

Amiga

C for Beginners

. >'

Schaun

A Data Becker Book

Fourth Printing, 1990

Printed in U.S.A.

Copyright © 1989,1990 Abacus

5370 52nd Street, SE

Grand Rapids, MI 49512

Copyright © 1987,1988 Data Becker GmbH

Merowingerstrasse 30

4000 Duesseldorf, West Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise, without the prior written permission of Abacus or Data Becker

GmbH.

Every effort has been made to ensure complete and accurate information concerning the

material presented in this book. However, Abacus can neither guarantee nor be held legally

responsible for any mistakes in printing or faulty instructions contained in this book. The

authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC is a trademark or registered trademark of Microsoft Corporation. Amiga 500,

Amiga 1000, Amiga 2000, Amiga and C64 are trademarks or registered trademarks of

Commodore-Amiga, Inc. Lattice C and Lattice are trademarks or registered trademarks of

Lattice Corporation. Aztec C and Aztec are trademarks or registered trademarks of Manx

Software Systems. IBM is a trademark or registered trademark of International Business

Machines, Inc. Atari ST is a trademark or registered trademark of Atari Corporation.

ISBN 1-55755-045-X

ii

Table of Contents

1. Introduction to C 1

1.1 Program Execution 4

1.2 Compiler vs. Interpreter 5

2. Beginning C 7

2.1 The Editor 10

2.2 The Compiler 11

2.3 The Linker 12

2.4 Putting It All Together 13

3. The First Program 15

3.1 Using ED , 18

3.2 Compiling 19

3.3 Error Messages 21
r

4. Theory and Practice 23

4.1 Program Format 27

4.2 Defining a Function 28

4.3 printf and Escape Sequences 29

4.4 Comments 30

4.5 Variables and Arithmetic 31

4.5.1 Integers 31

4.5.2 The if statement 32

4.5.3 Calculating with C 35

4.5.4 Floating Point Numbers 37

4.5.5 Characters and Character Strings 39

5. Loops 43

5.1 while Loops 45

5.2 for Loops 48

5.3 do while Loops 49

5.3.1 More Error Checking 49

5.4 AND and OR ."!".!" 52

6. Strings 55

6.1 Backtracking 57

7. Calculating in C , 59

8. Variables 63

8.1 Variable Names 65
8.2 Data Types 67

8.3 Type Conversion 70

8.4 The cast Operator ."........!!71

Hi

9. printf and scanf 73

9.1 More Escape Sequences 75

9.2 Format Specification 77

9.3 Octal and Hexadecimal 80

9.3.1 Conversion Program 82

9.4 Character Codes 84

9.4.1 About the Backslash 85

9.4.2 Going the Other Direction 86

10. The Preprocessor 87

10.1 #def ine 89

10.2 # include 91

11. Abbreviations 93

11.1 Increment and Decrement 97

11.2 Initialization, Definition, Declaration 99

11.3 Multiple Assignments and Directive Value in C 101

12. Functions 103

12.1 Functions with Arguments 106

12.2 Functions without Return Values 108

12.3 Other Functions 109

12.3.1 strcpy-Version 1 109

12.3.2 strlen Ill

13. Arrays 113

13.1 Multi-dimensional Arrays 116

14. More about Loops 121

14.1 More about the for Loop 123

14.2 break 124

14.3 continue 125

14.4 The switch Directive 126

15. Pointers and Addresses 129

15.1 Addresses 131

15.2 Pointers 133

15.2.1 The Exchange Function with Pointer 134

15.2.2 strcopy-Version 2 135

15.2.3 strcopy-Version 3 135

15.3 Pointer without Storage 138

16. Storage Classes 141

16.1 Auto 143

16.2 Static 144

16.3 External 145

16.4 Register 146

16.4.1 Fast strcpy Routine 147

16.5 Local 149

IV

17. User-defined Libraries.

17.1 The strcmp Function.

.151

.154

17.2 Itoa \ 157
17.3 Reverse \ 159

18. C Features J 161
18.1 The?: Operator 1 163

18.2 The sizeof Function L 164
18.3 Bit Manipulation [165
18.3.1 AND .] 165
18.3.2 OR 1 166

18.3.3 Bitwise Shift Operators A 167
18.3.4 EXCLUSIVE OR 1 168
18.3.5 One's Complement.

18.4 Goto

.168

.169

19. Complex Data Types .1,. 171
19.1 Struct A 173

19.2 Bit Fields A 175
19.3 Unions A 176

19.4 Enum I177

19.5 Typedef A 178

20. Important Concepts A 179

20.1 Declarations \ 181
20.2 Initialization A. 184

21. Pointer Arrays A 187

22. Useful Macros \. 193
22.1 Macro Error Sources A. 196

22.2 Library Macros A. 198

23. Communication Y 201
23.1 Passing Data with the cli \. 203

23.2 Buffered Input/Output X. 206
23.3 More Buffered Input/Output \. 211
23.4 Unbuffered Input/Output \. 213
23.5 Direct Access .V 216
23.6 Reading a Character .\.. 218
23.6.1 Standard Input/Output \ 218
23.7 A User Window \. 219

23.7.1 The Three Windows .\ 219
23.8 Redirection v. 222

24. Tricks and Tips .225
24.1 Starting from the Workbench 227

24.2 Other Preprocessor Directives 229

24.3 Finding and Removing Errors 231

25. System Programming 233

25.1 The Intuition Principle 235

25.2 A Window under Intuition 236

25.2.1 The Window Rags 237

25.2.2 Opening a Window 238

25.2.3 A Window Program 239

25.3 Screens 242

25.3.1 A Screen Program 243

25.4 Text/Graphic Window Display 246

25.4.1 Text 246

25.4.2 Move 246

25.4.3 Draw 247

25.4.4 Small Drawing Program 248

25.4.5 Low Resolution and Interlace Modes 252

25.4.6 Pixel Processing 253

25.5 DOS 257

25.6 SetComment 258

25.7 Read Directory 259

25.8 Conclusion 262

Appendices 263

A. Functions 265

B. The History of C 270

C. The Lattice C Compiler 272

D. The Aztec C Compiler 273

E. Reserved C Words 276

F. Operator Precedence 277

G. Storage Classes 278

H. Type Conversions 278

I. Modes for fopen 279

Index 281

VI

1

Introduction to C

Abacus 1. Introduction to C

Introduction to C

So you want to learn C. That's obvious, or you wouldn't be reading

this book. The goal of this book is to help you learn to program in C

on the Amiga in as little time as possible. Amiga C for Beginners is

written as a short course in the C language for anyone who wants to

learn about the C language from scratch, without a lot of technical

jargon.

This book is divided roughly into two parts. The first part introduces

the reader to the basic structures of C programming through operating

the editor, compiler and linker. It also contains many sample programs.

You'll be able to write your own short programs in C in only a few

hours.

This first part also takes the beginning C programmer through the

essentials of C—calculations, string handling, loops and more. It even

helps you find the errors made most often by new C programmers.

The second part, which begins at Chapter 10, explains the background

and peculiarities of each C statement and function. These include

preprocessor commands, arrays, loops, pointers, addresses and memory

classes. If these words don't mean anything to you now, they will when

you start reading the second section.

The second part also discusses macros, interfacing your Amiga to the

outside world, tricks and tips for the C language and graphic pro

gramming.

The appendices describe the history and development of the C language,

as well as operating instructions for a number of popular C compilers

(see your compiler's instruction manual, since many compilers are

constantly being upgraded). In addition, you'll find a number of practi

cal C functions, mathematical precedence, reserved C keywords,

memory classes and type conversions.

This chapter describes the general nature of C. You'll see its advantages

and disadvantages compared to interpreted languages, as well as advan

tages and disadvantages compared to other compiled languages. You'll

also see why C stands out above so many other computer languages.

1. Introduction to C Amiga C for Beginners

1 • 1 Program Execution

Before starting we need to ask the big question: "What is C?"

There are two kinds of computer languages. First, there are interpreted

languages such as BASIC and LOGO. Second, there are compiled

languages such as C, Pascal or Modula2. Section 1.2 contains detailed

information about the advantages and disadvantages of interpreters and

compilers.

Compilers Compilers are programs which translate the language statements into a

form understandable to the computer. This form consists of the

numbers 0 and 1 (the numbers used in the binary system). Since people

can't remember long strings of zeros and ones, the computer can be told

to interpret words and other number systems as binary numbers. For

example, a typical machine language instruction LDA means "Load the

Accumulator", which is easier to remember than the binary number

10011101.

The computer must contain a central processing unit (CPU) to respond

to the machine language instruction available in response to every

keyword. Programming with the binary numbers is called machine

language programming. Using machine language mnemonics or

instructions is called assembly language. The instruction which

executes on one computer may not even exist on another computer.

It would be easier for the programmer if the computer could be told in

plain English what to do. Needless to say, computer languages haven't

reached the level of a DWIM (Do What I Mean) interface. This type of

language may exist a few years from now, when technology produces

more helpful developments using artificial intelligence.

High level languages act as a compromise between machine language

and human language. These languages contain a limited number of

statements or keywords which in turn execute specific tasks. Unlike

assembly language, many of these languages aren't tailored to a specific

computer. The computer must execute several hundred machine

instructions for every single statement in the high level language. An
example would be the BASIC command "LOAD Filename", which
tells the computer to load a file.

Abacus 12 Compiler vs. Interpreter

1.2 Compiler vs. Interpreter

An interpreter As previously mentioned, two types of higher level languages exist:
Interpreted and compiled. An interpreter searches for keywords in the

program text (or source), verifies that the command is a legal one and
executes the equivalent machine language instructions. Then the
interpreter searches for the next command, tests it and executes the

machine instruction, etc.

This translation process performed by the interpreter can be compared to
the work of a human foreign language interpreter. An interpreter is a

translator which translates the words of the higher level language into

machine level instructions as needed.

A compiler A compiler translates the source program once into executable form.

This is similar to someone who translates foreign language literature

into his/her own language. This translator takes the time to select the

proper choice of words for the text, unlike the interpreter who mediates

a conversation between two people from different language back

grounds.

The interpreter executes programs immediately. The interpreter can also

be stopped by the user to check on certain values stored in certain vari

ables. Interpreted program execution can usually be continued without

causing problems. The main advantages of interpreted languages are

flexibility and spontaneity.

The compiler translates the program source only once. The compiler

may spend a few minutes compiling the program before it can be

executed. Afterwards, the compiled program executes much faster than

an interpreted program, since the compiler doesn't have to re-translate

the source program. This advantage becomes most evident in program

loops in which a command can be executed several thousand times. The

interpreter translates the command into machine language, repeating

this process a few thousand times. The compiled program already

knows what to do without repeating the translation. The advantages of

compiled languages lie in shorter execution times for compiled

programs.

Interpreters, because of easy access to their programs, let the program

mer enter corrections and modifications on the fly. They also let the

programmer enter and execute program code until an error occurs. This

"run-until-it-breaks-then-fix-it" attitude causes lazy, unstructured pro-

. gramming style.

1. Introduction to C Amiga C for Beginners

Compilers don't usually allow easy error correction. When an error

occurs, you must reload the program source editor, fix the errors in the

source code and recompile the program. In addition, compiled languages

require a specific language structure, or the program code won't

compile. The source code must be correct from beginning to end or the

compiler will not compile it.

The biggest advantage that C has over other languages is its transporta

bility. This means that you should be able to take a C source code from

an Amiga, transfer it to a PC, make changes to fit the PC's file

handling and other machine-specific tasks, and compile the C source

code on the PC with no problem.

There you have a general overview of the advantages and disadvantages

of compiled languages and interpreted languages. The next chapter

spends some time talking about these languages as well, while adding

specifics about the subject of this book—the C language.

2.

Beginning C

Abacus 2. Beginning C

2. Beginning C

Let's look at the process involved in developing a C program. Although

it may seem long and involved, don't panic. Once you learn the basics

of developing a high level language program, it gets easier.

One word of warning: Don't skip this chapter, even if you have

previous experience with C. You might learn something you didn't

know before about the language.

Programs begin with an idea. The user has a task that he wants to

accomplish using a program—and the program should perform the task

easier, faster or more accurately than a human could do it. This idea

could be for a drawing program; a spreadsheet for calculating payroll and

figures; a fast disk copier; or just a simple text display on the screen.

Once the general idea is developed, it helps if the programmer sits down

and writes out the goals of the idea, and how the program can do this.

This writing stage can be in plain English, since it should be as

readable for you as possible. This written documentation of the program

execution is sometimes called the pseudo code, since it tells what the

program should do without actually writing which statements the

program needs to perform the task. When writing the pseudo code of

this program, keep it broken down into smaller modules whenever

possible.

A data flowchart and program flowchart should be developed from the

written documentation of the idea, just as in any other computer

language. After it has been determined how the program flow should

appear, the user can proceed to the computer to program in the idea.

The C language uses three different programs which work together in

generating programs:

The editor, in which the user enters and corrects the source

program;

The compiler, which compiles the program;

The linker, which joins the main program with other compiled

programs and functions to make a fully executable program.

The rest of this chapter discusses the use of each program in the devel

opment of C programs.

2. Beginning C Amiga C for Beginners

2.1 The Editor

You need some sort of text editor to enter a C program from the

keyboard. An editor is nothing more than a simple word processor. It

usually contains only minimal text processing capabilities. The

program usually only allows you to type in, load, save and edit the text

of the source code: Nothing fancy like block functions or save and
replace capabilities.

Most word processor programs can be used for typing in the text of a C

program. If you use a word processor, you may not enter any special

control characters (e.g., bold fonts and text formatting) because the C

compiler would not recognize them. Many word processors provide the

option of letting you save a file as an ASCII file.

If you use a word processor as an editor, it must allow you to enter the

special control characters needed by C source codes. C programs use

braces ({}), brackets (D), the backslash (\), the number sign (#), the pipe
character (I) and the tilde character (~).

Maybe you can't afford a word processor, or maybe your word processor

doesn't have the necessary characters. The Workbench disk which comes

with your Amiga contains an editor named ED. ED is a basic text
editor, which you can find on the Workbench disk of the Amiga from

the CLi. Invoke the editor by entering the CLi, typing ed and the

name of the file you want to load/edit, and press the <Return> key.

The editor is loaded and then the C program is typed in. This text,
called C source code, is stored on the disk under a filename. The charac
teristic that sets this apart from normal word processing files appears in
the file extension: C source codes must contain a file extension of .C.
Examples of names can be sort.c or archive.c; note that these
names indicate the contents of each file. Try to use meaningful names
like this instead of cryptic names like a.c or this.c. The extension of
.C is especially important, since several files with the same name but
different extensions are generated by a C compiler. After a file is created
and saved, you can then call the C compiler to compile the C source
code.

10

Abacus 2.2 The Compiler

2 . 2 The Compiler

Calling the compiler loads the C compiler into memory. The compiler

reads the source code and begins to convert the source code into

compiled machine language. Most compilers read the source code twice

(two pass compiler). During the first pass, if it encounters an invalid

expression or keyword, it stops compiling and displays an error

message on the screen or writes the error to a disk message file.

Whenever an error is found, you must reload the editor, and correct the

source code. Once you've fixed the errors, you save the source code file,

exit the editor and restart the compiler. If the compiler finds errors

again, you must repeat the above procedures.

Before going any farther, you should realize one thing. Writing the C

source code requires proper preparation. If you just enter source code

without giving any thought to what you're typing in, you'll spend

more time learning about error messages and the editor than you will

spend learning about the C language. In the beginning, prepare to see

plenty of errors, and be patient with yourself as you go from compiler

to editor to compiler.

When you've corrected all of the errors in the source code, the compiler

can finish the first pass without stopping and performs the second pass.

This second pass does the final transformation into object (compiled)

code. The compiler saves the object code to disk under the same name

as the source code, but with an extension of .0. For example, a source

code named source.c generates an object code file named source.o.

The object file needs one more step before it can become executable

program code—this is the linker.

11

2. Beginning C Amiga C for Beginners

2.3 The Linker

We're not done quite yet The object file must still be run through the

linker. The linker searches for all functions used by the program from

the C libraries, and links the necessary functions into one program.

Functions A function is a subroutine similar to a procedure in Pascal. Functions

are capable of solving small tasks such as drawing a line or displaying a

character on the screen. The libraries contained in most C compiler

packages include frequently used functions stored in object (compiled)

form. These functions could be input/output functions, graphic rou

tines, sound routines or even trigonometric functions.

The linker identifies the functions required for a complete program and

adds them to the main program. This saves a programmer a lot of work.

The functions simply require the passing of values instead of retyping

the source code for each function from scratch.

The C linker permits the development of large programs in modular

form. This means that several parts can be (and often are) developed

separately. The user can compile and test every module separately. This

has the advantage that the complete C program doesn't have to be

loaded and recompiled every time the compiler detects an error. The

linker eventually links all the compiled modules into one complete,
executable C program.

The linker cannot handle non-compiled source code. It can only link

compiled functions together. Source codes can load other source codes
during compilation, but we'll see more on this later.

12

Abacus 2.4 Putting it all together

2.4 Putting It All Together

The CLI The Amiga's CLI (Command Line Interface) is used to specify the

parameters for the editor, the C compiler and the C linker. For example,

entering the following line in the CLI calls the Lattice C linker:

ALINK filel.o file2.o TO complete

You already know that a program may have to be compiled several

times before it is free of errors (syntax errors, not logical errors). You

must enter the above line exactly as written. Entering the line

incorrectly can cause errors in itself. The developers of most C

compilers took this into consideration, and added a special feature to

allow easy linker access from text files.

The MAKE file The inputs required to compile and link a C source code can be written

to a file called a make file. This make file calls all the necessary

programs such as the compiler or linker. The C system reads the file

just as if the user had input the text direct from the keyboard.

It's easy to create a make file. Instead of executing, the C compiler

calls directly. You invoke the editor and write the calls to a script file.

Once you save this file to disk, you now have a MAKE file.

AmigaDOS' Execute command reads this file and passes the informa

tion to the C compiler sections needed to make the final executable

program. See Appendix C for one example of a make file and its

contents.

13

3.

The First Program

Abacus 3. The First Program

3 . The First Program

The following code is our first C language program. Don't enter it

yet—you'll type it in a few minutes starting at Section 3.1. Here's the

source code so you can see what it looks like:

#include <stdio.h>

void main()

{

printf("Hello, I am here!");

To see what the program produces, the text must be entered using an

editor. When you use the editor, please enter the text exactly as it is

printed here and in Section 3.1. This avoids error messages which will

cause problems. Once you've become more comfortable working in C,

you can change programs around to suit your own needs. But don't

change anything until after the program compiles and links exactly as

you see here.

A step by step procedure follows. If you're on the Workbench, you

must start the CLI before anything else. The CLI can be found in the

System drawer located on the Workbench disk. Workbench 1.3 users

can use the shell program, which is an enhanced version of the CLI.

Workbench 1.2 users who can't find the CLI may have it switched off

with the settings in Preferences 1.2. Using Preferences 1.2, you must

click on the ON gadget next to the word CLI. Once you close and

reopen the Workbench disk icon, the CLI icon should appear in the

window.

After you invoke the CLI or shell, a new window appears. This

window prompts for an input with the message:

For a super computer such as the Amiga, this program is something

unusual. No icons appear, the mouse can only be used to move and size

the window, and the CLI only accepts input from the keyboard. Use the

mouse to enlarge the CLI window to its maximum size. Everything

that occurs from now on will be displayed in the CLI window. Now

put the mouse aside—you won't be needing it for a while.

17

3. The First Program Amiga C for Beginners

3.1 Using ED

First you'll need an editor to enter the program. The ED editor can be

called from the C: directory on your Workbench disk. The following

executes ED and creates a new file named hello.c:

1> ED HELLO.C

The computer places the 1> prompt at the beginning of the line. Some

versions of the CLI may also display the current directory (e.g., the

shell from Workbench 1.3).

The name hello.c will be the name of our first C language program.

It doesn't matter whether you type the name in uppercase or lowercase

letters.

If you made a typing error, press the <Backspace> key to delete the last

character typed. The <Backspace> key has an arrow pointing to the left

on some versions of the Amiga. If you prefer, you can press the

<Ctrl><X> key combination to delete the entire line of text.

Press the <Return> key to execute the command and invoke the editor.

A window appears and displays the text "Creating new file." The user

now enters the program. The editor allows you to move the cursor

around the file using the cursor keys to make corrections and changes.

Type the following text:

#include <stdio.h>

void main()

{

printf ("Hello, I am here!");

Once you've finished typing the text, press the <Esc> key, then press

the <S> and <A> keys. Pressing the <Return> key saves the text (this

combination will be called <EscxSA> from here on). Press <Esc>

<XxReturn> to save the text and quit the editor. The system returns

you to the CLI. Pressing <EscxQ> returns you to the CLI without

saving the file. See the book AmigaDOS Inside and Out from Abacus
for more information about ED.

Pressing <EscxX><Return> returns the user to the CLI window

immediately. You now have your first C source code ready to compile.

18

Abacus 3.2 Compiling

3.2 Compiling

Lattice 4.0

Aztec C

Start the Lattice 4.0 compiler with the following:

1> lc -L hello

For Lattice C 4.0, the following should now appear on the screen. Your

screen may differ slightly. If you get error messages, see Section 3.3.

1> lc -L hello

Lattice Amiga DOS C Compiler Version 4.0

Copyright (C) 1987 SAS Institute Inc. All rights reserved

Compiling hello.c

Module size P=00000014 D=00000012 U=00000000

Total files: 1, Compiled OK: 1

Linking hello

BLink - Version 7.2

Copyright (C) 1986 The Software Distillery.

Copyright (C) 1987 SAS Institute Inc. All rights reserved

Box 8000 SAS Circle, Cary NC 27511-8000 - Telex 802505 (919) 467-8000

Blink complete - Maximum code size = 5488 ($00001570) bytes

Final output file size = 5312 (000014c0) bytes

To compile the program using the Aztec C compiler requires two steps.

The Aztec system first compiles the source code then assembles and

links it. A make file can be quite useful. Enter the following for the

Aztec C compiler:

l>cc +L hello

The above sequence may not function in some cases. If not, enter the

same line but omit the +L. Aztec C should display the following on

the screen. Your screen may differ slightly. If you get error messages,

see Section 3.3.

1> cc +L hello

Aztec C68K 3.6a 12-18-87 (C) 1982-1987 by Manx Software Systems, Inc.

Aztec 68000 Assembler 3.6a 12-18-87

Now enter

l>ln hello.o -lm -lc

19

3. The First Program Amiga C for Beginners

Aztec C should display the following on the screen. Your screen may

differ slightly.

l>ln hello.o -lm -lc

Aztec C68K Linker 3.6a 12-18-87

Base: 000000 Code: 001444 Data: 0002a0 Udata: 000050 Total: 001734

Success Did everything work as expected? If you didn't get an error, type the

dir command in the CLI to see the current disk's directory. TTie exe

cutable program is stored there under the name hello. Notice that this

file has no extension. There may also be other files with extensions of

.map, .0, .lnk and of course .C. This shows that the extension helps

identify the file. Call the executable program by entering the following

line:

hello

On the screen appears the text

Hello, I am here!

The program isn't earth-shattering, but this is only the beginning.

20

Abacus 33 Error Messages

3.3 Error Messages

Lattice

Aztec

The most common mistake a new C programmer makes is omitting the

semicolon following the closing parenthesis of the printf function.

This semicolon is one of the most widely used characters in C

programs since it indicates the end of a statement. For this reason

almost every C statement or function ends with a semicolon. If the user

omits it, the compiler reports many error messages. You might like to

edit the hello.c file again and remove the semicolon. Save the file

and try compiling the file again.

If you forgot to type in the semicolon following the printf function,

the Lattice C compiler displays the following message:

hello.c 5 Error 57: semi-colon expected

Compiler returncode 1

The Aztec C compiler displays the following message if the semicolon

is missing:

hello.c:5 ERROR 69: missing semi-colon

1 errors

Let's try to determine from this compiler message what is wrong with

the file. The first line states the filename in which the error appeared:

hello.c. That filename specification is useful later on (more on this

later). Then follows the line number (5), error number (57) and the error

description in English. This indicates that a semicolon was expected in

line 5.

The user must now reload the editor to correct the error:

ED HELLO.C

You must include the extension of .C to edit the C source code.

To reach line 5, you can count down the lines (the fastest method for a

program this short). You can also press <EscxM><5xReturn> to

get to line 5. The editor then moves the cursor to the line indicated.

Line 5 consists only of the closing brace (}), but this is expected since

the error actually occurred in the previous line. The semicolon in the

previous line is missing. The error messages of the C compiler should

never be taken too literally, since the search for the error may have to

take the surrounding code lines into consideration.

21

3. The First Program Amiga C for Beginners

After placing the semicolon where it belongs (following the printf

function), save the file again and try to compile the source code again.

It should work.

22

4.

Theory and

Practice

Abacus 4. Theory and Practice

4 . Theory and Practice

Now that you've had some practical experience entering and compiling

a program, let's look at the theory of how the program in Chapter 3

works.

You have two different types of keywords involved in C programming:

functions and statements. The first line contains the function name

void main. The main function is the most important element of a C

program. The void means that this function will not return a value

and is inserted so that the compiler does not display a warning message.

Without this function, literally nothing runs.

Functions A C program usually consists of up to a hundred functions. A function

handles a part of the complete program, and is marked by parentheses 0-

Braces ({}) mark the beginning and end of the function. These braces

surround the statements and functions which the computer should exe

cute. The following lines call functions:

printf("Hello")/

Value (10);

music () ;

end();

and the following lines don't:

value = old;

music;

end;

If you haven't compiled and linked the program in Chapter 3, do so

now. When you execute the program from the CLI, a jump occurs first

to the main () function. This always happens, regardless of where the

function appears in the listing. It can be at the beginning, middle or end

of the program, but the main () function always executes first. The

main function calls the printf function. The printf function is

stored in a library. All the user needs to know is the function name

(printf), what it does (displays text on the screen) and what informa

tion it requires (text).

Arguments The information passed to a function during the call are arguments. The

arguments to be passed are placed within the calling function's paren

theses to ensure proper delivery. It is important to enclose any character

strings within quotation marks (e.g., printf ("Here lam!");).

After calling the printf function the text appears on the screen. The

printf function ends and the program continues at the point where it

was interrupted by the function call.

25

4. Theory and Practice Amiga C for Beginners

No other statements follow the line after printf. This means that the

main function has also reached its end, and the program ends. The

computer returns to the CLI, and additional commands can be entered.

The end of the program and the return to the CLI represent the termina

tion of the main function. The user should note how important this

function is. It represents the C program itself; program execution starts

and ends with the main function.

26

Abacus 4«* Program Format

4 .1 Program Format

Let's discuss the format of the program. The C compiler ignores any

spaces, linefeeds and end of paragraph marks added to the listing by the
user. Indenting lines of adding blank lines helps make source codes
more readable to the user. Formatting has no effect on the execution
speed or the length of the final program. The program you entered in

Chapter 3 could have been in one of the following formats:

void main () {

printf("Hello, I am here!");

void main ()

{

printf("Hello, I am here!")/

}

void main (){printf("Hello, I am here!");}

It's up to the user to select the version which appears to be most

readable. Once you've selected a style, stick with it. However, the last

version above illustrates how even a small program can be made

unreadable by "formatting" iL

Note: All statements and functions must be entered in lowercase since C is
case-sensitive (it differentiates between upper and lowercase letters). If

you entered Printf or printf instead of printf, the linker reports

an error since it cannot find this function anywhere.

27

4. Theory and Practice Amiga C for Beginners

4.2 Defining a Function

A function only executes the statements contained within the braces. If

nothing is written there, the computer does nothing. A program that

does nothing is not very exciting, but it's a good example. The

following C source code compiles without problems (and does

nothing):

void main()

Don't expect miracles from the above program. When you compile,

link and start it, it loads, runs and does nothing. The computer returns

totheCLl.

Definition The function arguments enclosed in the braces are its definition. It de

fines what the computer should do when it executes a certain function.

A function can contain several statements or other function calls.

Longer lines of text can be displayed on the screen with this program:

void main()

{

printf("Hello, I have a question!\n");

printf("Do you believe in life without electricity?\n");

printf("Not me!\n");

}

The screen output will appear as follows:

Hello, I have a question!

Do you believe in life without electricity?

Not me!

This program has two differences from the program in Chapter 3. First,

there are three printf functions instead of one; second, the \n charac

ter appears at the end of each string within quotation marks. See the

next section for details on \n and other escape sequences.

28

Abacus 43 printf and Escape Sequences

4.3 printf and Escape Sequences

The text at the end of Section 4.2 appears on the screen as it appears in

the source code, with three exceptions. The three \n characters do not

appear. The \n character is called the newline character, one of the

many escape sequences used for controlling the format of text. The \n

character tells the compiler to insert a linefeed at that place in the text,

just as if you pressed the <Return> key.

Any escape sequence can be recognized by the backslash (\) preceding

it. The character following indicates which escape sequence should be

executed. For example, the n signifies a linefeed: The computer starts

the text after the \n at the beginning of the next line.

This newline (\n) escape sequence is important, since the printf

function doesn't automatically add linefeeds after it displays text. You'll

remember that when you ran the program in Chapter 3, the prompt

appeared right after the text. Basically C writes all characters sequential

ly on the screen, even if they are written with different function calls.

The user must program the function to advance the line.

The user is not obligated to place the escape sequences at the end of the

character string. They can be placed between other "normal" characters

or even at the beginning of the text. If desired, all three lines can be

written within one printf function:

printf ("Hello, I have a question!\nDo you believe in life

without electricity?\nNot me!\n");

This line is rather difficult to read. If you consistently place a newline

(\n) character at the ends of strings, programs will be much easier to

read.

The newline character is not the only method of formatting text. The

printf is comparable to the PRINT command in BASIC or the

write statement in Pascal. The f in printf indicates that the text

can be output in a specified format This function can process and dis

play character strings and other values as specified by the programmer.

Since these capabilities are quite extensive, we'll introduce them to the

reader as needed.

29

4. Theory and Practice Amiga C for Beginners

4.4 Comments

The C language lets the programmer insert comments in the source

code. This can be used to tell the reader what the source code is

supposed to do. Comments have no effect on the speed or size of the

compiled program. Comments start with the /* characters and end with

the * / characters. The compiler skips over everything between the

comment delimeters. Use comments liberally, since they never affect

the final program and add to the readability of the source code.

void mainO

{

/* This program outputs a text which starts */

printf(" Comments — desired — stop —\n") ;

/* hereA and ends over at the opposite end* */

Now, think of your first program from Chapter 3. If you added com

ments to tell a future reader exactly what this program did and when, the

end result could look something like this:

/* Program from Chapter 3 of Schaun's book */

/* Amiga C for Beginners from Abacus (C) 1988 */

/* This program prints the words Hello, I am here" */

/* to the screen. Nothing else. */

#include <stdio.h> /* call standard i/o header file */

void main() /* main function */

{ /* start of function */

printf ("Hello, I am here!")/ /* show text on screen */

} /* end of function */

This is a very exaggerated example. It doesn't matter if you comment a

program this clearly, though—the comments are ignored by the com

piler.

30

Abacus 4.5 Variables and Arithmetic

4.5 Variables and Arithmetic

scanf

Variable types

Our knowledge of the C language is still rather small. Right now you

can display text on the screen and insert comments in source code.

It would be nice to be able to have a program accept input from the

keyboard. The scanf function is the opposite of the print f

function—it reads input instead of displaying output (more about

scanf later).

Consider how a program would execute for questions and answers. First

the print f function displays the question on the screen. Next the

scanf function reads the user's input.

For example, pretend that a number will be input as a response. The

following question asks for a number 1 or 2:

Are you well?

(1) = YES, (2) = NO

Number:

The number must be stored somewhere. C provides a series of variable

types which can be used.

Variables allow certain types of information to be stored in a computer.

The variable type depends on the type of information you want stored.

There are variables for characters; variables for strings; variables for

different kinds and sizes of numbers; and variables for combinations of

numbers.

4.5.1 Integers

The int variable type represents integer (whole) numbers. Variables of

type int can accept whole numbers from (approximately) -32,768 to

+32,767. The following program uses integer variables, and introduces

a practical application of the scanf function:

/* scanl.c section 4.5 */

void main()

{

int input;

printf("Are you well?\n");

printf("(D = YES, (2) = NO\n\n");

31

4. Theory and Practice Amiga C for Beginners

printf("Number: ");

scanf("%d", &input);

printf("\n\nYour input was: %d\n", input);

}

The first line of the main function, int input;, tells the compiler

what to do with the variables. This line assigns a name to the variable.

The program uses this variable name for access to the variable's

contents. This variable name (input) indicates its purpose. Variable

definition ends with a semicolon.

Format The following lines are the printf functions. Next, the scanf

specification function asks for the user's input in response to the text "Number:"

Since a large number of data types exists, the input routine must be

told what data can be expected. The format specification %d specifies

the data type. Format specifications are similar to the escape sequences

(the characters preceded by a backslash). The percent sign indicates a

format specification; the d tells scanf that the value to be read in

must be of type int. The name of the desired variable follows the

string in quotes, separated from the string by a comma. An ampersand

(&) precedes the variable name. This is important: If the system crashes

the user should first examine the scanf function parameters to make

sure they are correct.

If scanf contains the correct information, the user can enter the input

in the running program. Enter a number and press the <Return> key.

This value can be found in the variable input. The program can now

use this number.

This program accepts the input then displays the variable using the

printf function. The printf function must also be told what kind

of data it must process. A format specification identical to the one

which appears in scanf serves this purpose. Because of this, printf

knows that an integer number will be passed, which must be placed at

the location occupied by the format specification in the text. The

variable name input follows the string in quotes, separated from the

string by a comma. The input appears on the screen if the input was a 1

or 2 and not text (text is not allowed here). If you enter text, the input

becomes a large random number (in Lattice C) even though this number

never appeared in the input line. If you enter no input scanf scrolls

the screen one line upward and waits for a new (more useful) input.

4.5.2 The if statement

It is rather boring to just let the computer repeat the input. It would be

better to respond to the input. For example, have the computer respond

to an entry of "1" with the message, 'That is very good!", or an entry

of "2" where the message could be, "I am sorry to hear that!" The

32

Abacus 4.5 Variables and Arithmetic

computer must be capable of comparing the value stored in input

with other numbers. Depending on the results of this test, it must

select one text or the other text. In programming this is known as an

if ...then construct. As in many other languages, C also has this

capability (C doesn't require the then).

The variable is compared with 1. If the condition is found to be true,

the statement following the if command executes. Here is an example:

if(input == 1)

printf("That is very good!\n");

if(input == 2)

printf("I am sorry to hear that!\n")/

The conditions appear inside the parentheses so that the first printf

statement only occurs when input equals 1. The same is true of the

following i f statement, with the difference that the text executes if

input equals 2. Semicolons never follow the if.

The user who wants to experiment can try a semicolon after the second

if. If you do so, the program acts as if the line if (input == 2);

doesn't exist After each input "I am sorry to hear that!" appears.

Adding the four lines above makes the program run properly, but it

could be improved. Some users may be familiar with the BASIC

statement:

IF A=l THEN PRINT "That is very good!:

ELSE PRINT "I am sorry to hear that!"

else The C language also has an else statement which can only be used

together with the if statement. The else statement executes only

when the condition has not been met. This eliminates the second test.

if(input == 1)

printf("That is very good!\n");

else

printf("I am sorry to hear that!\n");

The second test is now improved. A modified version of the C program

now appears as follows:

/* scan2.c 4.5.2 */

void main()

{

int input;

printf("Are you well?\n") ;

printf("(1) = YES, (2) = NO\n\n");

printf("Input Number: ");

scanf("%d", &input)/

if(input == 1)

printf("That is very good!\n");

else

33

4. Theory and Practice Amiga C for Beginners

printf ("I am sorry to hear that!\n");

}

If several commands should be executed after the if (e.g., two

print f functions), the second line cannot be written immediately after

it. The following example wouldn't work:

if(input == 1)

printf("That is very good!\n");

printf("Hope you stay healthy!\n");/* Not like this! */

else

printf("I am sorry to hear that!\n");

Statement Since only one line is executed after the if, something else must be

block done. Up to now only one statement has been described. It is time to

describe a statement block. Placing several statements inside braces

creates a statement block which is valid as a unit. This block can be

placed following the if statement without problems:

if(input == 1)

{

printf("That is very good!\n")/ /* Right! */

printf("Hope you stay healthy!\n");

}

else

printf("I am sorry to hear that!\n");

The Amiga can do a lot of things, but what it does best is calculate (and

fast). Let's start with addition. To add two values use the plus sign (+):

sum = numberl + number2;

The result for this example is stored in the variable sum. This variable

must be defined at the beginning of the function, just like all variables.

