

TUTORIAL

REFERENCE

COMPILER

T
U

T
O

R
IA

L

1. AmigaCOMAL tutorial

1.1 Getting started.

After you have started AmigaCOMAL you will be presented with two windows.
One large window and one smaller which is placed in the foreground covering
a part of the large back ground window. The small window is active when you
initially start AmigaCOMAL. This window is used for entering programs and
commands to AmigaComal.

Let’s start by writing a small program.

Type the follovdng instruction:

10 PRINT “Good day!"

and remember always to end each line by pressing < RETURN >.

Now type:

RUN

remember < RETURN >.

You will notice if you are quick, that the small work window is placed in the
back ground, and on the large window the text Good dayl appears.
Immediately afterwards the smaller programming window returns to the
foreground again.

Everything happens so quickly, that you hardly notice that anything has
happened, just a slight flickering of the terminal screen. You will however
notice that the text Good day! appears in the large window. Type RUN again
< return > so that you can see the window change and see your message. (In
stead of typing RUN < return > you could press function key F5 to get the
same eff^ect).

Let’s try to get our message Good day! placed in the center of the view screen.
Move by using the arrow keys (or your mouse if you have one) the cursor so

AmigaCOMAL Tutorial - 1

that it is placed on the quote mark directly before the word Good day!, (click
the mouse !!) Now type:

AT 10,30:

SO that the new line looks like this:

10 PRINT AT 10,30: "Good day!"

Notice that the word "Good day” is automatically moved to the right as you
type when you are finished typing press < RETURN >, type RUN
< RETURN > (or use F5)

Nothing happened - or did there?

Let’s just look at the line where we added, AT 10,30: This line say’s that
printing is to start on line 10 - position 30 in the window. Line 10 position 30 is
however not visible as it is under our programming window. You can see this
by pushing F5 a few times. This is a rather tedious way of reading information,
so I think we should add a line to the program.

type :

20 WAIT

(remember < RETURN >).

Now you can see the text in the window. By using the instruction WAIT you
have told AmigaCOMAL to stop and wait until another key is entered.

OK! push any key to see what happens.

You have now produced your first two line program. Congratulations, To see
the entire program type:

LIST

(or you can use FI).

Now type:

NEW

2 - Tutorial AmigaCOMAL

(remember < RETURN >).

NEW is a command that prepares the Amiga for work, by deleting all current
lines in memory. AmigaCOMAL ask’s if you are sure? This time you can
answer yes without worrying.

Now we will make a little larger program to show a few of the facilities in
AmigaComal.

Type :

AUTO

(or press F2). In the programming window the number 0010 appears and the
cursor is positioned directly after the number. Type :

page // Erase Window

and press < RETURN >. AmigaComal automatically writes the new line
number 0020 and position the cursor ready for the next line.

Continue typing the following program in.

0010 page // Erase Window
0020
0030 INPUT AT 10,5: "Please enter your name: ": name$
0040 page
0050 PRINT AT 10,20: "Good day ",naine$
0060 PRINT AT 12,20: "Welcome to AmigaCOMAL"
0070
0080 WAIT

When you have typed your program in, AMIGACOMAL automatically
produces line 0090. To stop the automatic line numbering press the two key’s
at the same time <left Amiga> + <S>.

This key sequence <left Amiga> + <S> is used every time we wish to return
to normal input in the programming window. This key combination can also be
used to stop any program that is running (executing). This sequence is a ’short
cut’ to STOP the RUN instruction.

You can now run your program by typing RUN <RETURN> or use F5. Your
program starts by erasing the window and the ask’s you to type in your name.
When you have done so and pressed < RETURN > You should find your

AmigaCOMAL Tutorial - 3

greeting in the middle of the screen. The WAIT Instruction as described before
gives you time to enjoy the sight.

When you have seen enough press any key.

1.2 Graphic’s.

The strength of the AmigaCOMAL is the fact that the language is interactive,
and can therefore help you line for line with irritating small errors. You are
able to RUN single lines of a program or entire procedure as commands. In
the next example we will use a few of AmigaCOMALs graphic commands.

Before we can use the graphic capabilities of AmigaCOMAL we will load one
of the standard packages, UniGraphics or Turtle. Let’s choose the latter. To
load the package you type:

USE Turtle

AmigaCOMAL will then load the Turtle-package and make sure that all the
necessary routines are available. In order to use the facilities it is necessary to
open a window for the turtle to work in.... This is done by typing :.

graphicscreenC 0)

and the usual < RETURN >.

The graphics window is not moved to the foreground and a little triangle is
shown in the middle of the window. The triangle represent the turtle (thus the
name Turtle).
The routines in the turtle package can now be used to direct the turtle around
the screen any way you like. Re-organize the Amiga Window so that it look’s
like the screen below. If you have any problem’s refer to the Amiga reference
manual.

4 - Tutorial AmigaCOMAL

We are now ready to use a few of the turtle routines.

First we move the turtle forward, by typing:

fd(70)

(fd is the short form for forward). Now you want to tiu-n 90 degrees to the
right:

rt(90)

(rt is the short form for right turn). If we repeat these two instructions three
times (the easy way is to move the cursor up two line and press < return >
twice.)

As you can see we have drawn a square, but this can be done easier. Erase the
screen so that we can continue - type :

cs

AmigaCOMAL Tutorial - 5

(this means clear screen). As you see the turtle has disappeared, but not really,
it is actually still there, type:

LOOP 4 TIMES fd(70);rt(90)

You end up with the same square as before and save one instruction.

You could of course produce other types of figures for example a triangle.

LOOP 3 TIMES fd(70);rt(120)

or what about five sides:

LOOP 5 TIMES fd(70);rt(72)

You could also draw more interesting figures - try :

LOOP 20 TIMES fd(70);rt(162)

The speed at which the figures are drawn can be increased by removing the
turtle.

ht

(short form for hide turtle) you can of course refresh the turtle again by typing

St

(short form for show turtle).

1.3 Make your own routine.

We have now seen how to produce a number of different figures. We can now
produce a small routine (program) that will reproduce the figures as required,
(you can make the input window a little larger if you like)

0010 // Figures
0020
0030 USE TURTLE (cent.)

6 - Tutorial AmigaCOMAL

0040
0050 PROC square(s)
0060 LOOP 4 TIMES
0070 fd(s)
0080 rt(90)
0090 ENOLOOP
0100 ENOPROC square
0110
0120 PROC triangle(s)
0130 LOOP 3 TIMES
0140 fd(s)
0150 rt{120)
0160 ENOLOOP
0170 ENOPROC triangle
0180
0190 PROC pentagon(s)
0200 LOOP 5 TIMES
0210 fd(s)
0220 rt(72)
0230 ENOLOOP
0240 ENOPROC pentagon

the procedures square, triangle and pentagon have to be made known to the
system before we can use them. This is done by typing :

SCAN

(or by using F6).

Now you can make a pentagon very easily : type :

pentagon(60)

or a smaller one

pentagon(20)

1.4 Modules.

The program in section 3: can be saved to disc by typing :

LIST "name"

where name is the name of the disc file, where you want to place your module.

AmigaCOMAL Tutorial - 7

The program will be written to the file in text form and therefore could also be
read by a text editor. From AmigaCOMAL you can read the program again as
follows:

ENTER "name"

You can also save your program in code-form by typing:

SAVE "name"

If you use this form of writing your program to disc, to re-read it you must
type:

LOAD "name"

If you save large programs in code form they are much quicker when you load
them again when you want to use them. But the only program that can read
this format is AmigaCOMAL.

There is of course a short cut instead of typing LIST, ENTER, SAVE or
LOAD you can just type LIST ENTER SAVE "" or LOAD ""

(you could also use F7, F8, F9 or FIO followed by <RETURN>). Then
AmigaCOMAL will produce the necessary file request.

As you see you can save your program and latter read it in again and build
extra figxues if you like into the program. You can also save the program as a
package.

You change your program into a package by adding CLOSED to all procedur¬
es and adding an export-list to the start of the program.

0010 // Figure package
0020
0030 USE TURTLE
0035
0040 EXPORT square, triangle, pentagon
0045
0050 PROC square(s) CLOSED
0060 LOOP 4 TIMES
0070 fd(s)
0080 rt(90)
0090 ENDLOOP
0100 ENDPROC square (cont.)

8 - Tutorial AmigaCOMAL

0110
0120 PROC triangle(s) CLOSB)
0130 LOOP 3 TIHES
0140 fd(s)
0150 rt(120)
0160 ENOLOOP
0170 ENDPROC triangle
0180
0190 PROC pentagon(s) CLOSED
0200 LOOP 5 TIMES
0210 fd(s}
0220 rt(72)
0230 ENOLOOP
0240 ENDPROC pentagon

The package is saved as follows:

SAVE "Figures.cmp''

NOTE the file type must end with "cmp"!

When a program is saved as a package it can be used in the same way as the
Turtle package. Type NEW to clean the program work area and type the
following;

USE Turtle
USE Figures
graphicscreen(O)

and now f.ex.

square(50)

You could make it yet easier to use the Figure-package by letting it open the
graphic system (graphicscreen(O)) and then re-export the central routines from
Turtle. This could be done as follows: eg.

0010 // Figure package
0020
0030 USE TURTLE
0035
0040 EXPORT square, triangle, pentagon
0042 EXPORT fd, rt, cs, ht, st
0045
0047 graphicscreen(O)
0048

Now to start you would type:

AmigaCOMAL Tutorial - 9

USE Figures

Before you use the figure package.

Actually the package Turtle is written in AmigaCOMAL. It then calls the as¬
sembler coded package UniGraphics and re-exports all the routines from there.
You can get a lot of good ideas by studying the turtle package and following
the same procedures.

1.5 Other packages.

In the catalogue Packages all the packages are supplied as standard with Amig¬
aCOMAL. They are all described in the manual you have I hope in front of
you. Let’s take a look at two of the packages, namely Iff and IntuiSupport.

The following program reads these packages (and they read other packages so
don’t worry if there is a lot of disc activity). The program will create a few
menus and then go into a loop and wait until you choose one of the menu’s.

Choosing one of the first three will cause a picture to be read in and shown in
the output window. The last option stops the program (but first after
verification).
The program is located in LstFiles and can be started by typing ENTER
"IntuiSupportDemo".

0010 // IntuiSupport and IFF denio
0020
0030 USE IFF
0040 USE INTUISUPPORT
0050
0060 // Create some menus
0070 newmenut"Pictures ".picturenum)
0080 newitemC'LOGO logonum)
0090 newitemCMandelBrot ","2",m3ndelnum)
0100 newitemC"Polygon ","3",polygonnum)
0110 neumenuC'Stop menu",stopmenunum)
0120 newitemC'Stop program ",".",stopnum)
0130
0140 REPEAT
0150 stopprogram:=false
0160 CASE intuiwait OF
0170 WHEN keypressed
0180 // Key pressed - no action in this demo
0190 WHEN mousebottorodown (cont.)

10 - Tutorial AmigaCOMAL

0200 // Left mouse bottom pressed - no action
0210 WHEN menuselected
0220 CASE menunumber OF
0230 WHEN logonun
0240 CHOIR "IFF_Pictures»
0250 load_window<"CbmLogo.iff")
0260 CHOIR "/"
0270 of f menu(I ogonum)
0280 oninenu(mandelniin)
0290 onmenu(polygonnum)
0300 WHEN mandelnun
0310 CHOIR "IFF_Pictures"
0320 load_window(“Mandel256.iff")
0330 CHOIR "/«
0340 offmenu(mandetnum)
0350 onmenudogonum)
0360 onmenu(polygonntin)
0370 WHEN polygonmin
0380 CHOIR "IFF_Pictures"
0390 load_MindoM("Polygon.iff")
0400 CHOIR
0410 offmenu(polygonnum)
0420 ormenu(mandelnum)
0430 onmenudogonum)
0440 WHEN stopnun
0450 IF acceptC'Leave the demo?","Yes","No") THEN
0460 resetmenu
0470 stopprogram:=true
0480 ENOIF
0490 OTHERWISE
0500 // no action
0510 ENDCASE
0520 OTHERWISE
0530 // no action
0540 ENDCASE
0550 UNTIL stopprogram

1.6 Editing.

You can add lines to a program simply by typing the line number you wish to
add or change. If you are altering larger programs it is very easy to loose track
of your position in a program. The best way to make changes is to use EDIT.

Let’s use this helpful routine to make a few changes and correction to one of
the existing programs. First read program PrintTree into memory by typing

ENTER "PrintTree"

AmigaCOMAL Tutorial - 11

(or by using F8). This program shows the structure of a diskette’s catalogue.
To simplify matters a portion of this routine has been placed in a package
named Directory. You can execute the routine by typing RUN.

As you can see you receive a print out that looks much like the one you would
get by typing dir AmigaCOMAL: all, only the file names are not printed.

We can now alter the program a little bit so that we can see a graphic
representation of the catalogue structure.

Type in EDIT. This produce will display the first page of the program and
places the cursor in the first line of the program list. You can now use the
arrow keys to move the cursor down to line 40 and then press the key com¬
bination <shift> + <Alt> + <num 0> (<num 0> is also marked <Ins>). The
result should be that line number 0031 is inserted into the correct position in
the program.

Type USE UNIGRAPHICS and when you have finished move the cursor down
one line using the arrow key. The result is that the entire hne :

0031 USE UNIGRAPHICS

is placed into the computer memory.

When you use the command EDIT you enter a mode known as (naturally) edit
mode. This insures that everything you type on the screen is automatically
placed into the program in the computer at the same time, m this way you are
always certain that what you see on the screen is identical with the actual
program in the computer memory. When you have finished changing a line or
typing in a new line you can be certain that this line is also in the program in
memory. (After you have moved to another line.)
The instruction USE UNIGRAPHICS causes the graphic package UniGraphics
to be loaded.

Place the cursor on line 0040 again and press <shift> + <Alt> + <num 0> in
order to insert a new line (this line becomes 0032). To make the program
easier to read we will leave this line blank, so use the arrow key to jump down
to line 0040 and press < shift > + <Alt> + <num 0> to insert another new line
(this time line 0033) and add window(0,80,-20,0).

12 - Tutorial AmigaCOMAL

Continue to type new lines into the program using the same technique as the
first two lines so that the program contains the changes as seen below.
Remember that the cursor must be placed on the line where you wish to insert
a new line for every new line you insert. (It is not advised to use the mouse in
EDIT Mode.)

0031 USE UN IGRAPHICS
0032
0033 graphicscreen(O)
0034 window(0,80,-20,0)
0035 clear
0036 fliovetot 1, -1)

All of the lines added to the program are graphical instructions. I will not
explain them at the moment as they are all described in the manual in the
chapter regarding graphics - UniGraphics.

Using the same method, add the following lines:

0131 move(2,-0.5)
0141 dy:=0

0171 draw(0,dy-0.5)
0172 x1:=xcor; y1:=ycor
0173 drau(2,0)

0181 dy;=ycor-y1
0182 moveto(x1,y1)

0201 movetO.dy)

When you are finished move the cursor to line 240. Delete that line by typing
<shift> + <Alt> + (The line is removed from the screen and computer
memory. Now add a new line instead of the one you have deleted (type
<shift> + <Alt> + <num 0>). This line is given number 0231. Type :

plottext(xcor+0.5,ycor-0.25,dirnaine$)

and move the cursor to the next line to insure updating m memory.

We have now made the changes we wanted for the time being, so let’s see
what we have done. First we have to leave the EDIT Mode by typing < right
Amiga> + <S> (or just <Esc>). The cursor will now position automatically to
an empty line at the bottom of the screen.

AmigaCOMAL Tutorial - 13

Now start the program by typing RUN (or use F5).

As you can see the program shows our files with a little more class, but we
could make it a little bit more interesting by adding color.

What about a light background, black lines and orange text ?? (blue in
Workbench 2.0). Bring AmigaCOMAL into edit-mode by typing EDIT and
move the cursor down to line 35. Here we add a line using the normal method
<shift> + <Alt> + <num 0>.

Notice nothing happened!

The problem is that there are no line numbers available at present. In order to
make room for our new lines we will have to re-number the program. Type
Renumber in the Command menu (The menu on the right - press the right
mouse button). The result is seen immediately on the screen.

The cursor has moved down one line so we move it up again (notice the new
line number 80). Type in the new line:

0071 background(l)

(in Workbench 2.0 use 2 not 1).

Now move the cursor down to line 260 and type

0251 pencolor(2)

(in Workbench use 1 not 2). Now type:

0371 pencolor(3)
0372 textstyle(16)

OK we are finished ! Leave EDIT-Mode and run the program.

You can naturally look at the contents of other disc’s by simply changing the
name in line 110 (original line number 50). If there are many catalogues on the
disc or sub catalogues it might not be possible to see them all.

14 - Tutorial AmigaCOMAL

You can make a larger graphic screen by changing lines 0060 and 0070 as
follows:

0060 graphicscreen{2)
0070 window(0,80,-40,0)

and add the lines:

0111 WAIT
0112 textscreen

The statement g^aphicscreen(2) causes the interlace-graphic-screen to be used.
Press any key to return to AmigaCOMALs command window.

AinigaCOMAL Tutorial - 15

TUTORIAL

REFERENCE

COMPILER

AmigaCOMAL
UniComal

AmigaCOMAL Description

Copyright Notice

This software module and manual are copyrighted 1990 by UniComal A/S and
UniComal Documentation Center. All rights are reserved worldwide. No part of
this publication may be reproduced, transmitted, transcribed, stored in any
retrieval system or translated into any language by any means without the
express written permission of:

UniComal A/S
H J. Holst Vej 5 A
DK-2605 Brdndby

DENMARK

Single CPU License

The price paid for one AmigaCOMAL, including a manual and a diskette,
licenses you to use the product on one CPU when and only when you have
signed and returned the License Agreement printed on the last page of the
UniComal Reference Manual.

Disclaimer

UniComal A/S has made every effort to supply a dependable product of the
highest possible quality. However, UniComal A/S makes no warranties as to the
contents of this manual and the system and supplementary diskettes and specifi¬
cally disclaims any implied warranties of merchantability or fitness for any partic¬
ular purpose. UniComal A/S further reserves the right to make changes to the
specifications of the AmigaCOMAL system and the contents of the manuals
without obligation to notify any person or organization of such changes.
Nevertheless, it is the intention of UniComal A/S to provide all registered users
with a periodic newsletter as required providing update information at no charge
for a period of one year from the purchase date.

AmigaCOMAL - version 2.10 -
Copyright (C) 1990, 1991
UniComal A/S and UniComal Documentation Center

IBM is a registered trademark of the IBM Corporation.
UniComal is a registered trademark of UniComal A/S.

This document was prepared using WordPerfect ver. 5.1
and a HP LaserJet Series II.

AmigaCOMAL: The Developers System

Produced by

Svend Daugaard Pedersen

Copyright 1989,1991

AmigaCOMAL: Hie Developers System Manual

Written by

Svend Daugaard Pedersen

Len Lindsay

Table of Contents

1. Introduction . 5

2. Getting Started . 7
2.1 The Keyboard . 7
2.2 The Mouse. 11
23 Windows . 12
2.4 Installing AmigaCOMAL . 13

3. - AmigaCOMAL Reference. 19

4. - Names in AmigaCOMAL . 79
4.1 Number Variables . 80
4.2 String Variables . 81
4.3 Structiured Variables - RECORDS. 81
4.4 Indexed Variables. 84
4.5 Pointer Variables. 85

5. - Packages . 91
5.1 Using Packages . 91
5.2 Programming Packages. 92
53 Routine Libraries. 94
5.4 Standard Packages . 96
53 System Packages. 97

5.5.1 System_code . 97
53.2 System. 99

5.6 Interface Routines to the Amiga Libraries.102
5.6.1 Library Packages.102
5.6.2 Support Packages for the Library Routines.103
5.6.3 Messages.103
5.6.4 Devices.105
5.6.5 Screens.107
5.6.6 Windows.108
5.6.7 Gfx.110
5.6.8 Layers.Ill
5.6.9 Rastport .Ill
5.6.10 View.112

AmigaCOMAL 1

5.6.11 IntuitionSupport. 113
5.6.12 Iff . 114

5.7 Graphics Packages . 115
5.7.1 Graphics . 116
5.7.2 Turtle. 126

5.8 Exceptions in AxnigaCOMAL .130

6. • Program development in AmigaCOMAL .131
6.1 A Maze .131
6.2 A Small Database Program.135
6.3 Calling System Routines From AmigaCOMAL.147

6.3.1 Sorted Listing of a Directory.148
6.3.2 Programming of lO Devices .153
6.3.3 A Speech Package .157
63.4 Some Closing Remarks.160

Appendix A..161
The AmigaCOMAL disk. .161

Appendix B.163
The file system in AmigaCOMAL..163
B.l Filenames.163
B.2 Program Files.164
B.3 Sequential Data Files .165
B. 4 Random Access Files.167

Appendix C.169
Expressions in AmigaCOMAL..169
C. l Numeric Expressions .169
C. 2 String Expressions .170

Appendix D.173
Screen and screen control codes.173
D. l The Screen .173
D. 2 Screen Control Codes / CHR$(x) Results.176

Appendix E. 179
Error numbers and error texts.179
E. l Syntax Errors.179
E.2 Pre-pass Errors .181
E.3 Execution Errors . 182

2 AmigaCOMAL

E.4 AmigaDOS Errors 185

AmigaCOMAL 3

1. Introduction

AmigaCOMAL is an implementation of the programming language COMAL80
for the Commodore Amiga computer. COMAL80 (COMAL for short) has
become an old and well established language. The first versions were made in
the early 1970’s. At that time programming (in BASIC) was being taught to
primary school teachers at the Tender State Teacher’ College, Denmark.

Borge Christensen, at that time teacher at the college, realized that the students
wrote poor programs and that the main reason was the language BASIC.

BASIC was indeed easy to use and it offered the user much help during
program writing but in BASIC you do not have the possibility to use long and
descriptive variable names and you do not have the elegant program structures
known from Pascal.

Borge Christensen talked to Benedict Lofstedt, teacher at the University of
Aarhus, Denmark about the problems and they agreed that it should be possible
to combine the best of BASIC and Pascal. The result was the programming
language COMAL (COMmon Algorithmic Language).

Together with some students, Borge made the first implementation of the
language in 1974. With the introduction of the micro computers in the late
seventies more implementations were made. In 1979 the COMAL standard was
defined (COMAL80 Kemal) by a number of computer manufactures and some
educational institutions.

AmigaCOMAL contains some minor differences the COMAL80 kemal. The
difi'erences are those introduced by UniComal in their implementations of
COMAL80 on the IBM PC computer (now included in the Common COMAL
standard).

AmigaCOMAL contains some extensions, too. The most important of these
extensions are:

* the possibility of di^iding programs in modules (packages)
* inclusion of structured variables (RECORDs)
* inclusion of pointer variables

AmigaCOMAL 5

This manual is written for those with some knowledge of COMAL or at least
another high level programming language. Most of AmigaCOMAL is explained
briefly and only the extensions and Amiga specific details are described more
deeply.

If you do not have these prerequisites you are encouraged to read one of the
books describing COMAL. For example:

Introduction to COMAL by J William Leary
Beginning COMAL by Borge Christensen
Common COMAL Cross Reference by Len Lindsay

6 AmigaCOMAL

2. Getting Started
The AmigaCOMAL system consists of this manual and one disk. You are
encouraged to make a working copy of the disk and use the copy only. Avoid
removing the write protect tab from the original disk. In the future, if anything
happens to your working copy (so that it is unusable), you can make a new copy
from the original. However, please do not give away copies of the disk. It is not
public domain or shareware. The disk is not copy protected for your benefit. We
trust you to abide by the copyright. You may use this one AmigaCOMAL system
on one Amiga computer at a time.

There are two ways to startup AmigaCOMAL after booting your Amiga in your
usual manner:

■ Put the AmigaCOMAL disk (the working copy) into a disk drive, click
twice on the icon of the disk and then click twice on the icon for
AmigaCOMAL (the turtle).

■ From a CLI or SHELL start AmigaCOMAL with the command:

<pat/t> AmigaCOMAL \full path:proff-am name]

To start AmigaCOMAL from the current directory: AmigaCOMAL. To start it
&om DFl: and have the HANOI program automatically run:
DFl'AmigaCOMAL :programs/hanoi

2.1 The Keyboard

Some of the keys have special functions as described below.

Keys summary:

< Shift > + < Cursor Right > Moves to end of line.

< Shift > + < Cursor Left> Moves to start of line.

AmigaCOMAL 7

<Shift> + <Cursor Up>
or
<PgUp>

Moves to top of window or if already on
top and the top line is a program line
the previos page is listed.

< Shift > + < Cursor Down>
or
<PgDn>

Moves to bottom of window or if already on
bottom and the bottom line is a programline
the next page is listed.

<Alt> + <Cursor Up>
or <Home>

<Alt> + < Cursor Down>
or <End>

<Ins>

<Alt> +

<Alt> + <Ins>

List first page of program

List last page of program

Toggle INSERT mode.

Delete line.

Insert line

Note that <Ins>, <PgUp>, <PgDn>, <Home> and <End> are found on the
numeric keypad and that the SHIFT-key must be used in addition to the keys
shown above.

<Esc> --
In command mode this key works like < Amiga> + <S>. For example, press
<Esc> during the execution of a LIST or DIR command to stop the
command.

<F?> -
The function keys have numbers from 1 to 10 (i.e, <F1>,<F2>, <F3>...).
Each key has a predefined text attached. Press the key and this text will be
output on the screen just as if you had typed each character of the text, one
by one.

 --
Deletes the character at the cursors position and the rest of the line is
moved one character to the left.

8 AmigaCOMAL

The back space key works like the but instead of deleting the
character at the ciu'sor position, the character immediately to the left is
deleted. Consequently the key has the same effect as <Left> followed by
.

<Ins> --
Toggles the insert flag. You wll move from insert mode to overwrite mode
or back again. This key is on the numeric keypad. Use <Shift> + <0>
(shifted zero on the keypad).

<Alt> + --
Deletes the cursor line and scrolls the remaining lines up.

<Alt> + <Ins> --
Inserts an empty line at the cursor position and scrolls the remaining lines
down.

<Enter> --
The Enter keys are very important in AmigaCOMAL. Depending upon
your computer model, the word ENTER or RETURN or just a broken
arrow symbol will be on the keytop. There may be two of the keys on the
keyboard, each identical in function. Press one of these keys and
AmigaCOMAL reads the contents of the line containing the cursor. In
direct mode, if the line contains a command, the command mil be
executed. If it contains a program line, the line will be checked for correct
syntax and then stored. During program execution, pressing this key
signifies the end of your INPUT.

<Cursor keys> --
Used to move the cursor. If one of these keys are pressed (unshifted) the
cursor moves in the corresponding direction. If the cursor hits the bottom
of the window and the bottom line (or previous line) contains a program
line, the program will be scrolled down. Likewise moving up past the top.

<Shift> + <Ciu’sor keys> --
Moves cursor to the indicated edge of the window.

<Shift> + <Right>
Goes to the end of the line. If you are already at the top of the screen,
< Shift > + <Up> will page the program listing up (if the top line listed is

AmigaCOMAL 9

a program line). Likewise with < Shift > + <Down> at the bottom of the window.
<PgUp> and <PgDn> on the numeric keypad (used with < Shift >) work just
like <Shift> + <Up> and <Shift> + <Down>.

<Ctrl> + <C> “
Repeats a FIND or CHANGE command. See description of FIND and
CHANGE in Chapter 3.

<Amiga> + <S> --
Tins key combination works much like <Esc>. In command mode the effect
is exactly the same: to stop the execution of a command. But in addition,
this key combination also stops the execution of a program.
<Amiga> + <S> is a short cut for the STOP menu.

<Amiga> + <N> --
A short cut for the NEW menu. The effect is the same as typing the NEW
command.

<Amiga> + <R> --
A short cut for the RUN menu. The effect is the same as typing the RUN
command.

<Amiga> + <Q> --
A short cut for the QUIT menu. The effect is the same as typing the BYE
command.

<Amiga> + <P> —
A short cut for the PAUSE menu. By pressing this key combination (or by
selecting the PAUSE menu) a running program wUl be put into the waiting
state until <Amiga> + <C>is pressed (or the Continue menu is selected).

<Amiga> + <C> --
A short cut for the Continue menu. Being in command mode the effect is
the same as typing the CON command. If you are in the Pause state the
program execution will be resiuned.

10 AmigaCOMAL

Immediately after startup the values of the function keys are:

FI LIST < Enter >
F2 AUTO <Enter>
F3 RENUM <Enter>
F4 Del
F5 RUN <Enter>
F6 SCAN <Enter>
F7 UST"
F8 ENTER"
F9 SAVE"
FIO LOAD"

2.2 The Mouse

The mouse is an integrated part of the Amiga. By using the mouse, operation is
much easier and more logical (at least when you get used to it). We suppose
that you are familiar wth the basic use of the mouse, such as moving windows,
changing size of windows and closing windows. Inside AmigaCOMAL the mouse
may be used in this way, too. Also, as in AmigaDOS, the mouse may be used to:

■ see the currently invisible part of the windows.
■ move the cursor in the command window.

If you have installed the AmigaCOMAL with a large vdndow, say SO lines with
100 characters each, you cannot see the ^ole \^dow on the screen. In the
lower border (and in 4e right border) you will see some scroll bars showing the
currently visible part of the window. There are three ways to see some other
part of the window. You may move the bar using the mouse, you may click the
mouse in the empty part of the border or you may click on the arrows at each
end of the bar. Try it and note the effect.

In command mode AmigaCOMAL will try to hold the cursor inside the visible
part of the window. Thus the scroll bars will move if you try to move the cursor
outside the visible part of the window.

To move the cursor with the mouse just point to the place you want the cursor
and then press the left bottom.

AmigaCOMAL 11

2.3 Windows

Normally AmigaCOMAL works with two windows: the Command Window and
the Execute Window (plus two information windows). While entering commands
and program lines the Command Window is active. During the execution of a
program (started by the RUN or the CON command) the Execute Window is
active. At other times (in direct mode) all output from a command (except RUN
or CON) is written in the Command Window even if the command activates a
procedure or a function.

The two information windows are the Memory Window and the Error Window.
In the Memory Window the number of free bytes is written. The Error Window
is used if a syntax error occurs. The Memory ^dow may be closed by the
command:

MEMWINDOW-

It can be reopened by the command:

MEMWINDOW+

See also the next section.

The windows may be moved around the screen. If the window is closed and
reopened the new position will be used.

It is possible to install AmigaCOMAL not to open the Execute Window. In this
case all output from a running program will be written in the Command
Window.

12 AmigaCOMAL

2.4 Installing AmigaCOMAL

When AmigaCOMAL is started it searches for an installation file named
AmigaCOMAL. preferences in the following directories:

current directory
directory containing AmigaCOMAL
DEVS:

If the file is not found, standard installation parameters are used.

You may create an installation file by using the program Install found on the
AmigaCOMAL disk. This program will ask some questions which should be
answered. For each question the standard value of the parameter is suggested. If
you choose that value just hit <Enter>. Press <Help> for a help screen. The
meaning of some of these questions (and possible answers) is discussed below:

COMAL DISK NAME
Here you give the name of the disk containing AmigaCOMAL. A colon (:)
means the current device.

INSTALLATION FILE NAME
The file :AmigaCOMAL. preferences is suggested. You may choose
another path or, if you are making an instaUation file for a compiled
program, even another name (see the Development manual). For Hard
Drive users, you may spedfy the de\ice and subdirectory for its path.

COMMAND WINDOW
(1) Separate screen (2) Workbench screen
Here you may choose the screen where the command window should
open: either the workbench screen or a special screen.

You will only be asked for the answer of the following three questions if a
special command screen is chosen.

(1) 320 Pixel screen (2) 640 Pixel screen
Choose the width of the screen.

AmigaCOMAL 13

(1) Interlace (2) Non interlace
The height of an interlaced screen is 400 pixels (512 in Europe) and a non¬
interlaced is 200 (256). Normally an interlaced screen is flickering so the
non-interlace is recommended.

Number of bit planes
The number of bit planes determines the number of colors on the screen.
Use the following table:

Bit Planes Number of colors
1 2 (black and white)
2 4
3 8
4 16
5 32
6 64 (extra halfbright)

Every bit plane uses a great deal of memory. Further more, your Amiga will
work a little bit slower for each bit plane. Some early Amiga computers
might not support extra halfbright.

Number of bit planes in window (max. >)
The number cannot be larger than the number given as the answer in the
previous question. Normally one bit plane is used in the command window
since the scrolling will be faster and you do not need colors in this window.

How many characters per line (mul. of 4)
This number doesn’t affect the physical size of the window. If you choose
more characters than will fit into one line on the monitor you can use the
mouse to see the hidden part of the line (see section 2.2). Maximum is 128.

Number of lines
This number doesn’t affect the physical size of the window. If you choose
more lines than will fit into one line on the monitor you can use the mouse
to see the hidden lines (see section 2.2).

Which font do you want (not checked)
Type in any font you like. The choice is not checked by the install program.
This is done by AmigaCOMAL at startup time.

14 AmigaCOMAL

Font height (not checked)
This number is necessary to specify the font completely. If the font
selected by the last two questions does not exist, AmigaCOMAL will stop.

Command Window to Front at Program Stop? (y/n)
When a program ends, do you want the Command Window to be
immediately pushed to the front? Or do you want the Execute Window to
remain in front.

EXECUTE WINDOW
(0) No window (1) Separate screen
(2) Workbench screen (3) Command screen
Choose the screen where you want your Execute Window. It is possible to
chose no Execute Window at all (normally this is done only if you are
setting up an install file for a compiled program where you supply your
own window). Choice munber 3 will only be given if you have chosen a
separate Command Screen.

The next three questions are only asked if you chose a separate Execute Screen.
The meaning is the same as for the Command Screen.

(1) 320 Pixel screen (2) 640 Pixel screen
(1) Interlace (2) Non interlace

Number of bit planes
Number of bit planes in window (max. -)
The number cannot be larger than the number of bit planes in the screen
used to hold the mndow.

How many characters per line (mul. of 4)
This number doesn’t affect the physical size of the window. If you choose
more characters than will fit into one line on the monitor you can use the
mouse to see the hidden part of the line (see section 2.2).

Number of lines
This number doesn’t affect the physical size of the window. If you choose
more lines than will fit in the window, you can use the mouse to see the
hidden lines (see section 2.2).

AmigaCOMAL 15

Which font do you want (not checked)
Type in any font you like. The choice is not checked by the install program.
This is done by AmigaCOMAL at startup time.

Font height (not checked)
This number is necessary to specify the font completely. If the font selected
by the last two questions does not exist, AmigaCOMAL will stop.

WRITE MODE • Insert mode at startup (y/n)?
Do you want Insert mode ON at the start (or typeover mode)?

Sticl^ mode (y/n)?
Do you want the mode to stick, or stay in effect until you toggle it (or do
you want it to end when you press < Enter >)?

After you answer the last question, a screen with a Command Window, an
Execute Window and a Memory Window (it is the size of a title bar) will be
opened. You should place the windows as you would like them at startup and
then retxirn to the install program by clicking the mouse on the close gadget in
the Command Window.

MEMORY
How much memory do you want to alloc. (Kb) ?
This memory is used to hold a comal program, comal packages, variables
etc. The standard value is 64Kb. If you are making the install file for a
compiled program you may want a smaller area. More than 8Mb (8192Kb)
may be allocated (if you have that much memory in yoin computer).

(1) Window on (2) Window off?
Choose whether you want the Memory Window displayed when COMAL
starts. You can use the MEMWINDOW command to change its status.

NUMBER OF OPEN FILES
Maximum number of open files
The AmigaCOMAL can only handle a certain number of open files at the
same time.

DIRECTORIES
What is the path for .LST files ?
Wliat is the path for .SAV files ?
NVhat is the path for .PCK files ?

16 AmigaCOMAL

What is the path for .EXT files ?
If AmigaCOMAL cannot find a file in the current directory the
search is repeated in the directory given here. The .LST directory is
used by the ENTER and MERGE commands, the .SAV directory by
the LOAD, RUN and CHAIN commands, the .PCK directory by the
USE command and the .EXT directory is used to hold external
procedures and functions (EXTERNAL).

What is the name for default tool ?
When a program is saved on disk by the SAVE command an icon for a
project is created. The standard value of this "default tool" for this project
(the program) is lAmigaCOMAL. If you have a hard disk you may want to
change this.

The Install program is a compiled AmigaCOMAL program. The source is
included on the disk. It is possible to change this program, perhaps to read in an
existing install file and use its values as suggested values instead of the standard
values. It is up to you.

AmigaCOMAL 17

18 AmigaCOMAL

3. - AmigaCOMAL Reference

This chapter will provide a quick reference to the built-in AmigaCOMAL
keywords. After each keyword (typed in CAPS to allow you to scan them
quickly) its syntax is shown, followed by at least one example (in italics). A brief
explanation of the keyword is then presented. If a keyword is a function or
procedure, AmigaCOMAL does not automatically captialize it for you, as it does
the other keywords (ie, AND is capitalized, abs is not).

Notation used for displaying keyword syntax is a modified form of Backus-Naur
notation, similar to that used by COMAL Today, COMAL Handbook, and the
COMAL Kemal Standard. Generally its rules are:

(a) Normal text not enclosed in < > is typed as shown (you may type
in caps or lower case regardless of how the text is shown).

(b) Items enclosed in < > are supplied by the user. The <> are not
typed.

(c) Items endosed in [] are optional. If used, do not type the [].

(d) Items enclosed in { } are optional and may have several occurances.
If used, do not type the { }.

(e) The | means "or". You choose one or the other of the items didded
by the |.

(f) All punctuation should be typed as shown, mcluding the ().

Also, when presenting examples which mix items that you type and the
response from COMAL, things you type will be underlined.
Remember that the examples given are only example lines, not entire
programs. They often require other COMAL statements to actually work,
such as initialization or procedure and function definitions.

AmigaCOMAL 19

//
//
// anything typed here

Statement - Anything after //is ignored, allowing comments in programs. In
direct mode, // allows you to overtype on a full screen line. After you type the
command, just type // and hit return; the rest of the line is ignored, and the
command is executed.

ABS
abs(rtMmenc cqjression)
PRINT abststandard'nunber)

Function - Gives the absolute value of the number. Positive numbers and zero
are imaffected, while negative numbers become positive.

ACS
&c&(ttumeric expression)
t emp; sacs (numi+nuni2)

Function - Gives the arccosine of the number.

ALLOCATE
allocate(po//iter vcr[/iKm])
allocate(newa)

Procedure - allocates a data area to a pointer variable.

pointer vnr is a pointer variable declared in a POINTER statement.

num is a number telling AmigaCOMAL (and the Amiga operating system)
where in RAM the data area should be placed. The possible values are:

0 the AmigaCOMAL variable stack is used // default
1 public memory
2 chip memory
4 fast memory

If num is nonzero the area is taken from the system heap administrated by the
Amiga operating system. For further details consult literature of the operating

20 AmigaCOMAL

system. In most cases a value of zero or one is used. The default value of num is
0.

The allocated data area may be freed by calling the procedure deallocate.

More about the use of allocate is foimd in chapter 4.5.

AND
agression AND agression
IF nuit)er>0 AMD number<100 THEM

Operator - Gives the result of a logical AND of two expressions, as shown by
the following table:

AMD TRUE FALSE

TRUE TRUE FALSE

FALSE FALSE FALSE

This is different than most BASICS in which AND is a bitwise operator. For
bitwise AND in COMAL see BITAND.

APPEND
OPEN [FILE]/ife#/ife/iameAPPEND
OPEM FILE 2,"test",APPEMD

File Type - Part of the OPEN statement. The sequential file must already exist
on disk, and is opened in APPEND mode. New data is written to the file
immediately after the existing data.

ARGARRAY$
argarray$(num)
IF argarray$(-1)=“CLI“ THEM

Array - argarrayS is a constant array containing information about the startup of
the program. The array is most often used by compiled AmigaCOMAL
programs.

AmigaCOMAL 21

The content of the array (the index starts at -1) is:

argarray$(-l) The value is either "Workbench" or "CLI" depending on
where AmigaCOMAL (or the compiled program) was
started.

argarray$(0) Contains the name of the program (either "Amiga¬
COMAL" or the name of the compiled program,
possibly preceded by a drive or directory specification if
one was used when it was started).

If you are working inside the AmigaCOMAL interpreter, -1 and 0 are the only
components of the array. If the program is a compiled AmigaCOMAL program
there may be further components:

argarray$(l) first startup parameter
argarray$(2) second startup parameter (icon tooltypes only) ...

argarray$(argnum) last startup parameter (icon tooltypes only)

The parameters are the tooltypes (to be put into an icon via the INFO menu
selection of Workbench) if the program was started from Workbench (each
tooltype is assigned to an element in the argarray$ array beginning wth 1). Or,
if the program was started from the CLI, the tail of the command string
becomes argarray$(l). argnum is a function that returns the number of
parameters (see description of argnum below).

