Amiga C compiler incorporates several of the

more recent additions to the C programming language, as it evolved

at Bell Telephone Laboratories. It conforms closely to the version of

E-6 Appendix E: Compiler History

Appendix E: Compiler History E-7

the language supported under UNIX System V. Here is a summary

of the major changes in Version 1.1:

 The reserved symbol "unsigned" may be applied to any

of the integral data; that is, unsigned is now a true

modifier rather than a separate data type. Characters

are now considered signed unless "unsigned char" is

explicitly used (see the -c option).

Appendix F: The ATOM Utility F-l

APPENDIXF:

The ATOM Utility

This appendix describes the ATOM (Alink Temporary Object

Modifier) utility and details the history of its development and

alternatives to its use.

Programmers sometimes need to specify that certain parts of their

program must go into chip memory (the first 512K) to allow these

parts to be accessed by the special purpose hardware (the blitter, the

copper, the bit-plane hardware, the sound or disk DMA, the sprite

DMA, etc.). Programmers also want to treat this data just like any

other data in their program and therefore have it link and load

normally.

The recommended way to deal with the memory allocation problem

was to do an AllocMem with the chip memory bit set

(MEMF_CHIP) and copy data from where the system loaded the

data originally ("fast" memory) to where it belonged (chip memory),

then to use pointers to access the data. This involved having two

copies of the data in memory: the first copy of the data loaded with

the program, and the second copied into the first 512K of memory.

Another solution is to prevent the program from running in machines

with more than 512K. This is clearly an unacceptable solution.

1. Compile or assemble normally.

The ATOM Solution

2. Pass the object code through a post- (or pre-) processor

called "ATOM". ATOM interacts with the user and the

object file(s) . It will flag the desired hunks (or all

hunks) as "for chip memory" by changing the hunk type.

3. The linker will now accept nine hunk types instead of

three.

The old types were hunk_code, hunk_data, and

hunk_bss.

hunk_code_chip = hunk_code + bit 30 set
hunk_code_fast = hunk_code + bit 31 set
hunk_data_chip = hunk_data + bit 30 set
hunk_data_fast = hunk_data + bit 31 set

The new ones will be:

hunk_bss_chip

hunk_ bss_fast

= hunk_bss + bit 30 set

= hunk_bss + bit 31 set

F-2 Appendix F: The ATOM Utility

Appendix F: The ATOM Utility F-3

The linker will pass all hunk types through to the

LOADER, (coagulating if necessary). The LOADER

uses the hunk header information when loading.

You will recall from the information provided in the

linker documentation that CODE hunks contain

executable (68000) machine language, DATA hunks

contain initialized data (constants, etc.) and BSS hunks

contained uninitialized data (arrays, variable

declarations, etc.).

4. The LOADER loads according to information from step

3 above. Hunks will go into the designated memory

type.

5. Old versions of the LOADER will interpret the new hunk

types as very large hunks and not load (error 103, not

enough memory).

Future Solutions

The assembler and Amiga C might be changed to generate the new

hunk types under programmer control.

How the Bits Work

The hunk size is a word containing the number of words in the hunk.

Therefore, for the foreseeable future, including 32-bit address space

machines, the upper 2 bits are unused. The bits have been redefined

as follows:

+--- Bit31

| +- Bit30

I I
v v
o 0

1

o
1

Perceived Impact

MEMF_FAST

MEMF_CHIP

o
1

1

If neither bit is set, get whatever memory is

available; this is "backwards" compatible.

Preference is given to "fast" memory.

Loader must get fast memory, or fail.

Loader must get CHIP memory, or fail.

If Bit31 and Bit30 are both set, there is extra

information available following this long

word. This is reserved for future expansion,

as needed. It is not currently used.

Old programs, programs that have not been compiled or assembled

with the new options, and programs that have not been passed

through ATOM will run (or not) as well as ever. This includes

crashing in extended memory, if poorly programmed. The "previous

solutions" mentioned at the beginning of this appendix remain true.

Program development and testing on a 512K machine could follow

exactly the same loop you have now; edit, compile, link, execute,

test, edit, and so on until you are about to release. Then you edit,

compile, ATOM, Alink, add external memory (>512K), and test.

This works well for Amiga, IBM and Sun environments.

For native (Amiga) development on a machine with less than 512K

RAM, you might want to ATOM the few required object files so you

can both run your linked program in an extended memory machine

and take advantage of a large RAM disk. The development cycle

then becomes edit, compile, optionally ATOM (if this code or data

contains items needed by the blitter), link, execute, test, edit, etc.

