

Complete
igaC

Everything you need to start programming your Amiga in (

Cliff Ramshaw

~

~
BOOKS

Complete Amiga C
Copyright © 1994 Future Publishing
All rights reserved. No part of this book may be duplicated, stored in a retrieval system or used as part of any other
book, database, program or other commercial application without the publisher's express written permission.

Book design and production Rod Lawton

Cover design Rod Lawton

Cover illustration Paul Kidby

Author Cliff Ramshaw

First published in 1994 by Future Publishing, Beauford Court, 30 Monmouth Street, Bath, Avon BA1 2BW.

ISBN 1 898275 106

Printed in the UK by Beshara Press

Acknowledgement of copyright and trademarks
Amiga Includes and Development Tools Version 1.3 © Copyright 1985-1988 Commodore-Amiga, Inc.
Amiga Includes and DevelopmentTools Version 2.0 © Copyright 1990-1991 Commodore-Amiga, Inc.
All rights reserved. Distributed under license from Commodore.
Amiga®, AmigaDOSTM, Kickstart™, Intuition and Workbench™ are trademarks of Commodore-Amiga, Inc.
This book contains copyright or trademark product names owned by the companies which produce them. Description of
these products without mention of their legal status does not constitute a challenge to this status. The author and Future
Publishing fully acknowledge such copyright names or trademarks.

The included disks
The software on these disks is not guaranteed for use in any specific situation. The publishers accept no liability for
problems arising from its use. The contents of the disk are copyright, and are not to be copied or distributed in the public
domain.
If one or more of your disks fails to work, you should return the disk with a brief description of the problem to: Complete
Amiga C Disk Returns, DisCopy Labs, Units 2/3, Omega Technology Centre, Drayton Fields, Daventry, Northants NN11
5RT, U.K.

Commodore libraries and includes
This software is designed to be used solely in conjunction with the Commodore Amiga computer.
COMMODORE DOES NOT WARRANT, GUARANTEE, NOR MAKE ANY REPRESENTATIONS REGARDING THE USE OF, OR
THE RESULTS OF THE USE OF THE PROGRAM, IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS
OR OTHERWISE, RATHER, THE PROGRAM IS PROVIDED "AS-IS", WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILlTY AND
FITNESS FOR A PARTICULAR PURPOSE. RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED
BY LICENSEE. COMMODORE SHALL NOT BE HELD TO ANY LIABILITY WITH RESPECT TO ANY CLAIM BY LICENSEE OR A
THIRD PARTY ON ACCOUNT OF, OR ARISING FROM, THE USE OF THE PROGRAM PURSUANT TO THIS AGREEMENT.

y

Contents

Preface x

Introduction • XI
• What 'Complete Amiga (' will teach you
• How to use the book
• What is DICE?
• Amiga libraries and includes

Chapter 1: Basic concepts
• Processors and memory - how they work together

1

• Programming languages
• Functions and sub-routines

Chapter 2: Setting up your system
• Backing up your'bICt disks

15

• Floppy disk installation
• Hard disk installation
• Final steps
• What you've got

Chapter 3: Basic C programming
• Analysing a simple program

25

• Numbers and variables
• Variable types
• Expressions, operators and operands
• Handling user input
• Mixing variable types

Complete Amiga C

vi

Chapter 4: Decision-making
• Reducing statements to 'true' or 'false'

39

• 'Switching' statements
• 'If' statements & 'logical expressions'
• Relational operators
• Loops
• 'Goto' statements and 'labels'
• 'Do while ... ' and 'while ... '
• Logical operators (AND, OR, NOT)

Chapter 5: loops elaborated
• Arrays

59

• Symbolic constants and pre-processing
• Loop counters - the 'for' loop
• Character variables
• Escape sequences
• String variables
• Initialising arrays
• Handling string arrays

Chapter 6: Functions
• Modular program planning

81

• Functions, and how they're constructed
• Prototyping functions
• Function' side effects'

Chapter 7: Pointers
• More about decision-rnaking

97

• Modifying arguments with pointers
• Pointers and arrays

Complete Amiga C

vii

Chapter 8: Pointers and strings
• Two-dimensional arrays

121

• Modifying our' sort' program
• Standard library string functions
• Initialising arrays on declaration
• Sharing variables amongst functions

Chapter 9: Writing a spreadsheet
• The planning stage

143

• Designing the program
• How the program works

Chapter 1 0: Recursion
• Modifying our spreadsheet

161

• Dato structures
• Recursive data structures

Chapter 11: linked lists
• How lists work

185

• Lists of any type
• Pointers to functions

Chapter 12: Additional concepts
• More variable types

209

• Pre-processing
• Oxal and hexadecimal
• Bitwise operators
• Precedence
• Automatic variables

Complete Amiga C

viii

Chapter 13: Interfacing with the machine
• Handling files

233

• C and the Shell
• Useful pre-defined functions

Chapter 14: Eliminating errors
• Errors of language

245

• Errors of meaning
• Three debugging tips

Chapter 15: Using Amiga libraries
• Amiga-specific C

255

• Exec
• Using libraries - examples

Chapter 16: 'Four-in-a-Row'
• Planning a game

273

• Programming a computer opponent
• The game code

Index 305

Epilogue 313

Complete Amiga C

ix

About the author
Cliff Ramshaw is the editor of Amiga Shopper, the UK's best-selling
serious Amiga magazine, which each month produces articles for Amiga
owners who are interested in learning more about their machine. Before
that he worked on the magazine for two years as first technical editor and
then deputy editor.

As well as working previously as a programmer in a business
environment, Cliff has also produced many commercial games and has a
number of books on games programming to his credit, including Zap
Pow Boom - Arcade And Other Games for the VIC-20, VIC Innovative
Computing and The Commodore 64 Games Book.

After working for many years with BASIC and assembly language, Cliff
finally discovered C - a damned fine language and no mistake - and has
never looked back. One of his main motivations for writing this book was
the feeling that other C tutorials are aimed at people already conversant
with general programming techniques, whereas he feels there is no
reason whatsoever why it cannot be taught to peop~ with no previous
programming experience.

Thanks to •••
The author would like to acknowledge the help of the following: Toby
Simpson of Millennium, for his help in removing the bugs from the Four
In A Row program, and Mark Harman of North London University for
his polymorphic list code and the game engine for the Four In A Row
program.

Complete Amiga C

][

Complete Amigo C

Preface
Sooner or later, most computer owners get around to programming.
Maybe it's not the reason they bought the machine, and maybe it's not
the first thing they wanted to do with it, but the lure of custom-designed
software, the creative satisfaction out of producing a program and even
the prospect of selling it usually tempt us all into dabbling with
programming.

You can opt for a 'beginners' language like BASIC. Easy to learn, but
slow and c1unky and not remotely 'professional'. Or you can jump in at
the deep end and learn assembler - the nearest you can get to raw
'machine language'. The results are as good as the machine can deliver,
but you need a certain sort of mind ... and have to be prepared to lose it.

Or you can learn C. C is the 'professionals' programming language. A
version exists for every machine under the sun, so you only ever have to
learn the language once. You write your programs in a language that the
ordinary human mind can grasp, and then the C compiler turns it into fast
machine language. The C programming language is the best compromise
there is between understandability and efficiency.

Which is just how we like to think of 'Complete Amiga C' .

We've put everything we can into it so that you can get as much as
possible out of it. Good luck, and have fun!

xi

Introduction
We thought long and hard about a title for this book. In the end we chose
'Complete Amiga C' because we were able to put together a complete
package - one that incorporated a book that told you how to program in
C, a compiler that let you actually do so and the Commodore 'library'
and 'include' files that let you use the Amiga's specific hardware
features, e.g. its advanced graphics and sound.

We started off wanting to produce a book on programming the Amiga. C
is the obvious language to write about - it's the professionals' choice.
Then we thought, 'how can we make this book better'? Simple. By
including a C compiler so that readers could not only read about C but
try it out too. From there it seemed pretty logical to choose DICE, one of
the best C compilers available. And rather than providing the shareware
version only, we decided to go the whole hog and sort out a deal on the
full, registered version.

This wasn't an especially cheap solution. But with a bit of negotiation
with our various suppliers, we kept the price down to £24.95. Which, we
think, is not bad for a book and a complete C programming environment.
If you bought any of the leading commercial packages you could expect
to pay up to ten times that amount. We're rather pleased with that.

What we realised we couldn't do, though, was produce a book containing
everything there was to know about C programming on the Amiga. The
subject is just too vast. And if we produced a book for experts it would
be virtually meaningless to the far greater numbers of novice
programmers. So if you require advanced technical information, you'll
sadly have to look elsewhere.

But if you simply want to start programming your Amiga in C,
everything you need is right here. And we're rather pleased with that,
too.

Complete Amiga C

xii

Computers are rather precise, complicated things, and the same therefore
goes for programming languages. C is not the easiest programming
language to learn, but it's widely recognised to be the best. And once
you've learned the basics on your Amiga, you can apply your knowledge
to C programming on just about any other machine.

How to use the book
What's the best way to read 'Complete Amiga C'? Try starting from the
beginning and reading through to the end! The book's been written with
beginners in mind, starting with basic programming principles and
gradually introducing more advanced concepts and showing how they are
used in practice.

Or you can simply dip in and read the sections that offer the information
you need at anyone time. It works either way.

There are lots of listings in 'Complete Amiga C' to let you try sample
programs and to explain how certain programming techniques work. To
make things clearer, listings are printed in a different typeface with a
different left-hand margin:

like this, in fact

Complete Amigo C

~

Note that some of the program lines are too long to fit on a single printed
line. When you see this character --, at the end of a line, don't start a new
line when typing it in - it simply means it was too long to fit on the page.

And in the main text, where we mention C 'keywords' (variable names,
or words that would appear in listings) we use a different type face again.
This makes the text much easier to understand. The words "next you
define the variable number" are not ambiguous. The words "next you
define the variable number" are.

And while we're on the subject, where the text describes the contents of
variables, or function results or anything output by a program, we use the
plain (not bold) version of this different typeface. So we might say, "the
current value of the variable number is 14."

~COMPLETE
~USnNG

@]~:I]
[I@]

@JJB01
- [1]0] -

CODE SEGMENT

xiii

We also use symbols, or 'icons' in the margins to tell you, for example,
what sort of listings you're looking at. They are:

Type this in This indicates a complete C program that you can type in,
compile and run.

Code segment This is a part of an earlier listing that may have been
revised or altered using new techniques. Or it might be an illustration of
how the technique might be used in a program. Either way, these pieces
of code do not run on their own, but only as part of a larger program.

We also use icons along the main text, just to highlight important pieces
of information. These are the icons you will see from time to time:

Make a note This is an important piece of information you should be
especially aware of

Top tip This marks a useful tip or snippet of advice. It might save time, it
might save memory, it might save you tearing your hair out. ..

What does it mean? The most welcome icon of all! This indicates an
important definition or explanation of some obscure programming term.

We've designed 'Complete Amiga C' this way to try to make it useful to
all sorts of Amiga C programmers. From beginners learning the language
from the ground up, to intermediate users who only need to read certain
sections or who need to check up on specific details, to more advanced
programmers who just want to browse through now and again in the hope
of picking up little tricks or techniques they'd missed before.

What is DICE?
DICE is a C programming environment. That means it comes with an
editor, where you can type programs in, a linker, which lets you 'link'
your programs with other standard 'library' files (there's no point in re­
inventing the wheel - if a standard screen output file exists, use it) and a
compiler, which turns your raw C program (source code) into an
executable machine code file (object code) that your Amiga can 'run'.

Complete Amiga C

xiv

DICE is available from many PD libraries as a shareware program. That
means that it can be copied and tried out freely, but if you want to carry
on using it you should register with its author, which means sending you
details and paying a fee (much cheaper than buying an equivalent
commercial package!). In return you get the warm glow that comes from
being an honest and upright citizen, plus (just as importantly) a full
version of the program (the shareware version has some useful features
missing).

Well you don't have to register. The version supplied with this book is
the full, registered version - we negotiated a special deal with its author.
We do try to think of everything.

Amiga libraries and includes

Complete Amigo C

Up to a point, the C programming language is the same on all machines -
Amigas, Macintoshes and PCs, for example. But only up to a point.
Because although programs on all of these machines are generally
constructed the same way, each machine differs in the way it handles
screen displays, sound and other machine-specific things.

If all your programs ever had to do was accept text or numerical input,
and display text or numbers on the screen, C programming would be
easy. These things are handled in much the same way whatever machine
you use and the chances are you would hardly have to change your code
at all.

However, if you want to use the Amiga's Intuition interface (its standard
windows-and-gadgets look) you would need to use a special 'library'.
This is a file which automatically handles the Intuition interface and
which can be included in your programs. The Amiga has many such
libraries. The same goes for other machines, like the Macintosh and the
PC. But each of these machines' libraries are unique and specific to that
machine, unlike basic C code.

This means that while you can write certain basic C programs on the
Amiga with just a C compiler, if you want to do anything remotely
flashy, you need the full set of Amiga libraries. With the shareware

IV

version of DICE you don't get these. With the full, registered version,
you do. And this is what's provided with 'Complete Amiga C'.

As well as 'libraries', you'll also come across the term 'includes'.
Includes and libraries are effectively different sides of the same coin. A
library is uncompiled (source) code. An include is the same code once
it's compiled (object code).

The DICE disks that come with this book contain dozens of Amiga
libraries. There isn't space in this book to describe all of them, which is
why we've opted to demonstrate how they work with two selected
examples (in chapter 15). Examining these libraries in detail is outside
the scope of a book like this, but the DICE disks do contain
documentation for them, and DICE's various other features.

This brings us on to another (minor) complication and a possible source
of confusion. Broadly, the Amiga's operating system is in its third
version. First there was v1.3, then v2 and now v3. Each version of the
operating system works differently, and hence has different 'libraries'.
You can get v1.3 libraries, v2 libraries and v3 libraries. The version of
DICE provided with this book contains v1.3 and v2 libraries.

So what about owners of v3 machines (like the A1200, for example)? No
problem! Commodore have anticipated this and been quite clever. The
Amiga's operating system has been upgraded in such a way that the 'old'
libraries still work. So v1.3 libraries will work fine on a v3 machine.
Except, of course, that you will only be able to use features present on·
the original v1.3 machines. So although we have not been able to provide
v3 libraries (these were only just becoming available at the time of
publication), the v 1.3 and v2 libraries will work on the latest machines.

Needless to say, you will not be able to use v2 libraries on your A500,
since the machine will simply not have the features they use. Basically,
though, we've covered pretty well every Amiga user possible (except
owners of very early v1.2 machines - but there can't be too many of
those about these days!).

Complete Amigo C

xvi

Complete Amig(] C

1

Basic concepts
• Processors and memory: how they work together

• Programming languages

• Functions and sub-routines

Complete Amigo C

2 Chapter 1

I n this chapter I'm going to outline some basic computing concepts.
Your grasp of C and why it works the way it does will be much
stronger after you've understood them. If you've already programmed

in another language, or you know the basic processes underlying your
Amiga's operation, then turn to chapter 2; but before doing so you might
like to just glance through the contents of this chapter - it runs through
the basics of programming on the Amiga, or any other machine, and it's
information you need under your belt before you go on.

Your Amiga is a machine that obeys instructions given to it. It cannot act
of its own volition: all it does is obey instructions. These instructions
may be given by you, or by another programmer. A program is a
collection of these instructions.

There are many components that go together to make up a computer, but
the two most important are the processor and memory. The processor is
the part of the machine that obeys (technically speaking, 'executes')
instructions. It is often referred to as the computer's 'brain' because it
controls all of the computer's other functions, but it is important to
remember that the processor can't actually think, at least not in the way
we understand the word.

Processors and memory: how they work together

Complete Amiga C

The processor can only obey a limited range of instructions, each of
which is very simple. Compared to the others, the instruction to add two
numbers together is a relatively complex one. Each instruction is
represented by its own unique number. The processor will only accept
instructions in this numerical form: it would find the phrase 'add these
two numbers together' meaningless, whereas the numerical equivalent,
say '31', would have the desired effect. After receiving this instruction,
the processor would of course expect a further two numbers: the two
numbers that it is to add together.

Such an instruction produces a result: in this case the sum of two
numbers. For this result to be useful, the processor must have some way
of storing it, or 'remembering' it. The process is analogous to a human
being jotting down numbers in the margin while working through a

Basic concepts

~,
,

WHA"I IDOES~~~
I MEAN. ,

Memory
'Iocation'

\W\
~

Momory
location
versus

contents ...

3

etc.
Data is stored in RAM in
individual 'addresses'. You
recover or store a piece
of data by specifying a
memory address. Each
address is a fixed size
and they are numbered
sequential/y from 0
onwards.

How memory (RAM) is organised

complex maths problem. Memory, the second most important component
of a computer, is the place where results like these are stored, and from
where, in our adding example, we retrieve the two numbers to be added.

How memory 'locations' work
Think of computer memory as a huge collection of locations, in each of
which something can be stored for later recall. It's like a collection of
pigeon-holes in a sorting room, with the restriction that only one letter
may be held in each pigeon-hole. To make the process of storing and
retrieving letters in these pigeon-holes sensible, each must have a unique
tag, so that, say, a letter for Mr Hume is put in a place where Mr Hume
can easily find it if he suspects a letter has been delivered to him. Pigeon­
holes are usually tagged with the names of the people for whom the
letters inside are addressed. If they weren't tagged in this way, our
redoubtable Mr Hume would have to search through all of the pigeon­
holes until he found a letter with his name on it. Computer memory is
different to our pigeon-hole analogy in this respect - the stored objects
themselves aren't marked with addresses - so it's essential that the places
in which they are stored are tagged. The method of tagging is numerical:
the first memory location is tagged as '0', the next as '1', the next as '2',
and so on to the limit of the computer's memory.

Most of the processor's instructions require it to either store objects in or
retrieve objects from memory. The instructions themselves are
represented by numbers, and the locations in memory which they deal
with are also represented by numbers. What about the actual objects held
in memory? In the case of our earlier addition example, these objects are
numbers too. There's a potential point of confusion here: the content of a
memory location is a number, but this number is distinct from the tag or
('address'), of the location itself, also represented as a number

Complete Amiga C

4

Complete Amiga C

Chapter 1

Here's how it works: a typical processor instruction might be a request to
retrieve an item from memory. In this case, the processor would be given
the number representing the 'retrieve' instruction, followed by the
number or address of the memory location it's to retrieve from. The
content of this location, a third number, is what is actually retrieved for
further processing (our addition, for example).

You're no doubt used to seeing your Amiga deal with text, sound and
graphics as well as numbers. You may be surprised to learn that all of
these things are actually stored in memory as numbers. As far as the
processor is concerned, they are numbers. They're translated into other
things by programs and, in the case of sound and graphics, additional
hardware.

How big's a memory location?
Each memory location has a finite size, being capable of holding a
number no larger than a certain value. In the case of the Amiga, this
maximum value is 255 - only whole (non-fractional) numbers between 0
and 255 may be stored in a single location. Dealing with numbers within
this range causes no problems. Similarly, dealing with text is no problem,
because each letter of the alphabet and each punctuation mark can be
denoted by its own unique number within the range.

If a programmer wants to deal with numbers larger than 255, though, or
with numbers that have fractional parts, then several memory locations
must be used together to hold the larger object. In the case of a graphics
screen, like one created with a paint program, many thousands of
memory locations are combined to store it as a single object.
Nevertheless, as far as the processor is concerned each of these locations
is a separate entity, holding a number in the region of 0 to 255. It has no
conception of an overall object such as a graphics screen.

It's like a piano that sounds a note every time a key (analogous to a
processor instruction) is struck. The piece of music in its entirety is like a
program: by combining the individual notes into a whole it gives them a
musical meaning.

Basic concepts

Although each memory
location can only handle
whole numbers in the
range 0-255, by
combining four locations
(which is what the
processor's registers do)
it's possible to arrive at
much larger numbers
(necessary for specifying
memory addresses).

5

2382839760

processor 'register'

'------'

+ (X25~X256) I + ~ + ~ = -
individual 'locations'

Combining four 'locations' to produce big numbers

Handling bigger numbers
Actually, in certain circumstances the processor is capable of dealing
with groups of memory locations, with numbers larger than 255_ It has
to_ Since memory locations are tagged by numbers, and it is these
numbers that the processor uses to refer to the contents of the locations,
if the processor were restricted to using numbers between 0 and 255 it
would only be able to access a maximum of 256 locations, which would
make it pretty feeble_ Amigas now come with one megabyte of memory
as standard - that's well over a million individual locations (each
location being technically known as a 'byte')_ As a solution to this
addressing problem, the processor is designed to be able to deal with four
locations together. Remember when you were first taught arithmetic at
school, and numbers were divided up into 'units', 'tens', 'hundreds' and
'thousands'? Each of these decimal divisions is like a memory location,
capable of holding a number between 0 and 9, though, instead of 0 and
255. The figure in the 'tens' location has a value ten times higher than it
would if it were in the 'units' location; similarly the figure in the
'hundreds' location is a hundred times and the figure in the 'thousands' a
thousand times higher than the figure in the 'units' location_

Numbers in a group of four memory locations can be handled the same
way by the processor. The number in the first location has a value of 0 to
255, the number in the next location (the 'two hundred and fifty sixes', if
you like) has a value 256 times greater than it would if in the first

Complete Amigo C

6

RAM

ROM

Complete Amiga C

Chapter 1

location, the number in the next location is 65536 more significant than
that of the first, and the number in the final location is 256*256*256
(16777216) times more significant. If the processor were treating four
consecutive locations holding the values 12, 5, 14, 7 as holding a single
object, then this object would have the numerical value of
12+(5*256)+(14*256*256)+(7*256*256*256)=135202316. This final
value can itself be treated as an address of another memory location. The
processor may need this address for many reasons, for example to store
in it the result of an addition it's just carried out.

The processor's own memory: 'registers'
The processor stores numbers in and retrieves numbers from memory,
which is separate from the processor itself both physically and in
principle. For the processor to do this, it must have some means of
holding the numbers inside itself. For this, the processor has a small
collection of its own memory locations, known as 'registers', physically
built into the silicon chip. Because they're built into the processor,
operations on numbers held inside these registers are carried out much
more quickly than on those in ordinary memory. But because the number
of registers is very small, their contents must often be passed to and from
ordinary memory.

Each register is equivalent in size to four ordinary locations, so registers
are ideal for holding the addresses of memory locations which the
processor is to work on.

The type of memory we've discussed so far is known as Random Access
Memory, or 'RAM' for short. It's called this because once you know a
location's address, its contents can be retrieved immediately (or almost
immediately) without having to waste time looking at any other memory
locations.

The contents of RAM are erased when the computer's power is switched
off, or when the computer is reset. In contrast, the contents of the second
main type of memory, Read Only Memory ('ROM') are permanent. They
will not be erased by a lack of power, and they cannot be changed by the
processor. Nothing new can be stored in ROM: why it is useful will be
explained later in this chapter.

Basic concepts

~ ...
IDOESIT. I
I MEAN ~
'~

Program
Counter

7

So far I've talked about numbers being placed in memory, specifically
RAM. These numbers are termed 'data'. They are the things on which
the processor operates, just as numbers on a balance sheet are the things
that we might add together and subtract from each other. But as I said,
the processor obeys instructions, and it must be given these instructions
somehow. Where are these instructions kept, and how are they sent to the
processor?

Where does the processor get its instructions?
The instructions are also stored in memory. The processor takes an
instruction from memory, does what the instruction tells it to, and then
takes its next instruction from memory. One of the processor's registers,
known as the Program Counter, contains the address of the location of
each successive instruction. The processor uses the register like any
other, retrieving the number representing an instruction from memory.
Once inside the processor the instruction is carried out and the value held
in the Program Counter is increased (the amount it's increased by
depends on the length of the instruction previously retrieved) so that it
now points to the address of the location in which the next instruction is
held. This it then retrieves, and so on.

And that, basically, constitutes the life of the processor: retrieve an
instruction, execute it, retrieve the next, and so on.

As you may have gathered, there is no physical distinction between data
and a collection of instructions. If the Program Counter happened to hold
the start address of where a graphics screen was stored, then the
processor would attempt to interpret the graphics data as a sequence of
program instructions. The sequence would be nonsensical, and would
probably cause the computer to crash.

Now each individual processor instruction is very simple, capable of
doing very little, but by combining them together great results can be
achieved. The many complex applications available for the Amiga prove
it. When many instructions are combined to an end, the combination is a
'program' , just as a symphony is a collection of musical notes.

Complete Amiga C

8 Chapter 1

Storing stuff permanently
Programs, as you'll discover by working through this book, can take a lot
of work to create, so you need somewhere more permanent than RAM to
store them (otherwise you'd have to type them back in again every time
you re-started your Amiga). That's where disks come in. For our
purposes right now, there's no real difference between a floppy and a
hard disk: both can store information intact, long-term. The difference
between a disk and ROM is that new information can be added to a disk,
and existing information can be removed or altered.

Programs, then, can be saved to disk, which can be thought of as a more
permanent but slower type of memory. For a program to be run, it must
first be retrieved (or 'loaded') from disk into RAM. Then, each of its
instructions in turn is retrieved from RAM into the processor and
executed.

But you don't just want to keep programs long-term - you'll often need
to store data, too. The contents of RAM, whether they constitute a
program or data such as a graphics screen, can be saved to disk. Each
data 'object' is saved as a 'file', and each file has its own unique name to
identify it later.

Programming languages

Complete Amiga C

The collection of all the various instructions that the processor
understands go to make up its 'language'. The instructions constitute its
vocabulary, if you like. The language processors understand is 'machine
language' - the language is the same for all computers with the same
type of processor. Amigas, Atari STs and Apple Macs all share the same
machine language, whereas IBM pes and their clones, because they use
markedly different processors, use a different one.

Just as in English a straightforward list of a language's vocabulary is
meaningless - expecially so when you look at a list of the processor's
instructions. Just as English words needed to be linked in sentences for
them to make sense, processor instructions have to be linked to form
programs that perform useful tasks.

Basic concepts 9

Breaking down big tasks into smaller ones
Machine language programs are what is known as 'procedural', meaning
that only one instruction is obeyed at a time, and when it's been carried
out the next one in the sequence is started. The instructions go to make a
set of 'procedures' that must be performed to carry out the program's
task. The actions of instructions early in the sequence often affect the
actions of later instructions.

Imagine the process of making a cup of tea. It might be broken down into
the following set of 'procedures':

1 Fill the kettle with water
2 Switch the kettle on
3 Wash out the cup
4 Place a tea-bag in the cup
5 Wait for the kettle to boil
6 Pour the hot water into the cup
7 Wait for the tea to brew
8 Remove the tea-bag
9 Finally, add the milk

As you can see, each stage relies on the successful completion of the
previous stage. Also, each of these stages could be further broken down
into smaller sub-stages. A machine language instruction is equivalent to
the smallest sub-stage imaginable.

The utter simplicity of each instruction means that very many of them
must be combined to form a program that does something even as trivial
as writing a message on the screen. And don't forget, all of these
instructions are represented by numbers, the data they deal with is also
represented by numbers, and any memory locations they use are
themselves addressed by numbers.

A machine language program is nothing more than a huge list of
numbers, immediately understandable to the computer but far less so to a
human being. Writing one is an extremely error-prone business.

Complete Amiga C

10

Complete Amiga C

Chapter 1

Higher-level (more understandable) languages
In order to make life easier for programmers, many other languages have
been designed - C is one of them. These languages are described as
being of a 'higher level', firstly because their vocabulary is closer to
normal English and further removed from the 'level' of the processor,
and secondly because instructions in such a language can achieve more
complex and subtle results than those of machine language.

The fact remains, though, that processors understand nothing but
machine language, so programs written in a high level language must
first be translated before the processor can 'execute' them (i.e. follow the
instructions). This translation process is dealt with by another program
(itself of course consisting of machine language instructions). There are
two main types of translation: interpretation and compilation.

Ilnterpretedl programs
Interpretation is the simpler of the two. An interpreter takes each of the
statements making up a program, one at a time (a 'statement' is the high­
level language equivalent of an 'instruction'). It checks the statement
against its list of 'permissible' ones. If the statement isn't there the
interpreter produces an error message and the program stops. If it is, then
the interpreter executes a sequence of machine language instructions
whose overall effect corresponds to the meaning of the statement. Then
the interpreter looks at the next statement and the process repeats. As you
can see the interpreter must be present whenever the program is
executed, and translation occurs each time. The process of translation is
part of the execution.

Also, suppose that a certain part of the program was to be executed many
times, a good example being the section of a chess program that decides
which move the computer is to make. If this sequence of statements was
to be executed a thousand times, then each of the statements would need
to be translated a thousand times during the program's execution. The
translation process takes time, so the interpreter approach is clearly
inefficient. The method's main advantage is its convenience. A program
can be modified (as programs often need to be during their development)
and then executed immediately - the effects of changes made can be seen
right away. The most common interpreted language is BASIC.

Basic concepts

'0,
'~_~H!T~' ,DOES" '\
I MEAN. \
~

'Interpreted'
and 'compiled'

languages

All programs written in a
high-level language have
to be translated into
machine language before
they will run on the
computer. There are two
ways of going about this -
either translating and
executing each command
in turn (interpreting) or
translating all the
commands in one go,
then executing the
resulting machine
language file.

Interpreted languages are
easier for developing
programs (changes can
be tested much more
quickly) but compiled
programs and much more
compact and run much
faster.

Interpreter

I • etc. until the end
of the program

'Compiled' programs

11

Compiler

etc. until the end
of the program

'Interpreted'
versus 'compiled'

programs

With a compiler, the stages of translation and execution are entirely
separate. A compiler reads in your high level program as a text file. Like
an interpreter, the compiler checks each statement in the file against a list
of permissible statements, and if it doesn't find the statement there it
signals an error. If the statement in question is permissible, then the
compiler creates a sequence of machine language instructions which (as
with an interpreter) when executed have an effect corresponding to the
statement's meaning. But the instructions are not executed. Instead, they
become part of a file produced by the compiler. As each statement in the
high-level language is in turn translated, the resulting machine language
instructions are added to this file. Once the compiling process has
finished, you are presented with a file ready to execute (actually, a further

Complete Amiga C

12

Complete Amiga C

Chapter 1

stage of translation is necessary, but we'll worry about that later). The
new file contains nothing but machine language instructions, so it can be
executed without any further intervention from the compiler - no further
translation is necessary.

Because of this, compiled programs execute (run) much faster. Also,
since compiled programs run independently of the compiler they tend to
be smaller in size than their interpreted counterparts (interpreted
programs must also contain the interpreter itself).

Compilation has its disadvantages, though. Programs of any complexity
go through many versions before they are finished. Errors must be
corrected, and modifications must be made to increase efficiency and
usability. If you're using a compiler, each modification means your
program has to be re-compiled (a time-consuming process) before your
modification can be checked by re-executing the program. This requires
patience ...

Error correction is also harder with a compiler. A compiler, like an
interpreter, can spot many errors, but many more can only be spotted by a
human being. A translator can only pick up 'grammatical' errors - cases
in which a statement has been mis-spelled, a non-existent statement has
been used or a statement has been used in a context which makes it
nonsensical.

But consider the sentence: "Eat lurid frying pans to sail the sands of
time." It's grammatically correct, but complete nonsense. The
programming equivalent would be translated without question by a
compiler because it's 'grammatically correct', each of the statements
leading to a legitimate set of machine language instructions. But the
effect of their combination would not be apparent until they were
executed. To make matters worse, these sort of errors can often be very
subtle, requiring the program to be tested many times before they're
discovered. Yet these disadvantages are outweighed in the long run by
the advantages. Most professional programmers use compilers.

C is a compiled programming language, and the most popular one on the
Amiga.

Basic concepts 13

Functions and sub-routines

'
~Oi

WHAT ,
DOES IT

\ MEAN.

A 'function'

GO' WHAT I

IDOESrT
11 MEAN.

'Source' code
'object' code

Here's the secret of programming: learn how to analyse things in terms
of their components. Take our earlier example about making a cup of tea.
The task was broken down into several smaller, simpler instructions:
wash out the cup, fill up the kettle and so on. Each of these could be
broken down further: "fill up the kettle" becomes "Unplug the kettle,
place it under the tap, turn the tap on, wait until the kettle is filled to a
certain level, turn off the tap, plug the kettle back in." You get the idea ...

Program instructions are the equivalent of these very basic instructions.
It's the programmer's job to take a problem and reduce it to successively
smaller parts, until each of these parts is itself a program instruction.
Knowing what the program instructions do, in our case knowing C, is
only the basis for good programming skills. The real skill lies in being
able to reduce problems effectively. To make matters more interesting,
there are usually many ways in which a problem can be broken down. In
other words, you could write many different sets of instructions (i.e.
programs) to carry out a particular task. Choosing the best one, or at least
a good one, is a matter of experience.

Simply learning C will not make you a good programmer - practice and
experimentation are essential. But the language does offer some help, in
the form of 'functions'. Now functions are quite an advanced concept, so
I won't go into their details until much later in the book, but the basic
concept behind them is so fundamental its worth introducing now.

What is a function? A function is a thing that does something; more
accurately, it is a thing that takes data, does something to it and produces
data as a result. This result depends on the initial data. Back to the real
world: an oven is a function which takes raw food as its data and
produces cooked food as its result.

Programs themselves are essentially functions; they takes data as their
input and produce data as their output. A compiler is a perfect example.
Its input is a program written as an ASCII text file ('source code') and its
output is an executable machine language program ('object code').

Complete Amiga C

14

Complete Amiga C

Chapter 1

The elements of a program may also be functions, whose combined

effects go together to produce the program's effect. Each of these

functions in turn may rely on several smaller functions. An example of a

particularly fundamental function is addition, a function which takes two

numbers for its input and produces as its output their sum. As you can

see, 'functions' are ideal tools for reducing a problem to its components.

Unlike some more dogmatic languages, not every instruction in C is a

function. The instruction to store a numerical value in memory, for

example, is not a function. You could say it was taking the number as its

input, but it would be stretching the definition too far to suggest that the

storage of the number in memory was in itself an output. Such

instructions are termed 'statements'; they do things, they produce effects,

but they do not yield results in a strict sense. There'll be more on this

later in the book.

Setting up your
system
• Backing up your DICE disks
• Floppy disk installation
• Hard disk installation

• Final steps
• What you've got

15

Complete Amigll C

16

\~"
I,MAKEA J
I NOTE! '----Hardware

requirements

Backing up

Complete Amiga C

Chapter 2

I n this chapter you'llleam how to set up your DICE compiler so that
you can create C programs. You'll also learn something about the

various processes involved in translating a program from C into machine
language.

DICE requires a minimum of 1Mb of memory to run, and even then you
are going to find yourself hampered until you get more memory. If you
are running with only 1Mb, I strongly recommend you get more - it will
make life so much easier.

DICE will run from floppy disk, but again you will find life so much
easier if you get yourself a hard disk.

What follows is an explanation of how to install DICE on your system.
You must do this before you can write any C programs. Follow the
instructions carefully: once you are familiar with the environment, you
can read the extensive documentation with DICE (in the doc directory) to
find out how you can customise the system as you wish.

Before you go any further, make copies of each of the four disks that
come with this book. Once you have done so, put the originals away and
work only with the copies. Floppy disks, alas, are not perfect: if you lose
some data on a copy, you can always revert to an original; if you lose
data on an original, you're stuck. You can make copies of the disks either
by using the Diskcopy command from the Shell, or by using a
Workbench menu option (don't use the Shell command Copy, as most of
the DICE files are compacted and copy will fail to give accurate
duplicates). Either way, be sure to give the copies the same names as
their originals: the names will play a significant part in what follows. If
you're copying from Workbench, you'll find that the text 'copy of'
appears in front of the name of each disk copied. Use the Workbench
menu command Rename to remove this part of each name.

Having made back-ups of the disks, you are now ready to follow
whichever procedure applies to the machine you own:

Setting up your system 17

Floppy disk installation

1\~"1
NOTE' ~
~-

Manual
assignments

If you are running from floppy, then you can run DICE as is. Boot from
the first disk in the set. This will give you access to all the commands
you need, and automatically load the DICE text editor, dme.

Most of the files on the supplied floppy disks are compressed. You can
get to the uncompressed versions by using the ARCH: handler. Accesses
to any files on the disk via ARCH: will mean that the files are de­
compressed before reading; similarly they will be compressed before
they are written back to the disks, should you choose to modify them.

The actual disks are named XDCCl:, XDCC2:, XDCC3: and
XDCC4:.However, you can get to them via the assignments DCCl:,
DCC2:, DCC3: and DCC4. These assignments include the ARCH:
handler, so accessing any files with them will result in them being de­
compressed first. (Assignments let you use a simple name to refer to a
file and its directory path.)

Files in the c, s and I directories are not compressed, and can be directly
modified (without the aid of ARCH:) if you so wish.

Important note
You must have the first dice disk (XDCCl:) in your drive before
attempting to execute any of the DICE compiler commands outlined later
in this chapter (dcc and dIne), otherwise you will be given a "command
not found" error message. AmigaDOS will not recognise the commands
unless it can immediately see them on the current disk.

Workbench 1.3
If you're working with a single floppy drive, you'll find that the
assignments DCC2:, DCC3: and DCC4: are not made. This is because
AmigaDOS 1.3 will only make assignments if the disks involved are
present at the time.

After boot-up you can manually make the assignments from the Shell by
typing, for example:

Complete Amiga C

18 Chapter 2

resident cl.3/assign

Then put XDCC2: into your drive and type:

assign OCC2: ARCH: XOCC2

Then put in XDCC3: and type:

assign OCC3: ARCH:XOCC3

Now put in XDCC4: and type:

assign OCC4: ARCH: XOCC4

Finally, replace your first DICE disk in the drive and type:

resident assign remove

The installation process is now complete. Go to 'What You've Got'.

Workbench 2 and above
With Workbench 2, all the correct assignments are made at boot-up time.
You have a ready-to-run system. Go to the 'What You've Got' section.

Hard disk installation

Complete Amiga C

Because you have a hard disk you have the space to store all of the DICE
files in their de-compressed form. This will mean that their execution is
quicker, because they do not have to be decompressed each time before
they are run.

To obtain the de-compressed version of DICE, you need to copy each of
the files individually via the ARCH: handler. This will automatically
decompress the files before putting them on your hard disk.

If you've booted from your hard disk, rather than the DICE floppy, then
you'll first need to set the ARCH: handler running with the following
Shell command:

Setting up your system 19

run <nil: >nil: xdccl:l/fsovl-handler

You then need to create a directory on your hard disk in which to store
the DICE files. The directory name 'dice' seems appropriate, and for the
sake of argument I've created it on the partition called 'WORK':

makedir WORK:dice

All of what follows assumes you have made such a directory. If, for
example, you have instead created a directory called 'compiler' on
partition dhO:, then replace every occurrence of 'work:dice' in what
follows with 'dhO:compiler'

You then need to copy the contents of each individual disk into this
directory. Remember to use the ARCH: handler to de-compress
everything before it is written to hard disk. To do this, type the following
commands:

copy ARCH: XOCCl work: dice ALL CLONE
copy ARCH: XOCC2 work: dice ALL CLONE
copy ARCH: XOCC3 work: dice ALL CLONE
copy ARCH: XOCC4 work: dice ALL CLONE

Having done this, you'll have copied a few files that you don't need.
These are necessary only for those booting DICE from fioppies, so you
can delete them with the following command:

delete work:dice/{11.3112.0Icllibsl.31Iibs2.0} all ,j

There are a number of DICE files stored within archives. With the lUxury
of a hard disk, you can afford to de-archive them with the following
commands:

cd work:dice
bin/dzrestore libsrc.bak
bin/dzrestore dlib.orig.bak
cd include .:
work:dice/bin/dzrestore amiga13.bak;

Complete Amigo C

20

Minor bug

Complete Amiga C

work:dice/bin/dzrestore amiga20.bak ./
work:dice/bin/dzrestore amiga30.bak ./

Workbench 1.3

Chapter 2

You will need to copy the contents of DICE's libs: directory to that of
your hard disk. Do so with the following Shell command:

copy XDCC1:1ibs/#? libs:

which assumes that you have booted from your hard disk.

You will need to modify your startup-sequence so that a script called
startup-dice is also executed when the Amiga boots. This script makes
the necessary assignments for DICE usage. Add the following line to
your startup-sequence file, just before the loadwb line:

execute work:dice/s/startup-dice work:dice

You can add the line by using the Shell-based editor Ed, which is invoked
with the following line:

ed s:startup-sequence

--'-; Typing [?S~-X] will save your changes. Consult your manual for more
information on using Ed.

There is a small bug in the file startup-dice which also must be corrected
if you are using Workbench 1.3. Open the file up with an editor such as
Ed, for which you can use the command:

ed work:dice/s/startup-dice

and enter the following line just before the one that reads resident
>nil: force:

failat 21

Now save the changes with [Esc-X]. Go to the 'Final Steps' section.

Setting up your system

Final steps

21

Workbench 2 and above
Enter the following line into your user-startup file, contained in the s:
directory of your hard disk:

execute work:dice/s/startup-dice work:dice

You can do this by editing the file with the Shell command:

ed s:user-startup

I and pressing [Esc-X] to save your changes. -r

Whether you're using Workbench 1.3 or 2.0 and above, there's one more
thing to do if you're using a hard disk. There's a file, called .edrc, that
lives in DICE's s directory. This is an initialisation file for the DICE
editor, dme. Without it, dme won't function properly. You therefore need
to copy it into the s directory of your system disk with the following
Shell command:

copy work:dice/s/.edrc s: J

What you've got (and how to use it)
DICE isn't just a C compiler, but a complete development system. With it
you can create and run just about any program for the Amiga. The three
main components of the system (there are more: consult DICE's on-disk
documentation for more details) are the editor, the compiler and the
linker:

The editor
A text editor is supplied with DICE. All C programs are written initially
as ASCII text files. If you have an editor which you like and which you
are used to working with, then by all means use this in preference to the
one supplied with DICE; but be sure that you save your files out in
standard ASCII format. This is normally the default option with editors,
but some word processors may be different.

Complete Amiga C

22

The linker and
libraries

Complete Amiga C

Chapter 2

You can call up the DICE editor with the following command, typed
from the Shell:

dIne <filename>

where <filename> is the name of the file you wish to edit. If no such file
exists, then dme will create a new one. It's standard practice to put a '.c'
at the end of C source code files.

You'll find all the usual editing options in dme. Hitting function key F9
will save your work, while key FlO will save and quit from the editor. If
you're using more than 1Mb of memory, you'll find it more convenient to
run the editor in conjunction with the compiler (the compiler will reveal
an awful lot of errors that will require you to change the source file). In
this case, you can multi-task dme by running it from the Shell with the
command:

run dIne <filename>

The compiler and linker
Once you've created your source code file with an editor, you'll want to
translate it into machine code. This is primarily the responsibility of the
compiler - the main component of DICE - but, to a lesser extent, the
linker too.

Typically, C programs rely on pre-written code. Even the most trivial
program, such as the first in the next chapter, will rely on some pre­
written routines. Printing text to the screen, for example, is actually a
very complex task, and one with which, thanks to somebody else's
endeavours, we won't have to concern ourselves with. We simply need to
make use of the already-existing code.

The linker is the program that lets us do this. The compiler translates a
program into machine language, producing an intermediate file known as
an 'object' file (usually given the prefix '.0' when saved). The linker
joins an object file with any pre-written code that the file may require to
run. Such commonly used pre-written code is stored in 'library files'.
Two types exist: library files that supply all the functions common to C

Setting up your system 23

on any platform; and library files specific to the platform - those that, on
the Amiga, enable you to use the machine's special features. Happily,
you don't as a rule have to worry about the linking stage with DICE: it's
all taken care of. To compile a program with DICE, simply type:

dcc <filename>

from the Shell. DICE will then go off and compile and link your
program, producing an executable (i.e. a runable program) with the same
name minus the customary '.c' at the end. For instance:

dcc hello.c

would produce the output file:

hello

More often than not, you'll end up with a list of errors instead, which is
why it's nice to be able to multitask dme so you can go straight back to
your source code and attempt to eliminate their causes.

You can make DICE produce an executable file with a different name by
using the -0 option. The text following -0 is the name by which you want
the executable to be called. The following:

dcc hello.c -0 fred

would cause the source code to be compiled into an executable called
fred. You would then run fred simply be typing:

fred

The same applies for any executable, but note that you must be in the
directory that contains the executable, or its directory must be within the
path that AmigaDOS searches when attempting to execute commands.

If you want to just compile a file, and not link it into an executable, then
you can do so by adding the -c option to the command line:

Complete Amig(] C

24

\~'\,
I MAKEA \
"NOTE' _
~----

Floating point
maths

Complete Amiga C

Chapter 2

dcc -c fred.c

would produce an object file called 'fred.o'. This will come in useful
when you begin to compile your own libraries. You won't actually need
to link them until you've written a program that calls functions that they
contain. If you have, you can compile your program and link it with a
library as follows:

dcc program.c fred.o -0 program

which will compile program, link it with the library fred, and produce
the executable file program.

You'll find that DICE's linker is largely transparent: unless you need to
link programs in with your own libraries, you won't have to be aware of
its existence. You'll even find that those programs in this book that call
on Commodore's pre-written libraries will be compiled and linked
without problem by the dcc command.

The one exception comes about with floating point maths. Floating point
is the means by which C deals with non-whole numbers, those that
contain fractional parts. Because such numbers are stored and dealt with
in a special way by C compilers, and because they are largely unused in
most practical applications, DICE treats them as a special case. If any of
your programs, and that includes the examples in this book that include
variables of type float or double, make use of floating point numbers,
then you must specifically link your program with a maths library when
compiling and linking. You can get DICE to do this by including the -lm
option. If program fred.c made use of floating point numbers, and you
wanted to compile it into a program called vincent, then you would type:

dcc fred.c -lm -0 vincent

You now should be able to use DICE to create your own programs. All of
the examples in this book can be compiled with the information given. If
you want to know more about how DICE works, or the options it offers,
consult the text files in the doc directory.

25

Basic C
• programming

• Analysing a simple program

• Numbers and variables

• Variable types

• Expressions, operators and operands

• Handling user input

• Mixing variable types

Complete Amiga C

26 Chapter 3

All of what's gone so far may have given you the impression that
programming is complicated. In fact, it's fairly straightforward, as
you'll discover once you get those basic concepts under your belt.

And the best way to do that is to start programming.

Analysing a simple program
The first thing to attempt is a program to print a message to the screen.
There's hardly any problem-solving to be done at all: we already know
that there's a C library holding a function to do the printing for us, so all
we need to do is make use of that function. Everything else is just the
basic framework which must surround all programs.

Run your editor and enter into it the following lines of code:

#include <stdio.h>
~COMPLETE
~LlSTING

[iE[D]
~Il

/* program to print a message to the screen */
void main(}
{

printf ("Hello from planet C\n");

}

Complete Amiga C

Now save the text file, compile it and run it (you'll find instructions for
using DICE to do this in chapter two).

You should see the text below printed on your screen:

Hello from planet C

I'll go through the program line by line to explain what's going on. The
first line tells the compiler that we want to use some code that's already
been written, collected in what is called a 'header file'. It tells the
compiler to include this code as part of our own program. The name of
the file to be included is held within the angled brackets. Stdio. h (for
standard input and output) is a file provided with all C compilers,
containing a set of functions to perform simple printing operations,
retrieve entries from the keyboard and the like. We need to include it
because it contains the function to print information to the screen.

Basic C programming

Use comments
in your code

27

The next line has been left blank. It isn't necessary, but has been put
there to aid clarity. So far is C is concerned, all white space is the same.
It does not distinguish between a space character, a tab or a return
character. They are all used merely as separators. It's possible, though
confusing to read the result, to write C programs as a single line with
only single spaces separating the statements.

The next line is a comment. It's a message from the programmer to him
or herself, and to any other programmers who may look at the code. It's a
signpost that explains what's going on. Using comments in your
programs is a good idea: you'll be surprised how confusing your own
programs can appear when you come to look at them some time after you
first wrote them. Comments help you to unravel the knots. In C, the two
characters /* together denote the beginning of a comment, and the
characters * / denote its end. Anything between them is ignored by the
compiler, and is not translated into machine code. In other words,
comments don't waste space and don't detract from the efficiency of
your programs. On the other hand, they do improve the efficiency with
which you can root out program errors and make changes.