Example: Let us say you have made this little program:

0010 FOR x:= -1 TO argnum DO PRINT x;argarray$(x)
0020 WAIT

If you run the program from the AmigaCOMAL interpreter, you would get
results similar to this:

-1 Workbench
0 AmigaCOMAL

22 AmigaCOMAL

Now, if you use the optional compiler, you could compile the program giving it
the name: TestPar. Then you could start the program using a parameter from
the CLI by the command:

TestPar dfO:alfa dfl:beta

You will see the following print out:

-ICLI
0 TestPar
1 dfO:aifa dfl:beta

Press any key to end the program. Now, you also could put parameters as tool
types in the icon for the program. To get the same results as shown above, you
would make one tooltype that contained: dfO:alfa dfl:beta. However, using icon
tooltypes you may separate the two items into two parameters if you wish. First
add a tooltype: dfi):alfa. Next add another tooltype: dfl:beta. Now double click
on the icon to start the program. This is the printout:

-1 Workbench
0 TestPar
1 dfi):alfa
2 dfl:beta

ARGNUM
argnum
IF argmjn>0 THEN check'parm

Function - returns the number of startup parameters transferred to the program.

The value of argnum is zero if the function is called from the AmigaCOMAL
interpreter or any program run under the interpreter.

If argnum is called from a compiled program started from the CLI the value
may be zero or one dependent on whether parameters were appended the
program name or not.

If argnum is called from a compiled program started from the Workbench by
double clicking on the programs icon, the value returned is the number of values
put into the tooltypes of the icon of the program (see argarrayS above).

AmigaCOMAL 23

AS
Export vcr [AS alias {,var(AS -]}

is used to EXPORT a variable, a procedure or a function in a comal
package under another name.

Example:

EXPORT atfao AS beta
EXPORT fdO, fdO AS forward

For example AS may be used to EXPORT a procedure, a fimction.

ASN
a&n{numeric expression)
PRINT asntnumb)

Function - Gives the arcsine of the number.

AT
PRINT AT rowfiol: [print list[mark\)
INPUT AT roWyCoiyen\\prornpt(\[vars[rnark\]
PRINT AT 1,1; "Section number;"; num;
INPUT AT 10,1,1;"Yes or No? ";reply$

Special - Part of INPUT or PRINT statements, specifying a specific location to
start at, similar to having a CURSOR statement immediately before a PRINT or
INPUT statement. (PRINT AT may also be combined with a USING format.)
Remember, the cursor location is specified row then column, similar to finding
your seat in a theater. If row is 0, it means stay on the current row. If col is 0, it
means stay in the current column or position in the specified row. Including a
comma or semicolon at the end of the statement causes the cursor to remain on
the current line, and not go down to the next line. A comma means stay where
it is, while a semicolon means space to the next zone, then stay there (default is
one space).

ATN
&tn(numeric expression)
PRINT atn(num1-i-num2)

Function - Returns the arctangent in radians of the number.

24 AmigaCOMAL

AUTO
AUTO [start line][jincrement\
AUTO 9000
AUTO 100,100
AUTO ,5
AUTO

Command - Makes the COMAL system generate line numbers automatically as
a program is typed in. Valid line numbers are 1 - 9999. Each line number is
always four characters, padded with leading O’s (0030). AUTO begms with the
next line number in the sequence if you do not specify a starting line. If you
don’t specify an increment, 10 is used. If you don’t specify a starting line
number, 10 is used, unless program lines already exist. Then the line number to
start at is the last line plus the increment.

Just hitting return after a line number inserts a blank line in the program.

BITAND
argument BITAND argument
showtbnun BITAND %00001000)

Operator - Returns the bitwise AND of the two numbers, similar to AND in
BASIC. Binary constants are preBxed by a %. The following binary table shows
how BITAND works:

BITAND 00 01 10 11

00 00 00 00 00

01 00 01 00 01

10 00 00 10 10

11 00 01 10 11

BITOR
argument BITOR argument
PRINT (bnun BITOR flag)

Operator - Returns the bitwise OR of the two numbers, similar to OR in
BASIC. Binary constants are prefixed by a %. The following binary table shows
how BITOR works:

AmigaCOMAL 25

SITANO 00 01 10 11

00 00 01 10 11

01 01 01 11 11

10 10 11 10 11

11 11 11 11 11

BITXOR
argument BFTXOR argument
bnun=(num1+nun2) BITXOR X10000000

Operator - Returns the bitwise exclusive OR of the two numbers. BITXOR
performs the bitwise XOR operation bit by bit on the two numbers. Binary
constants are prefixed by a %. The following binary table shows how BITXOR
works:

BITXOR 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

BYE
BYE
BYE

Command - Exits COMAL and returns to the computer’s operating system. You
will be asked to confirm the exit from COMAL as a safeguard. You also may
click on the close window gadget in the top left corner of the Command Window
to exit COMAL. If the program in memory has been modified and not SAVEd,
you will be warned (with a system requestor) that all changes will be lost (as
with NEW).

CASE
CASE control egression [OF]
CASE replyS OF
CASE choice OF

26 AmigaCOMAL

Statement - Begins a CASE structure, allowing a multiple choice decision with as
many specific WHEN sections as needed. A default OTHERWISE section may
be included that is executed if none of the WHEN sections match the condition
(which can be either string or numeric). Statement blocks following each WHEN
are indented when listed, but the CASE, WHEN and
OTHERWISE statements are not. The system will insert the word OF for you if
you don’t type it. A summary of the CASE decision structiu-e ts shown below;

CASE selector OF CASE eaten OF

WHEN choice list WHEN 0

statement block PRINT "You might starve."

{WHEN choice list WHEN 1,2

statement block) PRINT "Good meal."

[OTHERWISE OTHERWISE

statement block] PRINT "I won't pay the bil

ENDCASE ENDCASE

CAT - converted to DIR. See DIR.

CD - a short form of CHDIR. See CHDIR.

CHAIN
CHAIN filename
CHAIM “menu"

Command / Statement - Loads and runs a program from a disk file. The
program must have previously been SAVEd to disk.

CHANGE
CHANGE [line range] textljlext2
CHANGE "zz","printout"

Command - used to replace a substring (text!) in the program with another
string (text2). If the line number range (line range) is specified, the substring is
searched for only in that part of the program. Otherwise the whole program is
searched. The search is case sensitive.

If the search string is found, the corresponding line is listed with the search
string replaced with the new string. Then the system returns to command mode
with the cursor placed at the start of the replaced string. You may now make
other corrections (or do any thing else) and then press Enter to put the changed

AmigaCOMAL 27

line into the program area. If you do not press Enter with the cursor on the
corrected line, the line will not be changed!

To continue the search press <Ctr>l+<C>. If you press <CtrI> + <C>
without pressing < Enter > first, the line is not changed and the search continues.

CHDIR
CHDIR [string]
CHDIR “testprog"
CHDIR

Command / Statement - short for "CHange DIRectory" and may be further
shortened to CD. The string expression, string, is the name of a volume or a
subdirectory. CHDIR is used to make the directory given by the string
expression the current directory. Without string the path of the current directory
is output (similar to the contents of dir$). The current unit and current directory
are the same. So, if as part of a program you type UNIT, it will be converted to
CHDIR for you. See CD, DIRS, UNIT and UNITS

Examples:

CHDIR “Packages" The packages directory will be current directory (this
directory must be a subdirectory of the current
directory).

CHDIR ":MyDrawer" The directory MyDrawer in the root directory becomes
the current directory.

CD "RAM:" Change to RAM: disk

CD Output path of current directory

CHR$
c\a%{numeric expression)
PRINT chr$(num)

Function - Returns the character wth the specified numeric (ASCII) code. ORD
is the complementary function to CHRS.

28 AmigaCOMAL

CLOSE
CLOSE [[FlLE]filenum]
CLOSE FILE 2
CLOSE

Command / Statement - Closes the file specified. If no specific file is specified,
all files are closed (but does not affect files opened via the SELECT OUTPUT
statement). No error occurs if you issue the CLOSE command to close all files
if no file is open.

CLOSED
PROC p«?c/iame[(params)] [CLOSED]
FUNC)M/icname[(params)] [CLOSED]
PROC neupage(header$) CLOSED
FUNC gcd(n1,n2) CLOSED

Procedure / Function Type - Declares that all variables and arrays inside the
procedure or function are to be local - hidden from the main program. Likewise,
all variables and arrays in the main program are not known inside a CLOSED
procedure or function. However, specific variables and arrays may become
known inside a CLOSED procedure or function by use of parameters or the
IMPORT or GLOBAL statements. Data statements inside a CLOSED
procedure or function are considered local. A CLOSED procedure or function
may be made EXTERNAL (see EXTERNAL.)

CON
CON
CON

Command - Restarts a program that was previously stopped by a STOP
statement, break key <Amiga> + <S> or the STOP menu.

Due to the internal linking system used by COMAL, if lines are added, deleted,
or modified, or if new variables are introduced, the program may not be able to
be continued. See also STEP.

COPY
COPY "source filename" "destination filename"
COPY "test.sav'',"final.sav“

Command - Copies the specified file. If the file specified is a COMAL program
file, its matching icon file is copied also.

AmigaCOMAL 29

cos
cos(numeric expression)
PRINT cos(nuniber)

Function - Returns the cosine of the number m radians.

CREATE
CREATE filename,# records/ecord size
CREATE "names",128,200

Command / Statement - Creates a random access file of the specified size.
Records in the file are numbered beginning with record number 1 (there is no
record number 0 in a random access file.)

CURCOL
curcol
column:=curcol

Function - Retmns the current column position of the cursor on the line in the
current output window (Command Window in direct mode, Execute Window in
a riuming program). Columns are counted from left to right. The leftmost
column is 1.

CURROW
currow
row:=currow

Function - Returns the current row in the current output window (Command
Window in direct mode, Execute Window in a running program). Rows are
counted top to bottom. The top row is 1.

CURSOR
CURSOR lineposition
CURSOR 1,1

Command / Statement - Positions the cursor to the specified row and column in
the current window. Rows are counted from top to bottom; columns from left to
right. The top row is line 1. The leftmost column is column 1. Cursor positioning
is similar to fmding your seat in a theater. First find the row, then the position in
that row.

30 AmigaCOMAL

Speci^UQg 0 as a row or column means not to change it, thus CURSOR 0,9
would move to position 9 on the current row.

If used as a direct command, CURSOR correctly positions the cursor, unlike
other implementations of COMAL.

DATA
DATA value{,value)
DATA "Sam",134,"Fred",22,"Gloria",46

Statement - Declares data constants that may be assigned to variables via a
READ statement. Data may be text strings within quotes, or numbers. Multiple
items may follow a DATA keyword, separated by commas. When the last DATA
item is read, EOD is set to TRUE. Data can be reused following a RESTORE
command.

To include a quote mark as part of the string data, use two consecutive quote
marks f"abc""defg" is read as abc"defgV

Data inside a CLOSED procedure or function is regarded as local data.
Likewise, a READ statement inside a CLOSED procedure or function may only
read data inside that procedure or function.

DATES
date$
PRINT "Year:";date$(1:4)

Function - rettmis the date in the format:

yyyy-mm-dd 1991-08-27

where:

yyyy the year 1991
mm the month 08
dd the date of the month 27

The correct date will be returned only if the Amiga operating system has had the
date set correctly via a battery backed up clock, CLI date command, or the date
section in Preferences. You cannot set the date with the COMAL function date$.

AmigaCOMAL 31

DEALLOCATE
deallocate(po//i<ef var)
deallocate(newa)

Procedure - deallocates the data area allocated to the pointer variable pointer var
by allocate.

For further details see chapter 4.5.

DEL
DEL range
DEL 460
DEL pause

Command - Removes (deletes) lines from the program cmrently in the
computer’s memory. Lines may be deleted one at a time or in consecutive
blocks, all at once.

DEL 10 deletes line 10
DEL pause deletes the procedure or function named pause
DEL 10-30 deletes all the lines m the range of 10 through 30
DEL -90 deletes all program lines up to and including line 90
DEL 9000- deletes all program lines after and including line 9000

DELETE
DELETE filename
DELETE "testS.sav"

Command / Statement - Removes a fde from disk. When you delete a COMAL
.sav program Hie, its associated icon file is also deleted.

DIM
DIM string var OF max char
DIM str array{index) OF max char
DIM array name(index)
DIM names of 30
DIM players$(1:4} OF 10
DIN scores(min:max}

Command / Statement - Allocates (dimensions) space for strings and arrays
(AmigaCOMAL extends this to also allow you to DIM numeric and mteger
variables). Arrays begin with element 1 unless otherwise specified.

32 AmigaCOMAL

Multiple DIMs may be in one statement, separated by commas. Redimensioning
is not allowed. However, a DIM may be included in a CLOSED procedure or
function. Since the procedure or function is CLOSED, when it finishes executing,
all its variables are erased from the system. Thus each time it is called, all DIM
statements are treated as being executed for the first time.

Each element of a numeric array is initially set to 0 when dimensioned. Arrays
may have multiple dimensions, with whatever top and bottom limits you >^h,
within memory limitations.

DIR
DIR [dnve/<tir\
DIR

Command / Statement - Gives a catalog (directory) of the files on a disk. It uses
the default directory if none is specified. It may be included in a program.

DIR "dfl:"

DIR "dfl:programs"

DIR "programs"

DIR "rprograms"

DIR

dir of current directory in drive dfl:
dir of directory named programs on dfl:
dir of directory named programs, a subdirectory of
the current directory
dir of subdirectory named programs, a subdirectory of
the root directory
dir of current directory

Both CAT and DIR are included in COMAL, even though they are identical in
purpose. This lets you to use the one you are used to. If you type CAT in a
program, it is converted to DIR.

DIR$
dir$
PRINT dir$

Function - returns a string containing the current directory path.

DISCARD
DISCARD
DISCARD

Command - Discards aU previously linked packages and libraries. It is not
possible to discard only part of the linked packages.

AmigaCOMAL 33

DISPLAY
DISPLAY [range] [TO] yiiename]
DISPLAY "names.Ut"
DISPLAY init

Command - Lists a program without line numbers. Ranges of lines may be
specified, as with LIST. Program lines may be displayed to disk, allowing them
to be inserted into word processing documents and such. Program lines
DISPLAYed to disk may only be re-entered with the MERGE commands. Press
the < space bar> to pause a display. Press it again to continue.

If you cursor up a program listing on the screen, when you hit the top line,
COMAL will re-list the previous line, and scroll the listing down. This allows you
to backtrack up a listing, and is very handy.

DIV
dividend DIV divisor
result=guess DIV count

Operator - Provides division with an integer answer. It can be used in
conjunction with the MOD operator. DIV defines x DIV z as INT(x/z).

DO : see FOR and WHILE

EDIT

Command - This command lists the first page of the program and turns you
into edit mode.

Being in edit mode you cannot leave a line that is not a correct AmigaCOMAL
line. Each time you try to leave a line by using one of the cursor keys the line is
scanned and if correct it is put into the program.

In addition to this:
<Alt> + deletes the cursor line both in the command window and in

the program are.
<Alt> + <Ins> inserts a line with a line number between the surrounding lines

and this line is at the same time put into the program area.

34 AmigaCOMAL

As a consequence being in edit mode the lines you see in the command window
are the same as those in the program area. The only way to leave a line without
putting it into the program is to use the mouse.

You may leave the edit mode by pressing <Esc> or by executing acommand.
The RENUM command is an exception from this. This makes it possible to
make more rooms between two lines by selecting the Renumber menu. This will
renumber the program and the new line numbers will be shown in the window.

ELIF
ELIF expression [THEN]
ELIF replyS IN “YyNn" THEN

Statement - Allows conditional statement execution. ELIF means "else if and is
part of the IF structure. The statement block following the ELIF is executed
only if the condition is TRUE, otherwise it is skipped (the statement block is
automatically indented in listings). If you omit the word THEN, the system will
insert it for you.

ELSE
ELSE
ELSE

Statement - Provides alternative statements to execute when all IF and ELIF
conditions in the IF structure evaluate to FALSE (the statement block is
automatically indented in listings).

END
END \niessage\
END "Alt Done."

Statement - Terminates program execution. END is optional. Without an END
statement, a program ends automatically after its last Line is executed. There may
be more than one END statement in a program. Programs ending at an END
statement may not be restarted via CON (use STOP for this capability). If no
END statement is used, the program comes to a normal end with no ending
message. A message may be included with the END statement. END without a
message outputs the word END and the line number. Ending messages appear
in the Command Window when the program ends.

AmigaCOMAL 35

ENDCASE
ENDCASE
ENDCASE

Statement - Marks the end of a CASE structure.

ENDFOR
ENDFOR [control variable]
ENDFOR sides#
ENDFOR increment

Statement - Marks the end of a FOR loop. The system will insert the variable
name after ENDFOR for you if you omit it (after a SCAN or RUN). Single line
FOR statements do not use ENDFOR.
COMAL will convert NEXT into ENDFOR for you (making the transition from
BASIC easier).

The control variable is considered local to the FOR structure. Thus a FOR loop
variable will not conflict with a variable of the same name in the main program.

ENDFUNC
ENDFUNC [function name]
ENDFUNC even

Statement - Marks the end of a user defmed function. The system will insert the
function name after the ENDFUNC for you if you do not type it (after a SCAN
or RUN). ENDFUNC is not used with EXTERNAL function header lines (see
EXTERNAL).

ENDIF
ENDIF
ENDIF

Statement - Marks the end of a multi-line IF structure. One line IF statements
do not use an ENDIF.

ENDLOOP
ENDLOOP
ENDLOOP

Statement - Marks the end of a multi-line LOOP structure. One line LOOP
statements do not use ENDLOOP.

36 AmigaCOMAL

ENDPROC
ENDPROC {procedure name]
ENDPROC show'item

Statement - Marks the end of a procedure. The system will insert the procedure
name after the ENDPROC for you if you do not type it (after a SCAN or
RUN). ENDPROC is not used for EXTERNAL procedure header statements
(see EXTERNAL).

ENDRECORD
ENDRECORD
ENDRECORD

Statement - Marks the end of a RECORD structure. See description of
RECORD for further details.

ENDTRAP
ENDTRAP
ENDTRAP

Statement - Marks the end of the error handler TRAP structure.

ENDWHILE
ENDWHILE
ENDWHILE

Statement - Marks the end of a multi-line WHILE structure. ENDWHILE is not
used with single line WHILE statements.

ENTER
ENTER «filename»
ENTER "testing.1st"
ENTER "" start file requester

Command - Enters program lines from an ASCII format file (such as a file of a
program previously LISTed to disk). Any current program is cleared from
memory prior to entering the new lines (use MERGE to preserve the current
program).

When transferring a COMAL program from one system to another, LIST the
program to disk, then ENTER or MERGE it into the other system. This may
also be done via modem or networks if the disk format is incompatible.

AmigaCOMAL 37

EOD
eod
WHILE NOT eod DO

Function - Boolean function that returns TRUE if End Of Data has been
reached. If there are no DATA statements in the program, EOD is always
TRUE.

EOF
co((filenum)
WHILE NOT eof(infile) DO

Function - Boolean function that returns TRUE when End Of File has been
reached. Since several files may be open at one time, you must specify the file
number.

ERR
err
CASE err OF

Function - Returns the error number when an error occurs within an error
handler structure. Error numbers are implementation specific. See Appendix E
for a listing of error numbers and their associated messages.

ERRJFILE
errfile
IF errfUe=2 THEN

Function - Returns the file number that was in use when the error occurred.

ERRTEXT$
errtext$[(/t«m)]
PRINT "»“;errtext$;''«''

Function - Used without the parameter this function returns the error text
corresponding to the last error if caUed from inside the HANDLER part of a
TRAP .. HANDLER structure. If called from outside of the HANDLER part of
a TRAP .. HANDLER structure it will retium a null string.

You also have the option to specify which error message you wsh to have
returned. This is illustrated by the example program.

38 AmigaCOMAL

Example; The following program prints the first fifty error messages on the
printer:

0010 SELECT OUTPUT "Ip;"
0020 FOR x:=1 to 50 DO
0030 PRINT errtext$(x)
0040 ENDFOR x
0050 SELECT OUTPUT "ds:"

Note that errtext$ returns exactly the same text as errtext$(err). You may
PRINT or assign a substring of errtextS only after spedfying the error munber.
For example: PRINT errtext$(err)(6:). This will print only the message portion
(skips the 4 digit message number). See Appendix E for a listing of error
messages.

ESC
esc
TRAPESC+I-
IF esc THEN
TRAP ESC-

Function - Returns TRUE if the break key <Amiga> + <S> or STOP menu are
detected. This is only useful if break is disabled (via the command: TRAP ESC-
). To enable break use the command: TRAP ESC+ . Summary:

TRAP ESC- Disable break
TRAP ESC+ Enable break
PRINT esc call to esc function

EXEC
[EXEC] procname[(parameter //st)]
show'item(number)

Command / Statement - Executes a procedure. May be used from direct mode.
The word EXEC is optional and rarely typed. Multiple EXEC statements may
be on one line, separated by semicolons. Only the procedure name needs to be
typed to execute a procedure. The keyword EXEC is not listed by default. If you
want it listed in your program listings, issue the command: SETEXEC+

EXIT
EXIT [WHEN condition]
EXIT WHEN errors>3

AmigaCOMAL 39

Statement - Provides the method for Iea\dng a lX)OP structure. It can be
conditional with the optional WHEN extension.

EXP
exptnumeric expression)
PRINT exp(nunnber)

Function - Returns the natural logarithm’s base value e raised to the power
specified. A good representation of e is 2.718282.

EXPORT
Export var [AS alias {,var(AS -]}
EXPORT forward AS fd
EXPORT riskrate

Statement - Used in a package to specify all the variables, functions and
procedures that are to be exported from the package. The names in the variable
list will be known by the program (or package) that uses this package. If AS
alias is used, then the exported var wUl be known outside of the package as alias.

Note that functions and procedures to be exported must be CLOSED. See
chapter 5.5.2 for further details and examples.

EXTERNAL
PROC nnme[Ojamw)][EXTERNAL file]
FUNC /iflme[(pamjjr)][EXTERNAL/i/e]
PROC set'up EXTERNAL "setup.ext"
FUNC rec'sizeCnameS) EXTERNAL "rec.ext"

Special - Identifies a procedure or function as an external one. This means that
the body of the procedure or function is stored on disk, and is not part of the
program itself. Thus ENDFUNC or ENDPROC are not used. An external
procedure or function is considered CLOSED. To be used as external, a
procedure or function must be CLOSED and previously SAVEd to disk. The
filename may be a string variable or string expression.

FALSE
FALSE
ok:=FALSE

System Constant - Always equals 0. It can be used in comparisons or as a
numeric expression. For example, test:=FALSE is the same as test:=0.

40 AmigaCOMAL

FIELD
FIELD string var OF max char
FIELD str array{index) OF max char
FIELD array nameQndex)
FIELD numeric variable name
FIELD names of 30
FIELD playersS(1:4) OF 10
FIELD scores(min:max)
FIELD filename!(108)
FIELD diskkey#

Statement - Used to declare a field within a RECORD data structure. The
syntax of FIELD is exactly the same as that of DIM.

See DIM and RECORD for further details.

FILE : see CLOSE, INPUT, OPEN, PRINT, READ, WRITE

FIND
FIND "text string^
FIND " PROC "

Command - Searches the program for specified text. It is case sensitive, so that
endif would not match ENDIF. To repeat the FIND command, type
<ControI> + <C>. If you type <Return> first, the next found line will be
underneath the previous one. If you just type <Control> + <C> several times in
a row, each found line will overtype the previous one.

FLOAT
float(numcnc expression)
float(5)

Function - Retiums the number spedfied as a real number (in its floatmg point
representation).

FOR
FOR vflr; = # TO # [STEP #] DO [statement]
FOR x;=10 TO 1 STEP -1 DO PRINT x
FOR getin:=1 TO max DO getinput(getin)
FOR num:=1 TO total DO

AmigaCOMAL 41

Statement - Marks the start of a FOR structure or one line FOR statement. The
variable is initialized to the start value before loop execution begins. A check is
made that the variable value does not exceed the end value before executing the
loop statements (it is possible for the loop to be skipped entirely if the start
value exceeds the end value to begin with). If the step value is negative, the
variable is decremented with each loop, rather than incremented. The variable
may be an integer variable.

The FOR loop variable is considered LOCAL to the FOR structure. Thus a
FOR loop variable will not conflict with a variable of the same name in the main
program. A one line FOR statement may be used as a direct command.

The statement block within a multi-line FOR structure is automatically indented
when listed. The system will insert the word DO for you if you omit it. A
summary of the FOR structure:

FOR var.^start TO end [STEP amount] [DO] for x;=1 TO 12 do

statement block print monthnameStx)

ENDFOR [var] END for x

FREE
free
PRINT free

Function - Returns the amount of free memory available to the COMAL
program.

FREEFBLE
freefde
editfile:=freefile

Function - Returns the first free file (stream) number that is available (or 0 if
none).

FUNC
FUNC namelipami)] [CLOSED]
FUNC name[{pann)] EXTERNAL filename
FUNC but'first$(text$) CLOSED
FUNC call'answered EXTERNAL “call"
FUNC occurances#(texts,c$)

42 AmigaCOMAL

Statement - Marks the start of a user defined function. Parameter passing is
allowed, multiple parameters separated by commas. Parameters used are
considered local to the function unless preceded by the REF keyword. If the
statement ends with CLOSED, the function is considered a closed function, and
all variables and arrays in it are unknown to the main program. Likewise, all
variables and arrays in the main program are then unknown to the closed
function (except those specified earlier as GLOBAL). Use IMPORT or
parameters to bring main program variables or arrays into a closed function.

Every function must include a RETURN statement to return the value of the
function. The value may be numeric or string (matching the function name type).
The block of statements inside the function definition are automatically indented
when listed.

Functions may be recursive. You can define a function within another function
or procedure (nested). A closed function can be used as an EXTERNAL
function by SAVEing it to disk.

Procedures and functions may be the actual parameter of a formal REF
parameter. See PROC for an example.

A summary of a function declaration;

FUNC/unc /iamc[({[REF]parms})] [CLOSED]
{IMPORT name}

statement block
RETURN value //included in block

ENDFUNC \func name]

FUNC even(num) CLOSED

IF num MOD 2 THEN

RETURN FALSE

ELSE

RETURN TRUE

END IF
ENDFUNC even

GET$
get$(/i/en«m,# of characters)
text$=9et$(2,16)

Function - Returns the specified number of characters from the specified file.
The file must previously have been opened as a read type file. If the end of file
is reached before the specified number of characters are retrieved, only those
retrieved prior to EOF will be returned (there is no padding of spaces and no
error occurs unless you attempt to read from the file again).

AmigaCOMAL 43

GLOBAL
GLOBAL var{,var}
GLOBAL persona,id#,found,press$(),after(,)

Statement - Used to declare certain variables, functions or procedures in the
main program as global. A global variable can be seen from all parts of a
program including CLOSED functions and procedures.

Sometimes a variable in the main program is IMPORTED into almost all of the
closed functions and procedures. In this case the GLOBAL declaration may be
used, but the GLOBAL declaration and IMPORT of variables are not always
the same.

IMPORT works dynamically. The variable is imported from the environment in
which the closed function or procedure is executed (not where it physically is
placed in the program). In contradiction to this the GLOBAL declaration is a
static property. To see the effect of this let’s construct the following package
with the name globaltest:

0010 EXPORT alfao
0020
0030 GLOBAL x
0040 x=7
0050
0060 PROC alfatREF p) CLOSED
0070 PRINT X

0080 p
0090 ENOPROC at fa

Store the package to disk with the command:

SAVE "globaltest.pck"

Now enter the following program:

0010 USE GLOBALTEST
0020
0030 GLOBAL x
0040 X=12

0050
0060 alfa(beta)
0070
0080 PROC beta CLOSED
0090 PRINT X

0100 ENOPROC beta

44 AmigaCOMAL

The execution of the program will result in the following output:

7
12

Note that the GLOBAL declaration in the package is unnecessary since all
variables in the main part of a package are automatically made global. The
declaration is made explicit in the example to be clear.

The use of the static property of a GLOBAL variable is used in the data base
example in chapter 6.2.

GOTO
GOTO label name
GOTO jail

Statement - Transfers program execution to the line with the specified label
name. Since COMAL has many structures and loop methods, GOTO is not
required to be used other than in advanced programs. It is being considered to
remove GOTO from the COMAL standard.

HANDLER
HANDLER
HANDLER

Statement - Marks the beginning of the error handling section of the TRAP ..
HANDLER structure. The block of statements in the trapped section and the
error handling section are automatically indented when listed.

AmigaCOMAL 45

IF
IF condition THEN [statement]
IF replyS IN "yYnN" THEN

Statement - The start of a multi-line IF structure. May also be a one line IF
statement (no ENDIF is used). IF allows conditional statement execution. The
block of statements following the IF are only executed if the condition is TRUE.
The block of statements are automatically indented when listed. The system will
insert the word THEN for you if it is omitted. A one line IF statement may be
issued as a direct command.

IF condition [THEN]
statement block

{ELIF condition [THEN]
statement block)

(ELSE
statement block]

ENDIF

IMPORT
IMPORT identifier {identifier}
IMPORT running'total

Statement - Allows a closed procedure or function to use variables, arrays,
procedures and functions from the main program. There may be more than one
IMPORT statement in a procedure or function, and all IMPORT statements
should come prior to any executable statement in that procedure or function.
See also GLOBAL.

IN
stringl IN string2
IF guessS IN uord$ THEN winner

Operator - Returns the position of stringl within string2 (or 0 if not found). If
stringl is the null string ("") 0 is returned.

INKEY$
inkey$
reply$:=inkey$

IF letters IN vouelS THEN

PRINT “It is a vowel"

ELIF letters IN consonants THEN

PRINT "It is a consonant"

ELSE

PRINT "It is not a letter"

ENDIF

46 AmigaCOMAL

Function - Returns the next character from the keyboard. It will wait for a key
to be pressed (whereas KEYS does not wait). The key pressed is not printed on
the screen (may be useful for entering a password).

INOUT - see SELECT.

INPUT
INPUT FILE^/e#[/ec#]: var list
INPUT [AT wwfioiyenY\\prompti\vars[mark\
INPUT FILE 2: text$
INPUT AT 5,2,10:"ZIP CODE; zip'code,
INPUT “Age? ":age
INPUT replyS

Statement - INPUT allows the user to enter data into a running program from
the keyboard (the AT section is optional). INPUT FILE gets the data from the
file specified, which must have been pre\dously opened for reading. INPUT FILE
reads ASCII files, such as those created by PRINT FILE or a Word Processor
with ASCII file output (does not read files created by WRITE FILE statements).
The prompt is optional and may be a variable.

During the INPUT fi-om keyboard request, the input area is a protected field
extending to the end of the line (unless the length part of the AT section is
specified). A 0 length means only a carriage return will be accepted. A 0 for the
row or column means not to change it (stay in the same row or column). If the
mark is a comma, the cursor remains where it is after the reply. If it is a
semicolon, spaces are printed to the next zone (one space by default if ZONE is
not specified), then the cursor remains at that position. See also SELECT
INPUT.

INT
mt(numenc agression)
tal ly:+int(niinber)

Function - Returns the nearest integer less than or equal to the specified
number. Both positive and negative numbers are rounded down (-8.3 becomes
mteger -9).

KEYS
key$
WHILE key$<>“c" DO WAIT

AmigaCOMAL 47

Function - Returns the first character in the keyboard buffer. If no key has been
pressed, the null string ("”) is returned. The key accepted by KEYS is not printed
on the screen.

LABEL
[LABEL] label name:
months:

Identifier - Assigns a label name to the line. This label is only referenced by
RESTORE or GOTO. It is non-executable and may be placed anywhere within
a program as a one line statement. You do not have to type the word label, and
if you do, it will not be listed (similar to how EXEC is treated).

LEN
\en(string expression)
length®lenttexts)

Function - Returns the length of the specified string. All characters, even non¬
printing chmacters, are counted. The length of the null string "" is 0.

LET
[LET] var:=yalue
[LET] yar:+yaUje
[LET] num var:-value
count:=5
names:="none";sun:=0
replyS:+markS
score:-!
nameS(2) :="coniputer"

//numeric or string
//numeric or string - incremental
//nuneric only - decremental
// assign a variable a value
// assign several variables separated by ;
// concatenate marks onto end of replyS
// decrement score by 1
// assign an element of array nameS

Command / Statement - Assigns a value to a variable. The keyword LET is
optional and rarely is typed. It is not listed in a program.

LIST
LIST [range] [TO] [filename]
LIST header
LIST “myprog.lst"
LIST pause “pause.Ist"
LIST "" starts file requester

Command - Lists the specified program lines. If no lines are specified, all lines
are listed. If a filename is specified, the lines are listed to that file (in ASCII
form), otherwise they are listed to the current output location (screen by
default). A procedure or function name can be used to specify a line range.

48 AmigaCOMAL

LIST 30

LIST -30

LIST 9000-

LIST 100-200

LIST pause

lists only line 30
lists all lines up to and including line 30
lists all lines after and including line 9000
lists lines 100 through 200 inclusive
lists all lines in procedure name pause

Lines LISTed to disk may be merged into the programs with the MERGE
command. Statement blocks within structures are automatically indented when
listed

LIST and ENTER commands are useful when transferring programs from one
system to another. LIST the program to disk. Then ENTER it into the other
system. Modems and networks may also be used to aid the transfer.

Press the < space bar> to pause a display. Press it again to continue.
AmigaCOMAL will re-list preceding lines if you cursor up while on the top line
of the screen. This is handy to see lines that have just scrolled off the top.

LISTPACK
USTPACK (package]
LISTPACK
LISTPACK system

Command - Used without the package name package, this command outputs a
list of all packages linked into the system. When used with the name package, it
outputs a list of all the procedures in the speciGed package.

Example: Having USEd the speech package developed in chapter 6.2 the
commands have the foUowing effect:

LISTPACK
SPEECH (comal)
DEVICES (comal)
MESSAGES (comal)
SYSTEM (comal)
TRANSLAT0R_L1BRARY (code)
EXEC LIBRARY (code)
SYSTEM_C00E (code)

LISTPACK Speech
FUNC translate$(text$) CLOSED
PROC pronounce(texts) CLOSED
PROC say(texts) CLOSED

AmigaCOMAL 49

LOAD
LOAD \filename]
LOAD "menu"
LOAD [“"] start file requester

Command - Loads a program from disk into the computers memory. Program
memory is cleared before loading the program. The program being loaded must
have previously been SAVEd to disk. If you do not specify a filename, a
requestor will pop up asking for the name. You cannot LOAD a program
SAVEd by a different COMAL implementation. To transfer programs between
implementations, use LIST to disk, and ENTER to retrieve them.

LOG
\og(numeric expression)
PRINT log(nutnber);

Function - Returns the natural logarithm of the number specified. This is log to
the base e. A good representation of e is 2.718282.

LOOP
LOOP [num TIMES [simple statement]]
LOOP 10 TIMES
LOOP

Statement - The multi-line LOOP structure uses the EXIT statement as the exit
method. The statement block within a LOOP structure is automatically indented
when listed. Used without the TIMES part (num TIMES) the program
statements between LOOP and ENDLOOP will be executed again and again
without stop unless an EXIT or a GOTO statement directs program execution
outside the loop. If the TIMES part is specified, the statements will be executed
num times (unless interrupted by an EXIT or GOTO statement). The value of
the expression num must be in the range 1 - 2147483647. A one line LOOP
statement may be executed as a direct command. Example:

LOOP 20 TIMES fd(70);rt(U4)

50 AmigaCOMAL

A summary of the LOOP structure:

LOOP [num TIMES]
statement block

[EXIT] // optional
ENDLOOP

LOOP

IMPUT''Score(0=clone)?";score

EXIT WHEN score=0

WRITE FILE 2: score

ENDLOOP

MAIN
MAIN
MAIN

Command - Returns to the main program section. If a program is stopped while
an external procedure or function is being executed, COMAL leaves that
external routine in memory, available to be USTed, edited and SAVEd (you
may have stopped it to check and fix something). You cannot see the main
program in this case! The command: MAIN will return you to the main
program, remoNung the external routine from memory.

MAKEDIR - converted to MKDIR. See MKDIR.

MAXINDEX
maxindex(arrayname({,}))
PRINT maxindexttableO)
f i rstone=roaxinclex(scores(,))

Function - Returns the maximum index of the array. If the array is a two
dimension array, a comma must be included between the Q. A three dimension
array needs two commas („) and so on.

MEMWINDOW
MEMWINDOW+ I-
MEMWINDOWt^

Command - Opens or closes the little Memory Window that continuaUy displays
the number of free bytes in the AmigaCOMAL system. These are the two
commands:

MEMWINDOW+ open the free memory window

MEMWINDOW- close the free memory window

AmigaCOMAL 51

At the start of AmigaCOMAL the window is closed but this may be changed in
the install program. You also may issue the command FREE to see the free
memory count (even in a running program) or SIZE for program size
information. See FREE and SIZE.

MERGE
MERGE \line#{Jtncrement\\ filename
MERGE "readrec.lst"
MERGE 580,1 "checkout.Ist"

Command - Merges program lines from a disk file (ASCII format). The lines
are renumbered as they are merged into the current program. If you specify a
starting line number, the lines will be renumbered starting at that line as they
are merged. If you do not specify a starting line, the merge starts after the last
current line. If you do not specify an increment, 10 is used.

MININDEX
minindex(arrayname({,}))
PRINT ininindexttablet)}
firstone=minindex(scores(,))

Function - Returns the minimum index of the array. If the array is a two
dimension array, a comma must be included between the Q- A three dimension
array needs two commas („) and so on.

MKDIR
MKDIR string
MKDIR "final"

Command / Statement - Creates a new directory (MKDIR is an abbreviation of
MaKe DIRectory ... if you type it as MAKEDIR it will be converted into
MKDIR). It works like the CLI command MKDIR.

Examples:

MKDIR ":MyProgs"

MKDIR "dfOiTest"

MKDIR "NewDir"

creates a new directory MyProgs in the root of the
current directory

creates a new directory Test in the root of drive dfO:

creates a new directory NewDir in the current directory

52 AmigaCOMAL

A directory which is empty may be removed by using the DELETE command.

MOD
dividend MOD divisor
rem16=nuniber HOO 16

Operator - Returns the modulo of the munbers. It can be used in conjunction
with DIV. It defines x MOD z as x-(x DIV z)*z which expands into x-
INT(x/z)*z. If z is negative, the result may be irrelevant, but should follow the
definition.

NEW
NEW
NEW

Command - Erases the program currently in memory and clears all variables.
Linked packages are also cleared. NEW may be included in a program.

AmigaCOMAL requests confirmation if a NEW command is issued and the
progr2un in memory has been modified and not saved.

NEXT ; converted to ENDFOR, see ENDFOR

NOT
NOT condition
IF NOT ok THEN

Operator - Returns to reverse of the TRUE / FALSE evaluation:
NOT TRUE = FALSE
NOT FALSE = TRUE

NULL
NULL
NULL

Statement - This statement does absolutely nothing. It is included in
AmigaCOMAL exclusively to be compatible with other COMAL versions. The
following statement (or something similar) is sometimes used in COMAL
programs for IBM or Commodore 64 to wait for some key (the space key m tWs
example) to be pressed:

AmigaCOMAL 53

WHILE key$<>" DO NULL

In a multi-tasking environment like the one you are working in on the Amiga it
is bad programming practice to use such a statement to wait for a key to be
pressed (it is some times called "busy wait"). AmigaCOMAL will use a lot of
CPU time executing this statement again and again. Instead, the following
statement should be used:

WHILE keySo” •' DO WAIT

OF : see CASE, DIM and HELD

OPEN
OPEN [FILE] file# filename/node
OPEN FILE 2,“scores",READ

Command / Statement - Opens a file and assigns it a file number (that is used
later with fde operation statements). A file may be opened to the screen, printer
and serial port as well as disk. The accepted modes are:

READ, WRITE, READWRITE, APPEND and RANDOM lengh

OR
condition OR condition
IF reply$<"a" OR reply$>"z“ THEN

Operator - Returns the result of the logical OR of the two expressions. This is
different than most BASICS in which OR is a bitwise operator. For bitwise OR
in COMAL see BITOR.

OR TRUE FALSE

TRUE TRUE TRUE

FALSE TRUE FALSE

ORD
ordistring egression)
a=ord("a")

Function - Returns an integer representing the ASCII code (ordinal number) of
the specified string. If the strmg is longer than one character, ORD only looks at

54 AmigaCOMAL

the first character. An error results if the null string is used. ORD is system
dependent and may vary between systems (especially the Commodore 64 which
uses a modified ASCII).

OTHERWISE
OTHERWISE
OTHERWISE

Statement - Marks the start of the default case in the CASE structure. The block
of statements after the OTHERWISE are executed if no WHEN case condition
is met. The block of statements are indented automatically when listed.
OTHERWISE is an optional part of the CASE structure. If it is omitted and
none of the WHEN conditions are met, an error condition will result.

OUTPUT - see SELECT OUTPUT.

PAGE
PAGE
PAGE

Statement / Command - Clears the screen and puts the cursor at the top left
comer (1,1). If output is to another device, a CHR$(12) is sent (form feed).

PASS
PASS string
PASS "info"

Statement / Command - Transfers commands to the CLI.

If the value of the string expression string is the empty string a new CLI is
opened and you may type CLI commands in this window. To return to
AmigaCOMAL in this case, type: endcli

If the value is not empty a window for the output of the command is opened. At
the end of the execution of the command you will be asked to press < Enter > to
return to AmigaCOMAL.