Using type int, the following definition results:

int sum

int numberl

int number2

C is a language for lazy people. Most everything can be changed to
abbreviations to cut down on keyboard use. Those who want to become

good C programmers should use this capability. These three variables
are defined as the same data type. You only need to enter int once; all
integer variables can be listed following the single int:

int sum, numberl, number2;

All variables are separated by commas and the list is terminated with a
semicolon.

With this information it's possible to write a program that adds two
numbers. The scanf function permits data input, but this time two

34

Abacus 4.5 Variables and Arithmetic

numbers will be read in. This will not be done with two separate func

tion calls (this would also be possible), but a second format specifica

tion is written into the string of the scanf call. It contains %d%d

(notice no spaces) which reads the second parameter. And now the

listing:

/* scan3.c 4.5.2 */

void main()

{

int sum, number1, number2;

printf("Please input two numbers!\n");

scanf("%d%d", &numberl, &number2);

sum = number1 + number2;

printf("%d + %d = %d\n", numberl, number2, sum);

The user familiar with other languages such as BASIC can compare the

listings to other language implementations of the same program. The

last printf function with the three format specifications can appear

confusing. The following is a BASIC equivalent:

PRINT "Please input two numbers!"

INPUT N1,N2

SUM = Nl + N2

PRINT Nl;" +";N2;" =";SUM

4.5.3 Calculating with C

The reader can guess what would have to be changed to perform multi

plication instead of addition. The plus sign is replaced by an asterisk

(*). A hyphen (-) is used for subtraction and a slash (/) performs

division.

Calculations may be performed with constant values as well as

variables. Both constants and variables can be mixed. Some examples

follow to illustrate. It is assumed that all variables are defined and

contain meaningful values:

result = number * 4;

sum = var + 2 + var2 + 3 + var4;

result =4*5-7/ var;

value = 2 * (number - 7);

result =4+5*3-2;

counter = counter + 1;

Evaluating a formula is as simple as entering it into a pocket calcula

tor. C recognizes the laws of mathematical precedence:

35

4. Theory and Practice Amiga C for Beginners

result =4+5*3-2;

The result is 17, not 25. The product of 5 * 3 is calculated first, after

which 4 is added and 2 subtracted.

The counter = counter + 1; example above deserves special

attention. This equation is unsolvable for the normal person, but no

problem for the computer. It takes the content of the variable

counter, adds one to it and stores the result in counter. This oper

ation increments the content of the variable by one for every call.

Let's write a comprehensive program for performing math equations.

The assumptions are that all basic four mathematical functions are per

formed with two variables. A scanf function reads the numbers. Then

the numbers are tested with several if statements to determine which

mathematical function should be performed. The result is calculated

accordingly. If an invalid code is input, a message appears.

Here is the finished version of such a program:

/* mathl.c 4.5.3 */

void main()

{

int numberl, number2, result, operator, error;

printf("Please input two numbers!\n");

scanf ("%d%d11, Snumberl, &number2);

printf("And now the code for the operation!\n");

printf("l=Add, 2=Subtract, 3=Multiply, 4=Divide\n");

scanf("%d", ^operator);

error = 1;

if(operator == 1) /* Addition */

{

result = numberl + number2;

error = 0;

}

if(operator == 2) /* Subtraction */

{

result = numberl - number2;

error = 0;

}

if(operator == 3) /* Multiplication */

{

result = numberl * number2;

error = 0;

}

if(operator == 4) /* Division */

{

result = numberl / number2;

error = 0;

}.

if(error == 1) /* None of the above conditions */

printf("Wrong Code! Input only numbers 1 - 4!\n")/

else

36

Abacus 4.5 Variables and Arithmetic

printf("The result is %d\n", result);

}

The program is very easy to read. After all values have been entered, the

variable error is assigned a value of 1. During every operation that
follows, be it addition, subtraction, etc., the error variable is set to

zero. This makes it possible to determine whether one of the four

operations was performed. If this was not true, the value in operator

is illegal.

Before the output, the result is tested to determine if it was calculated.

This can be seen in the variable error.

Test this program thoroughly with various values. Please note that the

integer variables are only permitted to store values between +32,767

and -32,768. Furthermore, division by 0 should be avoided. This would

cause a system crash and a Guru Meditation.

4.5.4 Floating Point Numbers

float

Perhaps you have noticed something else. Try dividing 9 by 2. The

result displayed by the computer is 4, which is incorrect (4.5 would be

right). Isn't this expensive computer capable of performing correct divi

sion?

The error can be traced to the variable type. The int variable type is

only capable of processing whole numbers between ±32,000. The value

4.5 is a floating point number, not a whole number. If during a

division a remainder (the fraction after the decimal point) occurs, it is

ignored. This does not mean that the division 9/2 cannot be performed

on the Amiga computer. The only thing required is that the variable

type can be capable of storing floating point numbers. No problem

since C is equipped for this.

To convert the current program for this new data type, the variables

number1, number2 and result must be changed. This process

consists only of replacing int with float. The first lines appear as

follows:

main ()

{

float number1, number2, result;

int operator, error;

This alone is not sufficient since scanf and printf use the format

specification %d which expects an integer value. This is no longer the

case. The %d must be replaced with a %f. The f means a floating point

37

4. Theory and Practice Amiga C for Beginners

value is passed, just like the d is used for integer values. The first
scanf function now appears as follows:

scanf("%f%f, finumberl, &number2);

The last print f function must also be changed. The variable

result is now a floating point value. The d is replaced with the f.

Newly compiled and linked, this version makes error free computations

of floating point numbers possible. Numbers stored as type float are

practically unlimited in size. Millions, and even billions and billions,

can be calculated. Here is the complete program:

/* math2.c 4.5.4 */

void main()

{

float number1, number2, result;

int operator, error;

printf("Please input two numbers!\n");

scanf("%f%f", &numberl, &number2);

printf("And now the code for the operation!\n");

printf("l=Add, 2=Subtract, 3=Multiply, 4=Divide\n");

scanf("%d", Soperator);

error = 1;

if(operator == 1) /* Addition */

{

result = number1 + number2;

error =0;

}

if(operator == 2) /* Subtraction */

{

result = numberl - number2;

error = 0;

}

if(operator == 3) /* Multiplication */

{

result = numberl * number2;

error =0;

}

if(operator == 4) /* Division */

{

result = numberl / number2;

error =0;

}

if(error == 1) /* None of the above conditions */

printf("Wrong Code! Input only codes 1-4!\n");

else

printf("The result is %f\n", result);

Lattice The library for mathematical functions and floating point numbers must

be linked with the standard library. Example:

lc -Lm math2

38

Abacus 4.5 Variables and Arithmetic

Aztec If you work with the Aztec C compiler, the library for mathematical
functions and floating point numbers must be linked with the standard

library c.lib.

Example:

cc +L math2.c

In math2.o -lm -lc

4.5.5 Characters and Character Strings

char Besides the int and float variable types which accept numbers, you

need another category of variables to store characters. It would be better

if the program above could accept a plus sign instead of the number 1

to indicate addition. The data type char allows variables to be defined

which can accept characters.

The syntax for definition of a char variable is exactly as described in

the float and int variables:

char character;

This type of variable has its own format specification for the print f

and scanf functions. A c is used for the type char. To give the

calculation program a few extras, the operator is entered as a character.

This means that instead of entering a number as you had to before, you

can enter a math operator instead.

Another improvement can be made at this point. The format for

entering equations should be similar to that of a pocket calculator (i.e.,

first number, operator, second number). You should be able to press the

<Return> or <Enter> key instead of the <=> key. Since the scanf

function is so flexible, the following change is sufficient to make this

possible:

scanf("%f%c%f", &numberl, &operator, &number2);

The %c between the two format specifications indicates character input.

The tests which formerly checked the code now have to test the charac

ters for the operators. Nothing easier than that! Only the characters

must be placed in apostrophes (single quotes):

if(operator == '+')

39

4. Theory and Practice Amiga C for Beginners

After all the small changes, compare this version to the final program

below in which some other cosmetic changes were made. The reader

should now be able to understand the additions made.

During the input a small item has changed. Until now the <Return>

key had to be pressed (but not required) after inputting each number.

Now the entire input must be in one line. The reason for this is the fact

that a single character is read in with %c. This could be a <Return> or a

space. For this reason the first number is followed immediately by the

operator after which the <Return> key may be pressed, if desired.

Finally the second number appears as in this line:

15.500000 * 12.500000 = 193.750000

Here is the final version of this program:

/* math3.c 4.5.5*/

void main()

{

float number1, number2, result;

char operator;

int error;

printf("Input Format: Number, Operator, Number (no

spaces)!\n");

scanf("%f%c%f", &numberl, Soperator, &number2);

error = 1;

if(operator == •+') /* Addition */

{

result = numberl + number2;

error =0;

}

if(operator == •-•) /* Subtraction */

{

result = numberl - number2;

error = 0;

}

if(operator == '*') /* Multiplication */

{

result = numberl * number2;

error = 0;

}

if(operator == '/') /* Division */

{

result = numberl / number2;

error =0;

}

if(error == 1) /* None of the conditions above
satisfied? */

printf("Wrong Operator %c!\n", operator);

else

printf("%f %c %f = %f\n", numberl, operator, number2,
result);

40

Abacus 4.5 Variables and Arithmetic

Lattice The library for mathematical functions and floating point numbers must

be linked to the standard library. Example:

lc -Lm math3

Aztec If you work with the Aztec C compiler, the library for mathematical

functions and floating point numbers must be linked with the standard

library c.lib. For example:

cc +L math3.c

In math3.o -lm -lc

41

Loops

Abacus 5. Loops

5, Loops

The programs presented up until now execute straight from beginning

to end. An if statement may skip over some spots, but we haven't

jumped to earlier statements. Loops branch to earlier sections of the

program.

5.1 while Loops

The while statement is followed by two parentheses which surround

the desired arguments. An example makes this clear:

void main()

{

int counter;

counter = 15;

while(counter > 0)

{

printf("Counter is %d\n", counter);

counter = counter - 1;

The block which appears after the while statement executes until the

conditions inside the parentheses are true. In the beginning, the variable

counter is set to 15. While the condition counter > 0 has been

met, the following block is executed which outputs the current value of

counter and then decrements it by one. In this case the printf

function is called 15 times until counter has been reduced to 0. The

conditional statements can be formed by using tests for equality (==),

greater than (>), less than (<), greater than or equal to (>=), or less than

or equal (<=). The comparison here is for counter to be greater than

0.

The comparison operators for C are similar to those found in most

programming languages.

45

5. Loop s Amiga C for Beginners

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= unequal

Instead of

while(counter > 0)

the following could be written:

while(counter >= 1)

The latter is preferred since the limit is explicitly provided. To construct

a loop which counts up to the value 100, it is recommended to use this
number in the test.

while(counter <= 100)

In the comparison operators <= and >=, the equal sign (=) always

appears at the end.

Factorials A practical example is the calculation of a factorial number through

constant multiplication. A factorial in mathematics is the product of all

whole numbers up to a set value. The factorial of 4 therefore is:

4! =1*2*3*4= 24

Here is our example program:

/* factorial.c 5.1 */

void main ()

{

int num, i;

float factorial;

printf("Please input a number: ") ;

scanf("%d", &num);

i = num;

factorial = 1; /*Initialize */

while(i >= 1)

{

factorial = factorial * i;

i = i - 1;

}

printf("%d! = %f\n", num, factorial);

46

Abacus 5.1 while Loops

Lattice

Aztec

Now for a few hints in helping you compile this program with your

compiler.

The library for mathematical functions and floating point numbers must

be linked with the standard library. Example:

lc -Lm factorial

If you work with the Aztec C compiler, the library for mathematical

functions and floating point numbers must be linked with the standard

library c.lib. Example:

cc +L factorial.c

In factorial.o -lm -lc

47

5. Loops Amiga C for Beginners

5.2 for Loops

Another loop can be constructed using the for statement. In BASIC
the command is used as follows:

FOR I = 0 to 100 STEP 2

NEXT I

In C this appears as follows:

for(i = 0; i <=100; i = i + 2)

C doesn't require a next as in BASIC, since only the statement block
following the loop header is executed. Within the parentheses are some
interesting items. There are three individual statements separated from
each other by semicolons. A semicolon does not follow the last entry.
The loop body ends here with the closing parenthesis. The first entry
i = 0 assigns a starting value to the variable which is modified within
the loop. The statement i <= 100 represents the ending condition.
Until it is satisfied, the loop executes. The last part of the loop body
increments or decrements the control variables which were previously
initialized with a starting value.

48

Abacus 53 do while Loops

5 . 3 do while Loops

The last type of loop is the do while loop. The reader has already read

about the while loop; this loop is quite similar. Please compare the

two program sections below:

/* first program section */

while (i > 0)

{

i = i - 1;

printf("i is %d\n", i);

/* second program section */

do

{

i = i - 1;

printf("i is %d\n", i);

} while(i > 0);

The do begins the do while loop, and the while ends the loop.

This leads to a small but significant difference in program execution. In

the first example the program checks if variable i is still greater than 0

and then executes the loop only if the conditions are met. In the second

example the test is executed only after the loop has already been

executed once. If i contains the value 0, the while loop is skipped,

unlike the do while loop which executes at least once.

Please notice the semicolon which must follow the while. It is often

forgotten since normal while loops don't use semicolons.

If this material is not clear without further example programs, the user

is encouraged to write some short programs (e.g., which output the

values of the variables used).

5.3.1 More Error Checking

The next section deals with error detection. Up to now it was difficult

to make mistakes, except for errors in typing. When the program sud

denly reports errors, there's no need to panic. Study the messages the C

compiler returns. You may have to do a little thinking to detect cleverly

hidden errors.

49

5. Lo o p s Amiga C for Beginners

Find the Below is a new program. Based on what you know so far you should be

errors able to determine where the errors are hidden, and which lines could

cause problems. The listing contains errors which result in a long series

of error messages. Try to find the hidden errors on your own first. Fix

these errors, then try compiling the source code to see what you missed.

We've included the solution directly after the listing. The program

should add all numbers from 1 to 100 and display the subtotals and the

final total on the screen.

main ();

{

printf("I add all numbers from 1 to 100/n");

i = 1;

do

printf("Subtotal for %d. value: %d/n", i, sum);

sum = sum + 1;

i=i+l;

while(i < 100)

printf("Sum of all numbers to 100 is %d/n", sum);

Did you find all the errors? You should have found most of them, since

the program is almost completely wrong! Even if you found no errors,

you can follow the remaining material without problems.

Let's start with the first line which contains an error (of course). The

semicolon following main shouldn't be there. The missing void only

results in a warning, not an error. The next line with the brace is correct

(an exception in this program). The compiler accepts the first print f

function without problems. It doesn't contain a syntax error. The line

would even be right if you wanted to display the slash (J) and an n. The

slash (/) should have been a backslash (\). To be consistent, this error

occurred in all the print f functions in this program.

The assignment i = 1; is correct. The do while loop, which should

execute the following three lines, has no braces (the braces make the

three lines into a statement block). The semicolon is also missing after

the while (K100) line.

Within the loop, the values for i and sum should be displayed. Except

for the error with the escape sequence \n everything is correct here.

Finally the program increments the contents of sum and i are incre

mented. Trouble is, the sum variable was never defined. The C com

piler doesn't know what is meant by i and sum. A line must be added

before the print f function.

int sum, i;

Before or after i = 1;, a sum = 0; must be added. After these changes

the C compiler is happy but the program will not display the right

output. There are still two logical errors in the program. The first

50

Abacus 53 do while Loops

occurs as the subtotal is displayed. The value of sum is displayed before
it has been calculated. The line sum = sum + i; must be placed before

the line with:

printf("Subtotal for %d. value: %d\n", i, sum);

The while test remains which terminates the program after the num

ber 99. The change is simple:

} while(i <= 100) ;

The error free version of the program appears below:

/* errorfree.c 5.3.1 */

void main()

{

int sum, i;

printf("I add all numbers from 1 to 100\n");

sum = 0;

i = 1;

do

{

sum = sum + i;

printf("Subtotal for %d. value: %d\n", i, sum);

i = i + 1;

} while(i <= 100)

printf("Sum of all numbers to 100 is %d\n", sum);

51

5. Loops Amiga C for Beginners

5.4 AND and OR

AND

Up to this point, only one exit condition can be checked in your loop.

This changes with the introduction of the && and I I operators. The <l>

key can be found on the right side of the keyboard above the <Return>

key. The & & represents the logical and and the I I the logical OR.

Why these operators are called logical will be revealed later since other

logical operators also exist in C. From BASIC the commands and and

OR are familiar and they are the same as the operators in C.

Connecting two conditions with AND:

while(i <= 10 && i >= 5)

OR

Negation

The loop is now executed when

i is less than or equal to 10.

i is greater than or equal to 5.

If one of the two criteria is not met (e.g. i = 4), the entire condition is

false and therefore not satisfied. Only if both tests are true can the loop

be executed.

OR is used as it is in daily conversation. If one of the two conditions is

true, the entire expression is true. The next example assumes that a

character variable should be tested for a certain content. Since the logi

cal connections can be used with other conditional tests, they can be

used together with if:

if (operator == ' + ' I I operator == ','

I I operator == '/')

printf("The operator is valid!\n");

I| operator

Four tests were made, of which only one must be true. If several tests

can be positive, this is no problem since only one true condition is

sufficient That the if statement could be written in two lines should

be nothing new. Remember that the formatting of the C listing is of no

interest to the C compiler.

There is another operator to be discussed. This is the negation operator

!, mentioned as a part of the inequality operator ! =. With this character

all tests and returns can be made into the opposite. If a test should be

made to determine if a character is not an arithmetic operator, the fol

lowing test can be devised:

52

Abacus 5.4 AND and O R

if(!(operator == •+' II operator == •.• || operator ==

•*' || operator == •/*))

printf(MNot a valid Operator!\n");

All tests are made within the parentheses. If the expression inside the

parentheses is true, a valid character is present, the negation operator

goes into action. It simply reverses the matter. From the true test it

makes a false one so that die printf command is not executed. This

is similar to the false test result within the parentheses, when none of

the signs + - * / are stored in the variable. In this case the ! operator

makes it a true test. That is the same procedure as inserting a not into

a sentence. In everyday English double negatives can be used in one

sentence, but not many people will understand it.

53

Strings

Abacus 6. Strings

6. Strings

You've entered strings and displayed them on the screen in previous

chapters. What else can you do with them? The following code shows

string variable definition:

char name[number_of_fields];

Strings consist of groups of individual characters of type char. The

above variable definition tells the compiler the maximum number of

characters the string can have. If you want to process a single character

belonging to the string, you can't just call the variable—you'll get the

entire string. In addition, you must know the exact location in the

string at which you can find the specific character. You'd enter the

number of the character in brackets, just as you did in the definition.

Let's take the first character in a string. This first character appears in

the first position of the string, and is assigned position 0 (computers

always start counting with 0). All locations then shift by one. The

second character can be reached using the value 2, due to the index,

which acts as a position indicator. Every position contains a character.

All characters are arranged sequentially in a large or small string.

6.1 Backtracking

Let's write a program which displays the text backwards on the screen.

Before starting, you must assume that a string can be any length. The

string will always end with the value 0 (null). The last character of the

string must be processed first if you want the text displayed backwards.

The program needs a small for loop to find the last character of the

string (0):

char input[81];

int index;

for(index = 0, input[index] != 0; index = index + 1)

The loop body (the statements executed during every pass through the

loop) is empty. A single semicolon follows the for loop. Since a

block of statements follow every loop, this semicolon ends a block that

57

6. Strings Amiga C for Beginners

does nothing. This is the empty statement. The data in parentheses
perform all the required operations. First the index is set to 0. Then the

test follows which determines whether a character is not equal to 0. If

the condition is satisfied, the index is incremented by one. The last

element of the string contains a zero and the loop ends. The result in

index is the length of the string. The last character of the string is

located one position before the null value. Therefore the index variable

must be reduced by one before being used. The index counts down to

zero one step at a time and the program displays a character at every

step.

do

{

index = index - 1;

printf("%c", input[index];

} while(index > 0);

You now have the information you need to write the entire program.

One other item before you enter and compile this program: If you have

the Aztec C compiler, this program will not compile using the +L

(longwords) option. Omit this option when compiling this program

with Aztec C. Here's the source code:

/* backwards.c 6.1 */

void main()

{

char input[81];

int index;

printf("Please input some text!\n");

scanf("Is", input); /* Strings do not require & */

for(index = 0; input[index] !=0; index = index + 1)

; /* Search for End mark! */

printf("Your input >%s< has %d characters\n", input,

index);

do

index = index - 1;

printf("%c", input[index]);

} while(index > 0);

printf ("\n\n"); /*Blank line before Prompt */

}

Enter a string of characters, but do not include any spaces. The for

loop calculated the length of the input string and then the do while

loop printed it out backwards. Former BASIC programmers may

remember the len function. In C, the user can easily create a function

or routine to do this.

58

7.

Calculating in C

Abacus 7. Calculating in C

7. Calculating in C

Modulo

operator

Precedence

You have already seen how fast the Amiga computes; addition (+), sub

traction (-), multiplication (*) and division (/) are familiar to you.

The modulo operator (%) performs another mathematical operation—

modulo division, which calculates the remainder of an integer division.

The result is assigned to a variable using the equal sign, where the

variable must be to the left of the assignment operator. The general

format is as follows:

Variable = operandl <> operand2

(<> represents the operator)

First the program calculates the expression to the right of the equal sign

and places the result in the variable to the left of the equal sign. Because

of this, statements such as the following are possible:

variable = variable + 1;

This expression is impossible in normal math, but poses no problem

for the computer. The computer reads the variable content, adds one and

stores the result in the same variable. Combinations of math operations

are possible as the following examples show:

number = 3 * 32

number =2+6*7

number = 5 * (180 / 3 + 9)

number = number - 1

number = number % 2;

(5 - 2)

Division and multiplication have precedence over addition and subtrac

tion. This rule is also observed by the C compiler. Therefore, the

expression 2 + 6*7 needs no parentheses to achieve the correct result

The modulo operator has precedence equal to division, and therefore

precedence over subtraction and addition. Example:

5 % 3 = 2, since 5/3=1 and remainder is 2.

Simple calculations don't need to use a variable. The following pro

gram will illustrate:

void main()

{

int number;

number = 3 * 12;

printf("Result: %d\n", number);

61

7. Calculating in C Amiga C for Beginners

A variable does not have to be used in this program since the %d char
acters tell print f that it can expect an integer value. The term 3 *

12 can be passed directly to the function as a parameter. The calculation

of the result occurs before the value is passed so no variable is required.
The following program is faster and shorten

main ()

{

printf("Result: %d\n", 3 * 12);

}

An integer number can contain only a whole number, so the statement

number = 3/2 places a value of 1 in the variable number. The

correct result would have been 1.5, but the result will be rounded to the

next whole number.

Note: The number -2.25 is rounded to -2 and not -3 since -2 is larger than -3.

Lattice C rounds numbers toward 0, but this can differ with other C

compilers. Only a test run helps to explain what happens with -5 / 2,

in which either -2 (toward zero) or -3 (rounded) appears as a result

62

8.

Variables

Abacus 8. Variables

8. Variables

The earlier chapters used variables. These are areas of memory used for

storing mathematical results, as well as different kinds of data.

Variables are subject to certain rules and regulations. They must be

assigned specific data types and unique names. As you'll see in this

chapter, there are many types, and the names can be almost anything

you want them to be.

8 .1 Variable Names

The names given to variables must follow some rules. The following is

a list which describes these rules:

1. The first character must be a letter (the underscore character LJ

counts as a letter); after the first character, any legal character can

be used.

2. Characters within variable names can be letters, numbers or under

score characters (the shifted minus sign).

3. No control characters or foreign characters allowed.

4. Variable names can be of any length, but many C language com

pilers use only the first eight characters of the variable name (the

Lattice C compiler permits up to 30 valid characters, Aztec up to

31 characters).

5. Reserved C keywords may not be used as variable names.

6. Variable names are case sensitive (i.e., the compiler sees a differ

ence between upper and lowercase).

Some examples are shown to make these rules more understandable.

Some are correct and some aren't. Can you find the bad names?

65

8. Variables

a)

b)

c)

d)
e)

0
g)
h)

i)

j)

Number 1

2_pi

first-var

Book__no__l

Book no 2

int

__flag

int_valu

number 1

secret Password

Amiga C for Beginners

The following variable names are correct: a), d), e), g), h), i) and j). It

should be noted that a) and i) are different variables since upper and

lowercase letters are differentiated, d) and e) may refer to the same

variable on some C compilers, since the names are the same for the

first eight letters. Errors would occur on some C compilers since these

variable names are longer than eight characters: c), d), e) and j). h) uses

a C keyword as a variable name, but this is permitted since the rest of it

doesn't match the keyword.

Look at examples b), c) and f)- The variable in b) starts with a number

(not allowed). A hyphen appears in c) (the hyphen is considered a

special character). Finally f) uses a variable name which is a reserved

keyword of C.

The following list shows the reserved words used in C:

auto

break

case

char

continue

default

do

double

else

entry

enum

extern

float

for

goto

if

int

long

register

return

short

sizeof

static

struct

switch

typedof

union

unsigned

void

while

66

Abacus 8.2 Data Types

8.2 Data Types

int

float

Until now three data types have been described: int, float and char

(strings).

Integer values are type int. The 16-bit int type represents whole

numbers between -32,768 and 32,767. The int type works well for

general use. The Amiga libraries use 32-bit integers, but for portability

of your source code to other computers you may want to use 16-bit

integers.

Floating point numbers are assigned the data type float. A float

variable can store extremely large or small numbers, and numbers with

decimal places. In this type of variable the values can be presented in

scientific notation. Very small numbers such as 0.00000015 can be

written as 15E-7 (the use of E is an abbreviation). 15E-7 is scientific

notation for:

double

15 * 10

Numbers with as many as 15 places can be written. The "e" which

separates the exponent (here -7) from the mantissa (in this case 15), can

be written in upper or lowercase letters. In both cases that compiler will

translate it without problems.

Even the float variable type has its limitations. The largest number

permitted \s 1038. Any number less than 10'38 converts to a 0. The
value 1040 when written out is a number which has a decimal point, 39

zeros and a one, in that order. The computer views it as 0. Floating

point variables remain accurate up to seven decimal places. Try the

math3.c calculation program from Section 4.5.5; enter the number

16.8. The program converts the number to 16.799999.

If you need more accuracy, use the double variable type. Variables of

type double are about twice as accurate (11-14 decimal places).

However, double variables require more memory.

There are times when float and double variable types don't have

the accuracy of integer values. On the other hand, rounding numbers off

can cause incorrect results in multiple calculations. The result becomes

more inaccurate with every additional operation.

Avoid comparing a fixed value during a test. For example:

if(value == 1.0) /* Not like this */

67

8. Variables Amiga C for Beginners

Note:

char

long

short

It would be better to test if it is larger or smaller so that the value tested

is not skipped through a rounding error. Otherwise an infinite loop
could result

Special conditions must be considered when using floating point num

bers. To determine if a constant without fractions following the decimal
point (for example 2) is a floating point number, another digit must be

added after the decimal point. This error occurs during the printf call
in the following example:

printf("Result of 2 / 3 = %f.\n", 2/3);

The example computes 2/3 as an integer value and passes 0 as a result

The function waits for a floating point number which was indicated by
% f. The example below is the correct version:

printf("Result of 2 / 3 = %f.\n", 2.0/3.0);

You may crash the system as well as get the wrong answer with the

example above. If you want to try the two examples above, save any

important data you might have on the RAM disk to a floppy disk
before continuing.

Other data types can be derived from the basic types int and float.

For example, the type char which can accept a character is really a

variable for whole numbers between -128 and 127. This small relative
of int represents the ASCII values of the characters.

The long type is another type derived from int. Long accepts inte

gers between -2,147,483,648 and 2,147,483,647. If you must define

constants as long values, place an 1 or L behind the floating point

number instead of .0. For example:

1L

The C keywords unsigned and short can be used as adjectives to

the basic types. These specify integer values. The combinations of
unsigned and short cannot be used with float values.

unsigned defines an integer number which has no sign; short

accepts only 16-bit numbers.

If the indication of int or float is missing, C defaults to int. The
following combinations are valid:

unsigned = unsigned int

short = short int = (Compiler dependent) char

long = long int

unsigned long int

long float = double

68

Abacus 8.2 Data Types

The advantage of unsigned is limited to positive values, and extends

the limit of the normal type. For example, unsigned int accepts

numbers between 0 and 65,535. The normal int type only permits

positive values up to 32,767. Unsigned numbers also allow operations

which cannot be performed with other types. More on this later.

The value assignment to char variables proceeds in the following

manner, as in int values:

char character;

character = 65;

char stores characters. This is done with the following assignment

which leads to the same result as the line above.

character = 'a';

The combination of integer values with the attributes short, long

and unsigned return different results from one compiler to another.

For this reason no general value or memory requirement can be pro

vided. The following relationship exists between the length of variables

used by all C compilers:

char <= short <= int <= long

The table below describes the length of the different numeric variable

types:

char

short

int

long

Lattice

1 byte

2 bytes

4 bytes

4 bytes

Aztec

1 byte

2 bytes

2 bytes

4 bytes

8. Variables Amiga C for Beginners

8 . 3 Type Conversion

Type conversions sometimes become necessary during computation

because of the use of various data types. The following rules govern
type conversion:

1. char and short always convert to int; float always con
verts to double.

2. If after these conversions one of the operators should have the type

double, the second operand and the result also convert to

double.

3. If a data type is now long, all participating values also convert
to long.

4. If an unsigned value exists among the operands, all values

convert to unsigned.

70

Abacus 8.4 The cast Operator

8.4 The cast Operator

Constants, function values and variables can be converted into a specific

data type. The parameter to be converted is placed in parentheses and is

preceded by a data type in parentheses. This is the cast operator. The

parentheses are not always required, but are recommended because of the

high precedence of the type conversion. For example:

long number;

number = 123 / (long)('a1 / 1.5);

In a general format, the expression is:

(type) Parameter

Better format*

(type)(Parameter)

Any data type can be substituted for the word type.

71

s

9.

ntf

can

and

f

Abacus 9. printf and scanf

printf and scanf

The most powerful output function in C is printf. You've seen a

little of what it can do with screen output using examples printed earlier

in this book.

The scanf function gives the user the option of input to the com

puter. You have had a chance to work with this function as well.

Both scanf and printf use a number of format specifications and

escape sequences for controlling the format and type of input and

output.

9 .1 More Escape Sequences

You'll remember reading about the \n escape sequence in Chapter 3.

The following list shows other escape sequences, which you'll find

useful for controlling text output.

\t places output at the next tab stop (all 8 positions)

\b moves the current write position one place to the left (backspace)

\ r inserts carriage return at first position of the current line

\ n inserts carriage return and linefeed

\f inserts form feed

\ \ prints the backslash character (\)

\" prints quotation mark within the string

\' prints apostrophe within the string

\nn prints any character with the octal value nn

Note: An escape sequence uses two characters in the text, but represents only

one character. Keep this in mind when calculating memory usage.

The following program uses the \t escape sequence for tab stops:

main ()

{

printf(An\tExample,\ttwo\tTabs\tspacing")/

printf("\tspacing\tText!\n");

}

For our next assignment we wish to display the following text:

Use the control characters : "\n", "\t"!

75

9. PRINTF AND SCANF AMIGA C FOR BEGINNERS

It is not possible simply to place the text in quotation marks since they
already occur in the texL Escape sequences are necessary. The program

prints the quotation mark using the \" escape sequence, the backslash

with \ \. The necessary printf call appears as follows:

printf("Use the Control Characters: \"\\n\",\"\\t\"!")/

Here is an example program:

main()

{

printf("Small ");

printf("\"T est progra m")/

printf("\"\n\nWhere\nis the\ntext now?\n");

printf("\tEverything OK?\n");

}

The output is:

Small "Test program"

Where

is the

text now?

Everything OK?

76

Abacus 9.2 Format Specification

9 . 2 Format Specification

Strings can accommodate format specifications as well as text and
escape sequences. Every format specification has a corresponding vari

able attached to the string and separated from the string by a comma.

The format specifications always start with a percent character (%) and

can be used in the print f and scanf functions.

A difference from the format string of the printf function is impor

tant: The scanf function reads in data. For this reason the escape

sequences \n (linefeed), \t (tab) and space divide the input into sepa

rate fields.

Here is a table with format specifications for printf and scanf:

Format specification Data type

%c char (one character)

%d integer value

%s string

%f float and double number (for printf

output with format [-]xxx.xxxxxx)

% o integer value as octal number (base 8)

%x integer value as hex number (base 16)

%u unsigned integer value (printf only)

%e float or double output (printf only) in

scientific notation [-]x.xxxxxxE[+-]xx: affects

scanf as in %f

%g shortest form of %e and %f (printf only)

%h short (scanf only)

% % represents the % character (printf only)

Additions The integer elements d, u, o and x can be preceded by the letter 1 to

indicate that long values instead of integers are used. Long values are

integers of double length. An 1 preceding floating point numbers con

taining e, f and g indicates that double values are expected. The field

width of the input or output of a field can also be indicated with a

format element. After the percent sign, the size of the individual field

can be indicated. If the first character of this number is a minus sign,

the text is left justified. Spaces fill the remaining positions in the field.

Without indication of the field width, the standard setting for %f in the

printf function is %.6f. The output therefore always has six decimal

places and any field size.

printf and elements for float values:

%<min>.<fraction>F

77

9. PRINTF AND SCANF AMIGA C FOR BEGINNERS

<min> indicates the minimum width of the output field.

<fraction> is the maximum number of numbers after the decimal

point. F is one of the format specifications e, f or g. The indication of
0 for fractional positions truncates all numbers after the decimal point
(e.g., %.0f). For example:

printf("Number %5.21f\n", 12.345);

creates the output

Number 12.35

In this case the program expects a double number (If) at least 5

characters wide, but with only 2 decimal places. Since rounding is per
formed to the second number after the decimal point, the number 5

appears at the last position. If less numbers are available than the num

ber indicated for positions after the decimal point, zeros are attached.

printf and elements for integers:

%<Min>F

<Min> indicates the minimum width of the output field. F represents

one of the format instructions d, u, o or x. Example:

printf(">%4d<", 12) /

Output:

printf and %s:

%<Min><real>s

<Min> indicates the minimum width of the output field, while

<real> describes the actual number of characters displayed. The fol

lowing examples show the effects on the string "Sampletext":

Format

>%6s<

>%-6s

>%12s

>%-12

>%12.

>%-12

>%. 6s

Specification

<

<

s<

6s<

.6s<

<

Output

>Sampletext<

>Sampletext<

> Sampletext<

>Sampletext <

> Sample<

>Sample <

>Sample<

The scanf function is much simpler. Only one number exists which

indicates the maximum input length possible. As soon as a character no

longer fits into the fonnat of a data type, or a control or blank character

appears, the input for the current field ends. This means that during

78

Abacus 9.2 Format Specification

input only characters representing an integer number are used. If other

characters are input, the integer number input ends. In addition '*' can

be used which precedes the format instruction for data type and sup

presses the assignment. The field is simply skipped in this case.

int i;

float f;

char string[50];

scanf(%3d %f %*d %s", &i, &f, string);

Input: 1234567.89 12345all clear?

Value i contains 123, since the field should have 3 places, and only numbers

assignment can appear. The value 4567.89 is in f, because the space after "9" pre

vents additional reading of input. The same happens after the storage of

"all" in the string!]. The number sequence "12345", which normally

is assigned to an integer value, was skipped because of the asterisk.

This means that with the scanf no spaces can be read. This makes

scanf less than ideal for string input.

If the reader can't remember all of this material, don't worry. It is used

intensively during the course of the format specifications.

9. PRINTF ANDSCANF AMIGA C FOR BEGINNERS

9 . 3 Octal and Hexadecimal

Two number systems are used often in C. To discuss these systems,

we'll start by looking at the decimal system. Let's take a decimal num

ber and dissect it into its component parts:

5279

5,000 + 200 +70 +9

5 * 1,000 + 2 * 100 +7* 10 +9*1

5 * 103 + 2 * 102 + 7 * 101 + 9 * 10°

This makes the origin of the term decimal = 10 in our number system

clear. Every number position has a certain value. There are ones, tens,

hundreds, etc. The value of these positions is multiplied with the num

ber at that location. For example 7 * 10. The factors 1,10,100,1,000

can be traced again to the base 10. The exponent in base 10 depends on

the position of the digit in the number. The first position corresponds

to exponent 0, the second exponent 1, the third 2 and so on.