1'-4 Appendix F: The ATOMUtility

Appendix F: The ATOM Utility F-S

"New programs" will not load in a V1.0 Kickstart environment. The

result will be error 103, not enough memory.

Old (V1.0 and before) versions of dumpobj and OMD will not work

on files after ATOM has been run on them.

Working Environment

To get all of this to work together you need Release 1.1 compatible

copies of:

ATOM (Version 1.0 or later)

Alink (Version 3.30 or later)

Kickstart (Release 1.1 or later) for DOS LOADER.

DumpObj (Version 2.1) Needed if you wish to examine

programs modified by ATOM.

ATOM Command Line Syntax

The command line syntax is:

ATOM <infile> <outfile> [-I)

or

ATOM <infile> <outfile> [-C[C|D|B]) [-F[C|DIB))

[-P[C|DIB])

where

<infile> Represents an object file, just compiled,

assembled or ATOMed (Yes you can

re-ATOM an object file.)

<outfile> is the destination for the convened file.

-C indicates change memory to CHIP

-F indicates change memory to FAST

-P indicates change memory to "Public". Any

type of memory available.

C indicates change CODE hunks

0 indicates change OATA hunks

B indicates change BSS hunks

ATOM infile.obj outfile.obj -pc -cdb

Command Line Examples

Example #1

In most cases there is no need to place CODE hunks in chip

memory. Sometimes DATA and BSS hunks do need to be placed in

chip memory; therefore, the following is a fairly commOn usage of

ATOM. To cause all CODE hunks go into Public RAM, and Data

and BSS hunks to go into chip RAM, type the following:

F-6 AppendixF: TheATOM Utility

Appendix F: The ATOM Utility F-7

Example #2

To cause all the hunks in object file to be loaded into chip memory,

type:

ATOM infile.obj outfile.obj -c

Example #3

To set all data hunks to load into chip memory, type:

ATOM myfile.o myfile.set.o -cd

Example #4

This is an interactive example. User input is in lowercase, computer

output is in uppercase. In this example, the code hunk is set to

"fast", and the data hunk is set to "chip". There are no BSS bunks.

Note that help was requested in the beginning.

2> ATOM from.o from.set-i

AMIGA OBJECT MODIFIER V1.0

UNIT NAME FROM

HUNK NAME NONE
HUNK TYPE CODE {Note: code hunk}

MEMORY ALLOCATION PUBLIC

DISPLAY SYMBOLS? [Y/N] y

_base ..

_xcovf.

_CXD22 ..

_printf.

_main ...

Please enter F for fast

C for Chip

P for Public

Q to quit

Memory type.

MEMORY TYPE? [F|C|P] ? {Note: request for help}

W to windup

{cancels the

operation, no

output file is

created}

{does not change

the rest of the file,

just passes it

through}

{skip this hunk,

show next}

N for Next hunk

MEMORY TYPE? [FIC|P] f

UNIT NAME 0000

HUNKNAME NONE

HUNK TYPE DATA {Note: data hunk}

MEMORY ALLOCATION PUBLIC

DISPLAY SYMBOLS? [Y/N] n

MEMORY TYPE? [FIC|P] c

UNIT NAME 0000

HUNKNAME NONE

HUNK TYPE BSS

MEMORY ALLOCATION PUBLIC

DISPLAY SYMBOLS? [Y/N] y

MEMORY TYPE? [FIC|P] P

2>_

F-8 Appendix F: The ATOM Utility

Appendix F: The ATOM Utility F-9

ATOM Error Messages

Error Bad Args:
a. An option does not start with a "-"

b. wrong number of parameters

c. "-" not followed by I, C, F or P.

d. -x supplied in addition to -I

etcetera.

Error Bad infile:
File not found.

Error Bad Outfile:
File cannot be created.

Error Bad Type ##:
ATOM has detected a hunk type that it does

not recognize. The object file may be

corrupt.

Error empty input:
Input file does not contain any data.

Error ReadExternals:
External reference or definition if of an

undefined type. Object file may be corrupt.

Error premature end of file:
An end-of-file condition (out of data) was

detected while ATOM was still expecting

input. Object file may be corrupt.

The input file you specified has already been

processed by the linker. External symbols

have been removed and hunks coagulated.

You need to run ATOM on the object files

produced by the C compiler or Macro

Assembler BEFORE they are linked.

Error This utility can only be used on files that have NOT been

passed through ALINK:

F-10 AppendixF: TheATOMUtility

APPENDIXG:

Operator Summary

Below is a summary of the C language operators. The operators are

listed in decreasing order of precedence. Those operators grouped

together have the same precedence.