Examples:

PASS "" a new CLI is opened

AmigaCOMAL 55

PASS "info" information about the disk system is output

PEEK
peek(memo/y address)
device=peek(4839)

Function - Returns the decimal value of the contents in the specified memory
location. PEEK is very machine dependent. PEEK is a package command in
AmigaCOMAL and requires a USE SYSTEM command prior to using it.

PI
pi
PRINT "Value of PI is";pi

Function - Returns the value of pi. The niunber of digits varies between systems.
AmigaCOMAL sets pi equal to 3.141592654.

POINTER
POINTER pointer var [TO var]{pointer var [TO var\)
POINTER lenX
POINTER rec'ptra TO freezer'articlea

Statement / Command - Declares a POINTER variable.

Immediately after the declaration, the pointer variable does not pomt to anything
(NIL pointer). To make it pomt to something an address have to be assigned to
the pointer (using the address operator) or a separate data area must be
allocated to the pointer (using the procedure allocate).

Example: The following function returns the maximum length of a string
variable:

FUNC maxlentREF s$) CLOSED
POINTER len%
''len%:=^s$
RETURN lenX

ENDFUNC maxten

See Chapter 4.5, 6.3.1. for further details and examples.

POKE
poV&(memory address contents)
poke(4839,13)

// Make lenX point to max. ten field of s$
// .. and return content of that field

56 AmigaCOMAL

Function - Places the specified decimal value into the memory indicated memory
location. POKEing the wrong value into some memory locations may "lock out"
your machine. POKE is very machine dependent.

POKE is a package command, and requires a USE SYSTEM statement prior to
using it.

PRINT
PRINT [AT rowfiol-:\ [USING/o/mt] list[m<uk\
PRINT [FILE #[/Bc]:][USING/omi:]/«t[mcdt]
PRINT AT 9,1: USING ■■$###.##»: amount
PRINT FILE 2: texts

Statement / Command - Prints items as specified. More than one item may be
specified in one PRINT statement, separated by a , or a ;. A comma , is a null
separator (no spaces between items). A semicolon ; prints spaces to the next
zone (one space by default if ZONE has not been specified).

PRINT FILE statements write items in ASCII to the file (it may be preferable
to use WRITE FILE for data files). The AT and USING sections are optional
parts of a PRINT statement that provide added flexibility. PRINT FILE can
write to both sequential and random files. PRINT statements can write to the
screen or printer, or even a fiile if SELECT OUTPUT to a file was previously
issued.

PROC
PROC name[ipamis)\ [CLOSED]
PROC name[(parms)] [EXTERNAL/j/e]
PROC readrec(nuiiber)
PROC conipare(t1$,t2$) EXTERNAL “comp.ext"

Statement - Marks the start of a multi-line procedure definition, including
parameter passing (parameters are considered local unless preceded by the REF
keyword). A procedure may recursive. The CLOSED keyword is included at the
end of the statement to make a procedure closed. A closed procedure does not
know about variables or arrays in the main program (unless they are
IMPORTed or GLOBAL). Likewise, variables and arrays inside a closed
procedure are local, and remain imknown to the main program. A closed
procedure can be used as an EXTERNAL procedure by SAVEing it to disk.
You can define a procedure within another procedure (nested).

AmigaCOMAL 57

Procedures and functions may be the actual parameter of a formal REF
parameter. For example, let the procedures upperQ and lowerQ be two
procedures that transforms all letters in a string variable to upper case or lower
case letters. These procedures are transferred as parameters in the following
little fraction of a program:

PRINT "Upper or lower case (U/L)? ",
REPEAT

answ$:skey$
UNTIL answ$ IN "UuLl"
PRINT
IF ansu$ IN "Uu" THEN

writelinetupperO, line$)
ELSE

writeline(louer(),lineS)
END IF

//
PROC writelinetREF convertO, lineS)

convert(Iine$)
PRINT lines

ENDPROC writeline

Here is a summary of the procedure structure:

PROC proc /iamc[({[REF]pamw})] [CLOSED]
{IMPORT name)

statement block
ENDPROC proc name

PROC stars(num) CLOSED

FOR x:=1 TO num DO

PRINT

ENDFOR X

PRINT // gives cr
ENDPROC stars

RANDOM
OPEN FILE file# filename,RANDOM, record length
OPEN FILE 2,"subs",RANDOM 88

File Type - Identifies a file as random access, for both reading and writing. Each
record in a random access file must be the same length, specified by record
length.

RANDOMIZE
RANDOMIZE {seed\
RANDOMIZE
RANDOMIZE 8

Statement / Command - Randomizes the random number generator. This
generates a series of pseudo random numbers. You only need to use the

58 AmigaCOMAL

RANDOMIZE command once in your program (such as right the the very
beginning).

Specify a "seed" number after RANDOMIZE and you cause a speciftc series of
random numbers to be generated. The series of numbers will be the same each
time that specific seed is used. This is helpful while testing a program that uses
random numbers.

READ
READ [FlLE^/e#[/»c#]:] var list
OPEN [FILE] filenumfilename,READ
READ naffle$,age
READ FILE 2,record: naine$,adr$,city$,stS
OPEN FILE 3,filenaffle$,REA0

File Type or Statement - In an OPEN statement, specifies a sequential file to be
read. READ also can be used as a statement to read data from DATA
statements. Finally, READ FILE statements read data from sequential or
random files that were created with WRITE FILE statements (these are binary
files, not ASCII).

READWRITE
OPEN [FILE] numjilename$,READWR.TrE
OPEN FILE 3,filenanie$,READWRITE

File Type - In an OPEN statement, specifies a sequential file that can be either
read from or written to.

RECORD
RECORD name®
RECORD persons

Structure - The RECORD keyword introduces the RECORD structure used to
declare a structured variable. The statements between RECORD and
ENDRECORD must be either comment, FIELD, POINTER or a new
RECORD structure.

AmigaCOMAL 59

See chapter 4^, 6.3.1. for further details and examples. The RECORD structure
is summarized below:

RECORD/jomc® record art idea
{FIELD var info) FIELD names
{POINTER var) field page#

ENDRECORD/iame@ endrecord art idea

REF
REF var
PROC alter(REF text$) CLOSED
FUNC slideCREF textS)

Parameter Type - Specifies that the parameter will be an alias for the matching
variable or array in the calling statement (passed by reference rather than by
value). The value of the calling statement ch2mges as its REF parameter is
changed.

RENAME
RENAME oid filename/tew filename
RENAME "tenp","final"

Statement / Command - Renames a disk file. Takes an existing file and gives it
a new name. If the file is a .sav COMAL program file, its matching icon file is
renamed also.

RENUM
RENUM [target start][fncrement]
RENUM too
RENUM ,5
RENUM 9000,1

Command - Renumbers the program in memory. Valid line numbers are 1-9999.
By default, it renumbers a program to start at line 10 and increment by 10,
unless you specify otherwise.

REPEAT
REPEAT
REPEAT

Statement - Marks the start of a multi-line REPEAT structure. The block of
statements after the REPEAT are automatically indented when listed. They are

60 AmigaCOMAL

continually executed until the condition after the UNTIL evaluates to FALSE.
The statements will 2ilways be executed at least once. A summary of the
REPEAT structure:

REPEAT REPEAT

statement block input "Age: age

UNTIL condjfto/i until age>0 AND age<110

REPORT
REPORT [error co<fe[,text]]
REPORT
REPORT 256

Statement - Part of the error handler structure. REPORT causes an error
(optionally you can specify what error number to generate). This is useful when
using multiple nested handlers. REPORT puts you into the next outer handler.
If REPORT is issued while in a trapped section, the error is reported to the
handler for that section. If REPORT is issued while not within a TRAP ..
HANDLER, the error is reported to the system. REPORT is very system
dependent. You also may include a text message along with the error number.

RESTORE
RESTORE [label\
RESTORE month'names
RESTORE

Statement / Command - Allows data in DATA statements to be re-used. The
pointer to the next data item is reset back to the first data item, unless a label is
specified. Then the next data item pointer points at the first data item following
the label (an error occurs if the line immediately after the label is not a DATA
line.

RETRY
RETRY
RETRY

Statement - Used inside the HANDLER part of a TRAP .. HANDLER
structure to make AmigaCOMAL re-execute the TRAP part of the structure.

Example: In chapter 6.2. a procedure edittextQ in a package EditText will be
introduced. The procedure enables you to edit the current content of a string

AmigaCOMAL 61

variable. Using this procedure it is easy to make a procedure enabling you to
edit the content of a number variable. Such a procedure may look like:

PROC editnum(REF nunter) CLOSED
row:=currow; col:=curcol
TRAP

t$:=str$(number)
edittext(t$)
number:zval(t$)

HANDLER
PRINT chr$(7),
CURSOR row,COI
RETRY

ENDTRAP
ENDPROC editnum

If an invalid character is found in the string edited by the user, the HANDLER
part of the TRAP .. HANDLER structure is activated. Here the screen is
flashed to signal an error, the cursor is repositioned to the start of the number,
and the TRAP part of the structure is re-executed.

The procedure edittextQ and a procedure similar to editnum Q is in fact used in
the install program.

RETURN
RETURN [value]
RETURN TRUE
RETURN texts

Statement - Assigns the value specified after the RETURN to the function and
returns control to the calling statement. RETURN may also be used to
terminate a procedure early.

RND
rnd [(itort num,end num)]
dice=rnd(1,6)+rnd(1,6)

Function - Retimns a random number greater than or equal to zero, and less
than 1. If start and end limits are specified, RND returns an integer within the
specified limits, inclusive.

ROUND
round(/JMmenc expression)
print round(total)

62 AmigaCOMAL

Function - Returns the number rounded to the nearest integer.

RUN
RUN {filename]
RUN
RUN "menu"

Command - Begins execution of the program currently in memory. If a file is
specified, the memory is cleared and the file is loaded and run.

RUNWINDOW
RUNWINDOW+I-
RUNWINDOW+

Command - Turns on or off the Execute Window. Normally all output from a
running program is sent to the Execute Window. But by executing the command:

RUNUINDOU-

the Execute Window is "tiuned off and the Command Window will be used as
the output window of a rimning program.

To "turn on" the Execute Window again, execute the command:

RUNUINOOIH

SAVE

SAVE filename[,i \ n]
SAVE "zombies"
SAVE "" starts file requester

It is possible to create an icon for a SAVE file.

The command

SAVE "naine",i

will always create an icon and the command

SAVE "naroe",n

will not create an icon.

AmigaCOMAL 63

In both commands it is independent on how AmigaCOMAL has been installed.

The command

SAVE "name"

will create or not create an icon dependent of how AmigaCOMAL has been
installed.

Command - Stores the program in memory to the specified file in compressed
form. Comments are not removed. Later the program can be retrieved with the
LOAD, RUN, or CHAIN command. If a filename is not specified, a requestor
will pop up. Procedures or functions stored with the SAVE command can be
used as EXTERNAL procedures and functions.

A SAVEd program may not be transferred to another COMAL system. To
transfer a program it must be in ASCII form as with the LIST to disk command.
Use the ENTER command to retrieve it to the other system. Modems or
networks may also be used to transfer the file.

AmigaCOMAL will rename a file found with the same name (adding the
.BACKUP extension) and then save the program (along with an ICON image
for it).

SCAN
SCAN
SCAN

Command - Scans the program in memory for structure errors. Once a program
has been SCANned or RUN procedures and functions may be called from direct
mode.

SELECT
SELECT direction type
SELECT OUTPUT locS
SELECT INPUT infileS
SELECT INOUT "sp:"

Command / Statement - Allows you to select the lO (Input / Output) units of
your program. Normally the output from PRINT statements in a program is sent
to the screen ("ds;") and the INPUT statement gets its input from the keyboard

("kb:").

64 AmigaCOMAL

To select another output unit, use the command:

SELECT OUTPUT device name

To select another input de\ice, use the command:

SELECT INPUT device name

To select another device for both input and output (for instance "sp:"), use the
command:

SELECT INOUT device name

The device name may be either a file name or the name of a standard device.
Examples:

SELECT OUTPUT "ds:"

SELECT OUTPUT “Ip:"

SELECT IHOUT “sp:"

SELECT OUTPUT "filename"

The SELECT command will only affect a running program (even if it is executed
as a command) unless you have turned off the Execute Window with the
RUNWINDOW command.

See also Appendix B.

SGN
sgainumeric e]q>ression)
flag=sgn(nijnber)

Function - Returns -1 if the number is negative. Returns 1 if the number is
positive. Returns 0 if the number is 0.

SIN
smQtumeric expression)
plot(sin(nun),y)

Function - Rettuns the sine of the number in radians.

Data Screen
Line Printer
Serial Port

AmigaCOMAL 65

SIZE
SIZE
SIZE

Command - Displays the amount of available free memory. Some COMALs
display more information, such as program size and data area size. This is an
informational display only. See FREE for a function that may be used in a
program.

SPC$
spcS(number of spaces)
PRINT spc$(39)

Function - Returns the number of spaces specified.

SQR
sqr(/i«menc expression)
root=sqr(number)

Function - Returns the square root of the number.

STEP
STEP numeric expression
FOR x=1 TO max STEP 2 DO

Part of FOR statement - Sets the amount the FOR variable is incremented after
each loop. If it is negative, the loop variable is decremented rather than
incremented, and terminates when the variable value is less than the end
amount. The step amount can be an integer or real numeric expression.

Note: a non-integer step size can lead to some "round off problems due to the
way addition is performed on the numbers.

STEP
STEP
STEP

Command - Used in connection with the TRACE command. Having turned on
the trace mode using the TRACE + command, the STEP command will execute
the next line in the program, output the values of all calculated expressions, list
the next line to be executed and then return to execute mode.

66 AmigaCOMAL

The key combination <Amiga> + < Y> may be used as short cut for STEP.

See TRACE for a further description.

STOP
STOP [message]
STOP "now inside PROC retnove'blank"

Statement - terminates program execution. Execution may be continued with the
CON command. V2u-iables may be displayed or changed before continuing. Lines
may also be listed. However, if any lines are added, deleted, or modified the
program may not be able to be restarted (due to internal tables).

STR$
str$(/iumher)
zip$=str$(nutnber)

Function - Returns a string that is the equivalent of the number. The number
567 becomes "567". The VAL function does the reverse, converting a string into
a number.

TAB
TAB(column number)
PRINT TAB(col), nameS

Function - Prints spaces up to the column specified. If that position is already
exceeded, it goes to the specified position on the next line. TAB is always part of
a PRINT statement.

TAN
taa(numeric expression)
PRINT tan(nunber)

Function - Returns the tangent of the number in radians.

THEN
THEN
IF NOT ok THEN RETURN FALSE
ELIF errors>3 THEN

Part of IF - Part of the IF and ELIF statements. The system will insert the word
THEN for you if you omit it.

AmigaCOMAL 67

TIMES
time$
PRINT time$

Function - Returns the time of the day in the format:

hh:mm:ss 11:48:09

Where:

hh is the hour (11)
mm 1$ the minutes (48)
ss is the seconds (09)

This function only returns the correct time if the Amiga internal clock is
correctly set (either from a battery backed up clock, with the CLI command
date, or via the time setting in Preferences).

TIMER
timer
starting=timer

Function - Returns the content of a constantly running timer in the
AmigaCOMAL system. The time is measured in seconds with a resolution of
approximately 0.02 seconds (1/60 seconds in USA and 1/50 seconds in Europe).
The timer is reset to zero at the startup of AmigaCOMAL.

TIMER
TIMER nutn
TIMER 0

Statement / Command - Sets the timer in the AmigaCOMAL system. After the
execution of the statement the timer is set to the value of the numerical
expression num.

TO
start num TO end num
FOR x:=1 TO 4 00

Part of FOR - Part of the FOR statement, separatmg the start and end numbers.

68 AmigaCOMAL

TRACE
TRACE[+|-]
TRACE-
TRACE+
TRACE

Command - TRACE is a very useful command helping you to debug your
program. There are several versions of the command. The command: TRACE
(without using a + or -) has the same effect as RUN but during the execution of
the program each executed line and the value of calculated expressions in the
line is listed in the Command Window.

Example: The program calculates the least common divisor of 25 and 15 using
Eulers algorithm:

0010 FUNC euler(n),n) CLOSED
0020 IF m MOO n=0 THEN
0030 RETURN n
0040 ELSE
0050 RETURN euler(n,ni MOO n)
0060 ENDIF
0070 ENDFUNC euler
0080
0090 PRINT euler(25,15)

If it is Started by the TRACE command it will produce the following output in
the Command Window:

0010 FUNC euler(m.n) CLOSED

0080
0090 PRINT euler(25,15)
<25x15>
0020 IF m MOD nsO THEN
<0>

0050 RETURN euler(n,m MOD n)
<15x10>
0020 IF m MOO n=0 THEN
<0>

0050 RETURN eulerCn.m MOO n)
<15x10>
0020 IF m MOD n=0 THEN
<1>

0030 RETURN n

<5><5><5x5>

The fmal value (5) is printed in the Execute Window, as it normally would if the
program was RUN.

AmigaCOMAL 69

Another form of the TRACE command is:

TRACE*

Having executed this command the system will be set in trace mode which allow
you to smgle step through the program.

While in trace mode the RUN command will do all the usual initialization (clear
variables, scan the program, etc.). Then the first line of the program will be
listed in the Command Window and the system will return into command mode.

To actually execute the line you have to use the STEP command (or the short
cut <Amiga> + <Y>. When a STEP command is issued, the values of all
expressions calculated during the execution of the line will be displayed and the
next line listed before the system returns to command mode again. By pressing
<Amiga> + <Y> several times you gradually produce the same output as
the TRACE command, but at your own rate.

The trace mode may be turned off by executing the CON command, which will
continue the program execution in normal mode, or by executing the command:

TRACE-

TRACE commands execute an implicit RUNWINDOW+.

TRAP
TRAP
TRAP

Statement - Marks the start of the error trap structure. Inside the HNADLER
section, several built in functions can assist you: err, errfile and errtextS. You
also may use REPORT or RETRY statements inside the HANDLER section.
Error handlers may be nested. The system is like a perculator. An error trapped
can be reported to an outer handler (via REPORT). That handler can either
deal with it or REPORT it to its outer handler. And so on until the error hits
the outside level, where the program would stop with an error message. The
trapped statment block and handler statement block are indented when listed. A
summary of the TRAP structure:

70 AmigaCOMAL

TRAP
trapped statement block

HANDLER
handler statement block

ENDTRAP

TRAP ESC
TRAPESC+I-
TRAP ESC- // disable stop/break key
TRAP ESC-*- // enable stop/break key

Statement - Used to disable / enable the break key or STOP menu. Be careful
when disabling a break. If your program gets into a loop, you will not be able to
stop it.

TRUE
TRUE
RETURN TRUE

System constant - Always equal to 1 when used as assignment. Other times it
means not FALSE (a value that is not equal to 0).

TRAP

INPUT "Enter age: “:age

IF age<0 or age>110 THEN REPORT 999

HANDLER

IF err=999 THEN

PRINT "Be reasonable."
ELSE

PRINT "-";errtextS(err)(6:)
PRINT "Enter nunber of years."

END IF
RETRY

ENDTRAP

AmigaCOMAL 71

UNIT
UNIT [string expression]
UNIT data'drive$

Command / Statement - Sets the default unit. Remember that the Amiga refers
to disk drives by the name of the disk in them. Thus if you put a disk name
AmigaCOMAL into drive dfl: this would happen:

UNIT ''ram:*'
PRINT unit$
RAN:
UNIT "dfl:"
PRINT unit$
AroigaCONAL:

In a program, UNIT name is converted to CHDIR name and UNIT is converted
to CHDIR. See also UNITS and CHDIR.

UNITS
units
currents:=unit$

Function - Returns the current unit name. The unit can be set with the UNIT
command. For an example see UNIT.

UNTIL
UNTIL condition
UNTIL reply$="q"

Statement - Marks the end of the REPEAT structure. Statements inside the
structure are executed until the condition is TRUE.

USE
USE package [FROM directory$\
USE system
USE system FROM "AmigaCOMAL:"

Statement / Command - Links a package into the AmigaCOMAL system (if the
package is not already linked) and makes the EXPORTed names in the package
known.

If the package with the name name is not already linked, AmigaCOMAL
searches for the following files:

72 AmigaCOMAL

name.cinp
Packages/name.cmp
name.pck
packages/name.pck

or - If the FROM part is present, the following files:

directory/name.cmp
directory/name.pck

The directory "Packages" is the directory set in the install program (standard
setting : "rPackages"):

See chapter 5. for further details.

USING
PRINT [AT rowfiol: JUSING formatS: var list
PRINT USING •'##> X, cash(x)
PRINT AT 8,5: USING '■##": item

Special - Part of a PRINT statement allowing formatted output. Within the
format string a # reserves a position for each possible digit of the number; a
period "." marks the decimal point location; a minus sign is optional reserving
a position for the negative sign. On the right of the decimal point, zeroes are
padded where necessary. On the left of the decimal point, spaces are padded. All
other characters (other than # . -) are printed as supplied. If the number has
more digits than reserved, a * is printed in each reserved position.

VAL
val(/iMmcric string
age=vaUreply$)

Function - Returns the numeric value of a numeric string. This allows you to
input data as strings, check them for errors, then convert them into numbers.
VAL accepts the digits, + and - signs, decimal point, and exponential notation.
Leading spaces are ignored by VAL. Requesting a VAL of a non-numeric string
results in an error.

VAL only checks the first part of a string. If it finds a number, it ignores the
remainder of the string. Thus val^SS tires"! would give a result of 33. However,
valf"tires 33"! would result in an error.

AmigaCOMAL 73

VARSIZE
varsize(var)
te(np:=varsize(nanie$)

Function - Returns the number of bytes occupied by the data field of the
V2uiable var. The variable may be a simple variable (number or string), an array,
a record or even a pointer.

Example: This is a small program:

x:=0
s$="anything'*
DIM arraydO.IO)
PRINT varsize(x)
PRINT varsize(s$)
PRINT varsize(array(,))

When RUN it will produce the output:

8 <— a real number uses 8 bytes
86 <— a string uses 5 bytes plus its DIM size rounded up to the

nearest even number.
800 <- a 10 by 10 array has 100 elements of real numbers

WAIT
WAIT [num]
WAIT 2
WAIT

Statement / Command - Without the number expression num the WATT
statement will put AmigaCOMAL into the waiting state until an event happens.
This event may be a key pressed, the selection of a menu or pressing the mouse
botton.

With the number expression num present the execution of the WAIT statement
will put the AmigaCOMAL mto the waiting state for a number of seconds given
by the value of the number expression num.

Being in the waiting state, AmigaCOMAL will not use CPU time 2uid thus it will
not slow down other processes running in the Amiga.

74 AmigaCOMAL

Example: This program outputs the time used by the LOOP (approximately 4
seconds):

0010 WAIT 1
0020
0030 starttiine:=timer
0040 LOOP 10000 TIMES x:=10/3
0050 PRINT USING “Time used: ##.##": timer-starttime

The WAIT statement in such a program is necessary. At the start of the
program the Execute Window is brought to front, but since the Amiga is a
multi-tasking machine this is done in parallel with the execution of the
AmigaCOMAL program. The WATT statement ensures that this
rearrangement of the windows has been completed before the starting time is
read.

In some cases a compiled AmigaCOMAL program will return to CLI or
Workbench before you have had time to read the output. In such a case you
should terminate the program with a WATT statement.

WHEN
WHEN list of values
WHEN “Jan“,“jan“
WHEN 1,2

Statement - Provides a specific case wthin a CASE structure. One or more
values are Usted after the WHEN. If any match the current case value, its
following statements are executed. The values specified after a WHEN must be
of the same type as the one in the CASE statement. Statement blocks are
indented automatically when listed.

AmigaCOMAL also allows WHEN to be used as a conditional EXIT from the
LOOP structure:

EXIT WHEN condition

AmigaCOMAL 75

WHILE
WHILE expression [DO] [statement]
WHILE NOT EOF(infile) DO process
WHILE errors<3 00

Statement - Marks the start of a multi-line WHILE structure. As long as its
condition is true the statements are executed. If the condition is FALSE right at
the start, the statements are skipped over. The system will insert the word DO
for you if you do not type it. The statements inside the WHILE structure are
indented automatical! when listed.

A one line WHILE statement is allowed (and may be issued from direct mode).
It does not use an END WHILE. For example (after opening a text fde in direct
mode as file number 2):

WHILE NOT E0F(2) PRINT get$(2,1),

A summary of the WHILE structure:

WHILE condition [DO] while not eoo do

statement block read num

ENDWHILE sum:+num

ENDWHILE

WRITE
WRITE FILE file*[/ec#\.var
OPEN [FILE] filenum filename
WRITE FILE 2: name$
OPEN FILE 3,"scores",WRITE

Statement / Command / File Type - Writes data to a file in binary form (not
ASCII). As a file type, it specifies that the file is to be written to. Data written
by a WRITE FILE statement may be read with a READ FILE statement.

Data files created by WRITE statements are not compatible with other systems.
If you wish to transfer data to another system (such as IBM) you must use
PRINT FILE statements (which are retrieved with INPUT FILE).

76 AmigaCOMAL

ZONE
ZONE [tab interval]
ZONE 5
z:=ZONE

Command / Statement / Function - Returns the current zone setting as a
function. As a statement it sets the zone to the number specified. The zone
determines the interval in tab positions on an output line. The default zone is 1
(a zone at each column). The semicolon is the zone separator (for PRINT
statements and at the end of INPUT statements). By default, a semicolon
outputs one space (if a ZONE statement is previously used, it outputs spaces to
the next zone). When a comma is used as a separator in a PRINT statement (or
at the end of an INPUT statement) no spaces are printed, and the cursor
remains where it is (null separator).

AmigaCOMAL 77

78 AmigaCOMAL

4. - Names in AmigaCOMAL

In AmigaCOMAL, variables, procedures and functions may be named. Names
are built up by one or more of the following characters:

letters abc..jcy2

digits 012...789

apostrophe ’

underscore

The first character must be a letter and the maximum length of a name is 127
characters. Letters may be international as weU as national letters (for instance
the Danish letters M and ae).

In certain names the last character is a special character used to indicate the
type of the named quantity. These characters are:

$ string
long integer (32 bits)
% short integer (16 bits)
I byte integer (8 bits)
a record

If those characters are used they will be part of the name.

Special Note: two names such as a# and a$ are treated as different. This is
an improvement over IBM and Commodore 64 COMALs.

If a name is found during the execution of a line, AmigaCOMAL searches for
information about that name in the environment of the line being executed (for
instance a closed procedure). If the information is not found, the search is
continued among the global names (a name in the main program may be
declared global with the keyword GLOBAL).

AmigaCOMAL 79

4.1 Number Variables

In AmigaCOMAL there are four different types of numbers: real numbers
(sometimes called floating point numbers) and three types of integers. The type
of a number variable is specified in the name as shown in the previous section.

The value of a real number is either zero or a floating point number with 9-10
digits accuracy and a tens exponent between -9864 and 9864.

Number variables are assigned values in an assignment statement, INPUT
statement or READ statement. If the variable does not exist (has not been used
before) it will automatically be created. It is possible to declare variables
explicitly in a DIM statement, too. Examples of such declarations are:

DIM x,Y,z U Declare as REAL nunnber variables
DIM a#,bl // Declare as INTEGER variables

Such explicit declarations may be used inside a closed procedure to cover global
variables in the main program.

Although there are four different types of variables, they may be used freely m
expressions. Thus the following statement is valid:

a%:=2*x-n#/bl

AmigaCOMAL keeps track of the types and makes the necessary conversions
between the types. In the example above, AmigaCOMAL will calculate the
expression. The value is a real number since there is a division in the expression.
Before the result is stored in the variable named a% (a short integer variable),
the number calculated is rounded to the nearest integer.

Calculations are not executed faster using mteger variables in place of real
variables. The only benefit in using integer variables is that they occupy less
space in RAM and that they make it easier to call routines in the Amiga
operating system.

Beginners are encouraged to use real variables only.

80 AmigaCOMAL

4.2 String Variables

In AmigaCOMAL you may work with string variables and string constants. As
mentioned earlier, the name of a string variable must end with a dollar sign ($).

Like number variables, string variables are assigned values in an assignment
statement, INPUT statement or READ statement. If the variable does not yet
exist, it will automatically be created. Such an automatically created string
variable is able to contain text strings of up to 80 characters (an automatic DIM
of length 80).

If such a size does not fit your needs you should first declare it in a DIM
statement where you specify the maximum number of characters. Examples of
DIM statements creating string variables are:

DIN name$ OF 30, address$ OF 25
DIM text$ of 100
DIM answers OF 1

The maximiun size that may be specified in a DIM statement is 31767
characters.

4.3 Structured Variables - RECORDS

In several connections it would be natirral to group together different variables.
For instance, making a data base containing information about the contents of
your home freezer. For each article in the freezer you might store information
about the sort of the article, the quantity, the date of freezing and the last date
of use. Thus you need four variables:

contents
quantity
date_of_f reez 1 ngS
date_of_useS

Quantity is chosen as a number variable and the others as string variables.

In AmigaCOMAL it is possible to group together such variables in a special data
structme called a RECORD.

AmigaCOMAL 81

A RECORD is created by using a special RECORD structure. For instance, we
might have created a RECORD for the contents of an article in the freezer in
the following way:

RECORD freezer'artjcleS
FIELD contents OF 20
FIELD quantity
FIELD date_of_freezing$ OF 9
FIELD date_of_use$ OF 9

ENDRECORD freezer'articleoJ

As shown in the example, the name of a RECORD must end with a @. The
variables in the data structure are created by a FIELD statement with a syntax
exactly like the DIM statement.

After the execution of a block of statements like the one shown, the data
structure is created and initialized, i.e. numbers are assigned the value zero and
strings are assigned the empty string.

You may refer to each field in the RECORD by writing the name of the
RECORD separated by a period, for instance:

freezer' art i c lea. contentS:=''Steak"
INPUT "Type in the weight: freezer'articlea.quantity
PRINT "Last date of use: ",freezer'articlea.date_of_use$

A field description like freezer’article@.quantity is treated as a normal variable
(in this case a number variable) and may be used just like other variables of that
type.

The idea of creating a RECORD instead of four single variables is that you may
refer to all four by using only a single name.

Let us say you have made a procedure to print out all the fields:

PROC output(articles)

This procedure may be called with a single parameter:

output(freezer'articles)

You may likewise write the whole content to a file by using only one variable:

WRITE FILE 3: freezer'articleS

82 AmigaCOMAL

Likewise, you may read it back with only one READ statement:

READ FILE 3: freezer'articlea

A structured variable like freezer'articlea is not only a variable but may be
used as a model for creating other structured variables with the same mternal
structure. This is done in a DIM statement:

DIH new'articlea OF freezer'articlea, articleZa OF freezer'articlea

If two structured variables use the same model, you may assign one of them to
the other in a statement like:

new'articlea:=freezer'articlea; article2a:=new'artidea

The fields in a record may be records themselves. These inner records may be
declared explicitly by using a RECORD statement inside the other RECORD
statement or by using a FIELD statement.

The date in our freezer example could be a record as:

RECORD datea
FIELD year
FIELD month
FIELD day

ENDRECORD datea

and our fi-eezer’article@ may now be defined as:

RECORD freezer'articlea
FIELD contents OF 20
FIELD quantity
FIELD date_of_freezinga OF datea
FIELD date of_usea OF datea

ENDRECORD freezer'articlea

The year of freezing may be accessed in the following way:

PRINT freezer'artidea.date_of_freezinga.year

In Chapter 6. you will find several examples of the use of records.

AmigaCOMAL 83

4.4 Indexed Variables

An indexed variable (sometimes called an array) consists of a number of
elements organized in a table with one or more dimensions. The elements in the
table must be of the same type, i.e. either strings, numbers or records.

An indexed variable is declared in a DIM statement where the type and the
number of dimensions are specified. Examples of such declarations are:

DIM a(50) // A 1-dimensional number array with 50 elements
DIM bl(4,3) // A 2-dimensional byte array with 12 elements
DIM table$(100) OF 25 // An array of strings
DIM freezera(50) OF freezer'articlea // An array of RECORD'S

In all the examples the index is numbered from one up to the number stated in
the dimension. The elements in the b! array are:

b!<1,1) bid,2) b!(1.3)
bl(2,1) bl(2,2) b!(2,3)
b!(3.1) b!(3,2) b!(3,3)
b!(4,1) b!(4,2) b!(4,3)

You may declare mdexed variables having indices starting with a value other
than one. For instance:

DIM n#(-3:10)

It’s elements are;

n#(-3), n#(-2), n#(-1), . , n#(10)

Each element in an array is treated as a normal variable (of that type) and may
be used like such variables:

tabte$(23}:="this is a test"
FOR i:=1 TO 4 DO

FOR j:=1 TO 3 DO
READ b!(i,j)

ENDFOR j
ENDFOR i
PRINT freezera(12).content$

84 AmigaCOMAL

It is possible to fill a whole array with the same value in one assignment
statement:

table$():="nothing here"
freezera();=articIe28
n#():=0

Likewise you may write a complete array to a file in one WRITE statement and
read it in one READ statement. The following two program segments do the
same thing:

FOR i:=1 TO 4 00
FOR j:=1 TO 3 DO

READ b!(i,j)
ENDFOR j

ENDFOR i
DATA 1,2,3,4,5,6,7,8,9,10.11,12

and

READ b!(,)
DATA 1,2,3,4,5,6,7,8,9,10,11,12

4.5 Pointer Variables

You may create a variable implicitly using an assignment statement like:

x:=27

AmigaCOMAL mil allocate place for the content (the data field) of the variable
somewhere in the storage of the Amiga. In the example, the value 27 is then
placed in the data field.

With the help of the address operator ('') it is possible to get information of the
address of the data Held. It is done in this way:

PRINT

where the printout could be:

12982432

AmigaCOMAL 85

If you create another variable y, the data field of this variable will be put in
another place and the printout from:

PRINT >

would be another number.

Once AmigaCOMAL has placed the data fields of the variables, the addresses
will be the same "forever" (until they are cleared and created once more in a
new run or in a new call to a closed procedure). An assignment statement like:

y:=x

copies the content of x to that of y and now there are two copies of this number
in the Amiga. The addresses of x and y remain unchanged.

AmigaCOMAL supports another type of variable called a pointer variable where
you can change the address of the variables data field. A pointer variable is
declared in a special POINTER statement Uke:

POINTER ptr // A real pointer variable
POINTER p$ //A pointer to a string

After the execution of a POINTER statement, the address of the pointer
variable is zero, which means that there is no data field connected to the
variable (the variable does not point to anything).

You may make the pointer variable point to something by executing a statement
like:

^ptr:=^x

After the execution of this statement the pointer variable ptr points to the
content of the variable x. The two PRINT statements:

PRINT X

PRINT ptr

will result in exactly the same printout. However, the content of the variable x is
only found once in the Amiga and if you assign the variable ptr to another value:

ptr:=78

86 AmigaCOMAL

the value of the variable x will be changed at the same time!

You should note the difference between the statements:

ptr:=1256+38

and

>tr:=1256+38

In the first one, the variable ptr is assigned the V2due 1294. The second statement
makes the pointer point to the content of the address 1294 (and this content is
probably unknown).

It is hard to see the meaning of all this. So let us have a look of the following
little function:

FUNC peektaddress#) CLOSED
POINTER b!

^b!:=address#
RETURN b!

ENDFUNC peek

In the first statement of the function, a byte pomter is declared. In the next one
this pointer is made to point to the actual value of the parameter address#. If
we call the function in a statement like:

PRINT peek(1989)

we will get a printout of the contents of the byte at the address 1989. As you see
we have made the BASIC function PEEK.

Until now we have primarily used real pointers, but it is possible to create
pointer variables pointing to integers, strings, records and arrays. These pointers
are declared as shown in the following examples:

POINTER t$, r#
POINTER iX, a!
POINTER rec'ptrfl TO freezer'articlea
POINTER arr'ptrS TO string'table$(,,)

Note, that in the declaration of pointers to structured variables like records and
arrays you must specify more precisely what the pointer should point to. This is
because these variables have an inner structure (the number of dimensions m a

AmigaCOMAL 87

table and the field names and types in a record) and in the declaration you
specify that the pointer should point to a variable with the same inner structure
as the one after the keyword TO.

We have seen how a statement like:

''ptr;=<nuniber express ion>

makes the pointer variable point to a place whose address is the value of the
expression on the right side. This expression may be either the address of
another variable or it may be the address of another place in the storage (an lO
port or may be an address returned by a system routine).

However, it is possible to reserve a special area in the storage as the data field
of a pointer variable. This is done by calling the procedure allocate wth the
pointer variable as a parameter:

allocate(ptr)

After this call, AmigaCOMAL has reserved an area as a data field and the
pointer is pointing to this area.

The data field will be reserved m that area of RAM where the datafields for all
other variables are placed. As a consequence, a datafield reserved in a closed
procedure will be cleared at the return from the procedure. To prevent this it is
possible to specify that the data field should be allocated to a more safe place.
This is done at the call to allocate in this way:

allocate(ptr,1)

As the result of this call AmigaCOMAL places the data field in the storage
administered by the Amiga operating system and the content is not cleared at
the return from a closed procedure (instead of the parameter 1, another number
may be used - see a description of the routine AllocMem from the Amiga
operating system).

An area reserved by allocate may be freed by calling the procedure deallocate
with the pointer as parameter:

deaUocate(ptr)

88 AmigaCOMAL

Pointer variables are most often used in connection with records to build up lists
and trees or they are used in calls to the Amiga operating system.

In the program shown below, ten random numbers are placed in a list and
fmally printed in increasing order

0010 // Demonstration of lists
0020
0030 RECORD lista
0040 POINTER nexta TO lista
0050 FIELD value
0060 ENDRECORD lista
0070 POINTER actuaia TO lista, precedinga TO lista, newa TO lista
0090 start#:-0
0100
0110 page
0120 LOOP 10 TIMES
0130 insert(rnd)
0140 ENDLOOP
0150 output
0160
0170 PROC insert(nunber)
0180 allocate(newa)
0190 newa.value:=number
0200 IF startHNO THEN
0210 start#:=^newa
0220 ELSE
0230 ^actuaia:=start#; ^precedinga:=0
0240 passed:=(rHjnber<actuaia.value)
0250 WHILE (NOT passed) AND ^actuaiaoO DO
0260 ‘'precedingaz-^actuaia
0270 ‘'actuaiais^precedinga.nexta
0280 IF ''actuaiaoO THEN passed:-(number<actuaia.value)
0290 ENDWHILE
0300 IF *precedinga=0 THEN // Have to be placed first in list
0310 ^newa.nexta:=start#
0320 start#;=^newa
0330 ELIF ''actuaia=0 THEN // Have to be placed at the end
0340 ''precedinga.nexta:=^newa
0350 ELSE // place in the inner of the list
0360 ^neua.nexta:s^precedinga.nexta
0370 ''precedinga.nexta:=''newa
0380 ENDIF
0390 ENDIF
0400 ENDPROC insert
0410
0420 PROC output
0430 ^actuaia:=start#
0440 WHILE ^actuaiaoO DO
0450 PRINT actuaia.value
0460 ^actuaia:=''actuaia.nexta
0470 ENDWHILE
0480 ENDPROC output

AmigaCOMAL 89

In the program, new data fields are created at the time they are needed. Pomter
variables are sometimes called dynamic variables.

In Chapter 6. you will find other ways to use pointers and records.

90 AmigaCOMAL

5. - Packages

A package is a collection of procedures, functions or other variables stored as a
disk file. Packages may be written in either AmigaCOMAL (COMAL packages),
or in assembler or C (machine coded packages). Regardless of the language
used to develop the package, it is used in the same way and the procedures and
functions in the package are used in exactly the same way as procedures an
functions in a normal program.

Packages may be used to build up an easily accessible library of useful routines
or it may be used to divide large programs into smaller parts (modular
programming).

5.1 Using Packages

The procedures, functions and other variables in a package are made accessible
by the command:

USE package name [FROM directory path]

where the FROM part in the square brackets may be omitted. This command
may be either a direct command or an AmigaCOMAL program statement. Such
program statements must be the first executable lines in the program. [This is
different than IBM and Commodore 64 COMALs, where the USE statement
does not have to be first in the program.]

When a USE command is executed, AmigaCOMAL searches for a package in
RAM with the name given as parameter. If the package is not found there,
AmigaCOMAL semches for the package on disk.

Example: If you want to use the routines in the Graphics package you execute
the command:

USE Graphics

AmigaCOMAL 91

It is possible to get a list of all packages currently in RAM by executing the
command:

LISTPACK I[TO]/i/e name]

You can get a list of all the routines m a specified package by using the
command:

LISTPACK package name ([TO] file name]

Example: To get a printer listing of all the routines in the graphics package
you would type:

LISTPACK Graphics TO "Ip:"

When a package is read into RAM from disk it will stay in RAM until all
packages are removed by the command:

DISCARD

5.2 Programming Packages

A package may be written in AmigaCOMAL (COMAL package) or it may be
written in assembler, C or another suitable compiler (machine coded package).