Numbers between 0 to 9 can be used, which makes ten different num

bers available. This is the reason the system is called base 10.

Octal system If you used eight different numbers (0-7) instead of ten, the base in the
calculations would be 8. This base 8 system is better known as the

octal system. The following example shows the process of calculation a

number in the octal system. To differentiate the different number sys

tems, the base number appears in subscript or in parentheses following
the number:

6204
8

= 6*8 +2*82 +0*81 +4*8°
= 6 * 512 +2* 64 +0*8 +4*1

= 3,072 +128 +0 +4

= 3,204
10

This brings us back to the format specifications. To write a variable in
octal on the screen, use %o.

printf("3204 dec. = %o octal\n",3204);

80

Abacus 93 Octal and Hexadecimal

Hexadecimal The format specification %x converts a number into the hexadecimal

system. As the name suggests, hexadecimal is base 16. This produces a

small problem. The decimal system uses ten numbers (0-9), but hex

adecimal notation needs 16. Hex notation uses the first six letters of the

alphabet as the top six numbers. The letter A represents the number 10;

B has the value 11; C 12; D 13; E 14 and F 15. The following hexadec

imal number can be converted as follows:

5DA9
16

= 5

= 5

= 20

= 23

* 16

* 4,096

,480

,977

+ 13

+ 13

+ 3,

*162
* 256

328

+ 10 *

+ 10 *

+ 160

161
16

+ 9 *

+ 9 *

+ 9

16°
1

10

Hexadecimal and octal numbers can be used in C exactly like decimal

numbers. Hex numbers use the format specification Ox (or Ox) to indi

cate that they are base 16. For the octal system only a leading zero is

required. Some examples:

0X5DA9

OxFFFF

0612

0x5da9

0x123

0815

0X5da9

06543

One of the above combinations is wrong. Examine the numbers again

carefully. The error is hidden in the innocent number combination

0815. With the leading zero it should represent an octal number. There

is no digit with the value 8 in the octal system.

The response depends on the compiler. The compiler can issue a mes

sage that a wrong number was entered, or accept it as a decimal number.

The Lattice C compiler converts the number from octal into decimal

notation. This produces something entirely different, namely 52510

which is equal to 10158

The user would soon get tired of entering every number for conversion.

A good C implementation does that conversion for you.

To write a program to convert numbers from various bases into the dec

imal system, the procedure must differ slightly. Nothing is simpler

than constructing a loop to save typing time. Starting with the last

position (9 in the last example), multiply it with the value of the posi

tion. The value at the last position is then 9*1 = 9. The next

position has the value 16, and the variable containing this value with

the base (16). The next position is therefore 10*16 = 160.

81

9. PRINTF AND SCANF AMIGA C FOR BEGINNERS

All computed intermediate results are added in a separate sum. This is

the same path as the manual procedure with the exception that every

step again is divided into smaller steps. The user doesn't have to under

stand how the calculation works, since you are trying to learn C and not

mathematics.

9.3.1 Conversion Program

Analyze the following listing on the basis of the explanations already

provided. If it isn't clear, a few printf functions inserted in the

program could print out the current value of one or more variables. This

makes the most important variables visible.

/* base-con.c 9.3.1 */

void main ()

{

long base, collect, value;

int index, help;

char test[100];

printf("Please input Base of numbering system!\n");

scanf("%ld", &base);

printf("Input number for conversion in base %ld

system!\n", base);

scanf("%80s", test);

collect = 0;

value =1;

index = strlen(test) - 1; /*New Function */

while(index >= 0)

{

help = test[index];

if (help >= 'a1) /* lowercase letter */

help = help - 'a1 + 10;

else

if(help >= 'A1) /* uppercase letter */

help = help - 'A1 + 10;

else /* Probably a number */

help = help - '01;

collect = collect + value * help;

index = index - 1;

value = value * base;

}

printf("%s(%ld) = %ld(10)\n", test, base, collect);

}

The program uses the long data type a lot. This can also be noted in

the format specification %ld for the input and output of these variables.

The scanf function which reads a number as a string has something

new. After the percent sign appears an 80, followed by the format

specification %s for the string. This value between the percent sign and

82

Abacus 93 Octal and Hexadecimal

the format assignment tells the function the maximum number of
characters permitted. In this case the string cannot be longer than 80
characters (+ 1 end of line = 81). In reality this does not work out quite
that way. As a maximum only 80 characters are processed, but the user

can write several lines. Only die first 80 characters are used.

The indication of a maximum number of places is also permitted for

other data types (see the example in scanf). A new function st rlen

will be introduced next. It delivers the characters in a string. The con

cluding zero byte is not included. The result is assigned with an equal

sign. The only parameter required by strlen is the string to be inves

tigated. One of the examples already calculated the length of the string.

The strlen function is therefore not very large.

In the following while loop the string which was input is processed.

To avoid the use of the expression test [index] for every calcula

tion, the character at that location is copied into the variable help. The

user should have noticed that help was defined as an integer variable.

Yet an attempt is made to store a character at that location. Computers

view characters as numbers. Every letter has a numeric code, just like a

number. The char variables are nothing more than small integer

memory areas which, depending on the compiler, accept a value

between -128 to 127, or from 0 to 255. These peculiarities of calcu

lating characters with numbers and their codes will be discussed later.

83

9. PRINTF AND SCANF AMIGA C FOR BEGINNERS

9.4 Character Codes

After the character was made available in help, it is tested to see

whether it was an upper or lowercase letter. These can be used as auxil

iary numbers in a system whose base is larger than 10. In the hexadec

imal system the letters A-F are used. When it has been determined what

type of character (uppercase, lowercase or number) is available, its

actual value is calculated. 9 is not equal to 9 here. Confused? You

remember how a character was assigned to the char variable:

character = '9';

The 9 is a character which represents the number nine. This character

also has a special ASCII character code. The ASCII code for the number

9 is the value 57. The assignment that follows gives the same result as
the example above:

character = 57;

Calculation with the variable requires the value 9 and not the stored

code 57. First subtract 48 from 57 (48 is the character code for zero (0)).

This is practical since all numbers are in sequential order with the

following codes.

Code Character

48

49

50

51

0

1

2

3

57 9

The letters of the alphabet also follow this order. The table starts with

A (code 65), B (code 66), etc. The lowercase letters are in a separate list

The first value there is 97 for the character a. Let's look at a program

section:

char test

test = 'B1;

test = test - 'A1 + 10;

What is contained in the variable test after the execution of this

sequence? An equivalent part appears in the conversion program. The

right result is 11. In the last line, test contains the letter B with the

value 66. Subtracting A from this results in 1; plus 10 is 11. That is

the value that the letter B represents in the hexadecimal system.

84

Abacus 9.4 Character Codes

The following line converts an uppercase letter into a lowercase letter:

test = test - 'A1 + 'a1;

That is much more readable than:

test = test - 65 + 97;

or

test = test + 32;

The codes are nearly identical on almost all computers thanks to the

ASCII standard. ASCII assigns a specific code to each character.

To obtain an overview of the ASCII codes, the program below displays

every code and its character (32-127,160-255). The codes 0-31 and 128-

159 were left out because they either have special functions (e.g., 13 is

equal to \n) or do not produce anything on the screen.

/* ASCII.c 9.4*/

main ()

{

int i;

printf ("\n\n");

for(i = 32; i <=127; i = i + 1)

printf("\t%-3d %c", i, i) ;

for(i = 160; i <= 255; i = i ,- 1)

printf<"%-3d %c \t", i, i);

printf("\n");

}

These are all of the characters that can be printed with the printf

function.

9.4.1 About the Backslash

Output using a character code displays a character which cannot be

accessed with the keyboard or with the backslash. The backslash must

precede the code. The compiler replaces the combination of backslash

and the individual digits of the code with a single character. One hitch—

the number must be entered in octal notation instead of decimal nota

tion. The following command displays the ± character (character code

177):

printf("\261");

The number 177 decimal corresponds to 261 octal. The conversion can

be avoided using a format specification as shown below:

85

9. PRINTF ANDSCANF AMIGA C FOR BEGINNERS

printf("%c", 177);

The character is not used directly in the string, but goes directly to the

printf function in the form of a character code, with the %c.

printf("The result is \2611.\n");

printf("The result is %cl.\n", 177);

The control character %c permits the output of a single character by

indicating the character code, even if an integer value was passed.

9.4.2 Going the Other Direction

The following program converts decimal numbers into octal numbers.

It is almost the reverse of the previous conversion program which con

verted numbers into the decimal system.

/* dec-conv.c 9.4.2 */

void main()

{

long base, test, help, rest;

int index;

char result[260] ;

printf("Please input number Base!\n");

scanf("%ld", &base);

printf("Input number in decimal system!");

scanf("%ld", &test);

index =0;

for (rest = test; rest > 0; rest = rest / base)

{

help = rest % base; /* Remainder of Division */

if(help > 9) /* Letter to substitute */

result[index] = help + 'A1 - 10;

else

result[index] = help + »0';

index = index + 1;

}

printf("%ld(10) = ", test);

index = index - 1; /* last entry is still unused */

while(index >= 0)

{

printf("%c", result[index]);

index = index - 1;

}

printf("(%ld)\n", base);

86

10.

The Preprocessor

Abacus 10. The Preprocessor

10. The Preprocessor

The preprocessor is a part of the compiler program which first processes

the source code. It accepts source code text as written. There are some

special directives which force the preprocessor to make changes in the

program source code text. After the preprocessor has done its work, the

part of the compiler responsible for the translation uses this "processed"

version of the source code text. This version can appear quite different

from the listing.

To differentiate the preprocessor directives from other C statements and

functions, there are two important guidelines:

1.) All directives begin with the # character

2.) All directives begin in the first column

10.1 #de£ine

Let's first consider the most important and most often used preprocessor

directive: #define. #define replaces a certain character string with

another string. The preprocessor exchanges the two text strings. Let's

think about what the text replacement could be used for.

Assume that a constant is used during calculations. For example during

the calculation of a sales tax, a certain percentage (4% periiaps) appears

regularly. If this percentage is used 10 to 20 times in a program and the

sales tax percentage changes, a change in the program can become diffi

cult. It can also lead to errors. Perhaps a wrong value would be returned

if the number 4 appeared elsewhere in the program. An entry can be

missed during the changes. It is simpler to use the #define directive.

An application would appear as follows:

fdefine TAX 4

Up to this line the text TAX can be used which is then replaced by the

preprocessor with the text 4. Also the following line could be used:

printf("TAX-rate %d", TAX);

The preprocessor passes to the compiler the following substitute line:

printf("TAX-rate %d", 4);

89

10. The Preprocessor Amiga C for Beginners

Nothing has changed within the parentheses. This is good since it

would be impossible to output a string such as tax on the screen.

Nothing inside the quotation marks can be touched by the preprocessor.

Defines are always used in a large program. The following program

explains the usage of #defines. What the program produces can be

seen readily in the listing:

/* define.c 10 */

#define BEGIN 1

#define END 100

#define STEPS 2

void main()

int i;

printf("\n");

for(i = BEGIN;

printf("%5d",

for(i = END; i

printf("%5d",

printf("\n");

i <= END; i

i);

>= BEGIN; i

i);

= i + STEPS)

= i - STEPS)

Even in a small program the use of #define directives can enhance

the readability of the program. An example is marking the end of a

string with a null byte. This null byte is also called end of string. With

the abbreviation EOS, it's an often used #define. The definition

appears as follows:

#define EOS '\0'

That is more correct than simply indicating a 0. The entries of a string

are considered individual characters. It is therefore good C style to use

data type assignments. The single quote mark informs the compiler that

a single character is used. The backslash followed by the octal value

indicates the character code (see Section 9.3).

The number zero in the octal system, the decimal and other number

systems is always zero. A conversion in this case isn't difficult. Using

the character with the code zero, or the code directly (zero) in the assign

ment is of no consequence. In future programs which use strings, the

definition of EOS should appear in one of the first lines.

If the reader thinks that the subject of #define is now finished, he is

wrong. The many capabilities which are provided with the #define

directive, will be discussed in more detail in a separate chapter.

90

Abacus 10.2 #include

10.2 #include

Another important preprocessor directive is #include. A file can be

combined with the source file during compilation with this directive.

This is similar to appending a file to the current file (<EscxIF> from

ed) and then saving the appended file. The compiler does not

differentiate where the definitions originated, because for the compiler

only one file exists. This preprocessor directive is ideally suited to

include multiple #define directives into the program. Assume that

the following #de fines were stored in a file with the name

def__new.h:

#define EOS «\0'

tdefine MAXLEN 81

#define EOF -1

If you have a source code text that uses these #define directives, you

don't have to re-enter them. All you have to do is #include the file

def_new.h:

#include "def_new.h"

The file extension of .H stands for Header file. This ensures that all

#define directives are available throughout the listing. It is not a

requirement, but should be done anyway. Although this preprocessor

directive can appear at any place in a file, it is better to include it at the

head of the source code.

The filename is written between quotation marks. In this case, the

compiler searches in the directory where the source code is located. You

can also enter the include file within greater than and less than

characters:

#include <def_new.h>

s t di o.h The compiler assumes that the file is now located in a subdirectory in

which all .h files can be found. The path to this subdirectory passes to

the compiler during the start. There is a series of these files which are

waiting to be used. One of the most popular of these files can be found

under the name stdio.h. This stands for STanDard Input Output

Header file. In Lattice C, it is in the include directory. This file can

be examined using the ed editor.

91

11.

Abbreviations

Abacus 11. Abbreviations

11. Abbreviations

We said earlier that C is an ideal language for lazy people who don't

like to type. This is still true, since C lets you compress many

functions into smaller packages using abbreviations. This chapter

describes the art of abbreviating code in C.

C abbreviations help save typing time. Let's start with the simplest

abbreviations—those used in arithmetic operations. The equation below

may look fairly familiar to you. Believe it or not, this can be converted

to a shortened form of the same equation:

number = number * 4;

What could be saved here? The variable number appears twice. This

doesn't have to be so. The C language allows you to abbreviate the

equation to the point where you only need to use the variable number

once instead of twice:

number *= 4;

Every time you use the same variable during calculation and for storing

the result of the equation, you can use this short form instead. The

multiplier gets moved to the left side of the equal sign. The multiple of

the variable number remains to the right of the equal sign.

The above abbreviation becomes most effective when using long vari

able names. In addition, it helps decrease the number of typing errors

(the less you type, the fewer mistakes you make). For example, look at

the following abbreviation:

the_u ser_input[index] += '0';

The above abbreviation corresponds to:

the_user_input [index] = the_user_input [index] + l0I;

Another advantage is the speed difference between the long version of

the code and the abbreviated version of the code. The execution speed of

each compiled code is different; the abbreviated version executes in less

time than the original. The compiler knows what values are used and

where to store the result. This can save a lot of unnecessary calculation

time.

95

11. Abbreviations Amiga C for Beginners

Implementing operator abbreviations is fairly easy to do. All arithmetic

operators can be changed into abbreviated form as seen in the following

list:

/=

%=

etc.

Consider the following expression. Can you see any possibilities for

abbreviating the code?

value = value * (5 + number);

The line is already written in such a way that the operator to be abbre

viated becomes immediately obvious. It is the multiplication operator.

So, if you change the equation into abbreviated form, the source code

looks like this:

value *= (5 + number);

Since usually the right side of the equal side is calculated first, no

parentheses are required. Therefore, the final version of the short equa

tion looks like this:

value *= 5 + number;

Now for the same thing in reverse. The operator and the named variable

can be attached to the terms, using parentheses. The following equation

also has potential for becoming an abbreviated version:

var *= number1 - number2;

corresponds to:

var = (number1 - number2) * var;

96

Abacus 11.1 Increment and Decrement

11.1 Increment and Decrement

Shorthand notation can be carried a step beyond arithmetic operators.

The operators ++ and — increment and decrement a variable's contents

by one. The ++ operator increments the specified variable by one, and

is therefore called the increment operator. The — operator (called the

decrement operator) acts in the opposite manner and decrements

(decreases) the specified variable by one. These operators appear as

follows:

main ()

int i; "■■'

i = 1/

while(i++ < 100)

printf("%d ", i);

This short program is deceptive. Up to the while loop everything is

clear. The i variable contains the value 0. Now comes the expression:

i++ < 100

First the computer sees if i is less than 100. Then it increments the

value of i by 1, regardless of the results of the test. This corresponds

to the following if/else/while:

if(i < 100)

condition =1/

else

condition = 0;

i = i + 1;

while(condition)

Here all four listed directives are executed within the parentheses. That

makes the increment operator very powerful.

It gets better. The increment and decrement operators can be placed

before or after the variable, to serve different purposes. The location is

important, as you'll see. A simple example will illustrate:

97

11. Abbreviations Amiga C for Beginners

Assuming that j contains the value 3, i also contains 3. Then the

value of j is incremented by one to 4. In contrast, the next line places

the operator on the other side of the variable:

With the same assumptions, the content of j is incremented to 4 and

then the variable i is assigned that value. Both variables now contain

4.

Remember, if you precede a variable with an increment or decrement

operator, the content of the variable changes before it is used for addi

tional tests. If the operator follows the variable, first the current value

is used and then the variable is incremented or decremented. It is impor

tant to remember this small but decisive difference. Examine the output

of the two programs on the screen. The first number which appears

there is two. That is clear since the starting value of i was one which

was already incremented inside the loop head with while. For this

reason, the i at the time the print f occurred already had the content

2.

These operators help to write fast and compact programs. They are even

more efficient than the abbreviations using the equal signs.

98

Abacus 11.2 Initialization, Definition, Declaration

11.2 Initialization, Definition,

Declaration

Initialization These three concepts are very important for the C programmer and
should not be confused. Let's begin with initialization. It describes the

first assignment of a value to a variable. After this point you know

what the variable contains. Before the variable can be initialized, it
must be defined or declared. Definition takes forms similar to the fol

lowing:

int index;

char string[80]/

When the compiler reaches this point, it knows the variables and sets

aside the necessary memory area for them. An integer value generally
requires two bytes. The variable string requires 80 bytes since every
char element requires one byte. Functions can also be defined. Up to

now only the definition of main was mentioned. If you declare a

function or variable, this only tells the program that such a variable or

function was defined somewhere. For this reason no memory is allo

cated.

Definition Here's a tip for saving lines of code. Variables can be initialized during

definition. That saves one program line:

int index = 0;

Any expression can be assigned to the newly defined variable. The

string length which was determined with the strlen function can be

used during initialization as follows:

int end = strlen(string) - 1;

Of course st ring must have been previously defined.

Some coding can seem exaggerated, but there is no limit to your imag

ination.

long middle = 4*((strlen(stringl)+l)/2+1)-strlen(string2)/3;

Declaration If you write a large program stored in several modules (files), a variable

used by all modules only requires a single memory allocation. The

definition is in one file and all the other files only contain the corre

sponding declaration. Declaration is made with the C word extern.

The compiler knows that the memory was reserved externally through

another file. Otherwise the linker stops linking. Example:

99

11. Abbreviations Amiga C for Beginners

extern char pass_word[80];

extern int error_nr;

The example above shows that the data type must also be specified.
This provides all the information necessary to the compiler about the
variable. The function declaration is similar.

extern long atol();

If you define the function in the same file, the extern can be omitted.

The declaration is still required since the compiler knows the function

names and their data types only at the end of the file.

100

Abacus 113 Multiple Assignments and Directive Value in c

11.3 Multiple Assignments and

Directive Value in C

Source code can also be abbreviated by using multiple assignments. If

several variables are to be assigned the same value, individual

assignments were previously required for every variable. The same

value was given for each:

begin = 0;

sum = 0;

However, the following line performs the same function:

begin = sum =0;

The assignment is from right to left. First 0 is assigned to sum and

then begin gets the content of sum which is 0. A term with more

simultaneous assignments could be enclosed in parentheses, which

would make the sequence more readable. Here's one version:

a=b=c=d=2;

This version shows added parentheses for readability:

a = (b = (c = (d = 2)));

Individually expressed, the two above lines correspond to the expres

sion:

d = 2;

c = d;

b = c;

a = b;

Multiple assignment is possible since every expression has a value (the

result of the last operation performed). For example, the value of

(d=2)2,of (index = strlen (string)) strlen (string).

Except for large initializations of variables, the value of an expression

can be used almost everywhere. It also shows who knows C well. The

shorter formulation will identify the professional.

Examples can show this better. Here are some more values for expres

sions:

(2)

(a)

(a *=

(a=(b

3)

=(a+2) -3))

2

a

a*3

a-1

101

11. Abbreviations Amiga C for Beginners

The last example must be dissected into its components to reach the
same result

(a=(b=(a+2)-3)))

(a=(b=a-l))

<a=(a-l))

(a-1)

Of course the advantages of the multiple assignment can be used during

the definition and initialization. The following line is permissible:

int start = value =0/

The variable value must be predefined and initialized (very important)
which is the case here.

102

12.

Functions

Abacus 12. Functions

12 Functions

You read in the introduction that a C program sometimes consists of

many different functions. Up to now only one has been defined (the
main function). It's time to start writing programs which contain

several functions developed by you.

Function First, the formal structure of a function definition. You must specify

structure the function name, preceded by the data type returned by the function.
The name must correspond to the usual rules for variable names.

Parentheses containing the arguments follow the name. If no such
values exist (e.g., the main function) none can be indicated. If such
arguments are expected, these variables must be declared. The values are

important since most functions get information from other functions

which are then processed. Then follow the executable commands, also

enclosed in parentheses.

Let's look again at a simple version of the main function:

main ()

The first item to be encountered according to specifications is the data

type which the function returns. Since the main function doesn't return

any values to the calling program, the data type is omitted. The word

void usually appears preceding a function that returns nothing.

Next the function name (main) is specified, followed by a pair of

parentheses. Since no values are passed to the main program, no data

appears between the parentheses. The variable declaration is also

omitted, since nothing is passed. Then follow the other executable

instructions within the braces, which up to now was the complete

executable program.

105

12. Functions Amiga C for Beginners

12.1 Functions with Arguments

The next step is to dissect the program into individual tasks. You can
write a short function for every partial task. For example, a function to
compute the square of a value requires no great mathematical training:

double square(x)

float x;

{

double q_number;

printf("The square of %f\n is ", x) ;

q_number = x * x;

return q_number;

}

The square The above routine defines a function named square which in turn
function returns a double value to the calling program. As a parameter to be

passed, a float value called x is required. At the end of the routine a
new C word appears, the return keyword. It delivers the desired result
of the specified data type to the caller and also ends the function.

It is important that no semicolon follows the function name. There
must be a semicolon after each parameter declaration. This differentiates
a function definition (without semicolon) from a function call (with
semicolon). The following line identifies that a function named square
is to be used by the main program:

double square();

main ()

{

float value = 3.0/

double result;

result = square(value)

}

The names of the parameters passed by the calling function need not be
identical to those of the called function. However the data types must be
the same. Notice the line in which the square function is declared as
a function which returns a double value.

106

Abacus 12.1 Functions with Arguments

The declaration can be omitted if integer values are returned. The same

is true for the definition of a function. If the function returns integer

values, a data type need not precede the function name. This is only

possible with data type int. All other types must be declared and

supplied with the proper data type during the definition. If one of these
data types is contradictory (perhaps because the declaration forgot a

double function) the resulting values will be wrong. While the C

language permits much freedom to the programmer, but this can cause

much trouble.

107

12. Functions Amiga C for Beginners

12.2 Functions without Return

Values

Some functions return no values. These functions can be declared as
void, if the compiler has implemented this C keyword. This can

improve the speed somewhat since the parameters need not be prepared
for the calling function. Even that may be omitted, which is the reason
why some C compilers don't define the void type.

/* key.c 12.2 */

void key(string) /* Without Return value: void */

char string[80];

{

int i;

for(i = 0; string[i] > 0; i++)

printf("%c", string[i] + 1); /* From 'A1 make 'B1 */

void main()

{

char text[81]/

void key () /

printf("\n\nPlease input some text!\n")/

scanf("%80s", text);

key(text);

printf("\nin the original it was %s\n", text);

}

The new defined functions are called exactly like the routines from the
libraries. In this example the main function stands at the end of the
file. The routine named key is declared as a function which returns

nothing, or void. That is important since the definitions would contra

dict themselves during usage in main. If the function had not been
declared, the compiler would assume that it should return int objects.
It returns nothing.

108

Abacus 123 Other Functions

12.3 Other Functions

Another function which does not return a result is strcpy. This rou

tine copies strings, and performs general string handling. Even though

it's included in every compiler's library file, it is interesting to see how

it can be programmed.

12.3.1 strcpy-Version 1

This copies one string to another. Unlike the previous example, you

don't know how many entries are in each string. This can be omitted. It

is enough for the compiler to know that it will get a string.

In the routine itself, a counter tests all entries. They are copied until the

routine reaches the EOS character (the end character must also be trans

mitted).

#define EOS '\0'

strcpy(to,from)

char to[], from[];

{

int i = 0;

while((to[i] = from[i]) != EOS)

The function is indifferent to the memory requirements of the array,

since it doesn't have to set aside any memory. The strcpy function

works directly with the strings passed to it from the calling function.

The strings may be of different lengths.

What do you think of the termination conditions in the while loop?

The position of the parentheses makes the processing clear. First is the

assignment of from [i] to to [i]. The expression in parentheses

also has the value from[i], and also the character which was copied.

This is now compared with the end code character. If you copy the EOS,

the condition is no longer true and the loop terminates. Otherwise it

increments the current counter and remains in the loop.

109

12. Functions Amiga C for Beginners

The actual loop body has only a peripheral role. The main action occurs
in the ending conditions. Experiment with this function. Notice that the
string into which the copy is stored appears first. Here is a complete
example program:

/* copysrt.c 12.3.1 */

#define EOS '\0'

#define MAXLEN 81

strcpy(to,from)

char .to [] , from [];

{

int i = 0;

while((to[i] = fromfi]) != EOS)

void main ()

{

char si[MAXLEN], s2[MAXLEN], s3[MAXLEN];

printf("Your name, please\n");

scanf("%40s", si)/

strcpy(s3, si);

strcpy(s2, "TEXT IN s2");

printf("Therefore %s, in s2 is \"%s\".", si ,s2);

printf(" I hope %s, that everything is clear!\n", s3);

}

The strcpy function can be used to initialize strings since the

following expression is not permitted in C.

Wrong:

main ()

{

char text[20] = "This_is_text!";

}

Right:

main ()

{

char text[20];

strcpy(text, "This_is_text!") ;

This copies the complete string into the variable text.

110

Abacus 123 Other Functions

12.3.2 strlen

You used the strlen function earlier in this book. It is simple to

write and return a value. The passed length of the string is a whole

number and should be an integer value.

strlen(string)

char string[];

{

int i = 0;

while(string[i])

return(i);

A nice short function! The expression string[i] is always the

content of this element. This means that the expression is only 0 (false)

when the end character \0 (EOS) has been reached. The counter which

corresponds to the length of the string passes to the calling function as

an integer value through a return directive. This function doesn't

have to be declared in the calling function because it returns an int

value.

If the return directive passes data, it must be assured that the value

has the proper data type. If the function definition states that the routine

returns a char element, there should be a variable or constant of the

char type. Some compilers will not tolerate such mistakes and will

issue an error message. Others are indifferent and convert the result into

the data type indicated in the definition. It's better to do it right in the

first place.

Ill

Arrays

Abacus 13. Arrays

13. Arrays

Up to now strings have been used as if they were a special data type. A

string is actually multiple char entries. A string of similar objects is

called an array. Arrays can also be made using int or float data

types as well as char types. Any elementary data type can be stored in

an array. Several similar variables can be accessed through a single

identifier. A single element is accessed by using a subscript called the

index (counter). The definition of a long array differs little from string

definition:

long value[20];

This line reserves 20 elements of type long for the variable value.

To indicate the end of a string, the last entry contains the value 0, i.e.,

assigns the escape sequence \0. For this reason, the definition of a

string (character array) requires one element more than needed for the

actual string. No such requirements exist for other array types: Only as

many entries are defined as required by the data. A value assignment of

one element is possible only by providing the index. For example:

value[0] = 4711;

valued] = 707;

value[2] = 31415;

The index value of the first element always starts with 0. Using this

method, you can create a string one character at a time:

char string[80];

string[0] - 'OS-

string [1] = "K1;

string[2] = '\0';

This tedium can be avoided by using the strcpy function. The

assignment sequence above would store the string value OK into the

variable string, and is terminated with the usual end code \ 0.

Again the difference between a single character and a string of characters

should be emphasized. The difference between "K" and *K' is that "K" is

a string, while *K' is a character. If a letter is enclosed in "quotation

marks" like a character string, it is a string. It is also terminated with a

\ 0 so that "K" consists of two characters, the K and \ 0. However, 'K'

is only a single character. This condition must always be observed since

all operating system routines assume that the string terminates with

\0. The last element that may be accessed has an index value of 79,

according to the declaration above of string [80] (counting starts

with 0).

115

13. Arrays Amiga C for Beginners

13.1 Multi-dimensional Arrays

Up to now we've been using one-dimensional arrays, i.e., variables

which use a single subscript Multi-dimensional arrays have elements

like a one-dimensional array. However, multi-dimensional arrays have

multiple elements. For example, if you were designing a chess game in

C, you'd might use an 8 x 8 array for chess board data:

int field[8][8];

Both elements are of course between 0 and 7. You need two subscripts

to access a single Held:

printf ("Content of Line 2 Column 4 %d\n",fieldfl] [3];

You can define an array with up to five sets of elements:

long content[4][5][6][7][8];

Please observe that arrays can quickly occupy large amounts of mem

ory. The array above would require 4*5*6*7*8*4 (size of a

single long element) bytes (26,880 bytes or 26.25K).

Data can only be stored sequentially in memory. The user must get

away from the notion that a two-dimensional array is located in two

tables which are one in front of the other. How would a five-dimen

sional array be stored? Since all elements are stored in a long series

(one-dimensional) there is a rule which must be followed. The first

index changes only when all elements which belong to its group are

stored. During the second index that occurs more frequently and the last

index changes with every element. This concept is easier to understand

in a listing which shows the position of the entries in memory.

Assuming a definition of int pos [4] [3];, entries in memory are:

[0][0]

[0][1]

[0][2]

[l][0]

[1][1]

[1] [2]

[2][0]

[3] [1]

[3][2]

116

Abacus 13.1 Multi-dimensional Arrays

To conclude this chapter we want to present a program which operates

with arrays, and touches on many topics previously discussed. The

program tests a series of numbers, passes them to a routine which adds

them and receives a sum back. Then it makes statistical evaluations to

determine if it's worth storing the values. An array stores the data

entered. There are also some tricks which should be examined closely.

/* array.c 13 '*/

tdefine FALSE 0

tdefine TRUE 1

#define MAXENTRY 20

long total(); /* Declaration of the function */

void main ()

{

int i, number, end = FALSE;

long sum, data[MAXENTRY];

for(i = 0; i <MAXENTRY && lend;

{

printf("Enter %d. value: ", i+1);

scanf("%61d", &data[i]); /* 6 digits limit */

if(!data[i]>

end = TRUE;

number = i - end; /* If last data 0, than one less */

sum = total(data, number);

printf("The Sum of all %d values is %ld\n", number, sum);

printf("Deviation from Average %.91f:\n", (double) sum

/ number);

for(i=0; data[i] > 0; i++)

printf("Value %d: %5.91f%%\n", i+1,

data [i] * 100.0 / ((double) sum / number) - 100.0);

long total (array, cnt)

long array[);

int cnt;

{

long sum = 0;

while(cnt—) /* short and precise */

sum += array[cnt];

return sum;

Lattice The library for mathematical functions and floating point numbers must

be linked with the standard library. Example:

lc -Lm array

117

13. Arrays Amiga C for Beginners

Aztec If you work with the Aztec compiler, the library for mathematical func

tions and floating point numbers must be linked with the standard

library c.lib. Example:

cc +L array.c

In array.o -lm -lc

First some information on the program. To make it more secure, only

20 entries are permitted. The #define maxentry allows you to

adapt the program to larger input.

The declaration of the add function is important. Since this function

uses long values, the compiler must be told this. The declaration can

be performed within the main function.

The && operator ends the for loop which connects two tests logically

with an AND. If not all entries are occupied, and the variable end is

unequal to 0, the loop executes.

Negation The negation operator converts end into the logical opposite. At the

beginning the variable contains the value 0 so that the expression

becomes ! end 1. The reverse occurs when end is set to 1 and the

negation ! end is used to leave the loop. This happens when the user

enters the number 0, indicating the end of the input.

The first entry in the array requires the index 0. Since the count usually

starts at I, a 1 is added to the current index during text output. In the

formulation of the scanf function, the following is most important:

Sentry[i]

If another array was input, no & character appears. That was the big

exception. Since entry [i] and not entry was written, this is not

an array, but a perfectly normal long variable. During the scanf

routine it is equipped with the & like all elementary data types. The fact

that this variable is in a long string of similar elements doesn't concern

the scanf function.

The following if test also merits closer examination. This is a typical

case of C abbreviation. The test should pass the value 1 to the end

variable if the current input was a 0. The following shows this:

if(entry[i] == 0)

If entry [i] contains a zero, this expression is also zero. With the

help of the negation operator a true result is obtained. Especially for the

test == 0 or ! = 0, the abbreviations are often placed in the location

where you would expect to find an explicit value. It doesn't complicate

the matter, but the user must know what is hidden there.

118

Abacus 13.1 Multi-dimensional Arrays

When the loop finishes, either because 20 entries had been made, or the

last entry was 0, the total number of the stored data is calculated. The

add function gets the necessary data (the array with the input and the

number of values to be added). This routine returns the sum. With this

information the deviation of each entry from the average can be calcu

lated. If the task of the program was only to add a series of numbers, no

arrays would be needed but all entries could be summed after their entry.

119

14.

More about Loops

Abacus 14. More about Loops

14. More about Loops

This chapter takes you through a few of the fine points of using loops

in C programming language. You've already seen for loops and

while loops.

It also demonstrates some refinements to the for loop; statements

which help control loop programming (break and continue); and a

function for switching around within a loop (switch).

14.1 More About the for Loop

We described the for loop earlier in this book. Now we'll look at the

limitations and flexibility of the for loop.

Individual components of the for loop are separated by semicolons.

Several statements can be placed within the initialization and the

increment expressions. They use commas as separators, instead of

semicolons. This is how the for loop can be used:

for(sum = 0, i = 1; i <= 20; i++0

sum += i;

or also

for(i =1, j = 0; i < 10; i += 2, j+=3)

This is the usual construction for a for loop. Since C permits other

variations, this example is presented:

for(printf("Now we start!"); ; printf("Bang\n"), i++)

if((c = input()) == 'e')

break;

The text "Now we start!" appears at the beginning of the loop. A

test is then made to determine if the condition located between the

semicolons is true. This is always true since nothing is entered there.

You may recall that, under every condition, a null value is always

considered a false condition. Everything else is considered logically true.

The condition in the loop is always true. The only way to stop the

program is to press the <E> key, provided there is an input function.

123

14. More about Loops Amiga C for Beginners

14.2 break

If the test for if is true, the break statement is carried out. The

break statement ends the currently executing loop immediately and

forces the program to continue with the statement that follows the loop

that just ended. The break statement is the only way to break free of a

loop at any time.

Look at the program in the preceding section. The increment proceeds

in an unusual fashion. A printf call can be found there. This

printf executes at the end of each loop execution (notice that not

much remains of the original construction). An endless loop, which

doesn't have an initialization, a test or incrementation, would appear as

follows:

for(;;)

A for loop can always be replaced with a while loop, and vice versa.

The general format is:

for(terml; term2;term3)

other directives

or

terml;

while (term2).

{

other directives

term3;

124

Abacus 143 continue

14.3 continue

The continue statement does the opposite of the break statement.

Instead of leaving the loop immediately, the program jumps to the next

directive in line for execution after the last directive within the loop is

processed. For the three types of loops this is:

1. The body of the while loop (within the parentheses)

2. The incrementation of the for loop, therefore for (...; ...;

continue)

3. The directive after do, in dc.while

Example: calculate (field)

double field[];

int i;

for(i=0; i<number;

if(field[i] == 0.0)

continue;

continue here!

If an entry within field should have a zero value, the continue

directive then executes. The program continues at location i=i+l as if

the loop block had been terminated.