After the comment comes a function definition. The function is called
main; every C program has a function with this name. This is the
function that gets used when the program is executed. The reason such a
function needs defining will become apparent if you consider that many
more function definitions may be contained in a program; the computer
must be told which to execute first, which is the 'top level' or 'main'
function. The word void before the function's name indicates that the
function does not produce a result. It has an effect - that of printing text
to the screen - but no result is produced in the strict sense. The
parentheses after the function name let the compiler know that it is a
function that is being defined, and the fact that there is nothing between
them indicates that the function does not require any input.

The opening and closing curly brace are used to bound the contents of
the function. Everything between them, in this case just one statement, is
defined as the block that comprises the function. They are just part of the
grammatical structure that C expects, in much the same way as English
requires reported speech to be enclosed by inverted commas.

Complete Amiga C

28

Numbers

Complete Amiga C

Chapter 3

Finally, we get to the statement that actually does something. What it
does is to make use of (or "call" in technical parlance) a function named
Printf. Printf is a pre-written function that writes information to the
screen. Its definition is provided by the inclusion of the stdio. h header
file. The "f" in its name stands for "formatted"; printf is a clever little
function that can, if used properly, write all sorts of information to the
screen in all sorts of different formats.

In this case our use for printf is straightforward. The information
enclosed in the parenthesis is the input for the function (known as the
function's "parameter"), for our purposes a segment of text. Enclosing
items within quotation marks ensures the compiler treats them as text.

The two characters at the end of the text - \n - are instructions that tell
printf to print a newline character, in other words to skip to the next line,
at the end of its printing. It's one of the elementary formatting
instructions that printf obeys. You'll soon learn how useful it is to be
able to do this.

When printf is called it takes the text as its input and has the effect of
writing this text to the screen. It also, separately, comes up with a
numerical result, which can be used by a program to determine whether
or not the function was successful. This result is ignored by our program,
which stops once printf has done its work.

The final thing of note is the semi-colon at the end of the printf line.
It's another one of those grammatical aspects of C - it marks the end of a
statement for the compiler, letting it know that what follows is either
another statement or, as in this particular case, the end of a block, as
denoted by a closing curly brace. And the closing of that curly brace
marks the end of your first program. Not a very complex one, granted,
but the first step towards great things.

One of the more important things that C can do is deal with numbers.
Even the most un-numerical of applications will rely heavily on numbers.
Although these numbers and their manipulation (usually pretty basic in

Basic C programming

,~--o' WHAT
DOES IT

" MEAN.

Integer

-----'D:~"'\ I, MEAN.

'-------Variable

29

mathematical terms, don't worry) may be hidden from the program user's
view, you as the program's creator must deal with them. Here's how.

C divides numbers up into several different types, the most common of
which is a type called "integer". An integer is a whole number, positive
or negative in value. There's a limit to its size, but we'll go into more
detail about that later. All the usual mathematical operations can be
performed on integers, but if you divide one integer by another you'll end
up with an integer result, a whole number. The "remainder" will be
forgotten. Dividing three by two will yield a result of one.

Storing numbers - variables
As I said in chapter one, for numbers to be of any use there must be a
means of storing them. For this purpose, and for the purposes of storing
other things too, C supplies things called variables. You can think of a
variable as the memory location, or more accurately the collection of
memory locations, in which the number is held. But rather than using a
numerical address, the programmer can access the number stored by
means of the variable name, which can be an intelligible word decided on
by the programmer.

Variables are akin to the Xs and Ys of school-day algebra. Numbers may
be stored in them and altered. In other words, their contents "vary"
throughout the time the program is executing (running).

Why is it necessary to refer to numbers via variables rather than as
numbers themselves? Imagine you were writing a spreadsheet program,
and that you needed to total up all the numbers in a column. You could
define a variable called total, and set its value to zero. Then you could
add the number in the first column to it. Then the second number would
be added, and the third, and so on. After all the additions were complete,
the value held in the variable total would contain the sum of the
column. It would be impossible to write a program to do this if it only
referred to numerical values, since these values would be unalterable
once the program was running. Nor could any of the numbers in the
column be written into the program simply as numbers. If they were,
then the spreadsheet would contain exactly the same numbers every time
it was run. Their values must be decided by the user when the program is

Complete Amiga C

30 Chapter 3

running, in other words they too must be stored as variables, with their
values either typed in by the user or loaded in from a file on disk.

To help clarify the above, let's take a look at a simplified program to do
the spreadsheet totalling:

#include <stdio.h>
~COMPLETE
~LlSTING

/* program to total four numbers */
void main()

]J~iIli
1J:EJ

{

/* first declare variables */

int first, second, third, fourth, total;

/* set the total value to zero */

total=O;
/* now assign arbitrary values to the other variables. In a real­

world example these values would be entered by the user running the
program */

}

first=23;
second=-5;
third=42;
fourth=l;
/* now perform the addition to find the total */

total=total+first;
total=total+second;
total=total+third;
total=total+fourth;
printf("The total is ");
printf ("'3-od \n" , total) ;

The program begins in the same way as the last, by calling on the
services of stdio.h (because we'll be needing the printf function
again) and by defining the function main. Once again, main returns no
result (although it has the effect of printing something to the screen) and
requires no inputs, so the word void appears before it and the
parenthesis after it (which let C know that it is a function) are empty.

Complete Amiga C

Basic C programming

~.
I MAKE A \
I NOTE! .------

Variable
names

int
int
int
int
int

first;
second;
third;
fourth;
total;

31

Declaring variables & variable 'fypes'
After the curly brace comes the line which 'declares' our variables. To
declare a variable means to let the compiler know what its name is, and
what type it is. In C, all variables must be declared before use. They are
usually declared at the beginning of a function, before any of its real
"meat".

We are using integers exclusively, represented by the C word int, so this
word precedes the names of the variables we want to use. The names of
variables can be anything you decide, according to certain restrictions.
The first character in the variable's name must be a letter, either upper or
lowercase (the two are seen as different, so the names fred and FRED
refer to different variables). The following characters be made up of
letters, numbers or underscore characters "--':'. It's conventional to use
predominantly lower case letters for variable names. You cannot use
words that represent C instructions.

In the above example, all of the integers were declared in one line, with
commas separating them. Instead the declaration could have been written
as many lines, like so:

LEE~ - 0::D -
CODE SEGMENT

The two styles can be mixed and matched as you see fit, but note that you
can only declare several variables with a single type specifier (int, in
our case) if they are all of the same type.

The next line after the comment is used to set total's value to o. In C,
the equals sign means "set whatever is to the left of the equals sign to the
value of whatever is to the right".

The next few lines assign arbitrary values to the other variables in much
the same way. The assignment to the variable called second makes use of
the - sign; as you might expect this means that the value stored in the

Complete Amiga C

32 Chapter 3

variable is a negative one, in this case -5. As it says in the preceding
comment, for the program to be of any practical use these values would
need to be entered by the user while the program was running. Note how
the comment can be split across more than one line without ill effect.

Expressions
The next line is where the real work begins. Again, it contains an equals
sign, so an assignment is being made to the variable on the left, i.e.
total. The value being assigned is the result of an "expression".

An expression is just like a sum in maths; it relies on "operands" and
"operators". In our example the operands (that is to say, the things to be
operated on) are variables, or more correctly the numbers held in the
variables, and the operator is the plus sign, representing addition. C has
many such operators, including ones to carry out all the basic
mathematical tasks.

The result of the expression is gained by applying the operator or
operators to the objects supplied. We are adding the values held in
total and first together (0 and 23 respectively) and getting the result
23, which is stored in total, erasing the old value of o. Notice how if a
variable is being assigned the result of an expression, and that expression
itself contains the variable, then the variable's old value is used in
computing the expression, and the variable's value is not changed until
the expression has been fully evaluated.

The following three lines add each of the next variables in turn to the
value held in total. When they have all been added, total holds the
sum of all of them, the value 61.

An expression can contain more than one operator, and more than two
operands. All of the above additions could have been compacted into the
following line with the same effect:

total=total+first+second+third+fourth;
@lEHil

- ~[! -
CODE SEGMENT

Complete Amiga C

Basic C programming 33

The final two lines are there to print out the result. The first one prints a
text message, as in our first example. The second is more interesting.

Passing parameters
For a start, two "parameters", or values to be given to the function, are
included between the parentheses. Printf is an exception among C
functions in that it can accept a variable number of parameters. The first
parameter is a piece of text, the last two characters of which mean, as
you know, print a new line at the end. The first two characters inform
printf that it is to expect a second parameter, and that it is to treat it as
an integer.

Different letters after the percentage sign are used for different variable
types. The two print statements could have been combined into a single
one as follows:

printf (liThe total is 9-.,d \n", total); ~@~
- 0l:Ll -

CODE SEGMENT

As you can see the "%if" formatting command tells printf whereabouts
within the printed text to include the value of the integer. If you changed
the line to:

printf ("You have %d in total",total);

The output produced would be:

You have 61 in total

iII~~ - ~~ -
CODE SEGMENT

The "9-.,d" need not appear at the end of the segment of text to be printed.

Type in the above program, compile it and get it running. Once you have
done so, try experimenting with the printf statement, splitting it across
more than one line, varying the position in which total is included in
the message, and printing other variables too.

Another thing to experiment with is different types of expressions. As
well as additions, you can perform subtractions with the - operator,
multiplications with * and divisions with /. Try them and see the results.

Complete Amiga C

34

\-J'.
DOES~~~ \

" MEAN. ----
Modulus

Complete Amiga C

Chapter 3

Operator 'precedence'
If you try mixing several different operators on the same line, you might
notice some odd results. For one thing, there is the consequence of
integer division as mentioned earlier, meaning that the expression
third/first (i.e. 42/23) would give the result 1, rather than the
expected 1.826. To compensate for this, C provides an operator called
the "modulus", that will find the remainder. It is written as a percentage
sign, and used just like the operators already discussed. For example, the
expression 429-023 would give the result 19, the remainder of 42 divided
by 23.

That's division taken care of, but there some more anomalies waiting to
be uncovered. What result would you expect from calculating the
expression 23-1+42? There are two possible ways to go about this: you
could subtract 1 from 23, giving 22, and then add 42 to arrive at the
result of 64; or you could add 1 to 42, giving 43, and then subtract this
from 23 to arrive at the result of -20. To resolve this apparent ambiguity
C has the rule that expressions with multiple operators are evaluated left
to right, so the correct answer in this case would be 64.

Using parentheses
You can force a different order of evaluation using parenthesis. If the
above expression were re-written as 23 - (1+42) , the right answer would
be - 20. Any operations inside parentheses are carried out before the
others. If there is more than one set of "nested" parentheses - i.e. one set
enclosed within another, as in the example 23- (1+ (42 -7 » - then the
expression within the "deepest" set of parentheses, the one most
enclosed, is evaluated first.

Here's another tricky one: 23+1*42. Is the answer to this found by
adding 1 to 23 and multiplying the total by 42, or by multiplying 42 by
1 and adding the result to 23? In fact, the latter is the correct method.
Multiplication, division and modulus are said to have a higher
"precedence" than addition and subtraction. This simply means that sub­
expressions involving them are evaluated first. Once the question of
precedence has been dealt with, then the simple left to right rule is
followed. So 1+42*23-5 gives 962.

Basic C programming 35

As before, parentheses can be used to change the order of precedence. As
a rule, it's a good idea to use them in complex expressions, that way you
can be sure that C is evaluating your expressions in the order you want.

Real numbers and user interaction
There are two modifications that could be made to the previous example
which would greatly improve its usefulness. One would be to make it
able to handle real numbers, the kind with decimal points and non-whole
values; another would be to let a user enter values to be totalled, rather
than the program totalling the same four numbers every time it's run.

Floating point variables
The first modification is straightforward. Happily, C provides a variable
type, distinct from int, which can hold non-whole values. It is signified
by the keyword float before the variable's name in the declaration.
Float is short for "floating point", which is a reference to the way such
numbers are stored inside the computer's memory. The specifics of this
don't concern us; suffice to say that floats can contain a whole part, a
decimal point, and a fractional part. If we wanted to use floats instead of
ints, the declaring line in our totalling example could be written as
follows:

float first, second, third, fourth, total;

total=O.O

CODE SEGMENT

One thing to note is that if a number is assigned to a float, then it should
include a decimal point within it, even if it is zero or a whole number. So
the initial assignment for total becomes:

_I:_El_I1_
c!J~~

CODE SEGMENT

This is to help distinguish between floating point variables and integer
ones. DICE won't complain if you assign a 0 to a float, but it's better to
stick to the convention of assigning a 0 . o.

A natural result of using floats rather than ints is that divisions yield
the correct answers. There is a limit to the accuracy of variables, though,
so a certain amount of rounding takes place, but floats are accurate to a

Complete Amiga C

36

IJs
Modulus

operator and
floats

---\~

IIII ~~~f!A

Variables and
functions

Complete Amiga C

Chapter 3

sufficient number of decimal places to make this rounding
inconsequential in most circumstances. Using the modulus operator on
floats will result in an error, since a non-integer division does not produce
a remainder.

To get some input from the user we use another function from stdio. h,
a close cousin of printf called scanf. Scanf essentially performs the
reverse of printf: instead of printing the program's output, it takes the
program's input. Like printf, there are many subtly different ways in
which scanf can be used. Some of them are quite complex, so we won't
go into them at the moment.

We want to use scanf to get a user-entered value for subsequent storage
in a variable. To do this we must supply scanf with two parameters: the
first is a format command, telling it to treat the input as a certain type,
analogous to the "'Yc:d" telling printf to treat a variable as an integer; the
second is the variable in which the result is to be stored.

The format command we will be using is "'Yof", which tells scanf that it
is dealing with a float variable. "'Yof" must also be used with printf
when we come to print out a float. The second parameter, the variable in
which the input is to be stored, must have a "&" character before its
name. There's no space for a full explanation here, but for now suffice to
say that ordinarily when a variable is given to a function as a parameter,
only the value held by the variable is given, not the variable itself. What
this means is that the function may modify this value without affecting
the variable - it is only modifying a copy of the variable which is private
to itself. For the purposes of scanf this is no good - we want the
variable itself to be modified. By prefixing its name with "&" we let the
function know where exactly in memory the variable is stored, meaning
that the function can directly alter the number held in memory and thus
the value held in the variable. Scanf can store its result. Don't worry if
you don't really follow this; you'll understand it better once we've dealt
with several other, related concepts. For now all you need to know is that
integer and floating point variables must be prefixed by "&" when they
are used as parameters for scanf. The line to get a user-entered number
into the float variable called first looks as follows:

Basic C programming 37

scanf ("%f" , &first) ; 12lI8:I:
- ~[D -

CODE SEGMENT

Like printf, scanf also produces a numerical value, independent of
the one assigned to the variable called first. This value is the number of
items that were input. It could be assigned to an integer variable, possibly
to help with error-checking, as follows:

was_an_error=scanf("%f",&first);

but for now we'll ignore it.

The modified spreadsheet is shown below. Type it in and try it.

#include <stdio.h>
~COMPLETE
~LlSTING

/* program to total four non-integer numbers */
void main()
{

}

/* first declare variables */
float first, second, third, fourth, total;

/* set the total value to zero */

total=O.O;
/* Now get the numbers to be added from the user */

printf("Enter the numbers to be added\n");
printf("Enter the first number ")j

scanf("%f",&first);
printf("\nEnter the second ");
scanf ("%f", &second) ;
printf("\nEnter the third ");
scanf("%f",&third);
printf("\nAnd the fourth ");
scanf("%f",&fourth);

/* now perform the addition to find the total */

total=total+first+second+third+fourthj
printf("\nThe total is %f\n",total);

ill~ill
ZliIl

Complete Amiga C

38 Chapter 3

To compile this successfully you'll need to include the maths library at
the linking stage - it's needed by both printf and scanf to handle
floats successfully. If you're compiling with DICE, and have named the
file spread2, then using the following line will do the trick:

dcc spread2.c -lm -0 spread2

Notice how I've used the "\n" formatting command in the program's
printfs to keep the screen from getting too cluttered when the program
is running. Notice also the use of the "9-0£" command in the final printf
to let the function know it is dealing with a float variable.

Feel free to modify the program as you see fit. In particular, try altering
the expression to include multiplication and division. The more you
experiment, the more you learn.

Mixing variable types

Complete Amiga C

You may be wondering what happens if both int and float variables are
used in the same expression. In general, ints are "promoted" to the
accuracy of floats, so that in an expression involving both, the integer
value is treated as a float with zero after the decimal point. For example,
the result of the expression 32.3+5 is 37.3, not 37. Similarly, if an
integer value is assigned to a float variable, then it is first converted into
a floating point value.

If a floating point value, which may be the result of an expression mixing
ints and floats, is assigned to an integer variable, then the fractional
part of the value is lost.

39

Decision-making
- Reducing statements to 'true' or 'false'
- 'Switching' statements
- 'If' statements & 'logical expressions'
- Relational operators
-loops

- 'Goto' statements and 'labels'
- 'Do while ... ' and 'while ... '
-logical operators (AND, OR, NOT)

Complete Amiga C

40

Complete Amiga (

Chapter 4

I f there is one thing about computers that makes them more than
glorified adding machines, and one thing that leads to the popular
misconception that they can think, it is their ability to make decisions.

This ability in no way implies that computers have free will, but is
nevertheless so important, so fundamental, that all but the most basic
programs rely on it.

So far we've dealt with programs that follow a single course of action,
where each statement within a program is executed in sequence.
Decision-making involves us in providing more than one possible course
of action. Which of these two courses is taken depends on whether or not
a set of circumstances, as defined by the programmer, have been met.
Think of a requester that asks a user whether or not the program it
belongs to should continue, a good example being a simplified "are
you sure? (1 for yes I 2 for no)" requester that appears before
a disk is formatted. If the user enters aI, then one course of action, that
of the program going on to format a disk, occurs; if the user enters a 2,
then another course is taken, that of the program stopping; if the user
enters anything else, then the question is asked again.

The circumstance on which the decision depends is the user's input. This
would be taken from the keyboard, perhaps using the scanf function
introduced in the last chapter, and stored in a variable. The decision is
then made by looking at the contents of this variable, and seeing if they
are the same as any of the expected responses.

In fact, all computer decision-making comes down to the examination of
variables, and there is only a small number of ways in which these
examinations can be done. Before we look at these, though, let's talk
about truth

True or false?
A statement can be either true or false; the computer has no conception
of things being partially true. For the example above, we could make the
statement, "The user entered a 1." It may be true, but if the user
entered something else, then it is obviously false. Decision-making
involves asking the computer whether or not a particular thing is true. We
might, in English, write the decision-making part of the program as,

Decision-making

A program can be
designed to follow more
than one course of action
depending on the user's
input. In this case, if the
user doesn't want to
format the disk, the
program simply skips that
step.

NO

41

Simple 'Yes/No'
decision-making
program design

"Did the user enter 1? If so, format the disk."

What we would actually do is look at the variable - let's assume it's
called reply - in which the user's input was stored. We would compare
the contents of the variable with the number 1, which is a "constant
expression" - its value, unlike that of the variable, never changes. We
would test to see if the contents of the variable and 1 are one and the
same thing, to see if they are equal. The test for equality is the simplest
of the possible examinations performable on variables.

Imagine a simple calculator program. It asks the user to enter two
numbers, say floating point numbers, and then asks what operation it is to
perform on them: addition, subtraction, mUltiplication or division. For
simplicity's sake, let's make the last input a number, too. We'll use a
simple menu system, using '1' for addition, '2' for subtraction, and so
on. (See diagram opposite.)

The first part of the program is executed no matter what. It gets two
numbers from the user. The second part asks the user for a third number,
and then, depending on what that third number is, one of four actions is
taken. Finally, the result is printed out to the screen. This last part, like
the first, is executed no matter what the user enters. Here's the program:

Complete Amiga C

42

#include <stdio.h>

/* simple calculator */
void main()
{

/* declare the variables */
float first, second, result;
int reply;

/* get the user to enter the numbers */
printf("Enter the two nUIl1bers to be operated on \n");

scanf ("%f 11 , &first) ;
scanf("%f",&second);
/* print up the menu and get user's choice */
printf("Which operation do you require?\n");

Chapter 4

~COMPLETE
~LlSTING

]J~I
~~

printf("1 - addition\n2 - subtraction\n3 - multiplication\n4 --,
- division\n");

}

scanf ("9--.,d", &reply) ;

/* now to make the decision */
switch (reply) {

}

case 1: result=first+second;
break;

case 2: result=first-second;
break;

case 3: result=first*second;
break;

case 4: result=first/second;
break;

default:
break;

printf("\nThe result is %f\n",result);

Everything up to the line which begins with switch should be familiar
now, but the decision-making part introduces new elements.

Complete Amiga C

Decision-making

Not all decisions have to
be of the simple 'YES/NO'
variety,

Using C's swi tch construction
to provide several options

43

The switch statement means "switch execution to one of the following
groups of statements, depending on the result of the expression inside the
parentheses." The expression in this case is simply the variable reply,
but it could be more complex. The body of the switch statement is in
curly braces - this means the body constitutes a statement block.

Complete Amiga C

44

GJ.i\.
" MEAN
'~

Break

G:j"1
'IDOESIT. \
I MEAN \
'~

Default

Complete Amiga C

Chapter 4

Just in case
Each of the lines beginning with the word "case" also represents an
expression. If the expression held in the parentheses after the switch
statement is equal to the expression following case (in this "case",
ahem, one of four numbers or the word "default"), then the statements
following case's colon are executed. In our example, the first case
statement is asking whether or not the variable reply holds the value l.
If it does, then the sum of the variables first and second is stored in the
variable result, by a statement that ought to be familiar -
result=first+second. It is followed by a semi-colon, as are all
statements that aren't followed by a block enclosed in curly braces.

The next statement - break - is an interesting one. It tells the computer
to "break out of' the switch statement, to ignore all other statements in
the block, and continue execution at the next statement not associated
with the switch statement, in this instance the printf that outputs the
result of the calculation.

The reason for the break is that otherwise execution would continue at
the next available statement, which is a check to see whether or not
result holds the number 2. If the addition statement has been executed
we already know that result holds the number 1 and we've done
everything we want to do that depends on the fact, and that there's
therefore no need to perform any further checking, and it's time to get on
with the rest of the program.

For the same reason, the break statement follows the statements to be
performed after each of the checks for the other possibilities (2, 3, 4 and
the mysterious "default"). The last one - default - is used to catch
any unexpected result. If, in our example, the user had entered anything
other than 1, 2, 3 or 4, then execution would end up here. You could put
a statement that prints out an error message here, something like, "You
have not entered a valid option." Try it.

As it is though, there is no statement following default:, other than
break. It's still important to put this segment in, though. Although a
break after default: isn't necessary, it's a good idea to include it.
Apart from its inclusion being a convention, it's a good guarantee against

Decision-making 45

~

\~"
I MAKEA \ 'e---
Switch

statement

your introducing a bug should you decided in the future to add another
case to the end of your switch statement, e.g. an option 5 to find
percentages in the above program. (Otherwise your program would find a
percentage whether its user entered 5, 6, 7 or any other invalid option.)

The switch statement provides a good way of performing one of several
actions, depending on the contents of a variable. A common use for it, as
above, is in responding to a user's menu selection. There are many more
uses for it, however, as you'll discover. An important point to remember
is that more than one statement can come between a particular case and
the next, so it offers a great deal of flexibility.

ifs but no buts
Sometimes, though, you may want to make simpler decisions, with fewer
possible outcomes, or decisions that rely on a variable holding something
other than integer numbers (for that is all switch can decide between).
In these situations it's more sensible to use C's if statement.

With if, you can ask whether something is true, and if it is, then do
something. If it isn't true, then the statement, or series of statements
enclosed in curly braces, that comprise the "do something" bit are
ignored. Here's a quick example:

#include <stdio.h> ~COMPLETE
~USTING

/* Quick demo of if */
void main()

:£]®:II
l!]0I

{

}

int reply;
printf("Enter the code number\n");
scanf ("9-cd" I &reply) ;
if (reply==999)

printf("Correct\n");

OK, it doesn't do very much, but I've kept it simple to illustrate the point.
The bit inside if's parentheses is a "logical expression". If it is true, then

Complete Amiga C

46 Chapter 4

the statement immediately following is executed. If not, it's ignored and,
in this example, the program finishes.

The expression here is a comparison between two smaller expressions
(the contents of the variable reply and the number 999). The program
is testing to see whether or not they are equal.

In C, the test for equality is done using two equals signs (==) together,
with an expression on either side. If the results of the two expressions are
the same, then the test is said to be true, otherwise false. For example,
2==3 and 7.9==7 are false, while 1==1 and, if the variable reply
holds the number 1, reply==1 are true. Two equals signs together are
used because one on its own, as you should remember, is used to store
the result of an expression (which may be a simple expression, such as a
number) in a variable. Confusing = and == is one of the most common
mistakes made by C programmers.

The comparison as a whole, made up as it is of two expressions and the
test for equality (known as a "relational operator", since it examines the
relationship between two expressions), can also be viewed as an
expression. Unlike other expressions, which can have a whole range of
values, this kind of expression can have only one of two logical values:
truth and falsity. Falsity is represented by the number 0, any other
number is equivalent to truth. This means that you could have an if test
without using a relational operator. In other words, you could substitute a
simple expression for a logical one involving a relational operator.

It would come in handy for a program dividing two integers. As you may
know, there's no sensible result gained from dividing any number by
zero. The answer tends towards infinity, and always generates a computer
error. So your program would need to check to make sure the divisor was
something other than zero. You could write it like this:

#include <stdio.h>
~COMPLETE
~lISTING

/* simple division program */
void main()
{

Complete Amiga (

]]i~Il
:il:EI

Decision-making

}

/* declare variables */
int dividend, divisor, result;

/* get their values fram user */
printf("Enter the two numbers to be divided\n");
scanf ("eyed" , &di vidend) ;
scanf ("eyed" , &di vi sor) ;

/* test to see if divisor is not zero */

if (divisor) {
result=dividend/divisor;
printf ("The answer is eyed\n", result);
}

You could, if you liked, streamline this a bit as follows:

#include <stdio_h>

/* simple division program */
void main()

}

/* declare variables */
int dividend, divisor;

/* get their values fram user */
printf("Enter the two numbers to be divided\n");
scanf ("eyed" , &di vidend) ;
scanf ("eyed" , &di visor) ;

/* test to see if divisor is not zero */

if (divisor)
printf ("The answer is eyed\n" ,dividend/divisor);

47

~COMPLETE
~LlSTING

~I cwcIj
~~1BI

Complete Amiga C

48

Gi'\,
I, MEAN. ---Relational

operators

Chapter 4

It needs one less variable, and loses a line of code. Printf only requires

a value to be passed to it, not necessarily a variable. So here we've given

it the value found by evaluating an expression. Notice also how the curly

braces surrounding the consequences of the if statement can be dropped

if the consequence is only made up of a single statement.

Different kinds of logical expressions can be formed by using different

types of relational operators. As well as testing to see whether two things

are equal, you can test to see if one is larger than the other, or if one is

smaller than the other.

The symbols used for these are as follows:

> Pronounced "greater than", which tests to see if the expression on

the left is numerically bigger than the one on the right

>= ("greater than or equal to") Tests to see if the expression on the left

is at least equal to, if not bigger than, the one on the right

< ("less than") tests to see whether the expression on the left is

smaller than that on the right

<= ("less than or equal to") tests to see whether the left-hand

expression is smaller than or at most equal to that on the right.

You already know about == ("equals") which tests to see if the two

expressions are equal. There's a similar, but opposite operator, which

tests to see if the two expressions are not equal. It is written ! = (and is

pronounced, unsurprisingly, "not equal to").

In the last example, we used the test if (divisor) to ensure the

division is only performed if divisor equals something other than zero. It

might be clearer to write the test out more explicitly:

if (divisor!=O)
~0[I1] - ~~ -

printf (liThe result is 'Yod\n" ,dividend/divisor);
COD[SEGMENT

Complete Amiga C

Decision-making 49

The other relational operators ("less than" and the rest) are useful in a

whole range of circumstances, but, rather than concoct an artificial

example right now, I'll use them as they become necessary in later

programs.

Doing it again (and again)

}

}

Let's go back to the first example of the chapter, the simple calculator.

We left it by saying some sort of error message segment would be useful

if the user entered a number other than 1, 2, 3 or 4. If you modified the

program yourself, then the last part of your switch statement will look

something like this:

default:
printf("You have not entered a valid option\n");

break.;

@JJElilil
- ~Cil -

CODE SEGMENT

(If you did do it yourself, I hope you didn't miss out the semi-colons at

the ends of printf and break; and if you didn't do it yourself, why

not?) This solution is all very well, but the program will, if the user

enters an invalid choice, give' him a result of 0 and has to be run again

before he can enter the choice he actually wants. What we need is an

opportunity for error recovery, like this:

default:
printf(lIYou have not entered a valid option ---,

- try again\n");

printf("l - addition\n2 - subtraction\n3 ---,

- multiplication\n4 - division");

scanf (l'7od" , &reply) ;

break;

Il~][il
- 0][[-

CODE SEGMENT

Have you seen the problem with this approach? If not, add it to the

calculator program and run the whole lot. Although we've given the user

the opportunity to correct his mistake and enter a new option, we haven't

modified the program so that it will do something with this new option.

Complete Amiga C

50

}

}

Chapter 4

One particularly clumsy solution is to include a copy of the whole of the

unmodified switch statement after the first switch statement's

default, so the whole decision process could be made again, depending

on the new value of reply. It would look something like this:

default:
printf(IIYou have not entered a valid option -,

- try again\n");

printf("1 - addition\n2 - subtraction\n3 -,

- multiplication\n4 - division");

scanf ("9-od" ,&reply) ;

/* now to make the decision again */

switch (reply) {

case 1: result=first+second;

break;

case 2: result=first-second;

break;

case 3: result=first*second;

break;

case 4: result=first/second;

break;

default:

}

break;

break;

lli:E:D
- ZJ~, -

CODE SEGMENT

printf("\nThe result is %f\n",result);

Now, this is an example of pretty bad programming. It will work - add it

to the original, and see - but not particularly well. If the user enters an

incorrect value twice, then he'll still end up without a proper result, and

he'll have to run the program again (you might argue that, after two

chances, he deserves all he gets, but it's just as easy to write a program

that gives him as many chances as it takes).

Secondly, we've had to write out the majority of the program twice. The

logical extension of this is that for every chance we give the user to re-

Complete Amiga C

Decision-making 51

G:o
,OOESIT \
" MEAN.

------60to
statement

think his input we're going to need a corresponding piece of code, even
though it is the same as all the others.

It might be a bad solution, but it does at least illustrate one point: that
you can embed, or "nest", case statements inside other case
statements. You can also nest if statements in this way, so you can test
for conditions only if certain other conditions have already been met.
This sort of thing comes in useful in more complex programs. For now,
back to the error recovery problem.

Jump to it
A slightly better solution is to use a jump. C provides a statement called
goto, which enables you to transfer execution to anywhere else in the
program. The point you want execution to continue from is marked by a
label, a piece of text that obeys the same rules as the name of a variable,
followed by a colon. The same label also appears immediately after the
goto statement.

You can use goto to jump forwards in the program, skipping intervening
statements, or backwards, to execute a segment of code for a second
time. It's here that it becomes useful for our calculator program. Take a
look at this latest version:

#include <stdio.h>
~COMPLETE
~LlSTING

/* simple calculator for careless users */
void main()
{

/* declare the variables */
float first, second, result;
int reply;

/* get the user to enter the numbers */
printf("Enter the two numbers to be operated on\n");
scanf("%f",&:first)i
scanf("%f",&second);
/* print up the menu and get user's choice */

@I~[il
EllI1

/* next lines is the label - control jumps back here if the user

Complete Amiga C

52 Chapter 4

enters anything other than 1, 2, 3 or 4 */

try_again:

printf("Which operation do you require?\n");

printf("l - addition\n2 - subtraction\n3 - multiplication\n4 --,

- division\n");
scanf ("eyed" , &reply) ;

/* now to make the decision */

switch (reply) {

case 1: result=first+second;

break;
case 2: result=first-second;

break;
case 3: result=first*second;

break;
case 4: result=first/second;

break;
default:

printf("You have not entered a valid option - try again\n");

/* jump to the part of the program that reads the user's menu

selection */

}

}

goto try_again;

break;

printf("\nThe result is %f\n",result);

Now this is much more elegant. We don't even need two segments of

code to input the user's choice - the first instance just gets used again.

Also, the user can enter as many wrong values as he likes, and the

program will continue patiently asking for another until a valid one is

input.

The situation is still not ideal, however. Goto statements are generally

frowned on by programmers, the reason being that you have to look

pretty hard at a program using them to see what's going on. In the above

example, having seen the goto statement you then have to go searching

through the listing to find out to where the jump is made. It isn't until

Complete Amiga C

Decision-making

The goto command is
useful for going straight
to a specific point in the
program. In this case, if
the user doesn't enter one
of the menu options he's
taken straight back to the
menu again. The only way
out is to choose a 'valid'
menu option.

Limiting users to valid menu
choices using goto

53

you've also examined the switch statement that the logic of the loop
becomes apparent.

C provides a few ways in which you can make this logic, and the logic of
similar repeating segments, explicit.

Complete Amigo C

54 Chapter 4

Doing the do
The method that's of most use here is made up of two statements: do and

while. They surround a statement (or several statements grouped into a

block by curly braces) which is executed for as long as the logical

expression contained within the parentheses that follows while is true.

For this loop (as segments of code that are executed more than once are

called) to be of any use, the intervening statements must modify the

variable used in the expression, otherwise the loop may be repeated

indefinitely.

Here's how we would use it with our calculator program:

#include <stdio.h>
~COMPLETE
~LlSTING

/* simple calculator for careless users */

void main()
{

/* declare the variables */

float first, second, result;

int reply;

/* get the user to enter the numbers */

printf("Enter the two numbers to be operated on\n");

scanf("%f",&first);

scanf("%f",&second);

/* print up the menu and get user's choice */

@]~~
ZiIl

/* This next statement marks the beginning of the loop, which will be

executed over and over until the user enters a valid menu selection */

do {
printf("Which operation do you require?\n");

printf("l - addition\n2 - subtraction\n3 - multiplication\n-,

4 - division\n");
scanf ("9-od" ,&reply) ;

} while (reply<l I I reply>4);

/* got a decent reply - now to make the decision */

Complete Amiga C

Decision-making 55

switch (reply) {
case 1: result=first+second;

break;
case 2: result=first-second;

break;
case 3: result=first*second;

break;
case 4: result=first/second;

break;
default:

/* no need for anything here, since this part of the program
should never be executed */

break;
}

printf("\nThe result is %f\n",result);

r~ 'DOES~'\
" MEAN. '------OR
locigal

operator

This looks much clearer. From this it should be obvious that the bit in
curly braces is executed for as long as the logical expression after the
while statement is true. Quite what this expression is I'll come to in a
moment, after I've pointed out the lack of any statements other than
break following the default clause in the switch construct. There's
no longer need for any, since we've already checked that result holds one
of the four valid numbers. Nevertheless, we have included default:
and break, by convention.

Logical operators
Now to the expression. It is actually a combination of two, joined
together by a logical operator called "or". The "or" operator is written
as I I . It combines the expression on its left with the one on its right (in
the example reply<l and reply>4) in such a way that if either of the
expressions is true, then the total, overall expression is true. If both are
false, then the expression containing them is also false. You might
express the logic of the loop in words as, "Carry out the segment within
the loop for as long as reply is less than one or it is greater than four."
Only when it is one of the correct values will the loop be left and the rest
of the program, the calculation, be executed.

Complete Amiga C

56 Chapter 4

Notice that the expression is only tested for its truth after the statements
within the loop have been executed at least once. A consequence of this
is that, in a longer program, it is conceivable that the variable reply
might already hold a valid value before the loop was entered, yet the
program would still ask the user to enter another. You could avoid this
situation by placing the expression at the beginning of the loop. Change
the loop segment to the following:

while (reply<l I I reply>4) { l£J:EI~
- ~[il -

}

WHAO"'\
DOES IT.

I MEAN
'~

printf(JlWhich operation do you require?\nJl);
printf("l - addition\n2 - subtraction\n3 - -,
multiplication\n4 - division");
scanf (Jl9-cd" ,&reply) ;

CODE SEGMENT

It's similar to the previous loop, but no do keyword is required. The end
of the loop is marked by a closing curly brace. The contents are only
executed if the condition after the while keyword is true. This isn't a
particularly good example of the while loop's use, since the variable
reply doesn't hold anything before it is tested. You would need to set it
up with a dummy value beforehand, with a statement such as reply=O;.
Once variables are declared, and before you've put into them, their
values are said to be undefined, which means, practically speaking, they
can contain any old value. In our example it's possible that reply could
contain one of the four valid values, in which case the program would go
off and carry out a calculation without the user being given a choice as to
which one.

DO WHILE and
WHILE loops

The difference between the do while and the while loops is whether
or not the loop is executed at least once as a matter of course, or whether
the test has to prove true before the loop is executed at all. The do
while loop ensures the former, the while loop the latter. In our
example, we want the loop always to be executed at least once, in other
words for the user to have at least one chance to enter an option, so the
best of the two is the do while loop. There are circumstances in which
the while loop will prove more convenient, but we'll come on to these
in due course.

Complete Amiga C

Decision-making 57

AND
logical

operator

do {

The logical operator AND
returns true if both AND + = true
expressions are true. OR
returns true if either of
the expressions is true.
While NOT simply returns OR + = true
the opposite of an
expression.

NOT = false

Logical operators

There's another logical operator, similar to the "or" used above, called
"and". It is written as &&. Logical expressions using "and" are only true
if both the expression on the left and that on the right of the && sign are
true. If either or both are false, then the overall expression is also false.

The final logical operator, "not", is different in that, rather than
combining two smaller logical expressions, it operates on only one. The
result of an expression involving not is the logical inverse of the
expression following the symbol. It turns a true expression into a false
one, and vice versa. It is written as !, followed by a logical expression.

We could combine the "and" and "not" operators to come up with a
different approach to the loop logic in the above example. Whereas the
logic of the do while loop was expressed as, "Carry out the segment
within the loop for as long as reply is less than one or it is greater than
four," we could write a loop with the logic, "Carry out the segment
within the loop for as long as reply is not greater than or equal to one and
less than or equal to four." The C equivalent would look as follows:

printf("Which operation do you require?\n");
printf("l - addition\n2 - stibtraction\n3 - --,
rnultiplication\n4 - division");
scanf ("eyed" I &reply) ;

[§J]alD
- 301 -

CODE SEGMENT

} while (l(reply>=l && reply<=4»;

Complete Amiga C

58

Complete Amiga C

Chapter 4

Let's look at the expression within the deepest set of parentheses. It is
true only if reply is greater than or equal to 1 and reply is less than or
equal to 4. It is enclosed in parentheses, and its result is converted to its
opposite by the "not" operator that precedes it. The loop therefore
executes so long as the result of the inner logical expression (which is
checking for a correct user-entered value) is false, that is to say so long
as the user has entered an incorrect value.

You'll find that "not", "and" and "or" are used a lot, not just in while
and do while loops, but also in if statements and a new statement to
be introduced next chapter. They enable more complex decisions to be
made by a single statement, that is to say they enable different actions to
be performed based on more subtly distinguished criteria. You'll find
yourself using them more and more as you create more involved
programs.

59

loops elaborated
• Arrays

• Symbolic constants and pre-processing

• Loop counters - the 'for' loop

• Character variables

• Escape sequences

• String variables

• Initialising arrays

• Handling string arrays

Complete Amiga C

60

Array

Ch(]pter 5

I 'm going to return to the spreadsheet program introduced in Chapter 3.
As you may remember, we had to declare a variable for each number

that was to be totalled. We also needed a succession of scanf lines to
get the value for each for variable from the user. That's all very well if all
the program has to do is total a few numbers, but what if 50 or so have to
be totalled? Things begin to get out of hand.

After our brief flirtation with looping in the last chapter, you may be
thinking that therein lies the solution. Well, if you are then you're right.
But that's not the whole answer. Remember that the code inside a loop
can't be modified, just repeated. So although we could set a loop up to
enter a succession of values from the user, requiring but a single scanf,
we have as yet no mechanism for storing them in anything but the one
variable. It'll come as no surprise for me to tell you that C does in fact
provide such a mechanism.

The mechanism comes in the form of arrays. An array is a way of
grouping a whole set of variables together with a single name (the
concept originates with the mathematical objects matrices). The variables
are numbered in sequence, so you can access the value in any particular
variable by means of both the array name and the number of the
particular variable, or "element".

You declare an array just like you declare any other variable, but you
must follow its name with square brackets and the number of elements it
is to have. This number must be a positive integer (obviously); its
maximum size is usually determined by the compiler you are using and
available memory.

Arrays can be of any variable type, but each element within an array
must be of the same type. Here's how you would declare an integer array
with 10 elements:

int numbers[lO]; (~~lD) ~~

Complete Amig(] C

EXAMPLE CODE

To access any particular element, whether it be to store a value there, use
the value held there as part of an expression or whatever, you use the
array name with the number of the element of interest enclosed in the

Loops elaborated 61

An array lets you group
many variables together
under a single name. You
refer to them by the array
name followed by the
relevant element number.

array
name

array
element

numbers [0]

A IO-element array

square brackets. Here's an example of assigning a value to the first
element of the above array:

numbers [0] =72; (@]a:D)
010]

Numbering

EXAMPLE CODE

Notice there's something funny about that? The first element is numbered
O. That's weird, but at least the next one is numbered 1, and the next 2,
as you might expect. The last element in this array is numbered 9. The
reasons are historical, and relate to the way memory addressing and the
way the original compilers worked. The convention of numbering arrays
from 0 instead of 1 has stuck with us. It's another one of those little tricks
that can often catch out even experienced C programmers, so watch out
for it.

OK, now we know enough to have another stab at that spreadsheet
program. Below is the latest version:

#include <stdio.h>
~COMPLETE
~LlSTING

/* This next line defines a constant */

#define MA2CELEMENTS 10

/* program to total ten non-integer numbers */
void main()
{

/* first declare variables */
float numbers[MAX_ELEMENTS];
float total,entry;

]]!WJ[IJJ
0101

Complete Amiga C

62 Chapter 5

}

int next;

/* set the total value to zero */

total=O.O;
/* set the loop counter to zero */

next=O;

printf ("Enter the numbers to be added\n");

/* set up our loop to be executed MAX_ELEMENTS times */
do {

/* Now get numbers to be added from user */
printf ("Enter number ~od ", next) ;
scanf("%f",&entry);
numbers [next] =entry;
/* add the next number entered on to total so far */
total=total+entry;
/* increase loop counter to index next element of array */

next=next+l;
} while (next<MAX_ELEMENTS);

/* print out result held in total */
printf ("\nThe total is %f\n",total);

Symbolic
constant

Before I explain the important part of the program, the loop, I'd better
own up about that statement I sneaked in at the third line, the one that
says: #define MAX_ELEMENTS 10.

What it does is define a symbolic constant. This means that wherever,
within the program, the compiler sees the symbol MAX_ELEMENTS, it
replaces it with 10 before compiling. I say the compiler, but it is actually
a part of the compiler known as the C pre-processor that performs this
and similar processes such as loading in the stdio. h library before the
compiler gets stuck in translating the program into machine code.
Instructions to the C pre-processor, distinguishable from ordinary C
statements by the # sign that precedes them, are not terminated by a
semi-colon.

Complete Amiga C

Loops elaborated 63

Symbolic constants follow the same rules for names as variables do.
They're usually written in upper case, though, to distinguish them from
variables.

Using symbolic constants offers two benefits: readability and ease of
modification. By using the MAJCELEMENTS symbol in the while part of
the loop instead of 10, I've made it clear that the variable next is being
compared to the maximum number of elements in the array. As for ease
of modification, try turning the above program into one that deals with 20
numbers.

All you have to do is go to the #define line and change the number at the
end from 10 to 20. Without the #define, the while statement would
read while (next<10); and the 10 would have to be changed to a 20.
That's fine, but in a month's time you may find that you have to look long
and hard at the program before discovering which bit depends on the
array size and therefore has to be changed. You may also forget to
modify the size of the array in its declaration. It's easy to conceive of
more complex programs where several operations are performed on
arrays, and where the size of the arrays is going to become a
consideration; in cases like these the value of symbolic constants
becomes obvious. Changing a symbolic constant is effectively asking the
C pre-processor to change the rest of your program for you.

Before going on to the loop in our spreadsheet program, I'll just point out
that not only integers can be represented by symbolic constants. The C
pre-processor performs a text substitution; wherever it sees the constant
being used it simply substitutes whatever followed the constant when it
was defined by the #define statement. You can use constants for all sorts
of substitutions (although none with white space in them - including a
tab or a carriage return - since these are used to separate the constant
name from the text to be substituted, and also to separate this text from
the next statement).

The key variable in the spreadsheet program (discounting the array,
which is used to store the numbers to be totalled) is the integer next. It
performs two closely-linked functions. Its first use is as a counter. It is
given an initial value of zero. Then, once the do. •• while loop is

Complete Amiga C

64 Chapter 5

entered, a value of one is added to next each time the loop is repeated.
The loop continues so long as next has a value less than 10. In other
words, the loop finishes once next reaches 10. So next's use as a
counter ensures that the loop is executed exactly ten times.

The second use of next is as an "index" into the array. An element of an
array is accessed by use of the array name and the element number. The
variable next, within the loop, always has a value between 0 and 9,
conveniently the numbered elements of the array. So next is used within
the loop to fill up with user-entered numbers each element of the array in
turn. You'll find this combination of loop counter and array in an awful
lot of programs.

The final point of note in this program is the part where the value of
total is computed. Rather than having an expression at the end
combining all the elements of the array numbers, I've added each number
as it is entered to total during the loop. This means that when the loop
is exited, total already contains the correct value.

For loop

The combination of a loop with a counter variable is such a common one
that C provides a special looping construct just for the occasion. It's the
for loop, and you could use it in the above program by replacing the
loop and its body with:

/* set up our loop to be executed MAX_ELEMENTS times */
for (next=Oi next<MAX_ELEMENTSi next=next+l) {

]1~1[D
- ZlIJ -

CODE SEGMENT

}

/* Now get numbers to be added from user */
printf (IIEnter number 9-od ", next) i
scanf("%f",&entry)i
numbers [next]=entryi
/* add the next number entered on to total so far */
total=total+entryi
/* increase loop counter to index next element of array */

All of the controlling logic of the loop has been removed to the top, in
the parentheses following the for statement. Notice that each of the
three elements - the initialisation of next to 0, the test to see if it is less

Complete Amiga C

Loops elaborated 65

than MAX_ELEMENTS and adding 1 to it - is separated by a semi-colon.
The first part is executed just the once, when the loop is first executed.
Then the truth of the second part is established. If the value in next is
less than 10, then the expression will be true. So long as it is true, the
body of the loop will be executed. Each time the loop has been executed,
the final part of the for statement is executed - a 1 is added to the value
held in next (this eliminates the need for the addition statement in the
body of the loop). The loop is then executed again, beginning with the
test to see whether or not next is less than MAX_ELEMENTS.

As you can see, the for loop is similar to the while loop in that the
condition for looping is tested before the loop itself is executed. In both
cases it is possible for the loop to be skipped entirely if the condition is
not met. In the case of do. .. while, the loop is always executed once
before the condition is tested.

Notice how the body of the loop is again a block, enclosed in curly
braces. If only one statement forms the body of the loop, then the braces
are not necessary, it must only be terminated by a semi-colon. To
demonstrate, here's a quick program that will print out the numbers
between one and ten:

#include <stdio.h>
~COMPLETE
~LlSTING

void main{)
{

}

/* declare variable */
int number;

/* loop to print out numbers */

for (number=1; number<=10; number=number+1)
printf (19--od\n" ,number) ;

[[~iIJl
~[S]

I've used <=10 here rather than <11 to make it clear that we're interested
in the values between 1 and 10 inclusive.

Complete Amiga C

66 Chapter 5

r-:.~
'DOES~~~ ~
~~

In a couple of chapters' time we'll be ready to write something that's
beginning to look like a real spreadsheet, but first, there's some more you
need to know about variables.

Char variable

As well as numerical variable types - integers and floats - that we've
talked about, there is a type known as char, short for character. It will
hold a single symbol, a letter, numeral or punctuation mark, for instance.