In this section we will describe how to develop COMAL coded packages.
Developing machine coded packages will be discussed in the Development
Manual.

A COMAL coded package is simply a normal AmigaCOMAL program with
some EXPORT statements added at the beginning and then saved to disk with
the SAVE command, specifying a file name that ends with .cmp.

Example: The following package contains only one procedure, rand, which is an
improved version of the rnd function in AmigaCOMAL.

0010 // Random package
0020
0030 EXPORT rand
0040

92 AmigaCOMAL

0050 x:=1; y;=10000; z:=3000 // Seeds
0060
0070 FUNC rand CLOSED
0080 x:=171*(x MOO 177)-2*(x OIV 177)
0090 y:=172*(y MOO 176)-35*(y OIV 176)
0100 z:=170*(2 moo 178)-63*(z OIV 178)
0110 ten?j: =x/30269.0+y/30307.0+z/30323.0
0120 RETURN tefnp-int(tenp)
0130 ENDFUNC rand

// First generator
// Second generator
// Third generator
// Combine

This example shows a typical COMAL package. The start of the program
specifies which procedures, functions or other variables are to be exported. This
is done with the EXPORT statement.

The main part of the program works as an initialization part. This part is
executed only once and just after the package is read from disk (via the USE
command). In the example, the initialization part is used to set the seeds. In
many packages you don’t need an initialization. Such packages will contain no
main part (only procedures and functions). Procedures and functions that are to
be exported from a package must be closed.

COMAL packages cannot be stopped via a break. If you break a program while
it is inside a package, the break will be suspended until it returns to the main
program. The package may test for break using the esc function just as if it had
executed a TRAP ESC-.

It is possible for a package to receive messages about changes in state of the
AmigaCOMAL system. For instance, when AmigaCOMAL is about to execute a
RUN command AmigaCOMAL checks if there is a closed procedure named
signal in each active package. If so, a message is sent to the signal procedure.
Signals are numbers sent in the following cases:

1: USE of this package
2: DISCARD
3: NEW
4: variables being cleared
5: RUN
6; CON
7: command error / program end by error
8: END by END statement
9: program stop that may be CONtinued / end without END statement
10: BYE

AmigaCOMAL 93

A 5 would be passed to signal if a RUN command was about to be executed. If
two or more packages have a signal procedure, the last one USEd is passed the
signal first (signal passed in reverse order).

Example: Let us say that we want the same sequence of random number seach
time a program is run. Then we have to place a signal routine in the package.
This signal routine must set the seeds to the st£ut values each time it receive a
RUN signal. The package may now look like this:

0010 // Random package
0020
0030 EXPORT rand
0040
0050 x;=1; y:=10000; z;=3000 // Seeds
0060
0070 FUNC rand CLOSED
0080 x:=171*(x HOO 177)-2*(x DIV 177)
0090 y:=172*(y MOO 176)-35*(y DIV 176)
0100 z;=170*(z MOO 178)-63*(z DIV 178)
0110 tenp:=x/30269.O+y/30307.O+z/30323.0
0120 RETURN temp-int(te(H3)
0130 ENOFUNC rand
0140
0150 PROC signal(s) CLOSED
0160 IF s=5 THEN // RUN-signal
0170 x:=1; y:=10000; z:=3000
0180 ENDIF
0190 ENDPROC signal

A signal routine may be absolutely necessary if the package has called one of the
system routmes in the Amiga operating system. Let us say you have made a
package that opens a wmdow. Then you should have a signal routine that closes
this window when it receives either a RUN or a DISCARD signal.

A COMAL package may use other packages (other COMAL packages as well as
machine coded packages) and even cyclic USE is 2dlowed. Package PI may USE
package P2 that USEs package PI. A package may EXPORT variables that are
imported from another package (re-export). This may be used to expand existing
packages.

// First generator
// Second generator
// Third generator
// Combine

// Seeds

5.3 Routine Libraries

As mentioned earlier packages may be used to build up an easily accessible
library of useful routines. The following package shows an example of this. It

94 AmigaCOMAL

contains a number of mathematical functions that are not standard in
AmigaCOMAL.

0010 // Function library
0020
0030 EXPORT cot(),inv(),erf()
0040 EXPORT sinh(),cosh(),tanh(),coth<)
0050 EXPORT integraU,,)
0060
0070 FUNC cot(x) CLOSED
0080 RETURN cos(x)/sin(x)
0090 ENDFUNC cot
0100
0110 FUNC inv(x) CLOSED
0120 RETURN 1/x
0130 ENDFUNC inv
0140
0150 FUNC sinh(x) CLOSED
0160 u:=exp(x)
0170 RETURN (u-1/u)/2
0180 ENDFUNC sinh
0190
0200 FUNC cosh(x) CLOSED
0210 u:sexp(x)
0220 RETURN (u+1/u)/2
0230 ENDFUNC cosh
0240
0250 FUNC tanh(x) CLOSED
0260 RETURN sinh(x)/cosh(x)
0270 ENDFUNC tanh
0280
0290 FUNC coth(x) CLOSED
0300 RETURN cosh(x)/sinh(x)
0310 ENDFUNC coth
0320
0330 FUNC erf(x) CLOSED // The normal distributed error function
0340 FUNC g(x) CLOSED
0350 RETURN exp(-x*x/2)
0360 ENDFUNC g
0370 RETURN integral(gO,0,x)/sqr(2»pi)+0.5
0380 ENDFUNC erf
0390
0400 FUNC integraUREF f(),a,b) CLOSED // Simpson integration
0410 n:=32; dx:=(b-a)/n
0420 xi:=a; s:=(f(a)-f(b))*dx/6
0430 LOOP n TIMES xi:=xi+dx; s:=s+(f(xi)+2*f(xi-dx/2))*dx/3
0440 RETURN s
0450 ENDFUNC integral

There are many advantages to making such a routine library. Of course you save
a lot of typing by simply USEing such a package in the start of a program that
needs these functions. But it is also a great advantage that you can change one

AmigaCOMAL 95

or more of the algorithms used in the package without affecting the programs
that USE this package.

You could imagine that you would make the function tanh(x) a little bit faster by
the following change:

FUNC tanh(x) CLOSED
u:=exp(x)
RETURN (u-1/u)/(u+1/u)

ENDFUNC tanh

and the same for coth(x). These changes will not affect programs that USE the
package except that they execute a little bit faster.

A more drastic change would be to write the most time critical of the functions,
i.e. the integral function, in machine code. This may still be done >\ithout
changing the user programs. In the development manual (an extra cost option)
we will show how to make such a change.

5.4 Standard Packages

In the Packages drawer on the AmigaCOMAL system disk you will find a
collection of standard packages. These are:

System
System_code

Exec_library
Dos_library
Intuition_library
Graphics_library
Layers_library
Diskfont_library
Icon_library
Potgo_library
Devices
Messages
Windows
Screens
Gfx
Layers
RastPort
View

96 AmigaCOMAL

UniGraphics
Turtle

Coma I Except

The first two packages make it possible to get information about the Amiga-
COMAL system.

The next eight (_Iibrary) packages contain interface routines to the libraries in
the Amiga operating system.

The following eight packages (Devices, Messages etc.) are all written m
AmigaCOMAL. They contain, among other things, definitions of some of the
data structures used in the call to the library routines.

The next three packages are graphics packages.

The last package handles exceptions.

The following sections ^ve a short description of these packages.

5.5 System Packages

5.5.1 Systeni_code

This package contains two functions:

FUNC comalstr

Returns the address of the COMAL structure which is an area where
AmigaCOMAL stores a munber of system information.

FUNC coiiialwait(signal_mask#)

Like the Exec function Wait, this function waits on the arrival of one or more
signals (specified by the signal mask). But contrary to the Exec routine,
comalwaitQ also waits on the signals allocated by the AmigaCOMAL system.

AmigaCOMAL 97

This means that you may break a program that has called comalwaitO- The
return value of the function is a mask for the signals that has arrived. When you
call comalwait with one of intuition-signals in the signalmask, will there in the
field cmlintuimessage® in comal strukture be placed a pointer to a copy of the
messages, which intuition has sent. These messages are stored as a list in
cmlintuimessage@’s For further information consult a description of the Exec
routine Wait.

The contents of these structures are:

RECORD Cffllintuimessagea
POINTER nextmsgal TO cmlintuimessagea
FIELD class#
FIELD code%
FIELD qualifier%
FIELD iaddress#
FIELD mousex%, mousey%
FIELD seconds#, micros#
FIELD idcmpwindow#

ENDRECORD cmlintuimessageS
RECORD io_structa

FIELD screen#
FIELD screentypeX, screendepthX, screenwidthX, screenheightX
FIELD window#
FIELD windowdepthX, charnoX, linenoX
FIELD gzzxoffX, gzzyoffX
FIELD windowwidthX, windowheightX
FIELD fontic#i
FIELD fontheightX, fontwidthX, fontbaseX
FIELD virtual#
FIELD cursor!, softstyle!
FIELD raenuhd#, menybytes#
FIELD privat!#, privat2#, privat3# // Don't tuchl
FIELD cormsg# // Console input message // Not active_io
FIELD conreply# // Console reply port // Not active_io

ENDRECORD io_structa

RECORD comalstructurea
FIELD sp_top#, sp_bottom#
FIELD pck_link#
FIELD taskid#
FIELD dosbase#, intbase#, gfxbase#
FIELD laybase#, fontbase#, iconbase#
FIELD eventflagi, eventcounti
FIELD comwinsigi, comkbdsig!
FIELD excwinsigI, exckbdsig!
FIELD serialsig!, timersig!
FIELD verno! // Current AmigaCOMAL version number
FIELD rest!, res2X
// Call comalwait with comwinsig! or excwinsigi and the next
// field wiI be pointing to a list of cmlintuimessages (the
// real content of IntuiMessages).

98 AmigaCOMAL

POINTER cmlintuimessagea TO cmlintuimessagea
POINTER active_ioa TO io_structa
POINTER ccKmiand_ioa TO io_structa
POINTER exec_ioa TO io_structa

ENORECORD comaUtructurea

RECORD nodea
POINTER ln_succa TO nodea
POINTER ln_preda TO nodea
FIELD ln_pri!. In type!
FIELD In name#

ENDRECORD nodea

RECORD lista
POINTER lh_heada TO nodea
POINTER Ih taila TO nodea
POINTER Ihltailpreda TO nodea
FIELD Ih type!, lh_pad!

ENDRECORD Tista

5.5.2 System

This package is written in AmigaCOMAL. It USEs System_code, from which it
re-exports comalwaitO* It contains the following routines:

FUNC hex$(i#) CLOSED

Rettums a string representing the hexadecimal value of the integeri#.

FUNC bin$(i#) CLOSED

Returns a string representing the binary value of integer i#.

FUNC c_string$(REF array! 0) CLOSED

Converts a null terminated string (common string format in C) in the byte table
array! 0 to an AmigaCOMAL string.

FUNC peek(address^ CLOSED

Returns content of the byte with address given by the mteger variable address#

AmigaCOMAL 99

FUNC poke(address#,value!) CLOSED

Writes the value of the byte variable value! into RAM at the address given by
the integer variable address#.

In addition to these routines, the System package defmes some data structures to
be used in low level programming. These are the two AmigaCOMAL structures
io_struct@ and comalstruct® and the two basic structiaes node® and list®
from the Amiga operating system.

The contents of these structures are:

RECORD io_structa
FIELD screen#
FIELD screentype%, screendepthX, screenwidthX, screenheightX
FIELD window#
FIELD windowdepthX, charnoX, linenoX
FIELD gzzxoffX, gzzyoffX
FIELD windowwidthX, windowheightX
FIELD fontid#
FIELD fontheightX, fontwidthX, fontbaseX
FIELD virtual#
FIELD cursor!, softstylel
FIELD menuhd#, menybytes#
FIELD privatl#, privat2#, privatS# // Don't tuchl
FIELD conmsg# // Console input message // Not active_io
FIELD conreply# // Console reply port // Not active_io

ENDRECORD io_structa

RECORD comalstructurea
FIELD sp_top#, sp_bottom#
FIELD pck_link#
FIELD taskid#
FIELD dosbase#, intbase#, gfxbase#
FIELD laybase#, fontbase#, iconbase#
FIELD eventflag!, eventcount!
FIELD comwinsigl, conikbdsig!
FIELD excwinsigi, exckbdsig!
FIELD serialsig!, timersigl
FIELD verno! // Current AmigaCOMAL version number
FIELD resi!, res2X
// Call comalwait with comwinsigl or excwinsigi and the next
// field wil be pointing to a list of cmlintuimessages

(the // real content of IntuiMessages).
POINTER cmlintuimessagea TO cmlintuimessagea
POINTER active_ioa TO io_structa
POINTER command_ioa TO io_structa
POINTER exec_ioa TO io_structa

ENDRECORD comalstructurea

100 AmigaCOMAL

RECORD cffllintuimessagea
POINTER nextmsgS TO cmlintuimessagea
FIELD class#
FIELD code%
FIELD qualifierX
FIELD iaddress#
FIELD mousexX, mouseyX
FIELD seconds#, micros#
FIELD idcmpwin^w#

ENDRECORD cmlintuimessagea

RECORD nodea
POINTER In succa TO nodea
POINTER In^preda TO nodea
FIELD Injsri!, ln_type!
FIELD In.name#

ENDRECORD nodea

RECORD lista
POINTER Ih heada TO nodea
POINTER lh”taiia TO nodea
POINTER Ihltailpreda TO nodea
FIELD lh_typel, Ihjoad!

ENDRECORD lista

The system package exports io-struct@, node® and list® as well as a pointer
comalstruct® to the COMAL structure.

As part of the initialization, the package sets this pointer to point to the content
of the COMAL structure by executing the statement:

''coma 1st ructa:-coma I st r

AmigaCOMAL 101

5.6 Interface Routines to the Amiga Libraries

5.6.1 Library Packages

The following packages contain interface routines to the Amiga libraries:

Exec_library
Dos_library
Intuition_library
Graphics_library
Layers_library
Diskfont_library
Icon_library
Potgo_library
IFF_library

The names of the routines in the packages are the same as those used to call the
routines from a C program except that you always have to use the prefix .cmp
(to avoid name conflict). For instance;

pckopenlibrary
pcksendio
pckctosescreen

The parameters used in the routines are exactly the same as those used in a C
program.

Example: To open an lO device like console.device you m2ike the following call
in a C program:

err=OpenOevice("consoIe.device",0,SConUrtReq,0)

The first parameter is the address of a null terminated string (most C compilers
make the actual parameter "console.device" into a pointer to the text). The third
parameter is also an address. The second and fourth parameters are 32 bits
integers.

In AmigaCOMAL, the corresponding call would look like:

naflie$:="consol e. devi ce"
err: =pckopendevi ce(''name$+4,0, "'ConWr tReqa, 0)

102 AmigaCOMAL

Note the first parameter. First you have to make a string variable for the name.
The actual parameter is the real content of this variable (the first two words
(=four bytes) contain the maximum and actual length of the string variable).
AmigaCOMAL always places a null byte after the content of a string variable so
the address transferred is in fact an address of a null terminated text.

A complete description of the routines would be beyond the scope of this
manual. You can get the information from magazines or one of the books
covering this subject.

5.6.2 Support Packages for the Library Routines

In a call to most of the library routines, you have to use one or more data
structures. A couple packages contain some of these structures. In addition,
some of the packages contain procedures and functions that makes it easier and
sometimes safer to call the library routines.

In the following sections we will give a short description of these packages. They
are all written in AmigaCOMAL so that they can be examined or even changed.

5.63 Messages

Re-exported from

System:

comaluaitO

Exec_library:

pckwaitportO
pckf inc^rtO
pckputmsgt)
pckgetmsgO
pckreplymsgt)

AmigaCOMAL 103

Structures:

RECORD fnsgporta
FIELD inp_nodea OF nodeS
FIELD tnp_flags!, nip_sigbit!
FIELD nip_sigtask#
FIELD mp_msglists OF lista

ENDRECORD msgporta

Functions and procedures:

FXJNC createport(portname$,priority!) CLOSED

Creates a port with the name portnameS. The port will be chained into the list
of public ports with priority of priority!. A signal is allocated and this signal 'will
automatically be sent at the arrival of a message to the port. The returned value
of is the address of the port.

Example:
POINTER my'porta TO msgporta
''niy'porta:=createport(*'MyPort“,0)

PROC deleteport(port^ CLOSED

Removes a port created by createportQ-

Example:
deleteportt ^my'porta)

PROC deleteallports CLOSED

Removes all ports created by createport().

FUNC allocsignaKs!) CLOSED

Allocates a signal. The function works like the Exec routine \wth the same
name.

Example:
my'signal! :=aUocsignaU-1)

104 AmigaCOMAL

PROC freesignaKs!) CLOSED

Frees a signal allocated by allocsignalQ-

Example:

freesignaURT/'signaU)

PROC freeallsignals CLOSED

Frees all signals allocated by allocsignalQ.

The package contains a signal routine that releases all signals and removes all
ports at the receiving of a DISCARD or a BYE signal. This might be dangerous
if a message arrives at a later time. But it is also dangerous to let them stay.

Some advice: Clean things up yoiu-self!

5.6.4 Devices

Re-exported from

Exec_library:

pckopendevice(,,,)
pckcIosedevice()
pckdoioO
pcksendioO
pckcheckioO
pckwaitioO
pckabortioO

Structures:

RECORD iorequesta
FIELD mn_nodea OF nodea
POINTER mn replyporta TO msgporta
FIELD iin_length%
FIELD io device#
FIELD io^unit#
FIELD io_coninandX
FIELD io_flagsl, io_error!

ENDRECORD iorequesta

AmigaCOMAL 105

RECORD iostdreqo)
FIELD iin_nodea OF nodeS
POINTER mn_replyporta TO msgporta
FIELD itn_length%
FIELD io_device#
FIELD io_unit#
FIELD io_coninand%
FIELD io_flags!, io_error!
FIELD io_actual)y
FIELD io_length#
FIELD io data#
FIELD io'offset#

ENDRECORD iostdreqa

Commands:

cind_resetX:=1
cmd_read%:=2
cmd_write%;=3
cind_updateX:=4
cind_clearX:=5
cmd_stopX:=6
cmd_startX:=7
cmd flushX:=8

Functions and procedures:

FUNC createstdio(port#) CLOSED

Creates a standard IO request, port# is the address of a port (may be created
by createportO in the Message package) that the pointer nm_replyport@ is set
to point to.

The returned value is the address of the request.

Example:
POINTER my'porta TO msgporta
POINTER wr'reqa TO iostdreqa
^my'porta;=createport(“MyPort",0 >
IF ^my'porta=0 THEN STOP
^wr'reqa:=createstdio(^my'porta)

106 AmigaCOMAL

PROC deletestdio(ioreq<50 CLOSED

Removes a standard lO request created by createstdio().

Example:
deletestdiot'^wr'reqa)

5.6.5 Screens

Structmes:

RECORD screens
POINTER nextscreenS TO screens
POINTER firstwindowS TO windows
FIELD leftedgeX, topedgeX
FIELD widthX, heightX
FIELD mousexX, mouseyX
FIELD flagsX
FIELD title#
FIELD defaulttitle#
FIELD barheighti, barvborder!, barhborder)
FIELD menuvborder!, menuhborder!
FIELD wbortop!, wborlefti, wborright!, wborbottom!
FIELD font#
FIELD viewports OF viewports
FIELD rastportS OF rastportS
FIELD bitmaps OF bitmaf^
FIELD layerinfoS OF layer_infoS
FIELD firstgadget#
FIELD detailpen!, blockpen!
FIELD savecolorOX
FIELD barlayer#
FIELD extdata#
FIELD userdata#

ENDRECORD screens

RECORD newscreenS
FIELD leftedgeX, topedgeX
FIELD widthX, heightX, depthX
FIELD detailpen!, blockpen!
FIELD viewmodesX
FIELD typeX
FIELD font#
FIELD defaulttitle#
FIELD gadget#
POINTER bitmaps TO bitmaps

ENDRECORD newscreenS

AmigaCOMAL 107

constants:

screentype%:=$0F
wbenchscreen%:=l
customscreen%:=$OF
showtitIe%:=$010
beeping%:=$020
custonibi tn)ap%:=$040

Functions and procedures:

FUNC openscreen(new’screen^ CLOSED

Opens a screen, new’screen# is an address of an initialized new’screen structure.
The value returned is the address of the screen structure.

The function works like the Intuition function with the same name.

Example:
POINTER my'screena TO screena
^my'screens:=opensc reen(^my'new'screens)

PROC cIosescreen(screen#)

Closes a screen opened by openscreenQ.

Example:
cIosescreent ^my'screens)

PROC closeallscreens CLOSED

Closes all screens opened by openscreenC).

5.6.6 Windows

Structures:

RECORD newwindowS
FIELD leftedge%, topedge%
FIELD width%, heightX
FIELD detailpeni, blockpen!
FIELD Idcmpflags#
FIELD flags#
FIELD firstgadget#
FIELD checkmard#

108 AmigaCOMAL

FIELD title#
FIELD screen#
FIELD bitmap#
FIELD minwidth%, minheight%
FIELD maxwidth%, maxheight%
FIELD type%

ENDRECORD newwindowa

RECORD windows
POINTER nextwindowS TO windows
FIELD leftedgeX, topedgeX
FIELD widthX, heightX
FIELD mouseyX, mousexX
FIELD minwidthX, minheightX
FIELD maxwidthX, maxheightX
FIELD flags#
FIELD menustrip#
FIELD title#
FIELD firstrequest#
FIELD dnrequest#
FIELD reqcountX
FIELD wscreen#
FIELD rport#
FIELD borderleftl, bordertop!, borderright!, borderbottora!
FIELD borderrport#
FIELD firstgadget#
POINTER parents TO windows, desendantS TO windows
POINTER pointerX
FIELD ptrheight), ptrwidthl, xoffsetl, yoffset!
FIELD idcmpflags#
POINTER userportS TO msgportS, windowportS TO msgportS
FIELD messagekey#
FIELD detailpenl, blockpen!
FIELD checkmark#
FIELD screentitle#
FIELD gzzfflousexX, gzzmouseyX, gzzwidthX, gzzheightX
FIELD extdata#, userdata#
FIELD wlayer#

ENDRECORD windows

constants:

wbenchsc reenX:s$0001
customscreenX:=$000F
windowsizing#:=$0001
windowdrag#:=$0002
windowdepth#:=$0004
windowclose#:=$0008
activate#:=$01000

AmigaCOMAL 109

Functions and procedures:

FUNC openwindow(new’window#) CLOSED

Opens a window, new’window# is the address of an initialized new’window
structure. The value returned is the address of a window structure.

The function works like the Intuition function with the same name.

Example:
POINTER niy'windowo) TO windowal
''my' wi ndowa: =openw i ndow(*iny' new' w i ndowa)

PROC closewmdow(window#)

Closes a window opened by openwindowQ.

Example:
cIosewindou(^my'windowa)

PROC closeaUwindows CLOSED

Closes all windows opened by openwindewQ.

The package closes all windows in case of DISCARD or BYE.

5.6.7 Gfx

Structures:

RECORD bitmaps
FIELD bytesperrow%
FIELD rows%
FIELD flags!
FIELD depth!
FIELD padX
FIELD planes#(8)

ENDRECORD bitmaps

110 AmigaCOMAL

RECORD rectangles
FIELD minxX, miny%
FIELD maxx%, maxy%

ENDRECORD rectangleS

5.6.8 Layers

Structures:

RECORD layer_infoa
FIELD top_layer#
FIELD check_lp#
FIELD obs#
FIELD rp_replyporta OF msgportS
FIELD tockporta OF msgporta
FIELD locki
FIELD broadcast!
FIELD locknast!
FIELD flags!
FIELD locker#
FIELD fatten_cotjnt!
FIELD bytereserved!
FIELD uordreservedX
FIELD layerinfo_extra_si2e%
FIELD longreserved#
FIELD layerinfo_extra#

ENDRECORD layer.infoS

constants:

layersiinpleX:=1
layersinartX:-2
layerst4JerX:=4
layerbackdropX:=$40
IayerrefreshX;=$080

5.6.9 Rastport

Structures:

RECORD rastporta
FIELD layer#
POINTER bitmapa TO bitmaps
POINTER areaptrnX

AmigaCOMAL 111

FIELD tmpras#
FIELD areainfo#
FIELD gelsinfo#
FIELD mask!
FIELD fgpen!, bgpen!, aolpen!
FIELD drawmodeI
FIELD areaptsz!
FIELD linpatcnt!
FIELD dummy!
FIELD flagsX
FIELD lineptrnX
FIELD cp_xX, cp_yX
FIELD minterms!(8)
FIELD penwidthX, penheightX
FIELD font#
FIELD algostyle!
FIELD txflags!
FIELD txheightX, txwidthX
FIELD txbaselineX
FIELD txspacingX
FIELD rp_user#
FIELD wordreservedX(7)
FIELD longreserved#(2)
FIELD reserved!(8)

ENDRECORD rastportS

constants:

jam1X:sO
jam2X:=1
complement%:=2
inversvidX:=4

5.6.10 View

Structures:

RECORD viewports
POINTER viewports TO viewports
FIELD colormap#
FIELD dspins#, sprins#, clrins#, ucopins#
FIELD dwidthX, dheightX
FIELD dxoffsetX, dyoffsetX
FIELD modesX
FIELD reservedX
FIELD rasinfo#

ENDRECORD viewports

112 AmigaCOMAL

5.6.11 IntuitionSupport

Functions and procedures;

FUNC accept(requesttext$,positivetext$,negativetext$) CLOSED

This function activates the file requester on the screen, the returned value is
TRUE or FALSE depending on which field the user has activated, positivetextS
or negativetextS.

FUNC mousex CLOSED

Returns the present value of the x-coordinate for mouse (relative with in the
executing window).

FUNC mousey CLOSED

Returns the present value of the y-coordinate for mouse (relative wth in the
executing window).

FUNC addmenu(menutext$,itemtext$,key$) CLOSED

Create a new menu with title menutext$. The first menu value is named itemtextS
and short identification letter is key$ (no idetification is given if itemtextS is
empty).

The retmned value is the identification nummer for the first item in the menu. If
the menu can not be created the returned value is -1.

FUNC additem(itemtext$,key$) CLOSED

Create a new item under the last created menu (addmenu). The item name is
itemtextS and short identification letter is keyS (unless itemtextS is empty).

The returned value is the identification number of the itemtextS. If the item can
not be created the returned value is -1.

AmigaCOMAL 113

PROC resetmenu CLOSED

Remove all menu’s created by the function’s addmenu and additem.

FXJNC intuiwait CLOSED

Wait for a prompt to be returned.

Possible values are:

key pressed (1) - a key has been pressen
mouse buttom pressed (2) - left mouse button active
menu selected (3) - a menu has been selected

(0) - nothing happening

If intuiwait has returned one of the first three values, it is possible test fiu'ther
using key$ or one of the following functions:

FUNC mousebottomx CLOSED

x-position of mouse pointer, when left mouse button activated.

FUNC mousebottomy CLOSED

y-position of mouse pomter, when left mouse button activated.

FUNC menunumber CLOSED

Returns the menu of the chossen menu (-1 if no menu chossen). Menu identifi¬
cation is the same as the identification returned by addmenu and additem.

5.6.12 m

Functiones and procedures:

PROC save_window(name$) CLOSED

Save the contents of the currently active window as an iff-file on disc.

114 AmigaCOMAL

PROC load_window(name$) CLOSED

Load a picture in iff-format mto the currently active window.

PROC setcompress(c) CLOSED

If c=TRUE will all calls to savejvindow cause the pictures to be saved to be
compressed before saving. Even for small pictures can this option produce
noticable savings in file size.

This pacckage re-exports all of the routines in the iff.iibrary. It is necessary that
before using this package you are certain tha the iff.library is in the libs,
directory. IFF.library software is public domain software and delivered as a
service with AmigaCOMAL.

5.7 Graphics Packages

Two different graphics packages are supplied. These packages are:

UniGraphics
Turtle

Graphics is the standard graphics packages. UniGraphics contains graphics
routines that are compatible with UniComals C64 COMAL for Commodore
64/128 and PC COMAL for IBM PC and compatibles.

Turtle is a little COMAL package that makes it possible to work with turtle
graphics.

AmigaCOMAL 115

5.7.1 Graphics

This standard graphics package contains the following procedures and functions:

UniGraphics

UniGraphics contains:

PROC arc(cl,c2,r,start_angle,arc)

The procedure causes an arc to be drawn with its center at (cl,c2) and with a
radius r. The arc has the length arc degrees starting with the angle start_angle.

Example:
arcdOO,100,50,45,90)
arc(xO,yO,r,v,2*v)

PROC background(color)

This procedure sets the back ground color to the value of the parameter color.

Example:
background(3) // Set back ground color to red

PROC circle(cl,c2,r)

Draws a circle with its center at (cl,c2) and with radius r. The drawn hgure will
not be a round circle unles a suitable relation between the vertical and
horizontal units has been chosen (window procedure).

The current pen position is unchanged.

Example:
window(-160,160,-100,100)
cjrcle(0,0,50) // Draw a "circular" circle.

PROC clear

Clears the window inside the current drawing region set by clip.

116 AmigaCOMAL

PROC clearscreen

Clears the window inside the current viewport frame set by the procedure
viewport.

PROC ciip(xiniii,xmax,ymin,yniax)

The procedure clip defines a working region expressed in window coordinates
(see window procedure). All drawings (clear, Wl, draw,) cannot be seen
outside this region.

Example:
clip(2.5,4.7,-2,0)
clip<0,cx,cy,cy<-10)

FUNC depth

Function that returns the depth of the graphics window (the number of bitmaps
in the window).

If the depth is 2, there are four colors with numbers 0-3. The number of colors
can always be calculated as:

COIornumbe r:=2^depth

PROC draw(x,y)

Draws a line from the current pen position (x0,y0) to the point with the
coordinates (x0+x,y0+y).

The new pen position is the point with the coordinates (x0+x,y0+y).

Example:
draw(0,100) // Draws a vertical line of length 101

PROC drawto(x,y)

Draws a line from the current pen position (x0,y0) to the point with the
coordinates (x,y).

The new pen position is the point with coordinates (x,y).

AmigaCOMAL 117

PROC fill(x,y)

Fills an area with the current pen color. The area to be filled must contain the
pomt (x,y) and be bounded of either a curve in a color different from the back
ground color or by the frame set by clip.

The current pen position is unchanged.

Example:
pencolord)
circle(300,100,50)
pencolor(2)
fill(300,100)

FUNC getcolor(x,y)

Return color of the point with coordinates (x,y).

The current pen position is unchanged.

FUNC getrgb(coIor_register)

Returns the color of the specified color register. Written as a hexadecimal
number the content is of the form

$0rgb

where r, g 2md b are the content of the red, green and blue color (four bits for
each color).

If the graphics system is not opned the value -1 is returned.

PROC graphicscreen(mode)

Opens the graphics system.

mode=0: execute window is used as graphics window
mode=l: special execute window is opened m execute screen
mode>l: high res interlace graphics with mode bitmaps

// Draw a circle with pen color 1

// .. and fill with pencolor 2

118 AmigaCOMAL

This procedure must be called before any of the graphics routines are called.
When the graphics system is opned the command window or the graphics
window may be braught in front by pressing

<Shift> + <F1>.

FUNC height

Returns the height of the graphics window in pixels

FXJNC inq(no#)

The function inq returns certain of the internal variable of the graphics system.
The parameter no# must be an integral number in the range 0-33. The
meaning of the returned value can be found m the following table:

NiJit>er Information about Range Affected bv

0
1
2

graphics mode 0-4 graphicscreen

text background 0- textbackground
3
/

text color 0- pencolor

5 graphics backgruorxi 0- background
6 pen color 0- pencolor
7 graphics text width 8/10 textstyle
8 graphics text height 8/10 textstyle
9 gr. text direction 0 (dir. cannot be changed)

10 graphics text mode 0-1 textstyle
11
12 pen inside dr. frame 0-1 most drawing procs
13 1
14 0
15 wrapping active 0 (wrap not implemented)
16 pen down 1 only changed in Turtle
17 x-position 0-width most drawing procs
18 y-position 0-height most drawing procs
19 viewport xmin 0-width viewport
20 viewport xmax 0-width viewport
21 viewport ymin 0-height viewport
22 viewport ymax 0-height viewport
23 vindow xmin real no. window
24 vindow xmax real no. window
25 viixiow ymin real no. window
26 virxiow ymax real no. window
27 1
28 0
29 0
30 X-ratio (rem. 1) window and viewport

AmigaCOMAL 119

31
32
33

y-ratio (refli. 2) window and viewport
0
0

remark 1: (wclxmax-wdxmin)/(vpxmax-vpxmin)
remark 2: (wdymax-wdymin)/(vpymax-vpymin)

PROC interiorcolor(color)

Subsequent calls to the procedure polygon uses the parameter color to fill out
the interior of the polygon.

Example:
interiorcolor(2) // Fill with black
interiorcolor(-l) // No filling

PROC ioadscreen(name$)

The procedure causes an IFF-picture previous stored by AmigaCOMAL (see
savescreen procedure) or by another program (like DeLuxe Paint) to be fetched
from disk and placed in the graphics window. The procedure only works
satisfactory in graphics mode 0,2,3 and 4. In graphics mode 1 the picture is
loaded mto the whole screen (and not only the window).

The use of this procedure assumes that the Iff.Iibrary has been installed in the
LIBS: directory. This library is a public domain library supplied with Amiga¬
COMAL. If Iff.libreu’y is not in LIBS: the caU is ignored.

Example:
Ioadsc reen("MandeIB rot.iff")

PROC move(x,y)

Moves witout drawing the pen from the current position (x0,y0) to the point with
coordinates (x0+x,y0+y).

PROC moveto(x,y)

Moves witout drawing the pen to the point with coordinates (x,y).

120 AmigaCOMAL

PROC noclip

The procedure cancels any previously defined clip working region (set by the
procedure clip) and restores the working region to the current viewport (set by
the procedure viewport).

PROC outlmecolor(color)

Subsequent calls to the procedure polygon uses the parameter color as the color
of the edges of the polygon.

Example:
outlinecolor(3) // Draw polygon with red edges

PROC paint(x,y)

The procedure causes a region to be filled in with the current pencolor. The
region to be filled must contain the point (x,y) and it must be limited by the
pencolor or the viewport drawing area. The current pen position is unchanged.

Example:
pencolord)
moveto(0,0)
draMto(500,150)
pencolor(3)
circle(300,100,50)
paint(300,100)

PROC palette(no)

The procedure is used to set the first four colors of the graphics screen. The
colors are selected from one of three palettes:

palette color 0 color 1 color 2 color 3

0 black green red yellow
1 black magenta cyan white

palette(-l) restores the colors to the original values (set by the Preferences
program). Note that when in graphics mode 0 and 1 all the AmigaCOMAL
windows will ch2mge colors. The proceudre is implemented to insure
compatibility with UniComals graphics package. Normally the more general
procedure setrgb should be used.

// Draw a white line

// .. a red circle
// .. and fill the circle with red color

AmigaCOMAL 121

FXJNC pencolor(color)

Procedure used to set the color of the pen.

FUNC pixelx

The function returns the width of a picture element (a pixel) expressed in the
current window units.

Example:
draw(2*pixelx,0)

FUNC pixely

The function returns the height of a picture element (a pixel) expressed in the
current window units.

Example:
draw(0,pixely)

PROCEDURE plot(x,y)

The procedure places a dot at the point with coordinates (x,y).

The current pen position is unchanged.

PROC pIottext(x,y,text$)

The procedure causes text$ to be written in the graphics window starting at
the point with coordinates (x,y).

The current pen position is unchanged.

Example:

plottext(100,150,"AinigaC0«AL'')

PROC polygon (corners#, REF xO, REF yO)

The procedure causes a polygon with corners# vertices to be drawn. The coor¬
dinates of the vertices are stored in the vectors xQ and yQ. The number of

122 AmigaCOMAL

elements must be at least the value of corners#. The edges (the perimeter) of
the polygon is drawn in the color set by the procedure outlinecolor and the color
of the inner region is set by the procedure interiorcolor (unless the interiorcolor
is set to the value -1 in which case a tr^parent polygon will be drawn).

Example:
DIM x(3), y<3)
READ x(),y()
interiorcolor(3)
outlinecolor(2)
polygon(3,x(),y()) // Draw a red triangle with black edges
DATA 150,300,450
DATA 20,150,20

NOTE: The procedure uses a routine in the Amiga graphics library. It seems as
if this procedure has a bug. If the comers of the polygon falls outside the
graphics window the system may crash (the well known GURU will visit you!).

PROC printscreen

The procedure transfers the content of the graphics screen to the printer.

PROC savescreen(name$)

The procedure causes the content of the graphics window to be saved on disk in
IFF format. The procedure only works satisfactory in graphics mode 0,2,3 and 4.
In graphics mode 1 the whole screen (and not only the window) will be saved.

The use of this procedure assumes that the Iff.library has been installed in the
LIBS; directory. This library is a public domain library supplied with Amiga-
COMAL. If Iff.library is not in LIBS: the call is ignored.

Example:

savescreenC'MandelBrot. i f f ")

PROC savescreen(name$,mode)

The procedure works as described above but if the parameter mode has the
value 1 the window is saved in compressed for. This may reduce the size signifi¬
cantly.

Example:
savescreenC'Mandelbrot. i f f ", 1)

AmigaCOMAL 123

PROC setrgb(color register,red,green,blue)

This procedure is used to set the amount of red, green and blue in the specified
color register. The color_register is an integral number in the range 0-31 (this
number is directly asociated to the color number used by the procedures
pencolor, backcolor etc.) and the amount of color is an integral number in the
range 0-15.

Example:
After the call

setrgb(1,15,0,15)

the color number 1 (set by pencolor procedure) has the color called
magenta.

The colors of all the color registers may be restored to their ori^al value by
palette(-l).

PROC textbackground(color)

The procedure is used to set the background color used by the plottext
procedure (see also textstyle).

PROC textscreen

Closes the graphics system.

PROC textstyle(style#)

The procedure defines the manner in which the printout from the procedure
plottext will appear on the graphics window. The following values may be used
for the parameter style#:

0 normal text
1 bold
2 italic
4 under lined
8 inverse
16 only text (no background)

124 AmigaCOMAL

More values can be set by adding the values.

Example:
textstyle(1+2) // Print in bold and italic

PROC textstyle(width#,height#,direction#,mode#)

The proceudre is implemented to insure compatibility with UniComals graphics
package and only the last parameter is significant. The meaning of this is:

0 print without background
1 print with background (as 16 above)

PROC viewport(xmm,xmax,ymin,ymax)

Defines a region of the graphics window in which all drawings take place. The
parameters refer to the physical window (pbcel coordinates).

PROC viewport_to_window(vpx#, vpy#, REF wdx, REF wdy)

The procedure maps the viewport coordinates (the physical window coordinates)
to the window coordinates (set by the window procedure).

FUNC width

The function returns the width of the graphics window in pixels.

PROC window(xmm,xmax,ymin,ymax)

The procedure defines a coordinate system in the current viewport. The para¬
meter defines new coordinates for the border of the viewport.

PROC window_to_viewport(wdx, wdy, REF vpx#, REF vpy#)

The procedure converts window coordinates to physical window coordinates
(pixel coordinates).

AmigaCOMAL 125

FUNC xcor

The function returns the current x-coordinate of the pen.

FXJNC ycor

The function returns the current y-coordinate of the pen.

5.7.2 Turtle.

This package extends UniGraphics wth relative graphics routines (Turtle
graphics). The package is written in AmigaCOMAL and uses all the routines in
UniGraphics.

The command graphicscreen executes an implicit window(-160,160,-100,100)

(in graphics mode 0 - smaller widths in other modes) and draws a turtle (a small
triangle) in the mittle of the window.

All procedures and functions in UniGraphics are accessible from the Turtle
package and besides the following routines are supplied:

PROC arcl(radius,arc_angle)

The procedure causes an arc to be drawn to the left with the parameter radius
as the radius of curvature and subtending an angle arc_angle degrees. The
starting point is the current position and the starting direction is the current
direction.

Both the current pen position and the current direction is changed.

Example:
arcl(10,90)

126 AmigaCOMAL

PROC arcr(radius,right_arc)

The procedure causes an arc to be drawn to the right with the parameter radius
as the radius of curvature and subtending an angle arc_angle degrees. The
starting point is the current position and the starting direction is the current
direction.

Both the current pen position and the ciurent drawing direction is changed.

PROC back(x)

The procedure moves the pen x units backwards in relation to the current
drawing direction.

The current pen position is changed.

PROC forward(x)

The procedure moves the pen x imits forward in the current dra>^g direction.

The current pen position is changed.

FUNC heading

The function returns the value of the current drawing direction. The direction is
indicated in degrees with 0 vertically upward and positive to the left.

PROC hideturtle

The procedure causes the drawing pen (the turtle) to disappear from view in the
window.

PROC home

The procedure causes the drawing pen (the turtle) to return to position (0,0) and
with drawing direction upward.