125

14. More about Loops Amiga C for Beginners

14.4 The switch Directive

This directive allows you to handle several similar comparisons. This is

presented in the following short program:

/* switch.c 15.4^*/

void main()

{

int number;

printf("Please input a number!\n");

while(1)

{

scanf("%d", &number);

switch(number)

{

case 9:

printf("Larger than 8\n");

case 8:

printf("Larger than 7\n");

case 7:

printf("Larger than 6\n");

case 6:

printf("Larger than 5\n");

case 5:

printf("Larger than 4\n");

case 4:

printf("Larger than 3\n");

case 3:

printf("Larger than 2\n")

case 2:

printf("Larger than l\n");

case 1:

printf("Larger than 0\n")

case 0:

printf("Number!\n");

break;

default:

printf("Single number only!\n");

}

if(number == 4711)

break; /*Leave endless loop */

The switch statement is given the value to be tested (switch(c)).

Within the block of statements, this value is compared with the values

behind the keyword case. This value, which must be followed by a

colon, is then followed by the statements to be executed. If the

126

Abacus 14.4 The switch Directive

comparison is positive, if all values agree, the statements following

case are executed. If the comparisons are negative, the next

comparison is tested and all statements to the next case are skipped.

The C keyword default permits execution of statements if no

comparisons were successful. In comparison with the if test,

default corresponds to the else branch of the if construction. If a

test is positive, all of the following commands are executed. A stop

doesn't occur before the next case. In order to stop this process, a

break statement is required for each case statement.

If the character passed for the test is for example a 5, all directives (also

those behind case 4, 3, etc.) are executed up to the next break

directive. This causes die direct termination of a loop, or in this case

the switch directive.

Even if several directives are executed behind a case, parentheses are

not required. With switch all elementary data types except for float

ing point numbers can be compared.

127

15.

Pointers and

Addresses

Abacus 15. Pointers and Addresses

15. Pointers and Addresses

This chapter discusses the most important components of the C

language. Pointers are loved by some and hated by others. In a discus

sion of the advantages and disadvantages of C, inevitably the word

pointer will be mentioned. It is possible to write fast and short routines

with pointers, but some programmers who have never worked with

pointers are completely confused by them.

15.1 Addresses

Let's start slowly. The pointer concept has close connections to the

address concept. During the call of the scanf function, the & (address)

operator had to be placed in front of most variables. This construction

allows the determination of a variable's memory address. All data,

whether floating point numbers, integers or characters, are stored

somewhere in the computer. The position where variable data can be

stored is determined by a number (the address). In general, an address can

be compared with the house number on a long street. This number is

obtained from the variable which is preceded by the & character.

Assume that the variable a was defined and is stored starting at address

100. The expression &a would return the value 100. Why are addresses

required, if you can work without them?

The user who experiments with his own functions, may soon find that

the called function should pass more than one returned value to the

calling function. It is also difficult to change the content of a variable

defined in another function. Consider the following section from a

program:

{

int number = 6;

change(number);

change(newnum)

int newnum;

{

newnum =5;

131

15. Pointers and Addresses Amiga C for Beginners

The change function receives a copy of the content of number only

during the call. If this function changes the value of the variable

newnum, the original, which is in the calling function, remains

unchanged. This was already used in a program. Examine the program

which calculates the sum of individual array entries. The variable amt

decrements to zero, while the variable number is used later for

calculation of the average.

Now we have a way to pass the address of the variable. The calling

function can access them directly and the function does not contain a

copy of the variables. In what data type should this address be stored?

132

Abacus 15-2 Pointers

15.2 Pointers

Principally the address could be stored in an int or long variable.
This depends on the size of the int type and the processor, as well as

how many bits are required for an address. The Amiga requires 32 bits, a
long value. Not all compilers offer this capability. C may be flexible,
but some compilers are better than others. Storing addresses in long

variables is not good programming because the programs may not be

portable to other computers. It is better and safer to use the data type

adapted for it, the pointer. A pointer is marked by the special character

"*". Since the data type is indicated during the definition of a pointer,
the pointer is more than just a replacement for the long variable,
What function does the pointer serve? As mentioned, it should accept an

address. With this address it can access an object, here the content of a
variable. During the definition the pointer obtains additional

information about what data type is involved. It knows what values it

points to. For example:

char text[80]/

char *pointer; /* Define pointer to char-elements */

text[6] = 'a1;

pointer = &text[6]/

The first command defines a char array (string). The next line is the

definition of a pointer which is called pointer. An asterisk precedes

the pointer name, which labels it as a pointer. In addition (as in all

other variable definitions) the data type is indicated. In the next line, the
character a passes to the array element with the index 6 (7th entry).

Now the pointer appears, which gets the address of element 6 with the

address operator &. Since pointer now contains the address of this

element, it points to the character a. The pointer points to another

variable, text [6]. This is also called referencing, and the reversal of

this process is known as de-referencing.

Now access can occur to the letter through the initialized pointer. The

next directive could be:

if(*pointer == 'a')

printf(That's it!\n");

If the element in the memory location should be accessed, the pointer

variable must be preceded by the asterisk. The expression *pointer

is a synonym for text [6] (of course, only if *pointer points to

that position). Also the change of the content of this memory location

is possible through the pointer:

133

15. Pointers and Addresses Amiga C for Beginners

♦pointer = 'b1/

After this directive 'b' passes to the location to which the pointer is

pointing instead of 'a'. Without using the array, its content was
changed.

15.2.1 The Exchange Function with Pointer

Now a routine which should change the value of the calling function.
The exchange function:

exchange(xp,yp)

int *xp, *yp;

{

in help = *xp;

*xp = *yp;

*yp = help;

}

This function expects two pointers to the int values passed as param

eters. For the exchange the first value which points to xp is saved in

the integer variable help. Then the values are exchanged. The call of

the function must also be changed in comparison with the previous

calls since pointers to their addresses, not int values, are expected.

int valuel, value2;

valuel =3;

value2 =5/

exchange(&valuel,&value2);

Perhaps now you can understand why, in a scanf the address operator

always had to be used. With this function, data are written into the

variable, which is only possible with pointers and addresses.

In arrays, especially in the frequently occurring strings, access to indi

vidual elements can only occur with the index. The address for a single

entry must be obtained with &array [index]. For the first element

in this list the following must be constructed:

&array[0]

In C the name of an array is nothing more than the memory address of

the first element so it can be abbreviated. For &array[0] can be

written array. Both return the address of the first element, not its

content. An array name already acts as a pointer which points to the

first element. Now it should be clear why during a call of scanf, the

name of the string did not have to include the address operator &. It is

already the address:

134

Abacus 15.2 Pointers

char string[81];

scanf("%s",string);

It was not an exception, only a short version of & string [0],

15.2.2 strcpy-Version 2

String copying is an ideal application of pointers. Through the use of

pointers, the indices which had to be used during the first formulation
of strcpy, can be saved. The following construction with pointers

illustrates an example:

strcpy(to,from) /* Version 2*/

char *to, *from;

{

while((*to = *from) != '\0')

{

to++;

from++;

Pointer In the strcpy routine above, the peculiarity of the pointer becomes

increments obvious. If the pointer increments by one, the pointer points to the

next element. If it increments by two, it points to the element after the

next. In this strcpy version, a character is transmitted from from to

to until the transmitted value is equal to 0. At that point the expres

sion (*to = *from) has the value 0. When this expression becomes

unequal to 0, the while loop terminates. The last transmitted character

is the just tested null byte which represents the end code of a string.

15.2.3 strcpy-Version 3

The previous routine would not be a C program if it couldn't be

shortened. A null test can usually be bypassed and the incrementing of

the pointer can be squeezed into the termination conditions. Therefore

the shorter version:

strcpy(to,from) /* Version 3*/

char *to, *from;

{

while((*to++ = *from++)

135

15. Pointers and Addresses Amiga C for Beginners

This should be one of the shortest and fastest versions for copying
strings which could be made faster only with a special trick. More on
this later.

To write a program which transmits float values instead of char

values from one array to another, only one word must be changed in the
formulation above. That word is char. In its place the data type
float is used and immediately float values, which have a

completely different construction and require much more memory space
per element, can be copied. How is it possible?

With the definition:

float *to, *from;

the program is informed that the pointers from and to are pointing to

values of data type float. This data type generally requires 4 bytes per
entry. If such a pointer is incremented by one, for example after++,

it points to the following element. It is located four bytes from the
original element, but the compiler knows it through the definition of
the pointer. Through the incrementing of the pointer by 3, the address

would change by 12 bytes. In the data type double, which normally

uses 8 bytes, this can also be used. For each increment of the pointer,

the address is changed by 8 bytes. A pointer is a very nice feature.

How does the compiler process expressions such as string[4], when

these groups are related to each other? Since string is the name of

the array, which in C corresponds to the first entry (stringfO]), the

compiler converts this expression into the equivalent *(string +4).

First the length of 4 elements is added to the address string. This

makes the current pointer point to the entry string[4]. Then access

to this element is accomplished through the asterisk. The parentheses

are required because the pointer "*" has higher precedence than the

addition (a table of precedences can be found in the Appendices). A

comparison between pointer and array can be made clear with the
following examples:

long value, data[10]; /* Defined like this */

Array the same with pointers

value = data[3]; value = *(data +3);

data [10] = value; *data = valuer-

data [7] += value; *(data + 7) += value;

136

Abacus 15.2 Pointers

As shown in the program above, other operators can be used in the
construction *pointer. For example the *after++ directive in

strcpy indicates that first the value, to which after points

(*after), is obtained and then the pointer should point to the next

field (++). Can you imagine what the following directives would do?

int i, *ip = &i;

i = 100;

—*ip;

After the definition of the variable i and the int pointer ip, which is

also initialized here, the variable i gets a value assigned. The number

100 is stored in it Now comes the big question, what does —*ip do?

First the number (100), to which ip points (*ip), is obtained. Then

this value is reduced by one, thus 100 becomes 99. This value is not

stored in variable i. The same result could have been obtained with the

much simpler expression —i.

137

15. Pointers and Addresses Amiga C for Beginners

15.3 Pointer without Storage

During the use of pointers, you should note that they represent only a

pointer to a certain data type. The memory locations for the individual
elements must be defined separately and the pointer pointed to them.

The initialization of the pointer prevents the system from giving wrong
answers or crashing. If a crash occurs when using pointers, even during

the test run of a program, first check where the pointers or the array
index are pointing.

A few occasional programs seem to contradict such demands:

main ()

{

char *text_ptr;

text_ptr = "All point to me!";

printf("The text is >%s<\n",text_ptr);

}

Where in this program is the memory space for the string? The pointer

does nothing in this direction. It is stored somewhere in the program
text, just like in function calls (e.g., printf ("Hello\n");). Also
this string within the function must be stored somewhere.

Attention: If the text should be changed, for example with access through
text_ptr, the maximum length must be observed. In the string

above, this is only 28 characters, with one character representing the
end of the string \ 0. If 30 characters are written into this space anyway,
a system crash can be expected. It is possible that behind the string,

program code was stored which was overwritten. Should the computer

encounter such data which it cannot understand, it will go crazy.

The name of the array symbolizes the first element in the chain. Now
the question, what is the expression field [3] [2], if the following
definition has been issued?

int field[5] [5] [10]/

Is it an element of this array? If so, which one, and if not, what is the
element? Examine the expression carefully. It only contains two
indices, but the definition contains three. It follows so that it cannot be
an extra element. It can only be a pointer which points to the first (?)

element. The first element isn't field [0] [0] [0], but the first field
to which field [3] [2] points.

138

Abacus 15.3 Pointer without Storage

Is it clear now what wonderful changes can result from forgetting an

index? One element of the field becomes a pointer to a field in which

the missing index is replaced with [0]. Therefore fieId [3] points
to field [3] [0] [0]. If something like this is possible, it can be

done with pointers. Later we will see some other tricks with pointers.

139

16.

Storage Classes

Abacus 16- Storage Classes

16. Storage Classes

This chapter discusses various groups of variables. These variables have

different lifespans during program execution. There are four storage

classes: auto (or local), global, register and static. Each

of these storage classes help your programs identify which C functions

recognize which variables, and determine how long the functions should

use these variables.

16.1 Auto

auto Even though the name is unfamiliar to you, you've been using the

variables auto (local) variables all along. The auto variables represent the

default storage class in C language.

These variables belong to the auto class because they are automati

cally defined every time a function is called. On the function call, C

allocates memory space for the auto variables. The lifetime of an

auto variable is limited to the function in which the variable is

declared. After the function is abandoned through return, or the last

brace of this function is reached, the memory space allocated is released

and can be used for other assignments. These auto variables can only

be used in the function for which they were defined. The content of the

variable is lost and the name is not known to the rest of program.

143

16. Storage Classes Amiga C for Beginners

16.2 Static

static Unlike auto variables, static variables are retained until the end of

variables the program and are not deleted after leaving the function. They do not

have to be created again during a new call of the function. Leaving,

which means the termination of the executing function, should not be

confused with another function call within this function. Control may

briefly pass to another routine, but the calling routine remains active

(it's waiting for a result).

Here's an application of a static variable. The C word static

appears in front of a definition. For example:

function ()

{

static int counter = 1/

During the first call of the function, the variable is defined and initial

ized with a starting value as in the example above. If the function is left

temporarily, a new variable isn't created during the new function call

because the variable still exists. Even its content remains and it does

not have to be initialized again. For example, a counter in this routine

could track how many times it had been called.

144

Abacus 16-3 External

16.3 External

extern The next storage class is the extern or global variable. These vari-

variable ables are defined outside the function and can be used by all functions.

A section of a program would appear as follows:

#define EOS '\0'

int error, dummy;

main()

The variables which were defined can also be used by functions which

are not in the source file. The linker is given a number of files for link

ing. These files contain functions which have already been compiled.

They may need global variables which must be assigned the right

values in their program. Such variables must be declared before using

them with the extern function, but they don't have to be defined:

extern int error;

This permits the use of the variable in a file in which error was not

defined.

Combinations, such as global static variables, are also permitted.

Through this definition all functions can access the global variable

within the source file, but the situation just described of accessing this

variable with a function from another file is prohibited. The variable is

only known to the source file. Functions which first come in contact

with the program through the linker, have no access to this variable.

145

16. Storage Classes Amiga C for Beginners

16.4 Register

register The last storage class is register. Those of you who have some

variable programming experience with assemblers know what this means. A
processor, the most important part of a computer, has various internal

memory locations. One such memory segment, which should not be

confused with the RAM of the computer, is called a register. The

number of registers which can be used depends on the type of processor

used. A 6502/10 used in the C64, or in the Atari 600/800/130, has

only three registers (2 registers and an accumulator). The MC68000

used in the Amiga, Atari ST and Macintosh has 17 registers. Each
68000 register is four times the size of a register in the 6502. For this
reason there are almost no compilers for 6502 computers which offer

the capability of register storage for variables. Of the 17 registers in the
computer, only three to five (depending on the compiler) are made avail

able for storage. The remaining registers are required for internal use.

A variable defined as register must fit inside a register. A 68000
register is equal to 32 bits (four bytes), which only permits integer

numbers. Even if the float value could occupy only 4 bytes, it
cannot be stored in a register. Valid data types are:

int

short

long

combinations

pointers

char

unsigned

of the above

Pointers are possible since they only represent the address of an object
In the Amiga they only occupy four bytes.

There are other restrictions. The defined variable can only be an auto

variable since it occupies a register of the central processor. They are

rarely used and can be occupied only for a short period of time. After

leaving the function in which it was defined, the register is released
again for other purposes.

The register variable has a speed advantage over other variables.

The program can only fully utilize this speed when these variables are

used during many loop repetitions or calculations. The variable does not

have to be loaded from memory into a register for every use, since it is
already present

146

Abacus 16-4 Register

16.4.1 Fast strcpy Routine

Before we present the first example, we must discuss another
limitation. It isn't possible to obtain the address of a register

variable with an & operator, because a register doesn't have an address. It

is not located in RAM.

strcpy(to, from) /* last version */

register char *to, *from;

{

while(*to++ = *from++)

This definition of the char pointer as register should receive the
maximum speed that can be obtained in C. This could be faster only if

it was written in machine language.

To test the speed advantage obtainable through registers, compile the

following program. To measure the speed of the program you must use

the registers as often as possible and should not use other functions

since they only extend the time required. For this reason the program

does nothing more than count a variable down from 5,000,000 to 0.

/* countdown.c 16.4.1 */

#include <stdio.h>

void main()

{
printf("Time comparison with and without register\n");

printf("RETURN for Start\n");

getchar () ;

printf("%cStart without", 7);

without_register();

printf("%cStop!\nregister routine\n",7);

printf("RETURN for Start\n");

getchar();

printf("%cStart with", 7);

with_register();

printf("%cStop!\n\n", 7);

147

16. Storage Classes Amiga C for Beginners

with_register()

{

register long i =5000000;/*Count from 5,000,000 to 0 */

while (i—)

without_register ()

{

long i = 5000000;

while (i—)

The preprocessor command #include includes the stdio.h file in

this C program. This file is required because the getchar routine is

used to obtain a character from the keyboard. In the Lattice C compiler,

the function is unusable because it waits for the <Return> key after

every character. However, it is sufficient for the program above, so it

can be used to wait for the <Return> key.

Timed by hand, the author counted 51.6 seconds without register

variables and 24.1 seconds with register variables. That's

impressive because it's twice as fast when the word register is used.

It should be noted that the multitasking capability of the Amiga, which

could have been performing a task in the background, was not used.

This would have provided a different result

148

Abacus 16.5 Local

16.5 Local

local Local variables are the reverse of global variables. Different vari-

variables able groups such as register, auto or static local can be

defined. They are only valid in the block or the function in which they

were created. A local variable has precedence over a global vari

able, which means that, if two variables were defined with the same

name, the local variable is used. The local variable gets preference

while the global variable disappears for the moment An example:

/* local.c 16.5 */

int i = 1;

void main ()

{

int i = 2;

printf("%3dM, i);

{

printf("%3d", i);

{

int i = 3;

printf (fl%3d", i) ;

} -

printf("%3d", i);

}

printf("%3dM,i);

test();

printf("\n\n")/

test()

{

printf ("%3d", i) ;

{

int i = 4;

printf("%3dM, i);

The numbers 2, 2, 3, 2, 2, 1 and 4 are displayed sequentially. In the

main function a new local variable is declared so that the global

variable i is no longer addressable. The following block keeps this

configuration and another 2 appears. Then another block follows in

which another i variable is defined. Because of this, the previous block

becomes invisible to the program and the current one prevails. The

result of the output is 3. After the program leaves all blocks, the hidden

variables appear again. The previous variable with the value 3 is erased

by leaving this block then disappears. The test function is now called

and proceeds to output i. Since no local variable is known at this

149

16. Storage Classes Amiga C for Beginners

point, the output of the global variable, which is 1, is used. Finally

a local integer variable is activated which overshadows the global

variable again. This ensures that the last variable defined in a block is

used, and that often used names (e.g., i or j) are recognized as runtime

variables in many loops as different variables.

150

17.

User-defined

Libraries

Abacus 17. User-defined Libraries

17. User-defined Libraries

One advantage of programming in C is the modular construction of

programs, which can accept existing functions used in other programs.

The #include directive lets you add external files that have frequently

used functions to the current program before compiling. The compiler

processes one large file instead of several small files.

Every C programmer writes his own functions at some time or another.

You've already entered two functions (strlen and strcpy); let's

use these. Most compilers contain these functions. However, viewing

them can give us an understanding of how user written functions work.

Save these functions to your own file under the name string.c. You

can include these functions in your own programs using the

#include directive. The following line searches the main directory

for the include file string.c:

#include "string.c"

The following line also adds the string. c file to the main file:

#include <string.c>

Of the two syntaxes, the second line is much more flexible than the

first, since it searches many different directories for the same file.

Most C implementations have include files as standard equipment

Files with .h extensions contain mostly #define directives. You can

find these functions in a library such as amiga.lib or lc.lib.

include files can be included on demand. The syntax reads:

#include <file.h>

Before starting with include, first you need something that can be

included. A useful function can be written to compare strings. Since

strings are not elementary data types, they can't be compared with:

if(stringl == string2) /* This is wrong! */

If you wrote the variables stringl and string2 as character arrays,

the name would correspond to the address of the first element

(&stringl [0]). Therefore, the addresses of the two arrays always

differ. Since both arrays have been assigned by the compiler to separate

memory locations for their char entries, the comparison is completely

useless. The only case (theoretically) in which this i f test can be

fulfilled is if one or the other variable was defined as a pointer and if the

pointer pointed to the same string. This method doesn't work.

153

17. User-defined Libraries Amiga C for Beginners

17.1 The s t r cmp Function

You now have to write a program to compare each element of the first

string one at a time with each element of the second string:

strcmp(s,t)

register char *s, *t;

{

while(*s == *t)

{

if (!*s)

return(0); /* End reached (*s == 0) */

return(*s - *t);

}

The strcmp function compares the characters of the s string with

those of the t string. As long as the characters are alike (*s == *t),
the while loop executes. A test determines whether the last character

matches the \ 0 marker EOS (end of string). If so, both strings must be

identical, since s and t end with EOS. Otherwise the pointers move to

the next element and the process repeats.

If a character appears within s which differs from the t character, the

while loop terminates and the difference between the two characters

(* s - * t) returns to the calling program. Negative values indicate that

the s string was smaller than t. Positive values mean the opposite. A

null returned after the if test indicates that both strings are completely

identical.

Store this function and the other two files below as stringfunc.c.

Since the older strlen routine could be improved, we will use

pointers this time. Instead of the indices, the pointer moves over all

entries of the string up to the EOS character. The start value must be

stored first so that the number of increments can be computed. That is

faster than counting with an additional variable. The stringfunc.c

file therefore appears as follows:

/* stringfunc.c 17.1 */

strcpy(to/ from)

register char *to, *from;

{

while(*to++ = *from++)

154

Abacus 17.1 The strcmp Function

strlen(s) /* Conversion to pointer! */

register char *s;

{

register char *help = s; /* Store initial position */

while(*s)

s++;

return(s - help);

/* Difference between pointers is Element number */

strcmp(s,t)

register char *s, *t;

{

while(*s == *t)

{

if(!*s)

return (0); '/* End reached (*s == 0) */

return(*s - *t); /* Difference between two strings */

}

Now let's see if they function properly. For this you'll use two strings

which are initialized in the program.

/* stringtest.c 17.2 */

#include "stringfunc.c"

/* Global arrays can be initialized! */

char stringl[] = "Hello!";

char string2[7] = { •H1, 'e1, 'I1, 'I1, 'o1, '!', 0};

main()

printf("\nComparison of >%s< and >%s< is %d\n",

stringl, string2, strcmp(stringl, string2));

printf("Now >%S< and >%S< Result in %d\n\n",

stringl, "Huhu!", strcmp(stringl, "Huhu!11));

First we will look at the expected results of the function call strcmp.

The first call returns zero since both strings are really equal. The second

function call returns -16. This number is the result of the comparison

of the e and u characters. This means that the first different character in

the string ("Hello!") is smaller than the first different character in the

second string ("Huhu").

Array initialization is new to this program. Until now each element

was stored individually, automatic variables wouldn't allow storage

in any other form. With global variables, a string can be initialized

155

17. User-defined Libraries Amiga C for Beginners

directly, or, as in the second example, every character is initialized

separately. In the first example there wasn't even an indication of how

many elements st ringl [] should have. This is another indication

that the C language was invented for those who consider laziness a

virtue. The compiler must determine the number of the character on its

own. It initializes st ringl with 7 elements (don't forget the null

byte at the end). Those who prefer, can indicate the value as in the

second example.

If you assign the elements individually (example 2) to the fields, they

must be contained in braces and separated by commas. For multiple

dimensions, multiple braces must be used.

int field[4][4]=

{ 1, 2, 3, 4 >,

{ 6, 3, 4, 9.},

{ 3, 4, 5, 6 },

{12, '9, 0, 2 },

This formulation assigns field [4] [4] the proper values where the

first values { 1, 2, 3, 4 } are stored in the fields field [0] [0] to

field [0] [3]. The inner braces are not required on some compilers

and the directive could appear as follows:

int field[4][4]= { 1, 2, 3, 4, 6, 3, 4f 9, 3, 4, 5, 6,

12, 9, 0, 2 >;

When some elements are not initialized, they don't have to be listed.

All elements left out are automatically assigned a null.

in field[3][3]= {

{ 3, 2 },

{ 4 },

{ 3, 4, 5 },

The fields field[0] [2], field[1] [1] and field[1] [2]

contain nulls. A semicolon must follow the definition. After the inner

braces and the last brace there must be commas. Remember that initial

ization only affects global or static variables, not auto vari

ables.

156

Abacus 17.2 Itoa

17.2 Itoa

Another routine seen frequently in connection with strings is itoa

(Integer TO ASCII). It converts an integer value into the corresponding

character string. When you pass the number 123, itoa returns the

string "123" in a character array. This is very important when preparing

text that contains numbers. All conversions usually performed by

printf can also be done with user routines.

The itoa function requires, as parameters, an integer value which it

can convert, and a string to store the result. The head of the function

definition reads as follows:

itoa(n, s)

char s[];

int n;

Conversion The modulo operator % performs the conversion. By dividing the

number by 10 you obtain the last place. Then the code for the number

'0' is added to get the first character. The number is then divided by 10

to shift it left one space and the last number drops off. The same

procedure is performed on the new last position. The program section

for this process appears as follows, if the index for the character array is

called i:

do

s[i++] = n % 10 + "OS-

while ((n /= 10) > 0);

The last place is converted and stored in s until the number which was

stored in n has reached 0 through constant division. The sign should

not be forgotten since it could cause problems for the loop (number

larger than 0). The simplest process makes the number positive before

the conversion and, if necessary, sets a flag for a negative value. After

the completed conversion, the string returns the minus sign.

The completed processing converts the number 123 into the string

"321", but only the last place is processed and stored in the string. The

solution to this problem is very simple. Write another function that

reverses the string. Assuming that such a function already exists (see

the next section for the function) the routine appears as follows:

157

17. User-defined Libraries Amiga C for Beginners

/•••••••••••••••••••••••••••••••••••a*****/

/* Name: itoa */

/* Parameter: n(int), s(string) */

/* function: Convert Integer to string */

/* comment: Requires reverse() */

/•••A*************************************/

#define EOS '01

#define FALSE 0

#define TRUE 1

itoa(n, s)

register int n;

register char *s;

{

register int i = 0;

register int sign = FALSE;

if(n < 0)

{

sign = TRUE;

n = -n;

}

do

s[i++] = n % 10 + '0';

while(n /=10);

if(sign)

s[i] = EOS;

reverse(s);

Program The large header contains important information. The function devel-

header oped by the user should be ready for use when it is finished. After some

time the function name and the parameters to be passed may have been

forgotten. At that time you could consult the header with its comments.

The function can be compiled independent of other functions. If the

compiler permits it, it can be stored in a library. Of course the source

files can be included into the current file with:

#include "itoa.c"

This increases compiler time, of course.

Since this function should be accepted in the library, it should be the

latest state-of-the-art. This can be done with the itoa function by

defining all variables as register variables. The define required for

this function should not be omitted, even if it appears somewhat cum

bersome to determine a define for a single application. It improves read

ability since larger programs usually access these macros.

158

Abacus 173 Reverse

17.3 Reverse

The reverse

function

Now to the reverse function which can reverse a string passed to iL

Construction of the routine doesn't present a problem. Two pointers, or

indices, are needed for the beginning and end of the string. These point

ers exchange their elements between themselves and are then moved

toward each other. The pointer at the beginning is incremented and the

one at the end is decremented. Exchange continues until the two point

ers are equal, i.e., point to the same element. The routine is presented

complete with a commented header.

Name:reverse

Parameter: s (string)

function: Reverse string

comment: Requires strlenO

**/

*/

*/

*/

*/
**/

reverse(s)

register char s;

register int c, i, j;

for(i=0, j = strlen (s) - 1; i < j; i++, j —)

c = s[i];

s[j]

}

The strlen The strlen function initializes the index j, which should point to

function the last element of s. Every C compiler package has strlen included

in one of its libraries, or you can use the strlen function defined in

the previous chapter. Both routines (itoa and reverse) should be

stored in the library labeled itoa.c since it will be accessed later.

Please note that the itoa routine also comes as standard equipment

with most C compilers. These standard everyday functions have already

been written by others.

159

18.

C Features

Abacus 18. C Features

18. C Features

We have mentioned many times that C language is much more flexible

than many other languages. C has many features that BASIC doesn't,

and is still much simpler to use than assembly language.

This chapter examines some components of C which aren't possible in

other languages. These components are partly responsible for allowing

the user to take full advantage of C's speed and flexibility.

18.1 The ? : Operator

The ? : conditional operator evaluates the first statement and returns, if

the expression was true, the statement which follows. If the expression

was false (=), the operator returns the second statement following the

colon. This operator uses the syntax:

result = (expressionl) ? (expression2) : (expression3);

If expressionl is unequal to zero, expression2 becomes the

result. Otherwise expressions is returned. A concrete example:

c = (a>b) ? a : b;

This would be similar to the if construction:

if(a>b)

c = a;

else

c = b;

This term delivers the maximum of a and b. Since this is simple to

formulate, this operation usually determines minimum and maximum

quantity. The define:

#define MIN(a,b) (((a)< (b)) ? (a) : (b))

#define MAX(a,b) (((a)<(b))?(a):(b))

Take a look at stdio.h which you'll find with your compiler. There

you'll find the definition.

163

18. C Features Amiga C for Beginners

18.2 The sizeof Function

The sizeof The sizeof (size of) function returns the sizes of objects (variables)

function regardless of type. The unit returned by this operator is defined on the

basis of the char elements. The following example followed by

sizeof (character) returns 1:

char character = 'a1;

The result is always the number of occupied bytes for the object under

investigation. The following short program determines how much

memory is used by the various data types in your compiler. This will

tell you if an int variable occupies 2 bytes (most C compilers) or 4
bytes (Lattice).

/* sizeof.c 18.2 */

main() /* Indicates memory required for data types */

{

printf("\ndatatype\tmemory in bytes\n")/

printf("char\t\t%d\n'\ sizeof(char));

printf("short\t\t%d\nM, sizeof(short));

printf("int\t\t%d\n", sizeof(int));

printf ("long\t\t%d\nII/ sizeof (long)) ;

printf("float\t\t%d\n", sizeof(float));

printf("double\t\t%d\n", sizeof(double))/

printf("pointer\t\t%d\n", sizeof(char *));

164

Abacus 183 Bit Manipulation

18.3 Bit Manipulation

This section describes the remaining operators, which deal with control

ling individual bits.

Operators for bit manipulations exist in addition to the logical combi

nations. A bit (binary digit) represents a position in a binary number

and can therefore only assume one of two values (0 and 1). The conver

sion into the binary system is similar to the conversion into the octal

or hexadecimal system. The bit is also the smallest unit which the
computer can use. It acts as the basis for all other numbers which can

be used in the computer. For example, a byte consists of 8 bits, a word
of 16 bits and a long word of 32 bits. A character can be stored in a

char variable. Characters are stored in bytes (8 bits); a byte can accept

256 different kinds of numbers. Depending on the compiler, an integer

value contains 16 or 32 bits and a long value 32 bits. Individual bits of
these data types can also be accessed. These operators cannot be used

with float or double variables.

18.3.1 AND

The and operator consists of the & character. Maybe you thought this

is the address operator. This character can be used for both purposes,

but it's hard to explain why this is so. You must know the context in

which it is used. If it is placed alone in front of a variable, it represents

the address operator. If it is placed between two values in a normal

arithmetic equation, then it is the binary AND.

The concepts logical and binary help you distinguish between two

completely different operators. The logical AND is different from &&.

With and (&) individual bits can be reset. A set bit has the value 1, a

reset bit the value 0. The following table shows the connection between

various bit combinations.

Combining bits using logical operators

AND

&

0

1

0

0

0

1

0

1

OR

1

0

1

o

0

1

1

1

1

EXOR

0

1

0

0

1

1

1

0

165

18. C Fea tures Amiga C for Beginners

According to the and a bit is set (1) when both bits are set, otherwise
the result is a 0. This is comparable with:

if(bitl == 1 && bit2 ==1) /* Here is the logical AND! */

result_bit = 1;

else

result bit = 0;

18.3.2 OR

With the (I) OR operator bits can be set. A glance at the table above

will help you understand the various combinations of bits. In OR the
resulting bit is set if one or both bits were set. Only if both bits are 0,

is the result of OR also 0. The I sets individual bits and the & resets the
bits.

A mask acts as a storage area for the bits. A mask is represented by a
number placed over the value to be processed. If a variable is ORed with

this mask, all bits set in the mask are now also set in the variable.

Example: Bit number 2 should be set in the variable flags (the count starts at

0):

#define MASK 4

int flags = 73;

flags | = MASK;

After this operation, the OR with the value 22 (number of the bit to be
set) = 4 (sets the second bit in the variable flags).

A targeted resetting of certain bits sets the corresponding bits of the

mask to 0. With the and operation the desired zero bits are obtained.

Example: bits 1 and 4 should be reset.

int flags = 37;

flags &= 0355; /*A11 bits except 1 and 4 are set (0-7) */

Every bit has its own value according to priority. For example bit 3 has

a value of 8 (23). The table below shows the individual bit values:

bit Number

Value

45

16 32

67

64 128

Some examples for bit operations:

1 & 2 = 0

2 & 6 = 2

7 & 8 = 0

9 & 12 = 8

166

Abacus 18.3 Brr Manipulation

The last example should be examined closer in the binary system.

9(dec) = 1001 (binary), 12(dec) = 1100(binary)

1001

& 1100

1000

1000(binary) = 8 (decimal)

The same operation for OR:

112 = 3

2|6=6

7 | 8 = 15

9 | 12 = 13

The last line expressed in binary:

1001

1100

1101

1101 (binary) = 13 (decimal)

It is important that the characters & and & & are kept separate from each

other. & connects expressions bit by bit && only makes a logical com

parison from which either a 1 (true) or 0 (false) is returned. Therefore 2

& 1 = 0,but 2 && 1 = 1.

There is also a distinction between the operators I and I I. Loops and

conditions may result in strange behavior if you confuse these opera

tors.

18.3.3 Bitwise Shift Operators

» « Operators for bit shifting are » and «. They permit bit shifting to

the left or right within a field. A shift to the left («) by one position

is the same as multiplying by 2, only it is much faster. All of this is

dependent on how data and numbers are stored and processed in the

computer. A shift to the right equals a division by 2. Depending on the

data type, either zero bits or set bits move into the free locations. For

unsigned values, zero bits are shifted in every case. For normal signed

int values it depends on the compiler used. For positive numbers, zero

bits should be added to the left, and for negative numbers, one bit. This

is compiler dependent and there is no guarantee of how this works.

167

18. C Features Amiga C for Beginners

The number of shifts is indicated behind the operator.

5 « 3 = 40

101 (binary) shifted left by 3 bits (zero bits are shifted in): 101000

(binary) = 40 (decimal).

Use the program in the previous section for converting decimal num

bers to binary numbers.

18.3.4 EXCLUSIVE OR

The exclusive OR operator A is related, as the name indicates, to the

OR operator. The only difference lies in the fact that both bits are set.

The OR operation results in a set bit, but the EXCLUSIVE OR resets a

bit. The table for the EXCLUSIve OR is as follows:

EXOR 0 1

0 0 1

1 1 0

for example 2*1 = 3

Please do not confuse A with the up arrow for exponentiation. This

does not exist in the C language.

Remember: The bit is set only if both bits are different.

18.3.5 One's Complement

The one's complement operator ~ requires only one parameter. All bits

of the parameter are reversed. Set bits are unset and vice versa. It is

recommended to use this operator only for variables which were defined

as unsigned, or the sign is also affected.

unsigned number = ~3;

In the variable all bits except for the first one are set (priority 0 and 1 =

1 + 2 = 3) so that the variable now receives the following bit sequence

(starting from a 16-bit integer):

1111 1111 1111 1100

= 65532

168

Abacus *»-4 Goto

18.4 Goto

Perhaps goto sounds familiar from BASIC, but the C implementation
is a true curiosity. This statement has a bad reputation in C, since it
can destroy a well structured program. Jumping in a function can defeat
the purpose of clarity in programming. Nevertheless the goto state

ment is not totally useless. It can be used effectively in error trapping.

If an error occurs within several loops, which makes progress impossi
ble, only the goto statement offers escape. The usual break directive
can only stop one loop, not several at once. Some tests and other break
commands could also terminate all loops. It is preferable to use goto.

The use of the goto statement of course assumes a label (a marked line

to which the goto jump should be made).

label: printf("This is where goto will Jump!\n")/

if (error)

goto label;

The labels can be defined in the program text anywhere, but must

include a colon. They are only required for the goto statement and are

formed exactly like variable names.