The values held by chars are written in C by enclosing them in single
quotes. To declare the char variable choice and assign the letter a to it,
you would do the following:

char choice;
choice= ' a' ; { 1IlI Ell WI) 0I1Ii

EXAMPLE CODE

Char variables can be used in logical expressions in much the same way
as others. You could re-write the calculator program of chapter 4 so that
it expected an alphabetical entry rather than a numerical one for the
user's menu selection.

#include <stdio.h>
~COMPLETE
~LlSTING

1* simple calculator with alphabetical menu *1
void main()
{

1* declare the variables *1
float first, second, result;
char reply;

1* get the user to enter the numbers *1
printf ("Enter the two numbers to be operated on \n");
scanf("%f",&first);
scanf("%f",&second);
1* begin loop by printing up menu *1
do {

printf("Which operation do you require?\n");

1IlI~[l
0I1Ii

printf("a - addition\nb - subtraction\nc - Imlltiplication\nd -,
- division\n");

Complete Amiga C

Loops elaborated 67

scanf("%ls",&reply);

} while (reply<'a' I I reply>'d');

/* Got a decent reply - now to make the decision */
switch (reply) {

case 'a': result=first+second;
break;

case 'b': result=first-second;
break;

case 'c': result=first*second;
break;

case 'd': result=first/second;
break;

default:
/* No need for anything here, since this part of the ~

program should never be executed */

}

break;
}

printf("\nThe result is %f\n",result);

ri&1
I MAKEA \
i NOTE!
'~-

Chars

The usage of char is pretty straightforward, apart from a couple of
anomalies which you may have noticed. For one thing, I've used the less
than and greater than relational operators on chars, yet they only work
with numerical values. Secondly, I've used chars as labels for the case
statements in my switch statement, yet these labels should be either
integer values or constant expressions evaluating to integers (for
example, 2+1 is a constant expression, evaluating to 3).

The truth of the matter is that C treats chars as numbers. A character is
represented internally by a code, an integer with a value between 0 and
255. This set of codes comprises the ASCII code, a standard across
computers for representing text. You'll find a full list of ASCII codes in
your Amiga manual.

C uses characters and the numbers by which they are represented
interchangeably. So when reply is compared with 'a', what in fact is

Complete Amiga C

68

Gj!,

WHAT '
DOES IT

MEAN.

Escape
sequences

Chapter 5

happening is the ASCII code of the character in reply is being
compared with the ASCII code for the letter a, 97. Similarly with the
check against 'd', and also the use of the character constants in the
switch statement. Because the letters of the alphabet are numbered
consecutively, a check for reply being less than 'a' or greater than 'd'
picks up any entries outside the required range just fine.

As well as the various symbols available from the keyboard, other
"invisible" characters can be stored in char variables. The ASCII codes
for these characters are not used to display things on the screen, but to
perform functions such as skipping to a new line or moving to the next
tab stop. The '\n' combination often used at the end of printf
statements is one such character - although written as two symbols
within a C program, it is turned into a single ASCII code by the compiler
when the program is translated. The character representing a tab is
written as '\ t '. The combination of \ and a following character is known
as an "escape sequence" - they provide a convenient way of writing
otherwise un-writeable ASCII characters. If you wanted to store the
character ' itself in a char, for instance, you would need to include it as
part of an escape sequence to distinguish it from the single quotes used to
surround it. The correct escape sequence for a single quote is \', and it
would be used in an assignment as follows:

char quote_character;
quote_character='\";

(
@JJEIHIIl)
[!][I]

E~PLECODE

Complete Amiga C

If you look at the scanf line used to input a character into the variable
reply, you'll notice that the control string "%ls" has been used - this
ensures that scanf returns the next non-white space character input by
the user. The s referes to a "string", a concept we'll discuss in a moment,
while the 1 means that we only want a single character. If we'd given
scanf the control string "'YoC", asking for a character input, it would have
failed to wait for the next non-white space character entered by the user.
Try it.

One thing you may notice about the previous calculator program is that it
will not recognise user entries in upper case as valid, because upper case
letters have quite different ASCII codes to lower case ones.

Loops eloborated 69

do {

You could solve this problem by converting any upper case characters to
lower case characters before the value held in reply is checked. Because
it is possible to perform arithmetic on char variables, the conversion can
be done by adding 32 to any upper case entries. Here's the menu
selection loop with the appropriate modifications:

printf (IIWhich operation do you require? \n") ; COOES'GM'NT

printf("a - addition\nb - suhtraction\nc - multiplication\nd - ---,
division\n");

scanf (lI%ls", &reply) ;
if (reply>='A' && reply<='Z')

reply=reply+32;
} while (reply<'a' I I reply>'d');

-ft',
WH~~~

DOES IT.
M'AN

STRING
variable

Just like ints and floats, chars can be used to form arrays. An array of
char has a special name - it is called a "string". The primary use of
string variables is to hold words. But strings needn't be used as variables,
they can also appear as literal constants. All of the printfs used so far
have contained string constants - the segments of text inside double
quotes. It is these sets of double quotes that are used to mark out strings
in C. You would declare a string variable called word, and assign the
value elephant to it with the following segment of code:

char word[20];
word [0] ='e';
word[l]='l';
word [2] ='e';
word [3] ='p';
word [4] ='h';
word[5]='a' ;
word [6] ='n';
word[7]='t';
word[8]='\O';

@]Ell[I]
- 0l@J! -

CODE SEGMENT

Here, the character 'e' is assigned to the first element of the array
(numbered element 0, remember) '1' to the 2nd, 'e' to the third and so
on. After the letter 't' is stored in the 8th array element, a further value is

Complete Amig.o C

70

String arrays can hold
whole words by assigning
each letter to one of the
array elements. The \0
character (element 9)
marks the end of the
word.

--Ai f WHAf",
'DOES~~'" \ 'I~----

Null character

Chapter 5

element
0 etc.

I

e I I I e I p I h I a I n I t I \0

A string array

stored. This is the number zero, representing the "null character". I've
written it as a character escape sequence, but it could also be written as
the number 0 without single quotes. It needs to be there to mark the end
of the string, to ensure that the remaining elements of the array (whose
values are undefined, i.e. garbage) are not considered part of the string,
for example when it comes to be printed out. As a result, a string is
always one character longer than the number of characters appearing in
the quotes surrounding its contents. Therefore, the maximum number of
characters a string can ever contain is always one less than the number
appearing in the square brackets of the array definition. As with any
array, writing to string elements whose number exceeds the stated
maximum when the array was defined will cause an error.

Assigning values to strings in this way can be something of a hassle.
With simple variables, it is possible to declare them and assign a value to
them at the same time.

The two lines we used to declare a char variable called choice and
assign the letter a to it, can be combined into one:

char choice='a'i (@]~[]]) I!]@]
EXAMPLE CODE

The same applies for ints and floats; and C lets us do a similar thing
with arrays, including strings. Here's a quicker way of assigning the
value "elephant" to an array called word:

char word[]="elephant"; (@]~[JJ) I!] [I]

Complete Amiga C

EXAMPLE CODE

This time the square braces don't contain a number. When C creates the
array, it makes it of the required size, depending on the string to be

Loops elllborated

~.
11 MAKEA
II NOTE!

String
terminators

71

placed in it. As well as the characters contained within the double quotes,
C also adds the obligatory '\ 0' string terminator, meaning that in this
case the array word consists of 9 elements.

Incidentally, a similar technique can be used for initialising other types of
array when they are declared. For these, and floats, the values are all
enclosed in curly braces and separated by commas. Here's how you
would declare an array of five integers and assign it the values 32, 29,
11,4 and 7 respectively:

int numbers[]={32,29,11,4,7}; (@]a[il)
1!lI0l

\&':
I ~ i---

Handling
strings

EXAMPLE CODE

Again, there isn't a number between the square braces. The compiler
automatically counts the number of elements (five, because we don't
need a null character at the end - that's only for strings) and creates the
array at the required size. You can include a number if you want - if it is
greater than the number of elements you've defined, the rest will be left
containing zero; if it is less, then you'll get an error.

As you can probably see, the method used for initialising strings is a
convenient shorthand of the method used for initialising other types of
array. It means you don't have to define the elements as individual
characters surrounded by single quotes and separated by commas, and
enables you instead to write the string out as a segment of text.

Strings are incredibly useful things, probably the most common form of
the array in C. But, like other arrays, they suffer because they are not
simple variables. It's not possible to assign a value to a string with a
simple equals sign, except for when the string is being declared. The
assignment operator assigns a single value to a single variable, but a
string consists of several variable elements, each of which holds a
separate variable. Similarly, it's not possible to simply add two strings, or
any two arrays, together, or to compare two strings with the == relational
operator.

But to be useful strings need to be manipulated in many different ways. C
provides a standard set of functions to provide these manipulations,
saving you from having to re-write such obviously necessary functions as

Complete Amigll C

72 Chapter 5

the one to see if two strings contain the same thing. We'll come on to

these functions, and consequently demonstrate the real power of strings,

later. For now, though, here's a quick demonstration of string basics:

#include <stdio.h>

/* set up symbolic constant for newline character */

#define NEWLINE '\n'

/* set up maximum length of user's input */

#define LINE_LENGTH 80

void main()
{

/* declare variables */

char text [LINE_LENGTH] ;

int position=O;

int index;
char input;

printf("Type a line of text\n");

/* set up loop to read line from keyboard */

do {
input=getchar();

text [position] =input;

position=position+l;

} while (position<LINE_LENGTH && input ! = NEWLINE);

/* Now convert NEWLINE character at the end of text to a ~

string terminator */

~COMPLETE
~USTlNG

@]fYlJI'i
:E1l::sJ

position=position-l; /* because it points to one after the last ~

character */

text [position]='\O';

/* Now convert lower case to upper case */

for (index=O; index<position; index=index+l) {

if (text[index]>='a' && text[index]<='z')

text[index]=text[index]-32;

Complete Amiga C

Loops elaborated 73

}

}

1* Now print out the result *1
printf("\n\nYour line in upper case is:\n%s\n",text);

It's a program to take a line of input from a user and convert any lower
case letters to their upper case equivalents. The user signals that his input
is finished by typing carriage return, which the computer perceives as a
newline character, '\n'. For this reason we've set up a symbolic constant
called NEWLINE with this value. It's a good example of how you can
make your programs that little bit more readable.

We've also defined a symbolic constant called LINE_LENGTH, which
represents the maximum number of characters the user can type in. I've
chosen 80 as an arbitrary limit; the largest array you can have depends
on the memory of your machine and the compiler you are using but
you're unlikely to find yourself restricted. Once this has been defined, we
can declare the array text [] to be of the appropriate size. Notice that
there's no point initialising it with anything, since its contents are to be
supplied by the user.

I've used three other variables. Input is of type char, and it is used to
accept the user's input one character at a time. It's used as a temporary
variable, holding the character before it is stored in an element of text.
The other two, both ints, are index variables, pointing to elements
inside text. One is needed for each of the two main sections of code.

The first main section inputs a succession of characters from the
keyboard, typed by the user. I've chosen to use a new function,
get char , rather than the more familiar 8canf. For the purposes of this
program, 8canf isn't as useful as it might be. You can use it for
inputting strings (using the 'YeS formatting sequence), but it treats any
white space character as signifying the end of an input string, meaning
that our user would only be able to enter a single word rather than a
whole line of text. It can be used to input individual characters (using the
%18 formatting sequence), but getchar is simpler to use and quicker.

Complete Amiga C

74 Chapter 5

Getchar gets the next character typed from the keyboard. It doesn't
need anything between its parentheses for this simple task. Unlike
scanf, which needs the variable to be included in parentheses as an
argument, and which as well as modifying this variable produces a
"result" used to count the number of elements input, getchar produces
the character typed as a "result". We'll talk about results in more detail in
the next chapter. For now, just be aware that the result from a function
can be treated as the result of an expression. In other words, you can
compare it using relational operators, or assign it using the assignment
operator:

input=getchar(); (
@JIEiII]) [JJ0J

Complete Amiga (

[XAMPLECODE

Once we've got a character from the keyboard and stored it in input, it
is then stored in the element of text marked by the index variable
position. Having done this, the program adds one to the value of
position so that it is pointing to the next free element in text.

Finally, the loop is closed with the while statement. Inside while's
parentheses are two conditions that must be met for the loop to continue.
The variable position must have a value less than LINE_LENGTH, in this
case 80, and the character entered by the user, held in input, must not be
a NEWLINE character. The first condition makes sure that the length of
input doesn't exceed what the array can cope with; the second ensures
that when the user types a carriage return it is understood to mark the end
of his input.

Once the loop has ended, the program knows that the string text
contains the user-entered line. The variable position is pointing to the
next free element in the array, in other words to one more than the last­
used element. For this reason, one is subtracted from its value.

The last element currently contains a NEWLINE character, the last
assignment made during the loop - unless the user's input was too long,
in which case he'll lose a character. Each string must be terminated with
a null character - '\0' - so the NEWLINE character is replaced with this.

Loops elaborated 75

}

The array text now contains a bona fide string, so it's time to convert
each of its elements in turn into upper case. This is done using a for
loop. These kind of loops are useful when you know how many times
round the loop (or the "number of iterations", to get technical) you need
to go. The first time round we didn't - it's decided by the user each time
the program is run - but this time we do. The number of iterations is the
same as the length of the string, not counting the terminating character
(there's no point in trying to convert that into upper case).

Conveniently, the variable position already points to the last-used
element, the one containing the null character, so we can set up a loop
that indexes from 0 to one less than the value of position. We need
another index variable here, which I've actually called index, because,
since we're using position as a check, it's value must not be altered.
The value of index must be increased by one each time the loop is
executed. All of this results in the for loop above.

The contents of the loop - the if statement - are similar to the example
before that changed upper to lower case. Here, we're operating on
successive elements of a character array, and subtracting 32 rather than
adding, since we're converting from lower to upper case.

After the loop comes a printf statement, which is used to output the
string. Notice that the formatting sequence to output a string variable is
"'YeS". The printf could have been replaced with another for loop and
the function put char - the opposite of get char - which prints a single
character, given as an argument enclosed in parentheses, to the screen.
You could shorten things further by including the put char function in
the previous for loop:

/* Now convert lower case to upper case and print out result*/
printf("\n\nYour line in upper case is:\n")i

for (index=Oi index<positioni index=index+l) {
if (text[index]>='a' && text[index]<='z')

text [index] =text [index]-32;
putchar(text[index])i

}

@]a[Il]
- [!J][il -

CODE SEGMENT

Complete Amiga C

76

do {

Chapter 5

You don't need to print out the null character (it's non-printable anyway),
but you might want to put a printf("\n\n"); between the two closing
curly braces to tidy the output up. Notice how this statement and the
introductory printf can't be included in the loop.

While we're on the subject of improvements, let me mention a way in
which you could tighten up the first loop in the program. As it stands it
makes two assignments and then a conditional check:

input=getchar();
text [positionl=input;
position=position+l;

@]EJ][I]
- [A]01 -

CODESEGM[NT

} while (position<LlNE_LENGTH && input 1 = NEWLlNE);

You could make this much shorter as follows:

while (position<LlNE_LENGTH && (input=getchar(» 1=
text [positionl =input;

NEWLlNE) {

@]EJ][I]

}

position=position+l; - [A]I!L -
CODE SEGMENT

The first thing to notice is that it now makes its conditional check at the
beginning, rather than the end, of the loop. A consequence of this is that
the last character entered, whether it be NEWLlNE or one that exceeds the
permitted string length, is not stored in text. Once the loop has been
exited position still points to the next free element within the array,
but because there is no NEWLlNE character to be replaced with a null
terminator, the terminator must be tacked on to the end of the string, in
the next free element. For this reason, you have to delete the line
following the loop that says: position=position-l;.

Changing the logic of the loop around in this way hasn't made things any
more complicated - just different. What it has enabled us to do, though,
is include one of the assignments in the part where the loop is set up,
rather than in the loop body.

Complete Amiga C

Loops elaborated 77

The reason this is possible is because we've used the assignment
input=getchar () as an expression. First of all the result of the
function get char () is placed in the variable input. The whole lot,
enclosed in parentheses to make sure the assignment is carried out before
anything is compared with NEWLINE, is then treated as an expression in
its own right. The value of such an expression is the value of the
assignment made, in other words, the variable input. We can then use
this value in the same line and check that it's not equal to NEWLINE
before deciding to go on with the loop.

It's possible to dispense with input altogether and store the results of
getchar () directly into the text array:

while «position<LlNE_LENGTH-l) && (text[position]=getchar(»
NEWLlNE)

1= -,

@]B0i
- 0101 -position=position+l;

CODE SEGMENT

We don't need curly braces around the block making up the loop body if
it is just one statement long. If you're going to type this version in, then
you can remove the declaration of input from the beginning.

One thing to note here is that, unlike in the previous two versions, in this
one when the loop is terminated position already points to the last­
used element of text, rather than to the next free one. And in this case,
because, as with the original version and unlike the last one, the last
character entered - usually a NEWLINE - is stored in text, we need to
replace it with a null terminator rather than tag one on to the end of the
string. Hence there is no need for a position=position-1; line at
the end of the loop.

This time, we need to check that position is less than LINE_LENGTH-
1, rather than LINE_LENGTH. Why? Well, suppose that the user had been
merrily typing away without pressing carriage return, and the loop was
about to be executed with position holding a value of LINE_LENGTH-
1 (that is, 79). If we were checking against LINE_LENGTH, the first part
of the condition would be true, and the second part would then be
checked (it wouldn't need to be if the first condition were false), resulting
in a character being stored in text [79] .

Complete Amiga C

78 Chapter 5

If this character was anything other than NEWLINE, the body of the loop
would be executed, increasing the value of position to 80. The loop
would exit next time OK, but when the program came to tag a null
character on to the end of the string it would try to do it at element 80,
which doesn't exist. We need to check for 1 less than LINE_LENGTH to
prevent this happening.

Changing the logic of your loops in this way can, as you've seen, subtly
alter the way in which your indexing variables need to be used, and the
way in which you check for loop ending conditions. Be on the watch for
bugs that you might introduce in this way.

It's possible to shorten the loop even further, and it's in this form that
you'll most often see it in other people's programs:

while (position<LlNE_LENGTH && (text[position++]=~

get char (» ! = NEWLlNE)

@JJa01
- 0101 -

CODE SEGMENT

Variable
increments/
decrements

Here the loop has no body at all. The statement terminator - ; - still
needs to be included, to ensure that the compiler doesn't take the
following statement to be the loop body. The entire body of the loop has
been incorporated into the loop definition. The only remaining part from
the previous example - position=position+l; - has been replaced
by one of several bits of shorthand that C provides. If you want to add 1
to a variable in C, you can do so simply by writing:

(@:[~II!l)
0101

EXAMPLE CODE

Similarly:

variable_name--; (
':iEIII!l)
0101

Complete Amiga C

EXAMPLE CODE

will subtract one from the value in variable_name. In the above loop,
I've used the ++ shorthand (pronounced "increment", while - is
pronounced "decrement") to add one to the value of position while it
is being used to index an element of text. Note: it is both making an
assignment and being used as an expression.

loops el(]borated

~
Pre·increment

& post·
increment

79

The way increment has been used here, the result of the expression is the
old value of position, which is used as an array index, before
position is assigned a new value, 1 greater than its old. This means
that, if position has a value of 0 before the loop is entered, the first
input character will be stored in element zero. Immediately afterwards,
posi tion will point to the next free element.

For the boundary check it is safe to compare position against
LINE_LENGTH rather than LINE_LENGTH-l, because once the loop has
been exited, position will point to the next free element of text and
not the last filled one. The line position=position-l; must be
replaced at the end of the loop, leaving position pointing to the final
character in the string. You could, of course, write position-; instead
ofposition=position-l;.

The kind of increment used here is known as "post increment", which
means the result of the expression is the old value of the variable, before
it is incremented. It is also possible to perform "pre-increment" and "pre­
decrement", in which the assignment is performed and the variable's new
value becomes the expression's result, by writing them as:

(~EJJiIIl) [![Jj
EXAMPLE CODE

and

(~EJJ[il) [![Jj
EXAMPLE CODE

It would have been wrong in the above example to have used pre­
increment:

while «text[++position]=getchar(» != NEWLlNE && ~
position<LlNE_LENGTH)

@]EJJ[I]]
- 0][J] -

CODE SEGMENT

It would mean that, the first time through the loop, position would
have been given a value of 1 before anything was stored inside text,
missing out the first element of the array. The choice between pre and
post increment or decrement depends on the logic of the loop structures

Complete Amig(] C

80 Chapter 5

you've employed. Say, for instance, you wanted to alter the upper case
converter to print out the input line backwards. If you go back to the
original program, and rephlce the final printf line with the following,
you've got it:

/* now to print the line backwards */
printf("\n\nYour line in upper case and backwards -,
is:\n");
for (index=position; index>O;)

putchar(text[-index]);

@II!J1Wl
- @0i -

CODE SEGMENT

Notice how the final third of the for loop definition - the bit that is used
to alter the index variable - has been left blank, because index is being
decremented in the loop body. It's also possible to leave the first or
second parts blank, but creating a loop without an exit condition is a
good way to trap your program in an infinite loop. Notice also how the
routine automatically misses out the terminating character when
outputting.

Before going on to the next chapter, try incorporating this and the upper
case conversion into the one loop. Also try removing the decrement
operator from the body of the loop and putting it in the final part of the
loop definition. You'll also have to modify the rest of the loop structure -
either body or definition - in some way to get it working properly.

Complete Amiga C

81

Functions
• Modular program planning

• Functions, and how they're constructed

• Prototyping functions

• Function 'side effects'

Complete Amiga C

82

Function

Complete Amiga C

Functions are the means by which you keep
complicated programs. They are the building

larger and larger programs can be built.

Chapter 6

sane when writing
blocks from which

As was explained in chapter 1, functions enable you to break a task down
into its component parts. Instead of having one long program to solve a
problem, you can have lots of little sub-programs, each devoted to
solving part of the problem. One strength of this approach is that things
become more manageable. At anyone time you are only trying to make a
small section of code work, rather than a whacking great program.

Another good thing about functions is that they can be re-used. Once you
have written a function that will, say, find a percentage of a value, you
can use that function in any program that needs to be able to do this. And
once you've got it working correctly, you can use it in any other
programs sure in the knowledge that it does what it is supposed to do.

Having written and tested a function, you need no longer concern
yourself with exactly what it does to achieve its effect. All you have to
remember is the information you need to give it, and the information it
will give you in return. It doesn't matter how many loops, arrays or
whatever are used inside the function - they have no impact on the rest of
your program.

With C you get a lot of pre-written functions, which you can access by
including various header files, stdio. h being a good example. Printf
is one such function. It is available with every C compiler for every
computer, and its use is just the same on all. Any of the programs that
you have written so far will compile happily on any computer with any C
compiler. Yet the mechanics of printing to the Amiga's screen are quite
complicated, and certainly different to those for other computers. These
mechanics are all dealt with by the code that makes up printf - code
which will be different for different versions of printf on various
machines - and need not concern you. In fact, if instead of dropping in a
call to printf you had to write code to output characters to the screen
each time you wanted some output, you'd be faced with quite a job.

Functions

'Functions' are small
programs or sections of
code that you can 'cal/'
within your main program.
Using functions makes
your program easier to
write and understand, and
lets you use useful
routines in many different
programs.

MAIN
PROGRAM

I
I ,

MAIN
PROGRAM

FORMATIlNG
FUNCTION

NO

83

A disk-formatting 'function'

Not only can printf be used by many programs, it can, like any other
function, be used several times in the one program, as we've already used
it in previous chapters. It would be difficult enough having to write out
all the code to do the job of printf rather than just a single line - a
"function call" - but imagine having to write this out several times within
one program. With C, you just write the function out once, name it, and
use this name to call on its services from anywhere within your program.
Part of the trick, when it comes to writing functions, is to write them so
they are re-useable. Printf has been written with so many options, it is
generalised to fit so many cases, that it proves very useful.

For the time being we'll stick to functions that are to be used only within
the program that defines them. We'll go on to writing functions that are
accessible by many programs in Chapter 11.

How programs are built
A program file in C consists of one or more function definitions. All of
the programs written so far have contained only one (remember that
printf is used, but not defined, by us - it comes from stdio.h). That
function is called main, and every C program must have one. It is the
function that is "called" (the technical word for getting a function to do
its stuff) when the program is run. Other functions are called by main,
and others, in turn, may be called from within one of these functions.

Complete Amiga C

84 Chapter 6

From a look at any of the programs so far you should learn how functions
are constructed. The first line consists of a variable type, the name of the
function and a pair of parentheses. Functions have names (following the
same rules as variable names) so that they can be referred to and called
from other parts of the program; the variable type and parentheses parts
are used to communicate information between the function and the part
of the program that called it - we'll go into more detail in a moment.
Finally, the actual statements that make up the body of a function follow
the first line, all of them enclosed as a block in curly braces. Note that the
C pre-processor instructions (#defines, #includes and so on) are not
part of any function. The effects of these instructions are applicable
throughout the file that contains them.

Time for an example. Let's write a program that asks the user for two
numbers and prints out the biggest. We'll divide it into two parts - the
main bit that handles all the input and output, and a function that decides
which of two numbers is bigger. Here's the listing:

#include <stdio.h>
~COMPLETE
~LlSTING

/* declare function to be used */
int biggest(int a,int b);

void main()
{

}

/* declare three variables */
int first,second,answer;

/* get users input */
printf("Enter two nwnbers\n");
scanf ("eyed" , &first) ;
scanf ("eyed" , &second) ;
/* find biggest of two and put it in answer */
answer=biggest(first,second);
printf (liThe biggest of the two is eyed\n",answer);

/* function definition */
int biggest(int a, int b)

Complete Amiga C

[£]~[Jj
0)[il

Functions 85

{

}

/* define function's own variable */
int big;

/* now to choose biggest between a and b */

big=a;
if (b>big)

big=b;
return big;

The definition of our function appears in the latter part of the program.
It's supposed to choose the biggest of two integers and give this as a
result, so the result too will be an integer, hence the int specifier at the
start of the definition. Following the function name, enclosed in
parentheses are two variable definitions. These define the function's
"parameters" - they make the function behave in different ways
depending on their values. Called a and b, both are ints. They are the
means by which information is passed to the function. When it is called
from within the main program, the values held within the parentheses
after the function name in the calling statement are stored in the variables
a and b.

The statements within the function body are straightforward. The first
defines another int variable. It is used to hold the biggest of the two
numbers. The way its value is chosen by the if statement should be
readily understandable.

Variables in functions
The variable big, like a and b, belongs to the function. None of them
can be read by any other functions. Likewise the variables first and
second in main. They are not normally "visible" to biggest. The only
reason they become visible is because they are copied into the function's
parameters when it is called.

The variable big isn't visible to main, yet it contains the answer that
main needs. Biggest makes this result visible to main by means of the
return statement. The expression or, as in this case, variable following

Complete Amiga C

86

G9
i, MEAN.

Argument

Chopter 6

return is defined as the function's result. It must be of a particular type,
as defined by the type specifier preceding the function name at the top of
the definition. In this case it is of type into If a function isn't going to
return a result, then it should be declared of type void at the start, as
main generally is.

The result of a function can be used as an expression. In this example it
has been assigned to the variable answer. Notice that main still has no
access to the variable big, only to its value. The value is effectively
substituted for any part of code where the function is called.

Handling arguments
In the line where biggest is called we've had to enclose the two values
to be passed to it in parentheses. These two values are called
"arguments" (they're arguments so far as the part of the program calling
the function is concerned, and they get stored in variables that become
the function's parameters when it is being executed). Because it's only
the values of these two variables that are passed, and not the variables
themselves, you could replace them in the call with any integer
expressions. Try replacing the line with:

answer=biggest(57,3*4)i
@]Ell[!]

- @01 -
CODE SEGMENT

And because the function call results in a value, this value can be used
directly without first being assigned to a variable. You could, for
instance, remove the line assigning the function result to answer and
replace the following printf with:

printf (liThe biggest of the two is 'Ycd\n",--,
biggest(first,second»i

IIllEll[!]
- @01 -

CODE SEGMENT

In cases where one of the arguments for a function is itself the result of a
function call, the second function will be evaluated before the first is
called.

The last line of note comes near the top of main, the line that reads

int biggest(int a,int b)i
IIllEll[!]

- @01 -
COD[SEGMENT

Complete Amigo C

Functions

Prototyping

87

It looks a little like a variable declaration, and it is similar. Instead, it is
declaring the function biggest, and it's called a "function prototype".
With it you declare the function that main is going to be calling on (in
case you were wondering, functions such as printf are declared within
the header file stdio.h that is loaded in by #include, so there's no
need to re-declare them). You say what type of value it will return with
the type specifier before its name, and what type each of its parameters
will be with type specifiers inside the parentheses.

Function prototypes
Prototyping your functions ensures that you don't use them incorrectly­
you don't expect one type of value when it in fact returns a different type
and that you don't supply it with the wrong kind or number of arguments
- because the compiler can check the prototype against the function's
usage in the part of the program that calls it, and also against the function
definition itself. This is especially useful for programs that use functions
from other files, but also for large programs whose function are defined
in the same file, but whose details are easy to forget.

I said earlier that the arguments supplied in a function call are copied to
the function's parameters, and that these parameters are invisible to the
rest of the program. In fact, they can even have the same names (though
this is liable to lead to confusion), and will still be treated as different
entities. Try entering this to clarify the point.

#include <stdio.h>
~COMPLETE
~LlSTlNG

/* function declaration */
void OUt_NUmber (int number);

void main()
{

/* variable declaration */
int number;

printf("Enter a number \n");

scanf (19-.,d" , &number) ;

OUt_NUmber (number) ;

@]~lil
[![il

printf("After the function call, your number is now %d\n",number);

Complete Amigo C

88

}

/* define function */

void OUt_Number(int number)

{

}

printf (liThe number is 'Yod\n", number) ;

number=number+l0;

Chapter 6

Even though 10 is added to the function parameter number, this addition

has in no way affected the variable number within main, which still

retains the original value entered by the user.

If you used different names in main and the function body, and tried to

access the function's variable from main or vice versa, you'd get an

error. Try this:

#include <stdio.h>

/* function declaration */

void OUt_Number(int fred);

void main()
{

/* variable declaration */

int number;

printf("Enter a number \n");

scanf ("'Yod" , &number) ;

OUt_Number (number) ;

~COMPLET£
~LlSTING

@][\V][JJ
lID 01

printf ("After the function call, your number is now 'Yod\n", number) ;

printf (IIAnd the value of fred is 'Yod\n", fred) ;

}

/* define function */

void OUt_Number(int fred)

{

printf (liThe number is 'Yod\n", fred) ;

fred=fred+l0;

Complete Amiga C

Functions 89

Printf ("And the value of number is 'Yod\n", number) ;
}

Side effect

Each of the variations on Out_NUmber, unlike biggest, are declared as
type void and return no results. Yet they all- well, the working ones at
least - have an effect. They alter the contents of a variable and print some
information to the screen.

The variable in question is local to the function - it has no impact on the
rest of the program and can safely be ignored. The writing of text to the
screen, however, is a noticeable effect. It is called a "side effect."

Functions are normally designed so that they are given information via
their parameters, and they give information back via the expression
following their return statement. Any other information given or altered
by the function is done so as a side effect of the function.

Handling side effects
Sometimes, you may need a function to provide more than one result, or
it may need access to more information than is practical to give as
arguments. In these cases it is necessary to use side effects. Printf is
once again a good example. Its side effect is to write information to the
screen; the actual result it returns has so far been ignored by our
programs. It can be used to count the number of elements printed out.

Later on I'll show how you can give a function access to variables
outside its ordinary scope. But you should make use of side effects only
where necessary - a function that can alter more than just its own
variables can so easily be badly written and made to alter variables in the
main program that it shouldn't, introducing a bug that can be very
difficult to track down.

Handling other variable types
Functions can return more than just ints. Similarly, they can accept
more than just ints as their arguments. It's also permissible to use
floats and chars. Arrays are a special case which we'll go into in the
next chapter.

Complete Amig(] C

90 Chapter 6

Let's take another look at the calculator program from chapter 5. The first
thing we could do is section off the bit that asks for the user's menu
selection as a function:

#include <stdio.h>
/* declare selection function for later use */
char selection(void);

/* simple calculator with menu function */
void main()
{

/* declare the variables */
float first, second, result;
char reply;

/* get the user to enter the numbers */
printf("Enter the two numbers to be operated on \n");
scanf("%f",&first);
scanf("%f",&second);
/* print up menu */
printf("Which option do you require?\n");

~COMPlETE
~LlSTING

@]l'i]~
3~

printf("a - addition\nb - subtraction\nc - multiplication\nd - --,
division\n");

reply=selection();

/* Got a decent reply - now to make the decision */
switch (reply) {

case 'a': result=first+second;
break;

case 'b': result=first-second;
break;

case 'C': result=first*second;
break;

case 'd': result=first/second;
break;

default:
/* No need for anything here, since this part of the --,

program should never be executed */

Complete Amiga C

Functions 91

break;
}

printf("\nThe result is %f\n",result);
}

1* now to define menu selection function *1
char selection(void)
{

1* declare local variable *1
char input;

1* body of function takes input, converts it to upper case and ~
checks its within acceptable bounds *1

}

do{

scanf("%ls",&input);
if (input>='A' && input<='Z')

input=input+32;
} while (input<'a' I I input>'d');
return input;

All we've done here is isolate the part of the program that accepts the
user's input, converts it into upper case and checks to see if it's within the
required range. If not, more input will be asked for. A consequence of
separating the selection loop from the printing of the menu is that the
menu is not re-drawn each time an incorrect entry is made.

The function selection returns a value of type char rather than into
Both the function prototype at the top of the program and the function
definition at the end confirm this. It doesn't need any parameters, so the
word void is placed in parentheses in both the declaration and
definition.

The only benefit we've gained by using a function is taking all that messy
loop business away from the main program. But the value of the
functional approach becomes more obvious if we want to add an extra
capability to our calculator.

Complete Amiga C

92 Chapter 6

Let's add an option, e, that computes percentages. It'll be a function that
takes two floating point numbers as its parameters, and provides one
floating point number, the answer, as its result. The prototype for such a
function is as follows:

float percentage(float x, float y);
~a[lJ

- ~01 -
CODE SEGMENT

Put this line in at the top of the program, beneath the one that declares
selection. Now we need to define the function. Place the following
code at the end of the program file, after the closing curly brace of the
selection definition:

/* definition of percentage function */
float percentage(float x, float y)

~COMPLETE
~LlST1NG

lII~iIl
~01

{

}

/* define variable local to function */
float result;

/* compute X percent of y */
result=(x/100.O)*y;
return result;

Notice how the literal constant 100 has been written with a decimal
point; this clarifies that it is being used as a floating point value in the
expression.

Now we need to alter our menu display segment so that it reflects the
new ability. Change the printf line that displays the menu to:

printf("a - addition\nb - subtraction\nc - -,
multiplication\nd - division\ne - percentage\n");

~a[lJ
- ~01 -

CODE SEGMENT

The switch statement in main doesn't as yet take account of our new
option. We need to alter it so that it calls percentage if the user enters
an 'e'. Change it to this:

Complete Amiga C

Functions 93

switch (reply) { IIl!EIl[Il]
- 0l[!] -

}

case 'a': result=first+second;
break;

case 'b': result=first-second;
break;

case 'c': result=first*second;
break;

case 'd': result=first/second;
break;

default:
/* No need for anything here, since this part of the ~
program should never be executed */

break;
case 'e': result=percentage{first,second);

break;

CODE SEGMENT

Notice that, because of the break following default, we can just add
our new case in at the end of the switch, and still be sure that it will be
chosen if and only if the user enters an 'e'.

At the moment, though, the selection function won't accept the letter
'e' as a valid input. It's a simple matter to change it so that it does. Just
change the line ending the loop to:

} while (input<'a' I I input>'e'); IIl!EIl[IJ]
- 0l[!] -

CODE$EGMENT

Easy. A better solution, though, would be for the main program to pass
two arguments to selection. These arguments could be used as lower
and upper bounds on valid input. That way our selection function
would be of use in any circumstance where menu selection was required,
no matter the number of options available. All we need to do is give the
function two parameters of type char, and use these in the conditional
part of the loop ratherthan the literals 'a' and 'e'.

Here's the new function:

Complete Amiga C

94 Chapter 6

char selection(char lower, char upper)
{

~COMPLETE
~LlSTING

~~W1
0l[!lJ

}

/* declare local variable */
char input;

/* body of function takes input, converts it to upper case ~
and checks its within acceptable bounds */
do {

scanf(l%ls",&input);
if (input>='A' && input<='Z')

input=input+32;
} while (input<lower I I input>upper);
return input;

Don't forget that you'll have to change the function prototype at the top
of the file to read:

char selection(char lower, char upper);

and the line that calls selection will have to be changed to:

reply=selection('a','e');

~~(Ij!
- 0ll!Jl -

CODE SEGMENT

]]~[il
- [A]~ -

CODE SEGMENT

Just to prove that doing this is useful, here's a version of the program that
will make two uses of the selection function. The first use will be as
before, to enable the user to choose a calculation, with five options
ranging from a to e. The second will be to ask the user if another
calculation is required, with two options - a for yes, and b for quit.

To do this the main body of the program is enclosed within a do ...
while loop. At the end of the loop the user is presented with the choice
of continuing or quitting. The loop goes around again so long as the user
enters an 'a', and stops as soon as a 'b' is entered. By virtue of the
selection function, no other entry is allowed.

Here's the listing:

Complete Amiga C

Functions

#include <stdio.h>
/* declare functions for later use */
char selection(char lower,char upper);
float percentage(float x,float y);

/* simple calculator with menu function */

void main()
{

/* declare the variables */
float first, second, result;
char reply;

/* begin calculation loop */
do {
/* get the user to enter the numbers */

printf("Enter the two numbers to be operated on \n");
scanf("%f",&first);
scanf("%f",&second);
/* print up menu */
printf("Which option do you require?\n");

95

~COMPlETE
~LlSTlNG

]]~[l
@[I!

printf("a - addition\nb - subtraction\nc - multiplication\nd - -,
division\ne - percentage\n");

reply=selection('a','e');

/* Got a decent reply - now to make the decision */
switch (reply) {

case 'a': result=first+second;
break;

case 'b': result=first-second;
break;

case 'C': result =first * second;
break;

case 'd': result=first/second;
break;

default:
/* No need for anything here, since this part of -,

the program should never be executed */
break;

Complete Amigo C

96

}

case 'e ' : result=percentage(first,second};
break;

printf("\nThe result is %f\n",result};

/* give user chance for another go */
printf("Another calculation?\na - yes\nb - no, quit\n"};

Chapter 6

/* now close loop by getting and checking user's response */
} while (selection('a','b'}=='a');
/* loop ends once user enters a 'b' */

}

/* now to define menu selection function */
char selection(char lower, char upper}
{

/* declare local variable */
char input;

/* body of function takes input, converts it to upper case and ~
checks its within acceptable bounds */

}

do{

scanf("%ls",&input};
if (input>='A' && input<='Z')

input=input+32;
} while (input<lower 11 input>upper);
return input;

/* definition of percentage function */
float percentage(float x, float y}
{

}

/* define variable local to function */
float result;

/* compute x percent of y */
result=(x/100.O}*y;
return result;

Complete Amiga C

97

Pointers
• More about decision-making

• Modifying arguments with pointers

• Pointers and arrays

Complete Amigo C

98 Chopter 7

Before going on to the main subject of this chapter - pointers - I first
want to talk a little more about decision making. As you no doubt

remember from chapter five, there are two ways in C to make decisions
explicit (if you think about it, the loop control structures such as do ...
while are making implicit decisions) and those are the switch and the
if statements.

More about decision-making
Swi tch is useful for deciding between one of a number of possible
courses of action, but is limited in that decisions can only be made on
expressions that evaluate to one of a set of constants. If, on the other

If and else hand, is capable of evaluating more subtle and complex expressions, by
virtue of the various relational and logical operators. So far, though,
we've only seen how it can be used to optionally perform a single course
of action. But, like switch, it can in fact be used to decide between
several courses.

The keyword else makes this possible. Type in the following quick
example, which, rather usefully, decides whether or not the user has
entered the letter' a':

#include <stdio.h>
~COMPlETE
~USTING

void main()
{

char entry;

/* get users input */
printf("Enter a letter\n");
scanf (l%ls", &entry) ;

I]] [~j[IIl
01[1

/* print out appropriate message depending on value of entry */
if (entry=='a')

}

printf("You have entered an 'a'\n");
else

printf ("You have not entered an ' a' \n") ;

Complete Amigo C

Pointers

Conditional 'if statements
can be nested within each
other, in the same way
you can nest
parentheses.

'Nested' ifs

void main()
{

'SCORE­
JUDGING'
PROGRAM

I
I ,

'SCORE­
JUDGING'
PROGRAM

99

Nested 'if' structure

The else comes after the block defining the action to be taken if if's
expression evaluates to true. In this case the block consists of a single
statement, so no delimiting curly braces are necessary_ Following else is
the block to be executed if the expression proves false. As with the
previous block, it can consist of more than one statement, so long as they
are all enclosed in curly braces_

It's possible to place if constructs inside each other, so that a following
if is only executed if its preceding one proves true_ This is occurrence is
known as a set of "nested" ifs, and looks like this:

#include <stdio.h>
~COMPLETE
~LlSTlNG

@]~[il
IIllIIll

int age, score;

Complete Amigo C

100

}

/* get info from user */

printf(ItPlease enter your age\nlt)i

scanf ("eyedlt , &age) i

printf(ItPlease enter your percentage score\n")i

scanf ("eyed" , &score) i

/* make decision on info */

if (age>20)
if (score<70)

printf("That's not very good, is it?\n")i

else
printf(ItWell done\n")i

Chapter 7

As it stands, the program will only judge the scores of users above the

age of 20. It judges any score below 70 as being poor, and scores of 70 or

higher as good. Notice how the else statement belongs to the if

statement directly above it, rather than the previous one.

Using braces

Else statements are always taken to belong to the closest previous if

that doesn't already have an associated else. The underlying logic of

nested ifs can sometime be hard to comprehend; enclosing the various

consequential blocks in braces helps to make the logic more explicit.

Here's the modified form of the decision making part of the above

program:

}

/* make decision on info */

if (age>20) {

}

if (score<70) {

printf(ItThat's not very good, is it?\n")i

} else {
printf (''Well done\n") i

}

~a01
- 0l[!J] -

CQDESEGMENT

It now becomes obvious which if the else belongs to. If you wanted to

change the program so that it chastised people over 20 who scored less

Complete Amiga C

Pointers

Conditional 'if statements
can also be used in series
using the 'else if con­
struct.

'SCORE­
JUDGING'
PROGRAM

I
I ,

'SCORE­
JUDGING'
PROGRAM

101

Compounded 'if' structure

than 70 and left them alone otherwise, while praising people of 20 years
or less regardless of their scores (I know you wouldn't really want to, but
it illustrates a valid point), you would need to use braces to force the
else to associate with the first if:

Complete Amigo C

102

}

/* make decision on info */
if (age>20) {

if (score<70) {
printf(IIThat's not very good, is it?\n")i

}

} else {
printf(IIWell done\n")i

}

Chapter 7

~I!J![[
- 1!Jl0} -

CODE SEGMENT

It's also possible to compound ifs so that one is only executed if its
predecessor proves false. Take a look at the following example:

#include <stdio.h>

void main()
{

}

int scorei

/* get user's score */
printf(IIEnter your score\n")i
scanf (lI9-od", &score) ;

/* make decision on info */
if (score<20)

printf(IIThat's sad\n")i
else if (score<40)

printf(IINot setting the world alight, are you?\n");
else if (score<60)

printf("Could do better\n");
else if (score<80)

printf(IINot bad\n")i
else

printf ("Smashing! \n") i

~COMPLETE
~USTING

@]~[l]
1!Jl[!J]

As with the previous example, the consequences of each if must be
enclosed with braces if they extend to more than one statement, and

Complete Amiga C

Pointers

~'\
\oo:~~
~

Conditional
expression

103

braces may also be used to increase the logic's clarity. They're not
necessary in this example, though.

The sort of logic supplied by the if... else if construct is very
similar to that supplied by the switch statement. Both enable the
program to choose between one of several possible courses of action. But
with switch we could have only tested for one of five possible values
for score, rather than testing for its lying in one of five ranges as we do
here. In fact, the expression in each of the if statements can be
completely different from any of the others, giving you much more
freedom in the kind of decisions you can get your programs to make.

With this sort of construct, each if is only tested if the one preceding it
proves false. Once an if proves true, then the code forming its
consequence is executed, and the entire construct is finished - no further
else ifs are tested (remember that to achieve the same effect with
switch each set of statements must be terminated by a break
statement).

The final else, without a following if, is equivalent to the default
label with switch - the statement(s) following it are only executed if all
of the previous ifs have evaluated to false. Its use is optional.

It's also possible to include nested ifs inside an if. .• else if
construct - and here curly braces really are necessary to help you keep
track of the decision-making logic. I'll wait until we're dealing with a
program of sufficient complexity to justify its use before introducing an
example of this.

C also provides something called a conditional expression. It's a
shorthand way of deciding between one of two expressions, on the basis
of a third, logical, expression. It's more succinct than if, and can
sometimes come in handy. Here's a short example. It expects the string
variable name to contain someone's name, and the character variable
sex to contain either 'rn' or 'f'. The following would print the person's
name, preceded by either "Mr" or "Mrs" depending on the person's sex:

Complete Amigo C

104 Chapter 7

#include <stdio.h>
~COMPLETE
~LlSTING

@J~1Ill
II!IIlI

void main()
{

}

char sex;

char name [10] ;

printf (IIEnter name \n") ;

scanf ("%S" , name) ;
printf(IIEnter sex\n");

scanf("%ls",&sex);

printf("Dear Mr%s %s.\n", (sex=='m') ? ("")

The conditional expression is the

(liS"), name);

(sex=='m')? ("") : (liS");
@JBIIll

- II!IIlI -

Complete Amiga C

CODE SEGMENT

bit in the printf statement (remember that in this example, because of
the two 9-08 sequences in the printf string, it is expecting two string
expressions to print out). The first part, the expression preceding the
question mark, is evaluated as a logical expression, yielding a value of
either true or false. If it is true, then the value of the overall expression
becomes the value of the expression immediately following the question
mark, in this case an empty string. If it is false, the vale of the overall
expression becomes the value of the expression following the colon.
Notice that the type of the variable tested in the logical expression need
not be the same as the type of the overall expression.

In this case we are using a character variable to decide which of two
strings the overall expression will become. If sex contains 'rn', then
printf will take the first string, as denoted by 9-08, to be nothing,
otherwise it will print an's' immediately after "Mr".

A common use of the conditional expression is to assign one of two
values to a variable. Here's a a segment that would assign the smallest of
two integers to a third:

Pointers 105

minimum = (first<second) ? (first) : (second);
CODE SEGMENT

The parentheses around the expressions aren't necessary, they just help to
make things clear. The logical expression is (first<second). If it is true,
that is to say, if the value of first is less than that of second, then the
overall expression evaluates to first, and this value is assigned to
minimum. Otherwise, the overall expression evaluates to second, and
this value is assigned to minimum. The equivalent of this using an if
and an else is as follows:

if (first<second)
minimwn=first;

else
minimwn=second;

Modifying arguments with functions

@]~[]]
- 0][1] -

CODE SEGMENT

I don't know if you noticed, but I tried to slip something past you in that
earlier Mr and Mrs example. If you look back to the scanf statement
that was used to enter a value into the string called name, you'll notice
the lack of the now customary & sign before the variable's name. What
follows will explain this omission, and why the & sign has been
necessary in other instances.

Let's take a look at a statement designed to input an integer:

scanf ("eyed" I &entry) ;
CODE SEGMENT

Scanf is a function, and as such it returns a result. This result is not the
value stored in entry. It is the number of assigned input items - useful
because scanf can be used to input several items with a single call, but
we won't go into that now.

That's the function's result, in the strict sense of the word, but the effect
that we have so far used scanf for is the modification of a variable, i.e to
have the user's input stored in such a variable. As I said in chapter 6,
functions can normally return only one result, yet scanf returns a result
and modifies one of its arguments.