AmigaCOMAL 127

FXJNC inq(no#)

The function inq returns certain of the internal variable of the graphics system.
The parameter no# must be an integral number in the range 0-33. The meaning
of the returned value can be found in the following table:

Nunber Information about Range Affected bv

0
1
2

graphics mode 0-4 graphicscreen

text background 0- textbackground
3
L

text color 0- pencolor

5 graphics backgruond 0- background
6 pen color 0- pencolor
7 graphics text width 8/10 textstyle
8 graphics text height 8/10 textstyle
9 gr. text direction 0 (dir. cannot be changed)

10 graphics text mode 0-1 textstyle
11 dr. pen visible 0-1 hideturtle/show turtle
12 pen inside dr. frame 0-1 most drawing procs
13 1
14 0
15 wrapping active 0 (wrap not implemented)
16 pen down 1 penup/pendown
17 x-position 0-width most drawing procs
18 y-position 0-height most drawing procs
19 viewport xmin 0-width viewport
20 viewport xmax 0-width viewport
21 viewport ymin 0-height viewport
22 viewport ymax 0-height viewport
23 vindow xmin real no. window
24 vindow xmax real no. window
25 vindow ymin real no. window
26 vindow ymax real no. window
27 costpen direc.) 1-1;11 arcl,arcr,setheading
28 sintpen direc.) [-1;11 left,right,home
29 size of pen 0- turtlesize
30 X-ratio (rem. 1) window and viewport
31 y-ratio (rem. 2) window and viewport
32 0
33 0

remark 1: (wdxfflax-wdx[nin}/(vpxn)ax-vpxmin)
remark 2; (wdymax-wdymin)/(vpymax-vpymin)

PROC left(angle)

The procedure causes the drawing pen to be turned angle degrees to the left in
relation to the current drawing direction.

128 AmigaCOMAL

PROC pendown

The procedure causes the pen to be lowered. This means that the turtle wJl
draw when it is moved, except for the procedures move and moveto.

PROC penup

The procedure causes the pen to be lifted. After this the pen will not draw when
it is moved, except for the procedures draw and drawto.

PROC right(angle)

The procedure causes the drawing pen to be turned angle degrees to the right in
relation to the current drawing direction.

PROC setheading(angle)

The procedure causes the drawing direction to be set to angle degrees from the
home direction (positive to the left).

PROC setxy(x,y)

The procedure causes the pen to be moved to the point with coordinates (x,y). If
the pen is down it acts like drawto, i.e. a line wUl be drawn. If pen is up it acts
as moveto, i.e. no line will be drawn.

PROC showturtle

The procedure causes the drawing pen (the turtle) to appear in the window.

PROC turtlesize(x)

The procedure defmes the size of the turtle.

In the Turtle package the foUowing abbrivations may be used:

bk S back
bg = background
cs S clearscreen
fd = forward
ht s hideturtle

AmigaCOMAL 129

It S left
pc = pencetor
pd s pendown
pu = penup
rt = right
seth setheading
St = showturtle
textbg s textbackground

Most programs developped to be used with UniGraphics will run without
changes with the Turtle package. In some cases it is necesary to set the
coordinate system back to the physical pixel coordinate system by using the line:

MindowtO,width-1,0,height-1)

5.8 Exceptions in AmigaCOMAL

With this package it is possible to write exception routines (a sort of interrupt
routines) in AmigaCOMAL. The package contains the following two procedures:

PROC addexcept(REF exceptO, signalmask#, resident)

except () is a procedure with a signal mask as parameter.

si goal mask# is a mask for the signals that is to cause exception.

resident=TRUE : should be used if the routine is part of a package.

After the call of this routine the procedure exceptQ will be called each time one
of the signals in the signal mask has caused an exception. The parameter in this
call is a mask for the signals that actually has caused the exception.

PROC reniexcept(REF exceptO)

Disables the effect of addexcept.

130 AmigaCOMAL

6. - Program development in
AmigaCOMAL

AmigaCOMAL is a modern programming language containing advanced
program structures (in the form of loops and branches), procedures and
functions that may be called recursively, various data types (in the form of arrays
and records) and the capability of modular programming techniques, to build up
program libraries (using packages).

In the following sections we give some brief examples of how programs may be
developed in AmigaCOMAL.

The first example develops a program that makes a small maze. The second
example is a small database program. It is a larger program, so it is reasonable
to di\dde it into smaller parts (modules). These parts are stored as packages that
are used by the main program. The final example shows how the system routines
in the Amiga operating system can be called from an AmigaCOMAL program.

6.1 A Maze

Before starting this project, sit down and think about how a maze is built. If you
do that you will realize that a maze, is, seen from outside, a box with an entrance
and an exit.

Thus, let us start by drawing a box with holes in two opposite corners. This may
be done in this way:

rooveto(xs+e,ys>
draH((w-1)*e,0)
draw(0,(h-1)*f)
inove(0,f)
draw(-e*w,0)
draw(0,-f*h)

Here e and f are horizontal and vertical units respectively while w and h is width
and length respectively measured in the two units e and f (set in the start of the
program). Finally xs and ys are the coordinates of the lower left comer of the
box.

// First make an outer frame with a hole

// .. in each corner

AmigaCOMAL 131

Note that we are using short variable names in the examples. However, longer
variable names could be used if you wanted. For example, instead of E and F,
you could have variables named HORIZONTAL and VERTICAL. A short
variable name is nice for a quick example. Long variable names often are better
as they make the program listing more readable.

The box made by this little program is in fact a very simple little maze. If it is
not complicated enough (and it hardly is!) we may divide it into two boxes and
connect the two halves with a hole. Now we have two simple mazes and by
combining them we have got a more complicated maze than the first one.

Each of the two mazes may be divided into two and combined with a hole. And
each of these may be divided etc. We \\t11 continuing in this way imtil there is
nothing to divide. Let us say that this is the case if either height or width is one
unit.

From this discussion it is seen that the problem is to make a procedure that
divides a box into two and takes care of the next division. The input to this
procedure should be a "box" i.e. the coordinates of say the lower left corner (X
and Y) and the width and height (W and H).

Such a procedure may look like this:

PROC maze{x,y,w,h) CLOSED
IF w>1 AND h>1 THEN

moveto(xs+x*e,ys+y*f) //
IF rnd>h/(h+w) THEN //
d:=rnd(1,w-1) //
move(d*e,0) //
hole:=rnd(0,h-1) //
draw(0,hole*f)
inove(0,f)
draw(0,(h-hole-1)*f)
inaze(x,y,d,h) //
maze(x+d,y,w-d,h) //

ELSE //
d:=rnd(1,h-1) //
move(0,d*f) //
hole:=rnd(0,w-1) //
draw(hole*e,0)
move(e,0)
draw((w-hole-1)*e,0)
maze(x,y,w,d) //
maze(x,y+d,w,h-d) //

END IF
END IF

ENDPROC (naze

Start in the lower left corner
divide with a vertical line
choose a point at randocn
.. and make a vertical line
.. with a hole placed at random

Make a maze in the left half
.. and one in the right
divide with a horizontal line
choose a point at random
.. and make a horizontal line
.. with a hole placed at random

make a maze in the lower half
.. arxi one in the upper

132 AmigaCOMAL

This procedure is made such that the division in the two halves is random and
decision whether the division should be with a horizontal or a vertical line is
made at random, too. Also the position of the hole is chosen at random. The
complete program looks like this:

0010 // Maze
0020
0030 USE PCGRAPHICS
0035
0040
0050 GLOBAL e,f,w,h,xs,ys
0060 graphicscreen(O)
0070 pen:-2
0080 pencolor(pen);backcolor(1)
0090 clear
0110 e:=18; f:=8
0120 w:=30; h:=20
0130 xs:-20; ys;=10
0140
0150 RANDOMIZE
0160 moveto(xs-<'e,ys)
0170 draw((M-1)*e,0)
0180 draw(0,(h-1)*f)
0190 move(0,f)
0200 draw(-e*w,0)
0210 draw(0,-f*h)
0220 inaze(0,0,w,h)
0230 pencolor(1);backcolor(0)
0240
0250 PROC niaze(x,y,w,h) CLOSED
0260 IF w>1 AND h>1 THEN
0270 nKJveto(xs*x*e,ys+y*f)
0280 IF rnd>h/(h+w) THEN
0290 d;=rnd(1,w-1)
0300 inove(d*e,0)
0310 hole;=rnd(0,h-1)
0320 draw(0,hole*f)
0330 n»ve(0,f)
0340 draw(0,(h-hole-1)*f)
0350 inaze(x,y,d,h)
0360 inaze(x-M,y,w-d,h)
0370 ELSE
0380 d:=rnd<1,h-1)
0390 inove(0,d*f)
0400 hole:=rnd(0,w-1)
0410 draw(hole*e,0)
0420 inove(e,0)
0430 draH((w-hole-1)*e,0)
0440 maze(x,y,w,d)
0450 inaze(x,y+d,w,h-d)
0460 ENDIF
0470 ENDIF
0480 ENDPROC maze

// USE must be the first executable line in
// program

// Cell width and height
// Nunber of cells horizontal and vertical

// First make an outer frame with a hole

// .. in each corner

// Make a maze in the inner

// Start in the lower left corner
// divide with a vertical line
// choose a point at random
// .. and make a vertical line
// .. with a hole placed at random

// Make a maze in the left half
// and one in the right
// divide with a horizontal line
// choose a point at random
// .. and make a horizontal line
// .. with a hole placed at random

// make a maze in the lower half
// .. and one in the upper

AmigaCOMAL 133

The mazes made by this program are not particularly complicated. But if it
happened that a maze is constructed that is very difficult to get through we
should make procedure that can find the route.

Such a procedure should systematicly try all possible routes in the maze until the
exit is reached. The problem is to find this systematic method.

Take a look of one of the mazes constructed by our program. Note that it
consists of a number of small quadratic cells. To get through the maze we have
to go into one of these. The cell we enter is open where we entered it. The three
other sides are either open or closed. If a side is open we try entering the
neighboring cell. In this way, all possible routes are tested and finally the right
one is found.

Thus, let us do the following: in turn, examine the neighboring cells that we can
enter. For each cell we enter we will do the same, i.e. we will in turn examine
the neighboring cells that we can enter. In this way we will find the exit. The
following procedure uses this idea:

PROC find_route
PROC examine(c1,c2,rx,ry) CLOSED

IMPORT found,pen
FUNC cell_open

RETURN pen<>readpixel(xs+c1*e+(1+rx)*e/2,ys+c2*f+(1+ry)*f/2)
ENOFUNC cell_open
rx;=-rx; ry:=-ry
IF c1=0 AND c2=0 THEN

found:=true
rooveto(xs+e/2,ys-f/2)
draw(0,f)

ELSE
LOOP 3 TIMES

te(np:=rx; rx;=-ry; ry:=tenip
IF cell_open THEN

exan>ine(c1+rx,c2+ry,rx,ry)
IF found THEN

draw(-2*rx*e/2,-2*ry*f/2)
RETURN

END IF
END IF

ENDLOOP
END IF

ENDPROC examine
found:sfalse
pencolor(3)
examine(w-1,h-1,-1,0)
drawee,0)
pencolor(l)

ENDPROC find route

134 AmigaCOMAL

The method we have used to create the maze is sometimes called "divide and
conquer". The idea is that the original problem is divided into two (or more)
smaller problems of the same type. After having solved these smaller problems
they are combined to form the solution to the original problem.

A lot of problems which at first seem unsolvable may be solved usmg this
method. AmigaCOMAL supports fully the method.

6.2 A Small Database Program

A database may contain many different subjects. It might be a database
containing information about your records, a database containing information
about the content of your refrigerator or a database containing information
about people. But independent of the content it must be possible to do the
foUowng basic operations:

■ add new information to the database
■ remove information from the database
■ edit the database
■ list all or part of the database, possibly sorted

It would be natinal to make a package that can do all this independently of the
content of the database. Such a package would serve as a module not only for
the program we are going to make in this section but as a general database core
to be used in many different connections. It would be a good addition to a
package library.

On the AmigaCOMAL distribution disk a package named DataBase contains
such a database core. The package exports the following routines:

PROC opeii’new(filename$,post@,R£F id#,fUesize)

Creates and opens a new database.

filenames is the name of the new database. post@ is a model for a record in the
database, id# is an identification word to be used in any subsequent calls to
other routines. A zero value indicates an error and the database is not created,
filesize is the number of records in the file.

AmigaCOMAL 135

PROC open’old(filename$,post@,id#)

Opens an existing database.

Works as open’new but the file must exist and there is no size specification.

PROC cIose’db(idi5f)

Closes a database opened by open’new or open’old.

id# is the identification word returned from open’new or open’old.

PROC add’post(id#,post@,R£F after(,),REF postid#)

Places a new record into the database.

id# is the identification word returned from open’new or open’old.
post® is the record to be added.
postid# is an identification of the new record - zero if there was no room for
the record.
FUNC after(postl@,post2@) is a function that should return true if postl® is
after post2@ in the ordering of your records.

PROC rem’post(id#,postid#)

Removes a record from the database.

id# is the identification word returned from open’new or open’old. postid# is
the identification returned by add’post or send to the procedure list’proc (see
below).

PROC iist’all(id#,post®,REF list’proc(,,))

Sends all records to the procedure list’proc.

id# is the identification word returned from open’new or open’old.
post® is a model for a record in the database.
list’procfpost®,postid#,REF continue#) is a procedure to which all records are
sent one by one until continue# is FALSE.

136 AmigaCOMAL

It would be too much to describe this package in detail. It suffices to know that
it executes the functions described above.

We are also going to use another package from our package library. This
package, EditText, contains only one procedure:

PROC edittextCREF text$)

Works much like the INPUT statement, but contrary to this, it writes the
content of the variable text$ and you may now edit the content using some of
the well known editing facilities. This procedure makes input and editing much
easier.

The two packages described (DataBase and EditText) are written in Amiga-
COMAL and may be changed if you feel they can be improved.

By using these packages we don’t need to worry about how the records are
organized or how they are stored on disk and we can focus on the real task:
making a user friendly database program.

The database we are going to create is a database of names and it should be
possible to do the following:

■ Make new name records
■ Change existing records
■ Remove names from the database
■ List all names
■ Quit

The program may in broad outline look like

REPEAT
get users choice of job
execute the job

UNTIL quit

The way we have described the program is sometimes called pseudo code. We
will gradually change this pseudo code until we get a normal AmigaCOMAL
program.

AmigaCOMAL 137

In the part of the program described as "execute the job" we have to find out
which of the five jobs the user has asked for and then execute the job. If we
denote the job with the first letter in the job description, the "execute the job"
part can be implemented by using a CASE structure. Thus we may change the
pseudo code to:

REPEAT
get users choice of job
CASE job OF
WHEN M

make
WHEN C

ch2mge
WHENR

remove
WHENL

list
WHENO

quit
ENDCASE

UNTIL job = 0

In the part of the program named “get users choice of job" we first should list all
possible jobs on the screen and then get a letter from the keyboard (as the users
choice).

It turns out that several times we have to get one of few selected letters from
the keyboard (here the letters M, C, R, L and Q). Thus it is natural to make a
function returning one of the letters. The parameter of such a fimction can be a
string consisting of all the valid letters. Let us call this function keypressS.

Our program now looks like:

REPEAT
page
PRINT AT 5,10: "Quit"
PRINT AT 7,10: "Make"
PRINT AT 9,10: "Change"
PRINT AT 11,10: "Remove"
PRINT AT 13,10: "List"
PRINT AT 17,10: "What is your choice? ",
j ob$:=keypress$("QqMmCcRrLI")

138 AmigaCOMAL

CASE jobs OF

WHEN

make
WHEN "C",''c"

chan
WHEN

remove
WHEN

Iist_db
WHEN

quit
ENDCASE

UNTIL Jobs IN “Qq"

The function keypressS looks like this:

FUNC keypressS(valid'chrS) CLOSED
REPEAT

cS:=inkeyS
UNTIL cS IN valid'chrS
RETURN cS

ENDFUNC keypressS

This is the main part of our program. To complete it we have to do some
initialization and define the content of the records. Then we have to write the
five jobs. This is done by writing five procedures so that the code you see above
is the final version.

The initialization part has to do the following:

■ use packages
■ declare certain variables as GLOBAL
■ define records
■ create the necessary variables
■ open the database

We won’t know some of the points in detail until the whole program is written.

The initialization part looks almost like:

USE DATABASE
USE EDITTEXT
//
GLOBAL persona,id#
//
RECORD persona

FIELD surnames OF 20
FIELD first_name$ OF 30

AmigaCOMAL 139

FIELD street$ OF 20
FIELD town$ OF 20
FIELD telf$ OF 15

ENDRECORD persona
//
DIM jobs OF 1, id#
//
f 1 lenaine$:=''ram:database.dat''
open'oldCfiIenameS,persona,id#)
IF id#=0 THEN open'newLfilenameS,persona,id#,20)

If it turns out to be necessary, it is possible to add more variables in the
GLOBAL and DIM statements.

Now let us focus on the five procedures, starting with the procedure quit. It is
the most simple one and after that is written we may test the main program. The
procedure quit consists of only one statement:

PROC quit CLOSED
close'dbtid#)

ENDPROC quit

Somebody might say that it is foolish to make this as a procedure. But by doing
this the program will be much more readable. We also may expand the QUIT
routine later to do other things such as issuing a good bye message.

Now we can perform our first test. Naturally we may only use the letter "Q"
(since this is the only "job" we have included so far) but this is in fact sufficient
for us to test the structure and the layout of the program. First save the
program, then run it for the test:

SAVE "testl"
RUN

After having successfully finishing tlus test we can continue writing the remaining
four procedures. The content of the first one might be like this:

make
let the user type in the new record
let the user confirm it
if ok then put the record into the database

The typing is naturally done field by field so that the pseudo code may be
written more precisely as:

140 AmigaCOMAL

make
for each field

let the user type in the field
repeat

make the necessary corrections
until accepted or rejected
if accepted then put the record into the database

Now we may start writing the procedure. A possible solution is:

PROC make CLOSED
DIH aswS OF 1
page
PRINT AT 3,10; "Type in new post:"
work'recaispersonS
FOR tine:=1 TO 5 DO input'field(work'reca,line)
REPEAT

PRINT AT 17,10: "Create (y/n or nunber to be changed) ",
aswi;=keypress$("yVnNI2345")

PRINT aswS
IF aswS IN "12345" THEN input'field<work'reca,ord(asw$)-48)
UNTIL asw$ IN "yYnN"

IF asw$ IN "yY" THEN
add'post(id#,work'reca,after(,),post'id#)
IF post'id#=0 THEN

page
PRINT AT 10,10: "No room for the record!"
PRINT AT 13,10: "Press space "
asw*;=keypress$(" ")

END IF
END IF

ENDPROC make

The typing takes place in a procedure input’field. It is called with a record and a
field number as parameters. The record is reset in the line just before the FOR
loop. The parameter work’rec® must be declared and made global in the main
program.

The insertion of the record in the database is done by calling the package
procedure add’post. The function afterQ transferred to this procedure simply
retiuns the result of comparing the two surnames.

The list procedure is very simple. It is done by a call to the package procedure
list’all. One of the parameters of this procedure is a procedure that handles the
real listing. In this case it is a local procedure list’post which is calling a
GLXDBAL procedure write’post.

AmigaCOMAL 141

The complete procedure looks like:

PROC hst_db CLOSED
PROC list'post(persona,nr#,continue#) CLOSED

write'post(persona,nr#)
PRINT
PRINT
IF currow>12 THEN

PRINT AT 18,10: “Press space ",
WHILE inkeySo" “ DO NULL
page
PRINT
PRINT

END IF
continue:=true

ENDPROC list'post
page
PRINT
PRINT
IiSt'all(id#,persona,IiSt'post(,,))
IF currow<>2 THEN
PRINT AT 18,10: "Press space ",

WHILE inkeySo" " DO NULL
END IF

ENDPROC list_db

Having fmished the two procedures make and list_db, an even greater part of
the final program may be tested.

Having successfully completed the test, the only remaining procedures are chan
and remove. The content of these are:

chan
specify the record to be changed
find this record
make the changes
get a confirmation of the changes
if ok then

remove the old record
add the corrected record

remove
specify the record to be removed
find this record
get a confirmation
if ok then remove the record

142 AmigaCOMAL

There are a lot of similarities in these two pseudo codes. Of course we can take
advantage of this. We will not go deeper into the transformation of the pseudo
code into a AmigaCOMAL program. You can see the result in the following
listing of the final program:

0010 USE DATABASE
0020 USE EDITTEXT
0030
0040 GLOBAL persona.work'recS,idllf,postno#,found,find'post
0050 GLOBAL input'field(,),keypress$<),after(,),write'post(,)
0070
0080 RECORD persona
0090 FIELD surnames OF 20
0100 FIELD first_nanie$ OF 30
0110 FIELD Streets OF 20
0120 FIELD towns OF 20
0130 FIELD telfS OF IS
0140 ENDRECORD persona
0150
0160 DIN work'reca OF persona, jobS OF 1, id#, postno#, found
0180
0200 open'oldC'database.dat",persona,id#}
0210 IF id#=0 THEN open'newC'database.dat”,persona,ickf,20)
0220
0230 REPEAT
0240 page
0250 PRINT AT 5,10: "Quit"
0260 PRINT AT 7,10; "Make"
0270 PRINT AT 9,10: "Change"
0280 PRINT AT 11,10: "Remove"
0290 PRINT AT 13,10: "List"
0300 PRINT AT 17,10; "Choose job ",
0310 jobS;=keypressS("Q<^imCcRrLl")
0320 CASE jobs OF
0330 WHEN "M","m"
0340 make
0350 WHEN "C","c"
0360 chan
0370 WHEN "R“,"r"
0380 remove
0390 WHEN "L","l"
0400 list_cfc
0410 WHEN "Q","q"
0420 quit
0430 ENDCASE
0440 UNTIL jobs IN "Qq"
0450
0460 // End of main program
0480 PROC quit CLOSED
0490 close'dbtid#)
0500 ENOPROC quit
0510
0520 PROC make CLOSED

AmigaCOMAL 143

0530 DIM aswS OF 1
0540 page
0550 PRINT AT 3,10: "Type in new record:"
0560 work'reca:=persona
0570 FOR line:=l TO 5 DO input'field(work'reca,line)
0580 REPEAT
0590 PRINT AT 17,10: "Create (y/n or number to be changed) ",
0600 asw$:=keypress$("yYnN12345")
0610 PRINT asw$
0620 IF asu$ IN "12345" THEN input'field(work'reca,ord(asw$)-48)
0630 UNTIL asw$ IN "yYnN"
0640 IF asw$ IN "yY" THEN
0650 add'post(id#,work'reca,after(,),post'id#)
0660 IF post'id#=0 THEN
0670 page
0680 PRINT AT 10,10: "No room for the record!"
0690 PRINT AT 13,10: "Press space "
0700 asw$:=keypress$(" “)
0710 ENDIF
0720 END IF
0730 ENDPROC make
0740
0750 PROC find'post CLOSED
0760 PROC seek(persona,postid#,continue#) CLOSED
0770 IF postid#=postno# THEN
0780 page
0790 PRINT
0800 PRINT
0810 write'post(persona,postid#)
0820 PRINT AT 10,10: "This post (y/n) ? ",
0830 asw$:=keypress$("yYnN")
0840 PRINT asw$
0850 IF asw$ IN "yY" THEN
0860 work'reca:=persona; found:=true; postno#:=postid#
0880 ENDIF
0890 continue#:=false
0900 ELSE
0910 continue#:=true
0920 END IF
0930 ENDPROC seek
0950 TRAP
0960 page
0970 INPUT AT 10,10: "Type in number of the record: “: postno#
0980 HANDLER
0990 RETRY
1000 ENDTRAP
1010 found:=false
1020 list'alUid#,persona,seek(,,)) // Find the record
1030 ENDPROC find'post
1040
1050 PROC chan CLOSED
1060 find'post
1070 IF found THEN
1080 page
1090 PRINT AT 3,10: "Change post:"

144 AmigaCOMAL

1100 FOR line:=1 TO 5 DO input'field(work'reca,line)
1110 REPEAT
1120 PRINT AT 17,10; "Correct (y/n or number to change) ",
1130 asw$:=keypress$("yYnN12345")
1U0 PRINT asu$
1150 IF asw$ IN "12345" THEN input'field(work'reca,ord(asw$)-48)
1160 UNTIL aswS IN "yYnN"
1170 IF asw$ IN "yY" THEN
1180 rem'post(id#,postno#)
1190 add'post(id#,work'reca,after(,),postid#)
1200 ENDIF
1210 ENDIF
1220 ENDPROC chan
1230
1240 PROC remove CLOSED
1250 find'post
1260 IF found THEN rem'post(id#,postno#)
1270 ENDPROC remove
1280
1290 PROC list_db CLOSED
1300 PROC list'post(persona,nr#,continue#) CLOSED
1310 write'post(persona,nr#)
1320 PRINT
1330 PRINT
1340 IF curroio12 THEN
1350 PRINT AT 18,10: "Press space ",
1360 WHILE inkeySo" " DO NULL
1370 page
1380 PRINT
1390 PRINT
1400 ENDIF
1410 continue:=true
1420 ENDPROC list'post
1430
1440 page
1450 PRINT
1460 PRINT
1470 list'all(icW,persona,list'post(,,))
1480 IF currow<>2 THEN
1490 PRINT AT 18,10: "Press space ",
1500 WHILE inkeyio" " DO NULL
1510 ENDIF
1520 ENDPROC list db
1530
1540 PROC input'fieldCREF persona,line) CLOSED
1550 CASE line OF
1560 WHEN 1
1570 PRINT AT 6,10: "1. Surname: ",
1580 edittext(persona.surnames)
1590 WHEN 2
1600 PRINT AT 8,10: "2. First name(s): ",
1610 edittextCpersona.first nameS)
1620 WHEN 3
1630 PRINT AT 10,10: "3. Street; ",
1640 edittext(persona.Streets)

AmigaCOMAL 145

1650 WHEN 4
1660 PRINT AT 12,10: “4. Postal number and town: ",
1670 edittext(persona.town$)
1680 WHEN 5
1690 PRINT AT 14,10: "5. Telephone number: ",
1700 edittext(persona.telf$)
1710 OTHERWISE
1720 // Should not happen
1730 ENOCASE
1740 ENOPROC input'field
1750
1760 FUNC lceypress$(valid'chr$) CLOSED
1770 REPEAT
1780 c$:=inkey$
1790 UNTIL c$ IN valid'chrS
1800 RETURN c$
1810 ENDFUNC keypressS
1820
1830 FUNC after(postia,post2S) CLOSED
1840 RETURN post13.surname$>post2a.surnames
1850 ENDFUNC after
1860
1870 PROC write'post(person3,no#} CLOSED
1880 PRINT AT 0,10: persona.surnames,", ",persona.first_nameS,
1890 PRINT AT 0,40: "No.: ",no#
1900 PRINT AT 0,10: persona.streets
1910 PRINT AT 0,10: persona.townS,
1920 PRINT AT 0,40: "Telephone: ",persona.telfS
1930 ENDPROC write'post

146 AmigaCOMAL

6.3 Calling System Routines From AmigaCOMAL

The following sections show how system routines in the Amiga operating system
may be called from an AmigaCOMAL program.

The system routines in the Amiga operating system are organized in libraries.
Examples of these libraries are;

■ Exec.library
■ Dos.library
■ Intuition.library

Before you can use one or more of the routines in one of these libraries, the
library has to be opened. During the opening process the library is loaded from
the system disk into RAM (if it is not already there). Having successfully opened
the library you may call the routines in this library. Fmally, when the work is
done, the library must be closed to release the part of RAM occupied by the
library (if no other processes in the Amiga are using this library).

By calling system routines from an AmigaCOMAL program, you have to follow
the same procedure. The opening of the library is done by using a package
containing interface routines to the system routines in the library. On the
distribution disk you will find packages corresponding to most of the libraries in
the Amiga. The names of these packages are derived from names of the
packages, for instance:

Name of the package Command

Exec_library.pck
Dos_library.pck
Intuition_library.pck

USE EXEC LIBRARY
USE DOS LIBRARY
USE INTUITION LIBRARY

AmigaCOMAL 147

The names of the routines in the packages are the same as those names used by
a C program except that they have the prefix pck (to avoid name conflict). For
instance

C name AmigaCOMAL name

OpenDevice
SendIO
CloseScreen

pckopendevice
pcksendio
pckclosescreen

The types of the routines and the number and types of the parameters are
always exactly the same as those used in a C program. Most of the routines
require as parameter a pointer to one or another data structure and the retmned
value from a routine is in many cases a pointer to a data structure, too. Before
the call to such routines you have to define RECORDS corresponding to the
data structures used by the routine. If the routine returns a pointer to a data
structure you have to create a pointer to the RECORD.

It would be far beyond the scope of this manual to describe all the routines and
the data structures used. There are more than 400 routines and almost as many
different data structures. We will only give a short description of the routines
used in the following examples.

The inclusion of RECORDS and POINTERS makes AmigaCOMAL very
suitable to low level programming. You may soon become engrossed in this and
discover your Amiga. Even skilled Amiga programmers will enjoy the easy access
to the routines.

But it is necessary to warn you. There is always a risk while doing low level
programming. You should always store your programs (and not only on the
RAM: disk) before a test. AmigaCOMAL doesn’t protect you from errors and
it’s easy to make such errors!

63.1 Sorted Listing of a Directory

As a first example of low level programming in AmigaCOMAL we will make a
sorted listing of a directory on a disk (like dir in the CLI).

148 AmigaCOMAL

Most of the disk routines are found in the Dos library. This is the fact with all
the routines used in this section. Thus, in the start of our program we have to:

USE Dos_library

To be able to make a listing of a directory, you must get a "lock" for this
directory. This lock is returned by the pcklock routine in the Dos library. The
call is like this:

catalog$:="dfO:"
lock#:=pcklock(''catalog$+4, *2)

The routine has two parameters. The first one must be the address of the name
of the directory.

Note: The first two words (four bytes) in a string variable contains the
maximum and actual length of the variable respectively. Thus we have to
add four to the address of the string variable to get the address of the
real content.

The second parameter must be either -1 or -2. In this case we specify -2 in
which way we are telling the Amiga that we only want to read. A zero returned
from pcklock indicates an error (which may be further examined by a call to
pckioerror).

The reading of the directory is done by calling pckexamine once (to initialize the
reading) and then pckexnext several times. The parameter to both of these
routines is the address of a data area of 260 bytes. At the return this area is
filled mth information about a directory entry, for instance the name of the file
or the subdirectory.

Before calling pckexamine and pckexnext we have to create a RECORD with a
content corresponding to that used by the routines. This RECORD looks like:

RECORD fileinfoa
FIELD diskkey# // drive number
FIELD direntrytype# // + = directory, - = file
FIELD filename!(108)
FIELD restl(144) // no interest her

ENDRECORD fileinfoa

AmigaCOMAL 149

The last 144 bytes in this RECORD contain, among other things, the length of
the file and date of creation. We don’t need this information in this program, but
the size of the data area must be 260 bytes.

The routines pckexamine and pckexnext require the address of the data area
being long word aligned. This may not be the case with our record fileinfo® so
we have to create a pointer to fileinfo® and then allocate a resident data field
for this pointer:

POINTER infoa TO fileinfoa
allocate(infoa,1) // Long word boundary!

We can now get an unsorted listing of the directory in this way:

status#:=pckexamine(Iock#,^infoO)
IF status#<>0 THEN

status#:=pckexnext(lock#,^infoa)
WHILE status#<>0 DO // Read catalog and display

PRINT c_string$(infoa.filename!{))
status#:=pckexnext(Iock#,^infoa)

ENDUHILE
END IF
pckunlockdock#)

If the returned value from pckexamine or pckexnext is zero every thing is ok. If
not, it is probably because there are no more entries, but there may be other
reasons (may be examined by calling pckioerror).

The name of the catalog entrance is stored as a null terminated string (common
C format). This string is converted to the AmigaCOMAL string format by
calling the function c_string$ in the SYSTEM package.

After the reading we politely return the lock to the AmigaDOS by calling
pckunlock (otherwise you can’t get rid of the icon of that disk -1 think you have
seen that problem!).

The goal was to get the names in the directory listed in alphabetic order and if
possible with all directories first (as in CLI). To do this we have to collect all the
names before we display them sorted.

The sorting can be done in different ways. One way is to store all the names in
an array and then sort this array before printing the names. There are two
disadvantages using this method. First, we don’t know the size of the array.
Second, the sorting is very often a time consuming process.

150 AmigaCOMAL

It is far better to use dynamic variables and then place the names in either a list
or a tree. The sorting is achieved by placing the names in the correct place in
the list or the tree. In this case a tree is the easiest to administrate.

Now what is a binary tree? Well we can make the following recursive definition
of this:

A binary tree is either empty or it consists of a note from which two
binary trees grows.

We will place the names in the nodes of the tree in such a way that all the
names in the left of the two trees should be displayed before the name in the
node and this name should be displayed before the names in the right tree. The
nodes of the tree will be represented by a RECORD consisting of a name and
two POINTERS to the left and the right tree respectively:

RECORD cat'entrancea
FIELD names OF 30
POINTER lefta TO cat'entrancea
POINTER righta TO cat'entrancea

ENDRECORD cat'entrancea

Due to the recursive definition it is not surprising that the inserting as well as
the printing of the tree is done by using recursive procedures. The insertion
procedures look like:

PROC insert(REF catalog'ptra,file'name$)
IF ^catalog'ptra=0 THEN

allocate(catalog'ptra)
catalog'ptra.name$:sfile'nameS

ELIF catalog'ptra.name$>file'nameS THEN
insertCcatalog'ptra.lefta,file'nameS)

ELSE
insert(catalog'ptra.righta,file'nameS)

END IF
ENDPROC insert

and the listing procedure is even more simple:

PROC list_tree<REF catalog'ptra)
IF ''catalog'ptraoO THEN

I i st_t ree(cata I og' pt ra. I ef ta)
PRINT catalog'ptra.nameS;
list_tree(catalog'ptra.righta)

END IF
ENDPROC list tree

// Top of tree

// seek to the left

// seek to the right

AmigaCOMAL 151

The start or the root of the tree is a pointer. Since all the directories should be
listed before the files, we have to use two trees and two pointers to the roots.
They are defined in this way

POINTER dir'starta TO cat'entrancea
POINTER file'starta TO cat'entrancea

Now all the parts of the program are made, so we are able to write the complete
program. The final result looks like:

0010 // Sorted display of directory
0020
0030 USE SYSTEM
0040 USE DOS LIBRARY
0050
0060 RECORD fiteinfoa
0070 FIELD diskkey# // drive lumber
0080 FIELD direntrytype# // + = directory, - = file
0090 FIELD filename!(108)
0100 FIELD rest!(144) // no interest her
0110 ENDRECORD fileinfoa
0120 POINTER infoa TO fileinfoa
0130
0140 RECORD cat'entrancea
0150 FIELD names OF 30
0160 POINTER lefta TO cat'entrancea
0170 POINTER righta TO cat'entrancea
0180 ENDRECORD cat'entrancea
0190 POINTER dir'starta TO cat'entrancea
0200 POINTER file'starta TO cat'entranc
0210
0220 allocate(infoa,1) // Long word boundary!
0230 catalogS;="df2:" // For instance
0240
0250 page
0260 lock#:=pcklock(''catalog$+4,-2)
0270 IF lock#>0 THEN
0280 status#:=pckexamine(lock#,^infoa)
0290 IF status#<>0 THEN
0300 status#: =pckexnext (I ock#,i nf 03)
0310 WHILE status#<>0 DO // Read catalog and sort
0320 IF infoa.direntrytype#>0 THEN // Directory
0330 insert(dir'starta,c_string$(infoa.filename!())+"(0ir)")
0340 ELSE // File
0350 insert(file'starta,c string$(infoa.filename!()))
0360 END IF
0370 status#:=pc kexnex t(lock#,^infoa)
0380 ENDUHILE
0390 // List
0400 ZONE 80
0410 list_tree(dir'starta) // .. first catalogs
0420 ZONE 40

152 AmigaCOMAL

0430 Iist_tree(file'Starts) // .. and then files
0440 ZONE 0
0450 ENDIF
0460 pckunlockClock#)
0470 END IF
0480 deallocateCinfoS)
0490
0500 PROC insert(REF catalog'ptrS.file'nameS)
0510 IF ^catalog'ptra=0 THEN // Top of tree
0520 allocatefcatalog'ptrS)
0530 catalog'ptra.nainet:=file'naine$
0540 ELIF catalog'ptra.naine$>file'naine$ THEN // seek to the left
0550 insertfcatalog'ptra.lefts,file'namel)
0560 ELSE // seek to the right
0570 insertfcatalog'ptrS.rights,file'nameS)
0580 ENDIF
0590 ENDPROC insert
0600
0610 PROC list tree(REF catalog'ptrS)
0620 IF ^catalog'ptrSoO THEN
0630 list_tree(catalog'ptra.lefts)
0640 PRINT catalog'ptrS.nameS;
0650 list treefcatalog'ptrS.rights)
0660 ENDIF ~
0670 ENDPROC list tree

63.2 Programming of lO Devices

On the Amiga, input and output are normaUy handled by special routines called
lO devices (lO stands for Input/Output). There are lO devices to perform input
and/or output through the printer, the serial port, or the console to mention
only a few. Every lO device has a name, for instance:

■ printer.device
■ serial.device
■ paralleLdevice
■ console.device

To be able to use an lO device you have to open the device. lO is then
performed by sending a special data structure called a message to the device.
Having sent this message the program may wait for the device to complete the
task or it may continue and perform something else in the mean time.

AmigaCOMAL 153

One of the more special 10 devices is the narrator device. A text sent to this
device is sent out through speakers connected to the Amiga (for instance the
speakers in the Amiga 1081/1084 monitors).

In this section we will make a program by which you can make the Amiga
pronounce a text.

The first thing to do in a program that is to perform lO is to create the data
structure (the message) used by the device. Most of the devices use a standard
structure called iostdreq@. This one is defined in the package Message.pck.
Some devices use an extended version of this structure. This is also the case with
our narrator device.

The narrator structure looks like:

RECORD narratS
FIELD messages OF iostdreqS
FIELD rate%
FIELD pitch%
FIELD mode%
FIELD sex%
FIELD ch_masics#
FIELD nm_masksX
FIELD volumeX
FIELD sampfreqX
FIELD mouths!
FIELD chantnask!
FIELD numchanl
narrata

ENDRECORD

// Standard 10 request
// speaking rate (words/min)
// Baseline pitch (in Hz)
// Pitch mode (0=with, 1=without)
// Sex of the voice
// Address of audio mask
// Nunber of masks
// Volume (0 .. 64)
// Sampling frequency
// ?
// Used by the Amiga internally
// Used by the Amiga internally

The audio mask specifies which of the four sound channels you are going to use
and how you will use it. Without further explanation we state how they are
created and initialized:

DIM amapsi(4)
ainaps!(1):=3; amapsi (2);=5; amaps! (3):=10; amaps! (4):=12
narrata.ch_masks#:=^amaps!()
narrata.nm_masks%:=4

The Other fields in the structure are set to standard values by the device during
the opening procedure. Before we can open the device, we have to create a reply

154 AmigaCOMAL

port used by the device to return the message to after completion of the lO. A
port may be created by the routine createportQ in the Message package:

POINTER replya TO msgportS
^replya:=createport('*SpealcReply",0)

If createportO returns a zero an error has occurred.

Now we have to place the address of the port in our message:

^narrata.inessagea.iin_replyporta;s^replya

At last we are ready to open the devdce. This is done by calling the Exec routine
pckopendevice with the addresses of the name of the device and the message as
two of the four parameters:

name!:="narrator.device"
IF pckopenclevice(*nanie$+4,0,*narrata,0)<>0 THEN GOTO TERMINATE

The texts to be send to the narrator device must be written in a special phonetic
script. A normal (English) text may be translated to this special phonetic script
by the function pcktranslate from the package Translator_library that opens the
translator library. This library is the smallest of all the libraries in the Amiga
since it contains only this function.

The call to pcktranslate is performed in this way.

text$:="HeUo world"
duniny;=pcktranslate<^text$+4, lent text$),^trans'out! 0,256)

The array transoutlQ is a 256 bytes array used by pcktranslate to store the
translated text.

The translated text is immediately sent to the narrator device:

narrata.messagea. i o_conniandX:=cmd_wr i teX
narrata.iiiessagea.io_length#;=!len(c_string$(trans'outl ()))
narrata.messagea. io_data#:=''trans'out! O
dumiytspckdoiot^narrata) // Send a message to device and wait

Here we have used the routine pckdoio (from the Exec library) and our program
will go to sleep until the narrator has completed its work. This is the simplest
way to use an lO device.