Note: The label and jump commands must be used in the same function. It

is not possible to jump across all functions.

169

19.

Complex Data

Types

Abacus 19. Complex Data Types

19. Complex Data Types

Now that we've listed all the important commands, we now come to

the extra capabilities of C. Among these are data types which can be

configured according to the needs and demands of the user.

19.1 Struct

struct {

char firstname[20]/

char surname[30];

int age;

double income;

int sex;

} person;

The person This function defines the variable person. The variable person

variable consists of several partial variables which are described in more detail

within the braces. The first name has 20 characters, and the last name

30 characters. There are also fields for age, income and sex. Similar to

arrays, many entries are collected under one name. The difference is that

different variable types appear within the structure. Accessing individual

parts of this variable requires more specification than arrays, which use

an index. The structure uses either the . (period) operator or -> opera

tor. An assignment of 30 to the element age appears as follows:

person.age = 30;

All other fields can be accessed in the same manner:

person.sex =0;

person.income = 300000.0;

strcpy(person.firstname, "Rena");

strcpy(person.surname, "Bebewicz");

In order to use a pointer on such a construction, you must indicate the

data types. All you've done so far is create a complete variable. You

need a name such as int or float, through which other variables

such as a pointer can be defined. If several variables or pointers are used,

it would be better to create another data type which also has its own

name. This can be done by indicating the type name after the struct

statement. If it is called person, the uppercase letter indicates that it

isn't a variable. Since variables, statements and functions must appear

173

19. Complex Data Types Amiga C for Beginners

Pointer

operators

Comment:

in lowercase letters, and defines in uppercase and lowercase letters,
structures can use a combination of the two:

struct Person {

char firstname[20];

char surname[30];

int age;

double income;

int sex;

} person;

A pointer to this structure can now be initialized for access:

struct Person *pointer;

To access one element of the structure, the expression would be:

(♦pointer).age = 30;

The parentheses above control the higher precedence of the (.) operator.
Usually a special operator is used as illustrated below:

pointer->age = 30;

This operator, made of a minus sign and a greater than character, is
easier to read. In addition, the arrow better illustrates its purpose (it
"points to" something).

All operations which affect basic data types, such as defining arrays
(vectors), can be used on the newly created structure. The line below
provides 100 structures for storing partial variables:

struct Person occupant[100], *occ_upa;

Addressing individual entries can be done through an index (occupant
[3] .income = 25000.0), or after initializing the pointer with:

occ_upa = occupant;

The name represents the address of the first element. The following
could be written as an alternative:

occ_upa = &occupant[0];

The pointer can also be used to access the entries:

(pointer->income = 25000.0)

The pointer can be used to search the entire array. The following
example sets the pointer to the first free element, provided that in an
unused entry the value zero was stored in age:

while(pointer->age)

pointer++; /* searches all entries */

Further applications of the struct directive will be discussed later.

174

Abacus 19.2 Bit Fields

19.2 Bit Fields

The last remaining data type is the bitfield. Bit fields are really a form

of structure definition. Unlike regular definitions, bit fields are usually

taken apart rather than created. A variable is defined which consists of a

certain number of bits. This variable always represents whole numbers.

The value range depends on the number of bits used. This number can

be calculated with the formula 2numbcr-of-bits. These fields are arranged in
int objects so that the maximum field width is 16 bits. This also

applies to Lattice C which usually has a different concept of int. If a

field doesn't fit into the partially occupied integer value, it goes into the

next one. A lot of memory can be saved by clever selection of the field

width.

struct {

unsigned sex : 1;

unsigned married : 1;

unsigned children : 4;

} data;

As in other structure definitions, the data types are placed inside braces.

To ensure that the bit field contains unsigned whole numbers,

unsigned is used (an abbreviation for unsigned int). A colon

separates the fieldname from the field width in bits. The definition

above occupies 2 bytes (size of a 16-bit integer), but is not completely

utilized. Since only 6 bits are used (1 + 1 + 4), an additional 10 bits

can be assigned for other applications without requiring additional

memory:

struct {

unsigned sex : 1;

unsigned married ; 1;

unsigned nr_children ; 4;

unsigned age ; 7;

unsigned nr_cars / 3;

} data;

Additional data has been stored which occupies only 2 bytes. Access to

each bit field occurs with the (.) operator.

data.nr_children =2;

The limited values must be respected, since in this definition no family

can have more than 15 (24-l) children or operate more than 7 (2 -1)
vehicles.

175

19. Complex Data Types Amiga C for Beginners

19.3 Unions

A special variable exists in C which accepts all conceivable data types.

This union is dimensioned by the compiler in a way that allows it to

accept all data types indicated in the definition.

union Universa {

in i;

double d;

struct Person;

char c[100];

} result;

All data types indicated can be stored in result. It is useful to

remember what type is stored, for example:

result = 2.8;

or

strcpy(&result, c);

The memory requirements of such a variable depends of course on the

length of the largest entry. In the example above this would be 100

bytes used by array c. Please note that only one type can be stored in

this variable. The author hasn't yet found a reason for using union

structures instead of solving the problem with other C data types.

176

Abacus 19.4 Enum

19.4 Enum

The C word enum defines a data type which assigns constant values to

the variables. Short for ENUMeration, enum lets you assign a consis

tent integer number (constant) to a variable. This is useful for assigning

numbers to strings. The following example assigns numbers to the first

three words in color and a specific value to the black variable.

Finally, the assignment to the white variable continues where the

number assigned to black left off:

/* Definition of such a Data Type */

enum color (red, green, blue, black = 9, white)

/* variable Definition */

enum color var, *color_ptr = &var;

var = blue

if(*color_ptr == green)

*color_ptr = black;

The enum type assigns ah integer value to each name starting at zero

and adding one for ieach element. With direct assignment values can be

skipped. The values defined in color are:

red

green

blue

black

white

0

1

2

9

10

177

19. Complex Data Types Amiga C for Beginners

19.5 Typedef

The typedef feature can be used to create new data type names. A

name assigned with this command can be used as another data type

during the definition. The program below gives the word float the

same meaning as the double data type:

typedef double FLOAT;

The advantage of this directive is that typedef permits changes in the

entire program similar to define. Also large data types can be

abbreviated with this command. Look at the example below:

typedef char * STRING;

All pointers to char elements can be defined simply with the word

STRING. The typedef command has an advantage over the

#define directive in that the definition of the replacement occurs in a

different way. One text can be replaced with another text. A blank

marks the spot in which the text replacement appears. The redefinition

of type string into another word isn't possible since everything after

the space behind char already counts as replacement text. With the

typedef command this is just the reverse. The last string STRING is

the replacement for the data type char *. It or the blanks in the middle

always belong to the definition of the data type.

This concludes the introduction to C keywords. These statements can

now be used in smaller programs. Practice makes perfect. Experiment

by changing one or more parameters in the programs to determine the

effect upon the program. Write your own new programs once you've

gotten used to entering the ones already listed above.

178

20.

Important Concepts

Abacus 20. Important Concepts

20. Important Concepts

20.1 Declarations

Declarations declare the data type of a variable or function in a program.

Various declarations have already been used. Directives can appear in

which you have to guess the data type that was declared, unless you

examine the expression for certain rules. First, some simple examples

(the first three are also definitions):

int i; Integer variable

float array[10] Float variable

double *ptr; Pointer to double element

long func(); Function which returns a long value

Every declaration basically contains an elementary data type (char,

int, float), which in certain cases can be augmented by a special

storage class (auto, extern, register, static), or through

attributes such as long, short and unsigned.

extern double sin(); function from another file

returns double-value

static short digit small Integer variable

register long i; long-variable stored in a

register

Each name can also be equipped with combinations of *, Q or even 0-

The asterisk to the left of the name represents the pointer character.

Parentheses and brackets appear to the right of a name. They should not

contain values during declaration, because that turns the declaration into

a definition ([] for arrays and 0 for functions). Combining all parts of a

declaration can result in some complicated combinations:

long *field(); function which returns pointer to

long value

int *i_ptr[]; Field of integer pointers

float (*berech)()/ Pointer to function which

returns float value

char *(*text)(); Pointer to function which

returns pointer to char

int *(*text_arr[])(); Array of pointers to functions

which return pointers to int

181

20. Important Concepts Amiga C for Beginners

Complicated expressions are formed with unified rules. Going through

them step by step makes the routine work later to decode such combina

tions. You'll need the table of operator precedence found in the Appen

dices. From this you can see that the parentheses have higher priority

than the pointer.

Look at the first example listed above:

long *field() ;

Decoding First, the variable field is a function. Look at the left side of the line

expressions for the asterisk which defines the expression as a function. This

function returns a pointer. No additional information exists beyond the

parentheses. The left side of the line identifies the data type long.

Together this information creates a function which returns a pointer to

the type long.

After processing one side of the line, the information to the right of it

must be processed (if priorities permit). The last and most complex

example looks like this:

int *(*text_arr []) () ;

It looks complicated. It can be easily decoded by following the proce

dures as listed above, but the description will take a little longer.

Start with the name text_arr. First test which operators are pro

cessed first according to priority (to the right or left of the name). These

are the brackets which indicate an array. The operator has been processed

on the right; now go to the left. A pointer there indicates that this is a

pointer array. The right side of the line informs you that the pointers

should point to functions (the parentheses are required because of the

high priority of parentheses over the asterisk). Changing sides again,

you note that the function returns pointers. Since on the right side there

is no additional information, continue on the left with the data type.

There it shows that the pointers point to integers. This line declares an

array of pointers to functions which returns pointers to int. Compli

cated expression, complicated sentence; but simple to analyze.

Only data types which cannot be used in definitions as values for pass

ing are prohibited. For example, no function can be declared which

should pass structures, arrays or functions. Pointers to such objects are

permitted and are the only way to access this information.

182

Abacus 20. Important Concepts

Comment: Some new compilers also permit structure passing. This may differ

from one compiler to another. The expression & structure is always

the address of the structure, but structure can represent different

things. In the older compilers this represents the starting address, like

the expression with the address operator. If structure is passed

with a compiler that can already pass the data structure, the entire data

field is made available to the calling function (not just the 4 bytes

which represent the pointer to it).

183

20. Important Concepts Amiga C for Beginners

2 0.2 Initialization

This word should also look familiar from earlier chapters. Before you

continue, here's a brief reminder ofjust what initialization does.

This.expression designates the first value assignment of a variable.

Before using a variable, it must contain a defined value. Otherwise the

result of calculations may be nonsense, or the system may crash. The

initialization can be a direct assignment in the following form:

int i;

i = 0;

Or condensed into one line:

int i = 0;

The initialization in the definition has the advantage of not requiring

additional assignments to set the variable. This saves time and memory.

Declarations, definitions and initializations can be combined with one

datatype:

double number, pi = 3.141592 6, sin();

C permits any constants and expressions during the initialization. The

following assignments can be found in one line:

long number = x * pi - abs(y);

char *cp = string + strlen(string);

The variables used were already initialized or number would have con

tained an undefined value.

Braces can improve visibility for arrays and structures, and separate

individual entries from each other. A pair of braces must be placed

before and after the data which are transferred to the variables. A comma

follows the fields, even if the braces were used. After the initialization

there is a semicolon which is often omitted, causing compiler errors.

Some examples for correct structure definition:

struct CAR {

char make[16];

int hp;

int cylinder;

double price;

struct CAR will have

184

Abacus 20.2 Initialization

"BMW",

120,

4,

40000.0

Or collected together through the structure definition:

struct CAR {

char make[16];

int hp;

int cylinder;

double price;

} will_have =

{

"BMW",

120,

4,

40000.0

};

The examples of multi-dimensional array initialization were already dis

cussed in the chapter about arrays and pointers. Limitations because of

memory classes were also mentioned. Initialization is only permitted

for global, external or static variables. If an auto variable

appears within a function which corresponds to this initialization, e.g.:

char message[] = "Remember the Initialization!";

This can be fixed with a pointer definition:

char *message[] = "Remember the Initialization!";

There are no limitations if the lower definition is used as a pointer vari

able. Another possibility is the use of static variables. It doesn't

matter whether the string is stored in a static or auto variable.

One small word, but a big difference.

static char message[] = "Remember the Initialization!";

185

21.

Pointer Arrays

Abacus 21. Pointer Arrays

21. Pointer Arrays

You worked with pointers and arrays in earlier chapters. As the title

indicates, they can be combined to construct an array of pointers. You

may be wondering what you can do with a pointer array. If you market

ed an existing program in a foreign country, you'd have to find every

piece of text in the source code and translate the text into that foreign

language. It would be simpler and safer to store all the text in one area

of the program, or even in a separate file, and let the translator change

it from there. A pointer array would point toward that area or file.

Let's start with a list of error messages that the user might see after

entering incorrect input. The use of error numbers makes sense, since

some errors occur at several different locations. In the current program

portion, passing the error number to the error routine is sufficient

because the function should do the rest

One solution to this problem would be a function that tests the occur

rence of this error or another error, and display a message if necessary.

error(e_number)

int e_number;

{

switch(e_number)

{

case 0:

puts("Everything OK, no error!")/

break;

case 1:

puts("Wrong key activated!");

break;

case 2:

puts("Please insert diskette!");

break;

default:

puts(Unknown error occurred!");

puts This is a fairly complex implementation of the function which requires

another puts call for each additional error message. The puts func

tion displays a string on the monitor, without the options available in

printf.Itisa little faster than the general output functions, but

various case statements must be added, which slow down the pro

gram. Since every number can be assigned a certain error message

(string), it should be possible to use the error number as an index to a

field of strings. Since a string is usually stored in char error [81],

the memory for the text is defined as a two-dimensional array:

189

21. Pointer Arrays Amiga C for Beginners

char error[32] [81];

Now there is space for 32 strings with a maximum length of 81 charac

ters each. This formulation permits the following routine for error

message output:

error(e_number)

in e_number;

{

puts(error[e_number]);

But the work which was saved here, must be completed elsewhere. Each

string must be initialized with the strcpy function. The following

command sequence shows how:

strcpy(error[0]f"Everything OK, no error!");

strcpy(error[1],"Wrong key pressed!");

strcpy(error[2],"Please insert Diskette!");

It doesn't matter whether text is called with strcpy or puts. A

disadvantage of this method is that memory gets allocated elsewhere.

The definition allocates 81 characters, including a null byte for every

error message, even if a message only requires 20 characters. This

doesn't matter too much in the Amiga, but the user shouldn't develop

bad programming habits. If you do the same thing for a text in which

each word is assigned an entry, memory rapidly fills with garbage.

As a last resort, the string arrays can solve almost all the problems

mentioned above. The definition of a string array is as follows:

char *error[32];

The pointer can be set to the beginning of an error message and can

make the message length dependent on a fixed array length. The next

string starts immediately after the last character of the previous string.

This avoids initialization.

You may remember that a program in Chapter 15 pointed to a string

within program text. This can occur during pointer definition; the entire

pointer array is initialized with the starting addresses of the strings. The

error messages must be defined as global if this turns out to be the

case:

/* error_msg.c 21 */

char *error[] =

{

"Everything OK, no error!",

"Wrong key activated!",

"Please insert Diskette!"

190

Abacus 21. Pointer Arrays

main ()

{

/* Display all error messages */

int i, error_msg = sizeof(error) / sizeof(char

for(i = 0; i < error_msg;

printf("Error Number %d: \"%s\"\n", i, error[i]);

Since the number of error messages are not counted, they aren't indi

cated during the definition. Because of this, additional text can be

entered between braces without making changes. In the actual program,

however, the number must be calculated. The memory requirement of

error can be obtained from sizeof. The error function is now an

array of pointers. Now sizeof reports that the variable consumes 12

bytes. That is the memory requirement for any pointer, and has no bear

ing on the memory needed for the text The 12 bytes are divided by the

space requirement of a char pointer (which is 4 bytes). The result is

the number of pointers, the maximum index minus one (The indexes

start with 0).

191

22.

Useful Macros

Abacus 22. Useful Macros

22. Useful Macros

Much work has already been done with #define. The substituted text,

called a macro, was kept simple; one word exchanged for another. But

that's only half the job, macros also allow you to pass arguments.

Some useful macros have been developed to make parameter passing

easier for the user.

Construction Functions that do little and have concise coding can be written as

of a macro macros. Since macros replace the original text, the compiler translates

the C code directly to machine language at that location. Function calls

or parameter passing is not required. The required directives are located

at the exact location in the program. This makes the macros faster and

more efficient than function calls. If used frequently, however, macros

make the pogram code much larger. The same operations are repeatedly

stored in identical form at the exact place where they are needed in the

program code. An advantage of macros is that they are usually

independent of data types. This condition can be seen in the example of

the max macro created earlier in the book:

#define MAX(a,b) ((a>b)? a : b)

If variables il and i2 have been defined as integers, the following

macro results:

result = MAX(il,i2)/

From the preprocessor

result = ((il>i2)? il : i2);

The variable result is also an integer value. If il and i2 were

defined as float values, the same expression occurs, but a float

number is returned for result. In text replacement it doesn't matter

which data type was used. This is impossible with functions because

the data types are specified for parameters that are passed. This is

extremely easy to use.

195

22. Useful Macros Amiga C for Beginners

2 2.1 Macro Error Sources

Improperly implemented macros harbor some dangers which can lead to

errors. These errors can be extremely difficult to detect, but most can be

prevented with little effort

If the macro call just defined included some parameters which contained

operators, errors could appear. For example:

result = MAX(il | 2,i2);

is converted as usual into:

result = ((il | 2>i2)? il I 2 : i2);

The > comparison operator has a higher precedence than the I character.

This means that first a test is made to see whether i2 is less than 2.

The result of this logical comparison (0 if false, 1 if true) is then com

bined with il using OR, bit by bit. This could not occur in the basic

calculations since they have a higher precedence than the comparison

operators (see the Appendices for a table of all precedences). A simple

remedy is to place all parameters found in the macro inside parentheses.

Use this definition:

#define MAX(a,b) (((a) >(b)) ? (a) : (b))

Side-effects caused by calculations and value changes can also cause

problems. A simple example is the following short program which

should calculate the squares of numbers between 0 to 10.

/*bad_macro.c 22.1 */

#define QUADRAT(x) ((x)*(x))

main()

/* Wrong use of a Macro */

int i = 0;

while(i <= 10)

printf("The square of %d ", i);

printf("is %d\n", QUADRAT(i++));

The output of the program is:

The square of 0 is 0

The square of 2 is 6

The square of 4 is 20

196

Abacus 22.1 Macro Error Sources

The square of 6 is 42

The square of 8 is 72

The square of 10 is 110

Where's the mistake? Examine the material left by the preprocessor for

the compiler. The line with the macro is the important line:

printf("is %d\n", QUADRAT(i++));

It becomes:

printf("is %d\n", ((i++)*(i++)))/

If the square of 2 (i=2) is computed, the following expression is what

was actually calculated and passed to the printf function:

2*3

The variable is incremented before the multiplication, and the second

multiplier is wrong.

You may have wondered why the program uses two printf calls

instead of making do with one. There is another error source here which

must be considered as a separate entity, otherwise this overview would

not cover all possible side-effects. To demonstrate the errors which

occur in printf functions, let's try this with the same function, but

without a macro:

main ()

/* Wrong use of a Macro */

int i = 0;

while(i <= 10)

printf("The Square of %d is %d\n", i, i

As a result you get two squared numbers which don't match the desired

numbers. 4 is offered as 3's square (the square is only calculated for the

preceding number). This is caused by the parameters being placed on the

function's stack (temporary storage), where the function expects to find

them. Unfortunately the storage of these values occur in reverse order,

i.e., first i * i++ is stored, and i is incremented. Then the first

parameter of i, which already has the wrong value, appears.

C language offers many routes to writing short and efficient programs.

However, there is a danger of the new programmer trying too much, too

soon. The side-effects shouldn't occur in functions and macros unless

you know their effects on all variables and parameters. Again, make use

of the precedence table as needed (see the Appendices for this table).

197

22. Useful Macros Amiga C for Beginners

2 2.2 Library Macros

Frequently-used macros are best stored in a library, from which they can

easily be inserted in source code with #include. This group includes

various conversion functions for letters (e.g., testing if a letter is upper

or lowercase). The following defines have the following tasks:

Convert uppercase letters into lowercase letters:

#define to_lower(c) ((c)+32)

Convert lowercase letters into uppercase letters:

#define to_upper(c) ((c)-32)

Test for letters (yes = 1, no = 0):

#define isalpha(c) ((c>>=lAI && (c)<='Zl || (c)>='a' &&

Test for uppercase letters (yes = 1, no = 0):

tdefine isupper(c) ((c»='A' && (c)<='Z')

Test for lowercase letters (yes = 1, no = 0):

tdefine islower(c) ((c»=lal && (c)<='z')

Test for number (yes = 1, no = 0):

tdefine isdigit (c) ((c»='0' && (c)<='91)

Test for alphanumeric characters (letters or numbers) (yes = 1, no = 0):

tdefine isalnum(c) isalpha(c) || isdigit(c))

Test for blank, tab, linefeed, carriage return, formfeed (yes = 1, no = 0):

tdefine isspace(c) ((c)==' • || (c)=='\t' ||(c)== 'Xr1 ||

(c)=='\nl || (c)=='\f)

Test for special characters (yes = 1, no = 0):

tdefine ispunct(c) ((c)>=' • &&!isalnum(c))

Test for printable characters (yes = 1, no = 0):

tdefine isprint(c) ((c)>=040 && (c)<=0176)

198

Abacus 22.2 Library Macros

Test for control characters (yes = 1, no = 0):

#define iscntrl(c) ((c)>=0 && ((c)==0177 || (c)<f '))

Test for ASCII characters (yes = 1, no = 0):

#define isascii(c) ((c)>=0 && (c)<0200)

These defines should be easily understood once they are examined.

They should be written into a file named CTYPE.H, unless this type of

file is already available in a subdirectory. If the following line occurs in

a program, you know what should be found there:

#include <ctype.h>

Remember that for the test for letters, only the 26 letters of the

alphabet are considered. International special characters are not viewed as

letters. Maybe they can be implemented in a suitable manner. Perhaps

the strcmp can be converted with the new defines.

char *s, *t;

int n, compare;

compare = strcmp(s, t);

compare = strncmp(s, t, n);

compare = stricmp(s, t);

compare = strnicmp(s, t n);

The first function is identical to the routine you programmed. It com

pares two strings and returns the result of the comparisons. In the

second function strncmp, the third value indicates up to what point

the comparison should be made. The comparison can be limited this

way to n characters. For example only the first four elements. The

functions which have an i in the name, don't differentiate between

upper and lowercase letters. Comparing the two strings "aBcDEf' and

"ABcdeF' with the function returns the value zero because both strings

are equal.

199

23.

Communication

Abacus 23. Communication

23. Communication

The programs written so far have only displayed data on the screen or

requested keyboard input. It's time to communicate with other devices.

The CLI is the easiest way to transfer data. In this chapter, we'll

communicate with the CLI as well as other devices.

2 3.1 Passing Data with the CLI

All programs are called from the CLI by entering the filename and

arguments (if needed). Here is one type of call to invoke ED:

ED file.c SIZE 50000

This complete line can be made available to the called program, though

not in this form. The operating system modifies this line slightly.

Now comes the question of data transfer. The main function containing

two arguments controls this. Until now every call appeared as follows:

main()

The next code passes two values from the calling program from either

the CLI or a make file. The first value represents the amount of

information and a pointer to a char pointer. This sounds somewhat

complicated, but looking at the input line of the program should make

it clear. First the new version of main with two arguments:

main(argc, argv)

int argc;

char *argv[];

The name of our fictional program is prg. Look at this sample entry:

prg Textl parameter 3 -pi

203

23. Communication Amiga C for Beginners

After the program call, the variable argc contains the number of argu

ments (5). Why is 5 passed when only 4 arguments are available? The

fifth argument comes from adding the program name used during the

call. The name argc (ARGument Count) is a random choice, since it

is an auto variable of the main function. The name argv (ARGu

ment Vector) handles vectors.

Spaces or tabs separate every argument of the input line. After the call

the pointers of * argv [] point to:

argv[0] "prg"

argv[l] "Textl"

argv[2] "Parameter"

argv[3] "3"

argv[4] "-pi"

Let's examine the data. Use the following program to print the data:

/* arg_test.c 23.1 */

main(argc, argv)

int argc;

char *argv[];

{

while(—argc >= 0)

puts(*argv++);

What can be done with this? You can access a small math program by

entering the following in the CLi:

compute 123.5 * 4711

The following program is written so that it will only perform simple

calculations consisting of two numbers and an operator. Feel free to

improve on the program as needed.

/* arg_math.c 23.1 */

extern double atof(); /* Declaration */

int error =0;

main(argc, argv)

int argc;

char *argv[];

double result, value();

if (argc != 4)

printf("\nWrong Entry\nCall: numberl # number2\n");

else

result = value(argv[l], argv[2], argv[3]);

if (!error)

204

Abacus 23.1 Passing Data with the CLI

printf("\n%s %s %s = %.91f\n", argv[l], argv[2],

argv[3], result);

double value(numberl, op, number2)

char *numberl, *op, *number2;

double zl = atof(numberl);

double z2 = atof(number2);

switch(*op) /* only the first character */

case '/':

return(zl / z2);

case '*•:

return(zl * z2);

case '-':

return (zl - z2);

case '+•:

return (zl + z2);

default:

printf("\nUnknown Operator >%s<\n", 7, op);

error =1;

return (0.0);

Lattice

Aztec

The mathematical function/floating point library must be linked to the

standard library because it contains the atof function. Example:

lc -Lm math2

If you work with Aztec C, the mathematical function/floating point

library must be linked to the standard library C.LIB since it contains

the atof function. Example:

cc +L math2.c

In math2.o -lm -lc

205

23. Communication Amiga C for Beginners

2 3.2 Buffered Input/Output

Many programs require permanent data storage for files, whether it is a

database or a word processor. These require routines that control input/

output with external devices such as printers, disk drives, RS-232 inter

faces or a hard disk drive. The operating system provides various func

tions for this purpose. These routines can be divided into two groups;
buffered input/output and unbuffered input/output.

This type of data transfer does a lot of work, even though it may not

seem evident at first. For example, all data selected for transfer to disk

goes to a buffer first. When this buffer completely fills, the data goes to

the disk. The question is, why do it this way?

A disk drive reads and writes information much slower than the com

puter can send or receive it. This is caused by the mechanics of the disk

drive. Before writing any data, the read/write head must move to the

track where the data is stored. Then it must wait until the disk rotates to

the right location. Only then can data be written. Although this timing

is brief in human terms, the computer (actually its central processing

unit or CPU) is kept waiting a very long time.

Disk buffers If you transmitted every character with this method, the computer would

spend more time waiting to place a single character on the disk drive

than performing any other task. For this reason, smaller amounts of

data move to an area of memory in the computer before transmission.

Once this buffer fills, the data moves to the disk drive. This reduces

computer waiting time. As soon as the drive writes the first character to

the proper place, it can place the other data right behind it and write the

complete buffer in one pass. This reduces the number of disk accesses,

which accelerates program execution. The same principle is also used
for reading data.

The functions which perform this job are get c and putc, which like

their relatives getchar and putchar, input or output a character.

These functions are not part of the C language. For this reason they can

be found in a library, or in this case as a define in a header file (.h).

The definition of getc and putc can also be found in the stdio.h

file with the familiar putchar and get char.

#define getc(p) (—(p)-> _rcnt>=0? *(p)->_ptr++:_filbf(p))

#define getchar() getc(stdin)

#define putc(p) (—(p)-> _wcnt>=0? *(p)->jptr++=(c))):_flsbf((c),p))

#define putchar () putc(c,stdout)

206

Abacus 23.2 Buffered Input/Output

Let's clear some of this up. The definitions of put char and

getchar are all you need to know for now. Both can be traced back to

getc and putc and represent special versions of the two functions.

Before the first character can be moved with these functions, a channel

must be opened. A channel is just a data line to a certain device. No

cables actually open up a channel, but the system knows where to send

the information. A special code obtained from the operating system

during the opening of the channel allows addressing the device at any

time. Devices and individual disk files can be addressed.

Several files can be addressed on the same drive without having data

conflict The file pointer indicates the channel. Since a buffer is used for

input/output, the computer must be informed of where the data should

be stored intermittently and how large a space must be reserved. A

structure named file (notice the uppercase letters) defined in stdio.h

contains all necessary data for buffered input/output. The following list

ing writes a file and then reads it again:

/*fprint-fscan.c 23.2.1 */

#include <stdio.h>

main ()

{

FILE *input, *output, *fopen();

char filename[81], text[200];

printf("Please input file name!\n");

scanf("%80s", filename);

printf("Input a (long) word!\n");

scanf("%200s", text);

output = fopen(filename, "w");

printf("Filehandle %d\n", output);

fprintf(output, "%s", text);

fclose(output);

input = fopen(filename, "r") ;

printf("Filehandle %d\n", input);

fscanf(input, "%200s", text);

fclose(input);

printf("The Text: >%s<\n", text);

}

The f open The fopen function opens the channel and returns the file pointer,

function used for all future access, to this file. Since fopen returns something

other than an integer, it must be declared as a function which returns a

file pointer. This routine requires two arguments: the name of the file

and the access mode. The user can enter the name. The access mode tells

the computer what should be done with the file. The mode can be one

of three letters:

207

23. Communication Amiga C for Beginners

r (read) opens a file for reading

w (write) opens a file for writing

a (append) opens a file for adding additional data

A file opened for reading (r) can only read data, not write data. A file

open for writing (w) lets you write data. The append (a) mode writes

data to the end of an existing file. In normal write (w) mode, writing

starts at the beginning of the file and overwrites existing data. This can

easily lead to loss of data. The example above overwrites an existing

file and destroys some previously stored data.

After the opening, the file is ready for writing. The file handle appears

on the screen. The scanf function assigns the characters entered

through the keyboard to the string text. The fprint f function can

write data to a file. It is almost identical to the printf routine, but

differs in the first argument. Before the command string, a file handle

must be passed to assign the information to the correct file. After

writing, the file closes. This step is very important because of the

buffer. All input/output goes there for intermediate storage until the

buffer is filled. Some of the data input can still be stored in that buffer.

If the user assumes that everything was stored on the disk and switches

off the computer, the data still in the buffer would be lost. For this

reason the fclose call closes the channel after writing the remaining

buffer contents to the open file.

Now the file reopens again, but this time for reading which is signaled

with mode (r). Since keyboard input always uses scanf, the fscanf

is used here. First the file pointer and the arguments of the scanf

routine must be passed to the read function.

The correct closing of the file follows. If you omitted this instruction,

data loss cannot result. However, it's good practice to close an opened

file immediately after use, not only because it is good housekeeping,

but also because a computer can maintain only a certain number of

open files. If more files are opened, a channel cannot remain open at a

certain time. Should an error occur, because the operating system

cannot make a channel available, the file pointer is returned as zero.

This happens when no channels are available, or the file which should

be read does not exist.

The next example program is a small copy program. It is called with

arguments and therefore is able to accept arguments from main.

One difficulty must be avoided. Nobody knows in advance what type of

data will be transmitted. The fscanf cannot be used since it has to

indicate if strings or numbers are used. The program can only read one

character at a time. The scanf routine with the format instruction %c

can be used, but the fgetc function works much better. It reads a

character from an input file and is much faster than the f scanf

function. The fputc statement performs the output

208

Abacus 23.2 Buffered Input/Output

After opening the two files, a character is read and displayed immedi

ately, until.... You don't know when all data has been copied. How can

you detect when the last character has been read? The problem has

already been solved, fgetc returns a special character if no additional

information is available—end of file (EOF). The #include file

stdio.h contains this text as a define so that the incoming charac

ters only have to be compared with EOF.

EOF is stored there as -1. This has consequences which at first are not

evident Valid data have codes which in fgetc are between 0 and 255.

When -1 appears, no char variable can be selected to accept the charac

ter. Either negative numbers are ignored or data is lost. For this reason,

int variables are used even if only a char element is stored in them.

/* copier.c 23.2.1 */

Hnclude <stdio.h>

main(argc, argv)

int argc;

char *argv[];

{

long copyO; /*If it is interesting */

if(argc !=3)

{

printf("Bad Arguments!\n");

printf("From_file to_file\n");

}

else

copy(argv[l], argv[2]);

copy(fromfile, tofile) /* Copy Routine */

char *fromfile/ *tofile;

{

FILE *input, *output, *fopen();

register long counter = 0/

register int c;

if(!(input = fopen(fromfile, "rb")))

/* Open as Binary file */

{

printf("%s can not be opened!\n", fromfile);

return 0L;

}

if(!(output = fopen(tofile, "wb")))

{

printf("%s can not be opened!\n", tofile);

fclose(input); /* Was OK */

return 0L; /* Zero */

while((c = fgetc(input)) !=EOF)

209

23. Communication Amiga C for Beginners

fputc(c, output);

counter++;

fclose(input);

fclose(output);

printf("\n%ld Bytes copied!\n", counter);

return(counter);

This copy program is called as follows:

copier [d:] [\path]namel[.ext] [d.][\path]name2.[ext]

Everything written into the brackets is optional and can be omitted.

Only two filenames must be provided. If an error should occur during

the opening of the two files, an error message appears. An error mes

sage is also displayed if too many or too few arguments are passed.

Since it is very slow, this program is unsuitable for everyday use.

However, it's a suitable demonstration program. Let's limit the

discussion to the essentials. The files are opened as binary files with rb

and wb (Aztec compiler users should omit the b; the file always opens

as a binary file). For example, this prevents any conversions being

attempted which could occur in text files. During reading all \ r

characters (carriage return) are erased automatically and characters with

code 26 (<Ctrl><Z>) are converted to EOF. During write the linefeed

(\n) is converted to a character combination (\r\n). Opening the file

with the appendix b (binary) returns all characters as they are stored in

the file. During the write all characters sent are stored in the file and

not converted.

210

Abacus 23.3 More Buffered Input/Output

2 3.3 More Buffered Input/Output

Besides fgetc, fputc, fscanf and fprintf there are some other

important functions that use the internal buffer. Among them are

f read and fwrite. These routines transport any number of bytes.

For this reason two additional arguments are required for f read and

fwrite. One argument is the area which serves as the buffer and the

other the size of the units to be transmitted. This needs some explana

tion. The buffer in previously used functions was always located in the

file structure. Since only small amounts of data were transported, the

buffer did not have to be large (512 bytes). Since the user can now

determine how much data is transmitted, this buffer may be too small.

For this reason the user must define the memory area, thereby setting

the maximum size of the data transfer. The data size must also be indi

cated. In getc and putc only one character can be transmitted (1 byte)

and the size of the char object doesn't have to be indicated. If a long

value, instead of a character, is stored, 40 bytes must be transmitted for

10 of these values. The object size (in this case four bytes each) is the

second argument that must be passed. If the data type is unknown, the

si zeof operator should be used because it returns the correct value.

Besides these two arguments, the number of units to be transmitted

(char, int, structure,...) and the file pointer must be transmit

ted. The buffer size determined at the time of definition should not be

too small. A call of this function appears as follows:

Datatype buffer[Element]; /* Definition of the buffer */

fread(buffer, sizeof(Datatype), Element, filejptr);

The first argument is the buffer from which the data is read. The buffer

should be the same type as the units to be transmitted. The second

value is the unit size. This unit is a data package which can be trans

mitted as one item. If long variables are transmitted, it makes sense to

indicate 4 bytes as data block length, since 4 byte units are the normal

memory requirement. If 100 double variables are stored, 100 is placed

at the element. Finally a file pointer is added, which was received from

fopen.

If data is read or written, the argument sequence and type remains the

same. The fwrite function stores the data using this syntax:

int table[876], size = 876;

FILE *outptjptr;

fwrite(table, sizeof(double), size, outpt_ptr);

211

23. Communication Amiga C for Beginners

If the value of size is not specified, either through a variable or with a

define, the sizeof operator can be read:

sizeof(table)/sizeof(int)

The function returns the number of completely transmitted data pack

ages. This ensures storage of all data. During copying data can be read

until the number of requested data differs from the data delivered. If

fread returns a zero, the last data was read. A sample program:

/* fread.c 23.3 */

#include<stdio.h>

#define NUM_DATA (sizeof(data)/sizeof(long))

Long data[] =

{

4711, 815, 1024, 1, 31415926, 0, -13, 10,

OxFFFF, 065432

main ()

{

FILE *input, *output, *fopen();

int i;

long test[NUM_DATA];

char filename[81];

printf("Please input filename!\n");

scanf("%80s", filename);

printf("Data size %d, Elements %d\n",

sizeof(data), NUM_DATA);

output = fopen(filename, "wb")/ /* binary! */

fwrite(data, sizeof(long), NUM_DATA, output);

fclose(output);

printf ("Read Data'An");

input = fopen(filename, "rb");

printf("%d Elements read\n",

fread(test, sizeof(long), NUM_DATA, input))/

fclose(input);

for(i = 0/ i < NUM_DATA;

printf("%ld\t", test[i]);

printf("\nDone!\n");

This program writes a long array to the file after entering the filename.