()

[]
->

Function call

Array element reference

Pointer to structure member

reference

Structure member reference

Left to right

Operator Description Order of

Association

Appendix G: Operator Summary G-1

0-2 Appendix G: Operator Summary

- Unary minus Right to left

++ Increment

-- Decrement

! Logical negation

- Ones complement

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type case (conversion)

* Multiplication Left to right

/ Division

% Modulus

+ Addition Left to right

- Subtraction

 Left shift Left to right

 Right shift

< Less than Left to right

<= Less than or equal to

> Greater than

>= Greater than or equal to

-- Equality Left to right

!= Inequality

& Bitwise AND Left to right

A Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

II Logical OR Left to right

? : Conditional expression Right to left

= Assignment operators Right to left

*=
/=
%=

+=
-=
&=
A

=
/=
«=
»=

, Comma operator Left to right

Appendix G: Operator Summary G-3

Index

abs 3-83
absolute value of an integer (see abs)
acos 3-85
aggregates 2-24

functions returning 2-26
passing 2-25

ALINK 4-1
allocate and clear (see calloc)
AND 2-15
arbitrary limitations 2-4
arithmetic objects 2-7
ascii conversions

ascii to floating point (see atof)
ascii to integer (see atof)
ascii to long integer (see

atol/strtol)
asin 3-85
assignment operators 2-19
atan 3-85
atan2 3-85
atof 3-93
atoi 3-93
atol 3-93
auto 2-10
auto 2-11

basic concepts 1-3
binary 2-13
break point (memory) (see sbrk)

calloc 3-4
case 2-15
ceil 3-91
change buffer for level 2 file 110 (see
setbuf)
char 2-7
character constants 2-17
character functions and macros
check if end-of-file (see feof)
check if error (see ferror)
clear error (see clearerr)
clearerr 3-34
close 3-51
close a buffered file (see
fclose/ close)
clrerr 3-34
comments 2-16

compare strings (see
strcmp /strncmp /stscmp)
compiler processing 4-22
concatenate strings (see
strcat/strncat)
conditional compilation 2-22
control flow 2-15
conversions 2-18
convert character to lower case if an
upper case character (see tolower)
convert character to upper case if a
lower case character (see toupper)
convert:

decimal string to integer (see
stcd_i)

hexadecimal string to integer
(see stch_i)

integer to decimal string (see
stci_d)

unsigned integer to decimal
string (see stcu_d)
copy a memory block (see movmem)
copy strings (see
strcpy /strncpy /stpcpy /stccpy)
cos 3-85
cosh 3-87
creat 3-43
create a new file (see creat)

debugging 1-5
define 2-5
delete a file (see remove)
derived objects 2-8
determine current file position (see
ftell)
drand 3-88
drand48 3-89

ecvt 3-96
enum 2-24
enum 2-3
enumerations 2-23
equality operators 2-19
erand48 3-89
error messages 4-19
error processing 4-25
exit 3-53

Index 1-1

exp 3-84
exponential (see exp)
expression evaluation 2-13
extern 2-11
extern 2-12
extern 2-8
external 2-9
external data definitions 2-22
external functions 2-3

fabs 3-91
fclose 3-17
feof 3-33
ferror 3-33
fflush 3-37
fgetc 3-20
fgets 3-23
file number for file pointer (see
fileno)
fileno 3-35
FILL 3-56
find a break character in a string
(see stpbrk/strpbrk)
find a specific character in a string
(see stpchr/strchr/strrchr)
find the longest initial span (see
strspn/ strcspn/ stcis/ stcisn)
float 2-7
floating point conversions:

floating point to ascii (see ecvt)
get absolute value (see fabs)
get ceiling integer (see ceil)
get floor integer (see floor)
get mod value (see fmod)
load exponent (see ldexp)
split into integer and fraction

(see modf)
floor 3-91
flush output buffer for file (see
fflush)
fmod 3-91
fopen 3-15
formal 2-10
formatted

input conversions (see scanf)
output conversion (see printf)

fprintf 3-28
fputc 3-20
fputs 3-24
fread 3-22
free 3-5
freopen 3-15
frexp 3-91

1-2 Index

fscanf 3-25
fseek 3-31
ftell 3-32
function declarations 2-26
function declarations with argument
types 2-27
fwrite 3-22

get
a character from a file (see

getchar/fgetc)
a memory block (see getmem)
a string (see gets/fgets)
a symbol from a string (see

stpsym)
a token from a string (see

stptok)
an argument (see stcarg)

getc 3-18
getchar 3-18
getmem 3-7
getml 3-7
gets 3-23

hardware characteristics 2-18
host operating system 1-2
hyperbolic functions:

cosh (see cosh)
sinh (see sinh)
tanh (see tanh)