AmigaCOMAL 155

After this we must close the device and remove the reply port before the
program may terminate. The complete program looks like;

0010 // Demonstration of 10 programming in AmigaCOMAL
0020
0030 USE SYSTEM
0040 USE MESSAGES
0050 USE DEVICES
0060 USE TRANSLATOR_LIBRARY
0070
0080 // Standard write request for the narrator.device
0090 RECORD narratO
0100 FIELD messages OF iostdreqS // Standard 10 request
0110 FIELD rateX // speaking rate (words/min)
0120 FIELD pitchX // Baseline pitch (in Hz)
0130 FIELD modeX // Pitch mode (0=with, 1=without)
0140 FIELD sexX // Sex of the voice
0150 FIELD ch_masks# // Address of audio mask
0160 FIELD nm masksX // Number of masks
0170 FIELD voTumeX // Volume (0 .. 64)
0180 FIELD sampfreqX // Sampling frequency
0190 FIELD mouths! // 7

0200 FIELD chanmask! // Used by the Amiga internally
0210 FIELD numchan! // Used by the Amiga internally
0220 ENDRECORD narratS
0230
0240 // Define array for mask to sound channel
0250 DIM amaps!(4)
0260 // Initialize
0270 amaps!(1):=3; amaps!(2):=5; amaps!(3):=10; amaps!(4):=12
0280
0290 // Create output buffer for translate procedure
0300 DIM trans'out!(256)
0310
0320 // Create reply port
0330 POINTER replyS TO msgporta
0340 ''replya:=createport(“SpeakReply",0)
0350 IF ^replya=0 THEN GOTO TERMINATE // Stop if zero
0360
0370 // Initialize narrator message
0380 ^narrata.messages.mn_replyporta:=^replya
0390 narrata.ch_masksiY:=^amaps!()
0400 narrata.nm_masks%:=4
0410
0420 // Open 'narrator.device'
0430 nanie$:="narrator.device"
0440 IF pckopendevice(^name$+4,0,^narrata,0)<>0 THEN GOTO TERMINATE
0450
0460 // Ready to go!
0470 text$:="Hello world" // It is a tradition to say this
0480 // Translate to phonetic script
0490 dumray:=pcktranslate(''text$+4, len(text$),^trans'out! 0,256)
0500
0510 narrata.messagea. io_command%:=cnid_write%

156 AmigaCOMAL

0520 narrata.messagea.io_length#:=len(c_string$(trans'out!()))
0530 narrata.messagea.io_data#:=^trans'out!()
0540 dijniiy:=pckdoio(^narrata} // Send a message to device and wait
0550
0560 pckclosedevice(^narrata) // Close device ..
0570 TERMINATE:
0580 deleteport(^replya) // .. and remove reply port

63 J A Speech Package

On the basis of the program in the preceding section we are now going to make
a speech package. This package should export the following procedures/-
functions:

FUNC translate$(t$)
translate the text t$ to phonetic script

PROC pronounce(t$)
pronounce the phonetic script t$

PROC say(t$)
a combination of translate and pronounce

The narrator device should be opened in the initialization part of the package
and closed when the package is DISG\RDed or the BYE signal is received.

We do not want the package to wait for the narrator device to complete the
work each time a text is sent. Instead it should return to the caller. This is done
by using pcksendio instead of pckdoio.

But now we have to be careful! We are not allowed to use the message sent to
the deTice until it has been returned to us.

The narrator device returns the message to the reply port we created but did not
use explicitly in preceding section. When we are going to send text number 2
(3,4,5,—) we have to wait for the arrival of our message to the reply port. This
waiting may be done by calling the Exec routine pckwaitport. But there is a
drawback in using this. If no answer arrives we will be hanging there forever. We
cannot break the program!

AmigaCOMAL 157

Another and better solution is to make the Amiga send a signal each time a
message arrives at our port. Instead of waiting for the message to arrive, we can
wait for the signal. It doesn’t seem much better than waiting for the message. If
the message doesn’t arrive, then no signal \Nill be sent and we will hang there
waiting for signal forever (!?).

The trick is that you can wait for several signals at a time. If we use the special
routine comalwait from the system package, we can wait not only for the signal
sent at arrival of the message, but also for the signals allocated by the
AmigaCOMAL system (among these, one is sent if you press <Amiga> + <S>.

The routine comalwait is used in exactly the same way as the Exec routine Wait,
i.e. it is called with a signal mask as parameter (a long integer with those signal
bits set that you are waiting for). The returned value is a mask for the signals
that has arrived (and this might be one of the AmigaCOMAL signals!).

This was the theory. Now to the practical side. We have to prepare the system
such that a signal is sent each time a message arrives at our port. This is easily
done. If the port is created by the routine createport in the message package,
this is already done. You only have to get the signal number so that we know
what to wait for. This may be done in this way:

signaI'mask#:=2^repIya.mp_sigbit!

where we at the same time read the signal number and create the mask that are
to be used in comalwait.

Now the remaining part of the package can easily be made. The final result
looks like:

0010 // Speech package
0020
0030 USE SYSTEM
0040 USE MESSAGES
0050 USE DEVICES
0060 USE TRANSLATOR_LIBRARy
0070
0080 EXPORT translateS(),pronounce(
0090
0100 RECORD narratS
0110 FIELD messagea OF iostdreqa
0120 FIELD rate%
0130 FIELD pitch%
0140 FIELD mode%
0150 FIELD sex%

),sayO

// Standard 10 request
// speaking rate (words/min)
// Baseline pitch (in Hz)
// Pitch mode (0=with, 1=without)
// Sex of the voice

158 AmigaCOMAL

0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700

FIELD chjnasks#
FIELD nm_inaslcsX
FIELD voluneX
FIELD sarapfreqX
FIELD mouths!
FIELD chanmask!
FIELD numchan!

EKDRECORD narratO

// Address of audio mask
// Number of masks
// Volume (0 .. 64)
// Sampling frequency
// ?
// Used by the Amiga internally
// Used by the Amiga internally

// Define array for mask to sound channel
DIM amaps!(4)
amaps!(1):=3; amapsl(2):=5; amapsi(3):=10; amapsl(4):=12

// Create output buffer for translate procedure
DIM trans'outl(256)

// Create reply port
POINTER replya TO msgporta
*replya:=createport("SpeakReply“,0)
IF ''reply8=0 THEN REPORT (199) // Stop if zero
signal'mask#:=2^replya.mp_sigbit!

// Initialize narrator message
^narrata.messagea.mn_repIyporta:repIya
narrata.ch_masks#:-^amaps! ()
narrata.nm_masksX:=4

// (^n 'narrator.device'
names;="narrator.device“
IF pckopendevice(''name$+4,0,''narrata,0)<>0 THEN

deleteport(^replya)
REPORT (199)

END IF

text$:=“Hello, I am the amigacoamal speechpackage"
dummy: spckt rans I ate(* text$+4,1 en(textS), '^t rans' out! (), 256)
narrata.messagea. io_coaiiiandX:-cind_wri teX
narrata.messagea.io_length#:^Ien(c_st ringS(t rans'out!()))
narrata. messagea. i o_data#: =^t rans' out! ()
pcksendio('^narrata) // Send message to device

FUNC translate$(text$) CLOSED
dummy: spcktrans late(''text$+4,1 en(textS), "'t rans' out! (), 256)
RETURN c string$(trans'out!())

ENDFUNC translates

PROC pronounce(texts) CLOSED
REPEAT

mask#:=comaIuait(signaI'mask#)
UNTIL (mask# BITAND signal'mask#)<>0
dunny:=pckgetmsg(^replya)
narrata.messagea.io_commandX:=cmd_writeX
narrata.messagea.io_length#:=len(textS)
narrata.messagea.io_data#:=^textS-i-4
pcksendiol'riarrata) // Send message to device

AmigaCOMAL 159

0710 ENOPROC pronounce
0720
0730 PROC say(text$) CLOSED
0740 pronounceC translate$(text$))
0750 ENDPROC say
0760
0770 PROC signaUs) CLOSED
0780 CASE s OF
0790 WHEN 2,10 // DISCARD or BYE
0800 REPEAT
0810 niask#:=coinalwait(signal'mask#)
0820 UNTIL (mask# BITAND signal'mask#)<>0
0830 dummy:spckgetmsg(^replya)
0840 pckclosedevice(''narrata)
0850 deleteport(‘'replya)
0860 OTHERWISE
0870 // No action
0880 ENDCASE
0890 ENDPROC signal

63.4 Some Closing Remarks

In the previous section we have seen examples of system programming m
AmigaCOMAL. On the distribution disk there are other examples (Install and
Terminal).

If you would like to go further into this subject it is necessary to get some
information about the system routines. This could be from either magazines or
from one of the books covering this subject. You should especially look for
articles and books describing the system routines seen from a C programmers
point of view. With a minimal knowledge of C programming it is easy to
translate the listing of a C program into an AmigaCOMAL program.

Happy programming! And once more: remember to store your programs before
testing!

160 AmigaCOMAL

Appendix A.

The AmigaCOMAL disk

The AmigaCOMAL system disk contains the foUomng files and directories:

AmigaCOMAL The COMAL interpreter.

S (dir) Contains the program used to install AmigaCOMAL.

Programs (dir) Empty.

Packages (dir) All the packages of chapter S. are found in this
directory as well as a couple of other packages.

Packdev (dir) This directory contains a number of ReadMe files and
two under directorys containing C and Assebler
information and source programs.

Iff-Pictures (dir) This directory contains pictures in Iff format.

LstFiles (dir) This directory contains many small programs LISTed
to disk in ASCII format. Each COMAL keyword has
a sample program in this directory showing its use.
Use the ENTER command to retrieve a program into
COMAL. Or, since the files are in ASCII, you can
read them with any file reader.

AmigaCOMAL 161

162 AmigaCOMAL

Appendix B.

The file system in AmigaCOMAL.
The user may communicate with almost any of the external units of the Amiga
such as floppy disk, hard disk, ram disk, serial port or printer using the
AmigaCOMAL file system.

Three types of files are supported by AmigaCOMAL: program files, sequential
data files and random access data files.

B.1 Filenames

The name of a file may be either the name of one of the standard imits in
AmigaCOMAL or it may be the name of an AmigaDOS file.

The standard units are:

“ds:" the data screen
“kb:" the keyboard
"sp:" the serial port
"Ip:" the printer (alternative use "par:")

Note that "Ip:" uses the printer.device of the Amiga operating system. This
means that codes are converted from the standard ANSI printer codes to the
codes of your printer. If you do not want this conversion, the AmigaDOS file
"PAR:" should be used.

The name of a disk file should follow AmigaDOS file name rules. This means
that there are few restrictions.

If there are no periods in the file name, AmigaCOMAL ^ill add the following
file types to the name:

. 1st ENTER, MERGE, LIST, DISPLAY

.sav LOAD, SAVE, RUN, CHAIN

.cnp USE (Comal)

.pck USE (Code)

.ext external procedures or functions

AmigaCOMAL 163

If AmigaCOMAL is going to create a file which already easts, the suffix .backup
is added to the original file first.

B.2 Program Files

Program files may be stored on a disk either as a memory image file or as an
ASCII text file, or it may be output to one of the standard output units ("ds:",
"sp:” and "Ip;") as an ASCII text file.

To store a program as a memory image file (also called a SAVE file) the SAVE
command is used. To read back a memory image file the commands LOAD,
RUN or CHAIN are used.

If the commands LOAD or SAVE are used without a file name or if the Project
menu is used a file name requester is opened. In this requester the path and the
file name may be entered. The path and name of the latest LOADed file is
suggested by the requester.

To store a program as an ASCII text file the commands LIST or DISPLAY
must be used. LIST and DISPLAY stores the file on disk in exactly the same
format as the one you see on the screen if LIST and DISPLAY are used without
file name. This means that lines are indented and LIST stores the program with
line numbers and DISPLAY without line numbers.

ASCII text program files may be edited using a text editor like ED or MEmacs.

ASCII text program files may be retrieved using either the ENTER or MERGE
command. If the ENTER command is used the program lines must contain line
numbers.

If the ASCII text program file is edited using a text editor or it is created by
another COMAL, there might be syntax errors in some of the lines. When a
syntax error is encountered, the line is displayed on the screen for you to edit.
After editing press < Enter > and COMAL continues reading the file.

It is possible to store and enter program files using the SELECT comm2md. But
since SELECT normally affects a running program it is necessary to turn off the
Execute Window by using the RUNWINDOW- command. To store a program
using SELECT the following command sequence could be used:

164 AmigaCOMAL

RUNWINDOW-
SELECT OUTPUT «file name»
LIST
SELECT OUTPUT "ds:"
RUNU1NOOW+

and to read a text program file use:

RUNUINDOU-
SELECT INPUT «file name»
RUNUINDOW+

During the input, the lines are displayed on the screen. At the end of the
reading an implicit SELECT INPUT "ds:" is executed.

The reading of a file may be stopped at any time by pressing «Esc» or
«Amiga» + «S».

B.3 Sequential Data Files

Before using a sequential file, it has to be opened using the OPEN or SELECT
statement. Each file opened by the OPEN statement has a file munber (some
times called a stream munber) attached. SELECT is used to redirect:

■ output from PRINT to a file
■ input to INPUT from a file

When a file is opened by the OPEN statement you have to specify the name of
the file, the file number you want to use to access the file and the way you want
to use the file (read, write or both). The general format of the OPEN statement
(for sequential files) is:

OPEN FILE «file niJiiber»,«file naffle»,«inode»

The «file number* is an integer in the range 1-32767 and «mode» is one of the
following keywords:

READ
WRITE
READURITE
APPEND

AmigaCOMAL 165

The READWRITE mode should be used if special devices like "sp;" (the serial
port) are to be used for both input and output.

Once opened, you may write to the file (WRITE, READWRITE and APPEND
modes) using WRITE FILE or PRINT FILE statements and read from the file
(READ and READWRITE modes) using READ FILE or INPUT HLE
statements.

The WRITE FILE statement outputs the data in binary format and it is only
possible to read such data using the READ FILE statement. The PRINT FILE
and the INPUT FILE statements are used in connection with ASCII text files.

After use, the file has to be closed using the CLOSE statement. The general
format of a CLOSE statement is:

CLOSE [FILE «fUe number*]

Without the file number, all open files will be closed. When a file is closed, the
file number is available for use with future file access.

Example: To transfer a COMAL program from another machine (IBM for
instance) through the serial port the following program may be used:

0010 inputfile$;="sp:“
0020 output!i le$:="ram:tenip. 1st"
0030
0040 OPEN FILE 1,inputfile$,READ
0050 OPEN FILE 2,outputfite$,WRITE
0060
0070 WHILE NOT eof(1) DO
0080 INPUT FILE 1: tine$
0090 PRINT FILE 2: tine$
0100 ENDUHILE
0110
0120 CLOSE

After the transfer the program may be retrieved by using the command:

ENTER “ram:temp.Ist"

The SELECT command is used to redirect the standard lO streams of
AmigaCOMAL (INPUT and PRINT) to a disk file or one of the standard
devices. The general format is:

166 AmigaCOMAL

SELECT INPUT «file naine» // Redirect input
SELECT OUTPUT «file name» // Redirect output
SELECT INOUT «file name» // Redirect input and output

The result of executing the SELECT command is that the old input and/or
output file (device) is closed and the new file (device) is opened.

B.4 Random Access Files

With a sequential file, the data is read in the same order as it was written to the
fde. However, with a random access file, data may be read in any order;
independent of the order it was written. Only disk files may used as random
access files.

A random access file must be created before it is used. This is done by using the
CREATE statement where the length and internal structure of the file is
specified. The general format of CREATE is:

CREATE «file name»,«nuniber of records®,«record length®

If the file is going to hold different contents of an AmigaCOMAL RECORD,
the value of «record length® may be calculated by using the varsize function. In
other cases you have to know the length of each of the fields in the record. Here
are some guide lines:

string; length of string (len function) + 2
floating point: 8 bytes
long integer; 4 bytes
short integer: 2 bytes
byte integer: 1 byte

An existing random access file may be opened by using the OPEN statement.
The general format of OPEN (random access files) is:

OPEN FILE «file number®,«file name®,RANDOM «record length®

Normally «record length® is the value used in the CREATE statement. Having
opened the file you may write to and read from the file using the WRITE and
READ statements or the PRINT FILE and INPUT FILE
statements (ASCII only). The general format of the READ and WRITE
statements are in this case:

AmigaCOMAL 167

WRITE FILE «file nuin»,«rec nuni»[,«byte offset»J: «expr. list»
READ FILE «file nutn»,«rec nutn»[,«byte offset*]: «var. list*

PRINT FILE «file num»,«rec num»[,«byte offset*): «expr. list*
INPUT FILE «file num»,«rec num»t,«byte offset*]: «var. list*

«rec number* is an integer in the range 1 - 2147483647. Without the «byte
offset* specification the record with the number specified is read from the start,
otherwise it is read from the byte number given.

Although the expression list may be any list of expressions, each expression
separated by a comma, it is recommended that only variables are used in the list.
In this way it is easier to make sure that the same data types are read from the
record as was written to the record. AmigaCOMAL has no way to test for
correct types.

After use, the file must be closed just as a sequential fde.

168 AmigaCOMAL

Appendix C.

Expressions in AmigaCOMAL.

AmigaCOMAL accepts constants, variables and fimction names in an expression.
Expressions are divided into two categories: numeric expressions and string
expressions.

C.1 Numeric Expressions

A numeric expression is an expression whose value is a number. The expression
may be built by integer or floating point constants, variables and functions
separated by the numerical operators. These operators are divided mto two
categories;

Algebraic Operators:

A power
* multiplication
/ division
MOD modulo
OIV integer division
♦ addition
- subtraction and monadic minus
BITAND binary AND
BITOR binary OR
BITXOR binary XOR (exclusive or)

Logical Operators:

< less than
<= less than or equal
= equal
>= greater than or equal
> greater than
<> unequal
NOT negation
AND logical AND
OR logical OR
IN substring in string

AmigaCOMAL 169

The operators are listed in the order of their priority. The priority may be
changed by using parentheses as known from basic calculus.

The value of a purely logical expression is either 1 representing the logical value
TRUE or 0 representing the logical value FALSE. An exception is the operator
IN. For this operator true value is a positive integer representing the number of
the first character of the first occurrence of the substring.

Numerical constants may be either decimal, hexadecimal or binary constants.
Hexadecimal and binary constants are always integers. Hexadecimal constants
are preceded by a dollar sign ($) and binary by a percent sign (%).

Examples: The following expressions are valid numerical expressions in
AmigaCOMAL:

12
3*4
24/(4-2)*2^3
pi >8
2*(“e" IN ••Len")

a simple decimal integer constant (12)
algebraic expression (12)
algebraic expression (96)
logical expression (0)
mixed numerical and logical (4)

C.2 String Expressions

A string expression is an expression whose value is a string. The expressions are
built by constants, variables and functions separated by the string expression
operators. These operators are:

(;) string setector
• multiplication
+ addition

The operators are listed in the order of their priority.

The operator (:) is a rather special operator (purists will not call it an operator
at all). It is a monadic operator to be placed after the operand (in contradiction
to the operators NOT and monadic minus that are placed in front of the
operator). The multiplication operator is asymmetric since the left operand must
be a numerical expression and the right operand a string expression.

170 AmigaCOMAL

Examples: The following expressions are valid string expressions in Amiga-
COMAL:

"Borge R."+" Christensen" Borge R. Christensen
10*"-" ..—

"AmigaCOMAL“(6:10) COMAL

5*"AinigaC0MAL"(6;8)+"AL" COMCOMCOMCOMCOMAL

f i lenaine$="test"
filenaine$+".lst" test. 1st
f i tenanie$(2:3) es

AmigaCOMAL 171

172 AmigaCOMAL

Appendix D.

Screen and screen control codes.

D.1 The Screen

The AinigaCOMAL windows are built on the following structure:

RECORD io_structa
FIELD screen#
FIELD screentype%, screendepthX, screenwidth%, screenheight%
FIELD window#
FIELD windowdepthX, charnoX, linenoX
FIELD gzzxoffX, gzzyoffX
FIELD windowwidthX, windowheightX
FIELD fontid#, fontheightX, fontwidthX, fontbaseX
FIELD virtual#
FIELD cursorl, softstyle!
FIELD menuhd#
FIELD menubytes#

ENDRECORD io structS

The following briefly describes the content of io_structa. To understand the
description you have to be familiar with the Amiga system structure (especially
the Intuition structures).

screen#
Pointer to the Intuition screen structure. This pointer is pointing to the
correct structure even if the window uses the Workbench screen.

screentype%
The value is either $0001 or $000F corresponding to Workbench screen or a custom
screen.

screenwidth%
The width of the screen (in pixels).

AmigaCOMAL 173

screenheight%
The height of the screen (in pixels),

window#
Pointer to an Intuition window structure.

windowdepth%
Number of bit planes in the window.

charno%
The width of the window (in characters).

lineno%
The height of the window (in lines).

gzzxoff%
The x-coordinate of the upper left corner of the visible part of the window.

gzzyoff%
The y-coordinate of the upper left corner of the visible part of the window.

windowwidth%
The width of the window (in pixels).

screenheight%
The height of the window (in pixels).

fontid#
Identification of the font used in the window.

fontheight%
Height of the characters in the font (in pixels).

f ont width %
Width of the characters in the font (in pixels).

fontbase%
Base line of the font.

virtual#
Address of a structure for the virtual window containing the content of the
window in normal characters. The structure looks like:

RECORD virta
FIELD lineoffsetX // line offset of cursor
FIELD charoffsetX // char offset in line
FIELD content!(charnoX,IinenoX)

ENDRECORD virta

174 AmigaCOMAL

cursor!
Bit 0 = 1 if cursor is on.

softstylel
Soft style of text (italic, bold, underline).

menuhd#
Pointer to an intuition menu structure, it is possible to create other menus. To
do this allocate memory for the new menu and deallocate the memory for this one.

menubytesl
Nunber of bytes in the menu structure.

AmigaCOMAL 175

D.2 Screen Control Codes / CHR$(x) Results

ctrldec. hex. symbol description

00 00 NUL
A 01 01 SON Delete to end of line
B 02 02 STX Delete to end of screen
C 03 03 ETX Cursor on
D 04 04 EOT Cursor off
E 05 05 ENQ
F 06 06 ACK
G 07 07 BEL Flash screen
K 08 08 BS Destructive back space
I 09 09 NT Right tab
J 10 OA LF Line feed
K 11 OB VT Left tab
L 12 OC FF Clear screen and move cursor home
M 13 00 CR Carriage return
N 14 OE SO Delete line and scroll up
0 15 OF SI Insert line and scroll down
P 16 10 OLE Inverse on/off
Q 17 11 0C1 Extra half bright
R 18 12 DC2 Underline on/off
S 19 13 DC3 Italic on/off
T 20 14 DC4 Bold on/off
U 21 15 NAK Move cursor to start of line
V 22 16 SYN Move cursor to last character of 1
U 23 17 ETB Move cursor to top line
X 24 18 CAN Move cursor to last line
Y 25 19 EM Delete character
Z 26 2A SUB

27 2B ESC
28 2C FS Move cursor one character right
29 20 GS Move cursor one character left
30 2E RS Move cursor one line up
31 2F US Move cursor one line down

Pen Color

Choose one of 32 colors by printing a chr$(x) where x is a value between 128-
159 (hex $80-$9f). Example:

PRINT chr${$80+3) // sets color to 3

Print a chr$(17) before and after the color code to shift to the next 32 colors in
Extra Half Bright mode (6 bit planes with 64 colors, some early Amiga models
may not have this mode). Example:

PRINT chr$(17),chr$(130),chr$(17) // color to 35

176 AmigaCOMAL

Background Color

Print a chr$(16) before and after the color code to set the background to the
specified color.

Example:
PRINT chr$(16),chr$(130),chr$(16) // background 3

NOTE; You must have installed AmigaCOMAL with enough bit planes for the
screen to see all the colors. It takes 6 bit planes to display all 64 colors in Extra
Half Bright mode.

AmigaCOMAL 177

178 AmigaCOMAL

Appendix E.

Error numbers and error texts.

E.1 Syntax Errors

Syntax errors detected by AmigaCOMAL occur during the examination of a line
(a command or a program line). The error is printed in a small Error Window
and the cursor is placed where AmigaCOMAL detected the error.

0001: Illegal character

0002: Illegal line number
A line number must be in the rage 1-9999.

0003: string too long
The maximum length of a text constant is 127.

0004: Variable expected

0005; Constant expected

0006: Number expected

0007: String expected

0008: (expected

0009:) expected

0010:) without (

0011: Hissing operand or illegal type
An operator is found but the right operand is missing or is of
wrong type. A reserved word used as a name may cause this error.

0012: Illegal operator
A special character is found at the place of an operator.
(example: PRINT 2#)

AmigaCOMAL 179

0013: Illegal type
A string expression is used instead of a number or the reverse.

0014: " expected

0015: := expected

0016: , expected

0017: ; expected

0018: : expected

0019: Reserved word
A reserved word (like AT, TO, FOR etc.) is used as a name.

0020: TO expected

0021: 00 expected

0022: OF expected

0023: THEN expected

0024: WHEN expected

0025: WHEN illegal in IF..EXIT

0026: FILE expected

0027: Type of (M>EN expected
You have to specify how the file is to be used by appending the
clauses READ, WRITE, RANDOM, APPEND or READWRITE.

0028: FROM expected

0029: INPUT/OUTPUT expected

0030: Illegal in single IF
Only simple (single line) statements may be used in the single line
IF statement.

0032: Illegal in single loops
Only simple (single line) statements may be used in the single line
loops.

0044: Not program statement
Commands like LIST, SCAN, RUN may not be used in program lines.

0045: Not direct command
Statements like REPEAT, PROC, DATA may not be used as direct
commands.

0055: TIMES expected

180 AmigaCOMAL

E.2 Pre-pass Errors

These errors are detected during the pre-pass scan of the program (SCAN or
RUN commands).

0031: Illegal in IF-structure
Statements like DATA, PROC and FUNC may not be used inside an IF
structure (and all other structured statements).

0033: Illegal in loops
Statements like DATA, PROC and FUNC may not be used inside a loop
structure (and all other structured statements).

0034: UHEN-statement expected
In a CASE structure there must be at least one WHEN part.

0035: Illegal in WHEN-part
Statements like DATA, PROC and FUNC may not be used inside a CASE
structure (and all other structured statements).

0036: Illegal in RECORD-structure
The only legal statements are comments, FIELD, RECORD, ENDRECORD
and POINTER.

0037: Illegal in TRAP

0038: Illegal in main program
The statements RETURN, IMPORT etc. are illegal in the main program.

0039: Illegal in PROCedure

0040: Illegal in string FUNC

0041: Illegal in real FUNC

0042: Illegal in open PROC/FUNC
The statement IMPORT is illegal in an open PROCedure or FUNCtion.

0046: Label not found
The label is not found within the scope of a GOTO or RESTORE
statement.

0047: Two labels
Two (or more) labels with the same name are found within the scope
of a GOTO or RESTORE statement.

0048: ENDFOR expected

AmigaCOMAL 181

0049: Wrong name

If a name is specified in ENDFOR, ENOPROC, ENDFUNC and ENDRECORO it
must be the same as in the corresponding FOR, PROC, FUNC or RECORD.

0050; UNTIL expected

0051: ENDWHILE expected

0052: ENOLOOP expected

0053; EXIT only in loops

0054: Error in program structure

0056: ENDIF expected

0057; ENOCASE expected

0058: ENDPROC expected

0059: ENDFUNC expected

0060: HANDLER expected

0061; ENOTRAP expected

0082: ENDRECORD expected

E.3 Execution Errors

These errors are found during the execution of a command.

0062: No WHEN in CASE
The calculated CASE value is not fund in one of the WHEN statements
and there is no OTHERWISE part.

0063: Out of memory
This error is most probably caused by a DIM statement making a large
array.

0064: Line number not found

0065: No program

0066: Not SAVE-file
You have tried to load a file which is not a SAVE file (stored by a
SAVE command) or which is stored by an earlier version of AmigaCOHAL.
If it is a SAVE file from an earlier version of AmigaCOHAL, load the

182 AmigaCOMAL

program into the earlier version, LIST the program and ENTER it into the new
version.

0067:

0068:

0069:

0070:

0071:

0073:

0075:

0076:

0077:

0078:

0079:

0080:

0081:

0083:

0084:

0085:

0099:

Renumber error
You are trying to renumber outside the line number range 1-9999

CONtinue not allowed
A program execution can only be continued if it was stopped by a
STOP statement or by break («Amiga»+«S»). If the program execution
stopped because of an error or if was changed since it was stopped
it cannot be CONtinued.

IMPORT not allowed
IMPORT is not allowed in EXTERNAL and package procedures or
functions.

Inside package - only LIST, MAIN and DISCARD allowed
The program has stopped inside a package. Use the MAIN command to
return to the main program.

Not inside HANDLER part

STEP not allowed
STEP is another form of CONtinue. See error number 68.

Wrong no. of parameters

Wrong type of parameter

Unknown identifier

Type error

Double defined variable

Next line not a DATA
You have RESTOREd to a line which is not followed by a DATA
statement.

Illegal device or file name
AmigaDOS allows almost any character in a file name so the error is
not likely to occur.

Data address not defined
No data area is allocated to a POINTER variable.

Unknown record field

Address error
A POINTER variable must point to an even address (except a byte
pointer).

System error
You are lucky you got an error message at all!

AmigaCOMAL 183

0100 Division by zero

0101: Overflow

0102; Argument error

0103: Integer overflow

0104: Hissing digit

0105: Conversion error
An error has occurred during the conversion of a binary nunber to
ASCII. This error is most probably caused by a bug in AmigaCOHAL!

0106: Stack overflow
Recursive procedure calls have reached a very deep level

0107; Out of range
This is most probably because you have used an array index outside
the range of this dimension.

0108: String too long
The maximum length of a string is 32767.

0109: USING-error
The format string is incorrect.

0110; Undefined function value
The program has reached ENDFUNC in a function. A RETURN statement
must be executed prior to this.

0111: Out of DATA
There is no more DATA to READ. The function EOO may be used to test
if there is more DATA to READ.

0112: Error in external call

0113: No more SCO's
Too many open streams. Use the Install program to increase the
maximum number of open streams.

0114: Stream already open

0115: Stream not open

0116: Illegal read/write mode
You are trying to open a stream (file) in WRITE mode which can only
be opened in READ mode (for instance "kb:") or the reverse (for
instance "Ip:").

0117: End of record
You have reached the end of a record in a file.

0118: EXPORTed identifier undefined
A name in the EXPORT list of a package is unknown.

184 AmigaCOMAL

0119: EXPORTed PROC/FUNC not CLOSED
Only CLOSED functions or procedures may be EXPORTed from a package.

0199: Package initialization error
An error has occurred during the initialization of a package. It is
up to the package programmer to inform you of the precise reason.

E.4 AmigaDOS Errors

If an error is returned to AmigaCOMAL by an AmigaDOS routine the number
1000 is added to the AmigaDOS error code. Consult your Amiga manual for
details.

1103: Insufficient free store

1202: Object in use

1203: Object already exists

1205: Object not found

1212: Object not of required type

1214: Disk write-protected

1215: Rename across devices attempted

1216: Directory not empty

1218: Device not mounted

1219: Seek error

1221: Disk full

1222: File is protected from deletion

1223: File is protected from writing

1225: Not a DOS disk

1226: No disk in drive

1232: No more entries in directory

AmigaCOMAL 185

TUTORIAL

REFERENCE

Compiler Module
UniComal

Developers Description

AmigaCOMAL

Copyright Notice

This software module and manual are copyrighted 1991 by UniComal A/S and
UniComal Documentation Center. All rights are reserved worldwide. No part of
this publication may be reproduced, transmitted, transcribed, stored in any
retrieval system or translated into any language by any means without the
express written permission of:

UniComal A/S
Tvaermarksvej 19
DK-2860 Soborg

DENMARK

Single CPU License

The price paid for one AmigaCOMAL, including a manual and a diskette,
licenses you to use the product on one CPU when and only when you have
signed and returned the License Agreement printed on the last page of the
UniComal Reference Manual.

Disclaimer

UniComal A/S has made every effort to supply a dependable product of the
highest possible quality. However, UniComal A/S makes no warranties as to the
contents of this manual and the system and supplementary diskettes and specifi¬
cally disclaims any implied warranties of merchantability or fitness for any partic¬
ular purpose. UniComal A/S further reserves the right to make changes to the
specifications of the ??? Module and the UniComal system and the contents of
the manuals without obligation to notify any person or organization of such
changes. Nevertheless, it is the intention of UniComal A/S to provide aU
registered users with a periodic newsletter as required providing update informa¬
tion at no charge for a period of one year from the purchase date.

Compiler Module - version 2.10 -
Copyright (C) 1990
UniComal A/S and UniComal Documentation Center

IBM is a registered trademark of the IBM Corporation.
UniComal is a registered trademark of UniComal A/S.

This document was prepared using WordPerfect ver. 5.1
and a HP LaserJet Series II.

Table of Contents

1. Making Stand Alone AmigaCOMAL Programs. 5
1.1 Introduction. 5
1.2 The AmigaCOMAL compiler ComalComp. 5
1.3 Combined compilation and linking using the Compile. 8
1.4 Compiling from WorkBench. 9

2. Package Development . 11
2.1 Introduction. 11
2.2 An example. 12

3. Internal format of data in AmigaCOMAL. . 17
3.1 Number format in AmigaCOMAL. 17
3.2 Registers and use of storage. 18
3.3 Transferring of parameters. 18
3.4 Reference parameters. 20
3.5 Retmning values from functions. 22

4. The signal routine. 25

5. The Comal structure and call of internal routines in AmigaCOMAL. . . 29

6. Cali of procedures and functions written in AmigaCOMAL. . 31

7. Programming packages in C. 35

8. Redirection of internal data streams in AmigaCOMAL. . 41
8.1 Receiving screen output... 41
8.2 Supplying keyboard input. 42
8.3 Set and return cursor position. 44
8.4 Supplying error texts. 44
8.5 Receiving error output. 46

9. Creating new standard lO devices. 49

10. Signals and exceptions. 53

AmigaCOMAL-Compiler 1

11. Communicatioa between packages. 55

Appendix A.. 57
Variables in AmigaCOMAL . 57

Appendix B. 61
Procedure head. 61

Appendix C. 63
Data structures in AmigaCOMAL.. 63
C.l The package structure. 63
C.2 Comal structure. 65
C.3 lO structure. 66
C.4 De^dce structure. 67
C. 5 Exception structure. 68

Appendix D. 69
Calling AmigaCOMAL routines . 69
D. l Calling AmigaCOMAL routines from assembler. 69
D. 2 Call of AmigaCOMAL routines from C. 73

Appendix E. 75
Include-files. 75
E. l The assembler include file Package.!. 75
E.2 The C include file comal.h. 78

Appendix F. 83
References. 83

2 Compiler-AmigaCOMAL

AmigaCOMAL:The Developers System

Produced by

Svend Daugaard Pedersen

Copyright 1989-1991

AmigaCOMAL:Thc Developers System Manual

Written by
Svend Daugaard Pedersen

Len Lindsay

AmigaCOMAJL-Compiler 3

1. Making Stand Alone AmigaCOMAL
Programs.

1.1 Introduction.

Running an AmigaCOMAL program is normally very easy. Having completed
the development of a program the program is saved on disk using the SAVE
command. After that the program can be started just by clicking the mouse on
the icon that is automatically created when a program is saved by the SAVE
command. If the last statement of the program is BYE you will automatically
return to the WorkBench at the end of the program execution.

This simple way to start the program works very well for small programs but for
larger programs that use a lot of packages it is necessary to have all the
packages that the program uses. This makes it a little bit complicated to copy
and distribute such programs since you may not know which packages the
program uses.

This problem can be solved by using the AmigaCOMAL compiler that makes
one stand alone program out of an AmigaCOMAL program and aU the
packages it uses.

1.2 The AmigaCOMAL compiler ComalComp.

The AmigaCOMAL compiler ComalComp takes as its input an AmigaCOMAL
SAVE file (ie, name.SAV). It links this program together with aU the packages
used by the program and the installation file (if specified) and makes one object
code file which is the output of the compiler.

AmigaCOMAL-Compiler 5

This may be illustrated in the following way:

MyProgram.sav)
Packi.pck) ComalCofnp
Pack2.pck) > MyProgram.obj

Runtime.preferences)

To make an executable file out of this object code file you have to link it
together with the file Runtime.obj. This is done by using the linker BLink (or
another linker).

This may be illustrated in the following way:

MyProgram.obj) BLink
Runtime.obj) -> MyProgram

ComalComp as well as BLink can only be started from the CLI. The compiler is
started using the following command:

ComalComp [program name] [options]

The brackets are omitted.

Example: To compile the program MyProgram.sav, you may use the command:

ComalComp MyProgram

or just:

ComalComp

If the last form is used, ComalComp will ask for the name of the program to be
compiled.

Note that you should not use the file type .sav. This is set by ComalComp.

It is possible to give supplementary information to ComalComp by usmg
compiler options. Such options consists of a hyphen (-) followed by a letter and

6 Compiler-AmigaCOMAL

in some cases additional text. Different options are separated by a space. The
possible options are:

-p programdir

programdir is the directory (or volume) containing the SAVE file to be
compiled. If the -p option is omitted, ComalComp searches for the
program in the current directory and if not found there, next in :Programs.

-o outputdir

outputdir is the directory (or volume) where ComalComp places the object
code file. If the -o option is omitted the object code will be placed in the
current directory.

-u usedir

usedir is the directory (or volume) where ComalComp searches for a
package if there is no FROM part in the corresponding USE statement. If
the -u option is omitted or if there is no FROM part, the package is
searched for in the current directory and if not found there, next in
:Packages.

-i [file name]

If the -i option is specified, user defined installation parameters are read.
Without the file name, the file Runtime.preferences is searched for in the
current directory.

Example: The command:

ComalComp MyProgram -o ram: -1

compiles the program MyProgram in the current directory (or in
:Programs). Packages are searched for in the directory specified in a
FROM part if this is present, or otherwise in the current directory or in
:Packages. The installation file Rimtime.preferences in the current
directory will be read. The output file is placed in RAM:.

AmigaCOMAL-Compiler 7

Example: The command:

ComalCoinp Demo -u df2:Packa9es -i DEVS:AmigaCOMAL.preferences

compiles the program Demo.sav in the current directory (or in :Programs).
Packages are searched for in the directory specified in a FROM part if this
is present or otherwise in df2:Packages. The installation parameters are read
from the file AmigaCOMAL.preferences in the DEVS: directory. The output
file is placed in the current directory.

The linker is started by a command such as:

Blink Runtime.obj MyProgram.obj to MyProgram

For further information see BLink.doc on the distribution disk.

1.3 Combined compilation and linking using the
Compile.

The program Compile executes both compiling and linking. The command
format is the same as that of ComalComp.

The program will first start ComalComp and then BLink. These two programs
must be in the current directory. Compiler options are transferred to
ComalComp without changes. The -o option should be avoided since BLink will
not be able to find the object code file.

Neither ComalComp nor BLink are able to handle spaces in file names or in
directory names.

Example: The command:

Compile Demo -p df2:Progranis -u df2:Packages

works like the two commands:

ComalComp Demo *p df2:Programs -u df2:Packages
BLink Runtime.obj Demo.obj to Demo

8 Compiler-AmigaCOMAL

The program Compile makes an icon for the compiled program.

1.4 Compiling from WorkBench.

The program Compile may be started from WorkBench. First click once on the
icon for Compile, press < space > and then click twice on the icon for the
AmigaCOMAL SAVE file. The two icons need not be in the same drawer.

Compiler options may be placed in the TOOLTYPES array of the Compiler
icon. They are written precisely as in the CLI command lines.

AmigaCOMAL-Compiler 9

10 Compiler-AmigaCOMAL

2. Package Development

2.1 Introduction.

AmigaCOMAL is a modern programming language allowing modular
programming techniques. In developing larger programs you may divide the
program into smaller parts and store these parts as packages.

There are great advantages in such a division. The program is much easier to
survey because unimportant programming details are hidden in the packages.
Further more, by making the right division, the program will be easier to test
since each part may be tested separately.

An additional advantage of using packages to divide the program is that you may
later rewrite time critical parts of the program in machine code by using an
assembler or a C compiler. This may be done without changing the rest of the
program.

Procedures and functions in machine coded packages normally execute faster
than procedures and functions written in AmigaCOMAL. However,
AmigaCOMAL is very fast by itself so it is not very often you need to rewrite
AmigaCOMAL packages into machine code for that reason. The primary reason
to write machine coded packages is that in machine code -and particularly in
assembler - it is possible to make low level programming in a way which it is not
possible in a high level language like AmigaCOMAL.

This part of the development manual describes the development of machine
coded AmigaCOMAL packages. To understand the description, it is necessary to
have a basic knowledge of the 68000 assembler and the C language. To
understand some of the examples it is also necessary to have some knowledge of
the Amiga operating system.

AmigaCOMAL-Compiler 11

2.2 An example.

To get an idea of how a machine coded package is made we will begin with a
small example.

We will try to rewrite the following Comal package in machine code.

0010 // Conial package
0020
0030 EXPORT event), odd()
0040
0050 FUNC eventi#) CLOSED
0060 BITAND 1
0070 RETURM i# BITXOR 1
0080 ENDFUNC even
0090
0100 FUNC oddt)#} CLOSED
0110 RETURN i# BITAND 1
0120 ENDFUNC odd

The package contains two functions. The function even returns the value true (1)
if the argument i# is even and false (0) if i# is uneven. For the function odd it
is opposite.