The array size and the number of elements appear on the screen. The

define num_data stores all data on the disk. After closing the file,

another array accepts the data read. All data appears on the monitor.

Lattice C users must open the file as binary, or internal conversion

produces false values in the variables. If fwrite and fread are used,

the file must also be opened as a binary file.

212

Abacus 23.4 Unbuffered Input/Output

2 3.4 Unbuffered Input/Output

Besides the buffered functions just demonstrated, there are other routines

which do not require a buffer. The data to be transmitted don't have to

be stored in a buffer, but can be stored immediately. This cancels all the

effort required for the buffer and internal pointers. This also cancels the

need for a file pointer through which the operating system can access

the buffer. A channel number assigned during the opening must be used

as identification. This channel number is stored in an integer variable

and replaces the file pointer in all calls. The open function opens a

file. Filename and file mode (as an integer) arguments pass to the

function. In f open the mode must be a string, while in open the

mode is one of three values: 0,1,2 or 8. These numbers correspond to

the strings r, w and a.

0 opens a file for reading

1 opens a file for writing

2 opens a file for reading and writing

8 opens a file for appending

Instead of these numbers defines can be used to make the program

more readable. They are stored in a header file named fcntl.h and are

defined as follows:

#define O_RDONLY 0

#define O_WRONLY 1

#define O_RDWR 2

#define O_APPEND 8

To use these defines, the file must be included in the source with the

sequence:

#include <fcntl.h>

Another difference from the f open routine is that open always

assumes the existence of a file. The following call creates a file even if

the file already exists:

fopen("filename", "w")

The open function always prompts for the name of an existing file.

The create function must be used to create a new file.

The create function returns an integer (the file handle). You don't

need to call open. If an error occurs and the file cannot be opened, both

create and open return the value -1. Before using the returned value

as a file handle, check the file handle for a value of -1, or the system

213

23. Communication Amiga C for Beginners

will crash. The key combination <CtrlxCommodorexAmiga> resets

the computer, but deletes any data in the RAM disk.

A file opened in this manner allows writing using the write function

instead of the fwrite function. Since this method uses no buffer,

only certain input/output functions can be accessed. Also, the read

function replaces the fread function. Buffered functions have an f in

front of their name (e.g., fopen, fread, fclose). Unbuffered func

tions omit the f. The close function closes an unbuffered file.

The following function stores a list of double numbers.

/* write-read.c 23.4 */

#define NUMBER (sizeof(data)/sizeof(double))

double data[] =

{

1.5, 2.0, 3.14159265, 2.718281828,

main ()

{

int handle, dummy =0, i, actual;

double data2[NUMBER]/

char filename[81];

printf("Please input filename!\n");

scanf("%80s", filename);

handle = creat(filename, dummy); /* Create new */

if(handle != -1) /* Everything OK? */

{

actual = write(handle, data, sizeof(data));

printf ("Desired %d Bytes, Actual %d Bytes\n",

sizeof(data), actual);

close(handle);

}

else

printf("Error during creation of %s\n", filename);

handle = open(filename, 0, dummy); /* Read */

if(handle != -1) /* Everything OK? */

{

actual = read(handle, data2, sizeof(data));

printf("Desired %d Bytes, Actual %d Bytes\n",

sizeof(data), actual);

close(handle);

}

else

printf("Error during opening of %s\n", filename);

for(i=0; i < NUMBER; i++)

printf("%.81f ", data2[i]);

printf ("\nThafs all!\n");

214

Abacus 23.4 Unbuffered Input/Output

The open and create functions, which return a file handle, have a

peculiar variable named dummy. This variable represents a value which

may be unnecessary, but the compiler checks for this variable if needed.

The value stored in dummy, as the name suggests, has no significance.

In open the second argument represents the dummy value for reading

or writing.

The write and read functions have one less argument than fwrite

and f read. Furthermore (and this is important), the file handle is

placed at the beginning, not at the end as in the buffered functions. The

unbuffered functions transport the data one byte at a time only. This

means that the size indication is unnecessary. The return value is the

number of bytes transmitted so far.

215

23. Communication Amiga C for Beginners

2 3.5 Direct Access

The following functions provide the user with the ability to directly

access certain characters in a file. The difference from the usual read

lies in the fact that not every character must be read starting at the

beginning of the file until the program finds the particular characters.

To access the last ten characters in a file of 1,000 characters, 990 char

acters would have to be read first. With direct access, the command

starts the reading after the 990th character. A file pointer always points

to the last accessed data. During a sequential read or write, when

one character after another is processed, this pointer always increments

by one. The functions lseek and fseek let the user set this pointer

to any desired position. Both routines require three arguments for this,

where lseek is the unbuffered version and f seek the buffered

version. For this reason lseek requires the file handle as the first

argument, while fseek expects a file pointer. A second value follows

the number of bytes by which the pointer must be moved. Positive

values move the pointer toward the end of the file, negative values

toward the beginning of the file. This value must be passed as a long

value. The third argument, an integer, indicates from which position the

movement should start. A 0 sets the data pointer to the beginning of

the file, 2 to the end of the file and 1 to the current position. Some

examples:

lseek(f_handle, 100L, 0)/

The data pointer moves to position 100 (i.e., 100 characters from the

start of the file). It now points to the 101st byte of the file. The follow

ing function places the pointer at position 70, since the call passed the

value 1:

lseek(fjiandle, 70L, 1);

The 1 indicates the calculation of the new pointer position from the

current location. To move the pointer 20 characters toward the begin

ning of the file, the following function is required:

lseek(f_handle, -20L, 1);

If the processing of a file should start from the end of the file, the

pointer can be set to the last position of the file with:

lseek(f_handle, 0L, 2);

This shows that in mode 2 (end of the file), only negative numbers or 0

are permitted since the pointer is already at the end of the file. In mode

0, only positive numbers or 0 can be used. These functions only move

216

Abacus 23.5 Direct Access

the file pointer. The data must be read or written with the various func

tions such as read or write.

The lseek function returns the value of the data pointer after the

move, f seek returns either 0 or -1. With -1 an error occurred, other

wise everything proceeded without a problem.

Two additional routines, a buffered and an unbuffered version, can sense

the current value of the data pointer. Since it is a long value, the

ftell and tell functions must be declared first. The only required

argument of both functions is the proper file handle.

The function call could be replaced with the call:

lseek(f_handle, OL, 1) ;

which indicates the value of the current data pointer.

217

23. Communication Amiga C for Beginners

2 3.6 Reading a Character

The getchar

function

Our previous programs used scanf to read a character from the key

board. The problem with this is that you have to press the <Return>

key after every character. A word processing program would be

intolerable under these conditions. Even a modest application such as

controlling the cursor in all four directions would be difficult

The getchar function offers help. This function receives the pressed

key's code immediately. Even here there is a difference between theory

and practice. Almost all other C implementations use this function

according to rules—except for the Amiga. The Amiga requires the

<Return> key for execution.

23.6.1 Standard Input/Output

Usually data is entered through the keyboard into the computer. Mes

sages and the results of calculations usually appear on the screen. These

two devices combined are called the console. If you do not instruct the

computer to get the source data from or send the destination data to a

particular device, it defaults to the standard input/output (keyboard and

screen). The good news is that these devices can be changed by the user.

The Amiga can input data from another device instead of the keyboard.

Standard The standard input device is the keyboard. The standard output device is

devices the monitor screen, or screen for short. In various windows the output

defaults to the CLI window. This window is the standard output for

your previous programs. All CLI limitations also apply to your pro

gram. This causes the error in getchar.

The CLI is line-oriented. Data processes after you enter your input and

press the <Return> key. Anything can be typed in without the com

puter reporting, during input, that this isn't permitted. Press

<Ctrl><G> to make the screen blink. Even though these characters can

be entered, you cannot display them on the screen. If you try this, the

blinking function executes. The CLI is an input console which

processes whole lines and not single keys.

This rule of using only complete lines also applies to programs started

from the CLI. Now that you know why <Return> must be pressed, it's

time to create a user-defined window to solve this problem.

218

Abacus 23.7 A User Window

2 3.7 A User Window

Creating a personal window is fairly simple. Developing your own

window consists of opening an output file, since the output is written

into this newly created window. The keyboard then acts as the input

device, according to the arguments set by the user window.

23.7.1 The Three Windows

You have three device options for opening non-CLi windows:

CON:

RAW:

These strings follow the open command in the CLI. They replace the

usual filenames and drive specifiers. The asterisk sends data directly to

the CLI window; a new window isn't created. Nothing has changed for

the input either. Opening an asterisk device only causes the same

trouble as before.

The CON: device creates a user window. The open call as listed below

creates an unbuffered open file and a pathname of CON:

open("CON:0/0/200/50/Title line", 0, dummy)

The CON: device name replaces the drive specifier, and the new

window's coordinates follow. Finally the name Title line appears

in the upper left corner of the title bar. A slash character (/) separates

the window arguments. The other arguments such as 0 (read) and the

dummy value follow the usual syntax of the open routine.

The returned file handle appears in the examples with all read calls.

An 81-character string acts as a buffer. Try this short routine:

/*windowl.c 23.7.1 */

tdefine c *character

#define ESC 27

main ()

{

int dummy = 0, num, handle;

char character [81], line[256];

219

23. Communication Amiga C for Beginners

handle = open("CON:0/0/200/50/My Program", 0, dummy);

printf("Opens %d handle\n", handle);

if(handle != -1)

{

do

{

num = read(handle, character, 1);

printf("Character >%c< Code %d\n", c, c);

} while (c !=ESC);

close(handle);

If you forget to test for a successful opening of a file, the computer

may crash using -1 as handle value. When the program executes, a new

window appears; nothing happens after you press a key. All keys are

processed only after you press the <Return> key. A new window

appears. Unfortunately the window only works in line mode, like the

normal CLI window. Press <EscxReturn> to exit the program.

The raw: option also creates a window. The difference between this

option and CON: is the way the information is displayed. A raw:

window displays information in "unfiltered" form (i.e., control

characters and garbage appear). Change CON: to raw: in the above

example. Compile, link and run this new version and watch what

happens next

Again a new user window appears. You can size this window and move

it around the screen. Select the new window and send data to it (type on

the keyboard). Notice that the window reacts to every keypress. How

ever, the input doesn't appear in the user window. The program seems

to be ignoring the RAW: specification.

All output with printf continues to go to the CLI window. This

isn't surprising since it's the standard output device for programs started

from the CLI. To write something into the user window, for which a

special handle has been issued, a write routine must be used. Instead

of printf, use fprint which has the same functions.

Wait a minute. The fprintf function is a routine for buffered files

and an unbuffered file was opened with open. It only works if the file

handle was obtained with fopen. Since the handle is an integer value

and not a file pointer, the handle doesn't fit the fprintf. However,

the library contains a command named sprint f. Instead of writing

the prepared data into the standard output of the buffer, everything goes

to a string. The following example invokes this function:

char string[200]; /* not too small */

int test = 4711;

sprintf(string, "The result is %5d\n", test);

220

Abacus 23.7 A User Window

Now the user can write anything into his own window—the print f

function isn't required for output into the CLI window. Now every

thing needed for input/output in the new window is available. Here is

the corrected listing:

/* window3.c 23.7 */

#define ESC 2 7

main ()

{

int dummy = 0, num, handle;

char c, line[256];

handle = open("RAW:50/50/200/60/My Program", 0, dummy);

printf("Handle %d open\n", handle);

if(handle != -1)

{

do

{

num = read(handle, &c, 1);

/* write(handle, &c, 1); output only the character*/

sprintf(line, "Character >%c< Code %d\n", c, c);

write(handle, line, strlen(line));

} while (c !=ESC);

close(handle);

221

23. Communication Amiga C for Beginners

23.8 Redirection

The operating system controls the redirection of data so the programmer

doesn't have to worry about it. The use of standard input/output acts as

the condition for ensuring data redirection. This includes familiar func

tions such as printf, scanf, putchar, getchar, puts, etc.

Look again at the first RAW program above which used printf for

text output. This example will help you understand redirection.

The "normal" call for programs not expecting arguments is:

program_name ,

Instructions that are executed by the operating system and not by the

program can follow the filename. The greater than (>) or less than (<)

characters precede these instructions. The characters inform the

operating system that the standard input/output should be modified.

Here's a practical example:

prg <filel >file2

The program never sees these two arguments. The operating system

reads the standard input from filel and sends the output to file2.

The operating system also opens and closes the files automatically. The

greater than (>) and less than (<) characters indicate the direction of data,

as an arrow would indicate direction. You can immediately see that the

data goes to the filename file2. Let's examine this process using the

window2.c RAW program in the previous section. The printf can

be redirected so that all text goes to a file or a printer (device prt:).

Start the program (called window2 here) with the following line:

windov/2 > output.data

The new window appears again but no keypresses seem to affect the

window. That's all right, since the output which would otherwise

appear in the CLI window now goes to the file output.data. After

typing on the keyboard for a while, press the <Esc> key. The window

disappears and the user returns to the CLI. The output.data file can

now be read using the type or ED commands.

Input can also be redirected from the keyboard to a file. This is how a

make file could be created. In these programming examples this

wouldn't make sense since you don't read from the standard input. A

redirection would not make much sense in this case.

222

Abacus 23.8 Redirection

The standard input/output is a normal line. Just as in opening a file, a

file handle is returned. Since these lines are always open, the program

mer doesn't have to worry about them. There are of course variables for

these handles. They are:

stdin

stdout

stderror

The stdin variable represents "standard input" and the stdout vari

able represents "standard output." What is the third?

In addition to the input and output of "normal" information, C offers an

error channel. This makes sense in the following situation.

As described above, the information is redirected. Because an error

occurred in the input (e.g., a nonexistent input file) an error message

appears on the screen. Wait, the standard output was written to another

file. This would mean that the error message was written to the file and

the user might not know about this error. For this reason error mes

sages use a separate channel to display user messages.

All three variables (stdin, stdout and stderr) can be used as file

pointers which are returned through fopen.

Caution: These buffered input/output routines should not be confused with the

unbuffered ones. Permitted functions with the file pointers above would

be fprintf, fwrite, f read, etc.

The definition of getchar can be found in the file stdio.h under:

getc(stdin)

223

24.

Tricks and Tips

Abacus 24. Tricks and Tips

24. Tricks and Tips

During programming unexpected errors can sometimes occur. For a

novice programmer, the reasons for these problems can be very hard to

find. Much work is often required to determine whether the cause of the

problem is in the source code, the compiler or the operating system.

This chapter has a few hints for helping you find those errors.

You'll find that this chapter contains a number of tips and tricks for C

programming on the Amiga. These tips include the creation of C

programs that are accessible from the Workbench, preprocessor

directives and macros.

2 4.1 Starting from the Workbench

You may have already tried to start your own C program from the

Workbench. Perhaps you wondered why, despite a full disk, nothing

appeared in that drawer's window. The reason for this is that every

visible program has an additional file used for storing the program's in

formation and icon data. Every program which appears in a Workbench

window has a file with the extension of .info.

Our C programs also need .info files before they can be accessed from

the Workbench. Select a suitable icon on the Workbench (the clock or

Notepad, for example). Any other icon can be selected for this program.

Now enter the CLI. Copy only the source .info file to an .info file

for your file. Remember to use the .info extension for both files in

this command. The example below copies the Notepad.info file to

a new .info file for the file test-workb:

copy notepad.info test-workb.info

Change test-workb to your own filename, and remember to keep

the .info extension on both filenames.

Quit the CLI. Click the disk icon containing the target file and .info

file to display the icon. If the icon is covering another icon, move it to

a free location in the window. Click once on the icon. Press a <Shift>

key and click on a disk icon. Select Snapshot from the Special

menu to save the new position.

The following program will tell you how it was accessed, from the

Workbench or from the CLI.

227

24. Tricks and Tips Amiga C for Beginners

/*access.c 24.1 */

#include "stdio.h"

main(argc, argv)

int argc;

char *argv[];

{ int dummy = 0, handle;

char line[256];

if(argc) /*Argument number not equal to 0 */

handle = open("RAW:50/50/200/60/My Program", 0, dummy);

if (handle != -1) /* No Error on opening */

sprintf(line, "Started from CLI!\n");

write(handle, line, strlen(line));

while(—argc >=0)

write(handle, *argv, strlen(*argv));

argv++;

read(handle, line, 1); /* Wait for key press */

close(handle);

else

fprintf(stderr, "\nError in opening Window\n");

else

printf("Started from the Workbench!\nRETURN-Key!\n");
getchar();

It is important that the programmer know whether the program started

from the Workbench or CLI. The argument counter arg senses this. If

arg=0, the user started the program from the Workbench. Consider the

possible values in the CLI. As a minimum, argc contains a 1 only

when the program name was used during the call without additional

arguments. Otherwise this variable is incremented by the number of

parameters. The 0 is an ideal method of differentiation between the two

calls. The big question: "Who cares where the program started?"

Start the program window2, from the previous chapter, which opens a

window. The Workbench creates an additional, useless window. One

window is used, the other remains empty. There must be an option of

sensing a program start from the Workbench or from the CLI.

In the first case you get a window automatically and the standard input/

output is automatically directed to this window. The basic functions

such as scanf and printf can be used, and you can still enjoy the

use of your own window. In the second case, the user must handle his

own window and input/output.

228

Abacus 24.2 Other Preprocessor Directives

2 4.2 Other Preprocessor Directives

The directives #define and #include should be familiar to you by

now. Preprocessor directives make the programmer's work easier. The

most important are the following:

#undef MACRO

Undefining This is the opposite of #define. This undefines (cancels) the macro

definition. Assume that two #define directives had been used as

follows:

#define EOS 0

#define EOS '\0'

Any subsequent program sections use the most recent definition of

EOS. The first assignment is ignored for the moment. This process can

be compared with local variables which use the same name. Access can

only occur to the last variable (definition) defined. If the definition is

reversed with #undef, for example:

#undef EOS

the defined EOS is still present, but now with the first assignment (0).

Partial The following directive permits the compilation of certain portions of a

compilation file, depending on the macro that was defined:

#ifdef MACRO

Should the macro be defined, the following portion is processed by one

of these two preprocessor directives:

#elseif MACRO

#endif MACRO

If the macro is unknown at this point, all lines are skipped up to the

following directives. Ifan#elseif appears the subsequent source

code is compiled up to the #endif.

These directives are comparable to the C commands:

if 0

else

229

24. Tricks and Tips Amiga C for Beginners

The commands themselves have nothing to do with the final code. The
reversal of the process makes the following line possible:

#ifndef MACRO

Here the macro cannot be defined, so the part following can be com

piled. Certain parts of a file can be included or left out through the

setting of a define, without changing the file to a great extent.
Where are the directives used?

In programs intended for compilation on other compilers or even other

computers, some differences must be considered such as compiler errors.

To achieve an error free compiler run, a define can indicate the

compiler type. These directives can be found in some header files which
come with the compilers.

230

Abacus 243 Finding and Removing Errors

2 4.3 Finding and Removing Errors

No program, in the initial stages of development, is free of either

syntax or logical errors. The compiler calls these syntactical problems

to your attention. Removing these errors shouldn't be a problem. This

section describes a few of the possible meanings behind these errors.

Missing semicolon

If the semicolon is not missing in the line indicated, check one or two

lines above the line stated by the compiler and check the level of paren

theses.

Braces do not agree

This error often requires a search of the whole area preceding the error. If

you omitted a brace somewhere, the following part is added to the
function described up to this point. This in turn leads to mysterious

error messages, for example the missing semicolon in the next function

definition.

• Wrong answers

If a function which executes flawlessly suddenly returns wrong results,

the error may be caused by a failure to declare the function (not for

int). For this reason all functions not having a return value of int

should be declared globally at the beginning of the file. The global

declaration keeps newly added functions, which also use this routine,

from erroring out. Complex formulas which work with various opera

tors and data types should generally be in parentheses. This not only

makes them more visible, but also prevents errors. Nobody knows all

the priorities of various operators by heart and this can quickly lead to

problems if a mistake is made. It is better to use one parenthesis too

many than one too few.

• Easily confused character combinations

Even experienced programmers have misread these characters:

==and =

&Sc and&

I I and I

Watch for the legal maximum values of the various data types in calcu

lations. They may differ from one compiler to another:

231

24. Tricks and Tips Amiga C for Beginners

char -128 to 127

int -32,767 to 32,766

long -2,147,483,648 to 2,147,483,647
38 38

float -10 to 10

double -10303 to 103°3

These can never be exceeded, even in intermediate results of a long equa
tion such as:

i = (x * y * z - z) / y - x;

This can happen quickly with x * y * z if the three factors contain
large numbers.

• System crash

This may have many causes. For example:

Pointer not initialized

Wrong parameter passed (wrong data types)

Pointer access to odd address (except for char pointer)

232

25.

System

Programming

Abacus 25. System Programming

25. System Programming

One of the reasons people work with C language is because of its
speed. The main reason Amiga owners use C is probably because die
Amiga's operating system was written in C. Knowing the peculiarities

of C often helps you understand the Amiga's operating system. This is
especially noticeable during system programming when you try to get

more performance from the computer.

Intuition This chapter takes you into the world of Intuition. Intuition is the
section of the operating system that is concerned with windows,

screens, icons, gadgets, menus and the mouse. Intuition's capabilities
are so vast that we can explore only a small portion of this material.

You'll find additional references suggested if you wish to explore

further. We chose to limit ourselves to introductory material on

Intuition, especially the creation of windows and screens.

One small warning in advance: Intuition is very complex. You'll see
this from the C source that follows in this chapter—the source codes

are much more complicated than the ones you've seen so far. Even if
you don't understand everything, you should try the programs and

experiment with them.

2 5.1 The Intuition Principle

To use Intuition in user programs, some conventions must be followed.

For example, Intuition routines can be used only when the Intuition

library has been opened. Intuition is simply a large library containing

the functions used in connection with windows and similar things. The

difference from the C libraries presented up to now is that these routines

are not linked during linking. The user relies on the fact that they are

stored somewhere in the computer and are available during program

execution. This has some advantages. Since many programs use the

same Intuition routines, they don't have to be stored several times in

the memory. Every program can use the routines for its own purposes,

even if they work with other programs in memory (multitasking). This

saves working memory. It makes no difference where these routines are

stored in the memory. When you open the intuition.library, a

pointer is returned to the beginning of this function list. A trademark of

Intuition programming is a lot of pointers and structures.

235

25. System Programming Amiga C for Beginners

2 5.2 A Window under Intuition

We displayed a window on the screen with the normal open function.

This function lets the user select the size and position in advance, and

permits window sizing and movement. However, Intuition offers
special features for windows. Let's look at the required structure which
contains all the important information for the window:

struct NewWindow

{

SHORT LeftEdge, TopEdge;

SHORT Width, Height;

UBYTE DetailPen, BlockPen;

ULONG IDCMPFlags;

ULONG Flags;

struct Gadget *FirstGadget;

struct Image *CheckMark;

UBYTE *Title;

struct Screen *Screen;

struct BitMap *BitMap;

SHORT MinWidth, MinHeight;

SHORT MaxWidth, MaxHeight;

USHORT Type;

}

The The structure definition can be found in the header file intuition/
NewWindow intuition.h. Now let's filter out the items that we are really going

structure to use. The name is already remarkable: NewWindow. The same file

usually contains a structure named Window. You need the

NewWindow structure to define a new user window.

The first four entries represent the upper left corner and the window's

dimensions in height and width. These are the same values as those
used in the CLl's Open command:

open("CON:20/40/200/50/windowtitle"f 0, 0);

To use the same values for the Intuition window, the values are

assigned to the structure components. The following definition precedes
the window description:

struct NewWindow NewWindow;

NewWindow. LeftEdge = 20;

NewWindow. TopEdge = 40;

NewWindow.Width = 200;

NewWindow. Height = 50;

236

Abacus 25.2 A Window under Intuition

The capabilities a CLI Open command can't provide are color settings

for the window.

The values in DetailPen specify the window title and the height of
the title bar. The number describes the color register index. If 4 possible

colors are available, they are numbered from 0 to 3. The colors cannot

be changed because they're determined by the settings in Preferences.

The background always occupies register 0. The BlockPen register

draws the color for the window's border.

25.2.1 The Window Flags

The next entry (iDCMPFlags) will be skipped since it isn't used. The

element Flags in the NewWindow structure determine certain items

in the window, which are set with defines. Every define deter

mines whether or not an Intuition function is required (e.g., WINDOW-

SI z ING). Look at the defines used in the sample program.

There are many more useful defines included for windows.

Smart Refresh This causes the Amiga to control and store everything concerning

window changes and contents. If another window is dragged over the

user window, a part of the window may be temporarily obscured. The

computer automatically stores this area in a buffer and, if needed, will

restore it again.

Activate

windowsizing

windowdrag

windowdepth

Nocarerefresh

This automatically activates the window once its opened. This saves the

user the trouble of clicking the window to activate it.

Permits a window with a size gadget to change dimensions. By select

ing this define, the gadget appears in the lower right corner of the

window. The operating system keeps watch over this gadget for any

activity.

The window can be moved.

The window can be moved in front of or behind other windows with the

front and back gadgets (the gadgets in the upper right corner). The oper

ating system keeps watch over these gadgets for any activity.

Practically anything that occurs during program execution can

selectively generate a message from the operating system. If you want a

message displayed when you try resizing a window, you can generate

one. For example, when editing a text using ED, the text file must be

updated when the window size changes. The program gets the message

that the window must be brought to the current condition. With the

define above, the operating system is told that no such message is

237

25. System Programming Amiga C for Beginners

desired. The message is not needed since SMARTJREFRESH takes care
of all update work when active.

Of the remaining elements of the NewWindow structure, only Title
and the last five are of interest. As the name implies, the title is placed
into the title bar at the top of the window. The following program
demonstrates that only the address of the string is assigned:

NewWindow.Title = "The User window";

If no constants are used as in the example, the memory space must be

prepared by the user and its beginning assigned to the entry Title.

The values MinWidth,MinHeight,MaxWidth,MaxHeight
indicate the minimum and maximum values for the user window. The

user cannot go beyond these limitations. Since the maximum height of

a window is 200 or 400 pixels, these numbers are used more frequently.

PAL versions of the Amiga can create a maximum height of 256 or

512 pixels, depending on the mode selected.

Finally WBENCHSCREEN is entered into the element Type so that the

parameters preset by the Workbench can be used.

25.2.2 Opening a Window

After this preliminary work, the window can finally be opened. The

Openwindow function opens the window and returns a pointer. This

pointer points to a window structure but shouldn't be confused with

NewWindow. It is more comprehensive than NewWindow and can be

examined in intuition.h.

The Openwindow function requires the address of the NewWindow

structure as the parameter. Since many compilers permit the passing of

whole structures, the following expression can be used to determine the

address:

1&NewWindow

If everything was processed properly, the new window will have the

specifications which were entered in NewWindow.

The Closewindow function is all you need to close the window again

(e.g., when the program is finished). It has the window pointer as its

only parameter. The window disappears again.

Finally the Intuition library closes to leave everything the way it was

found. If you close Intuition before closing the last window, the Guru

Meditation appears.

238

Abacus 25.2 A Window under Intuition

25.2.3 A Window Program

This listing describes a large amount of theory. The program opens a

window which can be moved, sized and moved to the front or back.

Watch upper and lowercase letters in this listing.

/* window_intuition.c 25.2.3 */

/* From Amiga C for Beginners */

/* by Abacus */

tinclude <exec/types.h>

#include <intuition/intuition.h>

extern struct window *OpenWindow();/* Declaration */

extern long *OpenLibrary(); /* Hello Aztec-User */

struct IntuitionBase *IntuitionBase;

#define INTUITION_REV 0

main()

{

struct NewWindow NewWindow;

struct Window *Window;

long i;

IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library", INTUITIONJREV);

if(IntuitionBase = NULL)

exit (FALSE) ;

NewWindow.LeftEdge « 20;

NewWindow.TopEdge =20;

NewWindow.Width = 200;

NewWindow.Height = 80;

NewWindow.DetailPen = 0;

NewWindow.BlockPen = 2;

NewWindow.IDCMPFlags = NULL;

NewWindow.Flags = SMARTJREFRESH | ACTIVATE |

WINDOWSIZING | WINDOWDRAG | WINDOWDEPTH |

NOCAREREFRESH;

NewWindow.FirstGadget = NULL;

NewWindow. CheckMark = NULL;

NewWindow.Title = (UBYTE *) "The User window";

NewWindow. Screen = NULL;

NewWindow.BitMap = NULL;

NewWindow. MinWidth =80;

NewWindow.MinHeight - 25;

NewWindow.MaxWidth = 640;

NewWindow.MaxHeight = 200; /* PAL - change to 256 */

NewWindow.Type - WBENCHSCREEN;

239

25. System Programming Amiga C for Beginners

if ((Window = OpenWindow(&NewWindow)) = NULL)

exit(FALSE);

for(i = 0; i < 800000; i++) /* Small Pause */

CloseWindow(Window);

CloseLibrary(IntuitionBase);

exit (TRUE) ;

The program above exactly follows the indications and requirements

previously stated. First the Intuition library opens. If this is not possi

ble for some reason, a 0 is returned as an Intuition pointer. Continuing

would make no sense at that point so the program will end. The

window pointer returned can be null so it must be tested.

Examine the declaration of the Openwindow function at the beginning

of the listing. This not only preserves a good C style, but also sup

presses the changing of returned values with the cast statement. For

example, this is the case in the OpenLibrary because the routine

returns not only the Intuition pointer, but also a variety of other pointer

types. Nevertheless the function should be declared at least as a routine

which returns pointers. This prevents, for example, the Aztec system

crashes which result from not declaring the function. This means that

for the compiler, integer values will be delivered which in Aztec are

only 2 bytes long. It should be obvious that the value with 4 bytes

does not arrive. Only 2 bytes will be accepted.

The cast statement struct intuitionBase* can be used to

trick the best compiler. Most of the time the resulting value isn't equal

to 0 and does not cause the program to crash. During the next access to

a library function with the IntuitionBase pointer, the system

crashes. This accident cannot occur with Lattice since its integers

always use 4 bytes.

During the opening of the library, the routine wants a version number

which is required for proper processing. If the system has the same or

later version, everything proceeds smoothly. Since this program has no

special needs, a 0 is selected.

While opening the window, the address of the NewWindow structure is

passed. The system then accepts the data in an internal area so that even

this variable, NewWindow is no longer required. If something is done

to the window, it can be done with the window structure.

If the compilation displays warning messages, don't be alarmed. Some

structures need definition which are not used explicitly but appear in a

structure definition as sub-elements. Maybe the functions required can

be included with include. This may also result in additional

unknown structures surfacing which also want to be defined. The only

solution is to define all functions with include. This requires an

enormous amount of memory space, and increases the compiler time

240

Abacus 25.2 A Window under Intuition

significantly. Unless the user has a RAM disk on which all include

files are stored, it is not advisable to do this because nothing changes in

the object code anyway.

After the general framework of the window program has been con

structed, some experimentation is helpful. Change a few values in the

NewWindow structure to see the effect on the window. Leave the

unknown structure entries and the type element untouched.

Under Intuition, it's impossible to exhaust the topic of windows. The

user who wants to know more should obtain more literature on this

subject

241

25. System Programming Amiga C for Beginners

25.3 Screens

A screen is simply a CRT (Cathode Ray Tube) display. In most PCs

and home computers, only one screen shows the screen contents. The

Atari ST and Amiga screens can display several windows at a time.

The Workbench screen is already familiar to you. Any number of win

dows can be opened on any screen, depending on the amount of memory

available. It also determines the color composition and the number of

colors available to be used by the windows. The Workbench generally

offers 4 different colors and works with a resolution of 640*400 pixels

(640*512 pixels in PAL systems).

The user can specify these values for each program in order to construct

a screen to personal taste. The number of colors depends on the number

of available bit-planes. A bit-plane represents a part of memory which

is used for storing graphics. More memory permits more bit-planes and

therefore more colors. The Workbench uses two bit-planes for four

colors. A table illustrates the connection between colors and bit-planes.

Number of bit-planes -> Number of colors

1 -> 2

2 -> 4

3 -> 8

4 -> 16

5 -> 32 (not always possible)

Not only can the number of colors be selected, but also the resolution

of the screen. You can reach a maximum of 32 colors and a resolution

of 640*400 pixels (640*512 pixels in PAL systems.) As in the win

dow, two color registers can be assigned, which are responsible for the

borders and the background. Since these values which are stored in the
NewScreen structure strongly remind you of the NewWindow struc

ture, let's look at the structure definition.

struct NewScreen

SHORT LeftEdge, TopEdge, Width, Height, Depth;

UBYTE DetailPen, BlockPen;

USHORT ViewModes;

USHORT Type;

struct TextAttr *Font;

UBYTE *DefaultTitle;

struct Gadgets ^Gadgets;

struct bitMap *CustonibitMap;

242

Abacus 253 Screens

The first entries in this structure have the same names as those in

NewWindow. They also have exactly the same meanings. Depth

indicates the number of bit-planes (1-5), which were already discussed.

DetailPen and BlockPen are the color indices. They depend on the

number of available bit-planes.

The next important entries are Type (the CUSTOMSCREEN must be

set here) and DefaultTitle which points to the title line of the

screen. This is enough for the user program to fully define a screen.

The beauty of Intuition is that everything follows a certain pattern so

that many different problems can be solved in the same manner. After

understanding how to create a window, it shouldn't be a problem to

create a screen on the monitor. First the NewScreen structure is

stored in the manner described above. Then the screen is opened with

the following function:

Screen = Qpenscreen (&NewScreen);

The variable Screen represents a pointer to the structure named

screen. Also, the structures NewScreen and Screen must be

differentiated here. NewScreen is only required once for the

OpenScreen function. The data is transferred to the Screen

structure (the Screen structure is much more comprehensive than

NewScreen). A pointer to the new screen structure is the return value.

To open a window to this screen, the initialization of the NewWindow

structure must be changed slightly. The Type in the define WBENCH-

SCREEN is replaced by CUSTOMSCREEN. The entry Screen must be

supplied with a screen pointer. The define CUSTOMSCREEN indicates

that the window to the user screen should be opened. The window gets

all the capabilities offered by the screen. Since several screens can be

opened by a program, the window must be attached to a specific screen.

This assignment can only be made after the screen has already been

opened and the screen pointer is available.

Before the program end the screen is closed with CloseScreen to

which the screen pointer is passed. The window must be closed before

the screen, or serious problems will occur.

25.3.1 A Screen Program

The listing for the subject of screens has some more enhancements

which will be explained now.

/* screen_intuition.c 25.3.1 */

/* From Amiga C for Beginners */

/* by Abacus */

243

25. System Programming Amiga C for Beginners

tinclude <exec/types.h>

#include <intuition/intuition.h>

extern LONG OpenLibrary ();

extern struct Screen *OpenScreen();

extern struct Window *OpenWindow();

struct IntuitionBase *IntuitionBase;

#define INTUITION_REV 0

struct NewScreen NewScreen =

{

0,0,

640, /* Width */

200, /* Height; PAL version-change 200 to 256 */

3, /* 3 bitplanes = 8 colors */

3,5, /* another color combination */

HIRES,

CUSTOMSCREEN,

NULL,

"To end the program, please click Close-Gadget!",

NULL,

NULL,

In

struct NewWindow NewWindow =

{
40, 40, /* X and Y Position */

280, 120, /* Width, Height */

4, 6, /* Colors (0 - 7) */

CLOSEWINDOW,

WINDOWCLOSE | SMARTJREFRESH | ACTIVATE | WINDOWSIZING

| SIZEBRIGHT | WINDOWDRAG | WINDOWDEPTH,

NULL,

NULL,

"*** Hello ***",

NULL,

NULL,

190, 20,

640, 200, /* in PAL systems change the 200 to 256 */

CUSTOMSCREEN

main ()

{
struct Screen *Screen;

struct Window *Window;

if((IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library", INTUITION_REV))

— NULL)

exit(FALSE);

244

Abacus 25.3 Screens

if ((Screen = OpenScreen(&NewScreen)) == NULL)

exit(FALSE);

NeWWindow.Screen = Screen; /* Do not forget! */

if ((Window = OpenWindow(SNewWindow)) — NULL)

exit (FALSE) ;

/* Wait for Close-Gadget */

Wait (1 « Window->UserPort->np_SigBit) ;

printf ("\nLast window values: %d/%d/%d/%d\n\n",

Window->LeftEdge,

Window->TopEdge,

Window->Width,

Window->Height);

CloseWindow(Window); /* Close everything in sequence*/

CloseScreen(Screen);

CloseLibrary(IntuitionBase);

exit (TRUE) ;

Since C programmers are usually too lazy to type, structure initializa

tion is best performed during the definition of the variables. Another

innovation is the entry of CLOSEWINDOW in iDCMPFlags. In com

bination with the new windowclose in Flags, the close gadget can

be tested. The Wait statement tells the system to wait for the activities

entered in the IDCMPFlags:

Wait (1 « Window->UserPort->mp_SigBit) ;

Clicking the close gadget is the only way out. As in the window

program, all flags are set, which permit the user to change the size and

position of the window. The window pointer points to the desired

elements LeftEdge, TopEdge, width and Height.