Complete Amigo C

106

':j\
\~
Pointer

Complete Amiga C

When a function is called,

any values passed are

ARGUMENTS. These

arguments become the

function's PARAMETERS.

The function acts on the

parameters and returns

its RESULT. Butthe
original argument, e.g. a
variable, remains

unaltered.

MAIN
PROGRAM

I
I ,

MAIN
PROGRAM

RESULT

I
I ,

REST OF
FUNCTION

I ,

Chapter 7

Functions, arguments & parameters

Normally, once an argument is passed to a function, that function gains a

copy of the argument, known as a parameter. The function can modify

the parameter without affecting the value of the original argument. Yet in

the case of scanf, the function is modifying one of its arguments.

This is done by passing scanf not the contents of the variable to be

modified, but the variable's address. The address, remember, is the

location in memory that the variable is stored. Once scanf has this

information, it can manipulate the contents of the relevant memory

locations directly, so that once the function has finished the contents of

the original variable are quite different.

You can get the address, rather than the value, of a variable by preceding

its name with the "&" sign.

Now that you can give your C programs direct access to memory

locations, you also need a method to manipulate the contents of such

locations. This is done by a device called a "pointer", which is one of the

most potentially confusing areas of the language. It is also one of the

aspects that give C its real power.

Pointers

Instead of using variables,
you can use 'pointers to
variables'. These don't
refer to the contents of
the variable itself, only its
current position in
memory. If the variable is
a large string, this can
save a great deal of
processing time.

C~'
11 MAKEA \
I NOTE! \
~--

Using pointers

107

MEMORY

etc.

address 7

POINTER TO VARIABLE ---.. address 6 I VARIABLE j ----VARIABLE

address 5

address 4

address 3

address 2

address 1

Variables and 'pointers to variables'

A pointer is a variable that contains a memory address. The variable
"points" to an area in memory. You declare a variable as a pointer as
follows:

The asterisk before the name in the declaration is the thing that
distinguishes it from an ordinary integer. The declaration defines the
variable as not only containing an address in memory, but also defines
that the value held in that address should be of type integer. It is possible
to declare pointers that point to other variable types. The reason C
requires you to specify the type of information you're pointing to is that,
once you start messing around with memory, it is important to have some
sort of check that you are messing around with the right part of memory.
Mistakes with pointers in C can cause your program to write to
unpredictable memory locations, resulting in system crashes.

You could define an integer, and then an integer pointer to hold its
address, with the following short segment:

Complete Amigo C

108

void main()
{

int number;

Chapter 7

@JJB0J
- 010 -

CODE SEGMENT

int *pointer_to_number;

}

Complete Amiga C

The reason the usage of pointers and address can seem so confusing is
because the whole thing is quite self-referential. The above example
helps distinguish the elements. The variable number is an integer
variable. The name number is a tag to indicate the contents of the
variable at any given time. It is similar to, but not the same as, the
address of the memory location where these contents are physically
stored. Whenever the name number appears in an expression, the value
used will be the variable's contents, an integer. The variable
pointer_to_number contains the address of a memory location which
in turn contains an integer value. The value of pointer_to_number is
not of type integer, it is of type pointer. Here it is given the address of the
variable number, obtained by preceding number with the "&" sign.

Often, as in the code internal to scanf, it is necessary to examine or
modify the contents of the memory location that a pointer points to. This
might have to be done because the variable name that also enables the
program to access this memory location is not available.

For example, when a variable is passed to a function as a parameter, the
function's parameter contains only the same value as the variable.
Modifying this value will not modify the original value. And that's why a
variable's address, rather than its value, must be passed to scanf. The
address is stored by scanf as a pointer, and by making use of this
pointer it alters those memory locations directly that comprise the
variable in which the input is to be stored.

A program can access the contents of memory that a pointer points to by
the following means:

Pointers 109

#include <stdio.h>
~COMPLETE
~LlSTING

int calculation(int first, int *pointer_to_number2);
@]~I!ll
0I1Ill

void main()
{

int numberl,number2;

/* get two numbers fram user */
printf("Enter two integers\n");
scanf ("'Yod,'Yod,", &numberl, &number2) ;

/* call function */
printf ("The product of the two numbers is 'Yod,\n",-,

calculation(numberl,&number2»;
printf("And the first divided by the second gives 'Yod,\n",number2);

}

int calculation(int first, int *pointer_to_number2)
{

}

int second;

second=*pointer_to_number2;
*pointer_to_number2=first/second;
return (first*second);

Here we're expecting the function calculation to give us two values­
that of its arguments multiplied together and that yielded by dividing the
first value by the second value. The first value is returned as a simple
result, so the function is defined as being of type into In order to get the
function to produce a second value, we pass it the address of the second
number rather than the value itself as its second parameter (this is done in
the first printf line), which enables it to directly alter the value of the
integer.

This address is stored in a pointer, defined as the second parameter in the
function's definition. Because the variable it points to is going to be

Complete Amigo C

110 Chapter 7

modified for one calculation but its original value is also needed, a
temporary variable, second, is also defined.

The asterisk in front of a variable name at declaration time is used to
define the variable as being a pointer. When it is used at any other time it
means that the value of interest is not the contents of the variable - a
memory address - but rather the value stored in the memory address
pointed to by the variable's contents. In this case, that memory address is
where the contents of the variable number2 is stored.

This value is first stored in second, because it will be needed again,
after the contents of number2 have been modified to be that of the
variable first divided by second, in the line:

*pointer_to_number2=first/second;
@Jia@l

- [A]~ -
CODE SEGMENT

The next line returns the value of the variables first and second
multiplied together. This becomes the value of the expression, the
function call, in the first printf line of the main program, and it is
printed out.

The second printf line prints out the value of the variable number2,
which has now been modified by the function calculation.

Arrays and pointers
That explains the use of the & character when getting scanf to input
integers, floats or single characters, but why was not & necessary when
we were calling scanf with a string array? The reason comes about
because of the very close association between arrays (of any kind of
variable) and pointers.

An array name is also the address of the first element in the array (the
element numbered zero, that is). If we define a string array as:

char animal [] = "e lephant 11 ; (~~[il) @eil
EXAMPlE CODE

Complete Amiga C

Pointers 111

Then we can assign a pointer to point to the first element with:

char *pointer_to_character;
pointer_to_character=&animal[O];

{@]E![JI}
lJlCSJl

EXAMPLE CODE

But, because the array name, without any element of the array being
specified, is itself the address of the first element, this assignment could
also be made with:

(~~[IJ]) [Ill!]
EXAMPLE CODE

Having performed either of these assignments, the first character of the
array can be accessed either by the expression animal [0] or the
expression *pointer_to_character. If you wanted to print out the
second character in the array, (the letter '1', element number 1) you
could use the line:

printf (liThe second letter is 'YoC\n", animal [1]) ;

but you could also use the line:

printf("The second letter is 'YoC\n",*(pointer_to_character+1»; {@]~[JI} ~~

\i&""
I MAKEA j
I NOTEI
,~-

Accessing
array

elements

EXAMPLE CODE

Here we're asking for the value held in the next address after the one
pointed to by pointer_to_character. This is done by the addition of
1 to pointer_to_character (note that the parentheses are necessary,
otherwise the compiler would retrieve the first letter via
pointer_to_character and then add a value of 1 to it, turning it into
the letter' f').

Adding 1 to the pointer before retrieving the value it points to is the same
as accessing element I of the same array. Different types of variables
taking up different amounts of space in memory. The elements of an
array of int each take up four consecutive addresses, while those of an
array of char only take up a single address each. Nevertheless, adding 1
to a pointer for either will still point at the next item in the array. It
doesn't mean "look at the next address" but "look at the address where
the next item in the array begins".

Complete Amigo C

112

char name [10] ;

A string array may take
up many memory
addresses, but the array
pointer always points to
the address of the first
element in the array.

etc.

address 7

address 6

address 5

address 4

POINTER TO FIRST ELEMENT address 3

address 2

address 1

Chapter 7

MEMORY

STRING ARRAY

Pointers to string arrays

Similarly, you can access element number n of an array (where n is of
type int) either by writing array_name [n] or
*{pointer_to_array+n}.

As you can see, when a string array, declared as

(1IIE1[1)
0101

EXAMPLECQDE

is passed to scanf with a line such as:

scanf ("%S" , name) ; (IIIEI[I)
0101

EXAMPLE CODE

then it is the address of the string that is being passed, enabling scanf to
modify the string's contents as it would the contents of any other type of
variable passed. The line could be re-written as:

scanf(l%s",&name[O]); (III El [I)
0101

EXAMPLE CODE

to achieve the same effect.

Complete Amiga C

Pointers

An array pointer points to
the address of the first
element (element 0) of the
array. Add 1 to this
pointer to point to where
the next element in the
array starts, add 2 to
point to the next and so
on. Adding 1 to the
pointer always points to
the next element, not the
next address.

113

MEMORY

etc.

address 7

ETC. ~address6

STRING ARRAY
POINTER+2 (3RD. ELEMENT) ~ address 5

POINTER+! (2ND. ELEMENT)~ address 4

POINTER TO FIRST ELEMENT ~ address 3

address 2

address!

Pointers to successive array elements

You needn't pass the whole of an array to a function. You could, if you
wished, pass it the address of a later element, perhaps because you
wanted to preserve the first few characters of a string and get scanf to
add the users input to the end. You could get scanf to input from
element five onwards with the line:

scanf("%s",&na:me[S]); (@]~[JJ) [JJ[JJ
EXAMPLE CODE

which is equivalent to writing:

scanf("%s",na:me+S); (@]~[JJ) [JJ[JJ
EXAMPLE CODE

Let's take a look at a short example. This one will take ten integers and
sort them into ascending order. We'll divide it into three main functions:
input, which gets the ten numbers from the user; sort, which sorts
them; and output, which prints out the result on the screen.

All three functions require the array to be passed to them. An array has to
be passed as an address, rather then by having its values copied as is the

Complete Amigo C

114

Complete Amiga C

Chapter 7

Our sort function works

very simply. In stage 1 it element 1 J stepl

element 1 J stepl
goes through the
elements in the array, element 2 element 2

comparing consecutive J step 2 J step 2

pairs and swapping them element 3 element 3

round so thlit the highest J step3 J step3
value is the second of the

two. By the end, the
element 4 J step 4

element 4

highest value in the array

is the last element. In element 5 element 5 highest value

successive stages, the

number of comparisons is STAGE 1 STAGE 2

one less, and the array is

sorted progressively from Basic sort function
the 'top down'.

case with other variable types. Arrays can be very large, and to copy

them each time they were passed to a function would be expensive in

terms of time and memory. This method of passing the address is the

only solution. The function called can treat the address either as a

pointer, or as an array name. It's usual to choose the method that makes

the program clearer.

The sort function we're going to use is a simple one. It looks at

successive pairs of the array. If the first is larger than the second, then the

function swaps the two around. It then goes on to look at the second

compared to the third, the third compared to the fourth, and so on. When

it has gone through the entire array once, the highest of all the numbers

will have been moved to the final element. The whole pair-checking

procedure is then carried out again, with the final element being omitted.

We can now be sure that the second largest number is stored in the

penultimate array element. The pair-checking repeats, looking at

progressively less and less of the array, until only the first two elements

are compared, and if necessary changed.

Once this stage has been reached, the entire array has been sorted. See

the diagram above for an example with five integers.

Now here's the source code to do it. Type it in and try it:

Pointers

#include <stdio.h>

void input(int *numbers);
void sort(int *numbers);
void output(int *numbers);

void main()
{

}

int data [10] ;

input(&data[O]);
sort(&data[O]);
output(&data[O]);

void input(int *numbers)

}

int counter;

/* get elements 0 to 9 */
for (counter=O; counter<10; counter++)

scanf ("~od" , &numbers [counter]) ;

void output(int *numbers)
{

}

int counter;

/* output elements 0 to 9 */
for (counter=O; counter<10; counter++)

printf (lI~od \n" , numbers [counter]) ;

void sort(int *numbers)
{

int counter, limit, temp;

115

~COMPLETE
~USTING

[JJ~[IJ
0][1]

/* work initially through elements 0 to 8, then 0 to 7, 0 to ~

Complete Amigo C

116 Chapter 7

6 ... 0 to 0 */
for (limit=8ilimit>=Oilimit-)

/* work through sub-group of elements specified by outer limit */
for (counter=Oicounter<=limiticounter++)

them both */

}

/* compare an element with the next in sequence */
if (numbers[counter]>numbers[counter+l]) {

}

/* if it is greater than its successor, then swap ~

temp=numbers[counter]i
numbers[counter]=numbers[counter+l]i
numbers [counter+l] =tempi

Notice that in the function definitions, the parameters were declared as
being of type pointer to integer, rather than of type array of integer,
which would have been written as:

void output(int numbers[])
@]~[IJ]

- 0I1IJl -
CODE SEGMENT

This is also acceptable, but the definitions in the example above make it
clearer that it's a pointer being passed, and that the array is not being
passed by value, a copy is not being made.

The functions themselves deal with the array as an array, rather than
using pointer notation. In this particular instance, it's clearer that way, but
here it is using pointer notation instead, so that you can compare:

#include <stdio.h>
~COMPLETE
~USTING

void input(int *numbers)i
void sort(int *numbers)i
void output(int *numbers)i

void main()
{

Complete Amiga C

@]~II]
0I1IJl

Pointers

}

int data[lO];

input (data);
sort (data);
output (data) ;

void input(int *numbers)
{

}

int counter;

/* get elements 0 to 9 */
for (counter=O; counter<lO; counter++)

scanf ("'?od" , numbers+counter) ;

void output(int *numbers)
{

}

int counter;

/* output elements 0 to 9 */
for (counter=O; counter<lO; counter++)

printf (",?od\n", * (numbers+counter)) ;

void sort(int *numbers)
{

int counter, limit, temp;

/* work initially through elements 0 to 8, then 0 to 7, 0 to ~
6 ... 0 to 0 */

for (limit=8;limit>=O;limit-)

117

/* work through sub-group of elements specified by outer limit */
for (counter=Oicounter<limiticounter++)

/* compare an element with the next in sequence */
if (*(numbers+counter»*(numbers+counter+l» {

Complete Amiga C

118

them both */

}

}

Complete Amiga C

/* if it is greater than its successor, then swap ~

temp=*{numbers+counter);
(numbers+counter)={numbers+counter+l);
* (numbers+counter+l)=temp;

Chapter 7

Compare both versions, to be sure you understand the correspondences
between arrays and pointers. Pay particular attention to the uses of
scanf in both, and how they differ from the uses of printf - printf
requires a value to be passed to it, whereas scanf requires the address of
a value.

Pointers enable functions to modify variables they wouldn't otherwise be
able to, thus enabling functions to return more than a single result. They
also enable large amounts of data - in the form of arrays and other data
types we've yet to discuss - to be passed to functions without massive
memory overheads. These attributes make pointers ideal for operating

Passing pointers to arrays
to functions is not only
quicker (the pointers may
be many times smaller
than the arrays
themselves), it also lets
the called function modify
the array directly, not just
a copy of the array.

MEMORY

etc.

address 7

address 6

STRING ARRAY

address 5

address 1

Passing pointers to functions

Pointers 119

system use, and necessary for when you want to interface your programs
to the Amiga's operating system. It's important to be reasonably
comfortable with pointers, because you won't open any screens or
windows without them.

Complete Amiga C

120

Complete Amigll C

121

Pointers and
• strings

• Two-dimensional arrays

• Modifying our 'sort' program

• Standard library string functions

• Initialising arrays on declaration

• Sharing variables amongst functions

Complete Amigo C

122

c;j\
'\ MEAN.

Siring

Chapter 8

Before going any further, we'll look into another very common use of
pointers - when they are used to access strings.

A string is an array of characters, so all of what was said in the previous
chapter about the correspondences between pointers and arrays holds
true for strings, too. In addition, you may remember the shorthand
notation for both declaring a string and defining its contents:

char animal[)="elephant"; (@]a01)
0J0J

EXAMPLE CODE

in which the array is declared to be of the necessary size to hold the
string - in this case 9 elements, numbered from 0 to 8. Remember that
the final element of the string contains the '\ 0 ' character, or integer value
0, to mark the string's end. You could also define the string as a constant
with a pointer pointing to it:

char *pointer_to_string="elephant";

~"
" MAKEA \
I NOTE' }

'-----Passing
slrings

Again, the string is terminated by a '\ 0' character. The difference,
though, is that animal always references the same string. Its contents
can be changed, but it always indicates the same area of memory, and an
array of the same size. The variable pointer_to_string, although it
begins by pointing to a string constant, can be modified so that it points
to another area of memory entirely.

When you pass a string constant, enclosed in double quotes, as an
argument to printf, what printf actually receives is a pointer to that
string constant. There is no mechanism for passing strings directly
between functions, they must be passed as pointers. It's possible to group
strings together, just like simple variables such as ints, into arrays. But
since each string is itself an array, an array of strings is in fact an array of
arrays.

Two-dimensional arrays

Complete Amiga C

Arrays of arrays are more usually called two dimensional arrays. Their
original use was to store matrices, which you may have come across in
maths. If you declare an array as follows:

Pointers ond strings 123

int numbers [10] [20]; (
@]EII:il)
@!!]

EXAMPLE CODE

You've created an array called numbers, with 10 elements. Each of these
10 elements contains a further 20 elements, all of which can be used to
hold an integer number. There are in total 200 elements. You can think
of the array's two indices as co-ordinates, referencing a particular point
on a two-dimensional grid. The array is the grid, and each point on the
grid can contain an integer value. Such an array is useful for storing
something such as a chess board, which would be an array of 8 by 8
elements.

The same applies to strings. The declaration for an array of 10 strings,
each no longer than 20 characters, would be as follows:

char words [10] [20]; (@]E11IIll)
[!]I!!]

This is an array of 10
elements, each of which
contains its own array, of
20 elements. Each
element can be accessed
by quoting its 'grid
reference'.

EXAMPLECQDE

Each of the 10 elements of words is itself made up of 20 characters,
which can be individually accessed by providing a number between 0
and 19 as the second index.

o

2

3

4

6

8

9

o 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Element 2 of element 3 Element 16 of element 6

Element 6 of element 0

A two-dimensional array

Complete Amigo C

124 Chapter 8

Notice how the space for the strings is here fixed in advance. No strings
longer than 20 characters (including the terminating '\ 0 ') can be stored.
Similarly, no space is saved if the strings held are shorter than the size of
the array - the extra elements are filled with garbage.

Modifying our 'sorl' program
To illustrate the use of string arrays, we'll convert the sorting program
from the last chapter to sort words instead of numbers. Here's how the
string arrays are implemented in the sort example:

#include <stdio.h>

/* declaration of a handy string function */

int stringlarger{char first[], char second[]);

/* and the three main functions of the program
void input{char words[] [20]);
void sort{char words[] [20]);
void output{char words[] [20]);

void main{)
{

char words [10] [20];

input{words);
sort{words)i
output{words);

}

int stringlarger{char first[], char second[])
{

/* returns a value of 1 if the first string
after the second, 0 otherwise */

int counter=O;

*/

is

~COMPLETE
~LlSTING

alphabetically ~

]J[WJiIr
~~

while (first [counter] 1='\0' && second [counter] 1='\0' && ~

Complete Amiga C

Pointers and strings

first[counter]==second[counter]}
counter++;

125

if (first [counter]=='\D' I I first[counter]<second[counter]) return D;
return 1;

}

void input(char words[] [2D]}
{

}

int counter;

/* get elements for 1D strings */

for (counter=D; counter<lD; counter++)
scanf ("%s", &words [counter] [D]};

void output(char words[] [2D]}
{

}

int counter;

/* output elements D to 9 */

for (counter=D; counter<lD; counter++)
printf("%s\n",&words[counter] [D]};

void sort(char words[] [2D]}
{

int counter, limit,i;
char teIl1P;

/* work initially through elements D to 8, then D to 7, D to ~
6 ••• D to D */

for (limit=8;limit>=D;limit-)

/* work through sub-group of elements specified by outer limit */

for (counter=O;counter<=limit;counter++)
/ * compare an element with the next in sequence * /
if (stringlarger(&words[counter] [D],&words[counter+1] [D])} {

/* if it is greater than its successor, then swap ~

Complete Amiga C

126 Chapter 8

them both */
for (i=O;i<20;i++) {

/* work through all elements of the ---,
string - 0 to 19 */

}

}

Complete Amiga C

}

/* swap each character in turn */
temp=words[counter] [i];
words [counter] [i] =words [counter+1] [i];
words [counter+1] [i]=temp;

Converting the program to sort strings rather than integers has added a
number of complications. For one thing, we've needed a support function
to help us in manipulating the strings. Stringlarger takes two strings
as its parameters and decides which is the greater, or which comes last
alphabetically. Because of the way the ASCII character code is mapped
out, upper case letters are treated as being lower in the alphabet than
lower case ones.

The function searches through each element of both arrays in turn. If it
finds a difference between the two arrays, or if it comes to the end of
either, then the loop will exit. Once this happens, a result of 0 is returned
if the value of the last element checked is less for the first array than for
the second, or if the end of the first array has been reached. Otherwise, a
value of 1 is returned. A consequence is that if two arrays are otherwise
the same, the shorter of the two will be considered to be the lowest in
value.

The three main functions, input, sort and output, have had to be
modified extensively. All now accept an array of char arrays as a
parameter. In the function definitions, and in any functions which accept
two-dimensional arrays as parameters, the number of sub-elements
making up each array element must be declared. The functions can be
passed arrays with any number of primary elements, but the number of
sub-elements of which they consist must be defined in advance.

Pointers and strings 127

Modifying linputl
The function input uses the integer variable counter to work through
each of the array elements in turn, from 0 to 9. For each, scanf is called
to get a string from the user. We want the string to be copied into the sub­
elements numbered 0 to 19, so we must pass scanf the address of the
first (or, more correctly, zeroeth!) sub-element of the string referenced by
counter. This is done with the '&' character. Notice that just passing
scanf the array name, words, would give it a pointer to the first
element of the first string of the array - it would be equivalent to writing
&words [0] [0], which is no good for our purposes.

Modifying loutpull
The function output should seem straightforward, the main difference
from the earlier version being that instead of passing an integer to
printf it now passes a pointer to a string (the string again being chosen
by the integer variable counter).

Modifying Isorll
The modifications to sort are the most dramatic. The comparison
between the two elements here cannot be done by a relational operator
like' <', which can only be applied to simple types such as int or char.
Instead, sort calls the function string larger to make the decision.
Notice again how pointers to the first element for each string, as
referenced by counter and counter +1, are given by using the '&'
sign. If string larger returns a value of 1, meaning the first string is
larger than the second, then sort must swap the two strings around.
Doing this involves swapping each of the character elements of the
strings separately.

To this end, a simple loop is set up, cycling from 0 to 19 to encompass
all the elements. An element of the string referenced by counter is
stored in a temporary character variable, then the element is given the
value of the equivalent element in the string referenced by counter+1.
This element is in turn given the value of the temporary variable. Once
the loop has completed, all the elements have been swapped.

Complete Amiga C

128 Chapter 8

--~-----.. ---

An alternative solution

Gjll
\ MEAN.

Malloe

There's another way of approaching this problem. At the moment, the
program will only sort 10 words, no more, no less. Also, each word can
be no longer than 20 characters in length. That's because we defined the
amount of space the string array would take up at the beginning of the
program, when we declared it. Declaring any variable within a function
means that memory space is reserved for that variable until the function
ends, at which point the memory is relinquished to the operating system.
In the case of variables declared in main, their space remains until the
program finishes executing.

It would be possible to make the program cater for more and longer
words by increasing the dimensions of the array, but this would result in
the program grabbing more memory than it needed if the user actually
only wanted to sort a few words.

Using malloe
What we need is a way of grabbing memory space while our program is
running, if and when it needs it. There's a standard C function called
malloe which will do just this. You call it with the quantity of memory
you require, measured in units known as bytes. I'll go into more detail
about bytes later, for now all you need to know is that one byte is
required to store each element of a character array. Malloe returns as its
result a pointer to the memory space given by the operating system. If no
space is available, then the pointer returned has a value of NULL. Before
the pointer can be used as a pointer to a string, it must first be changed
into a pointer of the correct type (in our case a pointer to type char).
This is done by a process known as "casting", whereby the pointer is
preceded by parentheses containing the type it should be converted to:

pointer_to_string=(ehar *)malloc(20); (@][!]lil)
010

Complete Amigo C

EXAMPLE CODE

would create space for a string of 20 elements. Malloe can be used as an
alternative to declaring arrays at the start of the program. It is useful if
your program won't know how much storage space it needs until it is
actually running.

Pointers and strings 129

So we can create space for each string as it is needed, along with a
pointer to that string, but it is still convenient to group these strings in
some way so that we can process them en masse, specifically by using
loop constructs rather than having to access each by its individual name.

String pointers rather than strings
This is done by storing the pointers to the strings in an array. The
memory the strings themselves are held in may be scattered far and wide
- malloe bestows chunks of memory from where it and the operating
system see fit - but the pointers to these memory arrays are all stored
consecutively in one array. You'd declare such an array as follows:

char *pointers_to_words[lO]; (@]Jaw)
01iIll

EXAMPLE CODE

This still means that an arbitrary boundary must be placed on the number
of words sorted, but remember that here we're only declaring space for a
group of pointers, each small in comparison to the strings they may end
up pointing to, which are not themselves stored until needed. Therefore
we can afford to make the limit that much higher. In the following
example, I've made it 50 elements (numbered 0 to 49) by defining a
constant MAXWORDS with the value 50 and using it in the array
declaration at the beginning of main.

As a consequence, input has been modified so that it accepts as many
strings as the user requires, so long as there is sufficient memory and the
MAXWORDS limit is not exceeded. The user indicates that the last string
has been entered by entering 'q'. Input will then return the number of
words entered as an integer result. The functions sort and output have
been modified to take this integer as a parameter, so that they only sort
through the elements of the array of interest. I'll talk more about the
program after you've typed it in ...

#include <stdio.h>
#define MAXWORDS 50

/* declaration of three useful string functions */
int length(char *word);
void putstring(char * source , char *destination);

~COMPLETE
~lISTING

@]J~w
01iIll

Complete Amiga C

130

int stringlarger(char *first, char *second);

/* the program's primary functions */
int input(char *words[]);
void sort(char *words[],int number);
void output(char *words[],int number);

void main()
{

}

char *words [MAXWORDS] ;

int number_of_words;

number_of_words=input(words)i
sort(words,number_of_words)i
output(words,number_of_words);

int length(char *word)
{

/* function that returns the length of a word, not including ~
the terminating '\0' character */

}

int result=O;
while (word[result] !='\O')

result++;
return result;

void putstring(char *source, char *destination)
{

/* copy the contents of the first string into the contents of ~
the second */

}

int position=O;

do {
destination[position]=source[position];
position++;

} while (destination[position-l]!=O);

Complete Amiga C

Chapter 8

Pointers and strings

int stringlarger(char *first, char * second)
{

/* returns a value of 1 if the first string is alphabetically ~
after the second, 0 otherwise */

int counter=O;

while (first[counter]!='\O' && second[counter]!='\O' && ~
first[counter]==second[counter])

counter++;

131

if (first [counter] ==' \0' I I first[counter]<second[counter]) return 0;
return 1;

}

int input(char *words[])
{

int counter,length_of_word;
char entered_word[20]; /* variable for remembering most ~

recently entered word, no longer than 19 characters plus a '\0' long */

/* get strings until user enters an empty string */
for (counter=O; counter<MAXWORDS; counter++) {

scanf ("%s" , entered_word) ;
length_of_word=length(entered_word);
/* enter 'q' to mark end of words to be sorted */

if «length_of_word>l I I entered_word[O]!='q') && ~
«words[counter]=(char *)malloc(length_of_word+1»I=NULL»

}

}

putstring(entered_word,words[counter]);
else return counter-1;

return counter-1;

void output(char *words[], int number)
{

Complete Amiga C

132

}

int counter;

/* output elements 0 to number */
for (counter=O; counter<=number; counter++)

printf("%s\n",words[counter]);

Chapter 8

void sort(char *words[],int number)
{

int counter, limit;
char *temp;

/* work initially through elements 0 to (number-l), then 0 to ~
(number-2), 0 to number(-3) .•. 0 to 0 */

for (limit=number-l;limit>=O;limit-)

/* work through sub-group of elements specified by outer limit */
for (counter=O;counter<=limit;counter++)

/* compare an element with the next in sequence * /
if (stringlarger(words[counter],words[counter+l]» {

/* if it is greater than its successor, then swap ~
them both */

}

}

Complete Amiga C

temp=words[counter];
words[counter]=words[counter+l];
words[counter+l]=temp;

Further modifications
The change over from arrays of arrays to arrays of pointers has meant
that we need another two string functions.

The first of these, length, returns the length of a string, not counting its
final element which holds the string terminating character. In other
words, it holds the element number in which the terminating character
was stored. So if the user enters an empty string, length will return a
value of 0 when asked to give the string's length. It works by counting

Pointers and strings 133

element by element through the string passed it, until it encounters a
terminating character. When it does, it returns the value of its counter
variable.

Putstring copies the contents of one string into another. Since strings
are arrays, a simple assignment won't suffice - instead, putstring has
to copy each character in turn from one array to the other. There is no
need to copy elements after a string terminator has been copied, so this
happily provides the termination condition for the copying loop.

The function input now needs a temporary string, entered_word.
Each of the strings entered by the user is in turn stored in this variable.
Input then sets up a loop, counting from 0 to the maximum allowable
number of words defined by MAXWORDS.

For each time round the loop, seanf is called with the array
entered_word as an argument. The function length is called so that
we can store entered_word's length in the integer variable
I ength_of_word.

The next line is the clever one. It first of all checks that the input was not
a request to quit, by checking if length_of_word is larger than 1 or if
the first character is not 'q'. It then calls malloe to gain the required
amount of space to store the word. Notice how the second part of the if
statement

&& words [counter] = (char *)malloc(length_of_word+l)
@1B[I]

- 0][1 -
CODE SEGMENT

asks for the necessary amount of memory (with 1 element more than
length_of_word being needed to take into account the string
terminator) and assigns the address of this memory to the relevant pointer
in the array of pointers words.

If there was insufficient space for the word, then the function would
return a value of 0, meaning that the statement immediately following -
the one that calls the function to copy entered_word into the space
we've just been given - would not be executed. The failure of the if
statement means that no more input should be expected, so the function

Complete Amiga C

134 Chapter 8

finishes by returning the variable counter-i, which corresponds to the
last element filled.

If the if statement proved true, and the entered word was copied, then
the for loop is closed and the next word is requested from the user.

Notice that once input finishes, the contents of all its variables are
forgotten for good. This doesn't apply to the memory obtained by
malloc, though. This will remain throughout the program's life, and can
be accessed by any part of the program that knows where it is.

The function output should seem straightforward, the main difference
from the earlier version being that instead of checking through 10
elements, it checks through a number of elements specified by its second
argument.

This also applies to sort. This function has one major advantage over its
previous version. In that version, when two strings were to be swapped,
each of their elements had to be swapped individually by means of a for
loop. In our new version, all we do is swap the pointer values so that one
element of the array points to what the other used to, and vice versa. The
contents of the memory where the strings themselves are stored remains
untouched, which means that this version of the program will run
significantly faster.

The three string functions - length, put string and stringlarger
- used in this last example are primitive forms of string functions
supplied with C. I've included them here so that you can see how simple
string manipulation is done.

Standard library string functions
In your own programs, it's better to use the standard library functions
stored in string. h, which can be accessed by using the include line:

#include <string.h> (~[!J][il)
~[il

EXAMPLE CODE

Complete Amiga C

Pointers and strings 135

The equivalent to length is strlen; the equivalent to put string is
strcpy, which returns a pointer to the original string (and works in
reverse - copying the second string argument into the first); and the
equivalent to string larger is strcmp, which is defined to return an
integer less than zero if the first is less than the second string, zero if they
are the same, and greater than zero otherwise.

------_ ... _-_ ... _-----------

Initialising arrays on declaration
As well as getting input from the user as a means of storing information
in multi-dimensional arrays, it's also possible to initialize them with
values when they are declared.

As you may remember, a simple array is declared and initialized as
follows:

int numbers[]={S,20,7,3}; (@]Ell[]J)
1IIl0l

EXAMPLE CODE

which would result in the array numbers being declared to have
elements numbered 0 to 3, each with their values taken from those in the
curly braces. You can initialize a multi-dimensional array as follows:

int numbers[] []={

{S,20,7,3},
{1,42,9,8},
{7,2,1,O}};

(@]Ell[]J)
1IIl0l

EXAMPLE CODE

would result in array with 3 elements, each consisting of 4 sub-elements.
The elements of the array, as referenced by the left-most index, are often
called "rows", while their sub-elements, as referenced by the right-most
index, are called "columns". The terminology comes from the
correspondence of a two-dimensional array with a grid. Here we've
declared an array with 3 rows, each containing 4 columns. The way the
array's values are laid out in the source code affirms this correspondence.

A similar initialisation can be performed for arrays of pointers. Look at
the following:

Complete Amiga C

136 Chapter 8

[!]0J
char *future_mags[]={

(@]]a[])
EXAMPLE CODE

"Amiga Shopper", "Amiga Format", "Amiga Power", "some others"};

When you pass a variable
as a parameter, the called
function simply receives a
copy of the variable - it
cannot modify the
original. When you pass a
variable pointer, however,
you are telling the called
function where it can find
the original variable in
memory - now it can
modify it.

Complete Amiga C

Space is provided for each of the strings, and then a pointer for each is
stored in the array. The number of elements created is that demanded by
the number of strings - in this case 4, numbered 0 to 3.

Normally, variables declared in one function can be used by that function
only, and are invisible to all others. They are described as being "local"
to the function. One function is normally made aware of some of the
variables of another when they are passed as parameters. When this
happens, copies of the variables are made, and the function receiving the
parameters only modifies its own copies. The values of the original
variables remain the same. The copies are local to the function to which
they were passed - modifying them will not change the variables of any
other function. As you have seen, pointers provide a way around this,
meaning that functions can share variables so long as they have pointers
that indicate where the variables are stored in memory.

PASSING A VARIABLE AS A
PARAMETER

FUNCTION 1

1
r------------------------,

L _______ ~~~~~~~: ________ j

FUNCTION 2

MEMORY

PASSING A VARIABLE
POINTER

VARIABLE I FUNCTION 1

f.!====~ ~" .

"""""" 1
FUNCTION 2

Passing pointers rather than variables

Pointers and strings 137

Sharing variables among functions

void main()

All of the variables we have dealt with so far are "automatic" variables.
This means that space is created for them when they are defined within a
function, and that when the function ends those variables are forgotten,
and the memory space they used is given back to the operating system.
It's a common mistake to create a variable within a function, and then
pass a pointer to this variable back once the function has ended. Any
other part of the program that subsequently tries to access the variable
via the pointer will end up trying to access a part of memory that no
longer belongs to it.

The problem doesn't occur in the above example, because the variables
to be used across several functions are defined in main, and remain in
existence until main ends - the end of the program. Also, memory taken
for variables on the fly, via malloc, will remain with the program until it
ends or gives the memory back by calling the function free.

There is another way of enabling several functions to have access to the
same variable, by declaring it outside of any function definitions:

{ /* main program */ }
int fred;

(@]]~[]])
0101

EXAMPLE CODE

void functionl ()
{ /* function definition */ }
void function2()
{ /* function definition */ }

In the above example, fred would be visible to and modifiable by both
functionl and function2. A further property of variables declared in
this way is that, unlike automatic variables, they remain in existence
throughout the life of the program.

In the above example, fred is invisible to main. Variables declared
outside of functions are only visible to the functions whose definitions
follow it in the source code file. Any variable type, including arrays, can
be defined in this way.

Complete Amiga C

138

Complete Amiga C

If you want a variable to
be 'visible' to functions, it
must be declared before
the functions are called.
The actual variable
definition can be placed
anywhere, though (but it
must be defined
somewhere in the code).

THE WRONG' WAY

FUNCTION CALL 1

FUNCTION CALL 2

r------------------------,

l_~~~~~~~~~~~~~~~~~j

r------------------------,

l __ ~~_~I~~~~_~~:~~~~I~~ __ j

Chapter 8

THE 'RIGHT' WAY

VARIABLE DECLARATION

FUNCTION CALL 1

FUNCTION CALL 2

VARIABLE DEFINITION

Variable 'visibility'

In this respect, the variables definitions are similar to function
definitions. Any function within a source file can make use of any other
function so long as the definition of the latter precedes the former. We've
done things differently, in our examples we've first defined main and
then defined the functions that main will call. This makes the source
code easier to read, but in order that main can make use of those
functions they must be declared before main is defined.

'Declaration' vs. 'definition'
The difference is between declaring and defining. A declaration simply
makes the compiler aware that a function exists and aware of some of its
properties. The actual definition, which contains the code that makes up
the function, can follow later. So long as a function's declaration (or
"prototype") appears in a source file, and a definition for it exists
somewhere, then it can be called from within that source file.

The variables we've so far used have been declared and defined together.
The definition causes space to be set aside for the them, and sometimes,
as in the case of array initialisation, values to be assigned to them
immediately. The same rule applies - a variable can only be used by code
that follows its definition in the source file.

Pointers and strings 139

The way around the rule is the same, too - you can declare a variable
without defining it until later to enable code between the declaration and
the definition to use the variable.

Using extern
In the example above, fred is defined after the definition of main, so it
is only visible to functionl and function2. If we wanted fred to be
visible to main, too, we could declare it first by use of the extern
keyword:

extern int fred;
void main()

(@]E1II1l)
0l0J

EXAMPLE CODE

{ /* main program */ }
int fred;
void functionl ()
{ /* function definition */ }

void function2()
{ /* function definition */ }

This now means main is just as free as functionl and function2 to
write to and read values from fred. Any variable type can be declared
by extern. Array sizes need not be included in the declaration, so:

extern char sentence[]; (@]E1II1l)
0l0J

EXAMPLE CODE

is legal, although the variable must also be defined at some point in the
program, too.

It is possible, and usually practical with larger works, to split several
programs over several files. You might have one source file that contains
your data definitions, another that holds a lot of commonly used
functions, and another that contains the main processing engine,
including main.

You may have one or more variables defined in one file that another
needs to access. In this case, the second file will contain declarations of
the necessary variables, each preceded by extern.

Complete Amiga C

140

The extern keyword lets
you access variables held
in other source code files.

Using static

Chapter 8

SOURCE COOE FILE 1 SOURCE CODE FILE 2

, I
I
I ,

L

_____II If----- ,V_AR_IA_BL_E_DE_C_LA_RA_TI_ON--,' VARIABLE A . _ EXTERN A

,
The extern keyword

I
I
I
I
I
I ,

Sometimes, it's desirable to have the opposite - a variable that is visible
to all the functions in one file, but that cannot be accessed by functions in
another file. One advantage of doing this is not having to worry about
naming conflicts - you can name the variables in one file whatever you
like without worrying about them referencing variables in another file
connected with your project. This effect is achieved by preceding the
variable's definition (not declaration) by the static keyword. For
instance:

static int fred;
(@]l!lliIl)

0l0i

void main()
{

EXAMPLE CODE

/* the rest of the program */
}

Complete Amiga C

Here, fred would only be usable by main and any other functions
which were defined after it in the same file. A variable called fred in a
different file, perhaps joined with this one at compile time, would
reference a different object entirely.

If you declare a variable as static inside a function definition, as
follows:

Pointers and strings 141

int length_of_string(char *string-pointer)
{

static int fred;
/* rest of the function */

\4\
~~

Sharing data

then it will only be visible inside the function - that is, no other function
can access it unless they are given a pointer to it - but its contents will
not be lost when the function exits. If the function is called again, then
fred will still have the value it did when the function last exited.
Similarly, if another function accesses fred via a pointer after the first
has been called, then the value it finds there will be that left there by the
first function.

Pointers, declaring variables outside functions, and the extern keyword
all enable functions to share variables. By using the static keyword
you can ensure that this sharing is restricted to only those programs that
need to share. The reason it's used is that by far the safest way to pass
data between functions is by the use of parameters and return values. It's
just so much easier to keep track of everything. If a function has access
to data outside its usual scope, it's possible that a bug can be introduced
that causes the function to modify that data. Such bugs can be very
difficult to track down, because they can lie in anyone of the functions
that has access to the data. Nevertheless, it's often necessary, as you've
seen, for functions to share data that cannot be passed as arguments:
arguments to functions are passed as simple values - you cannot pass
complex variables such as arrays - and neither can you return an array as
the result of a function. So, when sharing data between functions, be
careful.

Complete Amiga C

142

Complete Amiga C

Writing a
spreadsheet
• The planning stage

• Designing the program

• How the program works

143

Complete Amigo C

144 Chapter 9

For this chapter we're going to create a quite ambitious program that
will demonstrate some of the recently discussed topics such as arrays,

pointers and strings - a spreadsheet. It won't be like the simple
calculator-style programs discussed in earlier chapters, but a cell-based
system capable of reasonably complex calculations.

--.------

The planning stage

Complete Amiga C

When larger programs are to be written, it's often best to look at the kind
of data they will use before thinking about their code structure. The most
important data structure of a spreadsheet program is the spreadsheet itself
- a two-dimensional grid. Clearly the best way of representing this is
going to be as some sort of two-dimensional array.

For simplicity's sake, we'll limit the size of the spreadsheet to the screen
area, otherwise we're going to have to get involved in screen scrolling
and all sorts of tricky problems. This will give us an array of 5 by 15,
with each cell taking a single line and being 10 characters wide (I'm
assuming you're using an 60-colurnn display mode).

The next question is: what kind of data is stored in the array? The most
common kind is numbers, floating point numbers. But spreadsheets also
need to store text messages - column headings and so forth - as well as
the all-important formulae. The best way to hold text is as a string. It's
possible to store numbers as strings, too, and convert each string to a
number as the program needs it for calculation. This method also works
well for the formulae. For now we'll restrict ourselves to simple
formulae, those that include two cell references separated by a simple
maths operation: +,-,* and /.

We could represent the spreadsheet as a two-dimensional array of strings
- that is, a three-dimensional array of characters - but it's better to use a
two-dimensional array of pointers and allocate space to each string as it
is needed. That way, we only need storage for as many cells as the user
wants (this advantage becomes far more important for larger
spreadsheets) .

Writing a spreadsheet

Our spreadsheet is
designed to occupy a
single 60-column screen.
Each of the 5
spreadsheet columns is
10 columns wide, each of

the 15 rows is a single
line. The data is held in a
corresponding 15 x 5
element two-dimensional
array.

3

4

5

6

7

8

9

10

11

12

13

14

15

145

A B c D E

Our spreadsheet's layout

Designing the program
Given the main data structure, we can now start thinking about the
program itself. The kind of data structure we've decided on immediately
defines some support functions we'll need: a function to convert numbers
written as strings into floats, and a function to interpret formulae that
are represented by strings.

We'll also need a means of getting input from the user. Rather than
checking the keyboard for the arrow keys and moving a cursor around
the screen, we'll take the easy option. The user is asked to enter the co­
ordinates of the cell of interest, and then enter the contents of that cell. If
the string entered begins with an equals sign, then it is taken to represent
a formula, if it begins with a numeral it is taken to be a number,
otherwise it is assumed to be a text message. Every time the user enters
some data, the whole spreadsheet is re-printed on the screen. If any of the
cells contain formulae, then these are evaluated and their results printed
out. If the user enters "q", then the program stops. It's simple and crude,
but it demonstrates a lot of important programming points. Here it is:

Complete Amiga C

146

#include <stdio.h>
#include <strings.h> /* same useful string functions */

/* declare functions for use by main */
void display_sheet();
int get_input();

void main()
{

int quit=O; /* set to 1 if user wishes to quit */

do {

Chapter 9

~COMPLET£
~USTING

@Jl~1Ill
[lJ01

display_sheet(); /* call function to display spreadsheet */
quit=get_input(); /* get user's input */

} while (quit==O); /* loop until user asks to quit */
}

/* define array to be used by functions (not visible to main) */

char * sheet [15] [5]; /* two-dimensional array of pointers to char */

/* define support functions */
float evaluate(char *cell_contents);
int find_row (char row);
int find_column(char column);
float string_to_number(char *string);
void flush_input();

void display_sheet()
{

int row, column; /* variables used for loop control */

printf("\n\nSpreadsheet\n\n");

/* now print column numbers across the top */
printf(" 1 12 13 14 15 I \n") ;

/* first three spaces to give space for row numbers beneath, then ~

Complete Amigo (

Writing a spreadsheet

numbers separated by eight spaces and a bar, so that each number ~
appears above its column */

printf ("----++ -_-+---_-+\n") ;

for (row=O;row<15;row++) { /* go through each row in turn */
/* print the row number at the left of the screen */
printf (" 'YoC ", row+65); /* row is printed as a letter of the ~

alphabet, with 0 being represented by "A" and so on */

147

for (co1umn=O;co1umn<5;co1umn++) { /* go through each column */
if (sheet [row] [co1umn]==NULL)

printf(" I"); /* print nine spaces and print ~
a bar to move to the next column if this one is empty, ie its ~
pointer points to nothing */

else if (*sheet[row] [co1umn]=='=')
printf("%9.2fl",eva1uate(sheet[row] [column]»; /* if ~

the first character is an equals sign, then the cell holds a for.mu1a ~
which must be evaluated and then printed out */

else /* otherwise it's contents are printed straight out */
printf("%9.9s I", sheet [row] [column]); /* the "9" in ~

the format string indicates that strings less than 9 characters in ~
width should be padded with spaces when printed */

} /* now deal with next column */
printf("\n"); /* go to the next line when all of the columns ~

in a row have been printed */
} /* deal with next row */
printf("\n\n"); /* print a couple of blank lines to separate ~

display from user input */
}

int get_input ()
{

int row, column;
char input[lO]; /* temporary string to store user's input */

printf("Enter the coordinates of the cell to be modified (eg Al)\n");
scanf("%3s",input); /* the "3" ensures a maxinrum string length of ~

2 characters, plus a terminator */

Complete Amiga C

148 Chapter 9

if (strcng;>(input,"q") ==0)
return 1; /* return a value of 1 if user enters "q" */

/* the first character of the string represents the row, and is ~
converted to an array index by calling the find_row function */

rew=find_row(input[O]);
/* the second character is the column number, and is converted to ~

an array index by calling the find_column function */
column=find_column(input[l]);

printf("Enter the cell's new contents\n");
scanf("%10s",input); /* ensure we get no more than 10 characters */
flush_input(); /* get rid of any characters beyond the 10 we want */
if (sheet [row] [column]==NULL) /* check if the cell is empty */

sheet [row] [column] = (char *)malloc(10); /* if it is make ~
storage for the string (9 characters plus a terminator) and put the ~
pointer to it in the relevant cell of the array */

/* either way, the contents must be copied into the area of memory ~
pointed to by the array */

strcpy(sheet[row] [column],input);
return 0;

}

float evaluate(char *cell_contents)
{

/* the first character in a formula is an equals sign, and can be ~
ignored. The next two represent the coordinates of one cell, the next ~
the mathematical operator to be used, and the final two the coordinates ~
of another cell. First job is to get these elements and store them in ~
the following variables */

int row1,row2,column1,column2;
char operator;
/* now define three floats - two to hold the operands, and one to ~

hold the result of the operation */
float operand1,operand2,result;

Complete Amiga C

Writing 0 spreodsheet

1* get addresses of cells of interest *1
row1=find_row(cell_contents[1]);
column1=find_column(cell_contents[2]);
operator=cell_contents[3];
row2=find_row(cell_contents[4]);
column2=find_column(cell_contents[5]);

1* now get numerical values stored in those cells *1
operand1 = string_to_number (sheet [row1] [column1]);
operand2=string_to_number(sheet[row2] [column2]);

1* now to evaluate result, depending on the value of operator *1
switch (operator) {

case '+': result=operand1+operand2;
break;

case '-': result=operand1-operand2;
break;

case '*': result=operand1*operand2;
break;

case 'I': result=operand1/operand2;
break;

default:
1* No need for anything here, since this part of the program should ~
never be executed *1

break;
}

return result;
}

int find_row(char row)
{

1* convert from a letter between A and 0 to a number between 0 ~

and 15, which is done by subtracting 65 from its ASCII code *1

return row-65;
}

int find_column(char column)

149

Complete Amigo C

150

{

/* convert to a number between 0 and 6 by subtracting 49 (the ~
ASCII code for '1') from the letter's ASCII value */

return column-49;
}

float string_to_number(char *string)
{

/* convert a string into a floating point number */

float result, divisor;
int position;

Chapter 9

int sign=l; /* sign is 1 if the number is positive, -1 if it is ~
negative */

if (string==NULL) return 0.0;
for (position=O;string[position]==' ';position++)

; /* skip leading white space */
if (string[position]=='-') {

}

sign=-l; /* turn negative if a minus sign is encountered */
position++; /* and skip to next character */

for (result=O.O; string[position]>='O' && string[position]<='9'; ~
position++) /* go through each numeral in turn until we came to a ~
non-numeric character */

result=result*10.0+string[position]-48; /* convert the ~
character to a numerical value, and add it to the result. Before the ~
addition is performed, result is multiplied by 10, because each ~
successive addition means that the previous digits have a value ten ~
times greater */

/* now to process digits after the decimal point, if any */
if (string[position]=='.')

for (divisor=10.0;string[++position]>='O' && string[position]~
<='9'; divisor *= 10.0)

result=result+{{string[position]-48)/divisor);
result=result*sign;
return result;

Complete Amiga C

Writing (] spre(]dsheet 151

}

void flush_input()
/* Throws away unwanted characters in the input buffer, retrieved by ~
scanf - stops when it reaches the end of the line */
{

}

char c;

while «c=getchar(»l='\n')

It's a lot longer than any of our previous examples, but if you take a close
look at it you'll find it fairly easy to follow. In fact, it breaks down into
easy-to-swallow chunks quite nicely. Let's go through it function by
function.