Naturally the machine coded package has to contain the code for the two
functions even and odd. They look like:

Even: MOVE.L -(A5),D3 Get argunient
MOVE.L -(A5),D2 .. to D2
AND.L #1,D2 Return bit 0
EOR.L
RTS

#1,D2 .. inverted

odd: MOVE.L -<A5),D3 Get argument
MOVE.L -(A5),D2 .. to 02
AND.L
RTS

#1,D2 Return bit 0

In addition to this code, it is necessary to tell AmigaCOMAL where the code is,
what their names are, which parameters they have etc. This information is
collected in a so called "procedure head" (we use the word "procedure" even in
this case where it is in fact a function). The procedure itself we will call the
“procedure body”. The procedure head looks like:

12 Compiler-AmigaCOMAL

Event ink: OC.L 0
DC.L EvenName
DC.W bytecode
DC.U 1
DC.W longval
DC.L Even

EvenName: DC.B 'EVEN',0

OddLink: DC.L Eventink
DC.L OddName
DC.U bytecode
DC.U 1
DC.U longval
DC.L Odd

OddName: DC.B 'OOD',0

LinkTop: DC.L OddLink

Last procedure
Address of name
Function of type byte
One argument
Argument type = long value
Routine address

; Function of type byte
; One argument
; Argument type - long value
; Routine address

Note, that the two procedure heads are linked together by the first long word in
each procedure head. The start of the chain of procedure heads is found in the
address LinkTop. This address has to be transferred to AmigaCOMAL. This is
done in the initialization routine.

This initialization routine which is called immediately after the package is read
from disk, must be in the start of the package. In the simple package we are
going to make it looks like:

; Initialization routine
MOVE.L DO,AO
MOVE.L# LinkTop,PckTopId(AO)
CLR.W DO
RTS

Immediately before the call to the initialization routine AmigaCOMAL places
the address of a special package structiu-e in D0.L. This structoe contains a
number of information about the package. One is the address of the first link in
the chain of procedure heads. It is the task of the initialization routine to place
this address in the right place in the package structme. Before the return from
the initialization routine the status code must be placed in DO.W. In this case
there is no error and we return a zero in DO.W.

; Address of package structure
; Set address of chain
; Everything ok!

AmigaCOMAL-Compiler 13

The complete package looks like;

; EvenOdd - version 20.12.88

include 'ratnipackage.i' ; Standard definitions

; Initialization section
MOVE.L DO, AO ; Address ofpackage str
MOVE.L #LinkT op,PckTopId(AO) ; Set top link address
CLR.U
RTS

DO ; No error

; FUNCtion even

t

Even: HOVE.L -(A5),D3 ; Get arguments
MOVE.L -(A5),D2
AND.L #1,D2
EOR.L
RTS

#1,D2

; FUNCtion odd

Odd: MOVE.L -(A5),D3 ;Getargunents
MOVE.L -<A5),D2
AND.L
RTS

#1,02 ;Return bit zero

SECTION EvenOddData.DATA

EvenLink: DC.L 0 t Last name
DC.L EvenName
DC.U bytecode 0 Byte integer fct
DC.U 1 ; One argument
DC.U longval 0 Argument type = long
DC.L Even 0 Routine address

EvenName: DC.B 'EVEN',0

OddLink: DC.L EvenLink
DC.L OddName
DC.U bytecode 0 Byte integer fct
DC.U 1 0 One argiment
DC.U longval 0 Argument type = long
DC.L Odd 0 Routine address OddName:
DC.B 'OOD',0

LinkTop: DC.L OddL i nk

In the example we have used some symbols (bytecode, longval etc.). They are,
along with other symbols, defined in an include file Package.i which is found on
t he distribution disk.

14 Compiler-AmigaCOMAL

The complete package may be assembled and linked by using the execute file
genpack. Then it may be used like any other package. Seen from a users point of
view there is no difference between a machine coded package and a package
written in AmigaCOMAL.

AmigaCOMAL-Compiler 15

16 Compiler-AmigaCOMAL

3. Internal format of data in
AmigaCOMAL.

In the last section we did not discuss how numbers are represented in
AmigaCOMAL, how parameters are transferred by a call to a package routine,
how values are retimned, etc. We will do this in the following sections.

3.1 Number format in AmigaCOMAL.

In AmigaCOMAL a number always occupies two 32 bits registers. The primary
register pair is D2,D3 which we will call NUMREG2, and the secondary is
D0,D1 which is called NUMREGl. The number format is:

03.W <> 0 : the number is represented as floating point
02.L is a 32 bit mantissa
03.W is the exponent + $8000

03.U = 0 : the number is an integer (long, short or byte) contained in
02.L (possibly sign extended)

For a number in floating point format the most significant bit of the mantissa
(which is always 1) is used as a sign bit.

Example: The number 3 may be represented as:

02.(=$40000000 , 03.U=$8002 (floating point format)

or

02.L=$00000003 , 03.W=$0000 (integer format)

and the number -3.14159265 as:

02.L=$C90F0AA2 , 03.W=$8002

Natmally the last number can only be represented as floating point.

It is seen that a 48 bits floating point format is used. The high part of register
D3 is unused. It is reserved for a later shift to IEEE 64 bit floating point format.

AmigaCOMAL-Compiler 17

3.2 Registers and use of storage.

With every call to a package routine the register A6 points to the top and
register A5 points to the bottom of the free RAM. All RAM between these two
addresses may be used freely as temporary storage. In addition, the address
register A5 serves as a pointer to the parameter stack (see next section).

All registers may be used by a package routine, but if the routine returns by
using the return address on top of the CPU stack (for instance by using a RTS
instruction) the content of the stack pointer (register AT) must be reestablished.

Example: A code like the following may not be used:

MOVE.L (A7)'<’,RetAcldr ; Save return address

: (one or another code changing A7)

HOVE.L RetAddr,AO ; Get return address
JMP (AO) ; and return to COMAL

If it is necessary to return to AmigaCOMAL from a place where the content
of register AT is unknown, you should use the special return routine (see
appendix D and the example in section 3.4).

3.3 Transferring of parameters.

Before a call to a function or a procedure, AmigaCOMAL moves the
parameters onto the parameter stack (AS). The order is that of the formal
parameters in the procedure head. Consequently the last parameter is on top of
the stack and is the first one to take down again.

The format of the parameter depends on the type.

Value parameters.

18 Compiler-AmigaCOMAL

When a number appears as a value parameter, the two long words that a
number always occupy, are placed on the stack. The number may be taken down
from the stack by a code fraction like:

MOVE.L -(AS),03 ; Get exponent
MOVE.L -(AS),02 ; .. and mantissa

We have already seen an example of this in section 2.2.

For strings it is a little more difficult. AmigaCOMAL calculates the value of the
string expression \^ch is the actual parameter and the result is placed in the
work space (the RAM between A5 and A6). The address of the start of the text
and the length of the text are then pushed onto the stack.

Example: Let us say we have a procedure that in AmigaCOMAL would be
defined as:

PROC alfa(n#,texts)

If this procedure is called from the line:

aIfa(2+3,"Hi"+" there"+"I")

the stack will look like:

0(A5) -—>
1
1 9 1

1 length of text expression
"4(A5) --->

1
1 -18(A5) 1

1 address of start of text
-8(A5) --->

1
1 0 1

1 fill byte
-9(A5) —>

1 1
1
1 1 'e'

1
1

1 1 'r' 1 1
i 'e' 1
1 1 'h' 1 1
1 1 't' 1 1
1 $ t 1
1 1 'i' 1

-18(A5) -->

1 1 'H' 1
1

1 0 ! integer is denoted by a zero
-22(A5) —>

! 5 ! value of integer parameter
-26(A5) --> +- • +

Thus you can get the parameters from the stack in the following way:

AmigaCOMAL-Compiler 19

MOVE.L -(A5),D1 ; Get length of text to 01.W

MOVE.L -(A5),A2 ; .. and address to A2
MOVE.L A2.A5 ; Hove stack beyond text value
MOVE.L -(AS),03
MOVE.L -(AS),02 ; Get the integer value

Note that although the length of the text is contained in a long word, it is only
the least significant 16 bits that contain the length.

Records and arrays cannot appear as value parameters in a package procedure.
Use reference parameters instead.

3.4 Reference parameters.

Reference parameters always occupy three long words on the parameter stack. If
these long words are taken down from the stack with the following code fraction:

MOVE.L -(A5),D3 ; Get type
MOVE.L -(AS),A3 ; .. address of structure information
MOVE.L -(A5),A2 ; .. and address of data

the register D3 will contain (as seen from the comment) the type of the variable,
register A3 will contain the address of the structure information of this variable
and A2 will contain the address of the content of this variable (the data field).
The structure information address is only used if the variable is an array or a
record (but the word is always present on the stack!).

The real type is found m D3.B. The bits 8-15 in D3 contain the so called type
attributes. The most significant 16 bits in D3 are not used.

The possible type values are listed in appendix A along with a precise
description of the structure information and the data field of a variable.

Example: Let us see how this function is written in assembler:

FUNC strfflax(REF t$)

The function should return the maximal length of a string variable.

; Maximal string length package - version 23.12.88

include 'ramipackage.i'

20 Compiler-AmigaCOMAL

; Initialization section
MOVE.L DO,AO ; Package structure
MOVE.L #LinkTop,PckTopId(AO) ; Address of top link
MOVE.L PckCmlStr(AO),ComalStr ; Comal structure
CLR.W DO ; No error
RTS

; String max function
MaxLen: MOVE.W -2(A5),D1 Get type

CNP.B #strg,01 String ?
BNE.S ARGERR No -> error
MOVE.L -12(A5),A2 Get address of string var
BTST #POINTERBIT,D1 Pointer 7
BEQ.S MaxLenI No -> branch
MOVE.L <A2).A2 Get data address

MaxLenI: MOVE.W (A2),D2 Get maximal string length
EXT.L D2 Extend to long
CLR.L D3 Result is an integer
RTS Return

; Error
ARGERR: MOVED #76,DO Type error

MOVE.L ComalStr,AO ; Get Comal structure
JMP CMLRET(AO) Return error

SECTION MaxLenData.DATA

MaxLenLink: DC.L 0
DC.L MaxLenName
DC.U shortcode ; Short integer function
DC.W 1 One argument
DC.U strgref ; REF - text
DC.L MaxLen ; Routine address

MaxLenName: DC.B 'MAXLEN',0

LinkTop: DC.L MaxLenLink

SECTION MaxLenBlock.BSS

$

; Internal workspace

f

ComalStr: DS.L 1 ; Pointer to Comal structure

END

The function first gets the type from the stack and tests if it is a string. Then
the address of the data field is taken down and it is examined to see if it is a
pointer variable. If this is the case, the data field contains the address of the
content and not the content itself. The maximal length is read into D2 and this
value is returned in NUMREG2.

AmigaCOMAL-Compiler 21

If the type is not correct an error code is placed in DO and the function returns
to AmigaCOMAL through a special jump address. More about that in section 5.

3.5 Returning values from functions.

Functions return values in the register pair D2,D3. In sections 2.2 and 3.1. we
have seen examples of returning numbers. In this case the register pair is simply
treated as a number renter (NUMREG2) with the format described in section
3.1.

If it is a string function the length of the returned text is placed m D3.W and the
address in D2.L. The text itself may be anywhere m RAM but normally it is
placed in the work space (pointed at by A5).

Example: The function bin$ with the AmigaCOMAL format

FUNC bin$(n#)

should return a string representing the value of the argument n# written as a
binary number (preceded by a %). A package with this single function is made
in this way:

; Bin package - version 23.12.88

include 'ram:package.i'

; Initialization section
MOVE.L DO,AO ; Package structure
MOVE.L #LinkTop,PckTopId(AO) ; Address of top link
CLR.U DO ; No error
RTS

; Return number as binary string
Bin: MOVE.L A5,D2 $ Address of string to D2

MOVE.B #'%',(A5)+
MOVEQ #30,D4 i Digit counter
MOVE.L -9<A5),01 t Get number
BRA.S Bin2 $.. and branch into loop

Bini: ADD.L 01,D1
Bin2: DBMI D4,Bin1 t Loop until 1. non zero 1

AOOO.W #1,D4
CLR.B D5

Bin3: MOVE.B #'0',D0
ADD.L D1,D1 t Digit value into carry

22 Compiler-AmigaCOMAL

ADDX.B D5,D0
MOVE.B D0,(A5)+ f Set character of string
OBRA D4,BIn3

BinEnd: MOVE.L A5,D3
SUB.L D2,D3 $ Calculate length
RTS i .. and return

SECTION BinData.DATA

BinLink: DC.L 0
DC.L BinName
DC.W strgcode String function
DC.U 1 One argument
DC.W longval Arg type = long int value
DC.L Bin Routine address

BinName: DC.B 'BINS',0

LinkTop: DC.L BinLink

END

The string is built up in the work space, the start of which is found in A5. For
that reason the address of the final string is moved to D2 at the start of the
function. Having made the whole string, the length is calculated and this length
is placed in D3.

AmigaCOMAL-Compiler 23

24 Compiler-AmigaCOMAL

4. The signal routine

Like Comal packages, machine coded packages may receive signals. To tell
AmigaCOMAL that a package wants signals sent, it has to put the address of
the signal routine into the package structure. This is normally done in the
initialization routine.

An initialization routine that sets this address may look like;

; Initialize routine
MOVE.L DO,AO ; Address of pck structure
MOVE.L #LinkTop,PckTopId(AO) ; Set address of chain
MOVE.L)llSignal,PckSignal(AO) ; .. and of signal routine
CLR.W DO ; Every thing ok!
RTS

Before a call to a signal routine AmigaCOMAL places the signal number in
DO.W. The signal routine may like any other package routine use all registers
and it may perform all necessary actions like closing libraries, release allocated
RAM, change the package structure etc.

Example: The foUowing package contains one single function:

FUNC translate$(t$)

By using the translator.Ubrary, it translates an English text into a special
phonetic script.

; Translator package - version 24.12.88

include 'ram;package, i'
include ': Include/Exec.i'

; Equates
ExecBase: EQU 4
_LVOTranslate: EQU -30

; Initialization section
MOVE.L DO, AO ;Package structure
MOVE.L #LinkT op,PckTopId(AO) ; Address of top link
MOVE.L #Signal,PckSignal(AO) ; Address of Signal
MOVE.L ExecBase,A6
CLR.L DO
LEA TransLibName,A1
JSR _LVOOpenLibra ry(A6) ; Open translator lib
MOVE.L 00,TransBase ; Store base address

AmigaCOMAL-Compiler 25

BNE.S InitOk ; Ok if not zero
MOVE.W #199,00 ; Initialization err
BRA.S InitRet
InitOk: CLR.W DO ; No error
InitRet: RTS

; Signal routine
Signal: CMP.W #2,00 ; DISCARD ?

BEQ.S CloseTrans ; Yes -> close translator lib
CMP.W #10,00 ; BYE ?
BEQ.S CloseTrans ; Yes->close translator lib

SignalRet: RTS

CloseTrans: MOVE.L ExecBase,A6
MOVE.L TransBase,00
BEQ.S SignalRet
MOVE.L D0,A1
JSR _LV0CloseLibrary(A6)
CLR.L TransBase

; Translator function
Translate: MOVE.L -(A5),D3

MOVE.L -(A5),D2
TST.W D3
BEQ.S TranslateRet
MOVE.L 02,AO
MOVE.L 03,00
MOVE.L A5,A1
MOVE.L #512,01
MOVE.L T ransBase,A6
JSR _LVOTranslate(A6)
MOVE.L A5,02
MOVE.L A5,D3
TST.B (A5)+
BNE.S IS
SUB.L AS,03
NOT.L 03

TranslateRet: RTS

SECTION TranslateData,DATA

TranslateLink: DC.L 0
DC.L TransName
DC.W strgcode
DC.U 1
OC.W strgval
DC.L Translate

TransName: DC.B 'TRANSLATES',0

LinkTop: DC.L TranslateLink

; Get lib base

; Close library

Get length ..
.. and address of string
Zero length ?
Yes -> return
Address of string to AO
.. and length to 00
Buffer address
.. and length

Translate
Addr. of translated string
Start calculating length IS:

Loop untiI end

03.L = length
Return

; String function
; One argument
; Text value
; Routine address

TransLibName: DC.B 'translator.library',0

26 Compiler-AmigaCOMAL

SECTION TranslateBlock.BSS

; Internal workspace

TransBase: DS.L 1 ; Translator base

END

In the initialization routine, the translator.Ubrary is opened. If it fails, the error
code 199 is returned. The signal routine tests for BYE and DISCARD signals.
If these signals are received the library is closed.

The translated text may be sent to the narrator.device to be pronounced.

It should be remarked that the Translator_Iibrary on the AmigaCOMAL system
disk is different from this package.

AmigaCOMAL-Compiler 27

28 Compiler-AmigaCOMAL

5. The Comal structure and call of
Internal routines in AmigaCOMAL.

The address of the comal structure which is a data area where AmigaCOMAL
stores important system information (see appendix C.2), is found in the package
structure. If you need this address you will normally get it and store it during the
initialization (see the example in section 3.4).

Just below the comal structure a jump table is found. This table makes it
possible to call useful routines inside AmigaCOMAL. We have already used this
jump table ta call a return routine (with status code in DO.W). In appendix D
you will find a complete list of all the routines to be called.

Example: The following package shows how the mathematical routines in
AmigaCOMAL are used. The single function in the package
calculates cotangents to an angle

; Math package - version 24.12.88

include 'rain:package.i'

; Initialization section
HOVE.L DO, AO Address of package structure
MOVE.L #LinkTop,PckTopId(AO) Address of top link
HOVE.L PckCmlStr(AO),ConialStr Comal structure
CLR.
RTS

UDO No error

; Return value of cot(x)=cos(x)/sin(x)

Cot: MOVE.L -(A5),03 t Get exponent
MOVE.L -<A5>,02 t .. and mantissa of x
MOVE.L D3,01 $ Move to NUMREG1
MOVE.L D2.D0
MOVE.L ComalStr,AO $ Address of Comal structure
JSR NUMSINCAO) t NUMREG2:=sin(NUHREG2)
EXG D0,D2 t NUHREGI <-> NUMREG2
EXG 01,D3
JSR NUMCOS(AO) $ NUMREG2:=cos(NUMREG2)
JMP NUHDIV(AO) 0 NUHREG2:=NUMREG2/NUMREG1

SECTION MathOata.DATA

CotLink: DC.L 0
DC.L CotName

AmigaCOMAL-Compiler 29

OC.W fItcode Float function

DC.U 1 One argument
DC.U fItval Argument type = float value
DC.L Cot Routine address

CotName: DC.B 'COT',0

LinkTop: DC.L CotLInk

SECTION MathBlock.BSS

; Internal workspace

i

ComalStr: DS.L 1 ; Pointer to Comal structure

The function does not test if cotangents is defined for the actual parameter. If
sin(x) is zero NUMDIV will automatically report an error (Division by zero). If
you want another message you have to test the value of sin(x). This can be done
by calling the COMAL routine TSTSGN.

Sometimes a package routine has tasks that must be terminated before it is left.
If an AmigaCOMAL routine does not return because of an error, you have to
use the signal routine clean up.

30 Compiler-AmigaCOMAL

6. Call of procedures and functions
written in AmigaCOMAL.

Among the routines to be called through the jump table there is one by name
CallUser. This routine allow you to call closed functions and procedures written
in AmigaCOMAL.

Before the call to this routine the actual parameters of the procedure/function
to be called are placed on the parameter stack, the address of the field in the
procedure head containing the number of parameters is placed in D2.L and the
type in D3. The registers A5 and A6 must point to the start and the end of a
free work space (at least 1Kb).

The address and the type of the function/procedure to be called may be
transferred as value parameters.

Example: The following little program calls a package routine test:

0010 FUNC inverse(x) CLOSED
0020 RETURN 1/x
0030 ENDFUNC inverse
0040
0050 PRINT test(inverse())

Let us imagine that the function test is defmed by the following procedure head:

TestLink: DC.L 0
OC.L TestName
DC.U fItcode Machine coded float2 function
DC.W 1 One argunent
DC.W fItref REF - float (function)
DC.L Test Address of routine

TestName: OC.B 'TEST',0

The routine test may get the necessary information about the actual parameter
in this way:

Test: MOVE.L -4(A5),D3 ; Get type
MOVE.L -12(AS),A2 ; .. and address

AmigaCOMAL-Compiler 31

Now the register A2 points to the number of parameters in the procedure head
for the function inverse. The type of each parameter follows this number just
like it is the case for a procedure written in machine code.

In the procedure head for the function test the parameter type is specified as
fltref. This means that number variables, number arrays, number functions and
procedures are accepted by AmigaCOMAL. Having got the address and the
type, the function has to test for correct type. In this example it would be natural
to accept functions written in AmigaCOMAL as well as machine coded functions
(like the function sin or a function in a machine coded package). If it is a
function written in AmigaCOMAL you have to ensure that it is closed.

All these tests may be done in this way:

CMP.B #fltcode,03
BEQ.S Test1
CMP.B #fltuser,03
BNE.S ARGERR
AND.U r/OOt1100000000000,03
BEQ.S ARGERR

Machine coded function ?
Yes -> branch
Comal function ?
No -> return error
Clsd/external/package ?
Refjort error if not

Next we have to test for correct number and types of the parameters. In this
case it must be a function with one value parameter (floating point) so the test
may be done in a single instruction followed by a conditional jump:

Testi: CMP.L #$0001002F,(A2) ; Correct number/type of arg ?
BNE.S ARGERR ; No -> return error

Now we are ready to call the function. A call to this with the number 3 as the
argument may be done in this way:

MOVE.L -4(A5),D3
MOVE.L -12(A5),D2
MOVE.L #3,(A5)+
CLR.L (A5)+
MOVE.L ComalStr.AO
JSR CaUUser(AO)
SUBQ.L #8,AS

Get type
.. and address
Number onto ..
.. the parameter stack
; Get address of coma I struct
Call the function
Remove parameter from stack
The value of the Function
.. is now in NUMREG2

CallUser preserves the registers A5 and A6. If the call is to a function the value
will be returned in the register pair D2,D3 as specified in section 3.5. The
contents of all other registers are unknown.

32 Compiler-AmigaCOMAL

A routine which is calling procedures or functions has to satisfy some extra
demands.

First of all it has to be re-entrant which means that you may not use fixed
addresses to store temporary values. Use either the CPU stack or the parameter
stack (normally the last is the most roomy).

Second it may cause problems if an error occurs in the routine which is called.
In this case there is no return. The problem is the same as was mentioned in the
previous section.

AmigaCOMAL-Compiler 33

34 Compiler-AmigaCOMAL

7. Programming packages in C

Whether it is developed in assembler or in C, a machine coded package must
have the format described in the previous sections.

To make it easier to develop packages in C, a new startup module p.o (to be
used instead of c.o during the linking), a special library module comal.lib (to be
used along with other library modules) and an include file comal.h is supplied.
All these modules are developed for the Lattice C v. 3.03 compiler and is found
on the distribution disk.

The foUovring package shows how the modules p.o, comal.lib and comal.h are
used. The package contains two functions cot and inv.

/*********************************.**************.......***********.***..*****/
/* */

/* Math package - version 30.12.88 •/
/* */

#include "comal/comal.h”

extern CmlFlt CmlCosO, CmlSinO;

int cl = 1;

void cot(wrkspc,wrktop) /* cot(x) = cos(x)/sin(x) */
CmlFlt *wrkspc,*wrktop; /* pointers to workspace */

C
CmlFlt x,value; /* Floating point variables */

UorkBot = (APTR)wrkspc; /* Set work space bottom .. */
Worktop = (APTR)wrktop; /* .. and top */

X = '•'(--wrkspc); /* x = actual parameter */
value = CmlCos(x)/CmlSin(x);
RetValueC&value); /* Return V

>

void inv(wrkspc,wrktop) /• inv(x) = 1/x */
CmlFlt ‘wrkspc,*wrktop; /• pointers to workspace */
<

CmlFlt X,value; /* Floating point variables V

UorkBot = (APTR)wrkspc; /* Set work space bottom .. */
Worktop = (APtR)wrktop; /* .. and top */

AmigaCOMAL-Compiler 35

X = *(--Hrkspc); /* x = actual parameter */
value = cl/x;
RetValue(&value); /* Return */

struct varnode invlnk = {
0,
"IMV",
fItcode,

1 >;
UUORD invparl = fltval;
void (*invrout)() = &inv;

struct varnode cotlnk = {

Sinvlnk,
"COT",
fItcode,

1 >;
UWORD cotparl = fltval;
void (*cotrout)() = Scot;

^*************************************^

/* Identifier table for inv */
/* Last link */
/* Name */
/* Type */
/• one argunent */
/* Float value parameter */
/* Routine address */
y*************************************y

y*************************************y
/* Identifier table for */
/* cotangents */
/* Link to next procedure head */
/• Name */
/* Type V
/* one argunent */
/* Float value parameter */
/* Routine address V

topptr topnode = &cotlnk; /• Top link points to cotlnk */

void init(pck)
struct package *pck;

{
pak->var = &topnode,- /* Initialize top-id link •/
>

In the start of the program the file comal.h is included. The two functions from
comallib used in this program are declared.

The functions (and procedures) that are to be exported from a C package are
always made as procedures with two parameters: the top and bottom of the work
space. Before a package routine is called AmigaCOMAL places the registers A5
and A6 on the CPU stack. Thus the content of these registers may be read as
the parameters of the C procedure.

The first thing done by the procedures of our package is to store the value of
the two parameters in the global variables WorkTop and WorkBot. These
variables are declared in the file comal.h. It is necessary to do this if the
procedures are calling the AmigaCOMAL routines (in this case CmlCosQ and
CmlSinQ), since the interface routmes in comal.lib read the address of the work
space in these variables. The only AmigaCOMAL routines not using these

36 Compiler-AmigaCOMAL

addresses are RetValue, RetStat and the two routines used to call procedures
and functions: CallProc and CallFunc.

Values from functions are returned by calling RetValue defined in comal.iib.
RetValue must have a pointer as parameter (in this case CmlFlt). The pointer
must point to a data area consisting of two long words (corresponding to the
registers D2.L and D3.L).

Numbers from AmigaCOMAL are declared as CmlFlt. Interface routines in
comal.lib makes it possible to use the floating pomt format used by
AmigaCOMAL. But there are some limitations. First of all only the algebraic
operators (+,-.*./ and monadic -) and the relational operators
(<,< =,>,> =,= = and ! =) may be used. Next, it is not possible to use constants
in a floating point expression. However, integer variables are valid.

The initialization routine must have the name init. It has a pointer to the
package structure as parameter. Naturally init should do the same initialization
as an initialization routine in an assembler programmed package, i.e. as a
minimum init should place the address of the chain of procedure heads in the
package structure.

The signal routine (not found in the example) is a procedure with the signal
number as parameter. A typical signal routine looks like:

void signat(s)
short s;

<
switch(s)
{

case 1:

case 10:

>;
>;

The address of the signal is set in the initialization routine in the following way:

pck->signal = &signal;

This address may not be changed after the initialization!

In the programming manual we made a mathematical package which

AmigaCOMAL-Compiler 37

contained a special integral function. We mentioned that it would be possible to
write this function in machine code. We are now able to write this function in C.
It may look like:

#include "comal/comal.h"

extern CmlFlt NunFuncO;

int c2 = 2, c3 = 3, c6 = 6;

#define f(x) (NimFunc(fnct,x))

void integraKwrkspa.wrktop) /* integral(fnct(),a,b) •/
CmlFlt *wrksp)c,*wrktop;
r

/* pointers to workspace */
V

struct refparam *fnct;
CmlFlt a,b,xi,dx,sum; /* Floating px>int variables */
int i,n;
ULONG ‘arg; /* Pointer to arguments */

b = *(--wrkspc); a = *(--wrkspc);
fnct = (struct refparam *)wrkspc;
(--fnct);
if (fnct->Type!=fItuser && fnct->Typ>e!=fItcode) RetStat(76);
if (fnct->Type==fItuser)

if (fnct->Attributes & (IMPORTBIT | CLOSEDBIT | EXTERNALBIT)==0)
RetStat(76);

arg = (ULONG *)fnct->Data;
if (*arg != 0x01002F) RetStat(76);
UorkBot = (APTR)wrkspc; /* Set work space bottom .. V
Worktop = (APTR)wrktop; /* .. and top */

n = 32;
dx = (b-a)/n;
xi = a; sum = (f(a)-f(b))*dx/c6;
for (i = 1; i<=n; i++)

{
xi = xi+dx;
sun = suiH-(f(xi)+c2*f(xi-dx/c2))*dx/c3;

>;
RetValue(&sum);

38 Compiler-AmigaCOMAL

/***•••**»*************************/

struct varnode intlnk = t /* Identifier table for integral */
OL, /* Last link •/
"INTEGRAL", /* Natne */
fltcode, /* Type */
3>; /* one argiment */
UWORD intpar! = fltref; /* Float reference parameter */
DWORD intpar2 = fltval; /* Float value parameter •/
DWORD intpar3 = fltval; /* Float value parameter */
void ("introutX) = &integral; /* Routine address V

/**.*****.***********.*...**.******/

topptr topnode = &intlnk; /* Top link points to cotlnk */

void initfpck)
struct package *pck;
<
pck->var = &topnode; /* Initialize top-id link •/
>

Having compiled and linked this package we have to remove the mtegral
function from the original mathematical package and in the start of this package
add the line

USE INTEGRAL

Now the mathematical package may be used as before. It is just a little bit
faster.

If the speed is still not satisfactory you may try to rewrite it in assembler. But
this is much more difficult.

AmigaCOMALrCompiler 39

40 Compiler-AmigaCOMAL

8. Redirection of internai data streams
in AmigaCOMAL.

Until now we have seen how ordinary procedures and functions are written in
machine code. But from a machine coded package it is possible to intervene in
the AmigaCOMAL system itself.

The package structure contains some flags (see appendix C.l). By setting one or
more of these flags the package will receive or be requested to deliver certain
data streams. These data streams are screen output, keyboard input, cursor
position, delivering of error texts and receiving of error output.

8.1 Receiving screen output.

If a package wants to get all output to the screen, it may set the PckConOutBit
(bit 0) m the flag field of the package structure and place the address of a
ConOut routine in the PckConOut field (offset 24) of the package structure.

Before a text is going to be written on the screen AmigaCOMAL checks to see
if one or more packages has requested the receiving of the output. If this is the
case the output is send to that (these) package(s) in the order determined by the
priority field of the package structure.

At the call to the ConOut routine of a package the address of the text is found
in D2.L and the length in D3.L (see also appendix C.l).

The package may do anything with this text but at the return the renters D2.L
and D3.L must contain the address and the length of a text (the same as it
received or quite another one). If D3.L is non zero this text is send to the next
package or to the AmigaCOMAL screen if there is no more packages.

AmigaCOMAL-Compiler 41

Example : A package that are receiving screen output may look like:

include 'ram:package.i'

; Initialization section
Package structure
Save package
.. and Comal str
Set top link
Address of ConOut
Set priority
.. and flag
Status
Return

; ConOut routine
ConOut:

MOVE.L AO.PckStr
MOVE.L PckCmlStr(AO),ComalStr
HOVE.L #LinkTop,PckTopId(AO)
MOVE.L HiConOut.PckConOuttAO)
HOVE.B #4,PckPrior(A0)
BSET #PckCon0utBit,PckFlag+1(A0)
CLR.U DO
RTS

RTS

SECTION ConOutData.DATA

LinkTop: OC.L 0 ; No procedures

In this case the package does not export any procedures so that LinkTop is set
to zero. The priority of the package is set to 4. In this case the choice is random
but illustrates that in a package of this type the priority is very often set.

The priority as well as the flags may be changed later on. This may be done in
the signal routine (see also next section).

8.2 Supplying keyboard input.

There are two types of keyboard input (corresponding to the two AmigaCOMAL
standard functions key$ and inke>^). In one of these routines the keyboard is
scanned and in the other, the routine will wait until a key is pressed.

If a package wants to deliver keyboard input (one or both sorts) it has to set the
relevant flags and the corresponding addresses in the package structure (see
appendix C.l).

42 Compiler-AmigaCOMAL

Example: The following package serves as a keyboard filter, filtering off the
Help key. This is done by setting the PckConInBit (bit 1) in the flag
field of the package structure.

The Conin routine in the package calls the AmigaCOMAL Conin by using the
jump table below the comal structure. Having received a key value from Amiga¬
COMAL it tests to see if it is the Help key. If this is not the case it just returns
the received value. Otherwise it writes a help text on the screen and Conin is
called again.

; HELP package - version 29.12.88

include 'ram:package.i'

; Initialization section
MOVE.L DO,AO
MOVE.L AO.PckStr
MOVE.L PckCmlStr(AO),CoffialStr
MOVE.L #LinkTop,PckTopId(AO)
MOVE.L #Signal,PckSignal(AO)
MOVE.L #ConIn,PckConIn(AO)
MOVE.B #4,PckPrior<A0)
BSET #PckConInBit,PckFlag+1(A0)
CLR.U DO
RTS

Package structure
Save package
.. and Comal str
Set top link
.. and Signal rout.
Address of Conin
Set priority
.. and flag
Status
Return

; Signal routine
Signal: CMP.W #5,DO

BCC.S ChgConlnFlg
RTS

Change to command mode 7
Yes -> branch

ChgConlnFlg: MOVE.L
CMP.W
BCC.S
BCLR
RTS

PckStr.AO
#7,00 ; .. or to execute mode ?
SetConlnFlg ; Yes -> branch
#PckConInBit,PckFlag-i’1(A0) ; Clear Conin flag

SetConlnFlg: BSET
RTS

#PckConInBit,PckFlag+1(A0) ; Set Conin flag

; Conin routine
ConInO: MOVE.L

MOVE.L
#HelpText,02
#HelpLen,D3

JSR

; Routine entrance

COMOUT(AO) ; Output Help text

Conin: MOVE. LomalStr,AO
JSR CONIN(AO) ; Get character to DO.B
CMP.B #$94,DO ; 'Help' ?
BEQ.S
RTS

ConInO ; Yes -> output help text

AmigaCOMALrCompiler 43

SECTION HelpOata.DATA

LinkTop: DC.L

HelpText: OC.B
OC.B
DC.B

HelpLen: EQU

'The Help key is
10,13

but it might
*-HelpText

; No procedures

not of much use..'

be that!',10,13

SECTION Help8lock,BSS
$

; Internal workspace
$
ComalStr: DS.L 1 ; Address of Comal structure
PckStr: DS.L 1 .. and package structure

END

8.3 Set and return cursor position.

A package may set and/or return the position of the cursor by setting flags and
addresses in the package structure (see appendix C.l for further details).
Normally this is done only if the package are receiving screen output.

8.4 Supplying error texts.

If a package wants to supply error texts it must set the PckErrTxtBit (bit 7) and
the corresponding address in the package structure (offset 48). When
AmigaCOMAL is needs to find a text for a given error code it calls the
package(s) (if any) that have set the flag PckErrTxtBit. At the call the error
code is in DO.L and at the return the address and length of the error text must
be in the registers D2.L and D3.L. If D3.L is zero, the next package is called, on
until there are no more packages. Then the usual AmigaCOMAL error text is
used.

Example: The following C programmed package will deliver the first nine error
texts in Danish.

44 Compiler-AmigaCOMAL

y** !

/* */
/* Oansk - version 29.12.88 */
/* */
y****1HHk*M**y
#include "comal/comal.h"

#define AND &&
#define OR j j
#define begin <
#define end >

STRPTR ErrTxtTabt] =
begin

"001: Ulovligt tegn",
"002: Ulovligt linjenunmer",
"003: Tekstkonstant for lang",
"004: Variabel forventet",
"005: Konstant forventet",
"006: Taludtryk forventet",
"007: Tekstudtryk forventet",
"008: \'<\' forventet",
"009: \')\' forventet"

end;

#define maxerr 9

int strlen(s)
STRPTR s;
begin

int i;
for (i=0; "s != '\0'; s++) i++ ;
return i;

void ErrTxt(wrkspc,wrktop)
int *wrkspc,*wrktop;
begin

int err;
struct valparam ErrorText;

err = *(--wrkspc);
if (err<=maxerr)

begin
ErrorText.d2 = (long)ErrTxtTabterr-l];
ErrorText.d3 = strlen(ErrTxtTabCerr-1]);

end
else

ErrorText.d3 = 0;
RetValue(ErrorText);

end

void init(pck)
struct package *pck;

begin

AmigaCOMAL-Compiler 45

pck->var = NULL;
pck->ErrTxt = &ErrTxt;
pck->Flags |= ErrTxtFlag;
pck->Priority = -20;

end

8.5 Receiving error output.

You may do more than just deliver error texts. By setting the PckErrOutBit (bit
6) and the corresponding address in the package structure (offset 44) you may
decide what is to be done with the text.

Example: The following package sends the error text to the Amiga narrator
device.

y**#***^
/* */
/* SayError package - version 31.12.88 */
/* */
y**^

^include “comal/comal.h"
#include "exec/ports.h"
#include "devices/narrator.h"

/* Exec library */
extern APTR OpenLibraryO;
extern LONG OpenOeviceO;
extern void CloseLibrary(),CloseOevice(),BeginIO(),WaitIO();

extern struct MsgPort *CreatePort(); /* Exec support library V
extern void DeletePortO;

struct package ‘SayError;
struct MsgPort ‘ReplyPort;
struct narrator_rb narrat;
UBYTE amapsl] = {:3,5,10,12>;

int busy;
LONG nar_flag;
APTR TranslatorBase; /* Address of translator lib */

void ErrorText(wrkspc,wrktop) /* Say error function V
struct valparam *wrkspc,*wrktop; /* workspace pointers */
{.
struct valparam *p; /* String parameter structure */
STRPTR outtxt; /* Pointer to translated text */

outtxt = (STRPTR)wrkspc; /* Point to output buffer V
p = (--wrkspc); /* p = pointer to text */

46 Compiler-AmigaCOMAL

Translate{p->d2,(ULONG)p->d3,outtxt,256);
if (busy)

WaitIO(&narrat);
busy = 0;

>
narrat.message. io_Ccxnmand = CMO_WRITE;
if ((narrat.message.io_Length = strlen(outtxt)) != 0)

(
narrat.message.io_Data = (APTR)outtxt;
SendIO(&narrat);
busy =1;

>
>
int strlen(s)
STRPTR s;
<

int i;

for (i=0; *s != '\0'; s++) i++ ;
return i;

>

void signal(s)
/* Signal-routine •/

short s; !* Signal number as parameter */

switch(s)
t

case 0:
case 1: break;
case 2: CleanUpO;
case 3:
case 4:
case 5:
case 6:
case 7:
case S:
case 9: break;
case 10: CleanUpO;

>;
>

topptr topnode = NULL; /• No procedures or functions */

void init(pck)
struct package *pck;
{

SayError = pck;
pck->var = &topnode; /* Initialize top id link */
pck->signal = Ssignal; /* .. and address of signal routine */

nar_flag=-1;
if ((TranslatorBase=OpenLibrary("translator.library",0))==NULL)

RetStat(199);

AmigaCOMAL-Compiler 47

if ((ReplyPort = CreatePort(0,0)) == NULL)

CleanUp();
RetStat(199);
>;

narrat.message. io_Message.nin_ReplyPort = ReplyPort;
if (nar_flag = OpenOeviceC'narrator.device",0,&narrat,0))

{
CleanUpO;
RetStat(199);
>;

pck->Flags |= ErrOutFlag;
pck->ErrOut = iErrorText;
narrat.ch_masks = amaps;
narrat.nm_masks = 4;
busy = 0;

CleanUpO
<

if (busy)
(
UaitIO(&narrat);
busy = 0;
>

if (ReplyPort) DeletePort(ReplyPort);
if (nar_flag == 0) CloseOeviceC&narrat);
if (TranslatorBase) CloseLibrary(TranslatorBase);
SayError->Flags &= (-ErrOutFlag);

48 Compiler-AmigaCOMAL

9. Creating new standard lO devices

In the previous sections we explained how a package may take over lO from the
keyboard and the screen. In many cases it is much more elegant to create a new
standard lO device.

In executing a SELECT or an OPEN command AmigaCOMAL searches for the
specified unit (file) in a list of standard lO devices, for instance "ds:" (data
screen), "kb;" (keyboard) and "sp:" (serial port) and if it is one of these, that
device is opened. Otherwise a file is opened.

A device structure is connected to each standard lO device and all these device
structures are linked together (I wonder how many structures are floating
around inside my Amiga). The device structure contains all the necessary
information about the device, i.e. its name, its type and addresses of all its
drivers. This is described in more detail in appendix C.4.

A new dewce may be added to the existing list of devices by calling the
AmigaCOMAL routine AddCmlDev (offset -180) with the address of the
structure in AO. The new device structure is then put into the front of the chain
of device structures.

The device may be removed from the chain by calling the AmigaCOMAL
routine RemCmlDev (offset -174) with the address of the structure in register
AO.

Example: The following package adds a new output device "con:". TTiis device
opens a new window in the WorkBench screen:

; Console device package - version 31.12.88

CALL MACRO
MOVEH.L 01/A0-A1/A6,-(A7)
MOVE.L \1Base,A6
JSR _LV0\2(A6)
MOVEM.L (A7)+,D1/A0-A1/A6

ENDM

include 'ram:package.i'
include 'vdk:dos.i'

; Initialization section

AmigaCOMAL-Compiler 49

MOVE.L DO, ,A0 $ Package structure
HOVE.L #LinkTop,PckTopId(AO) $ Set top 1ink
MOVE.L #Signal,PckSignal(AO)
HOVE.L PckCtnlStr(A0),A1

t .. Signal routine

HOVE.L A1, ComalStr t Comal structure
MOVE.L OosBaseOff(A1),DosBase
LEA Construe,AO
JSR AddCnilOev(Al) t Add new device
CLR.U DO
RTS

$ No error

; Signal routine
Signal: CMP.W #2,00 $ DISCARD ?