Although the example program above uses three bit-planes, the

maximum accessible colors is eight. Therefore, the color registers can

be from 0 to 7. Experimenting with screens takes up a lot of memory.

The program above requires almost 80K ofRAM.

245

25. System Programming Amiga C for Beginners

2 5.4 Text/Graphic Window Display

Intuition sees little difference between processing jtext or graphics.

Since a print f call doesn't work in Intuition windows, something

else must be used.

25.4.1 Text

The Text function handles string output. A pointer to a RastPort

structure passes the text to the window structure. The user doesn't have

to know the appearance of RastPort or what function it performs. It

is enough to pass the expression to the responsible routine:

Window->RPort

Text requires a character string and its length as additional parameters.

The format is as follows:

Text(Window->RPort, string, length);

25.4.2 Move

The string passed by text appears at the current cursor position. The

Move function sets this position using this syntax:

Move(Window->RPort, xpos, ypos);

Before each call of the Text function, Move should position the

cursor. A small routine for this task follows:

text(w_j?tr, sf xr y)

struct Window *w_ptr;

char *s;

int xf y;

{

Move(w_ptr->RPort, x, y);

Text(wjptr->RPort, s, strlen(s));

246

Abacus 25.4 Text/Graphic Window Display

To keep the function generic, the pointer to the window in which the

text should appear is passed. Because of this you can service several

windows with the same function. A call appears as follows:

text (Window, "Attention!", 20, 40);

The text appears at position (20/40), if the window will allow it (the if

is important). You can write as much text as you wish in the window.

Intuition ensures that no window or screen is overwritten. If the text

can't be displayed completely in the window, the writing stops at the

window's right border. The user can be assured that nothing is

accidentally drawn in other windows.

25.4.3 Draw

The Draw function draws lines. The parameters of the routine are:

Draw(Window->RPort, x, y);

Something's missing here—you need two points to draw a line. With

Draw, the straight line is drawn between the current position and the

(x/y) point. The Draw function belongs to the graphics.library

instead of intuition.library. First this library must be opened,

then it returns a special pointer.

For drawing, the mouse coordinates are normally needed. They are found

in mouseX and mouseY which are two elements of the window

structure. This includes everything needed to write into a window.

In the following program argv and argc reappear. These other values

can be used from the CLI rather than the preset values. The call has the

following format:

prg X-RES Y-RES BITPLANES

for example:

draw 640 200 3

It is interesting here that the resolution of a screen can be larger than

the maximum resolution of the display monitor. 640*200 pixels (640*

256 in PAL systems) can be represented, but if 800 dots are selected in

the horizontal axis, the window can be shifted beyond the right screen

border. The same is true of the vertical axis.

247

25. System Programming Amiga C for Beginners

25.4.4 Small Drawing Program

/* draw.c 25.4.3 */

/* From Amiga C for Beginners */

/* by Abacus */

#include <exec/types.h>

#include <intuition/intuition.h>

extern LONG OpenLibrary();

extern struct Screen *OpenScreen();

extern struct Window *OpenWindow() ;

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

#define INTUITIONJREV 0

#define GRAPHICS_REV 0

struct TextAttr Font =

"topaz, font",

TOPAZ_SIXTY,

FS_NORMAL,

FPF ROMFONT,

UBYTE screentitle[81];

struct NewScreen NewScreen =

{

0,0,

640, /* Width */

200, /* Height; PAL version-may change 200 to 256 */

2, /* 3 bitplanes = 8 colors */

2,3, /* another color combination */

HIRES,

CUSTOMSCREEN,

&Font,

screentitle,

NULL,

NULL,

struct NeWWindow NewWindow =

{

20, 20, /* X and Y Position */

400, 180, /* Width, Height */

0,1, /* Colors (0 - 7) */

CLOSEWINDOW,

WINDOWCLOSE | SMART REFRESH | ACTIVATE | WIND0WSIZING |

248

Abacus 25.4 Text/Graphic Window Display

SIZEBRIGHT | WINDOWDRAG | WINDOWDEPTH,

NULL,

NULL,

11 * My window *",

NULL,

NULL,

190, 20,

640, 200, /* in PAL systems may change 200 to 256 */

CUSTOMSCREEN

main (argc, argv)

int argc;

char *argv[];

{

struct Screen *Screen;

struct Window *Window;

register char s[81];

int color = 4;

register int x, y, xalt, yalt;

if((IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library", INTUITIONJREV))

== NULL)

exit (FALSE) ;

if ((GfxBase = (struct GfxBase *)

OpenLibrary ("graphics. library", GRAPHICS_REV))

— NULL)

exit(FALSE);

if (argc != 4)

{

printf("Error in arguments\n");

printf("X-Res Y-Res Bitplanes\n");

else

NewScreen.Width = atoi(argv[1]);

NewScreen.Height = atoi(argv[2]);

NewScreen.Depth = atoi(argv[3]);

if(NewScreen.Depth > 4 || NewScreen.Depth < 1)

NewScreen.Depth =2;

color = 1 « NewScreen.Depth;

NewScreen.DetailPen = color - 1;

NewScreen.BlockPen = color - 2;

sprintf(screentitle,"This screen has %d colors",

color);

if ((Screen = OpenScreen(&NewScreen)) = NULL)

exit(FALSE);

249

25. System Programming Amiga C for Beginners

NewWindow.Screen = Screen; /* Do not forget! */

if (argc — 4)

{

NewWindow.Width = Screen->Width/2;

NewWindow.Height = Screen->Height/3;

NewWindow.MinWidth « Screen->Width/3;

NewWindow.MinHeight = Screen->Height/5;

NewWindow. MaxWidth = Screen->Width;

NewWindow.MaxHeight = Screen->Height;

if((Window = OpenWindow(SNewWindow)) — NULL)

exit(FALSE);

text(Window,"Hello there!",20,20);

/* Initialize with start values */

Move(Window->RPort, xalt = Window->MouseX,

yalt = Window->MouseY);

/* Drawing starts here until upper or */

/* left border is reached */

while((x = Window->MouseX) > 0 &&

(y = Window->MouseY) > 0)

{

sprintf(s,"X = %3d, Y =%3d", x , y);

text(Window, s, 150, 7);

Move(Window->RPort, xalt, yalt);

Draw(Window->RPort, xalt = x, yalt = y);

text(Window, "Please click the close gadget", 20, 20);

/* Wait for Close-Gadget */

Wait(l « Window->UserPort->mp__SigBit);

CloseWindow (Window) ;

/* Close everything in sequence*/

CloseScreen(Screen);

CloseLibrary(GfxBase);

CloseLibrary(IntuitionBase);

exit (TRUE) ;

text(w_ptr, s, x, y)

struct Window *w_ptr;

char *s;

int x, y;

{

Move (w__ptr->RPort, x, y) ;

Text(w_ptr->RPort, s, strlen(s));

250

Abacus 25.4 Text/Graphic Window Display

Notice the new structure TextAttr with the variable Font. Every

NewScreen structure has, among other things, a component named

Font. Here the character set to be used can be stored (address of the

structure). Of course this is again a pointer to another structure,

TextAttr.

The structure for the definition of a character set is very simple. First

there is the name of the font, then the height of the character and the

manner of presentation. Finally a flag marks the location of the charac

ter set. We used the character set built into ROM. This font is used in

the 60 character screen setting. It's somewhat larger than the 80

character version. Eighty characters can be displayed if you use

topaz_eighty instead of topaz_sixty.

All entries of NewWindow and NewScreen are already initialized, but

if the user wants to use other values for resolution and bit-planes, they

can be accepted. The maximum and minimum size of the windows

must also be adjusted. Since the color indices of the window are always

ready for use with 0 and 1, no conversion has to be performed. The

screen, on the other hand, gets the last two color registers which of

course depend on the number of colors. The program permits a maxi

mum of 16 colors, which equals four bit-planes, in the high resolution

mode. The title of the screen displays this information. For this reason

an additional variable must be used because the structure has made no

provisions for storing the title.

As soon as the window is opened, the text appears. The mouse can be

used to draw something. As long as the mouse pointer doesn't move

beyond the upper or left border of the window, a line will be drawn. The

mouse position is always indicated in the title line. This is not

absolute, but relative to the upper left corner of the window. For this

reason a negative value is possible when the mouse is pushed beyond

the left or upper border. The program uses this as an end criterion.

Because of the output of the mouse coordinates, the current character

position in xalt and yalt must be stored in intermediate storage.

Before the drawing of the line, the values are restored again with the

Move function. We have said enough about this program.

However, we have some additional suggestions. Up to now only the

define hires was used for user defined screens in viewModes, which

achieves a horizontal resolution of up to 640 pixels. The Amiga can

also produce a lower resolution which fills a complete display line with

320 pixels. With the same number of colors, only half the memory
space is required. The possibility of working with five bit-planes and,

therefore, 32 different colors is created. The only thing required for this

is to replace hires with null. Try this on the first screen program.
Besides the change mentioned above, only the width of the screen must

be set to the 320 pixels. If five bit-planes were requested, 32 colors are
available in color registers 0-31.

251

25. System Programming Amiga C for Beginners

25.4.5 Low Resolution and Interlace Modes

The interlace mode can be switched on in viewModes. The display

gets a vertical resolution of 400 (PAL systems—512) instead of 200

(PAL—256) pixels. Not bad, but here comes the big "but!" This

process can only be realized by lowering the refresh frequency of the

monitor from 50 to 25 Hz. A flickering image occurs on the Amiga

monitor. This mode was only intended for those monitors which had a

long screen refresh rate and thereby don't create flickering. Examine the

display and form your own judgment. The define LACE in the

viewModes enters interlace mode. Some examples:

Low resolution (320 pixels):

NewScreen.ViewModes «=» NULL;

High resolution (640 pixels) and interlace (400 pixels):

NewScreen .ViewMode « HIRES | LACE;

Low resolution (320 pixels) and interlace (400 pixels):

NewScreen.ViewModes = LACE;

With 32 colors, a function which permits changing the color of the pen

would be useful. This input changes the current color in the color regis

ter

SetAPen(Window->RPort, color);

To see this routine in action, a new program must be written. Add the

following lines to the drawing program. First, at the beginning of the

main function, add the definition of a variable named colour:

register int x, y, xalt, yalt, colour ■■ 1;

At the end of the while loop add two additional lines. Here is the

complete loop:

while ((x - Window->mouseX) > 0 &&

(y « Window->mouseY) > 0)

{

sprintf(s, "X =%3d, Y - %3d, x, y);

text (Window, s, 150, 7) ;

Move(Window->RPort, xaltf yalt);

Draw (Window->RPort, xalt = x, yalt «= y);

SetAPen(Window->RPort, colour++); /* New! */

if(colour = color) colour = 1; /* New! */

252

Abacus 25.4 Text/Graphic Window Display

This program is on the optional disk as drawl6.c. In the beginning

the variable colour is set at 1 to draw with the first color index (0 is

the background color). After each small line fragment, the pen color

changes until the last index (number of colors-1) has been reached. Then

it starts over. This produces all the colors for the first run, including the

registers not normally used. To make it even more colorful than the 16

colors in the hires mode, change the safety test:

Old: if (NewScreen.Depth > 4 | | NewScreen.Depth < 1)

NewScreen.Depth = 2;

to

new: if (NewScreen.Depth > 5 | | NewScreen.Depth < 1)

NewScreen.Depth = 2;

and change the HIRES to null. Consider the reduced X resolution of

320 pixels instead of 640 pixels and change the program accordingly.

This permits drawing with 32 colors in one window. This program is

on the optional disk as draw32.c. An example call of the program for

32 colors:

draw32 320 200 5

Since many colors and high resolution require a large amount of mem

ory, here are some examples of memory usage by windows and screens.

Low resolution, interlace mode, 32 colors:

320 (pixels) * 400 (pixels) * 5 (bitplanes) / 8 (bits per

byte) = 80,000 bytes = 78K (PAL 320*512*5/8 = 102,400)

High resolution, interlace mode, 8 colors:

640 (pixels) * 400 (pixels) * 3 (bitplanes) / 8 (bits per

byte) = 96f000 bytes = 93K (PAL 640*512*3/8 » 122,880)

Low resolution, 2 colors

320 (pixels) * 200 (pixels) * 1 (bitplanes) / 8 (bits per

byte) = 8,000 bytes - 7.8K (PAL 320*256*1/8 = 10,240)

25.4.6 Pixel Processing

Other graphic commands besides Draw are:

ReadPixel(Window->KPort, x, y);

WritePixel (Window->RPort, x, y);

253

25. System Programming Amiga C for Beginners

ReadPixel ReadPixel tests whether the indicated position of apixel was set and

returns the color value of the pixel. If no pixel was visible, because the

pixel has the same color as the background, ReadPixel returns a 0 to

the register number. If the pixel is outside the window whose port is

passed, the result is -1.

WritePixel WritePixel sets a single pixel at the position indicated. The color

used depends on the-current color as in all other routines and is deter

mined by SetAPen.

The following is a program which changes the title line of the window

used in a sine format

/* pixel.c 25.4.6 */

/* From Amiga C for Beginners */

/* by Abacus */

#include <exec/types.h>

#include <intuition/intuition.h>

extern struct Window *OpenWindow(); /* Declaration */

extern long *OpenLibrary (); /* Hello Aztec-User! */

extern double sin();

struct IntuitionBase *IntuitionBase;

struct GfxBase *GfxBase;

#define INTUITION_REV 0

#define GRAPHICS_REV 0

/* Number of colors of Workbench */

#define WB__COLORS 4

struct NewWindow NewWindow =

{

10, 50, /* X and Y Position */

360, 120, /* Width, Height */

3, 2, /* Color Indexes */

NULL,

SMART_REFRESH | ACTIVATE | WINDOWDRAG | WINDOWDEPTH,

NULL,

NULL,

"This Line is changed!",

NULL,

NULL,

0, 0,

640, 200, /* PAL users - change 200 to 256 */

WBENCHSCREEN

main()

{
struct Window *Window;

register struct RastPort *r;

254

Abacus 25.4 Text/Graphic Window Display

register int if j, top, yoffset;

int i_to, j_to, color, colors[512];

double factor;

if((IntuitionBase = (struct IntuitionBase *)

QpenLibrary("intuition.library", INTUITION_REV))

= NULL)

exit(FALSE);

if((GfxBase = (struct GfxBase *)

QpenLibrary("graphics.library", GRAPHICSJREV))

— NULL)

exit(FALSE);

if ((Window = OpenWindow(&NewWindow))

exit (FALSE);

NULL)

r = Window->RPort;

top = Window->Height / 4;

factor = 2 * 3.1415926 / Window->Width * 1.5;

/* 1.5 Sine Waves */

for(i

{

2, i_to = Window->Width - 2;

for(j =0; j < top; j++) /* A vertical line */

{ /* Transfer to Array */

color = ReadPixel(r, i, j);

if (++color = WBJ0OLORS)

colors[j] = 0;

else

colors[j] = color;

/* increase color index by one */

for(j = 0,

yoffset = top + top * sin(factor * i) + 16;

j < top; j++)

if(colors[j]) /* If Pixel should be set */

SetAPen(r, colors[j]);

WritePixel(r, i, j + yoffset);

Delay (1500); /* Wait 1500 Ticks

CloseWindow (Window) ;

CloseLibrary (GfxBase) ;

CloseLibrary(IntuitionBase);

exit(TRUE);

30 seconds */

Lattice The library for mathematical functions and floating point numbers must

be linked with the standard library. Example:

lc -Lm math2

255

25. System Programming Amiga C for Beginners

Aztec

How the

program

works:

If you work with the Aztec compiler, the library for mathematical func

tions and floating point numbers must be linked with the standard

library c.lib. Example:

cc +L math2.c

In math2.o -lm -lc

The program runs under the Workbench screen and uses its colors. Two

bit-planes (four colors) are the default. If the user constructed a Work

bench which deviates from this, the define WB__COLORS must be

adjusted accordingly. The window which was defined in the NewWin-

dow structure contains only front and back gadgets. The size cannot be

changed.

In a large loop which processes the complete width of the window, all

pixels belonging to one X position are gathered in one array. Before the

value which is returned from the ReadPixel is stored, a color trans

formation is made. Every pixel gets the color from the following regis

ter. The area of the display which is transmitted, is the upper quarter of

the window. To prevent mix-ups between the information to be read and

written, a complete column is first saved into the array colors. Then

the new position of the pixels is calculated using the sin (sine) func

tion. The dots are written in the new color with WritePixel at the

new position. The pixels which are the same color as the background

are taken out. This is tested first to increase the speed. The program

will display the top line as a sine wave.

After complete transformation, the Delay function slightly delays the

end of the program to give the user the opportunity to view the window

again. The parameter provides the waiting time in 1/50 second ticks. To

achieve a delay of 30 seconds 1,500 ticks must be stored.

256

Abacus 25.5 DOS

25.5 DOS

Besides Intuition, DOS (the Disk Operating System) is usually required

when programming. Many programs wouldn't work without the help of

AmigaDOS. The DOS routines handle file deletion and renaming, as

well as directory creation and directory display.

DOS is also stored in a library file (dos.library). Unlike the other

libraries, dos.library is always open to the user. It doesn't have to

be opened or closed by the user. It is as simple to use as the functions

from the standard library. For example, deleting a file:

result = DeleteFile(filename);

The return value is an integer number which indicates an error if zero

and the correct processing with a number unequal to zero. Complete

directories can be deleted with this function. No files may be contained

in the directory. They must be erased in advance. The Rename function

is just as easy to use for renaming files:

result = Rename (oldjname, newjiame) ;

The result is also a value unequal to zero. The other parameters

old_name and new__name are just like the filename strings which

contain a valid filename.

257

25. System Programming Amiga C for Beginners

25.6 SetComment

One routine permits the attachment of a comment to a file. This com

ment is completely independent of the content and size of the file and is

stored in the same place as the filename and its parameters. The DOS

command filenote in the C: directory can attach a comment text to

an existing file. This can also be done with the function:

result = SetComment (filename, comment) ;

A short program shows this routine in action:

/* makecom.c 25.6 */

/* From Amiga C for Beginners */

/* by Abacus */

#include <libraries/dos.h>

main(argc, argv)

int argc;

char *argv[];

{

if(argc = 3)

{

if(!SetComment(argv[1], argv[2]))

printf("Error %d\n", IoErr());

}
else

printf("Format: MAKECOM FILE COMMENT\n");

exit(TRUE);

The filename and the comment passes to the program through the

command line. As in all data transfers, the use of spaces in the actual

comment is not permitted. Here is a sample call:

makecom makecom.c This-is-a-comment-use-the-list-command-to-display-it

258

Abacus 25.7 Read Directory

2 5.7 Read Directory

Many programs that handle files should have a routine for reading disk

directories. To make this possible in a program, various functions are

required

First there is the Lock function. Lock locks the specified directory for

access. Only after the Lock can other functions operate on the direc

tory. The name of the directory and the access mode are passed to

Lock. Finally an integer value for read is passed with the define

ACCES Spread. The returned key permits the processing of this one

directory, similar to a handle for file accesses or a window pointer under

Intuition. If this key is equal to zero, an error has occurred.

Two functions are required for reading a directory. One is Examine,

the other ExNext. First Examine must be called to obtain the first

entry of the directory. Then a call for ExNext must follow for each

additional file or directory. Both routines require both Lock and a

pointer to the FileinfoBlock structure. This structure contains all

important file data.

result = Examine(lock, &fileinfo);

And here is the structure definition:

struct FilelnfoBlock {

LONG fib_DiskKey;

LONG fib_DirEntryType;

char fib_FileName[108];

LONG fib_Protection;

LONG fib_EntryType;

LONG fib_Size;

LONG fib_NumBlocks;

struct DateStamp fib_Date;

char fibjComment[116];

The fib__DirEntryType function indicates whether the data cur

rently read is a normal file (<0) or a directory (>0).

The fib__FileName function contains the name which can be up to

30 characters long, even though it was generously defined here as 108

characters.

The fin_Protection function contains flags which indicate

whether the file can be read, written, executed or erased. The variable is

defined as LONG (32 bits), but only the lower 4 bits are required.

259

25. System Programming Amiga C for Beginners

The priorities for these files are as follows:

R W £ D

8 4 2 1

R - Read W - Write E - Execute D - Delete

For every protective action one of the bits above must be set. For

example if a file or directory can only be read or erased, the flags W and

E must be set:

RWED

0110 (bits) =4+2=6

This variable must contain the value 6. It is important to set the flag

whose function is forbidden. To make changes please use the protect

command from the CLI. The flags which are passed with this program

are changed in such a manner that the functions can be performed. This

is exactly the opposite of their use in the user program. To protect a

file from erasing, the following line is required:

PROTECT ED RWE

The fib_Si ze function defines the file size in bytes.

The fib__NumBlocks function contains the number of occupied

blocks on the disk.

The f ib__Date function contains the date when the file was last

written.

The fib_Comment function contains the comments for the file.

You now have all the information needed to construct the final pro

gram. For the sake of simplicity we use parameter passing with the

command line in this version. This parameter indicates the directory

which should be read.

/* readjdir.c 25.7 */

/* From Amiga C for Beginners */

/* by Abacus */

#include <libraries/dos.h>

struct FilelnfoBlock fi;

main (argc, argv)

int argc;

char *argv[] ;

{

long lock;

int error;

char filepath[100];

if (argc = 2) /* parameter present ? */

260

Abacus 25.7 Read Directory

strcpy(filepath, argv[l]);

else

strcpy(filepath, "sys:");

lock = Lock (filepath, ACCESS_READ) ;

printf("Lock value %d\n", lock);

if (!lock)

{

printf("No Lock! ERROR!\n");

exit(FALSE);

if(Examine(lock, &fi)) /* First call successful? */

do

output(); /* Return value not of interest now */

while(ExNext(lock, &fi)); /* until error occurs */

error = IoErr'O; ■/* What Error? */

if (error- !- ERROR__NO_MOREJENTRIES) /* "real" Error! */

printf("Error %d occurred!\n", error);

exit (TRUE) ;

output ()

{

if (!*fi.fib__FileName) /* strlen = 0 */

{

printf ("Empty! \n") ;

/* for example Root-directory of RAM Disk */

return(0); /* That's directory without name */

}

if (fi.fibJDirEntryType > 0)

printf("Directory name");

else

printf("Filename ");

printf(": >%20s< RWXD %lx bytes: %-61d Blocks %-41d\n",

fi.fib_FileName, fi.fibJProtection,

fi. fib_Size, fi. fibJNfumBlocks) ;

if(*fi.fib_Comment) /* If comment present, output! */

printf("Comment: >%s<\n", fi.fib_Comment);

return(fi.fib_DirEntryType > 0); /*Return File Type */

}

The protect flags are not decoded separately in this program (it wouldn't

be a problem to do that), but are presented as a hexadecimal number (the

"%lx" format instruction). You can enhance this program if you wish.

The flags can be displayed in RWED format using the LIST command

from the CLI. With protect any flag can be set and with LIST the

result can be observed. This information can be compared with the

results from the user program.

261

25. System Programming Amiga C for Beginners

25.8 Conclusion

You now have the general knowledge needed to write simple programs

in C language. As you take time to develop your own programs,

functions and libraries, keep this book nearby for reference. Since it's

difficult to memorize everything about a language, this book will help

you with the complex concepts of C language.

You may be wondering why we didn't spend more time with some

aspects of the Amiga. We admit that we didn't include as much about

the operating system and Intuition as we would have liked. However,

these are difficult concepts for a beginner to understand, and we felt it

best to just give the reader a few general examples controlling these

areas in C. Since C is a transportable language, you may prefer to write

transportable source codes.

If you want to continue your education in C, we recommend the Abacus

book Amiga Cfor Advanced Programmers. This book covers subjects

that interest professional Amiga programmers: Combining assembly

language and source codes; debugging (finding errors); jump tables; and

more. In addition, Amiga C for Advanced Programmers details

Intuition programming in C (menus, requesters, etc.).

We wish you luck in your future as a C programmer.

Dirk Schaun

262

Appendices

Abacus Appendix A: Functions

A. Functions

Filename: strlen. c

/*****•*•*****•*••**

/* Name: strlen */

/* Parameter: s (String) */

/* Return value: Length (int) */

/* Function: Number of characters in "s" */

/* Other: - */

strlen(s)

char s[];

{

register int i = 0;

while(s[i])

i++;

return(i);

Filename: strcpy. c

/•••a******************

/* Name: strcpy */

/* Parameter: s (String), t (String) */

/* Return value: - */

/* Function: Copies "s" to "t" */

/* Other: - */

/•He***/

strcpy (t,s)

register char *t,*s;

{

while(*t++ = *s++)

Filename: streat. c

/••••••••a*********

/* Name:. strcat */

/* Parameter: s (String), t (String) */

/* Return value: - */

/* Function: attach "t" to "s" */

/* Other: - */

/•••••••it***/

strcat(s,t)

265

Appendix A: Functions Amiga C for Beginners

register char *s,*t;

while(*s)

while(*s++ = *t++);

Filename: letter. c

/ ml* ml* ml* ml* ml* ml* ml* mlm *1* ml* ml* mlU ml* ml* ml* ml* ml* ml* ml* «W ^U ^U ^U mi* •**• «A» *m^ •£• ^U ^U m^ mfa ^U ^L ^U ^L ^L ^L ^U ^L ^L ^L ^L X ^U ^L mfa ^L -1* «JL JU aJU iJU *JU /
t 7t 7% 7* *T 7* 7* 7* 7* 7C 7* 7* 7* 7s 7* 7* 7* 7% 7* 7* W *K W^ 7* 7* n ^^^^WW w«^^««^^ ^*%*%#****»*^ ^» *^ r* r* -%*%*-•-*»*

/* Name: letter */

/* Parameter: z (char) */

/* Return value: It was a letter (1), else (0) */

/* Function: Determines if it was a letter or not */

/* Other: - */
t 7* 7lf tV 7* 7% 7* *K 7* 7V fC 7* 7* 7* 7* 7* 7T 7* *rC 7* 7C 7% 71T 7V 7* TV 7% 7* iflf 7* 7* TT 7* 7* 7* 7* 7C ^* 7* 7C 7C 7C 7* 7C 7* 7* ^^ w^ W^ 7* 7* 7* *5 « ^ ^

#define FALSE 0

#define TRUE 1

letter(z)

register char z;

if ((z >= 'a' && z <=Jz') || (z >= 'A1 && z <= 'Z'))

return(TRUE);

return(FALSE);

Filename: c_comp. c

/* Name: c_comp */

/* Parameter: cl (char), c2 (char) */

/* Return value: 1 (TRUE).-, 0 (FALSE) */

/* Function: Compares two characters */

/* Other: requires two characters () */

#define FALSE 0

#define TRUE 1

extern int grklflag;

c_comp(cl,c2)

register char cl,c2;

if (cl == c2). return (TRUE) ;

if(grklflag && letter(cl) && letter(c2))

if((cl + 'a1 - 'A1 == c2)||(c2 + 'a1 - 'A1 == cl))

return(TRUE);

return(FALSE);

266

Abacus Appendix A: Functions

Filename: strcmp. c

/••it**/

/* Name: strcmp */

/* Parameter: s (String), t (String) */

/* Return value: identical 0 not identical 1 */

/* Function: Compares "s" and "t" */

/* Other: - */
i Tip TV Tip TV TV TV Tip TV TPC Tip TPC TV TV Tip TPC TV TV TPC * TV TV TBT TV TV TAP TV TV TV TV TV TV TV TV TV TV TV TV TV TV TV TV TV ^% ^% ^* ^* ^s ^s ^c w w ^ w ^

strcmp(s,t)

register char *s, *t;

{

register int identical;

while(identical = c_comp(*s, *t++))

if(!*s++)

return(0);

return(!identical);

Filename: strchar.c

/* Name: strchar */

/* Parameter: s (String), c (char) */

/* Return value: Position (int), or -1 */

/* Function: Determines Pos of the Char "c" in "s"*/

/* Other: - */
/** /

strchar(s,c)

register char s[];

register char c;

{

register int i = 0;

while(!c_comp(s[i],c) && s[i])

i++;

if(s[i]) return (i);

return (-1);

Filename: strchbac. c

/••*••**••****•*•***•*••*••*••****•*•***•******•******•/

/* Name: strchback */

/* Parameter: s (String), c (char) */

/* Return value: Index (int) */

/* Function: Searches for Pos of Char "c" in "s" */

/* Other: requires c_comp(), strlenO */

j ^^ "^ ^* "^ ^* ^* " ^* ** *^ *f *^ *■ *f *^* sV <P» •*■ *P» <™ *V TV /

strchback(s,c)

register char s[];

267

Appendix A: Functions Amiga C for Beginners

register char c;

{

register int i = strlen(s);

while((i >= 0) && !c_comp(s[i], c))

i—;

return(i); /* Error = -1 */

Filename: ilatoila. c

j ^^ ^ ^* ^* ^* ^* " ^^ ** *f ** <RT TP T*P iK rt <K <K «PT *P <PP ?C wC 7K TIP TIP Tip TIT TIP TV TIP TPC Tif ^C ^PP Tip wC "wC *C TIP TPP #t TPp Tip TBT *t #t Tip TlP #C Tl* Tip /

/* Name: ltoa */

/* Parameter: n (long), s (String) */

/* Return value: - */

/* Function: Converts long value to char string */

/* Other: requires reverse() */
/ <^ ^ ^ ^ ^^ ^ ^^ ^ ^ ^ ^ ^^ J^ JL JU JL J^ JL <JL JL JL ^U mlf JL JU JU JU JL JL JU JL JL JU J^ JL JU JL JU JU JU JL OL JL JL JU ^U ^U ^U ^U ^L ^U ^u ^> ^U ^L $

#define TRUE 1

#define EOS '\0'

ltoa(n, s)

register char s[];

register long n;

{

register int i = 0;

register int forechar =0;

if (n < 0)

{

forechar = TRUE;

n = -n;

}

do

{

s[i++] = n % 10 + '01/

} while((n /= 10) > 0);

if (forechar)

s[i++] = '-■;

s[i] = EOS;

reverse(s);

/********************•***************•**********•*******/

/* Name: itoa */

/* Parameter: n (int), s (String) */

/* Return value: - */

/* Function: Converts integer number to char string */

/* Other: requires ltoa() */

itoa(n, s)

register int n;

register char s[];

{

ltoa ((long) (n),s);

268

Abacus Appendix A: Functions

Name:

Parameter:

Return value:

Function:

Other:

atol

s (String)

n (long)

Converts char string into long value */

*/

long atol(s)

register char *s;

register long val;

register int sign =1/

while(*s == • ')

if (*s == '+• || *s == '-')

sign = (*s++ ==•+') ? l

for(val = 0; *s >= '0' && *

val = 10 * val + *s - '0'

return(sign * val);

: -1;

s <= '9'

/*

/*

/*

/*

/*

/*

Name:

Parameter:

Return value:

Function:

Other:

atoi(s)

register char *s;

atoi

s (String)

Integer number

Converts Char string into Integer

-

*/

*/

*/

*/

*/

long atol () /

return(atol(s));

269

Appendix B: The History of C Amiga C for Beginners

B . The History of C

C originated from BCPL (Basic Cambridge Programming Language).

The B language came from BCPL and C came from the B language. C

was developed in the mid-seventies by Dennis M. Ritchie, who, at that

time, was working for Bell Laboratories.

C was originally intended for developing an operating system which,

among other things, would be capable of multi-user and multitasking

execution, namely UNIX. This explains why C programs are so fast.

Multitasking procedures require a very fast operating system which up

to then could only be written in assembly language. Dennis Ritchie

developed the C language to circumvent the error prone and unclear

assembly language programming. The result, the UNIX operating

system, consists of about 13,000 lines of which only a minimum of

about 800 lines were written in assembly language. The rest of the

operating system is in C.

C became popular with the introduction of the Amiga and the Atari ST,

whose operating systems were written in C. The Amiga's Intuition user

interface was written almost completely in C. Professional program

mers and software houses prefer using C to develop new programming

projects. C has another advantage: it is portable. This means that C

programs can, theoretically, be transferred to other computers and

compiled there without changes.

The reason for this is that C has a small number of commands available

to all compilers. Parts which are computer specific, such as input and

output, don't belong to the actual C language. These routines are

delivered with the language in libraries adapted to the peculiarities of the

particular computer. The C programmer doesn't have to be concerned

about this. He knows that the getchar function gets a character from

the key-board, regardless of whether the program is executing on a C64,

an IBM PC, an Amiga or an Atari ST. This portability means less

programming for the developers—just transfer the program over to

another computer, make the changes needed for the new computer and

recompile it.

How a C Every C compiler has been split into various program portions which,
compiler depending on the manufacturer, are available either in a program module
works or in several smaller programs.

The first part of a C compiler is the preprocessor; this only replaces one

text portion with another according to the user's commands. The result

of this effort is a file containing pure text which can be processed with
the editor. This result passes to the scanner which searches for com

mand words specific to C. It recognizes these words and stores them in

270

Abacus Appendix B: The History of C

abbreviated form. In this format the command is stored as a token (code)

instead of as individual letters. Tokenizing takes up less memory and

accelerates the translation.

Parser After completing this test run, the parser appears. It tests the source

code commands for correct syntax, and differentiates between correct and

incorrect combinations of C commands. The parser knows all the rules

about C syntax. Just as in everyday conversation, stringing words

together isn't enough. The parser ensures that the expression is correct.

As the last part of the actual C compiler, the code generator converts

the text processed by the parser into machine language commands.

Some C compilers first translate the machine language commands into

assembly language so the programmer can streamline the generated

code. This is really unnecessary since the C compilers on the market

already produce very efficient machine language code. After completing

this run, the compiler saves the object file to disk with the extension of
-\ :< .o. •..•.•

The final process is linking the object files with the required libraries to

produce an executable program. The linker is used for this purpose.

271

Appendix C: The Lattice C Compiler Amiga C for Beginners

C. The Lattice C Compiler

C compiler manufacturers are constantly updating and improving their

compilers. For instruction on how to install the compiler, see the

documentation and any readme files that came with the compiler.

The C The C compiler is called with lc and the source filename. As a mini-

compiler mum the following is required:

lc hello

With the -L option, the linker can be loaded immediately after the call

of the C compiler. The linker (here BLINK) can also be called indepen

dently. This is a standard call to compile and link a source code named

math2.c into a program named math2.

When the library for mathematical functions and floating point numbers

must be linked with the standard library, the following can be used:

lc -Lm math2

The linker The program BLINK provides a powerful linker for the programmer.

Here are the most important options available in this linker:

After the name BLINK all files which are linked together appear after

the FROM argument (or ROOT, or even nothing). The name of the pro

gram to be executed follows the TO argument. Library files to be

searched are listed after the library argument. Some sample calls:

BLINK FROM a,b,c TO program

BLINK a+b+c TO program LIBRARY folder/d

BLINK ROOT a,b,c TO folder/prg LIBRARY

system/lib,obj/special

Using the parameter with all options can be stored in a file just as in a

MAKE file. A linker call is then:

BLINK WITH file

In this file the options mentioned above contain a parameter in each

new line. Example:

ROOT a,b,c

TO folder/prg

LIBRARY system/lib,obj/special

272

Abacus Appendix D: The Aztec C Compiler

D. The Aztec C Compiler

C compiler manufacturers are constantly updating and improving their

compilers. See the documentation that came with the compiler for

instruction on how to install the compiler. Be sure to read any README

files.

The compiler The compiler with the name CC can be found in directory C:. The call

is very simple:

cc file.c

The source file file.c is compiled and translated into assembly code.

This code can be optimized by a machine language programmer. This

file has the name ctmpAXX.XXX, where X is a number which differs

from one call to the next. It is best to look at the current directory

because this name is needed immediately.