How the program works

GAl
WH~!'1 D<;ii!.

Flag

The first function, main, is easy. It only uses one variable, quit, which
behaves as a "flag". Using a variable as a flag is a common programming
technique - the variable is set to one value, and then when a particular
condition has been met, it is set to another value. This value is
subsequently tested. In main, quit is set to zero. A loop is entered. The
function display_sheet is then called, without any arguments, to
display the spreadsheet on the screen. After that the function
get_input is called, and the value it returns is assigned to quit.

Normally, this will be 0, but if the user entered "q" at the input stage,
then it will be 1. The program then loops, provided quit is still equal to
O. If it isn't, the program terminates. Preceding main are declarations for
the two functions it is to use - their definitions follow later.

Most programs, such as the sort examples of the last two chapters, can be
broken down into three parts - input, processing and output. This one has
been broken into just input and output, since the processing of the
spreadsheet occurs during the output stage. The main program doesn't
even have any access to the spreadsheet array - all data processing is

Complete Amig(] C

152

Complete Amigo C

Chopter 9

handled by functions, so the array is declared after main and before the
functions are needed. An alternative would have been to declare the array
inside main, and pass each function a pointer to it. Since main doesn't
need to know about it, though, it's better that it doesn't - besides, it saves
us having to pass pointers around.

It would have been wrong to define the array in any of the remaining
functions, such as display_sheet, since the array would be blanked as
soon as the function finished executing.

Support functions
Before any more functions are defined, five support functions are
declared - evaluate, which converts a formula expressed as a string
into a floating point value and returns it; find_row, which converts an
upper-case letter into an integer from 0 onwards; find_column, which
converts a numeral in character form into an integer from 0 onwards;
string_to_number, which converts a string into a floating point
number; and flush_input, which gets rid of any unwanted characters
waiting in the input buffer.

Display_sheet
The function display_sheet needs two local integers - row and
column - which are used as the controlling variables in for loops to
ensure each element of the two-dimensional array is checked in turn.
Before doing so, the function prints out a heading and a list of column
numbers. I've allowed a 3-character margin at the left of the screen for
the row numbers, hence the first three spaces in the printf; after that,
each numeral is separated by eight spaces and a vertical bar because each
column is ten characters wide.

Next a loop is started that goes from the first to the last row. For each
new row, its letter is printed at the left hand side of the screen, with a
space before and a space after it. Adding 65 to the value of row gives an
ASCII code between 65 and 79 - a letter between A and O.

The program then enters a loop that works through each of the row's
columns in turn. The cell referenced by row and column is then checked
to see if its pointer points to nothing (NULL is another way of writing 0).

Writing 11 sprelldsheet 153

If it does, nine blank spaces and a vertical bar are printed and the loop is
closed so the next column can be dealt with.

If it isn't, then the string that the pointer references needs to be dealt
with. It's checked to see if it begins with an equals sign, because if it
does, it represents a formula. If this is the case, the evaluate function is
called with the pointer to the string as argument. We can rely, at this
stage, on evaluate to work out the value of the formula and return it as
a float. We'll go into how it does this later.

The obtained result is then printed out. The formatting string in this
printf includes yet another option. Remember that "'Yof" means simply
"print the next argument as a float". The number 9 sandwiched between
the two tells printf to print the float with a minimum of nine
characters. If the number is shorter, space characters are added to the
front. If it were longer than nine characters, then it would be printed to its
full length, resulting in the formatting of the spreadsheet being spoilt.
This formatting option can be used with any variable type that printf
can handle.

The number following the decimal point restricts the fractional part of
the number to be printed to only two digits. Remember that we're only
passing the value of result, not the variable itself - this shortening of
its fractional part on display doesn't affect the more precise contents of
the variable.

A number following the decimal point for the formatting of a string will
be used to indicate the maximum number of characters of the string to be
printed. A formatting string of "%9. 9s" would ensure that exactly nine
characters of a string were printed out, with spaces being added to make
up for shorter strings.

This option is the one used in the next printf. If the first character of
the cell's contents isn't an equals sign, then it is assumed to be either a
floating point number (but stored as a string, rather than a float) or some
sort of heading text. In either case, it is printed out.

Complete Amigll C

154

Complete Amiga C

Chapter 9

At this point the columns loop closes, and after all of the columns in a
given row have been dealt with a carriage return is printed, to ensure that
the next batch of output appears on a new line. Then the rows loop is
closed, and that's the end of the function.

GetJnput
There are two parts to the get_input function. The first asks the user
which cell is to be operated on, and the second asks what its new
contents should be. Again we need two integers, row and column, to
reference a particular cell in the array. We've also defined a temporary
string, input, to hold the user's current input.

The first scanf retrieves the coordinates of interest from the user. The
"3" in the scanf formatting string behaves in a similar manner to the
"9" in the display_sheet's printf, only this time, it LIMITS the
maximum length of the input string to three characters (including a
terminating '\ 0' character).

This input is then checked to see if it equals the string "q", by calling the
strings library function strcnp. If it is equal, then the function ends
immediately, returning a value of 1 (this is the value assigned to quit in
main).

If it isn't, then the function assumes it has received a pair of cell
reference coordinates, the first being a letter, corresponding to a row, and
the second being a numeral, in character form, corresponding to a
column. It converts these into integers by calling the functions find_row
and find_column, with the first and second characters respectively from
the string array as arguments. Notice that there is no error-checking to
ensure that the coordinates entered are in the correct range - an illegal
cell address could prove disastrous.

Having pinpointed the cell of interest, the function now asks the user for
its new contents. This is input as a string, with the formatting string in
scanf ensuring we get no more than 10 characters (including a
terminator) as a result.

Writing 0 spreodsheet 155

This input - whether it be header text, number or formula - needs to be
stored in an area of memory referenced by the cell's pointer. If there is
already something in that cell, then it is replaced with the new string, if
not, then an area of memory must first be created for it - this is done
using malloe, and the line before is the one that checks if space has
already been allocated for this cell's string, by seeing if the pointer points
to NULL (nothing) or an address in memory.

Note that the pointers in the sheet [] [] array are all initialised to
NULL - this is because the array is declared outside of any function. If it
were declared inside a function, as an automatic array, its contents would
be undefined, and you would need to initialise each element to NULL
using a simple loop.

Once memory has been allocated or simply located, the input string is
copied to this memory by calling the standard strings function. Finally,
the function returns a value of 0, indicating that the user has not entered
"q" .

FlushJnput
Flush_input is a very simple function that reads all the characters
remaining in the input buffer until it reaches a carriage return. The reason
it is necessary is that if seanf is called with a request for a string of a
specific length and the user enters a longer string, then the extra
characters will remain in what is called an "input buffer" - a temporary
storage area managed by the standard library and used to hold a user's
input. If we don't "flush" the buffer, then the remaining extra characters
will be interpreted as a new input by the user when seanf is next called.

Remaining Isupportl functions
The next function is evaluate. It takes a string (in other words, a
pointer to a series of characters) as its argument, and produces a floating
point value based on the formula it contains.

Evaluate assumes that the first character in the string is an equals sign,
which plays no part in the evaluation, and so ignores it. Formulae take
the form:

Complete Amigo C

156

Complete Amiga C

Chapter 9

=Al *B2

so character number 1 represents the row address of the first cell. It's
converted into such, and stored in the integer variable rowl, by using it
as the argument to a call to find_row. Similarly, character 2 represents a
column address, and is converted into an integer stored in columnl.
Character 3 is the operator, and for the time being is stored in a character
variable called operator for clarity. The row and column addresses of
the next number are retrieved in the same way as those of the first.

The contents of the two cells referenced are then turned into floating
point numbers. The function that does this, string_to_number, takes
a pointer to a string as its argument. This is obtained from the sheet array
given the relevant row and column co-ordinates.

Having found the two numbers, the function then goes on to process
them depending on the operator that's been supplied. This is done with a
switch decision-making construct, and is pretty much exactly the same
as the calculator program introduced in chapter four. The heart of our
spreadsheet program is the same. Notice that again, there is no error
checking - if the user enters an unidentified operator in the formula, the
result will be undefined.

Evaluate ends by returning the float variable result.

The next two functions - find_row and find_column - are hardly worth
writing as functions. The body of their code - to subtract in one case 65
and the other 49 from the ASCII value of the character passed - could
have replaced the function calls in the rest of the program. They've been
written as functions, though, because it increases the clarity of the
program, and demonstrates how functions can be written so they are
useful to several other sections of your programs.

The final function, string_to_number, is a primitive version of a
function supplied as standard with C. The real version is called atof,
and can be used by including the header file stdlib. h.
String_to_number may be primitive, but it does demonstrate the sort
of processing you'll have to do to strings in your own programs.

Writing 0 spreodsheet 157

It takes a pointer to an array of characters as its argument, and returns a
float as its result. To do this, it makes use of two float variables and two
integers. The first float, result, holds the value of the number as the
function computes it. The second, divisor, is used in calculating the
fractional part. The integer variable position is used in a for loop to
access each of the characters of the string in turn. The final integer,
sign, is initialized to 1. If the function discovers that the string passed it
represents a negative number, it assigns a value of -1 to sign. The
variable result is multiplied by sign at the end of the function before it
is returned. If sign has a value of -1, then this turns result negative.

The first check the function makes is that it hasn't been passed a NULL
pointer, i.e a reference to an empty cell. If it has, it returns a value of zero
(note that it is written as "0.0" to indicate it is a float and not an int
value) and quits. Otherwise, the function interprets the string as holding a
number.

A for loop then searches through the string until it comes to the first
character that isn't a space. The body of the loop is empty, since no
processing is required. A non-space character (more than likely the first
in the string) having been found, it is checked to see if it is a minus sign.
If it is, the flag variable sign is set to a value of -1 and position is
incremented to point to the next character in the string.

Another for loop is entered. This one continues searching through the
string for as long as it encounters numerical characters. The loop
initializes result to a value of 0 . o.

Each time through the loop, result is multiplied by 10.0 and has the
numerical value of the current character added to it. This is found by
subtracting 48 from the character's ASCII code. The result is an integer,
but is implicitly converted to a float in the addition.

The reason result is multiplied by 10.0 before the addition is as
follows. The first digit found is assumed to be a 'unit', and is added to
zero. If another is found, then this reveals that the first was in fact a
'tens', and must be multiplied by 10. The second is assumed to be a
'unit', and is added to the result. If another is found, then those last two

Complete Amigo C

158

C short-cut

divisor *=10.0;

Chapter 9

were in fact 'hundreds' and 'tens' rather than 'tens' and 'units', so they
must be multiplied by 10 before having the new digit added. The process
repeats until a character is found that isn't a numeral.

If this is a decimal point, then another for loop executes, searching
through all of the numerical characters following it. This is where the
variable divisor comes into play. Each character found is turned into
its numerical equivalent and divided by the value in divisor, initially
10.0, before being added to result. The first character found will be
divided by 10, the next by 100, the next by 1, 000, and so on, since
numbers after a decimal point represent lOths, lOOths and 1,OOOths etc.

Divisor is multiplied by 10 each time through the loop, by virtue of the
last component in the loop definition, which contains a handy piece of C
shorthand. You can shorten any assignment whose result depends on the
variable being assigned to by putting the operator before the equals sign.
Writing

is equivalent to writing

divisor = divisor*10.0;

divisor +=10.0;
divisor -=10.0;
divisor /=10.0;

Similarly,

mean, respectively:

divisor=divisor+10.0;
divisor=divisor-10.0;
divisor=divisor/10.0;

Complete Amiga C

Back to the function. Finally, result is multiplied by sign to convert it
to negative if necessary, and returned at the end of the function.

Writing (] spre(]dsheet 159

The program works, but is far from perfect. For one thing, it performs
next to no checking on the user's input. This could prove fatal if the user
enters the co-ordinates of a cell outside the array's bounds. You might
find it a useful exercise to add various error checks to the program.

One assumption the program makes is that the cells referenced by a
formula contain numbers. If they contain text or are empty, they will be
taken to hold a value of 0.0, but what if they contain a formula?
Powerful spreadsheets can hold formulae whose results depend on those
of other formulae. To make ours do the same, we need to make use of a
technique called recursion, which forms the subject of the next chapter.

Complete Amig(] C

160

Complete Amiga C

161

Recursion
• Mofidying our spreadsheet

• Data structures

• Recursive data structures

Complete Amigo C

162 Chapter 10

This sentence is the first sentence of the chapter. It's a self-referential
sentence; its subject, rather than being some external object, is itself.

In a similar way, it's possible for program code to refer to itself. What
does this mean?

One of the most common examples is a function that contains, as part of
its definition, a call to itself.

Have a look at this function:

int factorial (int number)
{

~COMPLETE
~LlSTlNG

return number*factorial(number-l);
~~[I]
l!ll[il

}

Complete Amiga C

You may have come across the factorial in maths, written as a number
followed by a '!' sign. It works with positive integers, and produces a
result by multiplying all of the numbers between one and itself together.
For example, the factorial of 4 is given by:

4! = 1*2*3*4

We can re-write this as

4! = 4*3*2*1

But as you may have guessed, 3*2*1 is the same as 3!, so we could re­
write the whole lot as:

4! = 4*3!

This immediately gives us the strategy for creating the function definition
above. The function must take an integer as an input - the number whose
factorial is to be found - and return an integer as a result.

Given that number, the function multiplies this by the factorial of one
less than a number (as in the 4!=4*3! re-writing above), and the resulting
value is returned as the result of the function. To perform this

Recursion 163

You calculate the factorial
of a number by multiplying
it by the number-l. Then
you multiply the result by
(number-l}-l and so on
until you are multiplying
the result by 1 - you have
now calculated the
factorial of your number.
This can be represented
as a series of steps ...

4x3=12

12x2=24

24x1=24
Calculating a
factorial (4!)

multiplication, the function multiplies the number it has by the result
returned from itself, but this second calling of factorial is with an
argument one less than the number in question.

As you can see, this will result in the function successively calling itself
over and over again, without returning a result. What is needed is some
way of halting the function in its tracks, so that once it has been called
for the correct number of times it returns a result.

The mathematical definition of factorial says that the factorial of 1 is 1.
So we simply add something to our function definition so that when it is
given a 1 as a parameter, it returns 1 as a result:

int factorial (int number)
{

~COMPlETE
~USTING

@]~[J]
[J][J]

}

if (number==l)
return 1;

else
return number*factorial(number-1);

So, given a number - say '3' - factorial will first of all check if it is a
1. It isn't, so it will attempt to return 3 multiplied by the factorial of 2. It
can't return a value until the new factorial function call has been
evaluated.

Complete Amiga C

164

Complete Amigo (

We can calculate
factorials using a function
that calls itself repeatedly,
multiplying its parameter
by the result of calling
itself with its parameter-1
as argument, until a
specific ('terminating'
condition is met) - in this
case, when the parameter
is 1.

RECURSIVE
FACTORIAl
FUNCTION

YES

Chopter 10

Factorial function

The second invocation of factorial is given a 2 as parameter. It
checks that this isn't a 1, and then tries to return a result of 2 multiplied
by the factorial of 1.

Factorial is called again. This time it has a parameter of 1, so the first
part of the if statement causes it to return a value of 1. Control goes
back to the second invocation of factorial, which multiplies this
returned 1 with what it holds in its version of nmnber, 2. This result is
then passed back to the first invocation of factorial, which multiplies
it with its version of nmnber, 3. The result, 6, is then passed back as a
result to whatever called the function in the first place.

The important thing to note is that because the function's parameter is
local, when it is passed as an argument in another function call (which
happens to be a call to the same function) its value is copied (actually, its
value minus 1 is the value that is copied) - the variable itself cannot be
accessed by the new function. In other words, the variable called nmnber
accessed by factorial is not the same variable called nmnber that is
accessed by factorial when it is called again.

Recursive functions usually consist of two parts: the recursive part, that
includes the code that calls the function again; and the terminating part,
that decides when it's time to call a halt and return a result.

Recursion 165

Modifying our spreadshee'
As the spreadsheet program from the last chapter stands, it can only
evaluate formulae that involve defined numbers, not other formulae. We
can rectify this by using recursion. Whenever evaluate comes across a
formula reference rather than a number, it calls itself with this new
formula as an argument so that it can be provided with a result for the
evaluation.

It will now be possible to enter spreadsheets of the form:

A
8
C

1
5.3
2.9
=Al+Bl

2
7.1
4.0
=B2*Cl

So that before the result for C2 can be calculated, the result for Cl must
first be found. This evaluates to 8.2, giving a result for C2 of 32.8.

Here's the modified version of evaluate:

float evaluate(char *cell_contents)
{

~COMPLETE
~USTING

@]~[JI
0101

/* the first character in a fonnula is an equals sign, and can be -,

ignored. The next two represent the coordinates of one cell, the next -,
the mathematical operator to be used, and the final two the coordinates -,
of another cell. First job is to get those and store them in the -,
following variables */

int rowl,row2,columnl,column2;
char operator;
/* now define three floats - two to hold the operands, and one to -,

hold the result of the operation */
float operandl,operand2,result;

/* get addresses of cells of interest */
rowl=find_row(cell_contents[l]);
columnl=find_column(cell_contents[2]);

Complete Amiga C

166

operator=cell_contents[3];
r0w2=find_row(cell_contents[4]);
column2=find_column(cell_contents[S]);

1* now get numerical values stored in those cells *1
if (*sheet[rowl] [columnl]=='=')

operandl=evaluate(sheet[rowl] [columnl]);
else

operandl=string_to_number(sheet[rowl] [columnl]);
if (*sheet[row2] [column2]=='=')

operand2=evaluate(sheet[row2] [column2]);
else

operand2=string_to_number(sheet[row2] [column2]);

Chapter 10

1* now to evaluate result, depending on the value of operator *1
switch (operator) {

case '+': result=operandl+operand2;
break;

case '-': result=operandl-operand2;
break;

case '*': result=operandl*operand2;
break;

case 'I': result=operandl/operand2;
break;

default:
1* No need for anything here, since this part of the program should ~

never be executed *1
break;

}

return result;
}

Complete Amiga C

The only modifications are in the segment where operand! and
operand2 are assigned. Each of the two cells of interest are now
checked to see if their contents begin with equals signs. If either does,
then it is treated as a formula and supplied as an argument to a further
call of evaluate.

Recursion 167

Terminating conditions
Notice that in this example of recursion the terminating condition is
implicit in the formula supplied by the user - the recursion ends as soon
as evaluate comes across a formula that doesn't rely on any others.

A consequence of this is that a user may enter formulae that rely on each
other in such a way as to make them impossible to evaluate. A
spreadsheet such as:

A
B

1
2.0
=Al+B2

2
3.0
=Bl+A2

will send the program into an infinite loop. Try adding some form of
check to ensure this doesn't happen.

The evaluation function created here is similar to, but much more
primitive than the one used by your C compiler to evaluate expressions in
your programs.

Recursion is a handy, if initially confusing, programming technique.
Once you've got the hang of it, you'll find that it can greatly increase the
underlying logic of your programs. Take the factorial example at the
beginning of the chapter:

int factorial (int number)
{

~COMPLETE
~LlSnNG

@]~[!
@[il

}

if (number==l)
return 1;

else
return number*factorial(number-1);

It could also be re-written just as easily without the aid of recursion:

int factorial (int number)
{

int result;

~COMPLETE
~LlSTING

@][wJ~
lil[I]

Complete Amiga C

168

}

for (result=l;number>l;number-)
result=result*number;

Chopter 10

There's not much in it, except that the iterative version needs one more
variable, and the recursive version makes the underlying mathematical
logic of factorial more obvious. In the case of our spreadsheet's
evaluate, though, implementing an alternative to recursion would be
rather more convoluted.

Data structures
It's not just functions that can contain references to themselves, but also
data. The data type that permits this is called a 'structure', and we'll
introduce the basic type before going on to its self-referential variety.

A structure is a variable type that you can define, and subsequently use to
declare variables of that type. Structures are collections of simpler
variables, and are useful for grouping related information together.

You might, for instance, be writing an address book program. It would be
convenient to store a person's name as one string, each line of the address
as another, and the phone number perhaps as an into If you wanted to
deal with 50 entries, then you could declare arrays of size 50 to hold each
piece of information:

char *names[50]; /* pointers to 50 name strings */ (@]I~lJ[l)
I!][il

char *addressl[50]; /* pointers to 50 first line of addresses */
char *address2[50]; /* 50 second line of addresses */

EXAMPLECQDE

char *address3[50]; /* 50 third line of addresses */
int phone[50]; /* 50 phone numbers */

Complete Amigo C

The information for any given entry could then be stored or retrieved by
accessing each of the arrays in turn with the same index. With a
structure, though, you could group all of this information together into a
single unit, making it easier to manipulate. You'd define a structure to
hold the above information as follows:

Recursion 169

struct entries { (~ElI01) 0][1]

};

char *name; 1* pointer to entry's name *1
char *addressl;
char *address2;
char *address3;
int phone;

WH~O\
DOES IT.

\ MEAN

EXAMPLE CODE

Structure 'tag'

This hasn't declared any variables - no space for storage has been set
aside - but defined a structure type called entries. Entries is known
as a 'structure tag', allowing you to declare a variable of the tagged type
as follows:

struct entries first; (@]ElI01)
0][1]

EXAMPLE CODE

This will only give us one variable, called first, with space to hold one
name, address and telephone number, but it's easy enough to declare an
array of a structure type:

struct entries data[SO); (~ElI01) 0][1]
EXAMPLECQDE

The above would provide us with an array called data which was
capable of storing exactly the same information as the five separate
arrays we started with.

It's possible to join together the defining and declaring of structures:

struct entries { (~ElI[!) [1][1]
char *name; 1* pointer to entry's name *1
char *addressl;
char *address2;
char *address3;
int phone;

} data[SO);

EXAMPLE CODE

Notice that the syntax is similar to that used for declaring any variable
type. First comes the variable type itself (which includes everything in
the curly braces), and then the name of the variable to be created. If you

Complete Amigo C

170 Chapter 10

define and declare a structure at the same time, then you needn't include
a structure tag:

struct {
char *name; /* pointer to entry's name */
char *addressl;
char *address2;
char *address3;
int phone;

} data[50];

(@Jia[]])
0l[]

EXAMPLE CODE

But using a tag means that you can easily declare another structure of the
same type later on, just by using the tag name as a type rather than
having to type out all of the definition in curly braces again.

Structures, like arrays, can be initialized on declaration. Here's how it's
done:

struct entries {
char *name; /* pointer to entry's name */
char *addressl;
char *address2;
char *address3;
int phone;

} data = {
"Fred Bloggs", "2 North Road", "Peterlee", "Sussex", 123456}

Initialising arrays of structures is done in a similar way, with each group
of data to be assigned to an element of the array being enclosed in its
own curly braces:

struct entries {
char *name; /* pointer to entry's name */
char *addressl;
char *address2;
char *address3;
int phone;

} data[] = {

Complete Amiga C

Recursion 171

{"Fred Bloggs", "2 North Road", "Peterlee", "Sussex", 123456},
{"Ben the Mad", "3 Asylum Street", "Chaos Town", liThe OUter

Darkness", 666999}
} ;

As with the initialization of ordinary arrays, if the size of the structure
array is left blank in the declaration it will be computed from the number
of entries (in this case, 2).

When structures are made up of simple variables (int, char, float and
so on) or strings of characters, then the interior curly braces aren't
actually necessary. The above initialization could be re-written as:

struct entries { (@]B~) [!l][!]
char *name; /* pointer to entry's name */
char *address1;

EXAMPLE CODE

char *address2;
char *address3;
int phone;

data[] = {
"Fred Bloggs", "2 North Road", "Peterlee", "Sussex", 123456,
"Ben the Mad", "3 Asylum Street", "Chaos Town", liThe OUter Darkness",

666999};

Accessing structure members
Having declared a structure, how do you access each of the individual
pieces of information (called 'members') within it? Let's suppose we've
declared the following structure:

struct statistics {
int age;
int weight;
int height;

} fred;

Members of a structure are accessed by supplying the structure's name
(that is the variable name, not the structure tag) followed by a decimal
point and the member name. To assign an age to fred, write:

Complete Amigo C

172 Chapter 10

fred.age=27; (@JJEIlIIll)
[!II!

EXAMPLE CODE

Similarly, to use his weight in an expression, you would write:

(
@JJEIlIIll)
[!II!

EXAMPLE CODE

Easy. The member names will not conflict with the names of ordinary
variables, nor with the member names of a different structure type. It's
best to use different names for clarity, though, except when you want to
emphasise a relationship between a member in one structure and one in
another.

As well as assigning values to individual members, it's possible to assign
the whole of one structure to another with a single statement:

struct statistics {
int age;

(@JJEIlIIll)
[!II!

EXAMPLE CODE

int weight;
int height;

} fred = {
27, 10, 5.8

};

struct statistics jane;

jane=fred;

The program first of all declares and initializes fred, and then declares
jane. The assignment statement copies the values for all of fred's
members into those of jane.

Note that although you can assign structures in this way, they must be of
the same type, and you cannot compare structures in the same way that
you would compare, say, ints.

if (fred==jane) { ..• } (@JJEIlIIll)
[!II!

EXAMPLE CODE

is wrong.

Complete Amiga C

Recursion 173

Structures may be passed as arguments to functions, and returned as
values by functions. Here, they are treated like simple variables rather
than arrays: their values are copied into the function's private parameters,
and the function cannot change the values of the original structures. The
function is given a copy of the structure rather than a pointer to it, and
likewise returns a structure rather than a pointer, unless you specify
otherwise.

Passing structure pointers to functions
It's sometimes useful to pass structure pointers rather than structures
themselves, particular if the structures are large and you don't want to
waste time or memory in having them copied. You can find the address
of a structure in the usual way, by preceding its name with a '&' sign.
Similarly, you can declare a pointer to a structure by preceding the
pointer name in its declaration with the type of structure it is to point to
and a '*' character:

struct statistics {
int age; (~~[il) [J][i

EXAMPLE CODE

int weight;
int height;

} fred;

struct statistics *pointer_to_fred;

Given a structure pointer, it's still possible to individually access the
elements of that structure. Accessing an ordinary value held in the
location referenced by a pointer is done by 'de-referencing' the pointer,
by preceding it with a '*', like so:

int number, *pointer_to_number; /* declares an int and a pointer to ~
an int */
pointer_to_number=&numberi
*pointer_to_number=5; (~~[il) [J][i

EXAMPLE CODE

which will store a value of 5 in the variable number. De-referencing a

Complete Amigo C

174 Chapter 10

structure pointer is done in a similar way, but with the pointer name
being followed by a decimal point and the member name of interest:

struct statistics { (
@]§][!)

Wi[il
int age; EXAMPLE CODE

int weight;
int height;

} fred, *pointer_to_fred;
pointer_to_fred=&fred;
(*pointer_to_fred).age=27;

The above will place a value of 27 in fred.age. The parentheses
around '*pointer_to_fred' are necessary because otherwise the
compiler would think we were trying to access the value pointed to by a
member called age of a structure called pointer_to_fred. Watch out
for these conflicts - they are a consequence of 'precedence', which I'll
go into next chapter. Always use parentheses if you are unsure.

Instead of this notation, C enables you to use another, equivalent form:

struct statistics {
int age; (

@])§][JI)
[l][il

EXAMPLE CODE

int weight;
int height;

} fred, *pointer_to_fred;
pointer_to_fred=&fred;
pointer_to_fred->age=27;

Complete Amiga C

The two produce exactly the same result. Remember, though, that they
are being used to access a structure member via a pointer, and not via the
structure itself.

'Nesting' structures
It's possible to nest structures, so that one of the members of one
structure is itself another structure. To access the members of the inner
one, you could use one of the following methods:

Recursion

struct inner {
int age;
int height;

};

struct outer {

175

(@]a[il)
0101

EXAMPLE CODE

struct inner fred;
struct inner *pointer_to_fred;

} jane, *pointer_to~ane;

pointer_to~ane=&jane;

jane.pointer_to_fred=&jane.fred;

jane.fred.age=27;
jane.pointer_to_fred->age=27;
pointer_to~ane->fred.age=27;

pointer_to~ane->pointer_to_fred->age=27;

Each of the last four assignments has the same effect. We've defined two
structures types. The first, inner, contains two members, both ints,
called age and height. The second, outer, contains two members
also. The first member is a structure of type inner, and is called fred.
The second is a pointer to a structure of type inner, and is called
pointer_to_fred. We declare a variable called jane of the second
structure type, and also declare a pointer to a structure of type outer,
and call it pointer_to-=iane.

The address of jane is assigned to pointer_to_jane, and the address
of the member fred (also a structure) within jane is assigned to jane's
other member, pointer_to_fred. Given these two pointers, the four
assignments that follow are all valid ways of accessing the member age
of the structure fred which is itself a member of jane.

Recursive data structures
Structures containing pointers to structures are exactly what is needed to
create self-referential data structures. They may sound obscure, but in
fact they are used quite a lot in dealing with the operating system. Many

Complete Amigo C

176

Node

Leaving aside the dubious
biological veracity of this
example, it does
demonstrate a simple
'tree structure', consisting
either of statements or
YesjNo questions leading
to other statements or
questions. It's built up of
'nodes' - a
statement/question and
two pointers. In the case
of a statement, these are
'null' pointers.

Complete Amiga C

Chapter 10

of the objects that the operating system deals with are defined as
structures, and these are often found linked together. For example, the
structure that defines a viewport will, as well has holding all of the
information necessary for the Amiga to set up the kind of viewport you
want, hold a pointer to the next viewport in a list, thus enabling more
than one screen to be displayed at the same time. This pointer to the next
screen is of course a pointer to a structure of exactly the same type as the
one that contains the pointer.

Let's take a simple example - the game of Animals. In it, one player
thinks of an animal and the other player has to guess it. This is done by
asking questions with 'yes' or 'no' answers, so narrowing down the
possibilities until the correct animal has been discovered.

The program we are to write will make the guesses and find the correct
animal; moreover, it will remember each new animal that it is taught,
along with a question to distinguish it from the others.

The data is stored in something called a 'tree structure', after the way it
looks diagrammatically. Each element of the tree, or 'node', consists of
three parts - a text message, which will be either a question or the name

I DOES ITFL Y? I

7~
~--IT-'S-A-B-IRD--~II ~--D-O-ES-IT-S-W-IM-?~I

7~
~I---IT-'S-A-FI-SH---'I ~I--IT-'S-A-M-AM-M-AL--'I

;/ ~7 ~
Example 'tree structure'

Recursion 177

of an animal, and two pointers. If the text message contains the name of
an animal, then the two pointers point to NULL - they are not needed. If
it contains a question, then the two pointers point to two further nodes.
The text and the pointers are stored together as a structure. Here's an
example tree, consisting of just a few nodes:

When playing the game, the computer starts at the tree's 'root' node. It
checks the pointers in that structure. If they are NULL, then it knows the
string contains the name of an animal, and it makes that guess. If they
point to other structures, then it knows the text asks a question meant to
distinguish between the next two structures, so it asks the question. If the
user enters a "yes", then the program goes to the structure pointed to by
the left-most pointer, otherwise it goes to the structure indicated by the
right-most pointer. The process then repeats.

Suppose the computer asks "Does it fly?" and the user responds
"yes". The computer will then guess that the animal is a bird, and ask
the user if it's correct. If it is, the game plays again, but if it isn't, the
computer asks what the animal is and stores it in a new node. This new
node's pointers are left as NULL. It then asks for a question to
distinguish between a bird and the new animal - the answer to the
question should be "yes" for the new animal. The question replaces the
animal string in the old node, which is itself placed in another new node
with two NULL pointers. The pointers of the old node are set so that one
each points to the two new nodes. The left pointer points to the new
animal, the right pointer to the old one - in this case "bird".

We'll use a structure to represent each node, and allocate space for each
one as it is needed via malloc. The program initially starts knowing two
animals and a question to distinguish between them. These values are
given on initialisation. Here's the code:

#include <stdio.h>
#include <strings.h>

~COMPLET£
~LlSTING

@]~~
[![i

void getstringinto(char* result)
{

int i=O;

Complete Amigo C

178

}

/* get first 39 characters, or up until a carriage return */
/* put a nu11-termdnator into last element of string array */
while (i<40 && (*(resu1t+i++)=getchar(»!='\n')

* (resu1t+i-l) = '\0';

void main()
{

struct node { /* define structure type "node" * /
char *text;

};

struct node *left-PQinter;
struct node *right-PQinter;

struct node yes = {"bird" , NULL, NULL} ;
struct node no = {"fish", NULL, NULL} ;
struct node question = {"Does it have wings?",&yes,&no};

struct node *current_node, *new_nodel, *new_node2;
char input[40];

do { /* set up loop */

printf ("Think of an animal. \n") ;

Chapter 10

current_node=&question; /* start searching at the root node */
while (current_node->left-pointer!=NULL) { /* loop through ~

until we find a node that doesn't go any further */
printf("%s\n",current_node->text);
getstringinto(input);
if (input[O]=='y')

current_node=current_node->left-PQinter; /* next ~
node of interest becomes one pointed to by left member of current node ~
if user replies "yes" to the question */

else

current_node=current_node->right-PQinter; /* otherwise ~
got to node indicated by right member */

Complete Amiga C

Recursion

}

printf("ls it a %s?\n",current_node->text);
getstringinto(input);
if (input[O]=='n') {

179

1* if computer's guess is incorrect, it must learn about ~
the new animal *1

printf ("l give up! \n") ;

printf("What is the animal you were thinking of?\n");
getstringinto(input);
1* create a new node to hold new animal *1
new_nodel=(struct node *)malloc(sizeof(struct node»;
1* get some memory for a new node and put a pointer to it ~

in new_node * I
new_nodel->text=(char *)malloc(strlen(input+l»;
1* get memory for new node's text add one to the length ~

to include '\0' character *1
strcpy(new_nodel->text,input); 1* copy name of new animal ~

into new node *1
new_nodel->left-PQinter=NULL; 1* both of new_nodel's ~

pointers point to NULL because it marks an end of the tree *1
new_nodel->right-PQinter=NULL;

1* create another new node to hold old animal *1
new_node2=(struct node *)malloc(sizeof(struct node»;
1* get memory for it and address *1
new_node2->text=current_node->text;
1* this new node's text becomes the animal from the ~

current node * I
new_node2->left-pointer=NULL;
new_node2->right-PQinter=NULL; 1* this node is also an ~

end to the tree *1

1* now to change current_node so that it contains a ~
question instead of an animal guess *1

printf("Give me a question with the answer 'yes'\n");
printf("for a %s and 'no' for a %s.\n",~

new_nodel->text,new_node2->text);
getstringinto(input);

Complete Amig[J C

180 Chapter 10

current_node->text=(char *)ma11oc(str1en(input+l»;
/* grab memory to store new text and make current_node's -,

text pointer point to it*/
strcpy(current_node->text,input); /* copy the input -,

string into the new memory space */
/* new_nodel gets pointed to by current_node's left -,

pointer, and new_node2 gets pointed to by current_node's right pointer */
current_node->left-pointer=new_nodel;
current_node->right-PQinter=new_node2;

}

} /* finished creating the new nodes */
printf(''Wou1d you like another game?\n");
getstringinto(input);

} while (input[O]=='y');

The program first of all defines the structure type node, and then creates
three variables of this type. These are to hold the question and the two
animals that it distinguishes. The node that holds the question also holds
two pointers, one to each of the other nodes.

The program enters a do. .. while loop, terminated at the program's
end when the user enters anything other than a 'y' after being asked for
another game.

Another loop is entered, searching from the root node until it comes to a
node without further connections. In the meantime, it asks the question
supplied in each node it searches. It decides which node to search next by
picking one of the current node's two pointers, depending on the user's
answer to the question.

When the loop terminates, a node has been found that contains a guess.
The computer makes the guess, and if, according to the user's response, it
is correct, the end of the outer loop is reached and the computer asks the
user for another game.

If the guess is incorrect, the program adds two new nodes to the tree
structure. The new animal is placed in one of these, and its two pointers

Complete Amigo C

Recursion

rllii
1 MAKEA \
\ NOT£! ~ 1 ____ --

C shorthand

181

are initialized to NULL to show that the node represents a guess, not a
question. The second new node is given over to containing the guess
held in the first. Since the nodes hold pointers to strings, and not the
strings themselves, the new node is simply given the address of the
current node's string - the string contents do not have to be moved.
The second new node's pointers are also initialized to NULL, because it
too represents a guess.

A question to distinguish between the two guesses is obtained from the
user. Memory to store this is got via malloe, and the user's input is
placed there. The string pointer in the current node is modified so that it
points to this new area of memory. Its structure pointers are given the
addresses of the two new nodes. They are assigned so that an answer
"yes" to the current node's question will send the program searching in
the node indicated by the left member for a guess.

Notice that in the creation of new_node!, malloe is used twice. The
first time is to get space for the structure itself. This doesn't actually
contain the animal string, just a pointer to it, so space for the
string must be malloeed separately.

The first call to malloe makes use of a new function called sizeof.
Strictly speaking, it's not a function, but an instruction to the compiler to
insert a number corresponding to the amount of memory the variable
type in its parentheses will require. You can put any variable type in
there, and sizeof will return the amount of space it r~quires. It's used
here to ensure enough space is got to store the structure pointed to by
new_node!.

Using complex structures in this way can lead to confusion. C provides a
way of defining a shorthand version of a structure's type. Then, whenever
we want to use a structure type declaration, we can use the shorthand
we've defined rather than the long-winded version. You haven't created a
new type, just a shorthand notation for an already existing one, which can
help to make things clearer.

In the above example, we could define a type that represents the complex
node structure:

Complete Amigo C

182

struct node { /* define structure type "node" * /
char *text;

};

struct node *left-PQinter;
struct node *right-pointer;

Chapter 10

@]~01
- 0l~ -

CODE SEGMENT

If we defined a type for this structure called animal_node, like so:

typedef struct node { /* define structure tag "node", and give it type
definition of "animal_node" * /

char *text; @]~01
- 0l~ -

struct node *left-PQinter;
struct node *right-PQinter;

CODE SEGMENT

} animal_node;

Then you could declare structures of the required type with this syntax:

animal_node yes = {"bird" , NULL, NULL} ; /* declare three nodes * /
animal_node no = {"fish" , NULL, NULL} ; @]~01

- 0l~ -animal_node question = {"Does it have wings?",&yes,&no};
CODE SEGMENT

Similarly, you could make a typedef for the pointer type that is to
point to the structure:

typedef struct node *animal_node-PQinter; @]~01
- 0l~ -

Complete Amiga C

You could then declare your pointers to the structure with:

CODE SEGMENT

@]~01
- 0l~ -

CODE SEGMENT

The use of typedef causes the compiler to perform a text substitution.
Where it sees "animal_node-pointer" in the above line, it interprets
it as meaning "struct node *", and so a variable of the required type
(i.e. a pointer to a node structure) is declared.

Having declared these two types, then you can make the call to malloc,
which occurs when you need to get more space for a new node, more
explicit. Previously, it looked like this:

Recursion 183

new_nodel=(struct node *)malloc(sizeof(struct node»;
/* get some memory for a new node and put a pointer to it --,

in new_node * / ~a[Il]
- 0l0l -

CODE SEGMENT

But with the two typedefs it becomes:

new_nodel=(animal_node-PQinter)malloc(sizeof(animal_node»i
/* get some memory for new node and put a pointer to --,

it in new_node */ @JJa[Il]
- 0l0l -

Unions

CODE SEGMENT

A union is a form of variable declared with the same sort of syntax as a
structure. A union holds several different data types but, unlike a
structure, holds only one type at a time. Basically, you're defining a
single variable that can be used at different times to hold different types
of data.

To declare a union called fred, with the union tag details_tag,
that could be used to hold either the age or surname of fred - an int or
a pointer to a string of char - you would use the following syntax:

union details_tag {
int age;

(@JJ~01) 0l0l
EXAMPLE CODE

char * surname ;
} fred;

At anyone time you could access either fred's age, by using
fred. age, or its surname, by using fred. surname, which would yield
a pointer to char.

If you're accessing fred by a pointer to it, rather than by the union
itself, then accessing its elements is done in the same way as it would be
for accessing a structure's elements by pointers:

(@JJa[Il])
0l0l

EXAMPLE CODE

would interpret the v~lue of fred as an integer and put it in a.

Complete Amig(] C

184

Complete Amiga C

Chapter 10

The compiler ensures that a union variable is large enough to contain
the biggest of its possibilities. It's possible to construct a union
consisting of more than just two variable types, but it is up to you to
ensure that you access the union as the correct type of variable as and
when you need it.

185

Linked Lists
• How lists work

• Lists of any type

• Pointers to functions

Complete Amiga C

186

Gj.~\
I MEAN ~
'~

List

Chapter 11

The tree data structure used for the animal game in the previous chapter
is a specialised variant of the data structure known as the linked list.

A list is an ordered grouping of data. It is particularly useful when, as in
the animal game, you don't know how many items of data will need to be
stored in the list. Space for each list element can be obtained from the
operating system - usually by a call such as malloc () - as and when it
is needed.

Each item in a linked list consists of two parts: the first is the data being
stored; the second is a "link" to the next item in the list. The link
performs two functions - because each element of the list is malloced
separately, they may each lie in completely different areas of memory, so
links are needed so that your program can access whichever list item it
wants to; secondly, the items in a list are ordered, and the ordering is
defined by the links.

Heads and tails
The first item in a list is called the "head". It consists of an item of data
and a pointer to the next item in the list. The remainder of the list is
known as the "tail". The tail can be thought of as a list in its own right,
complete with a head (actually the second item in the initial list) and its
own tail. The final item in the list holds only data, its link is a pointer to
NULL, indicating that there are no further items.

A simple list
The first step in implementing a list is to design the data structure used
for each element. For the sake of simplicity, let's start with a list designed
to hold integers. Each element then must be capable of holding an integer
and a pointer to another element. We define the item as a structure. The
pointer it contains is not a pointer to int, but a pointer to a structure of
the same type that it is itself a part of. Here's the structure definition:

typedef struct liststruct *list;]J~[il
- iI][il -

struct liststruct {int datum;
list next;};

Complete Amiga C

CODE SEGMENT

Lists

The elements in a list
consist of two parts: the
data (the information
stored in the list) and the
link, which indicates the
next list element.

t
LIST

data

link

data

I~
link

data

'~

link

I
LIST

•
How a list works

187

I
LIST 'ELEMENT'

I

The first line has defined the type list as being equivalent to a pointer
to a structure of type liststruct. The second line then defines this
structure. It consists first of an integer element called datum, and then
next, a pointer of type list.

list functions
Given this kind of list, we now need to think about the sort of functions
we will need to manipulate it. Certain functions are common to all lists.
Once we have these functions, we can tuck them away in our own library
file and we need never worry about how they work again. By linking our
own programs with this file we can make use of the list and call its
corresponding functions if we ever need to.

Complete Amigo C

188

Heads and
tails

list 1;

Lists consist of two parts:
the 'head' and the 'tail'.
The head is the first
element in the list while
the tail is the remainder of
the list. If you remove the
first element, or head, the
first element of the tail
becomes the new head.

I
t- ELEMENT 1 HEA D

~
t- ELEMENT 2

r- ELEMENT 3 TAl L

LIST ,
'Heads' and 'tails'

Chapter 11

We will need a function to create an empty list. It takes no parameters,
and simply returns a pointer to list, with its value initialized to NULL.

Another useful function will be cons, which enables us to construct lists.
Cons takes an integer and a pointer to list, and returns a new list with the
integer at its head and the old list as its tail. With cons and empty it's
now possible to create lists of any length. Suppose you wanted to create a
list with three elements - with values 5, 10 and 15 - you could do it with
cons and empty as follows:

(@]~IIIl) 0101
EXAMPLE CODE

1=cons(5,cons(lO,cons(15,empty(»»;

Complete Amiga C

The innermost call to cons creates a list with 15 at its head and nothing
as its tail. The preceding cons then takes this as a tail and adds 10 to the
head. The outermost cons then takes the resulting list, which now
consists of the elements 10 and 15, and adds 5 to its head.

Lists 189

We need a function to check whether or not a list is empty. The function
called iSeIri>ty will take a list pointer and return a non-zero value if it
points to a list item, and zero if it points to NULL.

The function head will return the first item of data in the list - an integer
- while the function tail returns a pointer to the list without its first
item. Both expect a list as their parameter.

The function length, given a list as parameter, will return the number of
elements in a list, expressed as an integer. It is defined such that
length { eIri>ty ()) equals zero.

In the listings that follow we've made use of a function called
WriteList. This will take a list as a parameter and write each of its
elements in turn out to the screen. It takes three further parameters -
strings called opener, separator and closer respectively. Opener
contains the character with which you wish to precede the list when it is
output, separator contains the characters you with to separate each
item printed, and closer contains the characters used to delimit the list
when it is printed. Typically they will contain an open bracket, a
command and a close bracket respectively so that, given the list created
above using cons, printing it out with the following call:

WriteList(l, "[",",","]"); (@]EiIlIll)
[fllI]

EXAMPLE CODE

would produce the output shown below:

Those are the most basic functions necessary for manipulating our list of
integers. In the code that follows, you'll find two more: reverse and
append. Reverse takes a list and returns another list with the same
elements as the first, but in reverse order. Append takes two lists and
returns a list consisting of the first list passed followed by the second.

Complete Amigo C

190

Summary of functions

Name

enq;>ty
cons
isenq;>ty
head
tail
length
writelist
reverse
append

Purpose

creates a new, empty list
adds a new head to the list
checks whether a list is empty
returns the first data item in the list

returns a pointer to the list's tail

returns the number of elements in the list

displays the list elements on the screen

reverses the order of elements in the list

adds one list to the end of another

Data & function declarations

Chopter 11

Here are the data and function declarations for the integer list. Type them

in using dIne and save them as a file called list. h. You can then use

this file as an ordinary C header file, to be included with #include

whenever you want to use an integer list. Here's the code:

/**/

/* LIST.H */

/**/

/* Integer lists */

/* M. Harman, University of North London, 1993.

#define TRUE 1

#define true 1
#define FALSE 0

#define false 0

#define boolean int

typedef struct liststruct *list;

struct liststruct {int datum;

list next;} ;

Complete Amigo C

*/

~COMPLETE
~LlSTING

:2J~[il
~@]

Lists

list ~ty();
/* a list with nothing in it. */

boolean is~ty(list 1) ;
/* is~ty(~ty(» = true */
/* is~ty(cons(x,l» = false */

int head(list 1) ;
/* the first element of the list.*/

list tail(list 1) ;
/* the list obtained by removingthe first element. */

list cons(int d, list 1) ;
/* the list which has d at its head and 1 as its tail.

head(cons(x,l» = x
tail(cons(x,l» = 1

*/

int length(list 1) ;
/* The ~ty list has length zero. */

void WriteList(list 1,

char *opener,
char *separator,
char *closer) ;

/* Prints the elements of the list 1 */

191

/* The elements are delimitted by opener and closer and separated by

separator. */

list reverse(list 1) ;
/* returns the list obtained by reversing the order of elements in 1 */

list append(list 11, list 12) ;
/* concatenates L1 onto the front of L2 */

Complete Amigo C

192 Chapter 11

Notice the #defines at the top of the listing. These define the type

boolean to be equivalent to int, and true and false values too.