I/O and system functions 3-12
110 functions and macros 3-12
if 2-6
ifdef 2-7
ifndef 2-7
include 2-5
initialize memory to specified value
(see setmem/repmem)
initializers 2-12
int 2-4
int 2-7
integer constants 2-17
isalnum 3-61
isalpha 3-60
isascii 3-61
iscntrl 3-61
iscsym 3-61
iscsymf 3-61
is digit 3-61
isgraph 3-61
islower 3-61

isprint 3-61
ispunct 3-61
isspace 3-61
isupper 3-60
isxdigit 3-61

jrand48 3-89

Kernigan/Richie comparison 2-16
keywords 2-17

language definition 2-1
language features 2-5
LC command 4-14
LC1 4-2
LC2 4-3
Icong48 3-89
ldexp 3-91
Library Functions:
character functions and macros
isalnum 3-61
isalpha 3-60
isascii 3-61
iscntrl 3-61
iscsym 3-61
iscsymf 3-61
isdigit 3-61
isgraph 3-61
islower 3-61
isprint 3-61
ispunct 3-61
isspace 3-61
isupper 3-60
isxdigit 3-61
toascii 3-61
tolower 3-61
toupper 3-61
110 functions and macros
clearerr 3-34
close 3-51
clrerr 3-34
creat 3-43
fclose 3-17
feof 3-33
ferror 3-33
fflush 3-37
fgetc 3-20
fgets 3-23
fileno 3-35
fopen 3-15
fprintf 3-28
fputc 3-20

fputs 3-24
fread 3-22
freopen 3-15
fscanf 3-25
fseek 3-31
ftell 3-32
fwrite 3-22
getc 3-18
getchar 3-18
gets 3-23
lseek 3-49
open 3-42
printf 3-28
putc 3-19
putchar 3-19
puts 3-24
read 3-47
remove 3-45
rename 3-46
rewind 3-36
scanf 3-25
setbuf 3-38
setnbf 3-39
sprintf 3-28
sscanf 3-25
ugetc 3-21
unlink 3-45
write 3-48
Math functions
acos 3-85
asin 3-85
atan 3-85
atan2 3-85
atof 3-93
atoi 3-93
atol 3-93
ceil 3-91
cos 3-85
cosh 3-87
drand 3-88
drand48 3-89
ecvt 3-96
erand48 3-89
exp 3-84
fabs 3-91
floor 3-91
fmod 3-91
frexp 3-91
jrand48 3-89
Icong48 3-89
ldexp 3-91
log 3-84
logl0 3-84

Index 1-3

Irand48 3-89
matherr 3-97
modf 3-91
mrand48 3-89
pow 3-84
rand 3-88
seed48 3-89
sin 3-85
sinh 3-87
sqrt 3-84
srand 3-88
srand48 3-89
strtol 3-94
tan 3-85
tanh 3-87
Memory allocation
calloc 3-4
free 3-5
getmem 3-7
getml 3-7
lsbrk 3-10
malloc 3-3
rbrk 3-11
rIsmem 3-8
rIsml 3-8
sbrk 3-10
Program Exit and Jump functions
exit 3-53
longjmp 3-55
setjmp 3-55
exit 3-54

String functions and macros
stc 3-62
stcarg 3-78
stccpy 3-65
stcd i 3-71
stch-d 3-70
stch-i 3-70
stcis- 3-77

stcisn 3-77
stci d 3-69
stclen 3-64
stcpm 3-79
stcpma 3-81
stcu d 3-68
stp 3-62
stpblk 3-72
stpbrk 3-76
stpch 3-75
stpcpy 3-65
stpsym 3-73
stptok 3-74
strcat 3-63

1-4 Index

strchr 3-75
strcmp 3-67

strcpy 3-65
strcspn 3-77
strlen 3-64
strncat 3-63
strncmp 3-67
strncpy 3-65
strpbrk 3-76
strrchr 3-75
strspn 3-77
sts 3-62
stscmp 3-67
stspfp 3-82
Utility functions and macros
abs 3-83
FILL 3-56
max 3-83
min 3-83
MOVE 3-56
movmem 3-58
repmem 3-59
setmem 3-57

library functions 3-1
library functions:
line control 2-22
log 3-84
log functions - (see log/log10)
log10 3-84
long 2-7
longjmp 3-55
Irand48 3-89
lsbrk 3-10
lseek 3-49

malloc 3-3
math functions
math functions: handle math error
(see matherr)
matherr 3-97
max 3-83
maximum of two values (see max)
measure length of strings (see
strlen/stclen)
memory allocation UNIX compatible
(see malloc)
memory allocation functions 3-2
memory release UNIX compatible
(see free)
min 3-83
minimum of two values (see min)
modf 3-91
modules 1-4