Also Aztec uses symbolic names for devices which are listed as

follows:

CLIB

INCLUDE

CCTEMP

CCTEMP determines where temporary files created by the C compiler

will be stored. CLIB indicates the path to the libraries, while

INCLUDE is the path for the header (. h) files. Examples are:

assign CLIB: dfO:lib/

assign INCLUDE: dfO:include/

assign CCTEMP: ram:

Various options can be placed in front of the name of the file to be

compiled. Here are the most important:

-Ipath:

With -la pathname can be provided in which the Include files

are assumed to be. The search for these files is made only in this

sub-directory. The option is comparable with the assignment

include (see above).

Note: The pathname immediately follows the I without any additional spaces.

For example:

cc -Iram:includes/privat/

273

Appendix D: The Aztec C Compiler Amiga C for Beginners

The assembler

The linker

+C creates longer code, since jumps within the program code arc

equipped with 32-bit commands instead of the 16-bit commands

which could have been used.

+D causes data to be stored in 32-bit format. This slows down data

access and increases memory requirements, but makes data

segments of any desired size possible (theoretically). During a

"normal" data access with 16-bit addressing, the user is limited to

a maximum of 64K of data.

+L Variables and constants of int type arc stored in 32-bit format.

Because of this the programs become (partially) Lattice compati

ble since this compiler always uses 32 bits. Without this option

16 bits are sufficient for int numbers.

-D defines a constant. It corresponds to the #define statement,

but is assigned during the call of the compiler. No space can

follow this option character. Example:

cc -DTESTRUN-1 filo.c

The assignment corresponds to the define .

#define TESTRUN 1

-S suppresses "warnings." The warnings arc only messages and the

compiled programs arc usually capable of being run. To identify

the real errors, this option can be used to display only the error

messages on the monitor.

+p causes the compiler to create Lattice compatible code. All data,

jumps and int numbers are automatically created in the 32-bit

version.

After the C compiler comes the assembler which is named AS. It is

also stored in the C: directory. The call is similar to the C compiler:

as file.o

With the option -o a new name can be given to the new file. Example:

as -0 program.o ctmpxyz.12 3

Additional options are only of interest to the assembler specialist. Since

this book deals with C programming, they will not be considered

further. It is only an intermediate step.

For Aztec the linker provided is called In and can be found in the C:

sub-directory. The files to be linked together are placed one behind the

other. Whether they are libraries or modules doesn't matter in principle,

but libraries should be placed at the end of the list.

274

Abacus Appendix D: The Aztec C Compiler

In file.o c.lib

The standard file c.lib is also like all other libraries in the lib:

directory. Several modules can be linked together

In -o result moduli.o modul2.o modul3.o c.lib

The name assignment for the resulting program is performed with ~O.

The linker can be informed about libraries with -L, but the extension

of .lib is then omitted. Example:

In file.o -Lc -Lm

Two additional options are +C and +F which permit selection of special

storage areas. A code letter follows the option which has the following

significance:

c Program

d Initialized data

b Data which was not initialized

The +C stands for chip memory, +F for fast memory. These two

groups of RAM areas are especially important for graphic programming

since certain data must always be stored in the chip-memory. With this

option the following can be requested:

In +Cdb +Fc file.o -Lc

This causes the storage of data in chip-memory and the storage of the

program in the normal fast memory. Without a special statement, all

information would have been stored in the fast memory area.

Here is a make file which is tailored to Aztec C.

.key file

echo " Compiling <file$tl>.c "

cc -t <file$tl>.c

echo " Assembling <file$tl>.asm "

as <file$tl>.asm

echo " Linking <file$tl>.asm to <file$tl> "

In <file$tl>.o -lm -lc

; -lm -lc is called :link clib and mathlib in addition

echo " Everything clear !"

The file is named az-make on the optional program disk. Here is an

example call to compile, assemble and link a source file named

array.c:

execute az-make array

275

Appendix E: Reserved C Words Amiga C for Beginners

E. Reserved C Words

Commands which are presented here, but were not described in the

book, either have no function in the current C compilers, or are reserved
for future versions.

auto

break

case

char

continue

default

do

double

else

entry

enum

extern

float

for

goto

if

int

long

register

return

short

sizeof

static

struct

switch

typedef

union

unsigned

void

while

276

Abacus Appendix F: C Operator Precedence

F Operator Precedence

Precedence Operator Description Evaluation

1 () Function left to right

[] Airay left to right

Structure declaration left to right

-> Structure declaration (pointer) left to right

2 cast Forced type conversion right to left

* Content of right to left

& Address of right to left

Negative sign right to left

! Logical NOT right to left

Bitwise complement right to left

++ Increment right to left

Decrement right to left

si zeof Storage requirement right to left

3 * Multiplication left to right

/ Division left to right

% Remainder (modulo) left to right

4 + Addition left to right

Subtraction left to right

5 > Shift to right left to right

< Shift to left left to right

6 < Less than left to right

> Greater than left to right

<= Less than or equal to left to right

>= Greater than or equal to left to right

7 == Equal left to right

! = Unequal left to right

8 Bitwise AND left to right

9 A Bitwise EXOR left to right

10 I Bitwise OR left to right

11 && Logical AND left to right

12 | | Logical OR left to right

13 ?: Conditional evaluation right to left

14 = Assignment right to left

#= Abbreviated assignment right to left

from (+, -, *, /, %, », «, &, I, ~)

15 , Separation of expressions left to right

277

Appendix G: Storage Classes Amiga C for Beginners

G. Storage Classes

Storaee class

auto

extern

register

static (intern)

static (extern)

Validitv

Block

Program

Block

Block

File

Duration

Block

Program

Block

Program

Program

H. Type Conversions

Rules:

1. char and short are always converted to int and float into
double.

2. If after this conversion one of the operators should have the type

double, the second operand and the result are also converted to
double.

3. If a data type is long, all participating values are also trans
formed to long.

4. If an unsigned value is found among the operands, all values
are converted to unsigned.

278

Abacus Appendix I: Modes for fopen

i. Modes for fopen

Lattice C String Create Cut file Read—Write Append

•V

"a"

*<ra"

"wa+"

"ab"

*<rb+"

"wb+"

"abf"

no

yes

yes

no

yes

yes

no

yes

yes

no

yes

yes

no

yes

yes

no

yes

yes

no

yes

no

no

no

no

no

yes

no

no

no

no

no

yes

no

no

no

no

yes

no

no

yes

yes

yes

yes

no

no

yes

yes

yes

yes

no

no

yes

yes

yes

no

yes

no

yes

yes

no

no

yes

no

yes

yes

no

no

yes

no

yes

yes

no

no

no

yes

no

no

yes

no

no

yes

no

no

yes

no

no

yes

no

no

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

Changes for

Aztec

No conversions are made for binary files, If the file was opened as an

ASCII file, which can be recognized by the "a" at the second place, all
carriage returns (code 13 = \ r) are eliminated and the character with the

ASCII code (26) is converted to EOF (-1) during reading. During writ

ing, the single line feed (\n), is converted to the character combination

\r\n.

To differentiate the two modes, Lattice C uses an external int variable

named _fmode. If the highest value bit is set (_fmode & 0x80 00),

the binary mode is used, or else the conversions indicated are performed.

Aztec opens all files in binary. Aztec also offers the "x" and "x+"

modes which open a file for writing. If the file doesn't yet exist, it is

created. With "x+" the file can be read and written after opening.

279

Index

? conditional operator

Abbreviations

Activate

Addresses

AND

Arguments

Arrays

ASCH code

auto

28,

143,

Aztec C 19,39,41,47

Backslash

<Backspace> key

BASIC

Bitfields

Bit manipulation

Bit shifting

Bit-planes

Bitwise shift opperators

Braces

break

Buffer

C language

Calculation

case statement

cast operator

char 39,

1

char pointer

Character strings

CLI 10, 13,

Comments

Comparison operators

Compiler

Complex data types

CON

Conditional operator

Console

Constant

continue

Conversion program

57, 68,

33,136,

, 17, 25,

3-5,5

163

34,95

237

131

165

105, 203

115, 189

10,84

155, 181

, 65, 210

29,85

18

4,48

175

165

167

251

167

25,28

123

206

4

35,61

189

71

111, 115,

181, 203

191

39

203, 228

30, 258

45

), 27, 153

173

219

163

218

177

123, 125

82

CPU

create

<CtrlxX>

Datatypes

De-referencing

Decimal notation

Declarations

Decrement operator

define

Definition

Direct access

Directives

do while loop

DOS

double 67,

ED

Editor

else

End of paragraph

enum

EOF

Error checking

Errors

<Esc> key

Escape sequences

EXCLUSIVE OR

extern 99,

fgetc

File extension

File mode

float 67,

Floating point numbers

Floating point variables

Flowchart

fopen

for

Format specification

fprintf

fputc

105,

106,

189,

100,

115,

173,

206

213

18

182, 231

133

85

99, 181

97

174, 206

99

216

229

49,58

257

136, 178

10, 91

3,9

33

27

177

209

49

196, 231

18

28

168

145, 181

211

10

208

136, 146

181, 195

37

67

9

207

48, 57, 123

32,77

211,220

211

281

Index Amiga C for Beginners

fread

fscanf

fseek

ftell

211

208,211

216

217

Function 12, 25, 28, 82, 105, 143, 195

fwrite 211

Gadget

getc

getchar

Global variables

goto

Guru Meditation

Header files

Hexadecimal system

High level languages

Icons

if

Increment operator

Index

Initialization

235

206

148, 207, 218

155, 156

169

37

91, 206, 236

80,81

4

17, 227, 235

32-33,45,119

97

58

99, 184

int 31, 67, 106, 115, 133, 181, 231

Integer division 61

Integer variables 31

Integers 31

Interlace 252

Interpreted languages 4, 5

Intuition 235,238

itoa 157

Keywords

Lattice C

Library macros

Library

Linefeeds

Linker

Logical AND

Logical errors

Logical OR

LOGO

long

Loops

lseek

Machine language

Macros

25

13, 38, 41, 46,

65, 81, 91, 212

198

25, 238

27

3, 9, 12, 27

52

13

52

4

68,69,82, 115,

133, 181, 182, 217

45

216

3, 195, 227

main function

MAKE file

Menus

Modula2

Modules

modulo

Mouse

Multi-dimensional arrays

Multiple assignment

Multiple dimensions

Multitasking

Nocaierefiresh

Number conversion

Object code

Octal system

One's complement

One-dimensional arrays

open function

Operating system

OR

25, 99, 105, 203

13, 203

235

4

12

61, 157

17, 235

117

101

156

235

237

82,86

11

80

168

117

213, 236

235

166

Pascal

Pointer arrays

Pointers

Precedence

Preferences

Preprocessor

4,29

189

131,133,173,189,235

61, 136

237

89, 227, 229

Preprocessor directives 229

printf 22, 25, 27, 45, 75, 98,

124, 157, 189

Program format 27

putc 206

putchar 207

puts 189

RAW

Redirection

Referencing

Register

return

<Return> key

Reverse

scanf

Scanner

Screens

Semicolon

short

sizeof

220

222

133

143, 146, 181

106

18,40

159

31,75,131,134,

208, 218

262

243

106

68, 69, 181

164, 191, 212

282

Abacus Index

Smart_Refiresh

Source code

sprintf

square

Standard input/output

Statement block

static variables

stderr

stdin

stdio.h 91,

stdout

strcmp

strcpy 109,

Strings

strlen

struct

Structures

switch

Syntax errors

System crash

tell

text_arr

Tips and tricks

Transportability

Type conversion

typedef

Unbuffered input/output

unsigned

unsigned int

User-defined libraries

Variable declaration

28,

144,

148,

135,

67,

Variables 31,65,

void

while

Window flags

windowdepth

windowdrag

windows

Windowsizing

Word processor

Workbench

25,

,96,

156,

163,

147,

57,

173,

183,

123,

175,

143,

105,

45, 83, 97

109, 123,

227,

237

189

220

106

218

34

181

223

223

223

223

154

190

178

111

236

235

125

13

37

217

182

227

6

70

178

213

181

69

153

105

173

108

,98,

154

237

237

237

235

237

10

228

283

Companion Diskette

Amiga C for

Beginners

For your convenience, the program listings contained in this book are
available on an Amiga formatted floppy diskette. You should order the
diskette if you want to use the programs, but don't want to type them in from
the listings in the book.

All programs on the diskette have been fully tested. You can change the
programs for your particular needs. The diskette is available for $14.95 plus
$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a
check, money order or credit card information. Mail your order to:

Abacus

5370 52nd Street SE

Grand Rapids, MI 49512

Or for fast service, call 616-698-0330.
Credit Card orders only 1-800-451-4319.

Amiga for Beginners Vol.#1

Amiga for

Beginners

A perfect introductory book if you're a new or prospective Amiga owner. Amiga for Beginners introduces
you to Intuition (the Amiga's graphic interface), the mouse, windows, the versatile CLI. This first volume
in our Amiga series explains every practical aspect of the Amiga in plain English. Clear, step-by-step

instructions for common Amiga tasks. Amiga for Beginners is all the info you need to get up and running.

Topics include:

Unpacking and connecting the Amiga components

Starting up your Amiga

Customizing the Workbench

Exploring the Extras disk

Taking your first step in AmigaBASIC programming language

AmigaDOS functions

Using the CLI to perform "housekeeping" chores

First Aid, Keyword, Technical appendixes

Glossary

ISBN 1-55755-021-2. Suggested retail price: $16.95

Companion Diskette not available for this book.

Amiga BASIC: Inside and Out Vol.#2

Amiga BASIC: Inside and Out is the definitive step-by-step guide to programming the Amiga in BASIC.

This huge volume should be within every Amiga user's reach. Every Amiga BASIC command is fully

described and detailed. In addition, Amiga BASIC: Inside and Out is loaded with real working programs.

Topics include:

Video titling for high quality object animation

Bar and pie charts

Windows

Pull down menus

Mouse commands

Statistics

Sequential and relative files

Speech and sound synthesis

ISBN 0-916439-87-9. Suggested retail price: $24.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga 3D Graphic Programming in BASIC Vol.#3

Amiga 3D Graphic Programming in BASIC- shows you how to use the powerful graphics capabilities
of the Amiga. Details the techniques and algorithm for writing three dimensional graphics programs: ray
tracing in all resolutions, light sources and shading, saving graphics in IFF format and more.

Topics include:

Basics of ray tracing

Using an object editor to enter three-dimensional objects

Material editor for creating parameters of color, shading

and mirroring of objects

Automatic computation in different resolutions

Using any Amiga resolution (low-res, high-res, interlace, HAM)

Different light sources and any active pixel

Save graphics in IFF format for later recall into any

IFF compatible drawing program

• Mathematical basics for the non-mathematician

ISBN 1-55755-044-1. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Amiga Machine Language Vol.#4

Amiga Machine Language introduces you to 68000 machine language programming presented in clear,

easy to understand terms. If you're a beginner, the introduction eases you into programming right away.

If you're an advanced programmer, you'll discover the hidden powers of yourAmiga. Learn how to access

the hardware registers, use the Amiga libraries, create gadgets, work with Intuition and more.

68000 microprocessor architecture

68000 address modes and instruction set

Accessing RAM, operating system and multitasking capabilities

Details the powerful Amiga libraries for access to AmigaDOS

Simple number base conversions

Text input and output - Checking for special keys

Opening CON: RAW: SER: and PRT: devices

Menu programming explained

Speech utility for remarkable human voice synthesis

Complete Intuition demonstration program including

Proportional, Boolean and String gadgets

ISBN 1-55755-025-5. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga System Programmer's Guide Vol.#6

Amiga System Programmer's Guide is a comprehensive guide to what goes on inside the Amiga in a

single volume. Explains in detail the Amiga chips (68000, CIA, Agnus, Denise, Paula) and how to access

them. All the Amiga's powerful interfaces and features are explained and documented in a clear precise

manner.

Topics include:

EXEC Structure

Multitasking functions

I/O management through devices and I/O request

Interrupts and resource management

RESET and its operation

DOS libraries

Disk management

Detailed information about the CLI and its commands

Much more—over 600 pages worth

ISBN 1 -55755-034-4. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to runl Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Advanced System Programmer's Guide Vol.#7

Advanced System Programmer's Guide for the Amiga - The second volume to our 'system

programming' book. References all libraries, with basis and primitive sturctures. Devices: parallel, serial,

printer, keyboard, gameport, input, console, clipboard, audio, translator, and timer trackdisk.

Some of the topics include:

• Interfaces- audio, video RGB, Centronics, serial,

disk access, expansion port, and keyboard

• Programming hardware- memory organization, interrupts,

the Copper, blitter and disk controller

• EXEC structures- Node, List, Libraries and Tasks

• Multitasking- Task switching, intertask communication,

exceptions, traps and memory management

• I/O- device handling and requests

• DOS Libraries- functions, parameters and error messages

• CLI- detailed internal design descriptions

ISBN 1-55755-047-6. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and readyto run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

AmigaDOS: Inside & Out Revised for 2.0 Vol.#8

AmigaDOS: Inside & Out covers the insides of AmigaDOS from the internal design up to practical

applications. AmigaDOS Inside & Out will show you how to manage Amiga's multitasking capabilities
more effectively. There is also a detailed reference section which helps you find information in a flash, both

alphabetically and in command groups. Topics include: Getting the most from the AmigaDOS Shell

(wildcards and command abbreviations) • Script (batch) files - what they are and how to write them.

More topics include:

AmigaDOS - Tasks and handling

Detailed explanations of CLI commands and their functions

In-depth guide to ED and EDIT

Amiga devices and how the AmigaDOS Shell uses them

Customizing your own startup-sequence

AmigaDOS and multitasking

Writing your own AmigaDOS Shell commands in C

Reference for 1.2,1.3 and 2.0 commands

ISBN 1-55755-041-7. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to runl Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Amiga Disk Drives: Inside & Out Vol.#9

Amiga Disk Drives: Inside & Out shows everything you need to know about Amiga disk drives. You'll

find information about data security, disk drive speedup routines, disk copy protection, boot blocks,

loading and saving programs, sequential and relative file organization and much more.

Topics include:

Floppy disk operations from the Workbench and CLI

DOS functions and operations

Disk block types, boot blocks, checksums, file headers,

hashmarks and protection methods

Viruses and how to protect your boot block

Trackdisk device: Commands and structures

Trackdisk-task: Function and design

MFM, GCR, track design, blockheader, datablocks, coding

and decoding data, hardware registers, SYNC and interrupts

ISBN 1-55755-042-5. Suggested retail price: $29.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga C for Beginners Vol.#10

Amiga C for Beginners is an introduction to learning the popular C language. Explains the language ele

ments using examples specifically geared to the Amiga. Describes C library routines, how the compiler

works and more.

Topics include:

Beginner's overview of C

Particulars of C

Writing your first program

The scope of the language (loops, conditions, functions,

structures)

Special features of the C language

Input/Output using C

Tricks and Tips for finding errors

Introduction to direct programming of the operating system

(windows, screens, direct text output, DOS functions)

Using the LATTICE and AZTEC C compilers

ISBN 1-55755-045-X. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Amiga C for Advanced Programmers Vol.#11

Amiga C for Advanced Programmers contains a wealth of information from the C programming pros:

how compilers, assemblers and linkers work, designing and programming userfriendly interfaces utilizing

the Amiga's built-in user interface Intuition, managing large C programming projects, using jump tables

and dynamic arrays, combining assembly language and C codes, using MAKE correctly. Includes the

complete source code for a text editor.

Topics include:

• Using INCLUDE, DEFINE and CAST

• Debugging and optimizing assembler sources

• All about programming Intuition including windows, screens,

pulldown menus, requesters, gadgets and more

• Programming the console device

• A professional editor's view of problems with developing

larger programs

• Debugging C programs with different utilities

ISBN 1-55755-046-8. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

AmigaDOS Quick Reference

AmigaDOS Quick Reference is an easy-to-use reference tool for beginners and advanced programmers

alike. You can quickly find commands for yourAmiga by using the three handy indexes designed with the

user in mind. All commands are in alphabetical order for easy reference. The most useful information you

need fast can be found including:

• All AmigaDOS commands described with examples including

Workbench 1.3

Command syntax and arguments described with examples

CLI shortcuts

CTRL sequences

ESCape sequences

Amiga ASCII table

Guru Meditation Codes

Error messages with their corresponding numbers

Three indexes for instant information at your fingertips! The

AmigaDOS Quick Reference is an indispensable tool you'll want

to keep close to your Amiga.

ISBN 1-55755-049-2. Suggested retail price: $9.95

Companion Diskette not available for this book.

Abacus Amiga Book Summary

Vol.1 Amiga for Beginners

Vol.2 AmigaBASIC: Inside and Out

Vol.3 Amiga 3D Graphic Programming in BASIC

Vol.4 Amiga Machine Language

Vol.6 Amiga System Programmers Guide

Vol.7 Advanced System Programmers Guide

Vol.8 AmigaDOS: Inside and Out

Vol.9 Amiga Disk Drives: Inside and Out

Vol.10 'C for Beginners

Vol.11 'C for Advanced Programmers

Vol.13 Amiga Graphics: Inside & Out

Vol.14 Amiga Desktop Video Guide

Vol.15 Amiga Printers: Inside & Out w/ disk

Vol.16 Making Music on the Amiga w/disk

Vol. 17 Best Amiga Tricks & Tips w/ disk

AmigaDOS Quick Reference

1-55755-021-2

0-916439-87-9

1-55755-044-1

1-55755-025-5

1-55755-034-4

1-55755-047-6

1-55755-041-7

1-55755-042-5

1-55755-045-X

1-55755-046-8

1-55755-052-2

1-55755-057-3

1-55755-087-5

1-55755-094-8

1-55755-107-3

1-55755-049-2

See your local dealer or order TOLL FREE 1-800-451-4319 in US &

$16.95

$24.95

$19.95

$19.95

$34.95

$34.95

$19.95

$29.95

$19.95

$24.95

$34.95

$19.95

$34.95

$34.95

$29.95

$9.95

Canada

Books for the AMIGA tofiirt

Amiga Graphics Inside & Out
The Amiga Graphics Inside & Out book will show you simply and in plain Eng

lish the super graphic features and functions of the Amiga in detail. You will

learn the graphic features that can be accessed from AmigaBASIC or C.

The advanced user will learn graphic programming in C with examples of

points, lines, rectangles, polygons, colors and more. Amiga Graphics

Inside & Out contains a complete description of the Amiga graphic

system - View, ViewPort, RastPort, bitmap mapping, screens, and

windows.

Topics include:

Accessing fonts and type styles in AmigaBASIC

CAD on a 1024 x 1024 super bitmap, Using graphic

library routines

New ways to access libraries and chips from BASIC - 4096

colors at once, color patterns, screen and window dumps to printer

• Graphic programming in C - points, lines, rectangles, polygons.colors

• Amiga animation explained including sprites, bobs and AnimObs, Copper and blitter programming

Volume 13 Suggested retail price $34.95 ISBN 1-55755-052-2

GLN

[Optional Diskette $14.95 #727 GLN |

Amiga Desktop Video Guide

The Amiga Desktop Video Guide is the most complete and useful guide to desktop video on the Amiga.

Amiga Desktop Video Guide covers all the basics - defining video terms,

selecting genlocks, digitizers, scanners, VCRs, camera and connecting

them to the Amiga.

Just a few of the topics you'll find described in this excellent book:

The Basics of Video

Genlocks

Digitizers and Scanners

Frame Grabbers/Frame Buffers

How to connect VCRs, VTRs, and Cameras to the Amiga
Animation

Video Titling

Music and Videos

Home Video

Advanced Techniques

Using the Amiga to add or incorporate Special Effects to a video

Tips on Paint, Ray Tracing, and 3-D Rendering in Commercial Applications

Volume 14 • Suggested Retail Price $19.95 • ISBN 1-55755-057-3

Jel

Save Time and Money!-Optional program disks are available for all our Amiga reference
books (except Amiga for Beginners and AmigasDOS Quick Reference). Programs listed in
the book are on each respective disk and saves countless hours of typing! $14.95

Books for the AMIGA

AmigaDOS Quick Reference Guide

AmigaDos Quick Reference Guide is an easy-to-use reference tool for

beginners and advanced programmers alike. You can quickly find commands

for your Amiga by using the three handy indexes designed with the user in

mind. All commands are in alphabetical order for easy reference. The most

useful information you need fast can be found- including:

All AmigaDOS commands described, including Workbench 1.3

Command syntax and arguments described with examples

CLI shortcuts

CTRL sequences

ESCape sequences

Amiga ASCII table

Guru Meditation Codes

Error messages with their corresponding numbers

Three indexes for quick information at your fingertips! The AmigaDOS

Quick Reference Guide is an indispensable tool you'll want to keep close

to your Amiga.

Suggested retail price US $9.95 ISBN 155755-049-2

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6

Vol. 7

Vol. 8

Vol. 9

Vol. 10

Vol. 11

Vol. 12

Vol. 13

Vol. 14

Abacus Amiga

Amiga for Beginners

AmigaBASIC Inside & Out

Amiga 3D Graphic Programming in BASIC

Amiga Machine Language

Amiga Tricks & Tips

Amiga System Programmers Guide

Advanced System Programmers Guide

AmigaDOS Inside & Out

Amiga Disk Drives Inside & Out

Amiqa C for Beginners

Amiga C for Advanced Programmers

More Tricks & Tips for the Amiga

Amiqa Graphics Inside & Out

Amiga Desktop Video Guide

AmiqaDOS Quick Reference Guide

Books

1-55755-021-2

0-916439-87-9

1-55755-044-1

1-55755-025-5

0-916439-88-7

1-55755-034-4

1-55755-047-6

1-55755-041-7

1-55755-042-5

1-55755-045-X

1-55755-046-8

1-55755-051-4

1-55755-052-2

1-55755-057-3

1-55755-049-2

$16.95

$24.95

$19.95

$19.95

$19.95

$34.95

$34.95

$19.95

$29.95

$19.95

$34.95

$19.95

$34.95

$19.95

$ 9.95

Abacus Products for Amiga computers

Professional DataRetrieve

The Professional Level

Database Management System

Professional DataRetrieve, for the Amiga 500/1000/2000,

is a friendly easy-to-opcrate professional level data manage

ment package with the features most wanted in a relational

data base system.

Professional DataRetrieve has complete relational data

mangagement capabilities. Define relationships between

different files (one to one, one to many, many to many).

Change relations without file reorganization.

Professional DataRetrieve includes an extensive program

ming laguage which includes more than 200 BASIC-like

commands and functions and integrated program editor.

Design custom user interfaces with pulldown menus, icon

selection, window activation and more.

Professional DataRetrieve can perform calculations and

searches using complex mathematical comparisons using

over 80 functions and constants.

Professional DataRetrieve is a friendly, easy to operate

programmable RELATIONAL data base system. PDR in

cludes PROFIL, a programming language similar to BASIC.

You can open and edit up to 8 files simultaneously and the

size of your data fields, records and files are limited only by

your memory and disk storage. You have complete interre

lation between files which can include IFF graphics. NOT

COPY PROTECTED. ISBN 1-55755-048-4

MORE features of Professional DataRetrieve

Easily import data from other databases....file compatible

withstandardDataRetrieve....supportsmultitasking...design
your own custom forms with the completely integrated

printer mask editor....includcs PROFIL programming lan

guage that allows the programmer to custom tailor his data

base requirements...

MORE features of PROFIL include:

Open Amiga devices including the console, printer,

serial and the CLI.

Create your own programmable requestors

Complete error trapping.

Built-in compiler and much, much more.

Suggested retail price: $295.00

PROFESSIONAL

Dataftetrfeve

Features

• Up to 8 files can be edited simultaneously

• Maximum size of a data field 32,000 characters

(text fields only)

• Maximum number of data fields limited by RAM

• Maximum record size of 64,000 characters

• Maximum number of records disk dependent

(2,000,000,000 maximum)

• Up to 80 index fields per file

• Up to 6 field types - Text, Date, Time, Numeric,

IFF, Choice

• Unlimited number of searches and subrange

criteria

• Integrated list editor and full-page printer mask

editor

• Index accuracy selectable from 1-999 characters

• Multiple file masks on-screen

• Easily create/edit on-screen masks for one or

many files

• User-programmable pulldown menus

• Operate the program from the mouse or the key

board

• Calculation fields, Data Fields

IFF Graphics supported

• Mass-storage-oriented file organization

• Not Copy Protected, NO DONGLE; can be in

stalled on your hard drive

Selected Abacus Products for the Amiga computers

BeckerText

Powerful Word Processing
Package for the Amiga

BeckerText Amiga is more than just a word processor.

BeckerText Amiga gives you all of the easy-to-use

features found in our TextPro Amiga, plus it lets you

do a whole lot more. You can merge sophisticated IFF-

graphics anywhere in your document You can hyphenate,

create indexes and generate a table of contents for your

documents, automatically. And what you see on the

BeckerText screen is what you get when you print the

document—real WYSIWYG formatting on your Amiga.

But BeckerText gives you still more: it lets you

perform calculations of numerical data within your

documents, using flexible templates to add, subtract,

multiply and divide up to five columns of numbers on a

page. BeckerText can also display and print multiple

columns of text, up to five columns per page, for

professional-looking newsletters, presentations, reports,

etc. Its expandable built-in spell checker eliminates those

distracting typographical errors.

BeckerText works with most popular dot-matrix and

letter-quality printers, and even the latest laser printers for

typeset-quality output. Includes comprehensive tutorial

and manual.

BeckerText gives you the power and flexibility that you

need to produce the professional-quality documents that

you demand

When you need more from your word processor than just

word processing, you need BeckerText Amiga.

Discover the power of BeckerText.

Suggested retail price: $150.00

Features

Select options from pulldown menus or handy shortcut

keys

Fast, true WYSIWYG formatting

Bold, italic, underline, superscript and subscript

characters

Automatic wordwrap and page numbering

Sophisticated tab and indent options, with centering and

margin justification

Move, Copy, Delete, Search and Replace

Automatic hyphenation, with automatic table of

contents and index generation

Write up to 999 characters per line with horizontal

scrolling feature

Check spelling as you write or interactively proof

document; add to dictionary

Performs calculations within your documents-

calculate in columns with flexible templates

Customize 30 function keys to store often-used text

and macro commands

Merge IFF graphics into documents

Includes BTSnap program for converting text blocks to

IFF graphics
C-source mode for quick and easy C language program

editing

Print up to 5 columns on a single page

Adapts to virtually any dot-matrix, letter-quality or laser

printer

Comprehensive tutorial and manual

Not copy protected

Selected Abacus Products for the Amiga computers

AssemPro
Machine Language Development

System for the Amiga

Bridge the gap between slow higher-level languages and

ultra-fast machine language programming: AssemPro

Amiga unlocks the full power of the AMIGA'S 68000

processor. It's a complete developer's kit for rapidly

developing machine language/assembler programs on

your Amiga. AssemPro has everything you need to write

professional-quality programs "down to the metal":

editor, debugger, disassembler & reassembler.

Yet AssemPro isn't just for the 68000 experts.

AssemPro is easy to use. You select options from the

dropdown menus or with shortcut keys, which makes

your program development a much simpler process. With

the optional Abacus bookAmiga Machine Language (see

page 3), AssemPro is the perfect introduction to Amiga

machine language development and programming.

AssemPro also has the professional features that

advanced programmers look for. Lots of "extras"

eliminate the most tedious, repetitious and time-

consuming m/1 programming tasks. Like syntax error

search/replace functions to speed program alterations and

debugging. And you can compile to memory for lighting

speed. The comprehensive tutorial and manual have the

detailed information you need for fast, effective

programming.

AssemPro Amiga offers more professional features,
speed, sheer power, and ease of operation than any other

assembler package we've seen for the money. Test drive

your AssemPro Amiga with the security of the Abacus
30-day guarantee.

Suggested retail price: $99.95

Features
Integrated Editor, Debugger, Disassembler and
Reassembler

Large operating system library

Runs under CLI and Workbench

Produces either PC-relocatable or absolute code

Create custom macros for nearly any parameter (of
different types)

Error search and replace functions

Cross-reference list

Menu-controlled conditional and repeated assembly
Full 32-bit arithmetic

Advanced debugger with 68020 single-step emulation
Written completely in machine language for ultra-fast
operation

Runs on any Amiga with 512K or more and Kickstart
version 1.2

Not copy protected

Machine languageprogramming requires a solid understanding
of the AMIGA s hardware and operating system. We do not

recommend thispackage to beginning Amigaprogrammers

Abacus Products for Amiga computers

DataRetrieve

A Powerful Database Manager
for the Amiga

Imagine a powerful database for your Amiga: one that's

fast, has a huge data capacity, yet is easy to work with.

Now think DataRetrieve Amiga. It works the same

way as your Amiga—graphic and intuitive, with no

obscure commands. You quickly set up your data files

using convenient on-screen templates called masks. Select

commands from the pulldown menus or time-saving

shortcut keys. Customize the masks with different text

fonts, styles, colors, sizes and graphics. If you have any

questions, Help screens are available at the touch of a

button. And DataRetrieve's 128-page manual is clear

and comprehensive.

DataRetrieve is easy to use—but it also has

professional features for your most demanding database

applications. Password security for your data.

Sophisticated indexing with variable precision. Full

Search and Select functions. File sizes, data sets and data

fields limited only by your memory and disk storage

space. Customize up to 20 function keys to store macro

commands and often-used text. For optimum access speed,

DataRetrieve takes advantage of the Amiga's multi

tasking.

You can exchange data with TextPro Amiga,

BeckerText Amiga and other packages to easily

produce form letters, mailing labels, index cards,

bulletins, etc. DataRetrieve prints data reports to most

dot-matrix & letter-quality printers.

DataRetrieve is the perfect database for your Amiga.

Get this proven system today with the assurance of the

Abacus 30-day MoneyBack Guarantee.

Suggested retail price: $79.95

"^Retrieve

Features

Select commands and options from the pulldown menus

or shortcut keys

Enter data into convenient screenmasks

Enhance screen masks with different text styles, fonts,

colors, graphics, etc.

Work with 8 databases concurrently

Define different field types: text, date, time, numeric &

selection

Customize 20 function keys to store macro commands

and text

Specify up to 80 index fields for superfast access to

your data

Perform simple or complex data searches

Create subsets of a larger database for even faster

operation

Exchange data with other packages: form letters,

mailing lists etc.

Produce custom printer forms: index cards, labels,

Rolodex*cards, etc. Adapts to most dot-matrix & letter-

quality printers

Protect your data with passwords

Get Help from online screens

Not copy protected

Max. file size

Max. data record size

Max. data set

Max. no. of data fields

Max. field size

Limited only

by your memory

and disk space

Presenting...

A collection of

essential, powerful,

and easy-to-use tools

for your Amiga.

Also Included

at no

additional cost

($14.95 value)

Here's a new software package

that every Amiga owner can use.

Abacus1 AmigaDOS Toolbox

has the tools you need to make

your Amiga computing easier

and more productive. Whether

you are a beginner or an advanced

Amiga user you'll find the

AmigaDOS Toolbox to be just

what you've been looking for.

To order call Toll Free 1-800-451-4319

Abacus!
Dept. L5, 5370 52nd Street S.E.

Grand Rapids, Ml 49512

Phone:(616)698-0330

Some of our best tools included are:

• DeepCopy- one of the fastest

FULL disk copiers; copies many

different formats.

• Speeder- a data speedup utility

(more than 300%) -not a disk cache.

• BTSnap- a screen grabber deluxe.

• Diskmon- a full-featured disk

editing tool.

• Fonts- eleven new originals you

can use in your Amiga text.

...and many additional tools that

every Amiga owner can use.

Bought individually, equivalent

software could cost up to $200.
Amiga and AmigaDOS are registered trademarks of Commodore-Amiga Inc.

Presenting...

Protect your Amiga computer

system with this collection of

essential and valuable tools!

Includes

WOpage

guide to

Computer

Viruses!

The Virus Protection Toolbox

describes how computer viruses

work; what problems viruses

cause; how viruses invade the

Libraries, Handler and Devices

of the operating system;

preventive maintenance; how to

cure infected programs and disks.

Works with Workbench 1.2 and 1.31

Ultimo

mmAbacus!
5370 52nd Street S.E.

Grand Rapids, Ml 49512

Available at your local dealer or

Order Toll Free 1-800-451-4319
Amiga is a registered trademark of Commodore-Amiga Inc.

Some of our best tools included are:

• Boot Check-

to prevent startup viruses.

• Recover-

to restore the system information
to disk.

• Change Control Checker-

to record modifications to
important files.

• Check New-

to identify new program and data files.

Order now or call for your Free

pamphlet "What you should know

about Computer Viruses"

(while supplies last)