U sing these makes the rest of the code easier to follow.

Function definitions
As well as the include file, of course, you'll also need the code that

actually defines the functions. Once this is written, you can compile it

into an object file. This object file can then be used as a library. Type the

following in and save it as a file called list. c:

#inc1ude "list.h"

#inc1ude<stdio.h>

list empty()

{ return NULL; }

boo1ean isempty(list 1)

{ return NULL==l; }

int head(list 1)

{ return l->datum; }

list tai1(list 1

{ return l->next; }

list cons(int d, list 1)

{ list r;

}

r = (list) ma11oc(sizeof(struct 1iststruct»

r->datum = d ;

r->next = 1;

return r;

int length (list 1)

{ if (isempty(l» return 0;

else return 1+1ength(tai1(l»;

}

Complete Amiga C

Lists

void WriteList(list 1,
char* opener,
char* separator,
char* closer)

{

}

printf("%s",opener);
while(!isempty(l»

{printf ("eyed" , head (1))
l=tail(l);
if (!isempty(l» printf ("%s", separator)

}

printf("%s",closer);

list accreverse(list 1, list accl)
{

}

if (isempty(l»
return accl

else return accreverse(tail(l), cons(head(l),accl))

list reverse(list 1)
{ return accreverse(l,empty(» }

list append (list 11, list 12)
{

}

if (isempty(ll»
return 12;

else return cons(head(11),append(tail(11),12»

193

The implementation of all of the functions we've discussed is fairly
straightforward. Read through the code to be sure you understand what is
going on. Notice in particular the recursive calls in length, append and
accreverse, the function called by reverse.

Complete Amigo C

194

dcc -c list.c

Chapter 11

This second file must be compiled. We don't want DICE to try and link it

and create an executable, though, because there is no main () function.

To get DICE to compile and not link, use the -c option. Typing the

following will create a library file called list. 0:

(IEI~I!]) 0J01
EXAMPLE CODE

Checking our code
Now we need to write a simple program to call on the services of our

library and check that its functions work. Type the following into dme

and save it as a file called main. c:

#include <stdio.h>

#include <list.h>

~COMPLET£
~LlSTING

IEI~I!]
0J01

void main()
{

}

list l,k;

l=cons(1,cons(2,cons(3,empty(»»;

k=reverse(l);

WriteList(append(k,I),"{",",","}");

Notice how the list header file is included in exactly the same way as

stdio. h. If we want to compile this and link it with the list. 0 library

file, we need to tell DICE explicitly. It has the intelligence to work out

that any standard libraries need linking, but not our own. You can

compile and link with the following command:

dcc main.c list.o -0 main
lEIal!]

- ~[Il] -
CODE SEGMENT

Now, if you type main you will get the following output:

{3,2,l,l,2,3}

Complete Amiga C

Lists 195

Lists of any type
A list of integers is all very well, but perhaps of limited use. It's
surprisingly easy, however, to alter our list library so that it can cope with
lists of any type.

Pointers not data
Again, each item in the list consists of two elements: a pointer to the next
list item, and a data element. In this case, though, the data element is not
a simple variable type such as integer, but a pointer. This pointer is used
to indicate the area in memory whether the real data that the list item
contains is stored. In other words, the data itself is stored entirely
separately from the list. Here's the new structure definition and definition
of list, the pointer to it:

typedef struct liststruct *list; @]alIl!
- [!]J01 -

CQDESEGMENT

struct liststruct {void *datum;
list next;);

~

~O
DOES IT.

MEAN

Pointer to
void

The only difference is in the declaration of datum, which is now a
pointer to void.

So far we have only used void to indicate that a function returns no
result. It can also be used, as it is in the structure definition, to indicate
that a pointer can point to any kind of data. Normally, we declare a
pointer to point to a specific data type, such as an int. If we use the
pointer to access anything else, such as a string, then the compiler will
generate an error. Misuse of pointers can lead to horrible crashes, so we
should be thankful of this limited form of type-checking.

If we declare a pointer to point to type void, though, the compiler
doesn't check what kind of data we're using it to access, so we can use it
to point to different things throughout the program, but the onus is on us
to make sure nothing goes wrong. We need a pointer to void with our
modified list program because the kind of data the list holds, and
therefore the type that datum is used to point to, varies.

Complete Amigll C

196

You are not restricted to
storing data In lists - you
can also store pointers to
data, making it much
easier to handle different
types and sizes of data.

LIST

pointer to data

LIST 'ELEMENT'

r+--+-- link

pointer to data

r--+--- link

pointer to data

r--+--- link

LIST ,

Chapter 11

MEMORY

etc.

address 7

address 6

address 5

address 4

address 3

address 2

address 1

Using lists for pointers, not data

Our new header file
Shown below is the new header file for our list library. Type it into dme
and save it with the name list2. h. ~ '1'1~h~\JE

@]~01
~0J

/**/
/* LIST.H */
/**/

/* Polymorphic lists. */
/* or rather - untyped lists, ~lemented
/* the elements of the list, and pointers
/* of elements of the list */
/* M. Hannan, University of North London,

Complete Amiga C

using pointer to
to functions for

1993 */

void for */

the output */

Lists

#define TRUE 1
#define true 1
#define FALSE 0
#define false 0
#define boolean int

typedef struct liststruct *list;

struct liststruct {void *datum;
list next;}

list enpty () ;
/* a list with nothing in it. */

boolean isenpty(list 1) ;
/* isenpty(enpty(» = true */
/* isenpty(cons(x,l» = false */

void *head(list 1) ;
/* the first element of the list.*/

list tail(list 1) ;
/* the list obtained by removingthe first element. */

list cons(void *d, list 1)
/* the list which has d at its head and 1 as its tail.

head(cons(x,l» = x
tail(cons(x,l» = 1

*/

int length(list 1) ;
/* The empty list has length zero. */

void WriteList(list 1,
void (*printer) (void*) ,
char *opener,
char *separator,

197

Complete Amig(] C

198 Chapter 11

char *closer) ;

/* Prints the elements of the list 1, using the print function ~
"printer". */
/* The elements are delimitted by opener and closer and separated by */
/* separator */

list reverse(list 1) ;
/* returns the list obtained by reversing the order of elements in 1 */

list append(list 11, list 12) ;
/* concatenates L1 onto the front of L2 */

You might be surprised at how similar the function declarations are to
those for the integer list library. The main difference, of course, is that
where a function previously took an integer as a parameter it now takes a
pointer to void, and functions that returned integers now return pointers
to void (aside from length, which naturally still returns the number of
elements in a list as an integer).

If you look at the declaration - or "prototype" as it is also known - for
WriteList, you'll notice that it now takes an extra parameter: .

@JJa[Il]
void (*printer) (void*) - [l][Il] -

CODE SEGMENT

What does this mean?

Pointers to functions

Complete Amiga C

As you may gather from the heading, we're defining a parameter of the
type pointer to function.

The reason it's necessary is that WriteList will need to output different
list types in different ways. When our list was made of integers,
WriteList simply had to call printf with the eyed option. Writing out
a list of screen structures, though, will require far more . complex
processing. By defining the actual function that prints out a list item
elsewhere, and passing a pointer to it to WriteList, WriteList can

Lists

You can use pointers to
functions in just the same
way that you can use
pointers to variables. This
kind of structure is far
more efficient than
complex 'if' structures
since the function pointer
is passed to the 'writelist'
function as an argument.

WRITELIST

FUNCTION

I ,

I

I

I

MEMORY

etc.

FUNCTION 2

FUNCTION 1

address 5

address 4

FUNCTION 3

address 2

address 1

Using pointers to functions

199

I

I

I

call the relevant function by its address, depending on the kind of list it is
processing.

In the definition above, the first void indicates that the function to which
the parameter points returns no result. The first part in parentheses
indicates that the parameter name is printer, and that, because it is
preceded by an asterisk, it is a pointer type. The code in the second set of
parentheses ensures that the compiler interprets the pointer as pointing to
a function and not, as would otherwise be the case, a pointer to void.
The code within the second set of parentheses declares the parameter that
the function pointed to takes - a pointer to void in our case.

Function definitions
Now let's take a look at the function definitions. Type the following in
and save it as a file called list2 . c:

#include "list2.h"
#include<stdio.h>

~COMPLETE
~LlSTlNG

@]J[I¥J[il
[iJ[!]

Complete Amigo C

200

list ~ty()
{ return NULL; }

boo1ean is~ty(list 1)

{ return NULL==l; }

void* head(list 1

{ return l->datum; }

list tai1(list 1

{ return l->next; }

list cons(void* d, list 1)

{ list r;

}

r = (list) ma11oc(sizeof(struct 1iststruct»

r->datum = d
r->next = 1;
return r;

int length (list 1)

{ if (isempty(l» return 0;

else return 1+1ength(tai1(1»;

}

void WriteList(list 1,

{

void (*printer) (void*),

char* opener,
char* separator,

char* closer)

printf("%s",opener);

whi1e(!is~ty(1» {

(*printer) (head(l»

l=tail (1);

if (! is~ty(1» printf ("%S", separator)

}

printf(l%s",c1oser);

Complete Amig(] C

Ch(]pter 11

lists 201

}

list accreverse(list 1, list accl)
{

}

if (iseIIi>ty (1))
return accl

else return accreverse(tail(l), cons(head(l),accl))

list reverse(list 1)
{ return accreverse(l,eIIi>ty(» }

list append(list 11, list 12)
{

}

if (iseIIi>ty(ll»
return 12;

else return cons(head(11),append(tail(11),12»

The majority of the function definitions are the same as they were in the
integer example, barring the fact that they deal with pointers to void
rather than integers.

With cons, we are only using malloc to gain space for the actual
liststruct structure. This contains a pointer to the next item and a
pointer to the actual data. It is up to the calling program to find space for
the data itself. We'll look at how this is done later.

The function WriteList has been altered so that it accepts a pointer to
a function as one of its parameters, and so that it uses this function to
output each element.

The definition of the parameter is the same as in the header file:

void (*printer) (void*);
@]]I!li[Ill

- 0l~ -
CODE SEGMENT

a variable called printer which is a pointer to a function returning no
result and accepting one parameter, a pointer to void.

Complete Amigo C

202 Chapter 11

The function pointed to is called by preceding the pointer name with an

asterisk - just as the value pointed to by an ordinary pointer is accessed.

Immediately following it is the parameter to be passed to the function,

enclosed in parentheses:

(*printer) (head(l»;

Compile list2. c into an object file like so:

dcc -c list2.c

Using our new library file

~~0J
- 0101 -

CQDESEGMENT

CODE SEGMENT

We now need to write a program to make use of our new library file.

Save this next listing as a file called mainl. c:

#include <stdio.h>

#include <list2.h>

int *MakelntPtr(int i)

{

}

int *r;

r = (int*) maIloc(sizeof(int»

*r = i ;

return r;

int Getlnt(int*i)

{ return *i; }

void Printlnt(int*i)

{

printf ("eyed" I Getlnt (i))

}

void main()
{

list I,k;

Complete Amiga C

~COMPLET£
~lISTING

[]JJ~[)J
[!]01

lists 203

1=cons(MakelntPtr(1),cons(MakelntPtr(2),~

conS(MakelntPtr(3),empty(»»;

}

k=reverse(l);
WriteList(append(k,l), (void(*) (void*»Printlnt,"{",",", "}")

This code uses the list2 library to create a list of integers - exactly the
same as the first version, for the sake of comparison.

Extra functions
Notice that now, though, we've had to define three extra functions before
we can make use of our lists. For one thing, we need to define a function
that creates space for, and stores, the data for a list item. This is
performed by MakelntPtr. It takes an integer as its parameter, and
returns a pointer to integer as its result.

As you can see by looking at the code, it mallocs space for an int,
stores the integer passed to it in this space, and then returns a pointer to
the space.

The second function, Getlnt, is used to obtain the data stored in a list
item. All it does is return the integer pointed to by the parameter it's
passed. Its use isn't strictly necessary, since the pointer de-reference can
easily be made in the main code that calls it, but it helps to clarify
everything. If you are using lists of more complex items than integers,
then the function equivalents of Getlnt will prove their worth.

The third function defined is that used to print out a list item. It is a
pointer to this function that is passed to WriteList. We've called the
function Printlnt. It returns a void and takes a pointer to an integer as
its parameter. The body of the function extracts the data pointed to by its
parameter, then passes this to printf with the 9-od option to print it out.

The main function
The main function is much the same as before. In our calls to cons,
however, we cannot simply pass an integer value as the head of the list.
Instead, we must pass a pointer to int, as created by a call to
MakelntPtr, which creates space for the argument passed to it.

Complete Amigo C

204 Chapter 11

The call to WriteList includes one extra argument - the pointer to
the print function to be used. This is the parameter written as:

,(void(*) (void*»Printlnt,
@JJa][I]

- 0J0J -
CODE SEGMENT

The first part casts Printlnt to be of type "pointer to a function
returning nothing and accepting a pointer to void as a parameter." The
second part gives the function whose address is to be passed. Notice that
the & operator is not necessary to take the function's address. The
compiler takes it automatically, as it does when arrays are passed.

You can compile the whole lot into an executable file called mainl by
typing the following:

dcc mainl.c list2.0 -0 mainl
@]]~@J

- 0i0J -

Complete Amiga C

CODE SEGMENT

If you run the resulting program, you'll get exactly the same output as
that produced by the previous example.

Using the extra power
To demonstrate the extra power afforded by the polymorphic list library,
let's write another program that makes use of more complex lists.

The following file, which you should save with the name main2. c,
makes use of lists of complex numbers. Complex numbers, used
extensively in mathematics and engineering, consist of two separate
parts: a "real" and an "imaginary" part. With the complex number (S,2i),
the S indicates the real part and 2i the imaginary. The character 'i'
represents the square root of -1, so the complex number can be
represented by S+2*squareroot(-I). There is no real value for the square
root of -1, though, hence the necessity for imaginary numbers.

If you're not familiar with complex numbers, don't worry. Just think of
the real and imaginary parts as representing coordinates on a two­
dimensional graph. Here's the code:

lists

#include <stdio.h>
#include <list2.h>

struct ComplexStruct {
float real;
float imaginary;
};

typedef struct ComplexStruct *complex;

complex MakeComplex (float i, float j)
{

}

complex result;

result = (complex) malloc(sizeof(struct ComplexStruct»
result->real = i ;
result->imaginary=j;
return result;

float GetReal(complex c)
{ return c->real; }

float GetImaginary(complex c)
{ return c->imaginary; }

void PrintComplex(complex c)
{ printf (" (%f+'P-afi)" , GetReal (c) , Get Imaginary (c))
}

void main()
{

list l,k;
l=cons(MakeComplex(1.2,5.3),cons(MakeComplex(2.7,4.51),~

cons(MakeComplex(3.92,3.38),empty(»»;
k=reverse(l);

205

~COMPLETE
~LlSTlNG

@]J~lI!
~[il

WriteList(append(k,I), (void(*) (void*»PrintComplex,"{",", ","}")
}

Complete Amiga C

206 Chapter 11

You can compile this and link it with the polymorphic list library by

typing:

dcc main2.c list2.0 -~ -0 main2
@]al[l]

- 0101 -

Complete Amiga C

CODE SEGMENT

(The -lm option is needed to link with the maths library.) Here we've

defined a structure of type Conq>lexStruct, and a pointer to it with the

typedef shorthand of conq>lex.

Revised functions
Next comes MakeConq>lex, the equivalent of the Makelntptr function

in the previous example. MakeConq>lex takes two floats as parameters.

It mallocs enough space for a Conq>lexStruct structure, stores the

two floats within it, and returns a pointer to it.

GetReal and GetImaginary are the equivalents of the earlier Getlnt

- they retrieve the real and imaginary data respectively stored in the

structure whose pointer is passed to them.

The printing function we've defined is called PrintConq>lex. It takes a

pointer to a Conq>lexStruct structure as its parameter, and returns no

result. Given a structure, it prints its two elements out (obtained by calls

to GetReal and Get Imaginary) as floats with a call to printf with

the 'Yof option. The item is surrounded by parentheses when printed, the

two elements are separated with a plus sign, and the imaginary part is

followed with the character "i" - this is the standard form for printing

out complex numbers.

Our main function works pretty much as before. When it calls cons, it

first calls MakeConq>lex to create the complex number data needed for

the list head. When WriteList is called, it is this time passed a

pointer to the PrintConq>lex structure. If you run the program, you

should get the following output:

{ (3.920000+3. 380000i) I (2.700000+4. 510000i) I (1. 200000

+5. 300000i) I (1.200000+5. 300000i) I (2.700000+4. 510000i

) I (3.920000+3. 380000i) }

lists 207

Try writing your own programs to create and use different kinds of lists.
You may also want to try using the other functions declared in the
list2 . h header file, and seeing what uses you can put them to.

Complete Amigo C

208

Complete Amigo C

209

Additional concepts
• More variable types

• Pre-processing

• Octal and Hexadecimal

• Bitwise operators

• Precedence

• Automatic variables

Complete Amigo C

210 Chapter 12

Before going any further, it's as well to round up all of those aspects of
C that we haven't had cause to discuss so far. There are a couple of

variable types that we've missed, a few things to be mentioned about the
C pre-processor, a note about number systems and some new operators,
and we need to talk about precedence.

More variable types

[--0'\
WHAT

I DOES IT
11 MEAN.

Word

Byte size

Unsigned

As you may recall from chapter 1, a single address in memory can only
store an integer number in the range 0 to 255. This is known as a byte.
Two bytes may be joined together to form what's called a 'word'. In this
case, the second byte is interpreted as being 256 times more valuable
than the first, enabling the word to hold numbers in the range 0 to
256*255 + 255 or 65,535. The number in the higher byte acts just like a
number in the 'tens' column of an ordinary number written on paper.

It's also possible to combine two words together to create a 'longword',
which can hold numbers between 0 and 255*256*256*256 +
255*256*256 +"255*256 + 255 or 42,798,677,295. Each byte is 256
times more valuable than its less significant brother.

The integers we've been using in our C programs are clearly larger than
one byte. In fact, the size of an int depends on the C compiler in
question. For DICE, it is four bytes. The upper numbers given above are
not strictly true, because C interprets half of those numbers as being
negative. So in fact the range for an ordinary int in DICE is from
-2,147,483,648 to 2,147,483,647. It comes about because of the peculiar
way in which the machine stores negative numbers.

Sometimes, you'll want the contents of an int to be positive no matter
what. This immediately means you can use it to store a number twice as
large. You do this by using the unsigned keyword before the variable's
type specifier in its declaration:

unsigned int positive_number; (::2Jl~[il)
~1Il

Complete Amiga C

EXAMPLE CODE

Unsigned can also be applied to char variables. When unsigned they
contain an integer between 0 and 255, corresponding to an ASCII code.

Additional concepts

'Bytes' take up one
memory address and are
capable of storing a
number in the range 0-
255. Words' take up two
memory addresses, while
'Iongwords' take up four.

MEMORY

etc.

address 7

address 6

address 5

address 4

address 3

address 2

address 1

Bytes, words and longwords

You can also declare ints and chars as signed:

211

signed char letter; (@Ja[I])
IIlIIl

W9. I MEAN

Signed

r:o
\ DOES IT.
I MEAN

Short and long
ints

EXAMPLE CODE

A signed char will vary in value between -128 and 127. It's
unnecessary to use a signed keyword with ints, as they are
automatically assumed to be signed unless an unsigned keyword is
present. Chars are automatically signed or unsigned depending on
the C compiler you're using; with DICE they are signed.

There are two more specifiers you can use with int - short and long.
The definition of C states that a long int must use more bytes than a
short into With DICE, short ints take two bytes and have a range
of -32,768 to 32,767, while long ints take four bytes and have a range
of -2,147,483,648 to 2,147,483,547. Ints which are declared neither
short or long are automatically given four bytes. You'd declare a long
int with the following:

long int big __ number; (@Ja[I])
IIlIIl

EXAMPlE CODE

Complete Amiga C

212

Chars can be either
signed or unsigned.
Signed chars can have
either positive or negative
values.

·l28 II-----O------1~~127

O-----------~~255

Signed and unsigned chars

and an unsigned one with this:

Chapter 12

SIGNED CHAR

UNSIGNED CHAR

unsigned long int big-PQsitive_number; ([I]~[I]) [JJ[I]

Double
variable

Complete Amiga C

EXAMPlE CODE

You can also use a longer version of a float, so that your fractional
numbers are stored with more precision. The variable type is double,
meaning "double precision", and you declare a variable of the type as
follows:

([I]~[I]) [JHIlI
EXAMPLE CODE

You can also precede double with the keyword long, to specify an even
more precise float:

([I]~[I]) 0101
EXAMPLE CODE

A float uses 4 bytes, a double 8, and a long double 16.

Long, short, signed, unsigned, and the keywords extern and
static from chapter 8, are known as 'storage class' specifiers. They
precede an ordinary variable type in a declaration to give the programmer
more precise control over the kind of variables used.

Another storage class specifier is 'register'. You may remember from
chapter 1 the distinction that was drawn between a computer's memory
and registers: registers are memory locations, few in number, held within

Addition(]1 concepts

~"Et1
Register

213

the central processing unit itself, while ordinary memory is contained in
separate silicon chips. As a consequence, the computer can access and
alter the values in its registers much quicker than it can values in
memory. If you precede a variable declaration with the register
specifier, it means you want that variable to be stored in one of the
processor's registers, usually because you want accesses to it to be extra
quick.

Registers are not always available, so DICE will treat the specifier as a
piece of advice, rather than as an order. It will put the variable in
question in a register if it can. In fact, DICE attempts to put variables into
registers anyway, to increase the overall speed of your programs. If you
declare a variable with the register keyword it will increase that
variable's priority when DICE comes to decide which ones ought to be
stored in registers.

Pre-processing

#include and
#define

The C pre-processor is a part of the compiler. It performs a 'first pass' on
your source code, getting it into shape ready for the compiler proper to
translate it into machine code. One of its many functions is to strip out
the comments in a program, since these play no part in the translation but
are there for the convenience of human beings.

It's possible to write instructions to the pre-processor. These instructions
are different to ordinary C instructions: they don't get converted into
machine code, but instead guide the pre-processor in its job. We've
already made extensive use of two pre-processor instructions: #include
and #define. The first instructs the compiler to load in a separate file,
called a 'header file', whose contents are to be considered part of the
overall program. The contents of the header file are then compiled along
with the programmer's code.

Header files
Header files contain pre-written C source code, more often than not code
that declares functions (remember that a function must be declared if it is
to be called in a source code file that does not contain its definition) and
variables to be used in other programs. DICE comes with a number of

Complete Amig(] C

214

You can greatly simplify

your programs using the

#include and #define

commands_

START OF
PROGRAM

I
I ,

REST OF
PROGRAM

Chapter 12

Attaches other named routines to your program

when compiling

Lets you substitute an easily-recognisable name for

a frequently-used constant to make following your
code easier

Header files

them, including stdio. h, which contains various input and output

functions, and strings. h, which contains useful functions for

manipulating strings. You can create your own header files, and it is often

useful to do so if you're writing a large program that consists of several

different source code files. By including header files in each of these

source code segments you can ensure that each has access to all the

function and variable declarations it needs. These declarations can be

safely hidden away in the header file, preventing the others from

becoming too cluttered.

Defining constants
Also commonly found in header files are #define statements. These

enable you to create constants, which aid the readability of your

programs. Suppose your program involves lots of string manipulation,

and you want the maximum length of string processed to be 20

characters. You could set up a constant like so:

#define MruCSTR LENGTH 20 (lII~iIl) [!][il

Complete Amiga C

EXAMPLE CODE

and use this constant throughout the program. It would produce code

much more comprehensible than that which merely contained lots of

references to the number 20. In addition, if you decided at a later date

that you wanted the program to handle strings 30 characters in length,

you need only change this one #define line rather than every occurrence

of 20 within the program.

Additional concepts 215

The use of #define forces the pre-processor to perform a substitution.
Wherever it sees the keyword (MruCSTR_LENGTH in the above example)
in the source code, it replaces it with the text following it in the #define
statement. The keyword must be separated from the substitution text by a
space. The substitution text is whatever follows on the same line. If you
want to substitute with some text that won't fit on a single line, you can
use the '\' character to cause the pre-processor to include the text on the
following line as well. For example:

#define LONG_STRING A very long text string that in a working \
program would be unlikely to be of any practical use, but \
which nevertheless illustrates a point.

(@]~[!]) 0J[!]
EXAMPLE CODE

The substitution will only be made in the source code if the keyword so
defined appears as a separate word. For instance, no substitution would
be made for the word A_VERY_LONG_STRING. Neither are substitutions
made for keywords appearing within quotes.
Printf ("LONG_STRING") would result in the output

not

A very long text string that in a working program
would be unlikely to be of any practical use, but
which nevertheless illustrates a point.

Macros & parameters
These substitutions are termed 'macros'. You can create macros with
parameters, too. Look at the following:

#define SUM(A,B) A+B (@llS[!])
[l][i]

EXAMPLE CODE

printf("'%d\n,SUM(7,5»;

After the C pre-processor worked through this code, it would produce the
following:

Complete Amiga C

216 Chapter 12

printf ("'Yod\n" ,7+5); (II] EJl 01) []J[)]

Removing
definitions

:Jtundef SUM

#if
#elif
#else
#endif

Complete Amiga C

EXAMPLE CODE

which, when the final stage of compilation was complete and the
program run, would of course produce the output '12'. Notice also that
the macro SUM would work equally well for characters or floats, as well
as ints. Because a textual substitution is taking place, rather than a call
to a function, the parameters defined with the macro can be used to
represent any data-type.

It is sometimes useful to be able to remove a definition. Suppose you
were writing a program where at one point you wished to use the macro
definition above, of SUM (A, B), but at another point you wanted your
program to call a function of the same name. Preceding the call with the
statement

(II]El01)
[!][)]

EXAMPLE CODE

would ensure that the following piece of code would call a function and
not be substituted with the macro text.

It is also possible to perform conditional tests with the pre-processor.
This could be useful if you were writing code that needed to be compiled
differently depending on the kind of system it was to be run on. For
instance, you might want to include one set of headers for machines
running Workbench 1.3, and another for those running 2.0 or higher. The
four statements in question are:

(
II] EJl [I)

[!][)]
EXAMPL[CODE

#if must be followed by a constant expression (i.e. one not dependent
on variables) that evaluates to an integer result. If the evaluated result is
non-zero, then the statement(s) immediately following the #if are
executed; otherwise, control jumps to the next #elif (similar to C's
else if statement) or #else if there is one, or to the closing #endif.
Suppose a previous #define had set up a constant called VERSION,

Additional concepts 217

containing either the text 1.3 or 2.0+. You could then use the following
code to include the relevant header file:

#if VERSION==1.3
(

[I] El lil)
[lJ~

#include <versionl.3.h>
#else

EXAMPLE CODE

#include <version2.h>
#endif

Enumeration
constant

Often it is useful to be able to test to see whether a macro has already
been defined. You can do this with the specialised forms of #if: #ifdef
and #ifndef. The first, when followed by a macro name, is true if the
macro has already been defined, while the second is true if it hasn't.

Another form of constant
The #define statement, in its most common form, enables the
programmer to set up a number of constant values and refer to them by
meaningful names. This means that programs are easier to read, and
sweeping changes can often be made by the simple procedure of
modifying the values of the constants.

C provides another way of defining constants, called the 'enumeration
constant'. Use of the enum statement enables you to define a series of
constants, each with related values. As a bonus, you can get the compiler
to generate the values for you. Here's an example:

enum numbers {ZERO, ONE, '!WO} ; (
[I] El lil)
[lJ[il

EXAMPLE CODE

enum automatically gives the first constant - ZERO in this case- a value
of o. The next is given a value of 1, the next and a value of 2, and so on.
You can change the start value that enum chooses by use of the = sign:

enum numbers {SEVEN=7 ,EIGHT,NINE}; ([I]E!lil)
[![il

EXAMPLE CODE

starts the sequence off at the value 7. You can use a second equals sign to
give a new start value to one of the constants in the series. In the absence
of any equals signs in the following constants, their values are derived by
successive adding one to the value of the last constant assigned:

Complete Amiga C

218 Chopter 12

enum numbers {SEVEN=7,EIGHT,TWENTY=20,TWENTYONE}; (
[iJJ§HIi)
[l[IJ

EXAMPLE CODE

More on binary

Base 10 and
binary

Bits and bytes

Complete Amigo C

When we count, we do so in a number system known as 'base ten',
which has evolved because we have ten fingers. This way of counting has
become so ingrained that it takes a little time to look at it and realise that
it's possible to count in other ways.

In base ten arithmetic, each digit can have one of ten possible values,
ranging from 0 to 9, and each digit, working from right to left, is worth
10 times more than the digit to its right. It's possible to work in other
number bases, though, and sometimes convenient. At their lowest level,
computers operate in a base two system. This means that each digit can
only have one of two values, either 0 or 1, and that each digit is twice as
valuable as the neighbour to its right.

For example, the base two (or 'binary') number:

1111

has a value, expressed in everyday base ten, as 15. The right-most digit
can be taken literally, as representing a value of 1. The next digit along
has a value of 2, the one after that a value of 4 and the one after that the
value of 8. Each digit is directly analogous to the thousands, hundreds,
tens and units of primary school mathematics. Let's look at another
example:

1001

This has a value of 9. Each digit of a binary number is known as a 'bit'
(short for 'binary digit'). Binary numbers usually consist of 8 bits. The
most significant bit of such a number has a value of 128. If you add up
128+64+32+ 16+8+4+2+ 1, you get the value of 255. A memory location
consists of eight binary bits, which explains why if can hold a value of
between 0 and 255. Adding two locations, or 'bytes', together to create a
word gives us a number with 16 digits, capable of holding a number

Additional concepts

result=a&b;

result=alb;

result=-a;

219

between 0 and 65,535. Two words. can be combined to form a
longword, with a resolution of 32 bits.

'Bitwise' logical operators
It's useful to be able to manipulate numbers in binary form rather than as
base ten, because of the way computers are designed. Each digit inside a
byte can often be used as a separate 'switch', perhaps controlling a piece
of hardware. For instance, an address in memory that represents the
controls to the Amiga's display hardware contains a bit that, if 0, puts the
screen in normal mode, or in interlace mode if it contains a 1.

The following operators can be applied to char, short, int and long
variables. The first is called 'bitwise AND', and is written as &. The
logical AND, as used in conditional expressions, only returns a true
result if both its operands are true. If either or both are false, then so is
the overall result. A bitwise AND will compare each bit in an operand
with the corresponding bit in the other operand. If both are 1, then the
result will be 1, otherwise it will be o. Here's an example:

(
[!I!][II)

[!]1Ill
EXAMPLE CODE

If a contains the binary number 11 0 0 11 0 0, and b the binary number
10101010, then the value assigned to result will be 10001000.

Similarly, the 'bitwise OR' (written as I) will set a bit to 1 if either of the
corresponding bits in its two operands are 1. The assignment

(
[!I!][lI)

[!][IJ
Ex.aMPLECODE

will put a value of 11101110 into result, if a and b contain the same
as stated above. The 'one's complement' or 'bitwise NOT' operator
(written -) will turn every bit in a number whose value is 1 into 0, and
every 0 into a 1. Note that, unlike the others, it operates on one variable
only:

(@]I!Jl[Il)
[!]1Ill

EXAMPLE CODE

will put a value of 00110011 into the variable result.

Complete Amiga C

220

Each binary digit inside a
byte can be manipulated
with logical operators.

Complete Amiga C

11111010111110101 a

11101110111011101 b

1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 result

11111010111110101 a

11101110111011101 b

11111010111110101 a

I 0 1 0 11 1 1 1 0 I 0 1 1 I 1 1 result

11111 01011111 010la

111 0111 0111 0111 0lb

10111110101111101 result

11111010111110101 a

11 1 1 1 0 I 0 I 1 11 1 0 1 0 I 0 I 0 I 0 1 result

Bitwise AND

result=a&bi

Bitwise OR

result=alb;

Bitwise NOT

result=-a;

Bitwise exclusive OR

result=aAb;

Bitwise shift

result=a«3;

result=a»4;

Bitwise logical operators

Chapter 12

Additional concepts

result=aAb;

result=a«3;

result=a»4;

221

There's an operator similar to bitwise OR, called 'bitwise exclusive OR',
written as A. When a bitwise exclusive OR is performed on two numbers,
it will give a result of 1 if either of the corresponding bits in the numbers
are 1, or a result of 0 if both are 0 or both are 1. Here's an example:

(@]~IIlI) 0101
EXAMPLE CODE

This would put a binary value of 01100110 into result.

The final two bitwise operators are called 'shift' operators. They will
shift the binary digits in a number either to the left or two the right
according to a number of places specified by the second operand.
Imagine an ordinary base 10 number, say 567. If you were to shift the
digits of this one place to the left, and put a zero in the right-most
column, you'd end up with the result 5670. Effectively you would have
multiplied the number by 10. If you had shifted the digits by 2 places,
you would have effectively multiplied it by 100, giving the result 56700.
Similarly, if you had shifted the digits right by one place, losing the
right-most digit, you would have ended up with the result 567. It would
be equivalent to dividing the number by 10. Shifting right two places
would divide by 100; three places would be dividing by 1000; and so on.

The bitwise shift operators perform the same function, except on binary
digits rather than base ten digits. This means that numbers are multiplied
or divided by 2, or powers of 2 (4, 8, 16, 32 and so forth) instead of 10 or
powers of 10 (100, 1000, 10000 etc). You shift a number to the left in an
expression by following it with the « symbol and a number representing
the number of places to shift. Shifting to the right is performed by the »
symbol.

If a contains the binary number 11 0 0 11 0 0, then

(@]~IIlI) 0101
EXAMPLE CODE

would put the value 11001100000 into result. The operation

(@]~IIlI) 0101
EXAMPLE CODE

Complete Amiga C

222

Complete Amiga C

Chapter 12

would put the value 1100 into result. (Leading digits would be filled
with zeros.)

Even though you may have written the values of these variables into your
source code as ordinary base ten numbers, the bitwise operators will
perform their operations on them as if they were in binary form. If you
like, you can think of them first translating the numbers from base ten to
binary, performing their operations, and then translating them back into
base ten again. In fact, this translation does not occur - all numbers are
stored inside the computer as binary numbers.

There is no convention in C for writing numerical constants in binary
form. However, dealing with individual bits when you are working in
base ten can be awkward - it involves a lot of mental translation on the
part of the programmer, because the two ways of representing the
numbers are so dissimilar. Happily, C enables us to write our numbers in
two other base8, both more akin to the binary format.

The first is known as 'octal'. Octal numbers are in base eight format.
Each of their digits lies between 0 and 7, and each digit in the number
has a value eight times greater than that of the digit to its right.

Hexadecimal numbers
The second format, 'hexadecimal', works in base 16. Each digit in
isolation has a value between 0 and 15. When computing the overall
quantity of a hexadecimal number, each digit is 16 times more significant
than the one to its right. In this case, though, there's a slight
complication. If each digit can have a value between 0 and 15, then the
digits 10 and above are going to cause confusion when the number is
written down - these digits seem to be comprised of two digits, rather
than the single one that they represent. How do we distinguish between
12 as representing two digits, one sixteen times the value of the other
(giving a base ten value of 1 *16+2=18) or just one hexadecimal digit,
representing the base ten value of twelve?

The answer is that hexadecimal digits 10 to 15 are instead represented as
the letters a to f. Hence the hexadecimal number ce is the same as the
base ten number 13*16+14=222.

Additional concepts 223

You can express a hexadecimal constant in C by placing the characters
'Ox' - that's the number 0 and the letter x - before it. Expressing a
number in octal is done by preceding it with just the number '0'. Given
this, the following assignments to result are all equivalent:

result=29i /* number in base 10 */

result=035i /* number in base 8, octal */

result=Ox1d; /* number in base 16, hexadecimal */

Decimal/binary / octal/hexadecimal equivalents

Base 10 Binary Octal Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 a
11 1011 13 b
12 1100 14 c
13 1101 15 d
14 1110 16 e
15 1111 17 f
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 . 14
21 10101 25 15
22 10110 26 16
23 10111 27 17

Complete Amiga C

224 Chapter 12

24 11000 30 18
25 11001 31 19
26 11010 32 la
27 11011 33 1b
28 11100 34 le
29 11101 35 Id
30 11110 36 le
31 11111 37 If
32 100000 40 20
33 100001 41 21

As you can see from the table, three digits of a binary number are
represented by one digit of an octal number. Four digits of a binary
number correspond to one digit of a hexadecimal number. There is no
simple correspondence between binary and base ten digits.

Octal and hexadecimal format numerical constants (written with '0' and
'Ox' before them respectively) can appear in your C programs wherever
you would an ordinary constant - on the right-hand side of expressions,
including simple assignments, in relational comparisons and so on.

ASCII characters
They can also be used to represent character constants. Normally, a
character constant is written as the character in question surround by
single quotes:

char letter='a'; (
[!B[I)
0I1Ill

~ MAKEA
NOTE!

ASCII codes

Complete Amiga C

EXAMPLE CODE

the variable letter can be treated like a char variable, but also as
holding an integer number. This is because characters are stored
internally as a number between 0 and 255. These corresponding numbers
are known as the ASCII code - you'11 find a list of them, and the
characters they represent - in the back of your Amiga manual. In the
above example, the variable letter could be treated as holding the
value 97.

Some character constants can't be written in this way. For example, the
character that represents a 'newline'. Typing this into your source code

Additional concepts 225

would simply result in the editor skipping to a newline. Instead, C uses
the following convention:

char letter='\n'i (
@JJ[!lEII)

[l][IJJ

Non-ASCII
characters

EXAMPlE CODE

with which you should be by now familiar. The backslash character
inside a string constant indicates that it and the character following it are
to be treated as a special control sequence. The two characters are
replaced by the compiler with the ASCII code for a carriage return. In
other words, the variable letter DOES NOT hold the two characters '\'
and 'n' - these are used only as a convention to tell the programmer that
you mean the single character that corresponds to a carriage return. There
are similar control sequences for other things - '\ t' means a tab, '\"
means a single quote, and '\ \' means a backs lash - the variable to which
this is assigned will end up containing the backslash character itself.

The notation enables character values to be represented in your program
that are not easily entered from the keyboard. The notation can be
extended to any character by representing the required character in either
octal or hexadecimal notation. This is done by following the backslash by
one to three octal digits, or by the letter 'x' and one or two hexadecimal
digits. The following three assignments to result are equivalent:

char result=' a' i
(

@JJa[IlJ)
[l][IJJ

EXAMPLE CODE

char result='\121'

char result='\x61'i

Defining Ibit-fieldsl

With C you can access the individual bits within a word without having
to make use of the bitwise operators. You do so by defining 'bit-fields'.
What this does, essentially, is give names to each of the bits, or
collections of bits, within a word. The individual bits can then be
accessed via the names, rather than having to be isolated via bit-wise
ANDs, ORs and NOTs. The syntax for declaring bit-fields is similar to
that for declaring a structure:

Complete Amiga C

226
Chapter 12

struct {
unsigned int bold : 1;

unsigned int italic : 1;

} text;

(@JIa[])
[Dlil

EXAMPLE CODE

text.bold=l;

This has declared a variable text with two defined bit-fields, each a

single bit big. The bit-fields must be of type unsigned int; the number of

bits that comprise them is given after the colon. Access to the bit-fields is

as follows:

(
@]I)
E~LECODE

if (text.italc==O) { /* do something if italic is not selected */ }

struct {

As you can see, bit-fields are often used as 'switches', or 'flags',

indicating that certain conditions apply. In the above example, both bit­

fields are only one bit large, and so both can only have a value of 0 or 1.

It's possible to define a field with more than 1 bit in it. In this example:

unsigned int bold : 1;

unsigned int italic 1;

unsigned int colour : 2;

([ila[])
[Dlil

EXAMPLE CODE

} colour_text;

Precedence

Complete Amiga C

the field colour_text. colour can have a value between 0 and 3 (the

range of values expressible in two binary digits).

Precedence is a subject that so far we've skirted around. This is because

programs that rely on precedence tend to be more difficult to understand

than those that don't. Precedence, basically, defines the order in which

operations are carried out within an expression. You may remember

when we first dealt with arithmetic, and noted that 3+4*5 would give the

result 23, not 35. Rules of precedence are needed to resolve ambiguities

like these. One of the rules is that the multiplication operator, '*', has a

higher precedence that the addition operator, '+'. This means that a

multiplication operation occurs before an addition. In the above example,

Additional concepts

Parentheses

227

the numbers 4 and 5 are multiplied together before the result is added to
3. As far as possible in this book so far, I've overridden the rules of
precedence by making use of parentheses. Parentheses force any
operation that they contain to be evaluated before the result is then used
in any containing expression. For instance, the parentheses in (3+4)*5
force C into evaluating first 3+4, to give a result of 7, before multiplying
it by 5 to give the answer 35.

Rules of precedence are applied not only to arithmetic operators, but all
operators, and also in the declaration and defining of some variables.
Remember that use of parentheses can always force a change of
precedence so that expressions are evaluated in the order you want them
to be.

Table of precedence

Operators

() [] -> .

- ++ - + - * & (type) sizeof

* / %

+ -
« »
< <= > >=

&
A

&&

11
?:

!=

+= *= /= %= A= 1= «= »=

Associativity

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

Those operators higher in the table have the higher precedence. Notice
that the operators +, - and * have a higher precedence when they apply
to only one operand (performing the functions of giving the value of the
operand, negate (i.e. returning the value of the operand multiplied by

Complete Amiga C

228

a=b+c+d+e;

a= ((b+c) +d) +e;

a=b=c=d=e=l;

Chapter 12

'minus one') and access the value or function held at an address
indicated by a pointer, respectively) than when in their more usual form,
of adding, subtracting and multiplying two accompanying operands.
Therefore they are given two entries in the table.

Associativity
The associativity of each operator, which can be either left to right or
right to left, defines how collections of the same operator in an
expression are evaluated. With left-to-right associativity, the left-most
operator is evaluated first, with evaluation progressing to the right. For
example:

is evaluated as if it contained the following parentheses:

The reverse is true for operators with right-to-Ieft associativity. Here:

is the same as the longer version:

a=(b=(c=(d=(e=l»»;

a+=5;

Complete Amiga C

A few of the operators listed in the table could do with further
explanation.

The operators +=, *= and so on have been discussed before. They are
shorthand notations for assignment, where the variable to be assigned is
also part of the expression to be evaluated to yield its new value. For
example:

adds five to the value of a, and is equivalent to:

Additional concepts

a=a+S;

a«=2;

int a;
float b;

a=7;
b=(float)a;

b=9.3;
a=(int)b;

229

The same applies for the modulo operator '%', which finds the remainder
from an integer division.

The bitwise operators discussed earlier in this chapter can also be used
with this assignment shorthand. For instance:

would shift the bits of the variable a two places to the left - or multiply a
by 4.

The operator ?: is the ternary operator, used to perform simple if ...
else type assignment decisions, as discussed in an earlier chapter.

(Type) - the cast operator
The entry written' (type)' is the cast operator, as mentioned briefly in
chapter 8. It forces the operand following it to be interpreted as an object
of the type specified within the parentheses. This type is the same
keyword used when defining a variable of that type. Casting is useful for
assigning integers to floats and vice versa:

We have used it in the past to cast a pointer to the required type. Malloe
returns the address of an area of free memory requested from the
operating system. The t~ type of pointer that should be used to store the
address depends on the kind of data to be put there. Previously, we used
it to store strings, so the value returned by malloe was cast to be of type
'pointer to char' by use of the (ehar *) operator. (Note that the

Complete Amiga C

230 Ch[]pter 12

asterisk is necessary to turn the address into a pointer; otherwise it would

be interpreted merely as a character itself.)

The final operator of interest is the comma operator, ',', which so far we

haven't mentioned.

The comma operator can be used to separate two expressions. When it

does so, the first expression is evaluated before the second. The overall

value of these two expressions separated by the comma is the same as

that of the right-most expression. Commas are most often used within the

defining clause of a for loop, where they can be used to alter the value

of more than one indexing variable:

for (i=O,j=20;i<10;i++ , j*=2); (@]al01)
[Il@]

int a,b,c;

a=b=c=5;

Complete Amig[] C

EXAMPLE CODE

In the above case, i counts from ° to 9, while j begins with a value of

20, and has its value doubled each time through the loop.

As you may have gathered, assignments themselves can be treated as

expressions, with their value being that of the value assigned. The

assignment j *=2 in the above for loop is also an expression.

A consequence of this is that you can perform multiple assignments:

(@]a01)
[Il@]

EXAMPlE CODE

will assign the value five to all three variables. The assignment operator,

'=', associates right to left, meaning that the right-most expression is

evaluated first. So the first thing to be done is assign the value 5 to the

variable c. This assignment is treated as an expression with a value of 5.

This number becomes an operand in the expression to the left, '1>=', so b

is also assigned the value 5. This assignment is also treated as an

expression with a value of 5, which is the value used in the final

assignment, that made to a.

Additional concepts 231

Automatic variables
We've already talked about how variables declared within a function (and
this goes for main() , too) are 'automatic' and 'local'. They are local
because they can only be used within that function, unless passed
explicitly to another. They are 'automatic' because they are created when
their function is called, and destroyed when the function ends. Use of the
keywords extern and static, or defining variables outside of any
function, alters these rules slightly, as discussed earlier.

Not only can you declare automatic variables inside functions, but also
inside smaller statement blocks, normally inside the body of a loop
enclosed in curly braces:

for (i=O;i<26;i++) {
char letter;

(@JJaCil)
[101

EXAMPLE CODE

}

letter=i+97; /* add ASCII code for the letter la
l */

printf (l9-oC\n" I letter) ;

would print out the letters of the alphabet in lower case. The variable
letter ceases to exist as soon as the loop has finished.

(omplete Amiga (

232

Complete Amiga C

Interfacing with
the machine
• Handling files

• (and the Shell

• Useful pre-defined functions

233

Complete Amiga C

234 Chapter 13

All of the examples so far have been designed to run from the CLl or

Shell. The functions from stdio.h that we've been using - scanf

and printf - have been used to take their input from the keyboard and

put their output in the console window - that is, the Shell window.

The functions are said to be connect~d to data streams. As a default

scanf is connected to a data stream known as 'stdin', while printf

is connected to 'stdout'. On the Amiga, these are defined to be the

keyboard and console window respectively. It's possible to change the

data streams so that the functions take and receive data from different

sources - most importantly, files.

Files are almost universally used in real-world applications. Just about

any application you have used is likely to have an option to save results

to disk, and retrieve results from disk.

Handling files

Complete Amiga C

You can perform basic file-handling operations in C fairly simply. You

need a pointer to a file, and a number of file functions to manipulate files.

These functions are supplied with the pointer as one of their arguments,

so that they can manipulate the file required by the programmer.

The pointer must be declared to be of type FILE (a data-type defined by

stdio. h). You can then give it a value by assigning it the result of a call

to the function fopen. This opens a file. Before you can perform any

operations on a file, it must first be opened in this way. Once you have

finished with it, it is important to then close the file with the fclose

function, which ensures that the file's new contents are saved to disk.

The function fopen expects two arguments - a pointer to a string

which represents the file's name as it is stored on disk (and possibly a

path too, if it is in a different directory to the program), and the 'mode' in

which the file should be opened. The mode is a pointer to another

string, containing a set of characters which define what the

programmer wants to do with the file. The table below shows the most

common modes used when opening a file:

Interfacing with the machine 235

~
Error checking

Table of file modes

Mode code
r
w
a

rb
wb
ab
r+
w+

Function
Open an ASCII file for reading
Create an ASCII file to be written to
Open an ASCII file for new information to be added to the
end ('append'). Create a new file if none exists
Open a binary file for reading
Create a binary file for writing
Open a binary file for appending.
Open an ASCII file for reading and writing
Create a new ASCII file for reading and writing

Opening a file for writing creates a new file with the specified name. If
such a file already exists, then it is replaced with the new one. Naturally,
opening a file for reading pre-supposes that one with the supplied name
exists. If it doesn't, or if the specified file can't be opened for any other
reason, then the pointer value returned by fopen is NULL. Your
programs should by no means expect all file handling operations to go
without error - not enough room on a disk is just one possible error
condition they are liable to encounter - so you should always check the
file pointer (or 'handle') to ensure it isn't NULL before carrying out
further operations.