BEQ.S Signall
CMP.W #10,DO t BYE ?
BNE.S SignalEnd

Signall: LEA Construe,AO
MOVE.L ComalStr,A1
JSR RemCmlOevCAl) t Remove device
MOVE.L ConHandle,D1
BEQ.S SignalEnd
CALL Dos,Close
CLR.L ConHandle

SignalEnd:RTS

; Open device
Open: TST.L ConHandle

BNE OevUsed
MOVEM.L D2-D3/A0/A5,-(A7)
MOVE.L D2,A0 7 Address of device name
MOVE.L A5,D1

1$: MOVE.B (A0)+,(A5)+ f Move to uorksF>ace
DBRA 03,1$
CLR.B -(AS) s .. and terminate
MOVE.L #1005,02 1 Mode_old
CALL Dos,Open i Open window
MOVEM.L <A7)+,D2-D3/A0/A5
MOVE.L D0,D1 7 Handler to D1
BEQ loErr
MOVE.L D1,ConHandle
CLR.W
RTS

DO

; Close device
Close: CALL Dos,Close

CLR.L ConHandle
CLR.W
RTS

DO

; Write to device
Write: EXT.L D3

CALL Dos,Write
TST.L DO
BMI loErr
CLR.W
RTS

DO

50 Compiler-AmigaCOMAL

; Set/get cursor
Cursor: TST.L DO

BPL SetCursor
CLR.L
RTS

DO

SetCursor: MOVEN.L D0-D3/A0,-(A7)
LEA CursorString+1 ,A0
MOVE.L 00,D1
SVMP D1
BSR.S MakeASCII
ADDQ.L #1,A0
HOVE.W D0,01
BSR.S MakeASCII
NOVE.L ConHandle,D1
BEQ SetCursorl
NOVE.L #CursorString,02
MOVEQ #7,D3
CALL Dos,Write

SetCursorl: MOVEN.L
RTS

(A7)+,D0-D3/A0

HakeASCII: EXT.L D1
DIVU #10,D1
AOO.B #'0',D1
MOVE.B 01,(A0)+
SWAP D1
ADD.B #'0',D1
MOVE.B
RTS

D1,(A0)+

loErr: CALL
RTS

Dos,loErr

DevUsed: MOVE.W
RTS

#202,DO

SECTION DDATE,DATA

LinkTop: DC.L 0

; Device structure
Construe: DC.L 0

DC.L ConName
DC.U 1
DC.W 0
DC.L Open
DC.L Close
DC.L 0
DC.L Write
DC.L Cursor

ConName: DC.B 'con:',0
Cursorstring : DC.B $9B,'00;00H'

; No 'Get' implemented

Room for link
; Pointer to name
; CRT-device
; Unused

; No read

: Set/get cursor

AmigaCOMAL-Compiler 51

SECTION BLOCK,BSS

; Internal workspace

ComalStr: OS.L 1 ; Pointer to Comalstructure
DosBase: DS.L 1
ConHandle: DS.L 1

END

Having USEd this package the command

SELECT OUTPUT “con:20/10/200/100/ My own window"

will direct all output from PRINT statements to this window.

The example shows a special facility. If the name of the device is terminated by
a colon (:) you may append supplementary information after the colon while
opening the device. This supplementary information will be sent to the open
routine of the device (in the example it is sent to AmigaDos without changes).

52 Compiler-AmigaCOMAL

10. Signals and exceptions

Packages may allocate signals using the Exec routine AUocSignal and release the
signal again using the Exec routine FreeSignal. Further more it may wait for the
arrival of a signal using the Exec routine Wait. However, this last call may cause
trouble. If the signal does not arrive, it is impossible to break the program.

If you have to wait for a signal it is better to call the AmigaCOMAL routine
CmlWait (offset -192). This routine is called in the same way as the Exec
routine. But instead of just waiting for the signals specified in the mask it will
also wait for all the signals allocated by the AmigaCOMAL system itself.

At retinn from CmlWait the register D0.L contains the signals received just as
the Exec routine Wait. But with CmlWait it may be one of the signals allocated
by AmigaCOMAL. It b up to the package to test if it is one of those signals and
if it is, the package should call TestBreak to test if the break key has been
pressed (see appendix D for further description of TestBreak).

It is possible to make one or more signals cause exception. To obtain this you
have to call the AmigaCOMAL routine AddExcept with the address of an
exception structure in register AO. This structure must contain a mask for the
signals that are to cause exception as well as the address of the exception routine
(see appendix C.5). As the result of the call AmigaCOMAL will link the
structure into a chain of exception structmes (yet another structure!).

At the arrival of one of the signals in the signal mask, the exception routine will
be called. This routine should obey the same rules as a normal exception
routine.

An exception structure may be removed by calling the routine RemExcept with
the address of the structure in AO (see appendix C.5).

Sometimes it is necessary to synchronize the exception with the execution of an
AmigaCOMAL program (for instance if an AmigaCOMAL procedure is called
as part of the exception). To achieve this synchronization your exception routine
has to set PckExceptFlg (bit 4) in the EventFlgOff field (offset 40) of the comal
structiu-e and the PckExceptBit (bit 15) in the PckFlg (offset 10) of the package
structure. After the execution of the current line AmigaCOMAL will call the

AmigaCOMAL-Compiler 53

routine whose address is found in the PckExcept field (offset 52) of the package
structure.

54 Compiler-AmigaCOMAL

11. Communication between packages.

In the field PckUser (offset 64) of the package structure there is room for a user
defined pointer.

By making this pointer point to an identification field, it is possible for two or
more packages to communicate with each other.

All the package structures are linked together using the first long word in their
structure. The address of the first structure in this chain is found in the PckLink
field (offset 8) of the comal structure. The last package structure in the chain
has a zero in the link field. In searching through the structures you should only
search among the initialized machine coded packages, i.e. the packages with type
1 (PckType - offset 8).

Note that although it is up to the user to decide how this pointer is used, you
should only place a pointer in the PckUser field, i.e. the field should either
contain a zero or the address of something at an even address. Never place the
identification word itself in the field!

AmigaCOMAL-Compiler 55

56 Compiler-AmigaCOMAL

Appendix A.

Variables in AmigaCOMAL
AmigaCOMAL places three long words on the parameter stack as the actual
parameter corresponding to a formal reference parameter. These long words
may be picked down from the stack using the following piece of code:

MOVE.L -4<A5),03 ; Get type

MOVE.L -8(A5),A3 ; .. address of structure information
MOVE.L -12(A5),A2 ; .. and address of data field

The lower byte (bits 0-7) of the type word contains the type itself while the next
byte (bits 8-15) contains the type attributes. For the time being, the high word
(bits 16-31) is unused. The possible types are (the symbolic names used are
defined in the assembler include file Package.! and in the C include file
comal.h):

strg (0) simple text
fit (1) simple floating point number
long (2) simple long (32 bits integer)
short (3) simple short (16 bits integer)
byte (4) simple byte (8 bits integer)
record (5) simple record

strgarray (8) text table
fltarray (9) floating point table
longarray (10) long table
shorterray (11) short table
bytearray (12) byte table
recordarray (14) record table
strguser (16) text function)
fltuser (17) float function)
longuser (18) long function) AmigaCOMAL functions
shortuser (19) short function)
byteuser (20) byte function)

strgcode (24) text function)
fltcode (25) float function)
longcode (26) long function) machine coded functions
shortcode (27) short function)
bytecode (28) byte function)

userproc (128) AmigaCOMAL procedure
codeproc (129) machine coded procedure

AmigaCOMAL-Compiler 57

The bits 8-15 (the type attributes) in the type word specify special conditions:

POINTERBIT (8) pointer variable
IMPORTBIT (11) imported (from package)
CLOSEDBIT (12) CLOSED
EXTERNALSIT (13) EXTERNAL
GLOBALBIT (14) GLOBAL

The data fields are constructed in the following way:

strg:
DC.U maximal length
DC.W actual length
DC.B the real string content (null terminated)

fit:
DC.L mantissa (bit 31 is sign bit)
DC.W unused
DC.W exponent+$8000

long:
DC.L 32 bits integer

short:
DC.W 16 bits integer

byte:
DC.B 8 bits integer

The data fields for the structured variables (arrays and records) are constructed
as one or more of the simple variables immediately following each other.

The data field of a pointer variable contains the address of the real data field.

For functions and procedures the data field consists of:

DC.W number of arguments
DC.W type of 1. argument)
DC.W type of 2. argument) for each argunent
DC.W :)
DC.L routine address (only machine coded)

A structure information field is attached to the structured variables (arrays and
records). This information field informs about the irmer structure of the variable.

The structure information field for an array:

DC.L length of data field
DC.W number of dimensions

58 Compiler-AmigaCOMAL

DC.W lower index for 1. dimension)
DC.W number of index values for 1. dim.)
DC.W lower index for 2. dimension) for each dimension

:)
:)

DC.L address of structure information (only record and array)

Structure information field for a record:

DC.L length of data field
DC.L address of first name field

Name fields:

DC.L address of next name field (0 if last)
DC.B
DC.W
DC.L

length of name, ASCII name
type of this field
offset to data field (offset from start of record)

DC.L si43plementary information:
text: maximal length
record and array: address of structure information

AmigaCOMAL-Compiler 59

60 Compiler-AmigaCOMAL

Appendix B.

Procedure head

A procedure head contains the necessary information about functions or
procedures in a package. In assembler it has the format:

DC.L link (address of next procedure head or 0)
DC.L address of the name of the procedure (null terminated)
OC.U type
DC.W nunber of argunents
DC.U type of 1. argunent }
DC.U :) for each argunent
DC.U :)
DC.L address of procedure body (the code itself)

For a machine coded function or procedure the possible types are:

strgcode (24)
fltcode (25)
longcode (26)
shortcode (27)
bytecode (28)
codeproc (129)

The argument types are:

strgval ($001F)
fltval ($002F)
longval ($012F)
shortval ($022F)
byteval ($032F)
strgref ($8012)
fltref ($8022)
longref ($8122)
shortref ($8222)
byteref ($8322)
recref ($8042)
procref ($8022)

By setting bit 15 in the field containing the number of arguments, an alternative
number of argument is specified. This alternative is placed immediately after the
routine address and consists of the procedure head starting with the field
containing the number of arguments. There is no limitation on the number of
alternatives, but they must be listed with increasing number of arguments.

AmigaCOMAL-Compiler 61

62 Compiler-AmigaCOMAL

Appendix C.

Data structures in AmigaCOMAL

As an interface between the packages and the AmigaCOMAL system a number
of data structures are used. The content of these structures are listed in the
following subsections.

A number of symbolic names are used in the description of the structures. These
names are defined in the Hie Package.i.

The structures are also defmed m the C include file comal.h but not all the
names used in this file are the same as in the assembler mclude file. Please
consult the listing of comal.h in appendix E.2.

C.1 The package structure.

At the call to the initialization routine of a package AmigaCOMAL places the
address of this structure m D0.L.

field name (offset) content

(0) link to next package structure (or 0)
PckName (4) address of package name (null terminated)
PckType (8) the type of the package (set by AmigaCOMAL)
PckPrior (9) the priority of the package (-128 .. 127)
PckFlag (10) the flag of the package
PckTopId (12) address of first procedure head
PckSignat (16) address of signal routine
PckCmlStr (20) address of comal structure (set by COMAL)
PckConOut (24) address of ConOut routine
PckConIn (28) address of Conin routine
PckKbdIn (32) address of Kbdin routine
PckSetCur (36) address of SetCur routine
PckGetCur (40) address of GetCur routine
PckErrOut (44) address of ErrOut routine
PckErrTxt (48) address of ErrTxt routine
PckExcept (52) address of Except routine

(56-63) reserved
PckUser (64) user defined pointer

AmigaCOMAL-Compiler 63

The flag bits are:

PckExceptBit (15)

PckErrTxtBit (7)
PckErrOutBit (6)
PckGetCurBit (5)
PckSetCurBit (4)
PckExclBit (3)
PckkbdlnBit (2)
PckConInBit (1)
PckConOutBit (0)

call the Except routine of the package
bits 14-8: for the time being unused
supplying error texts (through ErrTxt)
receiving error output (through ErrOut)
supplying cursor position (through GetCur)
receiving cursor position (through SetCur)
key$ only from this package
supplying key$ (through Kbdin)
supplying inkey$ (through Conin)
receiving screen output (through ConOut)

The type of the package is set by AmigaCOMAL. For the time being the
possible values are:

bit 7: 0 = initialized, 1 = uninitialized
bits 6-0: 0 = AmigaCOMAL, 1 = machine code

At the call to the initialization routine of the package AmigaCOMAL has set the
link field (offset 0) as well as the fields PckType and PckCmlStr. These fields
must remain untouched. The field PckTopId must be set by the package as part
of the initialization routine. All the other fields are set to zero by
AmigaCOMAL and may be changed by the package at any time.

In the following there is a short description of the routines whose address is
found in the package structure.

ConOut - output a text on the screen
at call: 02.L = address of text

03.L = length of text
at return: 02.L = address of text

03.L = length of text (or zero)

If the length of the text is non zero at the return, the text is sent to the next
package or to the AmigaCOMAL screen if there is no more packages.

Conin - keyboard input (wait until key pressed)
at call:
at return: 00.B = value of key pressed

Only one package will be called.

Kbdin - keyboard input (return zero if no key pressed)
at call:
at return: 00.B = value of key pressed (or zero)

64 Compiler-AmigaCOMAL

If a value of zero is retiu-ned the next package will be called. This may be
prevented by setting PckExclBit (3) in PckFlag.

SetCur - position cursor on screen
at call: DO.high = line nunber

00.low = column number
at return: DO.L = -1 if no other should position the cursor.

GetCur * return cursor position
at call:
at return: DO.high = line number

DO.low - column nurber

No other packages mil be called.

ErrOut - show error
at call: DO.L = error nunber

02.L = address of error text
D3.L = length of error text

at return: D2.L = address of error text
D3.L = length of error text (or zero)

If the length is non zero at the return, the next package will be called. If there is
no other package, the error text will be output on the AmigaCOMAL command
screen.

ErrTxt - supply error text
at call: DO.L = error number
at return: D2.L - address of error text

03.L = length of error text (or zero)

Except - call exception routine after execution of COMAL line
at call:
at return:

The packages will be called in the order given by the priorities of the packages
(highest priority first). If two packages have same priority the one that has been
USEd latest will be called first. At the call the registers A5 and A6 are pushed
onto the CPU stack and parameters onto the parameter stack (in the order
D0,Dl,..yA0,..). All registers may be used by the routines.

C.2 Comal structure.

AmigaCOMAL-Compiler 65

The address of the Comal structure is found in the PckCmlStr field of the
package structure. The content is:

field name (offset) content

SP top (0) highest stack address
SP bot (4) lowest stack address
PckLink (8) address of first package in chain of pack.
TskIdOff (12) address of task structure
DosBaseOff (16) DOS library base address
IntBaseOff (20) Intuition library base address
GraBaseOff (24) Graphics library base address
LayBaseOff (28) Layers library base address
DfBaseOff (32) OiskFont library base address (or 0)
IconBaseOff (36) Icon library base address (or 0)
EventFlgOff (40) flags signalling various events
EventCntOff (44) number of unprocessed events

(42-55) reserved
ComalHdOff (56) address of active 10 structure
CommHdOff (60) address of command 10 structure
ExecHdOff (64) address of execute 10 structure

The bits in the event flags are:

EscapeFlag (6) BREAK key pressed
HasterEscFlg (5) - quit program
PckExceptFlg (4) call exception routine of this package

C.3 10 structure.

offset content

0 address of screen structure
4 screen type
6 number of bit planes in screen
8 screen width (in bits)

10 screen height (in bits)
12 address of window structure
16 number of bit planes in window
18 window width (in characters)
20 window height (in lines)
22 X coordinate of left border of window
24 y coordinate of upper border of window
26 width (in bits)
28 window height (in bits)
30 address of font
34 font height
36 font width
38 base line of font

66 Compiler-AmigaCOMAL

40 address of virtual window
44 cursor flag
45 actual soft style
46 address of menu structure
50 length of menu structure (in bytes)

C.4 Device structure.

A special device structure is connected to each standard device like "ds:", "kb:"
and "sp:". The content of this structure is:

offset content

0
4
8

10
12
16
20
24
28

link to next device structure (or 0)
address of device name (null terminated, lower case)
device type
reserved
address of Open routine (or zero)
address of Close routine (or zero)
address of Read routine (or zero)
address of Write routine (or zero)
address of PosOev routine (or zero)

The device types are:

TypeSeq (0)
TypeCRT (1)
TypeRnd (2)

Sequential device
CRT device
Random device

For the five device routines we have:

Open - open device
at call: D2.L = address of device name

03.W = length of device name
at return: DO.W = status

01.L = open id

Normally the device name is the same as the name in the device structme. But
if the name in the device structure is terminated by a colon it is possible to add
further information after the name (information should be in ASCII).

Close - close device
at call: 01.L - open id (returned by Open)
at return: 00.W = status

Read - Read from device to work space (address in A5)

AmigaCOMAL-Compiler 67

at call: D1.L = open id (returned by Open)
03.L

bit 31=1: read until (CR,)LF
bit 30-0: maximum number of bytes to read

at return: DO.U = status
A5 points after last byte read

Write - Write
at call:

at return:

to device
D1.L = open id (returned by Open)
02.L = address of data
03.L = length of data
00.W = status

PosOev - set file pointer (only random device)
at call: 01.L = open id (returned by Open)

02.L = new file position
at return: 00.W = status

PosOev - set/return cursor position (only CRT device)
at call: 01.L = open id (returned by Open)

00.high = new line)
00.low = new column) if 00.L > 0

at return: 00.L = cursor position, if 00.L < 0 at call

Note that no error code is returned.

The routines must save all registers not used to return values. The routines
cannot be written in C.

C.5 Exception structure.

offset content

0 link to next structure
4 mask for signals to cause exception
8 address of interrupt routine

The interrupt routine must satisfy all the same demands as an Exec signal
exception routine.

68 Compiler-AmigaCOMAL

Appendix D.

Calling AmigaCOMAL routines

Below the comal structure there is a jump table which makes it possible to call
some useful routines in the AmigaCOMAL system. We will first describe how
these routines are called from an assembler programmed package and then how
they are called from a C programmed package.

D.1 Calling AmigaCOMAL routines from assembler.

name (offset) description

CMLRET (-6) return
at call: DO.W = status code (0 = no error)

D2,D3 returned value
at return; no return from this routine

If the status code is zero the return is to the caller. Otherwise it is an error and
the return is to AmigaCOMAL.

NUMADD (-12)
at call:

at return:

addition
D0,D1 - NUMREG1
D2,D3 = NUMREG2
D2,D3 = NUNREG2'^NUMREG1
registers D0-01/A0-A7 unchanged

NUMSUB (-18)
at call:

at return:

subtraction
00,01 = NUHREG1
02,03 = NUMREG2
02,03 = NUMREG2-NUMREG1
registers 00-01/AO-A7 unchanged

NUHHUL (-24)
at call:

at return:

multiplication
00,01 = NUHREG1
02,03 = NUHREG2
02,03 = NUMREG2*NUMREG1
registers 00-01/AO-A7 unchanged

NUMDIV (-30)
at call:

at return:

division
00,01 = NUMREG1
02,03 s NUMREG2
02,03 = NUMREG2/NUHREG1

AmigaCOMAL-Compiler 69

registers D0-01/A0-A7 unchanged

NUMCMP (-36)
at call:

at return:

number compare
D0.D1 = NUHREG1
02,03 - NUMREG2
flag set as "signed cmp"
registers 00-01/AO-A7 unchanged

FP2INT (-42)
at call:
at return:

converts NUHREG2 to integer format
02,03 = NUMREG2
02,03 = INT(NUMREG2) as integer
registers 00-01/A0-A7 unchanged

INT2FP (-48)
at call:
at return:

converts NUHREG2 to floating point format
02,03 = NUMREG2
02,03 = NUMREG2 in float format
registers 00-01/A0-A7 unchanged

NUMSQR (-54)
at call:
at return:

square root
02,03 = NUMREG2
02,03 = sqr(NUMREG2)
registers 00-01/A0-A7 unchanged

NUMEXP (-60)
at call:
at return:

the natural exponential function
02,03 = NUMREG2
02,03 = exp(NUMREG2)
registers 00-01/A0-A7 unchanged

NUMLOG (-66)
at call:
at return:

the natural logarithmic function
02,03 s NUHREG2
02,03 = log(NUMREG2)
registers 00-01/AO-A7 unchanged

NUHPWR (-72)
at call:

at return:

power
00,01 = NUHREG1
02,03 = NUMREG2
02,03 = NUMREG2^NUHREG1
registers 00-01/A0-A7 unchanged

NUHSIN (-78)
at call:
at return:

sine
02,03 - NUMREG2
02,03 = sin(NUHREG2)
registers 00-01/AO-A7 unchanged

NUMCOS (-84)
at call:
at return:

cosine
02,03 = NUHREG2
02,03 = cos(NUHREG2)
registers 00-01/AO-A7 unchanged

NUMTAN (-90)
at call:
at return:

tangent
02,03 = NUHREG2
02,03 = tan(NUMREG2)
registers 00-01/A0-A7 unchanged

NUMASN (-96) arc sine

70 Compiler-AmigaCOMAL

at call:
at return:

02,03 = NUMREG2
02,03 = asn(NUHREG2)
registers 00-01/A0-A7 unchanged

NUHASC (-102)
at call:
at return:

arc cosine
02,03 = NUMREG2
02,03 = acs(NUHREG2)
registers 00-D1/A0-A7 unchanged

NUNATN (-108)
at call:
at return:

arc tangent
02,03 = NUHREG2
02,03 = atn(NUMREG2)
registers 00-01/AO-A7 unchanged

NUMINT (-1U)
at call:
at return;

return integer value of NUMREG2
02,03 = NUMREG2
02,03 = int(NUMREG2)
registers 00-01/A0-A7 unchanged

CONOUT (-120)
at call:

at return:

write text on screen
02.L = address of text
03.W = length of text

registers 00-O7/A0-A7 unchanged

CONIN (-126)
at call:
at return:

get value of key pressed (wait if no key)

00.B = key value
registers 01-07/A0-A7 unchanged

KBOIN (-132)
at call:
at return:

scan keyboard

00.B - key value or zero
registers 01-07/A0-A7 unchanged

SETCUR (-138)
at call:

at return:

position cursor
00.high = line number
00. low = coluwi number

registers 00-O7/A0-A7 unchanged

GETCUR (-144)
at call:
at return:

return cursor position

00.high = line number
00.lav = column number
registers 01-07/A0-A7 unchanged

RemExcept (-150)
at call:
at return:

remove exception routine from exception list
AO = address of exception structure

registers 00-07/A0-A7 unchanged

AmigaCOMAL-Compiler 71

AddExcept

TSTSGN

NUHNEG

RemCmlDev

If streams

AddCmlDev

CallUser

CmlWait

The routi

TstBreak

(-156)
at call:
at return:

add exception routine to exception list
AO = address of exception structure

registers 00-07/AO-A7 unchanged

(-162)
at call:
at return:

test sign of number in NUMEG2
02,03 = NUMREG2
flags set
registers 00-D1/A0-A7 unchanged

(-168)
at call:
at return:

change sign of NUHREG2
02,03 = NUMREG2
02,03 = -NUHREG2
registers 00-01/A0-A7 unchanged

(-174)
at call:
at return:

reflxjve 10 device from device list
AO = address of device structure

registers 00-07/AO-A7 unchanged

to the device are open these streams are closed by AmigaCONAL.

(-180) add 10 device to device list
at call: AO s address of device structure
at return:

registers 00-D7/A0-A7 unchanged

(-186) call Comal procedures/functions
at call: 02.L = address of procedure

03.L = type of procedure
parameters on parameter stack (AS)

at return: returned value in 02,03 (if any)
registers A5-A7 unchanged

(-192) wait for signals to arrive
at call: 00.L = signal mask
at return: 00.L = mask for arrived signals

registers D1-07/A0-A7 unchanged

waits for the signals in the mask and the AmigaCOMAL signals.

(-198) test for break
at call:
at return: 00.B = 0 (not break)

$9B (program break)
$9A (quit AmigaCOMAL)
registers 01-07/A0-A7 unchanged

72 Compiler-AmigaCOMAL

D.2 Call of AmigaCOMAL routines from C.

The library module comEd.lib contains interface routines to the comal routines.
The calling conventions are shown below.

CinlFlt x,y,z;
CflilFlt pari, par2, ... ;

/* CmlFlt defined i comal.h •/

struct refparam p; /* refparam defined in comal.h */
struct strng *strng; /• struct strng def. in comal.h */
struct CmlExcept *CmlExcept; /* Exception structure •/
int b; /* boolean value */
int status; /* status value */
ULONG cursor; /* cursor position */
ULONG signal,retsignal;

int i;
char c;

/* signal masks */

APTR urkbot, wrktop; /* bottom and top of work space */
RetValue(&x); /* return value to AmigaCOMAL */
RetStat(status); /* return status to AmigaCOMAL */
i*FloatInt(x); /* convert x to integer •/
x=IntFloat(i); /* convert i to comal float •/
y=CmlSqr(x); /* y=sqr(x) */
y=CmlExp(x); /* y=exp(x) */
y=CffllLog(x); /* y=log(x) */
2=CmlPower(x,y); /* z=x^y */
y=CmlSin(x); /*)r=sin(x) */
y=CmlCos(x); /* y=cos(x) */
y=CmlTan(x); /* y=tan(x) */
y=CmlAcs(x); /* y=acs(x) */
y=CmlAsn(x); /* y=asn(x) */
y=CmlAtn(x); /* y=atn(x) */
y=CmlInt(x); /* y=int(x) */
i=TestSign(x); /* i=sign(x) */
cursor=CmlGetCusor(); /* return cursor position */
CmlSetCursort cursor); /* position cursor */
Cml ConOut (St rng); /* write text on screen */
c=CraiconInt); /* (wait and) get key value */
c=CmlKbdIn(); /* return key value or 0 */
c=CmlTstBrk(); /• test for break •/
retsigna1=CmlWait(signa1); /* wait for signal */
AddExcept(CmlExcept); /* add exception routine */
RemExcept(CmlExcept); /• remove exception routine •/
value=CallFunc(f,wrkbot,wrktop); /* call comal function */
Cal lProc(f, wrkbot, wrktop) /* call comal procedure */
NumFunc(f,par1,par2, ...) /* call numeric function */

Note that there are three different routines to call procedures or functions. The
last one is used to call numeric functions with numeric parameters only.
During the linking of the package the module comal.lib must be the first library
module to be searched in.

AmigaCOMAL-Compiler 73

74 Compiler-AmigaCOMAL

Appendix E.

Include-files.

E.1 The assembler include file Package.!.

* *

AmigaCOHAL
assembler package include file

*
*

version 04.01.89

; Type attributes
GLOBALBIT: EQU 14 Global variable
EXTERNALBIT: EQU 13 EXTERNAL function/procedure
CLOSEDBIT: EQU 12 CLOED function/procedure
IHPORTBIT: EQU 11 Imported (package)
POINTERBIT: EQU 8 Pointer variable

; Types of variables
strg: EQU 0 Simple string
fit: EQU 1 Simple float
longint: EQU 2 Simple long integer
shortint: EQU 3 Simple short integer
byteint: EQU 4 Simple byte integer
record: EQU 5 Simple record
strgarray: EQU 8 String array
f Itarray: EQU 9 Float array
longarray: EQU 10 Long integer array
shortarray: EQU 11 Short integer array
bytearray: EQU 12 Byte integer array
recarray: EQU 13 Record array
strguser: EQU 16 String user FUNCtion
fItuser: EQU 17 Float user FUNCtion
longuser: EQU 18 Long integer user FUNCtion
shortuser: EQU 19 Short integer user FUNCtion
byteuser: EQU 20 Byte integer user FUNCtion
strgcode: EQU 24 String code function
f Itcode: EQU 25 Float code function
longcode: EQU 26 Long integer code function
shortcode: EQU 27 Short integer code function
bytecode: EQU 28 Byte integer code function
userproc: EQU 128 User PRCCedure
codeproc: EQU 129 Code procedure

AmigaCOMAL-Compiler 75

; Types of formal parameters

strgval: EQU $001F String value
fItval: EQU $002 F Float value
longval: EQU $012F Long integer value
shortval: EQU $022F Short integer value
byteval: EQU $032F Byte integer value
recval: EQU $0042 Record value
strgref: EQU $8012 String REF
fItref: EQU $8022 Float REF
longref: EQU $8122 Long integer REF
shortref: EQU $8222 Short integer REF
byteref; EQU $8322 Byte integer REF
recref; EQU $8042 Record REF
procref: EQU $8022 Procedure REF

; Routine offsets

i

TestBreak: EQU -198
CmlUait: EQU -192
CallUser: EQU -186
AddCmlDev: EQU -180
RemCmlDev: EQU -174
NUMHEG: EQU -168
TSTSGN: EQU -162
AddExcept: EQU -156
RemExcept: EQU -150
GETCUR: EQU -144
SETCUR: EQU -138
KBDIN: EQU -132
CONIN: EQU -126
CONOUT: EQU -120
NUMINT: EQU -114
NUMATN: EQU -108
NUMASN: EQU -102
NUHACS: EQU -96
NUMTAN: EQU -90
NUHCOS: EQU -84
NUMSIN: EQU -78
NUMPUR: EQU -72
NUMLOG: EQU -66
NUMEXP: EQU -60
NUMSQR: EQU -54
INT2FP: EQU -48
FP2INT: EQU -42
NUHCMP: EQU -36
NUMOIV: EQU -30
NUMHUL: EQU -24
NUMSUB: EQU -18
NUMAOO: EQU -12
CMLRET: EQU -6

76 Compiler-AmigaCOMAL

; Offsets in COMAL structure

SP top: EQU 0
SP bot: EQU 4
PckLink: EQU 8
TaskldOff: EQU 12
DosBaseOff: EQU 16
IntBaseOff: EQU 20
GraBaseOff: EQU 24
LayBaseOff: EQU 28
DfBaseOff: EQU 32
IconBaseOff: EQU 36
EventFlgOff: EQU 40
EventCntOff: EQU 41
CoMUinSigOff: EQU 42
ComKbdSigOff: EQU 43
ExcUinSigOff: EQU 44
ExcKbdSigOff: EQU 45
SerialSigOff: EQU 46
TimerSigOff: EQU 47
ReslOff: EQU 48
Res20ff: EQU 52
ComalHdOff: EQU 56
CoramHdOff: EQU 60
ExecHdOff: EQU 64

; Event flag bits

i

EscapeFlag: EQU 6
MasterEscFlg: EQU 5
PckExceptFlg: EQU 4

; Offsets in package structure

1

PckName: EQU 4
PckType: EQU 8
PckPrior: EQU 9
PckFlag: EQU 10
PckTopId: EQU 12
PckSignal: EQU 16
PckCmlStr: EQU 20
PckConOut: EQU 24
PckConln: EQU 28
PckKbdln: EQU 32
PckSetCur: EQU 36
PckGetCur: EQU 40
PckErrOut: EQU 44
PckErrTxt: EQU 48
PckExcept: EQU 52
PckUser: EQU 64

Stack top
Stack bottom
Pointer to 1. package
Task pointer
Dos Base
Intuition base
Graphics base
Layers base
Diskfont base
Icon base
Event flags
Counter for unprocessed events
lOCMP signal for command window
Keyboard signal for command window
lOCMP signal for execute window
Keyboard signal for execute window
Serial port signal
Timer port signal
Reserved for future use
Reserved for future use
Pointer to active window str
Reserved for EditHd
Reserved for ExecHd

Pointer to package name
Package type
Priority of package
Flags
Pointer to address of 1. id
Address of signal routine
Address of Comal structure
Address of ConOut routine
Address of Conin routine
Address of Keyboard in routine
Address of SetCursor routine
Address of GetCursor routine
Address of Error (Xitput routine
Address of Error Text routine
Address of exception routine
Offset to user defined pointer

; Break key pressed
; Quit program
; Call exception routine(s)

AmigaCOMAL-Compiler 77

; Package flag bits

PckConOutBit: EQU 0
PckConInBit: EQU 1
PckKbdInBit: EQU 2
PckExclBit: EQU 3
PckSetCurBit: EQU 4
PckGetCurBit: EQU 5
PckErrOutBit: EQU 6
PckErrTxtBit: EQU 7
PckExceptBit: EQU 15

Flag for exclusive Kbdin

E.2 The C include file comal.h.

/* COHAL80 definitions for packages progranned in C */
/* Version 04.01.89 for Lattice C v. 3.03 */
/* Lattice C v. 5.xx change the #include to use “ */
/* exatnple: change #include <exec/types.h> */
/• into #include "exec/types.h“ •/

#ifndef EXEC_TYPES_H
#include <exec/types.h>

#endif

#ifndef EXEC_TASKS_H
#include <exec/tasks.h>

#endif

#ifndef INTU1TI0N_INTUITI0M_H
#include <intuition/intuition.h>

#endif

/* Parameter types */
#define strgval 0X001f /* String value parameter */
#define fltval 0X002f /* Float value parameter */
#define longval 0X012f /* Long integer value parameter */
#define shortval 0X022f /* Short integer value parameter */
iMefine byteval 0X032f /• Byte integer value parameter */
HWefine recval 0X0042 /* Record value parameter */
#define strgref 0X8012 /* String REF parameter */
#define fltref 0X8022 /* Float REF parameter */
#define longref 0X8122 /* Long integer REF parameter */
#define shortref 0X8222 /* Short integer REF parameter */
#define byteref 0X8322 /* Byte integer REF parameter */
#define recref 0X8042 /* Record REF parameter */

/• Identifier types */
#define strg 0 /• String */
iSldefine fit 1 /* Float */
#define longint 2 /* Long integer */
#define shortint 3 /* Short integer */

78 Compiler-AmigaCOMAL

#define byteint 4 /• Byte integer */
#define record 5 /* Record */
#define strgarray 8 /• String array */
#define fItarray 9 /* Float array */
#define longarray 10 /* Long integer array */
#define shortarray 11 /* Short integer array •/
iWef ine bytearray 12 /* Byte integer array */
#define recarray 13 /* Record array */
#define strguser 16 /* String user FUNCtion */
#define f1tuser 17 /* Float user FUNCtion */
#define longuser 18 /* Long integer user FUNCtion */
#define shortuser 19 /* Short integer user FUNCtion */
#define byteuser 20 /* Byte integer user FUNCtion */

#define strgcode 24 /• String code function */
#define f1tcode 25 /• Float code function */
#define longcode 26 /* Long integer code function */
#define shortcode 27 /* Short integer code function */
#define bytecode 28 /* Byte integer code function */
#define userproc 128 /* User defined PROCedure */
#define codeproc 129 /• Code procedure */

/* lO-flags V
iHdef ine ConOutFlag 1
#define ConlnFlag 1 « 1
<fdef ine KbdlnFlag 1 « 2
#define ExclFlag 1 « 3
#define SetCurFlag 1 « 4
#define GetCurFlag 1 « 5
#define ErrOutFlag 1 « 6
#define ErrTxtFlag 1 « 7
#define PcklntFlag 1 « 15

/* Type attributes */
#define POINTERBIT 1
#define IMPORTBIT 8
#define CLOSEDBIT 16
#define EXTERNALBIT 32
#define GL06ALBIT 64

extern APTR WorkTop,WorkBot;

struct OutputStruc
{

struct Screen *OutputScreen;
USHORT ScreenType;
USHORT ScreerCepth;
USHORT ScreenUidth;
USHORT ScreenHeight;
struct Window *OutputUindow;
USHORT WindouDepth;
USHORT LineLen.LlneNo;
USHORT GzzXoff.GzzYoff;
USHORT WindowWIdth;
USHORT WindowHeight;

>;

/* AmigaComal output structure

/* Pointer to screen
/* Screen type
/* Bitmaps in screen
/* Screen width in bits
/* Screen height in bits
/* Pointer to window
/* Bitmaps in window
/* Wd dimensions in char
/* Giimiezerozero offsets
/* Window width in bits
/• Window height in bits

*/

*/

*/

*/

*/

*/
*/
*/
*/
*/

*/

*/

AmigaCOMAL-Compiler 79

struct ccxnalstr
{

APTR SP top;
APTR SP^bot;
APTR PackLink;
struct Task *task_id;
APTR DOSbase;
struct IntuitionBase *lntBase;
struct GfxBase *GfxBase;
APTR LayBase;
APTR OfBase;
APTR IconSase;
UBYTE EventFlag;
UBYTE EventCount;
UBYTE ComUinSig;
UBYTE CoirtCbdSig;
UBYTE ExcWinSig;
UBYTE ExcKbdSig;
UBYTE SerialSig;
UBYTE TimerSig;
APTR reservi;
APTR reserv2;
struct OutputStruc *ActStruc;
struct OutputStruc *ConinStruc;
struct OutputStruc *ExecStruc;

>;

/* stack top */
/* .. and bottom */
/* Pointer to 1. package */
/* Pointer to Comal task str */
/* Base address of DOS */

/* layers.library base */
/• diskfont.library base */
/* icon.library base »/
/* Flag for events */
/* No. of unprocessed events */
/* IDCMP signal for Com Wind */
/• Keyboard signal for Com Wd */
/* IDCMP signal for Exec Wd */
/* Keyboard signal for Exec Wd */
/* Serial port signal */
/* Timer port signal */
/* Reserved */
/* Reserved */
/* Active output str */
/* Conni. output str */
/* Exec, output str */

struct varnode

struct varnode *node; /* Pointer to next var-node */
STRPTR name; /* Pointer to name */
UWORD type; /* Type of variable */
UWORD

>;

numpar; /* Number of parameters */

typedef struct varnode *topptr;

struct package
r

/* Packages structure */
V

struct package ‘link; /* Link to next package */
STRPTR name; /* Pointer to packages name •/
UBYTE Type; /* Type */
BYTE Priority; /• Priority */
UWORD Flags; /* Flags */
topptr *var; /* I nit with addr of top-id */
void <*signal)(); /* Init with addr of signal */
struct comalstr ‘comal; /* Pointer to comal structure */
void (*ConOut)(); /* ConOut routine */
char (*ConIn)0; /* ConIn routine */
char (*KbdIn)0; /* Keyboard-in - no waiting */
ULONG (*SetCur)0; /* Set cursor */
ULONG (*GetCur)(); /* Get cursor */
void (*ErrOut)(); /* Error output */
void (*ErrTxt)(); /* Error text */
void (*Except)0; /* Signal exception routine */

80 Compiler-AmigaCOMAL

APTR reservedi;
APTR reservedZ;
APTR user;

>;

/* User defined pointer */

struct CmlExcept /* Signal exception structure */
< /* */

struct CmlExcept •link; /* Link to next structure */
ULONG Signal; /• Signal mask */
void (*SigExcept)(); /* Exception routine */

>; y***y

y***y

struct strng /* string format in COMAL */
i /* */

short max; /• maximal length field */
short akt; /• actual length field */
char txttZ]; /• string content */

>; y*4rlr**ir***4r****4r********4r***4r********4r**4r4r y

struct refparam /* REF parameter format */
/* */

APTR Data; /• Address of data */
APTR Information; /• Information block address */
UWORD dummy; /* Register D3.high - not used •/
UBYTE Attributes; /* Type attributes */
UBYTE Type; /* Type •/

>; yilr** y

y*** y

struct ptrparam /* Pointer parameter */
{ /* */

APTR ‘Data; /* Pointer to address of data */
APTR Information; /* Information block address */
UWORD dummy; /* Register D3.high - not used */
UBYTE Attributes; /* Type attributes */
UBYTE Type; /• Type */

>; y***y

y***y

struct valparam /* Value parameter format */
/* */

long d2; /* register D2.L */
long d3; /* register D3.L */

>; y*** y

typedef double CmlFlt;

AmigaCOMALrCompiler 81

82 Compiler-AmigaCOMAL

Appendix F.

References.

There are a lot of books describing the 68000 assembler on the market. Here we
will list a single title:

Kane, Hawkins, Leventhal
68000 Assembly Language Programming
OSBORNE/McGraw-HUl

The C programming language is also described in a lot of books.

If you intend to use the facilities of the Amiga it is necessary to get some books
describing the machine. Fortunately there are a lot of such books. Start with the
four books made by Commodore:

Amiga ROM Kernal Reference manual: Exec
Amiga ROM Kernal Reference manual: Libraries and Devices
Amiga Intuition Reference Manual
Amiga Hardware Reference Manual

Among the other books we will mention:

Eugene P Mortimore
Programmers Handbook volume 1+2
SYBEX

AmigaCOMAL-Compiler 83

NOTES

84 Compiler-AmigaCOMAL

NOTES

AmigaCOMAL-Compiler 85

NOTES

86 Compiler-AmigaCOMAL