MOVE 3-56
movmem 3-58
mrand48 3-89

naming 2-18
new language features 2-23
non-local goto (see setjmp/longjmp)

object module compilation 1-4
object module disassembler 4-16
OMD 4-16
open 3-42
open a buffered file (see fopen)
open a file (see open)
OR 2-15

parse file pattern (see stspfp)
passing by value 2-3
pattern match (anchored) (see
stcpma)
pattern match (unanchored) (see
stcpm)
pow 3-84
power of a number (see pow)
preprocessor features 2-5
primary expressions 2-18
print formatted data to a file (see
printf)
printf 3-28
program execution 1-5
program linking 1-4
program linking 4-20
push a character back on input file
(see ungetc)
put a character to a file (see
putchar/fputc)
put a string (see puts/fputs)
putc 3-19
putchar 3-19
puts 3-24

rand 3-88
random numbers: general (see
drand)
random numbers: simple (see
rand/srand)
rbrk 3-11
read 3-47
read blocks of data from a file (see
fread)
read data from a file (see read)
register 2-10

release a memory block (see r1smem)
remove 3-45
remove a file (see remove)
remove most significant bit of a
character (see toascii)
rename 3-46
rename a file (see rename)
reopen a buffered file (see freopen)
repmem 3-59
reset a memory breakpoint (see rbrk)
rewind 3-36
rewind a file - (see rewind)
rlsmem 3-8
rlsml 3-8

sbrk 3-10
scanf 3-25
scope of identifiers 2-11
seed48 3-89
seek to a new file position (see
fseek/lseek)
set a memory breakpoint (see sbrk)
set file unbuffered (see setnbf)
setbuf 3-38
setjmp 3-55
setmem 3-57
setnbf 3-39
short 2-7
sin 3-85
sinh 3-87
skip blanks (and "white-space") (see
stpblk)
source file preparation 1-4
sprintf 3-28
sqrt 3-84
square root (see sqrt)
srand 3-88
srand48 3-89
sscanf 3-25
static 2-12
static 2-9
stc 3-62
stcarg 3-78
stccpy 3-65
stcd i 3-71
stch- d 3-70
stch-i 3-70
stcis- 3-77

stcisn 3-77
stci d 3-69
stclen 3-64
stcpm 3-79
stcpma 3-81

Index 1-5

stcu d 3-68
storage class specifiers 2-19
storage classes 2-9
stp 3-62
stpblk 3-72
stpbrk 3-76
stpchr 3-75
stpcpy 3-65
stpsym 3-73
stptok 3-74
strcat 3-63
strchr 3-75
strcmp 3-67
strcpy 3-65
strcspn 3-77
string functions and macros
strings 2-17
strlen 3-64
strncat 3-63
stmcmp 3-67
stmcpy 3-65
strpbrk 3-76
strrchr 3-75
strspn 3-77
strtol 3-94
structure declarations 2-20
structures and unions 2-22
sts 3-62
stscmp 3-67
stspfp 3-82
switch 2-16

tan 3-85
tanh 3-87
target operating system 1-2
target processor 1-2
temporary 2-14

terminate execution immediately (see
_exit)
terminate execution of a program,
dose files (see exit)
test a value to see if it is

a control character (see isctorl)
a digit (see isdigit)
a hexadecimal digit (see

isxdigit)
a punctuation (see ispunct)
a space, tab, or newline (see

isspace)
a valid character for a

C-identifier (see issym)
a valid initial character for a

C-identifier (see issym)

1-6 Index

alphabetic (see isalpha)
alphanumeric (see isalnum)
ascii (see isascii)

graphic (other than blank) (see
isgraph)
lower case (see islower)
printable (see isprint)
upper case (see isupper)
toascii 3-61
tolower 3-61
toupper 3-61
trig. functions:

arccosine (see acos)
arcsine (see asin)
arctangent (see atan/atan2)
cosine (see cos)
sine (see sin)
tangent (see tan)

type names 2-21
type punning 2-15
type specifiers 2-20
type-checking 2-3

ugetc 3-21
unary 2-13
unary operators 2-19
undef 2-6
union declarations 2-20
unlink 3-45
unsigned 2-3
unsigned 2-7
utility functions and macros

void 2-23

write 3-48
write blocks of data to a file (see
fwrite)
write data to a file (see write)
_exit 3-54