Within stdio. h there are the function declarations - or prototypes - of
a number of functions designed for file manipulation. Two - fscanf and
fprintf - correspond directly to their more common equivalents,
scanf and printf. The difference is that the file versions expect a file
pointer as their first argument.

The following will create a short text file on your RAM disk:

#include <stdio.h> (1III~[l) [j][il

void main()
{

FILE *fred-PQinter;

EXAMPlE CODE

Complete Amiga C

236 Chapter 13

if (fred-pointer=fopen("ram:fred","w"» {

fprintf(fred---PQinter,"Hello from planet C\n");

fclose(fred-pointer);

}

}

type ram:fred

You can examine its contents with the

AmigaDOS command. Two file pointers are defined in stdio. h -

stdin and stdout. Using these, you can direct input from the keyboard

and output to the console window. The statements:

fprintf(stdout,"Hello from planet C\n"); (@]~0) 0l[J]
EXAMPLE CODE

and

printf("Hello from planet C\n"); (@]~[!) @[J]
EXAMPLE CODE

are equivalent. As you can see, printf and scanf are specialised cases

of the file versions, where their data streams are always linked to

stdout and stdin respectively.

Two more useful functions in this context are fgetc and fputc - which

retrieve characters from and put characters to the specified file. The first,

fgetc, takes just one parameter - the file handle - and returns a

character result that can be assigned to a variable. The second, fputc,

takes two parameters - the first a character to be 'put', and the second the

file handle of where it is to go.

Here's a program to print out the contents of a text file - a simple

version of the AmigaDOS 'type' command:

#include<stdio.h>

#define FILE_NAME_MAX 50

~COMPLETE
~LlSTING

~~[!J
0l[J]

void main()

Complete Amiga C

Interfacing with the machine 237

{

FILE *file_handle;
char filename[FILE_NAME_MAX];
char letter;

/* get path and filename from user - no longer than 49 characters */

printf("Enter the name and path of file to print out\n");
scanf (1I%49s" ,filename) ;

/* open file */

}

if (file_handle=fopen(filename,"r"» {

}

while «letter=fgetc(file_handle»l=EOF)
fputc(letter,stdout);

fclose(file_handle);

Notice that the file is only read from and closed if the program first
succeeded in opening it. The assignment in the definition of the while
loop ensures that the next character in the file is placed in the variable
letter. The value of this overall expression is the character retrieved,
which is then compared with the character EOF by the logical operator
, ! =', or 'not equal' to create the conditional expression needed by
while. EOF is a symbolic constant, defined in stdio. h. It means End
Of File, and is the character used to represent just that. The while loop
continues, printing out each character at a time to the file whose handle is
stdout (in other words, the console window) until the end of file is
reached, at which time the file is closed.

Arguments with the Shell
Unlike the vast majority of ArnigaDOS commands useable from the
Shell - themselves written in C - the programs we've so far written are
unable to take arguments typed in on the same Shell command line as the
name of the program to be run. Also, our usage of the main () function
so far has always been without it taking any parameters. Could these two
facts be related?

Complete Amiga C

238

Complete Amigo C

Chopter 13

Well yes, they are, but not in the way you might immediately think. It's
useful for a C program to be able to take a variable number of command­
line parameters, depending on the kind of things the user wants the
program to do. The AmigaDOS command 'type' is a good example of
this. The problem is that C functions can only take a set number of
parameters (with the notable exceptions of printf and scanf, but how
these functions were written is beyond the scope of this book), but if we
write main () so that it expects a fixed number of parameters, an error
will occur if the user enters too few or too many.

argc and argv
The problem is solved by wntmg main so that it expects just two
parameters (assuming you want command-line arguments, of course - if
not, you carry on as before, without any parameters). The first of these is
an integer, containing the number of command line arguments that have
been passed. It's conventional to name this variable argc, short for
argument count. The second parameter is a pointer to an array of strings
- that is, a pointer to an array of pointers, each in turn pointing to a string
of char. Its conventional name is argv - argument vector. Address
arithmetic and the interchangeability of pointers and array names enable
us to access each string in turn by supplying argv with an array index -
e.g. argv [2] will give us the third string.

Each string in the array pointed to by argv contains one of the command
line arguments, initialized automatically when your program is run. The
first string, the one pointed to by argv [0], is the name by which the
program was run, which means that argc will have a value of 1 if no
other arguments are passed. The last pointer in the array contains a
NULL value. This appears after the pointers for each of the strings,
which take up elements from argv[O] to argv[argc-l]. The NULL
pointer is therefore stored in argv [argc]. As you can see, the strings
containing the actual arguments supplied by the user for the program are
pointed to by elements argv[l] to argv[argc-l].

Using argc and argv
The simplest example of argc and argv in use is to show them being
used to implement an 'echo' command. We'll write it so that it takes each
of its arguments in turn and prints them out to the screen, each on a new

Interfacing with the machine 239

Using two variables
(usually called argc and
argv) you can pass your
main function any number
of AmigaDOS arguments
while only using two
parameters.

void main(int argc, char *argv[])
MEMORY

string 2

string 5
pointer 0
pointer 1

5 pointer 2
(no. of array pointer 3 elements) string 3

pointer 4
(array of pointers) string 1

string 4

argc & argv

line. Remember when you compile it to give it a different name from the
actual AmigaDOS command 'echo'. Here's the code:

#include <stdio.h> (@]~[l]) [10]
EXAMPLE CODE

void main(int argc, char *argv[])
{

}

int count;

for (count=l;count<argc; count++)
printf("%s\n",argv[count]);

The code should be pretty straightforward by now. We're not interested
in the first element of the argv array, because it points to the name by
which the program was called, so we initialize count to a value of 1.
Then the loop just counts from 1 to argc-l. Each value of count in
turn will access a different element in the array argv. Each of these is a
pointer to a string of char, remember, and so can be passed directly to
printf so that the string is printed out.

Complete Amiga C

240 Chapter 13

Another example
As another example, let's convert the previous function, which typed out
the contents of a file specified by the user, so that, instead of asking the
user for the file name, it accepts it as a command line argument. Here's
the new version:

#include <stdio.h>
~COMPLETE
~USTING

void main(int argc, char *argv[])
{

:§J]~II!
~[il

FILE *file_handle;
char letter;

/* if a filename has been specified (argc>l) then attempt to open file */
if (argc>l)

if (file_handle=fopen(argv[l],"r"» {

}

}

/* if the file is successfully opened, print it out */
while «letter=fgetc(file_handle»l=EOF)

fputc(letter,stdout);
fclose(file_handle);

Useful pre-defined functions

Complete Amiga (

So far we've avoided as much as possible using the pre-defined functions
in C's standard library. This has been for the purposes of demonstration­
it's useful to be able to see how such functions might be written.

In real life, however, it would be much better to call on those functions
already supplied with C. Why re-invent the wheel? Here's a list of some
of the more useful functions, along with what they do and the kind of
arguments they expect. Functions are listed under the header names by
which they must be included. Note the functions themselves are written
as prototype declarations, so you can easily see the types of their
arguments and return values.

Interfacing with the machine 241

ctype.h
Contains functions useful for manipulating characters.

int isalpha (char c) returns a non-zero value if c is alphabetic, 0
otherwise

int isupper(char c) returns a non-zero value if c is upper case, 0
otherwise

int islower (char c) returns a non-zero value if c is lower case, 0
otherwise

int isdigi t (char c) returns a non-zero value if c is a digit, 0
otherwise

int isalnum(char c) returns a non-zero value if c is alphabetic or
numeric, 0 otherwise

int isspace (char c) returns a non zero value if c is a space, tab,
newline, carriage return, formfeed or vertical tab, 0 otherwise

int toupper (char c) returns the upper case equivalent of c

int tolower (char c) returns the lower case equivalent of c

string.h
Functions for manipulating strings.

char *strcat (char *s, char *t) Concatenates t on to the end of
string s, and returns string s

char *strncat(char *s,char *t) Concatenates ncharacters oft
on to the end of s, and return s

int strcmp (char *s, char *t) Returns a negative integer if s is
less than t (compares ASCII values of each character in turn), 0 if
they are both the same, or a positive integer otherwise

int strncmp(char *s,char *t,int n) As above, but only
comparing the first n characters of each string

char *strcpy(char *s, char *t) Copies the string t to s,
including the string terminator' \ 0', and returns s

char *strncpy (char *s, char *t, int n) As above, but only the
first n characters of t

int strlen(char *s) Returns the length of string s as an integer
char * strchr (char * s , char c) Returns a pointer to the first

character with value c in s, NULL if there is none
char * strrchr (char. * s , char c) Returns a pointer to the last

character with value c in s, NULL if there is none

Complete Amiga C

242

Complete Amiga C

Chapter 13

stdlib.h
An assortment of useful things

double atof(char *s) Returns the numerical equivalent of a non­
integer numbered expressed as an ASCII text string

int atoi (char *s) Returns the integer equivalent of a number
expressed as a string

int rand (void) Returns a pseudo-random integer
void srand(unsigned int seed) Sets the random number

generator with a seed of value seed. A different seed produces a
different set of pseudo-random numbers

void *calloc (size_t n, size_t size) Returns a pointer to an
array of objects (a pointer to void can be used to point to any type
of data) with n elements, each of size size. A NULL pointer is
returned if no space can be found. If space is found, it is all
initialized to o. (Don't worry about the size_t type in the
definition - it's the unsigned integer type returned by the special
function sizeof.)

void *malloc (size_t size) Returns a pointer (again a pointer to
void, so the space can be used for any type of variable) to an area
of memory size bytes big. NULL is returned if the operating
system will not give up the space. If space is granted, be aware that
it is not initialized - it will contain garbage data

void free (void *pointer) Expects a pointer to an area of memory
previously obtained by calloc or malloc. A call to free with this
pointer will return the memory to the operating system and free it
for use by something else. Freeing an area of memory not owned
by the program can result in serious crashes.

void exit (int status) Causes program execution to stop. The
integer value status is passed back to the operating system. This is
the return value that can be used by AmigaDOS scripts.

int system(char *s) Executes the AmigaDOS command-contained
in the string s.

Interfocing with the mochine 243

math.h
Contains floating point mathematical functions. Note that with
DICE you must use the -lro option when compiling if you want to
use floating point numbers. This makes sure it links with the maths
library. Angles in the following functions should be expressed in
radians, not degrees.

double sin (double x) Returns sine of angle x
double cos (double x) Returns cosine of x
double tan (double x) Returns tangent of x
double as in (double x) Returns arcsine of x, where x is in the

range -1 to 1
double acos (double x) Returns arcosine of x
double atan(double x} Returns arctangent ofx
double sinh (double x) Returns hyperbolic sine of x
double cosh(double x} Returns hyperbolic cosine ofx
double tanh (double x) Returns hyperbolic tangent of x
double exp(double x} Returns exponential of x - e to the power

ofx
double log (double x) Returns natural logarithm of x
double loglO (double x) Returns base 10 logarithm of x
double pow (double x, double y) Returns x to the power of y

double sqrt (double x) Returns the square root of x

This list of functions is by no means complete, but it should suffice to get
you started. By all means experiment with them to see exactly how they
can be used. Several functions listed here can be used instead of our
versions in the example programs we've already written, making them
shorter and more efficient. Try going back to some of them and
modifying them accordingly.

Complete Amigo C

244

Complete Amigo C

245

Eliminating Errors
• Errors of language

• Errors of meaning

• Three debugging tips

Complete Amiga C

246 Chapter 14

I t's a sad fact of a programmer's life that it is next to impossible to
create a program of any size that contains no errors. Just about every

application you can buy will have some sort of bug obscurely nestled
within it. Obviously, though, it's important to eliminate as many errors as
possible from your program. This process is known as 'debugging' a
program.

You've probably already had to do some debugging of your own. The
chances are that you've incorrectly typed at least one of the examples so
far, in which case you would have introduced an error. This error may
have either meant that the program failed to compile, or that it behaved
strangely when it did compile and you ran it. Hopefully, you managed to
track down the error and correct it.

There are a few established methods in C that help you debug, but before
we go on to them it's as well to distinguish between the different types of
error you can expect to find.

Errors of language
,--\
'DO~~I
\ MEAN.

Syntax error

Complete Amiga C

These are known as syntax errors, in which some of what you have
written fails to adhere to the rules of C's grammar, or its syntax. These
kinds of errors can occur from simple typing mistakes. Equally, if you're
relatively inexperienced, you might use the wrong form of syntax by
mistake. You might, for example, include the body of a while loop
inside ordinary parentheses instead of curly braces.

These sorts of errors are usually spotted by the compiler when it tries to
translate your code. It will give you some sort of message - usually
they're fairly obscure, until you get the hang of them - and the number of
the line on which the error occurred. These errors are generally easy to
correct. You load your source file into the editor and look at the line in
question. The error usually lies on that line but can, as a result of the way
compilers work, actually be in a previous line. Once you get the hang of
C's syntax, you'll find yourself making fewer of these errors.

The compiler picks up most of them, but not all. There are times when
you may have made an error, whether through mis-typing or being

Eliminating errors 247

unsure of the correct syntax, which results in a statement which doesn't
do what you meant it to do, but which still obeys C's rules of syntax.
This brings us on to the second class of error:

Errors of meaning

a=b+c*d;

a=(b+c)*d;

Errors of meaning, or semantic errors, are the kind where your program
is syntactically correct - it will compile and, to some extent, run - but
doesn't produce the desired result. The meaning expressed by the
collection of C statements doesn't express the meaning of your design.
Or, in cases where the C program corresponds exactly to what you
intended, your design itself was not a correct solution to the problem.

Errors of meaning can cause your program to halt unexpectedly, to
produce strange results, or even to bring on the dreaded Guru message.
The latter is unlikely with the kind of programs we've been writing so
far, but you'll become more than used to it once you start using operating
system calls.

Here are some common causes of this type of error:

Confusion of precedence
You may write:

when what you actually intended was

Both are legal syntax, but only one produces the result you intended.
Another common mix-up with precedence is between the declarations of
pointers to functions, and of functions that return pointers. Here's the
first:

int (* func-PQinter) (int);

this declares a variable, func-POinter, that can hold the address of a

Complete Amiga C

248 Chapter 14

function taking an int as an argument and returning an int as a result.

Here's the second:

int *func-PQinter(int);

which declares a function called func-POinter that takes an int as an
argument and returns a pointer to an into

If the first meaning is desired, the parentheses are necessary to specify
the required precedence.

Array accessing
Remember that the first element of an array is number 0, with the last
element being the element numbered the size of the array minus one.
When you declare your array, you declare the number of elements, which
is one more than the actual number by which the final element is
accessed.

loop bounds
Check the logic of your loops carefully. It is easy to mis-use increment
and decrement operators, and relational operators to use your indexing
variable one too many or one too few times. For instance, the statement

for (i=O;i<=100;i++) { 1* body of loop *1 }

would cycle i from 0 to 100 inclusive, i.e. the loop is executed 101
times. If you wanted 100 iterations, you would need to change the loop to
read:

for (i=O;i<100;i++) { 1* body of loop *1 }

Complete Amiga C

Increment and decrement
On a related note, be aware that putting ++ or - before a variable means
that the variable will be incremented or decremented before its value is
used in the expression that contains it. In other words, the modified value
is used.

Eliminating errors 249

If ++ or - comes after the variable name, then its old value is used in the
expression, and then it is incremented or decremented. Errors of this kind
are common within loops, and when accessing arrays.

In many cases, such as the loop example above, it's immaterial whether
the increment or decrement operator precedes or follows the variable
name. But if you're using them in an expression, be careful that you've
got them the right way round. It would be possible to take the previous
loop example and compact the increment operation into the comparative
part of the loop, like so:

for (i=O;++i<100;) { /* body of loop */ }

Here the variable i is incremented once before the loop begins. In other
words, its value loops from 1 to 99. Once it is incremented to 100, the
loop terminates. Using post-increment on i, as shown below, would
modify the loop so that it counted from 1 to 100:

for (i=O;i++<100;) { /* body of loop */ }

Recursion
Remember that if you make use of recursion, each function call requires
a certain amount of memory. If a function recursively calls itself many
times, it's possible that it will run out of memory. You can make this
happen inadvertently if you have failed to put in a condition to terminate
the recursion, or if the condition you are checking for somehow never
occurs. Look at the part of your recursive function that returns a result,
from here you should be able to track down the error.

But a recursive routine can be fine, and still run out of memory. You can
increase the amount of memory a program has to use by use of the
AmigaDOS stack function. Execute this with the number of bytes you
require before running your program.

Poor error-handling
You should always check any input that your program takes from the
user. It's all too easy to write programs that will perform a certain task
depending on what the user enters, and assume that the user will always

Complete Amiga C

250

char *s;

Chapter 14

enter a correct option. Always write your programs so that they will take
into account an invalid user entry.

Your programs need to be able to handle errors generated not just by the
user, but by the operating system, too. We'll go into operating system
calls in more detail next chapter, but we've already used a couple of calls
- malloe, for one, and the file handling functions too. Malloe asks the
operating system for some memory. It's quite conceivable, if memory is
tight, that the operating system is unable to give your program the
memory it asks for. If this happens, and your program fails to check for it
(the pointer returned by malloe will be NULL if no memory was given)
then it will cause a crash as soon as it attempts to access the memory it
thinks it has. A common check for a successful malloe is shown below:

(@]E!lIIJJ) 010]
EXAMPLE CODE

if «s=(char *)malloc(SO»!=NULL) { /* do something if s points to an
area of memory */ }

This attempts to grab 50 bytes to store a string, accessed by s. Notice
that the pointer returned by malloe is cast to a pointer to ehar before
being assigned to s. The result of this expression is the new value of s,
which is compared to NULL in the if's relational expression. If it is not
equal, the body of the loop executes. A more common shorthand,
frequently used when accessing malloe and other system resources, is:

if (!(s=(char *)malloc(SO») { /* do something if s points to an area of
memory */ }

(@]01E!l0]IIJJ)
EXAMPLECQDE

Assignment and equality
One of the most common errors is caused by people confusing = and ==.
The first assigns a value to a variable, the second compares its two
operands, returning 0 if they are dissimilar, or a non-zero value if they
are the same. If an assignment is used as part of an expression, then the
result it yields is the value assigned. Look at this:

if (a=l) { /* do something */ }

Complete Amigo C

Elimin(]ting errors 251

The programmer probably intended the something to be done only if a
held the value 1. Unfortunately, the assignment gives a the value 1 no
matter what. This assignment is then treated as a logical expression. Its
result is 1 - non-zero - so the logical expression is true and the
something is done, no matter what the original value of a. The correct
form is this:

if (a==l) { /* do something if a contains 1 */ }

~
Pointers

Similarly, it's also easy to confuse the logical operators && and 11 with
the similar bitwise operators & and I. Be careful.

Nested ifS
Nesting if statements inside one another can be a great way to confuse
yourself. If you're unsure which else or end if belongs to which if,
make use of curly braces to emphasise the logic. Also, be sure to indent
your code with tabs - the indents again make the logic more apparent.

Pointers
Pointers, by their very nature, are dangerous things. The compiler can't
keep its eye on pointers for you as it can with ordinary variables. You can
only access variables that you have properly declared, but with pointers
you can access just about anything. Accessing memory that your
program does not own is a sure fire way to a crash. For this reason, you
should be doubly careful about checking pointers for NULL values, and
that your pointer arithmetic doesn't produce any unexpected results.

The use of pointers is especially prevalent in programs that interface with
the operating system. Because the use of the functions that do this can
seem quite overwhelming to newcomers, it's no surprise that confusion
leads to pointer misuse. Be on your guard.

Global variables
Variables that can be accessed globally - i.e. by more than one function -
can sometimes cause problems. If the value of a local variable is not what
you expected, you can track the offending code down to somewhere
within the function that defines it. With a global variable, the error could
be in any number of functions that access it.

Complete Amig(] C

252 Chapter 14

Be sure to only use global variables when you need to. Each time a
parameter is passed to a function, time is spent copying the argument
value to the parameter, and memory used in creating space for the
parameter. When your programs are using certain system structures
(screens or windows, for example) it's impractical to pass them in this
way. So global variables are a necessary evil. Try to make sure that only
those functions that need to can modify your global variables.

Three debugging tips

Complete Amiga C

Comments
Always comment your code. It will help no end in the debugging of your
program. It's impossible to over-emphasise how valuable the proper
labelling of obscure bits of code can be. You can be sure that a couple of
months after you've written a routine, you won't be able to remember
exactly why it was written as it was. You should use comments to bring
out the logic of your program design.

Write modular code
If you write your program as a series of modules, you can test each
module individually to ensure that it works before adding it to the overall
project. One of the most important skills in debugging is being able to
trace a fault to a particular area in your program. You want to have to
search through as few lines as possible for the error. Writing your
programs as a set of modules means that tracing a fault will be so much
easier.

A common way to write modular code is to first write your main routine,
which usually provides the containing structure. From here, various other
functions are called. Initially, just write these functions as dummy
functions - just the bare bones of their definitions, with no content other
than, perhaps, a statement to print a message to the screen letting you
know the function has been called. Your main program can then be
tested until you know it works.

Once it does, you can begin writing the functions, one by one. As you
write each one, you can test it by calling it from main. If an error

Eliminating errors 253

appears, you can be fairly sure that it's going to be in the piece of code
you've just written. If you sit down and write your whole program in one
sitting before running it, well, your problem could be anywhere.

Taking modular code one step further - once your programs get to be of
an appreciable size, you'll find it useful to section parts off, according to
the functions they perform, into different source code files. At this stage
you'll find header files useful. For one thing, a header file can contain all
the #includes that your other modules depend on. You can also use it
to declare functions (themselves defined in a separate source file) to be
used by the other modules. (Remember that functions need to be declared
before they can be called in source code.)

Diagnostics
Get your troublesome programs to give status reports. A few printfs
placed here and there will help you see what is going on while a program
is running. As mentioned above, you can put a printf in a function to
let you know it has been called. It's sometimes a good idea to put another
message at the end of the function to let you know when it has exited:

int find_biggest(int a, int b)
{

([2]a[])
[i!1Il

EXAMPLE CODE

}

printf("** Entered find_biggest\n");
/* body of function */
printf("** Leaving find_biggest\n");
return (result);

You might also want to print out the values of key variables at certain
parts of your program. Printing out the index of a loop that isn't working
properly is ·a common example:

for (i=O;i<limit;i++) {
printf("Value of i is %d\n",i);
/* body of loop */

}

Complete Amiga C

254

Complete Amiga C

Chapter 14

You'll develop more of your own debugging tricks as you progress.
Debugging is a fact of programming life. With large projects, it can
sometimes take longer to debug them than to write them in the first place.

Using Amiga
libraries
• Amiga-specific (

• Exec

• Using libraries - examples

255

Complete Amigo C

256 Chapter 15

By now you should be familiar with, or at the very least have had a
passing acquaintance with, all the major aspects of the C language.

Given your knowledge, you can create programs of any complexity you
choose, and they will compile and run on any computer system that has a
C compiler.

The key to the portability of all previous programs is the simple, text­
based interface they have relied on. This interface has been built around
C's standard library, stdio. Every C compiler on every system comes
with stdio, which contains the same functions. The exact way in which
these functions are written, and the methods by which they perform their
tasks on the computer in question, may be quite different; but from the C
programmer's point of view they are identical on all systems: they have
the same names, they take the same arguments and they carry out the
same tasks.

Amiga-specific programming
Ai

'""';;' DOES IT.
, MEAN

Libraries

Complete Amiga C

We're now going to deal with how to write programs especially for the
Amiga, making use of its special features. Programs such as these rely on
a set of Amiga-specific libraries. Although computers such as the
Macintosh and PC have similar features to the Amiga, these features are
accessed by completely different libraries - any programs you write that
take advantage of the Amiga's facilities will have to be re-written before
they can be compiled and run on a different type of machine. However, if
you make careful use of the Amiga libraries, you can be pretty sure that
your programs will run on any model of Amiga, memory permitting.

Unlike ordinary libraries, which the linker connects to your program at
the final compilation stage, the Amiga-specific libraries are stored either
in the computer's ROM, or on disk, ready to be loaded as they are
needed. When you come to compile a program that makes use of these
libraries, DICE links in an amiga . lib file (the exact name varies
depending on the version of the operating system you are using) which
contains, not the functions themselves, but entry points to the functions
in ROM. You must, in your own programs, also #include various
header files that contain function prototypes and associated data-type
definitions.

Using Amiga libraries

~~OO\
OOE5IT.

C
Exec

257

It's beyond the scope of this book to discuss in detail the many, many
Amiga library functions available to you. There are some very substantial
official Commodore manuals that do just that. If you're serious about
programming the Amiga, you'll need them. They are: Amiga ROM
Kernel Autodocs, Amiga ROM Kernel Devices and Amiga ROM Kernel
Libraries, and all are published by Addison-Wesley.

A practical demonstration
To demonstrate the use of the Amiga's facilities, I'm going to show you
how to write a simple game: Four In A Row. The game is played on an
eight-by-eight grid, with two players, each using different coloured
pieces. Players take it in turn placing pieces on the board, with the object
of getting four of their own pieces in a row, horizontally, vertically or
diagonally. The pieces, though, are "dropped" into the board, so they
always fall to the lowest free row of whichever column you choose.

Before we get involved with a discussion of how to get the computer to
play the game - in itself an interesting problem - we'll go into the
mechanics of creating a display on which the game can be played.

The Amiga's operating system is organised into a number of different
parts, each dealing with a specific area. For instance, the part of the
operating system dealing with the Workbench windows environment is
known as Intuition. The most fundamental part of the operating system is
Exec. Exec controls all other programs running on the Amiga, it is the
part that enables multi-tasking to occur - it divides the system's time
between different programs, and passes messages between them.

Each of these areas of the operating system can be utilised by a
programmer by calling on their corresponding library functions. But
before this can be done, the library that contains the functions must be
"opened". Each area of the operating system has a corresponding library.

When you open a library, you inform Exec that your program wishes to
make use of that library. If the library is on disk, rather than in ROM,
Exec will load. it into memory for you. The opening of a library is
performed by calling an Exec function called OpenLibrary. You can
use OpenLibrary, even though it is itself a function of the Exec

Complete Amiga C

258

Our 'Four-in-a-Row' game
consists of 8 vertical
columns into which each
player in turn drops
counters. The winner is
the first player to make a
horizontal, vertical or
diagonal line of four
counters.

Complete Amigo C

Chapter 15

PIECES 'FALL' DOWNWARDS

'Four-in-a-Row'

library, because Exec is "opened" automatically when your program
runs.

When you call OpenLibrary, you pass it two arguments. The first is a
string, or more correctly a: pointer to a string, that names the library you
require. The second is the version number of the library. If, for example,
you are writing a program that relies on a function only provided with
Workbench 2, then you will want to be sure that it is a Workbench 2
library you are opening. If you supply a version number of zero, the
library will be opened no matter which version it is. All of the examples
in this book will work with Workbench 1,3 and above.

The function OpenLibrary returns a result: a pointer to a structure. The
exact type of this structure depends on the library you have tried to open

Using Amigo libraries

Closing
libraries

259

- the declarations are contained within the relevant header files, which
must be #included in your program.

This result must be stored in a pointer variable of the correct type.
Furthermore, the name of the variable is fixed, depending on the library
opened, and it must be global. This is because the various operating
system functions will need to use it. The structure indicated by your
pointer contains information on how each of the library's functions can
be found and called. You need not worry about this; once you have the
library base pointer you can call on the functions by their names, as you
would any other C function, and the compiler will sort out the rest.

It's possible for your call to OpenLibrary to fail. It may be that Exec
has been unable to find a library version as recent as the one you
specified, or that there is insufficient room in memory to load the library,
or that you have asked for a non-existent library. In these cases, the value
returned will be NULL. It is up to your program to check for this -
calling the functions of an un-opened library will result in a crash.

Also, when your program finishes it must close down each of the
libraries opened. This is done by a call to CloseLibrary with your
library pointer as argument. Your program must also relinquish its hold
on any other resources it may have obtained from the operating system,
usually windows and screens. We'll come on to how to do this in due
course.

Using two libraries
The two libraries we'll be needing are Intuition and the graphics library,
called "intuition. library" and "graphics.library". Their base
pointers must be assigned to global variables called IntuitionBase
and GfxBase respectively. Upper and lower case is important. The first
of these is declared as being of type pointer to struct Library - the
standard declaration for library pointers. GfxBase is something of an
exception, and it must be declared as being a pointer to struct
GfxBase. Notice also that the GfxBase pointer must be cast to be of
type pointer to struct Library when the library is closed.

Complete Amigo C

260 Chapter 15

Here's how we would attempt to open them and then close them again:

/* include operating system header files */

#include <exec/types.h> /* contains type definitions useful to ~
system libraries */
#include <intuition/intuition.h> /* contains data types used by ~
Intuition */
#include <intuition/intuitionbase.h> /* contains definition of ~
IntuitionBase structure type */

/* declare pointers to graphics and intuition libraries */

struct GfxBase *GfxBase;
struct Library *IntuitionBase;

1* define the function that opens the libraries */

void setup ()
{

1* open graphics library and get a pointer to it */
GfxBase=(struct GfxBase *)OpenLibrary(lgraphics.library",O);

/* leave program if· failed to open library */
if (GfxBase==NULL) exit(lOO);

(@]~[J]) 010
EXAMPLE CODE

/* open intuition library and get pointer to it */
IntuitionBase=(struct Library *) OpenLibrary(lintuition.library",O);
/* if failed to open, close graphics library and stop */
if (IntuitionBase==NULL) {
CloseLibrary(GfxBase);
exit(200);
}

}

void closedown()
{

/* close down libraries */

Complete Amiga C

Using Amigo libraries 261

CloseLibrary(IntuitionBase);
CloseLibrary«struct Lbrary *)GfxBase); /* cast GfxBase to be of ~

type pointer to library * /
}

void main()
{

}

/* call function to open libraries */

setup() ;
/* call function to close them */
closedown();

Notice how IntuitionBase and GfxBase are declared as global
variables. The result returned by OpenLibrary is cast to be of a pointer
to the structure required at each call. Also, notice that after the attempt to
open each library, the pointer is checked to see if the call was successful.
If it wasn't, the program can proceed no further so it quits. But in the
case of it failing to open Intuition, it first closes the graphics library,
which it must have successfully already opened. It is important to ensure
that your program closes everything that it opened, no matter how it
finishes.

If both libraries were opened successfully, the program calls another
function that closes them again. In general there's no need to worry about
calls to CloseLibrary failing. You must remember, though, to pass it a
valid pointer.

Now that we can open the libraries, lets look at how we can use their
functions.

Opening a screen
Our first task is to open a screen. This is achieved with a call to the
OpenScreen function. This function returns a pointer to a Screen
structure which the function creates for us in memory. We can then use
this pointer for all further operations on the screen.

Complete Amigo C

262 Chapter 15

We pass as an argument to the function a pointer to a NewScreen
structure. This shouldn't be confused with a Screen structure. A
NewScreen structure contains the definitions for the kind of screen we
want, and is initialized by our program. A Screen structure contains
information supplied by the call to OpenScreen.

A NewScreen structure is declared and initialized like this:

struct NewScreen InitScreen = {
(@]EllIIl)
~~

};

0,0, /* the top left coordinate of the screen */
640,200, /* the bottom right coordinate */

EXAMPLE CODE

3, /* the number of bitplanes - 3 gives us eight colours */
0,1, /* detail and block pens - define colours of title strip */
HIRES, /* the view mode we want */
CUSTOMSCREEN,
NULL, /* use default font for title */
"OUr custom screen", /* the screen's title */
NULL /* no gadgets */

And it's opened like this

(lI]~a~lIl)
struct Screen *CurrentScreen; EXAMPLEeODE

/* CurrentScreen is a global variable pointing to a Screen structure */

CurrentScreen=(struct Screen *)OpenScreen(&InitScreen);

Notice how the address operator is used to take the address of our
InitScreen structure. Notice also that the pointer returned is cast to be
of type pointer to Screen st:ru.cture.

In practice, you must always check that the pointer returned is not
NULL, that the screen has been opened successfully. Once you have
finished with the screen, you close it by passing your screen pointer to
CloseScreen:

CloseScreen(CurrentScreen); (@]EllIIl)
~~

EXAMPLE CODE

Complete Amiga C

Using Amigo libraries 263

Creating a window
Windows are created in a similar way. First we initialize a N9WWindow
structure:

struct NewWindow InitWindow = {
0,11, /* position of top-left

top-left of the screen */
of window relative to the ~

640,189, /* the width and height of the window */

(
@JIEi[l) [!]1IIl
EXAMPLE CODE

0,1, /* use the same detail and block pens as window's screen */
MOUSEBUTTONSICLOSEWINDOW,
/* these flags indicate the messages our window wants to ~

receive from Intuition */
ACTIVATEIWINDOWCLOSE,
/* further window flags */
NULL, /* no gadgets */
NULL, /* no user checkmark */
"Four in a row", /* the window title*/
NULL, /* pointer to the window's screen - assigned later in

program */
NULL, /* pointer to a superbitmap */
0,0,640,189, /* the minimum and maximum widths of the window -

ignored because we have not selected the sizable flag */
CUSTOMSCREEN /* type of screen to be used */

};

You'd open the window like this:

(@JI[!]~[I)
struct Window *CUrrentWindow; EXAMPLECOOE

/* CUrrentWindow is a global variable pointing to a Window structure */

/* having opened a screen, we must put a pointer to it in the ~
NewWindow structure InitWindow */
InitWindow.Screen=CUrrentScreen;

CUrrentWindow=(struct Window *)QpenWindow(&InitWindow);

Notice how in InitWindow's declaration NULL is assigned to the
pointer used to attach the window to a screen. This gap is filled once

Complete Amigo C

264 Chapter 15

we've successfully opened a screen, by assigning a pointer to the screen
to the • Screen part of the NewWindow structure. Having done this, the
window can be opened in much the same way as a screen can.

It's customary, having opened a window, to take something from its
structure known as a "rast port" pointer. It points to a RastPort
structure, and it is used in all drawing operations. We won't be needing it
just for now, but here's how it is declared and assigned:

stnlct RastPort *rp; (@JJEl:!])
[]][I]J

EXAMPLE CODE

rp=CurrentWindow->RPort;

Complete Amiga C

Here, CUrrentWindow is a pointer to a Window structure, not a
Window structure itself, so it must first be de-referenced with the ->
operator before we can get at the RPort pointer.

Using Intuition
In the structure definition for Ini tWindow above, there were two lines
of "Intuition flag" assignments. These flags tell Intuition about the sort of
window we want. The first line deals with the IDCMP, or Intuition Direct
Communications Message Port. This is the means by which Intuition
gives your program messages relating to the window. In our case, we've
elected to receive messages if the user clicks the mouse button or (the
vertical bar is a logical OR, remember) if the user clicks on the close
window gadget. These and other flags are defined in the Intuition header
files.

The second line informs Intuition that we want the window to be made
active when it is opened (that is, all user input is directed there until
another window is selected by them) and that we will be closing the
window ourselves.

In order to receive messages from Intuition (which is to say, to get user
input), we need to reference something called an IntuiMessage. This
is a structure, which we access by a pointer, that contains the information
Intuition communicates to us. You can declare a pointer of the required
type with:

Using Amig(] libraries 265

struct IntuiMessage *messagei (
[! Ell [!)
~[il

EXAMPLE CODE

And you can retrieve a message from Intuition by making a call to
GetMsg. The result it returns is a pointer to an IntuiMessage
structure. If no message was waiting, the function returns NULL. Here's
how you call it:

message=(struct IntuiMessage *)GetMsg(CurrentWindow->UserPort)i

The UserPort element of the Window structure is devoted to receiving
Intuition messages.

Intuition messages
The IntuiMessage structure takes the following form:

struct IntuiMessage {
(
[!Ell[l)
~[il

}

struct Message ExecMessagei
ULONG Class;
USHORT Codei
USHORT Qualifieri
APTR IAddressi
SHORT MouseX,MouseYi
ULONG Seconds, Microsi
struct Window *IDCMPWindowi
struct IntuiMessage *SpecialLinki

EXAMPLE CODE

The types in capitals are #defined shorthands: ULONG is equivalent to
unsigned long int, USHORT unsigned short int, APTR a
pointer to an arbitrary address.

Many of these fields are of use only to the system. The Class field,
however, contains information about the type of message you've got. You
can compare this field directly with the flags you supplied in the
NeWWindow structure to specify which kinds of messages you wanted to
receive. You must retrieve the information from the IntuiMessage
structure as follows:

Complete Amig(] C

266 Chapter 15

unsigned long int class;
(

[£]B[IIJ)
IBJ[I]J

EXAMPLE CODE

class=message->Class;

The IntuiMessage also contains the position of the mouse when it was
sent, and the system time, held in Mouse){, MouseY, Seconds and
Micros respectively. IAddress contains the address in memory of the
structure that caused the message. This might be a gadget that you have
created for your window - we won't be using it. IOCMPWindow is a
pointer to the window that received the message, while the Code and
Qualifier fields depend on the kind of message received. We will not be
needing them.

Once you have retrieved all the information you need from the message,
you must reply to it. This tells Intuition that you have received and
understood the message, and enables it to use the space the message took
up for something else. You reply to a message like this:

ReplyMsg(message); (
[£]B[IIJ)

IBJ[I]J
EXAMPLE CODE

The program
With all that under our belts, we're ready to write a program to open the
graphics and Intuition libraries, open a screen and a window on it, and
wait until the user clicks on the window's close gadget. When this
happens, we must close the window, then the screen, and finally the
libraries. Here's the code:

1* include operating system header files *1

#include <exec/types.h>
#include <intuition/intuition.h>
#include <intuition/intuitionbase.h>

/* include prototypes for library functions */

#include <clib/intuition-protos.h>
#include <clib/exec-protos.h>
#include <clib/graphics-protos.h>

Complete Amigo C

~COMPLETE
~LlSTlNG

[£]~[IIJ
IBJ[I]J

Using Amigo libraries 267

/* declare pointers to graphics and intuition libraries */
struct GfxBase *GfxBase;
struct Library *IntuitionBase;

/* define a pointer to a rastport structure */

struct RastPort *rp;

/* define the text to be used in the screen title */

struct TextAttr Text Font = {
"topaz.font",
8,0,0

};

/* declare pointers to the Window, Screen and Intuition Message data
structures */

struct Window *CUrrentWindow;
struct Screen *CUrrentScreen;
struct IntuiMessage *message;

/* define the parameters of our new screen */

struct NewScreen InitScreen = {
0,0,

640,200,

3,

0,1,

HIRES,

CUSTOMSCREEN ,

&TextFont, "Our custom screen", NULL
};

/* define the parameters of our new window */

struct NewWindow Initwindow = {

Complete Amigo C

268

0,11,
640,189,
0,1,
MOUSEBUTTONSICLOSEWINDOW,
ACTIVATEIWINDOWCLOSE,
NULL,

NULL,
"Four in a row",
NULL,
NULL,
0,0,640,189,
CUSTOMSCREEN
};

Chapter 15

/* define the function that opens the libraries, screen and window */

void setupdisplay()
{

/* open graphics library and get a pointer to it */
GfxBase=(struct GfxBase *)OpenLibrary("graphics.library",O);

/* leave program if failed to open library */
if (GfxBase==NULL) exit(100);

/* open intuition library and get pointer to it */
IntuitionBase=(struct Library *) OpenLibrary("intuition.library",O);
/* if failed to open, close graphics library and stop */
if (IntuitionBase==NULL) {

}

CloseLibrary«struct Library *)GfxBase);
exit(200);

/* open a new screen according to the parameters in InitScreen */
/* put a pointer to the new screen in CUrrent Screen */
CUrrentScreen=(struct Screen*)OpenScreen(&InitScreen);

/* if OpenScreen failed, close the Intuition and Graphics ~
libraries */

if (CUrrentScreen==NULL) {

Complete Amiga C

Using Amigo libraries

}

CloseLibrary(IntuitionBase);
CloseLibrary«struct Library *)GfxBase);
exit(300);

/* Make our new window belong to the new screen */
Initwindow.Screen=CUrrentScreen;

269

/* Open a new window with the parameters in Initwindow, and put */
/* a pointer to it in CUrrentWindow * /

}

CUrrentWindow=(struct Window *)OpenWindow(&InitWindow);
/* if failed to open window, close screen and libraries */
if (CUrrentWindow==NULL) {

}

CloseScreen(CUrrentScreen);
CloseLibrary(IntuitionBase);
CloseLibrary«struct Library *)GfxBase);
exit(400);

/* get the opened windows rastport, and store it in rp */
rp=CUrrentWindow->RPort;

void closedown()
{

}

/* close down window, screen and libraries */
CloseWindow(CUrrentWindow);
CloseScreen(CUrrentScreen);
CloseLibrary(IntuitionBase);
CloseLibrary«struct Library *)GfxBase);

void main()
{

unsigned long int class; /* class of message received */

/* call function to open screen and window */
setupdisplay () ;
/* wait until user clicks the close gadget */
do {

Complete Amigo C

270 Chapter 15

while«message=(struct IntuiMessage *)GetMsg~
(CUrrentWindow->UserPort»==NULL)

i /* wait for message */
class=message->Classi

ReplyMsg(message)i
} while (class!=CLOSEWINDOW)i /* repeat until user asks to ~

close the window */

/* relinquish all system resources */
closedown()i

}

Wait function

Complete Amiga C

Rather than using the default font for its screen, the program specifies it
wants a particular one by putting a pointer to a TextAttr structure in
the NewScreen structure. The TextAttr structure is declared
immediately above, and is asking the system to use Topaz 8.

Notice that immediately after the program attempts to open each system
resources, it checks for success. If it meets with failure, then it closes
down every previously opened resource before exiting. The C function
exit forces a program to terminate immediately; the argument it is
passed gets returned to AmigaDOS as an error code.

In the function main, the program goes into a loop that is only ended
when the user clicks on the window's close gadget. This can be checked
by comparing the message type assigned to the variable class with the
flag CLOSEWlNOOW. When the two are equal, the loop ends and the
system resources are relinquished with a call to closedown.

It's not generally a good idea to put your programs into loops like this.
Because your program is running in a multi-tasking environment, it's
wasting valuable processing time just waiting for the user to do
something. This time would be better spent on other programs that are
trying to do some work.

You can resolve this problem by calling a function named Wait. This
will send your program "to sleep". Exec will only wake it up again when

Using Amiga libraries 271

it has received one of the messages from Intuition that it specified an
interest in, which was done by setting the IDCMP flags in the
N9WWindow structure. You can get your program to wait quietly for input
with the following line:

Wait(lL«CurrentWindow->userPort->mp_SigBit); (
II! El 1Ill)

[!Jj[il
EXAMPLE CODE

The DlP_SigBit field is made active when a message has been sent.
Immediately after this line, you can place the assignment to message
from the call to GetMsg, as it will only be executed once a message is
waiting. We'll make use of this better method in our final version of the
game.

Complete Amiga C

272

Complete Amigo C

273

IFour-in-a-Row'
• Planning a game

• Programming a computer opponent

• The game code

Complete Amigo C

274 Chapter 16

I t's time to look at how we are going to write the part of the program
that actually plays the game. When we've done that, we'll go on to

how to draw the board and pieces in our window, and then present the
finished program.

With more complex programs, you'll often find that the best way to start
is to think about the sort of data they will be handling, and how this data
is best to be stored. Four In A Row is played on an eight-by-eight board,
which is its fundamental data-type.

Planning the structure

Complete Amiga C

We need to be able to indicate whether each position is empty, or
contains one of two types of pieces. We can store these as single
characters, and therefore represent the board as a two-dimensional array
of char. Although the game is only played on an eight-by-eight grid, our
task will be easier if we define a bigger array. Part of the strategy for
finding the computer's move will involve searching from one board
position to up to three positions away in each direction. Rather than
having to check that we are not searching beyond the bounds of the
board, we can declare a bigger array, and define the gaps around the
eight-by-eight area's edge as being permanently empty. To this end, they
are initially filled with the null character, '\ 0', while the places in the
eight-by-eight area are filled with spaces. Characters representing the
Human and Computer pieces are defined to be 'x' and '0' respectively.

The overall structure of the program breaks down as follows: open the
libraries, screen and window; draw the board; get a move from the
player; update the board; make a move for the computer; update the
board; get another move from the player until the window is closed.

The computer's move
The part of interest is the part that generates the computer's move. This
uses an algorithm known as "Mini -max", common to many strategy
games. It consists of two parts. The first part generates the moves it is
possible to make at a given point in the game, and then proceeds to make
each of them in turn. The second part evaluates a given board position. It
can give a result with respect to either player. Its result is a number; the

'Four in 0 Row' 275

r----~-----~-----r-----I-----'-----r-----,-----'-----T-----r----~-----T-----r-----I

I f I I I I I r I 1 I I I
I I I I J I I I I
I I I I
I I I I I I I I I I I I J I I L ____ ~ _____ ~ _____ L _____ I _____ ~ _____ L _____ I _____ ~ _____ L _____ L ____ ~ _____ ~ _____ L ____ J

I I r I I J I I I I I I I
J I I I I I I I
I I I I f I
I I I
I I I I I I I I I I I I I I I
~----~-----~-----r-----I-----'-----r-----I-----'-----r-----r----'-----+-----~----~
I t I J I I I I I I I I J I
I I I I I I I I I I I I
I I I I I I I I I

I I I
I I I I I
r----'-----r---- ----'-----r----'
I I I
I I I
I I I
I I I
I I I I I I
~----~-----r---- ----l-----r----l

J I I I I
I I I I
I I I I

I I I I I I

'- - - - - -l- - - - - '- - - - - PLAYING AREA - - - - -l_ - - - - '- - - - --'
[I I I I

I I
I I
I I
I I I I
1- - - -"'1 - - - - - r- - - - - +---t_----t---+---t_----j---+---+-----lf- - - - - "1 - - - - - r- - - - -..,
I I I I I
I r I I
I I I I
I I [I
r I I I I f r----l-----r---- ----l-----r----l
I I f I

I I I
I

I I I
~- ___ -1 __ --- ~--- -+----t----t---:
I

I
I

I I I
/------1- ----t-----+---+---O
I I I

I
I
I

I I I
r----~-----r----

I I
I
I

I I I L ____ ~ _____ L ___ _
I I I
I I

I
I

I
I I I

:-1c----+""7-..,,-+----t----+ - - - - ~ - - - - - ~ - - - - ~

I
I
I
I

:-+-7-~+---t_--_+ - - - - -I - - - - - r- - - - --I
I I I
I I
I I
I I

:-t----+--- -~-- -- -~- ---~
I I
I I
I I

I I I

'--t----+-- --~ - -- --~ -- --~
I I

I r I I I I I I I r I I
~----~---_-~-_-_-L_---_r--_--J_----L-----L-----1-----L- ____ L ____ ~ _____ + _____ ~_---~
I I I I I I I I I I I I I I I
I I I f I I I I I I
I I I I I I

I
I I J I I I I I I r I I I I I
r----~-----~-----r-----r-----'-----r-----r----'-----r-----r----~-----T-----r----'

I I r I I I I I I I I I 1 I
I I J I I r I I I I
I r f I I
I I r I I I I I I I I I I I I L ____ ~ _____ ~ _____ L _____ I _____ ~ _____ L _____ I _____ ~ _____ L _____ L ____ ~ _____ ~ _____ L ____ ~

~ --------------------- array 'area' ---------------------•• ~

Our 'oversized' array

By using an oversized array (3 squares around the board in the example illustrated above) it's possible to extrapolate possible moves
without having to worry about continually checking the playing area boundaries.

Complete Amigo C

276

Here's a flowchart to
illustrate the basic
structure of our 'Four-in-a­
Row' game. Simplifying
the structure like this
makes it easier to plan
the individual functions
necessary and when they
should be called.

Complete Amiga C

Chapter 16

NO

'F . R ' our-In-a- ow
flowchart

higher it is, the stronger the given player's position on the board. It is
usually positive if the player is winning, negative otherwise. Given the
evaluation function, the move generator can make one of its moves, get a
score for it, then take the move back before trying the next one. It then
knows that the move that obtained the highest score is the one to take.

'Four in a Row'

'.&" \ :"E.A '\
~I

Recursion

'Look-ahead'
or 'pl,'

277

Using that method would produce a very basic game. Mini-max's
approach is a little more complicated, relying as it does on recursion.
With it the computer is able to "look ahead" and make moves that will
yield results later on in the game. It does this by making moves both for
itself and then responses on the human's behalf. After it has chosen what
it thinks is the human's best response, it goes on to make its best
response to that move, and then pretends to be the human again, and so
on ... The algorithm used to determine how the human will move is the
same as that used by the computer to decide on its moves.

The move generator takes as one of its arguments the player who is
making the move. When it is initially called, this will be Computer, as it
is the computer making the move.

The move generator then goes through each of the possible moves in turn
- there are a maximum of eight, the number going down as each of the
columns is filled to the top. After making a move, the move generator
then calls itself, but with the other player as an argument. If the move
generator was called with Computer as its argument it will call itself
again with Human as argument, and vice versa.

When called again, it continues as before, making each legal move in
turn on behalf of the human player. After making each move, it calls
itself again, and again switching its Player argument to that of the
opponent.

The recursion repeats for a pre-set number of levels, known as the "look­
ahead" or "ply" of the search. The bigger this number, the better the
computer plays, but the longer it takes. With I-ply it checks eight
possible moves, with 2-ply this becomes 8*8 or 64, 64*8 for 3-ply, and
so on. The version we are going to write will use 5-ply, the minimum
necessary for it to play a decent game. Unfortunately, it does mean you'll
be waiting a few minutes for the computer to move if you're using a
68000-based Amiga.

When the move generator has been called for the fifth time, control is
passed to a different part of the function. Here it again generates each of
the possible moves, and makes them in turn. Rather than calling itself

Complete Amiga C

278

Complete Amiga C

Chapter 16

again, though, it instead calls the evaluate function to find a score for
the board position it has arrived at. It then takes back the move it has just
made, so as to leave the board as it found it.

The score for the move is made up of two components. The first is the
opponent's score, given by the evaluate function before any of the move
generator's final set of eight moves have been made. The second
component is the score from the current player's point of view, given by
the evaluate function after the move generator has made a move. The
score for anyone of these eight final moves is found by subtracting the
first component from the evaluation after the move. As each move is tried
in turn, its score is compared against a current maximum. If it exceeds
the maximum, then the maximum is set to this new score and the column
in which the move was made is stored in a variable. After all the moves
have been checked, the function is left with a record of the highest
scoring move. It then returns the column of the best move as an integer
and alters, with the aid of a pointer, the variable ScoreForMove.

When the function returns, the recursion backs down one level and
control continues immediately after the line in the move generator that
called itself. This is in the position of having just tried a move,
remember. It now takes that move back, and reverses the sign (makes a
positive number negative, or vice versa) of the score returned by the
recursive call. After it has made all of its moves at this level of recursion,
it chooses the move that yielded the highest score, returns the column
number of the move that made it, and alters the variable ScoreForMove
via a pointer, in much the same way as the part of the function that deals
with the bottom level of recursion.

Why is the score for each move made negative? After the move generator
has been recursively called, what it returns is a score for the opponent's
best move, not the player whose moves it has been making on the
recursive level that calls it. By negating all of the scores and choosing the
largest, it is effectively choosing the smallest. In other words, it is
choosing the move for the player that produces the weakest response
from the opponent, even though the opponent is assumed to be making
the best move possible in the circumstances presented by the player.

'Four in 0 Row'

In order to work out the
desirability of anyone
move, the computer has
to have some way of

working out its value. It
does this by using a
'points-scoring' system
based on the values of

specific counter
arrangements. Obviously,
four in a row (the winning
move) has the highest
value, while other layouts
are of decreasing value.

279

That's the most complicated part of Mini-Max over with. You can use
pretty much the same best move generator in many sorts of board games,
such as noughts and crosses or even chess.

Calculating your game position's 'score'
The evaluation function used depends on the type of game you are
writing. The more subtle your evaluation function, the better your
program will play. Here, the function, which is called Players Score,
takes two parameters - the board, and the player whose position is to be
evaluated. It returns a score whose value depends on the strength of the
given player's position.

It arrives at this score by looking at each of the positions on the board in
turn. Players score is only interested in those positions that contain
the player's pieces.

When it finds such a position, it calls the function TryADirection four
times. What this does is to look along the board in a specified direction

FOURINAROW(5,OOO) UJJ:)

THREE IN A ROW (NO BLOCKS) Cf:D
THREE IN A ROW (ONE END BLOCKED)

TWO IN A ROW (NO BLOCKS) CXJ
TWO IN A ROW (ONE END BLOCKED)

. Calculating the 'score' of your board pOSition

Complete Amigo C

280 Chapter 16

and see whether or not it can establish a line of pieces owned by the
player. The values for different situations are scored according to a set of
#defines at the beginning of the program. Four in a row (#define
Worth4 5000), a winning situation, is scored the highest at 5000 points.
Next comes the value of three pieces in a row with no blocks, followed
by three pieces in a row blocked on one side, then two pieces in a row
with no blocks, and finally two pieces in a row with one side blocked.
Any other configurations have no score.

The pieces are checked from the top left corner of the board moving
across and to the right, so we only need to call TryADirection with
the following directions: diagonally up and right, horizontally across,
diagonally down and right, and vertically down. The scores for each of
the directions are summed, and these scores are summed for each of the
player's pieces. This final sum is the result returned by Playersscore.

The program itself
Here is the source code to the final program:

/* four_row.c */

/* -- Include ANSI C headers -- */

#include <stdio.h>
#include <stdlib.h>

/* include operating system header files */

#include <exec/types.h>
#include <intuition/intuition.h>
#include <intuition/intuitionbase.h>

#include <clib/intuition-protos.h>
#include <clib/exec-protos.h>
#include <clib/graphics-protos.h>

/* declare pointers to graphics and intuition libraries */

Complete Amiga C

~COMPLETE
~LlST1NG

~~[I
0J1Ii

'Four in a Row'

struct GfxBase *GfxBase;
struct Library *IntuitionBase;

/* define a pointer to a rastport structure */

struct RastPort *rp;

/* define the text to be used in the screen title */

struct TextAttr Text Font = {
"topaz. font" ,
8,0,0

};

/* declare pointers to the Window, Screen and Intuition Message ~
data structures */

struct Window *CurrentWindow;
struct Screen *CurrentScreen;
struct IntuiMessage *message;

/* define the parameters of our new screen */

struct NewScreen InitScreen = {

0,0,

640,200,

3,

0,1,

HIRES,

CUSTOMSCREEN ,

&TextFont, "Our custom screen" ,NULL
};

/* define the parameters of our new window */

struct NewWindow InitWindow = {

0,11,

281

Complete Amigo C

282

640,189,
0,1,
MOUSEBUTTONSICLOSEWINDOW,
ACTIVATEIWINDOWCLOSE,
NULL,

NULL,

"Four in a row",
NULL,

NULL,

0,0,640,189,
CUSTOMSCREEN
};

#define boolean int
#define true 1
#define false 0

/* CONSTANTS */

#define InitialLookAhead 6 /* anything less than 5 is pathetic */

/* Values associated with each line */

/* changing these will change the importance the computer */

/* places upon different board positions */
#define Worth4 5000 /* the value of 4 in a row */

#define WorthUnBlocked3 1000 /* the value of three in a row */

Chapter 16

#define Worth3BlockedOneSide 150 /* the value of 3 in a row with block */
#define WorthUnBlocked2 15
#define Worth2BlockedOneSide 1

#define Human ' X'
#define Computer '0'

/* all have 5 added to position of column to try first in best move ~
search. The order makes the computer try columns starting in the ~
middle and working outwards */
#define try1 8
#define try2 9
#define try3 7

Complete Amiga C

'Four in 0 Row' 283

#define try4 10
#define try5 6
#define try6 11

#define try7 5
#define try8 12

/* TYPES */
typedef char Board[19] [19] ;
/* A board has blank space arround it to allow checking for 4,3,2 */
/* in-a-row to be carried out at any position, regardless of how near */

/* the edge we are, using the same algorithm */

typedef int NextFreeType[19] ;
/* this tells us the row position at which the next counter will */
/* placed for each column of the board */
typedef int TryOrderType[9] ;
/* tell the computer in which order to check columns */

/* GLOBAL VARIABLES */
int LookAhead ;
NextFreeType Next Free
Board TheBoard ;

int ComputersScore
TryOrderType TryOrder

/* -- Prototypes for Functions -- */

voidsetupdisplay(void);
voiddrawboard(void);
voidReleaseResources(void);
voidInitialise(void);
voidPlayGame(void);
voidAlterBoard(Board ABoard, char Player, int Move);
voidUnAlterBoard(Board ABoard, int Move);

/* graphics-related function definitions */
/* define the function that opens the libraries, screen and window */

Complete Amigo C

284 Chapter 16

void setupdisplay(void)
{

/* open graphics library and get a pointer to it */
GfxBase=(struct GfxBase *)OpenLibrary(lgraphics.library", 0);

/* leave program if failed to open library */
if (GfxBase==NULL) exit(lOO);

/* open intuition library and get pointer to it */
IntuitionBase=(struct Library *) OpenLibrary(lintuition.library",O);
/* if failed to open, close graphics library and stop */

}

if (IntuitionBase==NULL) {
CloseLibrary«struct Library *)GfxBase);
exit(200);

/* open a new screen according to the parameters in InitScreen */
/* put a pointer to the new screen in CurrentScreen */
CurrentScreen=(struct Screen*)9Penscreen(&InitScreen);

/* if failed, close the Intuition and Graphics libraries */
if (CurrentScreen==NULL) {

CloseLibrary(IntuitionBase);
CloseLibrary«struct Library *)GfxBase);
exit(300);

}

/* Make our new window belong to the new screen */
InitWindow.Screen=CurrentScreen;
/* Open a new window with the parameters in InitWindow, and put */
/* a pointer to it in CurrentWindow * /
CurrentWindow=(struct Window *)OpenWindow(&InitWindow);
/* if failed to open window, close screen and libraries */
if (CurrentWindow==NULL) {

CloseScreen(CurrentScreen);
CloseLibrary(IntuitionBase);
CloseLibrary«struct Library *)GfxBase);
exit(400);

Complete Amiga C

'Four in a Row'

}

}

/* get the opened windows rastport, and store it in rp */
rp=CUrrentWindow->RPort;

/* define the function to draw the board * /

void drawboard(void)
{

/* draw the four-in-a-row board - an eight by eight grid */
¥ int i;
'I
! /* set pen colour */

i
SetAPen(rp,3);

/* draw horizontal lines */
for (i=20;i<191;i+=19) {

Move(rp,20,i);
Draw(rp,619,i);

}

/* draw vertical lines */

for (i=20;i<639;i+=75) {

}

Move(rp,i,20);
Draw(rp,i,171);

/* Now label each column with text */
SetAPen(rp,4); /* different pen colour */
Move(rp,53,183);
Text(rp,"l",l);
Move(rp,128,183);
Text(rp,"2",1);
Move(rp,203,183);
Text(rp,"3",1);
Move(rp,278,183);
Text(rp,"4",1);
Move(rp,353,183);
Text(rp,"5",1);
Move (rp, 428, 183);
Text(rp,"6",1);

285

Complete Amiga C

286

}

Move(rp,503,183);
Text(rp,"7",1);
Move(rp,578,183);
Text(rp,"8",1);

/* function that places a piece at a specific coordinate */
void drawpiece(char player, int x, int y)
{

/* declare data structures for filled ellipse drawing */
UWORD areabuffer[1000]; /* buffer is used to hold maximum of ~

400 fill vectors */
struct TmpRas tempraster;
struct Arealnfo myareainfo;
PLANEPTR templane;

/* initialise myareainfo */
InitArea(&myareainfo,areabuffer,400);
rp->Arealnfo=&myareainfo;

Chapter 16

/* Get space for a temporary rastport, which must be at least as ~
big as largest object to be drawn */

templane=(PLANEPTR)AllocRaster(65,20);

rp->TmpRas=(struct TmpRas*)InitTmpRas(&tempraster,~
templane,RASSIZE(65,20»;

/* choose colour depending on variable pa~yer */
if (player==Computer)

SetAPen(rp,5);
else

SetAPen(rp,6);
/* set up ellipse in myareainfo vector list */

AreaEllipse(rp, (x-5)*75+57, (y-5)*19+30,20,8); /* x and y ~
coordinates passed vary between 5 and 12 - convert these to between ~
o and 7 before using them to compute screen coordinates */

/* draw and fill area */
AreaEnd (rp) ;

Complete Amiga C

'Four in a Row' 287

/* free temporary raster */
FreeRaster(templane,65,20); /* must free exactly the same size ~

area as was allocated with AllocRaster */

}

rp->TmpRas=NULL; /* remove references to temp raster and area info */
rp->Arealnfo=NULL;

int getmove(unsigned long int class, struct IntuiMessage *message)
/* get move from player */
{

int x,y; /* position of mouse */

if (class & MOUSEBUTTONS) {
x=message->Mousex;
y=message->MouseY;
if (y>20 && x>20 && x<619) /* user has clicked in board area */

return (x-20)/75+5; /* convert x coordinate of mouse to a ~
number between 5 and 12 */

else return -1; /* clicked outside board - no move made */
} else return -1; /* no mouse click received */

}

void ReleaseResources(void)
{

}

/* close down window, screen and libraries */
CloseWindow(CUrrentWindow);
CloseScreen(CUrrentScreen);
CloseLibrary(IntuitionBase);
CloseLibrary«struct Library *)GfxBase);

void Initialise(void)
{

int Row
int Col

LookAhead = InitialLookAhead

Complete Amiga C

288

/* Mark each square on the board as empty */
for(Row=O; Row<=18; Row++)
{

}

for(Col=O; Col<=18; Col++)
{

TheBoard[Row] [Col] = 1\0 / ;

}

/* Now mark each square on the playable area of the board ~
as containing a space */

for (Row=5; Row<=12; Row++)
{

}

for(Col=5; Col<=12; Col++)
{

TheBoard[Row] [Col] = 1 I;

}

/* the next free row for each column is initially 121 the ~
deepest playable row */

for(Col=0;Col<=18;Col++) Next Free [Col] = 12 ;

Chapter 16

/* defines the
TryOrder[l]
TryOrder[2] =

order in which the move algorithm tries the columns */
try1
try2

TryOrder[3] = try3
TryOrder[4] try4
TryOrder[5] = try5
TryOrder[6] try6
TryOrder[7] try7

TryOrder[8] try8
}

/* function makes a move by putting a piece of type Player into the ~
board in the column specified by Move l and the row speficied ~
by NextFree[Move] */

Complete Amiga C

'Four in (J Row'

void AlterBoard(Board ABoard, char Player, int Move)
{

}

ABoard[NextFree[Move]] [Move]
Next Free [Move] - .. ; ~ "

Player

/* removes a piece previously made by Alter Board */

void UnAlterBoard(Board ABoard, int Move)
{

}

NextFree[Move]++ ;
ABoard[NextFree[Move]] [Move] , ,

int TryADirection(Board ABoard,
int Row,

{

int Col,
int RowChange,
int ColChange,
char Player)

int Score ;

Row += RowChange
Col += Col Change
if (ABoard[Row] [Col]

Row += RowChange
Col += ColChange

Player) {

if (ABoard[Row] [Col] -- Player) {
Row += RowChange
Col += Col Change
if (ABoard[Row] [Col] == Player) Score = Worth4;
else {

if (ABoard[Row+RowChange] [Col+CoIChange] == ' ') {
if (ABoard[Row-4*RowChange] [Col-4*CoIChange] -- ~

, ') Score=WorthUnBlocked3;

289

Complete Amigo C

290 Chapter 16

else Score = Worth3BlockedOneSidei
}

else {
if (ABoard[Row-4*RowChange] [Col-4*ColChange] -- ~

, ') Score=Worth3BlockedOneSidei

else Score = 0
}

}

}

else if (ABoard[Row+RowChange] [Col+ColChange] == ' ') {
if (ABoard[Row-3*RowChange] [Col-3*ColChange] == ~

, ') Score=WorthUnBlocked2i

}

else Score = Worth2BlockedOneSide
}

else Score = Oi
}

else Score = 0
return (Score) i

int PlayersScore(Board ABoard, char Player)
{

int Score i

int Row, Col i

Score = 0 i

for (Row=5 i Row<=12 iRow++)
for(Col=5iCol<=12iCol++) {

if (ABoard[Row] [Col] -- Player) Score += ~
(TryADirection(ABoard,Row,Col,-l,l,Player)+

TryADirection(ABoard, Row, Col, 0, 1, Player) +
TryADirection (ABoard, Row, Col, 1, 1, Player) +

TryADirection(ABoard,Row,Col,l,O,Player»i
}

return (Score)

Complete Amigo C

'Four in (] Row'

}

/* given a Player, this function returns the opponent - ~

Computer for Human and vice versa */
char OtherPlayer(char Player)
{ if (Player==Human) return(Computer); else return(Human)
}

/* the rows numbered 0 to 4 are outside the playable area, ~
so this function returns false if Next Free indicates such a row ~
for a given column */
boolean LegalMove(Board ABoard, int Move)
{ return (NextFree[MOve] > 4) ; }

int BestMOve (Board ABoard,
char Player,
int Level,
int *ScoreForMove

{

int TheMove, Col, MaxScore, Dummy.Move, MoveValue, ~
OtherPlayersScore, try

MaxScore = -999999
TheMove = -1 ;
if (Level > 1) {

try = 1 ;
while(try < 9) {

Col = TryOrder[try]
if (LegaIMove(ABoard,Col» {

AlterBoard(ABoard, Player, Col)
DummyMOve = BestMove(ABoard, OtherPlayer(Player), ~

Level - 1, &MoveValue);

}

else

UnAlterBoard(ABoard,Col)
MoveValue = -MoveValue ;

MoveValue = -999999

291

Complete Amig(] C

292 Chapter 16

TheMove
if (MoveValue > MaxScore) { MaxScore = MoveValue; -,

Col;}
try++;

}

}

else { /* Level = 1 */
OtherPlayersScore = PlayersScore(ABoard,OtherPlayer(Player»
for(try=1;try<=8;try++) {

Col = TryOrder[try] ;
if (LegalMove(ABoard,Col» {

AlterBoard(ABoard, Player, Col)
MoveValue = PlayersScore(ABoard,Player) - -,

OtherPlayersScore;

}

UnAlterBoard(ABoard,Col) ;
if (MoveValue > MaxScore)

{ MaxScore = MoveValue; TheMove
}

}

}

*ScoreForMove MaxScore
return (TheMove)

void PlayGame(void)
{

boolean TimeToQuit = false ;
int HumansMove,ComputersMove;

Col; }

unsigned long int class; /* class of Intuition message received */

Initialise() ; /* set up the board */
setupdisplay(); /* open screen and window */
draw board (); / * draw the empty board * /

do{

do {
/* Put up message telling player it's their turn */

SetAPen(rp,4); /* pen colour */

Complete Amiga C

'Four in 0 Row'

Move(rp,283,18);
Text (rp, "Your move", 9) ;

Wait(lL« CUrrentWindow->UserPort->mp_SigBit); /* wait ~
until we receive a message */

/* find out the kind of message received */
message=(struct IntuiMessage *)GetMsg(~

CUrrentwindow->UserPort);

class=message->Class;
HumansMove=getmove(class,message);
ReplyMsg(message);
if (class!=CLOSEWINDOW) {

/* if user hasn't closed the window, then wait for ~
and get next message */

/* This absorbs the Mouse button release message ~
Intuition gives after the user clicks the mouse */

293

Wait(lL« CUrrentWindow->UserPort->mp_SigBit); /* wait ~
for message */

message=(struct IntuiMessage *)GetMsg(~
CUrrentWindow->UserPort);

ReplyMsg(message);
}

} while (class!=CLOSEWINDOW && HumansMove<O); /* repeat until ~
user selects close or enters a valid move */

if (class==CLOSEWINDOW)
TimeTOQuit=true;

else {
drawpiece(Human,HumansMove,NextFree[HumansMove]);
AlterBoard(TheBoard,Human,HumansMove);

/* let player know computer is thinking */
SetAPen(rp,4); /* set pen colour */
Move(rp,283,18);
Text (rp, "My move ",9) ;

ComputersMove = BestMove(TheBoard,Computer,~

Complete Amigo C

294 Chapter 16

LookAhead,&CamputersScore)i
drawpiece(Camputer,CamputersMove,NextFree[CamputersMove])i
AlterBoard(TheBoard,Camputer,CamputersMove) i

}

} while (TimeToQuit==false)i /* repeat until user asks to ~
close the window */
}

void main (void)
{

PlayGame () i
ReleaseResources()i

}

Complete Amiga C

Once you've typed it in and saved it, you can compile it with a simple
dcc command:

How it works
The first part of the code includes our system header files and defines the
data structures we'll need for our graphics. Then come some definitions
for the game.

We've defined boolean to be an int, and the values true and false
as 1 and 0 respectively. This makes clear the process of calling a function
which returns a true or false value which we want to act on, for
example the LegalMove function which returns true if there is a row
free in a given column.

The constant InitialLookAhead is used to determine the depth of the
Mini-max recursion, while the Worth constants are used by
TryADirection to evaluate lines of a player's pieces. The two
character constants Human and Conputer are used both to mark
positions taken on the board, and to mark the player being dealt with in
the Mini-Max algorithm.

'Four in 0 Row' 295

At any level of recursion, there are only eight possible moves. The
following set of defines - tryl, try2 etc. - are used to determine the
order in which the columns are tested. They do so in such a way as to
favour testing central columns first, as these are the more powerful board
positions.

Next some typedefs are used to aid the clarity of the program. Board
is set up to represent an array of char with 19 by 19 elements, and
NextFreeType is set up to be an array of ints with 19 elements.
TryOrderType is likewise set up. Global variables of these types are
created, called TheBoard, Next Free and TryOrder respectively. A
global variable called LookAhead, representing the number of moves
ahead Mini-max will search, is also declared, as is ConputersScore,
which is a global variable used by Mini-max.

After the preliminaries come the definitions for all the functions our
program will use. The first is setupdisplay~hich opens the graphics
and Intuition libraries, and then opens the screen and window the game is
to be played on. Refer to the last chapter for details of this function.

The next function, drawboard, is also graphics related. Its purpose is to
draw an empty board in the window. It's only called once, at the
beginning of the program. Drawboard makes use of a number of
graphics functions that we haven't dealt with yet.

The function SetAPen will set the colour of the pen used for drawing
operations. It takes two parameters - the first is the rastport pointer,
obtained from the Window structure, and the second is the required
colour. We've opened an eight colour screen, so this value has to be
between 0 and 7. The "A" pen is the foreground or primary pen. You can
also set the background colour, useful sometimes for printing text or
patterns, with the equivalent call SetBPen.

We draw a line in two parts. First we move an imaginary cursor to a
position in the window. The position is defined by two co-ordinates,
across and then down (known as "x" and "y"), relative to the very top
left-hand corner of the Window. This is performed by a call to the Move
function, which needs a RastPort pointer and integers for the x and y

Complete Amigo C

296

~""
\ MAKE A J
I NOTE!
C--

AreaEllipse
function

Complete Amiga (

Chapter 16

co-ordinates.

A call to the function Draw, again with the RastPort pointer and two
more co-ordinates will draw a line from the position specified with Move
to the new position.

In draw board we've used a couple of for loops to break the playing
area into an eight-by-eight grid. Then we've called the function Text to
label each of the columns. Text takes a RastPort pointer, a string of
text and an integer representing the length of the text (not including a
delimiting '\0') as its parameters. The text is placed at the current cursor
position, which we've defined for each column here by a call to Move.

The function drawpiece is used to draw a piece in a particular grid
position. It takes as its parameters the player in question, and the position
in the board array of the piece, represented as two integers. It uses the
variable player to determine the colour for the ellipse used for a piece.

A complete discussion of the AreaEllipse function call is beyond the
scope of this book, but, broadly, this is what happens. The ellipse is
drawn in two stages, first a series of vectors are defined, which create an
outline for the shape, then the space enclosed by the vectors is filled. To
this end, you need to declare some space for the vectors to be stored.
This is the function of the areabuffer array of unsigned words.
Five bytes are required for each vector, so this gives us space for 400
vectors. By declaring it as an array of words, rather than bytes, we
ensure that it begins on even address boundary, which is a requirement of
the functions that use it.

We first of all set this vector storage with a call to InitArea. This takes
as its parameters a pointer to a system structure of type Arealnfo, a
pointer to the space for your vectors, and the maximum number of
vectors you will need. I've chosen 400 here, just to be on the safe side.

We then modify the RastPort we are using, by de-referencing our
RastPort pointer, so that its Arealnfo element now points to the
Arealnfo structure InitArea has just initialized for us.
The fill operation is not performed directly in the window, but in a

'Four in 0 Row' 297

temporary, invisible area. Once it is complete, the system places it on to
the screen for us. To this end, we need to create a temporary raster where
the drawing and filling can take place. The call to AllocRaster
achieves this. It is passed the size of the raster we need, which need be no
bigger than the largest object to be drawn. We've asked for a raster of 65
pixels across by 20 down. AllocRaster returns a pointer to the
temporary raster, which is stored in the variable templane. Templane
has previously been declared of type PLANEPTR, a system-defined
pointer type.

We then initialize our tempraster structure, declared earlier, by calling
the function InitTnpRas. It takes the address of the structure, the
address of the temporary raster we've just been allocated, and the size of
the raster (obtained with the system-defined macro RASSIZE). It returns
a pointer to the initialized tempraster structure, which is assigned to
the TnpRas field of our window's raster.

Having set all this up, we can now call AreaEllipse. Its parameters
are: a pointer to the RastPort, the x coordinate of the ellipse's centre,
the y coordinate of the ellipse's centre, the horizontal radius and the
vertical radius. A call to AreaEnd, with the RastPort pointer as
argument, will complete the drawing, causing the vectors to be drawn,
the area to be filled, and the result placed in the window.

Before the function closes, it first calls FreeRaster, which returns the
space taken by our temporary raster back to the operating system. It takes
a pointer to the temporary raster and its horizontal and vertical
dimensions. These must be exactly the same as the size specified when
the raster was allocated with AllocRaster. The function also sets the
Arealnfo and TnpRas fields of our RastPort to NULL, indicating that
the corresponding structures are no longer attached to it.

With all of that out of the way, the function getmove now looks easy. It
takes both the class of an IntuiMessage and a pointer to the same
message as its parameters. It assumes that the message has already been
received.

Complete Amig(] C

298

Complete Amiga C

Chapter 16

It then checks to see if the left-hand mouse button has been pressed, and
if so it reads the mouse's x and y coordinates from the message structure.
If the mouse lies within the area of the board, then its x coordinate is
used to indicate one of the eight columns. This is done by subtracting the
position of the left-most column from x, then dividing the result by 75,
the width of each column. A value of 5 is added to the result so that the
function returns a number between 5 and 12, indicating one of the legal
board positions in the larger TheBoard array. If the mouse is outside the
board area, or the mouse button was not pressed, then getmove returns a
value of -1.

The function ReleaseResources should look familiar - just like
closedown in the last chapter, it closes the window, screen and libraries
we have previously opened, prior to the program quitting.

Other functions
Now that all of our interface-related code has been defined, it's time to
define the functions necessary for the mechanics of the game.

Initialize is used to set up the starting position. It sets the variable
LookAhead to the constant defined at the beginning of the program. If
you've got a faster Amiga, make this value higher than 5 for a more
challenging game.

The function then marks every location in the array as being "off limits"
by putting a '\ 0' character in them. Afterwards it puts empty spaces (' ')
into those which represent valid board positions - those elements
numbered 5 to 12 in both directions.

The array Next Free has all its elements initialized to 12. These values
represent the next free row for each column. Given a column, you can
easily find where your piece will land by using the column as an index to
this array.

The array TryOrder is initialized with the constants defined earlier on.
It is this that is used to define the order in which BestMove considers the
possibilities. It will only become of significance if the program includes
some sort of "pruning", a method by which BestMove ceases to

'Four in (] Row' 299

consider certain moves and their consequences after having found a
move which it already knows must prove to be better. The version of
Four In A Row shown here doesn't include pruning, but you might like to
think about how you'd implement it yourself.

The function Al terBoard takes as its parameters a pointer to a Board
called ABoard, a player called Player, and a column number called
Move. It places the player's piece in the next available row in the column
Move. The corresponding element in Next Free is then reduced by one,
since another piece played in the same column must fall on top of this
one.

The mirror function UnAI terBoard takes just two parameters -
ABoard and a column number called Move - and takes back a previously
made move. The value of NextFree's corresponding element is
increased accordingly.

The function TryADirection is used to help evaluate a board position.
It is given as its parameters the board, the row and column of a particular
piece, the vertical and horizontal directions in which it is to search, and
the player whose pieces it is dealing with. It then looks at the pieces in
the specified direction and returns a score, depending on the number of
the player's pieces in a line, and whether or not future expansion in that
line is blocked.

The function PlayersScore is the core of the evaluation algorithm. It
takes a board and a player as its parameters. It looks at each valid
position on the board in turn, and if it finds a piece belonging to the
player there, it obtains scores for it in each of four directions. These
scores are summed, and then summed again with the scores for any other
pieces on the board. The overall result is returned.

The function OtherPlayer takes a player as its parameter and simply
returns the player's opponent as a char value.

LegalMove, given a board and a column number, returns a true value
if there is space in that column for another piece (remember only rows
numbered 5 and above are in the playing area), and false otherwise.

Complete Amig(] C

300

Complete Amiga C

Chapter 16

BestMove is the move generating function, as discussed earlier. Its
parameters are as follows: Board, the board array; Player, the player
whose moves it is checking; Level, the depth of recursion it is at (the
function is initially called with the number of moves we want to look
ahead, obtained from the variable LookAhead); and ScoreForMove, a
pointer to an integer where a score for the best move in this level of
recursion can be stored.

The integer MaxScore is set to a very small value, so that a move of any
value will usurp it. The associated variable TheMove holds the column
number that produces the best move. It is initially set to -1.

The path the function takes then depends on the level of recursion, as
determined by the Level variable. If this is greater than one, then the
function loops through each of the eight columns available to it. The
variable try counts from 1 to 8, and is used to access the next column to
try from the TryOrder array. The function LegalMove is called with
this column, and is used to determine whether or not there is room for
any more pieces there. If there is, BestMove makes the move by calling
AlterBoard. After that it recursively calls itself, reducing the recursion
level by one, and giving a pointer to its local variable MoveValue so that
the called function can give back the score of the best move. The column
in which this particular move is to be made is returned by the call. We
don't need it at this stage, so it is assigned to Dumm;yMove and forgotten
about.

The move is then taken back with UnAl terBoard, and the value of the
move is negated.

If there was no more space in the column under inspection, then the
value for that move is assigned to be very low.

The particular move's value is then compared with the best so far, as held
in MaxScore. If it is higher, then MaxScore is given its value and
TheMove is given the number of the column that was being tested. After
this the loop closes until all of the possible moves have been checked. At
this point, execution continues after the else clause, which we'll deal
with first.

'Four in 0 Row' 301

This clause gets executed when the function discovers that it has reached
the end of its recursion, indicated by the parameter Level having a value
of 1. It is the function's "base case". At this point, the function calls
PlayersScore with the opponent as argument, in order to assess the
board from the opponent's point of view. This is stored in the variable
OtherPlayersScore.

Each of the eight possible moves is then examined again, in much the
same way as in the function's "recursive case" clause. After each move is
made with a call to AlterBoard, a value for the move from the player's
point of view is gained by calling PlayersScore and subtracting from
its result the OtherPlayersScore value. The move under
consideration is then taken back, and its score is compared with the best
so far. If it is the best, then MaxScore is given its value and TheMove is
assigned to the column being checked. The loop then closes and the next
column is checked.

Once all of the columns have been checked in either the recursive or base
cases, MaxScore is assigned to the integer pointed to by
ScoreForMove, and the column number of the move, TheMove is
returned as a result. The pointer is necessary to communicate the score
because we need BestMove to produce two values.

The function PlayGame is the glue that binds everything together. It
calls initialize to set up the board, setupdisplay to create the
display area, and draw board to draw the empty board.

It uses a boolean variable called TimeToQuit. It is initially set to false,
but is assigned a true value if the user clicks on the window's close
gadget. Currently, the program doesn't recognise when it or the human
has won - it just keeps on playing. You might like to try adding such a
check in, and modifying TimeToQuit accordingly.

PlayGame uses two variables, HumansMove and ComputersMove, to
store the columns in which the player and computer choose to make their
moves. The variable class is used to store the Class field of an
IntuiMessage.

Complete Amigo C

302

Complete Amiga C

Chapter 16

The function enters a do loop, which exits only when the TimeToQuit
flag is no longer false.

Immediately inside this loop is another, which is used to retrieve the
user's move. It first of all, with calls to SetAPen, Move and Text, writes
a message in the window indicating it's the user's turn to move. It then
puts the program to sleep with the Exec Wait function discussed at the
end of the last chapter.

When the program is re-awoken, it has received an IntuiMessage
which indicates either a mouse click or a request to close the window. It
finds out exactly what it is by calling GetMsg as discussed last chapter.
The class of the message is found by taking the value in its Class
field. This class and a pointer to the message are then passed as
arguments to the function getmove, so the program can determine
which, if any, column the player has selected.

The function then tells Intuition it has dealt with the message by calling
ReplyMsg. It then examines class to determine how to react. If class
doesn't equal CLOSEWINOOW, then it assumes that the user has attempted
to make a move. After sending a message indicating that the user has
clicked a mouse button, Intuition sends a second message, telling the
program that the button has subsequently been released. We don't need
this second message, so the bit of code that again sends the program to
sleep with Wait, gets a message with GetMsg, and then replies to it, will
absorb the unwanted input.

After that comes the close of the loop used to get the user's input. The
loop continues for as long as an illegal move has been made and the user
hasn't closed the window.

Once the loop is finished, the function checks to see if the user has
clicked on the close gadget, and if so sets TimeToQuit to be true.
Otherwise, it makes the move. It does this by calling drawpiece to
place the user's new piece on the screen, and AlterBoard to place the
piece in the board array and update the NextFree index for that column.

'Four in 0 Row' 303

It then becomes the turn of the computer. It begins by putting a message
on the screen to let the user know it is thinking. Otherwise, the user
might make mouse clicks while the program was not ready to respond.
These would be stored up by Intuition for such a time as the program was
ready to receive them, resulting in the program making unwanted moves
for the user.

It then calls BestMove and assigns the column number returned to the
variable ComputersMove. This is used to aid in drawing the new piece
in a call to drawpiece, and also in updating the board array and
Next Free array with a call to Al terBoard.

The final function is main. It first of all calls PlayGame. When this has
finished, it calls ReleaseResources, and then quits.

Further improvements •••
That's about it for Four In A Row. There are a number of improvements
you can make to the game: getting it to finish when somebody has won
and speeding it up being two good places to start. Adding some sort of
pruning to the BestMove function would certainly speed things up. You
might also want to check for Intuition messages while the computer is
thinking of its move, so the user can quit the game without having to
wait. This would have the further advantage of absorbing any stray
mouse clicks made while the computer is working out its move, as these
currently get interpreted as the next move selected by the user.

Afterwards, you can use the Intuition and graphics functions listed here
to create your own programs. Even just these few represent many
possibilities. The functions presented here, though, make up just a
fraction of those supplied with the Amiga. To use these, you really do
need the proper documentation. You can gain some inkling by looking at
the various header files in DICE's include directories, but sooner or later
you'll need the Rom Kernel Manuals. With those, the knowledge you've
just gained and your Amiga, there'll be no stopping you. Good luck.

Complete Amigo C

304

Complete Amigo C

305

Index

Complete Amiga C

306 Index

#defi.ne statement.. ... 62, 84, 213, 214
#elif pre-processor statement ... 216
#else pre-processor statement ... 216
#endif pre-processor statement ... 216
#if pre-processor statement ... 216
#include statement ... 84, 213, 256
'7cd formatting command ... 33
'70£ formatting command ... 36
& character ... 36, 106

A amiga .lib file ... 256
And (&&) logical operator .. 57
Animals game ... 176
AreaEllipse function .. 296
argc (argument count) variable .. 238
argv (argument vector) pointer .. 238
Arguments .. 86, 106
Arrays .. 60, 248
Array declaration ... 60
Array elements .. 60
Array element numbering ... 61
ASCII codes .. 67, 224
Automatic variables ... 137, 231

B Base ten arithmetic .. 218
Base two (binary) arithmetic ... 218
Binary ... 218
Bit .. 218
Bit-fields .. 225
Bitwise logical operators .. 219
Bitwise And (&) logical operator .. 219
Bitwise Exclusive Or (A) logical operator .. 221
Bitwise NoVOne's Complement (-) logical operator 219
Bitwise Or (I) logical operator .. 219
Bitwise Shift (<< ») logical operators .. 221
break statement. .. 44
Byte ... 210, 218

Complete Amig(] C

Index 307

c case keyword ... 44
Cast operator .. 128, 229
char variables .. 66
CloseLibrary function .. 259
Comma operator ... 230
Comments .. 27, 213, 252
Compiled languages .. 11
Compounded ifS .. 102
Conditional expressions ... l 03
Constant expression .. 41
Creating a window ... 263
ctype.h file ... 241

D DICE compiler ... 22
DICE editor ... 21
DICE installation .. 17
DICE linker .. 22
Data streams .. 234
Debugging .. 246
Decision-making .. 40
Declaring variables .. 31, 137
Decrementing variables .. 248
default keyword ... 44
Defining constants ... 214
do ... while loops .. 54
double specifier ... 212

E else keyword ... 98
Enumeration constants .. 217
enum statement .. 217
Equals (==) relational operator48
Error correction .. 246
Escape sequences .. 68
Exec .. 257
Expressions .. 32
extern keyword ... 139

Complete Amiga C

308 Index

F Factorials .. 162
fclose function .. 234
fgetc function .. 236
Files ... 234
File modes .. 235
Floating point maths .. 24
Floating point variables .. 35
float variables .. 35
fopen function .. 234
for loops ... 64
Four In A Row game ... 257
fputc function .. 236
Function definitions .. 27, 83,138
Function prototyping .. 87
Functions .. 13, 82

G Global variables ... 251
goto statement .. 51
graphics . library library ... 259
Greater Than (» relational operator48
Greater Than Or Equal To (>=) relational operator48

H Header files .. 26,82, 213
Hexadecimal (base sixteen) arithmetic ... 222
High-level languages .. 1 0

I IDCMP (Intuition Direct Communications Message Port) 264
if statement .. 45
Incrementing variables ... 248
Initialising arrays .. 135
Initialising structures .. 170
Integer .. 29
int keyword ... 31
Interpreted languages .. 1 0
Intuition ... 257
intuition. library library ... 259
Intuition messages ... 265

Complete Amigo C

Index 309

J Jumps .. 51

l Less Than «) relational operator48
Less Than Or Equal To «=) relational operator48
Libraries ... 22, 256
Lists ... 186
List head ... 186
List link ... 186
List tail ... 186
Lists of any type .. 195
Local variables .. 136
Logical expressions ... 45
Logical operators .. 55
long specifier ... 211
Longword ... 21 0
Loops ... 248

M Machine language .. 8
Macros ... 215
main function .. 27, 83
malloe function .. 128
Maths library ... 38
math.h file ... 243
Matrices ... 122
Memory address/location .. 3
Mini-max algorithm ... 274
Modulus operator .. 34

N Nested ifS ... 99, 251
Nesting structures ... 174
Newline character (\n) ... 28
Node .. 176
Not (!) logical operator .. 57
Not Equal To (!=) relational operator ... 48
Null character ... 70

Complete Amigo C

310 Index

o Object code .. 13
Octal (base eight) arithmetic ... 222
OpenLibrary function ... 257
Opening a screen .. 261
Operands .. 32
Operators ... 32
Or (11) logical operator .. 55

p Parameters ... 28, 33, 34, 85, 106
Passing strings ... 122
Passing structures ... 1 73
Pointers .. 1 06, 251
Pointer to void ... 195
Pointers to functions .. 198
Post-increment .. 79
Pre-defined functions ... 240
Pre-increment. ... 79
Pre-processing .. 62, 84, 213
Pre-processor conditional tests .. 216
Pre-processor instructions ... 213
Precedence .. 35, 226, 247
printf function .. 28
Program Counter ... 7

R RAM ... 6
ROM ... 6
Recursion ... 164, 167,249
Recursive structures .. 1 75
Registers .. 6
register specifier ... 212
Relational operators .. .46

5 scanf function .. 36
Shell arguments .. 237
short specifier ... 211
Side effect .. 89
signed keyword ... 211

Complete Amigo C

Index 311

sizeof function .. 181
Source code ... 13
static keyword ... 139
stdin data stream .. 234
stdio.h file ... 26,214,256
stdlib.h file ... 242
stdout data stream .. 234
Storage class specifiers .. .212
Strings ... 69
String functions ... 134
string.h file ... 214,241
Structures ... 168
Structure members ... 171
Structure tags ... 169
Sub-routines .. 13
switch statement. .. 43
Symbolic constants ... 62
Syntax errors .. 246 , Tree structure ... 176
Two-dimensional arrays .. 122
typedef statement ... 182

u Unions .. 183
unsigned keyword ... 210

v Variables ... 29
Variable decrement H ... 78
Variable definitions ... 138
Variable increment (++) .. 78
Variable naming ... 31
Variable types ... 31
void keyword ... 27,86

w Wait function .. 270
Word .. 210

Complete Amiga C

312

Complete Amigo C

313

Epilogue
This book gives you everything you need to start programming your
Amiga in C. It's not possible in a single book to explain everything there
is to know about C, so we've concentrated on the basic C concepts, using
examples and illustrations to demonstrate programming principles.
We've also included the fully-registered version of what most people
believe to be the best currently available shareware C compiler - DICE.
This can be found on the four disks supplied with this book, and full
installation instructions can be found in chapter 2.

There is much more to DICE - and advanced C programming - that we
had space to explain. But we hope you will use 'Complete Amiga C' as a
'springboard'. DICE comes with its own documentation and, in
conjunction with the advice and information in this book, we're sure this
will provide all the information you need for your own programming
experiments and projects. The registered version of DICE, supplied with
this book, also comes with Commodore libraries and includes. These are
the files needed to make use of the Amiga's special graphics and sound
hardware. Although it's possible to write Amiga C programs without
using these libraries, the results are basic and crude. In 'Complete Amiga
C' we've provided you with the best start in Amiga C programming we
can. The rest, as they say, is up to you. Good luck ...

• The libraries supplied with 'Complete Amiga C' are for version 1.3 and
version 2 of AmigaDOS. At the time of going to press, version 3 libraries
were not available. Nevertheless, earlier libraries are designed to work on
all subsequent machines, so owners of version 3 machines will have no
problems - they will simply be unable to use version 3 enhancements.
Note that the license agreement overleaf refers solely to these
libraries, and we are required by Commodore to print it. You are
free to produce and distribute programs created using DICE and
these libraries, but you must NOT distribute the libraries themselves.
Note also that the version of DICE supplied with this book is the
fully-registered version and is NOT shareware. Unauthorised
copying and distribution of this software is illegal.

Complete Amigo C

STOP PLE~E~AolH~~~!-----C~;~~~
License Agreement and Disclaimers

CAREFULLY READ ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT PRIOR
TO OPENING THE PACKAGE CONTAINING THE PRODUCT AND THE STORAGE
MEDIA PURCHASED HEREUNDER ON WHICH THE PRODUCT IS STORED. IF YOU
OPEN THIS PACKAGE OR OTHERWISE USE THE PRODUCT, THE STORAGE MEDIA,
OR THE ACCOMPANYING DOCUMENTATION (HEREINAFTER "PRODUCT") YOU
ACCEPT AND AGREE TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO THESE TERMS AND CONDITIONS DO NOT OPEN THE
PACKAGE OR OTHERWISE USE THE PRODUCT. If you do not agree to these terms and
conditions, you may obtain a full refund by returning the unused and unopened PRODUCT
along with your purchase receipt to the dealer where you purchased the Product, within fif­
teen (15) days following such purchase.

1. COPYRIGHT: THIS PRODUCT IS COPYRIGHTED AND OTHER­
WISE SUBJECT TO PROPRIETY RIGHTS. YOU MAY NOT USE,
COPY, OR TRANSFER THE PRODUCT OR ANY COPY OR POR­
TION THEREOF EXCEPT AS EXPRESSLY PROVIDED IN THIS
AGREEMENT. TITLE TO THIS PRODUCT (EXCLUDING THE
STORAGE MEDIA) AND ALL OTHER RIGHTS AND USES NOT
SPECIFICALLY GRANTED IN THIS AGREEMENT ARE
RESERVED BY COMMODORE AND ITS SUPPLIERS.

2. LICENSE: Subject to the terms of this Agreement and the exclusive
rights of the copyright holder as set forth in the Title 17 of the United
States Code, you are hereby granted the personal, non-exclusive
right to use this Product on and in conjunction with a single com­
puter. You may (a) instal such Product onto a permanent storage
device (e.g. a hard disk), (b) load the Product into temporary mem­
ory (e.g. RAM) and (c) copy the Product as required for reasonable
backup purposes, provided the same are done solely in support of
your use of the Product on such single computer, and provided the
Product is not "copy protected". You must reproduce and include
the Product's copyright notices on all such copies. You may not oth­
elWise copy the Product. You may not decompile, disassemble or
reverse engineer the Product or attempt to unlock or bypass any
copy protection included within the Product. You may not make the
Product available to multiple concurrent users unless you have
purcahsed a version of the Product (if available) that is furnished by
Commodore and specifically authorised for multiple concurrent
users, and then only to the. number of concurrent users so autho­
rized. You may not rent, loan, lease or sublicense the Product. You
may not transfer this Agreement or any of your rights hereunder
without the express written permiSSion of Commodore.

3. DURATION: This License is effective until terminated. If you fail to
comply with any term or condition of this Agreement this License will
terminate. You may also terminate this License at any time. Upon
termination you will agree to immediately destroy all copies of the
Product.

4. DISCLAIMER: THE PRODUCT IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITA­
TION ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILlTY AND FITNESS FOR A PARTICULAR PUR­
POSE. THE ENTIRE RISK AS TO USE, RESULTS AND
PERFORMANCE OF THE PRODUCT IS ASSUMED BY YOU AND
IF THE PRODUCT SHOULD PROVE TO BE DEFECTIVE, YOU
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR OTHER REMEDIATION.

5. LIMITATION OF LIABILITY: IN NO EVENT SHALL COMMODORE
OR ITS SUPPLIERS BE LIABLE FOR ANY PROPERTY DAMAGE,
PERSONAL INJURY OR OTHER INDIRECT, INCIDENTAL OR
CONSEQUENTIAL COSTS, EXPENSES OR DAMAGES. INCLUD­
ING WITHOUT LIMITATION ANY DAMAGES FOR LOST
PROFITS, BUSINESS INTERRUPTION OR DATA WHICH MAY BE
LOST OR RENDERED INACCURATE, EVEN IF COMMODORE
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM­
AGES.

6. MISCELLANEOUS
(a) This agreement shall exclusively be governed by the laws of the
United States of America, Commonwealth of Pennsylvania, and rep­
resents the entire understanding regarding the Product, and
supersedes any other agreement or representation, verbal or writ­
ten. This Agreement may only be modified by a written amendment
signed by an officer of Commodore.
(b) This Product and documentation are provided with
RESTRICTED RIGHTS. All use, duplication or disclosure by the
U.S. Government is subject to the restrictions set forth in 252-227-
7013, The Rights in Technical Data and Computer Software clause
of the DOD FAR, or in 52-227-14, The Rights in Data General
clause of the FAR. Such Product and documentation are also sub­
ject to compliance with the laws and regulations of the United States
governing the export of technical information and must not be
exported or re-exported in violation thereof.

Commodore and the Commodore logo are registered trademarks of Commodore
Electronics Limited. L ________________________ ~

